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Abstract 1 

Recent  large-scale  exome sequencing s tudies  have ident if ied mutat ions in  several  2 

members  of  the  CHD (Chromodomain Helicase DNA-binding protein)  gene family  in  3 

neurodevelopmental  d isorders .  Mutat ions in  the  CHD2  gene have been l inked to  4 

developmental  delay,  in te l lectual  disabi l i ty ,  aut ism and seizures ,  CHD8  mutat ions to  5 

aut ism and intel lectual  disabi l i ty ,  whereas  haploinsuff ic iency of  CHD7  is  associated 6 

with  executive dysfunct ion and intel lectual  disabi l i ty .  In  addit ion to  these 7 

neurodevelopmental  features ,  a  wide range of  other  developmental  defects  are  8 

associated with  mutants  of  these genes,  especial ly  with  regards  to  CHD7  9 

haploinsuff ic iency,  which is  the  pr imary cause of  CHARGE syndrome.  Whils t  the  10 

developmental  expression of  CHD7  has  been reported previously,  l imited information 11 

on the expression of  CHD2  and CHD8  during development  is  avai lable .  Here  we compare 12 

the expression pat terns  of  a l l  three genes during mouse development direct ly .  We f ind 13 

high,  widespread expression of  these  genes a t  ear ly  s tages  of  development  that  gradual ly  14 

becomes restr ic ted during la ter  developmental  s tages .  Chd2  and Chd8  are  widely 15 

expressed in  the developing central  nervous system (CNS) at  a l l  s tages of  development ,  16 

with  moderate  expression remaining in  the neocortex,  h ippocampus,  olfactory bulb and 17 

cerebel lum of  the postnatal  brain .  Similar ly ,  Chd7  expression is  seen throughout  the  18 

CNS during la te  embryogenesis  and ear ly  postnatal  development,  with  s trong 19 

enrichment  in  the cerebel lum, but  displays low expression in  the cortex and neurogenic  20 

niches in  ear ly  l i fe .  In  addit ion to  expression in  the  brain ,  novel  s i tes  of  Chd2  and Chd8  21 

expression are  reported throughout  the developing mouse.  These f indings suggest  22 

addit ional  roles  for  these genes  in  organogenesis  and predict  that  mutat ion of  these 23 

genes may predispose individuals  to  a  range of  other ,  non-neurological  developmental  24 

defects .  25 

26 
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Introduction 1 

 2 

Chromatin  remodell ing factors  have emerged as  key regulators  of  gene expression and 3 

are  of ten mutated in  human disease ( Iwase et  a l ,  2018;  Hendrich and Bickmore,  2001;  4 

Ronan,  Wu & Crabtree  e t  a l ,  2013).  Mammalian chromatin  remodell ing factors  can be 5 

subdivided into  four  famil ies :  SWI/SNF (mating type Switching/Sucrose Non-6 

Fermenting) ,  ISWI (Imitat ion Switch) ,  INO80 (Inosi tol  requir ing 80)  and CHD 7 

(Chromodomain Helicase DNA-binding protein)  (Ho and Crabtree ,  2010) .   8 

 9 

The CHD gene family  consis ts  of  nine genes (CHD1 -CHD9 ) .  The encoded proteins  10 

ut i l ise  the  energy from ATP hydrolysis  to  a l ter  nucleosome posi t ioning,  thereby causing 11 

local  changes in  the s tructure  of  the chromatin  (Marfel la  & Imbalzano,  2007).  CHD1 12 

and CHD2, which belong to  CHD1-2 subfamily,  are  character ised by the presence of  13 

tandem chromodomains and a  Snf2 hel icase  domain –  both motifs  common to  a l l  CHD 14 

proteins  –  in  addit ion to  DNA-binding domains a t  the  C-terminus (Marfel la  & 15 

Imbalzano,  2007;  Liu,  Ferrer ia  & Yusufzai ,  2015).  CHD3 and CHD4 are  s tructural ly  16 

s imilar  but  each contain  a PHD (Plant  Homeo Domain)  Zn-f inger- l ike domain ra ther  17 

than a  DNA binding region,  forming the second subfamily (Marfel la  & Imbalzano,  18 

2007).  Alongside s ignature  sequence motifs  of  the  CHD family ,  members  of  the CHD5-19 

9 subfamily  contain a  DNA binding region alongside various  other  C-terminal  sequences 20 

that  a l ter  their  funct ion (Marfel la  & Imbalzano,  2007).  The present  s tudy focuses  on the 21 

spat iotemporal  pat tern  of  expression of  CHD2, CHD7 and CHD8.  22 

 23 

The ATP-dependent  act ivi ty  of  CHD2 leads to  assembly of  chromatin  into  periodic  24 

nucleosome arrays by deposi t ion of  var ious his tone proteins ,  thereby modifying the 25 

expression and s tructure  of  target  s i tes  (Liu,  Ferrer ia  & Yusufzai ,  2015;  Luijs terburg et  26 

al . ,  2016).  Funct ional ly ,  CHD2 has been reported to  maintain  plur ipotency of  s tem cel ls ,  27 

inf luence cel l  fa te  during myogenesis  and interneuron development and faci l i ta te  DNA 28 

repair  through interact ion with  his tone variant  H3.3 (Harada et  a l ,  2012;  Luijs terburg 29 

et  a l . ,  2016;  Meganathan et  a l ,  2017;  Rajagopalan,  Nepa & Venkatachalam et  a l . ,  2012;  30 

Semba et  a l ,  2017) .  31 
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De novo loss-of-funct ion mutat ions in  CHD2  have been reported in  Autism Spectrum 1 

Disorder  (ASD) pat ients  a longside developmental  delay,  in te l lectual  disabi l i ty ,  2 

increased r isk  of  epi lept ic  seizures  and addit ional  behavioural  problems (Allen et  a l ,  3 

2013;  Chérnier  e t  a l ,  2014;  Lebrun et  a l ,  2017;  O’Roak et  a l ,  2014;  Pinto  e t  a l ,  2016).  4 

The associat ion between CHD2  haploinsuff ic iency and epi lept ic  encephalopathy,  or  5 

Lennox-Gastaut  or  Dravet  syndrome,  is  a lso  well-establ ished and variants  of  CHD2  are  6 

recognised r isk  factors  for  photosensi t iv i ty  in  epi lepsy (Carvi l l  e t  a l ,  2013;  Galiz ia  e t  7 

a l ,  2015;  Lund et  a l ,  2014;  Suls  e t  a l ,  2013).  CHD2  mutat ions are  commonly ident if ied 8 

in  pat ients  with  chronic  lymphocytic  leukaemia,  f requently  in  conjuncture  with  9 

a l terat ions in  funct ional  pathways associated with  brain  development  (Rodríguez et  a l ,  10 

2015).  11 

 12 

Homozygous Chd2  mutant  mice die  around bir th  due to  unknown causes (Marfel la  e t  a l ,  13 

2006).  Heterozygous mice exhibi ted reduced growth and viabi l i ty  and range of  14 

phenotypic  abnormali t ies  which include extramedullary haematopoiesis ,  susceptibi l i ty  15 

to  lymphomas,  cardiomyopathy,  l iver  inf lammation,  glomerulopathy and various other  16 

renal  defects  (Marfel la  e t  a l ,  2006;  Marfel la  e t  a l ,  2008;  Nagarajan et  a l ,  2009;  17 

Rajagopalan,  Nepa & Venkatachalam et  a l . ,  2012).  More recently  Chd2  knockdown has 18 

been demonstrated to  decrease Pax6+ radial  g l ia l  cel l  numbers,  a  cel l  type in  which i t  is  19 

highly expressed,  and to  promote neuronal  and intermediate  progenitor  product ion,  20 

implying an important  balancing role  for  CHD2 in  progenitor  renewal  and cort ical  21 

development  (Shen et  a l ,  2015).  At  present  l imited expression data  for  Chd2 is  avai lable .  22 

Quanti ta t ive  analyses  of  Chd2  in  the adult  mouse demonstrate  that  Chd2 is  widely 23 

expressed by a  mult i tude of  funct ional  t issue groups including the heart ,  brain ,  lungs,  24 

thymus,  lymphoid t issue and skeleta l  muscle  (Marfel la  e t  a l ,  2006;  Nagarajan et  a l ,  25 

2009).  Macroscopic  analysis  of  whole  embryos s ta ined for  Chd2 showed expression in  26 

the developing heart ,  forebrain ,  eye,  dorsal  facia l  region and l imbs between E10.5 and 27 

E15.5 (Kulkarni  e t  a l ,  2008) .  These data  show that  Chd2  expression is  apparent  in  many 28 

t issues  during development  and in  the adult  mouse al though a  t rue spat iotemporal  29 

pat tern  of  expression is  yet  to  be defined.   30 

 31 
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CHD7 is  thought  to  maintain  an open chromatin  conformation at  putat ive regulatory 1 

e lements  (Feng et  a l ,  2017;  Whit taker  e t  a l ,  2017b).  CHD7 faci l i ta tes  neural  s tem cel l  2 

(NSC) mult ipotency in  the developing brain  and quiescence in  the adult  as  both 3 

different ia t ion potent ia l  and s tem cel l  deplet ion ra tes  are  correla ted with  the levels  of  4 

CHD7 (Feng et  a l ,  2015;  Fuj i ta ,  Ogawa & I to ,  2016;  Jones e t  a l ,  2015;  Yamamoto et  a l ,  5 

2018).  As well  as  maintaining mult ipotency,  CHD7 has a lso been shown to  direct ly  6 

control  l ineage ident i ty  in  NSCs through coordinat ion of  t ranscript ion factors  in  the 7 

neural  crest  (Chai  e t  a l ,  2018).  In  a  s imilar  vein,  CHD7 is  required for  the  formation of  8 

migratory neural  crest  cel ls  and,  accordingly,  induced plur ipotent  s tem cel ls  ( iPSCs)  9 

derived from pat ients  with  CHD7 mutat ions exhibi t  defect ive delaminat ion,  migrat ion 10 

and moti l i ty  (Bajpai  e t  a l ,  2010;  Prasad et  a l ,  2012;  Okuno et  a l ,  2017) .  Final ly ,  CHD7 11 

has  been shown to  have mult iple  roles  in  cerebel lar  development ;  consis tent  with  the 12 

observat ion that  individuals  harbouring CHD7 mutat ions may exhibi t  vermis  hypoplasia  13 

(Yu et  a l ,  2013;  Whit taker  e t  a l ,  2017a;  Whit taker  e t  a l ,  2017b;  Donovan et  a l ,  2017).  14 

 15 

Haploinsuff ic iency of  the  CHD7  gene is  the  major  cause of  CHARGE syndrome 16 

(Coloboma of  the  eye,  Heart  defects ,  Atresia  of  the  choanae,  Retardat ion of  growth 17 

and/or  development ,  Genita l ia  and/or  ur inary abnormali t ies  and Ear  abnormali t ies  and 18 

deafness)  and mutat ions have also been reported in  pat ients  with  Kallmann syndrome 19 

(Jongmans et  a l ,  2009;  Kim et  a l ,  2008).  Some of  the  CHD7  mutat ions in  pat ients  with  20 

CHARGE syndrome have been shown to  resul t  in  defect ive nucleosome remodell ing 21 

act ivi ty  in-vi t ro ,  d irect ly  l inking chromatin  remodell ing defects  with  disease 22 

(Bouazoune and Kingston,  2012).  Chd7- / -  embryos do not  survive beyond E11,  23 

indicat ing ear ly  requirements  for  th is  gene during embryonic  development ,  whereas  24 

heterozygotes  exhibi t  features  s imilar  to  those associated with  CHARGE syndrome 25 

(Bosman et  a l ,  2005;  Hurd et  a l ,  2007).  Akin to  Chd2 ,  Chd7  expression during 26 

development  is  not  l imited to  one t issue type.  Chd7 has been shown to  be expressed in  27 

the developing eye,  inner  ear ,  o lfactory epi thel ium, dorsal  root  ganglia ,  lung,  kidneys,  28 

gut  and throughout  the  neural  ectoderm, including the neural  crest  (Aramaki  e t  a l ,  2007;  29 

Bosman et  a l ,  2005;  Engelen et  a l ,  2011;  Fuji ta  e t  a l ,  2014;  Fuji ta  Ogawa & I to ,  2016;  30 

Gage,  Hurd & Mart in ,  2015;  Hurd et  a l ,  2007) .  More recently ,  preserved expression of  31 

Chd7  has  been seen in  the adult  cerebel lum (Whit taker  e t  a l ,  2017a) .   32 
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 1 

In  vi t ro  evidence has  suggested a  central  role  of  CHD8 in  t ranscr ipt ion and 2 

t ranscript ional  e longat ion (Nishiyama et  a l ,  2009;  Rodriguez-Paredes e t  a l ,  2009;  Yates  3 

e t  a l ,  2010;  Yuan et  a l ,  2007).  CHD8S, a  par t ia l  N-terminal  f ragment  of  CHD8, a lso 4 

referred to  as  Duplin ,  acts  as  a  regulator  of  β -catenin mediated t ranscript ion –  largely 5 

causing t ranscript ional  repression (Durak et  a l ,  2016;  Kobayashi  e t  a l ,  2002;  Nishiyama,  6 

2004;  Nishiyama et  a l ,  2012;  Plat t  e t  a l ,  2017;  Sakamoto et  a l ,  2000;  Thompson et  a l ,  7 

2008).  8 

 9 

Recurrent  de novo mutat ions in  CHD8  have been l inked to  ASD. A signif icant  body of  10 

l i terature ,  including case reports  and large exome sequencing s tudies ,  have ident if ied 11 

CHD8  mutat ions in  individuals  with  ASD (Bernier  e t  a l ,  2014;  Neale  e t  a l ,  2012;  Merner  12 

et  a l ,  2016;  O’ Roak et  a l ,  2012;  Sanders  e t  a l ,  2012;  Stolerman et  a l ,  2016;  Talkowski  13 

et  a l ,  2012;  Wang et  a l ,  2016;  Wilkinson et  a l ,  2015;  Zahir  e t  a l ,  2007).  I t  is  one of  the  14 

highest  confidence r isk  genes for  aut ism ident if ied to  date .  ASD is  highly heterogeneous 15 

but  can be ident if ied by a  repertoire  of  behavioural  features  in  pat ients :  social  16 

impairment ,  communicat ion impairment ,  repet i t ive  behaviours  and sometimes 17 

accompanied by an array of  other  condit ions such as  epi lepsy,  dyslexia ,  dyspraxia  and 18 

at tent ion defic i t  hyperact ivi ty  disorder  (ADHD) (Brieber  e t  a l ,  2007;  Canitano,  2007;  19 

Dziuk et  a l ,  2007;  Helbig  e t  a l ,  2009;  Leyfer  e t  a l ,  2006;  Taurines  e t  a l ,  2012).  The 20 

effects  of  CHD8  mutat ion may also manifest  as  character is t ic  physical  features  21 

including macrocephaly,  facial  dysmorphia  and gastrointest inal  dis turbance,  perhaps 22 

defining CHD8 -re la ted ASD as a  dis t inct  subtype (Bernier  e t  a l ,  2014).  23 

 24 

CHD8 is  recrui ted to  promoters  of  highly expressed genes in  NSCs and reduced 25 

expression of  CHD8 in  mouse and human cel ls  has  been shown to  precipi ta te  26 

dysregulat ion of  ASD related genes and al ter  cort ical  neurogenesis  (Cotney et  a l ,  2015;  27 

Durak et  a l ,  2016;  Sugathan et  a l ,  2014;  Wang et  a l ,  2015;  Wilkinsion et  a l ,  2015) .   In  28 

Chd8+ / -  mice behavioural  changes have been documented alongside character is t ic  29 

neurodevelopmental  changes perta ining to  a l tered neurogenesis and long-range 30 

connect ivi ty ,  brain  overgrowth and craniofacial  anomalies  (Gompers  e t  a l ,  2017;  31 
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Katayama et  a l ,  2016;  Plat t  e t  a l ,  2017;  Suet ter l in  e t  a l ,  2018).  Chd8- / -  embryos die  by 1 

E7.5 of  development .  The ear ly  embryonic  le thal i ty  associated with  CHD8 loss  has  been 2 

proposed to  be caused by aberrant  p53-mediated apoptosis  as  a  consequence of  loss  of  3 

CHD8-mediated repression of  p53 target  genes (Nishiyama et  a l ,  2004).  As the mutants  4 

do not  survive,  the  developmental  roles  af ter  E7.5 are  not  known. The expression pat tern  5 

of  Chd8  has  been descr ibed between E7.5 and E10.5 in  the mouse using a  CHD8s/Duplin  6 

ant isense r iboprobe (Nishiyama et  a l ,  2004).  Whole  embryo analysis  showed expression 7 

predominantly  in  the  brain ,  face and l imb buds.  Since,  microarray data  has  been used to  8 

quantify  the level  of  Chd8  expression in  developing mouse,  macaque and human brains .  9 

A regional  expression heatmap showed widespread expression,  h ighest  in  the  ear ly  pre-10 

natal  per iod (Bernier  e t  a l ,  2014) .  Plat t  e t  a l  (2017) demonstrated a  s imilar  temporal  11 

pat tern  of  quanti ta t ive  expression in  the mouse brain  and fur ther  showed that  Chd8  is  12 

expressed in  a lmost  a l l  neuronal  populat ions.  Despi te  these insights ,  no s tudy to  date  13 

has  character ised the macroscopic  expression pat tern of  Chd8  in  a l l  t issues  of  the 14 

developing mouse from mid-gestat ion and through ear ly  l i fe .  Given the s trong 15 

associat ion of  CHD8 mutat ions with  ASD and other  physical  abnormali t ies ,  determining 16 

a  comprehensive spat iotemporal  expression pat tern of  CHD8 during development  is  of  17 

great  in terest .   18 

 19 

In  the present  s tudy,  we invest igated the spat iotemporal  pat terns  of  three CHD genes 20 

with  s trong evidence for  important  funct ions in  brain  development  and 21 

neurodevelopmental  d isorders .  The expression pat tern  of  Chd8  was compared with  Chd7  22 

and Chd2 .  As these genes tend to  be widely expressed during ear ly  development ,  we 23 

focused on la ter  embryonic  s tages to  ident ify  novel  expression s i tes  during 24 

organogenesis .  We report  novel  expression s i tes  for  a l l  three genes during development ,  25 

with  examples  of  overlapping,  complementary and dis t inct  expression pat terns .  26 

 27 

28 
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Material and Methods 1 

 2 

Animals 3 

Timed-mated CD1 embryos and pups were produced in  our  in-house faci l i ty .  Noon on 4 

the day a  vaginal  plug was detected was designated as  embryonic  day 0.5  (E0.5) .   The 5 

day of  bir th  was designated as  postnatal  day (P)0.  All  experimental  procedures  were 6 

approved by the inst i tu t ional  Local  Ethical  Review Panel  and the UK Home Office .  7 

 8 

Primer design and probe synthesis 9 

Primers  were designed to  amplify  a  455 bp fragment  of  exon 37 of  Chd8  f rom mouse 10 

genomic DNA: forward 5’-TCTCTGCCTTTTATGCCGTTTG-3’;  reverse  5’-11 

CACCTCCTGAAGTCTTGGGTTTC-3’ with  T7 recognit ion sequence added to  the 12 

reverse  pr imers  in  a  PCR react ion.  The resul t ing DNA template  was used for  the  13 

synthesis  of  digoxigenin (DIG)-label led ant isense or  sense mRNA probes.  A Chd7  probe 14 

template  was made with  pr imer pairs  that  amplify  a  222 bp fragment  of  Chd7  exon 3 15 

from mouse genomic DNA: forward 5’-TTGGTAAAGATGACTTCCCTGGTG-3’;  16 

reverse  5’-GTTTTGGCGTGACAGTTTTTGC-3’.  A Chd2  625bp probe template  was 17 

amplif ied from mouse brain  cDNA using primer pairs :  forward 5’-  18 

AGAAGAGCGTCCTCACAAAGACTG-3’;  reverse  5’-  19 

TTTTTCCTCAGGGTCCACAGG-3’.  20 

 21 

Sample preparation 22 

Embryos and brains  were dissected in  ice-cold diethylpyrocarbonate- treated phosphate  23 

buffered sal ine (DEPC PBS) and f ixed in  4% paraformaldehyde (PFA) overnight .  After  24 

several  washes in  DEPC PBS, embryos or  brains  were placed in  casset tes  immersed in  25 

70% ethanol .  The samples  were processed in  a  Leica ASP300 t issue processor  fol lowing 26 

a  s tandard protocol .  The processed samples  were embedded in  wax,  sect ioned sagi t ta l ly  27 

at  10 µm using a  Leica RM2145 microtome,  placed on Superfrost  Plus  s l ides  and lef t  to  28 

dry a t  42°C for  48 hours .  29 



 9 

In situ hybridisation  1 

E12.5,  E14.5,  P0,  P7 and P20 sagi t ta l  sect ions on s l ides  were deparaff inised in  Xylene 2 

and rehydrated in  decreasing ser ies  of  e thanol  concentrat ions.  This  was fol lowed by 3 

DEPC PBS washes.  Proteinase K (50 µg/ml in  DEPC PBS) was added and sect ions were 4 

incubated for  10 minutes  a t  37 °C.  5 

 6 

The s l ides  were then washed in  DEPC PBS, ref ixed in  4% PFA for  10 minutes  and 7 

washed again in  DEPC PBS. Sect ions were acetylated (acet ic  anhydride,  0 .1M 8 

Triethanolamine,  DEPC water  a t  pH 7.5)  for  10 minutes  af ter  which they were again 9 

washed in  DEPC PBS thr ice .  Sect ions were dehydrated in  70% ethanol  (5  minutes)  and 10 

95% ethanol  (a  few seconds)  and lef t  to  a ir  dry for  a  few minutes .  300 µl  probe-11 

hybridisat ion mix (2  µl  of  probe per  ml hybridisat ion solut ion)  (50% Dextran Sulfate ,  12 

50% Formamide,  1% Denhardts  solut ion,  0 .3M NaCl (sodium chloride) ,  20mM Tris-HCl 13 

(pH8),  10mM NaPO 4  (sodium phosphate) ,  5mM EDTA (Ethylenediaminetetraacet ic  14 

acid) ,  250µg/ml Yeast  tRNA, 1% sarcosyl ,  s ter i le  water)  pre-heated to  80°C were added 15 

to  each s l ide and covered with  paraf i lm.  The s l ides  were then arranged in  a  humid 16 

chamber (50% formamide/water)  and incubated overnight  a t  65°C.  17 

 18 

The fol lowing day the s l ides  were washed in  high s tr ingency (HIS)  (formamide,  0 .1% 19 

SSC (sal ine-sodium ci t ra te) ,  s ter i le  dis t i l led water)  wash for  30 minutes  a t  65°C 20 

fol lowed by RNase buffer  (0 .5M NaCl,  10mM Tris-HCl pH 7.5 ,  5mM EDTA, dis t i l led 21 

water)  a t  37 °C for  10 minutes  (3x) .  Sl ides  were t reated with  RNase buffer  with  20 22 

µg/ml RNase A at  37°C for  30 minutes  fol lowed by a  s ingle  wash in  RNase buffer  a t  23 

37°C for  15 minutes .  The s l ides  were again washed twice in  HIS at  65°C for  20 minutes  24 

each.  2x SSC and 0.1x SSC washes for  15 minutes  were performed twice fol lowed by 25 

PBT (PBS, 0 .1% Tween 20)  washes a t  room temperature .  Sect ions were blocked with  26 

10% heat  inact ivated goat  serum in  PBT for  one hour  a t  room temperature  before  a  3-27 

hour  incubat ion in  a lkal ine phosphatase  coupled with  ant i-dioxygenin ant ibody (1:500 28 

di lut ion,  Roche)  and 1% heat- inact ivated goat  serum in  PBT. At the end of  incubat ion,  29 

s l ides  were washed four  t imes with  PBT for  15 minutes  each at  room temperature  30 

fol lowed by freshly prepared NTMT buffer  (5M NaCl,  1M Tris-HCl a t  pH 9.5 ,  1M 31 
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MgCl2,  0 .1% Tween-20,  s ter i le  dis t i l led water  and 0.5  mg/ml levamisole)  twice a t  room 1 

temperature .  Final ly ,  the  s l ides  were incubated in  darkness  in  BM purple  (Roche)  and 2 

0 .5  mg/ml levamisole  a t  room temperature  overnight .  3 

 4 

When s ignal  appeared on sect ions,  the  react ion was s topped by washing in  PBS at  room 5 

temperature  for  5  minutes .  Sl ides  were dehydrated with  an increasing ser ies  of  e thanol  6 

washes fol lowed by Xylene before  being mounted with  Di-N-Butyle  Phthalate  in  Xylene 7 

(DPX) and lef t  to  a ir  dry.  8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 

 17 

 18 

 19 

 20 

 21 

 22 

 23 

 24 
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Results 1 

 2 

Chd2, Chd7 and Chd8 gene expression in mouse embryos at E12.5 and 3 

E14.5. 4 

At E12.5 Chd7  and Chd8  expression was apparent  throughout  the  neuroepithel ium of  5 

the developing central  nervous system (CNS) (Figure  1A, B).  Chd8  t ranscript  s ignals  6 

were observed throughout  the ventr icular  and subventr icular  regions of  the neocortex 7 

and in  the hindbrain  (Figure 1Aa,  Ab),  including the cerebel lum where expression was 8 

evident  in  the ventr icular  zone (VZ),  rhombic l ip  (RL) and the is thmus (Figure 1Aa).  9 

Both VZ and RL are  germinal  centres  where progenitor  cel ls  are  born that  la ter  migrate  10 

and populate  the cerebel lum (White  and Si l l i toe ,  2012).  Notably ,  Chd8  expression could 11 

also be observed at  the  lower rhombic l ip  and f loor  plate  region of  the  hindbrain ,  12 

extending to  the spinal  cord  and dorsal  root  ganglia  (Figure  1A, Supplementary Figure  13 

1A).  Chd8 expression can be observed throughout  the neural  tube with  no evident  14 

mediolateral  nor  dorsoventral  gradient  (Supplementary Figure  1A-D).  Other  regions of  15 

interest  showing high Chd8  expression included the diencephalon and areas  adjacent  to  16 

the hypothalamus and pi tui tary gland (Figure 1A).  Chd8  expression was observed 17 

throughout  the craniofacial  region including the tongue and olfactory epi thel ium (Figure 18 

1A).   Elsewhere,  o ther  organs of  the  embryo also showed substant ia l  Chd8  expression 19 

with  s ignals  present  in  the intersomit ic  regions,  lungs,  gut ,  geni ta l  tubercle  and ta i l  20 

(Figure  1A).  21 

 22 

As with  Chd8 ,  Chd7  mRNA transcripts  were observed throughout  the  embryo (Figure 23 

1B).   Expression was found in  the ventr icular  region of  the  developing brain  and spinal  24 

cord.  Chd7  mRNA transcripts  were present  in  both the ventr icular  and subventr icular  25 

zones of  the  neocortex (Figure  1Bb).   In  the  hindbrain ,  Chd7  was expressed in  a l l  26 

regions including the upper  rhombic l ip  of  the  cerebel lum, the lower rhombic l ip  and 27 

f loor  plate  (Figure  1Ba).  Chd7  expression was also observed in  the diencephalon and 28 

the pi tui tary (Figure 1B).  Within  the neural  tube expression was present  in  both cranial  29 

and caudal  poles  (Supplementary Figure  1E,  F) .  Addit ional ly ,  in  t ransverse  sect ions 30 

Chd7 at  th is  s tage was noted to  be enriched in  the ventr icular  zone and displayed a  31 
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ventral  to  dorsal  gradient  within  the developing spinal  cord (Supplementary Figure 1G, 1 

H).  Extensive expression was also observed outs ide the CNS.  In  the head region,  diffuse 2 

Chd7  expression was present  in  the tongue.   Other  organs with  expression included the 3 

dorsal  root  ganglia ,  in tersomit ic  regions,  gut ,  lungs,  and the ta i l  (Figure  1B).  4 

 5 

At E12.5,  Chd2  mRNA transcript  s ignals  could be found in  many t issues  in  the 6 

developing mouse (Figure  1C),  d ifferent ia ted from background by use of  a  sense control  7 

(Supplementary Figure  2) .  Diffuse Chd2  expression was observed within  the  brain  8 

(Figure  1Ca,  Cb),  in tersomit ic  regions and the spinal  cord.  Despi te  th is  increased s ignal  9 

densi ty  in  brain  t issue,  the  level  of  expression compared to  other  regions was low, 10 

suggest ing that ,  a t  th is  s tage,  Chd2  is  expressed ubiquitously  a t  low levels  throughout  11 

the embryo.  12 

 13 

As several  t issues  outs ide of  the CNS expressed both Chd7  and Chd8  s t rongly,  these 14 

were compared direct ly  a t  h igher  power.  Si tes  of  expression included the cochlea,  lungs,  15 

eyes and kidneys (Figure  2A-D, F-I) .  For  both,  d is t inct  expression levels  were observed 16 

at  the  vest ibulocochlear  ganglion and cochlear  epi thel ium in  the ear  (Figure 2A, F) .  In  17 

the kidney,  expression levels  were high in  the mesenchyme and metanephric  tubule  18 

epi thel ium (Figure 2B, G) whereas  in  the lung,  expression was observed in  the 19 

pulmonary epi thel ium (Figure 2C, H).   Both t ranscripts  were a lso observed in  the neural  20 

re t ina/opt ic  cup and ret inal  pigmented epi thel ium of  the  eyes,  with  Chd8  t ranscripts  21 

present  widely throughout  the  surrounding mesenchyme and craniofacial  t issues (Figure  22 

2D, I) .  Interest ingly,  Chd8  a lso  showed high expression in  the incisor  pr imordium, 23 

where no Chd7  expression was seen (Figure  2E).   24 

  25 

In  E14.5 embryos,  several  s i tes  of  prominent Chd8  expression could be seen (Figure  26 

3A).  In  the head,  abundant  Chd8  t ranscripts  were observed in  the forebrain ,  midbrain ,  27 

rhombic l ip  and ventr icular  zone of  the  cerebel lum (Figure 3Aa).  In  the  neocortex,  28 

s ignif icant  expression was revealed in  the  ventr icular,  subventr icular  and mantle  zones 29 

(Figure  3Ab).   Prominent  expression was a lso seen in  the  basal  forebrain ,  including the 30 

ganglionic  eminences,  suggest ing a  role  for  Chd8  in  the generat ion of  GABA-ergic  31 
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interneurons (Figure 3A).   Diffuse or  low Chd8  expression was observed in  the 1 

diencephalon and midbrain  region.  Extending from the hindbrain  region,  the  spinal  cord 2 

a lso showed low expression.  Elsewhere in  the head,  expression was seen in  the olfactory 3 

epi thel ium, the tongue and the ventral  incisor .   Other  organs continued to  show Chd8  4 

expression as  a t  E12.5 ,  including the lungs,  gut  and kidneys.  In  addit ion,  a t  E14.5,  Chd8  5 

t ranscripts  were detected within  the heart ,  thyroid,  thymus,  l iver ,  gastr ic  epi thel ium, 6 

t r igeminal  ganglion and digi ts  of  the  hind l imb (Figure 3A).   7 

 8 

Comparable  to  i ts  expression at  E12.5,  high levels  of  Chd7  mRNA transcripts  were 9 

present  most  prominently  in  the ventr icular  region of  the  neocortex (Figure 3Bb) in  10 

accordance with  previous expression analyses  (Engelen et  a l ,  2011) .  Signals  were a lso 11 

observed in  the midbrain  region extending to  the hindbrain  (Figure  3B).  Within  the 12 

cerebel lum, s ignif icant  Chd7  s ignals  were observed at  the  rhombic l ip  and ventr icular  13 

zone of  the  fourth  ventr ic le  (Figure  3Ba).   Widespread Chd7  expression was also present  14 

in  the diencephalon (Figure 3B).  Extending from the hindbrain ,  the  spinal  cord showed 15 

widespread Chd7  s ignal .   In  the oral  region,  the  tongue and incisor  pr imordium showed 16 

Chd7  expression.  Note  that  i ts  expression in  the tooth appears  to  occur la ter  in  17 

development,  a t  E14.5,  than i ts  family  member Chd8  (Figure  2J) .   Other  organs such as  18 

the lungs,  thymus,  heart ,  k idneys and l iver ,  which showed s ignif icant  Chd8  expression,  19 

also displayed Chd7  expression (Figure  3B).  20 

 21 

Chd2  expression at  E14.5 was s t i l l  low and widespread but  was markedly elevated in  22 

cer ta in  regions compared to  E12.5 (Figure 3C).  Strong s ignals  were detected in  the 23 

neocortex (Figure  3Cb) and rhombic l ip  of  the  cerebel lum (Figure 3Ca),  enriched in  the 24 

ventr icular  zone of  the  cerebel lum. In  the craniofacial  region the tongue,  incisor  25 

pr imordium and olfactory epi thel ium al l  s ta ined for  Chd2 .  Specif ic  expression s ignals  26 

outs ide of  the  head were noted in  the  kidney,  l iver ,  thymus,  lung,  thyroid,  gut ,  d igi ts  of  27 

the hindl imb and myogenic  t issue (Figure  3C).   28 

 29 

Much l ike at  E12.5,  both Chd8  and Chd7  t ranscripts  could be detected in  the kidneys,  30 

lungs and eyes (Figure  3Ac-Ae,  Bc-Be).  Addit ional ly ,  however  a  s t rong Chd2  s ignal  31 
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could also be detected in  these t issues  a t  th is  s tage (Figure  3Cc-Ce).  mRNA transcripts  1 

of  a l l  three genes were detected at  the  condensing mesenchyme of  the  kidney (Figure  2 

3Ae,  Be,  Ce) ,  epi thel ium of  the  lung (Figure ,  3Ad,  Bd,  Cd) and neural  re t ina,  opt ic  cup 3 

and lens of  the  eyes,  with  part icular ly  s trong expression of  Chd7  seen in  the  re t ina 4 

(Figure ,  3Ac,  Bc,  Cc) .  Notably,  a  Chd2 signal  was a lso detected in the anatomical  space 5 

containing the opt ic  nerve and i ts  surrounding s tructures  a t  th is  s tage (Figure 3Cc) .   6 

 7 

Distinct Chd2, Chd7 and Chd8 expression patterns in the postnatal 8 

mouse brain 9 

 10 

In  order  to  def ine the domains of  Chd8  expression in  the postnatal  brain ,  in  s i tu  11 

hybridisat ion on brain  sect ions a t  P0 were carr ied out .  At  th is  s tage,  widespread 12 

expression of  Chd8  was observed (Figure  4A, A’) ,  in  agreement  with  previous s tudies  13 

suggest ing that  Chd8  expression peaks during mid-gestat ion in  the embryo (Bernier  e t  14 

al ,  2014;  Plat t  e t  a l ,  2017).  Closer  examinat ion revealed expression throughout  the 15 

cerebel lum (Figure 4Aa) and a  s l ight  enrichment  of  Chd8  expression towards the outer  16 

neocortex (Figure  4Ab).  Other  Chd8 -expressing regions of  in terest  include the 17 

hippocampus,  hypothalamus and olfactory bulb  (Figure  4A, A’) .   18 

 19 

At th is  s tage,  a  comparable  widespread pat tern  of  expression was seen for  Chd7  (Figure  20 

4B, B’,  C,  C’)  with  Chd7  exhibi t ing part icular ly  s t rong expression in  the cerebel lum 21 

and pons (Figure  4Ba,  Ca) .  Chd7  was highly expressed within  the cerebel lum in  contrast  22 

to  Chd2  and Chd8  for  which moderately  s trong and more diffuse expression was seen 23 

(Figure  4Aa-Ca).  Chd2  t ranscripts  were enriched in  the outer  neocortex,  hypothalamic 24 

area,  superior  ol ivary complex and basal  pons (Figure 4C).  25 

 26 

The expression pat terns of  these genes  in  the P7 brain  were s imilar ly  widespread with  27 

continued expression in  the cerebel lum, neocortex and hippocampus (Figure  5A-C, A’-28 

C’) .  Interest ingly,  a l l  three genes appear  to  be expressed within  the rostra l  migratory 29 
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s tream (RMS) suggest ing a  role  for  the  CHD family  in coordinat ing the formation of  1 

the infant  olfactory system. High power images demonstrated prominent  expression of  2 

a l l  three genes in  the cerebel lum (Figure 5Aa-Ca),  the  dentate  gyrus (DG) and cornu 3 

ammonis  1-3 (CA1-3)  of  the  hippocampus (Figure  5Ab- Cb) and neocortex,  enriched in  4 

layers  II-III  of  the  neocortex (Figure  5Ac- Cc) .  This  cort ical  d is tr ibut ion is  par t icular ly  5 

marked for  both Chd7  and Chd8  where  a  dis t inct  band of  high s ignal  densi ty  can be 6 

appreciated.   Much l ike in  the P0 brain ,  Chd7  was most  s t rongly expressed in  the 7 

cerebel lum. 8 

 9 

At P20,  Chd8 and Chd2  expression was prominent  in  the cerebel lum, neocortex,  10 

hippocampus,  RMS and olfactory bulb (Figure 6A, A’,  C,  C’) .  Chd7  was most  prominent  11 

in  the cerebel lum, with  low expression in  the hippocampus ,  RMS and olfactory bulb 12 

(Figure 6B,  B’,  Bc) .  All  three  genes were expressed in  the maturing granule  cel l  layer  13 

(GCL) of  the  cerebel lum (Figure  6Aa-Ca) and the DG and CA1-3 of  the  hippocampus 14 

(Figure  6Ab-Cb).  Chd2  and Chd7  expression in  the hippocampus was much lower and 15 

more diffuse compared to  the prominent  expression of  Chd8  (Figure  6Ab-Cb).  Clear  16 

expression of  Chd2  and Chd8  was noted in  the neocortex,  whils t  Chd7  expression was 17 

very low in  comparison (Figure 6Ac-Cc).   18 

 19 

Discussion 20 

 21 

The resul ts  of  the  current  s tudy demonstrate  that  a l l  three genes are  widely expressed 22 

and show l i t t le  evidence of  res tr ic ted temporal  and spat ia l  expression pat terns  during 23 

embryonic  development .  Although expression seemingly occurs  in  many different  24 

t issues  in-utero i t  can be noted that  neurological  t issue in  par t icular  expresses  these 25 

members  of  the  CHD family a t  a  high level ;  an observat ion that  is  not  wholly  26 

unsurpris ing considering the phenotypic  manifesta t ions of  mutat ions of  these genes.  27 

 28 

CHD gene expression in the embryo  29 
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Chd8  is  widely expressed in  embryonic  s tages E12.5 and E14.5 ,  consis tent  with  a  1 

continued role  for  CHD8 during ear ly  s tages  of  development ,  af ter  E7.5 when Chd8- / -  2 

mouse embryos were demonstrated to  die  due to  apoptosis  (Nishiyama et  a l ,  2004).  3 

Recent  work also implicated a  role  for  CHD8 in  suppressing p53 and the t ransact ivat ion 4 

of  genes under  p53 control  by preventing the process  of  apoptosis  (Nishiyama et  a l ,  5 

2009).  This  could explain  the ear ly  embryonic  le thal i ty  observed.  Moreover ,  the  6 

suggested role  of  CHD8 in  t ranscr ipt ion and elongat ion together  with  i ts  role  in  7 

control l ing the expression of  CCNE2 and TYMS which are  involved in  the G1/S phase 8 

of  cel l  cycle  re inforce i ts  possible  role  in  normal  gene regulat ion and cel l  prol i ferat ion 9 

respect ively  (Rodriguez-Paredes e t  a l ,  2009) ,  hence normal  development .   10 

 11 

Similar  to  Chd8 ,  the  widespread Chd2  and Chd7  expression suggests  they also have 12 

important  roles  in  ear ly  developmental  processes and organogenesis .  These data  are  13 

consis tent  with  the evidence that  nei ther  Chd2  nor  Chd7  homozygotes  thr ive past  ear ly  14 

development (Bosman et  a l ,  2005;  Hurd et  a l ,  2007;  Marfel la  e t  a l ,  2006).  The CHD7  15 

gene is  the  dominant  cause of  CHARGE syndrome which is  character ised by defects  in  16 

the eye,  brain ,  ear ,  heart  and genita l ia ;  areas  in  which we observed high levels  of  Chd7  17 

expression (Janssen et  a l ,  2012;  Vissers  e t  a l ,  2004).  There  are  a lso reports  of  scol iosis  18 

caused by CHD7  mutat ions (Gao et  a l ,  2007) which might  re la te  to  the expression we 19 

observed in  the inter-somit ic  mesoderm. FAM124B was reported to  be a  component  of  20 

a  CHD7 and CHD8-containing complex (Batsukh et  a l ,  2012) suggest ing that  th is  mult i-21 

protein  complex could be funct ional  in  cel ls  where Chd7  and Chd8  are  co-expressed.  22 

Whereas  CHD7  mutat ions are  c lear ly  l inked to  mult i -organ defects  in  the context  of  23 

CHARGE syndrome (Gao et  a l ,  2007;  Janssen et  a l ,  2012;  Pat ten et  a l ,  2012;  Van de 24 

Laar  e t  a l ,  2007;  Vissers  e t  a l ,  2004),  a  c lear  role  for  CHD8 in  organogenesis  has  not  25 

been reported.  Here,  however ,  we show that  Chd8  is  expressed in  many developing 26 

organs including the lumen of  s tomach and midgut;  an observat ion which may explicate  27 

the gastrointest inal  complicat ions associated with  CHD8  mutat ions in  ASD pat ients  28 

(Bernier  e t  a l ,  2014).  29 

 30 

In  the case of  Chd2 ,  heterozygous mice most  notably display an array of  gross  kidney 31 

abnormali t ies ,  which might  per ta in  to  the high levels  of  expression of  th is  gene we 32 
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observed in  the developing kidney (Marfel la  e t  a l ,  2008).  Despite  th is  associat ion,  the  1 

absence of  reported renal  dysgenesis  in  humans harbouring CHD2  mutat ions might  2 

indicate  divergent  funct ions for  th is  gene in  the human kidney,  or  a  degree of  funct ional  3 

redundancy with  other  CHD genes.  Notably,  a t  E14.5 the Chd2  expression pat tern was 4 

markedly s imilar  to  Chd8  and indeed,  several  regions of  the embryo at  th is  s tage 5 

expressed these two genes in  exclusion of  Chd7 ,  suggest ing the possibi l i ty  that  they 6 

may serve s imilar  funct ions.  Some such regions include the dorsal  h indl imb,  thyroid,  7 

gut  and olfactory epi thel ium.  8 

 9 

CHD genes in brain development 10 

CHD2 and CHD8  mutat ions share  a  well-establ ished l ink with  ASD, a  disorder  that  is  11 

widely regarded to  be caused by aberrant  neurodevelopment (Lebrun et  a l ,  2017;  O’ 12 

Roak et  a l ,  2012;  Neale  e t  a l ,  2012;  Sanders  e t  a l ,  2012) .  Our s tudy demonstrates  high 13 

levels  of  both Chd2  and Chd8  expression in  the developing brain ,  especial ly  during 14 

embryonic  development .  Addit ional ly ,  preserved expression of  both was revealed in  key 15 

areas  of  the perinatal  (P0)  and postnatal  brain  (P7 and P20) including the cerebel lum, 16 

hippocampus and neocortex –  regions of  the  brain  that  are  implicated in  ASD (Allen,  17 

2005;  de Anda et  a l ,  2012;  Donovan & Basson,  2017;  Riedel  and Micheau,  2001).  Within  18 

the neocortex expression of  Chd2  and Chd8  appears  to  be part icular ly  prominent  within  19 

the outer  layers ,  d is t inct ly  layers  II -III  of  the  postnatal  brain ,  areas  in  which high 20 

numbers  of  other  ASD risk genes are  a lso enriched (Parikshak et  a l ,  2013).  21 

 22 

Taken together ,  and bols tered by evidence of  aberrant  neurodevelopmental  phenotypes 23 

associated with  mutants  of  these genes  (Allen et  a l ,  2013;  Chérnier  e t  a l ,  2014;Gompers  24 

et  a l ,  2017;  Katayama et  a l ,  2016;  Lebrun et  a l ,  2017;  O’Roak et  a l ,  2014;  Pinto  e t  a l ,  25 

2016;  Plat t  e t  a l ,  2017;  Suet ter l in  e t  a l ,  2018),  our  data  suggest  that  Chd2  and Chd8  are  26 

expressed in  a  spat iotemporal ly  appropria te  way such that  impairment  in  their  27 

expression might  precipi ta te  some of  the  neurological  changes seen in pat ients  with 28 

ASD. With both genes expressed in  the SGZ of  the hippocampus our  data  fur ther  support  29 

the not ion that  CHD2 and CHD8 might  regulate  neurogenesis  (Shen et  a l ,  2015;  Durak 30 
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et  a l ,  2016) ,  akin  to  the reported role  of  their  counterpart  CHD7 (Feng et  a l ,  2013;  Jones 1 

e t  a l ,  2015).   2 

 3 

In  addit ion  to  i ts  role  in  adult  neurogenesis ,  the  diverse ,  temporal ly  dis t inct  funct ions 4 

of  CHD7 during cerebel lar  development (Yu et  a l ,  2013;  Whit taker  e t  a l ,  2017a;  5 

Whit taker  e t  a l ,  2017b;  Donovan et  a l ,  2017),  are  consis tent  with  i ts  pronounced 6 

expression in  the postnatal  cerebel lum. In  view of  the role  of  CHD7 in  7 

neurodevelopment  our  s tudy supports  the  not ion that  i ts  mutat ion might  account  for  the  8 

cerebel lar  hypoplasia  associated with  CHARGE syndrome.  Furthermore,  i ts  expression 9 

in  the olfactory bulb and RMS throughout  postnatal  development  fur ther  bols ters  the  10 

l ink between Kallmann syndrome,  character ised by anosmia and hypogonadism, and 11 

CHD7 mutat ion (Jongmans et  a l ,  2009) .   12 

 13 

Final ly ,  the reported expression of  Chd2  in  the postnatal  h ippocampus invi tes  a  potent ia l  14 

l ink between the dysfunct ion and defic iency of  hippocampal  interneurons documented 15 

in  epi lept ic  encephalopathies ,  temporal  lobe epi lepsy and seizures  associated with  ASD 16 

and i ts  proposed role  in  in terneuron development (Fyre  e t  a l ,  2016;  Lado et  a l ,  2013;  17 

Liu et  a l ,  2014;  Meganathan et  a l ,  2017) .  Furthermore,  Chd2  expression in  the eye and 18 

rela ted s tructures  during ear ly  development  might  a lso perta in  to  the associat ion of  19 

CHD2  mutat ion with  photosensi t iv i ty  in  epi lepsy (Carvi l l  e t  a l ,  2013;  Galiz ia  e t  a l ,  20 

2015;  Lund et  a l ,  2014;  Suls  e t  a l ,  2013) .  21 

  22 

In  conclusion,  in  addit ion to  their  es tabl ished roles  in  ear ly  brain  development ,  our  23 

expression analyses  a lso implicate  Chd2  and Chd8 ,  a longside Chd7 ,  in  organogenesis .  24 

Our data  a lso implicate  a l l  three genes in  the process  of  postnatal  neurogenesis  due to  25 

their  expression in  the neurogenic  niches of  the adult  brain .  Addit ional  s tudies  wil l  be  26 

necessary to  fur ther  def ine the funct ion of  these genes in  these developmental  processes .  27 

The gene expression data  reported here  wil l  provide invaluable  information and 28 

reference points  to  guide these future  s tudies .  29 

 30 
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Figure legends 7 

Figure 1 .  Dist inct  Chd8,  Chd7 and  Chd2  expression patterns at  E12.5.   8 

In  s i tu  hybridisat ion on sagi t ta l  sect ions of  mouse embryos a t  developmental  s tage 9 

E12.5 using ant isense r iboprobes to  detect  Chd8,  Chd7 and  Chd2  mRNA, anter ior  to  10 

the r ight  (A-C).  Gene expression is  indicated by purple/blue s ta ining.  Note  the  11 

widespread Chd8  expression in  most  embryonic  t issues  (A),  the  high,  local ized 12 

expression of  Chd7 ,  specif ical ly  in  the  developing nervous system (B),  and very low, 13 

widespread expression of  Chd2  (C) .  High magnif icat ion images of  the  developing 14 

cerebel lum (Aa-Ca) demonstrate  the  presence of  Chd8  (Aa)  and Chd7  (Ba)  t ranscripts  15 

throughout  the neuroepithel ium, with  l i t t le  Chd2  expression evident  (Ca) .  High 16 

magnif icat ion images through the neocortex show widespread Chd8  expression (Ab),  17 

note  that  Chd7  expression tends to  be higher  on the ventr icular  s ide (Bb) and that  18 

there  is  l i t t le  discernible  Chd2  expression (Cb).  Other  regions with  re la t ively  s trong 19 

s ignals  were the nasal  epi thel ium, ta i l ,  geni ta l  tubercle ,  in tersomit ic mesoderm, spinal  20 

cord,  mid brain ,  d iencephalon,  tongue and pi tui tary .  Scale  bars  represent  100 µm.  21 

Cb = cerebel lum; Di = diencephalon;  Drg = dorsal  root  ganglia ;  FP = f loor  pla te;  Gt  = 22 

geni ta l  tubercle;  Gu = gut ;  H = heart ;  Is  =  is thmus;  Iso = intersomit ic  mesoderm; Lu = 23 

lungs;  LRL = lower rhombic l ip ;  MB = midbrain;  MZ = molecular  zone;  NC = neocortex;  24 

Pi  =  pi tui tary;  Sc = spinal  cord;  SVZ = subventr icular  zone;  Ta = ta i l ;  To = tongue;  25 

URL = upper  rhombic l ip ;  VZ = ventr icular  zone.  26 

 27 

Figure 2 .  Chd7  and Chd8  are expressed in mult iple  organs at  E12.5.   28 



 28 

In  s i tu  hybridisat ion images of  Chd8  (A-E) and Chd7  (F-I)  t ranscripts  around the 1 

cochlea of  the  inner  ear  (A,  F) ,  k idney (B,  G),  lung (C,  H) eye (D,  I)  and tooth (E,  J) .  2 

Scale  bars  represent  100 µm. 3 

C = cornea;  CD = cochlear  duct :  CVG = cochlea-vest ibular  ganglia;  CM = condensing 4 

mesenchyme; LE = lung epi thel ium; LN = lens;  MT = metanephric  tubule;  NR = 5 

neuroret ina;  PI  = pr imordium of  incisor;  PO = pre-opt ic  cup;  RPE = ret inal  p igmented 6 

epi thel ium; SB = segmental  bronchus.    7 

 8 

Figure 3 .  Dist inct  nervous system and organ-specif ic  expression patterns of  Chd8,  9 

Chd7 and Chd2  in  E14.5 mouse embryos.   10 

In  s i tu  hybridisat ion on sagi t ta l  sect ions of  E14.5 mouse embryos (A-C),  anter ior  to  11 

the r ight .  Note  dis t inct  Chd8,  Chd7 and Chd2  expression pat terns  throughout  the 12 

embryos with  notably higher  level  in  the developing nervous system. Beyond the 13 

nervous system, other  notable  regions of  expression included various organs and 14 

glands,  for  example the thymus and thyroid,  heart  and kidneys.  High magnif icat ion 15 

images (Aa-Ce) revealed specif ic  expression pat terns  in  the  cerebel lum (Aa-Ca),  16 

Neocortex (Ab-Cb),  Eye (Ac-Cc),  Lung (Ad-Cd) and kidney (Ae-Ce).  Scale  bars  17 

represent  100 µm.  18 

 19 

B = bronchus;  C = cornea;  Cb = cerebel lum; CD = col lect ing duct;  CM = condensing 20 

mesenchyme; CP = choroid plexus;  C-PL = cort ical  p la te;  Di  = diencephalon;  Dh = 21 

digi t  of  hindl imb; GE = gastr ic  epi thel ium; GEm = ganglionic  eminence;  Gu = gut ;  H 22 

= heart ;  K = kidney;  LC = lens capsule;  LE = lung epi thel ium; Li  = l iver ;  LN = lens;  23 

Lu = lung;  Mb = mid brain  roof  plate ;  MZ = marginal  zone;  NC = neocortex;  NR = 24 

neural  re t ina;  OE = olfactory epi thel ium; ON = optic  nerve and surrounding 25 

s tructures;  PO = pre-opt ic  cup;  RL = rhombic l ip ;  RPE = ret inal  p igmented 26 

epi thel ium; Sc = spinal  cord;  T = thyroid ;  To = tongue;  Ta = ta i l ;  Th = thymus;  TG = 27 

tr igeminal  ganglion;  vI  = ventral  incisor;  VZ = ventr icular  zone.  28 
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Figure 4 .  Comparative Chd8 ,  Chd7  and Chd2  expression patterns in  the newborn 1 

mouse brain.   2 

Sagit ta l  sect ions through newborn mouse brain  (anter ior  to  the  r ight) ,  hybridised with  3 

ant isense RNA probes to  detect  Chd8  (A,  A’) ,  Chd7  (B,  B’)  and Chd2  (C,  C’)  t ranscripts  4 

in  blue.  Note wide-spread expression of  Chd8,  highly local ised Chd7 expression in  the 5 

cerebel lum and pons,  and Chd2 in  the neocortex,  midbrain  and cerebel lum. High 6 

magnif icat ion views of  the  cerebel lum (Aa-Ca) and neocortex (Ab-Cb) are  shown. Scale  7 

bars  represent  100 µm. 8 

Cb = cerebel lum; EGL = external  granule  cel l  layer;  HC = hippocampus;  Hy = 9 

hypothalamus;  I  =  cort ical  layer  I ;  I I -III  =  cort ical  layers  II-III ;  IC = infer ior  col l iculus;  10 

IGL, = internal  granule  cel l  layer;  Me = medulla ;  NC = neocortex;  OB = olfactory bulb;  11 

Pn = pons;  SC = superior  col l iculus;  SOC = superior  ol ivary complex.  12 

 13 

Figure 5 .  Chd8,  Chd7  and Chd2  are expressed in the early postnatal  cerebellum, 14 

hippocampus,  neocortex and rostral  migratory stream.  15 

Sagit ta l  sect ions through postnatal  day 7  (P7)  mouse brain  (anter ior  to  the  r ight) ,  16 

hybridised with  ant isense RNA probes to  detect  Chd8  (A,  A’) ,  Chd7  (B,  B’)  and Chd2  17 

(C,  C’)  t ranscripts ,  v isual ised in  blue.  Higher  magnif icat ion images to  visual ise  specif ic  18 

expression domains in  the  cerebel lum (Aa-Ac),  h ippocampus (Ba-Bc),  and neocortex 19 

(Ca-Cc) are  shown. Scale  bars  represent  100 µm.  20 

CA1-3 = cornu ammonis  1-3;  Cb = cerebel lum; DG = dentate  gyrus;  EGL = external  21 

granule  cel l  layer;  GL = glomerular  layer;  HC = hippocampus;  I  =  cort ical  layer  I ;  I I-22 

III  =  cort ical  layers  II-III ;  IGL = internal  granule  cel l  layer;  IPL = internal  plexiform 23 

layer;  ML = molecular  layer;  NC = neocortex;  OB = olfactory bulb;  RMS = rostra l  24 

migratory s tream; SGZ = subgranular  zone;  WM = white  matter .   25 

 26 

 27 

Figure 6 .  Comparison of  Chd8,  Chd7  and Chd2  expression patterns in  the P20 mouse 28 

brain.   29 



 30 

Sagit ta l  sect ions through P20 mouse brain  (anter ior  to  the  r ight) ,  hybridised with  1 

ant isense RNA probes to  detect  Chd8  (A,  A’) ,  Chd7  (B,  B’)  and Chd2  (C,  C’)  t ranscripts ,  2 

visual ised in  blue.   Note  high expression of  a l l  three  genes in  the  cerebel lum, with  3 

widespread Chd8  and Chd2  expression remaining in  the neocortex.  High magnif icat ion 4 

images of  the cerebel lum (Aa-Ca);  h ippocampus (Ab-Cb) and neocortex (Ac-Cc) are  5 

shown. Scale  bars  represent  100 µm. 6 

CA1-3 = cornu ammonis  1-3;  Cb = cerebel lum; DG = dentate  gyrus;  GCL = granule  cel l  7 

layer;  HC = hippocampus;  I  =  cort ical  layer  I ;  I I -III  =  cort ical  layers  II-III ;  ML = 8 

molecular  layer;  NC = neocortex;  OB = olfactory bulb;  RMS = rostra l  migratory s tream; 9 

SGZ = subgranular  zone;  WM, = white  matter .  10 

 11 

Supplementary Figure 1 .  Dist inct  Chd8  and  Chd7 expression patterns within the 12 

neural  tube at  E12.5.   13 

In  s i tu  hybridisat ion on sagi t ta l  (anter ior  to  the r ight)  and transverse  sect ions of  mouse 14 

embryos at  developmental  s tage E12.5 using ant isense r iboprobes to  detect  Chd8 and  15 

Chd7 mRNA (A-H).  Gene expression is  indicated by purple/blue s ta ining.  Note  that  both 16 

Chd8 and Chd7  are  expressed throughout  the length of  the  neural  tube (A,  B,  E,  F) .  17 

Whils t  Chd8  d isplays no mediolateral  or  dorsoventral  gradient  in  t ransverse  sect ions 18 

Chd7 shows dis t inct  enrichment  in  the  ventr icular  zone of  the  developing CNS and a  19 

ventral  to  dorsal  gradient  within  the spinal  cord.   20 

Drg = dorsal  root  ganglia ;  Iso  = intersomit ic  region;  LGE = la teral  ganglionic  eminence;  21 

MGE = medial  ganglionic  eminence;  No = notochord;  NT = neural  tube;  SE = surface 22 

ectoderm. 23 

 24 

Supplementary Figure 2 .  Sense control  sect ions at  E12.5.   25 

In  s i tu  hybridisat ion on sagi t ta l  (anter ior  to  the r ight)  sect ions of  mouse embryos a t  26 

developmental  s tage E12.5 using sense r iboprobes to  Chd8,  Chd7 and Chd2  mRNA. Note  27 

that  for  a l l  three genes there  is  l i t t le  to  no hybridisat ion or  s ta ining using the sense 28 

r iboprobe in  contrast  to  what  is  seen when using the ant i-sense probe.   29 
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