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Extending a MILP Compilation for Numeric Planning Problems
to Include Control Parameters

Emre Savaş‡ and Chiara Piacentini†
‡Department of Informatics, King’s College London, London, UK, WC2B 4BG

†Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Canada, ON M5S 3G8

Although PDDL is an expressive modelling language for
planning problems, a significant limitation is imposed on
the structure of actions: the parameters of actions are re-
stricted to values from finite (in fact, explicitly enumerated)
domains. In real-world, there are parameters whose val-
ues have infinite (or highly large-sized) domains, they are
called control parameters. Thus, modelling and reasoning
with these parameters is indeed a requirement. Recent work
investigated planning with these parameters (Ivankovic et
al. 2014; Fernández-González, Karpas, and Williams 2015;
Savaş et al. 2016).

While for classical planning, heuristic search is the state-
of-the-art approach, the introduction of control parameters
might introduce a high number of branching points. In ad-
dition, the inclusion of control parameters in the heuristic
evaluation is still an open issue (Savaş et al. 2016). Alter-
natively to heuristic search, several compilations to Boolean
Satisfiability (SAT) (Rintanen 2012), Constraint Program-
ming (CP) (Vidal and Geffner 2006) and Mixed Integer Lin-
ear Programming (MILP) have been proposed (van den Briel
et al. 2007). In this work, we are interested in MILP compi-
lations, as control parameters can be easily modelled as ad-
ditional variables of the model, whose values are only con-
strained by the actions preconditions, but not by the actions
effects. We present here an extension of the MILP compila-
tion of numeric planning problem with instantaneous actions
(Piacentini et al. 2018) to include control parameters.

1 Problem Definition
Numeric planning introduces numeric state variables, ex-
tending planning tasks beyond the propositional formalism.
We further extend the definition of numeric planning tasks
by adding control parameters as follows.

Definition 1 A numeric planning task with control parame-
ters is a tuple 〈Vp,Vn, I,A, G〉, where:
• Vp is a finite set of propositional variables,
• Vn is a finite set of numeric variables,
• I is the initial state,
• A is a set of actions. Each action, a ∈ A, is a tuple:

a = 〈cparam(a), pre(a), eff(a), cost(a)〉
– cparam(a) is a declaration of a finite set of numeric

control parameters of action a, where each da ∈
cparam(a) has a domain (dom(da)) of Q or Z.

– pre(a) is a set of preconditions. The preconditions can
be propositional, prep(a), or numeric, pren(a). ∀p ∈
prep(a) corresponds to vp ∈ Vp being true and ∀np ∈
pren(a) is of the form: ξ � 0, where � ∈ {≥,>, =}
and ξ is a linear expression over Vn and cparam(a)
with wc

v,w
c
d,w

c
0 ∈ Q:
ξ =

∑
v∈Vn

∪ cparam(a)

wc
vv + wc

0

– eff(a) is a set of effects of the action a, where it is
defined as eff(a) = 〈add(a), del(a),num(a)〉, with
add(a) and del(a) are sets of added and deleted propo-
sitions, respectively. num(a) is a set of numeric effects
that are assignments v := ξ, where ξ is a linear expres-
sion over Vn and cparam(a) with kv,aw , kv,ad , kv,a ∈ Q:

ξ =
∑

w∈Vn
∪ cparam(a)

kv,aw w + kv,a

– cost(a) is the cost of applying action a.
• G is the goal described by a set of propositional, Gp, and

a set of numeric conditions, Gn, over numeric variables,

A state is a mapping of each variable to its domain, where
s(v) is the value of v in s. An action a ∈ A is applicable
in s iff s(vp) = true, ∀vp ∈ prep(a) and s(ξ) � 0 for all
numeric conditions of a, where s(ξ) is the evaluation of ξ in
s. Given a state s and an applicable action a, the successor
state s′ = a(s) is: ∀vp ∈ Vp, s′(vp) = true if vp ∈ add(a),
s′(vp) = false if vp ∈ del(a)\add(a), and s′(vp) = s(vp)
otherwise. Each vn ∈ Vn takes value s′(vn) := s(ξ) if
(vn := ξ) ∈ num(a), and s′(vn) = s(vn) otherwise.

A plan π is a sequence of actions and specified val-
ues for control parameters of actions in π (i.e. π =
{〈a0, cval(a0)〉, . . . , 〈an, cval(an)〉}), where n is the plan
length, cval(a) ∈ Qma ∨ Zma is the vector of values of the
control parameters of a, andma is the number of control pa-
rameters declared in action a. In addition, all conditions of
actions are met and the goals are satisfied in the final state.

The scope of each control parameter is restricted to its
action. We use the PDDL language proposed by Savaş et
al. (2016) to model our task, as it allows the declaration of
multiple and typed (i.e. they can have integer or rational
number domains) control parameters in the action schema.
An example PDDL action encoding using this language is
shown in Figure 1. The control parameters are declared in



the :control() field associated with their types.

(:action bake_a_cake

:parameters (?c - spongecake)

:control (?milk ?flour - number, ?cake - int)

:precondition (and

(>= ?milk (* 200 ?cake)) (>= ?flour (* 100 ?cake)))

:effect (and (increase (stock ?c) ?cake)))

Figure 1: An example PDDL action schema

2 MILP Formulation
In this section, we present the extension of the MILP formu-
lation for numeric planning problem to handle control pa-
rameters. Due to space limitation, we report only the con-
straints necessary to model the numerical part of the prob-
lem. These constraints can be added to any of the MILP
models designed for classical planning problems: the state-
based model, the state-change model (Vossen et al. 1999)
and the SAS+ state-change model (van den Briel, Vossen,
and Kambhampati 2005).

Let T = {0, ...,T − 1} and T̃ = T ∪ {T} be
sets of time-steps. Consider parameters mc,t ∈ Q,
∀c ∈ C,∀t ∈ T̃ , Mstep

v,t ,mstep
v,t ,Ma

v,t,m
a
v,t ∈ Q,

∀v ∈ Vn
⋃

a∈A cparam(a),∀t ∈ T̃ , define as in previ-
ous work (Piacentini et al. 2018). Let yv,t ∈ Q ∀v ∈
Vn

⋃
a∈A cparam(a),∀t ∈ T̃ represent the value of the nu-

meric variable v or the control parameter at time-step t. Vari-
able ua,t ∈ {0, 1}, ∀a ∈ A,∀t ∈ T indicates whether a is
applied at time-step t. The constraints modelling numeric
effects and conditions are given in Figure 2. Constraint (1)
sets the variables to their initial state values, while constraint
(2) enforces the numeric goal conditions. Constraint (3) en-
sures the satisfaction of numeric preconditions. Constraints
(4)-(7) update the values of the numeric variables according
to the action effects (simple or linear). Constraints (8)-(9)
model the effects of the actions on their control parameters.
They become redundant if an action is not applied. Con-
straint (10) is added to model the type of the control param-
eters. Constraint (11) enforces the mutex relation, according
to the numeric mutex relation presented in previous work
(Piacentini et al. 2018).

3 Conclusion
Although most planning problems are efficiently solved us-
ing state space heuristic search approaches, they become
highly cumbersome with the introduction of numeric pa-
rameters with large-sized domains. Constraint programming
and operations research techniques are considerably power-
ful for these problems. We investigated only a small subset
of the product of this cross-fertilisation between these fields,
but the recent interest shows that it is ample.
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