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Abstract 

Adhesion receptors are transmembrane proteins that mediate cell-cell and cell-matrix 

communications. In addition to their adhesive role in maintaining islet architecture, they are also 

important for promoting islet cell survival, proliferation and secretory function. Their capacity for 

improving -cell mass and insulin secretion suggest that they may be suitable targets for 

pharmacological intervention, and their interactions with extracellular matrix proteins hold promise 

in improving islet transplantation outcomes. In this review, we have focused on integrins, cadherins 

and adhesion GPCRs, and highlight recent advances in their roles in islet function and discuss 

whether they could be targeted for diabetes therapy. 

 

Highlights 

• Adhesion receptors expressed by islets include integrins, cadherins and adhesion GPCRs. 

• Endogenous ligands of adhesion receptors are mainly proteins of the extracellular matrix. 

• Adhesion receptors are essential for maintaining islet architecture, survival and function. 

• Islet adhesion receptors are unexplored targets for type 2 diabetes therapy and they also 

offer potential for optimising cell replacement therapy for type 1 diabetes. 

 

Introduction 

Islets of Langerhans are heterogeneous cell clusters in the pancreas, consisting mainly of insulin-

secreting β-cells, glucagon-secreting α-cells and somatostatin-secreting δ-cells, and there are also 

minority endocrine cell types that express the peptides pancreatic polypeptide and ghrelin. These 

cells are arranged in compact three-dimensional clusters and they work synchronously to maintain 

euglycemia. Earlier observations in which isolated β-cells secreted less insulin than -cells within 

intact islets point to the importance of intercellular contacts and cellular organisation in islet 

function [1]. Moreover, there are several reports that islets exposed to extracellular matrix (ECM) 

proteins exhibit increased survival and improved insulin secretion [2–5], which is suggestive of an 

important role for islet-matrix interactions in appropriate regulation of glucose homeostasis.  

 

The ECM consists of a fibrous mesh that contains proteins such as collagens, elastins, fibronectins 

and laminins, which provide structural support to cells and facilitate cellular elasticity, motility and 

adhesion. These ECM proteins can regulate cellular function by interaction with families of cell 

surface adhesion receptors that include integrins, cadherins and adhesion G-protein-coupled 

receptors (GPCRs). Islets express members of these adhesion receptors, which allow them to sense 

signals from the ECM and the islet microenvironment (Figure 1). This is of potential therapeutic 

interest for diabetes since drugs targeting adhesion receptors are in current use or are undergoing 

clinical trials to treat diseases such as multiple sclerosis, inflammatory bowel disease, cancer and 

asthma (Table 1) [6]. However, despite the important roles that adhesion receptors play in islet 

function they have not yet been investigated as potential targets for diabetes therapy. This article 

reviews recently published data on islet adhesion receptors and considers the therapeutic 

implications for diabetes.  

 

Diabetes epidemic: a case for additional therapeutic options 

Diabetes is rapidly becoming a global epidemic, with a current incidence of 425 million people 

worldwide (International Diabetes Federation; URL: https://www.idf.org/). With the current trend of 

globalisation, physical inactivity, obesity and increased longevity, diabetes will continue to have 

https://www.idf.org/
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significant human and financial consequences for the foreseable future: the number of people 

affected is predicted to increase by 48% by 2045 (International Diabetes Federation; URL: 

https://www.idf.org/) and the global cost of diabetes is set to rise to $2.5 trillion by 2030 [7]. There 

are currently a range of drugs available to treat type 2 diabetes (T2D), which accounts for 

approximately 90% of all diabetes cases, but approximately 50% of younger T2D patients cannot 

achieve their glycaemic target with the available drugs despite a good history of adherence [8]. 

Potential T2D therapies targeting GPCRs such as GPR40 and GPR119 have largely had unsatisfactory 

outcomes in clinical trials [9], and there is still a pressing need to identify additional therapeutic 

targets that may be used for appropriate glucoregulation in T2D.  

 

Islet adhesion receptors 

Adhesion receptors are plasma membrane proteins consisting of a ‘sticky’ extracellular domain, a 

transmembrane component and a cytosolic terminal domain, and the adhesion receptor superfamily 

consists of integrins, cadherins, immunoglobulin-like cell adhesion molecules, selectins and the more 

recently described adhesion GPCRs (aGPCRs). Selectins are not included in this short review because 

they are not expressed by islets per se, but by infiltrating lymphocytes in type 1 diabetes (T1D) [10].  

 

Defective communication between islet endocrine cells has deleterious consequences and 

contributes to the islet dysfunctions seen in T2D and neonatal diabetes mellitus [11, 12]. In addition, 

impaired islet function has been observed following deletion or inhibition of adhesion receptors. For 

example, reduced β1 integrin expression in islets results in impaired glucose tolerance and 

reductions in insulin secretion and islet mass [13], while inhibition of E-cadherin prevents the 

formation of pseudoislets, which are -cell clusters that have been configured to resemble native 

islets and show improved insulin secretion compared to dispersed cells [14]. All adhesion receptors 

are involved in cell-cell or cell-ECM interactions. It is known that the ECM plays a key role in islet 

differentiation and maintenance of a mature phenotype, since ECM collagen gene deletion in mice 

leads to reduced islet mass and impaired glucose-induced insulin secretion [15]. Additional studies 

have established the importance of ECM in islet survival, insulin secretion and proliferation [16–18], 

and there is now a good understanding of the molecular receptors mediating these functions.  

 

Integrins 

Integrins are integral membrane glycoproteins that exist as heterodimers of - and -subunits, with 

at least 24 different heterodimers identified in mammals, formed from eighteen - and eight β- 

subunits [19]. Integrins bind to a range of ECM components with varying affinity. Thus, α1β1, α2β1, 

and α10β1 preferentially bind to multiple collagen subunits, 51 binds to fibronectin, while α6β1 

and β4 interact with laminins [4, 20, 21]. There are at least five integrin heterodimers in islets (Table 

2), with rodent islets expressing α3, β1 and β4 integrin subunits [22], while human islets express α3, 

α5, αv, β1 and β5 subunits [23, 24]. Integrins have been implicated in β-cell processes such as 

differentiation, expansion, migration, survival and function [25–29] and they also participate in 

pancreas development by regulating morphogenesis, adhesion and migration of progenitor cells [25, 

26, 28].  

 

Integrin over-expression has been observed in the retina of people with long term diabetes [30], but 

there is currently no information on the expression pattern of integrins in islets from people with 

T2D. The multiplicity of integrin subunits and promiscuity in ligand binding has thus far confounded 

https://www.idf.org/
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attempts to translate the understanding of -cell integrin-ECM interactions into novel therapeutic 

targets. In addition, integrin-based therapies for T2D would require integrin activation to optimise -

cell mass and function, which could have deleterious effects as some integrin family members are 

up-regulated in cancer where they promote invasion and progression of metastasis. Drugs that 

antagonise integrin function, mainly by inhibiting heterodimers consisting of 4, 5 and 1 subunits, 

have been used in clinical trials for the treatment of cancers (Table 1), suggesting that integrin-based 

agonist therapies for T2D would only be feasible if they could be targeted to non-4/5-1 islet cell 

heterodimers. The observation that 31 integrins are abundantly expressed by islet cells [22] may 

provide some specificity, since this heterodimer is not currently targeted for cancer therapies. 

   

Cadherins 

Cadherins are calcium-dependent transmembrane glycoproteins that form adherens junctions 

between cells. Their extracellular N-terminal domain is used for homophilic adhesion by binding to 

cadherins on neighbouring cells and this is important in tissue morphogenesis. The intracellular 

domains of cadherins are linked to the actin cytoskeleton via - and -catenins [31], indicating that 

they can also initiate signalling rather than simply functioning to form stable adhesive complexes. 

The expression of some members of the classical cadherin subfamily such as epithelial (E-) and 

neural (N-) cadherins has been reported in human islets, whereas placental (P-) cadherin expression 

has not been detected [32]. N-cadherin is reported to be preferentially expressed by islet -cells 

while E-cadherin is expressed at similar levels by - and -cells [32].   

 

Cadherins play important roles in regulating islet structure and function. Thus, E-cadherin is 

necessary for the proper three-dimensional configuration of islets, and in the clustering of β-cells to 

form pseudoislets [14, 33] and it also influences various islet functions such as proliferation, survival 

and insulin secretion [34, 35]. Disruption of islet architecture by dispersal into single cells leads to 

poor secretory outcomes and increased apoptosis, but association of islet cells with E- and N-

cadherins reduces apoptosis in isolated human β-cells [32]. The specific involvement of E- and N-

cadherins in promoting insulin secretion from human β-cells was demonstrated using recombinant 

E- and N-cadherin peptides fused with Fc immunoglobulin to mimic the homophilic adhesion of 

cadherins that occurs in vivo [36].  

 

Other adhesion receptors belonging to the immunoglobulin-like cell adhesion molecules, such as N-

CAM, have also been implicated in islet function. Deletion of N-CAM in mice impairs glucose 

tolerance and reduces insulin secretion as a result of defective F-actin reorganisation [37]. Connexin 

36, ephrin-As and their EphA receptor tyrosine kinases are also involved in islet cell-cell interactions, 

where they allow rapid electrical coupling and intercellular connectivity [38–40].  

 

The therapeutic potential of cadherins is evident from the recent proposal that drugs targeting E-

cadherin re-expression may be useful in diagnosing and treating cancer [41] (Table 1). Thus, 

developments in cancer pharmacotherapy may be beneficial in the search for new treatments for 

diabetes, but a tractable cadherin target that would be clinically viable as a therapy for T2D has not 

yet been identified. 

 

Adhesion GPCRs 
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Adhesion GPCRs (aGPCRs) are the second largest group of the GPCR superfamily, with 33 human 

members identified to date [42]. Unlike the classical GPCRs, aGPCRs have complex structural 

features: they possess an unusually long extracellular N-terminal domain that is joined non-

covalently with the seven-transmembrane C-terminal domain at a GPCR proteolytic site (GPS) within 

the evolutionarily conserved GPCR autoproteolysis-inducing (GAIN) domain (Figure 1). They are the 

least studied class of the GPCR family, despite the important roles they play in many physiological 

processes [42]. 

 

Mouse and human islets express approximately 60% of all known aGPCRs [43, 44] and recent 

advances are beginning to shed light on the biological roles of aGPCRs in islets and glucose 

homeostasis. The first evidence linking aGPCRs to metabolic function was provided by studies in 

which adipose tissue-specific deletion of GPR116 led to insulin resistance and glucose intolerance 

[45] while the absence of Celsr2/3 resulted in mice with severe deficiency in β-cell differentiation 

and glucose intolerance [46]. Another interesting member of the aGPCR family is GPR56. It is the 

most abundant islet GPCR [44], and it is expressed exclusively by the β-cells in islets [5]. Activation of 

islet GPR56 by its endogenous ligand, collagen III, has beneficial effects, including potentiation of 

glucose-stimulated insulin secretion and protection of islets against the deleterious effects of 

inflammation that occur in diabetes [5, 47]. Moreover, a recent study has shown that pre-treating 

human islets with mesenchymal stromal cell-derived ECM, which is rich in the GPR56 agonist 

collagen III, led to enhanced insulin output [2]. These observations, and others indicating improved 

islet function elicited by collagen and laminin ECM components, have led to the proposal that 

exposure of human islets to ECM molecules may improve the outcomes of islet transplantation 

therapy [48]. 

 

The unique structural features of the aGPCRs present excellent opportunities for therapeutic 

targeting. They usually contain an extracellular tethered agonist-containing ‘stachel’ sequence 

buried within the GAIN domain that becomes exposed upon ligand binding or detachment of the 

extracellular domain segment, and this activates downstream signalling. Synthetic peptides that 

mimic the stachel sequence have been shown to directly activate a range of aGPCRs including GPR56, 

GPR64, GPR110, GPR114, GPR133, GPR126 and latrophilin [49–52], but the similarity of aGPCR 

stachel sequences may result in agonist promiscuity that limits the ability to specifically target 

particular aGPCRs [53]. However, receptor activation and signalling varies between different aGPCRs 

[54], suggesting that specific pathways can be selectively targeted by biased ligands. Thus, the 

possibility of using synthetic peptides to activate desirable pathways downstream of adhesion 

receptors offers a promising prospect for drug development, which may be applicable for treating 

T2D.  

  

Conclusions 

There is a large body of evidence demonstrating that signalling via integrin, cadherin and aGPCR 

adhesion receptors has beneficial effects on islet function and these receptors might serve as novel 

targets for T2D therapy. However, unless specificity can be assured increased islet integrin signalling 

is unlikely to be an appropriate therapeutic strategy since integrins are involved in tumorigenesis. E-

cadherin may be a suitable candidate for therapeutic intervention given its positive effects on islet 

function and the recent interest in development of drugs increasing expression of this cadherin for 

cancer treatment, but little progress has been made in further elucidating the role of E-cadherin in 



6 
 

islets in the past few years. The most promising adhesion receptor candidates for treating T2D are 

likely to be the aGPCRs since GPCRs are the targets of more than one-third of all prescription drugs 

in use, with GLP-1 receptor agonists being one of the most recent T2D therapies to be introduced. 

However, to date there have not been any clinical trials of aGPCR ligands. This apparent neglect 

might be a consequence of the majority of aGPCRs being orphans, and progress in this area is likely 

to be contingent on identification of the endogenous ligands.  

 

In addition to providing potential targets for T2D drug development, islet adhesion receptors offer 

translational potential in islet transplantation therapy for T1D. For example, the loss of functional 

viability reported after islet isolation could be reduced by incubating isolated islets with agonists of 

islet adhesion receptors prior to transplantation. Islet transplantation outcomes could also be 

improved by co-delivery of ECM-derived products or other agonists of islet adhesion receptors to 

improve islet survival and function. 

 

In summary, studies on the applicability of islet adhesion receptors as therapeutic entities are at a 

relatively early stage and much work is still required to identify the most appropriate receptor, 

activating ligand(s) and selectivity of effect before there is a prospect of clinical trials.  
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Figure 1: Islet adhesion receptors.  

A) Integrins are transmembrane heterodimers composed of α and β-subunits. They provide adhesion 

through interaction of the extracellular domains with ECM molecules and they also recruit 

intracellular proteins that mediate cell signalling via their short cytoplasmic domains. 

B) Adhesion GPCRs have adhesion molecules on their extracellular domain, which is joined non-

covalently to the seven-transmembrane segment at the GPCR proteolytic site (GPS) within the GPCR 

autoproteolysis-inducing (GAIN) domain. Removal of the extracellular segment above the GPS 

exposes the embedded tethered agonist, which elicits downstream signalling. 

C) Cadherins consist of five-extracellular repeats containing Ca2+ binding sites that enable them to 

participate in homophilic adhesion. The small cytoplasmic segment of cadherins regulates 

interaction with the actin cytoskeleton and intracellular signalling via binding to catenin proteins. 
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Table 1 Adhesion receptors antagonists that have been used in clinical trials.  

The table includes a non-exhaustive list of drugs developed by a range of pharmaceutical companies 

that target adhesion receptors for clinical use. It also includes information on the highest 

development phase of clinical testing for each drug, or whether the drug is in current clinical use. 

Information was obtained from clinicaltrials.gov. 

 

Drug Adhesion 

receptor 

Disease targets Clinical 

trials 

status 

Company 

Anti-

Integrins 

PF-04605412 

 

Volociximab 

 

 

MEDI-522 

 

 

Ro 27-2441 

 

Natalizumab 

 

Vedolizumab 

 

 

Anti-

cadherin 

ADH-1 

 

 

 

α5β1 

 

α5β1 

 

 

α5β3 

 

 

α4β1 

 

α4β1 

 

α4β7 

 

 

 

 

N-cadherin 

 

 

 

 

Advanced non-hematologic malignancies 

 

Renal cell carcinoma, age-related macular 

degeneration 

 

Rheumatoid arthritis, metastatic 

melanoma, prostate cancer 

 

Asthma 

 

Multiple sclerosis 

 

Ulcerative colitis, Crohn’s disease 

 

 

 

 

Neoplasm 

 

 

Phase I 

 

Phase II 

 

 

Phase II 

 

 

Phase II 

 

Clinical use 

 

Clinical use 

 

 

 

 

Phase I 

 

 

Pfizer 

 

PDL 

Biopharma 

 

MedImmune 

 

 

Roche 

 

Biogen 

 

Millennium 

Pharmaceut. 

 

 

 

Adherex 

Tech 
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Table 2 A summary of adhesion receptors expressed by islets and their effects on islet function.  

The table summarises the adhesion receptor family members that have been identified in islets and 

provides information, where available, on the native ligand(s), signalling pathways downstream of 

receptor activation and effects on islet function. 

 

Adhesion 

receptor 

Expression by 

islets 

Ligand/binding 

partners 

Signalling 

pathways 

Effect of receptor activation 

on islet functions 

Integrins α1β1 

 

α3β1 

α5β1 

αvβ1 

α6β1 

Collagen IV 

 

Unknown 

Unknown 

Unknown 

Laminin-5 

FAK, ERK 

 

Unknown 

Unknown 

Unknown 

Unknown 

 insulin secretion, islet 

architecture [55] 

Unknown 

Unknown 

Unknown 

 insulin secretion [4] 

Cadherins E-cadherin 

N-cadherin 

Homophilic 

interactions 

Catenins, 

F-actin 

 -cell apoptosis [32],  

insulin secretion [36] 

Adhesion 

GPCRs 

ADGRG1 (GPR56) 

 

ADGRF5 (GPR116) 

 

ADGRG3 (GPR97) 

ADGRG6 (GPR126) 

ADGRL1 (LPHN1) 

 

 

ADGRL2 (LPHN2) 

ADGRL4 (ELTD1) 

ADGRA3 (GPR125) 

ADGRD1 (GPR133) 

ADGRC2 (CELSR2) 

ADGRC3 (CELSR3) 

Collagen III, 

TG2 

Surfactant 

protein 

Unknown 

Collagen IV 

α-latrotoxin, 

neurexins and 

tenuerins 

Tenuerins 

Unknown 

Unknown 

Unknown 

Unknown 

Unknown 

Gα12/13, Gαq 

 

Gαq 

 

Gαo, RhoA 

Gαs  

Gαo 

 

 

Unknown 

Unknown 

Unknown 

Gαs, cAMP 

Ca2+ 

Ca2+ 

 insulin secretion,  β-cell 

apoptosis [5, 47]  

Unknown 

 

Unknown 

Unknown 

Unknown 

 

 

Unknown 

Unknown 

Unknown 

Unknown 

Unknown 

Unknown 

 

  

 


