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Efficient nonparametric n-body force fields from machine learning

Aldo Glielmo,1, ∗ Claudio Zeni,1, † and Alessandro De Vita1, 2

1Department of Physics, King’s College London, Strand, London WC2R 2LS, United Kingdom
2Dipartimento di Ingegneria e Architettura, Università di Trieste, via A. Valerio 2, I-34127 Trieste, Italy

We provide a definition and explicit expressions for n-body Gaussian Process (GP) kernels, which
can learn any interatomic interaction occurring in a physical system, up to n-body contributions, for
any value of n. The series is complete, as it can be shown that the “universal approximator” squared
exponential kernel can be written as a sum of n-body kernels. These recipes enable the choice of
optimally efficient force models for each target system, as confirmed by extensive testing on various
materials. We furthermore describe how the n-body kernels can be “mapped” on equivalent repres-
entations that provide database-size-independent predictions and are thus crucially more efficient.
We explicitly carry out this mapping procedure for the first non-trivial (3-body) kernel of the series,
and we show that this reproduces the GP-predicted forces with meV/Å accuracy while being orders
of magnitude faster. These results pave the way to using novel force models (here named “M-FFs”)
that are computationally as fast as their corresponding standard parametrised n-body force fields,
while retaining the nonparametric character, the ease of training and validation, and the accuracy
of the best recently proposed machine learning potentials.

I. INTRODUCTION

Since their conception, first-principles molecular dy-
namics (MD) simulations [1] based on density func-
tional theory (DFT) [2, 3] have proven extremely use-
ful to investigate complex physical processes that require
quantum accuracy. These simulations are computation-
ally expensive, and thus still typically limited to hun-
dreds of atoms and the picosecond timescale. For larger
systems that are non-uniform and thus intractable us-
ing periodic boundary conditions, multiscale embedding
(“QM/MM”) approaches can sometimes be used success-
fully. This is possible if full quantum accuracy is only
needed in a limited (QM) zone of the system, while a
simpler molecular mechanics (MM) description suffices
everywhere else. Very often, however, target problems
require minimal model system sizes and simulation times
so large that the calculations must be exclusively based
on classical force fields i.e., force models that use the po-
sition of atoms as the only explicitly represented degrees
of freedom.

In the remainder of this introductory section we briefly
review the relative strengths and weaknesses of standard
parametrized (P-FFs) and machine learning force fields
(ML-FFs). We then consider how accurate P-FFs are
hard to develop but eventually fully exploit useful know-
ledge on the systems, while GP-based ML-FFs offer a
general mathematical framework for handling training
and validation, but are significantly slower (Section I A).
These shortcomings motivate an analysis of how prior
knowledge such as symmetry has been so far incorpor-
ated in GP kernels (Section I B) and points to features
still missing in ML kernels, which are commonplace in
the more standard, highly efficient P-FFs based on trun-
cated n-body expansions (Section I C). This suggests the
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possibility of defining a series of n-body GP kernels (Sec-
tion II B), providing a scheme to construct them (Section
II C and D) and, after the best value of n for the given
target system has been identified with appropriate test-
ing (Section II E), exploiting their dimensionally-reduced
feature spaces to massively boost the execution speed of
force prediction (Section III).

A. Parametrized and machine learning force fields

Producing accurate and fully transferable force fields is
a remarkably difficult task. The traditional way to do this
involves adjusting the parameters of carefully chosen ana-
lytic functions in the hope of matching extended reference
data sets obtained from experiments or quantum calcu-
lations [4, 5]. The descriptive restrictiveness of the para-
metric functions used is both a drawback and a strength
of this methodology. The main difficulty is that devel-
oping a good parametric function requires a great deal
of chemical intuition and patient effort, guided by trial
and error steps with no guarantee of success [6]. How-
ever, for systems and processes in which the approach
is fruitful, the development effort is amply rewarded by
the opportunity to provide extremely fast and accurate
force models [7–10]. The identified functional forms will
in these cases contain valuable knowledge on the target
system, encoded in a compact formulation that still ac-
curately captures the relevant physics. Such knowledge
is furthermore often transferable to novel (while similar)
systems as a “prior” piece of information, i.e., it consti-
tutes a good working hypothesis on how these systems
will behave. When QM data on the novel system be-
come available, this can be simply used to fine-tune the
parameters of the functional form to a new set of best-fit
values that maximise prediction accuracy.

Following a different approach, “nonparametric” ML
force fields can be constructed, whose dependence on
the atomic position is not constrained to a particular
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analytic form. An implementation and tests explor-
ing the feasibility of ML to describe atomic interactions
can be found, e.g., in pioneering work by Skinner and
Broughton [11] that proposed using ML models to re-
produce first-principles potential energy surfaces. More
recent works implementing this general idea have been
based on Neural Networks [12], Gaussian Process (GP)
regression [13] or linear regression on properly defined
bases [14]. Current work aims at making these learning
algorithms both faster and more accurate [15–20].

As processing power and data communication band-
width increase, and the cost of data storage decreases,
modeling based on ML and direct inference promises
to become an increasingly attractive option, compared
with more traditional classical force field approaches.
However, although ML schemes are general and have
been shown to be remarkably accurate interpolators in
specific systems, so far they have not become as wide-
spread as it might have been expected. This is mainly
because “standard” classical potentials are still orders
of magnitude faster than their ML counterpart [21].
Moreover, ML-FFs also involve a more complex math-
ematical and algorithmic machinery than the traditional
compact functional forms of P-FFs, whose arguments are
physically descriptive features that remain easier to visu-
alize and interpret.

B. Prior knowledge and GP kernels

These shortcomings provide motivation for the present
work. The high computational cost of many ML mod-
els is a direct consequence of the general inverse relation
between the sought flexibility and the measured speed of
any algorithm capable of learning. Highly flexible ML
algorithms by definition assume very little or no prior
knowledge of the target systems. In a Bayesian context,
this involves using a general prior kernel, typically aspir-
ing to preserve the full universal approximator properties
of e.g., the square exponential kernel [22, 23]. The price
of such a kernel choice is that the ML algorithm will
require large training databases [24], slowing down com-
putations as the prediction time grows linearly with the
database size.

Large database sizes are not, however, unavoidable,
and any data-intensive and fully flexible scheme to po-
tential energy fitting is suboptimal by definition, as it ex-
ploits no prior knowledge of the system. This completely
“agnostic” approach is at odds with the general lesson
from classical potential development, indicating that it is
essential for efficiency to incorporate in the force predic-
tion model as much prior knowledge of the target system
as can be made available. In this respect, GP kernels can
be tailored to bring some form of prior knowledge to the
algorithm.

For example, it is possible to include any symmetry
information of the system. This can be done by using
descriptors that are independent of rotations, transla-

tions and permutations [15, 25–27]. Alternatively, one
can construct scalar-valued GP kernels that are made in-
variant under rotation (see e.g., [16, 28]) or matrix-valued
GP kernels made covariant under rotation ([16], an idea
that can be extended to higher-order tensors [29, 30]). In-
variance or covariance are in these cases obtained start-
ing from a non-invariant representation by appropriate
integration over the SO(3) rotation group [16, 28].

Symmetry aside, progress can be made by attempting
to use kernels based on simple, descriptive features cor-
responding to low-dimensional feature spaces. Taking in-
spiration from parametrized force fields, these descriptors
could e.g., be chosen to be interatomic distances taken
singularly or in triplets, yielding kernels based on 2- or
3-body interactions [16, 31, 32]. Since low-dimensional
feature spaces allow efficient learning (convergence is
reached using small databases), to the extent that simple
descriptors capture the correct physics, the GP process
will be a relatively fast, while still very accurate, inter-
polator.

C. Scope of the present work

There are, however, two important aspects that have
not as yet been fully explored while trying to develop
efficient kernels based on dimensionally reduced feature
spaces. Both aspects will be addressed in the present
work.

First, a systematic classification of rotationally invari-
ant (or covariant, if matrix valued) kernels, representat-
ive of the feature spaces corresponding to n-body inter-
actions is to date still missing. Namely, no definition or
general recipe has been proposed for constructing n-body
kernels, or for identifying the actual value (or effective
interval of values) of n associated with already available
kernels. This would be clearly useful, however, as the
discussion above strongly suggests that the kernel cor-
responding to the lowest value of n compatible with the
physics of the target system will be the most information-
ally efficient one for carrying out predictions: striking the
right balance between speed and accuracy.

Second, for any ML approach based on a GP kernel and
a fixed database, the GP predictions for any target con-
figuration are also fixed once and for all. For an n-body
kernel, these predictions do not need, however, to be ex-
plicitly carried out as sums over the training dataset, as
they could be approximated with arbitrary precision by
“mapping” the GP prediction on a new representation
based on the underlying n-body feature space. We note
that this approximation step would make the final pre-
diction algorithm independent of the database size, and
thus in principle as fast as any classical n-body potential
based on functional forms, while still parameter free. The
remainder of this work explores these two issues, and it
is structured as follows.

In the next Section II, after introducing the termino-
logy and the notation (II A), we provide a definition of
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an n-body kernel (II B) and we propose a systematic way
of constructing n-body kernels of any order n, showing
how previously proposed approaches can be reinterpreted
within this scheme (II C and D). We furthermore show,
by extensive testing on a range realistic materials, how
the optimal interaction order can be chosen as the lowest
n compatible with the required accuracy and the avail-
able computational power (II E). In the following Section
III we describe how the predictions of n-body GP kernels
can be recast (mapped) with arbitrary accuracy into very
fast nonparametric force fields based on machine learning
(M-FFs) which fully retain the n-body character of the
GP process from which they were derived. The proced-
ure is carried out explicitly for a 3-body kernel, and we
find that evaluating atomic forces is orders of magnitude
faster than the corresponding GP calculation.

II. n-BODY EXPANSIONS WITH n-BODY
KERNELS

A. Notation and terminology

GP-based potentials are usually constructed by assign-
ing an energy ε to a given atomic configuration ρ, typic-
ally including a central atom and all its neighbors up to a
suitable cutoff radius. The existence of a corresponding
local energy function ε(ρ) is generally assumed, in order
to provide a total energy expression and guarantee a lin-
ear scaling of the predictions with the total number of
atoms in the system. Within GP regression this function
is calculated from a database D = {ρd, εd, fd}Nd=1 of ref-
erence data, typically obtained by quantum mechanical
simulations, and usually consisting of a set of N atomic
configurations {ρd} together with their relative energies
{εd} and/or forces {fd}.

It is worth noting here that although there is no well
defined local atomic energy in a reference quantum sim-
ulation, one can always use gradient information (atomic
forces, which are well defined local physical quantities)
to machine-learn a potential energy function. This can
be done straightforwardly using derivative kernels (cf.,
e.g., Ref. [22] or Ref. [33]) to learn and predict forces.
Alternatively, one can learn forces directly without an in-
termediate energy expression, as done in Refs. [15, 34] or
more recently in Ref. [16]. A necessary condition for any
of these approaches to produce energy-conserving force
fields (i.e., fields that make zero work on any closed tra-
jectory loop) is that the database is constructed once
and for all, and never successively updated. After train-
ing on the given fixed database, the GP prediction on a
target configuration ρ consists of a linear combination of
the kernel function values measuring the similarity of the
target configuration with each database entry:

ε(ρ) =

N∑
d=1

k(ρ, ρd)αd, (1)

where the coefficients αd are obtained by means of in-
version of the covariance matrix [22] and can be shown
to minimise the regularised quadratic error between GP
predictions and reference calculations.

B. Definition of an n-body kernel

Classical interatomic potentials are often character-
ized by the number of atoms (“bodies”) they let inter-
act simultaneously (cf. e.g., Refs. [9, 10]). To translate
this concept into the realm of GP regression, we assume
that the target configuration ρ({ri}) represents the local
atomic environment of an atom fixed at the origin of a
Cartesian reference frame, expressed in terms of the re-
lative positions ri of the surrounding atoms. We define
the order of a kernel kn(ρ, ρ′) as the smallest integer n
for which the following property holds true:

∂nkn(ρ, ρ′)

∂ri1 · · · ∂rin
= 0 ∀ri1 6= ri2 6= · · · 6= rin , (2)

where ri1 , . . . , rin are the positions of any choice of a
set of n different surrounding atoms. By virtue of lin-
earity, the local energy in Eq. (1) will also satisfy the
same property if kn does. Thus, Eq. (2) implies that the
central atom in a local configuration interacts with up
to n − 1 other atoms simultaneously, making the inter-
action energy term n-body. For instance, using a 2-body
kernel, the force on the central atom due to atom rj will
not depend on the position of any other atom rl 6=j be-
longing to the target configuration ρ({ri}). Eq. (2) can
be used directly to check through either numeric or sym-
bolic differentiation if a given kernel is of order n, a fact
that might be far from obvious from its analytic form,
depending on how the kernel is built.

C. Building n-body kernels I: SO(3) integration

Following a standard route [16, 28, 35], we begin by
representing each local atomic configuration as a sum of
Gaussian functions N with a given variance σ2, centered
on the M atoms of the configuration:

ρ(r, {ri}) =

M∑
i=1

N (r | ri, σ2), (3)

where r and {ri}Mi=1 are position vectors relative to the
central atom of the configuration. This representation
guarantees by construction invariance with respect to
translations and permutations of atoms (here assumed
to be of a single chemical species). As described in [16],
a covariant 2-body force kernel can be constructed from
the non-invariant scalar (“base”) kernel obtained as a dot
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product overlap integral of the two configurations:

k2(ρ, ρ′) =

∫
dr ρ(r)ρ′(r)

= L
∑

i∈ρ,j∈ρ′
e−(ri−r

′
j)

2/4σ2

, (4)

where L is an unessential constant factor, omitted for
convenience from now on. That (4) is a 2-body ker-
nel consistent with the definition of Eq. (2) can be
checked straightforwardly by explicit differentiation (see
Appendix A). Its 2-body structure is also readable from
the fact that k2 is a sum of contributions comparing pairs
of atoms in the two configurations, the first pair located
at the two ends of vector ri in the target configuration ρ,
and consisting of the central atom and atom i, and the
second pair similarly represented by the vector r′j in the
database configuration ρ′. A rotation-covariant matrix-
valued force kernel can at this point be constructed by
Haar integration [36, 37] as an integral over the SO(3)
manifold [16]:

Ks
2(ρ, ρ′) =

∫
SO(3)

dRR k2(ρ,Rρ′). (5)

This kernel can be used to infer forces on atoms using a
GP regression vector formula analogous to Eq. (1) (see
Ref. [16]). These forces belong to a 2-body force field
purely as a consequence of the base kernel property in
Eq. (2). It is interesting to notice that there is no use or
need for an intermediate energy expression to construct
this 2-body force field, which is automatically energy-
conserving.

Higher order n-body base kernels can be constructed
as finite powers of the 2-body base kernel (4):

kn(ρ, ρ′) = k2(ρ, ρ′)n−1 (6)

where the n-body property (Eq. (2)) can once more be
checked by explicit differentiation (see Appendix A). Fur-
thermore, taking the exponential of the kernel in Eq. (4)
gives rise to a fully many-body base kernel, as all powers
of k2 are contained in the exponential formal series ex-
pansion:

kMB(ρ, ρ′) = ek2(ρ,ρ
′)/θ2

= 1 +
1

θ2
k2 +

1

2!θ4
k3 + . . . . (7)

One can furthermore check that the simple exponential
many-body kernel kMB defined above is, up to normal-
isation, equivalent to the squared exponential kernel [22]
on the natural distance induced by the dot product kernel
k2(ρ, ρ′):

e−d
2(ρ,ρ′)/2θ2 =N(ρ)N(ρ′)kMB(ρ, ρ′) (8)

d2(ρ, ρ′) =k2(ρ, ρ) + k2(ρ′, ρ′)− 2k2(ρ, ρ′). (9)

To check on these ideas, we next test the accuracy of
these kernels in learning the interactions occurring in a
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Figure 1. GP relative error as a function of the interaction
order (2- to 5-body), using n-body kernels with increasing
n. Learning energies within baseline precision (black dashed
line) requires an n-body kernel with n at least as high as the
particles’ interaction order.

simple 1D model consisting of n′ particles interacting via
an ad-hoc n′-body potential (see Appendix B.). We first
let the particles interact to generate a configuration data-
base, and then attempt to machine-learn these interac-
tions using the kernels just described. Figure 1 illustrates
the average prediction errors on the local energies of this
system incurred by the GP regression based on four dif-
ferent kernels as a function of the interaction order n′.
It is clear from the graph that a force field that lets the
n′ particles interact simultaneously can only be learned
accurately with a (n ≥ n′)-body kernel (6), or with the
many-body exponential kernel (7) which contains all in-
teraction orders.

To construct n-body kernels useful for applications to
real 3D systems we need to include rotational symmetry
by averaging over the rotation group. For our present
scopes, it is sufficient to discuss the case of rotation-
invariant n-body scalar energy kernels, for which the
integral (formally a transformation integration [38]) is
readily obtained from Eq. (5) by simply dropping the R
matrix in the integrand:

ksn(ρ, ρ′) =

∫
SO(3)

dR kn(ρ,Rρ′). (10)

The use of this integral in the context of potential en-
ergy learning was originally proposed in [28], where it
was carried out using appropriate functional expansions.
Alternatively, one can exploit the Gaussian nature of
the configuration expansion (3) to obtain an analytic-
ally exact formula, as done further below. The resulting
symmetrized n-body kernel ksn will learn faster than its
non-symmetrized counterpart kn, as the rotational de-
grees of freedom have been integrated out. This is be-
cause a non-symmetrized n-body kernel (kn) must learn
functions of 3n− 3 variables (translations are taken into
account by the local representation based on relative po-



5

sition in Eq. (3)). After integration, the new kernel ksn
defines a smaller and more physically-based space of func-
tions of 3n − 6 variables, which is the rotation-invariant
functional domain of n interacting particles.

The symmetrization integral in Eq. (10) can be written
down for the many-body base kernel kMB (Eq. (7)), to
define a new many-body kernel ksMB invariant under all
physical symmetries:

ksMB(ρ, ρ′) =

∫
SO(3)

dR kMB(ρ,Rρ′). (11)

By virtue of the universal approximation theorem [22, 39]
this kernel would be able to learn arbitrary physical in-
teractions with arbitrary accuracy, if provided with suf-
ficient data.

Unfortunately, the exponential kernel (7) has to date
resisted all attempts to carry out the analytic integra-
tion over rotations (11), leaving as the only open options
numerical integration, or discrete summation over a rel-
evant point group of the system [16]. On the other hand,
the analytic integration of 2- or 3-body kernels to give
symmetric n-body kernels can be carried out in different
ways.

For example, one could use an intermediate step that
was introduced during the construction of the widely
used SOAP kernel [28, 31, 40–42]. This kernel has a
full many-body character [28], ensured by the prescribed
normalisation step defined by Eqs. (31-36) of the stand-
ard Ref. [28]), which made it possible to use it e.g., to
augment to full many-body the descriptive power of a 2-
and 3-body explicit kernel expansion [26]. However, the
Haar integral over rotations introduced in [28] as an in-
termediate kernel construction step could also be seen, if
taken on its own, as a transformation integration proced-
ure [38] yielding a symmetrized n-body kernel as defined
in Eq. (10) above, which would in turn become a higher
finite-order kernel if raised to integer powers ζ ≥ 2 (see
next subsection).

Carrying out Haar integrals is not, in general, an easy
task. In the example above, computing a general rotation
invariant n-body kernel via the exact, suitably truncated
spherical harmonics expansion procedure of Ref. [28] be-
comes challenging for n > 3. Significant difficulties like-
wise arise if attempting a “covariant” integration over ro-
tations, for which we found an exact analytic expression
only for 2- and 3-body matrix-valued kernels [16], with a
technique that becomes unviable for n > 3. Fortunately,
the Haar integration can be avoided altogether, follow-
ing the simple route of constructing symmetric n-kernels
directly using symmetry-invariant descriptors, as we will
see in the next section. The problem of obtaining an
analytic Haar integral expression for the general n case
remains, however, an interesting one, which we tackle in
the remainder of this section following a novel analytic
route.

We first write the n-body base kernel of Eq. (6) as an
explicit product of (n − 1) 2-body kernels. The Haar
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Figure 2. Scatter plots showing the values of the integral
in (13) (on a random selection of configurations) computed
either by numerical integration or via the analytic expression
(Eqs. (14, 15, 17)). Interaction orders from n = 2 to n = 5
are considered.

integral (10) can then be written as

ksn(ρ, ρ′) =
∑

i=(i1,...,in−1)∈ρ
j=(j1,...,jn−1)∈ρ′

k̃i,j (12)

k̃i,j =

∫
dR e−

‖ri1−Rr′j1
‖2

4σ2 . . . e−
‖rin−1

−Rr′jn−1
‖2

4σ2 (13)

where now for each of the two configurations ρ, ρ′, the
sum runs over all n-plets of atoms that include the central
atom (whose indices i0 and j0 are thus omitted). Expand-
ing the exponents as (ri−Rr′j)

2 = r2i +r′2j −2Tr(Rr′jr
T
i )

allows us to extract from the integral (13) a rotation
independent constant Ci,j, and to express the rotation-
dependent scalar products sum as a trace of a matrix
product:

k̃i,j = Ci,jIi,j (14)

Ci,j = e
−(r2i1+r

′2
j1

+...r2in−1
+r′2jn−1

)/4σ2

(15)

Ii,j =

∫
dR eTr(RMi,j) (16)

where the matrix Mi,j is the sum of the outer products
of the ordered vector couples in the two configurations:
Mi,j = (r′j1r

T
i1

+ · · ·+ r′jn−1
rTin−1

)/2σ2. The integral (16)
occurs in the context of multivariate statistics as the gen-
erating function of the non-central Wishart distribution
[43]. As shown in [44], it can be expressed as a power
series in the symmetric polynomials (α1 =

∑3
i µi, α2 =∑3

i<j µiµj , α3 = µ1µ2µ3) of the eigenvalues {µi}3i=1 of
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the symmetric matrix MT
i,jMi,j:

Ii,j =
∑

p1,p2,p3

Ap1p2p3α
p1
1 α

p2
2 α

p3
3 (17)

Ap1p2p3 =
π 2−(1+2p1+4p2+6p3)(p1 + 2p2 + 4p3)!

p1!p2!p3!Γ( 3
2 + p1 + 2p2 + 3p3)Γ(1 + p2 + 2p3)

× 1

Γ( 1
2 + p3)(p1 + 2p2 + 3p3)!

. (18)

Remarkably, in this result (whose exactness is checked
numerically in Figure 2) the integral over rotations does
not depend on the order n of the base kernel, once the
matrix Mi,j is computed. This is not the case for previ-
ous approaches to integrating over rotations [16, 28] that
need to be reformulated with increasing and eventually
prohibitive difficulty each time the order n needs to be
increased.

However, the final expression given by Eqs. (14-18)
is still a relatively complex and computationally heavy
function of the atomic positions. To alleviate its evalu-
ation cost, it would be interesting to see whether it is pos-
sible to recast it as an explicit scalar product in a given
feature space. This would allow e.g., to transfer most
of the computational burden to the pre-computation of
the corresponding basis functions. Fortunately such com-
plexity can be largely avoided altogether if equally accur-
ate kernels can be built by physical intuition at least for
the most relevant lowest n orders, as discussed in the
next section.

D. Building n-body kernels II: n-body feature
spaces and uniqueness issues

The practical effect of the Haar integration (10) is
the elimination of the three spurious rotational degrees
of freedom. The same result can always be achieved
by selecting a group of symmetry- invariant degrees
of freedom for the system, typically including the dis-
tances and/or bond angles found in local atomic envir-
onments, or simple functions of these. Appropriate sym-
metrized kernels can then simply be obtained by defining
a similarity measure directly on these invariant quantities
[15, 26, 27, 45]. To construct symmetry invariant n-body
kernels with n = 2 and n = 3 we can choose these degrees
of freedom to be just interparticle distances:

ks2(ρ, ρ′) =
∑
i∈ρ
j∈ρ′

k̃2(ri, rj) (19)

ks3(ρ, ρ′) =
∑

i1,i2∈ρ
j1,j2∈ρ′

k̃3((ri1 , ri2 , ri1i2), (r′j1 , r
′
j2 , r

′
j1j2))

(20)

where the k̃ are kernel functions that directly specify the
correlation of distances, or triplets of distances, found
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Figure 3. Learning curves for 2 and 3-body kernels obtained
either via a Haar integration (Eqs. (12-18)), or directly spe-
cifying a similarity kernel function of the effective degrees of
freedom (Eqs. (19, 20)).

within the two configurations. Since these kernels learn
functions of low-dimensional spaces, their exact analytic
form is not essential for performance, as any fully non-
linear function k̃ will give equivalent converged results in
the rapidly reached large-database limit. This equival-
ence can be neatly observed in Figure 3, which reports the
performance of 2- and 3-body kernels built either directly
over the set of distances (Eqs. (19) and (20)) or via the
exact Haar integral (Eqs. (12-18)). As the test system is
crystalline Silicon, 3-body kernels are better performing.
However, since convergence of the 2- and 3-body feature
space is quickly achieved (at about N = 50 and N = 100
respectively), there is no significant performance differ-
ence between SO(3)-integrated n-body kernels and phys-
ically motivated ones. Consequently, for low interaction
orders, simple and computationally fast kernels like the
ones in Eqs. (19, 20) are always preferable to more com-
plex (and heavier) alternatives obtained via integration
over rotations (e.g., the one defined by Eqs. (12-18) or
those found in Refs. [16, 28].

We note at this point that Eq. (19) can be generalized
to construct a symmetric n-body kernel

ksn(ρ, ρ′) =
∑

i1,...,in−1∈ρ
j1,...,jn−1∈ρ′

k̃n(qi1,...,in−1 ,q
′
j1,...,jn−1

), (21)

where the components of the feature vectors q are the
chosen symmetry-invariant degrees of freedom describing
the n-plet of atoms.

The q feature vectors are required to be (3n − 6) di-
mensional for all n, except for n = 2, where they become
scalars. In practice, for n > 3 selecting a suitable set of
invariant degrees of freedom is not trivial. For instance,
for n = 4 the set of six unordered distances between
four particles does not specify their relative positions un-
ambiguously, while for n > 4 the number of distances
associated with n atoms exceeds the target feature space
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Non UniqueUnique

ρρ

Figure 4. Unique interaction (left panel) associated with the
3-body kernel ks

3 (20) compared with the non-unique 3-body
interaction (right panel) associated with the kernel k¬u3 =
(ks

2)
2 (22), which is a function of two distances only (see text).

dimension 3n− 6. Meanwhile, the computational cost of
evaluating the full sum in Eq. (21) very quickly becomes
prohibitively large as the number of elements in the sum
grows exponentially with n.

The order of an already symmetric n-body kernel can
however be augmented with no computational overhead
by generating a derived kernel through simple exponenti-
ation to an integer power, at the cost of losing the unique-
ness [28, 46, 47] of the representation. This can be easily
understood by means of an example (graphically illus-
trated in Figure 4). Let us consider the 2-body symmet-
ric kernel ks2 (Eq. (19)) which learns a function of just
a single distance, and therefore treats the ri distances
between the central atom and its neighbors independ-
ently. Its square is the kernel

k¬u3 (ρ, ρ′) =
∑

i1,i2∈ρ
j1,j2∈ρ′

k̃2(ri1 , r
′
j1)k̃2(ri2 , r

′
j2) (22)

which will be able to learn functions of two distances
ri1 , ri2 from the central atom of the target configura-
tion ρ (see Figure 4) and thus will be a 3-body kernel
in the sense of Eq. (2). However, this kernel cannot
resolve angular information, as rotating the atoms in ρ
around the origin by independent, arbitrary angles will
yield identical predictions.

Extending this line of reasoning, it is easy to show that
squaring a symmetric 3-body kernel yields a kernel that
can capture interactions up to 5-body, although again
non-uniquely. This has often been done in practice by
squaring the SOAP integral [26, 42]. In general, raising a
3-body “input” kernel to an arbitrary integer power ζ ≥ 2
yields an n-body output kernel of order 2ζ+1, k¬un=2ζ+1 =

ks3(ρ, ρ′)ζ . This kernel is also non-unique as it will learn
a function of only 3ζ variables, while the total number of
relevant n-body degrees of freedom (3n − 6 = 6ζ − 3) is
always larger than this. Substituting 3 with any n′ order
of the symmetrized input kernel will similarly generate a
k¬un = ksn′(ρ, ρ

′)ζ kernel of order n = (n′ − 1)ζ + 1. A

kernel order symm. unique name

ks
2 2 � � 2-body

k¬u3 3 � × 3-body, non-unique
ks
3 3 � � 3-body

k¬u5 5 � × 5-body, non-unique
kds
MB ∞ ∼ � many-body, approx. symmetric

Table I. Some of the kernels presented and their properties.

simple calculation reveals that, also in the general case,
the number of variables on which k¬un is implicitly built
is (3n′ − 6)ζ, always smaller than the full dimension of
n-body feature space (3n′−3)ζ−3 (as expected, the two
become equal only for the trivial exponent ζ = 1).

None of the kernels obtained as finite powers of some
symmetric lower-order kernels is a many-body one (they
will all satisfy Eq. (2) for some finite n). However, an at-
tractive immediate generalization consists of substituting
any squaring or cubing with full exponentiation. For in-
stance, exponentiating a symmetrized 3-body kernel we
obtain the many-body kernel kMB = exp[ks3(ρ, ρ′)]. It
is clear from the infinite expansion in Eq. (7) that this
kernel is a many-body one in the sense of Eq. (2), and is
also fully symmetric 1. As is also the case for all finite-
power kernels, the computational cost of this many body
kernel will depend on the order n′ of the input kernel (3
in the present example) as the sum in Eq. (21) only runs
on the atomic n′-plets (here, triplets) in ρ and ρ′. This
new kernel is not a priori known to neglect any order
of interaction that might occur in a physical system and
thus be encoded in a reference QM training database.

To summarise, we provided a definition for an n-body
kernel, and proposed a general formalism for building n-
body kernels by exact Haar integration over rotations.
We then defined a class of simpler kernels based on rota-
tion invariant features that are also n-body according to
the previous definition. As both approaches become com-
putationally expensive for high values of n, we pointed
out that n-body kernels can be built as powers of lower-
order input n′-body kernels, with no additional compu-
tational overhead. While such a procedure in our case
comes at the cost of sacrificing the unicity property of the
descriptor, it also suggests how to build, by full exponen-
tiation, a many-body symmetric kernel. For many applic-
ations, however, using a finite-order kernel will provide
the best option.

1 One could also inexpensively obtain a many body kernel by
normalisation of an explicit finite order one, for instance, as
kMB = ks3(ρ, ρ

′)/
√
ks3(ρ, ρ)k

s
3(ρ
′, ρ′). The denominator makes

this many-body in the sense of Eq. (2) (as is also the case for
the SOAP kernel, see discussion in Section II C, while no Haar
integration is needed here).
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Figure 5. Learning curves reporting the mean generalization error (measured as the modulus of the difference between target
and predicted force vectors) as a function of the training set size, for different materials and kernels of increasing order. The
insets in (a) and (d) report the converged error achieved by a given kernel as a function of the kernel’s order. The systems
considered are: (a) Crystalline nickel, 500 K (compared to a nickel nanocluster in the inset); (b) iron with a vacancy, 500 K; (c)
diamond and graphite, mixed temperatures and pressures; and (d) amorphous silicon, 650 K (compared to crystalline silicon in
the inset). For extra details on the datasets and kernels used, and on the experimental methodology, see Appendixes C and D.

E. Optimal n-kernel choice

In general, choosing a higher order n-body kernel will
improve accuracy at the expense of speed. The optimal
kernel choice for a given application will correspond to
the best tradeoff between computational cost and repres-
entation power, which will depend on the physical sys-
tem investigated. The properties of some of the kernels
discussed above are summarized in Table I, while their
performance is tested on a range of materials in Figure 5.

The figure reveals some general trends. 2-body kernels
can be trained very quickly, as good convergence can be
attained already with ∼100 training configurations. The
2-body representation is a very good descriptor for a few
materials under specific conditions, while their overall
accuracy is ultimately limited. This will yield e.g., ex-
cellent force accuracy for a close-packed bulk system like

crystalline Nickel (inset (a)), and reasonable accuracy for
a defected α-Fe system whose bcc structure is however
metastable if just pair potentials are used (inset (b)). Ac-
curacy improves dramatically once angular information
is acquired by training 3-body kernels. These can ac-
curately describe forces acting on iron atoms in the bulk
α-Fe system containing a vacancy (inset (b)) and those
acting on carbon atoms in both diamond and graphite
(inset (c)). However, 3-body GPs need larger training
databases. Also, atoms participate in many more triplets
than simple bonds in their standard environments con-
tained in the database, which will make 3-body kernels
slower than 2-body ones for making predictions by GP
regression. Both problems would extend, getting worse,
to higher values of n, as summing over all database con-
figurations and all feature n-plets in each database con-
figuration will make GP predictions progressively slower.
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However, complex materials where high-order interac-
tions presumably play a significant role should be expec-
ted to be well described by ML-FF based on a many-body
kernel. This is verified here in the case of amorphous Sil-
icon (inset (d)).

Identifying the n value best suited for the description
of a given material system can also be done in practice by
monitoring how the converged error varies as a function
of the kernel order. Plots illustrating this behaviour are
provided in insets (a) and (d) for nickel and silicon sys-
tems, respectively. In each plot the more complex system
(a Ni cluster and an amorphous Si system, respectively)
display a high accuracy gain (larger negative slope) when
the kernel order is increased, while the relatively simpler
cristalline Ni and Si systems show a practically constant
trend on the same scale.

Figure 5 (b) also shows the performance of some non-
unique kernels. As discussed above, these are options to
increase the order of an input kernel avoiding the need to
sum over the correspondingly higher order n-plets. Our
tests indicate that the ML-FFs generated by non-unique
kernels sometimes improve appreciably on the input ker-
nels’ performance: e.g., the error incurred by the 2-body
kernel of Eq. (19) in the Fe-vacancy system is higher than
that associated with its square, the non-unique 3-body
kernel of Eq. (22). Unfortunately, but not surprisingly,
the improvement can be in other cases modest or nearly
absent, as exemplified by comparing the errors associated
with the 3-body kernel and its square -the non-unique 5-
body kernel-, in the same system.

Overall, the analysis of Figure 5 suggests that an op-
timal kernel can be chosen by comparing the learning
curves of the various n-body kernels and the many-body
kernel over the available QM database: the compar-
ison will reveal the simplest (most informative, lowest
n) description that is still compatible with the error level
deemed acceptable in the simulation.

Trading transferability for accuracy by training the
kernels on a QM database appropriately tailored for the
target system (e.g., restricted to just bulk or simply-
defected system configurations sampled at the relevant
temperatures as done in the Ni and Fe-systems of Fig-
ure 5) will enable surprisingly good accuracy even for
low n values. This should be expected to systematically
improve on the accuracy performance of classical poten-
tials involving non-linear parameter fitting, as exempli-
fied by comparing the errors associated with n-body ker-
nel models and the average errors of state-of-the-art em-
bedded atom model (EAM) P-FFs [7, 48] (insets (a) and
(b)). The next section further explores the performance
of GP-based force prediction, to address the final issue
of what execution speed can be expected for ML-based
force fields, once the optimally accurate choice of kernel
has been made.
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Figure 6. nser grids. Inset: standard deviation of the dis-
tributions as a function of the number of interpolation grid
points, on a log-log scale (each distribution in the main panel
corresponds to a dot of same color in the insert).

III. MAPPED FORCE FIELDS (M-FFS)

Once a GP kernel is recognized as being n-body, it
automatically defines an n-body force field corresponding
to it, for any given choice of training set. This will be an
n-body function of atomic positions satisfying Eq. (2),
whose values can be computed by GP regression sums
over the training set as done by standard ML-FF imple-
mentations, but do not have to be computed this way.
In particular, the execution speed of a machine learning-
derived n-body force field might be expected to depend
on its order n (e.g., it will involve sums over all atomic
triplets, like any 3-body P-FF, if n=3), but should oth-
erwise be independent of the training set size. It should
therefore be possible to construct a mapping procedure
yielding a machine learning-derived, nonparametric force
field (an efficient “M-FF”) that allows a very significant
speed-up over calculating forces by direct GP regression.
We note that non-unique kernels obtained as powers of
n′-body input kernels exceed their reference n′-body fea-
ture space and thus could not be similarly sped up by
mapping their predictions onto an M-FF of equal order
n′, while mapping onto an M-FF of the higher output
order n would still be feasible.

For convenience, we will analyze a 3-body kernel case,
show that a 3-body GP exactly corresponds to a clas-
sical 3-body M-FF, and show how the mapping yielding
the M-FF can be carried out in this case, using a 3D-
spline approximator. The generalization to any order n
is straightforward provided that a good approximator can
be identified and implemented. We begin by inserting the
general form of a 3-body kernel (Eq. (21)) into the GP
prediction expression (Eq. (1)), to obtain
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ε(ρ) =

N∑
d=1

∑
i1,i2∈ρ
j1,j2∈ρd

k̃3(qi1,i2 ,q
d
j1,j2)αd. (23)

Inverting the order of the sums over the database and
atoms in the target configurations yields a general ex-
pression for the 3-body potential:

ε(ρ) =
∑

i1,i2∈ρ
ε̃(qi1,i2) (24)

ε̃(qi1,i2) =

N∑
d=1

∑
j1,j2∈ρd

k̃3(qi1,i2 ,q
d
j1,j2)αd. (25)

Eq. (24) reveals that the GP implicitly defines the local
energy of a configuration as a sum over all triplets con-
taining the central atom, where the function ε̃ represents
the energy associated with each triplet in the physical
system. The triplet energy is calculated by three nested
sums, one over the N database entries and two running
over theM atoms of each database configuration (M may
slightly vary over configurations, but can be assumed to
be constant for the present purpose). The computational
cost of a single evaluation of the triplet energy (25) scales
consequently as O(NM2). Clearly, improving the GP
prediction accuracy by increasing N and M will make
the prediction slower. However, such a computational
burden can be avoided, bringing the complexity of the
triplet energy calculation (25) to O(1).

Since the triplet energy ε̃ is a function of just three vari-
ables (the effective symmetry-invariant degrees of free-
dom associated with three particles in three dimensions),
we can calculate and store its values on an appropriately
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Figure 8. Energy profiles of the 3-body M-FF, trained for the
a-Si system at 650K. Upper panel: 2-body interaction term.
Lower panel: 3-body interaction energy for an atomic triplet,
angular dependence when the two distances from the central
atoms are both equal to 2.4Å.

distributed grid of points within its domain. This proced-
ure effectively maps the GP predictions on the relevant
3-body feature space: once completed, the value of the
triplet energy at any new target point can be calculated
via a local interpolation, using just a subset of nearest
tabulated grid points. If the number of grid points Ng
is made sufficiently high, the mapped function will be
essentially identical to the original one but, by virtue of
the locality of the interpolation, the cost of evaluating it
will not depend on Ng.

The 3-body configuration energy of Eq. (24) also in-
cludes 2-body contributions coming from the terms in
the sum for which the indices i1 and i2 are equal. When
i1 = i2 = i the term ε(qi,i) can be interpreted as the pair-
wise energy associated with the central atom and atom i.
The term can consequently be mapped onto a 1D 2-body
feature space whose coordinate is the single independ-
ent component of the qi,i feature vector, typically the
distance between atom i and the central atom. In the
same way, an n-body kernel naturally defines a set of n-
body energy terms of order comprised between 2 and n,
depending on the number of repeated indices.

Figure 6 shows the convergence of the mapped forces
derived from the 3-body kernel in Eq. (20) for a data-
base of DFTB atomic forces for the a-Si system. The
interpolation is carried out using a 3D cubic spline for
different 3D mesh sizes. Comparison with the reference
forces produced by the GP allows to generate, for each
mesh size, the distribution of the absolute deviation of
the force components from their GP-predicted values.
The standard deviation of the interpolation error dis-
tribution is shown in the insert on a log-log scale, as
a function of Ng. Depending on the specific reference
implementation, the speed-up in calculating the local en-
ergy (Eq. (24)) provided by the mapping procedure can
vary widely, while it will always grow linearly with N
and quadratically with M (see Figure 7), and it will be
always substantial: in typical testing scenarios we found
this to be of the order of 103 − 104.
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An M-FF example, obtained for a-Si with n = 3 is
shown in Figure 8. As the energy profile is not prescribed
by any particular functional form, it is free to optimally
adapt to the information contained in the QM training
set, to best reproduce the quantum interactions that pro-
duced it. Figure 8 contains some expected features e.g., a
radial minimum at about r ' 2.4Å in the 2-body section
(upper panel), the corresponding angular minimum at
θ0 ' 110◦ (lower panel), which is approximately equal to
the sp3 hybridization angle of 109.47◦, and rapid growth
for small radii (upper panel) and angles (lower panel).
Less intuitive features are also visible, which however
contribute to the best representation of the bulk system’s
interactions that a 3-body expansion can achieve for the
given database. An example is the shallow maximum in
the 2-body section at r ' 3.1Å, which would of course
disappear if we fitted our model on QM forces calculated
for a Si dimer, that do not contain a hump. The res-
ulting Si force field, appropriate for a Si dimer, would
however inevitably reproduce the QM bulk interactions
less accurately. More generally, training on the aggreg-
ate dataset could be a sensible compromise, producing a
more transferable, but locally less accurate force field.

IV. CONCLUDING REMARKS

The results presented in this work exemplify how phys-
ical priors built in the GP kernels restrict their descript-
iveness, while improving their convergence speed as a
function of training dataset size. This provides a frame-
work to optimise efficiency. Comparing the performance
of n-body kernels allows us to identify the lowest order n
that is compatible with the required accuracy as a con-
sequence of the physical properties of the target system.
As a result, accuracy can in each case be achieved using
the most efficient kernel e.g., a 2-body kernel for bulk
Ni, or a 3-body kernel for carbon and graphite, for a ∼
0.1 eV/Å target force accuracy, see Figure 5. As should
be reasonably expected, relying on low-dimensional fea-
ture spaces will limit the maximum achievable accuracy if
higher-order interactions, missing in the representation,
occur in the target system.

On the other hand, we find that once the optimal order
n has been identified and the n-kernel has been trained
(whichever its form e.g., whether defined as a function
of invariant descriptors as in (21), or constructed as a
power of such a function, or derived as an analytic integ-
ral over rotations using Eqs. (12-18)), it becomes possible
to map its prediction on the appropriate n-dimensional
domain, and thus generate a n-body M-FF machine-
learned atomic force field that predicts atomic forces at
essentially the same computational cost of a classical n-
body P-FF parametric force field. The GP predictions
allow for a natural intrinsic measure of uncertainty -the
GP predicted variance-, and the same mapping proced-
ure used for the former can also be applied to the lat-
ter. Thus, like their ML-FF counterparts, and unlike

P-FFs, M-FFs offer a tool which could be used to mon-
itor whether any extrapolation is taking place that might
involve large prediction errors.

In general, our results suggest a possible three-step
procedure to build fast nonparametric M-FFs whenever
a series of kernels kn can be defined with progressively
higher complexity/descriptive power and well-defined
feature spaces with n-dependent dimensionality. How-
ever the series is constructed (and whether or not it con-
verges to a universal descriptor) this will involve (i) GP
training of n-kernels for different values of n, in each case
using as many database entries relevant to the target sys-
tem as needed to achieve convergence of the n-dependent
prediction error; (ii) identification of the optimal order n,
yielding the simplest viable description of the system’s
interactions - this could be e.g., the minimal value of
n compatible with the target accuracy or, within a GP
statistical learning framework, the result of a Bayesian
model selection procedure [22]; (iii) mapping of the res-
ulting (GP-predicted) ML-FF onto an efficient M-FF, us-
ing a suitably fast approximator function defined over the
relevant feature space.

A major limitation of the M-FFs obtained this way is
that, similar to P-FFs, each of them can be used only
in “interpolation mode”, that is when the target config-
urations are all well represented in the fixed database
used. This is not the case in molecular dynamics simula-
tions potentially revealing new chemical reaction paths,
or whenever online learning or the use of dynamically-
adjusted database subsets are necessary to avoid unval-
idated extrapolations and maximise efficiency. In such
cases, “learn on the fly” (LOTF) algorithms can be de-
ployed, which have the ability to incorporate novel QM
data into the database used for force prediction. In such
schemes, the new data are either developed at runtime
by new QM calculations, or they are adaptably retrieved
as the most relevant subset of a much larger available
QM database [15]. The availability of an array of n-body
kernels is very useful for this class of algorithms, which
provides further motivation for their development. In
particular, distributing the use of n-body kernels non-
uniformly in both space and time along the system’s tra-
jectory has the potential to provide an optimally efficient
approach to accurate MD simulations using the LOTF
scheme. Finally, while the complication of continuously
mapping the GP predictions to reflect a dynamically up-
dated training database makes on the fly M-FF genera-
tion a less attractive option, a strategy to produce the
MD trajectory with classical force field efficiency might
involve using (concurrently across the system, and at any
given time) a locally optimal choice built from a compre-
hensive set of pre-computed low-order M-FFs.
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APPENDIX

A. Kernel order by explicit differentiation

We first prove that the kernel given in Eq. (4) is 2-body
in the sense of Eq. (2). For this it is sufficient to show that
its second derivative with respect to the relative position
of two different atoms of the target configuration ρ always
vanishes. The first derivative is

∂k2(ρ, ρ′)

∂ri1
=

∑
ij

∂

∂ri1
e−‖ri−r

′
j‖

2/4σ2

=
∑
ij

e−‖ri−r
′
j‖

2/4σ2 (ri − r′j)

2σ2
δii1

=
∑
j

e−‖ri1−r
′
j‖

2/4σ2 (ri1 − r′j)

2σ2
.

This depends only on the atom located at ri1 of the con-
figuration ρ. Thus, differentiating with respect to the
relative position ri2 of any other atom of the configura-
tion gives the relation in Eq. (2) for 2-body kernels:

∂2k2(ρ, ρ′)

∂ri1∂ri2
= 0.

We next show that the kernel defined in Eq. (6) is an n-
body in the sense of Eq. (2). This follows naturally from
the result above, given that kn is defined as kn = kn−12 .
We can thus write down its first derivative as

∂kn
∂ri1

= (n− 1)kn−22

∂k2
∂ri1

.

Since the second derivative of k2 is null, the second de-
rivative of kn is simply

∂2kn
∂ri1∂ri2

= (n− 2)(n− 1)kn−32

∂k2
∂ri1

∂k2
∂ri2

and after n− 1 derivations we similarly obtain

∂2kn−12

∂ri1 · · · ∂rin
= (n− 1)! k02

∂k2
∂ri1

. . .
∂k2
∂rin−1

.

Since k02 = 1, the final derivative with respect to the nth
particle position rin is zero as required by Eq. (2).

B. 1D n′-body model

To test the ideas behind the n-body kernels, we used a
1D n′-particle model reference system where a (“central”)
particle is kept fixed at the coordinate axis origin (con-
sistent with the local configuration convention of Eq. (3)).
The energy of the central particle is defined as

f =
∑

i1...in′−1

J xi1 . . . xin′−1

where {xip}n
′−1
p=1 are the relative positions of n′ − 1

particles, and J is an interaction constant.

To generate Figure 1 a large set of configurations was
generated by uniformly and independently sampling each
relative position xip within the range (−0.5, 0.5). The
energy of the central particle of each configuration was
then given by the above equation, with the interaction
constant J set to 0.5. In order to analyse the converged
properties of the n-body kernels presented, large training
sets (N = 1000) were used.

C. Databases details

The bulk Ni and Fe databases were obtained from sim-
ulations using a 4× 4× 4 periodically repeated unit cell,
modelling the electronic exchange and correlation inter-
actions via the PBE/GGA approximation [49], and con-
trolling the temperature (set at 500K) by means of a
weakly-coupled Langevin thermostat (the DFT trajector-
ies are available from the KCL research data management
system at the link http://doi.org/10.18742/RDM01-92).
The C database comprises bulk diamond and AB- and
ABC-stacked graphene layer structures. These struc-
tures were obtained from DFT simulations at varying
temperatures and pressures, using a fixed 3×3×2 peri-
odic cell geometry for graphite, and simulation cells
ranging from 1×1×1 to 2×2×2 unitary cells for dia-
mond, the relative DFT trajectories can be found in
the “libAtoms” data repository via the following link
http://www.libatoms.org/Home/DataRepository. Crys-
talline and amorphous Si database was obtained from a
microcanonical DFTB 64-atom simulation carried out in
periodic boundaries, with average kinetic energy corres-
ponding to a temperature of T = 650K. The results
presented for the Ni cluster are reported from Ref. [50]
and correspond to constant temperature DFT MD runs
(T = 300K) of a particular Ni19 geometry (named
“4HCP” in the article). The radial cutoffs used to create
the local environments for the four elements considered
are: 4.0 Å (Ni), 4.45 Å (Fe), 3.7 Å (C) and 4.5 Å (Si).
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D. Details on the kernels used and on the
experimental methodology

All energy kernels presented in the work can be used
to learn/predict forces after generating a standard deriv-
ative kernel (Ref. [22], section 9.4, also cf. Section II A
of the main text.) In particular, for each scalar energy
kernel k a matrix-valued force kernel K can be readily
obtained by double differentiation with respect to the
positions (r0 and r′0) of the central atoms in the target
and database configurations ρ and ρ′:

K(ρ, ρ′) =
∂2k(ρ, ρ′)

∂r0∂r′T0
.

The kernels k̃2 and k̃3 (Eqs. (19,20)) were chosen as
simple squared exponentials in the tests shown. Noting
as q (or q) the vector (or scalar) containing the effective
degrees of freedom of the atomic n-plet considered (see
Eq. (21)), the two kernels read:

k̃2(qi, q
′
j) = e−(qi−q

′
j)

2/2σ2

k̃3(qi1,i2 ,q
′
j1,j2) =

∑
P∈Pc

e−‖qi1,i2−Pq′j1,j2‖
2/2σ2

,

where Pc (|Pc| = 3) is the set of cyclic permutations of
three elements. Summing over the permutation group is
needed to guarantee permutation symmetry of the en-
ergy. As discussed in the main text, the exact form of
these low-order kernels is not essential as the large data-
base limit is quickly reached.

The many-body force kernel referred to in Fig. 5 was
built as a covariant discrete summation of the many-body
energy base-kernel (7) over the O48 crystallographic point
group, using the procedure of Ref. [16]. This procedure
yields an approximation to the full covariant integral of
the many-body kernel (7) given in Eq. (5).

In order to obtain Figure 5, repeated (randomised)
realisations of the same learning curves were performed.
The points (and error bars) plotted are the means (and
standard deviations) of the generated data . The kernel
hyperparameters were independently optimised by cross
validation for each dataset.


