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Abstract 

Reporter gene assays, in which a single mutation from each experiment can contribute to the 

assembly of a mutation spectrum for an agent, have provided the basis for understanding the 

mutational processes induced by mutagenic agents and for providing clues to the origins of 

mutations in human tumours. More recently exome and whole genome sequencing of human 

tumours has revealed distinct patterns of mutation that could provide additional clues for the 

causative origins of cancer. This can be tested by examining the mutational signatures induced in 

experimental systems by putative cancer-causing agents. Such signatures are now being generated 

in vitro in a number of different mutagen-exposed cellular systems. Results reveal that mutagens 

induce characteristic mutation signatures that, in some cases, match signatures found in human 

tumours. Proof of principle has been established with mutational signatures generated by simulated 

sunlight and aristolochic acid, which match those signatures found in human melanomas and 

urothelial cancers, respectively. In an analysis of somatic mutations in cancers for which tobacco 

smoking confers an elevated risk, it was found that smoking is associated with increased mutation 

burdens of multiple different mutational signatures, which contribute to different extents in 

different tissues. One of these signatures, mainly found in tissues directly exposed to tobacco 

smoke, is attributable to misreplication of DNA damage caused by tobacco carcinogens. Others likely 

reflect indirect activation of DNA editing by APOBEC cytidine deaminases and of an endogenous 

clock-like mutational process. The results are consistent with the proposition that smoking increases 

cancer risk by increasing the somatic mutation load although direct evidence for this mechanism is 

lacking in some cancer types. Thus next generation sequencing of exomes or whole genomes is 

providing new insights into processes underlying the causes of human cancer. 
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1. Introduction 

Cancers arise as a result of somatic mutations. All tumours have been found to contain multiple 

mutations, including point mutations, insertions, deletions and gene rearrangements. Mutations 

that occur in critical genes involved in processes that maintain the integrity of cells (the ‘driver’ 

mutations) and that when mutated confer a growth advantage, can be considered causative in 

transforming a normal cell into a malignant one. At the same time, many other mutations are 

present in tumours (the ‘passenger’ mutations), accumulated as a result of genomic instability 

induced by the transformed or malignant state, or as bystander mutations arising from the same 

influences that gave rise to the ‘driver’ mutations, but occurring in regions of the genome that do 

not cause the phenotypic changes causing the emergence of the transformed state. Tumours are 

clonal, having arisen from a single cell that has acquired abnormal growth characteristics as a result 

of mutation, but can nevertheless display heterogeneity due to later acquisition of more mutations. 

A cancer genome can be considered to contain the history of mutagenic processes that have 

occurred throughout the life of the cancer patient, both before and after the acquisition of a 

neoplastic transformation phenotype by the progenitor cell of the tumour. 

 

2. Mutational spectra – multiple studies in single genes 

Experimental studies have, until recently, focused on the analysis of mutations in a single gene, 

whereby mutated cells were selected on the basis of a growth advantage under the conditions of the 

assay, or by producing progeny with a readily identified marker, such as a cellular dye.  

Some of these systems arise out of short-term tests to identify mutagens, i.e. those that simply 

identify whether or not a test compound or agent is mutagenic. However, further investigation to 

identify the nature of the mutations that have arisen forms the basis of generating a mutation 

spectrum, by the acquisition of mutations from many experiments, often one at a time. These 
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include bacterial studies based on the Ames test, identifying mutations in the his operon of 

Salmonella typhimurium [1]. Such analyses have been applied to both single chemicals and complex 

mixtures [2]. A mutagen will produce the same type of substitution mutation in all organisms, which 

reflects the conservation of DNA repair and replication processes through evolution [3].  

An early eukaryotic system for mutagenicity testing focused on the HPRT gene, whose mutation in 

response to mutagens was measured in mouse, hamster and human cells lines; cells in which HPRT 

mutations are rendered resistant to 6-thioguanine and will form colonies when cultured in media 

containing it. Detection of the mutations requires PCR amplification of the gene and direct 

sequencing of the transcripts [4]. 

The use of transgenic rodent mutation assays has been a useful and informative way of determining 

mutational spectra in vivo [5]. Mutations are detected by the introduction of the lacZ 

(MutaTMmouse) or lacI gene (Big Blue® mouse or rat) into animals, which is then recovered from 

genomic DNA of treated rodents and packaged into a  phage vector and infected into E. coli. 

Mutant colonies are then identified by means of a colour change from wild-type colonies; for 

mutagen testing purposes the mutation frequency is sufficient; however sequencing of the lacZ, lacI 

or the smaller cII gene in these mutant plaques provides the data to enable a mutation spectrum to 

be compiled. Another transgenic rodent model, gpt delta mouse and rat, has been developed that 

allows detection of point mutations by virtue of resistance to 6-thioguanine toxicity [5]. 

None of the genes mentioned thus far have anything to do with carcinogenesis. Indeed, in some of 

the systems, the reporter gene is not even expressed (e.g.  lacZ and lacI), although paradoxically this 

can be an advantage in that the mutations detected have not undergone any selective pressure.  

Attention has thus turned to considering mutations in ‘driver’ genes.  Although mutational spectra 

based on Kras and Hras proto-oncogenes will be biased because only some types of mutations at 

certain codons can result in an activated oncogene, nevertheless different agents induce mouse 
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tumours with distinctly different patterns of mutations in these genes, which can be informative 

about mechanism of carcinogenesis and origins of tumours [6]. Differences in mutational spectra in 

premalignant papillomas and metastatic skin tumours induced in mice by 7,12-

dimethylbenz[a]anthracene have shed light on the clonal evolution of metastasis in this 

experimental model [7]. 

More complete spectra can be obtained from analysis of the tumour suppressor gene TP53, which 

carries mutations in more than 50% of human tumours [8]. Nearly 30,000 TP53 mutations in human 

tumours are catalogued in a database (http://p53.iarc.fr). From this compendium some distinct 

patterns have emerged pointing to specific causative agents: UV light in the case of skin cancers [9, 

10], aflatoxin B1 in the case of hepatocellular carcinoma [11, 12], benzo[a]pyrene and other 

polycyclic aromatic hydrocarbons in the case of smokers’ lung cancer [13] and aristolochic acid (a 

plant chemical) in the case of urothelial cancer (described in detail later in this article). 

The generation of a mouse line with exons 4-9 of the human TP53 gene (the Hupki mouse) [14] led 

to the development of an assay to detect mutations in sequences of the human gene in clones of 

immortalised mouse embryo fibroblasts. Using this approach agents such as UV light induced C to T 

and CC to TT mutations, benzo[a]pyrene (a tobacco carcinogen) induced G to T transversions, and 

aristolochic acid induced A to T transversions. In each case these mutations and their distribution 

(spectrum) in the TP53 gene sequence correlated with those seen in human tumours where these 

agents were suspected of being causative [15]. 

Impressive though these associations are, the number of human carcinogens identified by 

scrutinising one gene only, either experimentally or in human tumours, is limited to just these few 

cases. Generating mutation spectra by the accumulation of mutations one by one from each 

experiment or tumour is not an efficient process. Given that it is now known that many tumours 

contains hundreds to thousands of mutations, the question arises as to what information can be 

gained, and what patterns can emerge, from an examination of all of them? 

http://p53.iarc.fr/
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3. Mutational signatures – multiple mutations across the exome or whole genome 

3.1. Mutational processes in human cancer 

From sequence analysis of over 7,000 human cancers (mostly by exome sequencing, but with around 

7% by whole genome sequencing) Alexandrov et al. [16] extracted 22 distinct mutational signatures, 

a signature being a representation of the 96 possible substitution mutations possible within at a 

base pair in the middle of a trinucleotide (i.e. there are six possible point mutations, four possible 

bases 5’ to it and another four 3’ to it, making 6 x 4 x 4 = 96 possible events) (see Figure 1). When 

the analysis was expanded to ~12,000 human tumours, the number of signatures increased to 30 

(http://cancer.sanger.ac.uk/cosmic/signatures). Imminently, with a further increase in the database 

to include more than 23,000 tumours of 71 cancer types, containing more than 83 million mutations, 

around 49 substitution signatures, together with 17 indel signatures and 11 dinucleotide (tandem) 

mutation signatures, will be reported (L. Alexandrov, personal communication). 

Already, examination of these signatures, in association with the aetiology, where known, of the 

cancers from which they originate, has revealed a great amount about the mutagenic processes 

involved in carcinogenic processes. Around a third of the 30 signatures have been attributed to 

endogenous mutagenic processes, such as the activity of the APOBEC family of deaminases and 

deamination of 5-methylcytosine, deficiencies in DNA repair processes, including mismatch repair 

and homologous recombination, or defective DNA polymerases [17]. A further six are attributed to 

exposure to mutagenic agents, including tobacco carcinogens, UV radiation, aflatoxin B1, alkylating 

chemotherapy drugs and the plant carcinogen aristolochic acid; these are discussed in more detail 

below. The causes of the remaining 14 signatures are not yet identified. With the identification of 

additional signatures, as mentioned above, it still remains the case that approximately half of them 

are of unknown cause or origin (L. Alexandrov, personal communication). 

http://cancer.sanger.ac.uk/cosmic/signatures
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Identifying the processes underlying the uncharacterised signatures and/or determining the agents 

that cause them will shed new light on the causes of cancer. In pursuit of this, a number of 

approaches have been used to generate mutagen-induced signatures in vitro. These have been 

useful in providing experimental evidence to validate or, in some cases question, the causative 

mechanisms assigned to some of the signatures in human tumours. What follows are examples of 

these approaches. 

3.2. Aflatoxin mutational signature 

In the COSMIC catalogue, signature 24 has been found only in liver cancer and is associated with 

reported exposure to aflatoxin B1, a known cause of hepatocellular carcinoma. The strong 

transcriptional bias in the mutations, which are predominantly GC-TA transversions, also supports 

the hypothesis that these are the result of misreplication of aflatoxin-DNA adducts, which would be 

subject to transcription-coupled nucleotide excision repair (TC-NER). In order to test the hypothesis, 

mutations induced by aflatoxin B1 in two different human cells lines, in liver tumours in wild-type 

mice and also in mice with a hepatitis B surface antigen transgene, were investigated by whole 

genome sequencing [18]. HepaRG and HepG2 cells that had been chronically exposed to aflatoxin B1 

and cloned had predominantly GC-TA substitutions, with a strong bias for the G being on the non-

transcribed strand. The bias decreased from the 5’ to 3’ ends of transcripts, in line with evidence 

that the effectiveness of TC-NER decreases thus [19]. The most enriched sequences were in both 

cases TGC, TGG and AGC, the same as found in the signatures, consistent with COSMIC signature 24, 

of newly sequenced hepatocellular carcinomas from Qidong, China, where exposure to aflatoxin B1 

is well documented. There were similarities with the mouse liver tumours, but also greater diversity 

in the mutational landscapes, likely evidence of additional processes, such as the involvement of the 

hepatitis B surface antigen in the mouse strain engineered to express it [18]. Taken together, these 

findings greatly strengthen the causative association between aflatoxin B1 exposure and liver 

cancer. 
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3.3. Haloalkane exposure in print workers  

Following a report of a high incidence of cholangiocarcinoma among print workers in Japan, whole 

exome sequencing was carried out on a number of cases [20]. The mutational signatures of each of 

four printing workers’ cholangiocarcinomas were dominated by CG-TA transversions with a 

substantial strand bias and they all had a prominent trinucleotide signature mutation GCY to GTY 

(where Y is a pyrimidine, C or T), followed by NCY to NTY and NAY (where N is any base) that were 

seen only to a minor extent in control cases of cholangiocarcinoma. Two of the solvents to which the 

workers were exposed, 1,2-dichloropropane (1,2-DCP) and dichloromethane (DCM), were mutagenic 

to S. typhimurium TA100, with CG-TA transversions accounting for 58-71% of the  1,2-DCP-induced 

mutations and 47% of those induced by DCM. The predominant trinucleotide mutation sequence for 

1,2-DCP was NCC to NTC, i.e. overlapping with the 2nd most common pattern in the printing workers, 

whereas the signature for DCM did not have anything in common with the tumour signatures. It can 

be concluded from these studies that the mutational signatures in the four print workers display 

common features that are indicative of exposure to a chemical that forms bulky adducts that are 

recognised by the nucleotide excision repair pathway (hence the mutational strand bias); among 

candidate mutagens, 1,2-DCP gives a mutational signature in bacteria that partially recapitulates the 

signature in the tumours. The discrepancies between the two systems point to more complex 

underlying processes that have yet to be elucidated, and possibly to additional mutagens that have 

yet to be identified [20]. The authors attempted to generate a mutational signature for 1,2-DCP in 

human epithelial cell lines, but were unsuccessful; thus the lack of a suitable mammalian system, 

thus far, in which to generate mutational signatures from 1,2-DCP also places limitations on the 

conclusions to be drawn from this study. 

3.4. Mutational signatures of tobacco smoking 

Tobacco smoke contains at least 60 different carcinogens and smoking is causally linked to 17 

different cancers. In an analysis of several thousand cancer genome sequences from both smokers 
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and non-smokers, it was found that the smokers had significantly higher numbers of base 

substitutions than the non-smokers for all the 17 cancer types together and for several individual 

cancer types, namely larynx, liver, kidney and lung adenocarcinoma [21]. In tumours of tissue 

directly exposed to tobacco smoke (e.g. lung and larynx) the COSMIC signature 4 was prominent. As 

noted earlier, this signature is similar to that produced by benzo[a]pyrene in cells in vitro and this, 

coupled with the strong strand bias indicative for TC-NER, suggests that the signature arises from the 

misreplication of DNA damage (adducts) formed by carcinogens present in tobacco smoke. Several 

other signatures were found to be present at elevated levels of mutation in the smokers’ tumours 

relative to the non-smokers, especially signatures 2, 5, 13 and 16.  

Signatures 2 and 13, which feature GC-AT and GC-CG mutations, respectively, at TpC dinucleotides, 

are considered to be the result of overactivity of APOBEC deaminases in DNA editing. The reason for 

this overactivity, which is found in many tumour types, is not clear but may be the result of 

retrotransposon movement, cellular response to foreign DNA and local inflammation [22]. The 

frequency of mutations of signature 5, which is found in all tumour types and has a predominance of 

AT-GC (with transcriptional bias) and also GC-AT mutations, correlates with age of diagnosis in non-

smokers [23]. The increase in its frequency in smokers’ lung squamous and adenocarcinomas, larynx, 

pharynx, oral cavity, oesophageal squamous, bladder, liver and kidney cancers suggests that the 

“clocklike” process that generates it is accelerated by smoking. Signature 16 is associated mainly 

with liver cancer and its origin is unknown. It is characterised by AT-GC mutations at ApT 

dinucleotides, which exhibit a strong transcriptional strand bias. 

The numbers of mutations that accumulate per cell annually per pack year of smoking in various 

tissues was calculated to be: for lung, 150; for larynx, 97; for pharynx, 39; for oral cavity, 23; for 

bladder, 18; for liver, 6. Interestingly, this order correlates with the ranking of odds ratios for the risk 

of smoking-related cancer in these organs. The study demonstrates that tobacco smoking enhances, 

or accelerates, endogenous mutagenic processes in some susceptible tissues, but not others, and it 
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also induces mutations directly by carcinogens present in tobacco smoke, although this mechanism 

appears to be confined mainly to tissues that are directly exposed to tobacco smoke [21]. The 

findings reveal the complexity of the mechanisms of tobacco carcinogenesis, which can vary 

between different tumour sites. 

3.5. The aristolochic acid mutational signature 

Aristolochic acid is a natural compound found in many plants that are used as traditional herbal 

remedies and health supplements. Although it was known to be carcinogenic to animals, it was not 

until it was accidently included in a slimming regimen at high doses in Belgium in the 1990s, with the 

consequence that many of those treated succumbed to renal failure and urothelial cancer, that the 

cancer risk to humans was appreciated. Within a short time it was noted that the pathology of 

aristolochic acid nephropathy (AAN), as it became known, was similar to that of Balkan endemic 

nephropathy (BEN), a hitherto idiopathic condition occurring in many rural regions of Southeast 

Europe [24], but where human exposure to aristolochic acid now appears to result from 

contamination of cereal crops by Aristolochia clematitis growing wild in the regions [25]. 

Evidence that aristolochic acid is the causative agent of both AAN and BEN came first from 

investigation of mutation spectra and subsequently from mutational signatures. In tumours 

associated with both the human diseases, TP53 mutations were frequently AT-TA transversions, a 

mutation that is rare in urothelial cancers in general. In experiment systems aristolochic acid forms 

DNA adducts predominantly with adenine residues in DNA, leading to AT-TA transversions [24, 26]. 

Comparison of the sites in TP53 at which AT-TA transversions occurred in mouse embryo fibroblasts 

and in tumours from BEN patients showed a significant similarity [27].  

Progressing from this single gene analysis, it has now been demonstrated conclusively from whole 

exome and whole genome sequencing of urothelial tumours that aristolochic acid gives rise to a 

distinctive and diagnostic mutational signature (COSMIC signature 22) that is dominated by AT-TA 
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transversions [28, 29]. The evidence that the tumours have been caused by aristolochic acid-induced 

mutations is further supported by the detection of DNA adducts on aristolochic acid in the tumour 

and tumour-adjacent tissue, and the experimental evidence that aristolochic acid produces the same 

signature in mouse embryo fibroblasts [30] and human induced pluripotent stems cells [31]. 

There is now evidence that aristolochic acid exposure in the Balkans may not be confined to the 

predominantly rural areas where BEN occurs. Whole genome sequencing of 14 Romanian renal cell 

carcinoma cases from non-BEN areas revealed that they all exhibited mutational signatures 

consistent with aristolochic acid exposure, a result also supported by the presence of aristolochic 

acid-DNA adducts in non-tumour renal tissue [32].   

AAN is now recognised as a worldwide health issue. More recently, evidence has appeared for the 

involvement of aristolochic acid in cancer at additional sites. Analysis of bladder tumours from Asia 

found that the aristolochic acid signature was present in a number of them, including 2 out of 2 from 

Taiwan, 1 out of 11 from Singapore and 3 out of 99 from China [33]. Exome analysis of 

hepatocellular carcinomas revealed the presence of signature 22 in 78% of those from Taiwan, 49% 

of those from China and in 29% of those from elsewhere in Southeast Asia [34]. In addition, the 

signature was also detected in 13% of cases from Korea and 2.7% of those from Japan. 

It should be noted that the AT-TA component of the mutational signature that aristolochic acid 

induces is not unique. A very similar signature is produced in vitro by a polycyclic aromatic 

hydrocarbon, dibenzo[a,l]pyrene [31]. However, in the case of aristolochic acid, the AT-TA mutations 

account for >85% of the mutations detected, whereas for dibenzo[a,l]pyrene it accounts for only 

50%. Nevertheless, this sounds a note of caution that overreliance on evidence from mutational 

signatures, in the absence of evidence of exposure, could lead to misclassification of the cause(s) of 

cancer cases. 

3.6. A compendium of experimentally induced mutational signatures 
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In order to examine systematically the mutational patterns associated with treatment of a 

comprehensive selection of environmental mutagens generated under highly controlled conditions, 

79 chemicals/agents were selected on the basis that they are environmental or therapeutic agents 

that have been classified by the International Agency for Research on Cancer (IARC) as human 

carcinogens (Group 1), probable human carcinogens (Group 2A) or possible human carcinogens 

(Group 2B) [31]. Human induced pluripotent stem (iPS) cells were then exposed to each of them, 

clonally expanded and subjected to whole genome sequencing. In all cases, including untreated 

controls, the mutational signatures contained a component that was very similar to COSMIC 

signature 18 (Figure 1), which has been attributed to mutagenesis by reactive oxygen species (ROS) 

in combination with base excision repair defects from MUTYH germline mutations [35, 36]. After 

subtraction of the background signature from the pooled mutations for each treatment, the 

remaining mutations of approximately half of the agents tested also gave rise to distinct mutational 

signatures. Three of these, produced by simulated sunlight, aristolochic acid and benzo[a]pyrene, 

correlated closely with signatures 7, 22 and 4, respectively, reproducing what had previously been 

observed with mouse cells (Figure 1) [30]. 

In all, some 40 new signatures have been generated from mutagenic agents [31]. Some of the agents 

gave similar signatures, as might be expected from their known patterns of DNA adduct formation. 

For example, the N-ethyl-N-nitrosourea, N-methyl-N-nitrosourea and temozolomide signatures were 

markedly similar to each other; however they were markedly different form COSMIC signature 11 

(Figure 1), which has been attributed to temozolomide therapy. The reason for this difference is not 

yet clear, but it may be that there are DNA repair processes that are more prominent in stem cells 

than in somatic cells, or vice versa. Another case of similar compounds giving similar signatures was 

the platinum complexes cisplatin and carboplatin, whose DNA adducts are identical to each other. 

However there are also examples for members of different classes giving rise to quite similar 

signatures, for example benzo[a]pyrene (a polycyclic aromatic hydrocarbon) and 2-amino-1-methyl-

6-phenylimidazo[4,5-b]pyridine (PhIP, a heterocyclic amine). Compounds of the same chemical class 
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could also give rise to significantly different signatures, such as the polycyclic aromatic 

hydrocarbons, ostensibly due to differences in the proportions of adducts formed at guanine and 

adenine residues in DNA. Nevertheless there was great similarity between the signatures of each of 

three polycyclic aromatic hydrocarbons and their respective bay-region diol-epoxides, providing 

evidence that the latter are indeed the major intermediates in the metabolic activation of PAHs in 

human cells [31]. 

The agents that give rise to bulky DNA adducts, subject to TC-NER, nearly all showed significant 

strand bias in their mutational signatures. An exception is simulated sunlight, which did not display 

any strand bias, even though COSMIC signature 7, which it matches, does have the strand bias 

expected of TC-NER of UV-induced DNA lesions. A similar lack of strand bias was found in the UV-

induced signature, also highly similar to signature 7, in mouse cells [30]. The reason for this anomaly 

is not clear at present. 

4. Concluding remarks 

The rapidly expanding database of mutational landscapes in human tumours is providing significant 

new information on the molecular events underlying the hallmarks of cancer. Until recently reporter 

gene assays, in which a single mutation (usually) from each experiment can contribute to the 

assembly of a mutation spectrum for an agent, have provided a basis of our understanding of 

mutational processes in human tumours. However we have now entered an era in which 

technologies for whole genome sequencing have advanced to the point where it is economically 

feasible to observe all the mutations produced in such assays, not just those in the reporter gene, 

and also to go further by generating mutational signatures in clones generated in systems without a 

selection pressure [30, 37, 38]. A number of different approaches are already evolving using, for 

example, cloned chicken cells [39], human induced pluripotent stem cells [31], and C. elegans [40] 

and showing the potential to reveal the role of exogenous and endogenous electrophiles, and or 

DNA repair and DNA damage response processes, in carcinogenesis. 
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With this massive increase in data acquisition and in statistical power coupled with the wealth of 

data that can be obtained from whole genome sequencing of human tumours, it is anticipated that 

mutational signatures produced experimentally will provide new insights into the agents and 

processes underlying the causes of human cancer.  
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Figure legend 

Figure 1. Mutational signatures generated experimentally and extracted from human tumours by 

whole genome sequencing. Each signature has 96 components, comprised of six possible base pair 

substitutions, each of which has four possible 5’ neighbouring bases and four possible 3’ 

neighbouring bases. The experimental signatures, shown on the left,  were produced from induced 

human pluripotent stem cells exposure to mutagens [31]. The human tumour signatures, on the 

right, are from the COSMIC database (http://cancer.sanger.ac.uk/cosmic/signatures). The figure 

shows that propagation of cells in culture without treatment generates a signature similar to the 

COSMIC signature 18; simulated sunlight produces a signature similar to COSMIC signature 7; 

aristolochic acid produces a signature similar to COSMIC signature 22; benzo[a]pyrene produces a 

signature similar to COSMIC signature 4 (the “smoking” signature); temozolomide produces a 

signature that is distinctly different from COSMIC signature 11. 

http://cancer.sanger.ac.uk/cosmic/signatures
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