

King’s Research Portal

DOI:
10.1109/TWC.2018.2863685

Document Version
Peer reviewed version

Link to publication record in King's Research Portal

Citation for published version (APA):
Friderikos, V., Zheng, G., & Tsiopoulos, A. (2018). Optimal VNF Chains Management for Proactive Caching.
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS. https://doi.org/10.1109/TWC.2018.2863685

Citing this paper
Please note that where the full-text provided on King's Research Portal is the Author Accepted Manuscript or Post-Print version this may
differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version for pagination,
volume/issue, and date of publication details. And where the final published version is provided on the Research Portal, if citing you are
again advised to check the publisher's website for any subsequent corrections.

General rights
Copyright and moral rights for the publications made accessible in the Research Portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognize and abide by the legal requirements associated with these rights.

•Users may download and print one copy of any publication from the Research Portal for the purpose of private study or research.
•You may not further distribute the material or use it for any profit-making activity or commercial gain
•You may freely distribute the URL identifying the publication in the Research Portal
Take down policy
If you believe that this document breaches copyright please contact librarypure@kcl.ac.uk providing details, and we will remove access to
the work immediately and investigate your claim.

Download date: 28. Dec. 2024

https://doi.org/10.1109/TWC.2018.2863685
https://kclpure.kcl.ac.uk/portal/en/publications/77beec57-6597-4623-87ea-4930a947f5d0
https://doi.org/10.1109/TWC.2018.2863685

1

Optimal VNF Chains Management for Proactive
Caching

Gao Zheng, Anthony Tsiopoulos, Vasilis Friderikos
Centre for Telecommunications Research, King’s College London, London WC2B 4BG, England

E-mail: {gao.zheng, anthony.tsiopoulos, vasilis.friderikos}@kcl.ac.uk

Abstract—Notwithstanding the significant attention that Net-
work Function Virtualization (NFV) architectures received over
the last few years little attention has been placed in cases
where proactive caching is considered within a service chain.
Caching algorithms have been developed independently from
virtual network function (VNF) chaining schemes and as we
explain in detail in this paper such operation might lead to sub-
optimal overall network and service performance. Since caching
of popular content is envisioned to be one of the key adopted
technologies in emerging 5G networks to increase network
efficiency and overall end user perceived quality of service we
explicitly consider the interplay and subsequent optimization of
caching based VNF service chains. To this end, a mathematical
programming framework is proposed tailored to VNF caching
chains and in addition detail a scale-free heuristic algorithm to
provide competitive solutions for large network instances since
the problem itself can be seen as a variant of the classical NP-
hard Uncapacitated Facility Location (UFL) problem. A wide set
of numerical investigations are presented for characterizing the
attainable system performance of the proposed schemes.

Index Terms—Network Function Virtualization, 5G networks,
proactive caching, integer linear programming.

I. INTRODUCTION

IT is well accepted that current mobile network architec-
tures suffer from insufficient scalability and flexibility to

speedily accommodate new services and ability to embrace
vertical industries [1]. To address these challenges, applying
software defined networking (SDN) [2] principles in emerg-
ing architectures towards 5G networks is gaining significant
momentum recently [3]. This goes hand-in-hand with the cur-
rently heavily studied network function virtualization (NFV)
[4] architectures, that together with SDN, can be considered
as the two enablers towards flexible 5G networks, where
full virtualization and efficient network slicing according to
the needs of different tenants can be implemented. Such an
SDN/NFV-enabled network is in essence able to decouple
network functions (NFs) from the underlying physical devices,
thereby, NFs can be virtualized, creating the so-called virtual
network functions (VNFs). The benefit stems from the fact
that VNFs can be flexibly controlled/assigned/moved within
the network using Virtual Machines or (docker) containers.
In NFV framework, an end-to-end network service (e.g., rich
voice/data) is described by an VNF forwarding graph, where
a number of VNFs (possibly distributed in various physical
nodes in the network) need to be visited in certain predefined
order [5]. To be more precise, the sequenced VNFs of a service
request form a service chaining as the service flow passes

through an ingress or egress point in a virtual network device.
An illustrative example of such service chain is shown in
figure 1, where caching is considered as one of the VNFs1

that constitute the overall service chain; these VNFs might
be located in different nodes in the network. Our aim is to
consider caching and the other possible VNFs that might be
required for the service in an integrated manner in order to
increase network efficiency.

Undoubtedly, among different VNFs, it is expected that
caching would emerge as one of the potential key network ele-
ments to be supported in emerging and future wireless/mobile
networks. Viral and popular video streams dominate aggregate
mobile Internet traffic2 and it is an application well suited to
various different caching strategies. In that respect, caching of
popular content deserves paying a special attention in terms of
VNF hosting location and chaining. This is because in the most
general case, a cached content must be visited before other
VNFs can be applied and this service flow might originate
from different possible network locations depending on the
caching strategy. In other words, this type of service does not
need to reach a gateway node or a specific cloud but can
originate at any node that host the required cached content
(which, most probably, be topologically closer to the end user).
Therefore, the location of caches in a VNF service chain,
greatly affects the overall VNF chain orchestration as well
as the aggregate traffic dynamic in the network, since links
of higher aggregation (deeper in the network) can reduce
their utilization levels. However, efficient caching in mobile
networks can be deemed as a highly challenging task since
the optimality of the cache locations are dependent on the
movement/mobility patterns of the end users. Notably, to
significantly reduce access delays to highly popular content
caching content close to the end user without considering
the effect of mobility might lead to a degradation of the
performance. In this case, caching popular content closer to the
end user might inevitably require more frequently changes of
the cache location to keep providing optimal performance. As
a result, the proactive caching location and the associated VNF
chaining need to be jointly considered to avoid sub-optimal
cases, especially under network congestion episodes where
performance can be significantly penalized. To summarize,

1The terms VNF and NF are used interchangeably in the rest of the paper,
except where differentiation is required.

2Mobile video traffic accounts for 60 percent of total mobile data traffic
according to the CISCO Global Mobile Data Traffic Forecast Update that has
been released in February 2017.

2

Fig. 1: An example of caching in conjunction with other virtual
network functions.

the focus and main motivation of the paper is on enhancing
proactive caching policies by taking into account the whole
VNF chain.

II. MOTIVATION AND ILLUSTRATIVE EXAMPLES

As already eluded, in this paper, we propose a Proactive
caching-chaining (PCC) scheme to enhance the mobility sup-
port of SDN-enabled/NFV service chaining in mobile net-
works. To motivate the research we detail hereafter illustrative
examples of the possible cross issues between caching and
VNF chaining with the aim to shed further light on some of
the key challenges. To start with, Figure 2 shows the case of
a service with two VNFs where the first one is caching and
the other one is assumed to be a video acceleration network
function. As can be seen from the figure, Case I entails a sub-
optimal allocation when mobility of the end user is not taken
into account. However, Case II shows a more suitable VNF
location where after the mobility event the cache and chain
location is topologically closer to the end user; note that in
Case II the VNFs are located 3 hops away from the end user
after the mobility event whereas in Case I, which is a mobility
oblivious allocation, the VNFs are located 4 hops away. Figure
3 shows the case where VNF chaining and pro-active caching
take place independently. The figure shows potential pro-active
caching locations but not in all of those pre-selected locations
from the caching algorithm it is possible to host the other
NFs due to numerous reasons such as for example reservation
policies, placement based on affinity and/or anti-affinity rules
and overall resource usage of the virtual machines [6]; for
example only in one of those locations the two VNF can be
co-located (node b). Furthermore, as shown in figure 4 the
optimal location of caching and the other VNF in the service
chain might be different; in the figure shown the optimal
location of caching is in node (b) whereas the VNF for video
acceleration is located at node (d) (assuming each node can
only host one NF). It is therefore important to consider the
issue of caching and service chaining in a holistic integrated
manner and subsequently to optimize the location and chaining
of the different VNFs in order to increase overall network
performance.

Based on the above discussion, the proposed scheme per-
forms proactive caching and VNF chaining so that overall
network performance is optimized whilst end user receive
their service requests seamlessly. Notably, we take VNF
chaining allocation and proactive caching as a joint problem
and formulate it as an Integer Linear Programming (ILP)

mobilityCase	I

1

2

3

4

a

b

d

c

Mobility oblivious VNF placement

Video	cache

Video	accelerator

Current	video	flow

Video	flow	after	
handover

mobilityCase	II

1

2

3

a

b

d

c

Mobility aware VNF placement

Fig. 2: Effect of mobility on the joint caching VNF chaining
problem.

problem with the objective to minimize the combined cost of
VNF placement, chaining and routing. We also investigate the
performance obtained of a proposed scale-free heuristic algo-
rithm since the problem resembles the NP -hard uncapacitated
facility location problem.

In summary, we hereafter make the following key con-
tributions, We firstly, propose a novel VNF chaining place-
ment scheme, namely, proactive caching-chaining (PCC) that
improves the mobility support for the up coming SDN-
enabled/NFV network framework. Secondly, we model and
formulate the VNF chaining problem for proactive caching
to obtain optimal routing and placement cost and based on
that we devise a scalable heuristic approach and evaluate the
performance of the system. Finally, we meticulously exam-
ine the performance of the proposed schemes under various
network conditions. This paper is extended from our previous
work [7], in which two scalable heuristics are proposed for
seeking the suitable VNF chains for proactive caching. We
extend the study by finding the theoretical optimal solution
to calculate the difference of cost performance between the
proposed heuristics and the theoretical optimal value. More-
over, the analysis on a comprehensive set of practical network
scenarios explains to what extent the proposed heuristics can
find approximative solutions effectively.

III. PREVIOUS CLOSELY RELATED RESEARCH WORK

The overall logical/functional architecture of the VNF Man-
agement and Orchestration (MANO) framework has been
mainly an industry-lead initiative and has been defined within
ETSI [4]. An example of a VNF orchestrator, which is called
Stratos is presented in [8] and is built on top of a Floodlight3

controller. The work in [9] can be considered as another effort
to provide orchestration between virtualized NFs especially
with emphasis on issues such as Virtual Machine (VM)
migration and split/merging of service flows. An overview of

3www.projectfloodlight.org

3

mobility

a

b d

c

Video	cache

Video	accelerator

Current	video	flow

Proactive	video	cache

Video	accelerator	migration

No	VM	available	to	host	the	NF

Fig. 3: Limited availability of resources (in terms of Virtual
Machines for example) in the candidate pro-active caching
locations to host the required VNFs for the service.

mobility

a

b d

c

Video	cache

Video	accelerator

Current	video	flow

Proactive	video	cache

Video	accelerator	migration

Video	flow	after	handover

Fig. 4: An optimal VNF chain NF are located in different
nodes in the network.

the challenges emerging in virtual network function scheduling
is presented in [10]; in this paper the authors explain the
application of SDN and NFV technologies with emphasis on
backbone networks.

In terms of caching there has been recently a significant
amount of work. A caching scheme suitable for mobile net-
works that takes into account user mobility has been proposed
in [11] where the idea is to predict the mobility pattern of
users and opportunistically cache content along the predicted
path of users. A scheme that pro-actively cache content
using transportation and focusing on video content has been
presented in [12]. The idea is to utilize the almost deterministic
mobility of users in transportation systems such as trains to
proactively cache popular content that the users might request
upon their arrival. The ideas on proactive caching in this paper
resemble more closely the work in [13], [14] which propose
a set of mobility-aware caching schemes.

On the other hand, VNF placement problem has recently
received wide attention from both industry and academia. In
work [15], the authors address VNF placement for unordered
service chains in the cloud with the objective to satisfy as many
tenants’ requests as possible. In [16], the optimization problem
VNP-OP minimizes the cost (which can be further broken
down into deploy cost, energy cost and cost of forwarding
traffic) by carefully placing VNFs as well as their forwarding
traffic through best available paths. The work focuses on
providing VNF location optimization for fixed networks thus,
mobility of end-users are not considered.

However, none of previous research works make caching
decisions on a view of the whole VNF service chain, especially
for mobile networks. To the best of our knowledge this is the

first work to consider in an explicit and integrated manner
proactive caching as part of a VNF chain. In most practical
cases, this simple cache moving could lead to inefficient
routing of a mobile user to receive a service. Fig 1 gives
an example of the inefficient routing problem where firewall
as a NF must also be visited and only cache is moved 4. It
is apparent that, in order to improve the mobility support of
SDN-enabled networking, other NFs on a same VNF service
chain must also be moved, with the decision of caching. A
close related work can be found in [17] which aims to assign
VNFs into given SDN-enabled networks. However, it does not
take routing and location of VNFs into consideration.

IV. NETWORK MODELING AND PROACTIVE CHAINING
WITH CACHING

An arbitrary mobile network is modeled as an undirected
graph G = (N,E), where N denotes the set of nodes and
E denotes the set of links in the network. By F, we denote
the set of NFs and fi represents the specific NFi. Each
fi, if activated, consumes/requires some physical resources
(i.e., CPU cycles, DRAM memory). We uniformly describe
these resource requirements as a single column matrix ui,
meanwhile, the amount of available resources of node k, which
is able to host VNFs, is denoted using the single column matrix
Uk.

The term "chain" in the so-called service chaining represents
the different middleboxes that the service should traverse, with
a specific order, across the network using software provision-
ing. This is the case under the proposed NFV architecture,
where new services and/or network slices can be instantiated
as software-only, running on commodity hardware on top of
virtual machines or containers. To provide a service request
r ∈ R (with R we denote the set of requests5) for a
mobile user and/or tenant, a network function forwarding
graph (VNF-FG) [18] needs to access a set of corresponding
NFs that are visited in a pre-defined order (which the VNF
orchestrator should preserve). In this paper, we consider the
form of service request r as the set r = {f1, f2, · · · , fi}
where the function appearance sequence expresses the visiting
order of the different network functions while the function
index expresses a specific network function. The proposed
optimization scheme provides a batch processing based service
that the requests are handled in batches, such that the number
of requests processed in each batch is |R|. For modeling
simplification reasons, the corresponding relationship of a NF
and its order in a request can be represented by a binary matrix
Vril as follows,

Vril =

{
1 if the lth NF of request r is NFi.
0 otherwise.

(1)

Hereafter, we consider the scenario where a mobile user
and/or tenant connected to node o and requesting R services.

4NF movement in this paper refers to any approach that occurs the change
of the function’s location. (e.g., proactive caching)

5As part of the standard [19], VNF chain deployment in this paper is on a
per request basis. Nevertheless, coarser grain can be applied without change
to our model by referring the request as a set of traffic. This is based on the
granularity of VNF deployment and usage.

4

As presented in Figure 2, caching as a NF, is the head of
a service request chain and it is denoted as f0. We define
a candidate node set K ⊆ N that consist of the potential
candidate nodes of hosting NFs. By D, we define a set of po-
tential destinations that mobile users might move due to their
inherent mobility. Using historical data available to mobile
network providers it is feasible to estimate such probabilities
of end users moving from their current location to an adjacent
candidate destination node d. We denote this probability of
changing their serving access router with ρd. As eluded, we
assume that ρd is predefined by using available historical
data from operators so this assumption can be deemed as
realistic due to vast available data which can provide accurate
characterization of user mobility patterns. With known candi-
date cache locations, which can be done using for example a
proactive caching technique such as PCWR [13]), PCC aims
to proactively place network functions fi ∈ F into the set of
nodes K. To be more precise, we define by Sr to be the set of
initiating nodes (i.e., proactive caching locations) of a service
chain r, with H denoting the set of Sr. Given H and D, the
proposed scheme returns the optimal proactive allocation of
the NFs that minimizes the joint cost of routing, location and
chaining. To sum up, the key notations we used in this paper
are listed in I

TABLE I: Notations

Notation Meaning

R Set of requests arrive in a batch
K Set of NFV enabled candidate hosts
F Set of Network Functions
Sr Set of caching points for request r
D Set of potential destinations
Cki The cost for placing VNF i at node k
ρd The probability of a mobile user moving to destination d
Pkm The routing cost of the path from node k to m
Vril Indicator of VNF i if it is the lth function of request r
ui Physical resource requirement of VNF i
Uk Physical resource capacity of node k
λr Flow rate requirement of request r
Λkm Link capacity of the path from node k to m
xkri Decision variable indicates whether VNF i is placed

at k for request r
yksdri Decision variable indicates whether VNF i of request r

with caching point s and destination d is visited from k
zkmsdrij Auxiliary variable defined as zkmsdrij = yksdri ymsdrj

A. Proactive chaining-caching problem

Based on the previously described network settings we
define the following binary decision variables,

xkri =

{
1 if NFi is placed at k for request r.
0 otherwise.

(2)

yksdri =

1 if NFi of request r with head s and

destination d is visited from k.

0 otherwise.
(3)

The optimal VNF location and chaining for the proactive
caching problem is defined as the following non-linear integer
optimization problem,

min
xk
ri
,yksd

ri

∑
r∈R

∑
k∈K

∑
i∈F

Cki x
k
ri+
∑
r∈R

∑
s∈Sr

∑
d∈D

∑
k∈K

∑
i∈F

ρdPskVri1y
ksd
ri

+
∑
r∈R

∑
s∈Sr

∑
d∈D

∑
k,m∈K

∑
i,j∈F

L−1∑
l=1

ρdPkmVrily
ksd
ri Vrj(l+1)y

msd
rj

+
∑
r∈R

∑
s∈Sr

∑
d∈D

∑
k∈K

∑
i∈F

ρdPkdVriLy
ksd
ri

(4)

S.t.
∑
r∈R

∑
i∈F

uix
k
ri ≤ Uk,∀k ∈ K (4a)∑

r∈R

∑
d∈D

∑
i∈F

λrVri1y
ksd
ri ≤ Λsk,∀r∈R, k∈K, s∈Sr (4b)

∑
r∈R

∑
s∈Sr

∑
d∈D

∑
i,j∈F

L−1∑
l=1

λrVrilVrj(l+1)y
ksd
ri y

msd
rj ≤ Λkm,

∀k,m ∈ K (4c)∑
r∈R

∑
s∈Sr

∑
i∈F

λrVriLy
ksd
ri ≤ Λkd,∀k ∈ K, d ∈ D (4d)∑

k∈K

∑
i∈F

Vrily
ksd
ri ≥ 1, ∀r ∈ R, s ∈ Sr, d ∈ D,

l = 1, . . . L (4e)
yksdri − xkri ≤ 0,∀r ∈ R, i ∈ F, k ∈ K, s ∈ Sr, d ∈ D (4f)

xkri ∈ {0, 1}, ∀i ∈ F, k ∈ K (4g)
yksdri ∈ {0, 1}, ∀r ∈ R, i ∈ F, k ∈ K, s ∈ Sr, d ∈ D(4h)

where Cki is the cost of placing NFi at k. While Psk, Pkm and
Pkd are the shortest path routing costs between the candidate
nodes. Accordingly, Λsk, Λkm and Λkd are the remaining
link capacities of a path (i.e., the bottleneck link capacity).
Further, notice that Λkm can be seen as flow rate tolerant of
a node when k = m. λr denotes the flow rate requirement
of request r. Constraint (4a) is the VNF processing capacity
constraint which takes into account the CPU cycles associated
with the Virtual Machine(VM) allocated to a VNF and the
memory capacity for a specific VNF. (4b)-(4d) are the QoS
constraints related to the service chain such that the requests
can be properly assigned based on the flow rate requirements
and the link capacity. (4e) enforces that each NF in a requested
chain must be visited at least once. (4f) is a binding constraint
that insures the availability of a NF at a node is valid only
when the NF is hosted at the node.

The first term of the objective function is the placement
cost of hosting VNFs at a node. The rest of the terms in
the objective function reflect the accumulative routing cost of
each hop on the VNF-FG of a requested chain. To linearize
the optimization problem, we replace the product of binary
decision variables yksdri y

msd
rj with an auxiliary variable zkmsdrij ,

which is defined as follows,

5

zkmsdrij =

1 if request r with head s and destination d

visits NFi at node k and NFj at node m.
0 otherwise.

(5)
Hereafter, the optimization problem is converted to the

integer linear programming problem shown as follows,

min
xk
ri
,yksd

ri

∑
r∈R

∑
k∈K

∑
i∈F

Cki x
k
ri+
∑
r∈R

∑
s∈Sr

∑
d∈D

∑
k∈K

∑
i∈F

ρdPskVri1y
ksd
ri

+
∑
r∈R

∑
s∈Sr

∑
d∈D

∑
k,m∈K

∑
i,j∈F

L−1∑
l=1

ρdPkmVrilVrj(l+1)z
kmsd
rij

+
∑
r∈R

∑
s∈Sr

∑
d∈D

∑
k∈K

∑
i∈F

ρdPkdVriLy
ksd
ri

(6)

S.t.
∑
r∈R

∑
i∈F

uix
k
ri ≤ Uk,∀k ∈ K (6a)∑

r∈R

∑
d∈D

∑
i∈F

λrVri1y
ksd
ri ≤ Λsk,∀r∈R, k∈K, s∈Sr (6b)

∑
r∈R

∑
s∈Sr

∑
d∈D

∑
i,j∈F

L−1∑
l=1

λrVrilVrj(l+1)y
ksd
ri y

msd
rj ≤ Λkm,

∀k,m ∈ K (6c)∑
r∈R

∑
s∈Sr

∑
i∈F

λrVriLy
ksd
ri ≤ Λkd,∀k ∈ K, d ∈ D (6d)∑

k∈K

∑
i∈F

Vrily
ksd
ri ≥ 1, ∀r ∈ R, s ∈ Sr, d ∈ D,

l = 1, . . . L (6e)
yksdri − xkri ≤ 0,∀r ∈ R, i ∈ F, k ∈ K, s ∈ Sr, d ∈ D (6f)
zkmsdrij ≤ yksdri ,∀r ∈ R, i ∈ F, k ∈ K, s ∈ Sr, d ∈ D (6g)

zkmsdrij ≤ ymsdrj ,∀r ∈ R, j ∈ F,m ∈ K, s ∈ Sr, d ∈ D(6h)

zkmsdrij ≥ yksdri + ymsdrj − 1,∀r ∈ R, i, j ∈ F, k,m ∈ K,

s ∈ Sr, d ∈ D (6i)
xkri ∈ {0, 1}, ∀i ∈ F, k ∈ K (6j)

yksdri ∈ {0, 1}, ∀r ∈ R, i ∈ F, k ∈ K, s ∈ Sr, d ∈ D(6k)
zkmsdrij ∈ {0, 1}, ∀r ∈ R, i, j ∈ F, k,m ∈ K,

s ∈ Sr, d ∈ D (6l)

where (6f)-(6i) are binding constraints that insure zkmsdrij taking
the same value as product yksdri y

msd
rj .

V. SCALE FREE HEURISTIC APPROACHES

The PCC problem falls within the family of NP-hard
problems (the detailed proof can be seen in the Appendix).
As a result, heuristics becomes the only viable option of
finding competitive feasible solutions for real time operation.
Therefore, we present three heuristic approaches for finding
caching points and VNFs allocations that ponder features
including user mobility, network capacity utility and request
importance. Nevertheless, the presented schemes differ in the
performance of obtaining lower routing cost and the ability of
providing smaller pro-active service missing rate.

First, we propose Probability-prior proactive caching-
chaining (PPCC) which aims at minimizing the overall net-
work traffic cost with the awareness of end user mobility.
Based on user moving trend, PPCC places VNF chains be-
tween a pro-active caching point and the potential user moving
destination that with highest ρd.

The second algorithm, hereafter called Shortest Path Based
Allocation (SPBA) also allocates caching as well as VNFs
along the shortest path from pro-active caching points to
serving access routers but without taking user mobility into
consideration. The SPBA is presented as a mobility-unaware
baseline where allocation decision is made by assuming the
current accessing node is the permanent destination.

Finally, in the last algorithm, henceforth called All in Gate-
way (AGW), hosts all content caches and VNFs at the network
gateway. With a straightforward decision, AGW shows a lower
bound on the network traffic cost performance, in which no
optimization techniques are applied.

A. PPCC algorithm

In order to handle end user mobility feature, we propose
PPCC approach in which caching and VNF chains allocations
are decided based on user moving trend. In particular, the
main philosophy of the proposed PPCC heuristic is to create
a set of candidate pro-active caching points for each possible
visited access router and then weighted by the probability of
visiting each access router and explore node combinations for
creating the service chains. This approach is highly efficient
when the user movement is predicable. i.e., fixed route public
transportations.

1) For any request r, select the target node d ∈ D by
highest ρd and find the closest starting node s ∈ Sr by
minimum shortest path routing cost Psd;

2) On the shortest path from the selected s and d, find all
candidate nodes by K;

3) Choose the closest k from the selected s on the path
to host the NFi with the lowest visiting order sequence
in request r if there are enough resources (including
both the VNF processing capacity and the link capacity)
to support the function, otherwise, host the sub-lowest
function, until running out of resources;

4) Repeat step 2 and 3 until all NFs of request r are hosted.
In step 3, depending on different consideration of the features
of network capacity utility and request importance, PPCC also
provides two sub modes, namely, PPCC node first mode and
PPCC function first mode, which are denoted as PPCC-k and
PPCC-f respectively. In PPCC-f, step 1,2 and 4 are identical
to PPCC-k and are omitted:

3) Choose the NFi with the lowest visiting order sequence
in request r to host in the closest k from the selected s
on the path if there are enough resources to support the
function, otherwise, host in the sub-closest node, until
the last node;

PPCC is detailed in the pseudocode Algorithm I below. In
short, the main principle of PPCC-k is making use of the
network capacity by risking VNF visiting order. While PPCC-

6

f ensures the serving quality for a set of requests by over using
some network resources.

B. SPBA algorithm

Similar to PPCC, SPBA moves towards the same objective
of minimizing the network traffic routing cost. The distinction
between it and PPCC is that SPBA calculates the allocation
solution without the requirement of knowing the end user
mobility trend. Accordingly, SPBA creates a set of candidate
pro-active caching points for the original access router and
then explores node combinations for creating the service
chains.

1) For any request r, select node o and find the closest
starting node s ∈ Sr by minimum shortest path routing
cost Pso;

2) On the shortest path from the selected s and o, find all
candidate nodes by K;

3) Choose the closest k from the selected s on the path to
host the NFi with the lowest visiting order sequence in
request r if there are enough resources to support the
function (including both the VNF processing capacity
and the link capacity), otherwise, host the sub-lowest
function, until running out of resources;

4) Repeat step 2 and 3 until all NFs of request r are hosted.
Just as PPCC, SPBA also supports the two sub modes. SPBA
is detailed in the pseudocode Algorithm II below.

C. AGW management scheme

With no optimization techniques involved, AGW provides a
quick and simple solution, that for each request r ∈ R, places
all the requesting VNFs and content caches at the network
gateway. As a result, all benefits of using pro-active caching
techniques are lost. Moreover, with a mass of VNF entities
running on the network gateway, the network resources of the
gateway becomes the bottleneck.

VI. CALCULATION COMPLEXITY ANALYSIS

In this section, we present the computation complexity
analysis for the three heuristics. The analysis provides the
incurred computational burden for each proactive caching and
chaining enabled node and captures both the node choosing
phase and the chaining allocation phase. The most important
parameter of each approach is the total computing duration
time for generating a chaining allocation, which is the sum of
the calculation time of the two phases.

As mentioned in V-A, PPCC selects a target node in D
and a caching point in Sr. We define such phase as the
node choosing phase for the three algorithms. For PPCC, a
maximum value finding problem and a minimum value finding
problem are involved in the node choosing phase. Therefore,
finding the appropriate target node and caching node, PPCC
needs an upper bound of |D|−1 and |Sr|−1 comparisons for
each request r ∈ R, that is, examining each element of the
set in turn and keep track of the largest/smallest element seen
so far. As a result, the computation complexity of the node
choosing phase of PPCC is O(|D|) +O(|Sr|).

Algorithm 1: PPCC
Input : G; D; R; K; F; H; attaching node o;
Output: VNF allocation: xkri; PPCC cost: PPCC;
PPCC← 0;
for k ∈ K do

Remaining utility of node k: RUk ← Uk
end
Initialize all path bottlenecks: RΛ← Λ;
for i ∈ D do

if ρi == max(ρi) then
Destination node: d← i;

end
end
for r ∈ R do

Starting node:s← find closest node s to d in Sr with
minimum Psd;

candidate node priority list: CPL← ∅;
CPL← sort k ∈

{
{n|n is on the shortest path from

s to d} ∩ K
}

by the distance between k and s
from low to high;

VNF priority list: FPL← ∅;
FPL← sort fi by its visiting sequence l of r;
former VNF location: m← s ;
:// PPCC-k
for k ∈ CPL do

for fi ∈ FPL do
if ui ≤ RUkn & λr ≤ RΛkm then

host fi at k: xkri ← 1 ;
RUk ← RUk − ui;
PPCC ← PPCC+Cki ;

end
end

end
:// PPCC-f
for fi ∈ FPL do

for k ∈ CPL do
if ui ≤ RUk & λr ≤ RΛkm then

host fi at k: xkri ← 1 ;
RUk ← RUk − ui;
PPCC ← PPCC+Cki ;

end
end

end
update RΛ;

end
for d ∈ D do

for r ∈ R do
Length of the chain requested by r: Lr ← the
number of requested VNFs by r;

VNF chaining list: I ← sort fi by its visiting
sequence l of r;

Chaining Routing cost between I(j) and I(j+ 1):
CRj,j+1 ← cumulative Pkm where k hosts I(j)
and m host I(j + 1) which is given by xkri;

Chaining Routing Cost: CRC ← 0;
CRC ← find the cost of shortest chaining

routing path from I(0) to d;
PPCC← PPCC+ρdCRC;

end
end

7

Algorithm 2: SPBA
Input : G; D; R; K; F; H; attaching node o;
Output: VNF allocation: xkri; SPBA cost: SPBA;
SPBA← 0;
for k ∈ K do

Remaining utility of node k: RUk ← Uk;
end
Initialize all path bottlenecks: RΛ← Λ;
for r ∈ R do

Starting node:s← find closest node s to o in Sr with
minimum Pso;

candidate node priority list: CPL← ∅;
CPL← sort k ∈

{
{n|n is on the shortest path from

s to o} ∩ K
}

by the distance between k and s
from low to high;

VNF priority list: FPL← ∅;
FPL← sort fi by its visiting sequence l of r;
former VNF location: m← s ;
:// SPBA-k
for k ∈ CPL do

for fi ∈ FPL do
if ui ≤ RUk & λr ≤ RΛkm then

host fi at k: xkri ← 1 ;
RUk ← RUk − ui;
SPBA ← SPBA+Cki ;

end
end

end
:// SPBA-f
for fi ∈ FPL do

for k ∈ CPL do
if ui ≤ RUk & λr ≤ RΛkm then

host fi at k: xkri ← 1 ;
RUk ← RUk − ui;
SPBA ← SPBA+Cki ;

end
end

end
update RΛ;

end
for d ∈ D do

for r ∈ R do
Length of the chain requested by r: Lr ← the

number of requested VNFs by r;
VNF chaining list: I ← sort fi by its visiting

sequence l of r;
Chaining Routing cost between I(j) and I(j+ 1):
CRj,j+1 ← cumulative Pkm where k hosts I(j)
and m host I(j + 1) which is given by xkri;

Chaining Routing Cost: CRC ← 0;
CRC ← find the cost of shortest chaining

routing path from I(0) to d;
SPBA← SPBA+ρdCRC;

end
end

After selecting an appropriate target node and caching point,
PPCC starts seeking for a set of candidate nodes k ∈ K along
the shortest path from the selected caching point to the selected
target to allocate the requesting VNFs. We define such phase
as the chaining allocation phase. In order to minimize the
probability of having packets being switched back and forth
along the path, PPCC greedily gives the highest priority to the
candidate node that has the closest distance from the caching
point to hold VNFs. Hence, a sorted list of the candidate VNF
holding nodes is required for the PPCC caching allocation
phase. Notice that, the calculation complexity of solving a
sorting list problem is verified based on different solutions.
Through out the paper, we use quick sorting for the sorting list
problems, which give us an average of O(κ log κ) calculation
complexity and O(κ2) complexity in the worst case, where κ
denotes the number of candidate nodes k along the shortest
path between the caching point and the target point. On the
other hand, the priority of the requesting VNF to hold is scaled
down by its visiting order in the corresponding request. This is
a result of trying to preserve the sequence of a chain such that
path segment overlap is kept at a minimum. As a result, the
computation complexity for sorting VNF to hold is O(φ log φ)
in average and O(φ2) for the worse case, where φ denotes the
number of requested VNF f of a request r. Notice that, the
node first mode and the function first mode are interchanging
the processes of looping over the two sorted lists. Hence, the
computation complexity of the two sub modes are identical.

Unlike PPCC, SPBA does not choose any target node in
D in its node choosing phase, instead, it finds the closest
caching points s ∈ Sr to node o for each request r ∈ R.
In this case, |Sr| − 1 comparisons are needed for finding the
closest caching point for each request r, which leads to a
calculation complexity of O(|Sr|). In the chaining allocation
phase, SPBA is identical with PPCC and therefore, the calcu-
lation complexity of the chaining allocation phase of SPBA
is O(κ log κ) +O(φ log φ) in average and O(κ2) +O(φ2) for
worse case as well.

AGW has constant calculation complexity for both the
node choosing phase and the chaining allocation phase as it
holds every VNF in the gateway. In summary the calculation
complexity of each heuristic approaches is presented in Table
II.

VII. OPTIMAL SOLUTION SCALABILITY ANALYSIS

As discussed earlier, the proactive chaining-caching prob-
lem resembles the NP-hard UFL problem. In this section,
we focus on the scalability analysis for the optimal solution
against the increasing problem size. Precisely, both the calcu-
lation scalability and the storage space scalability are in the
scope of our discussion.

Here we denote a proactive chaining-caching and routing
problem by π(K,R,Sr,D, L,F), where the size of this
problem is determined by the network size K, the request size
R, the caching nodes of a request Sr, the number of access
nodes in D, the length L of a chain (the number of VNFs in
a chain) and the VNF size F. For legibility, hereafter π and
π(K,R,Sr,D, L,F) are used interchangeably unless when
differentiation is required.

8

TABLE II: Calculation Complexity

Heuristic Node Choosing Phase Chaining Allocation Phase (Avg.) Chaining Allocation Phase (worst case)

PPCC-k O(|D|) +O(|Sr|) O(κ log κ) +O(φ log φ) O(κ2) +O(φ2)

PPCC-f O(|D|) +O(|Sr|) O(κ log κ) +O(φ log φ) O(κ2) +O(φ2)

SPBA-k O(|Sr|) O(κ log κ) +O(φ log φ) O(κ2) +O(φ2)

SPBA-f O(|Sr|) O(κ log κ) +O(φ log φ) O(κ2) +O(φ2)

AGW O(1) O(1) O(1)

A. Calculation Scalability

Given problem π, its ILP problem can be presented in
the standard matrix form. By Π we denote the constraint
coefficients matrix of π. While Row(Π) and Col(Π) are the
functions that return the number of rows and columns in Π
respectively. Let Ω(π) be the function returns the number of
computations for finding the optimal solution of π. In this
case, we measure the computational growth of the proactive
chaining-caching problem by the scalability factor απ , which
is defined as follows,

απ =
Ω(π)

Ω(πo)
(7)

where Ω(πo) is the calculations of the original problem and it
is given by:

Ω(πo) = Ω(π(1, 1, 1, 1, 1, 1)) (8)

A solution of problem π is the set of the binary variables
i.e., x, y and z in formula (6). Since verifying an optimal
solution requires two processes, the feasibility verification for
each solution and the minimum value searching among the
solutions. Therefore, for any problem π, we derive that Ω(π)
holds:

Ω(π) = Ωfv(π) ∗ Ωfm(π) (9)

where Ωfv(π) returns the number of calculations for verifying
the feasibility for each solution of π and Ωfm(π) returns the
number of calculations for finding the minimum cost solution
for π.

For each solution of π, the feasibility verification needs
to exhaustively traverse each constraint in the worst case.
Consequently, Row(Π) calculations are involved and hence
we have

Ωfv(π) = Row(Π) (10)

From formula (6), we know

Row(Π) = n|K|+ |RSrK|+ |DK|+ |RSrDL|
+|K2|+|RSrDKF|+3|RSrDK2F2|

(11)

where n is the size of ui or Uk, i.e., the number of dimensions
of the resources to hold a VNF.

On the other hand, finding the objective value of each solu-
tion involves one calculation. While searching for the optimal
solution given the amount of the solutions requires a number
of calculations that equals to the amount of the solutions in the
worst case. Since for any problem π, the variables are binary,

we derive the number of candidate solutions of a problem π
is 2Col(Π) and hence

Ωfm(π) = 2Col(Π) (12)

From formula (6), we know

Col(Π) = |RKF|+ |RSrDK|+ |RSrDK2F2| (13)

Using Eq. (8) to (13), we obtain:

Ω(πo) = (n+ 8) ∗ 23 (14)

By replacing Eq. (10), (12) and (14) into (7), we derive the
calculation scalability factor of proactive chaining-caching:

απ =
Row(Π) ∗ 2Col(Π)

(n+ 8) ∗ 23
(15)

In summary the calculation scalability of the proactive
chaining-caching problem is presented in Table III.

TABLE III: Calculation Scalability

π(K,R,Sr,D, L,F) Ωfv(π) Ωfm(π) απ

(1,1,1,1,1,1) n+ 8 23 1

(1,1,1,1,1,2) n+ 18 28 (n+15)∗28

(n+8)∗23

(1,1,1,1,1,3) n+ 34 215 (n+31)∗215

(n+8)∗23

.

K,R,Sr,D, L,F Row(Π) 2Col(Π) Row(Π)∗2Col(Π)

(n+8)∗23

B. Memory Space Scalability
In order to solve the ILP, a computer needs to assign

a certain amount of memory space to hold the coefficients
matrices for π. To present a upper bound of the memory
size requirement of π, we focus on the case of using full
matrices. Without loss of generality, we use the constraint
coefficients matrix memory space scalability to represent the
memory space scalability of π, as it is the dominating storage
space consumer.

Based on the above settings, we define Θ(π) the function re-
turns the storage size requirement of the constraint coefficients
matrix of a problem π. Similar to the calculation scalability,
we measure the storage size requirement growth of π by the
scalability factor βπ , which is defined as follows,

βπ =
Θ(π)

Θ(πo)
(16)

9

Fig. 5: A City Network like Topology Example

Using full matrix, we have

Θ(π) = Row(Π) ∗ Col(Π) (17)

By replacing Eq. (11), (13) and (17) into (16), we derive the
memory space scalability factor of proactive chaining-caching:

βπ =
Row(Π) ∗ Col(Π)

(n+ 8) ∗ 3
(18)

In summary the calculation scalability of the proactive
chaining-caching problem is presented in Table IV

TABLE IV: Memory Space Scalability

π(K,R,Sr,D, L,F) Θ(π) βπ

(1,1,1,1,1,1) (n+ 8) ∗ 3 1

(1,1,1,1,1,2) (n+ 18) ∗ 8
(n+18)∗8
(n+8)∗3

(1,1,1,1,1,3) (n+ 34) ∗ 15
(n+34)∗15
(n+8)∗3

.

K,R,Sr,D, L,F Row(Π) ∗ Col(Π)
Row(Π)∗Col(Π)

(n+8)∗3

VIII. NUMERICAL INVESTIGATIONS

The numerical investigation part consists of two sets of
simulated network settings. The first part is devoted to examine
the performance under different network topology types, in
which we apply both optimal and heuristics on a set of random
generated networks including a hybrid network, a star network
and a ring network. In the second part, to further understand
the performance under more general and practical network
scenarios, we then carry out our simulations on a range of
random network graphs that are generated with the well-used
technique outlined in [20]; the key idea is that an edge between
two nodes are generated based on a probability that is related
to the distance between the two nodes.

Since the proposed scheme is highly effective in edge net-
works, we estimate the simulated network size by referencing
the advanced 5G Ultra-Dense CellUlar network architecture
with the single gateway model [21]. The applied random
networks contain up to 400 small cells [21]. In typical settings,
the number of deployed small cell per marco cell is 8 [22],

however it can reach 20 if dense small cell deployment
scenarios are considered [23] [24]. Together with the 1 : 1
router to marco cell base station ratio [25], we set the number
of the candidate VNF hosting nodes |K| to be between 20 to
50. Moreover, the number of starting points and destination
points are set from 1 to 5.

As to the number of requests in the system, we assume that
a total of 200 requests per second [26] are generated and we
take 0.25 to 1 seconds for each batch which converts to a total
number of 50 to 200 requests per batch. We also assume that
the flow rate requirement of a request varies from 64Kbps [27]
(e.g. audio traffic) to 10Mbps [28] (e.g. 4K video streams).
In terms of mobility, the moving probabilities to candidate
destination nodes are randomly generated between 0 and 1 (in
a non independent manner however, since all should add up
to one). In order to flesh out in a clear manner the effect of
routing we set the VNF placement cost to zero. As eluded in
previous sections the proposed framework is generic one to
encapsulate various different shortest path definitions; such as
for example delay, congestion level at the node and/or energy
consumption. However, and without loss of generality, we
choose to use in the numerical investigations section typical
metrics used in Open Shortest Path First (OSPF) or Enhanced
Interior Gateway Routing Protocol (EIGRP) protocols. To
maintain the link diversity, we normalize the routing metric
in the range from 1 to 100. In terms of physical resources of
candidate VNF hosting node, we assume that each candidate
node has 8 to 16 GByte memory capacity and 32 virtual CPU
cores (e.g. a CPU with 4 cores 8 threads). While each VNF
consumes memory in a range from 10 to 50 MBytes and uses
0.125 to 0.25 cores (i.e., each virtual CPU supports 4 to 8
VMs). As for the link capacity, we assume each link has a
capacity of 2Gbps.

To measure the end-user experience, we define the blocking
chance as the probability of a request failing to build a
complete proactive chain. We further assume the blocked
requests are routed to the Internet via the gateway to simulate
the impact of the broken chains that caused by mobility. In
this case, the routing cost of a blocked request is consist of
the destination-gateway shortest path cost and a penalty cost
in a range from 500 to 700, which imitates a general Internet
routing cost. All results presented hereafter are obtained by
averaging 100 Monte Carlo simulations. Also we calculate
the optimal allocations by utilizing MATLAB and its build-
in Mixed-Integer Linear Programming solver. Further details
and to sum up, the parameters that have been used in the
investigations are presented in Table V.

A. Performance evaluation for practical networks

In this first part of the numerical investigations, we apply the
Proactive chaining for caching technique on an urban network
like topology as shown in figure 5. Without loss of generality,
we assume that a mobile user moves across a number of
Base Stations (BS)/Access Routers (AR) within an urban
environment following a pseudo-predictable path (i.e., using
navigation information from GPS). With proactive caching
techniques, the pre-caching points are set to be at nodes 7,9

10

TABLE V: Simulation Parameters

Parameter value

Number of candidate hosting nodes(|K|) 20-50
Degree per node 2-5
Moving probability (ρd) 0-1
Number of starting points per request (|Sr|) 1-5
Number of destination points per user (|D|) 1-5
Number of requests per batch (|R|) 50-200
VNF number (|F|) 10
Maximum number of VNF in a chain (L) 3-5
Routing cost per link (Pkm) 1-100
Routing penalty per blocking request 500-700
Cost per node to host VNF (Cki) 0
Memory capacity per candidate node 8-16 GByte
Number of virtual CPU cores per candidate node 32
Memory requirement per VNF 10-50 MByte
CPU core requirement per VNF 0.125-0.25
Flow rate requirement per chain (λr) 0.064 - 10 Mbps
Capacity per link (Λkm) 2 Gbps

50

100

150

200

250

 1 2 3 4 5 6 7 8

Number of Handovers

A
v
e

ra
g

e
 R

o
u

ti
n

g
 C

o
s
t

Mobility Aware-OPT

Fixed OPT

AGW

Fig. 6: Average gains of using proactive chaining for caching

and 10 respectively. In that respect, before the mobile user
leaving for the next the BS, the proactive chaining for caching
technique pre-allocate the request service chains along the
nodes between the proactive caching point and the destination
node. Figure 6 depicts the average gains when using proactive
chaining for caching in that specific use case. Note that that the
average routing cost when using proactive chaining for caching
is significantly lower than in the case where we have a static
VNF caching chain (i.e., mobility agnostic scheme). Also,
as expected, when the mobile user move further away from
its original connected BS the gains of the proposed optimal
mobility-aware allocation scheme are increased compared to
the baseline scheme.

To further study the performance of the proposed optimal
and heuristic schemes on practical network topologies, we
apply the proposal schemes in three different topologies; a
random generated tree-like topology consisting of 25 nodes,
a star network consisting of 26 nodes and a ring network
with 13 nodes. Since the original optimization problem is
NP − hard, we scale down the request size to 20 per batch
in order to obtain the optimum. The network capacity is set to
be approximately supporting 10 to 12 requests simultaneously.
The rest of the network settings remain identical to the case

as described in the previous experiments and summarized in
Table IV. The aim is to investigate the impact of the topology
type on the performance gains related to routing and blocking
as shown in Table VI. The table depicts routing cost and
blocking probability in three groups for low (R=5), mid (R=12)
and high (R=20) number of requests. From the hybrid network
we observe the optimal solution can achieve more than 75%
gains against the sub-optimal heuristic for the low number
of requests scenario whereas the gain is increased further in
the other two scenarios. Unlike hybrid networks, in the star
topology we obtain in average a 60% gain with the optimal
allocation. This reduced gap between the optimal and heuristic
solutions in star topology can be explained due to the more
limited number of cache points for each access router. This
trend can be found by comparing the costs listed in the Star
and Hybrid fields of Table VI. In the star network, edge nodes
have less degrees leading to that a limited set of links are
concentrated in cache-destination paths.

The heuristic routing performance is further approximating
the optimal one in the ring topologies scenarios. Precisely, the
difference between the optimal solution and PPCC-k is less
than 20%. It is also noteworthy that, due to each node has
only 2 degrees in a ring network, the optimal allocation is
highly identical to the PPCC solution and hence the routing
deviations shown in ring scenarios are much smaller than
that in other scenarios. Therefore, the result indicates that,
in a small network with its node degrees are low, the PPCC
scheme can very well balance the routing performance and the
computational complexity.

B. Performance evaluation for scenarios of random generated
topologies

To better understand the practical implement of the proposed
proactive chaining for caching technique, we test our proposed
heuristics on a wider set of random generated network graphs.
Figure 7-8 depicts the routing performance comparisons for
different scenarios of random generated topologies. We divide
the simulation into two cases. In the first case, which is
called uncapacitated, every candidate node has a relatively
high capacity e.g. memory requirement of each VNF is low,
such that none of the requesting VNFs will be blocked in
the sense that there are no available resources in the hosted
nodes. While in the other case, which we call it as capacitated,
we assume a congestion episode scenario where nodes do not
have sufficient resource to support all the requesting VNFs
simultaneously.

In figure 7, we depict the routing performance for the
random generated networks in the uncapacitated case. For the
simulations on the topologies that have sufficient capacity, the
two sub modes of PPCC return identical solutions and SPBA
holds this feature as well. As such we do not distinguish the
two sub modes in the plot. Figure 7 (a) shows the performance
of the proposed scheme compared to the previous mentioned
baseline techniques for different number of nodes in the
network. As can be seen from the figure, a performance gain of
around 10% being mobility-aware (i.e., PPCC vs SPBA) can
be achieved which remains robust against different network

11

TABLE VI: Routing and Blocking Performance of different schemes

R OPT PPCC-k PPCC-f SPBA-k SPBA-f CAGW

Hybrid

Routing
cost
(k)

5 0.18 0.93 0.85 1.23 1.1 1.5
12 0.41 1.9 2.1 3.16 4.46 12.61
20 0.69 4.37 7.79 6.82 10.06 65.10

Blocking
Probability

5 0 0 0 0 0 0
12 0 0 0.06 0 0.06 0.29
20 0 0.16 0.44 0.16 0.44 0.58

Star

Routing
cost
(k)

5 0.19 1.80 1.54 2.90 2.71 4.60
12 0.45 3.53 3.60 6.44 6.58 28.95
20 0.75 4.62 10.52 10.17 13.55 108.70

Blocking
Probability

5 0 0 0 0 0 0
12 0 0 0.02 0 0.02 0.30
20 0 0 0.39 0 0.37 0.58

Ring

Routing
cost
(k)

5 0.18 0.35 0.26 2.06 1.58 4.15
12 0.43 1.54 3.74 4.25 3.95 26.35
20 0.72 5.59 10.68 7.97 10.92 101.29

Blocking
Probability

5 0 0 0 0 0 0
12 0 0 0.06 0 0.06 0.29
20 0 0.15 0.43 0.15 0.43 0.58

20 25 30 35 40 45 50

Number of Nodes (K)

0

20k

40k

60k

80k

100k

120k

140k

160k

180k

R
o

u
ti

n
g

 C
o

s
t

PPCC

SPBA

AGW

(a)

60 80 100 120 140 160 180 200

Number of Requests (R)

0

10k

20k

30k

40k

50k

60k

70k

80k

90k

100k

R
o

u
ti

n
g

 C
o

s
t

PPCC

SPBA

AGW

(b)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

o

0

50k

100k

150k

200k

250k

R
o

u
ti

n
g

 C
o

s
t

PPCC

SPBA

AGW

(c)

Fig. 7: Random generated networks with sufficient capacity: (a) Performance of the proposed scheme with different number
of nodes in the network. (R=200); (b) Performance of the proposed scheme with increased number of service requests in the
network. (K=20); (c) Performance of the proposed scheme for different values of the parameter ρ0. (K=20, R=200)

sizes. This is expected by the fact that as the network resources
are preserved for the most probable routing path, lower routing
cost is obtained. A similar observation can be made from
figure 7 (b), which shows the performance for different number
of requests. With increased number of requests, i.e., more
constrained allocations, the performance gains increase from
22% to 23%. It is noteworthy that, the performance metric
shows a linear growth trend due to that each request are
technically identical i.e., the number of VNFs in the chain is
similar for each request. As a result, a higher gain is expected
in the case of dense mobile networks where the number of
arriving requests in a certain amount of time is large. Finally,
in figure 7 (c) we show the performance of the proposed
scheme for different mobility use cases. The figure shows
the performance gains as a factor of the parameter ρo. This
parameter is defined as follows ρo = 1 −

∑
d∈D ρd, which

means that as ρo reaches close to 1 there is no mobility of the
end-user, i.e., there is no change on the serving access router.
As expected, there are no gains when there is no mobility, but

as the mobility increase the gains reach more than 26%. The
result suggests that, the proposed scheme is ideal for public
transport mobile scenarios where mobile users have almost
predictable mobility paths. Last but not least, the two proactive
schemes achieve overall exceptional routing performance in
compared with AGW.

In figure 8, we examine the impact of network capacity.
In the capacitated case, we also assign the capacity size that
approximately supports 75% requests. Due to the resource
limitation, only a selective set of requests are assisted with
the service of proactive unbroken chains. In this setting, we
depict the topology size impact on the routing performance of
the proposed heuristics under capacitated scenarios in figure8
(a). The curves in the plot indicate that the Capacitated All
from Gateway (CAGW) scheme has the highest cost and it is
robust against the network topology. Since putting every VNF
in the gateway node consumes a large amount of network
resources, CAGW receives also the highest blocking chance
which cause huge routing penalties. In comparison, the node

12

20 25 30 35 40 45 50

Number of Nodes (K)

0

100k

200k

300k

400k

500k

600k

700k

800k

900k

R
o

u
ti

n
g

 C
o

s
t

PPCC-k

PPCC-f

SPBA-k

SPBA-f

CAGW

(a)

60 80 100 120 140 160 180 200

Number of Requests (R)

0

50k

100k

150k

200k

250k

R
o

u
ti

n
g

 C
o

s
t

PPCC-k

PPCC-f

SPBA-k

SPBA-f

CAGW

(b)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

o

0

100k

200k

300k

400k

500k

600k

700k

800k

900k

R
o

u
ti

n
g

 C
o

s
t

PPCC-k

PPCC-f

SPBA-k

SPBA-f

CAGW

(c)

20 25 30 35 40 45 50

Number of Nodes (K)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

B
lo

c
k
in

g
 P

ro
b

a
b

il
it

y

PPCC-k

PPCC-f

SPBA-k

SPBA-f

CAGW

(d)

60 80 100 120 140 160 180 200

Number of Requests (R)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
B

lo
c
k
in

g
 P

ro
b

a
b

il
it

y

PPCC-k

PPCC-f

SPBA-k

SPBA-f

CAGW

(e)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

o

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

B
lo

c
k
in

g
 P

ro
b

a
b

il
it

y

PPCC-k

PPCC-f

SPBA-k

SPBA-f

CAGW

(f)

Fig. 8: Random generated networks with insufficient capacity: (a) Routing performance of the proposed scheme with different
number of nodes in the network. (R=200); (b) Routing performance of the proposed scheme with increased number of service
requests in the network. (K=20); (c) Routing performance of the proposed scheme for different values of the parameter ρ0.
(K=20, R=20);(d) Blocking performance of the proposed scheme with different number of nodes in the network. (R=200); (e)
Blocking performance of the proposed scheme with increased number of service requests in the network. (K=20); (f) Blocking
performance of the proposed scheme for different values of the parameter ρ0. (K=20, R=200)

first mode (the k mode) of both PPCC and SPBA scheme can
achieve in average 50% routing gains against the function first
mode (the f mode). This comes from the fact that the k mode
consumes less capacity compare to the f mode, which can be
justified from the blocking curves shown in figure8 (d). It is
worth noting that, with limited resource to place the requested
VNFs, the blocking probability and routing cost decrease with
the increasing topology size. This explains that in capacitated
case, the routing performance of PPCC and SPBA is topology
sensitive. As a result, if the path from the caching point to the
most potential destination has higher blocking probability due
to insufficient capacity, PPCC might receive higher routing
cost against SPBA.

In figure 8 (b) and (e), we describe the impact of the request
size on the routing and blocking performance in capacitated
case. We notice that the routing cost exhibits relatively linear
behavior when no blocking involved however larger growing
slopes show when blocking comes. As can be seen in figure 8
(e), the blocking probability of each scheme goes higher with
the increase of the request size. As expected, the blocking
probability of CAGW grows much faster against that of other
schemes and the k mode performs better than the f mode

in terms of blocking. It makes sense because the f mode
excessively place the VNFs among the cache-destination path
for ensuring the routing performance of a selective set of
requests. This trade off can be clearly observed in figure 8
(b), as the f mode holds more redundancy VNFs, it could
potentially generate shorter service chains against the k mode,
therefore, the f mode of both PPCC and SPBA start at a lower
routing cost and end up at a higher position against the k mode.
Moreover, it is noteworthy that, the routing cost curves of the
two sub modes of the same scheme cross at R=120 when the
f mode has blocking.

In figure 8 (c) and (f), we investigate the impact of mobility
on the routing and blocking performance in the capacitated
scenario. It can be observed from figure 8 (c), the routing
cost merges when ρ0 goes high. However, with respect to
mobility, PPCC could reach over 75% gains against SPBA.
In comparison with the gain under the uncapacitated scenario,
the enlarged gain mainly attributes to the blocking margin.

In figure 9 we show the execution efficiency of heuristics
PPCC, SPBA and AGW. The computation complexities of the
two sub modes are identical, hence we do not distinguish
them in this part. Evidently, the calculation time of the three

13

Fig. 9: Average execution efficiency of different schemes
against Number of Requests

schemes increases with larger request size. Although AGW
is much faster in execution, it sacrifices both routing and
blocking performance. The PPCC is in general 5.6% slower
than SPBA in VNF allocation however, it achieves significant
gains in terms of routing performance. The PPCC and SPBA
schemes are slower than AGW, nevertheless their execution
time is smaller than the preset batch length. In the simulation,
we use a PC with 8GB memory and 2.9GHz Intel Core i5
processor, thus, the execution time should be much lower if
the proposed schemes are applied on industrial level machines.

IX. CONCLUSIONS

In this paper, the rational of VNF location and chaining
for proactive caching has been presented together with some
key observations on this problem and the general principle of
optimizing cache specific VNF service chains. Based on those
observations an optimization framework using integer linear
mathematical programming has been detailed that integrates
VNF chaining and proactive caching. In addition, since the
problem resembles the UFL problem, which is NP-hard, some
scale-free heuristic algorithms have been presented that can
be applied in large network instances amenable for real time
implementations. The calculation complexity is analyzed as
well as the calculation and memory space scalability of the
formulated optimization problem.

Finally, the attainable performance of the proposed proac-
tive caching service chains schemes was investigated. Our
numerical results provide evidence that mobility-aware ap-
proaches receive significant performance benefits especially
during network congestion episodes and high mobility network
scenarios. In particular, the proposed PPCC-f mode provides
the best performance in terms of reducing routing cost but
requires sufficient resources across the VNF service chain
path. While another option that balances routing and resource
consumption is offered by PPCC-k mode which also achieves
a competitive performance. In more detail, our mobility-
aware heuristics is in general 60% larger than the theoretical
optimal performance however in specific networks i.e., ring
topology networks, this approximation gap can be significantly
decreased to under 20%.

ACKNOWLEDGMENT

Partially funded by the EC H2020-ICT-2014-2 project 5G
NORMA (www.5gnorma.5g-ppp.eu)

APPENDIX

A. The PCC problem is NP-hard

Lemma 1. Defining the following Linear programming formu-
lations of the uncapacitated facility location (UFL) problem:

min
χa,υab

∑
a∈A

Γaχa+
∑
a∈A

∑
b∈B

Υabυab (19)

S.t.
∑
a∈A

υab ≥ 1,∀b ∈ B (19a)

υab − χa ≤ 0,∀a ∈ A, b ∈ B (19b)
χa ∈ {0, 1}, ∀a ∈ A (19c)

υab ∈ {0, 1}, ∀a ∈ A, b ∈ B (19d)

Here, A and B are the set of facilities and the set of customers.
Accordingly, Γa and Υab are the cost for opening facility a and
the cost for customer b to access facility a. The two decision
variables: χ and υ. χa = 1 denotes facility a is opened, 0
otherwise; υab = 1 denotes customer b accesses the item from
facility a, 0 otherwise. Given such a UFL it is NP-hard to find
its optimum.

Proof. The Set Covering Problem (SCP) which is one of
Karp’s 21 NP-complete problems shown to be NP-complete
[29] can be reduced to the UFL, i.e., SCP <= UFL. The
detailed proof is provided in Chapter 3 of [30].

Theorem 1. Given an instance of the PCC problem shown as
(4). It is NP-hard to find an optimal VNF allocation such that
the objective function is minimized.

Proof. We proof the theorem by showing the UFL is reducible
to our PCC. Given an instance of the UFL, we can construct
an instance of the PCC such that an optimal solution of the
PCC gives an optimal solution to the UFL. First we construct
a UFL instance as in (19) and a PCC instance as in (4). For
each input variable χa of UFL, we construct the input variable
xkri of PCC by setting r and i as 1 such that xkri is basically xk.
Similarly, we construct yksdri by forcing r,i,s to be 1 for each
υab such that yksdri can be expressed as ykd. Accordingly, we
make |R|, |I|, |Sr| as 1 and |K| = |A|, |D| = |B|. The size of
the corresponding cost parameters of the PCC problem keeps
in-line with the size of the variables (e.g. Cki = Ck1 = Ck

to just mention a few). For each k and d, we let Ck = Γa,
Pkd = Υab and Psk = Pkm = 0. Furthermore, for each d and
l, let ρd = 1 and Vril = Vl = 1. Besides, for each k, i and
r, we set ui, Uk, λr to be 0 respectively. At last, we make
Λsk = Λkm = Λkd = 0, for all s ∈ Sr, k,m ∈ K and d ∈ D.

By such conversion, we translate the UFL as a special case
of PCC. Thus, if an algorithm can find the optimal solution
for our PCC then it can be used to calculate the optimum of
the UFL as well. Since all the above conversions can be done
in polynomial time, we can conclude that UFL is reducible
to PCC. Combining with Lemma 1, we can conclude that
SCP <= UFL <= PCC and it proofs the theorem.

14

REFERENCES

[1] R. Mijumbi et al., "Network function virtualization: State-of-the-art and
research challenges," IEEE Commun. Surveys Tuts., Vol. 18, No. 1, 2016.

[2] O. N. Fundation, "Software-defined networking: The new norm for
networks," ONF White Paper, 2012.

[3] X. Jin, L. Erran Li, L. Vanbever and J. Rexford, "SoftCell: Scalable and
flexible cellular core network architecture", Proc. 9th Int. Conf. Emerging
Netw. Exp. Technol., pp. 163-174, 2013.

[4] Network Function Virtualisation: ETSI introductory white paper,
http://portal.etsi.org/NFV/NFV_White_Paper.pdf, October 2012.

[5] "ETSI GS NFV 002 V1.2.1: Network Functions Virtualisation (NFV);
Architectural framework," ETSI Ind. Spec. Group (ISG) Netw. Func-
tions Virtualisation (NFV), Sophia-Antipolis Cedex, France, Dec. 2014.
[Online]. Available: http://www.etsi.org/deliver/etsi_gs/NFV/001_099/
002/01.02.01_60/gs_NFV002v010201p.pdf

[6] S. Lee, S. Pack, M-K. Shin, E. Paik, R. Browne, "Resource Management
in Service Chaining", Internet Research Task Force (IRTF), Internet-Draft,
July 2015.

[7] G. Zheng, A. Tsiopoulos, V. Friderikos, "Dynamic Placement of VNF
Chains for Proactive Caching in Mobile Edge Networks" arXiv preprint
arXive: 1807.10736, 2018.

[8] A. Gember, A. Krishnamurthy, S. St. John, R. Grandl, XY.Gao, A. Anand,
T.Benson , V. Sekar, A.Akella, "Stratos: A Network-Aware Orchestration
Layer for Virtual Middleboxes in Clouds", Technical Report, 2013.

[9] S. Rajagopalan, D. Williams, H. Jamjoom, A. Warfield, "Split/Merge:
System Support for Elastic Execution in Virtual Middleboxes", in ACM
USENIX Symposium on Networked Systems Design and Implementation,
2013.

[10] F. Riera, et al., "On the complex scheduling formulation of virtual net-
work functions over optical networks", in 16th International Conference
on Transparent Optical Networks (ICTON), 2014.

[11] T.Han and N.Ansari, "Opportunistic content pushing via WiFi hotspots",
in Proc. 3rd IEEE IC-NIDC, Sep. 2012, pp. 680-684.

[12] K. Kanai et al., "Proactive Content Caching for Mobile Video Utilizing
Transportation Systems and Evaluation Through Field Experiments", in
IEEE Journal on Selected Areas in Communications, vol. 34, no. 8, pp.
2102-2114, Aug. 2016.

[13] G. Zheng, V. Friderikos, "Optimal proactive caching management in
mobile networks" in Proc. IEEE ICC, 2016.

[14] V. A. Siris, X. Vasilakos, and G. C. Polyzos, "Efficient proactive caching
for supporting seamless mobility," arXiv preprint arXiv:1404.4754, 2014.

[15] L. E. Li, V. Liaghat, H. Zhao, M. Hajiaghay, D. Li, G. Wilfong, Y. R.
Yang, and C. Guo, "Pace: policy-aware application cloud embedding" in
Proc. IEEE INFOCOM, 2013.

[16] F. Bari, S. R. Chowdhury, R. Ahmed, R. Boutaba, O. C. M. B. Duarte,
"Orchestrating virtualized network functions", IEEE Trans. Netw. Service
Manage., vol. 13, no. 4, pp. 725-739, Dec. 2016.

[17] S. Mehraghdam, M. Keller, and H. Karl, "Specifying and placing chains
of virtual network functions," in Proc. IEEE 3rd Int. Conf. CloudNet, Oct.
2014, pp. 7-13.

[18] "ETSI GS NFV 001 V1.1.1: Network Functions Virtualisation
(NFV); Use Cases," ETSI Ind. Spec. Group (ISG) Netw. Functions
Virtualisation (NFV), Sophia-Antipolis Cedex, France, Oct. 2013.
[Online]. Available: http://www.etsi.org/deliver/etsi_gs/nfv/001_099/
001/01.01.01_60/gs_nfv001v010101p.pdf

[19] Framework for SDN: Scope and Requirements. Technical Recommen-
dation. Version 1. 0. ONF, 2015.

[20] B. M. Waxman, "Routing of multipoint connections" IEEE J. Sel. Areas
Commun., vol. 6, no. 9, pp. 1617-1622, Dec. 1988.

[21] X. Ge, S. Tu, G. Mao, C. Wang and T. Han, "5G Ultra-Dense Cellular
Networks", IEEE Wireless Communications, vol. 23, no. 1, pp. 72-79,
2016.

[22] M. Wang, H. Gao, T. Lv, "Energy-Efficient User Association and Power
Control in the Heterogeneous Network," IEEE Access, Vol. 5, pp. 5059-
5068, 2017.

[23] 3GPP standardization, "Scenarios and requirements for small cell en-
hancements for E-UTRA and E-UTRAN," TR 36.932 v12.1.0, Mar. 2013,
http://www.3gpp.org/.

[24] T. Yamamoto and S. Konishi, "Impact of Small Cell Deployments on
Mobility Performance in LTE-Advanced Systems," Proc. IEEE 24th Int’l.
Symp. Personal, Indoor and Mobile Radio Commun., Sept. 2013, pp. 189-
93.

[25] J. Li, J. Chen and K. Xiao, Comprehensive Carrier Network Planning
and Design Handbook, 1st ed. Bei Jing: The People’s Posts and Telecom-
munication Press, 2015.

[26] V.Sourlas,L.Gkatzikis,P.Flegkas,andL.Tassiulas,"Distributedcache man-
agement in information-centric networks", IEEE Transactions on Network
and Service Management, vol. 10, no. 3, 2013.

[27] Grzech , A. , P. Swiatek , and P. Rygielski, "Dynamic Resources
Allocation for Delivery of Personalized Services" In Software Services for
e-World , edited by W. Cellary and E. Estevez , 17-28. Berlin : Springer,
2010.

[28] G. Zheng, C. Chen, V. Friderikos, M. Dohler, "High Mobility Multi
Modal E-Health Services" in Proc. IEEE ICC, 2018.

[29] Richard M. Karp (1972). "Reducibility Among Combinatorial Problems"
In Complexity of Computer Computations. New York: Plenum. pp. 85-
103.

[30] P. B. Mirchandani and R. L. Francis, Discrete Location Theory. John
Wiley & Sons, New York, 1990.

Gao Zheng has received MSc degree in Telecommu-
nications and Internet Technology from King’s Col-
lage London (2014) where he is currently working
toward the Ph.D degree with Centre for Telecom-
munications Research. His research interests in-
cludes Future Internet Technologies, Network Func-
tion Virtualization, Information Centric Networks
and Mobile Edge Computing. The emphasis is on the
network optimization for routing, caching, resource
allocation in virtualized wireless networks with ap-
plication to practical implementations.

Anthony Tsiopoulos has received an MSc from
the University of Sussex in Scientific Computation
and Mathematics (2014) and an MSc in Com-
puting and Security from King’s College London
(KCL)(2015) where he then continued his research
in Cloud Technology, Telecommunications, Virtual-
ization and Software Implementation in the KCL
5G Telecommunications Laboratory. His research
interests include Security and Privacy, Distributed
Networks and Software Implementation of Network
Programming and Virtualization.

Vasilis Friderikos published 200 research papers in
flagship IEEE, Elsevier, Springer journals, interna-
tional conferences, book chapters and patents. He
has been program co-chair of IEEE ICT’16 and
co-chair at the IEEE WCNC 2010 conference (act-
ing technical program committee member for IEEE
Globecom, IEEE ICC and several other flagship
international conferences). He has also been organiz-
ing committee member of the Green Wireless Com-
munications and Networks Workshop (GreeNet) dur-
ing VTC Spring 2011. He has been teaching ad-

vanced mobility management protocols for the Future Internet at the Institut
Supérieur de l’Electronique et du Numérique (ISEN) in France during autumn
2010. Received two times best paper awards in IEEE ICC 2010 and WWRF
conferences respectively. He has been visiting researcher at WinLab in Rutgers
University (USA) and recipient of the British Telecom Fellowship Award
in 2005. Vasilis is a member of IEEE, member of IET and member of the
INFORMS section on Telecommunications. His research interests lie broadly
within the closely overlapped areas of wireless networking, mobile computing,
and architectural aspects of the Future Internet. The emphasis is on the design
and analysis of algorithms for scheduling, routing, admission control, load and
power management in virtualized wireless networks with application to both
centralized and distributed implementations.

