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Information-adaptive clinical trials: a selective recruitment

design

James E. Barrett

University College London, London, U.K.

Summary. We propose a novel adaptive design for clinical trials with time-to-event outcomes

and covariates (which may consist of or include biomarkers). Our method is based on the

expected entropy of the posterior distribution of a proportional hazards model. The expected

entropy is evaluated as a function of a patient’s covariates, and the information gained due

to a patient is defined as the decrease in the corresponding entropy. Candidate patients

are only recruited onto the trial if they are likely to provide sufficient information. Patients

with covariates that are deemed uninformative are filtered out. A special case is where all

patients are recruited, and we determine the optimal treatment arm allocation. This adap-

tive design has the advantage of potentially elucidating the relationship between covariates,

treatments, and survival probabilities using fewer patients, albeit at the cost of rejecting some

candidates. We assess the performance of our adaptive design using data from the German

Breast Cancer Study group and numerical simulations of a biomarker validation trial.

Keywords: Adaptive trial design; Optimal allocation; Proportional hazards model

1. Introduction

Adaptive clinical trials offer a potentially more efficient and ethical way to conduct clin-

ical trials. Covariate-adaptive designs try to ensure that the distributions of covariates

across different arms are balanced, thus resulting in more comparable cohorts on each arm

(Pocock and Simon, 1975; Taves, 1974). Response-adaptive randomisation attempts to

allocate more patients to the effective treatment arms. As the trial progresses and more

information is acquired on the efficacies of each treatment arm the allocation probabilities
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shift towards the more effective treatments. Zhang and Rosenberger (2007) develop an

optimal response-adaptive design under exponential and Weibull parametric models for

time-to-event outcomes. See Yin (2012) for a good overview of adaptive designs.

We regard the primary goal of a clinical trial as establishing a statistical relationship

between covariates, treatments, and survival outcomes. As we will show, not all patients on

a trial provide the same amount of statistical information. Some covariate values are more

informative than others. In addition, the informativeness of a covariate value will depend

on what has been observed so far in the trial. As an example, consider two scenarios where

a patient with particular covariate values is available for recruitment. In the first scenario

another patient with precisely the same covariate values has already been recruited. In

the second scenario suppose the candidate’s covariates come from a region of covariate

space that has not previously been sampled. Intuitively we expect the candidate to be

more informative in the second scenario since they provide access to previously unobserved

covariates values and outcomes.

Our aim in this paper is to address a practical question: given limited resources and

the observation that not all patients are equally informative, what is the optimal way to

conduct a clinical trial? We propose that it may be advantageous to selectively recruit

and allocate patients on the basis of how much information they are likely to provide.

Covariates are measured for candidate patients, and based on those values and what has

been inferred from the trial up to that point a recruitment probability is computed. In

other words, we filter out patients that are unlikely to significantly reduce the uncertainty

surrounding model parameters.

Predictive biomarkers, which indicate whether a patient is likely to respond well to

a particular treatment or not, are increasingly useful in the drive towards personalised

medicine and targeted therapy. A potential application of our selective-recruitment design

would be to validate a biomarker by looking at treatment-biomarker interaction terms in

a proportional hazards model. We test this using numerical simulations. Sargent et al.

(2005) discuss alternative adaptive designs for validating predictive biomarkers.

Our filtering approach is similar in spirit to some existing designs. Freidlin and Simon
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(2005) propose a trial design which attempts to find a gene signature that will identify

a subset of ‘sensitive’ patients who are more likely to respond to the treatment. In a

randomised discontinuation design (Rosner et al., 2002) patients who fail to respond to a

treatment in the first phase of the trial are dropped from the second part, thereby isolating

a responsive subset of patients with a stronger statistical signal. Another type of trial

known as ‘enrichment designs’ (Temple, 2010) enrich the recruited cohort with patients

who are more likely to have the event of interest. For example, patients with a particular

biomarker. Given that more events of interest are observed greater statistical power can

be achieved within the enriched cohort.

We assume a proportional hazards model with a constant baseline hazard rate. The

entropy of the posterior distribution is a useful way to quantify our uncertainty regarding

the model parameters. As the trial progresses, and the space of plausible parameter values

shrinks, the entropy decreases. The informativeness of a candidate is defined as the reduc-

tion in expected entropy in the hypothetical scenario where they are added to the cohort

of existing recruits. The ideal candidate at time t is defined as the patient that would

achieve the greatest possible reduction in expected entropy. By comparing the current

candidate to the ideal candidate we can obtain a recruitment probability. The posterior is

constructed using outcomes from all patients accrued up until time t. Patients who have

not experienced any events are considered to be right-censored. Therefore, the recruitment

probability changes dynamically as more events and patients are observed. An arm alloca-

tion probability can also be computed based on which arm has the lowest expected entropy.

We also implement this in a more traditional setting where all candidates are recruited.

In Section 2 we provide the mathematical details and describe some approximations

which are required. Results from experimental data generated by the German Breast Can-

cer Study group and numerical simulations are presented in Sections 3 and 4 respectively.

Discussion on the practical applicability of our approach and concluding remarks are given

in Section 5.



4 James E. Barrett

2. An information based adaptive protocol

2.1. Proportional hazards model

Suppose that Nt patients have been recruited onto the trial at time t. Observed data are

denoted by Dt = {(x1, t1,∆1), . . . , (xNt
, tNt

,∆Nt
)} where xi ∈ Rd is a vector of covariates

for patient i (this vector may include biomarker values or treatment indicator variables).

If patient i is censored then ∆i = 0 and ti is the time of censoring, otherwise the primary

event occurred at time ti and ∆i = 1. Patients who have not experienced any event by t

are considered right censored. We assume a proportional hazards model with a constant

baseline hazard rate λ ∈ (0,∞):

h(ti|xi, λ,β) = λeβ·xi for i = 1, . . . , Nt (1)

where β ∈ Rd is a vector of regression coefficients. The covariates are assumed to be drawn

from a known population distribution p(x). The data likelihood is

p(Dt|λ,β) =

Nt∏
i=1

(
λeβ·xi

)∆i

exp(−λtieβ·xi)p(xi). (2)

Using Bayes’ rule we can write the posterior as

p(λ,β|Dt,θ) =
p(Dt|λ,β)p(λ|θ)p(β|θ)

p(Dt|θ)
(3)

where p(Dt|θ) is the marginal likelihood. The vector θ contains hyperparameters that are

required for the prior distributions. For the prior over λ we choose λ ∼ Gamma(κ0, χ0),

with shape and scale hyperparameters κ0 and χ0 respectively, and β ∼ N (0, α2
0I). The

value of θ = (κ0, χ0, α
2
0) is fixed and we will henceforth drop the dependence on θ for the

sake of notational compactness.

2.2. Entropy as a measure of patient informativeness

At time t we have recruited Nt patients onto the trial. Suppose that a candidate patient

with covariates x∗ has presented and we wish to estimate how much information we expect

the candidate to provide if they are to be recruited. The information gain is defined as the



Information-adaptive clinical trials 5

reduction in the expected entropy of the posterior (3). The entropy is defined as

h(Dt) = −〈log p(λ,β|Dt)〉p(λ,β|Dt)
. (4)

The notation 〈· · · 〉p denotes the expectation with respect to the density p. We then add

the candidate to the existing cohort and take the expectation with respect to the unknown

t∗:

H(x∗|Dt) = 〈h(Dt ∪ {x∗, t∗})〉p(t∗|x∗,Dt)
(5)

where the argument of h is the union of Dt and the additional uncensored observation

{x∗, t∗} and where

p(t∗|x∗, Dt) = 〈p(t∗|x∗, λ,β)〉p(λ,β|Dt)
. (6)

The time-to-event density is p(t∗|x∗, λ,β) = λeβ·x
∗
exp(−λt∗eβ·x∗

). This can be used to

define an objective function E that will be used to determine the recruitment probability

for the candidate

E(x∗|Dt) = h(Dt)−H(x∗|Dt). (7)

2.3. Mathematical approximations

The expectation (4) is analytically intractable. Consequently, we develop a variational ap-

proximation of the the posterior q(λ,β) ≈ p(λ,β|Dt) with q(λ,β) = q(λ)q(β). The purpose

of a variational approximation is to approximate the posterior with a form that is more

amenable to analytical integration (Bishop, 2006, Chapter 10). For the variational distribu-

tions q we choose a log-Normal distribution, log λ ∼ N (µ1, σ
2
1), and a multivariate Normal

distribution for the regression coefficients, β ∼ N (µ0,Σ0) with Σ0 = diag(σ2
01, . . . , σ

2
0d). To

achieve a ‘good’ approximation we minimise the Kullback-Leibler divergence between the

distributions q and p with respect to the variational parameters (µ1, σ
2
1,µ0, σ

2
01, . . . , σ

2
0d):

KL(q||p) =

〈
log

[
q(λ)q(β)

p(λ,β|Dt)

]〉
q(λ)q(β)

= 〈log q(λ)〉q(λ) + 〈log q(β)〉q(β) − 〈log p(λ,β|Dt)〉q(λ)q(β) . (8)
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This is convenient since the first two terms give the entropy of the variational distribution

which is required in (5). Equation (8) is explicitly calculated in Appendix A.

In addition, the expectations (5, 6) are analytically intractable. We make two further

approximations:

(a) p(t∗|x∗, λ,β) = δ(t∗ − t̂) where t̂ = 〈t∗〉p(t∗|x∗,λ,β) = (λeβ·x
∗
)−1.

(b) p(λ,β|Dt) = δ(λ̂− λ)δ(β̂ − β) where (λ̂, β̂) = argmax(λ,β)p(λ,β|Dt).

The Dirac delta function δ(x) is loosely defined by δ(0) =∞ and is zero elsewhere. These

approximations allow evaluation of the integrals (5, 6) and, additionally, it is computa-

tionally faster to obtain (λ̂, β̂) rather than numerically integrating (5, 6). Combining the

above approximations we can write t̂ = (λ̂eβ̂·x
∗
)−1 and obtain

Ĥ(x∗|Dt) = ĥ(Dt ∪ {x∗, t̂}) (9)

ĥ(Dt) = −〈log q(λ)〉q(λ) − 〈log q(β)〉q(β) . (10)

These can be substituted into (7) to obtain an approximated objective function Ê(x∗|Dt).

Evaluation of these expressions require numerical optimisation of (3) and (8) in order to

evaluate, but this is computationally feasible. Note that estimates of λ and β could be

unstable at the early stages of the trial when few patients have been recruited. In this

case, one could implement a ‘burn in’ phase where selective recruitment only begins after

a certain number of patients have been recruited.

2.4. Obtaining a recruitment and allocation probability

Once a candidate patient presents with covariates x∗ we would like to define a recruitment

probability ρ(x∗|Dt). In general, we can write x∗ = [y∗, z] where y∗ are clinical covariates

or biomarkers and z indicates the allocated treatment arm. Suppose there are K arms in

total and z ∈ {z1, . . . , zK} where zk indicates allocation to arm k. The first step is to

define the allocation probability to treatment arm k as

p(k|x∗, Dt) =
Ê(y∗, zk|Dt)∑K
j=1 Ê(y∗, zj |Dt)

for k = 1, . . . ,K. (11)
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A treatment arm is chosen at random according to this distribution and is denoted by z∗.

Secondly, we define the ideal candidate as yI = argminyÊ(y, z∗|Dt). The ideal candidate

would give us the greatest reduction in expected entropy. A recruitment probability is

given by

ρ(x∗|Dt) = f0

(
Ê(y∗, z∗|Dt)

Ê(yI , z
∗|Dt)

)
(12)

where f0 is some function that remains to be specified. Since the argument of f0 must lie in

the interval [0, 1] we can choose f0 to be the identity function in which case the closer the

candidate is to the ideal patient the higher the probability of recruitment. Alternatively,

we can choose f0(s) = θ(s− p0) for a specified threshold p0. The step function θ(s) = 0 if

s ≤ 0 and θ(s) = 1 otherwise. This results in deterministic recruitment. A more general

option is f0(s) = (1 + tanh(s/β0 − p0))/2 which is equivalent to deterministic recruitment

when β0 → 0. This allows the practitioner to implement a desired level of stringency in

the recruitment process.

3. The German Breast Cancer Dataset

We applied our method to data obtained from the German Breast Cancer Study (GBCS)

described in Hosmer et al. (2008, Section 1.3). Our goal is to infer the parameters for a

single covariate in order to assess how our adaptive protocol performs. The data consist of

time-to-event outcomes for 686 patients recruited between July 1984 and December 1989.

There are eight covariates in total. We decided to use tumour size (mm) for a univariate

analysis because a good spread (1st quartile = 20 mm, median = 25 mm, 3rd quartile = 35

mm) would make it suitable for filtering patients according to the covariate. Importantly,

the dataset also contains the date at which each patient is diagnosed with primary node

positive breast cancer so we can easily calculate the waiting-time between patients. This

allows us to effectively ‘re-run’ the trial. The primary event was recurrence.

To assess the information-adaptive design we decided to recruit a total of NT = 100

patients. We used deterministic recruitment with a cutoff of p0 = 0.5. The trial was

terminated after 10 years. We compared this to a randomised clinical trial (RCT) in which
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Fig. 1. Plot of the posterior entropy (10) for the RCT and ACT as a function of time. The vertical

ticks indicate times at which a patient was recruited. The sharp drop at ≈ 0.75 years corresponds

to the first primary event occurring.

Table 1. Inferred parameters and entropies of the full GBCS dataset (Full), the adaptive clinical trial

(ACT), and the randomised clinical trial (RCT). In brackets are 95 percent confidence intervals and p

is corresponding the p-value. Ntotal is the total number of recruits, Nreject is the number of rejected

candidates, and tR is the recruitment time in months.

Ntotal Nreject tR λ β entropy

Full 686 0 67 0.13 0.36 (0.19,0.52), p = 6.1× 10−6 -4.54

ACT 100 278 31 0.11 0.44 (0.21,0.66), p = 4.2× 10−5 -3.49

RCT 100 0 11 0.14 0.11 (-0.27,0.48), p = 0.29 -2.83

the first 100 patients are recruited. The same proportional hazards model as Section 2.1

was used to analyse the RCT. The covariate values were median-centred and rescaled by 25

mm. The population density was assumed constant. We impose a uniform prior between

±1 for the ideal covariate xI . Hyperparameters were set to (κ0, χ0, α
2
0) = (3, 1, 4).

It took approximately 1 year to recruit 100 patients onto the RCT. The adaptive clin-

ical trial (ACT) took approximately 2.5 years, during which a total of 278 patients were

rejected. In Figure 1 the posterior entropies for both the ACT and RCT are plotted. Ini-

tially the entropies are largely determined by the priors over λ and β but quickly drop as

patients are recruited, although not monotonically. In the first 2.5 years of the trial the
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RCT has a lower entropy which is presumably due to the fact that more patients have been

recruited compared to the ACT. Towards the end of the trial the ACT has a lower entropy

due to a more informative cohort. Both entropies continue to decrease after recruitment

has finished as more events are observed.

Table 1 shows the inferred model parameters (evaluated after 10 years) from the original

dataset, the ACT, and the RCT. The ACT results in a significant non-zero value for β

that is close to the value obtained using the full dataset (with N = 686). The RCT fails

to infer any significant value.

In order to gain some intuition for how the recruitment probabilities are determined we

have plotted the expected entropy as a function of the covariate x at various time points in

Figure 2. We note that the function tends to have one maximum and two minima at x = ±1.

This general shape is due to the nature of the proportional hazards model since extreme

values of x will diminish the space of plausible parameter values more so than values close

to zero, and consequently are more informative. The dashed line is the entropy below which

a candidate will be recruited. In (a) the trial has started at t = 0 with two patients. There

is a strong preference for individuals towards ±1. The next candidate (at t = 34 days) had

x∗ = −0.52 and so was recruited. In (b), some patients with covariate values > 1 have

been recruited and this encourages recruitment of negative covariate values. At t = 267

days no primary events have occurred. In (c), after t = 268 days the first primary event

occurs for a patient with a positive covariate value. This additional piece of information

further increases the benefit of recruiting negative covariate values over positive ones. Note

that the vertical scale changes. This illustrates that the recruitment probability changes

dynamically, and depends on the observed events and covariate values of the existing cohort.

We conclude that in general we gain more information from covariate values that have been

under-sampled or values where few primary events have occurred.

Individuals with covariates values far from zero will have the greatest reduction in

expected entropy. This is because these terms will dominate the data likelihood in a

proportional hazards model. Consequently, the covariate distribution in the ACT can

differ considerably from the population distribution. Figure 3 shows the empirical covariate
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Fig. 2. The expected entropy (9) as a function of x at various times during the ACT.

distributions for the original dataset and both trials. Due to the shape of the expected

entropy function (see Figure 2) patients towards ±1 were more likely to be recruited in

the ACT. Consequently, almost no patients with x ≈ 0 were recruited. The RCT density

resembles the density of the full dataset.

4. Numerical simulation studies

Here we consider a scenario where the covariates consist of a two-dimensional biomarker

yi = (yi1, yi2) and patients are given one of three treatments denoted by zi = (zi1, zi2, zi3).

A patient given treatment one would have zi = (1, 0, 0), treatment two would have zi =

(0, 1, 0), and so forth. We are interested in whether there is any interaction between the

biomarker and treatments, i.e. is the biomarker predictive. A proportional hazards model

with interaction terms is assumed:

h(t|yi, zi, λ,β) = λeβ1yi1zi1+β2yi1zi2+β3yi1zi3+β4yi2zi1+β5yi2zi2+β6yi2zi3 . (13)

This gives a total of six regression coefficients and the baseline hazard λ to be inferred. In

all simulations we compared an adaptive trial to a randomised one.

To simulate survival data we generate a random vector y = (y1, y2) where yi ∼
uniform(−1,+1) or yi ∼ N (0, 0.5) for i = 1, 2. A treatment arm z is chosen (either

randomly or according to (11)). A random number w ∼ uniform(0, 1) is generated, and an

event time is given by the inverse of the cumulative distribution t = −e−β·x log(1 − w)/λ

where x ∈ R6 contains the same product terms between y and z as (13). Patients are
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Figure 3: Kernel smoothed empirical covariate densities (Gaussian kernel, bandwidth = 0.2)
for (a) the full GBCS dataset, (b) the ACT, and (c) the RCT. Due to the shape of the
expected entropy function (see Figure 2) patients towards ±1 were more likely to be recruited
in the ACT. Consequently, almost no patients with x ⇡ 0 were recruited. The RCT density
resembles the density of the full dataset.

3.2 Numerical simulation studies

Here we consider a scenario where the covariates consist of a two-dimensional biomarker yi =
(yi1, yi2) and patients are given one of three treatments denoted by zi = (zi1, zi2, zi3). A patient
given treatment one would have zi = (1, 0, 0), treatment two would have zi = (0, 1, 0), and so forth.
We are interested in whether there is any interaction between the biomarker and treatments, i.e. is
the biomarker predictive. A proportional hazards model with interaction terms is assumed:

h(t|yi, zi,�,�) = �e�1yi1zi1+�2yi1zi2+�3yi1zi3+�4yi2zi1+�5yi2zi2+�6yi2zi3 . (11)

This gives a total of six regression coe�cients and the baseline hazard � to be inferred. In all
simulations we compared an adaptive trial to a randomised one.

To simulate survival data we generate a random vector y = (y1, y2) where yi ⇠ uniform(�1, +1)
for i = 1, 2. A treatment arm z is chosen (either randomly or adaptively). A random number w ⇠
uniform(0, 1) is generated, and an event time is given by the inverse of the cumulative distribution
t = �e��·x log(1 � w)/� where x 2 R6 contains the same product terms between y and z as (11).
Patients are censored at random with probability pcens 2 [0, 1]. If an individual is censored then the
time-to-censoring is drawn from a uniform density between 0 and t. The first patient to be generated
is recruited onto both the ACT and RCT. The waiting time until the next patient is drawn from
an exponential density with rate parameter ⇠. Hyperparameters were set to (0,�0,↵

2
0) = (3, 1, 4).

�1 �2 �3 �4 �5 �6 �
ACT 0.376 0.367 0.360 0.385 0.361 0.385 0.00083
RCT 0.386 0.396 0.373 0.371 0.366 0.399 0.00080

Table 2: Mean square error between inferred and ‘true’ model parameters over 1,000 simu-
lations. Comparison between random and adaptive trials without selective recruitment.

7

Fig. 3. Kernel smoothed empirical covariate densities (Gaussian kernel, bandwidth = 0.2) for (a)

the full GBCS dataset, (b) the ACT, and (c) the RCT.

Table 2. Mean square error between inferred and ‘true’ model parameters over 500 simulations.

Comparison between both random and adaptive trials without selective recruitment and uniform

and Gaussian distributed covariates.

β1 β2 β3 β4 β5 β6 λ

ACT (Uniform) 0.348 0.374 0.361 0.384 0.418 0.352 0.00080

RCT (Uniform) 0.364 0.347 0.401 0.389 0.396 0.384 0.00084

ACT (Gaussian) 0.499 0.5120 0.487 0.438 0.445 0.430 0.00085

RCT (Gaussian) 0.470 0.494 0.504 0.471 0.518 0.435 0.00084

censored at random with probability pc ∈ [0, 1]. If an individual is censored then the

time-to-censoring is drawn from a uniform density between 0 and t. The first patient to

be generated is recruited onto both the ACT and RCT. The waiting time until the next

patient is drawn from an exponential density with rate parameter ξ. Hyperparameters

were set to (κ0, χ0, α
2
0) = (3, 1, 4).

4.1. Adaptive allocation without selective recruitment

In these simulations all patients were recruited. A total of N = 50 patients were recruited

onto both trials. The trial was terminated after t = 100 arbitrary units of time. The

rate parameter for waiting times was ξ = 6, and pc = 0.5. Model parameters were set to

β = (0.8,−0.5, 1.1,−0.7, 0.6, 0.1) and λ = 0.1. In the ACT the expected entropy was used

to determine which treatment arm each individual was allocated to as described in Section
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2.4. In the RCT patients were allocated to one of the three arms at random.

A total of 500 simulations were run. We computed the mean square error between the

inferred model parameters and the ‘true’ values used to generate the data. As shown in

Table 2 we found essentially no difference between the randomised and adaptive trials for

either uniformly or Gaussian distributed covariates. We found that the entropy at the

end of the ACTs with uniform covariates was on average slightly lower than the RCTs

(2.14 and 2.20 respectively), although the difference was statistically significant (p-value

0.017 with a one-sided paired t-test). For Gaussian distributed covariates the difference in

entropies was insignificant. We also performed a chi-squared test to see if the allocation

proportions of patients across arms differed from a uniform distribution. Each simulated

trial was tested and we found no p-values less than 0.05 for either uniform or Gaussian

distributed covariates. Since the chi-squared test was repeated for each trial the p-values

were corrected for multiple hypothesis testing by controlling the false discovery rate (using

the method of Benjamini and Hochberg (1995)) with the ‘p.adjust’ R function.

4.2. Adaptive allocation and recruitment

In these simulations the same parameters as above were used but patients were recruited

onto the ACT selectively with a threshold of p0 = 0.66. Over 500 simulations we found that

the mean square error between the inferred and ‘true’ parameters was considerably lower

in the ACTs than the RCTs as shown in Table 3. For uniformly distributed covariates

48.9% of the inferred parameter values were significant (at 0.05) in the ACT compared to

39.2% in the RCTs. Furthermore, the mean entropy at the end of the ACTs was 0.93,

compared to 2.23 in the RCTs. On average 140.7 (standard deviation 42.9) individuals are

rejected.

In the case of Gaussian distributed covariates the difference is more pronounced. 50.4%

of parameters were significant in the ACT compared to 35.0% in the RCT. An average of

240.0 patients were rejected (standard deviation 61.9). Due to the Gaussian distribution

there are more patients in the less informative region around zero. Therefore the number
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Table 3. Mean square error between inferred and ‘true’ model parameters over 500 simulations.

Comparison between random and adaptive trials with selective recruitment.

β1 β2 β3 β4 β5 β6 λ

ACT (uniform) 0.324 0.279 0.313 0.342 0.279 0.306 0.00079

RCT (uniform) 0.401 0.335 0.408 0.375 0.367 0.361 0.00081

ACT (Gaussian) 0.266 0.289 0.278 0.217 0.253 0.262 0.00085

RCT (Gaussian) 0.444 0.553 0.509 0.521 0.502 0.478 0.00082

of rejections is higher and the benefit more substantial.

We also explored the effect of the threshold p0 on the trial results. When p0 = 0.33 we

found that the MSE (averaged over the six beta values) was 0.287 in the ACT compared to

0.372 in the RCT with 44.0% of inferred parameters reaching statistical significance in the

ACT compared to 39.6% in the RCT. An average of 22.0 patients were rejected (standard

deviation 6.45). When the threshold was increased to p0 = 0.90 the MSE was 0.358 versus

0.363, and the proportion of significant parameters was 41.7% versus 39.3%, in the RCT

and ACT respectively. On average 237.3 (standard deviation 86.5) patients were rejected.

This suggests that setting the threshold too high can be counterproductive.

5. Discussion

The practicality of our proposed design will depend on various economic and ethical con-

siderations as well as the characteristics of each particular trial and the study population.

For instance, if a covariate is relatively inexpensive to measure when compared to the costs

of recruitment (treatment provision, follow-up, administration) then it may be sensible

to selectively recruit informative patients. A large pool of patients can be inexpensively

screened and then resources concentrated on those which are likely to provide the most

information. In this case a selective recruitment design could result in significant cost

reductions since fewer recruits are required overall.

Clinical trials are not primarily intended to be therapeutic, but rather as a means to

generate medical evidence. Recruited patients may be exposed to treatments that are



14 James E. Barrett

ineffective (e.g. a placebo) or that are possibly even harmful. Our proposed design offers

the possibility to conduct a trial using fewer patients than a traditional randomised design.

This may be ethically attractive in some cases since ultimately fewer patients are offered

treatment options with uncertain efficaciousness.

In a selective recruitment design the decision to recruit and allocate a patient can also

take into account the probability of a successful response to treatment (although this was

outside the scope of this paper). Patients can be recruited and allocated in a manner that

balances the statistical informativeness of a decision against the potential benefit or harm

to that individual. The decision making process must balance individual and collective

benefits. Maximising statistical information offers a collective benefit to all patients outside

the trial (both current and future) who could benefit from the trial findings. Naturally this

must be offset by what is best for the trial participants. What our proposed design offers the

practitioner is a framework to balance individual versus collective ethical considerations.

Selective recruitment designs suffer from a number of drawbacks, one of which is longer

recruitment times. If the patient accrual rate is low it may render the overall recruitment

period unfeasible. Selective recruitment designs are therefore only appropriate in situa-

tions where patients accrue relatively quickly or where longer recruitment periods are an

acceptable compromise.

One of the consequences of a proportional hazards model is that the most informative

patients tend to have extreme values of covariates. As a result the distribution of re-

cruited patients may differ from the population distribution which might make it difficult

to generalise results from the trial to the general population. Thus, some generalisability

is sacrificed in return for greater statistical power. If this was deemed undesirable one

could introduce a sufficient level of random sampling in addition to preferential accrual of

informative patients. Each candidate patient has a minimum probability of recruitment

with informative patients having a higher probability. Thus, selective recruitment need not

be an all or nothing process; it can be used to enrich the trial with informative patients to

a desired degree.

Finally, in the case of model misspecification undesirable biases may be introduced into
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the dataset because the model choice influences the covariate distribution considerably. An

additional limitation is that it is not yet clear how to estimate the sample size required

for a certain level of statistical power — a calculation that is typically used when planning

new trials.

In summary, our novel information-adaptive selective recruitment clinical trial design

will reject non-informative patients. Individuals who are more likely to clarify the values

of our model parameters are more likely to be recruited. We have demonstrated with both

experimental and simulated data the feasibility of our approach. Statistically significant

inferences can be achieved using fewer patients with a selective recruitment design than a

randomised trial, although we found that treatment arm allocation using an entropy based

measure (without selective recruitment) did not offer any improvement over a randomised

design. Such a design may offer a more economical or ethically attractive route to discover

the relationship between biomarkers, treatments, and survival outcomes.

It will be interesting to extend this work beyond the proportional hazards assumption to

more complex survival models. Incorporation of response-adaptive protocols offer another

promising extension. Throughout this work we have assumed a uniform population density.

In the case of a non-uniform density it may be desirable to incorporate this into the

definition of an ideal candidate such that an ideal candidate is both informative and likely

to be observed. This will require further investigation. Further extensions of the model

could include alternative outcomes such as binary or continuous measurements.

A. Derivation of the Kullback-Leibler divergence

The first two terms of the Kullback-Leibler divergence (8) in Section 2.3 are simply mi-

nus the entropies of the variational distributions. These are 〈log q(λ)〉q(λ) = −(1/2 +

log(2πσ2
1)/2 + µ1) and 〈log q(β)〉q(β) = −∑d

ν=1 log(2πeσ2
0ν)/2. The third term from (8) is

−N1
t 〈log λ〉q(λ) −Φt · 〈β〉q(β) + 〈λ〉q(λ)

Nt∑
i=1

ti

〈
eβ·xi

〉
q(β)

− 〈log p(λ|κ0, χ0)〉q(λ) −
〈
log p(β|α2

0)
〉
q(β)

(14)
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where N1
t is the number of non-censored events up until time t and Φt =

∑
i:∆i=1 xi. It

is straightforward to show 〈log λ〉q(λ) = µ1, 〈λ〉q(λ) = eµ1+σ2
1/2 and 〈β〉q(β) = µ0. The

following result is needed (Coolen et al., 2005, Appendix D):∫
dz

e−
1

2
(z−µ)·A−1(z−µ)+b·z

(2π)d/2|A|1/2 = eµ·b+ 1

2
b·Ab (15)

from which it follows
〈
eβ·xi

〉
q(β)

= eµ0·xi+
1

2
xi·Σ0xi . Note that (15) also defines the moment

generating function for a multivariate normal distribution with mean µ and covariance

matrix A. The terms relating to the priors are
〈
log p(β|α2

0)
〉
q(β)

= −∑ν(σ2
0ν + [µ0]2ν)/2α2

0

and 〈log p(λ|κ0, χ0)〉q(λ) = (κ0 − 1) 〈log λ〉q(λ) − χ−1
0 〈λ〉q(λ) where [µ0]ν denotes the νth

component of µ0.
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