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Abstract  30 

The application of machine learning has recently gained interest from ecotoxicological 31 

fields for its ability to model and predict chemical and/or biological processes, such as 32 

the prediction of bioconcentration. However, comparison of different models and the 33 

prediction of bioconcentration in invertebrates has not been previously evaluated. A 34 

comparison of 24 linear and machine learning models is presented herein for the 35 

prediction of bioconcentration in fish and important factors that influenced 36 

accumulation identified. R2 and root mean square error (RMSE) for the test data (n = 37 

110 cases) ranged from 0.23 – 0.73 and 0.34 – 1.20, respectively. Model performance 38 

was critically assessed with neural networks and tree-based learners showing the best 39 

performance. An optimised 4-layer multi-layer perceptron (14 descriptors) was 40 

selected for further testing. The model was applied for cross-species prediction of 41 

bioconcentration in a freshwater invertebrate, Gammarus pulex. The model for G. 42 

pulex showed good performance with R2 of 0.99 and 0.93 for the verification and test 43 

data, respectively. Important molecular descriptors determined to influence 44 

bioconcentration were molecular mass (MW), octanol-water distribution coefficient 45 

(logD), topological polar surface area (TPSA) and number of nitrogen atoms (nN) 46 

among others. Modelling of hazard criteria such as PBT, showed potential to replace 47 

the need for animal testing. However, the use of machine learning models in the 48 

regulatory context has been minimal to date and is critically discussed herein. The 49 

movement away from experimental estimations of accumulation to in silico modelling 50 

would enable rapid prioritisation of contaminants that may pose a risk to environmental 51 

health and the food chain. 52 

Keywords modelling, PBT, pharmaceutical, bioconcentration, BCF, machine 53 

learning54 
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Introduction 55 

Both terrestrial and aquatic environments experience pollution from a wide 56 

range of chemical contaminants. The presence of these contaminants is a cause for 57 

concern as they may elicit adverse effects to environmental and public health. 58 

Bioaccumulation of chemicals is critically important for understanding the risk of 59 

chemicals in the environment. The complexity of confounding factors that affect uptake 60 

make simple relationships that can confidently predict the accumulation elusive; but it 61 

may not have to be that way.  62 

Live animal exposure studies are currently the norm, using many hundreds of 63 

fish for each assessment [1]. Across the European Union (EU), various guidelines 64 

have been established for industry to minimise the risk posed by their chemical 65 

products. For pharmaceuticals in the EU this is regulated by the European Medicines 66 

Agency (EMA) and for other chemicals substances the regulations are outlined by the 67 

Registration, Evaluation, Authorisation and restriction of CHemicals (REACH) [2, 3]. 68 

According to REACH, any manufacturer of a chemical that exceeds quantities of 10 69 

tonnes per annum must submit a chemical safety assessment (CSA). For 70 

environmental risk assessment, part of the CSA includes persistence, 71 

bioaccumulation and toxicity (PBT) assessments. Alternatively, for pharmaceuticals 72 

environmental risk assessment (ERA) follows an initial screening (Phase I) where 73 

physico-chemical properties of the compound are determined (e.g. logP) and the 74 

expected exposure is estimated. The Phase I exposure estimation is calculated as the 75 

predicted environmental concentration (PEC). If the PEC is >0.01 µg L-1 then the 76 

pharmaceutical must undergo further testing to assess environmental fate and toxicity. 77 

However, it should be noted that substances with a logP >4.5, will trigger a PBT 78 

assessment (following REACH guidelines) regardless of the Phase I PEC.   79 
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For PBT assessments, existing available screening data and prior assessment 80 

information are used to determine whether a chemical is bioaccumulative (B) or very 81 

bioaccumulative (vB) by estimation of a bioconcentration factor (BCF) or 82 

bioaccumulation factor (BAF). Currently, pharmaceuticals are not restricted or 83 

replaced as would normally be defined under REACH. Furthermore, whilst PBT 84 

assessments are implemented, the persistence and bioaccumulation outcome of 85 

these assessments are not taken into consideration for authorisation purposes, as no 86 

legal provisions specifically cover persistent, bioaccumulative and toxic  substances 87 

for pharmaceuticals [4].  88 

Laboratory testing for PBT brings with it a significant level of planning, quality 89 

control and cost [1]. Therefore, in silico methodologies to predict BCF or BAF offers a 90 

potential advantage to more intelligently use data to characterise potential exposure 91 

and risk. Quantitative Structure Activity Relationships (QSARs) are becoming 92 

increasingly popular within ecotoxicological fields as they represent, perhaps, the only 93 

realistically feasible scenario to assess the environmental risk of the several thousand 94 

chemicals that are available on the market [5]. In addition, such models can be used 95 

to ethically reduce or replace animal testing and falls under the replacement, reduction 96 

and refinement (3Rs) framework [6]. Further, effective in silico models could also be 97 

utilised to help shape future drugs in terms of ‘green by design’ ambitions [7]. 98 

More recently, more complex machine learning-based QSAR models involving 99 

artificial neural networks (ANNs), tree-based learners or support vector machines 100 

(SVMs) have been used to model BCF in fish [8-11]. However, several variations of 101 

machine learning-type models exist and wider applications of such models for 102 

bioaccumulation prediction have not yet been evaluated to identify any added benefits. 103 

Furthermore, current QSAR models have only been applied to modelling fish 104 
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bioaccumulation data and do not incorporate pharmaceutical data. The potential for 105 

application to other taxa such as invertebrates is also non-existent, mainly due to a 106 

shortage of available data.  107 

The aim of this work was to develop and critically evaluate several machine 108 

learning-based modelling tools for prediction of bioconcentration factor (BCF) in both 109 

a fish (Cyprinus carpio) and an invertebrate species (Gammarus pulex) for the first 110 

time. An open access fish BCF dataset was used in the first instance to build and 111 

compare 24 different models for 352 different compounds. Subsequently, the best 112 

model was applied to both a set of fish and invertebrate BCF data to assess its 113 

potential for cross-species prediction. The invertebrate dataset also contained mainly 114 

pharmaceuticals. In parallel, independent models were developed ab initio on a 115 

smaller set of invertebrate BCF data alone to assess the degree of commonality with 116 

the model developed on fish BCF data. Finally, the importance of molecular 117 

descriptors to understand the potential for a chemical to accumulate in biota was 118 

assessed. The use of such rapid and flexible modelling approaches is now critical to 119 

support the 3Rs, aid greener design and to help meet the demand for PBT 120 

assessments of potentially large numbers of compounds, which could be expanded to 121 

new and emerging environmental contaminants across different species.  122 

 123 

Materials and Methods 124 

Dataset generation and pre-processing  125 

Bioconcentration factors were collated from the European Chemical Industry 126 

Council Long-range Research Initiative (Cefic LRI) project EC07 in collaboration with  127 

European Academy for Standardisation e.V (EURAS) which established the BCF gold 128 

standard database across multiple fish species and is freely available at 129 
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http://ambit.sourceforge.net/euras/. BCFs were down-selected to reduce variability 130 

between different species and experimental conditions within the database. The BCF 131 

data used herein were specific to C. carpio and were included by the Chemicals 132 

Inspection and Testing Institute [12]. Out of all BCF data, this sub-selection resulted 133 

in the largest dataset with a single fish species (n=352) for modelling purposes. The 134 

reported BCFs represented whole-body values only and included pigments, 135 

pesticides, fungicides, herbicides, insecticides, polyaromatic hydrocarbons (PAHs) 136 

and polychlorinated biphenyls (PCBs), organochlorines, nitroaromatics, alkylphenols, 137 

aromatic hydrocarbons, organosulfurs and organotins. Approximately 36 % of the 138 

dataset contained ionisable compounds (estimated from ACD labs, Percepta 139 

software). The invertebrate BCF dataset (n=34) was collated from literature reported 140 

data [13-17] for the benthic freshwater organism, G. pulex. This species was selected 141 

as there was a relatively large amount of BCF data available when compared with 142 

other invertebrate species. For these, BCF data were only available for 143 

pharmaceuticals and pesticides and, again, represented whole-body values.  144 

Simplified molecular input line entry system (SMILES) strings were generated 145 

for each compound using Chemspider (Royal Society of Chemistry, UK). Molecular 146 

descriptors were generated from SMILES strings using Parameter Client (Virtual 147 

Computational Chemistry Laboratory, Munich, Germany), and ACD Labs Percepta 148 

(Advanced Chemistry Development Laboratories, ON, Canada). Approximately 450 149 

descriptors were initially generated covering constitutional, topological, geometrical 150 

and physico-chemical properties. The fish and invertebrate datasets were pre-151 

processed to remove any zero variance descriptors or descriptors that were 152 

erroneous. All BCF data used for modelling was log transformed for improved 153 

predictive accuracy. 154 

http://ambit.sourceforge.net/euras/
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 155 

Feature selection 156 

 Descriptors were down-selected using three different feature selection 157 

algorithms, the first of which was a genetic algorithm (GA). The GA parameters were 158 

set to population = 500, generations = 250, mutation rate = 0.1 and cross-over rate = 159 

1. The remaining two selection methods were part of stepwise regression which 160 

included a forward selection algorithm (FA) and backwards selection algorithm (BA). 161 

The feature selection algorithms used a generalised regression neural networks 162 

(GRNN) to monitor the error associated with the selected descriptors, where descriptor 163 

sets were optimised when the error showed no improvement. The use of GRNN for 164 

descriptor selection is very fast and requires minimal processing power. The 165 

performance of each feature selection algorithm was characterised by then testing 166 

several thousand neural networks and evaluating the predictive performance of the 167 

models based on the error of the predictions. The best feature selection method was 168 

the GA, which resulted in the down-selection of descriptors to a total of 14 that included 169 

6 topological descriptors; radial centric information index (ICR), Narumi harmonic 170 

topological function (Hnar), ramification index (Ram), superpendentic index (SPI), 171 

spanning tree number (STN), topological polar surface area (TPSA), 4 constitutional 172 

descriptors; number of hydrogens (nH), number of carbons (nC), number of nitrogens 173 

(nN), molecular weight (MW), 3 electrotopological descriptors; maximal 174 

electrotopological negative variation (MAXDN), maximal electrotopological positive 175 

variation (MAXDP), mean atomic Sanderson electronegativity (Me) and 1 physico-176 

chemical property; the octanol-water distribution coefficient (logD) (See SI, Table S3).   177 

 178 

Modelling approaches 179 
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Two different software packages were used to assess the applicability of 180 

several in silico models in predicting bioconcentration. Trajan 6.0 (Trajan Software 181 

Ltd., Lincolnshire, UK) was used to build and evaluate artificial neural networks. In 182 

addition, this software was also used for the feature selection and the same 183 

descriptors were used in both modelling software packages. Models developed and 184 

optimised in Trajan included generalised regression neural networks (GRNN), radial 185 

basis function networks (RBF) and 3-/4-layer multilayer perceptrons (MLP). Training 186 

of the MLPs used two training algorithms referred to as back propagation (BP) and 187 

conjugate gradient descent (CGD), models were trained for 100 iterations. The 188 

optimised model was a four-layer MLP. The first and fourth layers were the inputs 189 

(molecular descriptors) and outputs (logBCF), respectively. The second and third 190 

layers (hidden layers) contained 14 and 10 nodes, respectively. Regularisation was 191 

performed with the use of early stopping to prevent over-training of the dataset. 192 

Parameter tuning was performed by changing the number of hidden layers and nodes 193 

and assessing the model performance on the verification and test subsets. The 194 

subsets of cases presented to the neural networks were split so that 242 compounds 195 

(70 %) were used for training, 55 compounds (15 %) for verification and 55 compounds 196 

(15 %) for testing the networks. Normalisation of the input features showed no 197 

improvement in performance of the networks and training was performed without 198 

centred or scaled descriptors.  199 

In the second software package, modelling was performed using the R 200 

statistical computing language (freely available from https://www.r-project.org). Here, 201 

19 predictive models from different kinds of learner categories including both linear 202 

and non-linear models were trained and tested. These included, ordinary least-203 

squares regression (OLM, package: stats), partial least-squares (PLS, package: pls), 204 
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ridge regression (RR, package: elasticnet), elastic net (EN, package: elasticnet), 205 

quantile regression with LASSO penalty (QRL, package: rqPen) multivariate adaptive 206 

regression splines (MARS & B-MARS, package: earth), k-nearest neighbours 207 

regression (KNN, package: caret), extreme learning machines (ELM, package: 208 

elmNN), support vector machines with radial basis function (SVM-R, package: 209 

kernlab) and polynomial (SVM-P, package: kernlab) kernels, random forest exploiting 210 

classification and regression trees (RF-CART, package: randomForest) and 211 

conditional inference trees (RF-CIT, package: party) algorithms as base learners, 212 

boosted trees (BT, package: gbm) and Cubist regression (CR, package: Cubist). MLPs 213 

(3-5 layers) with 1 hidden layer (ANN-1HL, package: nnet), averaged 1 hidden layer 214 

(ANN-a1HL, package: nnet), 2 hidden layers (ANN-2HL, package: RSNNS) and 3 215 

hidden layers (ANN-3HL, package: RSNNS) were also tested. For this modelling 216 

approach, the same molecular descriptors and logBCF were used again as input and 217 

output variables. The dataset was split into two subsets, training data (70 %) and test 218 

data (30 %). Normalisation of the data was required for the modelling application and 219 

the dataset was both centred and scaled. Parameter tuning was performed by 220 

resampling of the training subset following a 10-fold cross-validation scheme repeated 221 

five times and implemented through the caret package. Performance of each model 222 

was assessed from the root-mean square error (RMSE) and the correlation coefficient 223 

(R2). The best model for each regression method was then selected, retrained on the 224 

entire training dataset and used to predict cases in the test dataset.  Final datasets 225 

used for modelling the optimised models are given in the SI (Table S1 & S2). The 226 

finalised models were all tested according to OECD guidelines [18] for QSAR model 227 

validation. 228 

 229 
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Results and Discussion 230 

 231 

Down-selection of input features for modelling BCFs in fish  232 

The down-selection of the input features was assessed using three different 233 

feature-selection algorithms. Stepwise methods that included forwards or backwards 234 

selection (FA/BA) reduced the number of descriptors from 180 down to 72, whilst the 235 

GA reduced the number of descriptors to 66. The GA showed better correlation 236 

between selected descriptors with logBCF compared to stepwise algorithms (Figure 237 

S1). For both BA and FA, the selection process converged to the same local minima 238 

indicating that there was no difference in using either algorithm. The improved 239 

performance of the GA is due to selection of descriptors from multiple points in the 240 

descriptor space, as opposed to FA or BA that start selection from a single point. Thus, 241 

approaching global minima is more likely to arise when using the GA over stepwise 242 

selection methods.  243 

From the 66 descriptors selected by the GA, the top 22 descriptors plus an 244 

additional two user curated descriptors were selected for further modelling (See SI, 245 

Table S3). These additional descriptors were logD and number of hydrogen acceptor 246 

groups (nHAcc) and were chosen for their previously demonstrated influence on 247 

accumulation in biota [19, 20]. All descriptors were then tested across several 248 

thousand MLPs (three and four-layer) where the Trajan software sub-selected the best 249 

from the group of 24 descriptors based on model performance (MLPs yielded the best 250 

performance over other model types in terms of R2 and RMSE). The descriptors were 251 

down-selected to a total of 14 that showed relatively good performance across MLPs 252 

tested and were subsequently used in both modelling approaches discussed herein 253 

(Table S3). Given the scale of BCF data used for training (n=242), the 5:1 Topliss 254 
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threshold set out by the OECD guidelines [18] for the ratio of numbers of cases to 255 

descriptors was acceptable at 17:1. 256 

 257 

Comparison of model performances for prediction of fish BCFs 258 

The results of both modelling approaches are shown in Table 1. For models 259 

trained in R, the highest RMSE values were observed for OLM (1.203), followed by 260 

PLS (1.164) and then QRL (1.112). The relatively poor performance of such linear 261 

models may be expected as modelling such a biologically complex process is not likely 262 

to follow linear relationships using simple molecular descriptors. Even with well-263 

studied descriptors, such as logP, there is a non-linear trend with accumulation over 264 

a specific threshold (generally, logP >6) [21]. However, when used as a sole 265 

descriptor, logP may exclude processes that are also important for accumulation. For 266 

example, elimination and metabolism rates may impact net accumulation as well as 267 

more specific physiology such as carrier mediated transport and protein binding [22] 268 

will also influence accumulation, especially for emerging contaminant classes such as 269 

pharmaceuticals. By comparison, better performance was achieved using higher 270 

complexity models. The lowest RMSEs were observed for RF-CART (0.771), followed 271 

by BT (0.789) and RF-CIT (0.821), i.e. three tree-based machine learners. Next, ANNs 272 

and SVMs performed very similarly to tree learners, e.g. SVM-R (0.841), ANN-a1HL 273 

(0.859) and ANN-3HL (0.880).  274 

Models tested in Trajan showed particularly good performance, in comparison 275 

to those built in R. The lowest RMSE value was observed for a 4-layer MLP (0.524), 276 

followed by 3-layer MLP (0.538), RBF (0.689), GRNN (0.893) and Linear (1.052). In 277 

absolute terms, definitive conclusions cannot be drawn from direct comparison of 278 

modelling approaches (i.e., Trajan vs. R), as tuning and training methods between 279 
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modelling software packages are slightly different. However, overall results converged 280 

to support the higher reliability of non-linear approaches for modelling logBCF from 281 

molecular descriptors. 282 

Model complexity does not necessarily mean better predictive performance by 283 

default, as several non-linear machine learners did not perform well at all. These 284 

included ELM and SVM-P, where the RMSE values observed on the test set were >1. 285 

Although ELM is a feedforward neural network, the weights associated with the 286 

neurons in the network are not updated and thus the initialisation of the network is a 287 

random selection of weights that may not model the output reliably. The EN 288 

outperformed QRL and RR models, where the EN is a combination of the penalties 289 

(L1 and L2 regularisation) used by both models that usually leads to better predictive 290 

performance. The RR model RMSE for the test set data was also lower than the RMSE 291 

for the QRL model. This can be observed when comparing RR and QRL methods, as 292 

the penalty associated with LASSO can lead to the omission of highly correlated 293 

covariables and thus lead to lower model robustness.  294 

Limitations of predictive performance may also stem from the raw data. For 295 

example, the dataset used herein did not report individual experimental pH, but instead 296 

reported a range from 6.0 to 8.5. Therefore, descriptors such as logD that require pH 297 

data may become limited and especially where molecular pKa lies within this 2.5 pH 298 

unit range. LogD has been shown in several works to influence uptake and 299 

accumulation [23-25]. As a compromise, we calculated logD at pH 7, but this may have 300 

been different to the exact experimental pH and may have added to predictive 301 

inaccuracy across the whole analyte set. Lastly, it is also likely that BCF/BAF 302 

prediction will be influenced by variance in biotic factors such as ventilation rates, age, 303 
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genetic factors and metabolism and lay beyond our ability to determine in more detail 304 

[26, 27].  305 

MLP models trained in Trajan offered the best performance. Consequently, this 306 

model was chosen for further investigation in line with the OECD validation guidelines 307 

to assess validity of QSAR modelling. The mean absolute error (MAE) corresponded 308 

to 0.38 logBCF units for the verification subset (internal validation set) and 0.53 309 

logBCF for the test subset (external validation set), as shown in Table 1. The RMSE 310 

for verification and test subsets were 0.524 and 0.644, respectively. The predictive 311 

performance of this model was better or comparable to all models in the literature that 312 

have attempted to model accumulation processes. Dearden and Shinnawei [28] used 313 

a linear QSAR approach to predict BCFs for 135 chemicals with an R2 of 0.637 and 314 

RMSE of 0.661 logBCF units. Another QSAR model by Sahu and Singh [29] used 315 

multiple linear regression to predict BCFs for 131 organic compounds with a RMSE of 316 

0.556 log units. However, this model was not validated against a test subset and 317 

therefore generalised applicability of the model performance is arguably limited.  318 

In alternative approaches to linear QSAR models, other machine learning 319 

approaches have also been reported [8-10]. A MLP predicted BCFs for 9 test 320 

compounds with an average absolute error of 0.33 ±0.22 log units [8]. Whilst the errors 321 

were low, too few compounds were tested to provide a reliable assessment of its 322 

generalisability. In another approach, Zhao et al., [10] used SVM, RBF and MLR 323 

models individually. Better performance was observed when two RBF models (using 324 

different descriptors) were combined into a ‘hybrid’ model to predict logBCF. The 325 

developed model showed an R2 of 0.6917 for an external test set with a reported 326 

RMSE of 0.69 logBCF units for 119 compounds showing similar performance to the 327 

fish-based MLP presented here, using a single MLP. The hybrid model also showed 328 
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a limitation in the training set, where several cases were not modelled correctly 329 

between the ranges of logBCF 4 to 5 and was observed by a plateau in the regression 330 

analysis.    331 

 332 

A remark on outliers and the applicability domain  333 

Training and testing of all models led to the observation of several common 334 

outliers. The reason for poor prediction for such cases may stem from under 335 

representation in the dataset used for modelling. The spread of input and output data 336 

between training and validation subsets showed that there was no significant 337 

difference between the spread or skew of the data (Figure S2). However, using PCA 338 

analysis and distances between the descriptor spaces there were several cases that 339 

did not cluster well with the remaining data (Figure 1a). For example, logBCF for 340 

perfluorotributylamine was predicted poorly across the majority of trained models. The 341 

use of PCA and descriptor data spacing in this way enabled characterisation of the 342 

applicability domain (AD) for a given model. A threshold may then be used to 343 

determine cases that fall outside the domain and are likely to have higher predictive 344 

error (Figure 1b) [30, 31].  345 

According to the OECD QSAR model validation guidance [18], consideration of 346 

models for regulatory purposes must be associated with a defined domain of 347 

applicability under Principle 3. However, one key consideration in the use of distance-348 

based ADs is that input descriptors are not used equally by the model [32]. Therefore, 349 

such ADs may not accurately identify those cases having a greater predictive error in 350 

every case. This was observed for outliers in the PCA analysis, but where logBCF was 351 

predicted relatively well and vice versa. For example, di-2-naphthyldisulfide was not 352 

an outlier in the AD but was poorly predicted across all models. On the other hand, 353 
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pigment yellow-12 was an AD outlier, but logBCF was predicted well by the majority 354 

of models.  355 

Poor predictive accuracy for molecularly similar compounds could be also 356 

caused by other factors such as poor quality raw data or too few representative training 357 

cases for the model to learn from. It has been shown previously that experimental BCF 358 

data can vary from 0.42 to 0.75 log units [9, 33, 34]. Nevertheless, even with the 359 

limitations associated with defining an AD, it is useful and important to identify any 360 

cases that might not be reliably predicted so that rapid prioritisation of compounds can 361 

begin. Only for these cases, may it then be appropriate to revert to experimental 362 

testing. 363 

 364 

Machine learning in a regulatory context 365 

Several of the developed machine learning tools in Table 1 showed potential 366 

for the replacement and reduction in animal use. However, it is important to recognise 367 

the complexities of machine learning approaches from the outset, especially where 368 

they are intended for use in regulation. Under Principle 2 of the OECD guidelines, 369 

models used in this way must be based on “unambiguous algorithms”. In particular, it 370 

is highlighted that two significant limitations exist regarding artificial neural networks, 371 

for example. These are: (a) the necessity for large (BCF) datasets to develop suitable 372 

models (which do not exist for some classes of compounds, like pharmaceuticals) and 373 

also (b) that these types of machine learning tools are more ambiguous than other 374 

types of model, especially those that are linear in nature. For the latter, the guidance 375 

is vague concerning appropriateness of ANNs for use under this specific principle but 376 

infers that it is an acceptable limitation. Furthermore, the definition of an unambiguous 377 

algorithm is in fact ambiguous and should be further refined to prevent confusion to 378 
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the reader. This principle could be applied in different ways to different models and 379 

may cover the generation of molecular descriptors, the feature selection algorithms 380 

used, the learning process (for machine learners where the ambiguity lies) and the 381 

final model [35]. The majority of the literature seems to have focused on linear models 382 

perhaps as a result, mainly to aid in mechanistic understanding and to allow expert 383 

interpretation of individual chemicals to provide extra assurance in predicted data 384 

(linked to Principle 5).  385 

Principle 5 of the OECD guidelines relates to mechanistic interpretability of 386 

QSAR models (if possible). This can be considered a limitation for machine learning 387 

algorithms if the aim is to achieve an interpretable model, such as would normally be 388 

expected of linear models such as OLS or PLS regression. The OECD guidelines also 389 

remain vague regarding mechanistic interpretation of machine learners. However, 390 

whist linear relationships may not be apparent, descriptor sensitivity analyses can 391 

indicate the importance of individual descriptors and thus enables interpretation of 392 

factors that influence the modelled process. Bioconcentration processes are not 393 

simple and extensive datasets are extremely impractical to curate experimentally. 394 

Therefore, complex non-linear models may provide a more rapid solution to regulatory 395 

decision-making meantime. Therefore, we suggest that guidelines for QSAR model 396 

validation need to be expanded to better define the scope of applicability of all the 397 

different types of machine learning tools and their fitness for purpose in a regulatory 398 

context.  399 

For PBT testing, the same regulations are triggered when a threshold for 400 

bioaccumulation is reached, regardless of the extent to which the threshold is 401 

exceeded. Thus, if the value is classified within the correct category of non-402 

bioaccumualtive (nB), bioaccumulative (B) or very bioaccumulative (vB), the model will 403 
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be useful in the context of PBT assessments. Variability in measurement can arise 404 

from kinetic modelling approaches [17], biological/physiological variability (age, health, 405 

lipid content etc.) [27, 36-39] and experimental conditions (pH, temperature, etc.) [23, 406 

40]. As such, reported BCFs have been shown to differ by 1-2 orders of magnitude 407 

even within the same species [27].  408 

The 4-layer MLP here showed a correct classification rate of 90 % across the 409 

verification and test subsets. The 10 % misclassification of cases was split to 6 % of 410 

cases predicted as false negatives and 4 % of cases predicted as false positives (See 411 

SI, Figure S3). This is consistent with the hybrid model developed by Zhao et al. which 412 

has shown classification accuracies ranging from 91 % to 98 % [9, 10]. It is possible 413 

that using QSARs for classification instead of regression analysis may improve the 414 

accuracy and without the need for the application of a bias. This would be particularly 415 

suitable for bioaccumulation assessments where only a threshold value determines 416 

the level of regulation enforced.  417 

Some studies have reported the application of models for classification of 418 

bioaccumulation thresholds, with accuracies ranging from 84.5 – 91.1 % (depending 419 

on model type) [41] and 91.7 % [11]. The authors that used tree-based learners also 420 

used these models for quantitative prediction achieving RMSE of 0.554 and R2 of 421 

0.836 on the test set data [11]. The models tested across the literature have tended to 422 

achieve similar performance for both classification and prediction. The agreement in 423 

performance between different works and the comprehensive model evaluation here, 424 

support that in silico methods should be adopted for chemicals where environmental 425 

uptake data are limited to enable flexible, cheap and rapid PBT assessment for 426 

compound prioritisation. Furthermore, it suggests that the use of chemical descriptors 427 

may only be able to achieve a certain level of predictive or classification performance 428 
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for modelling approaches where other variables become important as mentioned 429 

above.  430 

 431 

Can the developed model be used for cross phylum prediction?  432 

There is little understanding of whether accumulation will be similar across the 433 

invertebrate phylum. The dominant site of uptake for waterborne micropollutants in 434 

fish is across the gills and therefore accumulation across taxa may be significantly 435 

different for differing modes of respiration. Other factors such as size, enzyme 436 

speciation and lipid content may also influence the accumulation potential [27]. The 437 

optimised model for fish was applied to the prediction of logBCF in a freshwater 438 

invertebrate, Gammarus pulex (Figure 3a). The accumulation data in G. pulex 439 

predominantly covered pharmaceuticals and pesticides. The fish-based MLP showed 440 

relatively low predictive performance for the invertebrate accumulation factors. The 441 

correlation between observed and predicted BCF was R2 0.3295 with a MAE of 0.80 442 

±0.65 log units, which indicated that the model generalisations between species were 443 

limited. The largest predictive error was for the compound imipramine that was 444 

overestimated by 2.7 logBCF units. This compound in a previous study had 445 

considerable variation in the estimated BCF (212 – 4533) depending on the method 446 

of estimation used [17].  447 

 A significant difference in BCFs between trophic levels has been shown with 448 

higher trophic levels displaying increased BCFs [42]. This trend would suggest that 449 

the BCF predictions of the invertebrates might be overestimated but the opposite was 450 

observed (62 % of cases were underestimated). In addition to the biological complexity 451 

between species, another confounding factor to affect the predictive accuracy and 452 

generalisability is the compound class. The fish model included no pharmaceutical 453 
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compounds whereas the invertebrate BCF data contained 18 cases (~53%). 454 

Inspection of the molecular similarity between the datasets indicated that the 455 

invertebrate and fish datasets were dissimilar (Figure S4). Thus, the bioconcentration 456 

potential may not follow the same relationships with neutral hydrophobic organic 457 

contaminants.  458 

The fish-based model was subsequently reinitialised and trained on the 459 

invertebrate dataset only (using the same descriptors) (Figure 3b). The invertebrate 460 

model showed good correlation with R2 of 0.9605 with 0.972 for the training set, 0.9932 461 

for the verification set and 0.9323 for the test set. The model demonstrated good 462 

accuracy across the verification and test subset with a MAE of 0.07 ±0.08 logBCF 463 

units for the verification set and 0.29 ±0.27 logBCF units for the test set. The 464 

successful retraining of the model to invertebrate data suggests that case 465 

representation (i.e. compound class) is likely to limit models that are applied across 466 

taxa. An alternative approach to overcome this could involve development of a model 467 

with two or more outputs to represent different species, but commonality in BCF cases 468 

would be required for both species.  Whilst the predictive accuracy of the retrained 469 

model was very good, it is also limited by the small number of cases used. 470 

Generalisability is also likely to be limited given the ratio of cases to descriptors 471 

(Topliss ratio of ~2.5:1) Nevertheless, and as new BCF data emerges, this approach 472 

holds excellent potential by using the same molecular descriptors for BCF predictions 473 

in two very different species. In addition, to using the fish-based model to predict 474 

invertebrate BCFs we also used the invertebrate-based model to predict fish BCFs of 475 

pharmaceuticals reported in the literature (Figure S5). The invertebrate model was 476 

able to predict BCFs within the reported range for 45 % of the compounds selected (n 477 

= 11).  The remaining compounds, with the exception of sertraline and gemfibrozil, 478 
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were predicted relatively well even though they were not within the reported ranges. 479 

Sertraline is an interesting case as although it has not shown very high 480 

bioconcentration in fish (BCFs: <1 – 626) [43-47] there have been reported BCF values 481 

of up to 32,022 in invertebrates (namely, Lasmigona costata [48] and 990 in Planorbid 482 

sp. [49]). As the model used here was trained on BCFs from an invertebrate species, 483 

it may not correlate well with fish BCF data, suggesting that cross-phylum predictive 484 

modelling may be limited by both case representation and biological variation. 485 

However, as the models here used the same descriptors this enables flexibility in 486 

retraining optimised models and inevitably as more BCF data is generated for the 487 

same compounds in different species, this technology could be used to map 488 

accumulation across taxa more effectively. It is critically important to understand 489 

uptake (internal concentration) across taxa as the conservation of pharmaceutical 490 

targets extends widely [50]. 491 

 492 

Model sensitivity to descriptors: interpreting accumulation through chemistry 493 

Whilst machine learning models are more difficult to interpret due to the non-494 

linear functionality, collinearity and/or curvilinearity; the importance of the 14 495 

descriptors described here still offered some mechanistic understanding of the 496 

processes involved (Figure 4). For the fish-based model, the most important descriptor 497 

was TPSA with an error ratio of 2.08. Higher error ratios correspond to increased 498 

predictive error for all compounds upon removal of this descriptor from the dataset. 499 

Previous investigations have demonstrated that descriptors related to polarisability, 500 

hydrophobicity and hydrogen bonding of the molecule is important to modelling BCFs 501 

[10, 28, 51]. TPSA is defined as the surface area occupied by nitrogen and oxygen 502 

atoms including connected hydrogen atoms [52]. Polar surface area has also been 503 
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shown to influence drug absorption in humans, where increasing polar surface area 504 

decreases the drug fraction absorbed [19, 53]. The relationship between 505 

bioconcentration and TPSA may be dependent on several factors such as permeation 506 

through the lipid bilayer, binding of polar functional groups to epithelial membranes 507 

and the size of hydration shell around a molecule [54].  508 

Permeation through cellular membranes was further supported by the 509 

importance of MW to the model. The size of a molecule also affects permeation and 510 

diffusion through membranes (Lipinski’s rule of five [55]). It has previously been 511 

demonstrated that dye pigments did not show bioaccumulation in fish due to their large 512 

molecular size [56]. In another study, it was suggested that there is a threshold 513 

diameter value of 1.5 nm which governed bioconcentration in addition to 514 

hydrophobicity [57].  Strempel et al., [11] also found that molecular weight, molecular 515 

diameter, TPSA and logD were important for classification and prediction of 516 

bioaccumulation.  517 

Topological descriptors such as STN, Hnar, Ram, SPI and ICR were also found 518 

to be important. These indices are useful especially for differentiating constitutional 519 

isomers (except enantiomers) [58]. Error ratios for STN, Hnar, ICR, SPI and Ram 520 

spanned from 1.31 – 1.72. These indices are related to molecular branching/shape 521 

and the importance of these descriptors relate to molecular size which can influence 522 

bioconcentration [59, 60]. MAXDN and MAXDP relate to the partial charges on atoms 523 

relative to their topological position within the molecule and therefore relate to the 524 

nucleophilicity and electrophilicity of a molecule [61]. Aside from polarity-related 525 

accumulation across cellular membranes, it is also possible that these are associated 526 

with metabolic activity (from nucleophilic or electrophilic attack). The importance of 527 
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other electrotopological descriptors (along with molecular flexibility) has been 528 

previously shown for modelling bioconcentration [62].  529 

Interpretation of the relative importance of descriptors is affected by collinearity 530 

or multicollinearity (See SI, Table S4 & S5). The collinearity of the descriptors showed 531 

that molecular weight was collinear with SPI (R=0.794) and Ram (R=0.696). The 532 

descriptor Ram was also collinear with SPI (R=0.787) and STN was collinear with 533 

HNar (R=0.748). The relation between these topological descriptors and molecular 534 

weight is that they all describe molecular size (shape, volume, weight) to some extent. 535 

Therefore, the rank importance of these particular descriptors should be approached 536 

with some caution. Whilst the error ratio is higher for certain descriptors that are 537 

collinear, their removal from the network model may not correctly determine the ratio 538 

value due to redundant information. Nevertheless, the descriptor sensitivity can still be 539 

useful for directing mechanistic and experimental studies. This was shown recently in 540 

a neural network application to passive sampling [63] which was later followed by a 541 

mechanistic study [64], that supported the interpretation of the model.  542 

The invertebrate-based MLP used the same descriptors as the fish-based 543 

model, but the network was reinitialised and retrained. The retraining of the network 544 

also showed that the importance of the descriptors changed from the fish-based 545 

model. The most important descriptor was HNar (error ratio = 5.75) followed by nN 546 

(error ratio = 5.09) and logD (error ratio = 4.71). The increased importance of the 547 

number of nitrogen atoms likely reflected the number of pharmaceutical compounds 548 

in the dataset. In addition, logD increased in rank to the top three descriptors in the 549 

invertebrate model. The increased sensitivity of the model to logD also relates to 550 

training of the model with ionisable pharmaceuticals and is in agreement with other 551 

studies showing logD to be important in accumulative processes [11, 64].  Whilst 552 
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hydrophobicity may be a principal factor of bioconcentration, it is possible that carrier-553 

mediated transport may also play an important role. Both models here demonstrated 554 

that other variables also strongly influence BCF prediction. Thus, QSAR models that 555 

rely solely on logP or logD in our opinion are limited in their application.  556 

It is important to consider that descriptors not used in this work may also have 557 

a potential for BCF modelling. For example, the major mechanism of transport across 558 

epithelia tissue is passive diffusion and so it is also possible that diffusion coefficients 559 

could potentially be an important descriptor for consideration among others, however 560 

these descriptors are difficult to acquire and therefore reduce the practicability of a 561 

model based on these.  562 

Conclusions 563 

The work presented herein has shown that in silico modelling approaches are 564 

a powerful approach to predict bioconcentration of environmental contaminants, 565 

enabling rapid prioritisation of compounds during ERA. The approach could be used 566 

to better understand bioaccumulation, and the molecular descriptors that drive it; 567 

moving the science beyond simple hydrophobicity models that poorly account for the 568 

complexity of pharmaceuticals.  Cross-species prediction of accumulation warrants 569 

further investigation as the results indicate both case representation and biological 570 

variability might limit prediction of accumulation between different taxonomic groups. 571 

Nevertheless, the use of machine learning has been increasing within the field and is 572 

necessary to improve our understanding of biological processes that affect 573 

environmental health. The interpretation of descriptors here is critical as it 574 

demonstrates that, in addition to rapid prediction of bioconcentration factors, in silico 575 

models are useful for mechanistic understanding which in turn can be used to direct 576 

further work. This is particularly true for pharmaceutical uptake in biota, where the 577 
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mechanisms that govern uptake, elimination and accumulation processes are still not 578 

fully understood. Excellent potential exists for rapid screening using machine learning 579 

technology in future ERA, without the need for costly and ethically challenging animal 580 

experiments. Finally, the OECD QSAR validation guidelines for machine learners are 581 

inexplicit and we suggest these guidelines should be expanded with more focus on 582 

this type of modelling approach. This will begin to address the applicability and 583 

usefulness of these models for regulatory schemes such as REACH where PBT 584 

assessments are required for several thousand chemicals. 585 
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  RMSE R2 MAE 

  Model Training Verification Test Training Verification Test Training Verification Test 

Trajan Linear 0.785 1.052 0.832 0.532 0.390 0.521 0.619 0.835 0.608 

 GRNN 0.830 0.893 0.873 0.673 0.400 0.569 0.664 0.893 0.718 

 RBF 0.723 0.689 0.584 0.651 0.635 0.725 0.565 1.600 0.450 

 3-MLP 0.689 0.538 0.337 0.675 0.770 0.659 0.548 1.608 0.553 

  4-MLP 0.403 0.524 0.644 0.887 0.819 0.702 0.313 0.380 0.530 

  Model Training Cross-Validation Test Training Cross-Validation Test Training Cross-Validation Test 

R OLM 0.719 0.771 1.203 0.621 0.570 0.234 0.560 NA 0.778 

 PLS 0.722 0.769 1.164 0.618 0.571 0.254 0.564 NA 0.765 

 RR 0.725 0.766 1.083 0.614 0.576 0.304 0.568 NA 0.753 

 EN 0.729 0.760 1.054 0.612 0.582 0.314 0.577 NA 0.754 

 QRL 0.733 0.757 1.112 0.607 0.585 0.284 0.562 NA 0.770 

 KNN 0.517 0.683 0.902 0.807 0.665 0.468 0.404 NA 0.648 

 ELM 0.673 0.756 1.014 0.668 0.593 0.346 0.529 NA 0.768 

 ANN-1HL 0.596 0.751 0.877 0.739 0.597 0.505 0.462 NA 0.620 

 ANN-a1HL 0.395 0.672 0.859 0.888 0.678 0.518 0.319 NA 0.612 

 ANN-2HL 0.232 0.834 1.022 0.962 0.560 0.370 0.174 NA 0.680 

 ANN-3HL 0.454 0.795 0.880 0.860 0.582 0.520 0.345 NA 0.624 

 MARS 0.539 0.730 1.014 0.787 0.632 0.390 0.425 NA 0.696 

 B-MARS 0.500 0.681 0.899 0.819 0.673 0.479 0.395 NA 0.633 

 SVM-R 0.383 0.644 0.841 0.893 0.704 0.537 0.261 NA 0.590 

 SVM-P 0.699 0.747 1.029 0.643 0.594 0.340 0.539 NA 0.729 

 RF-CART 0.292 0.675 0.771 0.956 0.688 0.633 0.231 NA 0.589 

 RF-CIT 0.605 0.739 0.821 0.762 0.630 0.586 0.485 NA 0.652 

 BT 0.249 0.660 0.789 0.957 0.687 0.593 0.187 NA 0.587 

 CR 0.353 0.678 0.973 0.910 0.673 0.431 0.282 NA 0.628 

Table 1: Comparison of model performance for the prediction of BCF in Cyprinus carpio. MAE is the mean absolute error and NA 

indicates the metric was not applicable.  
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Figure 1: (a) Principal component analysis used for visualisation of the case similarity based 

on the 14 modelled descriptors (i.e. applicability domain). (b) Distances between cases in the 

PCA space with a threshold applied (0.975 quantile of χ2 distribution) designated by the red 

line (c) the distribution of cases based on distance in the PCA space.  
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Figure 2: (a) linear regression of the predicted logBCF values versus the observed logBCF 

values in fish using the 4-MLP developed in approach 1, training data (crosses, n = 242), 

verification data (circles, n = 55) and test data (triangles, n = 55). (b) Raw residuals of the 

predicted logBCF data in fish for the verification and test data only.    
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Figure 3: (a) Comparison of the predicted logBCF data versus the observed logBCF in 

invertebrates using the fish-based 4-layer MLP. (b) Regression of a separately developed and 

optimised model trained with the invertebrate BCF data (Gammarus pulex), training set 

(crosses, n = 24), verification set (circles, n = 5) and test set (triangles, n = 5) 
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Figure 4: Descriptors sensitivity analysis performed by removing a descriptor from the model 

and assessing the affected performance. Increased error ratios indicate more important 

descriptors. (a) descriptor sensitivity for the fish-based model and (b) for the invertebrate-

based model.  

 

 

 


