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Abstract. Current research strongly suggests that hybrid local search
algorithms are more effective than heuristics based on homogenous meth-
ods. Accordingly, this paper presents a new hybrid method of Simulated
Annealing and Firefly Algorithm [SAFA] for the Job Shop Scheduling
Problem (JSSP) with the objective of minimising the makespan. We
provide an experimental analysis of its performance based on a set of
established benchmarks.
Simulated Annealing [SA] continues to be a viable approach in identifying
optimal and near optimal makespans for the JSSP. Similarly, recent
deployments of the Firefly Algorithm [FA] have delineated its effectiveness
for solving combinatorial optimisation problems efficiently. Therefore, the
hybrid algorithm in question aims to combine the acclamatory strengths
of SA and FA while overcoming their respective deficiencies.

Keywords: Job shop scheduling · Firefly · simulated annealing

1 Introduction

Scheduling deals with the allocation of resources to operations over given time
periods, with the aim of optimising one or more objectives [16]. The Job Shop
Scheduling Problem (JSSP) is one of many formulations in scheduling, and has
attracted many researchers investigating properties of NP-hard problems and
methods to tackle them. It is an important optimisation problem and, for the
authors in particular, the problem that sparked, based on [20], the collaboration
with Juraj Hromkovič and his research group, see [9, 10,14].

There are many variants (relaxations and restrictions) of JSSP. In this paper,
we consider the standard version defined as follows. There are n jobs in the
set J = {j1, j2, . . . , jn} and m machines M = {m1,m2, . . . ,mm}. Each job
j ∈ J consists of m operations; one operation for each machine. Let πj(i) be the
operation for job j performed on machine i. The operations πj must be performed
in a specific order. Let O ∈ [1,m]m×n contain the order of the operations for each
of the jobs. The column vector oj contains the order of operations for the job j.
To be explicit, oij ∈ [1,m] is the position of πj(i) in the sequence of operations
for j. So if oij = 4, then operation πj(i) must be the 4-th operation to run for job
j. Finally, the elements pij of the matrix P ∈ Rm×n denote the time taken for
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(a) (b)

Fig. 1. Two possible schedules for an example instance of the job shop scheduling
problem with three jobs on three machines, with times and orders defined in (1). The
problem is to find the schedule that leads to the shortest makespan, that is, the shortest
possible time needed to complete all operations.

operation πj(i), j ∈ J , i ∈M . Each machine can only process a single operation
at a time, and once an operation has started, no preemption is permitted.

A schedule is a matrix C ∈ Rm×n containing the completion times of the op-
erations. Element cij is the completion time of operation πj(i). Let the makespan
L of C be maxi,j Cij . The job shop scheduling problem is to find a valid schedule
such that the makespan L (the total time taken for all jobs to complete) is
minimised.

As an example, take a problem instance with three machines and three jobs,
with the time matrix P and order matrix O as follows:

P =

J1 J2 J3( )3 2 2 M1
2 4 2 M2
3 3 1 M3

O =

J1 J2 J3( )1 2 3 M1
2 1 1 M2
3 3 2 M3

(1)

Figure 1 shows two examples of valid schedules for this example instance of
JSSP.

In this paper, we propose an algorithm for creating schedules that minimise
the makespan of JSSP instances by combining the Simulated Annealing algorithm
with a Firefly-inspired methodology. The rationale behind this combination is to
escape from local minima and avoid becoming constrained in the solution space.

The JSSP has been a focal point for many researchers over the last few
decades, primarily due to the growing need for efficiency accompanied by the
rapid increase in the speed of computing [2]. This, together with the more
recent developments in the availability of cloud resources allowing for large scale
distributed and parallel computation, has opened up many additional avenues in
terms of algorithmic techniques for working with optimisation problems.

The JSSP has a core motivation in production planning and manufacturing
systems. Reduced costs and efficient production lines are a direct result of fast
and accurate scheduling solvers. Advancements in job shop scheduling also allow
for prioritisation of operations and improved predicted completion times [1].



Firefly-Inspired Algorithm for Job Shop Scheduling 3

π1(1) π1(3)π1(2)

π2(1) π2(3)π2(2)

π3(1)π3(3)π3(2)

o * 

Disjunctive Edge (operations on same machine)
Conjunctive Arc (sequence of operations)

Fig. 2. Disjunctive graph exemplified from the previous section (Figure 1). Recall that
πj(i) refers to the operation for the j-th job on the i-th machine. Solid arcs indicate the
order of operations for each job. Dashed edges indicate operations on the same machine.

This paper builds on the research of Steinhöfel et al. on SA [20] and her
work with Albrecht et al. on FA [13] by evaluating their symbiosis for the job
shop scheduling problem. Moreover, the presented method is motivated by the
property of a backbone structure, see [22], and the Firefly idea which enables the
search of areas close to the estimated backbones of optimal schedules.

2 Background

The publication of a seminal paper by Johnson (1954) is largely credited as being
the starting line for scheduling research [11]. The article outlines two and three-
stage production schedules with the objective of minimising the total elapsed
time. Early methods of solving JSSP instances include priority rules, branch
and bound, integer programming, Monte-Carlo methods, stochastic analysis,
algorithms with learning, and enumerative algorithms [15,17].

An important graphical representation of the JSSP, is the disjunctive graph
proposed by Roy and Sussman [17].

Figure 2 shows a disjunctive graph for the example defined in the previous
section. This graphical formulation provides an outline of all feasible schedules,
enabling better interpretation than the usual Gantt chart representations. Modi-
fication of the schedule structure is achieved by activating disjunctive edges to
represent an ordering of tasks on a machine path. Figure 3 outlines a concrete
schedule equivalent to instance (a) in Figure 1.

The source o and dummy vertex * act as start and end points respectively,
allowing for full navigation of the directed graph; the longest path from o to * is
the makespan. The makespan can be calculated by weighting all vertices by the
respective P values of each operation πj(i) and summing the total processing
time of all operations on the longest path.
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π1(1) π1(3)π1(2)

π2(1) π2(3)π2(2)

π3(1)π3(3)π3(2)

o * 

(3) 

(3) 

(4) 

(4) 
(2) 

(2) (1) 

(1) 

(2) 

(2) 

(2) 

(3) 

(3) 
(2) 

(3) 

Fig. 3. Disjunctive graph of the schedule instance (a) from the previous section (Fig-
ure 1). Recall that πj(i) refers to the operation for the j-th job on the i-th machine.
The vertex weights are shown on their outgoing edges, and the thick arcs show a longest
path with respect to vertex weights.

Note that, in [4], the graph derived from a disjunctive graph by considering
a concrete schedule has exactly one arc for every disjunctive edge, let us call
these disjunctive arcs. But any disjunctive arc shortcutting a directed path of
disjunctive arcs does not contribute to a longest path (in terms of vertex weights)
since the shortcut misses at least one vertex. Thus, we can omit these shortcuts
from the graph.

Potts and Strusevich (2009) demonstrate a simple lower bound of JSSP
instances by removing all disjunctive edges in such a graph and finding the
maximum weight path in the resulting sub-graph [18]. Various more complex
lower bounds are evaluated by dividing a JSSP instance into sub-problems by
machine, calculating the lower bound for the single instance and selecting the
optimal result.

2.1 Local Search

Local Search (LS) methods involve starting with some initial solution, and then
iteratively moving to solutions that are similar, but have better objective function
values. This iterative process repeats until a local optimum is found. A survey of
LS methods for JSSP can be found in Vaessens et al. [24].

Let F be the set of feasible solutions for some problem instance. The cost of
any x ∈ F is defined by c : F → R. The neighbourhood function N : F → {0, 1}F

determines which solutions in F are similar to x. That is, for x ∈ F , the solutions
in the neighbourhood N(x) ⊆ F are said to be neighbours to x. The execution
of a local-search algorithm defines a walk in F such that each solution visited
is a neighbour of the previously visited one. A solution x ∈ F is called a local
minimum with respect to a neighbourhood function N if c(x) ≤ c(y) for all
y ∈ N(x).

A major drawback of LS methods is that of becoming trapped in a local
optimum. One attempt at addressing this problem is Simulated Annealing (SA).
Annealing in metallurgy is the method of heating and then cooling metals to
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maximise the size of crystals. SA simulates this process for optimisation problems.
As in LS methods, there is a neighbourhood function and a cost function. In SA,
rather than always moving to a solution with a better objective value, there is
some probability of moving to worse solutions. This probability is determined
by the temperature, which reduces with time. A higher temperature means the
algorithm is more likely to move to a worse solution. This allows the algorithm
to leave local minima and explore more of the solution space.

In 1992, Laarhoven et al. first formulated the SA approach for the JSSP [25],
along with further results by Blazewicz et al. [4], Steinhöfel et al. [20] and Satake
et al. [19], respectively. SA has proven to be an effective technique for efficiently
finding approximate results, overcoming to some extent the aforementioned
limitations of LS.

2.2 Evolutionary Algorithms and Hybrids

Various evolutionary algorithms have been used as heuristics for solving JSSP
instances, including Genetic Algorithms (GA) [7], Ant Colony Optimisation
(ACO) [5] and Particle Swarm Optimisation (PSO) [6]. Instead of improving a
single candidate solution, these meta-heuristics improve a population of solutions.

The method developed in this paper follows a line of research on hybrid
approaches that combine SA with nature-inspired algorithms. Our method com-
bines SA with the Firefly Algorithm (FA), which is one of the more recent nature
inspired optimisation algorithms, published in 2008 by Xin-She Yang [6]. Fireflies
are characterised by their luminescence, using their emittance of light to attract
other fireflies - essentially their main form of communication.

The intensity of light emitted is directly proportional to the volume and rate
at which other flies converge toward it. The attractiveness of the flies is linked to
their objective function and monotonic decay of the attractiveness with distance,
allowing individual flies to be attracted to any other firefly in the population,
assuming they are close enough. The algorithm developed in this paper simplifies
this approach somewhat, and resembles more accurately the algorithm developed
by Steinhöfel et al. on protein structure prediction in lattice models [13]. This
implementation considers a single target, setting the optimal instance as the
‘beacon’ of light for the rest of the population. In this scenario, the so called
‘fireflies’ all attempt to move in the same direction.

The rationale supporting the use of FA for the JSSP emanates from an
understanding of the solution space, wherein schedule instances close to the
optimal are more likely to have similar edge orientations. In addition, updates
of the beacon during execution allow for the population to constantly change
direction, increasing the likelihood of exploring optimal zones.

3 Our Algorithm

The method presented in this paper is a hybrid of Simulated Annealing (SA) and
the Firefly Algorithm (FA).
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π1(1)

π2(1) π3(1) 

π4(1)

Fig. 4. Transition depicting edge flip on a machine path.

The neighbourhood function determines for each solution x a subset of F . A
solution belongs to that subset only if it can be reached from x with a single
modification step, i.e., N : F → {0, 1}F . That is, N(x) ⊆ F is the set of feasible
schedules similar to x ∈ F .

We define neighbours based on edge switching. Edges on a machine path can
be switched such that a machine path π1(1)-π2(1)-π3(1)-π4(1) can transition to
π1(1)-π3(1)-π2(1)-π4(1). A visual representation of this is provided in Figure 4.

Given the disjunctive graph of a JSSP instance, switching a machine edge
on the longest path will always result in a feasible (acyclic) schedule [20]. The
choice of which edge on the longest path to flip can be determined by its rate
of occurrence across all longest paths; known as its edge popularity. By flipping
the most popular edge on a longest path, the likelihood of the neighbour having
divergent longest paths, and hence more disparate makespan values, is greater.

However, computing all longest paths for every schedule is time consuming.
We employ a different method, as follows. We switch a random machine edge and
check if the resulting schedule is feasible. This can be determined by considering
a sub-graph around the flipped edge in the full disjunctive graph. This allows
us to efficiently check if a schedule is feasible. If it is feasible, it is considered a
neighbour. If not, it is not.

An empirical analysis on real datasets showed that on average approximately
80% of edge flips resulted in a feasible schedule.

The full algorithm is shown in Algorithm 1. First, a set X of r initial schedules
is generated. For each x ∈ X, a greedy local search is performed until each x is a
local optimum. That is, after the greedy search, for every x ∈ X, we have that
∀j ∈ N(x), Lx ≤ Lj . Let Θ be the current best solution. Simulated annealing is
executed on Θ. And parallel to this, the firefly algorithm is performed using the
|X| − 1 schedules in the set X \Θ.

In a given iteration of simulated annealing, if a randomly selected neighbour
solution is better than the current solution, we move to it. If not, then we
move to it with some transition probability. This probability is proportional to
a temperature that reduces (cools) from iteration to iteration. Early on in the
SA procedure, the temperature is high and the probability of moving to worse
solutions is higher compared to later in the SA procedure when the temperature
is lower.

In the firefly algorithm, we also have a temperature that reduces over time.
The temperature in this case, is relative to the luminescence of the firefly. We
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Algorithm 1: SAFA Algorithm
input : t(sa)

0 ← starting temperature for SA, c(sa) ← cooling rate for SA,
t
(fa)
0 ← starting temperature for FA, c(fa) ← cooling rate for FA,
r ← number of initial solutions

output :Best schedule found
1 X ← set of r initial schedules
2 for x ∈ X do
3 x← result of greedy local search on x until local optimum found
4 end
5 Θ ← argminxLx
6 Begin SA thread with Θ
7 Begin Fireflies thread with X \Θ
8 Return Θ when both threads finished

Fireflies Thread

9 temp(fa) ← t
(fa)
0

10 while temp(fa) > 1 do
11 for x ∈ X \Θ do
12 if temp /t0 > U(0, 1) then
13 x← x with random machine edge flipped
14 else
15 x← x moved towards Θ with edge flip
16 end
17 temp(fa) ← temp(fa) · (1− c)
18 if any Lx < LΘ, replace Θ with that x
19 end

SA Thread

20 temp(sa) ← t
(sa)
0

21 y ← Θ

22 while temp(sa) > 1 do
23 if Θ was replaced by firefly thread, set y ← Θ
24 y′ ← random neighbour in N(y)
25 if Ly′ < Ly then
26 y = y′

27 else if temp /t0 > U(0, 1) then
28 y ← y′

29 temp(sa) ← temp(sa) · (1− c)
30 end
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may consider the reduction in temperature equivalent to the intensification of
the luminescence of Θ. With some probability proportional to the luminescence,
a firefly moves towards Θ with an edge flip. Otherwise it moves to a random
neighbour.

If at any point, a schedule with a makespan smaller than Θ is found, it replaces
Θ, and the current schedule being considered in the SA thread is replaced by
that new Θ.

Starting temperatures and cooling rates are chosen such that the number
of iterations increases with input size. The starting population of the fireflies is
altered such that the runtime is acceptable for the resources available.

4 Experimental Results

Table 1 shows the results of the SAFA algorithm on a selection of benchmark
JSSP instances. The ID’s1 are constructed based on their origin, with benchmarks
from Fisher & Thompson (ft) [8], Lawrence (la) [12], Storer, Wu and Vaccari
(swv) [21], Taillard (ta) [23], Yamada and Nakano (yn) [26] and Applegate and
Cook (orb) [3].

The SAFA algorithm was executed 30 times for each benchmark problem.
Therefore, the SAFA AF (average found) is the average makespan found out
of 30 runs. The makespan is calculated by reversing Dijkstra’s algorithm and
finding the longest path from the source o to the dummy vertex *, as seen in
Figure 2.

A multitude of benchmarks have been considered for the purpose of evaluating
the accuracy of the hybrid algorithm. The benchmarks have been selected based
on their recognisability, size and comparability. Accordingly, results are compared
to the best-found makespans, including a dissimilarity percentage between the
best-found solutions of the SAFA hybrid and the known Upper Bound (UB). All
computations were performed on a cloud server hosting a standard Intel dual-core
processor and 7.5gb of memory.

The SA parameter settings for the individual benchmarks are dependent on
the size and complexity of the instance. In reference to Algorithm 1, the starting
temperatures t(sa)

0 and t(fa)
0 are initiated with approximately the same value across

all benchmarks. In contrast, the cooling rate parameters c(sa) and c(fa) decrease
as the proportions of the benchmark increase. In other words, a lower cooling rate
parameter is used for larger benchmark instances. This property allows SA to
execute within a middle-ground of efficiency and efficaciousness, while enabling
FA with enough iterations for fireflies to achieve their objective function - fully
transitioning toward the state of the optimal schedule. This characteristic is
essential for the firefly population given there is a greater likelihood of Θ being
replaced when the underlying structures, and therein longest paths, become
alikened to one another.

1 http://jobshop.jjvh.nl

http://jobshop.jjvh.nl
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Table 1. Results on benchmark problems. LB = lower bound. BF = best found with
existing methods. SAFA BF and AF = Best found and average found respectively with
SAFA method presented in this paper. % Diff = Percentage difference between the best
found makespan of SAFA method compared to the best found. Note: ** = BF > LB

ID Size LB BF SAFA.BF SAFA.AF % Diff

ft06 6x6 55 55 55 55.00 0
ft10 10x10 930 930 937 948.63 0.7
ft20 20x5 1165 1165 1178 1181.25 1.1
la01 10x5 666 666 666 666.00 0
la10 15x5 958 958 958 958.00 0
la11 20x5 1222 1222 1222 1222.00 0
la23 15x10 1032 1032 1032 1032.00 0
la34 30x10 1721 1721 1721 1721.00 0
la35 30x10 1888 1888 1888 1888.00 0
la36 15x15 1268 1268 1306 1329.70 2.9
la37 15x15 1397 1397 1458 1485.33 4.3
swv11 50x10 2983 2983 3809 3868.10 27.6
swv13 50x10 3104 3104 3926 4013.30 26.4
swv17 50x10 2794 2794 2794 2794.00 0
swv18 50x10 2852 2852 2852 2852.00 0
ta69 100x20 3071 3071 3332 3352.33 8.4
ta71 100x20 5464 5464 6087 6230.33 11.4
ta76 100x20 5342 5342 5854 5854.00 9.5
yn02** 20x20 861 904 995 1053.80 10.0
yn03** 20x20 827 892 971 1018.00 8.8
orb01 10x10 1059 1059 1085 1089.80 2.4
orb02 10x10 888 888 895 897.30 0.7
orb03 10x10 1005 1005 1015 1037.28 0.9
orb04 10x10 1005 1005 1012 1014.50 0.6
orb05 10x10 887 887 894 895.50 0.7
orb06 10x10 1010 1010 1028 1037.75 1.7
orb07 10x10 397 397 407 407.00 2.5
orb08 10x10 899 899 928 937.50 3.2
orb09 10x10 934 934 948 953.75 1.4
orb10 10x10 944 944 957 957.00 1.3

5 Conclusion

We have designed a hybrid SAFA algorithm for solving the JSSP. The algorithm
has been implemented and executed on a number of different benchmarks. The
experimental results are encouraging, wherein the best-found solution was reached
for a number of instances and near-optimal solutions found for a wide range of
others. The algorithm will be complemented by a more fine-grained analysis in
the future. FA improves on the underlying SA algorithm at multiple junctures
throughout its execution, with results reflecting conclusive remarks similar to
other applications of FA for optimisation problems. Given the results of this
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paper, future work will be directed at utilising information and estimations of
the backbone structure even more. In general, the combination of SA and FA
works well and could further be tailored to reach best-found solutions for the
larger JSSP instances as well as also being applied to solving other combinatorial
optimisation problems.
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