TY - JOUR
T1 - CXCL14 Inhibits Insulin Secretion Independently of CXCR4 or CXCR7 Receptor Activation or cAMP Inhibition
AU - Atanes, Patricio
AU - Hawkes, Ross G.
AU - Olaniru, Oladapo E.
AU - Ruz-Maldonado, Immaculada
AU - Amisten, Stefan
AU - Persaud, Shanta J.
PY - 2019/4/9
Y1 - 2019/4/9
N2 - BACKGROUND/AIMS: CXCL14, a secreted chemokine peptide that promotes obesity-induced insulin resistance, is expressed by islets, but its effects on islet function are unknown. The aim of this study was to determine the role of CXCL14 in β-cells and investigate how it transduces these effects. METHODS: Cxcl14 and Cxc-receptor mRNA expression was quantified by qPCR and CXCL14 expression in the pancreas was determined by immunohistochemistry. The putative function of CXCL14 at CXCR4 and CXCR7 receptors was determined by β-arrestin recruitment assays. The effects of CXCL14 on glucose-stimulated insulin secretion, cAMP production, glucose-6-phosphate accumulation, ATP generation, apoptosis and proliferation were determined using standard techniques. RESULTS: CXCL14 was present in mouse islets, where it was mainly localised to islet δ-cells. Cxc-receptor mRNA profiling indicated that Cxcr4 and Cxcr7 are the most abundant family members in islets, but CXCL14 did not promote β-arrestin recruitment at CXCR4 or CXCR7 or antagonise CXCL12 activation of these receptors. CXCL14 induced a concentration-dependent inhibition of glucose-stimulated insulin secretion, which was not coupled to Gαi signalling. However, CXCL14 inhibited glucose-6-phosphate generation and ATP production in mouse islets. CONCLUSION: CXCL14 is expressed by islet δ-cells where it may have paracrine effects to inhibit insulin secretion in a CXCR4/CXCR7-independent manner through reductions in β-cell ATP levels. These observations, together with the previously reported association of CXCL14 with obesity and impaired glucose homeostasis, suggest that inhibition of CXCL14 signalling could be explored to treat type 2 diabetes.
AB - BACKGROUND/AIMS: CXCL14, a secreted chemokine peptide that promotes obesity-induced insulin resistance, is expressed by islets, but its effects on islet function are unknown. The aim of this study was to determine the role of CXCL14 in β-cells and investigate how it transduces these effects. METHODS: Cxcl14 and Cxc-receptor mRNA expression was quantified by qPCR and CXCL14 expression in the pancreas was determined by immunohistochemistry. The putative function of CXCL14 at CXCR4 and CXCR7 receptors was determined by β-arrestin recruitment assays. The effects of CXCL14 on glucose-stimulated insulin secretion, cAMP production, glucose-6-phosphate accumulation, ATP generation, apoptosis and proliferation were determined using standard techniques. RESULTS: CXCL14 was present in mouse islets, where it was mainly localised to islet δ-cells. Cxc-receptor mRNA profiling indicated that Cxcr4 and Cxcr7 are the most abundant family members in islets, but CXCL14 did not promote β-arrestin recruitment at CXCR4 or CXCR7 or antagonise CXCL12 activation of these receptors. CXCL14 induced a concentration-dependent inhibition of glucose-stimulated insulin secretion, which was not coupled to Gαi signalling. However, CXCL14 inhibited glucose-6-phosphate generation and ATP production in mouse islets. CONCLUSION: CXCL14 is expressed by islet δ-cells where it may have paracrine effects to inhibit insulin secretion in a CXCR4/CXCR7-independent manner through reductions in β-cell ATP levels. These observations, together with the previously reported association of CXCL14 with obesity and impaired glucose homeostasis, suggest that inhibition of CXCL14 signalling could be explored to treat type 2 diabetes.
KW - CXCL14
KW - Insulin secretion
KW - Islets
KW - MIN6 b-cells
KW - Type 2 diabetes
UR - http://www.scopus.com/inward/record.url?scp=85064499709&partnerID=8YFLogxK
U2 - 10.33594/000000061
DO - 10.33594/000000061
M3 - Article
C2 - 30958662
AN - SCOPUS:85064499709
SN - 1421-9778
VL - 52
SP - 879
EP - 892
JO - Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology
JF - Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology
IS - 4
ER -