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Abstract 

Hydroxypyridinones (HOPOs) form outstanding building blocks for the development of a 

variety of agents in the field of metal chelation. The pyridinone ring is easily synthesised 

and readily converted into tetradentate, hexadentate and octadentate chelators. There 

is considerable potential for the control of the stereochemistry of the resulting metal 

complex and hence the properties of these multidentate molecules. Their ability to 

rapidly bind hard metals in aqueous media has facilitated the development of efficient 

applications in both biological and medical contexts. In this review, an in-depth analysis 

of the synthetic methodologies for HOPO-based ligands is presented, as well as the 

many aspects to achieve optimal biological activity. Recent advances and current 

challenges for the future application of HOPO structures are outlined. The present 

flourishing development of drug candidates and diagnostic agents based on this 

chemical scaffold opens access to many new applications in analytical, environmental 

and clinical science.  
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1. Introduction: the origins of hydroxypyridinone (HOPO) selection for iron(III) 

chelation 

1.1. Design of orally active Iron chelators 

Iron is essential for almost all microorganisms, plants and animals by virtue of its unique 

chemical properties; namely the ability to coordinate and activate oxygen, and the 

possession of an ideal redox chemistry (FeII  FeIII  FeIV) for the facilitation of 

electron transport and metabolic processes.1 However iron is toxic when present in 

excess. In the presence of molecular oxygen, ‘loosely-bound’ iron is able to redox cycle 

between FeII and FeIII, thereby generating oxygen-derived free radicals, such as the 

hydroxyl radical.2 A number of protective strategies are adopted by cells to prevent such 

damage, including iron storage, tightly controlled iron transport and controlled 

distribution of iron. However, there are situations when these protective mechanisms 

become saturated, either locally in ischemic tissue, or systemically, as with transfusion-

induced iron overload. There is therefore a requirement for the selective removal of iron 

under such circumstances. Desferrioxamine-B (DFO, 1), the most widely used 

therapeutic iron chelator for many years, has a major disadvantage of not being orally 

active,3 consequently there has been a search for orally active iron-selective chelators 

since the early 1970s.  

Selection of appropriate ligands can be rationalised by adopting the concept of “hard” 

and “soft” acids and bases.4 High spin iron(III) is a tripositive cation of 0.65Å radius and 

as such is classified as a hard Lewis acid, by virtue of its high surface charge density. It 

forms stable bonds with charged oxygen atoms, such as phenolates. In contrast, the 

iron(II) cation has a lower charge density and favours nitrogen containing ligands. Such 
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ligands also bind other important divalent metals such as Cu(II) and Zn(II) with high 

affinity. In general, oxyanions are selective for tribasic metal cations over dibasic anions 

and as the majority of tribasic cations, for instance Al(III) and Ga(III), are not essential 

for living cells, iron(III) as opposed to iron(II), is the best target for ‘selective iron 

chelator’ design under biological conditions. A further advantage of high-affinity iron(III) 

chelators is that they chelate iron(II) and the resulting complex autoxidises under 

aerobic conditions to form iron(III).5 Thus high-affinity iron(III)-selective ligands 

scavenge both iron(III) and iron(II) under most physiological conditions.  

 

 

Figure 1. Octahedral iron complexes with six coordination sites. Bidentate ligands 

generate 3:1 complexes, tridentate ligands generate 2:1 complexes and hexadentate 

ligands generate 1:1 complexes.   

 

High spin iron(III) favours an octahedral stereochemistry and this can be achieved by a 

single hexadentate ligand, two tridentate ligands or three bidentate ligands (Figure 1). 

The majority of iron scavenging compounds found in living systems are hexadentate 

ligands as demonstrated by the wide range of siderophore structures.6 However as 
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most of these compounds are hydrophilic and possess molecular weights in excess of 

500, they possess low bioavailability via the oral route.7 Consequently, a search has 

been made for suitable bidentate and tridentate chelators, as these possess lower 

molecular weights and so are more likely to possess high oral biovailability.8 

 

1.2. Potential iron(III)-binding ligands 

A range of established iron(III) bidentate ligands is presented in Figure 2. 

 

 

Figure 2. Bidentate iron(III) ligands. 

 

1.2.1. Catechols  

Catechol residues possess a high affinity for tribasic metal ions resulting from the high 

electron density of both oxygen atoms. However, this pronounced charge density is also 

associated with a high affinity for protons (pKa values, 12.1 and 8.4).9 Therefore, the 

binding of cations by catechols is highly pH sensitive.10 For iron(III) the logK1 value is 20 

and the logβ3 value is 40 (see Section 3.1). With bidentate catechols, the 2:1 complex is 

the dominant form in the pH range 5.5-7.5.11 With such complexes, the iron atom is able 
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to interact with hydrogen peroxide or oxygen, possibly resulting in the generation of 

hydroxyl radicals. Moreover, catechol-based ligands are susceptible to oxidation.12 

 

1.2.2. Hydroxamates 

The hydroxamate moiety possesses a lower affinity for iron than catechol (logK1 = 11.4, 

logβ3 = 28), but selectivity, as with catechols, favours tribasic cations over dibasic 

cations.13 Due to lower protonation constants, hydrogen ion interference at physiological 

pH values is less pronounced than for catechol, consequently the 3:1 complex 

dominates at pH 7.4. However, the affinity for iron is insufficient to solubilise iron(III) at 

pH 7.4 and thus bidentate hydroxamates are not suitable biological iron scavengers. In 

contrast hexadentate hydroxamates, for instance DFO (1), are powerful iron(III) 

chelators. 
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1.2.3. 8-Hydroxyquinolines  

8-Hydroxyquinoline binds iron(III) tightly (logK1 = 13.7, logβ3 = 37). This ligand also 

binds iron(II) tightly as indicated by the relatively high oxidation potential (-150mV). This 

is a result of the presence of 3 nitrogen atoms in the 3:1 complex. The value of the 

oxidation potential indicates that iron complexes are likely to redox cycle under most 

biological conditions13 and indeed many 8-hydroxyquinolines are toxic. 

 

1.2.4. Aminocarboxylates 

Bidentate aminocarboxylates do not form tight complexes with iron(III) at neutral pH 

values (logK1 = 10) and are unable to successfully compete with the hydroxide anion. In 

contrast multidentate aminocarboxylates, for instance EDTA and DTPA, bind iron 

tightly, but not with high selectivity;14 Ca(II) and Zn(II) also binding tightly to EDTA. 

 

1.2.5. Hydroxycarboxylates 

α-Hydroxycarboxylates bind iron(III), indeed the alcohol function frequently dissociates 

on binding iron(III),15 in contrast to most other transition metals. However bidentate α-

hydroxycarboxylates, for instance lactic acid, possess a relatively weak affinity for 

iron(III) (logK1 = 2.9). In contrast, when incorporated in hexadentate siderophores, for 

instance rhizoferrin (2), they possess much higher affinities.16 

 

1.2.6. Hydroxypyridinones 

Hydroxypyridinones (HOPOs) combine the characteristics of both hydroxamate and 

catechol groups, forming 5-membered chelate rings in which the metal is coordinated by 
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two vicinal oxygen atoms. The hydroxypyridinones are monoprotic acids at pH 7.4 and 

thus form neutral tris-iron(III) complexes. The affinity of such compounds for iron(III) 

reflects the pKa values of the chelating oxygen atoms, the higher the affinity for iron(III), 

the higher the pKa value (Table 1).17,18 There are three classes of metal chelating 

HOPO ligands, namely 1-hydroxypyridin-2-one (1,2-HOPO; logK1 = 10.3, logβ3 = 27), 3-

hydroxypyridin-2-one (3,2-HOPO; logK1 = 11.7, logβ3 = 32) and 3-hydroxypyridin-4-one 

(3,4-HOPO; logK1 = 14.2, logβ3 = 37.2). Of these, the pyridin-4-ones possess the 

highest affinity for iron(III) (Table 1) and are selective for tribasic metal cations over 

dibasic cations. The surprisingly high pKa value of the carbonyl function of 3-

hydroxypyridin-4-one results from extensive delocalisation of the lone pair electrons 

associated with the ring nitrogen atom. 3-Hydroxypyridin-4-ones form neutral 3:1 

complexes with iron(III),19 which are stable over a wide range of pH values.18 The low 

redox potential of 3,4-HOPO iron complexes (-620 mV) indicates a strong bias towards 

iron(III) coordination.20 

 

1.3. Selection of an optimal bidentate iron-binding ligand class 

A useful parameter for the comparison of the ability of chelating agents to bind iron(III) 

is the pFe3+ value (concentration of free Fe(III) in solution, i.e. -log|Fe3+]), which is 

typically defined by the following conditions: [Fe3+]total, 10-6 M; [ligand]total, 10-5 M; pH 

7.4.21 Hydroxamates, 1,2-HOPOs and 3,2-HOPOs are not suitable scavenging 

bidentate chelators for iron as they do not possess a sufficiently high pFe3+ value to 

function as an iron scavenger (Table 1). Catechols are not suitable due to their 

tendency to form 2:1 complexes at neutral pH values. α-Amino- and α-
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hydroxycarboxylates do not compete efficiently with the hydroxide anion at neutral pH 

values. Iron complexes of 8-hydroxyquinolines are associated with the risk of redox 

cycling. This leaves 3-hydroxypyridin-4-one as the only bidentate ligand class presented 

in Figure 2 that is suitable for scavenging iron under biological conditions (see Section 

5.2.1.1). 

 

Table 1. pKa values and iron(III) affinity constants of acetohydroxamic acid and three 

different HOPOs. 

apFe3+= -log[Fe3+] when [Fe3+]total = 10-6 M and [ligand]total= 10-5 M at pH = 7.4. An ideal 

value for efficient iron scavenging in biological matrices is pFe3+ ≥ 20. Data sourced 

from references.17,18  

 

Ligand Structure pKa1 pKa2 logβ3 pFe3+ a 

Acetohydroxamic acid 

 

― 9.4 28.3 13 

1-Hydroxypyridin-2-one 

 

― 5.8 27 16 

1-Methyl-3-hydroxypyridin-2-one 

 

0.2 8.6 32 16 

1,2-Dimethyl-3-hydroxypyridin-4-

one   (deferiprone, (3)) 

 

3.6 9.9 37.2 20.5 



14 
 

1.4. Selection of optimal multidentate iron-binding ligands 

As indicated in the previous section, multidentate ligands are less likely to possess good 

oral activity, but they still have considerable potential as high affinity chelating agents for 

highly charged cations for instance Fe3+, Ga3+, Gd4+, Pu4+ (see Section 4). Furthermore, 

their utility as chelating agents is not limited to 3,4-HOPOs; like hydroxamates, 1,2-

HOPOs and 3,2-HOPOs when incorporated into multidentate ligands form powerful 

chelating agents. Thus, the design and synthesis of multidentate chelators is also a 

matter of some significance. Many naturally occurring hexadentate chelators 

(siderophores) which incorporate hydroxamate, catechol and α-hydroxycarboxylate 

functions are well characterized.6 The synthesis and properties of these molecules 

together with synthetic analogues have been reviewed.22-25 However analogues 

containing hydroxypyridinones have been less well covered and hence we overview 

such synthetic work in this review (Section 2). Hexadentate hydroxpyridinone chelating 

functions can adopt two broad structural designs, linear and tripodal (Figure 3). A range 

of tripodal bases are possible including cyclic esters, cyclic amides and sugars. Such 

molecules can also be capped (Figure 3). Synthetic approaches to these different 

structural designs are described in Section 2. 
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Figure 3. Structural design of hexadentate 3,4-HOPOs. 

 

2. Synthesis of hydroxypyridinones 

2.1. Bidentate 

2.1.1. N-Substituted 3-hydroxypyridin-4-ones  

The earliest record of the preparation of a 3-hydroxypyrid-4-one dates back to 193126 

when Armit and Nolan converted pyromeconic acid to the protected 3-hydroxy-1-methyl 

pyridin-4-one (Scheme 1A) via a double Michael addition reaction. This synthetic 
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approach has been widely adopted since that time, as reported by Kleipool and 

Wibaut,27 Heyns and Vogelsang,28 Berson et al,29 and Adams et al.30 It has been utilised 

for the synthesis of mimosine (4)31,32 and to prepare a range of 3-hydroxypyrid-4-ones 

with aliphatic N-substituents.33  

 

 

Scheme 1. A) Conversion of pyran-4-one to a 3,4-HOPO by reaction with an amine; B) 

substitution at position 1 of 3,4-HOPO by an alkyl function or protected sugar. 
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Although the double Michael addition occurs in acceptable yield without 3-hydroxy 

protection when non-bulky amines, for instance NH3 and methyl amine, are used as the 

nucleophile, lower yields result when more bulky amines are reacted. The double 

Michael addition involves sequential ring cleavage and ring closure (Scheme 1A) and 

presumably the more rapid the ring closure, the higher the yield of the desired product 

and the lower the corresponding yield of side products, resulting from polymerisation of 

the acyclic intermediate. More bulky amines are likely to slow the ring closure step, so 

enhancing the life time of the unsaturated acyclic intermediate, thereby encouraging 

polymerisation. A factor which leads to enhanced yields of the pyridin-4-one is the 

protection of the 3-hydroxyl function. In two studies which lacked 3-hydroxyl protection, 

the range of yields were reported to be 3-18%34 and 5-40%,35 whereas when the 3-

hydroxyl function was protected with, for instance a benzyl group, the range of yields 

was 53-84%.36 Such protection avoids the generation of an α-hydroxy ketone 

intermediate (Scheme 2), accumulation of which will increase the rate of intermolecular 

reaction, leading to polymer formation. The 3-hydroxyl function can be protected by the 

formation of a methyl ether37 or more commonly a benzyl ether.8,38,39 The methoxy 

group is typically cleaved by treatment with BBr3, whereas the benzyl group can be 

cleaved under more mild conditions, for instance with BCl3, catalytic hydrogenation or 

neat trifluoroacetic acid. This synthetic procedure has been reported in many 

patents.8,40-42 
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Scheme 2. Formation of α-hydroxy ketone intermediate. 

                                                         

 

An alternative route to N-substituted 3-hydroxypyridin-4-ones is from the corresponding 

unsubstituted pyridinone (Scheme 1B).43 This approach has been utilised for nucleoside 

synthesis, using trimethylsilyl intermediates (Scheme 1B).44-46 

 

2.1.2. 2-Substituted 3-hydroxypyridin-4-ones 

The Mannich reaction was first utilised by Taylor and coworkers for the preparation of 2-

substituted pyridin-4-ones.47 (Scheme 3A) This reaction also reaches high yields with 

the corresponding pyrones,47,48 which can then be subsequently converted to pyridin-4-

ones (Scheme 3A). The aldol reaction has also been utilised to functionalise position 2 

on pyromeconic acid and allomaltol (Scheme 3B) to provide a wide range of (1’-

hydroxyalkyl)-3-hydroxypyridin-4-ones39,49 using benzaldehyde dimethyl acetal as a 

protecting group.49 A convenient method for the production of 2-hydroxymethyl 

derivatives is via a pyridine N-oxide intermediate (Scheme 3C).50 The 2-hydroxymethyl 

substituent has been further utilised to conjugate additional moieties, for instance 

pegylated side chains51 and by conversion to the corresponding 2-aminomethyl 

derivatives and conversion to carboxylic acids with subsequent amidation (Scheme 

4).52-54 
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Scheme 3.  Synthesis of 2-substituted 3,4-HOPOs. A) Mannich reactions with 3,4-

HOPO and pyran-4-ones; B) aldol reaction with pyran-4-ones; C) preparation of 3,4-

HOPOs via pyridine-N-oxide intermediate. 
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Scheme 4. Synthesis of 2-carboxyamido-3,4-HOPOs. 

 

2.1.3. 5-Substituted 3-hydroxypyridin-4-ones 

Aminomethylation of 2-methyl-3-hydroxypyridin-4-ones leads to functionalisation of 

position 5,47  this approach has been utilised to produce an extensive range of 

substituted pyridin-4-ones (Scheme 5A).55 Position 5 can also be selectively brominated 

and then subsequently substituted by the methoxy group  (Scheme 5B).56  

 

Scheme 5. Synthesis of 5-substituted 3,4-HOPOs. 

 

 

2.1.4. 6-Substituted 3-hydroxypyridin-4-ones 

Kojic acid (5) is a convenient starting point for the synthesis of a range of 6-substituted 

pyridin-4-ones, for instance pegylated derivatives.51 In addition, oxidation and 

subsequent amide formation has led to the synthesis of a wide range of analogues 
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(Scheme 6A).57 6-Substituted-2-alkyl-3-hydroxypyridin-4-ones can also be prepared in a 

one-pot procedure from the parent pyridinone in good yield (Scheme 6B).58 

 

Scheme 6. Synthesis of 6-substituted 3,4-HOPOs. A) Conversion of kojic acid (5) to 6-

carboxyamido-3,4-HOPOs; B) conversion of 1,2-dialkyl-3,4-HOPOs to 6-arylamino-1,2-

dialkyl-3,4-HOPOs. 

 

2.1.5. Fluorine substituted 3-hydroxypyridin-4-ones 

A series of both 2-fluoro- and 5-fluoro-derivatives have been prepared from fluorinated 

pyridines.59,60 The general synthetic strategy for the synthesis of 2-fluoro derivatives is 

based on Li salt-catalysed aromatic hydroxylation and is presented in Scheme 7A. The 

strategy for synthesis of 5-fluoro derivatives is presented in Scheme 7B. Trifluoromethyl 

derivatives can be prepared in an analogous fashion.59  
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Scheme 7. Synthesis of fluorine-substituted 3,4-HOPOs. A) Synthesis of 2-fluoro-3,4-

HOPOs; B) synthesis of 3-fluoro-3,4-HOPOs. 

 

2.1.6. Methyl substituted 3-hydroxypyridin-4-ones  

The complete range of 1, 2, 5 and 6 monomethyl-3-hydroxypyridin-4-ones, 1,2,-; 1,5,-; 

1,6,- and 2,5,- dimethyl-3-hydroxypyridin-4-ones and 1,2,5-trimethyl-3- hydroxypyridin-

4-one have been synthesised61 in order to compare their properties with those of 

deferiprone (1,2-dimethyl-3-hydroxypyridin-4-one) (3), an iron chelator with wide clinical 

application (see Section 5.2.1.1).13,62 

 

2.1.7. Synthesis of bidentate 1-hydroxy- and 3-hydroxypyridin-2-ones 
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1-Hydroxypyridin-2-one can be directly nitrated to yield three different nitro derivatives 

(Scheme 8A)63-65 and 2 chloropyridine-N-oxide is a precursor of 4-alkoxy and 4-hydroxy 

derivatives (Scheme 8B).66,67  

 

Scheme 8. Synthesis of bidentate 1,2-HOPOs. 

 

 

6-Carboxy-1-hydroxypyridin-2-one, which is useful for the synthesis of oligopyridinone 

chelators (see Section 2.4.1.1), can be prepared from 2,6-dibromopyridine (Scheme 
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8C).68,69 1-Hydroxy-pyridin-2-ones can also be formed from acyclic precursors (Scheme 

9).70 

 

Scheme 9. Formation of a 1,2-HOPO from an acyclic precursor. 

                 

 

2,3-Dihydroxypyridine is a useful starting point for the synthesis of a wide range of 3-

hydroxypyridin-2-ones as initially reported by Mohrle and Weber.71 A series of N-

substituted derivatives have been prepared72 and derivatisation of the ring at the 4, 5 

and 6 positions is possible by use of the Mannich reaction (Scheme 10).47 A carboxyl 

function can be readily introduced at position 4 and this in turn can be amidated.73    

 

 

 

 

 

 

Scheme 10. Synthesis of bidentate 3,2-HOPOs. 
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2.2. Potential tridentate hydroxypyridinones 

In principle tridentate ligands are likely to be more kinetically stable than the 

corresponding bidentate analogues. Putative tridentate hydroxypyridin-4-one analogues 

were synthesised by the addition of either a phenol or carboxylate function at ring 

position 2 (Figure 4). 2-Aminomethyl-1,6-dimethyl-3-hydroxypyridin-4-one was 

condensed with a range of carboxylic acids via N-hydroxysuccinimide intermediates.52 

None of the compounds were found to bind iron(III) in tridentate mode, each favouring 

the formation of 3:1 complexes with the hydroxypyridin-4-one units binding iron in 

bidentate mode. 
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Figure 4. Potential tridentate 3,4-HOPOs. 

 

2.3. Tetradentate hydroxypyridinones 

There are two possible structures for the iron complexes of tetradentate 

hydroxypyridinones, 6 and 7, both with a metal:ligand ratio of 2:3 (Figure 5). Structure 6 

is apparently the most favoured form for both hydroxamate siderophores74 and 1-

hydroxypyridin-2-ones.75 With larger cations, for example europium(III), complexes with 

the metal to ligand ratio of 1:2 are formed (8).76 In contrast, with oxycation species such 

as UO2
2+ and MoO2

2+ stable 1:1 complexes result (9) (Figure 5). 

 

Figure 5. Possible structures for metal complexes of tetradentate hydroxypyridinones. 
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The majority of tetradentate 1,2-HOPOs are synthesised from 1-benzyloxy-6-

carboxypyridin-2-one (Scheme 11A), with the carboxylic acid function being activated 

for amide formation.76-78 Tetradentate 3,2-HOPOs have been designed for uranyl 

chelation79 and are largely based on the coupling of 4-carboxy-3-hydroxy-1-

methylpyridin-2-one to various diamines using identical coupling methods (Scheme 

11B).80 Tetradentate 3,4-HOPOs have also been developed by Santos et al for the 

chelation of molybdenum(VI)81 (Scheme 11C). 

 

Scheme 11. Synthesis of tetradentate HOPOs. 
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2.4. Hexadentate hydroxypyridinones  

As indicated in the introduction (Figure 3), there are three common basic structural 

designs for metal complexes formed from hexadentate hydroxypyridinones, tripodal, 

linear and capped tripodal. However, if the ligand structure is not optimal for 1:1 

hexadentate coordination, a 2:2 metal:ligand complex (10) may also form and even 

dominate.82 

 

 

 

2.4.1. Synthesis of tripodal hexadentate ligands 

2.4.1.1. 1-Hydroxypyridin-2-ones (1,2-HOPOs) 

6-Carboxy-1-hydroxypyridin-2-one is the main bidentate ligand adopted for tripod 1,2-

HOPO synthesis. It has been attached to a range of structures, including cyclic 

amines,83 tertiary amines,84 cyclic esters85 and aromatic amines73 (Scheme 12). 

Typically the 6-carboxy-1-hydroxypyridin-2-one is protected by the benzyl group and the 

carboxylic acid function is activated with 2-mercaptothiazoline for subsequent reaction 

with the tri-amines.84 Deprotection is generally achieved by treatment with HBr/AcOH. 
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Activation with pentachlorophenol has also been successfully utilised for such 

conjugations.85 Hybrid molecules containing both catechol and 1-hydroxypyridin-2-one 

ligands, for instance 11, have be prepared by stepwise addition of the activated ligands 

under high dilution conditions.84 3-Carboxy-2-hydroxyisoquinolin-1-one (12) has also 

been used to synthesise tripodal ligands,86 with the reported advantage that it is 

possible to readily form sulfonated derivatives which facilitate the water solubility of 

such ligands. 
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Scheme 12. Synthesis of hexadentate 1,2-HOPOs. A range of methods have been 

used to facilitate amide bond formation. 

 

 

2.4.1.2. 3-Hydroxypyridin-2-ones (3,2-HOPOs) 

4-Carboxy-3-hydroxy-1-methylpyridin-2-one has been used extensively to prepare 

tripodal chelators, using tertiary amines,87 cyclic amines88 and cyclic esters89 (Scheme 

13). 4-Carboxy-3-hydroxyl-1-methylpyridin-2-one is protected by the benzyl group and 

conjugated with 2-mercaptothiazoline before condensation with various tri-amines. 

Deprotection is achieved in HCl/AcOH at RT over two days.87 The corresponding acid 

chloride can also be utilised for the conjugation.89 Various derivatives of 3-

hydroxypyridin-2-one can also be utilised to form hexadentate ligands; for instance the 

1-(2’-hydroxyethyl) derivative (13) can be converted to an imidate salt which is capable 

of direct reaction with triamines (Scheme 14)90 and 1-carboxymethyl-3-hydroxypyridin-2-

one can be coupled to various triamines subsequent to activation with N-

hydroxysuccinimide72 or TBTU-facilitated condensation91 (Scheme 15).  
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A capped tripodal chelator based on 3-hydroxypyridin-2-one as the ligand has been 

prepared from 6-methyl-2,3-hydroxypyridinone dithiazolide (14) (Scheme 16)92 and a 

linear hexadentate ligand (15) has been synthesised  as a result of condensation of 4-

carboxy-3-hydroxyl-1-methylpyridin-2-one and spermidine. As with hexadentate 1-

hydroxypyridin-2-ones a range of hybrid molecules have been prepared with 

terephthalamide units.83,93 

 

 

 

Scheme 13. Synthesis of hexadentate 3,2-HOPOs using 4-carboxy-3-hydroxy-1-

methylpyridin-2-one as the chelating function. A range of methods have been used to 

facilitate amide bond formation.   
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Scheme 14. Synthesis of hexadentate 3,2-HOPO using 1-ethylene-3-hydroxypyridin-2-

one as the chelating function.  

 

 

Scheme 15. Synthesis of hexadentate 3,2-HOPOs using 1-carboxymethyl-3-

hydroxypyridin-2-one as the chelating function. A range of methods have been used to 

facilitate amide bond formation.  
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Scheme 16. Synthesis of capped hexadentate 3,2-HOPOs.  

 

 

2.4.1.3. 3-Hydroxypyridin-4-ones (3,4-HOPOs) 

Hexadentate 3-hydroxypyridin-4-ones, based on simple tripodal structures have been 

prepared via two major routes, one by direct conjugation of the protected pyridinone 

with tertiary nitrogen-based tripodal triamines (Scheme 17A)94,95 and a second utilising 

carbon-based tripodal triamines (Scheme 17B);96 the latter having the advantage of 

ready coupling to other biological active moieties for instance enzyme inhibitors or 

“address” systems (see Section 5).  

There are some reports of hexadentate 3-hydroxypyridin-4-ones being prepared directly 

from double Michael reactions.97-99 However, this leads to the tripodal base being 

attached to the 1-position of the 3-hydroxypyridin-4-one, which frequently generates a 

non-ideal stereochemistry for metal chelation. With wide tripodal structures such as that 
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provided by saturated carbocyclic rings, chelation in the hexadentate mode is possible, 

for instance with KEMP derivatives (e.g. 16). However with simple tripodal structures 

(17) a suitable orientation of the three coordinating units is more difficult to achieve, 

under which circumstances 2:2 complexes (10) may result.82 

 

 

 



35 
 

Scheme 17. Synthesis of tripodal hexadentate 3,4-HOPOs based on A) TRAM or 

TREN, and B) on ANPD.
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2.5. Octadentate hydroxypyridinones 

Tetrapodal ligands have been synthesised by coupling protected 1-hydroxypyridin-2-

ones to a range of tetrapodal amines (Scheme 18)100 and analogous linear octadentate 

chelators (18) have been prepared in a similar fashion.101,102 Hybrid linear chelators (19) 

have also been prepared.103,104 The tetrapodal 3-hydroxypyridin-4-one (20) has been 

synthesised by amide bond formation by performing the coupling in a microwave 

reactor. This procedure decreased the reaction time and increased the yield.105 
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Scheme 18. Synthesis of octadentate 1,2-HOPOs. 

 

 

2.6. Dendrimers    

Dendritic chelators are capable of binding large numbers of metal ions and may find 

application as metal sequestering agents for waste remediation and metal separation 

technologies. Raymond and co-workers reported the synthesis of salicylate-, 

catecholate-, and 3-hydroxypyridin-2-one functionalized dendrimers by attaching 

bidentate moieties to either poly(propyleneimine) or poly(amidoamine) dendrimers.106 

The synthesis of an example of a 3-hydroxypyridin-2-one-based dendrimeric chelator is 

presented in Scheme 19. 
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Scheme 19. Synthesis of PAMAM dendrimers conjugated with bidentate 3,2-HOPOs.  

 

The synthesis of a range of 3-hydroxypyridin-4-one hexadentate-containing dendrimers, 

together with the evaluation of their iron binding properties has also been reported. A 

first generation dendrimer (21) was prepared using a divergent synthetic strategy 

(Scheme 20).107 A convergent strategy was employed for the synthesis of a second 

generation dendrimeric chelator. In this case, a dendron containing three HOPO 

moieties (22) and multi-acid core (23) were combined to form dendrimer (24) (Scheme 

21).107 These dendrimeric chelators possess a high selectivity and affinity for iron(III).107 

The first generation dendrimer (25) which contains three hydroxypyridinone 

hexadentate moieties has been synthesised using a similar strategy (Scheme 22).108 

Dendrimer 25 includes amide functions adjacent to the coordinating phenolates, which 

contribute to the stability of the iron-complex via a hydrogen bond effect.109  

 

Scheme 20. Synthesis of first generation dendrimeric chelator (21) with 3,4-HOPO 

chelating groups. 
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Scheme 21. Synthesis of second generation dendrimeric chelator (24) with 3,4-HOPO 

chelating groups.  
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Scheme 22. Synthesis of first generation dendrimeric chelator (25) with 3,4-HOPO 

chelating groups. 
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2.7. Polymers    

As with dendritic chelators, polymeric chelators have potential for waste remediation 

and metal separation technologies. Hydroxypyridinone-functionalized Sepharoses have 

been synthesised in order to scavenge ‘hard’ metal ions. Both epoxy-activated- and 

CNBr-activated Sepharoses have been utilised to form gels with iron(III) chelating 

capacities between 200 and 500 μmol/g dry weight.110 A similar procedure utilising 1-

ethyl-3-hydroxy-2-methyl pyridin-4-one and mimosine (4) has also been used to prepare 

functionalized Sepharose.111 These gels possess a high affinity for hard metal cations, 

as typified by iron(III).112 
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A series of hydroxypyridinone-based iron binding resins have been synthesised; for 

instance, by copolymerisation of 1-(β-acrylamidoethyl)-3-hydroxy-2-methyl-4-(1H)-

pyridinone (AHMP) with 2-hydroxyethyl methacrylate and ethyleneglycol dimethacrylate 

as the crosslinking agent to form iron(III)-chelating beads (Scheme 23).113 Iron(III) 

chelating resins have also been synthesised by copolymerisation of AHMP with N,N-

dimethylacrylamide, and N,N’-ethylene-bis-acrylamide as a crosslinking agent (Scheme 

24).112 

 

Scheme 23. Synthesis of crosslinked 3,4-HOPO-containing polymers from AHMP and 

HEMA. 

 

 

 

Scheme 24. Synthesis of crosslinked 3,4-HOPO-containing polymers from AHMP and 

DMAA.  
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A series of linear poly(glycidyl methacrylate) (PGMA) polymers with well-defined 

properties and low polydispersities (PDI < 1.1) have been synthesized via RAFT 

polymerisation of GMA in the presence of CPBD as the chain-transfer agent. PGMA 

was conjugated with 3-hydroxypyridin-4-ones (3,4-HOPOs) containing free amino 

groups by a ring-opening reaction to generate a panel of HOPO-containing materials 

with controlled structures and specific iron-binding functions (Scheme 25).114 The 

synthetic method is simple with high yield and low cost, and thus the approach can be 

readily applied to the synthesis of related polymers. A hybrid 3,4-

ethylenedioxythiophene/thiophene precursor functionalized with an hydroxypyridinone 

group has been subjected to electropolymerisation.115 

Apart from the polymers on which some natural hexadentate ligands (such as DFO) are 

immobilised,116,117 other hexadentate chelator-containing polymers have rarely been 

reported. However the synthesis of 3-hydroxypyridin-4-one hexadentate ligand-

containing copolymers by copolymerisation of a 3-hydroxypyridin-4-one hexadentate 

ligand with N,N-dimethylacrylamide (DMAA), and N,N-ethylene-bis-acrylamide (EBAA) 

(Scheme 26), leads to copolymers which possess a high selectivity and affinity for 



44 
 

iron(III).118 A novel soluble 3-hydroxypyridin-4-one hexadentate based polymer has also 

been synthesised by copolymerisation of the hexadentate ligand with 2-hydroxyethyl 

acrylate (HEA) (Scheme 27).119 Hexadentate chelator-conjugated polymers have a 

distinct advantage over bidentate chelator conjugates in that they provide uniform metal 

chelating sites (Figure 6). Bidentate chelator-conjugated polymers lack a uniform high 

affinity for iron, because it is impossible for each bidentate moiety to form part of an 

ideal octahedral iron(III) coordination site. Thus the complexation of three bidentate 

ligands with iron will not be consistently strong and partial chelation of iron is likely.118 

 

Scheme 25. RAFT-based synthesis of PGMA-conjugated 3,4-HOPO-containing 

polymers. 

 

 

Scheme 26. Synthesis of hexadentate 3,4-HOPO-based chelating resin. 
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Scheme 27. Synthesis of hexadentate 3,4-HOPO-based chelating copolymer. 
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Figure 6. (a) Iron chelation by a bidentate ligand-containing polymeric chelator: three 

bidentate moieties bind one iron with ideal stereochemistry (left), only two bidentate 

moieties bind one iron and two coordination sites are occupied by water molecules 

(middle), three bidentate moieties bind one iron in a non-ideal geometry (right); (b) Iron 

chelation by a hexadentate ligand-containing polymeric chelator: all the hexadentate 

moieties bind iron with an ideal stereochemistry. Reproduced with permission from 

Ref.118. Copyright 2008 American Chemical Society.  

 

2.8. Hydroxypyridinone-based fluorescent probes 
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2.8.1. Coumarin-, benzothiazole- and fluorescein-linked bidentate 

hydroxypyridinones 

The most common fluorescent moieties used as metal sensors are coumarin, 

fluorescein and rhodamine.120,121 The coumarin molecule possesses strong 

fluorescence due to the presence of electron-donating groups at the 6- and 7-

positions.122 The synthetic route of such coumarin-linked bidentate hydroxypyridinones 

is summarised in Scheme 28.123 The coumarin acid is activated with 

dicyclohexylcarbodiimide (DCC) / 2-mercaptothiazoline, catalyzed by 4-

(dimethylamino)pyridine or DCC / N-hydroxysuccinimide (NHS) before coupling with an 

aminopyridinone. The aminopyridinones are typically synthesised from commercially 

available maltol or kojic acid via multistep reactions (Schemes 3 and 4).123 The amino 

group can be located in the 1-, 2-, 5- or 6-position of the pyridinone ring. After the 

methyl or benzyl protecting group of the resulting conjugate is removed, a range of 

fluorescent chelators is produced. The absorption and emission wavelengths of such 

probes fall in the ranges 325-432 nm and 380-474 nm, respectively. These probes are 

bidentate and chelate iron in a 3:1 ratio. The resulting fluorescence quenches on 

forming an iron complex.  
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Scheme 28. Synthesis of coumarin-linked bidentate 3,4-HOPOs.  

 

 

More specifically, a lysosomal targeting probe124 and a mitochondria-targeted probe125 

have also been synthesised. The syntheses of these compounds are presented in 

Schemes 29 and 30, respectively. Probe 26 is produced by coupling carboxylated 

fluorescein acid with an amine-based pyridinone in the presence of DCC/NHS (Scheme 

29); for the preparation of probes 27 and 28, the hydroxypyridinone component was 

coupled to the resin in position 2 or 4, respectively, using PyOxP/DIPEA chemistry. 

Prior to hydrazine treatment, the Fmoc-group on the N-terminus was removed and the 

resin treated with BOC2O/DIPEA in DMF. Following cleavage from the resin, probes 27 

and 28 were obtained following BCl3 treatment (Scheme 30).  

Orvig et al reported the synthesis of 1-(4-benzo[d]oxazol-2-yl)phenyl-3-hydroxy-2-

methylpyridin-4(1H)-one (29a) and 1-(4-benzo[d]thiazol-2-yl)phenyl-3-hydroxy-2-

methylpyridin-4(1H)-one (29b) to determine interaction with amyloid protein implicated 

in Alzheimer’s disease.126 The synthesis of these two compounds was initiated from 

maltol which coupled with 4-aminobenzoic acid, followed by cyclisation with 2-
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aminophenol or 2-aminobenzenethiol afforded the fluorescent chelators (29) (Scheme 

31). 

 

Scheme 29. Synthesis of a fluorescein-linked bidentate 3,4-HOPO. 

 

 

Scheme 30. Synthesis of peptide-based dansyl-linked bidentate 3,4-HOPOs. 
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Scheme 31. Synthesis of benzothiazole and benzoxazole functionalized 3,4-HOPOs. 

 

 

2.8.2. Bicyclic fluorescent hydroxypyridinones 

The introduction of fluorescent moieties appreciably influences the overall size of the 

probe molecule which is generally undesirable in biological studies. To minimise this 

effect, fluorescent probes have been synthesised where the optical moiety is merged 

with the chelating entity of the molecule.127,128 The synthetic procedure for the target 

fluorescent chelators is outlined in Scheme 32A. 3-Benzoxycomenic acid was prepared 

from kojic acid (5) by oxidation. The conversion of the pyranone to the corresponding 

bicyclic lactams was carried out by reaction with a range of diamino derivatives. The 

resulting bicyclic compounds were then hydrogenated in the presence of catalytic 

amounts of palladium to afford high yields of the desired fluorescent chelators (30). 

Chelator 30a can be further reacted using the procedures outlined in Scheme 32B. The 

position ortho to the enolic hydroxyl group can be functionalised in an analogous 

fashion to the aldol condensation, under alkaline aqueous conditions. Similarly, the 2-

position to the pyridinone ring is readily susceptible to aminomethylation by the Mannich 

reaction to form the corresponding aminomethyl derivatives. The emission wavelengths 



51 
 

of this type of probe are in the range of 454-470 nm and the average quantum yields 

are higher than those of coumarin-based probes.128  

 

Scheme 32. Synthesis of bicyclic fluorescent 3,4-HOPO probes. 

 

2.8.3. Hexadentate fluorescent hydroxypyridinones 

In addition to bidentate optical probes, a few hexadentate fluorescent agents have been 

reported.129,130 The syntheses of the coumarin-, fluorescein- and rhodamine-based 

hexadentate probes are presented in Schemes 33-35. Tri-tert-butoxycarbonylethyl 

methylamine (31) was treated with coumarin-3-carboxylic acid in DMF in the presence 

of DCC/HOBt, to form the coumarin-link. Hydrolysis of the resulting ester was achieved 

by treatment with formic acid, followed by activation of the triacid with DCC/NHS and 

coupled with aminopyridinones to furnish the corresponding protected coumarin-linked 

hexadentate molecules (Scheme 33). For fluorescein probes, tri-tert-
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butoxycarbonylethyl methylamine was initially coupled to β-alanine in the presence of 

DCC/HOBt, followed by deprotection to release the amino group. This amine group can 

couple with fluorescein isothiocyanate or activated fluorescein 5(6)-carboxylic acid. 

Following deprotection, the resulting triacid was coupled to an aminopyridinone and 

deprotected to yield the corresponding hexadentate probes129,130 (Scheme 34). In a 

similar manner, β-alanine was protected and coupled with tri-tert-butoxycarbonylethyl 

methylamine, followed by hydrolysis. The resulting triacid was coupled to an 

aminopyridinone, followed by the removal of the phthalimide protecting group to afford a 

free amine. This amine was coupled with rhodamine isothiocyanate and after 

deprotection, yielded the rhodamine-linked fluorescent probe (Scheme 35). 

 

Scheme 33. Synthesis of coumarin-based hexadentate 3,4-HOPO probes. 

 

 

Scheme 34. Synthesis of fluorescein-based hexadentate 3,4-HOPO probes. 
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Scheme 35. Synthesis of rhodamine-based hexadentate 3,4-HOPO probes. 
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2.8.4. Fluorescent hydroxypyridinone-containing beads 

A simple and fast method for the quantification of iron in serum has been developed 

using chelating fluorescent beads (CFBs). The synthetic route of the first generation 

CFB is shown in Scheme 36. The substituted pyridinone was treated with an equivalent 

of NHS-activated 3-maleimidopropionic acid to provide single substituted intermediate, 

where the free amino group reacts with NHS-activated 5(6)-carboxyfluorescein to form 

the benzyl protected compound. The benzyl group was deprotected using BCl3. This 

chelating probe (32) was covalently bound to Dynabeads. Incubation of the beads with 
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bovine serum albumin led to covalent binding of albumin to the beads via amino and 

thiol groups. The remaining albumin amino groups were reacted with Traut’s Reagent, 

and subsequently the thiol group from Traut’s reagent covalently bound to the iron 

sensor to afford the final probe-labelled beads (Scheme 36). These beads can be 

processed via a FACS instrument in order to provide information of the iron-content of 

solutions in which the beads have been incubated (see Section 5.1.1.3).131 Improved 

iron-sensitive beads were prepared using a hexadentate ligand (Scheme 37).107,123 

Lysine was selected as the linker between the beads, chelator and probe. The coupling 

of Fmoc-lys(Boc)-OH with the protected chelator via activation of the acid, followed by 

deprotection by hydrogenation leads to loss of the benzyl group, without influencing the 

Fmoc and Boc protected amines. The Boc group was then removed by trifluoroacetic 

acid, followed by coupling to Dynabeads. The Fmoc group was subsequently released 

by treatment with piperidine and the free amino group coupled with NHS activated 5(6)-

carboxyfluorescein to obtain the final chelatable fluorescent beads (Scheme 37). 

 

 

 

 

 

 

 

Scheme 36. Synthesis of bidentate 3,4-HOPO-containing fluorescent beads (CFBs). 



56 
 

 

 

 

 

Scheme 37. Synthesis of hexadentate 3,4-HOPO-containing fluorescent beads. 
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2.9. Considerations specific to HOPO synthetic chemistry 

In this section, we give a general overview of specific tips worthy of consideration when 

synthesising HOPO-based ligands. We highlight a number of practical aspects that will 

facilitate the efficient production of this class of chelator. We present a list of 

considerations for the optimisation of both synthetic and purification methods which are 

generally necessary to achieve the quality and amounts of chelator required for 

successful biological investigation. 

Chemical suppliers. Many of the reagents (e.g. starting materials) used in 

synthetic chemistry laboratories contain different traces of contaminants, depending on 

the brand and batch. Some of these contaminants are frequently metals or metal ions 

that can be complexed by the ligand under preparation. Attention should be paid to the 
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information relating to purity, procedure of purification and expected contaminants, as 

indicated by the specific supplier. 

Glassware. Particular care should be taken when cleaning the glassware. Metal 

spatulas and vials using caps with a metallic surface should be avoided as this is a 

potential source of metal contamination. The use of plastic spatulas to weigh both 

protected- and free-chelators is highly recommended. Moreover, each piece of 

glassware used in a chelator synthesis should firstly be acid treated with concentrated 

HCl (37%) and washed with methanol and dichloromethane, before drying.  

Analytical characterisation and purification procedures. Several 

analytical/purification methods have been adopted in the field of HOPO chelators, 

including precipitation and/or crystallisation from various solvents. Flash column 

chromatography can be used for protected bidentate ligands (pre-treatment of the 

stationary phase with EDTA is desirable); analytical/preparative TLC (i.e. plastic support 

sheet) and HPLC. HPLC presents numerous advantages as it can permit the rapid 

purification of free ligand. Also, in the case of tri- and tetra-podal HOPOs (i.e. 

hexadentate and octadentate ligands), preparative HPLC often represents the only 

option to obtain pure material. Crucial requirements for ideal HPLC procedures (both 

analytical and preparative) with regards to HOPO-based free ligands are:  

(i) perform a “wash run” of the system with a solution of 1mM EDTA, in order to 

minimise trace metal contamination during the following preparative/analytical run;  

(ii) use plastic tubes and plastic vial inserts to inject and/or collect the samples;  

(iii) use HPLC grade solvents (e.g. extra-pure MilliQ water, MeCN or MeOH).  
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In some cases, pre-treatment of the mobile phases with Chelex® is also required in 

order to avoid unwanted chelation of trace metals. Despite these measures, small 

amounts of metal complexes are nearly always detected during HPLC-based analyses 

and purifications. This contamination results from the metal parts associated with the 

equipment (e.g. column pumps, needles for injection and collection tubing). An HPLC 

unit with a titanium pump can be an advantage.    

Deprotection step. Removal of the protecting groups to unmask the chelating 

units is typically the final step in the synthesis of HOPO chelators. This step requires the 

above mentioned HCl pre-treatment of glassware to avoid the chelation of metals by the 

newly formed ligands. Typical procedures to remove specific protecting groups include: 

1) H2, Pd/C (benzyl removal); 2) BCl3 (benzyl removal; aluminum contamination has 

been detected when using this reagent, possibly due to traces present in the purchased 

batch); 3) BBr3 (methyl removal, benzyl removal that cannot be accomplished with 

BCl3); 4) neat trifluoroacetic acid (benzyl removal); 5) NH3OH 25% v/v (acetyl removal). 

Amide bond formation, coupling agents and solid-phase peptide synthesis 

(SPPS). Amino (see Scheme 3A) and carboxylate (see Scheme 4) functionalised 

HOPOs are the most common building blocks to generate oligomeric-HOPO chelators. 

These scaffolds are amenable to standard SPPS procedures. Commonly, unprotected 

chelators can be loaded on to the growing polypeptide chain immediately before the 

final cleavage from the resin. However, protected HOPOs can also be loaded on to the 

resin-attached peptide at any time during SPPS procedures and final deprotection (to 

unmask the chelating units) is usually performed in solution as the last step (see 

Scheme 30). Tripodal HOPO-based chelators (e.g. 22) have also been used in solid-
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phase synthesis, mainly in the unprotected form due to difficulties in fully accomplishing 

the final deprotection. Typical coupling reagents used include DIC, EDC, HATU, TBTU, 

PyOxP. Ethyl cyanoglyoxylate-2-oxime and HOBt are the usual auxiliary agents (i.e. 

anti-epimerisation) employed when standard carbodiimide are used, whereas DIPEA 

and Et3N are usually used as bases to favour the nucleophilic substitution. Amide 

coupling performance can be greatly facilitated by using microwave irradiation, both in 

terms of reaction rate and isolated yield of the desired product. For instance, the final 

step presented in Scheme 17 (i.e. reaction of a tri-COOH linker with a NH2-

functionalised HOPO) proceeds to completion within 30 minutes, with the minimal 

occurrence of side reactions and producing a final yield of 70% for the desired product 

when subjected to microwave conditions. In the absence of microwave irradiation, the 

reaction took over two days to reach completion and was associated with a much 

reduced yield.  

 

3. Physico-chemical properties of hydroxypyridinones  

3.1. Thermodynamic stability constants  

Thermodynamic stability constants are the main indicators for chelator metal affinities. 

In aqueous solution, apart from metal ions, protons, can compete for chelators. For 

many trivalent metal ions, including iron(III), the optimal coordination number is six, 

which requires three bidentate or one hexadentate chelator to form a stable metal 

complex (Figure 1). The dominant chemical equations and corresponding 

equilibrium/stability constants of metal-chelation reactions for 3-hydroxypyridin-4-ones, 

e.g. deferiprone (3), are listed in Scheme 38. Deferiprone (3) possesses two pKa values, 
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3.7 and 9.8, over the pH 2-12 range and forms a stable iron complex at pH 7.4 with the 

molar ratio of ligand:ferric iron being 3:1, logβ3(Fe3+) = 37.418 (Table 2 and Figure 7). In 

general, the higher proton affinity a chelator possesses, the higher its metal affinity. This 

observation is demonstrated by the existence of a linear relationship between 

logK1(Fe3+) and sum of two pKa values for 3-hydroxypyridin-4-ones (Figure 8).  

 

 

Figure 7. Optimised Fe3+L3 structure of deferiprone, left-hand propeller (lambda), Fac(e) 

stereoisomer. Reproduced with permission from Ref.17. Copyright 2002 John Wiley & 

Sons, Inc.  
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Scheme 38. Typical stability constants of a bidentate 3-hydroxypyridin-4-one. 2 pKas 

values and 3 metal logK equilibrium equations describe the metal-HOPO interaction; L: 

ligand, M: metal, β3 is a cumulative constant; charges of species are neglected for 

simplicity. 

 

𝐾a1 =
[LH][H]

[LH2]
 

𝐾a2 =
[L][H]

[LH]
 

𝐾m1 =
[ML]

[M][L]
 

𝐾m2 =
[ML2]

[ML][L]
 

𝐾m3 =
[ML3]

[ML2][L]
 

𝛽3 =
[ML3]

[M][L]3
= 𝐾m1 × 𝐾m2 × 𝐾m3 

 



63 
 

 

Figure 8. logK1(Fe3+) values versus sum of pKa values for 57 3,4-HOPOs. Reproduced 

from Ref.132 with permission from the Royal Society of Chemistry.  

 

Another example for this relationship is the trend between logβ3(Fe3+) and pKa values of 

hydroxypyridinone analogues (Table 1). The superior affinity of deferiprone for metals 

results from the extensive delocalisation of electrons in its resonance structures (Figure 

9). Because of the competition effect at different pH values in aqueous solution Since 

the HOPO chelators differ in the denticity of their metal coordination and also in their 

relative acidities, metal stability constants are not directly comparable for all the ligands. 

The pM value (normally defined as -log[free hydrated metal], when [Ligand]total = 10-5 M 

and [Metal]total = 10-6 M, at pH 7.4) is introduced as a comparative indicator.21 This term 

is calculated from the associated stability constants and multiple equilibria amongst the 

various chemical species, under defined conditions. The pM value changes as a 

function of [Metal], [Ligand] and pH. This is clearly shown in Ringbom coefficients,133 
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derived from the mass balance equation of associated chemical reactions, as part of pM 

calculation (the ligand Ringbom coefficient is exemplified in Scheme 39). The influence 

of pH on pM values is illustrated by the pFe3+ value of deferiprone (3) over the pH range 

2-12 (Figure 10).  

 

 

Figure 9. Proton equilibria and resonance structures of deferiprone (3), a typical N-

alkyl-3,4-HOPO with 2 pKa values. 
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Figure 10. pH dependence of the pFe3+ value of deferiprone (3) under the conditions of 

[deferiprone]total = 10-5 M and [Fe3+]total = 10-6 M (solid line), compared to pFe3+ values of 

iron hydroxide species (dashed line). The formation constants of hydroxide species are 

as follows: logK FeOH = 11.2, logK Fe(OH)2 = 22.3, logK Fe(OH)3 (s) = -38.8, logK 

Fe(OH)4 = 34.4, logK Fe2(OH)2  = 24.7, logK Fe3(OH)4 = 49.7.134 

 

 

Scheme 39. Ligand Ringbom coefficient (αL) from the mass balance equation of ligand, 

Kf: formation constant, the inverse form of conventional acid equilibrium constant. 

Ltotal = [L] + [LH] + [LH2] + … 

Ltotal = [L] + Kf1[L][H] + βf2[L][H]2 + … 

Ltotal = [L]( 1 + Kf1[H] + βf2[H]2 + …) 

αL= 1 + Kf1[H] + βf2[H]2 + … 
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Table 2. Stability constant of selected HOPOs. Affinity constants data taken from 

references18,135-137.  

    Log cumulative constants 

Ligand Structure pKa1 pKa2 Fe3+ Al3+ Ga3+ Cu2+ Zn2+ 

3-hydroxy-1,2-dimethylpyridin-4-

one (deferiprone, 3) 
 

3.7 9.8 37.4 32.6 35.8 19.1 13.5 

3-hydroxy-1-methylpyridin-2-one 

 

  - 8.9 30.0 25.1 29.7 N/A N/A 

1-hydroxypyridin-2-one 

 

  - 5.9 27.2 21.6 N/A 13.1 12.0 

 

Under defined conditions of [Metal]total and [Ligand]total, the (relative) concentrations of 

associated chemical species over a pH range can be calculated to obtain a speciation 

plot. This is exemplified by the ferric iron in the presence and absence of deferiprone 

over the pH range 2-12 (Figure 11). In general, the higher the pM value a chelator 

possesses, the stronger its metal affinity. Bidentate chelators possessing chelating 

atoms with pKa values above 9, dominantly form metal complexes with molar ratios of 

ligand:metal of 2:1 at pH 7.4, the remaining metal coordination sites being occupied by 

water. In contrast, deferiprone (3), with pKa values of 3.7 and 9.8, forms 3:1 iron 

complexes at pH 7.4 (Figure 7).  
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A typical hexadentate 3-hydroxypyridin-4-one possesses six pKa values and one 

logK(Fe3+) value. In terms of Fe3+-complex formation and provided with suitable 

stereochemistry, a hexadentate ligand can fully coordinate a single ferric cation in a 1:1 

molar ratio.  

The determination of thermodynamic equilibrium/stability constants in complexes with a 

slow kinetics is dependent on sufficient time being allowed for the association to reach 

equilibrium after each addition, during titration studies. Metal ions possess dramatically 

different kinetic properties (Figure 12); for instance the rate constant for the substitution 

of water on iron(III) is approximately 5 log units faster than for that of aluminum(III).138 

 

 

Figure 11. Speciation plots of ferric iron in the presence and absence of deferiprone (3) 

over the pH range 2-12. (a) Ferric iron in water. (b) Ferric iron in the presence of 

deferiprone (3) under the conditions [deferiprone]total = 10-5 M and [Fe3+]total = 10-6 M. 

Charges of species are neglected for simplicity. (s): solid. 

 

(a) 

 

(b) 

 

Figure 10. Speciation plots of ferric iron in the presence and absence of deferiprone 

(3) over the pH range 2-12. (a) Ferric iron in water. (b) Ferric iron in the presence of 

deferiprone (3) under the conditions [deferiprone]total = 10-5 M and [Fe3+]total = 10-6 M. 

Charges of species are neglected for simplicity. (s): solid. 
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Figure 12. Logarithms of characteristic rate constants (s−1) for substitution of inner-

sphere water molecules on various metal ions.139  

 

3.2. Metal Selectivity 

Selectivity between metal ions and ligands is important for the therapeutic design of 

chelating agents. The traditional “Hard and Soft Acid and Base Principle”140 states that 

metal ions classified as soft prefer less electronegative chelating atoms, e.g. iodide, 

while metal ions classified as hard prefer more electronegative chelating atoms, e.g. 

fluoride. Ferric iron, which possesses a high charge density, is usually classified as a 

hard metal ion and prefers high charge density chelating atoms, e.g. charged oxygen 

species. In contrast, ferrous iron prefers relative low charge density chelating atoms, 

e.g. aromatic nitrogen or sulphur. Ligand Field Theory is also associated with the 

selectivity. This is highlighted here such that a transition metal ion in the presence of 

ligands with an octahedral coordination geometry will experience the splitting of the d-

shell into eg (higher energy) and t2g (lower energy) levels.139 This is especially 
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pronounced for partially-occupied d-shell metal ions, with different electron 

configurations and spin states of metal-complexes, thus leading to different stability 

constants.  

The linear free energy relationship between a single metal ion and different ligands is 

presented in Figure 8. A linear free energy relationship also exists between a single 

ligand and Z2/r of different metal ions (Figure 13), a factor which can be adopted for 

ligand design. Deferiprone (3) possesses high selectivity for ferric ion due to its two 

chelating oxygen atoms with appropriate pKa values, compared to the analogues, 3-

hydroxy-1-methylpyridin-2-one and 1-hydroxypyridin-2-one (Table 2).  

The design of hexadentate HOPOs is controlled by a number of steric effects and 

involves the choice of linker (length and type) and linking positions on the 

hydroxypyridinone ring. The combination of choices results in various pre-organised 

ligands and sterically-strained metal-complex structures, which in turn lead to different 

binding affinities.82 Hexadentate and octadentate HOPO chelators possess a high 

affinity for hard cations, for instance gallium(III), gadolinium(III) and iron(III). 
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Figure 13. Relationship between logK1 for fluoride complexes of metal ions versus Z2/r, 

where Z is the cationic charge on the metal ion, and r the ionic radius.139 ■ tetra-positive 

iron; ● tri-positive iron; ▲ di-positive iron.    

 

4. Hydroxypyridinones as chelators 

4.1. Iron(III) 

Bidentate 3,4-HOPOs have been used to chelate and sense iron in biological matrices 

for both therapeutic and analytical purposes. Deferiprone (3)141 and more recently 1-(N-

acetyl-6-aminohexyl-3-hydroxypyridin-4-one (33)142 have been developed for the 

selective removal of iron from biological tissues (Figure 14). Hexadentate 3,4-HOPOs 

have also been developed for iron scavenging, for instance tripodal ligands based on a 

tris-carboxylic acid linker (34)143 or tris-(2-aminoethylamine) (TREN) scaffold94 (35) 

(Figure 14) and compounds using KEMP as a tripodal base (16).97 The lipophilicity of 

these compounds can be readily modified by N-substitution on the pyridinone ring.96 

 

 

Figure 12. Relationship between logK1 for fluoride complexes of metal ions versus 

Z2/r, where Z is the cationic charge on the metal ion, and r the ionic radius. For 

additional metal ions see ref 135.  
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Figure 14. Compounds adopted for iron(III) chelation. 

 

4.2. Gallium(III)  

Gallium(III) possesses a similar ionic radius and surface charge density to that of 

iron(III) (Table 3) and consequently ligands that bind iron(III) also bind gallium(III) with 

similar affinity. Thus bidentate 3-hydroxypyridin-4-ones, for instance deferiprone (3), 

bind gallium(III) tightly,144 with a pGa of 20.5. A series of bidentate N-carboxyalkyl-3-

hydroxypyridin-4-ones (36) have been developed for gallium chelation in biological 

matrices (Figure 15).145 Hexadentate, tripodal 3,4-HOPOs have been designed 

specifically for gallium chelation, for instance the THP-derivative (37) (Figure 15).146 

This and related chelators find application in diagnostic therapeutics (see Section 5.1.3). 
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Figure 15. Compounds adopted for gallium(III) chelation. 

 

Table 3. Ionic properties of cations chelated by HOPOs. 

 Charge on ion Ionic Radius (Å) Surface Charge density eÅ-2 

Aluminum 3+ 0.54 0.82 

Europium 3+ 1.17 0.17 

Gallium 3+ 0.62 0.62 

Gadolinium 3+ 0.94 0.27 

Iron 3+ 0.65 0.57 

Plutonium 4+ 0.87 0.42 

Zirconium 4+ 0.72 0.62 
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4.3. Aluminum(III)       

 Aluminum(III) possesses a smaller radius than iron(III) (Table 3), which renders it one 

of the ‘hardest’ cations known, never-the-less aluminum binds to most iron(III)-chelating 

molecules, albeit with a lower affinity. Bidentate, tetradentate and hexadentate 3-

hydroxypyridin-4-ones have been used for the selective removal of aluminum from 

biological tissue.99,147-149 As expected there is an increase of pAl with denticity: 

bidentate, 16.0; tetradentate, 19.0; and hexadentate 22.0.99,147 Examples of 3,4-HOPO 

ligands developed for aluminum scavenging are presented in Figure 16. 

 

 

Figure 16. Compounds adopted for aluminum chelation. 

  

4.4. Zirconium(IV) 

By virtue of the tetrapositive nature of Zr(IV), the cation possesses a high surface 

charge density (Table 3) and so binds to hydroxypyridinones tightly. Zirconium-89 is a 

β+ emitter with desirable nuclear imaging properties, including a relatively long half life. 

Because of the larger radius and tetrapositive nature of the cation, octadentate ligands 
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have found application. The formation of a desferrioxamine / hydroxypyridinone 

conjugate (19) has proved useful in this regard.104 Guerard et al have reported a 

comparative study of the aqueous chemistry of Zr(IV) HOPO complexes,150 not 

surprisingly the 3,4-HOPO compounds were found to possess the highest affinity for 

Zr(IV). Octadentate 3,2-HOPOs (38)151 and 1,2-HOPOs (39)101 have been investigated 

and demonstrated to be capable of binding Zr(IV), but with insufficient affinity to provide 

robust complex stability in vivo. However, Buchwalder et al105 have reported that the 

tetrapodal 3,4-HOPO chelator (40) has largely overcome these problems and 

possesses a high in vivo stability (Figure 17). Hexadentate ligands have also been 

investigated for Zr(IV) binding, but for instance the tripodal 3,4-HOPO (37) 

demonstrated poor in vivo stability.152 A detailed comparison of zirconium-89 chelation 

chemistry has been reviewed by Wadas and co-workers.153,154  

 

Figure 17.  Compounds adopted for zirconium chelation.  
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4.5. Gadolinium(III)  

Among the various paramagnetic ions (Mn2+, Gd3+, Fe3+, VO2+) used as contrast agents, 

the highly paramagnetic lanthanide Gd(III), with its seven unpaired electrons and long 

electronic relaxation time, has the most favourable electronic properties as a relaxation 

agent for in vivo magnetic resonance imaging (MRI).155 MRI images are improved by 

administration of paramagnetic agents, which increase the relaxation rates of adjacent 

water protons, thereby enhancing the MRI signal. Although Gd3+ provides excellent MRI 

contrast, the high in vivo toxicity of [Gd(H2O)8]3+ necessitates that the metal is 

coordinated by high affinity chelators before it can be used in vivo.156  

The image enhancing capacity of Gd3+-based contrast agents is proportional to the 

number of water molecules which can be exchanged in the inner coordination sphere of 

the Gd3+ ion.155 The complexation of Gd3+ by organic chelators will reduce the number 

of inner sphere water molecules and therefore reduce this sensitivity. Current research 

in the field of Gd-based contrast agents focuses on obtaining micro- to nanomolar 

sensitivities, thereby reducing the toxicity due to Gd3+ accumulation. 

Hydroxypyridinones have been developed for this purpose by exploiting the relatively 

low pKa values of the chelating functions. The first ligand developed was (41), which 

forms an eight-coordinate Gd(III) centre, complexed by 6 hydroxypyridinone oxygen 

atoms and two water molecules.157 Such a complex is associated with a rapid rate of 

water-exchange, moreover the stability of the complex is higher than many of the 

oxygen/nitrogen donor complexes previously utilised for this purpose.158 In an 

analogous fashion, the tripodal 3,4-HOPO ligand presented in Figure 16 also 



76 
 

demonstrates a high thermodynamic stability for Gd(III) associated to an improved 

relaxivity (higher hydration number) of the complex.159 

 

 

 

Raymond and co-workers have systematically studied many variants on this structural 

theme.83 Hybrid ligands, for instance with terephthalic acid (42) and salicylamide (43), 

are effective relaxation agents. Hybrid ligands containing different hydroxypyridinones 

(44) also show potential.84 A further variation is to replace the TREN backbone with 

triazacyclononane (45) which provides a broader base to the Gd(III) complex (Figure 

18).88 
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Figure 18.  Compounds adopted for gadolinium chelation. 

 

4.6. Plutonium(IV) and other actinides 

Plutonium is an actinide metal used extensively in the nuclear industry. It has high 

toxicity as an alpha emitter and is readily accumulated in a range of tissues, including 

lung and bone. Pu(IV) is the most common oxidation state found in biological tissue. It 

has a high surface charge (Table 3) and so binds to iron(III) chelators, such as 

deferrioxamine and other siderophores. Tetradentate 3,2-HOPO’s, and in particular 46, 

have shown excellent potential for mobilisation of plutonium, forming 2:1 complexes,160 

as has the hexadentate 3,2-HOPO (47).160 However, a range of octadentate 
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hydroxypyridinones has been found to possess the best potential for the selective 

removal of plutonium.73,160 The two spermine backbone-derived oligo-

hydroxypyridinones (48) and (49) have been demonstrated to be particularly efficient 

Pu(III) scavengers in biological tissue (Figure 19).161,162  

HOPOs can chelate a range of actinides including thorium, americium and 

neptunium.160 

Figure19.  Compounds adopted for plutonium chelation. 

 

4.7. Europium(III) 

Organic complexes of luminescent lanthanides such as europium(III) have become 

increasingly useful for biological assays and high-throughput screening applications 
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where their long-lived luminescence leads to improvements in the signal-to-noise ratio. 

The larger radii (Table 3) renders octadentate ligands ideal for tight chelation, indeed 

the tetrapodal 1,2-HOPO (50) has proved to be an efficient chelator for europium(III).76 

The efficiency of Eu(III) luminescence by energy transfer is strongly dependent on the 

ion coordination geometry and this has been systematically modified in an attempt to 

increase the luminescence efficiency.77,100 Ligand 51 was found to be associated with 

an excellent luminescence quantum yield (Figure 20).100 

 

Figure 20.  Compounds adopted for europium chelation. 

 

5. Applications centred on HOPO chelators 

5.1. Analytical applications 

5.1.1. Fluorescence sensing 

Over the last two decades, fluorescent probes have been widely used for the selective 

quantification of metal ions because they can provide a simple, sensitive, precise and 

economical method for online monitoring of low concentrations of target metal ions 

without destruction of the biological matrix, together with the advantages of spatial and 
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temporal resolution. Several reviews regarding fluorescent probes for measuring metal 

ions (especially Zn2+, Cu2+, Fe2+ and Fe3+) in biological systems have been 

published.120,121,163  With the design of fluorescent probes, the chelating moiety should 

have the potential to selectively complex the target metal ion. The fluorophore moiety, 

which is covalently attached to the chelating moiety, should produce a distinct 

fluorescence signal upon chelation. This fluorescence change can be monitored for both 

qualitative and quantitative determination of the target metal ion. The fluorescence 

signals can be observed in three ways: decrease, increase, or shift in the fluorescence 

maxima due to either electron transfer, charge transfer or energy transfer 

processes.164,165 Fluorescence quenching, enhancement and shift is related to turn-

OFF, turn-ON and ratiometric probes chelating with the target metal ion. This process is 

generally reversible. d-Block ions such as Fe3+ often open excited state de-excitation 

pathways via electronic energy transfer and/or photoinduced electron transfer involving 

the metal center. Therefore, it is not surprising that there are many more turn-OFF 

probes that have been reported as compared to turn-ON probes. All hydroxypyridinone-

based fluorescent probes reported to date are turn-OFF probes. 

The fluorescence of hydroxypyridinone probes (52) is sensitive towards the presence of 

ferric ions,123 quenching ratios falling in the range 46-96%. The fluorescence quenching 

mechanism has been assessed and found to generate a non-linear relationship in the 

Stern-Volmer plot, indicating a static rather than dynamic mechanism of quenching. 

Further investigation of these probes led to the finding that a linear relationship exists 

between the fluorescence intensity and Fe3+ concentration when the metal-to-ligand 

ratio is less than 1:3. No additional quenching of fluorescence was observed upon 
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further increasing the metal-to-ligand ratio to greater than 1:3. Probes of the type 52 

possess a high Fe3+ and Fe2+ sensitivity (>90%) and are much less sensitive (<15%) 

towards the presence of other metal ions such as Zn2+, Ni2+, Cu+, Co2+, Ca2+, Mn2+, 

Mg2+, Na+ and K+, with the exception of Cu2+, which has a sensitivity of 40-50%.166,167 

The sensitivity towards Fe2+ is due to rapid autooxidation of iron(II) subsequent to 

coordination to the probe. The sensitivity towards Cu2+ is not a serious problem for most 

living cells, as the level of copper in the cytosol, lysosome and mitochondria is 

maintained at an extremely low level (< 10-20 M) by selective copper(II) pumps and 

chaperone proteins.168 

 

 

 

5.1.1.1. Measurement of pFe3+ values 

The fluorescence intensity of the probe in the presence of iron and a competing ligand 

is associated with the pFe3+ value of the competing ligand. A linear correlation was 
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found to exist between the fluorescence of such a mixture and the pFe3+ values of 

completing ligands. As a result of this finding, a fluorescence method was set up in 

order to determine the pFe3+ values of ligands which are difficult to measure using 

conventional spectrophotometric or potentiometric methods.169 The method can operate 

with sub-milligram quantities of competing ligand, a real advantage with natural 

products which are difficult to isolate. By using one of these fluorescent probes, ligands 

which possess pFe3+ values in the range of 17-23 can be measured. Several 

hydroxypyridinone-based hexadentate fluorescent probes were also found to be 

selective for Fe over other metals such as Cu, Zn, Ni, Mn and Co. By using one of these 

hexadentate probes (53), the pFe3+ values of a range of hexadentate chelators, 

dendrimers and polymers (which are difficult to measure by conventional 

spectrophotometric and potentiometric assays) were determined.107,170  

 

5.1.1.2. Measurement of the concentration of intracellular iron pools 

Compound 54 is a typical iron-sensitive fluorescent probe. Due to its relatively small 

molecular size (MW < 500), possession of less than 5 H-bond donors, possession of 

less than 10 H-bond acceptors and a clogP value less than 5, this probe is predicted to 

efficiently permeate biological membranes by passive diffusion.171 The permeability of 

representative probes across human erythrocyte ghost membranes was investigated 

and the rate of permeability was found to be related to the corresponding clogP 

values.123 Thus these probes have the potential for monitoring intracellular labile iron 

pools. The moderately lipophilic fluorescent probe (54) was found to be the most 

sensitive for monitoring labile iron. The concentration of the intracellular chelatable iron 



83 
 

pool in rat hepatocytes was determined, by this probe, to be 5.4 ± 1.3 μM.167 

Furthermore, this probe was used to determine the labile iron pool of human 

lymphocytes and a value of 0.57 ± 0.27 μM was determined for healthy human 

lymphocytes.172 

The lysosomal compartment of cells typically contains a relatively high level of labile 

iron but the measurement of this pool is difficult because of its small size; approximately 

1% of the cell volume. Compound 55 is a probe specifically designed to target the 

lysosome.124 The probe distribution is limited to the lysosomal compartment as 

demonstrated by colocation studies in macrophages. The fluorescence of the probe is 

highly responsive toward alterations of vesicular labile iron concentrations in the 

lysosome. This has permitted the assessment of cellular iron status with high sensitivity 

in response to the clinically applied medications desferrioxamine, deferiprone and 

deferasirox.124 Mitochondria are major utilisers of iron, as well as being an important 

source of the superoxide anion. The mitochondrial labile iron pool plays a crucial role in 

oxidative injuries and pathologies. Delocalised lipophilic cations, are able to cross the 

inner mitochondrial membrane and hence be accumulated with a distribution associated 

with the Nernst potential, typically in excess of 1000 fold.173 This useful property of 

lipophilic cations has been applied to basic hydrophobic peptides which are capable of 

targeting fluorescent iron probes to the mitochondrion. Two such hydroxypyridinone-

based fluorescent peptides (27 and 28, Scheme 30) have been designed to be 

selectively accumulated by mitochondria as confirmed by confocal microscopy.125 The 

iron-sensing ability of these two peptides was confirmed by fluorescent quenching and 

dequenching studies both in solution and in FEK4 cells.174 The probes represent the 



84 
 

first example of highly sensitive mitochondria-directed fluorescent iron chelators, with 

potential to monitor mitochondrial labile iron pool. This probe range represents a 

powerful class of sensors which are suitable for quantitative iron detection and clinical 

real-time monitoring of subcellular labile iron pools in iron-overloaded patients.124,175  

Orvig’s group have designed a range of hydroxypyridinone derivatives in order to 

investigate their interaction with amyloid protein.126 Using the fluorescent signal as the 

readout, 29b was found to be capable of interacting strongly with amyloid-beta protein 

fibrils.126  

Bicyclic lactam probes 56 and 57 have been designed to replace the established 

fluorescent probe chelator conjugates (52) by a single chemical moiety and thus a 

smaller molecular size. The quantum yields of this type of probe are higher than those 

of probes typified by 52. The relatively low pKa values of these probes result from an 

inductive effect of the amido group at the 6-position of the pyridinone ring. As a result, 

the pFe3+ values are correspondingly higher and therefore these probes bind iron 

tightly.128 The probe fluorescence is almost completely quenched in the presence of an 

equivalent amount of Fe3+ or Fe2+. In addition, these probes are also very sensitive to 

the presence of Cu2+ but much less sensitive towards other metals such as Ni2+, Co2+ 

and Mn2+. Furthermore, the combination of these probes with Zn2+, Mg2+ and Ca2+ 

results in a blue shift of the maximum emission wavelength and an increase of the 

fluorescence intensity. Although the probes can become completely quenched by the 

addition of equimolar Cu2+, the influence of this cation under in vivo conditions can be 

neglected as intracellular Cu2+ is very tightly bound to proteins and not accessible to 
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quench the probe fluorescence.176 57 was found to penetrate the cell membranes 

quickly and therefore has potential as an intracellular iron probe.127 

 

 

 

 

5.1.1.3. Measurement of the extracellular labile iron pool (‘non-transferrin bound 

iron’) 

The ability to scavenge iron from oligomeric Fe3+ citrate complexes demonstrated that 

the probes 53 and 58 scavenge iron faster than both deferiprone (3) and 

desferrioxamine (1). The limit of detection for iron by the fluorescein-based probe 58 is 
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10-8 M. However, when this direct method using either 53 or 58, was applied to various 

serum samples, the measured non-transferrin-bound iron (NTBI) concentrations were 

found to be variable, the main reason being that autofluorescence varies between 

serum samples. As the fluorescence method is so sensitive, any small change of 

fluorescence leads to a relatively large change in fluorescence emission.129 In order to 

avoid the influence of variable autofluorescence from serum samples on NTBI 

determination, it is necessary to separate the iron probe from serum during the 

fluorescence measurement. Consequently, chelating fluorescent beads (CFBs) have 

been designed which consist of various hydroxypyridinones linked to fluorescein and 

are coupled to magnetic Dynabeads®. Upon incubation with serum samples, NTBI is 

captured by the CFBs and the complex is separated from the serum proteins by flow 

cytometry by virtue of its different size.177 The autofluorescence interference is therefore 

avoided. The hexadentate pyridinone-based CFB (59) was designed as a result of a 

number of optimization steps. This probe has proved to be reliable in quantifying iron 

levels within the 0.1-10 μM range, which is the expected NTBI concentration range in 

the iron-overloaded patients.177 NTBI quantification from the sera of patients was found 

to be consistent with the known iron status of the patients. This new CFB assay has 

several advantages over other NTBI assays by virtue of its simplicity and avoidance of 

filtration steps.131 

 

5.1.2. Time-resolved luminescence sensing 

Time–resolved luminescence resonance energy transfer (TR-LRET) assays are under 

continuous development for high-throughput screening of molecular interactions178 and 
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in particular the interaction between proteins and inhibitors.179 Spectral and time 

resolved discrimination of the luminescent signal from background autofluorescence 

results in a marked improvement in sensitivity. In many assays undertaken in biological 

matrices, it is necessary to quantify a specific analyte at relatively low concentrations 

(typically 10-8M). Thus chelators are required, which possess sufficient water solubility 

and a high affinity for europium(III), such that no complex dissociation occurs even in 

the presence of the commonly used chelators EDTA and DTPA. Octadentate 

hydroxypyridinones offer this possibility, providing eight chelating oxygen atoms,180 for 

instance the tetra 1,2-HOPO (50). Optimisation of this octadentate structure in order to 

increase brightness has been achieved by removing the inner sphere water molecules 

and adjusting the geometry around the europium(III) cation by increasing the spacing 

between the two tetradentate components, using a pentoethylene oxide chain (51). This 

latter compound has potential for in vitro and cell biological measurements. 

 

5.1.3. Positron emission tomography (PET) imaging 

Positron emission tomography is a whole body diagnostic, three – dimensional 

molecular imaging modality, used in nuclear medicine that detects radiation arising from 

the decay of unstable positron emitting radioisotopes. The increasing availability of 

gallium-68 has had a significant clinical impact on the use of PET for molecular 

imaging.181 Clinical use of 68Ga receptor-targeting radiopharmaceuticals has found wide 

application in the detection of neuroendocrine cancers182 and prostate cancers.183 68Ga 

has a half-life of 68 mins. A second radioisotope, also with potential for PET imaging is 

zirconium-89, which possesses the longer half-life of 78h. 
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Both these radioisotopes bind to oxygen-rich chelators (see Sections 4.2 and 4.4) and 

two widely adopted ligands are DOTA (60) and HBED (61). Clinical radiosyntheses of 

68Ga-DOTA and 68Ga-HBED involve heating at 80 – 100°C, for 5 – 20 min at pH 3 – 5183 

followed by post-synthetic purification. In the case of DOTA, heating is required to 

speed up the complexation of 68Ga3+; for HBED, three geometric isomers result on 

gallium chelation and heating favours the formation of the thermodynamically preferred 

species. For 68Ga to be adopted for routine clinical practice, chelators that provide 

efficient and reproducible kit-based radiolabelling methods are required. Chelators 

based on 3,4-HOPOs, in contrast to those based on DOTA and HBED, allow a rapid 

one-step quantitative 68Ga3+ radiolabelling at neutral pH and ambient temperature. 

Thus, the hexadentate ligand 37 binds 68Ga3+ extremely tightly, such that there is no 

exchange with transferrin under in vivo conditions. Furthermore the 68Ga complex of 37 

is rapidly excreted via the kidneys, ensuring a low background for imaging studies.184 

 

5.1.3.1. Tris-(3,4-HOPO) bioconjugates 

The β-alanine-derived compound 62 can be functionalised for bioconjugation via 

maleimide146,152 or isothiocyanate links185,186 (63, 64 and 65). These bifunctional 

chelators can be readily coupled to peptides and proteins, for instance protein C2A,146 

C(RGDFK),185 TATE186 and Trastuzumab.184 A particularly successful application 

involves 66 which binds to prostate-specific membrane antigen (PSMA), which is over 

expressed in prostate cancer.187 The 68Ga-labelled THP-PSMA bioconjugate has been 

preclinically evaluated as a radiotracer for PSMA imaging. Interestingly, radiolabel 

procedures with 68Ga carried out by adding unprocessed generator eluate directly to a 
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vial containing the ligand THP-PSMA (66) with no further manipulation, led to efficient 

radiolabelling (i.e. 95% radiochemical yield) within 5 min, at room temperature. The 

product was a single radioactive species that demonstrated specific binding to PSMA 

protein in PSMA-expressing DU145 cells and was stable in human serum for more than 

6 h.187 Clearly, 68Ga-THP-PSMA (Galliprost®) has potential to achieve 1-step kit-based 

labelling.188 Ex vivo and in vivo PET imaging and biodistribution studies have been 

conducted in mice bearing xenografts of the same cell lines, in comparison to commonly 

used 68Ga-HBEDCC-PSMA,189 demonstrating that 68Ga-THP-PSMA selectively 

accumulates in PSMA-expressing tumours, with a good signal-to-background ratio 

delineation of PSMA-positive tumour lesions similar to the reference imaging agent. 

This compound is currently involved in clinical trials (Figure 21). Other groups have 

confirmed the clinical potential of the THP conjugate Galliprost®.190,191 In contrast to 

other 68Ga-PSMA conjugates, the extremely simple radiolabelling procedures for 68Ga-

THP-PSMA require only a generator, a cold-kit vial to be reconstituted before use, a 

syringe, quality control facilities, and shielding. These results confirm the possibility of 

generating kit-based 68Ga radiopharmaceuticals for use in hospitals and wider clinical 

contexts. 
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Figure 21. PET imaging of prostate cancer. Application of Galliprost® for patient with a 

prostate adenocarcinoma with high uptake in the primary prostate tumour and focal 

uptake in several left external iliac lymph nodes. This research was originally published 

in JNM. Hofman MS, Eu P, Jackson P, Hong E, Binns D, Iravani A, Murphy D, Mitchell 

C, Siva S, Hicks RJ, Young JD, Blower PJ, Mullen GE. Cold Kit for Prostate-Specific 

Membrane Antigen (PSMA) PET Imaging: Phase 1 Study of 68Ga-

Tris(Hydroxypyridinone)-PSMA PET/CT in Patients with Prostate Cancer. J Nucl Med. 

2018;59:625-631. © SNMMI.188  
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5.1.3.2. Imaging with zirconium-89 

The larger radius of Zr4+ renders hexadentate ligands less suitable for tight chelation, 

although both DFO (1) and tripodal 3,4-HOPOs have been investigated.152,192,193 The 

stability of these complexes under in vivo conditions is not sufficient for imaging. As 

indicated in Section 4.4 tetrapodal 3,2-HOPOs and 1,2-HOPOs also lack sufficient in 

vivo stability.101,192 However the tetrapodal 3,4-HOPO (40) does largely overcome these 

problems.105 There is quantitative labelling within 10 min at room temperature.105 The 

89Zr-complex was found to be stable for over one week in human blood serum, stable in 

vivo and was excreted rapidly via urine in mice. Thus this structure would appear to be 

ideal for conjugation to targeting long-life circulating vectors such as immunoglobulins. 

 

5.1.4. Magnetic Resonance Imaging (MRI) 

As outlined in Section 4.5, complexes of Gd3+ behave as high-relaxivity MRI contrast 

agents. In particular a range of hexadentate HOPOs have been investigated in order to 

optimise solubility, proton relaxation and in vivo toxicity.83,194 However, to date none of 

these complexes have been introduced into regular clinical use, as further optimisation 

is required. Incorporation into dendrimers or attachment to macromolecules will slow 

molecular tumbling and this will increase rotational correlation times.194 Such studies 

are currently in progress. 

 

5.2. Therapeutic applications 

5.2.1. Treatment of systemic metal overload 
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Poisoning due to metal overload can result from a number of causes; excess of metal 

that is essential for life (e.g. iron), excess of metal that is not essential for life (e.g. 

aluminum) and presence of a metal that is radioactive (e.g. plutonium).195 HOPOs have 

been used therapeutically to remove excess metals belonging to each of these groups. 

 

5.2.1.1. Iron chelation 

The therapeutic chelation of iron in iron-overload patients is comparatively wide spread, 

as regular blood transfusion which leads to iron overload, is an essential treatment for 

some diseases. This is an example of systemic iron overload and is associated with the 

treatment of thalassemia major, sickle cell disease and myelodysplastic syndromes.141 

For many years DFO (1) was the only iron chelator in clinical use, but it suffered from 

the lack of oral activity and had to be administered parenterally. However a bidentate 

3,4-HOPO was introduced in the clinic in 1987,196 namely deferiprone (3) and since that 

time has been widely used to treat iron overload throughout the world. 196-201 The 

molecular weight of the iron(III) complex of deferiprone (3) is less than 500 and by virtue 

of its non-charged nature, it can readily diffuse through membranes. Thus deferiprone 

can enter cells by simple diffusion, chelate labile iron and subsequently efflux from the 

cell (Figure 22). Deferiprone complies with Lipinski’s guidelines171 and possesses 

neutral ligand and iron-complex forms at pH 7.4 (Figures 1 and 7). Bidentate 3-

hydroxypyridin-4-ones possess distribution coefficients (logDligand) which are largely 

dependent on the N-substituent. A biphasic linear relationship between the logD values 

of ligand and the corresponding iron-complex for 3-hydroxypyridin-4-ones exists (Figure 

23) – ligands with logDligand greater than or equal to -1 possess a different linear 
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relationship (eq(1)) from those with logDligand less than -1 (eq(2)). These relationships 

can be used for ligand design in order to estimate the hydrophilicity of the iron 

complexes of bidentate and hexadentate analogues. 

 

logDcomplex = 2.53 logDligand – 0.08                (1) 

logDcomplex = 0.49 logDligand – 2.45                (2) 

 

Hexadentate HOPOs have also been utilised for the scavenging and removal of toxic 

iron for instance 6743, 68202 and 69.91 None of these hexadentate ligands have entered 

clinical trials. 
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Figure 22. Mode of scavenging intracellular iron by 3,4-HOPOs, for example 

deferiprone (3). 

 

 

Figure 23. Relationship between the logD value of Fe complex (logDcomplex) and logD 

value of 3,4-HOPO (logDligand). Distribution coefficients were determined using a MOPS 

buffer (50 mM, pH 7.4)/octanol system. Reproduced with permission from Ref.38. 

Copyright 1998 American Chemical Society. 
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A range of neurodegenerative diseases are associated with the local accumulation of 

iron in different regions of the brain for instance, Alzheimer’s disease,203 Parkinson’s 

disease,204,205 multiple sclerosis,206 and pantothenate kinase-associated 

neurodegeneration (PKAN).207 Macular degeneration is associated with iron 

accumulation in retinal tissue.208 Post-mortem examination of the relevant tissue 

confirms the presence of elevated levels of iron, and also associated oxidative damage 

to lipids and proteins. Undoubtedly, this iron-induced redox damage to the tissue 

contributes to the progression of these diseases. Many bidentate 3-hydroxypyridin-4-

one derivatives have been developed for the potential treatment of 

neurodegeneration.209 However, among the three iron chelators currently approved for 

clinical use, deferiprone is the only one that can readily cross the blood brain 

barrier.210,211 Consequently, deferiprone has been investigated in animal models of the 

various diseases and in some clinical studies. With Parkinson’s disease, both animal 

models212,213 and clinical investigations have been centred on deferiprone.214,215 There 

is currently a Phase II clinical trial taking place in different European centres. 

Deferiprone has also been administered to Friedreich’s ataxia patients with the 

treatment leading to improved clinical scores.216,217 

 

5.2.1.2. Aluminum chelation 

The toxicity of aluminum is associated with anaemia, osteomalacia and some 

neurological disorders. Aluminum disrupts the homeostasis of the essential metals, iron 

and calcium. Bidentate HOPOs have been found to be effective at removing 
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aluminum,149 as have tetradentate and hexadentate HOPOs (Figure 16). However to 

date none of these compounds have been used clinically. 

 

5.2.1.3. Chelation of plutonium and other actinides 

The use of actinides in industry and defense has resulted in potential environmental and 

health issues as a large range of toxic radionucleotides, including plutonium and 

uranium, are being continuously generated. Controlled processing and the disposal of 

waste from the nuclear fuel cycle present many problems, as does nuclear weapon 

testing and potential terrorist use. By virtue of the similarities with ferric iron, plutonium 

is readily absorbed and distributed within living tissue by virtue of binding to iron 

transport proteins. It is retained in the liver, kidneys and bone.195 A large range of 

chelators have been investigated for the potential of scavenging plutonium (and related 

actinides),160 many of them being hydroxypyridinones (over 40 HOPOs are listed in 

ref160). As with iron chelators, the aim is to design orally active, non-toxic chelators with 

a powerful scavenging activity. The octadentate ligand (48), a tetra 1,2-HOPO, is the 

most likely HOPO chelator to be used for this purpose, clinically. It has successfully 

completed safety and efficacy tests in three animal species and has been approved by 

FDA for first-in-human studies. Indeed, HOPOs can remove, not only plutonium, but 

also a range of different actinides from biological tissues. Compound 48 is particularly 

effective for the removal of plutonium and thorium, compound 47 for americium and 

compound 46 for neptunium,160 thus there is the possibility of identifying ligand mixtures 

for particular accident situations.  
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5.2.2. Subcellular targeting of chelators 

It is now possible to direct iron chelators to both mitochondrial and lysosomal 

compartments (Section 5.1.1.2). At the present time these are utilised as fluorescent 

probes for the quantification of intracellular pools of labile iron,124,125 but in principle they 

can also be used as therapeutic agents. Both a tricatechol hexadentate ligand (70)218 

and its tri 3,4-HOPO-analogue (71) have been demonstrated to provide high 

photoprotection against solar ultraviolet A radiation218 of fibroblasts and thus could be a 

useful component of sunscreen formulations.  

Some diseases, for instance Friedreich’s ataxia lead to accumulation of iron specifically 

in the mitochondria.216 This genetic disease is fatal. However it has been demonstrated 

that 71 is capable of removing elevated levels of iron from such mitochondria in FEK4 

cell lines.  
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5.2.3. Photodynamic therapy 

Photodynamic therapy (PDT) is based on the activation of exogenously applied or 

endogenously formed photosensitizers by visible light in the presence of molecular 

oxygen. This process leads to the formation of singlet oxygen, which is a powerful 

oxidant, leading to the damage of subcellular organelles and cell death.219,220 5-

Aminolevulinic acid photodynamic therapy utilises the haem biosynthesis pathway to 

transiently produce elevated amounts of the natural endogenous photosensitizer, 

protoporphyrin IX. This is achieved by the addition of exogenous 5-aminolevulinic acid 

which enters the haem biosynthesis pathway.221 The stage following protoporphyrin IX 

production is the insertion of iron(II) which is catalysed by ferrochelatase, thereby 

converting protoporphyrin XI into haem. Chelation of the intracellular labile iron pool 

leads to lower levels of ferrochelatase, further enhancing the accumulation of 

protoporphyrin IX. The bidentate 3,4-HOPO (CP94, 72) has proved to be particularly 

effective in this role.222 Developing this concept further, a series of prodrugs of 5-

aminolevulinic acid (73) have been synthesised by conjugating 5-aminolevulinic acid to 

3-hydroxypyridin-4-ones.223 These compounds have the additional advantage of 

rendering the extremely hydrophilic 5-aminolevulinic more lipophilic and hence capable 

of penetrating membranes. Once inside the cell these prodrugs are rapidly hydrolysed 

by cytosolic esterases to yield 5-aminolevulinic acid and a 3,4-HOPO which is capable 

of inhibiting ferrochelatase. The most effective compound for enhancing protoporphyrin 

XI levels in KB, MCF-7 and MCF-7R cells is compound 73 (n= 10).223 This compound is 

also more effective than the prodrugs of 5-aminolevulinic acid that are currently in 

clinical use.223 
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5.2.4. Antimicrobial applications 

There are two major approaches for the design of chelator-based antimicrobial agents; 

one is centred on the exploitation of bacterial iron acquisition by the use of siderophore 

conjugates and the second is the deprivation of iron by competition with a powerful iron 

chelator. 

 

5.2.4.1. The application of siderophore conjugates 

One of the most widespread mechanisms for iron uptake by bacteria and fungi is the 

use of high affinity iron(III) chelators called siderophores.6 Siderophores are secreted in 

the environment where they scavenge iron. The resulting complexes are accumulated 

by the microorganism using an active transport system.25 Most synthetic siderophore 

conjugates utilise hydroxamates or catechols,23 although there are some that utilise 3,4-

HOPOs. Thus the monobactam MC1 (74) has excellent activity against Gram-negative 

bacteria including Pseudomonas aeruginosa and offers superior protection in an in vivo 

model of respiratory tract infection.224 In similar fashion, BAL 30072 (75) possesses 

potent activity against multidrug-resistant P. aeruginosa and Acinetobacter sp., 

including many carbapenem – resistant strains.224 
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5.2.4.2. Iron scavenging action 

Siderophore mediated transport of iron to microorganisms can be inhibited by the 

presence of chelators that possess a higher affinity for iron(III) than the endogenous 

siderophores. An essential requirement of this mechanism is that the competing 

chelator has no affinity for the iron-siderophore complex transporter. Indeed it would 

appear that many such hexadentate 3,4-HOPOs lack this property.225 Indeed 

hexadentate 3-hydroxypyridin-4-ones effectively inhibit the growth of both Gram-positive 

and Gram-negative bacteria, as well as methicillin resistant Staphyloccocus aureus 

(MRSA).95,96,226-228 The clinical potential of the combination of 3,4-HOPOs with 

antibiotics has also been reported.143  
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Chelators with strong antimicrobial activity, especially dendrimers229 and polymers119 

have potential for use as external antimicrobial agents. For instance, they could find 

application in the treatment of wound healing, especially with ulcers in the elderly. They 

may also find application in cosmetics, such as shampoos and anti-perspirants. For 

these purposes, macromolecular iron chelators, such as dendrimers and polymers, are 

assumed to have more promising potential due to their non-absorbable nature via skin, 

leading to low toxicity.119 

 

6. Conclusions 

Over the past twenty years hydroxypyridinones have emerged as important ligands for a 

wide range of metals. Each of the three types of metal-chelating hydroxypyridinone, 

namely 1-hydroxypyridin-2-one (1,2-HOPO), 3-hydroxypyridin-2-one (3,2-HOPO) and 3-

hydroxypyridin-4-one (3,4-HOPO), have found application in one or more of the 

following areas; analytical chemistry, environmental chemistry, diagnostic medicine and 

therapeutic medicine. The pyridinone ring is easily synthesised and readily converted 

into tetradentate, hexadentate and octadentate chelators. There is considerable 

potential for the control of the stereochemistry of the resulting metal complex and hence 

the properties of these multidentate molecules.  

Originally the bidentate hydroxypyridinones were investigated for their potential as orally 

active iron chelators8 and indeed one of them, deferiprone (3), a 3,4-HOPO, is currently 

used world-wide as an therapeutic agent.201 The upsurge of interest in the association 

of the inappropriate accumulation of metals in the brain (particularly iron) with a range of 

neurodegenerative diseases has led to the design of novel chelators based on the 
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HOPO structure; already deferiprone (3) is in phase 2 clinical trials for the treatment of 

Parkinson’s disease.214 

It has gradually emerged that oligomeric hydroxypyridinones have considerable 

potential as aluminum, gallium, zirconium, gadolinium, europium and plutonium 

chelators. This diversity of metals which are bound tightly to hydroxypyridinones, has 

led to many applications. Thus HOPO’s have found a role not only in scavenging iron, 

but also in scavenging aluminum and plutonium.230 Indeed, HOPOs can remove a range 

of different actinides from biological tissue and this finding has led to the possibility of 

identifying ligand mixtures for particular accident situations.160 There is a requirement 

for improved knowledge in this area, so that we will be better able to treat persons 

exposed to multiple actinides. 

Preformed HOPO complexes of gallium-68 and zirconium-89 have potential as positron 

emission tomography (PET) probes. Indeed successful clinical trials are currently in 

progress with 68Ga-THP-PSMA (Galliprost®, 66) being used to monitor patients with 

prostate cancer.188 This progress is likely to lead to the diagnosis of other cancers, for 

instance breast and pancreas. Furthermore, complexes of gallium-67, by virtue of the 

production of four gamma photons on decay, have the potential for cancer therapy. 

Preformed complexes of europium have found application in high-throughput screening 

and preformed complexes of gadolinium have potential for improving the signal to noise 

ratio in magnetic resonance imaging (MRI). The coupling of fluorescent moieties to 

bidentate 3,4-HOPOs has led to the creation of iron-sensitive fluorescent probes which 

have been utilised to monitor the labile iron pool in the cytosol, lysosome and 

mitochondria.173 Attachment of fluorescent labelled HOPOs to polymeric beads has 
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facilitated the quantification of toxic non transferrin-bound iron in thalassemia patients. 

Preliminary investigations of dendrimeric and polymeric HOPO’s have indicated their 

potential for environmental, cosmetic and clinical applications.  

These many new discoveries have demonstrated the tremendous potential of 

hydroxypyridinones as ligands for a relatively large number of hard metals. Our aim in 

preparing this review is to assist researchers in identifying suitable synthetic routes to 

both simple bidentate and multidentate HOPOs and to indicate the potential of these 

molecules in the fields of medicine, analytical science and environmental science. 
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8. Abbreviations 

AHMP = 1-(β-acrylamidoethyl)-3-hydroxy-2-methyl-pyridin-4-one 

AIBN = azobisisobutyronitrile 

ANPD = 3-(2-aminoethyl)-3-nitro-1,5-pentanediamine  

C2A = C2A domain of complement protein C2 

https://theragnostics.com/
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CFB = chelating fluorescent bead 

CPBD = 2-cyano-2- propyl benzodithioate 

DCC = N,N'-dicyclohexylcarbodiimide 

DCM = dichloromethane 

DFO = desferrioxamine   

DIC = 1,3-diisopropylcarbodiimide 

DMAA = dimethyl acetamide 

DMF = dimethyl formamide 

DIPEA = N,N-diisopropylethylamine 

DTPA = diethylenetriaminepentaacetic acid 

DU145 = Duke University 145, human prostate cancer cell line  

EDC = 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide 

EDTA = ethylenediaminetetraacetic acid (usually as CaNa2-EDTA) 

EBAA = N,N-ethylene-bis-acrylamide 

EGDMA = ethylene glycol dimethylacrylate 

FACS = fluorescence-activated cell sorting, a specialized type of flow cytometry 

FEK4 = human dermal fibroblast cell line 

Fl = fluorophore 

Fmoc = fluorenylmethyloxycarbonyl  

GMA = glycidyl methacrylate 

HATU = 1-[bis(dimethylamino)methylene]-1H-1,2,3-triazolo[4,5-b]pyridinium 3-oxid 

hexafluorophosphate 

HEA = 2-hydroxyethyl acrylate 
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HEMA = hydroxyethylmethacrylate  

HOBt = hydroxybenzotriazole 

HOPO = hydroxypyridinone 

1,2-HOPO = 1-hydroxy-2-pyridinone 

3,2-HOPO = 3-hydroxy-2-pyridinone 

3,4-HOPO = 3-hydroxy-4-pyridinone 

KEMP = cis,cis-1,3,5-triamino-cis,cis-1,3,5-trimethylcyclohexane  

LDA = lithium diisopropylamide 

logD= distribution coefficient of a molecule between buffer (i.e. specific pH) and 

lipophilic phases (e.g. n-octanol) 

LTMP = lithium tetramethylpiperidide  

mCPBA = meta-chloroperoxybenzoic acid 

MRI = magnetic resonance imaging 

MRSA = methicillin-resistant Staphylococcus aureus 

NHS = N-hydroxysuccinimide 

NMM = N-methylmorpholine 

NTBI = non-transferrin-bound serum iron 

L-Orn = L-ornithine  

PAMAM = polyamidoamine 

PDI = polydispersity index 

PDT = photodynamic therapy  

PGMA = poly(glycidyl methacrylate) 

PKAN = pantothenate kinase-associated neurodegeneration 
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PPA = polyphosphoric acid 

PSMA = prostate-specific membrane antigen 

PyOxP = O-[(1-cyano-2-ethoxy-2-oxoethylidene)amino]-oxytri(pyrrolidin-1-yl) 

phosphonium hexafluorophosphate 

RAFT = reversible addition-fragmentation chain transfer 

SPPS = solid-phase peptide synthesis 

TATE = tyrosine-3-octreotate 

TBTU = 2-(1H-benzotriazole-1-yl)-1,1,3,3-tetramethylaminium tetrafluoroborate 

THP = hexadentate tris(3-hydroxypyridin-4-one) ligand 

TMDM = N,N,N',N'-tetramethyldiaminomethane 

TR-LRET = time-resolved luminescence resonance energy transfer 

TRAM = 1,3,5-tris(aminomethyl)benzene 

TREN = tris(2-aminoethyl)amine  

TsOH = para-toluenesulfonic acid (tosylic acid) 
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