TY - JOUR
T1 - Linking Pain Sensation to the Autonomic Nervous System
T2 - The Role of the Anterior Cingulate and Periaqueductal Gray Resting-State Networks
AU - Hohenschurz-Schmidt, David Johannes
AU - Calcagnini, Giovanni
AU - Dipasquale, Ottavia
AU - Jackson, Jade B
AU - Medina, Sonia
AU - O'Daly, Owen
AU - O'Muircheartaigh, Jonathan
AU - de Lara Rubio, Alfonso
AU - Williams, Steven C R
AU - McMahon, Stephen B
AU - Makovac, Elena
AU - Howard, Matthew A
N1 - Copyright © 2020 Hohenschurz-Schmidt, Calcagnini, Dipasquale, Jackson, Medina, O’Daly, O’Muircheartaigh, de Lara Rubio, Williams, McMahon, Makovac and Howard.
PY - 2020/2/27
Y1 - 2020/2/27
N2 - There are bi-directional interactions between the autonomic nervous system (ANS) and pain. This is likely underpinned by a substantial overlap between brain areas of the central autonomic network and areas involved in pain processing and modulation. To date, however, relatively little is known about the neuronal substrates of the ANS-pain association. Here, we acquired resting state fMRI scans in 21 healthy subjects at rest and during tonic noxious cold stimulation. As indicators of autonomic function, we examined how heart rate variability (HRV) frequency measures were influenced by tonic noxious stimulation and how these variables related to participants’ pain perception and to brain functional connectivity in regions known to play a role in both ANS regulation and pain perception, namely the right dorsal anterior cingulate cortex (dACC) and periaqueductal gray (PAG). Our findings support a role of the cardiac ANS in brain connectivity during pain, linking functional connections of the dACC and PAG with measurements of low frequency (LF)-HRV. In particular, we identified a three-way relationship between the ANS, cortical brain networks known to underpin pain processing, and participants’ subjectively reported pain experiences. LF-HRV both at rest and during pain correlated with functional connectivity between the seed regions and other cortical areas including the right dorsolateral prefrontal cortex (dlPFC), left anterior insula (AI), and the precuneus. Our findings link cardiovascular autonomic parameters to brain activity changes involved in the elaboration of nociceptive information, thus beginning to elucidate underlying brain mechanisms associated with the reciprocal relationship between autonomic and pain-related systems.
AB - There are bi-directional interactions between the autonomic nervous system (ANS) and pain. This is likely underpinned by a substantial overlap between brain areas of the central autonomic network and areas involved in pain processing and modulation. To date, however, relatively little is known about the neuronal substrates of the ANS-pain association. Here, we acquired resting state fMRI scans in 21 healthy subjects at rest and during tonic noxious cold stimulation. As indicators of autonomic function, we examined how heart rate variability (HRV) frequency measures were influenced by tonic noxious stimulation and how these variables related to participants’ pain perception and to brain functional connectivity in regions known to play a role in both ANS regulation and pain perception, namely the right dorsal anterior cingulate cortex (dACC) and periaqueductal gray (PAG). Our findings support a role of the cardiac ANS in brain connectivity during pain, linking functional connections of the dACC and PAG with measurements of low frequency (LF)-HRV. In particular, we identified a three-way relationship between the ANS, cortical brain networks known to underpin pain processing, and participants’ subjectively reported pain experiences. LF-HRV both at rest and during pain correlated with functional connectivity between the seed regions and other cortical areas including the right dorsolateral prefrontal cortex (dlPFC), left anterior insula (AI), and the precuneus. Our findings link cardiovascular autonomic parameters to brain activity changes involved in the elaboration of nociceptive information, thus beginning to elucidate underlying brain mechanisms associated with the reciprocal relationship between autonomic and pain-related systems.
KW - anterior cingulate cortex
KW - autonomic nervous system
KW - fMRI
KW - heart rate variability
KW - pain
KW - periaqueductal gray
KW - resting state
UR - http://www.scopus.com/inward/record.url?scp=85082552732&partnerID=8YFLogxK
U2 - 10.3389/fnins.2020.00147
DO - 10.3389/fnins.2020.00147
M3 - Article
C2 - 33041747
AN - SCOPUS:85082552732
SN - 1662-4548
VL - 14
JO - Frontiers in Neuroscience
JF - Frontiers in Neuroscience
M1 - 147
ER -