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Heterogeneous micro-structure of percolation in sparse networks
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Abstract – We examine the heterogeneous responses of individual nodes in sparse networks to the
random removal of a fraction of edges. Using the message-passing formulation of percolation, we
discover considerable variation across the network in the probability of a particular node to remain
part of the giant component, and in the expected size of small clusters containing that node. In
the vicinity of the percolation threshold, weakly non-linear analysis reveals that node-to-node
heterogeneity is captured by the recently introduced notion of non-backtracking centrality. We
supplement these results for fixed finite networks by a population dynamics approach to analyse
random graph models in the infinite system size limit, also providing closed-form approximations
for the large mean degree limit of Erdős-Rényi random graphs. Interpreted in terms of the
application of percolation to real-world processes, our results shed light on the heterogeneous
exposure of different nodes to cascading failures, epidemic spread, and information flow.

Introduction. – Since the very beginning of the mod-
ern fascination with networked systems, researchers have
been interested in questions of propagation. Across many
applications, the analysis of bond percolation provides a
simple framework with which to analyse the capability of a
network to transmit information, disease, influence, or fail-
ure [1–4]. Early work in this area mainly concentrated on
understanding the global properties of percolation in the
ensemble average of randomly generated networks, with
results for fixed single instances only becoming available
relatively recently [5, 6]. Going into further detail, vari-
ability in the responses of individual nodes to percolating
processes have been explored, with important applications
to th study of social influence [7,8] and disease spread [9].

We consider bond percolation for fixed networks defined
as follows: starting from an arbitrary large (connected)
network, we evaluate each edge independently, keeping it
with probability ρ and deleting it with probability 1 − ρ.
The largest connected component remaining after this ran-
dom edge removal process is referred to as the percolating

cluster or giant component ; write S for its size measured as
a fraction of the total number N of nodes in the network.
For large sparse networks it was shown in [5,10] that this
quantity can be computed to close approximation using
a message-passing protocol. Knowledge of S gives global

information about the robustness of a network to attack
or infection; in particular, there is a critical value of ρ
below which no percolating cluster survives in the ther-
modynamic limit, and S = 0. One of the main results
of [5,6] was to identify the percolation threshold ρc as the
reciprocal of the largest eigenvalue of the non-backtracking
(or Hashimoto) matrix that encodes the relationship be-
tween variables in the message-passing equations. The
eigenstructure of this matrix has received considerable at-
tention, having been proposed as an efficient tool for both
network clustering [11] and centrality analysis [12].

In this article we will be concerned with more detailed
questions about the typical outcomes for individual nodes
in the network, when averaged over many instances of the
percolation process. For a given random instantiation of
percolation, write σi = 1 if node i appears in the largest
connected component, and σi = 0 if not. Taking the en-
semble average of this variable yields the probability 〈σi〉
for node i to appear in the percolating cluster. Hetero-
geneity in the responses of individual nodes to percolation
is captured by the empirical distribution of 〈σi〉, defined
as

ϕ(s) =
1

N

∑

i

δ(s− 〈σi〉) . (1)

Notice that the total fractional size of the percolating clus-
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Fig. 1: (Colour online) Micro-structure of percolation in a sam-
ple network with 62,586 nodes taken from the gnutella file shar-
ing platform [22]. Each vertical slice of the density plot shows
the distribution ϕ(s) of probability to appear in the percolat-
ing cluster for given edge occupation probability ρ. The thick
dashed line shows the expected size of the percolating cluster
S, which is equal to the mean of s under ϕ.

ter is given by the mean of ϕ, that is, S =
∫
sϕ(s) ds. As

mentioned in the introduction, there is a phase transition
in S as the edge occupation probability ρ is raised above
a critical threshold ρc, determined by the top eigenvalue
of the non-backtracking matrix. Recently in [13] the slope
of S as it departs from zero at ρc was computed as a func-
tion of the corresponding top eigenvector. Moreover, the
expected overlap between percolating clusters in indepen-
dent instances was invesitgated in [14]. Here, we will be
concerned with the responses of indivudual nodes.
When node i does not appear in the percolating cluster,

we write ni for the size of the component it belongs to,
and 〈ni〉 for the average over many instances. The node
average 1

N

∑
i〈ni〉 was again analysed for finite networks

in [5]. The empirical distribution small clusters is defined
analogously to ϕ in Eq. (1);

ψ(n) =
1

N

∑

i

δ(n− 〈ni〉) . (2)

Note that ψ(n) is different from the average distribution of
finite cluster sizes computed previously in [2,15], although
their first moments agree.
It turns out that many networks exhibit extreme dif-

ferences between nodes in both 〈σi〉 and 〈ni〉, which are
not well-represented by the average value of percolation
probability or small cluster size. Figure 1 shows an illus-
trative example for the probability to appear in the per-
colating cluster of nodes in a real-world dataset. This be-
haviour was previously observed in the particular context
of epidemic spreading on networks, and exploited in [16]
to formulate and analyse a heterogeneous dynamic mean-
field approximation of epidemic spreading. Within that
approximation the infection probability of nodes is postu-
lated to depend only on the degrees of individual nodes,
an assumption which allows of a self-consistent solution.
This degree-based approximation has become a mainstay
in the analysis of epidemic spreading on networks, includ-
ing in particular also in the search for optimal vaccination
strategies; see [17] for a recent review. The heterogene-

ity was again observed within a cavity formulation of the
problem [9] which for the analysis of SIR dynamics allows
an exact mapping on bond-percolation. In that work it
was found that node degrees play a dominant role in the
behaviour of 〈σi〉 near ρ = 1, but also that the picture
becomes much more complex near ρc.

In this paper we explore these issues in detail. After re-
capping the message passing formulation in the next sec-
tion, we move on to consider node variability in fixed finite
networks in the neighbourhood of the percolation transi-
tion. In this regime we apply a weakly non-linear analysis
to compute the probability of a node to appear in the per-
colating cluster, and the expected size of non-percolating
clusters containing that node. In fact, we will show that
the measure of non-backtracking centrality proposed in
[12] determines the leading-order behaviour of both 〈σi〉
and 〈ni〉 near percolation. This gives and interesting phys-
ical interpretation to a quantity that was originally devised
for purely practical reasons. We then proceed to use a
population dynamics approach compute the distributions
of node percolation probability and expected small compo-
nent size in the ensemble average for large random graphs
with specified degree distributions. This analysis is more
generally applicable to the whole range of ρ. Numerical
solutions of the (integral) equations for ϕ and ψ reveal the
fine structure the distributions of node responses. We are
also able to compute a closed-form approximation for the
large mean degree limit of Erdős-Rényi random graphs.

Message passing. – As detailed previously in [5],
analysis of the probability generating function of compo-
nent sizes yields a set of self-consistency equations which
can be solved efficiently by iteration. For a network with
M edges we define the 2M -vector H to be the smallest
solution in [0, 1] of the system

Hi←j = (1− ρ) + ρ
∏

ℓ∈Nj\i

Hj←ℓ . (3)

Here we write Nj for the neighbourhood of node j, and
the entries of the vector H are indexed by ordered pairs
of nodes connected by an edge. The expected size of the
percolating cluster is then given by

S =
1

N

N∑

i=1


1−

∏

j∈Ni

Hi←j


 . (4)

Unpacking the sum above yields additional information
about the likely outcomes of the percolation process for
individual nodes, specifically

〈σi〉 = 1−
∏

j∈Ni

Hi←j . (5)

Similarly, for the expected sizes of small clusters one ob-
tains

〈ni〉 = 1 +
∑

j∈Ni

H ′i←j

Hi←j
, (6)
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where H ′ solves

H ′i←j = ρ


1 +

∑

ℓ∈Nj\i

H ′j←ℓ

Hj←ℓ


 ∏

ℓ∈Nj\i

Hj←ℓ . (7)

For fixed finite graphs, both (3) and (7) can be solved
quickly by simple iteration, making analysis of percolation
computationally tractable even in very large networks.
Notice that equation (3) admits a trivial fixed point in

which Hi←j ≡ 1, yielding S = 0. This solution may or
may not be stable, and the transition boundary exactly
corresponds to the percolation threshold ρc. In the fol-
lowing section we examine in detail the behaviour of node-
specific probability 〈σi〉 to belong to the giant cluster and
the expected size 〈ni〉 of finite clusters in the vicinity of
the percolation phase transition.

Weakly non-linear analysis. –

Percolation probability. The value of the percolation
threshold for a fixed finite network is revealed by linear
stability analysis of the message passing equations. For a
given ordered pair i ← j, the pair k ← ℓ will appear on
the right hand side of (3) if and only j = k and ℓ 6= i. The
matrix B encoding this relationship is exactly the non-
backtracking matrix mentioned in the introduction. The
instability of the Hi←j ≡ 1 solution is thus seen to occur
at ρc satisfying ρcλmax(B) = 1.
Here we will consider ρ = ρc + ε for small positive ε,

and postulate a Taylor expansion for the 2M -vector of
messages 1 −H = εa + ε2b + ε3c + O(ε4), where a, b
and c are constant vectors, and 1 is the vector of ones,
i.e. 1 = (1, 1, . . . , 1)T . Inserting into both sides of (3)
and matching powers of ε to third order we obtain the
equations

a = ρcBa ,

b = ρcBb− ρc
2

(
(Ba)2 −Ba2

)
+Ba ,

c = ρcBc− ρc
(
BaBb−B(ab)

)

+
ρc
6

(
(Ba)3 − 3BaBa2 + 2Ba3

)

+Bb− 1

2

(
(Ba)2 −Ba2

)
.

(8)

Here we use the notational shorthand of applying mul-
tiplication and exponentiation element-wise so that, for
example, ab denotes the vector with entries ai←jbi←j and
a2 that with entries a2i←j .
The first equation in (8) simply states that a is an

eigenvector of B associated to the Frobenius eigenvalue
λmax(B) = 1/ρc. To obtain the proper normalisation for
a it is necessary to check the solvability of the second or-
der equation. Let us write a = αv, where v is the right
Frobenius eigenvector of B with positive entries, summing
to one. We also introduce the corresponding left eigenvec-
tor u, again with positive entries. That is,

v/ρc = Bv , uT /ρc = uTB , ‖v‖1 = 1 . (9)

Following standard conventions by normalising left and
right eigenvectors to form a bi-orthonormal system and,
having fixed ‖v‖1 = 1, we need to choose ‖u‖1 such as to
achieve uTv = 1. Then, replacing a by αv, the second
order equation from (8) reads as:

b = ρcBb− α2 v2

2ρc
+ α2 ρc

2
Bv2 + α

v

ρc
. (10)

Multiplying through on the left by uT 2ρc/α cancels some
terms, yielding α = 2/uTv2(1− ρc). Returning to (5), we
find the first order approximation

〈σi〉 ≈ α(ρ− ρc)
∑

j∈Ni

vi←j . (11)

In fact the sum on the right hand side here is exactly the
so-called “non-backtracking centrality” that was proposed
in [12]. If the original system was simply connected to
begin with, our choice of normalisation for v implies that
0 < vmin ≤ vi←j ≤ vmax < 1, entailing that close to the
percolation threshold we have lower and upper bounds
for 〈σi〉 which are proportional to degree and of the form
α(ρ − ρc)vminki . 〈σi〉 . α(ρ − ρc)vmaxki. If the system
was not simply connected to begin with, we have vmin = 0,
and the lower bound becomes trivial.

By the same methodology we are also able to obtain the
curvature of 〈σi〉 near criticality. The b equation from (8)
can be rewritten as

(I − ρcB)b = − a2

2ρc
+
ρcBa2

2
+

a

ρc
, (12)

and thus

b = (I − ρcB)+
(
ρcBa2

2
− a2

2ρc
+

a

ρc

)
+ βv , (13)

where + denotes the Moore-Penrose pseudoinverse and
β ∈ R is a constant yet to be established. Introducingw =
b − βv, we multiply third order equation in (8) through
on the left by uT ρc to obtain

0 = −uT ρc

(
aBw − aw

)
+

1

6ρc
uTa3 − ρc

2
uT (aBa2)

+
ρc
3
uTa3 + uTw − 1

2ρc
uTa2 +

1

2
uTa2

+ β
(
ρcu

Tav − uTav + uTv
)
.

The constant β is easily obtained by rearranging.
Having solved for a and b, a complete second order ex-

pansion for the probability of appearing in the percolating
cluster is then given by

〈σi〉 ≈ (ρ− ρc)
∑

j∈Ni

ai←j + (ρ− ρc)2
∑

j∈Ni

bi←j

− 1

2
(ρ− ρc)2

∑

j∈Ni

ai←j

∑

ℓ∈Ni\j

ai←ℓ

(14)

Figure 2 shows some numerical examples.
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Fig. 2: (Colour online) Solid lines show the probability 〈σi〉
to appear in the percolating cluster, compared to the second
order theory of Eq. (14) in dashed lines. A selection of results
are shown for vertices from a graph with power-law degree
distribution, p(k) ∝ k−3 with kmin = 2.

Small clusters. Turning attention now to the expected
size of finite clusters containing a particular node, we first
note that below percolation we have H = 1 and hence (7)
admits the exact solution

H ′ = ρ(I − ρB)−11 . (15)

The matrix inverse here implies an order one pole at ρc,
around which we develop a first order perturbation theory.
If ρ = ρc − ε and H ′ = ε−1x+ y +O(ε) then
ε−1x+ y +O(ε) = (ρc − ε)(1+ ε−1Bx+By +O(ε))

Separating orders yields

x = ρcBx

y = ρcBy + ρc1−Bx .
(16)

Evidently x = ξ(−)v for some constant ξ(−). To determine
the constant ξ(−), we consult the second order equation,
as usual multiplying on the left by uT , to find

ξ(−) = ρ2c‖u‖1 . (17)

To examine behaviour on the other side of the critical
point, we set ρ = ρc + ε and do the expansion again, this
time using the result for α from the previous calculation.

ε−1x+ y +O(ε)
= (ρc + ε)

(
1+B(ε−1x+ y +O(ε))(1+ εa+O(ε2))

)

×
(
1−B(εa+O(ε2))

)

= ε−1ρcBx+ ρc

(
1+B(xa) +By −BxBa

)

+Bx+O(ε) .
(18)

At leading order we again find a multiple of the Frobenius
eigenvector, x = ξ(+)v. The same trick of multiplying the
second order term by the left eigenvector determines the
constant:

0 = ρc‖u‖1 + αξ(+)uTv2 − αξ(+)

ρc
uTv2 +

ξ(+)

ρc

⇒ ξ(+) = ξ(−) = ξ := ρ2c‖u‖1 .
(19)

0.075 0.08 0.085 0.09 0.095 0.1

ρ

10
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10
2

10
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〈ni〉

Fig. 3: (Colour online) The solid lines show expected size
〈ni〉 of finite clusters containing given nodes, compared to the
asymptotic theory of Eq. (20) in dashed lines. A selection of
results are shown for vertices from a graph with power-law de-
gree distribution, p(k) ∝ k−3 with kmin = 2.

We conclude that near percolation, the average size of fi-
nite clusters involving node i is symmetric around ρc, with
the asymptotic form

〈ni〉 =
ρ2c‖u‖1
|ρ− ρc|

∑

j∈Ni

vi←j +O(1) . (20)

Note that this expression is again proportional to the non-
backtracking centrality of node i. Figure 3 shows some
numerical examples. Note also that Eq. (20) also allows
to obtain an upper bound on the 〈ni〉 in the vicinity of
the percolation transition. As before, we can exploit the
bounds 0 < vmin ≤ vi←j ≤ vmax < 1 for systems which are
originally simply connected; they entail that in the vicinity
of the percolation transition we have diverging lower and
upper bounds for 〈ni〉 of the form

ρ2c‖u‖1vmin

|ρ− ρc|
ki . 〈ni〉 .

ρ2c‖u‖1vmax

|ρ− ρc|
ki . (21)

Upper and lower bounds for the 〈ni〉 therefore propor-
tional to the degree ki of the site in question, with the
constant of proportionality diverging near ρc.

Note that our analysis suggests that the quantities 〈σi〉
and 〈ni〉 exhibit mean field critical exponents identical to
those of the corresponding global quantities. This is ulti-
mately due to the tree-like approximation made in writing
(3) for large but finite networks. Small networks will be
subject to finite-size corrections that smooth out the tran-
sistion, and, more interestingly, in the limit of infinite net-
work size critical exponents different from one are possible
[18].

Population dynamics for N →∞. –

Percolation probability. We now proceed to analyse
the bond percolation problem in the thermodynamic limit
N → ∞ for random networks in the configuration model
class. In this limit Eqs. (3) can be interpreted as a stochas-
tic recursion for the values of Hi←j of randomly chosen
neighbouring nodes i and j. A probability density func-
tion ϕ̂ for the values of Hi←j will then have to satisfy a
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Fig. 4: (Colour online) Distribution ϕ(s) of probabilities to
be part of the giant cluster for the percolation problem on a
graph with power-law degree distribution, p(k) ∝ k−3 with
kmin = 2, at ρ = 0.5 (black). Results of population dynamics
shown together with its unfolding according to degree for k =
2, 3, . . . , 9, and {k ≥ 10} (blue, red, green,. . . from left to right).

self-consistency equation of the form

ϕ̂(h) =
∑

k≥1

kp(k)

c

∫ k−1∏

ℓ=1

dϕ̂(hℓ) δ

(
h− 1 + ρ− ρ

k−1∏

ℓ=1

hℓ

)

(22)
in which p(k) is the degree distribution, and dϕ̂(hℓ) is
shorthand for dhℓϕ̂(hℓ). It is obtained by averaging the
r.h.s of (3) over all realisations for which Hi←j ∈ [h, h +
dh]. The factor of kp(k)/c above denotes the probabil-
ity that a randomly chosen edge in a configuration model
graph connects to a vertex of degree k. Equation (22) sim-
ply states that if the Hj←ℓ appearing on the right hand
side of (3) are random variables with distribution ϕ̂, then
across neighbourhoods Nj the resulting Hi←j should have
the same distribution.

The distribution ϕ of the probabilities to remain in the
percolating cluster is expressed in terms of the solution ϕ̂
of Eq. (22) via

ϕ(s) =
∑

k≥0

p(k)

∫ k∏

ℓ=1

dϕ̂(hℓ) δ

(
s− 1 +

k∏

ℓ=1

hℓ

)
. (23)

Equation (22) does not offer much hope for exact solu-
tion, however, highly accurate numerical solutions can be
obtained by iterating a large sample population {hω}Ωω=1,
a technique known in this context as population dynam-
ics [19]. In Figure 4 we show the results of the pop-
ulation dynamics algorithm for random graphs with a
power-law degree distributions of the form p(k) ∝ k−3,
for k ≥ kmin = 2, and an edge occupation probability
of ρ = 1/2. Also shown is a partial unfolding of ϕ(s)
according to degree k. The distributions show a signifi-
cant amount of structure, including some sharply peaked
‘band-edges’ of a type that also appear in the Gnutella
data shown in Fig. 1 for sufficiently large ρ.

More insight into the structure of the distribution ϕ
can be gained by disentangling the contributions coming
from nodes of different degrees. We decompose (23) into

ϕ(s) =
∑

k≥0 p(k)ϕk(s), where

ϕk(s) =

∫ k∏

ℓ=1

dϕ̂(hℓ) δ

(
s− 1 +

k∏

ℓ=1

hℓ

)
. (24)

This unfolding according to degree is also shown in Fig-
ure 4. It reveals that – to the resolution shown – the
peaked band-edges mentioned above are associated with
degree 2 and degree 3 vertices, with the exception of the
peak at s = 1 which originates from ϕk≥10(s), i.e. from
large-degree vertices. Moreover, for each degree k, there
is an upper cutoff sk < 1 of the probability, beyond which
ϕk(s) = 0. A bound for this cutoff is easily read off
from the single instance equations. Indeed Eq. (3) im-
plies that Hi←j ≥ 1 − ρ, which via Eq. 5 in turn entails
that 〈σi〉 ≤ 1 − (1 − ρ)ki . Hence we have the bounds
sk ≤ 1 − (1 − ρ)k for the k-dependent cutoffs. Numeri-
cal evidence suggests that these bounds are rather tight.
Their exact form is very likely amenable to a more detailed
probabilistic analysis.

Small clusters. The population dynamics approach is
also available for the distribution of expected finite cluster
sizes in the thermodynamic limit. From Eqs. (3) and (7)
we derive a recursion equation for the joint distribution
ψ̂(h, h′) of messages H and H ′,

ψ̂(h, h′) =

∑

k≥1

kp(k)

c

∫ k−1∏

ℓ=1

dψ̂(hℓ, h
′
ℓ) δ

(
h− 1 + ρ− ρ

k−1∏

ℓ=1

hℓ

)

δ

(
h′ − ρ

(
1 +

k−1∑

ℓ=1

h′ℓ
hℓ

)
k−1∏

ℓ=1

hℓ

)
,

in which we use an analogous shorthand for integration
measures, dψ̂(hℓ, h

′
ℓ) ≡ dhℓdh

′
ℓ ψ̂(hℓ, h

′
ℓ). This equation

generalises (22), as ϕ̂ is recovered as the marginal ϕ̂(h) =∫
dh′ ψ̂(h, h′). The distribution of finite cluster sizes is

then given by ψ(n) =
∑

k≥0 p(k)ψk(n), where

ψk(n) =

∫ k∏

ℓ=1

dψ̂(hℓ, h
′
ℓ) δ

(
n−

(
1 +

k∑

ℓ=1

h′ℓ
hℓ

))
(25)

Figure. 5 shows the results of numerical solution of the
population dynamics equations for ψ(n) in the case of a
Poisson random graph of mean degree c = 4 at bond occu-
pation probability ρ = 0.3, together with a deconvolution
according to degree k.

The figure exhibits two δ-peaks at n = 1 and n = 1+ρ =
1.3, the first corresponding to isolated sites with ki = 0,
which remain isolated after deleting bonds, the second
giving the average cluster size of pairs of vertices, which
formed isolated dimers in the original graph (before delet-
ing bonds), and consequently appears in ψ1(n). There are
in principle many more such δ-peaks related to the contri-
bution of originally isolated clusters to the 〈ni〉-statistics.
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Fig. 5: (Colour online) Distribution ψ(n) of average clus-
ter sizes for percolation on an Erdős-Rényi network of mean
degree c = 4 at ρ = 0.3. Results of population dynam-
ics shown together with its unfolding according to degree for
k = 0, 1, 2, . . . , 9, and {k ≥ 10} (blue, red, green,. . . from left
to right).

For the present system their weight is, however, too small
to be detected in the continuum at the resolution chosen.
The continuous part of ψ(n) reveals several discernible
peaks, which according to the deconvolution can be asso-
ciated with vertices of degrees k = 1, 2, 3, and 4, whereas
the peaks of ψk(n) for larger k are too narrowly separated
compared to their widths to give rise to discernible fea-
tures in the overall distribution ψ(n) at larger n. Each of
the degree dependent ψk(n) also exhibits an upper cutoff
nk beyond which ψk(n) = 0.

Large mean degree. Further analytical progress can
be made in the limit of large mean degree and small edge
occupancy; here we develop a single defect approximation
[20] for Poisson random graphs. In this approximation
scheme we assume that ϕ̂(h) is for large mean degree c
well approximated by a a Dirac delta distribution, ϕ̂(h) =
δ(h − h⋆). Inserting this ansatz into (22) and integrating
over h we obtain h⋆ = 1 − ρ + ρe−c(1−h⋆), from which it
follows that

h⋆ =

{
1− ρ− 1

cW
(
− cρe−cρ

)
ρ ≥ ρc

1 ρ < ρc ,
(26)

where W is the Lambert W function, and the percola-
tion transition occurs at ρc = 1/c. To obtain non-trivial
behaviour in the limit c → ∞, it is therefore necessary
to introduce the scaling ρ = ̺/c where ̺ > 1. Then
h⋆ = 1− η/c, where η = ̺+W (−̺e−̺).
Imagining a single “defect” node i with degree ki at-

tached to the otherwise homogeneous network, we find
the probability of this node to appear in the percolating
cluster to be

〈σi〉 = 1− hki

⋆ ≈ 1− e−ηki/c . (27)

Taking the Gaussian limit of the Poisson distribution
at large mean degree c, we note that the distribution
of the ratio ki/c of a randomly selected node i is well-
approximated by a normal random variable x with mean
one and variance 1/c. Under these assumptions we change
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Fig. 6: (Colour online) Probability density function ϕ of the
of probability s of a node to appear in the percolating cluster:
comparison of the large c asymptotic given in Eq. (30), with
a histogram taken from a finite single instance of a Poisson
graph with N = 1000 nodes and mean degree c = 8. The edge
occupancy is ρ = 0.2.

probability variables from x to s, computing

ϕ(s) ≈
∣∣∣∣
d

ds
f−1(s)

∣∣∣∣
√

c

2π
exp

{
− c
2

(
1− f−1(s)

)2}
, (28)

where f(x) = 1− e−ηx. The inverse and its derivative are

f−1(s) = − log(1− s)
η

,
d

ds
f−1(s) =

1

η(1− s) . (29)

Putting all this together we arrive at

ϕ(s) ≈
exp

{
− c

2

(
1 + 1

η log(1− s)
)2
− log(1− s)

}

√
2π/c η

.

(30)
Although it is exact only in the limit of large c, this ap-
proximation holds remarkably well for smaller values; see
Fig. 6 for an example with c = 8. As c → ∞, the distri-
bution ϕ approaches a Gaussian with mean 1 − e−η and
variance η2e−2η/c.
Applying the same approach to ψ, the distribution of

finite clusters, we obtain a simple Gaussian law

ψ(n) ≈
√
c√

2πγ
exp

{
− c

2γ2
(n− 1− γ)2

}
, (31)

where γ = ̺/(e̺+W (−̺e−̺) − ̺).
Summary and Discussion. – To summarise, we

have taken a new look at the message passing approach
[5, 10] to bond percolation on complex networks, reveal-
ing a considerable degree of heterogeneity between nodes.
We have seen that this approach allows one to determine
the distribution of probabilities of individual nodes to be-
long to the percolating cluster, as well as the distribution
of the average sizes of non-percolating clusters to which
individual nodes may belong. We found both distribu-
tions to be typically broad, so that the average percola-
tion probabilities and average sizes of finite clusters that
are typically reported in analyses of percolation on ran-
dom networks must be regarded as poor representations
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of the actual heterogeneity that is present in this prob-
lem. We have also obtained deconvolution of both distri-
butions according to degree, in analogy to the deconvo-
lution of sparse random matrix spectra advocated in [21],
and found that the component distributions ϕk and ψk are
themselves non-degenerate (except at k = 0) and indeed
typically broad as well. A fairly detailed analysis of node-
specific percolation probabilities 〈σi〉 and average cluster-
sizes 〈ni〉 was provided in the vicinity of the percolation
transition, and formulated in terms of spectral properties
of the Hashimoto matrix B, notably the right and left
eigenvectors corresponding to its largest eigenvalue.
In the present paper we have used the message pass-

ing approach to analyse a specific finite large real world
instance, percolation on the network of the Gnutella file
sharing platform [22], and presented methods to analyse
the problem for random graphs in the configuration model
class in the thermodynamic limit of infinite system size,
N → ∞. We have presented examples for the distribu-
tion of percolation probabilities on a scale free graph with
power-law degree distribution, and for the distribution of
finite cluster sizes in the case of an Erdős-Rényi network.
These two examples can only scratch the surface of the
variability of phenomena that might be observed. A few
general trends may be noted though. If the original ran-
dom network ensemble contains finite clusters to begin
with, as is indeed the case for Erdős-Rényi networks of
finite mean degree, then the resulting distribution ψ(n)
of the average finite cluster sizes will contain a family of
δ-peaks originating from the distribution of the resulting
finite cluster sizes generated by bond removal, whereas
the broad continuum is generated by clusters obtained as
a result of disconnecting a finite connected set of vertices
from the original percolating cluster. Only if the non-
percolating fraction in the original graph is sufficiently
large will the delta-peaks carry sufficient weight to be de-
tectable in the population dynamics. This is in particular
the case for low mean degree Erdős-Rényi graphs. Cluster
size-distributions typically get broader as the percolation
transition is approached from above or below; the same is
true after deconvolution meaning that peaks contributed
by individual ψk will cease to be discernible in the sum.
The same broad trends are observed in ϕ(s) and it’s de-
convolutions.
We have been able to obtain closed form analytic ap-

proximations for the distribution of percolation probabili-
ties and mean cluster sizes in the large mean connectivity
limit of Erdős-Rényi graphs, which produces excellent re-
sults already for fairly moderate values of c. The same
methodology could be adapted to other degree distribu-
tions, and should be efficient whenever these distributions
become narrow in the large mean degree limit.
Returning to the heterogeneity of percolation probabil-

ities across a network, and the practical relevance of this
phenomenon in the context of cascading failures, epidemic
spreading, or probabilistic information spreading, we note
that the considerable detail which our methods allow to

unearth might be useful for instance in the design of opti-
mal vaccination strategies that exploit information beyond
degree. Indeed the fact that percolation probabilities con-
ditioned on degrees are themselves broadly distributed is
a clear indicator of the fact that the degree based ap-
proximation on which the majority of attempts to design
optimal vaccination strategies has been based misses im-
portant information which could be exploited to improve
upon such strategies. We believe that this point is worth
investigating.
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[19] Mézard M. and Parisi G., The Eur. Phys. Jour. B, 20

(2001) 217.
[20] Biroli G. and Monasson R., J. Phys. A: Math. Gen.,

32 (1999) L255.
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