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Abstract 
Epigenetic mechanisms respond to both genetic and environmental factors, but 

these underlying effects are not yet fully characterized or completely understood. 

In this thesis I used twins as a tool for evaluating the effect of genetic and 

environmental impacts on DNA methylation, a well-known epigenetic 

mechanism. DNA methylation was studied on a genome-wide scale in human 

blood samples with a combination of bioinformatics, computational, and 

statistical approaches. First, genetic influences on DNA methylation profiles were 

assessed by estimation of the heritability of DNA methylation and identification 

of methylation-quantitative trait loci in identical and non-identical twins profiled 

with the commonly used Infinium HumanMethylation450 BeadChip and the new 

enhancer-enriched Infinium MethylationEPIC Beadchip. Strong genetic effects 

(heritability > 0.4) were detected for 10% of sites and common genetic variants 

were identified to affect methylation levels at 22% of sites, from the 771,169 

interrogated CpG sites across the genome. Second, I explored influences on the 

early-life methylome by comparing genome-wide DNA methylation profiles in 

naturally-conceived twins and twins conceived by in vitro fertilisation. Analysis of 

epigenetic profiles obtained by methylated DNA immunoprecipitation coupled 

with deep sequencing detected small changes at a gene previously associated 

with infertility, TNP1. Finally, I explored the effect of intrinsic factors on adult DNA 

methylation profiles, performing epigenome-wide studies of menopause and 

related phenotypes such as the use of hormone replacement therapy, which 

have metabolic consequences in middle-aged women. Epigenetic changes at 

seven CpG sites were associated with hormone replacement therapy. In 

summary, the results presented in this thesis give insights into genetic and 

specific environmental influences on the human epigenome.  
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1. Introduction 
	
Epigenetics emerged during the first half of the twentieth-century as the study of 

biological mechanisms involved in embryonic development and cell 

differentiation [1]. More recently, it has been defined as the study of mitotically 

inherited patterns of gene expression that are not explained by modifications in 

the DNA sequence [2]. DNA methylation, histone modifications and regulatory 

RNAs are considered epigenetic mechanisms that have been involved in 

processes, such as, cell differentiation, imprinting, and X-inactivation [3]. One 

characteristic of epigenetic patterns is that they are able to change in response 

to environmental stimuli [3]. Such change will then be inherited through cell 

division to allow daughter cells to conserve the identity of their parent cell. The 

dynamics of DNA methylation have been studied specially during early 

embryogenesis, when the genome undergoes global DNA demethylation 

required to reach a totipotent state followed by the establishment of new DNA 

methylation marks necessary for cell differentiation and the commitment of 

somatic cells to a specific role [4]. Disruption of some methylation or 

demethylation pathways has shown to disrupt development [4]. Apart from its 

key role in developmental biology, epigenetics has recently become relevant to 

epidemiology. It offers the promise to unravel biological mechanisms underlying 

disease and has potential as a biomarker of disease or disease progression. In 

1983, Feinberg and Vogelstein [5] reported epigenetic alterations at the human 

growth hormone and γ-globin genes in colon cancer patients. Since then, 

epigenetic alterations have been reported in many other types of cancer [6], 

autoimmune diseases [7], diabetes [8], Alzheimer's disease [9], Parkinson's 

disease [10], asthma [11], and multiple other human complex traits [12–14].  
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One of the best characterized epigenetic mechanisms in humans is DNA 

methylation of cytosines at CpG dinucleotides. It was proposed as a mechanism 

of mammalian gene regulation in 1975 [15, 16]. DNA methylation may play 

different roles, but typically, CpG methylation at the 5’ regions of genes reduces 

gene expression. This down-regulation has been shown to occur due to either 

the inability of specific transcription factors to bind DNA in the presence of 

methylated CpGs or through the recruitment of methyl-CpG- binding proteins 

with transcription repression activity [17–19]. Conversely, in gene body regions, 

patterns of high methylation have been found in transcriptionally active genes 

[20]. The next most studied epigenetic mechanisms are the modification of 

histone residues, which are very diverse and may include acetylation, 

methylation, phosphorylation, ubiquitination, ADP-ribosylation, and many others. 

Combinatorial modifications at selected histone residues trigger specific gene 

expression activity [21]. Less studied epigenetic regulators include histone 

variants [22, 23], ATP dependent chromatin remodelling complexes [24], and 

non-coding RNAs [25]. It is known that different epigenetic regulators might work 

in concert to regulate gene expression. A well-known example is X-inactivation, 

in which a non-coding RNA within Xist acts in cis to silence the X through the 

recruitment of the chromatin modifier complex PRC2, which in turn lays down 

H3K27me3 [26]. Despite the importance of other epigenetic regulators, in this 

thesis I focus mainly on the study of DNA methylation given the feasibility of its 

profiling in a large number of samples. 

1.1 DNA methylation 
	
The transfer of a methyl group from an S-adenyl methionine methyl donor to the 

fifth carbon of a cytosine by a DNA methyltransferase enzyme to produce 5-

methylcytosine (5mC) is commonly known as DNA methylation [27]. This 
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covalent modification usually occurs at cytosines that are followed by a guanine 

(CpG dinucleotide). In the haploid human genome there are ~28 million CpG 

sites [28], which can be found in a methylated or unmethylated form. The identity 

of a differentiated cell, which is determined by its gene expression profile, will 

depend on its unique DNA methylation pattern.  

In mammals, de novo DNA methylation is laid down by the DNA 

methyltransferases Dnmt3a and Dnmt3b. The mitotic inheritance of this mark 

requires another methyltransferase, Dnmt1, which copies methylation patterns 

from the parental strand to the daughter strand during DNA replication [29]. This 

is possible thanks to the symmetric property of the CpG dinucleotide, which is 

also read on the opposite strand –from 5’ to 3’- as CpG.  

DNA methylation patterns are dynamic, which means that DNA 

methylation can be reversed. The removal of methylation is achieved by passive 

or active mechanisms. Passive demethylation refers to the lack of maintenance 

of 5mC and the subsequent dilution of this modification after a number of cell 

divisions. In contrast, active mechanisms require the enzymatic removal of 5mC 

[30]. Although no demethylase capable of converting 5mC to cytosine has been 

identified, processes that can result in this loss are oxidation and deamination of 

5mC by members of the ten-eleven translocation family and the activation-

induced cytidine deaminase, respectively, followed by base replacement via 

DNA repair [31].  

The specific DNA methylation pattern of a cell is defined through 

development. Global and complex waves of DNA de-methylation and re-

methylation are observed in the pre-implantation embryo and primordial germ 

cells. Right after fertilization, the zygote undergoes global DNA demethylation, a 

characteristic state of pluripotent cells. DNA demethylation occurs independently 
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in the paternal and maternal pronuclei, happening at a faster rate in the paternal 

genome [32]. Imprinting marks escape this step of reprogramming given that are 

parent of origin-specific and essential for development. As the embryo develops, 

DNA methylation is regained until cells define their relatively stable epigenetic 

identity as differentiated cells. Primordial germ cells are specified from the 

epiblast in the post-implantation embryo and have to reset their DNA methylation 

profiles, including imprinting marks, in order to gain germline potency and 

imprinting marks specific for male or female gametes [33]. On the contrary, 

differentiated somatic cells inherit tissue-specific DNA methylation patterns that 

remain relatively stable in almost every cell type [34]. As seen in longitudinal 

studies, some changes do occur and are accumulated throughout life [35, 36]. 

Some of these changes are associated with age, which predominately show a 

gain in methylation [37]. Whether differential DNA methylation is originated 

during embryonic development or acquired after birth, DNA methylation variation 

within populations is common and is of scientific interest to understand the 

drivers of such variation.  

1.2 Factors that influence DNA methylation 
	
DNA methylation patterns are crucial for the correct growth and development of 

humans, however, there is room for variability thanks to changes that occur 

throughout life due to genetic, environmental, or stochastic factors.  

1.2.1 Genetic influences on DNA methylation 
	
Familial clustering of DNA methylation changes over time suggested that this 

modification is under genetic control [38]. Twin studies also suggested a genetic 

influence on DNA methylation since identical or monozygotic (MZ) twins, who 

share most of their genetic variants, had more similar DNA methylation profiles 
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than non-identical or dizygotic (DZ) twins, who share in average 50% of their 

genetic variants [39]. Kaminsky et al. [11] found significant differences when 

estimating locus-specific (~6,000 loci) DNA methylation intra-class correlation 

coefficient (ICC) differences (ICCMZ − ICCDZ) of 40 age- and sex-matched MZ 

and DZ twin pairs in buccal epithelial cells (mean ICCMZ − ICCDZ = 0.15 ± 0.0039, 

P = 1.2 × 10−294) and white blood cells (mean ICCMZ − ICCDZ = 0.0073 ± 0.0034, 

P = 0.044). Other twin studies have also observed evidence of genetic influence 

on DNA methylation for a proportion of CpG sites in the genome. 

Early studies suggested that variants of genes involved in the 

establishment and maintenance of DNA methylation had an impact on global 

DNA methylation levels [40, 41]. Nevertheless, most of the evidence of genetic 

influences on DNA methylation comes from the study of quantitative trait loci for 

DNA methylation (meQTLs). These meQTLs have been reported in brain [42, 

43], lymphoblastoid cell lines (LCLs) [44], adipose tissue [45], and lung [46]. The 

peak abundance of meQTLs is in close proximity to the target CpG site and the 

proportion of the variance explained can be high, up to 63% in LCLs [44] and up 

to 79.8% in lung [46]. 

1.2.2 Environmental influences on DNA methylation 
	
Environmental influences may also contribute to changes in DNA methylation 

profiles. Tobacco smoking is a commonly studied environmental factor in human 

epigenetics as a prenatal and adult life exposure. It was first associated with 

differential DNA methylation in an adult population (50 to 60 years of age) at the 

F2RL3 gene, which encodes coagulation factor II receptor-like 3 [47]. Since then, 

multiple studies, looking at different tissues, have identified and replicated 

smoking-associated changes in DNA methylation at several genes, including the 

well replicated AHRR gene [48–50]. Interestingly, changes of methylation at 
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AHRR were also observed and replicated when looking at effects of maternal 

smoking on DNA methylation profiles of newborns [51, 52].  

The number of studies looking for environment-associated changes in 

human DNA methylation at a genome-wide level is steadily growing. Apart from 

smoking, other environmental factors considered include influences of alcohol 

[53, 54], tea and coffee [55], maternal nutrition [56], dietary fat [57, 58], folate 

[59, 60], fluorinated chemicals [61], season of birth [62, 63] and season of DNA 

collection [64], air pollution [65], and others. 

Epigenetic studies can particularly benefit from the use of twins given that 

genetic and environmental factors influence DNA methylation profiles. The 

classical twin study design can be used to study the extent to which genetic and 

environmental factors influence DNA methylation profiles. The study design of 

discordant MZ twins can be used to study the association of epigenetics and 

disease or environmental exposures controlling for many potential confounders 

such as genetic factors, age, gender, maternal effects, cohort effects, and most 

in utero and environmental influences. 

1.3 Twins and epigenetics 
	
Most complex phenotypes arise as a result of the interplay between genetics and 

environment. In epidemiology, it is of interest to determine what proportion of the 

phenotypic variance each of these factors can explain. Classical twin studies 

make use of MZ and DZ twins to decipher these influences. Since MZ twins are 

assumed to share virtually 100% of their genetic variants, and DZ twins share on 

average only 50% of their variants, the difference in phenotype concordance 

levels between these two groups can be indicative of the genetic influence on 

the phenotype. Greater phenotype concordance in MZ twins would point to a 

higher contribution of genetics to the disease.  
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Heritability in the broad sense has been used to define the fraction of the 

total phenotypic variance (!"#) in a population that can be attributed to genetic 

variance (!$#) %&# =
()
*

(+
*,, but genetic variance can further be partitioned into the 

variance attributed to additive (!-#), dominant (!.#), and epistatic (!/#) effects. This 

partition gives origin to the definition of heritability (ℎ#) in the narrow sense, which 

only considers the fraction of the total phenotypic variance attributed to additive 

genetic effects %ℎ# = (1
*

(+
*, [66]. The rest of the variation that is not attributed to 

genetic effects is attributed to environmental influences, which can be divided 

into shared and unique environmental influences and random error. The classical 

twin estimate of heritability, known as ℎ# , is defined as twice the difference 

between MZ and DZ intra-pair correlation coefficients (ICC) [ℎ# = 2(56678 −

566.8)] [67]. The twin model also assumes that MZ and DZ twins equally share 

the environment and a fraction of the correlation is due to the shared 

environmental influences. The fraction corresponding to shared environmental 

effects is estimated as the difference between the total correlation and the 

heritability estimate. Finally, the missing variation is attributed to unique 

environmental effects plus error. 

Heritabilities can be calculated for particular epigenetic variants at specific 

epigenetic loci by treating them like phenotypes. Genome-wide studies using the 

classical twin design have estimated that the mean heritability of DNA 

methylation in adult tissues is between 18-20% [3–5] and between 5-12% in 

neonatal tissues [6]. These results suggest that environmental and stochastic 

factors may have a greater effect on methylation sites than genetic factors.  
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1.4 Epigenome-wide association scans (EWAS) 
	
Epigenome-wide association scans (EWAS) aim to determine epigenetic factors 

across the genome that are associated with complex traits [68]. In the context of 

DNA methylation this consists of testing the association between DNA 

methylation and a trait of interest at a large number of methylation sites across 

the genome. 

Common considerations for EWAS are the choice of DNA methylation 

assay, tissue selection, identification of confounding variables, and study design 

[68–70]. Options for genome-wide DNA methylation interrogation are array-

based methods, enrichment methods, sequencing methods, or a combination of 

them. The Infinium methylation assays, which include the promoter-enriched 

HumanMethylation27 BeadChip, the gene centric HumanMethylation450 

BeadChip, and the enhancer-enriched MethylationEPIC BeadChip are examples 

of array-based methods; they offer CpG-site resolution, but are limited to a 

defined number of sites targeted throughout the genome. Enrichment-based 

methods can be based on antibody affinity binding followed by sequencing, such 

as, methylated DNA immunoprecipitation (MeDIP-seq). MeDIP-seq does not 

offer CpG-site resolution, but allows a larger coverage of the genome since it is 

not limited to a number of predefined probes. Whole genome bisulfite 

sequencing (WGBS) is the gold standard for DNA methylation characterization, 

although its cost is still high for epidemiological studies. The technique is based 

on the conversion of unmethylated cytosines to uracil followed by sequencing. 

This method offers single-base resolution, genome-wide coverage, and is not 

biased towards the capture of specific regions as enrichment-based methods. 

One of the limitations of bisulfite treatment is its inability to discriminate between 

5mC and its oxidized form, 5-hydroxymethylcytosine (5hmC). Protocols of 
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oxidative bisulfite sequencing have now overcome this problem by oxidizing 

selectively 5hmC to 5-formylcytosine (5fC), which is then converted to uracil as 

an unmethylated cytosine [71]. A more cost-effective version of WGBS is 

reduced representation bisulfite sequencing (RRBS). This method uses 

methylation-sensitive restriction enzymes to enrich for regions of high CpG 

density and reduce the amount of DNA to be bisulfite converted and sequenced 

[72]. 

The next consideration is the selection of the appropriate tissue since 

epigenetic patterns are tissue-specific. Tissue availability and the biological 

question may define this selection. Another consideration is cell heterogeneity of 

the tissue since methylation differences may represent differences in cell 

composition rather than methylation changes present across multiple cell types. 

In a similar way, confounding may be introduced if the population of study is not 

homogenous with respect to factors that impact on DNA methylation, such as 

biological (age, gender, and others) or technical effects. Lastly, another 

important consideration is the study design. A retrospective population-based 

study allows for large samples, however has the drawbacks of selection bias as 

the sample might not properly represent the population. An attractive design in 

epigenetics uses discordant MZ twins, which allows controlling for many 

confounding variables such as age, gender, and most genetic and environmental 

effects [73]. Another attractive design is the longitudinal study. This allows 

inferring causation, for example if samples are collected before and after disease 

onset, but the limited availability of longitudinal samples is a challenge. 

1.5 Project overview 
	
The aim of this project was to understand the factors that drive DNA methylation 

variation in human populations, specifically genetic and environmental effects. 
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The first stage of the project looked at genetic influences. I first assessed on a 

genome-wide level the heritability of DNA methylation in blood samples of 

identical and non-identical twins profiled with the Illumina's Infinium 

HumanMethylation450 BeadChip and the enhancer-enriched Infinium 

MethylationEPIC Beadchip. I then investigated the regions of the genome 

influencing DNA methylation in a study of methylation quantitative trait loci.  

The second component of the thesis aimed to investigate the effect of 

environment. Given that embryonic stages of development are crucial for the 

establishment of epigenetic profiles, I explored the effect of perturbations to the 

cellular environment during conception on the epigenetic profile of newborns. I 

compared genome-wide DNA methylation profiles of naturally-conceived twins 

and twins conceived by in vitro fertilization to determine if epigenetic changes 

were introduced as a result of the fertility treatment. Finally, I explored the effect 

of intrinsic environment, specifically hormonal changes, on adult DNA 

methylation profiles. To this end I selected menopause and the use of hormone 

replacement therapy as a proxy measure of hormonal changes in adult females, 

and both of these factors have been shown to have profound metabolic 

implications in middle-aged women.   
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1.5.1 Research hypothesis and objectives 
 
The overall research hypothesis of my thesis is that DNA methylation responds 

to intrinsic and extrinsic factors from conception to adulthood. 

To address this, I tested three specific research hypotheses and aims. 

 

Chapter 3 

Research hypothesis: Greater genetic effects will be found in the EPIC 

array compared to its predecessor the 450K array given that it 

interrogates more CpG sites at intergenic regions, which are more likely 

to be under control of genetic variants according to previous studies. 

Aims:  

• To characterize DNA methylation heritability at different functional 

regions of the genome using the classical twin study 

• To identify the genetic variants contributing to DNA methylation 

variability 

 

Chapter 4 

Research hypothesis: In vitro fertilisation overlaps with an important 

period of global epigenetic reprogramming affecting not only imprinting, 

therefore, I hypothesize that differences in DNA methylation between 

newborns naturally-conceived and those conceived by in vitro fertiilsation 

will be observed throughout the genome. 

Aims: 

• To conduct EWAS of in vitro fertilisation. 

• To explore the impact of in vitro fertilisation on imprinting marks 

  



	 24	

 

Chapter 5 

Research hypothesis: DNA methylation changes associated to the 

menopausal transition will be observed in blood given the myriad of 

metabolic changes that occur in menopausal women. 

Aim:  

• To conduct EWAS on age at menopause, menopausal status, and 

use of hormone replacement therapy 
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2. Materials 
	
The work presented in this thesis is based on three main studies that explore 

different population samples as described in Table 2-1. All studies presented in 

this thesis were conducted with appropriate ethics approval. All participants 

provided written informed consent and in case of minors, consent was provided 

by the parents. 

Table 2-1. Samples 
Study Cohort(s) Description 

Chapter 3: Genetic 
influences on DNA 

methylation 
TwinsUK 

DNA source: Whole blood 
Platform: 450K (n=728) 
Platform: EPIC (n=226) 

Chapter 4: The 
effect of in vitro 

fertilisation on DNA 
methylation profiles 

at birth 

PETS 
DNA source: Whole blood 

(n=98); Cord blood mononuclear 
cells (n=82) 

Platform: MeDIP-seq 

Chapter 5: DNA 
methylation changes 

associated with 
menopause related 

traits 

CHARGE consortium 
(TwinsUK, EPIC-Norfolk, 

ALSPAC, KORA, RS, FHS)* 

DNA source: Whole blood 
Platform: 450K (n≈2500, see 

chapter 5 for details) 

*Participating cohorts: The UK Adult Twin Registry (TwinsUK), The European Prospective 
Investigation of Cancer (EPIC)-Norfolk, The Avon Longitudinal Study of Parents and Children 
(ALSPAC), Cooperative Health Research in the Augsburg Region (KORA), Rotterdam Study 
(RS), and The Framingham Heart Study (FHS) 

2.1 The UK Adult Twin Registry (TwinsUK) 
	
Genotyping, DNA methylation, and gene expression data used in Chapters 3 and 

5 were collected by the UK Adult Twin Registry (TwinsUK). TwinsUK is a nation-

wide registry of adult twins hosted by the Department of Twin Research, King’s 

College London, UK. TwinsUK is the largest twin registry in the UK with over 

12,000 volunteers (>80% female, 50:50 zygosity ratio) recruited trough media 

campaigns without selecting for particular diseases. The registry started in 1992 

recruiting middle-aged female twins and from 1995 the invitation was extended 

to men and women over 18 years old.  
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2.1.1 TwinsUK phenotype data 
	

The main areas of research in TwinsUK have been the study of common 

complex diseases and the process of healthy aging. Twins receive detailed 

disease and life-style questionnaires and are asked to attend clinical 

assessments where biological samples are taken and multiple phenotypes are 

measured. The phenotypes collected cover areas of endocrinology, allergy, 

toxicology, cardiology, gastroenterology, neurology, oncology, radiology, 

rheumatology, ophthalmology, urology, and obstetrics, among others. Biological 

samples include, but are not limited to, serum, plasma, fat, skin, urine, and stool. 

TwinsUK collects hundreds of clinical, biochemical, behavioral, and socio-

economic variables, but also ‘omics’ data including transcriptomics, 

epigenomics, proteomics, metabolomics, microbiomics, and metagenomics.  

The cohort also benefits from the collection of longitudinal data. Between 

1992 and 2004 a total of 5725 twins attended a comprehensive baseline visit. 

Active twins were invited for a follow-up visit between April 2004 and May 2007 

and a second follow-up visit that started in August 2007. More information can 

be found on the registry’s website (www.twinsuk.ac.uk) and published cohort 

profiles [74–77]. Further information with respect to specific TwinsUK 

phenotypes explored in this thesis is provided in Chapter 3 and 5. 

2.1.2 TwinsUK genotype data 
	
More than 5,000 participants of TwinsUK have been genotyped with one of two 

chips, Illumina HumanHap300 BeadChip and Illumina HumanHap610 

QuadChip. Furthermore, additional genetic variants have been imputed in this 

cohort using the HapMap and 1000 Genomes project reference panels [78, 79]. 

Further details on the genotype data used in this thesis are provided in Chapter 

3. 
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2.1.3 TwinsUK DNA methylation data 
	
Genome-wide DNA methylation has been interrogated in nearly 1,000 twins 

using the Infinium HumanMethylation450 BeadChip (450K array) and the 

Infinium MethylationEPIC BeadChip (EPIC array), which target more than 

450,000 and 850,000 CpG sites, respectively. Detailed information on the 

datasets and quality control analysis of these data is provided in Chapter 3. 

2.2 The Peri/postnatal Epigenetic Twin Study (PETS) 
	
The study presented in Chapter 4 used data collected by the Peri/postnatal 

Epigenetic Twin Study (PETS). The aim of PETS is to study the plasticity of 

epigenetics during the intrauterine period and early childhood. PETS cohort is 

comprised of 250 twin pairs and their mothers recruited midway through the 

second trimester of pregnancy between January 2007 and September 2009 at 

three hospitals in Melbourne, Australia. Detailed data on periconceptional and 

parental factors were collected during pregnancy and in the immediate neonatal 

period. At recruitment parental age and pre-pregnancy weights and heights were 

recorded along with information on education, socio-economic status, medical 

history, mode of conception, nutrition, alcohol intake, and smoking. At 24 weeks 

gestation pregnancy history detailing maternal weight, illnesses, nutritional 

supplements, medication, alcohol intake and smoking was collected. A routine 

maternal blood sampling was done at 28 weeks gestation and food frequency 

and perceived stress questionnaires were collected. At 36 weeks gestation, if 

applicable, maternal weight was recorded once again. In the immediate neonatal 

period, pregnancy history was collected again and infant anthropometric 

measures were taken. During delivery, or during the immediate neonatal period, 

multiple biological samples were collected, including umbilical cord, cord blood, 



	 28	

buccal epithelium, and placental tissue. Chorionicity and zygosity were 

determined from first trimester ultrasound scans and placental examination. 

Given that MZ twins may not always share placentae, zygosity in same-sex 

dichorionic twins was determined by a 12-marker microsatellite test. 

Of the 250 twin pairs, over 40% are MZ, almost 65% were born by 

caesarean section, and near a fifth of them were conceived by in vitro fertilization. 

The median gestational age and birth weight were 37 weeks (27-40) and 2.5 kg 

(0.8-3.9), respectively.  Follow-ups at 18 months and 5 years of age were 

planned to take biological samples, clinical measures, and detailed history of the 

twins’ health and nutrition. More detailed information has been described in 

cohort profiles [80, 81]. 

2.2.1 Sample and phenotypes 
	
The study presented in Chapter 4 was based on 41 MZ and 66 DZ twins from 

the PETS cohort. In total, 47 twins were conceived after in vitro fertilization (IVF) 

as determined from questionnaire data. Mean birth weight was 2.6 kg in both 

groups, IVF and non-IVF. Mean gestational age was of 37 weeks. Mean maternal 

age was 35 years in the IVF group and 32 years in the non-IVF group. DNA from 

whole blood cells was available for 98 of these twins, while DNA from cord blood 

mononuclear cells was available for 82 twins. 

2.2.2 PETS DNA methylation profiling 
	
DNA from whole blood cells and cord blood mononuclear cells was subjected to 

methylated DNA immunoprecipitation coupled with deep sequencing (MeDIP-

seq) for DNA methylation profiling. MeDIP-seq data have been deposited at the 

European Genome-phenome Archive (EGA), which is hosted by the EBI and the 

CRG, under accession number EGAS00001002248. 
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2.3 Cohorts for Heart and Aging Research in Genomic Epidemiology 
(CHARGE) consortium 

	
The CHARGE consortium emerged to facilitate collaboration between cohorts in 

the framework of genomic epidemiology. Subjects of the participating cohorts are 

not selected for any particular disease, but are not necessarily free of diseases. 

Cohorts from predominately Caucasian populations with data on menopause 

and hormone replacement therapy contributed to the study presented in Chapter 

5.  

1. The UK Adult Twin Registry (TwinsUK) is described in section 2.1. 

2. The European Prospective Investigation of Cancer (EPIC)-Norfolk 

includes men and women from 35 general practices in Norfolk, UK 

recruited between 1993 and 1997. The baseline health examination was 

attended by 25,639 participants aged between 40 and 79 years. A second 

and third health examinations were carried out in 1997-2000 and 2006-

2011, respectively. EPIC-Norfolk has longitudinally characterized the 

population in terms of lifestyle and physiological, cognitive, metabolic and 

genetic profiles [82].  

3. The Avon Longitudinal Study of Parents and Children (ALSPAC) 

includes mothers and children from more than 14,000 pregnancies with 

expected delivery between 1 April 1991 and 31 December 1992 in the 

area of Bristol, UK, and who have been followed-up extensively for more 

than two decades. The study was conceived with the aim of investigating 

modifiable influences on child health. The ALSPAC phenotype resource 

includes data from clinical assessments and questionnaires completed by 

children, mothers, and teachers. The ALSPAC biobank has collected 

biological samples including blood, urine, hair, toenails, teeth, saliva, and 
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placenta since early pregnancy. A subset of the cohort has also “omic” 

profiles, including genotypes, gene expression, and DNA methylation 

[83]. 

4. Cooperative Health Research in the Augsburg Region (KORA) was 

established in 1996 in the region of Augsburg, Germany with the aim of 

collecting data and biosamples for future research in health sciences. 

Four baseline cross-sectional health surveys were performed at five-year 

intervals on individuals sampled at random from the local population. The 

total pool consists of 18,000 participants that have been followed-up over 

4-20 years. Apart from the baseline questionnaire, participants receive 

follow-up postal questionnaires and attend medical examinations. KORA 

also contains a Biobank of biological samples, KORA-gen, for genetic 

research [84].  

5. Rotterdam Study (RS) was initiated in 1990 to study late onset disease 

in the increasing proportion of elderly people across different populations. 

The overall aim was to study cardiovascular, ophthalmic, psychiatric, 

respiratory, dermatological, oncological, endocrine, and hepatic diseases, 

and others. After three cycles of recruitment in 1990, 2000, and 2006, the 

cohort consists of nearly 15,000 participants aged 45 and over from the 

district of Ommoord in the city of Rotterdam, The Netherlands.  Extensive 

examinations, including collection of biological samples, were carried out 

at baseline and follow-up examinations were repeated every 3-4 years 

[85].   

6. The Framingham Heart Study (FHS) was initiated in 1948 in the town of 

Framingham, Massachusetts, USA. A total of 5,209 participants aged 30-

54 joined the Original Cohort. In 1971, children of the Original Cohort and 
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their spouses were enrolled in the Offspring Cohort. In 2002, 

grandchildren of the Original Cohort became the Third Generation Cohort. 

Currently the overall FHS cohort comprises participants from three 

generations in multigenerational families. All cohorts are examined 

periodically every 2-4 years. The study started with a focus on 

cardiovascular traits and has now expanded to include a wider range of 

human diseases [86].  

2.3.1 Phenotypes 
	
Cohorts were asked to perform analyses on women with natural age at 

menopause (age at last menstrual period in women who are reportedly 

postmenopausal or have not had a menstrual period in the last 12 months) 

between 40 and 60 years inclusive and premenopausal women. The phenotypes 

of interest were menopausal status, age at menarche, duration of reproductive 

years, and use of hormone replacement therapy and further details are provided 

in Chapter 5. 

2.3.2 DNA methylation profiling 
	
DNA methylation in each of the participating CHARGE cohorts was interrogated 

in whole blood samples using the Illumina 450K array. Data was background 

corrected and normalized according to cohort-specific quality control standards. 

Further description is provided in Chapter 5. 
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3. Genetic influences on DNA methylation 

3.1 Introduction 
	
The extent to which DNA methylation variation is under genetic control can be 

explored with the estimation of its heritability. Low to high DNA methylation 

heritability has been shown at different loci of the genome. It was reported that 

CpG-sites located at the IGF2/H19 locus exhibit high heritabilities between 20% 

and 97% [87]. In contrast, low DNA methylation heritability at the major 

histocompatibility complex was estimated, between 2 and 16% [88]. To date 

multiple genome-wide studies using the classical twin design have estimated 

DNA methylation heritability, reporting that the mean heritability of DNA 

methylation across tested CpG-sites ranges between 18-20% in adult tissues 

[37, 45, 89] and between 5-12% in neonatal tissues [90]. Non-twin based efforts 

to estimate heritability have interrogated the proportion of the variance in DNA 

methylation at a locus that is explained by common genetic variants. The mean 

genome-wide heritability explained by common variants across tested CpG-sites 

was estimated at 3% in brain [91] and 7% in blood [89]. Heritability studies have 

been helpful in determining the extent to which variation in DNA methylation is 

influenced by genetic variation, however are not informative of the specific 

mechanisms underlying genetic influences.  

Quantitative trait loci (QTLs) studies have provided an insight into these 

mechanisms by identifying genetic variants associated with DNA methylation 

levels. DNA methylation QTLs (meQTLs) have been explored on a genome-wide 

scale using the Infinium HumanMethlation450 BeadChip, identifying local (cis) 

and distal (trans) genetic variants associated with methylation levels in multiple 

samples across a number of cells, tissues, and ages [37, 42, 43, 45, 46, 92, 93].  
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 In adipose tissue from 648 individuals, 98,085 (28.5%) of the 344,303 

CpG sites tested had a significant association at 1% FDR with a genetic variant 

within a 100 kb radius [45]. In lung tissue from 210 individuals, cis meQTLs in a 

radius of 100 kb were detected for 40,650 (12%) of the 338,456 tested CpG sites 

controlling for FDR at 5% and trans meQTLs acting more than 500 kb away from 

the target site or in a different chromosome were identified for 615 CpG sites 

(0.1%) [46]. In 64 Yoruba LCLs, 13,915 (4.2%) of the 329,469 tested CpG sites 

were associated with at least one genetic variant in cis [92].  In purified 

monocytes, neutrophils, and naïve CD4+ T cells from nearly 200 individuals, an 

average of 9.89% of the tested CpG sites showed an association with a genetic 

variant within 1 Mb window [94]. In whole blood from 3,841 individuals, cis 

meQTLs were identified for 34.4% of all tested CpG sites [95].  

 In this chapter I present a two-fold approach, heritability and meQTL 

analyses, to study the genetic influences on DNA methylation. DNA methylation 

was profiled in whole blood samples from healthy adult twins using both the 

Infinium HumanMethylation450 BeadChip (450K), as well as the new Infinium 

MethylationEPIC BeadChip (EPIC), a microarray with greater coverage of the 

methylome than its predecessor [96]. The use of EPIC allows for the 

investigation of genetic effects on enhancers, which were not highly represented 

in previous versions of the widely-used Illumina arrays. 

3.2 Materials and methods 

3.2.1 Subjects 
	
Two datasets were explored in this chapter, 450K and EPIC. The 450K study 

was based on blood samples from 728 healthy female twins from TwinsUK. The 

sample consisted of 330 MZ and 34 DZ female twin pairs with a mean age of 58 

years. The EPIC study was based on blood samples from 226 healthy female 
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twins from TwinsUK. The sample consisted of 85 pairs of MZ, 19 pairs of DZ 

twins, and 18 unrelated twins with a mean age of 60 years (39-80 years). In total, 

196 individuals were in both datasets. 

3.2.2 DNA methylation data  
	
Whole blood DNA methylation data were generated with the Infinium 

HumanMethylation450 BeadChip and the Infinium MethylationEPIC BeadChip. 

In both cases the same quality control checks were applied. Briefly, intensity 

signals were corrected for probe type bias using the BMIQ normalization method 

[97]. BMIQ normalizes type II probes into type I keeping the relative ranking of 

beta values of the type II probes by assigning probes to one of three methylation 

states and then transforming the probabilities of type II probes of belonging to a 

state into quantiles using the distribution of type I probes. This procedure 

reduces technical variation and the bias caused by the lower dynamic range of 

type II probes. Other normalization methods to remove technical variation from 

Illumina DNA methylation arrays have been proposed. For example, the 

functional normalization method combines quantile normalization and the use of 

control probes as surrogates for batch effects, therefore removing technical 

variation explained by these covariates. Functional normalization is performed in 

type I and type II probes separately to address the issue of their different 

distributions. Using data from technical triplicates, functional normalization 

showed a modest reduction of technical variability in comparison to BMIQ, 

however effect sizes in association studies showed to be very similar [98].  

In this chapter, methylation levels were reported as beta values calculated as 

the ratio of the methylated probe intensity signal over the sum of the methylated 

and unmethylated probe intensity signals. CpG sites with a detection p-value > 

0.01 were discarded. Only CpG sites located in autosomes were considered for 
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the analysis. Probes in the array that mapped to multiple locations of the in silico 

bisulfite converted human genome allowing two mismatches were discarded. 

Probes were also excluded if they targeted polymorphic CpG sites with minor 

allele frequency (MAF) > 5% in the UK10K haplotype reference panel [99]. A 

total of 420,230 and 771,169 CpG sites remained for analysis in the 450K and 

EPIC arrays, respectively. In both datasets white blood cells proportions were 

estimated from DNA methylation data for plasmablasts, CD8+CD28-CD45RA- T 

cells, naïve CD8+ T cells, CD4+ T, natural killers, monocytes, and granulocytes 

[100]. 

3.2.3 Genotype data 
	
TwinsUK participants were genotyped with one of two chips, Illumina 

HumanHap300 BeadChip or Illumina HumanHap610 QuadChip. Detailed quality 

control and imputation of the genotype data in the larger TwinsUK cohort have 

been previously described [101, 102]. In this thesis, genotype data from TwinsUK 

included directly genotyped and imputed genetic variants, where imputed 

variants were based on the 1000 Genomes project reference panel, as 

previously described [101]. A total of 6,266,036 variants with a MAF > 5% and 

IMPUTE info score > 0.7 were used for QTL analysis. Genotypes were 

duplicated for the co-twin when only a single twin from a MZ pair was genotyped. 

In this thesis, QTL analysis was performed in the EPIC dataset of 226 individuals. 

QTL analysis in the 450K dataset was previously performed by other members 

of the epigenetics research group at the Department of Twin Research, King’s 

College London. 
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3.2.4 Annotation datasets 
	
CpG islands and their corresponding shores and shelves were obtained from the 

manifest provided by Illumina (https://support.illumina.com/array/kits.html). CpG 

sites not located in any of these regions were considered as mapping to “open 

sea”. Histone peaks and predicted chromatin states (promoters and enhancers) 

of PBMCs were obtained from the Roadmap Epigenomics project [103]. 

Transcription factor peaks of GM12878 were obtained from the ENCODE project 

[104]. PBMCs and GM12878 were selected for being the closest tissues to whole 

blood available in those datasets. 

3.2.5 Estimation of DNA methylation heritability 
	
DNA methylation heritability at each CpG site was estimated in both 450K and 

EPIC datasets, following the same procedure. Methylation beta values at each 

CpG site were transformed to standard normal form N(0,1) prior to analysis. 

Methylation beta values were adjusted for age, cell proportions and technical 

covariates (plate and position). The observed methylation variance was 

partitioned into additive genetic (A), common environmental (C), and unique 

environmental (E) factors using the ACE model [105]. The model was fitted using 

the OpenMX statistical package [106] in R [107]. In terms of A, C, and E, 

heritability (ℎ#) was defined as ℎ# = -

-<=<>
. 

3.2.6 Estimation of meQTLs 
	
MeQTLs were estimated in the EPIC dataset of 226 individuals. Methylation beta 

values at each CpG site were transformed to standard normal form N(0,1) prior 

to analysis. Methylation beta values were adjusted for age, cell proportions, 

family structure, and technical covariates (plate and position). The associations 
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between genetic variants and corrected methylation values were then computed 

using MatrixEQTL [108] in R [107] as follows: 

? = @ + B	D 

where ? is methylation, @ is the ?-intercept, B is the slope of the regression line, 

and D is the additive genotype. 

Local (cis) effects were investigated if SNPs were within 1Mb from the target 

CpG site. Distal (trans) effects were investigated if the SNP was located more 

than 1Mb away from the target CpG site, or on a different chromosome. To 

correct for multiple testing, results were reported using a permutation-based 

false discovery rate (FDR) correction. FDR was determined by dividing the 

average number of significant hits in 10 permutations (keeping twin structure) 

over the number of significant hits in the observed data at a given p-value 

threshold. Results are presented at a FDR 5% threshold. 

3.2.7 Blood cell-type specific meQTLs 
	
Methylation beta values at each CpG site were transformed to standard normal 

form N(0,1) prior to analysis. Methylation beta values were adjusted for age, 

family structure, and technical covariates (plate and position). To detect cell-type 

specific associations, a linear regression with an interaction term between 

genotype and cell-type proportion was added as follows: 

? = @ + BD + EF + GDHF 

where ? is methylation, @ is the ?-intercept, B, E, G are slopes, D is the additive 

genotype, F is the cell proportion, and DHF is an interaction term. The model test 

for significance of G. This model has been used previously for the detection of 

cell-type specific effects in gene expression [109]. To correct for multiple testing, 

a permutation-based FDR was estimated as described in section 3.2.6 above.  
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3.3 Results 

3.3.1 DNA methylation profiles in twins 
	
We first characterized the patterns of methylation within pairs of twins and pairs 

of unrelated individuals. Intra-class correlation coefficients (ICCs) were 

estimated within pairs of MZ, DZ and unrelated twin pairs using the EPIC array, 

which has a larger coverage of the genome. Higher mean ICC was observed in 

MZ twins than in DZ twins (p=1.96x10-6) and the latter showed higher mean ICC 

than unrelated individuals (p=0.038) (Figure 3-1).  At the CpG site level, MZ twin 

pairs also showed greater ICCs than pairs of DZ or unrelated twins (Figure 3-2). 

	

Figure 3-1. DNA methylation profile similarities in twins. The intra-class correlation 

coefficient (ICC) was estimated within MZ (n=85), DZ (n=19), and unrelated (n=9) twin 

pairs. 
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Figure 3-2. Correlation of CpG site methylation in twins in the EPIC dataset. 

Density plot of CpG site ICCs in MZ (n=85), DZ (n=19), and unrelated (n=9) twin pairs.   

3.3.2 Heritability of DNA methylation 
	
DNA methylation heritability was estimated in the two datasets of healthy twins, 

450K (728 twins) and EPIC (226 twins). In the 450K dataset, the genome-wide 

mean heritability (h2) across 420,230 autosomal CpG sites was estimated at 

12%. Altogether, 43,993 CpG sites (10%) had evidence for strong heritability (h2 

> 40%). 

The classification of CpG sites by functional regions of the genome 

showed that sites within enhancers exhibit greater mean heritability than sites 

within promoters (Figure 3-3, Table 3-1). The classification by CpG content 

showed that sites within CpG islands have lower mean heritability than sites 

within shores, shelves, and the open sea (Figure 3-4, Table 3-1). Comparing our 

results with ChIP-seq experiments, we observed that heritability at CpG sites that 

overlap TFBS peaks is lower than the mean overall heritability and CpG sites 
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that overlap with two repressive histone marks, H3K27me3 and H3K9me3, have 

higher mean heritability than the overall (Table 3-1). 

	

Figure 3-3. Genetic influence on DNA methylation in 450K dataset by functional 

genomic region. Plot shows the proportion of CpG sites within promoters or enhancers 

that showed heritability greater or equal to h2. 
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Figure 3-4. Genetic influence on DNA methylation in 450K dataset by CpG content. 

Plot shows the proportion of CpG sites within CpG islands, shores, shelves, or open sea 

that showed heritability greater or equal to h2. 

 

In the EPIC dataset, results showed the same patterns seen with the 450K 
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CpG islands have lower mean heritability than sites within shores, shelves, and 

the open sea (Figure 3-6, Table 3-1). Heritability at CpG sites that overlap TFBS 

peaks is lower than the mean overall heritability and CpG sites that overlap with 

two repressive histone marks, H3K27me3 and H3K9me3, have higher mean 

heritability than the overall (Table 3-1).   

	
Figure 3-5. Genetic influence on DNA methylation in EPIC dataset by functional 

genomic region. Plot shows the proportion of CpG sites within promoters or enhancers 

that showed heritability greater or equal to h2. 
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Figure 3-6. Genetic influence on DNA methylation in EPIC dataset by CpG content. 

Plot shows the proportion of CpG sites within CpG islands, shores, shelves, or open sea 

that showed heritability greater or equal to h2. 
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Table 3-1. Mean heritability of DNA methylation 
 
 EPIC 450K 

Category #CpG 
sites Mean h2 #CpG 

sites Mean h2 

All 771,169 0.12  420,230  0.12 
	 	 	   
Promoter (PBMCs) 39,328 0.07  32,366  0.06 
Enhancer (PBMCs) 30,057 0.18  14,842  0.20 
	 	 	   
Island 147,597 0.09  135,010  0.09 
Shore 139,787 0.14  98,751  0.15 
Shelf 53,402 0.12  38,925  0.12 
Open Sea 430,383 0.13  147,544  0.13 
	 	 	   
TFBS (GM12878) 157,963 0.09  111,675  0.07 
H3K27ac (PBMCs) 598,723 0.12  380,275  0.12 
H3K27me3 (PBMCs) 408,331 0.14  262,832  0.15 
H3K36me3 (PBMCs) 370,544 0.12  236,421  0.12 
H3K4me1 (PBMCs) 601,044 0.12  379,277  0.13 
H3K4me3 (PBMCs) 486,043 0.12  331,910  0.12 
H3K9ac (PBMCs) 557,277 0.12  359,922  0.12 
H3K9me3 (PBMCs) 141,923 0.14  90,784  0.15 
	 	 	   
New in EPIC 369,415 0.13   
Overlap with 450K 401,754 0.12     

 

 

The results between the 450K and EPIC datasets were very consistent and 

showed the same trend in every category annotated. The correlation of the 

heritability estimates between the two was of 0.88. 

3.3.3 Identification of methylation quantitative trait loci (meQTLs) 
	
Genetic effects were further explored by the identification of meQTLs in the EPIC 

dataset of 226 twins. In total, 171,156 CpG sites (22%) were found to be affected 

by cis meQTLs and 2,021 CpG sites (0.2%) were found to be affected by trans 

meQTLs at 5% FDR (P=3.6x10-4 and P=1.1x10-8, respectively). As expected, the 

median heritability of DNA methylation at CpG sites affected by meQTLs, both 
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cis and trans, was greater than that of the overall (Figure 3-7). Altogether, we 

identified common genetic variants to explain the genetic influence on 38,755 

(49%) of the CpG sites with strong DNA methylation heritability (h2 > 0.4). 

	

Figure 3-7. Heritability of DNA methylation at CpG sites affected by meQTLs. 

Proportion of CpG sites with heritability of DNA methylation > h2 in all analysed CpG 

sites, CpG sites affected by cis meQTLs, and CpG sites affected by trans meQTLs. 
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3.3.4 Annotation of meQTL CpG sites 
	
We then explored where the CpG sites affected by cis and trans meQTLs were 

located in the genome. Overall, we observed opposite trends in CpG sites 

affected by cis meQTLs and trans meQTLs. CpG sites affected by cis meQTLs 

were depleted in TFBSs, promoters, CpG islands, regions of positive selection, 

and conserved elements (Table 3-2, Fisher’s exact test). In contrast, CpG sites 

with cis meQTLs were enriched in shores, shelves, open sea, enhancers, gene 

bodies and intergenic regions. Concordantly, CpG sites affected by cis meQTLs 

were also depleted in H3K4me3 peaks, which are associated with promoters, 

and enriched in H3K4me1 peaks, which are associated with enhancer regions 

[110] . Conversely, CpG sites affected by trans meQTLs were enriched in TFBSs, 

promoters, H3K4me3 peaks, and CpG islands. CpGs with trans meQTLs were 

depleted in shores, shelves, open sea, enhancers, and H3K4me1 peaks. 

Interestingly, both CpG sites affected by cis meQTLs and CpG sites affected by 

trans meQTLs were depleted in exon boundaries. To account for the fact that the 

methylation variance affects the probability of harboring meQTLs, enrichment 

analyses were also performed by matching to sets of CpGs with similar variance. 

Conclusions remained unchanged (Annex I).  

3.3.5 Properties of meQTL SNPs 
	
The peak abundance of SNPs that are cis meQTLs was found in close proximity 

to the target CpG site (Figure 3-8) and the effect sizes tended to be small with a 

maximum peak at R2 = 0.06 (Figure 3-9). SNPs were found to be distributed 

across all the MAF range (Figure 3-10). It is important to highlight that in this 

section, only the most significant association per CpG sites was considered, 

which is not necessarily the causal genetic variant.  
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Figure 3-8. Distance of cis meQTL SNP to target CpG site. Histogram showing the 

proportion of CpG sites with a meQTL acting at a given distance. Only the most 

significantly associated SNP per CpG site is considered in this plot. 
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Figure 3-9. Proportion of the variance explained by cis meQTLs. Histogram of R-

squared showing only the most significant association per CpG site.  

 

	

Figure 3-10. MAF distribution of cis meQTLs. Histogram of MAFs showing only the 

most significant association per CpG site.  
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3.3.6 Blood meQTLs are likely to be shared across blood cell-subtypes 
	
Since the analyses performed so far were in whole blood samples, we further 

sought to identify blood cell-type specific meQTLs. We performed analyses 

testing if DNA methylation levels at each CpG site were significantly associated 

with the interaction between genotype and proportion of each CD4+ T cells, CD8+ 

T cells, B cells, natural killers, monocytes, and granulocytes. We did not identify 

any genome-wide significant meQTL for any of the tested interactions at 5% 

FDR. 
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Table 3-2. Enrichment and depletion of CpG sites affected by cis meQTLs  



	 51	

3.4 Discussion 
	
We know from previous studies that DNA methylation at specific loci in the 

genome can be influenced by genetic effects. The aims of this study were to 

characterize DNA methylation heritability at different functional regions of the 

genome using the classical twin study and to identify the genetic variants 

contributing to DNA methylation variability both by replicating published results 

on the 450K array and by using the new EPIC array to identify novel effects.  

The patterns of heritability observed in this study were in line with a 

published study conducted in whole blood [89], where they observed that highly 

heritable sites (h2 ≥ 0.5) showed an enrichment in CpG island shores and 

depletion at CpG islands. One of the key novel results from this chapter was the 

assessment of DNA methylation heritability on a genome-wide scale using the 

new EPIC array, which targets enhancers. Strong heritability (h2 > 0.4) was 

observed for at least 10% of the CpG sites in the array, and for almost half of 

those sites we were able to identify common genetic variants influencing their 

methylation levels.  

The strongest genetic effects on DNA methylation were observed at CpG 

sites away from transcription start sites and outside of the CpG islands. These 

results suggest that DNA methylation variation at promoters is mostly due to non-

genetic effects, which may include environmental or stochastic factors. It is 

important to note that these low heritability estimates observed mainly at 

promoters may arise from the lack of actual variation. These CpG sites exhibit 

very low methylation values and the observed variation might be only the result 

of measurement error. Others have addressed this issue by looking only at the 

top 10% variable CpG sites interrogated by the array, which limits the analysis to 

a reduced subset of CpG sites [45]. 
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Further annotation of CpG sites using predicted chromatin states of PMCs 

showed that enhancers are the regions of the genome where genetics effects 

are stronger. Conversely, TFBSs are regions where weak genetic effects are 

observed.   

 The second main novel result in this chapter was the identification of 

common genetic variants that influence DNA methylation levels at CpG sites 

profiled on the EPIC array. By looking at local and distal effects of genetic 

variants through QTL analysis we were able to observe that the affected CpG 

sites are located in very different genomic regions, which might indicate different 

mechanisms of gene regulation exerted by genetic variation. It would be 

interesting as well to investigate if cis and trans meQTLs fall within particular 

regions of the genome. From work done by Dr. Elena Carnero-Montoro 

(manuscript in preparation) characterizing meQTLs identified with the 450K 

dataset, we know that cis meQTLs are enriched in TFBSs, while trans meQTLs 

are depleted. It has been planned to extend the approach used on the 450K 

meQTLs to characterize novel EPIC meQTL SNPs identified in this chapter.  

In this study we looked at whole blood and used estimated cell proportions 

to investigate if this could mediate an association with genotype. We did not 

identify blood cell-type specific meQTLs, which may suggest a lack of power 

[109], but also suggests that cell-specific genetic effects may not be common as 

shown in a recent study looking at almost 200 samples of purified monocytes, 

neutrophils, and naïve CD4+ T cells that reported less than 0.1% of CpG sites 

having a cell-type specific QTL [94]. In this same study, cell-type specific histone 

and expression QTLs were found to be more abundant. In addition, one study 

following a similar approach using whole blood and a proxy for cell counts also 

showed evidence of cell-type specific expression QTLs [109]. These results 
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suggest that gene regulation mechanisms of cell-type specific QTLs may not be 

mediated by DNA methylation to a great extent.  

The main strength of this study was the use of the new EPIC array that 

allows the exploration of almost twice the number of CpG sites compared to its 

predecessor the 450K array. However, the number of samples profiled with this 

platform at the moment is a limitation. Currently, more samples are being profiled 

in TwinsUK with the idea of combining them with these 226 samples and 

extending the analyses to include the functional annotation of SNPs that are 

meQTLs.   
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4. The effect of in vitro fertilisation on DNA methylation 
profiles at birth 

	

4.1 Introduction 
	
As the frequency of in vitro fertilisation (IVF) treatment increases worldwide, 

much research effort has focused on exploring both short and long-term health 

outcomes associated with conception via IVF, with contradictory results. A 

number of studies have observed associations with adverse perinatal and 

obstetric outcomes including low birth weight, preterm birth, perinatal mortality, 

congenital malformations, placental complications, and increased frequency of 

imprinting disorders such as Angelman syndrome and Beckwith-Wiedemann 

syndrome [111–114]. On the other hand, parallel efforts have reported that these 

associations are not attributed to IVF treatment itself, but rather to multiple 

pregnancy or parental subfertility, both common factors in IVF births [115, 116]. 

Further research is required to identify potential factors associated with 

conception via IVF, including not only health outcomes, but also biological 

consequences such as epigenetic modifications.  

Given that birth weight and imprinting disorders are controlled at least in 

part by epigenetic factors [90, 117], IVF may have an influence on epigenetic 

profiles, potentially resulting in changes that persist well after birth and over the 

life course. Epigenetic mechanisms are considered possible mediators of the 

developmental origins of health and disease [118], therefore an assessment of 

the influence of IVF on DNA methylation profiles may give some insights into 

mechanisms underlying potential related health outcomes. Establishment of 

DNA methylation profiles in the germ line and embryo takes place early in 

development [119]. Theoretically, this epigenetic reprogramming could therefore 

be influenced by IVF-related interventions that occur very early, prior to 
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blastocyst implantation. Indeed, induction of ovulation, embryo culturing, and 

cryopreservation, among others, have all been linked to specific alterations in 

DNA methylation in mice, although results are somewhat inconsistent [120–122].  

Most studies in humans comparing naturally- and IVF-conceived 

newborns have interrogated DNA methylation alterations targeting almost 

exclusively imprinted Differentially Methylated Regions (DMRs). These studies 

have reported hypomethylation at the KvDMR1 DMR in peripheral blood and cord 

blood of IVF children [123, 124]. Reduced methylation was also observed at the 

H19 DMR in placentas and buccal epithelium of IVF newborns [80, 125]. At the 

MEST DMR, hypermethylation was observed in maternal peripheral blood and 

umbilical cord blood of IVF newborns [126]. However, a different study reported 

hypomethylation at the MEST DMR in placentas of IVF cases [125].  

High-throughput approaches using bead array technology have also 

interrogated DNA methylation in IVF in a genome-wide manner.  Katari et al., 

2009, reported differential methylation at 78 genes in cord blood and 40 in 

placenta with at least two differentially methylated CpG sites (P≤0.08) when 

looking across the promoters of 736 genes (GoldenGate Array, Illumina) in 10 

cases and 13 controls [127]. A more extensive study using the promoter-enriched 

Illumina Infinium HumanMethylation27 bead array in cord blood samples from 10 

IVF cases and 8 controls, reported a total of 24 genes with at least two 

differentially methylated CpG sites (P<0.05) [128]. More recently, a study used 

the genome-wide Illumina Infinium HumanMethylation450 bead array in samples 

from 38 IVF-conceived newborns followed by fresh embryo transfer, 38 IVF-

conceived followed by cryopreserved embryo transfer, 18 born to subfertile 

parents after conception by intrauterine insemination, and 43 controls born to 

fertile parents [129]. This platform interrogates CpG sites across the whole 
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genome although with a limited coverage since it targets gene-centric 

annotations [130]. The authors identified differential methylation at multiple sites, 

including metastable epialleles. 

Here, we interrogated evidence for differential methylation between IVF 

and non-IVF newborn twins in a more comprehensive manner by conducting 

epigenome-wide association scans (EWAS) [68] using methylated DNA 

immunoprecipitation followed by deep sequencing (MeDIP-seq) [131] genome-

wide in samples from cord blood, and its mononuclear fraction, collected at birth 

from IVF and non-IVF twins. The use of twins in this study allowed the partition 

of the observed variance in DNA methylation into genetic and environmental 

factors. The approach also avoids potential spurious associations due to an 

imbalanced number of multiple and single pregnancies between conception 

method groups. 

4.2 Methods  

4.2.1 Subjects and sample collection 
	
The study included 47 IVF and 60 non-IVF newborn twins (from 54 twin pairs) 

from the Peri/postnatal Epigenetic Twins Study (PETS), Melbourne, Australia. 

Recruitment and full study procedure has been described previously [81, 132]. 

Cord blood was collected at birth and used to process mononuclear cells by Ficoll 

gradient centrifugation as described previously [133]. Whole blood cells (WBCs) 

from cord blood were available for a total of 98 twins (40 IVF and 58 non-IVF) 

and cord blood mononuclear cells (CBMCs) for a total of 82 twins (35 IVF and 47 

non-IVF). Maternal age and method of conception were determined via 

questionnaire at recruitment (18-20 weeks gestation). Twins of mothers who said 

yes to IVF or ICSI treatment were classified as IVF regardless of the use of 

ovulation induction medication or other fertility treatments. Maternal smoking 
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status was collected via questionnaire on recruitment and at 24 and 36 weeks of 

pregnancy. Birth weight was collected during the immediate neonatal period. 

Zygosity and chorionicity were determined by physical examination of the inter-

placental membranes at birth, and by genetic test when required, as described 

previously [81, 132]. For a subset of the whole blood samples (n=54, 22 IVF and 

32 non-IVF), blood cell subtype counts were obtained through automatic 

differential counting. Pregnancy complications were recorded and are shown in 

Table 4-1. 

Table 4-1. Pregnancy complications 
 Occurrence (N) 

Pregnancy complications non-IVF IVF 

Gestational diabetes 0 1 
Vacuum-assisted vaginal delivery 0 1 
Intrauterine growth restriction 1 2 
Shortened cervix 1 1 
Elevated blood pressure 0 2 
Twin-to-twin transfusion syndrome 1 0 
Hyperemesis 1 0 

4.2.2 DNA methylation profiling 
	
MeDIP-seq was performed at BGI-Shenzhen, Shenzhen, China. Extracted DNA 

was fragmented using a Covaris sonication system and sequencing libraries 

were prepared from 5μg fragmented genomic DNA. End repair, <A> base 

addition and adaptor ligation steps were performed using Illumina’s Single-End 

DNA Sample Prep kit. Adaptor-ligated DNA was immunoprecipitated by anti-

5mC using a commercial antibody (Diagenode) and MeDIP products were 

validated by quantitative PCR. MeDIP DNA was purified with ZYMO DNA Clean 

& Concentrator-5 columns and amplified using adaptor-mediated PCR. DNA 

fragments between 200 and 500 bp in size were gel-excised, and the 

amplification quality and quantity were evaluated by Agilent BioAnalyzer 

analysis. The libraries were subjected to highly parallel 50-bp single-end 
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sequencing on the Illumina GAII platform. All sequencing data passed initial 

quality checks for base composition (no exclusions) using FASTQC v0.10.0. For 

each individual, ~30 million reads were generated and mapped onto hg19 using 

BWA. After removing duplicates, we filtered data using quality score Q10. We 

quantified methylation levels using MEDIPS [134] producing the mean relative 

methylation score (RPM) in 500-bp bins (overlap of 250 bp) across the genome. 

Altogether, there were 11,524,145 windows and these were used for the 

analyses. 

4.2.3 Epigenome-wide IVF-DMR analyses 
	
Data were analyzed by subsets looking at each tissue type independently and 

looking at all samples together in order to identify tissue-independent and tissue-

shared IVF-associated differentially methylated regions (IVF-DMRs) as shown in 

Figure 4-1. Methylation bins with RPM values equal to zero in more than 50% of 

the individuals were excluded resulting in 9,592,803 and 9,285,089 bins to be 

analyzed in WBCs and CBMCs, respectively. Transformed to standard normal 

form (N(0,1)) methylation scores in each genomic bin were regressed using a 

linear mixed-effects model to account for twin structure (lme4 package [135] in 

R [107]). Tissue type, birth weight, sex, maternal smoking, DNA purity, DNA 

concentration, and the loadings of the first five principal components were used 

as covariates and included as fixed effects in the model. Family and zygosity 

were included as random effects. The principal components were included to 

account for unknown sources of variation, such as cell heterogeneity. Correction 

for multiple testing was performed by a Benjamini-Hochberg FDR calculation. 
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Figure 4-1. Analysis flow chart. DNA from whole blood cells (WBCs) and cord blood 

mononuclear cells (CBMCs) of IVF and non-IVF twins was subjected to MeDIP-seq. 

Relative methylation scores (RPM) were calculated in 500 bp bins. Principal component 

analysis (PCA) was used to identify covariates and global patterns of methylation. IVF-

DMR analyses were conducted in all samples available and in WBCs and CBMCs 

separately. Validation of two IVF-associated differentially methylated regions (IVF-

DMRs) was performed with EpiTYPER in monozygotic (MZ) twins. 

4.2.4 Variance decomposition of WBC IVF-DMRs 
	
The contribution of additive genetic (A), common environmental (C), and unique 

environmental (E) factors to DNA methylation was estimated using the ACE 

model based on the classical twin design [105]. The model was fitted using the 

OpenMX statistical package [106]. RPM values without adjustment for covariates 

were used to estimate the ACE proportions.  
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4.2.5 Statistical analysis 
	
Pairwise correlations and PCA were performed using RPM values across all bins 

with values > 0 in at least 50% of the samples. Hierarchical clustering was 

performed using Euclidean distance as measure of dissimilarity and average 

linkage clustering.  

4.2.6 Validation with EpiTYPER 
	
Validation of two top signals in genes previously linked to infertility, TNP1 and 

C9orf3, was pursued with EpiTYPER. Five hundred nanograms of genomic DNA 

were bisulphite converted using the MethylEasy Exceed Rapid Bisulphite 

Modification Kit (Human Genetic Signatures, North Ryde, NSW, Australia). 

Primers to target the regions in TNP1 and C9orf3 were designed using the 

EpiDesigner tool (Sequenom Inc., Herston, QLD, Australia). The H19 CTCF6 

region was assayed in a previous study [133]. Primers, genomic coordinates and 

PCR conditions are shown in Table 4-2. Methylation levels were determined by 

EpiTYPER on the MassARRAY System (Sequenom Inc., Herston, QLD, 

Australia). Differential methylation analysis considered the average of 2-3 

technical replicates and was performed using data on single CpG sites.  
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Table 4-2. PCR conditions 
 
 Assay 1 (TNP1) Assay 2 (C9orf3) 

Location chr2:217727235-217727594 chr9:97503908-97504381 

Product 

size 

360 474 

Number of 

analysable 

CpG sites 

2 2 

Left primer aggaagagagTTGTGTGAAATTATGTTTT

ATGTTTGT 

aggaagagagATTTTATTTTTAGTGGTAT

GGTTTT 

Right 

primer 

cagtaatacgactcactatagggagaaggctCCCT

ACCTTAAAATAACCCCACTTA 

cagtaatacgactcactatagggagaaggctACC

TTCTAAATAAAACTCCCTATATAATC 

PCR 

conditions 

95°C for 10 min 

5 cycles of 95°C for 20 s, 59-60°C for 30 

s, and 72°C for 2 min 

40 cycles of 95°C for 20 s, 59-60°C for 

30 s, and 72°C for 2 min 

72°C for 10 min 

95°C for 10 min 

5 cycles of 95°C for 20 s, 56-58°C for 30 

s, and 72°C for 2 min 

40 cycles of 95°C for 20 s, 56-58°C for 

30 s, and 72°C for 2 min 

72°C for 10 min 

4.3 Results 

4.3.1 Genome-wide methylation profiles in twins 
	
We profiled DNA methylation levels from a total of 107 newborn twins (47 

conceived via IVF and 60 conceived in vivo) in whole blood and in cord blood 

mononuclear cells (WBCs and CBMCs, respectively). Details of any fertility 

treatment used and demographic characteristics that represent potential 

confounders of DNA methylation levels at birth such as, sex, birth weight, 

maternal age, and maternal smoking status are shown in Table 4-3.  
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Table 4-3. Sample description 

Group 
Total number of 
twins (number of 
complete sets) 

Zygosity and 
chorionicitya Sexb 

Birth weight 
(kg) 

mean(s.d.) 

Maternal age 
(years) 

mean(s.d.) 

Maternal 
smoking  

(% smokers) 
Ovarian 

stimulation ICSI GIFT Frozen 
embryo 

WBCs           

IVF 40 (20) 10 MZ MC 
30 DZ DC 

18(F) 
22(M) 2.57(4.77) 36(4) 20% 6(No) 

34(Yes) 
22(No) 
18(Yes) - 28(No) 

12(Yes) 

Non-IVF 58 (29) 
14 MZ MC 
12 MZ DC 
32 DZ DC 

34(F) 
24(M) 2.58(3.99) 32(5) 28% 56(No) 

2(Yes) - 56(N) 
2(Y) - 

CBMCs           

IVF 35 (16) 

9 MZ MC 
1 MZ DC 
25 DZ DC 

 

16(F) 
19(M) 2.50(4.42) 35(5) 23% 1(No) 

34(Yes) 
14(No) 
21(Yes) - 24(No) 

11(Yes) 

Non-IVF 47 (22) 
12 MZ MC 
10 MZ DC 
25 DZ DC 

30(F) 
17(M) 2.60(3.48) 32(4) 28% 45(No) 

2(Yes) - 45(N) 
2(Y) - 

aMZ, monozygotic; DZ, dizygotic; MC, monochorionic; DC, dichorionic 
bF, female; M, male 
cN, no; Y, yes 
ICSI, intracytoplasmic sperm injection; GIFT, gamete intra-fallopian transfer
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Hierarchical clustering of pairwise correlations of genome-wide methylation 

profiles showed that global patterns of methylation were not influenced by tissue 

type, method of conception, chorionicity, or zygosity (Figure 4-2). 

 

Figure 4-2. Heatmap of pairwise correlations of genome-wide methylation profiles. 

Hierarchical clustering was performed on pairwise correlations of methylation profiles. 

Top bars were coloured to indicate sample type, method of conception, chorionicity, and 

zygosity. 

We then explored genome-wide patterns of DNA methylation variability in 

the dataset. Principal component analysis was used to identify factors that were 

significantly associated with genome-wide variability in DNA methylation profiles. 



	 64	

The first five principal components in the dataset, which explained ~13% of the 

total variance in DNA methylation, were at least nominally associated (P<0.05) 

with sample type (WBCs vs CMBCs), birth weight, maternal smoking, and 

conception method (Figure 4-3a). 

 

	
Figure 4-3. Global methylation patterns. (a) Biological factors associated with 

principal components of variation of methylation profiles. Variables marked with * were 

only available in a subset of the sample (n=54). (b) Within-pair methylation correlation 

in WBCs and CBMCs. 

 

We next estimated the within twin-pair correlation of methylation profiles 

in twin pairs available in both datasets. In concordance with previous studies [90], 

we observed higher median correlation within monozygotic (MZ) twin pairs 

compared to dizygotic (DZ) twin pairs (Figure 4-3b). Previous studies have shown 

that twin chorionicity can have an effect on within-pair DNA methylation 

differences, but not with consistent direction of effect across tissues [39, 90, 133]. 

In our study, we did not observe significant chorionicity-related methylation 
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differences (Figure 1b), but the number of MZ twins within chorionicity categories 

was relatively low (n=8 monochorionic and n=5 dichorionic pairs). Interestingly, 

the method of conception showed methylation profile differences within MZ twin 

pairs. MZ IVF twins had higher median correlation compared to MZ non-IVF twins 

in WBC, but the opposite trend was observed in CBMCs, and in both cases the 

MZ IVF sample was small (n=3). 

4.3.2 IVF-DMRs in CBMCs and WBCs 
	
In order to identify tissue-independent and tissue-specific IVF-associated DMRs, 

we compared DNA methylation profiles in WBCs and CBMCs in relation to 

method of conception adjusting for birth weight, sex, maternal smoking, and the 

first 5 principal components, which capture partly cell heterogeneity (Figure 4-3b). 

Epigenome-wide analyses of DNA methylation in relation to method of 

conception did not identify genome-wide significant signals in the CBMCs subset 

or in the combined CBMC and WBC datasets, after correction for multiple testing 

(data not shown). In WBCs alone, one significant DMR was observed at a false 

discovery rate (FDR) of 5% (Figure 4-4). This was located ~3kb upstream of 

TNP1 (chr2:217,726,751-217,727,250), which encodes a transition nuclear 

protein that replaces histones and is subsequently replaced by protamines during 

spermiogenesis. A deletion in the promoter region of this gene, which reduces 

its expression, has been reported in infertile men [136]. Methylation upstream of 

TNP1 might have an impact on its expression. In mice, methylation changes 

during spermatogenesis have been observed at TNP1, which suggests a role of 

methylation in the regulation of this gene [137].  
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Figure 4-4. TNP1 IVF-DMR. Left, manhattan plot of the WBC IVF-DMR analysis 

showing 1 genome-wide significant hit at 5% FDR (red line) and 46 suggestive hits at 

25% FDR (blue line). Right, boxplot of the methylation values (RPM) at the top IVF-DRM 

identified ~3kb upstream of TNP1. 

To explore the biological characteristics of the top-ranked results in the 

IVF epigenome-wide analyses we selected a more liberal threshold of FDR 25%, 

at which 46 IVF-DMRs were identified (Table 4-4). Interestingly, the third-ranked 

DMR genome-wide was located in the first intron of C9orf3 (chr9:97,504,001-

97,504,500), which has been associated with polycystic ovary syndrome in 

women [138] and development of erectile dysfunction after radiotherapy for 

prostate cancer in men [139]. Another signal within this list was located in intron 

1 of STOX2 (chr4:184,814,001-184,814,500), whose reduced expression has 

been implicated in pre-eclampsia [140]. Since adverse perinatal outcomes may 

be associated with maternal age, we further adjusted for this covariate and 

observed that the 46 FDR 25% WBC IVF-DMRs remained significant (Table 4-4).
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Table 4-4. FDR 25% WBC IVF-DMRs 
Chromosome Start End p FDR 

adjusted p 
p (adjusted 

for 
maternal 

age) 

Gene name* Gene start* Gene end* 

chr2 217726751 217727250 2.30E-09 0.0221 6.40E-10 AC007557.1 217735495 217736362 
TNP1 217724181 217724787 

chr5 178761751 178762250 5.43E-08 0.1244 1.76E-05 ADAMTS2 178537852 178772431 
chr9 97504001 97504500 5.83E-08 0.1244 5.14E-07 C9orf3 97488983 97849441 
chr5 9275751 9276250 5.86E-08 0.1244 1.67E-06 SEMA5A 9035138 9546187 
chr4 184814001 184814500 7.95E-08 0.1244 4.96E-07 STOX2 184774584 184944679 
chr5 142488501 142489000 8.73E-08 0.1244 5.76E-07 ARHGAP26 142149949 142608576 
chr9 118148751 118149250 9.20E-08 0.1244 4.61E-06 DEC1 117904097 118164923 
chr9 118149001 118149500 1.04E-07 0.1244 3.47E-06 DEC1 117904097 118164923 

chr11 82654251 82654750 1.30E-07 0.1250 5.26E-08 C11orf82 82611017 82669319 
PRCP 82534544 82681626 
RAB30 82684175 82782965 

chr19 6165251 6165750 1.40E-07 0.1250 1.00E-06 RFX2 5993175 6199583 
ACSBG2 6135258 6193112 
MLLT1 6212966 6279959 

chr1 85522251 85522750 1.43E-07 0.1250 2.56E-07 WDR63 85464830 85598821 
MCOLN3 85483765 85514182 

chr17 42569001 42569500 1.64E-07 0.1274 1.90E-05 GPATCH8 42472652 42580798 
chr4 141606501 141607000 2.03E-07 0.1274 1.59E-05 TBC1D9 141541919 141677274 
chr5 137736001 137736500 2.06E-07 0.1274 1.13E-06 REEP2 137774706 137782658 

KDM3B 137688285 137772717 
chr5 150614501 150615000 2.14E-07 0.1274 2.23E-07 SLC36A3 150656323 150683327 

GM2A 150591711 150650001 
CCDC69 150560613 150603706 
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chr17 36918251 36918750 2.32E-07 0.1274 2.02E-07 MLLT6 36861795 36886056 
CISD3 36886488 36891297 

CWC25 36956687 36981734 
PIP4K2B 36921942 36956379 
PCGF2 36890150 36906070 

CTB-58E17.5 36905613 36906969 
PSMB3 36908989 36920484 

AC006449.1 36884086 36884451 
chr6 126138251 126138750 2.36E-07 0.1274 2.12E-06 NCOA7 126102307 126252266 
chr7 144431251 144431750 2.70E-07 0.1274 5.29E-09 TPK1 144149034 144533488 

chr12 70937251 70937750 2.76E-07 0.1274 1.83E-06 PTPRB 70910630 71031220 
chr4 141606251 141606750 2.80E-07 0.1274 1.50E-05 TBC1D9 141541919 141677274 

chr13 90019001 90019500 2.84E-07 0.1274 5.94E-07 - - - 
chr11 74179001 74179500 2.92E-07 0.1274 1.61E-09 LIPT2 74202757 74204778 

POLD3 74204896 74380162 
KCNE3 74165886 74178774 

chr12 99153001 99153500 3.93E-07 0.1637 2.44E-07 ANKS1B 99120235 100378432 
APAF1 99038919 99129204 

chr2 223336751 223337250 4.47E-07 0.1788 2.00E-06 SGPP2 223289236 223425667 
chr8 120972001 120972500 4.98E-07 0.1869 3.26E-08 DEPTOR 120885957 121063152 

chr17 38047001 38047500 5.25E-07 0.1869 7.83E-06 GSDMB 38060848 38076107 
ZPBP2 38024417 38034149 
IKZF3 37921198 38020441 

ORMDL3 38077294 38083854 
chr4 64626751 64627250 5.45E-07 0.1869 2.67E-06 - - - 

chr16 87256751 87257250 5.51E-07 0.1869 2.12E-08 C16orf95 87117168 87351022 
chr19 10656751 10657250 5.77E-07 0.1869 1.42E-06 CDKN2D 10677138 10679735 

ATG4D 10654571 10664094 
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KEAP1 10596796 10614417 
AP1M2 10683347 10697991 
KRI1 10663761 10676713 

S1PR5 10623623 10628607 
chr7 2487251 2487750 5.85E-07 0.1869 2.03E-05 CHST12 2443223 2474242 

chr11 74178751 74179250 6.82E-07 0.2059 1.31E-07 KCNE3 74165886 74178774 
LIPT2 74202757 74204778 

POLD3 74204896 74380162 
chr10 119176501 119177000 6.87E-07 0.2059 1.11E-06 PDZD8 119040000 119134978 
chr22 34755251 34755750 7.32E-07 0.2094 1.76E-05 - - - 
chr6 161664751 161665250 7.42E-07 0.2094 2.93E-06 AGPAT4 161551011 161695093 

chr16 17161751 17162250 7.80E-07 0.2137 2.41E-06 XYLT1 17195626 17564738 
chr18 23695001 23695500 8.39E-07 0.2235 1.97E-06 PSMA8 23713816 23773319 

SS18 23596578 23671181 
chr9 26364751 26365250 8.90E-07 0.2267 1.02E-06 - - - 
chr1 25227001 25227500 9.05E-07 0.2267 1.61E-05 RUNX3 25226002 25291612 

chr13 68877251 68877750 9.43E-07 0.2267 2.19E-05 - - - 
chr9 89126501 89127000 9.59E-07 0.2267 7.00E-06 - - - 

chr13 35317501 35318000 9.72E-07 0.2267 2.51E-05 - - - 
chr21 19575001 19575500 9.92E-07 0.2267 2.31E-06 CHODL 19273580 19639690 
chr2 169470001 169470500 1.06E-06 0.2307 4.35E-07 CERS6 169312372 169631644 

chr12 4310251 4310750 1.06E-06 0.2307 8.13E-05 - - - 
chr6 157136501 157137000 1.15E-06 0.2448 1.61E-06 ARID1B 157099063 157531913 

chr14 104067251 104067750 1.17E-06 0.2448 8.21E-06 APOPT1 104029299 104073860 
BAG5 104022881 104029168 
KLC1 104028233 104167888 

RP11-73M18.2 104029299 104152261 

*From GENCODE v19
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The non-IVF group included a small number (n=4) of newborns conceived 

with other types of fertility treatments not equivalent to IVF, such as gamete intra-

fallopian transfer (GIFT) and ovarian stimulation. We re-analysed the 46 FDR 

25% WBC IVF-DMRs excluding GIFT (n=2) and non-IVF ovarian stimulation 

(n=2) controls, and observed that conclusions remained unchanged (Annex II).  

Hierarchical clustering using DNA methylation levels at these 46 FDR 25% 

DMRs alone classified 38 out of 40 IVF-twins by method of conception ( 

Figure 4-5). We also explored these signals with respect to functional 

annotations. A total of 10 FDR 25% WBC IVF-DMRs overlapped CpG sites 

previously shown to be dynamic during development [34], 20 overlapped DNase 

I hypersensitivity sites (wgEncodeRegDnaseClusteredV3) [141], one overlapped 

a CpG island (cpgIslandEx) [142], and none overlapped with candidate 

metastable epialleles [143] ( 

Figure 4-5). 
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Figure 4-5. WBC IVF-DMRs. Heatmap rows correspond to the 98 WBC samples while 

columns correspond to the 46 FDR 25% WBC IVF-DMRs. The vertical colour bar 

indicates method of conception (IVF, green; non-IVF, blue). Top panel shows the fraction 

of variance explained by additive genetic (A), shared environmental (C), and unique 

environmental factors (E).  Horizontal colour bars indicate overlap (violet) or absence 

(gray) of dynamic CpG sites, DNase I hypersensitivity sites, or CpG islands with the 

DMR. 

Cell type-specific DNA methylation can impact the profiles observed in a 

population of cells, such as in a whole blood sample, and we therefore accounted 
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for blood cell type heterogeneity using a twofold approach. First, we performed 

principal component analysis on the methylation levels of the entire set of WBC 

samples, and our main EWAS analyses above are corrected for the first five 

principal components (PCs), which likely capture variation attributed to technical 

and biological factors, potentially including cell heterogeneity. To assess whether 

the first five PCs capture cell heterogeneity, blood cell subtype counts were 

obtained through automatic differential counting for a subset of the WBC samples 

(n=54 twins, 22 IVF and 32 non-IVF) and these were compared against the 

distributions of the first 5 PCs. Proportion of neutrophils, eosinophils and 

lymphocytes were associated (P<0.05) with the loadings of the second, third and 

fourth principal components, respectively (Figure 4-3a). Therefore, since the 

EWAS model used in this study took into account the loadings of the first five 

principal components, these analyses already take into account the influence of 

cell heterogeneity to a certain extent. 

Second, we re-analysed the 46 FDR 25% WBC IVF-DMRs in the subset of 

54 WBC samples with available cell counts, adjusting for the proportion of 

neutrophils, eosinophils, monocytes, and lymphocytes. We also performed 

analyses adjusting for the loadings of the first five principal components within 

this dataset alone. Most results were concordant when comparing across all 

models (Annex III) and only five out the 46 FDR 25% WBC IVF-DMRs were not 

significant (P>0.05) after adjusting for cell proportions in the subset of 54 

individuals (chr8:120,972,001-120,972,500, chr7:2,487,251-2,487,750, 

chr18:23,695,001-23,695,500, chr12:4,310,251-4,310,750, and 

chr14:104,067,251-104,067,750). 
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4.3.3 Variance decomposition of WBC IVF-DMRs 
	

Given that epigenetic changes were potentially affecting infertility genes, 

we wanted to investigate if the findings may capture a genetic signature affecting 

DNA methylation that could be transmitted to offspring. We applied twin variance 

decomposition analyses to partition the total epigenetic variance into additive 

genetic (A), and common (C) and unique (E) environmental components (ACE) 

[105]. The ACE model was used to determine the contribution of genetics, shared 

intrauterine environment due to shared maternal influences, and non-shared 

(twin-specific) or stochastic factors to epigenetic variation. The mean contribution 

of additive genetic effects (narrow-sense heritability) to DNA methylation across 

the genome in different tissues from newborns has been previously estimated to 

be between 0.05 and 0.12 [90]. Here we estimated the average genome-wide 

narrow-sense heritability for DNA methylation in WBCs at 0.06. At the 46 FDR 

25% WBC IVF-DMRs, the major contributors to DNA methylation variation were 

non-shared or stochastic events ( 

Figure 4-5). However, several FDR 25% IVF-DMRs had evidence for 

heritability (A > 0.4), suggestive of genetic effects underlying specific IVF-

associated DNA methylation changes. These included an intronic region in DEC1 

(chr9:118,148,751-118,149,500), a region 33kb away from XYLT1 

(chr16:17,161,751-17,162,250), and an intergenic region in chromosome 12 

(chr12:4,310,251-4,310,750). When looking at the two DMRs associated to 

infertility genes, DNA methylation variation showed no evidence for genetic 

effects (A=0) near TNP1, while heritability at the DMR in C9orf3 was estimated 

at 0.25.  
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4.3.4 Effects of IVF on imprinting 
	
Previous studies have explored DNA methylation patterns in IVF births 

specifically at imprinting control regions (ICRs). We therefore assessed whether 

there was an enrichment of differential methylation effects at 34 known ICRs 

[144] in our genome-wide results, but no enrichment was observed (P>0.05). 

However, when we explored individual signals at candidate IVF-DMRs we were 

able to replicate one previously reported ICR IVF-associated DMR. Concordantly 

with previous IVF methylation studies in placental tissue [125] and buccal 

epithelium [80], we observed hypomethylation at the 6th CTCF binding site within 

the H19/IGF2 (H19 CTCF6) DMR (Figure 4-6). This association was observed in 

CBMCs (P=0.01), but not in WBCs (data not shown).  

	
Figure 4-6. H19 CTCF6 IVF-DMR replication. Boxplot of the methylation values (RPM) 

at the sixth CTCF binding site within the H19 DMR (H19 CTCF6). 

4.3.5 Effects of intracytoplasmic sperm injection (ICSI) 
	
Intracytoplasmic sperm injection (ICSI) is a technique in IVF used to treat couples 
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occurs by placing spermatozoa near an egg, ICSI consists of the direct injection 

of a selected single sperm cell into the egg. This manipulation may introduce 

additional risk factors [146]. To assess the effect of ICSI on the 46 FDR 25% 

WBC IVF-DMRs we adjusted for the use of this technology and also compared 

the ICSI and the conventional IVF groups separately against the non-IVF group. 

After adjustment for ICSI, p-values increased at several FDR 25% IVF-DMRs 

(Table 4-5), suggesting that ICSI or paternal infertility might have a role in these 

methylation changes. One FDR 25% IVF-DMR signal (chr1:85,522,251-

85,522,750) appeared stronger after adjustment, suggesting either a female 

infertility effect or that ICSI prevents or corrects a methylation change that occurs 

in conventional IVF. This DMR was located upstream of WDR63, a gene mainly 

expressed in testis, fallopian tube, and adrenal gland [147].
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Table 4-5. Effect of intracytoplasmic sperm injection on the FDR 25% WBC IVF-DMRs 

      
IVF (n=40) vs non-IVF (n=58) 

IVF (n=34) vs non-IVF (n=58)  conventional IVF (n=16) vs non-IVF 
(n=58) ICSI (n=18) vs non-IVF (n=58) 

adjusted for ICSI 

Chromosome Start End Estimate SE p Estimate SE p Estimate SE p Estimate SE p 

chr2 217726751 217727250 1.18 0.19 2.30E-09 1.45 0.26 7.71E-08 -1.42 0.26 7.44E-08 -1.16 0.27 1.29E-05 

chr5 178761751 178762250 -1.08 0.2 5.43E-08 -1.09 0.29 8.23E-05 0.87 0.30 1.89E-03 1.11 0.27 2.52E-05 

chr9 97504001 97504500 1.07 0.2 5.83E-08 0.77 0.27 2.77E-03 -0.88 0.31 2.67E-03 -1.30 0.25 1.95E-07 

chr5 9275751 9276250 1.09 0.19 5.86E-08 1.17 0.27 1.04E-05 -1.13 0.29 6.50E-05 -1.13 0.27 2.75E-05 

chr4 184814001 184814500 -0.96 0.18 7.95E-08 -0.97 0.24 3.94E-05 0.94 0.26 1.37E-04 1.15 0.23 8.35E-07 

chr5 142488501 142489000 -1.11 0.2 8.73E-08 -1.1 0.28 7.60E-05 1.25 0.31 5.16E-05 1.08 0.28 7.10E-05 

chr9 118148751 118149250 1.09 0.2 9.20E-08 1.35 0.28 1.28E-06 -1.30 0.29 8.90E-06 -1.02 0.28 1.68E-04 

chr9 118149001 118149500 1.08 0.2 1.04E-07 1.31 0.28 2.22E-06 -1.23 0.29 2.00E-05 -1.05 0.29 1.69E-04 

chr11 82654251 82654750 -1.05 0.19 1.30E-07 -0.97 0.29 4.68E-04 0.95 0.31 1.53E-03 0.88 0.27 5.94E-04 

chr19 6165251 6165750 0.94 0.18 1.40E-07 0.89 0.25 1.90E-04 -0.88 0.28 9.35E-04 -1.02 0.23 7.36E-06 

chr1 85522251 85522750 0.99 0.18 1.43E-07 1.54 0.25 4.48E-09 -1.53 0.25 7.41E-09 -0.80 0.28 2.32E-03 

chr17 42569001 42569500 -1.07 0.19 1.64E-07 -1.25 0.27 2.21E-06 1.30 0.28 3.81E-06 1.21 0.26 2.44E-06 

chr4 141606501 141607000 1.09 0.19 2.03E-07 1.26 0.26 3.56E-06 -1.33 0.30 1.05E-05 -1.13 0.26 1.83E-05 

chr5 137736001 137736500 -1.03 0.19 2.06E-07 -1.11 0.28 4.12E-05 1.13 0.30 1.39E-04 1.10 0.27 3.78E-05 

chr5 150614501 150615000 -1.08 0.21 2.14E-07 -1.2 0.29 2.80E-05 1.24 0.31 3.18E-05 1.07 0.29 1.21E-04 

chr17 36918251 36918750 -1.1 0.21 2.32E-07 -0.96 0.29 6.01E-04 1.05 0.31 4.88E-04 1.03 0.28 1.83E-04 

chr6 126138251 126138750 -0.99 0.19 2.36E-07 -0.75 0.27 3.29E-03 0.79 0.30 4.92E-03 1.22 0.25 8.94E-07 

chr7 144431251 144431750 1.02 0.19 2.70E-07 0.84 0.28 1.30E-03 -0.85 0.28 1.48E-03 -1.17 0.27 1.77E-05 

chr12 70937251 70937750 0.88 0.17 2.76E-07 0.72 0.23 1.12E-03 -0.87 0.26 5.26E-04 -0.94 0.20 3.10E-06 

chr4 141606251 141606750 1.01 0.19 2.80E-07 1.16 0.26 8.05E-06 -1.31 0.29 6.93E-06 -1.04 0.25 2.14E-05 

chr13 90019001 90019500 1.06 0.2 2.84E-07 1.25 0.29 8.88E-06 -1.36 0.30 5.09E-06 -0.84 0.29 2.20E-03 

chr11 74179001 74179500 1.07 0.2 2.92E-07 1.3 0.29 7.25E-06 -1.37 0.29 3.15E-06 -1.06 0.29 1.76E-04 
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chr12 99153001 99153500 -1.01 0.2 3.93E-07 -1.02 0.29 2.02E-04 1.02 0.31 4.59E-04 1.24 0.27 3.77E-06 

chr2 223336751 223337250 -1.01 0.2 4.47E-07 -1.41 0.28 4.00E-07 1.50 0.29 1.69E-07 0.77 0.29 4.65E-03 

chr8 120972001 120972500 0.97 0.19 4.98E-07 0.83 0.27 1.22E-03 -0.87 0.29 1.43E-03 -0.96 0.26 1.81E-04 

chr17 38047001 38047500 -1.04 0.2 5.25E-07 -1.3 0.28 4.51E-06 1.31 0.27 1.21E-06 0.74 0.28 5.39E-03 

chr4 64626751 64627250 -0.99 0.19 5.45E-07 -0.87 0.28 9.92E-04 0.86 0.29 1.61E-03 0.98 0.26 1.36E-04 

chr16 87256751 87257250 -0.83 0.16 5.51E-07 -0.97 0.23 1.75E-05 0.94 0.25 9.13E-05 0.82 0.24 3.37E-04 

chr19 10656751 10657250 -1.03 0.2 5.77E-07 -1.09 0.28 6.47E-05 1.17 0.29 3.80E-05 1.13 0.27 2.18E-05 

chr7 2487251 2487750 0.8 0.16 5.85E-07 0.73 0.23 1.06E-03 -0.81 0.24 5.61E-04 -0.94 0.23 3.49E-05 

chr11 74178751 74179250 0.99 0.2 6.82E-07 1.19 0.28 2.15E-05 -1.15 0.28 2.45E-05 -0.82 0.28 2.37E-03 

chr10 119176501 119177000 -1.04 0.2 6.87E-07 -1.03 0.29 3.41E-04 1.16 0.31 1.69E-04 1.14 0.28 4.83E-05 

chr22 34755251 34755750 -0.98 0.2 7.32E-07 -0.8 0.28 2.35E-03 0.97 0.31 1.21E-03 1.15 0.25 3.95E-06 

chr6 161664751 161665250 0.98 0.19 7.42E-07 0.9 0.26 3.89E-04 -0.83 0.29 2.48E-03 -0.81 0.25 7.71E-04 

chr16 17161751 17162250 -1.01 0.2 7.80E-07 -0.99 0.28 2.19E-04 1.17 0.30 4.48E-05 1.08 0.28 1.16E-04 

chr18 23695001 23695500 1.04 0.21 8.39E-07 0.95 0.29 5.83E-04 -1.04 0.32 6.05E-04 -1.11 0.28 3.96E-05 

chr9 26364751 26365250 -0.95 0.19 8.90E-07 -0.96 0.28 2.78E-04 1.13 0.30 9.90E-05 0.96 0.28 2.77E-04 

chr1 25227001 25227500 -0.83 0.17 9.05E-07 -0.87 0.25 3.81E-04 0.78 0.25 1.39E-03 0.99 0.25 5.78E-05 

chr13 68877251 68877750 0.97 0.2 9.43E-07 1.01 0.28 1.44E-04 -1.24 0.28 1.05E-05 -0.84 0.28 1.39E-03 

chr9 89126501 89127000 -0.92 0.19 9.59E-07 -1.14 0.26 9.49E-06 1.10 0.28 6.62E-05 0.76 0.26 2.12E-03 

chr13 35317501 35318000 -0.96 0.2 9.72E-07 -0.54 0.29 4.44E-02 0.54 0.31 6.52E-02 1.04 0.27 7.61E-05 

chr21 19575001 19575500 0.96 0.19 9.92E-07 0.88 0.27 8.63E-04 -0.96 0.30 8.25E-04 -1.13 0.26 1.24E-05 

chr2 169470001 169470500 -1.02 0.21 1.06E-06 -1.31 0.28 2.08E-06 1.33 0.29 6.99E-06 1.04 0.27 5.91E-05 

chr12 4310251 4310750 -0.99 0.2 1.06E-06 -0.91 0.29 8.79E-04 1.02 0.30 4.54E-04 0.87 0.30 1.99E-03 

chr6 157136501 157137000 -0.96 0.19 1.15E-06 -0.78 0.27 2.19E-03 0.91 0.30 1.37E-03 1.30 0.25 1.62E-07 

chr14 104067251 104067750 0.71 0.14 1.17E-06 0.81 0.21 7.35E-05 -0.75 0.22 3.89E-04 -0.58 0.24 9.44E-03 
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4.3.6 Validation of IVF-DMRs 
	
We pursued validation of the differential methylation signals at the top associated 

DMR (located ~3kb upstream of TNP1) and at the third-ranked DMR (located in 

C9orf3), both in or near genes previously linked to infertility. Altogether, four CpG 

sites were targeted for validation using Sequenom’s EpiTYPER technology.  

For the DMR in C9orf3, we were able to target two CpG sites within the 

most-associated 500bp bin in this locus (Figure 4-7). We assayed methylation 

levels in 36 MZ twins included in the discovery EWAS, and observed significantly 

higher methylation in the IVF group, concordant with the MeDIP-seq analysis, at 

both tested CpG-sites in the C9orf3 locus (P=0.02 and P=0.03 respectively), 

therefore validating this signal using a different methylation profiling approach 

(Figure 4-8).  

For the TNP1 DMR we were unable to target CpGs within the most 

associated 500bp bin, and we therefore selected two of the closest CpG sites 

contained within the second most associated DMR in that locus (Figure 4-7). 

Within the sample of 36 MZ twins we also observed higher methylation in the IVF 

group, consistent with the MeDIP-seq signal, with effects close to nominal 

significance (P=0.08) (Figure 4-8). However, correlation between the MeDIP-seq 

signal at the most-associated DMR in TNP1 and the EpiTYPER methylation 

values was, as expected, relatively low as we were unable to target CpG sites 

within this most-associated DMR (correlation of 0.18 and 0 at the two tested 

CpG-sites). We profiled additional samples from DZ twin pairs, but did not obtain 

validation of the signal.  
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Figure 4-7. CpG sites targeted for validation. Top panel shows EWAS signals 

neighbouring the most associated DMR located near TNP1 (a) and C9orf3 (b) genes. 

Bottom panel shows the corresponding 500bp bins tested during EWAS, the CpG sites 

contained in those regions, and the targeted region for PCR. 
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Figure 4-8. IVF vs non-IVF DNA methylation differences using Sequenom’s 

EpiTYPER technology. Horizontal lines show the group median. 

 

We also considered the effect of ICSI compared to conventional IVF in MZ 

twins in the validation dataset. We observed significantly higher methylation in 

the ICSI group at the first CpG of the targeted region near TNP1 and at the first 

CpG site of C9orf3 (Figure 4-9). 

	
Figure 4-9. ICSI vs conventional IVF DNA methylation differences using 

Sequenom’s EpiTYPER technology. Horizontal lines show the group median. 

   

Lastly, we also compared methylation in relation to conception method at 

the H19 CTCF6 DMR in a reduced subset of CBMCs samples (n=42 twins) using 

EpiTYPER. When comparing IVF to non-IVF twins (Figure 4-10) we observed a 

difference with the same direction of effect as in the MeDIP-seq analysis, 

although not significant (P=0.19). Interestingly, when comparing naturally-
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conceived twins to twins that were conceived with any type of medical help 

(Figure 4-10), i.e. not exclusively IVF, the difference reached nominal significance 

(P=0.04), suggesting that differential methylation at this region is associated to 

parental subfertility rather than IVF conception. 

	
Figure 4-10. H19 CTCF6 IVF-DMR replication using Sequenom’s EpiTYPER 

technology. Boxplot of the methylation values at the sixth CTCF binding site within the 

H19 DMR (H19 CTCF6) comparing IVF vs non-IVF newborns (left) and the group using 

any type of medical help vs naturally conceived newborns (right). 
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Figure 4-11. Power estimation. Based on simulations by Tsai & Bell (2015) for a 

sample size of 50 pairs of cases and controls at a genome-wide significance threshold 

of 1 x 10-6. 

4.4 Discussion 
	

Since IVF procedures are carried out during an important period of 

epigenetic reprogramming in early development, we hypothesized that IVF may 

induce epigenetic differences that persist to birth. We were able to identify 

significant and suggestive differentially methylated regions related to IVF 

conception (IVF-DMRs) in WBCs, although our results suggest that at least some 

of these changes may be linked to parental subfertility, which is confounded with 
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in DNA methylation, we were unable to prove that they have a relationship with 

IVF itself. The observation that IVF-DMRs were identified close to genes 

implicated in fertility and reproduction suggests that a genetic signature 

influencing DNA methylation could be transmitted from parent to offspring. To 

assess this further, we estimated the heritability of the IVF-DMRs. We observed 

that the IVF-DMR located in C9orf3, a gene associated with polycystic ovary 

syndrome, was estimated to have a heritability at 25% and eight other FDR 25% 

WBC IVF-DMRs showed heritability greater than this ( 

Figure 4-5).  

The results presented in this study could be explained by different 

scenarios i) IVF is not associated with changes in DNA methylation and any 

differences observed are only due to parental subfertility ii) IVF is in fact the 

cause of the methylation changes, the changes at fertility genes were found by 

chance and have no relationship with the fertility status of the parents iii) both 

parental subfertility and IVF are associated with changes in DNA methylation. 

The first scenario can be tested by comparing the methylation profiles of subjects 

born to subfertile couples after IVF with subjects conceived by IVF from gametes 

of fertile donors. To test the second scenario, it would be necessary to compare 

profiles of non-IVF subjects born to fertile parents with subjects conceived by IVF 

from gametes of fertile donors. The third scenario would be proved if differences 

are observed in both comparisons. 

Epigenetic states of metastable epialleles in mammals are mitotically 

inherited after establishment in early development, therefore shared across 

tissues, and can cause expression variability within isogenic individuals [148]. A 

study in humans looking for systematic inter-individual variation in DNA 

methylation across tissues from two different lineages identified 109 candidate 
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metastable epialleles [143]. Nutritional conditions during conception have been 

shown to be important to the establishment of epigenetic states at some of these 

metastable epialleles [56]. If an influence of IVF on the epigenetic marks of these 

alleles exists, it could potentially cause lifetime lasting effects. A previous study, 

which included newborns from single and multiple pregnancies, identified DNA 

methylation differences in IVF-conception at candidate metastable epialleles, 

although at different epialleles to those affected by maternal nutritional factors 

[129]. In our study, none of the 109 candidate metastable epialleles overlapped 

with the 46 FDR 25% WBC IVF-DMRs. This discrepancy could be attributed to 

differences between single and multiple pregnancies or to low power to detect 

such changes. 

Our results also showed that IVF-DMRs, including hypomethylation of the 

regulatory region of H19, were generally not shared between WBCs and CBMCs. 

This observation suggests that the epigenetic differences reported here likely did 

not appear during early development or that these effects are not fixed and can 

revert in a cell type-specific manner. CBMCs, in contrast to WBCs, lack the 

granulocyte fraction, which is the predominant group of cells in the blood. Thus, 

the IVF-DMRs may be granulocyte-specific or at least in part influenced by this 

group of cells. 

To date, there has been mixed evidence on the effect of IVF at imprinted 

genes and their regulatory regions. Some studies have reported DNA 

methylation changes or increased variability at these imprinted regions [80, 124, 

125], while others have reported no associated changes [126, 149]. We observed 

that there is not an overall destabilization of methylation patterns in ICRs, but 

specific DMRs, such as the H19 DMR, can show a weak but nominally significant 

association with the method of conception. Previous studies have reported 
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similar observations, that is, changes in methylation at some imprinted regions, 

but not in the majority [126, 129]. It is unknown if these changes occur due to IVF 

since imprinting defects have been previously described in sperm of infertile men, 

including hypomethylation of the H19 CTCF6 DMR [150]. Loke et al., 2015, 

reported that hypomethylation at this locus in buccal epithelium of newborns in 

the IVF group was driven by the subgroup conceived by ICSI [80]. However, it is 

difficult to dissect whether the observed effect on DNA methylation of ICSI-

conceived newborns is due to the technique itself or to male infertility. Whitelaw 

et al., 2014, found higher levels of SNRPN methylation in buccal cells of ICSI-

conceived newborns and these were associated with longer duration of infertility 

in the parents [151]. In our data, we observed that the difference at the H19 

CTCF6 DMR was greater when considering any type of medical help during 

conception supporting the idea that parental subfertility is the driver of 

methylation changes at this region. Information about the indication for ART, the 

use of donor eggs or sperm, and the fertility status of parents in the control group 

would be required to further assess the effect of parental subfertility. 

Adverse perinatal outcomes and increased frequency of imprinting 

disorders has also been observed in offspring of couples with a history of 

subfertility that were able to conceive naturally [152–154]. However, studies that 

controlled for parental subfertility by comparing siblings in which one was 

conceived naturally and the other by IVF also observed an effect [155]. It is 

therefore likely that both parental subfertility and IVF may induce epigenetic 

changes, as observed in another genome-wide study that found DNA 

methylation differences between IVF-conceived newborns and a group 

conceived through intrauterine insemination (infertile controls), but also between 

the latter and naturally-conceived newborns (fertile controls) [129]. In addition, a 
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study looking at 37 candidate CpG sites identified seven that were differentially 

methylated when comparing an IVF-conceived group born to parents without 

male infertility that used donor oocytes to naturally-conceived newborns [156].  

Finally, two IVF-DMRs associated to infertility (TNP1 and C9orf3) were 

targeted for validation. Differential methylation was validated at the C9orf3 gene. 

However, validation of the TNP1 region was hampered by our inability to target 

CpG-sites within the most-associated DMR in this locus. We attempted validation 

at TNP1 by targeting CpG sites in the neighbouring 500bp bin, and observed 

consistent direction of association close to nominal significance.  

In this study the non-IVF group included a set of twins conceived after 

GIFT and another set conceived after ovarian stimulation not followed by IVF. 

GIFT and ovarian stimulation are fertility treatments not equivalent to IVF since 

fertilisation still occurs in the fallopian tubes. We showed that our results were 

not affected by the inclusion of these data, potentially because they were 

represented in small numbers, only four out 58 samples. 

There are several limitations in this study. Firstly, it is known that cell 

composition may represent a confounding variable in EWAS [157]. Our results 

use principal component analysis anticipating that these will capture cell 

heterogeneity, and follow-up of our findings in a subset of twins with available 

cell counts showed that the majority of findings remained significant after 

adjustment for cell heterogeneity. Second, although MeDIP-seq has the strength 

of genome-wide coverage, it lacks base-pair resolution, instead generating 

methylation scores across genomic regions. However, it has been reported that 

methylation of neighbouring CpG sites is correlated over distances up to 1,000 

bp [158], suggesting that the approach may be able to capture a good proportion 

of the methylation variance in a genomic region. Third, although this study 
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includes a sample size larger than most previous studies exploring IVF, 

contemporary EWAS study designs generally require larger number of cases and 

controls to achieve sufficient power to detect small to moderate effect sizes [68, 

159]. As shown in Figure 4-11, our sample size of approximately 50 cases and 

50 controls allows us to detect changes in mean methylation of 15% with a power 

of 50%. For changes in mean methylation below 10% our study was totally 

underpowered. Lastly, our approach cannot conclusively determine the cause of 

the observed IVF-associated methylation changes. Future studies of IVF-

associated regions in animal models, where genetic differences and infertility 

diseases can be discarded, could help identify if these changes were caused by 

IVF itself. 

In conclusion, we observed evidence for differences in DNA methylation 

between IVF and non-IVF twins on a genome-wide scale. A strength of this study 

design is that it allowed us to also estimate the contribution of genetic and 

environmental factors towards DNA methylation levels at the IVF-associated loci. 

The inclusion of only twin pregnancies also avoided biases present in studies 

that consider single and multiple pregnancies together. Multiple pregnancies are 

more common after IVF. Therefore, the differences observed when studying 

singleton and twin births together may be confounded with the higher risks of 

adverse perinatal outcomes in multiple pregnancy births, rather than IVF itself. 

Nevertheless, we were unable to dissect whether methylation changes were 

likely caused by IVF, or were due to the underlying parental subfertility, or other 

factors. These scenarios require further study exploring the stability of these 

DMRs over time, their relationship with gene expression, and their potential role 

in health and disease.   
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5. DNA methylation changes associated with menopause 
related traits 

5.1 Introduction 
	
Menopause represents the end of the natural reproductive period in women. The 

timing of this trait, which ranges between 40 and 58 years of age with an average 

of 51 [160], has been associated with different health outcomes. Early 

menopause has been associated with lower bone mineral density [161], while a 

late onset has been associated with increased risk for breast cancer [162]. It is 

hypothesized that the biological mechanisms behind the associations of 

osteoporosis and breast cancer with age at menopause are related to estrogen 

levels [163]. Osteoporosis has been found associated with estrogen deficiencies 

[164], while breast cancer with higher estrogen exposure [165].  

Genetic factors and lifestyle influence the timing of menopause. A twin 

study estimated a heritability of 63% for age at menopause [166] and genome-

wide association studies have identified genetic variants that explain a fraction 

of this heritability. Stolk et al. (2009) identified three loci associated with age at 

natural menopause using 2,979 European women [167] and He et al. (2009) 

identified four loci (two of them also identified by Stolk et al.) using 9,112 women 

of European ancestry [168]. Two of these loci, BRSK1/TMEM150B and MCM8, 

were then replicated in Hispanic women (n=3,468) [169]. A larger effort using 

38,968 women of European ancestry identified four out of the five previously 

reported loci and another 13 loci associated with age at menopause (Table 5-1) 

[170]. In replication cohorts, these 17 regions explained from 2.5 to 4.1% of the 

observed variance in age at natural menopause [170]. The loci associated with 

age at menopause in women of European ancestry appear to be also relevant 

for women of other ethnic backgrounds. A study conducted in 6,510 women of 
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African ancestry replicated six of the loci identified previously in women of 

European ancestry [171], and did not identify novel associations. In a Chinese 

sample of 3,533 women, associations of eight SNPs from studies in women of 

European ancestry were also replicated [172].  

Table 5-1. Genome-wide significant SNPs associated with age at menopause in 
the largest meta-analysis with women of European ancestry (n=38,968) 
SNP Minor/Major allele MAF Effect per minor allele (years) Gene 

rs4246511 T/C 0.271 0.289 RHBDL2c,d, 

rs1635501 C/T 0.478 −0.188 EXO1 

rs2303369 T/C 0.388 −0.174 FNDC4 

rs10183486 T/C 0.366 −0.219 TLK1 

rs4693089 G/A 0.486 0.209 HELQ 

rs890835 A/C 0.112 0.266 RNF44 

rs365132 T/G 0.49 0.275 UIMC1a,c,d 

rs2153157 A/G 0.492 0.184 SYCP2La 

rs1046089 A/G 0.353 −0.226 BAT2 

rs2517388 G/T 0.174 0.274 ASH2Ld 

rs2277339 G/T 0.102 −0.394 PRIM1c 

rs3736830 G/C 0.157 −0.243 KPNA3 

rs4886238 A/G 0.334 0.172 TDRD3 

rs2307449 G/T 0.405 −0.167 POLGd 

rs11668344 G/A 0.363 −0.416 TMEM150Ba,b,c,d 

rs12461110 A/G 0.356 −0.174 NLRP11d 

rs16991615 A/G 0.069 0.971 MCM8a,b,c 

aLoci identified by previous smaller studies in women of European ancestry 
bLoci replicated in Hispanic women 
cLoci replicated in African-American women 
dLoci replicated in Chinese women 
 

Despite the shared genetic architecture of age at menopause across 

different ethnic groups, it has been suggested that ethnicity is an influencing 

factor in the timing of natural menopause. The Multiethnic Cohort Study in the 

United States found that, compared to Caucasian, menopause occurs earlier 
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among Latinas and Native Hawai’ians and later among Japanese Americans 

[160]. No significant differences were observed between Caucasians and African 

Americans. Other factors that have also been found to be associated with age at 

menopause are smoking, age at menarche, parity, and body mass index (BMI). 

Ex-smokers at age 45 and current smokers at age 45 showed an earlier 

menopause than non-smokers. Greater age at menarche and greater number of 

births were seen in women with later age at menarche, and lower BMI was 

associated with earlier age at menopause [160].  

Furthermore, it has been suggested that there may be a secular trend of 

later age at menopause. A study including women from the population of 

Gothenburg, Sweden born in 1908, 1914, 1918, 1922, and 1930, suggested and 

upward trend in the mean age at menopause of 0.1 years per birth year [173]. 

Another study also observed an increase in the age at menopause looking at 5-

year birth cohorts between 1915 and 1939. The mean age at menopause in each 

cohort was 49.1, 49.5, 50.1, 50.1, and 50.5, respectively [174].  

Since DNA methylation profiles can be influenced by genetic variation, 

external environment, and intrinsic factors, we hypothesized that DNA 

methylation changes may also be associated with age at menopause or the 

menopausal transition. Several lines of evidence suggest that DNA methylation 

changes may occur with menopause. First, DNA methylation is under genetic 

control, and as such it may be one process mediating the effects of genetic 

variants identified through GWAS to be associated with age at menopause. 

Second, DNA methylation has been associated with a number of environmental 

factors, including smoking [49, 50] and BMI [175], which are both also known to 

associate with age at menopause. Third, menopause changes the intrinsic 

organismal environment, specifically circulating hormones [176], which may 
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impact the level of DNA methylation in blood cell subtypes. Whether DNA 

methylation changes contribute towards menopause, or whether they are 

markers of menopause, their identification is of interest both in terms of improving 

our understanding of the biological mechanisms involved in or with respect to 

prediction. 

Here we set out to identify DNA methylation variation associated with 

menopause and related traits. We used whole blood DNA methylation profiles 

characterized with the Infinium HumanMethylation450 Beadchip to conduct 

epigenome-wide association scans (EWAS) of self-reported age at menopause, 

early vs late menopause onset, menopausal status, reproductive period (as an 

indicator of lifetime exposure to endogenous estrogens), and current use of 

hormone replacement therapy (as an exogenous source of estrogens). We then 

meta-analyzed EWAS results from five European cohorts.  

5.2 Materials and methods 

5.2.1 Subjects and phenotype collection 
	
The study was conducted with data from six different cohort members of 

CHARGE consortium. These included the UK Adult Twin Registry (TwinsUK), 

the European Prospective Investigation of Cancer (EPIC)-Norfolk, the Avon 

Longitudinal Study of Parents and Children (ALSPAC), the Cooperative Health 

Research in the Augsburg Region (KORA), the Rotterdam Study (RS), and the 

Framingham Heart Study (FHS). All but the FHS cohort were European-based. 

Further cohort descriptions are provided in Chapter 2.  

Five phenotypes related to menopause were explored in this study. These 

were defined as indicated below: 
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1. Continuous age at natural menopause (ANM) – self-reported age at last 

menstrual period in women who are reportedly postmenopausal or have 

not had a menstrual period in the last 12 months. 

2. Duration of reproductive years – the continuous length of time between 

menarche, defined as the self-reported age at first menstrual period, and 

menopause, as defined in 1 above. 

3. Early vs late menopause – subject were classified into two groups, 

where those who underwent early menopause were defined as individuals 

with age at natural menopause between 40-44.99 years, and those in the 

late menopause category were defined as subjects with age at 

menopause between 55-60 years. 

4. Menopausal status at time of DNA sampling– subjects were classified 

into two groups, where the first group were premenopausal women who 

have not yet undergone menopause. The second group included 

peri/postmenopausal women, where perimenopausal was defined as < 2 

years since last menstrual period, and postmenopausal being > 2 years 

since last menstrual period. 

5. Hormone Replacement Therapy (HRT) use – was explored in 

postmenopausal women only and these were classified in two groups. 

The first group included postmenopausal women on self-reported HRT at 

time of DNA sampling, and the second group included postmenopausal 

HRT non-users.  

 

In all cohorts we also excluded subjects according to the following criteria:  

1. Individuals with age at menopause < 40 years or > 60 years 

2. Individuals with medically (treatment or surgically) induced menopause  
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3. Individuals using HRT before menopause 

4. Individuals with age at menarche < 8 years or > 18 years 

 

Phenotype data were obtained from self-reported questionnaires in each 

cohort, and quality control checks at the phenotype level data were performed 

within cohorts by each lead cohort analyst in the CHARGE consortium according 

to phenotype definitions provided by us.  

Since these variables had not been explored before in the TwinsUK 

sample with DNA methylation data, I went through multiple longitudinal electronic 

records collected between 1992 and 2013 to determine age at menarche, age at 

menopause, menopausal status at DNA sampling, and HRT use onset. When 

possible, age at menopause was verified against longitudinal records of 

menstrual periods and menopausal status. It was verified that no menstrual 

period was recorded after the self-reported age at menopause and that the 

participant consistently reported a premenopausal status or postmenopausal 

status before and after, respectively, the self-reported age at menopause.     

The final number of participants per cohort and per phenotype used in 

downstream analyses is shown in Table 5-2. 

 

Table 5-2. Total number of participants per cohort 

Cohorts 
Age at 

menopause 

Duration of 

reproductive 

period 

Early vs late 

menopause 

Menopausal 

status 

HRT 

use 

Discovery      

TwinsUK 269 225 - 319 171 

EPIC-Norfolk 306 420 75 546 348 

ALSPAC 65 65 - 514 577 

KORA 517 517 340 761 517 
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RS 209 201 59 393 - 

Total 1,366 1,428 474 2,533 1613 

Replication      

FHS 963 899 160 - 938 

 

5.2.2 DNA methylation data 
	
DNA was extracted from whole blood samples. Genome-wide methylation data 

was obtained with the Infinium HumanMethylation450 BeadChip. Intensity 

signals were background corrected and normalized before the estimation of DNA 

methylation levels. DNA methylation levels were expressed as beta-values (ratio 

of the methylated probe intensity signal over the sum of the methylated and 

unmethylated probe intensity signals). Probes with detection p-value > 0.01 in 

more than 5% of the samples and samples with > 5% of probes with detection p-

values > 0.01 were excluded from the analysis. Additional probe filtering included 

exclusion of probes that map to multiple regions of the in silico bisulfite converted 

human genome allowing up to two mismatches at any position and exclusion of 

probes that target a polymorphic CpG site, including the extension base in Type 

I probes, with a minor allele frequency > 5% in the UK10K haplotype reference 

panel [99]. DNA methylation data were also used to estimate blood cell 

proportions (CD4+ T cells, CD8+ T cells, B cells, natural killers, monocytes, and 

granulocytes) [177] within each cohort. 

5.2.3 Statistical analyses in TwinsUK data 
	
The observed variance in age at menopause was partitioned into additive genetic 

(A), common environmental (C), and unique environmental (E) factors using the 

ACE model [105]. The model was fitted using the OpenMX statistical package 

[106] in R [107]. 
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5.2.4 meQTLs analysis 
	
Previously reported GWAS hits for age at menopause (Table 5-1) were searched 

against the meQTLs identified in Chapter 3 of this thesis. 	

5.2.5 EWAS 
	
EWAS were performed within each cohort and results were meta-analyzed 

across cohorts. EWAS within cohort were performed by the lead-analyst 

representing the cohort in the CHARGE epigenetics working group consortium. 

The lead analysts were Carola Marzi (KORA), Michael Mendelson (FHS), Alexia 

Cardona (EPIC-Norfolk), Cindy Boer (Rotterdam Study), and myself (TwinsUK). 

I provided the EWAS pipeline for this analysis with inputs from Dr. Ken Ong 

(University of Cambridge), Dr. Cathy Elks (University of Cambridge), Dr. Michael 

Mendelson (Framingham Heart Study), and Dr. Jordana Bell (King’s College 

London). Briefly, the EWAS pipeline first outlines data quality control steps and 

probe exclusion criteria as outlined in section 5.2.2 above. Following quality 

control, DNA methylation beta-values at each CpG-site were transformed to 

standard normal form N(0,1) prior to analysis. Linear mixed models were used to 

test the association between DNA methylation and each phenotype. Methylation 

was used as the response variable and phenotype, technical covariates, 

biological covariates, and family structure, if appropriate, were used as 

predictors. Technical covariates (plate and position in the plate) were included 

as random effects. Family structure was also included as random effects in 

studies with family cohort designs, in this case TwinsUK and FHS. Biological 

covariates such as age, smoking status (current, never, or former) at the time of 

blood collection, and estimated whole blood cell proportions (CD4+ T cells, CD8+ 

T cells, B cells, natural killers, monocytes, and granulocytes) were included in 

the model as fixed effects.  
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5.2.6 Meta-analysis 
	
Following individual-cohort EWAS analysis, the results were uploaded to a web-

based file-sharing system and I performed the meta-analysis. Individual-cohort 

results were checked in terms of correlation between reported p-values and 

expected p-values, skewness and kurtosis of the estimates, distribution of p-

values, and genomic inflation factor. Manhattan plots per cohort are shown in 

Annex IV-VIII. An inverse variance-weighted random-effects meta-analysis 

implemented with GWAMA [178] was performed with statistics from the five 

European cohorts.  

 

5.3 Results 

5.3.1 Age at menopause is a heritable trait 
	
Using a sample of 582 twins from TwinsUK (291 MZ and 29 DZ twin pairs) we 

partitioned the variance in age at menopause into additive genetic, common 

environmental, and unique environmental factors using the ACE model in 

OpenMX [106]. We estimated that the additive genetic component accounted for 

53% of the observed variance, while the rest was attributed to unique 

environmental factors. 	

5.3.2 Age at menopause is associated with smoking status 
	
It is known that tobacco smoking and BMI are associated with DNA methylation 

at multiple loci in the genome [49, 175, 179]. Associations of smoking and BMI 

with age at menopause have also been reported [160]. Given that smoking or 

BMI may confound the association between DNA methylation and age at 

menopause, we investigated in TwinsUK data if that association was observed. 

We did observe a significant association (P=0.015) between smoking and age at 
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menopause in a sample of 582 twins (Figure 5-1). Length of reproductive period 

and use of HRT were not significantly associated with smoking (p>0.05), and no 

significant association was observed between age at menopause, length of 

reproductive period, or use of HRT with BMI (p>0.05).   

	
Figure 5-1. Age at menopause is associated with smoking status. Boxplot showing 

age at menopause in non-smokers, ex-smokers, and smokers (n=582). 

5.3.3 GWAS hits for age at menopause are meQTLs 
	
The lead SNP at each of the 17 loci identified through GWAS to be associated 

with age at menopause (Table 5-1) were searched against the list of cis meQTLs 

and trans meQTLs generated in Chapter 3 and in a database of meQTLs 

generated with a greater sample size [95]. In total, I found evidence of meQTL 

effects, either in cis or trans, for 13 out of the 17 SNPs (Table 5-3). 

Table 5-3. GWAS hits for age at menopause and influenced CpG sites 

SNP CpG sites CpG site Genes 
rs1635501 cg04706276; cg16121177; cg13345151; cg03450102; 

cg08574246 

EXO1 
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rs3736830 cg20399252; cg20826914; cg04663916; cg13070676 EBPL 

rs4886238 cg16113134; cg01612771 

rs2307449 cg01877814; cg24365117; cg27640114; cg18831671; 

cg02557652 

POLG; FANCI; 

ABHD2 

rs11668344 cg16555964; cg14496450; cg26104073 TMEM150B; 

HRNBP3;  

rs10183486 cg07673935; cg08741063 TLK1 

rs2303369 cg14021192; cg12648201; cg21248554; cg12000995; 

cg15118510; cg04845466; cg05102552; cg26034919; 

cg24768116; cg05696406; cg17158414; cg05484376; 

cg13211152; cg11618577; cg20102877; cg26350635; 

cg01969012; cg10337841; cg07881013; cg04015759; 

cg20744217; cg22608170; cg03929741; cg18886436 

PPM1G; FTHL3; 

KRTCAP3; IFT172; 

NRBP1; SNX17; 

FNDC4; MRPL33; 

CORO1B; MAPK4; 

EFNB2; ZNF385A 

rs4693089 cg13524797 AGPAT9 

rs365132 cg17809377; cg06783121; cg06882562; cg08690709; 

cg14100313; cg13798109; cg17143007 

HK3; UIMC1 

rs2153157 cg23049448; cg09105523; cg08480294 SYCP2L 

rs1046089 cg17006042; cg20794828; cg03144490; cg24239961; 

cg25769566; cg04835051; cg00586094; cg17494781; 

cg13740929; cg07845406; cg06460587; cg22318514; 

cg18264486; cg04736217; cg19563932; cg24208375; 

cg07455790; cg14110444; cg17731470; cg18576957; 

cg02304584; cg13892322; cg05182583; cg05857999; 

cg11540476; cg09993780; cg26821115; cg08624648; 

cg17552909; cg18808760; cg01620082; cg06606381; 

cg17862947; cg01255021; cg17841099; cg00624589; 

cg22322277; cg02753903; cg06099246; cg23331010; 

cg07575812; cg18651192; cg04788957; cg15007120; 

cg19589727; cg00943909 

BAT3; LY6G6C; 

CSNK2B; LY6G5B; 

HSPA1B; LSM2; 

HSPA1A; HSPA1L; 

LY6G5C; C6orf48; 

SNORD52; BAT2; 

C6orf25; CLIC1; 

AIF1; FBRSL1; 

SLC39A1; 

CREB3L4; RYR1; 

STG3GAL6; 

SH3PXD2A; 

FLJ25363; GNAS;  

rs2277339 cg11592377; cg26545245 PRIM1 

rs16991615 cg23629183; cg23636682 MINA; FBXO22 

 

5.3.4 Differentially methylated positions associated with current HRT use 
in five European cohorts 

	
Meta-analysis of the five European cohorts in the discovery set (TwinsUK, EPIC-

Norfolk, ALSPAC, KORA, and Rotterdam Study) did not show any genome-wide 

significant differentially methylated position (DMP) for age at menopause, 
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duration of reproductive period, early vs late menopause, or menopausal status 

(data not shown).  

The meta-analysis for use of HRT identified seven genome-wide 

significant DMPs at a false discovery rate (FDR) of 5% (Figure 5-2, Figure 5-3, 

Table 5-4). Funnel plots for the seven DMPs are shown in Annex IX. 

	
Figure 5-2. HRT use meta-analysis EWAS Q-Q plot. Methylation levels at 441,568 

CpG sites were tested for an association with current use of HRT. Results are based on 

analysis of 1,613 samples from four cohorts.
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Figure 5-3. HRT use EWAS Manhattan plot. At a false discovery rate (FDR) of 5%, seven CpG sites were identified as HRT-associated DRMs. 

 

Table 5-4. HRT-associated DMPs 

CpG site beta se p i2 n Effects Chr Position Gene Location CpG island 
cg14151616 -0.007 0.001 6.00E-10 0 1,096 ---? 19 10,426,492 FDX1L Body Island 
cg08589960 -0.041 0.007 8.16E-09 0 1,096 --+? 16 83,986,755 OSGIN1 TSS200;5'UTR;Body Open sea 

cg13802192 -0.006 0.001 5.58E-08 0 1,612 --+- 22 46,692,554 GTSE1 TSS200 Island 
cg10876076 -0.012 0.002 7.32E-08 0 1,613 ---- 7 37,960,873 EPDR1 Body Island 

cg21532731 -0.014 0.003 1.95E-07 0 1,096 ---? 13 99,305,879 - NA Open sea 
cg07748883 0.028 0.006 4.30E-07 0 1,613 +--+ 18 34,914,606 BRUNOL4 Body N_Shelf 

cg04523731 0.014 0.003 8.23E-07 0 1,613 ++++ 3 185,212,897 TMEM41A Body N_Shelf 
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We then looked for evidence of genetic influence on the methylation levels of 

the identified HRT-associated DMPs using the estimates presented in Chapter 3 

of this thesis. Only cg04523731 showed evidence of very low heritability and of 

being affected by genetic variants (Table 5-5). 

Table 5-5. Genetic influences on HRT-associated DMPs 
CpG site Heritability meQTL 

cg14151616 0.00 - 

cg08589960 0.00 - 

cg13802192 0.00 - 

cg10876076 0.00 - 

cg21532731 0.00 - 

cg07748883 0.00 - 

cg04523731 0.04 rs7619196 

 

We attempted replication of the seven HRT-associated DMPs with data from 

the Framingham Heart Study (FHS), an American cohort of mostly European 

ancestry. We did not observe significant differences at any of the HRT-

associated DMPs in the replication cohort Table 5-6. 

 

Table 5-6. Replication of HRT-associated DMPs 
CpG site beta se t-statistic p n 

cg14151616 0.000 0.001 -0.202 0.840 938 

cg08589960 0.000 0.001 0.238 0.812 938 

cg13802192 0.001 0.001 0.748 0.455 938 

cg10876076 0.002 0.001 1.803 0.072 938 

cg21532731 0.000 0.001 0.193 0.847 938 

cg07748883 0.002 0.004 0.571 0.569 938 

cg04523731 0.002 0.003 0.788 0.431 938 
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5.4 Discussion 
	

Given that age at menopause is a highly heritable trait and at least 17 loci have 

been associated with age at menopause through GWAS [170], we hypothesized 

that the biological mechanisms of some of these genetic variants influencing the 

timing of menopause may be mediated by DNA methylation. Out of the 17 GWAS 

loci associated with age at menopause, 13 were meQTLs with cis or trans effects. 

The target CpG sites of these meQTLs were located in genes such as EBPL, 

gene potentially involved in steroid biosynthesis [159], ABHD2 and AGPAT9, 

genes also associated with obesity-related traits [180], and PPM1G, gene also 

associated with hypertriglyceridemia [181]. This observation suggest that lipid 

metabolism is an important component of age at menopause. Whether DNA 

methylation plays a functional role in age at menopause through lipid metabolism 

is still unknown and should be explored further. 

The evidence from multiple European cohorts did not support our hypothesis. 

The EWAS approach did not identify any genome-wide significant DMP 

associated with age at menopause in blood using a sample size of 1,366 

suggesting that either timing of menopause is not mediated by DNA methylation, 

or that the effects are not observed in blood, or that our study did not have 

enough power to detect the differences in DNA methylation. Similarly, we were 

not able to identify differential methylation associated with extreme ages at 

natural menopause (early vs late), duration of the reproductive period, or 

menopausal status. Having in mind that blood may not be the most relevant 

tissue to look at changes associated with menopause, we could test the 

hypothesis that other tissues more relevant to the metabolic changes observed 

during and after menopause, such as adipose or bone tissue, show DNA 

methylation changes even though these are not observed in blood. I will follow 
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up this study on adipose tissue considering that sample availability will not be as 

high as it was with blood. In this new scenario sample size will limit our power to 

detect methylation changes, however we expect these changes to be large 

enough to be identified. 

Unlike the rest of the studied phenotypes, HRT-use showed association with 

DNA methylation levels in blood. However, these changes were observed in the 

European discovery set, but not in the American replication cohort. It is important 

to highlight that there are different types of HRT and the lack of replication could 

indicate a difference in the type of HRT prescribed in Europe and the United 

States. We also did not observe strong genetic influences on the methylation 

levels of HRT-associated DMPs, suggesting that these differences might be 

induced by the use of HRT and are not confounded by genetics.  

HRT is used to treat the deficiency of estrogen, which is common in 

postmenopausal women. Estrogens are known to play a role in reproductive 

function, but are not limited to it; they also have neuroprotective, antithrombotic, 

and lipid lowering effects [182]. Studies looking at the effects of HRT are 

inconclusive, but have suggested a protective role against osteoarthritis [183], 

cognitive decline [184], and muscle weakness [185]. However, other studies 

have associated the use of HRT with the late onset of diseases such as asthma 

[186]. One study has looked for differences in DNA methylation and gene 

expression in blood of MZ twins discordant for HRT use and identified changes 

in both methylation and expression at five genes, all of which have been 

previously implicated with bone mineral content or body adiposity [187]. None of 

the HRT-associated DMPs identified in this chapter overlapped with those 

identified in discordant MZ twins, however the metabolic changes due to 

estrogens are vastly and better characterization of HRT prescriptions are needed 
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to better assess their effects. DNA methylation levels in whole blood cells might 

be susceptible to HRT use given that circulating levels of hormones are modified. 

A closer look at the specific hormones producing the changes in DNA methylation 

might be more informative of the biological mechanisms involved. 
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6. Conclusions 
	

Since the post-genomic era, genetic epidemiology has been successful 

identifying genetic variants that explain a proportion of the variation in human 

traits and diseases. However, for the large majority of human traits a large 

proportion of the phenotypic variance has not yet been explained. A significant 

component of this unexplained phenotypic variance is likely to be attributed to 

environmental factors that have not yet been accounted for. Common complex 

diseases, as most human traits, are influenced by both genetic and 

environmental factors. Epigenetics offers a new framework to look at complex 

traits and diseases in order to understand the biological consequences of genetic 

variation, environmental exposures, and the interaction between the two. This 

thesis aimed to characterize genetic and environmental influences on the 

epigenome by performing twin studies on DNA methylation profiles. Three main 

results were obtained. 

In the first part of this thesis as I was able to characterize the proportion 

of the variance in DNA methylation attributed to genetic and environmental 

factors at almost 800,000 CpG sites distributed across the genome. Furthermore, 

I was able to identify functional regions of the genome that are more susceptible 

to genetic influences, such as enhancers. I also identified common genetic 

variants that impact DNA methylation levels. We observed that at least 10% of 

the interrogated CpG sites have a strong genetic component on DNA methylation 

(h2 > 40%), and in almost half of these heritable CpG sites we were able to 

identify meQTLs.  

In the second part of this thesis, I presented a study looking at the effect 

of assisted reproductive technology on DNA methylation. Infertility and subfertility 

are common conditions in human populations and a global public health issue as 
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recognized by the World Health Organization [188]. The 12-month prevalence of 

infertility in developed countries has been estimated at 9% and it has also been 

estimated that more than half of the affected population seeks medical help [189]. 

Advances in the manipulation of the fertilization process have allowed the 

development of in vitro fertilization (IVF) and related techniques, such as, 

intracytoplasmic sperm injection (ICSI). The first baby conceived with the use of 

IVF was born in 1978 and since then IVF has been satisfactorily adopted as a 

fertility treatment. Data from the European IVF-monitoring Consortium from 1997 

to 2010 has shown an uninterrupted increase in the number of IVF cycles per 

year [190]. From these data, it is also estimated that just in Europe the number 

of IVF births between 2003 and 2010 is near to 600,000. In 2010, it meant that 

IVF accounted for 0.6% to 5.9% of births in different countries of Europe [190]. 

My work explored the hypothesis that IVF introduces DNA methylation changes 

that persist after birth given that the treatment overlaps with an important period 

of epigenetic reprogramming. Our study was the first large-scale epigenome-

wide analysis of IVF of its kind to date, and with a sample size larger than most 

of other studies looking at IVF. We showed that differences in DNA methylation 

of blood cells are very small and are likely not exclusively due to the fertility 

treatment. 

The last part of the thesis looked at epigenetic changes associated with 

menopause and related phenotypes in women. We observed that the majority 

(13 out of 17) of loci previously associated through GWAS with age at 

menopause had an effect on the methylation levels of multiple CpG sites. 

However, the only differentially methylated positions (DMPs) that were identified 

in blood through EWAS, were associated with the use of hormone replacement 

therapy (HRT). HRT is used to treat estrogen deficiencies in postmenopausal 
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women and modifies the levels of circulating hormones, which might result in 

DNA methylation changes in blood cells. 

6.1 Strengths and limitations 
	

Of the main strengths of this thesis was the use of twins as a unique study design 

in human population analyses of DNA methylation as a complex trait. Twins were 

a valuable tool exploited in every results chapter presented in this thesis. In 

Chapter 3 the use of twins allowed the estimation of heritability of DNA 

methylation. In Chapter 4, the use of twins allowed to control for the effect of 

multiple pregnancy, which is a common confounder in studies seeking to 

compare natural conceptions with those achieved after assisted reproductive 

technology. In addition, twins also allowed to assess the contribution of genetics 

and environment to methylation at the suggestive IVF-DMRs identified. Lastly, in 

Chapter 5, twins were helpful to corroborate that age at menopause is a heritable 

trait.  

With regard to DNA methylation profiling techniques, we relied on two main 

technologies with different strengths and limitations. One was microarray based 

technology (450K and EPIC arrays), which has the advantage of single base 

resolution, but a limited coverage (approximately 450,000 and 850,000 CpG 

sites). The 450K array also has the advantage of being vastly used to profile DNA 

methylation in a great number of cohorts, which allowed us to conduct the largest 

study to date looking at menopause and related phenotypes such as HRT. In 

Chapter 3, the greater coverage of the EPIC array was a strength that allowed 

the investigation of genetic impacts on enhancer regions that have not been 

explored before in any other study. The other DNA methylation profiling 

technique was MeDIP-seq, which has genome-wide coverage, but lacks single 



	 108	

base resolution. The use of this technique in Chapter 4 allowed us to look at 

regions not covered by microarray-based platforms.  

There were also several limitations of the work presented in this thesis.  First, 

despite the strengths of the twin model, it has been suggested that the twin-

based epigenetic heritability estimation is affected by the fact that MZ twins have 

more similar epigenetic starting points than DZ twins [191]. However, we were 

able to validate some of the twin-based heritability estimated genetic effects with 

a methodology that did not depend on the assumptions of the classical twin 

model, that is, by the identification of meQTLs.  

The meQTL study did rely on another assumption, that MZ co-twins have 

identical DNA sequences. Although MZ twins are often referred to as being 

genetically identical, post-zygotic mutation events can occur. Somatic point 

mutations and copy number variations have been found in normal concordant as 

well as in disease-discordant MZ twin pairs [192]. However, these events are 

extremely rare and should not hinder the identification of meQTLs. Somatic point 

mutations during early development occur with a frequency of 1.2 × 10&'  per 

base pair per twin pair [193]. 

Another limitation was sample size, which usually results in limited statistical 

power to detect heritability or differential methylation. Visscher (2004) revisited 

the statistical power of the classical twin design to detect heritability (h2) under 

the ACE model [194]. To detect high heritability (h2 > 0.4) with power of 95% 

when C = 0.5 and using an equal proportion of MZ and DZ twin pairs, a total of 

74 twin pairs are needed. However, the contribution of common environmental 

factors is usually much lower than 50%. Under a more realistic scenario, to detect 

h2 > 0.4 with power of 95% when C = 0.1, a total of 650 twin pairs are needed. 

Power calculations have also been performed for the detection of differential 
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methylation in the context of case-control EWAS [195]. It has been estimated 

that a total of 20 case-control pairs at single-locus significance and 112 case-

control pairs at genome-wide significance are needed to reach power of 80% to 

detect a 0.1 mean methylation difference. The methylation differences at the two 

validated CpG sites located in the C9orf3 IVF-DMR using a subset of MZ twins 

(n=22) were of only 0.09 and 0.012, which gives a power of 20% at single-locus 

significance.   

We did not identify any genome-wide significant DMP associated with age at 

menopause possibly because our study did not have enough power to detect the 

differences in DNA methylation levels at the CpG-sites targeted by the Illumina 

450K array. GWAS signals for age at menopause have been identified using 

samples of at least 3,000 and up to almost 39,000 individuals, therefore these 

are relatively modest genetic effects and maximizing power is of key concern 

when conducting an EWAS. Similarly, negative results were found for duration 

of reproductive period, early vs late menopause, and menopausal status. 

Another factor that might hinder the identification of DMPs is data collection. For 

most cohorts, data was self-reported and susceptible to recall bias. 

It is also important to state that the studies presented in this thesis were 

looking at DNA in blood samples and given the cell-type specificity of epigenetic 

marks, these results are not necessarily true for other tissues. The advantages 

of looking at peripheral blood are the ease of its collection and the potential 

clinical use of the identified DMRs or DMPs as biomarkers. Also because of the 

cell-type specificity of epigenetic marks and because blood is a mixture of cell 

types, adjustment for cell heterogeneity was performed in every study. We did 

not use actual cell counts, but instead estimated their proportions from epigenetic 

data which has proven to be a good proxy [177].  
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6.2 Future perspectives 
	

Twins are a unique resource in the field of epigenetics and essential tools to 

elucidate the molecular etiology of diseases. Most findings so far come from 

studying unrelated individuals, however a number of studies have also explored 

epigenetic profiles in twins during normal development, ageing, and in the 

context of disease. Some examples include the identification of methylation 

changes at DOK7 in breast cancer, TRPA1 in pain susceptibility, ST6GALNAC1 

in bipolar disorder, ZBTB20 in major depressive disorder, and several genes 

identified in autism spectrum disorder. One of the difficulties that twin studies 

face is the collection of enough individuals with the specific trait to be studied. 

Collaborations with other twin cohorts could help overcome this problem and 

allow the use of twin models that were not exploited in this thesis such as the 

discordant MZ twins design [73].  

The IVF study in particular could benefit from follow-up studies such as 

integration of gene expression data and assessment of the longitudinal stability 

of methylation at the suggestive IVF-DMR. The PETS cohort has collected 

samples of peripheral blood from the twins at 18 months and 5 years of age, 

which would allow this exploration in the future. In addition, given that the first 

stage in most IVF cycles is ovulation induction with hormones and given that 

HRT-associated DMPs were identified, it would be interesting to explore whether 

there are persistent effects on DNA methylation patterns of the mothers due to 

ovulation induction treatments. 

For the study looking at menopause, an interesting follow-up would be to 

look at relevant tissues such as fat or bone, as it is known that menopause is 

characterized by drastic metabolic changes associated with lipids and bone 

mineral density [196].  
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It would be worth looking also at more environmental exposures to identify 

changes in DNA methylation such as the ones identified for HRT use. We cannot 

assume causality in this particular study, but assuming there is, DNA methylation 

could be used to identify past environmental exposures, which has a potential 

use in personalized medicine.  

Lastly, although we investigated the genetic influences with a two-fold 

approach, validated two IVF-DMRs with a different technology, and identified 

HRT-associated DMPs through meta-analysis, these studies still require 

replication in independent cohorts.  

  



	 112	

7. References 
1.	Waddington	CH.	The	epigenotype.	Endeavour.	1942;1:18–20.	

2.	Holliday	R.	Epigenetics:	an	overview.	Dev	Genet.	1994;15:453–7.	

doi:10.1002/dvg.1020150602.	

3.	Holliday	R.	Epigenetics:	A	Historical	Overview.	Epigenetics.	2006;1:76–80.	

doi:10.4161/epi.1.2.2762.	

4.	Messerschmidt	DM,	Knowles	BB,	Solter	D.	DNA	methylation	dynamics	during	

epigenetic	reprogramming	in	the	germline	and	preimplantation	embryos.	Genes	

Dev.	2014;28:812–28.	doi:10.1101/gad.234294.113.	

5.	Feinberg	AP,	Vogelstein	B.	Hypomethylation	distinguishes	genes	of	some	human	

cancers	from	their	normal	counterparts.	Nature.	1983;301:89–92.	

doi:10.1038/301089a0.	

6.	Feinberg	AP,	Tycko	B.	The	history	of	cancer	epigenetics.	Nat	Rev	Cancer.	

2004;4:143–53.	doi:10.1038/nrc1279.	

7.	Ballestar	E.	Epigenetics	lessons	from	twins:	prospects	for	autoimmune	disease.	

Clin	Rev	Allergy	Immunol.	2010;39:30–41.	doi:10.1007/s12016-009-8168-4.	

8.	Rakyan	VK,	Beyan	H,	Down	TA,	Hawa	MI,	Maslau	S,	Aden	D,	et	al.	Identification	

of	type	1	diabetes-associated	DNA	methylation	variable	positions	that	precede	

disease	diagnosis.	PLoS	Genet.	2011;7:e1002300.	

doi:10.1371/journal.pgen.1002300.	

9.	Sanchez-Mut	J	V.,	Aso	E,	Panayotis	N,	Lott	I,	Dierssen	M,	Rabano	A,	et	al.	DNA	

methylation	map	of	mouse	and	human	brain	identifies	target	genes	in	Alzheimer’s	

disease.	Brain.	2013;136:3018–27.	doi:10.1093/brain/awt237.	

10.	Masliah	E,	Dumaop	W,	Galasko	D,	Desplats	P.	Distinctive	patterns	of	DNA	

methylation	associated	with	Parkinson	disease:	identification	of	concordant	

epigenetic	changes	in	brain	and	peripheral	blood	leukocytes.	Epigenetics.	

2013;8:1030–8.	doi:10.4161/epi.25865.	

11.	Salam	MT,	Zhang	Y,	Begum	K.	Epigenetics	and	childhood	asthma:	current	

evidence	and	future	research	directions.	Epigenomics.	2012;4:415–29.	

doi:10.2217/epi.12.32.	

12.	Kaminsky	Z,	Petronis	A,	Wang	S-C,	Levine	B,	Ghaffar	O,	Floden	D,	et	al.	

Epigenetics	of	personality	traits:	an	illustrative	study	of	identical	twins	discordant	

for	risk-taking	behavior.	Twin	Res	Hum	Genet.	2008;11:1–11.	

doi:10.1375/twin.11.1.1.	

13.	Heyn	H,	Ferreira	HJ,	Bassas	L,	Bonache	S,	Sayols	S,	Sandoval	J,	et	al.	Epigenetic	

disruption	of	the	PIWI	pathway	in	human	spermatogenic	disorders.	PLoS	One.	

2012;7:e47892.	doi:10.1371/journal.pone.0047892.	

14.	Zhang	R,	Miao	Q,	Wang	C,	Zhao	R,	Li	W,	Haile	CN,	et	al.	Genome-wide	DNA	

methylation	analysis	in	alcohol	dependence.	Addict	Biol.	2013;18:392–403.	

doi:10.1111/adb.12037.	

15.	Holliday	R,	Pugh	JE.	DNA	modification	mechanisms	and	gene	activity	during	

development.	Science	(80-	).	1975;187:226–32.	

http://www.ncbi.nlm.nih.gov/pubmed/1111098.	

16.	Riggs	AD.	X	inactivation,	differentiation,	and	DNA	methylation.	Cytogenet	

Genome	Res.	1975;14:9–25.	doi:10.1159/000130315.	

17.	Iguchi-Ariga	SM,	Schaffner	W.	CpG	methylation	of	the	cAMP-responsive	

enhancer/promoter	sequence	TGACGTCA	abolishes	specific	factor	binding	as	well	

as	transcriptional	activation.	Genes	Dev.	1989;3:612–9.	

http://www.ncbi.nlm.nih.gov/pubmed/2545524.	Accessed	25	Feb	2014.	

18.	Boyes	J,	Bird	A.	DNA	methylation	inhibits	transcription	indirectly	via	a	methyl-

CpG	binding	protein.	Cell.	1991;64:1123–34.	



	 113	

http://www.ncbi.nlm.nih.gov/pubmed/2004419.	Accessed	25	Feb	2014.	

19.	Nan	X,	Campoy	FJ,	Bird	A.	MeCP2	Is	a	Transcriptional	Repressor	with	

Abundant	Binding	Sites	in	Genomic	Chromatin.	Cell.	1997;88:471–81.	

doi:10.1016/S0092-8674(00)81887-5.	

20.	Ball	MP,	Li	JB,	Gao	Y,	Lee	J-H,	LeProust	EM,	Park	I-H,	et	al.	Targeted	and	

genome-scale	strategies	reveal	gene-body	methylation	signatures	in	human	cells.	

Nat	Biotechnol.	2009;27:361–8.	doi:10.1038/nbt.1533.	

21.	Strahl	BD,	Allis	CD.	The	language	of	covalent	histone	modifications.	Nature.	

2000;403:41–5.	doi:10.1038/47412.	

22.	Sullivan	KF,	Hechenberger	M,	Masri	K.	Human	CENP-A	contains	a	histone	H3	

related	histone	fold	domain	that	is	required	for	targeting	to	the	centromere.	J	Cell	

Biol.	1994;127:581–92.	

http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2120219&tool=pmc

entrez&rendertype=abstract.	Accessed	25	Feb	2014.	

23.	Barrero	MJ,	Sese	B,	Martí	M,	Izpisua	Belmonte	JC.	Macro	histone	variants	are	

critical	for	the	differentiation	of	human	pluripotent	cells.	J	Biol	Chem.	

2013;288:16110–6.	doi:10.1074/jbc.M113.466144.	

24.	Hirschhorn	JN,	Brown	SA,	Clark	CD,	Winston	F.	Evidence	that	SNF2/SWI2	and	

SNF5	activate	transcription	in	yeast	by	altering	chromatin	structure.	Genes	Dev.	

1992;6:2288–98.	http://www.ncbi.nlm.nih.gov/pubmed/1459453.	Accessed	25	

Feb	2014.	

25.	Aravin	AA,	Sachidanandam	R,	Bourc’his	D,	Schaefer	C,	Pezic	D,	Toth	KF,	et	al.	A	

piRNA	pathway	primed	by	individual	transposons	is	linked	to	de	novo	DNA	

methylation	in	mice.	Mol	Cell.	2008;31:785–99.	doi:10.1016/j.molcel.2008.09.003.	

26.	Zhao	J,	Sun	BK,	Erwin	JA,	Song	J-J,	Lee	JT.	Polycomb	proteins	targeted	by	a	

short	repeat	RNA	to	the	mouse	X	chromosome.	Science.	2008;322:750–6.	

doi:10.1126/science.1163045.	

27.	Moore	LD,	Le	T,	Fan	G.	DNA	methylation	and	its	basic	function.	

Neuropsychopharmacology.	2013;38:23–38.	doi:10.1038/npp.2012.112.	

28.	Lövkvist	C,	Dodd	IB,	Sneppen	K,	Haerter	JO.	DNA	methylation	in	human	

epigenomes	depends	on	local	topology	of	CpG	sites.	Nucleic	Acids	Res.	

2016;44:5123–32.	doi:10.1093/nar/gkw124.	

29.	Vertino	PM,	Sekowski	JA,	Coll	JM,	Applegren	N,	Han	S,	Hickey	RJ,	et	al.	DNMT1	

is	a	component	of	a	multiprotein	DNA	replication	complex.	Cell	Cycle.	2002;1:416–

23.	doi:10.4161/cc.1.6.270.	

30.	Auclair	G,	Weber	M.	Mechanisms	of	DNA	methylation	and	demethylation	in	

mammals.	Biochimie.	2012;94:2202–11.	doi:10.1016/j.biochi.2012.05.016.	

31.	Bhutani	N,	Burns	DM,	Blau	HM.	DNA	demethylation	dynamics.	Cell.	

2011;146:866–72.	doi:10.1016/j.cell.2011.08.042.	

32.	Guo	H,	Zhu	P,	Yan	L,	Li	R,	Hu	B,	Lian	Y,	et	al.	The	DNA	methylation	landscape	of	

human	early	embryos.	Nature.	2014;511:606–10.	doi:10.1038/nature13544.	

33.	Tang	WC,	Dietmann	S,	Irie	N,	Leitch	H,	Floros	V,	Bradshaw	C,	et	al.	A	Unique	

Gene	Regulatory	Network	Resets	the	Human	Germline	Epigenome	for	

Development.	Cell.	2015;161:1453–67.	doi:10.1016/j.cell.2015.04.053.	

34.	Ziller	MJ,	Gu	H,	Müller	F,	Donaghey	J,	Tsai	LT-Y,	Kohlbacher	O,	et	al.	Charting	a	

dynamic	DNA	methylation	landscape	of	the	human	genome.	Nature.	

2013;500:477–81.	doi:10.1038/nature12433.	

35.	Martino	D,	Loke	YJ,	Gordon	L,	Ollikainen	M,	Cruickshank	MN,	Saffery	R,	et	al.	

Longitudinal,	genome-scale	analysis	of	DNA	methylation	in	twins	from	birth	to	18	

months	of	age	reveals	rapid	epigenetic	change	in	early	life	and	pair-specific	effects	

of	discordance.	Genome	biology.	2013;14:R42.	doi:10.1186/gb-2013-14-5-r42.	



	 114	

36.	Florath	I,	Butterbach	K,	Müller	H,	Bewerunge-Hudler	M,	Brenner	H.	Cross-

sectional	and	longitudinal	changes	in	DNA	methylation	with	age:	an	epigenome-

wide	analysis	revealing	over	60	novel	age-associated	CpG	sites.	Hum	Mol	Genet.	

2014;23:1186–201.	doi:10.1093/hmg/ddt531.	

37.	Bell	JT,	Tsai	P-C,	Yang	T-P,	Pidsley	R,	Nisbet	J,	Glass	D,	et	al.	Epigenome-wide	

scans	identify	differentially	methylated	regions	for	age	and	age-related	

phenotypes	in	a	healthy	ageing	population.	PLoS	Genet.	2012;8:e1002629.	

doi:10.1371/journal.pgen.1002629.	

38.	Bjornsson	HT,	Sigurdsson	MI,	Fallin	MD,	Irizarry	RA,	Aspelund	T,	Cui	H,	et	al.	

Intra-individual	change	over	time	in	DNA	methylation	with	familial	clustering.	

JAMA.	2008;299:2877–83.	doi:10.1001/jama.299.24.2877.	

39.	Kaminsky	ZA,	Tang	T,	Wang	S-C,	Ptak	C,	Oh	GHT,	Wong	AHC,	et	al.	DNA	

methylation	profiles	in	monozygotic	and	dizygotic	twins.	Nat	Genet.	2009;41:240–

5.	doi:10.1038/ng.286.	

40.	Friso	S,	Girelli	D,	Trabetti	E,	Olivieri	O,	Guarini	P,	Pignatti	PF,	et	al.	The	MTHFR	

1298A>C	polymorphism	and	genomic	DNA	methylation	in	human	lymphocytes.	

Cancer	Epidemiol	Biomarkers	Prev.	2005;14:938–43.	doi:10.1158/1055-

9965.EPI-04-0601.	

41.	El-Maarri	O,	Kareta	MS,	Mikeska	T,	Becker	T,	Diaz-Lacava	A,	Junen	J,	et	al.	A	

systematic	search	for	DNA	methyltransferase	polymorphisms	reveals	a	rare	

DNMT3L	variant	associated	with	subtelomeric	hypomethylation.	Hum	Mol	Genet.	

2009;18:1755–68.	doi:10.1093/hmg/ddp088.	

42.	Gibbs	JR,	van	der	Brug	MP,	Hernandez	DG,	Traynor	BJ,	Nalls	MA,	Lai	S-L,	et	al.	

Abundant	quantitative	trait	loci	exist	for	DNA	methylation	and	gene	expression	in	

human	brain.	PLoS	Genet.	2010;6:e1000952.	doi:10.1371/journal.pgen.1000952.	

43.	Zhang	D,	Cheng	L,	Badner	JA,	Chen	C,	Chen	Q,	Luo	W,	et	al.	Genetic	control	of	

individual	differences	in	gene-specific	methylation	in	human	brain.	Am	J	Hum	

Genet.	2010;86:411–9.	doi:10.1016/j.ajhg.2010.02.005.	

44.	Bell	JT,	Pai	AA,	Pickrell	JK,	Gaffney	DJ,	Pique-Regi	R,	Degner	JF,	et	al.	DNA	

methylation	patterns	associate	with	genetic	and	gene	expression	variation	in	

HapMap	cell	lines.	Genome	Biol.	2011;12:R10.	doi:10.1186/gb-2011-12-1-r10.	

45.	Grundberg	E,	Meduri	E,	Sandling	JK,	Hedman	AK,	Keildson	S,	Buil	A,	et	al.	

Global	analysis	of	DNA	methylation	variation	in	adipose	tissue	from	twins	reveals	

links	to	disease-associated	variants	in	distal	regulatory	elements.	Am	J	Hum	Genet.	

2013;93:876–90.	doi:10.1016/j.ajhg.2013.10.004.	

46.	Shi	J,	Marconett	CN,	Duan	J,	Hyland	PL,	Li	P,	Wang	Z,	et	al.	Characterizing	the	

genetic	basis	of	methylome	diversity	in	histologically	normal	human	lung	tissue.	

Nat	Commun.	2014;5:3365.	doi:10.1038/ncomms4365.	

47.	Breitling	LP,	Yang	R,	Korn	B,	Burwinkel	B,	Brenner	H.	Tobacco-smoking-

related	differential	DNA	methylation:	27K	discovery	and	replication.	Am	J	Hum	

Genet.	2011;88:450–7.	doi:10.1016/j.ajhg.2011.03.003.	

48.	Monick	MM,	Beach	SRH,	Plume	J,	Sears	R,	Gerrard	M,	Brody	GH,	et	al.	

Coordinated	changes	in	AHRR	methylation	in	lymphoblasts	and	pulmonary	

macrophages	from	smokers.	Am	J	Med	Genet	B	Neuropsychiatr	Genet.	

2012;159B:141–51.	doi:10.1002/ajmg.b.32021.	

49.	Zeilinger	S,	Kühnel	B,	Klopp	N,	Baurecht	H,	Kleinschmidt	A,	Gieger	C,	et	al.	

Tobacco	Smoking	Leads	to	Extensive	Genome-Wide	Changes	in	DNA	Methylation.	

PLoS	One.	2013;8:e63812.	doi:10.1371/journal.pone.0063812.	

50.	Shenker	NS,	Polidoro	S,	van	Veldhoven	K,	Sacerdote	C,	Ricceri	F,	Birrell	MA,	et	

al.	Epigenome-wide	association	study	in	the	European	Prospective	Investigation	

into	Cancer	and	Nutrition	(EPIC-Turin)	identifies	novel	genetic	loci	associated	



	 115	

with	smoking.	Hum	Mol	Genet.	2013;22:843–51.	doi:10.1093/hmg/dds488.	

51.	Joubert	BR,	Håberg	SE,	Nilsen	RM,	Wang	X,	Vollset	SE,	Murphy	SK,	et	al.	450K	

epigenome-wide	scan	identifies	differential	DNA	methylation	in	newborns	related	

to	maternal	smoking	during	pregnancy.	Environ	Health	Perspect.	2012;120:1425–

31.	doi:10.1289/ehp.1205412.	

52.	Markunas	C	a,	Xu	Z,	Harlid	S,	Wade	P	a,	Lie	RT,	Taylor	J	a,	et	al.	Identification	of	

DNA	Methylation	Changes	in	Newborns	Related	to	Maternal	Smoking	during	

Pregnancy.	Environ	Health	Perspect.	2014;	November	2013.	

doi:10.1289/ehp.1307892.	

53.	Philibert	RA,	Plume	JM,	Gibbons	FX,	Brody	GH,	Beach	SRH.	The	impact	of	recent	

alcohol	use	on	genome	wide	DNA	methylation	signatures.	Front	Genet.	2012;3:54.	

doi:10.3389/fgene.2012.00054.	

54.	Liu	C,	Marioni	RE,	Hedman	ÅK,	Pfeiffer	L,	Tsai	P-C,	Reynolds	LM,	et	al.	A	DNA	

methylation	biomarker	of	alcohol	consumption.	Mol	Psychiatry.	2016;	February:1–

12.	doi:10.1038/mp.2016.192.	

55.	Ek	WE,	Tobi	EW,	Ahsan	M,	Lampa	E,	Ponzi	E,	Kyrtopoulos	SA,	et	al.	Tea	and	

coffee	consumption	in	relation	to	DNA	methylation	in	four	European	cohorts.	Hum	

Mol	Genet.	2017.	doi:10.1093/hmg/ddx194.	

56.	Dominguez-Salas	P,	Moore	SE,	Baker	MS,	Bergen	AW,	Cox	SE,	Dyer	RA,	et	al.	

Maternal	nutrition	at	conception	modulates	DNA	methylation	of	human	

metastable	epialleles.	Nat	Commun.	2014;5:3746.	doi:10.1038/ncomms4746.	

57.	Aslibekyan	S,	Wiener	HW,	Havel	PJ,	Stanhope	KL,	O’Brien	DM,	Hopkins	SE,	et	al.	

DNA	methylation	patterns	are	associated	with	n-3	fatty	acid	intake	in	Yup’ik	

people.	J	Nutr.	2014;144:425–30.	doi:10.3945/jn.113.187203.	

58.	Voisin	S,	Almén	MS,	Moschonis	G,	Chrousos	GP,	Manios	Y,	Schiöth	HB.	Dietary	

fat	quality	impacts	genome-wide	DNA	methylation	patterns	in	a	cross-sectional	

study	of	Greek	preadolescents.	Eur	J	Hum	Genet.	2014.	

doi:10.1038/ejhg.2014.139.	

59.	Binder	AM,	Michels	KB.	The	causal	effect	of	red	blood	cell	folate	on	genome-

wide	methylation	in	cord	blood:	a	Mendelian	randomization	approach.	BMC	

Bioinformatics.	2013;14:353.	doi:10.1186/1471-2105-14-353.	

60.	Amarasekera	M,	Martino	D,	Ashley	S,	Harb	H,	Kesper	D,	Strickland	D,	et	al.	

Genome-wide	DNA	methylation	profiling	identifies	a	folate-sensitive	region	of	

differential	methylation	upstream	of	ZFP57-imprinting	regulator	in	humans.	

FASEB	J.	2014.	doi:10.1096/fj.13-249029.	

61.	Kingsley	SL,	Kelsey	KT,	Butler	R,	Chen	A,	Eliot	MN,	Romano	ME,	et	al.	Maternal	

serum	PFOA	concentration	and	DNA	methylation	in	cord	blood:	A	pilot	study.	

Environ	Res.	2017;158:174–8.	doi:10.1016/j.envres.2017.06.013.	

62.	Dugu??	PA,	Geurts	YM,	Milne	RL,	Lockett	GA,	Zhang	H,	Karmaus	W,	et	al.	Is	

there	an	association	between	season	of	birth	and	blood	DNA	methylation	in	

adulthood?	Allergy:	European	Journal	of	Allergy	and	Clinical	Immunology.	

2016;71:1501–4.	doi:10.1111/all.12949.	

63.	Lockett	GA,	Soto-Ram?rez	N,	Ray	MA,	Everson	TM,	Xu	C-J,	Patil	VK,	et	al.	

Association	of	season	of	birth	with	DNA	methylation	and	allergic	disease.	Allergy.	

2016;71:1314–24.	doi:10.1111/all.12882.	

64.	Lim	ASP,	Klein	H-U,	Yu	L,	Chibnik	LB,	Ali	S,	Xu	J,	et	al.	Diurnal	and	seasonal	

molecular	rhythms	in	human	neocortex	and	their	relation	to	Alzheimer’s	disease.	

Nat	Commun.	2017;8:14931.	doi:10.1038/ncomms14931.	

65.	Gruzieva	O,	Xu	C-J,	Breton	C	V.,	Annesi-Maesano	I,	Ant?	JM,	Auffray	C,	et	al.	

Epigenome-Wide	Meta-Analysis	of	Methylation	in	Children	Related	to	Prenatal	

NO2	Air	Pollution	Exposure.	Environ	Health	Perspect.	2016;125:104–10.	



	 116	

doi:10.1289/EHP36.	

66.	Visscher	PM,	Hill	WG,	Wray	NR.	Heritability	in	the	genomics	era--concepts	and	

misconceptions.	Nat	Rev	Genet.	2008;9:255–66.	doi:10.1038/nrg2322.	

67.	Falconer	DS.	Introduction	to	Quantitative	Genetics.	Glasgow:	Robert	

MacLehose	and	Company	Limited;	1960.	doi:10.1002/bimj.19620040211.	

68.	Rakyan	VK,	Down	TA,	Balding	DJ,	Beck	S.	Epigenome-wide	association	studies	

for	common	human	diseases.	Nat	Rev	Genet.	2011;12:529–41.	

doi:10.1038/nrg3000.	

69.	Tsai	P-C,	Spector	TD,	Bell	JT.	Using	epigenome-wide	association	scans	of	DNA	

methylation	in	age-related	complex	human	traits.	Epigenomics.	2012;4:511–26.	

doi:10.2217/epi.12.45.	

70.	Michels	KB,	Binder	AM,	Dedeurwaerder	S,	Epstein	CB,	Greally	JM,	Gut	I,	et	al.	

Recommendations	for	the	design	and	analysis	of	epigenome-wide	association	

studies.	Nat	Methods.	2013;10:949–55.	doi:10.1038/nmeth.2632.	

71.	Booth	MJ,	Branco	MR,	Ficz	G,	Oxley	D,	Krueger	F,	Reik	W,	et	al.	Quantitative	

sequencing	of	5-methylcytosine	and	5-hydroxymethylcytosine	at	single-base	

resolution.	Science.	2012;336:934–7.	doi:10.1126/science.1220671.	

72.	Meissner	A,	Gnirke	A,	Bell	GW,	Ramsahoye	B,	Lander	ES,	Jaenisch	R.	Reduced	

representation	bisulfite	sequencing	for	comparative	high-resolution	DNA	

methylation	analysis.	Nucleic	Acids	Res.	2005;33:5868–77.	

doi:10.1093/nar/gki901.	

73.	Bell	JT,	Spector	TD.	A	twin	approach	to	unraveling	epigenetics.	Trends	Genet.	

2011;27:116–25.	doi:10.1016/j.tig.2010.12.005.	

74.	Spector	TD,	Williams	FMK.	The	UK	Adult	Twin	Registry	(TwinsUK).	Twin	Res	

Hum	Genet.	2006;9:899–906.	doi:10.1375/183242706779462462.	

75.	Moayyeri	A,	Hammond	CJ,	Hart	DJ,	Spector	TD.	The	UK	Adult	Twin	Registry	

(TwinsUK	Resource).	Twin	Res	Hum	Genet.	2013;16:144–9.	

doi:10.1017/thg.2012.89.	

76.	Moayyeri	A,	Hammond	CJ,	Valdes	AM,	Spector	TD.	Cohort	Profile:	TwinsUK	and	

healthy	ageing	twin	study.	Int	J	Epidemiol.	2013;42:76–85.	

doi:10.1093/ije/dyr207.	

77.	Spector	TD,	MacGregor	AJ.	The	St.	Thomas’	UK	Adult	Twin	Registry.	Twin	Res.	

2002;5:440–3.	doi:10.1375/136905202320906246.	

78.	1000	Genomes	Project	Consortium	T	1000	GP,	Abecasis	GR,	Auton	A,	Brooks	

LD,	DePristo	MA,	Durbin	RM,	et	al.	An	integrated	map	of	genetic	variation	from	

1,092	human	genomes.	Nature.	2012;491:56–65.	doi:10.1038/nature11632.	

79.	The	International	HapMap	Consortium.	A	haplotype	map	of	the	human	

genome.	Nature.	2005;437:1299–320.	doi:10.1038/nature04226.	

80.	Loke	YJ,	Galati	JC,	Saffery	R,	Craig	JM.	Association	of	in	vitro	fertilization	with	

global	and	IGF2/H19	methylation	variation	in	newborn	twins.	J	Dev	Orig	Health	

Dis.	2015;6:115–24.	doi:10.1017/S2040174415000161.	

81.	Saffery	R,	Morley	R,	Carlin	JB,	Joo	J-HE,	Ollikainen	M,	Novakovic	B,	et	al.	Cohort	

profile:	The	peri/post-natal	epigenetic	twins	study.	Int	J	Epidemiol.	2012;41:55–

61.	doi:10.1093/ije/dyr140.	

82.	Hayat	SA,	Luben	R,	Keevil	VL,	Moore	S,	Dalzell	N,	Bhaniani	A,	et	al.	Cohort	

Profile:	A	prospective	cohort	study	of	objective	physical	and	cognitive	capability	

and	visual	health	in	an	ageing	population	of	men	and	women	in	Norfolk	(EPIC-

Norfolk	3).	Int	J	Epidemiol.	2014;43:1063–72.	doi:10.1093/ije/dyt086.	

83.	Boyd	A,	Golding	J,	Macleod	J,	Lawlor	DA,	Fraser	A,	Henderson	J,	et	al.	Cohort	

profile:	The	“Children	of	the	90s”-The	index	offspring	of	the	avon	longitudinal	

study	of	parents	and	children.	Int	J	Epidemiol.	2013;42:111–27.	



	 117	

doi:10.1093/ije/dys064.	

84.	Holle	R,	Happich	M,	L?wel	H,	Wichmann	H,	MONICA/KORA	Study	Group.	KORA	

-	A	Research	Platform	for	Population	Based	Health	Research.	Das	Gesundheitswes.	

2005;67	S	01:19–25.	doi:10.1055/s-2005-858235.	

85.	Hofman	A,	Murad	SD,	Van	Duijn	CM,	Franco	OH,	Goedegebure	A,	Arfan	Ikram	

M,	et	al.	The	Rotterdam	Study:	2014	objectives	and	design	update.	Eur	J	Epidemiol.	

2013;28:889–926.	doi:10.1007/s10654-013-9866-z.	

86.	Tsao	CW,	Vasan	RS.	Cohort	Profile:	The	Framingham	Heart	Study	(FHS):	

overview	of	milestones	in	cardiovascular	epidemiology.	Int	J	Epidemiol.	

2015;44:1800–13.	doi:10.1093/ije/dyv337.	

87.	Heijmans	BT,	Kremer	D,	Tobi	EW,	Boomsma	DI,	Slagboom	PE.	Heritable	rather	

than	age-related	environmental	and	stochastic	factors	dominate	variation	in	DNA	

methylation	of	the	human	IGF2/H19	locus.	Hum	Mol	Genet.	2007;16:547–54.	

doi:10.1093/hmg/ddm010.	

88.	Gervin	K,	Hammerø	M,	Akselsen	HE,	Moe	R,	Nygård	H,	Brandt	I,	et	al.	Extensive	

variation	and	low	heritability	of	DNA	methylation	identified	in	a	twin	study.	

Genome	Res.	2011;21:1813–21.	doi:10.1101/gr.119685.110.	

89.	van	Dongen	J,	Nivard	MG,	Willemsen	G,	Hottenga	J-J,	Helmer	Q,	Dolan	C	V,	et	al.	

Genetic	and	environmental	influences	interact	with	age	and	sex	in	shaping	the	

human	methylome.	Nat	Commun.	2016;7:11115.	doi:10.1038/ncomms11115.	

90.	Gordon	L,	Joo	JE,	Powell	JE,	Ollikainen	M,	Novakovic	B,	Li	X,	et	al.	Neonatal	DNA	

methylation	profile	in	human	twins	is	specified	by	a	complex	interplay	between	

intrauterine	environmental	and	genetic	factors,	subject	to	tissue-specific	influence.	

Genome	Res.	2012;22:1395–406.	doi:10.1101/gr.136598.111.	

91.	Quon	G,	Lippert	C,	Heckerman	D,	Listgarten	J.	Patterns	of	methylation	

heritability	in	a	genome-wide	analysis	of	four	brain	regions.	Nucleic	Acids	Res.	

2013;41:2095–104.	doi:10.1093/nar/gks1449.	

92.	Banovich	NE,	Lan	X,	McVicker	G,	van	de	Geijn	B,	Degner	JF,	Blischak	JD,	et	al.	

Methylation	QTLs	Are	Associated	with	Coordinated	Changes	in	Transcription	

Factor	Binding,	Histone	Modifications,	and	Gene	Expression	Levels.	PLoS	Genet.	

2014;10:e1004663.	doi:10.1371/journal.pgen.1004663.	

93.	Drong	AW,	Nicholson	G,	Hedman	AK,	Meduri	E,	Grundberg	E,	Small	KS,	et	al.	

The	presence	of	methylation	quantitative	trait	loci	indicates	a	direct	genetic	

influence	on	the	level	of	DNA	methylation	in	adipose	tissue.	PLoS	One.	

2013;8:e55923.	doi:10.1371/journal.pone.0055923.	

94.	Chen	L,	Ge	B,	Casale	FP,	Vasquez	L,	Kwan	T,	Garrido-Martín	D,	et	al.	Genetic	

Drivers	of	Epigenetic	and	Transcriptional	Variation	in	Human	Immune	Cells.	Cell.	

2016;167:1398–1414.e24.	doi:10.1016/j.cell.2016.10.026.	

95.	Bonder	MJ,	Luijk	R,	Zhernakova	D	V,	Moed	M,	Deelen	P,	Vermaat	M,	et	al.	

Disease	variants	alter	transcription	factor	levels	and	methylation	of	their	binding	

sites.	Nat	Genet.	2017;49:131–8.	doi:10.1038/ng.3721.	

96.	Moran	S,	Arribas	C,	Esteller	M.	Validation	of	a	DNA	methylation	microarray	for	

850,000	CpG	sites	of	the	human	genome	enriched	in	enhancer	sequences.	

Epigenomics.	2016;8:389–99.	doi:10.2217/epi.15.114.	

97.	Teschendorff	AE,	Marabita	F,	Lechner	M,	Bartlett	T,	Tegner	J,	Gomez-Cabrero	

D,	et	al.	A	beta-mixture	quantile	normalization	method	for	correcting	probe	design	

bias	in	Illumina	Infinium	450	k	DNA	methylation	data.	Bioinformatics.	

2013;29:189–96.	doi:10.1093/bioinformatics/bts680.	

98.	Fortin	J-P,	Labbe	A,	Lemire	M,	Zanke	BW,	Hudson	TJ,	Fertig	EJ,	et	al.	Functional	

normalization	of	450k	methylation	array	data	improves	replication	in	large	cancer	

studies.	Genome	Biol.	2014;15:503.	doi:10.1186/s13059-014-0503-2.	



	 118	

99.	Walter	K,	Min	JL,	Huang	J,	Crooks	L,	Memari	Y,	McCarthy	S,	et	al.	The	UK10K	

project	identifies	rare	variants	in	health	and	disease.	Nature.	2015;526:82–90.	

doi:10.1038/nature14962.	

100.	Horvath	S.	DNA	methylation	age	of	human	tissues	and	cell	types.	Genome	

Biol.	2013;14:R115.	doi:10.1186/gb-2013-14-10-r115.	

101.	Beaumont	M,	Goodrich	JK,	Jackson	MA,	Yet	I,	Davenport	ER,	Vieira-Silva	S,	et	

al.	Heritable	components	of	the	human	fecal	microbiome	are	associated	with	

visceral	fat.	Genome	Biol.	2016;17:189.	doi:10.1186/s13059-016-1052-7.	

102.	Shin	S-Y,	Fauman	EB,	Petersen	A-K,	Krumsiek	J,	Santos	R,	Huang	J,	et	al.	An	

atlas	of	genetic	influences	on	human	blood	metabolites.	Nat	Genet.	2014;46:543–

50.	doi:10.1038/ng.2982.	

103.	Consortium	RE,	Kundaje	A,	Meuleman	W,	Ernst	J,	Bilenky	M,	Yen	A,	et	al.	

Integrative	analysis	of	111	reference	human	epigenomes.	Nature.	2015;518:317–

30.	doi:10.1038/nature14248.	

104.	Bernstein	BE,	Birney	E,	Dunham	I,	Green	ED,	Gunter	C,	Snyder	M.	An	

integrated	encyclopedia	of	DNA	elements	in	the	human	genome.	Nature.	

2012;489:57–74.	doi:10.1038/nature11247.	

105.	Rijsdijk	F	V,	Sham	PC.	Analytic	approaches	to	twin	data	using	structural	

equation	models.	Brief	Bioinform.	2002;3:119–33.	

http://www.ncbi.nlm.nih.gov/pubmed/12139432.	

106.	Boker	S,	Neale	M,	Maes	H,	Wilde	M,	Spiegel	M,	Brick	T,	et	al.	OpenMx:	An	Open	

Source	Extended	Structural	Equation	Modeling	Framework.	Psychometrika.	

2011;76:306–17.	doi:10.1007/s11336-010-9200-6.	

107.	R	Core	Team.	R:	A	Language	and	Environment	for	Statistical	Computing.	

2016.	http://www.r-project.org.	

108.	Shabalin	AA.	Matrix	eQTL:	ultra	fast	eQTL	analysis	via	large	matrix	

operations.	Bioinformatics.	2012;28:1353–8.	doi:10.1093/bioinformatics/bts163.	

109.	Westra	H-J,	Arends	D,	Esko	T,	Peters	MJ,	Schurmann	C,	Schramm	K,	et	al.	Cell	

Specific	eQTL	Analysis	without	Sorting	Cells.	PLoS	Genet.	2015;11:e1005223.	

doi:10.1371/journal.pgen.1005223.	

110.	Heintzman	ND,	Stuart	RK,	Hon	G,	Fu	Y,	Ching	CW,	Hawkins	RD,	et	al.	Distinct	

and	predictive	chromatin	signatures	of	transcriptional	promoters	and	enhancers	

in	the	human	genome.	Nat	Genet.	2007;39:311–8.	doi:10.1038/ng1966.	

111.	Pandey	S,	Shetty	A,	Hamilton	M,	Bhattacharya	S,	Maheshwari	A.	Obstetric	and	

perinatal	outcomes	in	singleton	pregnancies	resulting	from	IVF/ICSI:	a	systematic	

review	and	meta-analysis.	Hum	Reprod	Update.	2012;18:485–503.	

doi:10.1093/humupd/dms018.	

112.	Romundstad	LB,	Romundstad	PR,	Sunde	A,	von	Düring	V,	Skjaerven	R,	Vatten	

LJ.	Increased	risk	of	placenta	previa	in	pregnancies	following	IVF/ICSI;	a	

comparison	of	ART	and	non-ART	pregnancies	in	the	same	mother.	Hum	Reprod.	

2006;21:2353–8.	doi:10.1093/humrep/del153.	

113.	Cox	GF,	Bürger	J,	Lip	V,	Mau	UA,	Sperling	K,	Wu	B-L,	et	al.	Intracytoplasmic	

sperm	injection	may	increase	the	risk	of	imprinting	defects.	Am	J	Hum	Genet.	

2002;71:162–4.	doi:10.1086/341096.	

114.	Maher	ER,	Brueton	LA,	Bowdin	SC,	Luharia	A,	Cooper	W,	Cole	TR,	et	al.	

Beckwith-Wiedemann	syndrome	and	assisted	reproduction	technology	(ART).	J	

Med	Genet.	2003;40:62–4.	

http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1735252&tool=pmc

entrez&rendertype=abstract.	Accessed	22	Nov	2014.	

115.	Apantaku	O,	Chandrasekaran	I,	Bentick	B.	Obstetric	outcome	of	singleton	

pregnancies	achieved	with	in	vitro	fertilisation	and	intracytoplasmic	sperm	



	 119	

injection:	experience	from	a	district	general	hospital.	J	Obstet	Gynaecol.	

2008;28:398–402.	doi:10.1080/01443610802091792.	

116.	De	Neubourg	D,	Gerris	J,	Mangelschots	K,	Van	Royen	E,	Vercruyssen	M,	

Steylemans	A,	et	al.	The	obstetrical	and	neonatal	outcome	of	babies	born	after	

single-embryo	transfer	in	IVF/ICSI	compares	favourably	to	spontaneously	

conceived	babies.	Hum	Reprod.	2006;21:1041–6.	doi:10.1093/humrep/dei424.	

117.	Weksberg	R.	Discordant	KCNQ1OT1	imprinting	in	sets	of	monozygotic	twins	

discordant	for	Beckwith-Wiedemann	syndrome.	Hum	Mol	Genet.	2002;11:1317–

25.	doi:10.1093/hmg/11.11.1317.	

118.	Saffery	R.	Epigenetic	change	as	the	major	mediator	of	fetal	programming	in	

humans:	Are	we	there	yet?	Ann	Nutr	Metab.	2014;64:203–7.	

doi:10.1159/000365020.	

119.	Smith	ZD,	Chan	MM,	Humm	KC,	Karnik	R,	Mekhoubad	S,	Regev	A,	et	al.	DNA	

methylation	dynamics	of	the	human	preimplantation	embryo.	Nature.	

2014;511:611–5.	doi:10.1038/nature13581.	

120.	Fauque	P.	Ovulation	induction	and	epigenetic	anomalies.	Fertil	Steril.	

2013;99:616–23.	doi:10.1016/j.fertnstert.2012.12.047.	

121.	Doherty	AS,	Mann	MR,	Tremblay	KD,	Bartolomei	MS,	Schultz	RM.	Differential	

effects	of	culture	on	imprinted	H19	expression	in	the	preimplantation	mouse	

embryo.	Biol	Reprod.	2000;62:1526–35.	

http://www.ncbi.nlm.nih.gov/pubmed/10819752.	Accessed	22	Nov	2014.	

122.	Wang	Z,	Xu	L,	He	F.	Embryo	vitrification	affects	the	methylation	of	the	

H19/Igf2	differentially	methylated	domain	and	the	expression	of	H19	and	Igf2.	

Fertil	Steril.	2010;93:2729–33.	doi:10.1016/j.fertnstert.2010.03.025.	

123.	Gomes	MV,	Huber	J,	Ferriani	RA,	Amaral	Neto	AM,	Ramos	ES.	Abnormal	

methylation	at	the	KvDMR1	imprinting	control	region	in	clinically	normal	children	

conceived	by	assisted	reproductive	technologies.	Mol	Hum	Reprod.	2009;15:471–

7.	doi:10.1093/molehr/gap038.	

124.	Li	L,	Wang	L,	Le	F,	Liu	X,	Yu	P,	Sheng	J,	et	al.	Evaluation	of	DNA	methylation	

status	at	differentially	methylated	regions	in	IVF-conceived	newborn	twins.	Fertil	

Steril.	2011;95:1975–9.	doi:10.1016/j.fertnstert.2011.01.173.	

125.	Nelissen	ECM,	Dumoulin	JCM,	Daunay	A,	Evers	JLH,	Tost	J,	van	Montfoort	APA.	

Placentas	from	pregnancies	conceived	by	IVF/ICSI	have	a	reduced	DNA	

methylation	level	at	the	H19	and	MEST	differentially	methylated	regions.	Hum	

Reprod.	2013;28:1117–26.	doi:10.1093/humrep/des459.	

126.	Tierling	S,	Souren	NY,	Gries	J,	Loporto	C,	Groth	M,	Lutsik	P,	et	al.	Assisted	

reproductive	technologies	do	not	enhance	the	variability	of	DNA	methylation	

imprints	in	human.	J	Med	Genet.	2010;47:371–6.	doi:10.1136/jmg.2009.073189.	

127.	Katari	S,	Turan	N,	Bibikova	M,	Erinle	O,	Chalian	R,	Foster	M,	et	al.	DNA	

methylation	and	gene	expression	differences	in	children	conceived	in	vitro	or	in	

vivo.	Hum	Mol	Genet.	2009;18:3769–78.	doi:10.1093/hmg/ddp319.	

128.	Melamed	N,	Choufani	S,	Wilkins-Haug	LE,	Koren	G,	Weksberg	R.	Comparison	

of	Genome-Wide	and	Gene-Specific	DNA	Methylation	between	ART	and	Naturally	

Conceived	Pregnancies.	Epigenetics.	2015;10:474–83.	

doi:10.4161/15592294.2014.988041.	

129.	Estill	MS,	Bolnick	JM,	Waterland	RA,	Bolnick	AD,	Diamond	MP,	Krawetz	SA.	

Assisted	reproductive	technology	alters	deoxyribonucleic	acid	methylation	

profiles	in	bloodspots	of	newborn	infants.	Fertil	Steril.	2016;106:629–639.e10.	

doi:10.1016/j.fertnstert.2016.05.006.	

130.	Bibikova	M,	Barnes	B,	Tsan	C,	Ho	V,	Klotzle	B,	Le	JM,	et	al.	High	density	DNA	

methylation	array	with	single	CpG	site	resolution.	Genomics.	2011;98:288–95.	



	 120	

doi:10.1016/j.ygeno.2011.07.007.	

131.	Weber	M,	Davies	JJ,	Wittig	D,	Oakeley	EJ,	Haase	M,	Lam	WL,	et	al.	

Chromosome-wide	and	promoter-specific	analyses	identify	sites	of	differential	

DNA	methylation	in	normal	and	transformed	human	cells.	Nat	Genet.	

2005;37:853–62.	doi:10.1038/ng1598.	

132.	Loke	YJ,	Novakovic	B,	Ollikainen	M,	Wallace	EM,	Umstad	MP,	Permezel	M,	et	

al.	The	Peri/postnatal	Epigenetic	Twins	Study	(PETS).	Twin	Res	Hum	Genet.	

2013;16:13–20.	doi:10.1017/thg.2012.114.	

133.	Ollikainen	M,	Smith	KR,	Joo	EJ-H,	Ng	HK,	Andronikos	R,	Novakovic	B,	et	al.	

DNA	methylation	analysis	of	multiple	tissues	from	newborn	twins	reveals	both	

genetic	and	intrauterine	components	to	variation	in	the	human	neonatal	

epigenome.	Hum	Mol	Genet.	2010;19:4176–88.	doi:10.1093/hmg/ddq336.	

134.	Chavez	L,	Jozefczuk	J,	Grimm	C,	Dietrich	J,	Timmermann	B,	Lehrach	H,	et	al.	

Computational	analysis	of	genome-wide	DNA	methylation	during	the	

differentiation	of	human	embryonic	stem	cells	along	the	endodermal	lineage.	

Genome	Res.	2010;20:1441–50.	doi:10.1101/gr.110114.110.	

135.	Bates	D,	Maechler	M,	Bolker	B,	Walker	S.	{lme4}:	Linear	mixed-effects	models	

using	Eigen	and	S4.	2014.	http://cran.r-project.org/package=lme4.	

136.	Miyagawa	Y,	Nishimura	H,	Tsujimura	A,	Matsuoka	Y,	Matsumiya	K,	Okuyama	

A,	et	al.	Single-nucleotide	polymorphisms	and	mutation	analyses	of	the	TNP1	and	

TNP2	genes	of	fertile	and	infertile	human	male	populations.	J	Androl.	

2005;26:779–86.	doi:10.2164/jandrol.05069.	

137.	Trasler	JM,	Hake	LE,	Johnson	P	a,	Alcivar		a	a,	Millette	CF,	Hecht	NB.	DNA	

methylation	and	demethylation	events	during	meiotic	prophase	in	the	mouse	

testis.	Mol	Cell	Biol.	1990;10:1828–34.	

http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=362295&tool=pmce

ntrez&rendertype=abstract.	

138.	Shi	Y,	Zhao	H,	Shi	Y,	Cao	Y,	Yang	D,	Li	Z,	et	al.	Genome-wide	association	study	

identifies	eight	new	risk	loci	for	polycystic	ovary	syndrome.	Nat	Genet.	

2012;44:1020–5.	doi:10.1038/ng.2384.	

139.	Kerns	SL,	Ostrer	H,	Stock	R,	Li	W,	Moore	J,	Pearlman	A,	et	al.	Genome-wide	

association	study	to	identify	single	nucleotide	polymorphisms	(SNPs)	associated	

with	the	development	of	erectile	dysfunction	in	African-American	men	after	

radiotherapy	for	prostate	cancer.	Int	J	Radiat	Oncol	Biol	Phys.	2010;78:1292–300.	

doi:10.1016/j.ijrobp.2010.07.036.	

140.	Fenstad	MH,	Johnson	MP,	Løset	M,	Mundal	SB,	Roten	LT,	Eide	IP,	et	al.	STOX2	

but	not	STOX1	is	differentially	expressed	in	decidua	from	pre-eclamptic	women:	

data	from	the	Second	Nord-Trondelag	Health	Study.	Mol	Hum	Reprod.	

2010;16:960–8.	doi:10.1093/molehr/gaq064.	

141.	Thurman	RE,	Rynes	E,	Humbert	R,	Vierstra	J,	Maurano	MT,	Haugen	E,	et	al.	

The	accessible	chromatin	landscape	of	the	human	genome.	Nature.	2012;489:75–

82.	doi:10.1038/nature11232.	

142.	Gardiner-Garden	M,	Frommer	M.	CpG	Islands	in	vertebrate	genomes.	J	Mol	

Biol.	1987;196:261–82.	doi:10.1016/0022-2836(87)90689-9.	

143.	Silver	MJ,	Kessler	NJ,	Hennig	BJ,	Dominguez-Salas	P,	Laritsky	E,	Baker	MS,	et	

al.	Independent	genomewide	screens	identify	the	tumor	suppressor	VTRNA2-1	as	

a	human	epiallele	responsive	to	periconceptional	environment.	Genome	Biol.	

2015;16:118.	doi:10.1186/s13059-015-0660-y.	

144.	Schulz	R,	Woodfine	K,	Menheniott	TR,	Bourc’his	D,	Bestor	T,	Oakey	RJ.	

WAMIDEX:	a	web	atlas	of	murine	genomic	imprinting	and	differential	expression.	

Epigenetics.	3:89–96.	



	 121	

http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2492384&tool=pmc

entrez&rendertype=abstract.	Accessed	7	May	2015.	

145.	Palermo	G,	Joris	H,	Devroey	P,	Van	Steirteghem	AC.	Pregnancies	after	

intracytoplasmic	injection	of	single	spermatozoon	into	an	oocyte.	Lancet	(London,	

England).	1992;340:17–8.	http://www.ncbi.nlm.nih.gov/pubmed/1351601.	

Accessed	24	Jan	2016.	

146.	Palermo	GD,	Neri	Q	V,	Rosenwaks	Z.	Safety	of	intracytoplasmic	sperm	

injection.	Methods	Mol	Biol.	2014;1154:549–62.	doi:10.1007/978-1-4939-0659-

8_26.	

147.	Uhlen	M,	Fagerberg	L,	Hallstrom	BM,	Lindskog	C,	Oksvold	P,	Mardinoglu	A,	et	

al.	Tissue-based	map	of	the	human	proteome.	Science	(80-	).	2015;347:1260419–

1260419.	doi:10.1126/science.1260419.	

148.	Rakyan	VK,	Blewitt	ME,	Druker	R,	Preis	JI,	Whitelaw	E.	Metastable	epialleles	

in	mammals.	Trends	Genet.	2002;18:348–51.	

http://www.ncbi.nlm.nih.gov/pubmed/12127774.	Accessed	23	Jun	2016.	

149.	Oliver	VF,	Miles	HL,	Cutfield	WS,	Hofman	PL,	Ludgate	JL,	Morison	IM.	Defects	

in	imprinting	and	genome-wide	DNA	methylation	are	not	common	in	the	in	vitro	

fertilization	population.	Fertil	Steril.	2012;97:147–53.e7.	

doi:10.1016/j.fertnstert.2011.10.027.	

150.	Boissonnas	CC,	Abdalaoui	H	El,	Haelewyn	V,	Fauque	P,	Dupont	JM,	Gut	I,	et	al.	

Specific	epigenetic	alterations	of	IGF2-H19	locus	in	spermatozoa	from	infertile	

men.	Eur	J	Hum	Genet.	2010;18:73–80.	doi:10.1038/ejhg.2009.117.	

151.	Whitelaw	N,	Bhattacharya	S,	Hoad	G,	Horgan	GW,	Hamilton	M,	Haggarty	P.	

Epigenetic	status	in	the	offspring	of	spontaneous	and	assisted	conception.	Hum	

Reprod.	2014;29:1452–8.	doi:10.1093/humrep/deu094.	

152.	Ludwig	M,	Katalinic	A,	Gross	S,	Sutcliffe	A,	Varon	R,	Horsthemke	B.	Increased	

prevalence	of	imprinting	defects	in	patients	with	Angelman	syndrome	born	to	

subfertile	couples.	J	Med	Genet.	2005;42:289–91.	doi:10.1136/jmg.2004.026930.	

153.	Doornbos	ME,	Maas	SM,	McDonnell	J,	Vermeiden	JPW,	Hennekam	RCM.	

Infertility,	assisted	reproduction	technologies	and	imprinting	disturbances:	a	

Dutch	study.	Hum	Reprod.	2007;22:2476–80.	doi:10.1093/humrep/dem172.	

154.	Jaques	AM,	Amor	DJ,	Baker	HWG,	Healy	DL,	Ukoumunne	OC,	Breheny	S,	et	al.	

Adverse	obstetric	and	perinatal	outcomes	in	subfertile	women	conceiving	without	

assisted	reproductive	technologies.	Fertil	Steril.	2010;94:2674–9.	

doi:10.1016/j.fertnstert.2010.02.043.	

155.	Pinborg	A,	Wennerholm	UB,	Romundstad	LB,	Loft	A,	Aittomaki	K,	

Söderström-Anttila	V,	et	al.	Why	do	singletons	conceived	after	assisted	

reproduction	technology	have	adverse	perinatal	outcome?	Systematic	review	and	

meta-analysis.	Hum	Reprod	Update.	19:87–104.	doi:10.1093/humupd/dms044.	

156.	Song	S,	Ghosh	J,	Mainigi	M,	Turan	N,	Weinerman	R,	Truongcao	M,	et	al.	DNA	

methylation	differences	between	in	vitro-	and	in	vivo-conceived	children	are	

associated	with	ART	procedures	rather	than	infertility.	Clin	Epigenetics.	

2015;7:41.	doi:10.1186/s13148-015-0071-7.	

157.	Jaffe	AE,	Irizarry	RA.	Accounting	for	cellular	heterogeneity	is	critical	in	

epigenome-wide	association	studies.	Genome	Biol.	2014;15:R31.	doi:10.1186/gb-

2014-15-2-r31.	

158.	Eckhardt	F,	Lewin	J,	Cortese	R,	Rakyan	VK,	Attwood	J,	Burger	M,	et	al.	DNA	

methylation	profiling	of	human	chromosomes	6,	20	and	22.	Nat	Genet.	

2006;38:1378–85.	doi:10.1038/ng1909.	

159.	Tsai	P-C,	Bell	JT.	Power	and	sample	size	estimation	for	epigenome-wide	

association	scans	to	detect	differential	DNA	methylation.	Int	J	Epidemiol.	2015.	



	 122	

doi:10.1093/ije/dyv041.	

160.	Henderson	KD,	Bernstein	L,	Henderson	B,	Kolonel	L,	Pike	MC.	Predictors	of	

the	Timing	of	Natural	Menopause	in	the	Multiethnic	Cohort	Study.	Am	J	Epidemiol.	

2008;167:1287–94.	doi:10.1093/aje/kwn046.	

161.	Kritz-Silverstein	D,	Barrett-Connor	E.	Early	menopause,	number	of	

reproductive	years,	and	bone	mineral	density	in	postmenopausal	women.	Am	J	

Public	Health.	1993;83:983–8.	

http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1694784&tool=pmc

entrez&rendertype=abstract.	Accessed	20	May	2015.	

162.	Collaborative	Group	on	Hormonal	Factors	in	Breast	Cancer.	Menarche,	

menopause,	and	breast	cancer	risk:	individual	participant	meta-analysis,	including	

118	964	women	with	breast	cancer	from	117	epidemiological	studies.	Lancet	

Oncol.	2012;13:1141–51.	doi:10.1016/S1470-2045(12)70425-4.	

163.	Burger	HG,	Hale	GE,	Robertson	DM,	Dennerstein	L.	A	review	of	hormonal	

changes	during	the	menopausal	transition:	focus	on	findings	from	the	Melbourne	

Women’s	Midlife	Health	Project.	Hum	Reprod	Update.	2007;13:559–65.	

doi:10.1093/humupd/dmm020.	

164.	Sapir-Koren	R,	Livshits	G.	Postmenopausal	osteoporosis	in	rheumatoid	

arthritis:	The	estrogen	deficiency-immune	mechanisms	link.	Bone.	2017;103:102–

15.	doi:10.1016/j.bone.2017.06.020.	

165.	Dall	GV,	Britt	KL.	Estrogen	Effects	on	the	Mammary	Gland	in	Early	and	Late	

Life	and	Breast	Cancer	Risk.	Front	Oncol.	2017;7:110.	

doi:10.3389/fonc.2017.00110.	

166.	Snieder	H,	MacGregor	AJ,	Spector	TD.	Genes	control	the	cessation	of	a	

woman’s	reproductive	life:	a	twin	study	of	hysterectomy	and	age	at	menopause.	J	

Clin	Endocrinol	Metab.	1998;83:1875–80.	doi:10.1210/jcem.83.6.4890.	

167.	Stolk	L,	Zhai	G,	van	Meurs	JBJ,	Verbiest	MMPJ,	Visser	JA,	Estrada	K,	et	al.	Loci	

at	chromosomes	13,	19	and	20	influence	age	at	natural	menopause.	Nat	Genet.	

2009;41:645–7.	doi:10.1038/ng.387.	

168.	He	C,	Kraft	P,	Chen	C,	Buring	JE,	Paré	G,	Hankinson	SE,	et	al.	Genome-wide	

association	studies	identify	loci	associated	with	age	at	menarche	and	age	at	

natural	menopause.	Nat	Genet.	2009;41:724–8.	doi:10.1038/ng.385.	

169.	Chen	CTL,	Fernández-Rhodes	L,	Brzyski	RG,	Carlson	CS,	Chen	Z,	Heiss	G,	et	al.	

Replication	of	loci	influencing	ages	at	menarche	and	menopause	in	Hispanic	

women:	the	Women’s	Health	Initiative	SHARe	Study.	Hum	Mol	Genet.	

2012;21:1419–32.	doi:10.1093/hmg/ddr570.	

170.	Stolk	L,	Perry	JRB,	Chasman	DI,	He	C,	Mangino	M,	Sulem	P,	et	al.	Meta-

analyses	identify	13	loci	associated	with	age	at	menopause	and	highlight	DNA	

repair	and	immune	pathways.	Nat	Genet.	2012;44:260–8.	doi:10.1038/ng.1051.	

171.	Chen	CTL,	Liu	C-T,	Chen	GK,	Andrews	JS,	Arnold	AM,	Dreyfus	J,	et	al.	Meta-

analysis	of	loci	associated	with	age	at	natural	menopause	in	African-American	

women.	Hum	Mol	Genet.	2014;23:3327–42.	doi:10.1093/hmg/ddu041.	

172.	Shen	C,	Delahanty	RJ,	Gao	Y-T,	Lu	W,	Xiang	Y-B,	Zheng	Y,	et	al.	Evaluating	

GWAS-identified	SNPs	for	age	at	natural	menopause	among	chinese	women.	PLoS	

One.	2013;8:e58766.	doi:10.1371/journal.pone.0058766.	

173.	Rödström	K,	Bengtsson	C,	Milsom	I,	Lissner	L,	Sundh	V,	Bjoürkelund	C.	

Evidence	for	a	secular	trend	in	menopausal	age:	a	population	study	of	women	in	

Gothenburg.	Menopause.	2003;10:538–43.	

doi:10.1097/01.GME.0000094395.59028.0F.	

174.	Nichols	HB,	Trentham-Dietz	A,	Hampton	JM,	Titus-Ernstoff	L,	Egan	KM,	

Willett	WC,	et	al.	From	menarche	to	menopause:	trends	among	US	Women	born	



	 123	

from	1912	to	1969.	Am	J	Epidemiol.	2006;164:1003–11.	doi:10.1093/aje/kwj282.	

175.	Wahl	S,	Drong	A,	Lehne	B,	Loh	M,	Scott	WR,	Kunze	S,	et	al.	Epigenome-wide	

association	study	of	body	mass	index,	and	the	adverse	outcomes	of	adiposity.	

Nature.	2016;541:81–6.	doi:10.1038/nature20784.	

176.	Simpson	ER.	Sources	of	estrogen	and	their	importance.	J	Steroid	Biochem	Mol	

Biol.	2003;86:225–30.	http://www.ncbi.nlm.nih.gov/pubmed/14623515.	

Accessed	4	Jul	2017.	

177.	Houseman	EA,	Accomando	WP,	Koestler	DC,	Christensen	BC,	Marsit	CJ,	Nelson	

HH,	et	al.	DNA	methylation	arrays	as	surrogate	measures	of	cell	mixture	

distribution.	BMC	Bioinformatics.	2012;13:86.	doi:10.1186/1471-2105-13-86.	

178.	M?gi	R,	Morris	AP.	GWAMA:	software	for	genome-wide	association	meta-

analysis.	BMC	Bioinformatics.	2010;11:288.	doi:10.1186/1471-2105-11-288.	

179.	Shenker	NS,	Ueland	PM,	Polidoro	S,	van	Veldhoven	K,	Ricceri	F,	Brown	R,	et	al.	

DNA	methylation	as	a	long-term	biomarker	of	exposure	to	tobacco	smoke.	

Epidemiology.	2013;24:712–6.	doi:10.1097/EDE.0b013e31829d5cb3.	

180.	Comuzzie	AG,	Cole	SA,	Laston	SL,	Voruganti	VS,	Haack	K,	Gibbs	RA,	et	al.	Novel	

genetic	loci	identified	for	the	pathophysiology	of	childhood	obesity	in	the	Hispanic	

population.	PLoS	One.	2012;7:e51954.	doi:10.1371/journal.pone.0051954.	

181.	Weissglas-Volkov	D,	Aguilar-Salinas	CA,	Nikkola	E,	Deere	KA,	Cruz-Bautista	I,	

Arellano-Campos	O,	et	al.	Genomic	study	in	Mexicans	identifies	a	new	locus	for	

triglycerides	and	refines	European	lipid	loci.	J	Med	Genet.	2013;50:298–308.	

doi:10.1136/jmedgenet-2012-101461.	

182.	Billeci	AMR,	Paciaroni	M,	Caso	V,	Agnelli	G.	Hormone	replacement	therapy	

and	stroke.	Curr	Vasc	Pharmacol.	2008;6:112–23.	

http://www.ncbi.nlm.nih.gov/pubmed/18393913.	Accessed	5	Jul	2017.	

183.	Spector	TD,	Nandra	D,	Hart	DJ,	Doyle	D	V.	Is	hormone	replacement	therapy	

protective	for	hand	and	knee	osteoarthritis	in	women?:	The	Chingford	Study.	Ann	

Rheum	Dis.	1997;56:432–4.	http://www.ncbi.nlm.nih.gov/pubmed/9486006.	

Accessed	5	Jul	2017.	

184.	Skoog	I,	Gustafson	D.	HRT	and	dementia.	J	Epidemiol	Biostat.	1999;4:227–51;	

discussion	252.	http://www.ncbi.nlm.nih.gov/pubmed/10695961.	Accessed	5	Jul	

2017.	

185.	Ronkainen	PHA,	Kovanen	V,	Alen	M,	Pollanen	E,	Palonen	E-M,	Ankarberg-

Lindgren	C,	et	al.	Postmenopausal	hormone	replacement	therapy	modifies	skeletal	

muscle	composition	and	function:	a	study	with	monozygotic	twin	pairs.	J	Appl	

Physiol.	2009;107:25–33.	doi:10.1152/japplphysiol.91518.2008.	

186.	Romieu	I,	Fabre	A,	Fournier	A,	Kauffmann	F,	Varraso	R,	Mesrine	S,	et	al.	

Postmenopausal	hormone	therapy	and	asthma	onset	in	the	E3N	cohort.	Thorax.	

2010;65:292–7.	doi:10.1136/thx.2009.116079.	

187.	Bahl	A,	Pöllänen	E,	Ismail	K,	Sipilä	S,	Mikkola	TM,	Berglund	E,	et	al.	Hormone	

Replacement	Therapy	Associated	White	Blood	Cell	DNA	Methylation	and	Gene	

Expression	are	Associated	With	Within-Pair	Differences	of	Body	Adiposity	and	

Bone	Mass.	Twin	Res	Hum	Genet.	2015;18:647–61.	doi:10.1017/thg.2015.82.	

188.	World	Health	Organization.	WHO	|	Infertility	is	a	global	public	health	issue.	

WHO.	2014.	

http://www.who.int/reproductivehealth/topics/infertility/perspective/en/.	

Accessed	9	Jun	2017.	

189.	Boivin	J,	Bunting	L,	Collins	JA,	Nygren	KG.	International	estimates	of	infertility	

prevalence	and	treatment-seeking:	potential	need	and	demand	for	infertility	

medical	care.	Hum	Reprod.	2007;22:1506–12.	doi:10.1093/humrep/dem046.	

190.	Kupka	MS,	Ferraretti	AP,	de	Mouzon	J,	Erb	K,	D’Hooghe	T,	Castilla	JA,	et	al.	



	 124	

Assisted	reproductive	technology	in	Europe,	2010:	results	generated	from	

European	registers	by	ESHRE†.	Hum	Reprod.	2014;29:2099–113.	

doi:10.1093/humrep/deu175.	

191.	Petronis	A.	Epigenetics	as	a	unifying	principle	in	the	aetiology	of	complex	

traits	and	diseases.	Nature.	2010;465:721–7.	doi:10.1038/nature09230.	

192.	Bruder	CEG,	Piotrowski	A,	Gijsbers	AACJ,	Andersson	R,	Erickson	S,	Diaz	de	

Ståhl	T,	et	al.	Phenotypically	concordant	and	discordant	monozygotic	twins	

display	different	DNA	copy-number-variation	profiles.	Am	J	Hum	Genet.	

2008;82:763–71.	doi:10.1016/j.ajhg.2007.12.011.	

193.	Li	R,	Montpetit	A,	Rousseau	M,	Wu	SYM,	Greenwood	CMT,	Spector	TD,	et	al.	

Somatic	point	mutations	occurring	early	in	development:	a	monozygotic	twin	

study.	J	Med	Genet.	2013;0:1–7.	doi:10.1136/jmedgenet-2013-101712.	

194.	Visscher	PM.	Power	of	the	classical	twin	design	revisited.	Twin	Res.	

2004;7:505–12.	doi:10.1375/1369052042335250.	

195.	Tsai	P-C,	Bell	JT.	Power	and	sample	size	estimation	for	epigenome-wide	

association	scans	to	detect	differential	DNA	methylation.	Int	J	Epidemiol.	

2015;44:1429.	doi:10.1093/ije/dyv041.	

196.	Murano	T,	Izumi	S,	Kika	G,	Haque	SF,	Okuwaki	S,	Mori	A,	et	al.	Impact	of	

menopause	on	lipid	and	bone	metabolism	and	effect	of	hormone	replacement	

therapy.	Tokai	J	Exp	Clin	Med.	2003;28:109–19.	

http://www.ncbi.nlm.nih.gov/pubmed/15055403.	Accessed	1	Jul	2017.	

	

	

	 	



	 125	

Annex 

I. Enrichment analysis accounting for variance 

	
	

	

II. Re-analysis of FDR 25% WBC IVF-DMRs excluding other fertility 
treatments from non-IVF group (n=94, 54 non-IVF and 40 IVF) 

Chromosome Start End Estimate SE p 
chr2 217726751 217727250 1.17 0.19 9.66E-09 
chr5 178761751 178762250 -1.09 0.20 5.69E-08 
chr9 97504001 97504500 1.05 0.20 1.22E-07 
chr5 9275751 9276250 1.09 0.19 1.17E-07 
chr4 184814001 184814500 -0.94 0.18 2.00E-07 
chr5 142488501 142489000 -1.09 0.20 1.05E-07 
chr9 118148751 118149250 1.05 0.20 3.42E-07 
chr9 118149001 118149500 1.04 0.20 1.52E-07 

chr11 82654251 82654750 -1.07 0.20 1.57E-07 
chr19 6165251 6165750 0.93 0.18 2.38E-07 
chr1 85522251 85522750 0.97 0.18 3.36E-07 

chr17 42569001 42569500 -1.10 0.19 7.18E-08 
chr4 141606501 141607000 1.07 0.20 5.32E-07 
chr5 137736001 137736500 -1.02 0.20 4.39E-07 
chr5 150614501 150615000 -1.05 0.20 3.18E-07 

chr17 36918251 36918750 -1.11 0.21 4.66E-07 
chr6 126138251 126138750 -1.01 0.19 1.00E-07 
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chr7 144431251 144431750 1.00 0.19 6.16E-07 
chr12 70937251 70937750 0.90 0.18 5.51E-07 
chr4 141606251 141606750 1.02 0.19 3.96E-07 

chr13 90019001 90019500 1.08 0.20 1.77E-07 
chr11 74179001 74179500 1.08 0.20 2.81E-07 
chr12 99153001 99153500 -0.99 0.20 8.01E-07 
chr2 223336751 223337250 -1.01 0.20 4.73E-07 
chr8 120972001 120972500 1.01 0.19 1.51E-07 

chr17 38047001 38047500 -1.06 0.20 5.53E-07 
chr4 64626751 64627250 -0.99 0.19 5.24E-07 

chr16 87256751 87257250 -0.83 0.17 9.12E-07 
chr19 10656751 10657250 -1.02 0.20 4.44E-07 
chr7 2487251 2487750 0.78 0.16 1.36E-06 

chr11 74178751 74179250 1.01 0.20 5.79E-07 
chr10 119176501 119177000 -1.05 0.21 8.45E-07 
chr22 34755251 34755750 -0.98 0.20 1.25E-06 
chr6 161664751 161665250 0.97 0.19 1.04E-06 

chr16 17161751 17162250 -1.02 0.20 6.74E-07 
chr18 23695001 23695500 1.02 0.21 1.07E-06 
chr9 26364751 26365250 -0.96 0.20 8.40E-07 
chr1 25227001 25227500 -0.82 0.17 1.82E-06 

chr13 68877251 68877750 0.98 0.20 1.61E-06 
chr9 89126501 89127000 -0.93 0.19 6.93E-07 

chr13 35317501 35318000 -0.97 0.19 6.46E-07 
chr21 19575001 19575500 1.00 0.19 3.04E-07 
chr2 169470001 169470500 -1.03 0.20 6.63E-07 

chr12 4310251 4310750 -0.96 0.20 2.47E-06 
chr6 157136501 157137000 -0.97 0.19 1.27E-06 

chr14 104067251 104067750 0.70 0.14 1.78E-06 
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III. Re-analysis of FDR 25% WBC IVF-DMRs in subset with cell counts  

   

Adjusted for 5 PCs (n=98, 
40 IVF and 58 non-IVF) 

Adjusted for 5 PCs (n=54, 
22 IVF and 32 non-IVF) 

Adjusted for cell 
proportions (n=54, 22 IVF 

and 32 non-IVF) 
Chromosome Start End Estimate SE p Estimate SE p Estimate SE p 

chr2 217726751 217727250 1.18 0.19 2.30E-09 0.98 0.28 2.78E-04 0.91 0.27 4.43E-04 
chr5 178761751 178762250 -1.08 0.2 5.43E-08 -1.19 0.26 3.37E-06 -1.1 0.26 1.44E-05 
chr9 97504001 97504500 1.07 0.2 5.83E-08 1.14 0.28 1.85E-05 0.91 0.27 4.56E-04 
chr5 9275751 9276250 1.09 0.19 5.86E-08 1.17 0.25 5.74E-06 1.11 0.25 6.28E-06 
chr4 184814001 184814500 -0.96 0.18 7.95E-08 -1.06 0.22 1.00E+00 -1.06 0.26 6.25E-05 
chr5 142488501 142489000 -1.11 0.2 8.73E-08 -1.04 0.29 2.14E-04 -0.93 0.3 1.02E-03 
chr9 118148751 118149250 1.09 0.2 9.20E-08 1 0.29 3.18E-04 0.91 0.3 1.18E-03 
chr9 118149001 118149500 1.08 0.2 1.04E-07 1.02 0.3 2.41E-04 0.94 0.3 8.19E-04 

chr11 82654251 82654750 -1.05 0.19 1.30E-07 -1.1 0.26 1.20E-05 -1.08 0.26 2.99E-05 
chr19 6165251 6165750 0.94 0.18 1.40E-07 1.05 0.24 7.97E-06 0.82 0.28 2.11E-03 
chr1 85522251 85522750 0.99 0.18 1.43E-07 0.85 0.28 1.07E-03 0.97 0.26 1.24E-04 

chr17 42569001 42569500 -1.07 0.19 1.64E-07 -0.97 0.28 2.15E-04 -0.72 0.29 7.61E-03 
chr4 141606501 141607000 1.09 0.19 2.03E-07 0.81 0.26 1.22E-03 0.54 0.28 3.38E-02 
chr5 137736001 137736500 -1.03 0.19 2.06E-07 -1.06 0.27 7.31E-05 -0.79 0.29 2.85E-03 
chr5 150614501 150615000 -1.08 0.21 2.14E-07 -1.14 0.28 2.43E-05 -1.3 0.26 1.86E-06 

chr17 36918251 36918750 -1.1 0.21 2.32E-07 -1.12 0.31 2.47E-04 -0.75 0.27 3.45E-03 
chr6 126138251 126138750 -0.99 0.19 2.36E-07 -1.23 0.25 7.72E-07 -1.19 0.24 1.05E-06 
chr7 144431251 144431750 1.02 0.19 2.70E-07 1.12 0.27 4.08E-05 1.21 0.27 7.42E-06 

chr12 70937251 70937750 0.88 0.17 2.76E-07 0.87 0.25 4.24E-04 0.78 0.28 2.30E-03 
chr4 141606251 141606750 1.01 0.19 2.80E-07 0.76 0.28 3.19E-03 0.56 0.28 2.97E-02 

chr13 90019001 90019500 1.06 0.2 2.84E-07 1 0.28 1.44E-04 1.02 0.26 6.44E-05 
chr11 74179001 74179500 1.07 0.2 2.92E-07 0.9 0.28 4.89E-04 0.86 0.28 1.27E-03 
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chr12 99153001 99153500 -1.01 0.2 3.93E-07 -0.97 0.24 4.62E-05 -0.96 0.27 2.30E-04 
chr2 223336751 223337250 -1.01 0.2 4.47E-07 -0.99 0.27 8.56E-05 -0.78 0.28 3.05E-03 
chr8 120972001 120972500 0.97 0.19 4.98E-07 0.53 0.23 1.21E-02 0.4 0.28 9.42E-02 

chr17 38047001 38047500 -1.04 0.2 5.25E-07 -1.34 0.26 2.51E-06 -1.34 0.25 3.52E-06 
chr4 64626751 64627250 -0.99 0.19 5.45E-07 -0.95 0.25 1.07E-04 -0.74 0.32 1.19E-02 

chr16 87256751 87257250 -0.83 0.16 5.51E-07 -1.06 0.19 7.18E-08 -1.06 0.28 7.47E-05 
chr19 10656751 10657250 -1.03 0.2 5.77E-07 -1.06 0.27 4.01E-05 -0.86 0.26 4.40E-04 
chr7 2487251 2487750 0.8 0.16 5.85E-07 0.82 0.19 1.74E-05 0.29 0.29 2.64E-01 

chr11 74178751 74179250 0.99 0.2 6.82E-07 0.89 0.28 8.08E-04 0.88 0.28 9.17E-04 
chr10 119176501 119177000 -1.04 0.2 6.87E-07 -1.18 0.27 1.49E-05 -1.03 0.27 1.09E-04 
chr22 34755251 34755750 -0.98 0.2 7.32E-07 -0.85 0.29 1.70E-03 -0.81 0.26 1.09E-03 
chr6 161664751 161665250 0.98 0.19 7.42E-07 0.94 0.3 1.05E-03 0.62 0.31 2.70E-02 

chr16 17161751 17162250 -1.01 0.2 7.80E-07 -0.94 0.25 1.13E-04 -0.87 0.28 1.52E-03 
chr18 23695001 23695500 1.04 0.21 8.39E-07 0.79 0.33 1.18E-02 0.4 0.29 1.20E-01 
chr9 26364751 26365250 -0.95 0.19 8.90E-07 -1.02 0.26 4.45E-05 -0.78 0.26 1.28E-03 
chr1 25227001 25227500 -0.83 0.17 9.05E-07 -0.71 0.22 4.89E-04 -1.04 0.28 2.73E-04 

chr13 68877251 68877750 0.97 0.2 9.43E-07 1.07 0.25 1.21E-05 0.9 0.29 1.08E-03 
chr9 89126501 89127000 -0.92 0.19 9.59E-07 -0.57 0.25 1.36E-02 -0.64 0.3 2.33E-02 

chr13 35317501 35318000 -0.96 0.2 9.72E-07 -0.77 0.29 3.49E-03 -0.57 0.29 3.03E-02 
chr21 19575001 19575500 0.96 0.19 9.92E-07 1.13 0.22 3.90E-07 0.76 0.24 7.41E-04 
chr2 169470001 169470500 -1.02 0.21 1.06E-06 -1.12 0.29 1.22E-04 -0.88 0.28 1.96E-03 

chr12 4310251 4310750 -0.99 0.2 1.06E-06 -0.99 0.29 2.65E-04 -0.8 0.29 1.00E+00 
chr6 157136501 157137000 -0.96 0.19 1.15E-06 -0.98 0.24 1.88E-05 -1.01 0.26 4.46E-05 

chr14 104067251 104067750 0.71 0.14 1.17E-06 0.73 0.2 1.42E-04 0.19 0.3 4.84E-01 
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IV. Age at menopause EWAS Manhattan plots 
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V. Length of reproductive period EWAS Manhattan plots 
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VI. Early vs late menopause EWAS Manhattan plots 
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VII. Menopausal status EWAS Manhattan plots 
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VIII. HRT use EWAS Manhattan plots 
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IX. HRT-associated DMPs funnel plots 
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DNA methylation changes at infertility
genes in newborn twins conceived by
in vitro fertilisation
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Abstract

Background: The association of in vitro fertilisation (IVF) and DNA methylation has been studied predominantly
at regulatory regions of imprinted genes and at just thousands of the ~28 million CpG sites in the human
genome.

Methods: We investigated the links between IVF and DNA methylation patterns in whole cord blood cells
(n = 98) and cord blood mononuclear cells (n = 82) from newborn twins using genome-wide methylated DNA
immunoprecipitation coupled with deep sequencing.

Results: At a false discovery rate (FDR) of 5%, we identified one significant whole blood DNA methylation
change linked to conception via IVF, which was located ~3 kb upstream of TNP1, a gene previously linked to
male infertility. The 46 most strongly associated signals (FDR of 25%) included a second region in a gene also
previously linked to infertility, C9orf3, suggesting that our findings may in part capture the effect of parental
subfertility. Using twin modelling, we observed that individual-specific environmental factors appear to be the main
overall contributors of methylation variability at the FDR 25% IVF-associated differentially methylated regions, although
evidence for methylation heritability was also obtained at several of these regions. We replicated previous findings of
differential methylation associated with IVF at the H19/IGF2 region in cord blood mononuclear cells, and we validated
the signal at C9orf3 in monozygotic twins. We also explored the impact of intracytoplasmic sperm injection on the FDR
25% signals for potential effects specific to male or female infertility factors.

Conclusions: To our knowledge, this is the most comprehensive study of DNA methylation profiles at birth and IVF
conception to date, and our results show evidence for epigenetic modifications that may in part reflect parental
subfertility.
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Background
As the frequency of in vitro fertilisation (IVF) treatment
increases worldwide, much research effort has focused
on exploring both short- and long-term health outcomes
associated with conception via IVF, with contradictory
results. A number of studies have observed associations
with adverse perinatal and obstetric outcomes, including
low birth weight, preterm birth, perinatal mortality,
congenital malformations, placental complications, and
increased frequency of imprinting disorders such as
Angelman syndrome and Beckwith-Wiedemann syn-
drome [1–4]. On the other hand, parallel efforts have re-
ported that these associations are not attributed to IVF
treatment itself, but rather to multiple pregnancy or
parental subfertility, both common factors in IVF births
[5, 6]. Further research is required to identify potential
factors associated with conception via IVF, including not
only health outcomes but also biological consequences
such as epigenetic modifications.
Given that birth weight and imprinting disorders are

controlled at least in part by epigenetic factors [7, 8],
IVF may have an influence on epigenetic profiles, poten-
tially resulting in changes that persist well after birth
and over the life course. Epigenetic mechanisms are con-
sidered possible mediators of the developmental origins
of health and disease [9]; therefore, an assessment of the
influence of IVF on DNA methylation profiles may give
some insights into mechanisms underlying potential re-
lated health outcomes. Establishment of DNA methyla-
tion profiles in the germ line and embryo takes place
early in development [10]. Theoretically, this epigenetic
reprogramming could therefore be influenced by IVF-
related interventions that occur very early, prior to
blastocyst implantation. Indeed, induction of ovulation,
embryo culturing, and cryopreservation, among others,
have all been linked to specific alterations in DNA
methylation in mice, although results are somewhat
inconsistent [11–13].
Most studies in humans comparing naturally and IVF-

conceived newborns have interrogated DNA methylation
alterations targeting almost exclusively imprinted differ-
entially methylated regions (DMRs). These studies have
reported increased epigenetic variability at the KvDMR1,
PEG1, and H19 DMRs in umbilical cord blood [14], hy-
pomethylation of the H19 and MEST DMRs in placenta
[15], and hypomethylation of the H19 DMR in buccal
epithelium [16] in individuals conceived by IVF. High-
throughput approaches using bead array technology
have also interrogated DNA methylation in IVF in a
genome-wide manner. Katari et al. [17] reported differ-
ential methylation at 78 genes in cord blood and 40 in
placenta with at least two differentially methylated CpG
sites (P ≤ 0.08) when looking across the promoters of
736 genes (GoldenGate Array, Illumina) in ten cases and

13 controls. A more extensive study using the promoter-
enriched Illumina Infinium HumanMethylation27 bead
array in cord blood samples from ten IVF cases and
eight controls reported a total of 24 genes with at least
two differentially methylated CpG sites (P < 0.05) [18].
More recently, a study used the genome-wide Illumina
Infinium HumanMethylation450 bead array in samples
from 38 IVF-conceived newborns followed by fresh em-
bryo transfer, 38 IVF-conceived followed by cryopre-
served embryo transfer, 18 born to subfertile parents
after conception by intrauterine insemination, and 43
controls born to fertile parents [19]. This platform inter-
rogates CpG sites across the whole genome, although
with a limited coverage since it targets gene-centric an-
notations [20]. The authors identified differential methy-
lation at multiple sites, including metastable epialleles.
Here, we interrogated evidence for differential methy-

lation between IVF and non-IVF newborn twins in a
more comprehensive manner by conducting epigenome-
wide association scans (EWAS) [21] using methylated
DNA immunoprecipitation followed by deep sequencing
(MeDIP-seq) [22] genome-wide in samples from cord
blood, and its mononuclear fraction, collected at birth
from IVF and non-IVF twins. The use of twins in this
study allowed the partition of the observed variance in
DNA methylation into genetic and environmental fac-
tors. The approach also avoids potential spurious associ-
ations due to an imbalanced number of multiple and
single pregnancies between conception method groups.

Methods
Subjects and sample collection
The study included 47 IVF and 60 non-IVF newborn
twins (from 54 twin pairs) from the Peri/postnatal
Epigenetic Twins Study (PETS), Melbourne, Australia.
Recruitment and full study procedure have been de-
scribed previously [23, 24]. Cord blood was collected at
birth and used to process mononuclear cells by Ficoll
gradient centrifugation as described previously [25].
Whole blood cells (WBCs) from cord blood were avail-
able for a total of 98 twins (40 IVF and 58 non-IVF) and
cord blood mononuclear cells (CBMCs) for a total of 82
twins (35 IVF and 47 non-IVF). Maternal age and
method of conception were determined via question-
naire at recruitment (18–20 weeks gestation). Twins of
mothers who said yes to IVF or intracytoplasmic sperm
injection (ICSI) treatment were classified as IVF regard-
less of the use of ovulation induction medication or
other fertility treatments. Maternal smoking status was
collected via questionnaire on recruitment and at 24 and
36 weeks of pregnancy. Birth weight was collected
during the immediate neonatal period. Zygosity and
chorionicity were determined by physical examination of
the inter-placental membranes at birth, and by genetic
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test when required, as described previously [23, 24].
Pregnancy complications were recorded and are shown
in Additional file 1: Table S1.

DNA methylation profiling
MeDIP-seq was performed at BGI-Shenzhen, Shenzhen,
China. Extracted DNA was fragmented using a Covaris
sonication system and sequencing libraries were pre-
pared from 5 μg fragmented genomic DNA. End repair,
<A > base addition and adaptor ligation steps were
performed using Illumina’s Single-End DNA Sample
Prep kit. Adaptor-ligated DNA was immunoprecipitated
by anti-5mC using a commercial antibody (Diagenode)
and MeDIP products were validated by quantitative
PCR. MeDIP DNA was purified with ZYMO DNA Clean
& Concentrator-5 columns and amplified using adaptor-
mediated PCR. DNA fragments between 200 and 500 bp
in size were gel-excised, and the amplification quality
and quantity were evaluated by Agilent BioAnalyzer
analysis. The libraries were subjected to highly parallel
50-bp single-end sequencing on the Illumina GAII plat-
form. All sequencing data passed initial quality checks
for base composition (no exclusions) using FASTQC
v0.10.0. For each individual, ~30 million reads were gen-
erated and mapped onto hg19 using BWA. After remov-
ing duplicates, we filtered data using quality score Q10.
We quantified methylation levels using MEDIPS [26],
producing the mean relative methylation score (RPM) in
500-bp bins (overlap of 250 bp) across the genome.
Altogether, there were 11,524,145 windows and these
were used for the analyses. Bins with RPM values of zero
in more than 50% of the samples were excluded, resulting
in 9,592,803 (WBC) and 9,285,089 (CBMC) bins used in
downstream analyses.

Epigenome-wide IVF-DMR analyses
Normalised (N(0,1)) methylation scores in each genomic
bin were regressed using a linear mixed-effects model to
account for twin structure (lme4 package [27] in R [28]).
Tissue type, birth weight, sex, maternal smoking, 260/
280 ratio, DNA concentration, and the loadings of the
first five principal components were used as covariates
and included as fixed effects in the model. Family and
zygosity were included as random effects in the linear
mixed model. The principal components were included
to account for unknown sources of variation, such as
cell heterogeneity. Correction for multiple testing was
performed by a Benjamini-Hochberg false discovery rate
(FDR) calculation.

Variance decomposition of WBC IVF-DMRs
The contribution of additive genetic (A), common envir-
onmental (C), and unique environmental (E) factors to
DNA methylation was estimated using the ACE model

based on the classic twin design [29]. The model was fit-
ted using the OpenMX statistical package [30]. RPM
values without adjustment for covariates were used to
estimate the ACE proportions.

Statistical analysis
Pairwise correlations and principal components analysis
were performed using RPM values across all bins with
values > 0 in at least 50% of the samples. Hierarchical
clustering was performed using Euclidean distance as a
measure of dissimilarity and average linkage clustering.

Validation analysis
Genomic DNA (500 ng) was bisulphite converted using
the MethylEasy Exceed Rapid Bisulphite Modification
Kit (Human Genetic Signatures, North Ryde, NSW,
Australia). Primers to target the regions in TNP1 and
C9orf3 were designed using the EpiDesigner tool (Seque-
nom Inc., Herston, QLD, Australia). The H19 CTCF6
region was the same used in a previous study [25]. Primers,
genomic coordinates, and PCR conditions are shown in
Additional file 1: Table S2. Methylation levels were
determined by EpiTYPER on the MassARRAY System
(Sequenom Inc., Herston, QLD, Australia). Statistical ana-
lysis considered the average of two to three technical repli-
cates and were performed using data on single CpG sites.

Results
Genome-wide methylation profiles in twins
We profiled DNA methylation levels from a total of 107
newborn twins (47 conceived via IVF and 60 conceived
in vivo) in WBCs and CBMCs. Details of any fertility
treatment used and demographic characteristics that
represent potential confounders of DNA methylation
levels at birth, such as sex, birth weight, maternal age,
and maternal smoking status, are shown in Table 1. We
first explored the genome-wide patterns of DNA methy-
lation variability in the dataset. Principal component
analysis was used to identify factors that were signifi-
cantly associated with genome-wide variability in DNA
methylation profiles. The first five principal components
in the dataset, which explained ~13% of the total
variance in DNA methylation, were at least nominally
associated (P < 0.05) with sample type (WBCs versus
CMBCs), birth weight, maternal smoking, and con-
ception method (Fig. 1a).
We next estimated the within twin-pair correlation

patterns in methylation profiles of twin pairs available
in both datasets using Pearson’s correlation. In con-
cordance with previous studies [7], we observed
higher median correlation within monozygotic (MZ)
twin pairs compared to dizygotic (DZ) twin pairs
(Fig. 1b). Previous studies have shown that twin chor-
ionicity can have an effect on within-pair DNA
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methylation differences, but not with consistent direc-
tion of effect across tissues [7, 25, 31]. In our study,
we did not observe significant chorionicity-related
methylation differences (Fig. 1b), but the number of
MZ twins within chorionicity categories was relatively
low (n = 8 monochorionic and n = 5 dichorionic pairs).

Interestingly, the method of conception showed
methylation profile differences within MZ twin pairs.
MZ IVF twins had higher median correlation com-
pared to MZ non-IVF twins in WBCs, but the oppos-
ite trend was observed in CBMCs, and in both cases
the MZ IVF sample was very small (n = 3).

Table 1 Breakdown of samples used for the identification of IVF-DMRs and potential covariates
Group Total number of

twins (number of
complete sets)

Zygosity and
chorionicitya

Sexb Birth weight
(kg): mean(sd)

Maternal age
(years): mean (sd)

Maternal smoking
(percentage smokers)

Ovarian
stimulation

ICSI GIFT Frozen
embryo

WBCs

IVF 40 (20) 10 MZ MC
30 DZ DC

18 (F)
22 (M)

2.57 (4.77) 36 (4) 20% 6 (No)
34 (Yes)

22 (No)
18 (Yes)

- 28 (No)
12 (Yes)

Non-IVF 58 (29) 14 MZ MC
12 MZ DC
32 DZ DC

34 (F)
24 (M)

2.58 (3.99) 32 (5) 28% 56 (No)
2 (Yes)

- 56 (No)
2 (Yes)

-

CBMCs

IVF 35 (16) 9 MZ MC
1 MZ DC
25 DZ DC

16 (F)
19 (M)

2.50 (4.42) 35 (5) 23% 1 (No)
34 (Yes)

14 (No)
21 (Yes)

- 24 (No)
11 (Yes)

Non-IVF 47 (22) 12 MZ MC
10 MZ DC
25 DZ DC

30 (F)
17 (M)

2.60 (3.48) 32 (4) 28% 45 (No)
2 (Yes)

- 45 (No)
2 (Yes)

-

aMZ monozygotic, DZ dizygotic, MC monochorionic, DC dichorionic
bF female, M male
GIFT gamete intra-fallopian transfer, ICSI intracytoplasmic sperm injection, sd standard deviation

a

b

Fig. 1 Global methylation patterns. a Biological factors associated with principal components of variation of methylation profiles. Variables
marked with an asterisk were only available in a subset of the sample (n = 54). b Within-pair methylation correlation in WBCs and CBMCs. BMI
body mass index, DC dichorionic, DZ dizygotic, MC monochorionic, MZ monozygotic, PC principal component
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IVF-DMRs in CBMCs and WBCs
In order to identify tissue-independent and tissue-specific
IVF-associated DMRs, we compared DNA methylation
profiles in WBCs and CBMCs in relation to method of
conception adjusting for birth weight, sex, maternal smok-
ing, and the first five principal components, which partly
capture cell heterogeneity. Epigenome-wide analyses of
DNA methylation in relation to method of conception did
not identify genome-wide significant signals in the CBMCs
subset or in the combined CBMC and WBC datasets, after
correction for multiple testing. In WBCs alone, one signifi-
cant DMR was observed at a FDR of 5% (Fig. 2). This was
located ~3 kb upstream of TNP1 (chr2:217,726,751–
217,727,250), which encodes a transition nuclear protein
that replaces histones and is subsequently replaced by
protamines during spermiogenesis. A deletion in the pro-
moter region of this gene, which reduces its expression,
has been reported in infertile men [32]. Methylation up-
stream of TNP1 might have an impact on its expression.
In mice, methylation changes during spermatogenesis have
been observed at TNP1, which suggests a role of methyla-
tion in the regulation of this gene [33]. To explore the
biological characteristics of the top-ranked results in the
IVF epigenome-wide analyses we selected a more liberal
threshold of FDR 25%, at which 46 IVF-DMRs were iden-
tified (Table 2). Interestingly, the third-ranked DMR
genome-wide (Additional file 1: Figure S1) was located in
the first intron of C9orf3 (chr9:97,504,001–97,504,500),

which has been associated with polycystic ovary syndrome
in women [34] and development of erectile dysfunction
after radiotherapy for prostate cancer in men [35]. An-
other signal within this list was located in intron 1 of
STOX2 (chr4:184,814,001–184,814,500), whose reduced
expression has been implicated in pre-eclampsia [36].
Since adverse perinatal outcomes may be associated with
maternal age, we further adjusted for this covariate and
observed that the 46 FDR 25% WBC IVF-DMRs remained
significant (Table 2).
The non-IVF group included a small number (n = 4) of

newborns conceived with other types of fertility treat-
ments not equivalent to IVF, such as gamete intra-
fallopian transfer (GIFT) and ovarian stimulation. We
re-analysed the 46 FDR 25% WBC IVF-DMRs excluding
GIFT (n = 2) and non-IVF ovarian stimulation (n = 2)
controls and observed that conclusions remained un-
changed (Additional file 1: Table S3).
Hierarchical clustering using DNA methylation levels

at these 46 FDR 25% DMRs alone grouped twins by
method of conception, assigning 38 out of 40 IVF twins
and 57 out of 58 non-IVF twins to the correct group
(Fig. 3). We also explored these signals with respect to
functional annotations. A total of ten FDR 25% WBC
IVF-DMRs overlapped CpG sites previously shown to be
dynamic during development [37], 20 overlapped DNase
I hypersensitivity sites (wgEncodeRegDnaseClusteredV3)
[38], one overlapped a CpG island (cpgIslandEx) [39],

Fig. 2 TNP1 IVF-DMR. Methylation values (RPM) at the top IVF-DRM identified ~3 kb upstream of TNP1 in WBCs
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Table 2 FDR 25% WBC IVF-DMRs
Chromosome Start End P FDR adjusted P P (adjusted for maternal age) Gene namea Gene starta Gene enda

Chr2 217726751 217727250 2.30E-09 0.0221 6.40E-10 AC007557.1 217735495 217736362

TNP1 217724181 217724787

Chr5 178761751 178762250 5.43E-08 0.1244 1.76E-05 ADAMTS2 178537852 178772431

Chr9 97504001 97504500 5.83E-08 0.1244 5.14E-07 C9orf3 97488983 97849441

Chr5 9275751 9276250 5.86E-08 0.1244 1.67E-06 SEMA5A 9035138 9546187

Chr4 184814001 184814500 7.95E-08 0.1244 4.96E-07 STOX2 184774584 184944679

Chr5 142488501 142489000 8.73E-08 0.1244 5.76E-07 ARHGAP26 142149949 142608576

Chr9 118148751 118149250 9.20E-08 0.1244 4.61E-06 DEC1 117904097 118164923

Chr9 118149001 118149500 1.04E-07 0.1244 3.47E-06 DEC1 117904097 118164923

Chr11 82654251 82654750 1.30E-07 0.1250 5.26E-08 C11orf82 82611017 82669319

PRCP 82534544 82681626

RAB30 82684175 82782965

Chr19 6165251 6165750 1.40E-07 0.1250 1.00E-06 RFX2 5993175 6199583

ACSBG2 6135258 6193112

MLLT1 6212966 6279959

Chr1 85522251 85522750 1.43E-07 0.1250 2.56E-07 WDR63 85464830 85598821

MCOLN3 85483765 85514182

Chr17 42569001 42569500 1.64E-07 0.1274 1.90E-05 GPATCH8 42472652 42580798

Chr4 141606501 141607000 2.03E-07 0.1274 1.59E-05 TBC1D9 141541919 141677274

Chr5 137736001 137736500 2.06E-07 0.1274 1.13E-06 REEP2 137774706 137782658

KDM3B 137688285 137772717

Chr5 150614501 150615000 2.14E-07 0.1274 2.23E-07 SLC36A3 150656323 150683327

GM2A 150591711 150650001

CCDC69 150560613 150603706

Chr17 36918251 36918750 2.32E-07 0.1274 2.02E-07 MLLT6 36861795 36886056

CISD3 36886488 36891297

CWC25 36956687 36981734

PIP4K2B 36921942 36956379

PCGF2 36890150 36906070

CTB-58E17.5 36905613 36906969

PSMB3 36908989 36920484

AC006449.1 36884086 36884451

Chr6 126138251 126138750 2.36E-07 0.1274 2.12E-06 NCOA7 126102307 126252266

Chr7 144431251 144431750 2.70E-07 0.1274 5.29E-09 TPK1 144149034 144533488

Chr12 70937251 70937750 2.76E-07 0.1274 1.83E-06 PTPRB 70910630 71031220

Chr4 141606251 141606750 2.80E-07 0.1274 1.50E-05 TBC1D9 141541919 141677274

Chr13 90019001 90019500 2.84E-07 0.1274 5.94E-07 - - -

Chr11 74179001 74179500 2.92E-07 0.1274 1.61E-09 LIPT2 74202757 74204778

POLD3 74204896 74380162

KCNE3 74165886 74178774

Chr12 99153001 99153500 3.93E-07 0.1637 2.44E-07 ANKS1B 99120235 100378432

APAF1 99038919 99129204

Chr2 223336751 223337250 4.47E-07 0.1788 2.00E-06 SGPP2 223289236 223425667

Chr8 120972001 120972500 4.98E-07 0.1869 3.26E-08 DEPTOR 120885957 121063152
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and none overlapped with candidate metastable epial-
leles [40] (Fig. 3).
Cell type-specific DNA methylation can impact the

profiles observed in a population of cells, such as in a
whole blood sample, and we therefore accounted for
blood cell type heterogeneity using a twofold approach.
First, we performed principal component analysis on the
methylation levels of the entire set of WBC samples, and
our main EWAS analyses above are corrected for the first
five principal components, which likely capture variation

attributed to technical and biological factors, potentially
including cell heterogeneity. To assess whether the first
five principal components capture cell heterogeneity,
blood cell subtype counts were obtained through auto-
matic differential counting for a subset of the WBC sam-
ples (n = 54 twins, 22 IVF, and 32 non-IVF) and these
were compared against the distributions of the first five
principal components. The proportion of neutrophils, eo-
sinophils, and lymphocytes were associated (P < 0.05) with
the loadings of the second, third, and fourth principal

Table 2 FDR 25% WBC IVF-DMRs (Continued)

Chr17 38047001 38047500 5.25E-07 0.1869 7.83E-06 GSDMB 38060848 38076107

ZPBP2 38024417 38034149

IKZF3 37921198 38020441

ORMDL3 38077294 38083854

Chr4 64626751 64627250 5.45E-07 0.1869 2.67E-06 - - -

Chr16 87256751 87257250 5.51E-07 0.1869 2.12E-08 C16orf95 87117168 87351022

Chr19 10656751 10657250 5.77E-07 0.1869 1.42E-06 CDKN2D 10677138 10679735

ATG4D 10654571 10664094

KEAP1 10596796 10614417

AP1M2 10683347 10697991

KRI1 10663761 10676713

S1PR5 10623623 10628607

Chr7 2487251 2487750 5.85E-07 0.1869 2.03E-05 CHST12 2443223 2474242

Chr11 74178751 74179250 6.82E-07 0.2059 1.31E-07 KCNE3 74165886 74178774

LIPT2 74202757 74204778

POLD3 74204896 74380162

Chr10 119176501 119177000 6.87E-07 0.2059 1.11E-06 PDZD8 119040000 119134978

Chr22 34755251 34755750 7.32E-07 0.2094 1.76E-05 - - -

Chr6 161664751 161665250 7.42E-07 0.2094 2.93E-06 AGPAT4 161551011 161695093

Chr16 17161751 17162250 7.80E-07 0.2137 2.41E-06 XYLT1 17195626 17564738

Chr18 23695001 23695500 8.39E-07 0.2235 1.97E-06 PSMA8 23713816 23773319

SS18 23596578 23671181

Chr9 26364751 26365250 8.90E-07 0.2267 1.02E-06 - - -

Chr1 25227001 25227500 9.05E-07 0.2267 1.61E-05 RUNX3 25226002 25291612

Chr13 68877251 68877750 9.43E-07 0.2267 2.19E-05 - - -

Chr9 89126501 89127000 9.59E-07 0.2267 7.00E-06 - - -

Chr13 35317501 35318000 9.72E-07 0.2267 2.51E-05 - - -

Chr21 19575001 19575500 9.92E-07 0.2267 2.31E-06 CHODL 19273580 19639690

Chr2 169470001 169470500 1.06E-06 0.2307 4.35E-07 CERS6 169312372 169631644

Chr12 4310251 4310750 1.06E-06 0.2307 8.13E-05 - - -

Chr6 157136501 157137000 1.15E-06 0.2448 1.61E-06 ARID1B 157099063 157531913

Chr14 104067251 104067750 1.17E-06 0.2448 8.21E-06 APOPT1 104029299 104073860

BAG5 104022881 104029168

KLC1 104028233 104167888

RP11-73 M18.2 104029299 104152261
aFrom GENCODE v19
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Fig. 3 WBC IVF-DMRs. Heatmap rows correspond to the 98 WBC samples while columns correspond to the 46 FDR 25% WBC IVF-DMRs. The
vertical colour bar indicates method of conception (IVF, green; non-IVF, blue). Top panel shows the fraction of variance explained by additive
genetic (A), shared environmental (C), and unique environmental (E) factors. Horizontal colour bars indicate overlap (violet) or absence (gray) of
dynamic CpG sites, DNase I hypersensitivity sites, or CpG islands with the DMR
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components, respectively (Fig. 1a). Therefore, since the
EWAS model used in this study took into account the
loadings of the first five principal components, these ana-
lyses already take into account the influence of cell hetero-
geneity to a certain extent.
Second, we re-analysed the 46 FDR 25% WBC IVF-

DMRs in the subset of 54 WBC samples with available
cell counts, adjusting for the proportion of neutrophils,
eosinophils, monocytes, and lymphocytes. We also per-
formed analyses adjusting for the loadings of the first
five principal components within this dataset alone.
Most results were concordant when comparing across all
models (Additional file 1: Table S4) and only five out the
46 FDR 25% WBC IVF-DMRs were not significant (P >
0.05) after adjusting for cell proportions (chr8:120,972,0
01–120,972,500, chr7:2,487,251–2,487,750, chr18:23,69
5,001–23,695,500, chr12:4,310,251–4,310,750, and chr1
4:104,067,251–104,067,750).

Variance decomposition of WBC IVF-DMRs
Given that epigenetic changes were potentially affecting
infertility genes, we wanted to investigate if the findings
may capture a genetic signature affecting DNA methyla-
tion that could be transmitted to offspring. We applied
twin variance decomposition analyses to partition the
total epigenetic variance into additive genetic (A) and
common (C) and unique (E) environmental components
(ACE) [29]. The ACE model was used to determine the
contribution of genetics, shared intrauterine environ-
ment due to shared maternal influences, and non-shared
(twin-specific) or stochastic factors to epigenetic vari-
ation. The mean contribution of additive genetic effects
(narrow-sense heritability) to DNA methylation across
the genome in different tissues from newborns has been
previously estimated to be between 0.05 and 0.12 [7]. Here
we estimated the average genome-wide narrow-sense her-
itability for DNA methylation in WBCs at 0.06. At the 46
FDR 25% WBC IVF-DMRs, the major contributors to
DNA methylation variation were non-shared or stochastic
events (Fig. 3). However, several FDR 25% IVF-DMRs had
evidence for heritability (A > 0.4), suggestive of genetic
effects underlying specific IVF-associated DNA methyla-
tion changes. These included an intronic region in DEC1
(chr9:118,148,751–118,149,500), a region 33 kb away from
XYLT1 (chr16:17,161,751–17,162,250), and an intergenic
region in chromosome 12 (chr12:4,310,251–4,310,750).
When looking at the two DMRs associated with infertility
genes, DNA methylation variation showed no evidence for
genetic effects (A = 0) near TNP1, while heritability at the
DMR in C9orf3 was estimated at 0.25.

Effects of IVF on imprinting
Previous studies have explored DNA methylation pat-
terns in IVF births specifically at imprinting control

regions (ICRs). We therefore assessed whether there was
an enrichment of differential methylation effects at 34
known ICRs [41] in our genome-wide results, but no
enrichment was observed (P > 0.05). However, when we
explored individual signals at candidate IVF-DMRs we
were able to replicate one previously reported ICR IVF-
associated DMR. Concordantly with previous IVF methyla-
tion studies in placental tissue [15] and buccal epithelium
[16], we observed hypomethylation in IVF twins at the sixth
CTCF binding site within the H19/IGF2 (H19 CTCF6)
DMR (Additional file 1: Figure S2). This association was
observed in CBMCs (P = 0.01), but not in WBCs.

Effects of ICSI
ICSI is a technique in IVF used to treat couples with
male-factor infertility [42]. In contrast to conventional
IVF where fertilisation occurs by placing spermatozoa
near an egg, ICSI consists of the direct injection of a se-
lected single sperm cell into the egg. This manipulation
may introduce additional risk factors [43]. To assess the
effect of ICSI on the 46 FDR 25% WBC IVF-DMRs we
adjusted for the use of this technology and also com-
pared the ICSI and the conventional IVF groups separ-
ately against the non-IVF group. After adjustment for
ICSI, the association weakened at several FDR 25% IVF-
DMRs (Table 3), suggesting that ICSI or paternal infer-
tility might have a role in these methylation changes.
One FDR 25% IVF-DMR signal (chr1:85,522,251–
85,522,750) appeared stronger after adjustment, suggest-
ing either a female infertility effect or that ICSI prevents
or corrects a methylation change that occurs in conven-
tional IVF. This DMR was located upstream of WDR63,
a gene mainly expressed in testis, fallopian tube, and ad-
renal gland [44].

Validation of IVF-DMRs
We pursued validation of the differential methylation
signals at the top associated DMR (located ~3 kb up-
stream of TNP1) and at the third-ranked DMR (located
in C9orf3), both in or near genes previously linked to
infertility. Altogether, four CpG sites were targeted for
validation using Sequenom’s EpiTYPER technology.
For the DMR in C9orf3, we were able to target two

CpG sites within the most-associated 500-bp bin in this
locus (Additional file 1: Figure S3). We assayed methyla-
tion levels in 36 MZ twins included in the discovery
EWAS and observed significantly higher methylation in
the IVF group, concordant with the MeDIP-seq
analysis, at both tested CpG sites in the C9orf3 locus
(P = 0.02 and 0.03, respectively), therefore validating
this signal using a different methylation profiling ap-
proach (Additional file 1: Figure S4).
For the TNP1 DMR we were unable to target CpGs

within the most associated 500-bp bin, and we therefore
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Table 3 Effect of ICSI on the FDR 25% WBC IVF-DMRs
IVF (n = 40) versus
non-IVF (n = 58)

IVF (n = 34) versus non-IVF
(n = 58) adjusted for ICSI

Conventional IVF (n = 16)
versus non-IVF (n = 58)

ICSI (n = 18) versus
non-IVF (n = 58)

Chromosome Start End Estimate SE P Estimate SE P Estimate SE P Estimate SE P

Chr2 217726751 217727250 1.18 0.19 2.30E-09 1.45 0.26 7.71E-08 −1.42 0.26 7.44E-08 −1.16 0.27 1.29E-05

Chr5 178761751 178762250 −1.08 0.2 5.43E-08 −1.09 0.29 8.23E-05 0.87 0.30 1.89E-03 1.11 0.27 2.52E-05

Chr9 97504001 97504500 1.07 0.2 5.83E-08 0.77 0.27 2.77E-03 −0.88 0.31 2.67E-03 −1.30 0.25 1.95E-07

Chr5 9275751 9276250 1.09 0.19 5.86E-08 1.17 0.27 1.04E-05 −1.13 0.29 6.50E-05 −1.13 0.27 2.75E-05

Chr4 184814001 184814500 −0.96 0.18 7.95E-08 −0.97 0.24 3.94E-05 0.94 0.26 1.37E-04 1.15 0.23 8.35E-07

Chr5 142488501 142489000 −1.11 0.2 8.73E-08 −1.1 0.28 7.60E-05 1.25 0.31 5.16E-05 1.08 0.28 7.10E-05

Chr9 118148751 118149250 1.09 0.2 9.20E-08 1.35 0.28 1.28E-06 −1.30 0.29 8.90E-06 −1.02 0.28 1.68E-04

Chr9 118149001 118149500 1.08 0.2 1.04E-07 1.31 0.28 2.22E-06 −1.23 0.29 2.00E-05 −1.05 0.29 1.69E-04

Chr11 82654251 82654750 −1.05 0.19 1.30E-07 −0.97 0.29 4.68E-04 0.95 0.31 1.53E-03 0.88 0.27 5.94E-04

Chr19 6165251 6165750 0.94 0.18 1.40E-07 0.89 0.25 1.90E-04 −0.88 0.28 9.35E-04 −1.02 0.23 7.36E-06

Chr1 85522251 85522750 0.99 0.18 1.43E-07 1.54 0.25 4.48E-09 −1.53 0.25 7.41E-09 −0.80 0.28 2.32E-03

Chr17 42569001 42569500 −1.07 0.19 1.64E-07 −1.25 0.27 2.21E-06 1.30 0.28 3.81E-06 1.21 0.26 2.44E-06

Chr4 141606501 141607000 1.09 0.19 2.03E-07 1.26 0.26 3.56E-06 −1.33 0.30 1.05E-05 −1.13 0.26 1.83E-05

Chr5 137736001 137736500 −1.03 0.19 2.06E-07 −1.11 0.28 4.12E-05 1.13 0.30 1.39E-04 1.10 0.27 3.78E-05

Chr5 150614501 150615000 −1.08 0.21 2.14E-07 −1.2 0.29 2.80E-05 1.24 0.31 3.18E-05 1.07 0.29 1.21E-04

Chr17 36918251 36918750 −1.1 0.21 2.32E-07 −0.96 0.29 6.01E-04 1.05 0.31 4.88E-04 1.03 0.28 1.83E-04

Chr6 126138251 126138750 −0.99 0.19 2.36E-07 −0.75 0.27 3.29E-03 0.79 0.30 4.92E-03 1.22 0.25 8.94E-07

Chr7 144431251 144431750 1.02 0.19 2.70E-07 0.84 0.28 1.30E-03 −0.85 0.28 1.48E-03 −1.17 0.27 1.77E-05

Chr12 70937251 70937750 0.88 0.17 2.76E-07 0.72 0.23 1.12E-03 −0.87 0.26 5.26E-04 −0.94 0.20 3.10E-06

Chr4 141606251 141606750 1.01 0.19 2.80E-07 1.16 0.26 8.05E-06 −1.31 0.29 6.93E-06 −1.04 0.25 2.14E-05

Chr13 90019001 90019500 1.06 0.2 2.84E-07 1.25 0.29 8.88E-06 −1.36 0.30 5.09E-06 −0.84 0.29 2.20E-03

Chr11 74179001 74179500 1.07 0.2 2.92E-07 1.3 0.29 7.25E-06 −1.37 0.29 3.15E-06 −1.06 0.29 1.76E-04

Chr12 99153001 99153500 −1.01 0.2 3.93E-07 −1.02 0.29 2.02E-04 1.02 0.31 4.59E-04 1.24 0.27 3.77E-06

Chr2 223336751 223337250 −1.01 0.2 4.47E-07 −1.41 0.28 4.00E-07 1.50 0.29 1.69E-07 0.77 0.29 4.65E-03

Chr8 120972001 120972500 0.97 0.19 4.98E-07 0.83 0.27 1.22E-03 −0.87 0.29 1.43E-03 −0.96 0.26 1.81E-04

Chr17 38047001 38047500 −1.04 0.2 5.25E-07 −1.3 0.28 4.51E-06 1.31 0.27 1.21E-06 0.74 0.28 5.39E-03

Chr4 64626751 64627250 −0.99 0.19 5.45E-07 −0.87 0.28 9.92E-04 0.86 0.29 1.61E-03 0.98 0.26 1.36E-04

Chr16 87256751 87257250 −0.83 0.16 5.51E-07 −0.97 0.23 1.75E-05 0.94 0.25 9.13E-05 0.82 0.24 3.37E-04

Chr19 10656751 10657250 −1.03 0.2 5.77E-07 −1.09 0.28 6.47E-05 1.17 0.29 3.80E-05 1.13 0.27 2.18E-05

Chr7 2487251 2487750 0.8 0.16 5.85E-07 0.73 0.23 1.06E-03 −0.81 0.24 5.61E-04 −0.94 0.23 3.49E-05

Chr11 74178751 74179250 0.99 0.2 6.82E-07 1.19 0.28 2.15E-05 −1.15 0.28 2.45E-05 −0.82 0.28 2.37E-03

Chr10 119176501 119177000 −1.04 0.2 6.87E-07 −1.03 0.29 3.41E-04 1.16 0.31 1.69E-04 1.14 0.28 4.83E-05

Chr22 34755251 34755750 −0.98 0.2 7.32E-07 −0.8 0.28 2.35E-03 0.97 0.31 1.21E-03 1.15 0.25 3.95E-06

Chr6 161664751 161665250 0.98 0.19 7.42E-07 0.9 0.26 3.89E-04 −0.83 0.29 2.48E-03 −0.81 0.25 7.71E-04

Chr16 17161751 17162250 −1.01 0.2 7.80E-07 −0.99 0.28 2.19E-04 1.17 0.30 4.48E-05 1.08 0.28 1.16E-04

Chr18 23695001 23695500 1.04 0.21 8.39E-07 0.95 0.29 5.83E-04 −1.04 0.32 6.05E-04 −1.11 0.28 3.96E-05

Chr9 26364751 26365250 −0.95 0.19 8.90E-07 −0.96 0.28 2.78E-04 1.13 0.30 9.90E-05 0.96 0.28 2.77E-04

Chr1 25227001 25227500 −0.83 0.17 9.05E-07 −0.87 0.25 3.81E-04 0.78 0.25 1.39E-03 0.99 0.25 5.78E-05

Chr13 68877251 68877750 0.97 0.2 9.43E-07 1.01 0.28 1.44E-04 −1.24 0.28 1.05E-05 −0.84 0.28 1.39E-03

Chr9 89126501 89127000 −0.92 0.19 9.59E-07 −1.14 0.26 9.49E-06 1.10 0.28 6.62E-05 0.76 0.26 2.12E-03

Chr13 35317501 35318000 −0.96 0.2 9.72E-07 −0.54 0.29 4.44E-02 0.54 0.31 6.52E-02 1.04 0.27 7.61E-05

Chr21 19575001 19575500 0.96 0.19 9.92E-07 0.88 0.27 8.63E-04 −0.96 0.30 8.25E-04 −1.13 0.26 1.24E-05
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selected two of the closest CpG sites contained within
the second most associated DMR in that locus
(Additional file 1: Figure S3). Within the sample of 36
MZ twins we also observed higher methylation in the
IVF group, consistent with the MeDIP-seq signal, with
effects close to nominal significance (P = 0.08; Additional
file 1: Figure S4). However, correlation between the
MeDIP-seq signal at the most-associated DMR in TNP1
and the EpiTYPER methylation values was, as expected,
relatively low as we were unable to target CpG sites
within this most-associated DMR (correlation of 0.18
and 0 at the two tested CpG sites). We profiled add-
itional samples from DZ twin pairs but did not obtain
validation of the signal.
We also considered the effect of ICSI compared to

conventional IVF in MZ twins in the validation dataset.
We observed significantly higher methylation in the ICSI
group at the first CpG of the targeted region near TNP1
and at the first CpG site of C9orf3 (Additional file 1:
Figure S5).
Lastly, we also compared methylation in relation to

conception method at the H19 CTCF6 DMR in a re-
duced subset of CBMCs samples (n = 42 twins) using
EpiTYPER. When comparing IVF to non-IVF twins
(Additional file 1: Figure S6) we observed a difference
with the same direction of effect as in the MeDIP-seq
analysis, although not significant (P = 0.19). Interestingly,
when comparing naturally conceived twins to twins that
were conceived with any type of medical help
(Additional file 1: Figure S6), i.e. not exclusively IVF, the
difference reached nominal significance (P = 0.04),
suggesting that differential methylation at this region is
associated with parental subfertility rather than IVF
conception.

Discussion
Since IVF procedures are carried out during an important
period of epigenetic reprogramming in early development,
we hypothesised that IVF may induce epigenetic differ-
ences that persist to birth. We were able to identify signifi-
cant and suggestive DMRs related to IVF conception
(IVF-DMRs) in WBCs, although our results suggest that
at least some of these changes may be linked to parental
subfertility, which is confounded with IVF treatment. The
observation that IVF-DMRs were identified close to genes
implicated in fertility and reproduction suggests that a

genetic signature influencing DNA methylation could be
transmitted from parent to offspring. To assess this fur-
ther, we estimated the heritability of the IVF-DMRs. We
observed that the IVF-DMR located in C9orf3, a gene as-
sociated with polycystic ovary syndrome, was estimated to
have a heritability at 25% and eight other FDR 25% WBC
IVF-DMRs showed heritability greater than this (Fig. 3).
Epigenetic states of metastable epialleles in mammals

are mitotically inherited after establishment in early
development, therefore shared across tissues, and can
cause expression variability within isogenic individuals
[45]. A study in humans looking for systematic inter-
individual variation in DNA methylation across tissues
from two different lineages identified 109 candidate
metastable epialleles [40]. Nutritional conditions during
conception have been shown to be important to the
establishment of epigenetic states at some of these meta-
stable epialleles [46]. If an influence of IVF on the epi-
genetic marks of these alleles exists, it could potentially
cause long lasting effects. A previous study, which in-
cluded newborns from single and multiple pregnancies,
identified DNA methylation differences in IVF concep-
tion at candidate metastable epialleles, although at dif-
ferent epialleles to those affected by maternal nutritional
factors [19]. In our study, none of the 109 candidate
metastable epialleles overlapped with the 46 FDR 25%
WBC IVF-DMRs. This discrepancy could be attributed
to differences between single and multiple pregnancies
or to low power to detect such changes.
Our results also showed that IVF-DMRs, including hy-

pomethylation of the regulatory region of H19, were
generally not shared between WBCs and CBMCs. This
observation suggests that the epigenetic differences
reported here likely did not appear during early develop-
ment or that these effects are not fixed and can revert in
a cell type-specific manner. CBMCs, in contrast to
WBCs, lack the granulocyte fraction, which is the
predominant group of cells in the blood. Thus, the IVF-
DMRs may be granulocyte-specific or at least in part
influenced by this group of cells.
To date, there has been mixed evidence on the effect of

IVF at imprinted genes and their regulatory regions. Some
studies have reported DNA methylation changes or in-
creased variability at these imprinted regions [14–16],
while others have reported no associated changes [47, 48].
We observed that there is not an overall destabilisation of

Table 3 Effect of ICSI on the FDR 25% WBC IVF-DMRs (Continued)

Chr2 169470001 169470500 −1.02 0.21 1.06E-06 −1.31 0.28 2.08E-06 1.33 0.29 6.99E-06 1.04 0.27 5.91E-05

Chr12 4310251 4310750 −0.99 0.2 1.06E-06 −0.91 0.29 8.79E-04 1.02 0.30 4.54E-04 0.87 0.30 1.99E-03

Chr6 157136501 157137000 −0.96 0.19 1.15E-06 −0.78 0.27 2.19E-03 0.91 0.30 1.37E-03 1.30 0.25 1.62E-07

Chr14 104067251 104067750 0.71 0.14 1.17E-06 0.81 0.21 7.35E-05 −0.75 0.22 3.89E-04 −0.58 0.24 9.44E-03
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methylation patterns in ICRs, but specific DMRs, such as
the H19 DMR, can show a weak but nominally significant
association with the method of conception. Previous stud-
ies have reported similar observations, that is, changes in
methylation at some imprinted regions, but not in the ma-
jority [19, 48]. It is unknown if these changes occur due to
IVF since imprinting defects have been previously
described in sperm of infertile men, including hypomethy-
lation of the H19 CTCF6 DMR [49]. Loke et al. [16] re-
ported that hypomethylation at this locus in buccal
epithelium of newborns in the IVF group was driven by
the subgroup conceived by ICSI. However, it is difficult to
dissect whether the observed effect on DNA methylation
of ICSI-conceived newborns is due to the technique itself
or to male infertility. Whitelaw et al. [50] found higher
levels of SNRPN methylation in buccal cells of ICSI-
conceived newborns and these were associated with longer
duration of infertility in the parents. In our data, we
observed that the difference at the H19 CTCF6 DMR was
greater when considering any type of medical help during
conception, supporting the idea that parental subfertility
is the driver of methylation changes at this region.
Information about the indication for assisted reproductive
technology, the use of donor eggs or sperm, and the fertility
status of parents in the control group would be required to
further assess the effect of parental subfertility.
Adverse perinatal outcomes and increased frequency

of imprinting disorders have also been observed in off-
spring of couples with a history of subfertility that were
able to conceive naturally [51–53]. However, studies
that controlled for parental subfertility by comparing
siblings in which one was conceived naturally and the
other by IVF also observed an effect [54]. It is likely,
therefore, that both parental subfertility and IVF may
induce epigenetic changes, as observed in another
genome-wide study that found DNA methylation differ-
ences between IVF-conceived newborns and a group
conceived through intrauterine insemination (infertile
controls), but also between the latter and naturally con-
ceived newborns (fertile controls) [19]. In addition, a
study looking at 37 candidate CpG sites identified seven
that were differentially methylated when comparing an
IVF-conceived group born to parents without male in-
fertility that used donor oocytes to naturally conceived
newborns [55].
Finally, two IVF-DMRs associated with infertility

(TNP1 and C9orf3) were targeted for validation. Differ-
ential methylation was validated at the C9orf3 gene.
However, validation of the TNP1 region was hampered
by our inability to target CpG sites within the most-
associated DMR in this locus. We attempted validation
at TNP1 by targeting CpG sites in the neighbouring 500-
bp bin and observed consistent direction of association
close to nominal significance.

In this study the non-IVF group included a set of twins
conceived after GIFT and another set conceived after
ovarian stimulation not followed by IVF. GIFT and ovar-
ian stimulation are fertility treatments not equivalent to
IVF since fertilisation still occurs in the fallopian tubes.
We showed that our results were not affected by the in-
clusion of these data, potentially because they were repre-
sented in small numbers, only four out of 58 samples.

Limitations
There are several limitations in this study. First, it is known
that cell composition may represent a confounding variable
in EWAS [56]. Our results use principal component ana-
lysis anticipating that these will capture cell heterogeneity,
and follow-up of our findings in a subset of twins with
available cell counts showed that the majority of findings
remained significant after adjustment for cell heterogeneity.
Second, although MeDIP-seq has the strength of genome-
wide coverage, it lacks base-pair resolution, instead generat-
ing methylation scores across genomic regions. However, it
has been reported that methylation of neighbouring CpG
sites is correlated over distances up to 1000 bp [57], sug-
gesting that the approach may be able to capture a good
proportion of the methylation variance in a genomic region.
Third, although this study includes a sample size larger
than most previous studies exploring IVF, contemporary
EWAS study designs generally require larger numbers of
cases and controls to achieve sufficient power to detect
small to moderate effect sizes [21, 58]. Lastly, our approach
cannot conclusively determine the cause of the observed
IVF-associated methylation changes. Future studies of IVF-
associated regions in animal models, where genetic differ-
ences and infertility diseases can be discarded, could help
identify if these changes were caused by IVF itself.

Conclusions
We observed evidence for differences in DNA methylation
between IVF and non-IVF twins on a genome-wide scale. A
strength of this study design is that it allowed us to also es-
timate the contribution of genetic and environmental fac-
tors towards DNA methylation levels at the IVF-associated
loci. The inclusion of only twin pregnancies also avoided
biases present in studies that consider single and multiple
pregnancies together. Multiple pregnancies are more
common after IVF. Therefore, the differences observed
when studying singleton and twin births together may be
confounded with the higher risks of adverse perinatal out-
comes in multiple pregnancy births, rather than IVF itself.
Nevertheless, we were unable to dissect whether methyla-
tion changes were likely caused by IVF, or were due to the
underlying parental subfertility, or other factors. These
scenarios require further study exploring the stability of
these DMRs over time, their relation with gene expression,
and their potential role in health and disease.
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