
This electronic thesis or dissertation has been

downloaded from the King’s Research Portal at

https://kclpure.kcl.ac.uk/portal/

Take down policy

If you believe that this document breaches copyright please contact librarypure@kcl.ac.uk providing

details, and we will remove access to the work immediately and investigate your claim.

END USER LICENCE AGREEMENT

Unless another licence is stated on the immediately following page this work is licensed

under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International

licence. https://creativecommons.org/licenses/by-nc-nd/4.0/

You are free to copy, distribute and transmit the work

Under the following conditions:

 Attribution: You must attribute the work in the manner specified by the author (but not in any
way that suggests that they endorse you or your use of the work).

 Non Commercial: You may not use this work for commercial purposes.

 No Derivative Works - You may not alter, transform, or build upon this work.

Any of these conditions can be waived if you receive permission from the author. Your fair dealings and

other rights are in no way affected by the above.

The copyright of this thesis rests with the author and no quotation from it or information derived from it

may be published without proper acknowledgement.

Temporal-Numeric Planning with Control Parameters

Savas, Okkes Emre

Awarding institution:
King's College London

Download date: 06. Jan. 2025

King’s College London

Faculty of Natural & Mathematical Sciences

Department of Informatics

Temporal-Numeric Planning with Control Parameters

Ökkeş Emre Savaş

A thesis submitted in partial fulfilment of the requirements of the degree of
Doctor of Philosophy

First Supervisor: Professor Derek Long
Second Supervisor: Professor Maria Fox

Date of Submission: 16 April 2018
Date of Oral Examination: 22 June 2018

Date of Award: 1 November 2018

Keywords: temporal planning, numeric planning, domain-independent planning, PDDL,
heuristic search, forward state space search, delete-relaxation heuristics, constrained resource
planning, partially-ordered planning.

Abstract

Over the last decade, significant progress has been made in task planning to explore temporal
and numerical features of the real world. Interaction between time and metric fluents
and temporal coordination problems have been well-addressed by innovative approaches
in planning and scheduling. A standardised language, PDDL, has enabled modelling the
conceptual models and benchmarking the work of numerous researchers since it was released.

Although PDDL is an expressive modelling language, a significant limitation is imposed
on the structure of actions: the parameters of actions are restricted to values from finite
(in fact, explicitly enumerated) domains. There is one exception to this, introduced in
PDDL2.1, which is that durative actions may have durations that are chosen (possibly
subject to explicit constraints in the action models) by the planner. A motivation for this
limitation is that it ensures that the set of grounded actions is finite and, ignoring duration,
the branching factor of action choices at a state is therefore finite. Although the duration
parameter can make this choice infinite, very few planners support this possibility, but
restrict themselves to durative actions with fixed durations.

In this thesis we motivate a proposed extension to PDDL to allow actions with infinite
domain parameters, which we call control parameters. We illustrate reasons for using this
modelling feature and then describe a planning approach that can handle domain models that
exploit it, implemented in a new planner, called POPCORN. We propose an extension to a
delete-relaxation heuristic, called the Temporal Relaxed Planning Graph, to tackle problems
with control parameters; especially in problems with producer-consumer relationship of
actions. We show that this approach scales to solve interesting problems. We apply this
work in a task and motion planning scenario to show that our work has a great potential of
re-inventing the way task planners are used in robot navigation.

Acknowledgements

I would like to express my deepest gratitude and countless thanks to my supervisors (and
my gurus in science), Maria Fox and Derek Long, for their invaluable input and persistent
guidance on this bumpy journey. I feel privileged to be one of their few students.

I would like to thank Michael Cashmore and Bram Ridder for introducing me new hobbies,
such as playing board games and bouldering, as well as having entertaining (and fruitful)
brainstorming discussions.

I would like to thank the ones who collaborated with me Stefan Edelkamp, Daniele
Magazzeni, Chiara Piacentini for their constant support and exceptional contribution to
our work, especially Dan who has always been more than a colleague but also a good friend.

I would like to thank to my PhD examiners Nick Hawes and Rong Qu; my favourite
authors in AI Planning Andrew Coles and Amanda Coles; true friends Salur Basbug, Elliott
Fairweather and Fei Gao; my ICAPS mentor Chris Beck; and all of the members of the AI
Planning group at King’s College London for their support and guidance.

My PhD studies were funded by European Commision Seventh Framework Programme for
Research and Technological Development (FP7) as a part of SQUIRREL project under grant
agreement No 610532.

Dear Halil dede and Dear Tyson – you will always be remembered...

Contents

1 Introduction 13
1.1 Motivation . 14
1.2 Contributions of the Thesis . 15
1.3 Thesis Statement . 16
1.4 Thesis Outline . 16

2 Background 18
2.1 Introduction to Automated Planning . 18
2.2 Representations of Planning Problems . 21

2.2.1 Classical Planning . 21
2.2.2 Numeric Planning . 23
2.2.3 Temporal Planning . 24

2.3 Modelling Language . 26
2.3.1 The PDDL Language . 26

2.4 Planning as Searching through Spaces . 29
2.4.1 Search Algorithms . 30

2.5 Heuristic Evaluations . 31
2.5.1 Classical Planning Heuristics . 32
2.5.2 Numeric Planning Heuristics . 34
2.5.3 The Temporal Relaxed Planning Graph (TRPG) Heuristic 36

2.6 Brief Descriptions of the Planning Systems 38
2.6.1 The POPF Planner and Its Predecessors 38
2.6.2 Planners Reasoning with Control Parameters 40
2.6.3 Other Planners . 44

2.7 Summary of Temporal-Numeric Planners . 44
2.8 Integrated Task and Motion Planning (TAMP) 45

3 Planning Using Actions with Control Parameters 47
3.1 Introduction . 47
3.2 A Motivating Example . 49
3.3 Methodological Differences Between Scotty and POPCORN 51
3.4 Technical Background . 53

3.4.1 LP Temporal and Numeric Scheduling 54
3.5 Planning with Control Parameters . 58

5

Contents 6

3.5.1 Problem Definition . 58
3.5.2 State Definition . 60
3.5.3 Modelling Actions with Control Parameters 61
3.5.4 Checking C-state Consistency . 62
3.5.5 Temporal and Numeric State-Space Search 64
3.5.6 Modifications to The Temporal RPG Heuristic 68

3.6 Evaluation . 69
3.6.1 The Cashpoint Domain . 70
3.6.2 The Procurement and Terraria domains 71
3.6.3 The 2D-AUV-Power domain . 72
3.6.4 Experimental Results . 73

3.7 Summary . 77

4 Refined Infinity Analysis for Planning with Control Parameters 78
4.1 Introduction . 78
4.2 An Example Problem . 79
4.3 Preliminaries on Producer-Consumer Behaviour 84

4.3.1 Producer-Consumer Effects and Fluents 85
4.3.2 Producer-Consumer Actions . 87
4.3.3 Resource Transformation Flow Problem 90

4.4 Producer-Consumer Patterns . 92
4.5 Extending the TRPG Heuristic . 96

4.5.1 Action Occurrence Limits . 97
4.5.2 Numeric Contribution of Non-Constant Bounded Parameters 99
4.5.3 Building the Temporal RPG Using Refined Infinity Analysis 101
4.5.4 Solution Extraction . 104

4.6 Evaluation . 107
4.6.1 Evaluation Domains . 108
4.6.2 Performing Ablation Study . 113
4.6.3 Comparison with Scotty Planner . 116

4.7 Summary . 118

5 Case Study: Spatial Reasoning in Task Planning with Control Parameters120
5.1 Introduction . 120
5.2 Observe-and-classify Scenario . 122

5.2.1 Modelling Continuous Regions . 124
5.3 Plan Generation and Execution . 126

5.3.1 Plan Generation in Relative Proximity of Objects 126
5.3.2 Plan Execution using Controlled Plan Management in Continuous Space127

5.4 Evaluation . 128
5.4.1 The Environment . 128
5.4.2 Results . 130

5.5 Summary . 139

Contents 7

6 Conclusions 141
6.1 Summary of the Thesis . 142
6.2 Future Work . 144

6.2.1 Handling Quadratic Interactions in Domain Models 144
6.2.2 Extending the Heuristic to Handle Multiple Control Parameters in

Resource Flow . 144
6.2.3 Investigating the Execution Behaviour of Domains with Continuous

Regions . 145
6.3 List of Publications . 145

Appendices 146

A The Relaxed Plan generated using Refined Infinity Analysis 147

B Observe-and-classify Domains 148
B.1 Locations as Discrete Notions Approach . 148

B.1.1 The Domain Model . 148
B.1.2 A problem Instance . 149

B.2 Locations as Continuous Regions Approach 150
B.2.1 The Domain Model . 150
B.2.2 A problem Instance . 159

List of Figures

2.1 The illustration of the partially solved (on the left) and the solved (on the
right) Minesweeper game. 19

2.2 Pouring water between jugs example as described by Fox and Long (Fox and
Long, 2003). 28

2.3 Going through the ticket gate example encoded in PDDL2.1 level 3 28
2.4 The planning graph for a simple logistics example. The black dots denote no-

ops (i.e. no operation nodes), black solid lines denote conditions, blue solid
lines denote the add effects and the dashed lines denote the delete effects. . . 33

2.5 Schematic representation of the discretised graph expansion. 37
2.6 The illustration of the infinity analysis. 37
2.7 The illustration of the FF planner framework. Reproduced from (Hoffmann

and Nebel, 2001). 39
2.8 Schematic representation of discrete and continuous effects on variable v. . . 40
2.9 Schematic representation of connecting the flow tubes of actions a1 and a2. . 41
2.10 An example of continuous numeric action parameter encoding in proposed

PDDL language given in Mechatronics Journal (Pantke et al., 2016). 43

3.1 The illustration of the effects of having flexible duration parameter in state
space. 48

3.2 Main actions of the cashpoint domain. 50
3.3 The initial state of the cashpoint problem. 50
3.4 Comparison summary of POPCORN and Scotty systems. 51
3.5 Discrete numeric change in POPCORN and a possible way to express it in

Scotty and cqScotty. ε = 0.001 time units. 53
3.6 Schematic representation of the search space where there is a control

parameter effect. The nodes represent the state reached, and the edges
represent the action applied to reach the next state. The graphs in black
boxes represent the LP constraint space, which is used to avoid complex
branching choice. 55

3.7 Control parameter LP variable values between and at steps of both systems. . 57
3.8 The Kongming action model for AUV descent. Note that this is not PDDL,

but a variant in which a new :duration field is added to classical actions
to associate a fixed and equal duration to all actions, and :dynamics which
defines the control parameters and their bounds. 61

8

List of Figures 9

3.9 Descend action with control parameters. This model is in PDDL2.1 extended
with our proposed syntax for control parameters. Note that the linear power
constraint (as a condition) restricts the total power use across the two motors
according to the consumption rates of the motors. 62

3.10 The navigate action for Scotty (Fernández-González et al., 2015a). The
syntax is very similar to our proposal, but the control parameters (e.g. velX
and velY) are always rates of change. 62

3.11 Illustration of state consistency checking according to type of the accumulated
constraints. 64

3.12 The GiveMoney action of the extended cashpoint example. 65
3.13 Schematic representation of the controlled plan management for the extended

cashpoint example. 67
3.14 Bill of material tree of product A in procurement domain model. Coloured

nodes indicate that those items are already used in the tree. 72
3.15 Mean Scheduling Time (MST) per state in procurement and cashpoint instances. 74
3.16 Comparison of time taken by POPF and POPCORN to solve each problem

instance, and the numbers of states evaluated, in four domains. The crossed
points indicate that only one of the planners found a solution. 75

3.17 Comparison of plan quality (measured in this case as plan makespan) in four
temporal numeric domains. POPCORN is compared with POPF on each
problem instance. 76

4.1 The material requirement tree for the motivating example. 80
4.2 Main actions of the example domain encoded in PDDL extension we

introduced in Chapter 3. 81
4.3 The extended TRPG reachability graph of POPCORN. We represent as-

semble_A, assemble_B, assemble_C, assemble_D, and supply_raw_material
actions as A, B, C, D and Sr, respectively. The relaxed upper bounds of
?unitA, ?unitB , ?unitC , ?unitD are computed by the LP, whereas ?unitSr is
not. 82

4.4 The dead-end in forward search due to poor heuristic guidance. I : initial state. 83
4.5 Resource transformation flow network representation of the resource transfer

in a finite achiever action. 91
4.6 The visual representation of the basic producer-consumer pattern. 93
4.7 Partial ordering of the actions (assemble_C) and (supply_ raw_material

G) observed in the procurement example. 94
4.8 Partial ordering of activities, (assemble_B) and (supply_raw_material F),

observed in the procurement example. 94
4.9 The visual representation of the cascading producer-consumer pattern. 95
4.10 The cascading pattern triggered by the goal, a ≥ 20. Let l1 ≤ l2 ≤ l3 ≤ l4 ≤ l5. 96
4.11 Timeline of the relaxed plan of our motivating example generated by

POPCORN using refined infinity analysis. 108
4.12 The complete bill of material tree of the procurement domain model. 110
4.13 The solution quality (makespan) results of POPCORN and POPCORN-R1. . 113

List of Figures 10

4.14 Running time results of POPCORN and POPCORN-R. 114
4.15 Number of states evaluated of the planner in six domains (POPCORN vs.

POPCORN-R). 115
4.16 Ablation study results on unmodified versions of the domains (the same

domains used in Section 3.6). The "x" markers indicate that only one of
the planners could solve the instance. 117

4.17 The makespan, the running time and the number of states evaluated results
for the AUV-Fuel domain of POPCORN-R and cqScotty. 118

5.1 Schematic representation of the integration of task and motion planning. . . . 120
5.2 The navigate action with discrete location parameters. 121
5.3 Illustration of navigate action choices with discrete locations in forwards

search. Each edge in the search graph corresponds to a grounded navigate

action (given in Figure 5.2) with respect to 10 predefined robot (e.g.
{robot1, . . . , robot10}) and 40 location (e.g. {l1, . . . , l40}) objects. 121

5.4 The navigate action with continuous location parameters. 122
5.5 Illustration of partially-grounded navigate action choices with continuous

locations in forwards search. 122
5.6 The STRIPS domain model of the observe-and-classify scenario. 123
5.7 The numeric model of the scenario encoded in PDDL2.1 level 2. 124
5.8 Schematic representation of the discrete locations defined around a toy. . . . 124
5.9 Continuous locations around the toy. 125
5.10 Illustration of linear over-approximation of regions using circumscribed

octagons. 126
5.11 The illustration of the plan generation when the objects are in close range. . 126
5.12 Illustration of defining varying number of discrete waypoints in regions. . . . 129
5.13 The process of continuous and discrete random problem generation. 129
5.14 Running time comparison between POPF and POPCORN in 8 testcases. . . 131
5.15 Running time comparison between TFD and POPCORN in 8 testcases. . . . 132
5.16 Makespan comparison between POPF and POPCORN in 8 testcases. 134
5.17 Makespan comparison between TFD and POPCORN in 8 testcases. 135
5.18 Number of move actions found in each plan (POPF and POPCORN). 137
5.19 Number of move actions found in each plan (TFD and POPCORN). 138

List of Tables

2.1 Comparison of the capabilities of the most recent temporal-numeric planners. 45

3.1 Variables and constraints acting upon the ?cash parameter, that are collected
from the initial state to reach the goal state. 56

3.2 A desired controlled plan for the cashpoint example. 60
3.3 A plan generated by POPCORN for the extended cashpoint example. 66
3.4 An LP relaxation over a control parameter that does not have a constant

upper bound value. 69
3.5 Comparison between POPCORN and Scotty in the 5 problems in Firefighting,

2D and 3D AUV navigation (Fernández-González et al., 2015a). The numbers
in the brackets are the makespan, while the numbers outside the brackets are
the execution times. 76

4.1 The LP relaxation model called by the extended TRPG at the fact layer
zero to find the relaxed upper bound of ?unit of assemble_A action. The
construction of this model is described in depth in Section 3.5.6. 83

4.2 Number of problem instances solved by POPCORN and POPCORN-R. . . . 116

5.1 The area of each continuous region defined in each testcase. 128
5.2 The overall percentage of problems solved in each testcase. 136
5.3 The number of problem instances solved in each problem set (out of 20

instances). 139

11

List of Algorithms

1 Controlled plan management . 68

2 Determining occurrence limits . 98
3 Numeric contribution of dai in eff(a) of the snap-action ay 100
4 Building the TRPG Using refined infinity analysis 103
5 Adding the sub-goals of recently added achievers to the priority queue (used

in Algorithm 4) . 104
6 Solution extraction of the TRPG using refined infinity analysis 105
7 Regression function to find total numeric contribution of a in previous layers . 106

12

Chapter 1

Introduction

Technological improvements have facilitated the automation of industrial processes and
mechanical systems for decades. As the machines become increasingly capable, the science
of applying natural intelligence to machines (also known as Artificial Intelligence (AI)) also
becomes more applicable in real world practice. At the core of the problem of obtaining
intelligent behaviour is the problem of choosing which activities to execute and when to
execute them. Automated planning is a field of AI addressing these problems with reliable
and reproducible solutions. It extends the capabilities of systems with full autonomy that is
highly essential in most robotics applications. Two of the most outstanding automated
planning achievements in history are the Remote Agent (Muscettola et al., 1998) and
the ongoing Mars Exploration Rover (MER) missions of NASA. The Remote Agent is
an autonomous self-repair software used in the Deep Space 1 spacecraft developed by
the Ames Research Center and the Jet Propulsion Laboratory at NASA. It was the first
AI spacecraft control system that successfully demonstrated the ability to plan activities,
diagnose and respond to malfunctions in the spacecraft without any human supervision.
The MER missions of NASA involve two rover vehicles, Spirit and Opportunity, that have
been exploring the planet Mars since 2003. In this mission, the objective is to collect rock
and soil samples that can provide evidence to the past existence of water on planet Mars.
The rovers use a framework, called MAPGEN, to build an activity plan to execute on
each Martian day (Ai-Chang et al., 2004). Another AI planning achievement is the recent
work of (Cashmore et al., 2014), which explores the problem of autonomous maintenance
and inspection of a seabed facility. The process is carried out by autonomous underwater
vehicles (AUVs) without any human intervention. Exploiting full autonomy is a requirement
as human control is considerably hard and limited in these missions.

For more than a decade, automated planning approaches have been constantly evolved
to capture complex attributes of real world applications. Temporal and numeric planning
is a research area that is concerned with capturing metric and time-related attributes
of the environment, such as instantaneous use of numeric resources, replenishment and
consumption of resources in continuously evolving time (e.g. filling a fuel tank) and the
requirement of simultaneous execution of activities. Many real world applications require
planning and controlling of these attributes. For instance, in order to achieve full autonomy
in an AUV, it needs to have the complete control over its time and numeric resources; such

13

1.1 Motivation 14

as the velocity, the fuel level, light source settings and the duration of activities. This area
has been identified as a challenge and has been tackled as a search problem by numerous
researchers for more than a decade (Ghallab and Laruelle, 1994; Laborie and Ghallab,
1995; Smith and Weld, 1999; Hoffmann, 2003; Cushing et al., 2007; Do and Kambhampati,
2014; Eyerich et al., 2012; Piacentini et al., 2013; Bryce et al., 2015; Bajada, 2016). The
main challenge in this field is the computational complexity of the search (Bylander, 1994;
Rintanen et al., 2007; Aldinger et al., 2015), as time and numbers are dynamic features of the
environment that can easily cause infinite decision points in search. Planning approaches
rely on restricting these decision choices (i.e. corresponding to action choices) to finite
values prior to planning, so that the choices on these attributes are always in finite ranges.
The scope of this thesis is narrowed down to temporal and numeric planning assumptions
and applications, in which these attributes are not necessarily drawn from finite number of
choices, instead they are kept flexible (subject to an arbitrary collection of constraints), in
order to reflect the true nature of these attributes (that are often kept flexible and managed
efficiently in control systems).

Numerous temporal-numeric planners rely on forward state space heuristic search (Bonet
and Geffner, 2001; Hoffmann, 2003; Helmert, 2006; Coles et al., 2009b; Fernández-González
et al., 2015a), as it has shown effective performance solving complex planning problems.
We employ the POPF planner (Coles et al., 2010) as our base system, which is a partially
ordered temporal-numeric planner that exploits forward state space heuristic search. It
reasons with the full semantics of the PDDL2.1 modelling language (Fox and Long, 2003),
including continuous and discrete numeric change, and actions with flexible durations. It
uses the Temporal RPG (Coles et al., 2009c, 2008a) heuristic, which derives and solves a
simplified version of the problem for the purpose of guiding the search. The assumptions
of the thesis are full observability, determinism, explicit continuous time and infinite state
world (stated in detail in Section 2.1).

1.1 Motivation

The main motivation of the thesis was driven by problems that require the determination of
numeric attributes at the end of the planning process, not by deciding from a set of options
during search. We can describe these problems with a simple daily life example. Suppose
that we are planning to go to a mall for shopping and we do not have enough cash in our
pocket. The plan for this problem must include visiting a cashpoint to collect cash before
going to the mall. However, we do not know precisely how much cash to withdraw when we
are at the cashpoint. It can only be revealed once the entire plan of the day is constructed.
The withdraw action should allow flexibility on this attribute (i.e. the amount of cash that
can be withdrawn), so that the planner has freedom to determine the value once the rest of
the plan is generated under an accumulated set of numeric constraints.

Another example to the necessity of flexible attributes is determining the locations that
an agent must visit during navigation. In robot navigation, a task planner finds a meaningful
symbolic plan while the motion planner finds a collision-free trajectory. In most task and
motion planning integrations including the work of (Cambon et al., 2009; Erdem et al.,
2011; Dornhege et al., 2009; Garrett et al., 2015; Cashmore et al., 2015), the task planners

1.2 Contributions of the Thesis 15

model locations as discrete notion, where they can be obstructed by an unknown object (i.e.
an object that the task planner does not initially know about) or they can be unreachable
during execution (due to physical limitations), which can lead the task planner to re-plan.
Modelling locations as continuous regions is possible using flexible attributes, which allows
the task planner to reason about the estimated dynamics of the environment and provides a
wider range of location coordinate options to the motion planner. We survey the possibility
of this scenario as a case study in Chapter 5.

There are certainly other real world examples, in which some activities can desirably
have multiple flexible attributes (or parameters) and they can be managed (or regulated)
by the planner itself or by an external control system. We call these parameters control
parameters, since they represent the control dynamics of the system in planning problem.
Some of the real world examples that can benefit from modelling and reasoning with these
parameters are:

– Production planning and inventory control: the order quantity, the lot size,

– Robot navigation: the torque of a motor, the velocity and acceleration,

– Refinery operations (e.g. thermal equilibrium, mixing liquids and chemical reactions):
the quantity of a reactant, the heat transfer rates,

– Power management in unmanned vehicles (i.e. AUVs and UAVs): the battery charge
rate per second

– Space applications (e.g. controlled spacecraft landing, orbiting objects): the thrust
force of the vehicle.

1.2 Contributions of the Thesis

The main contributions of the thesis are:

– Extending the PDDL modelling language to declare and exploit typed numeric action
parameters (i.e. control parameters), whose values are taken from infinite domains, in
PDDL action schemas.

– Developing a forward state space heuristic search planner, called POPCORN, that can
handle linear pre- and post-conditions and effects with multiple control parameters.

– Combining a continuous time relaxation, called infinity analysis, with an incremental
graph expansion mechanism to avoid common relaxation issues in problems with
repetitive resource transfer with control parameters. The resulting relaxation is called
refined infinity analysis.

– Extending a delete-relaxation based temporal heuristic, the Temporal RPG, to include
refined infinity analysis.

– Proposing an alternative modelling approach in a robot navigation scenario that
describes locations as continuous regions rather than modelling as discrete objects.

1.3 Thesis Statement 16

1.3 Thesis Statement

This thesis explores the claim that:

A temporal-numeric task planner equipped with action-specific numeric para-
meters with large domains is capable of generating sophisticated and pragmatic
numeric reasoning coupled with efficient search.

1.4 Thesis Outline

The rest of the thesis is structured as follows.
In Chapter 2, we provide the details of the assumptions we used in the thesis. Then,

we describe the most commonly used automated planning paradigms in an increasing
order of complexity (i.e. classical, numeric, temporal planning paradigms), where we
present the problem statement of each paradigm associated with their solution. We
then introduce the PDDL modelling language (McDermott et al., 1998) that is the most
well-known standardised planning language. Later, we describe the planning as a search
problem identifying popular search and heuristic algorithms. We describe different heuristic
evaluation techniques and their use in search. We conclude with brief descriptions of
important planning systems, including POPF, and summarise their differences and clearly
identify the position of our research among the state-of-the-art.

In Chapter 3, we propose an extension to the PDDL2.1 language, which enables encoding
action parameters that are allowed to take their values from finite domains (i.e. control
parameters). We describe the effects of control parameters in the search space and propose
a way of handling them in forwards heuristic search framework, which makes use of a
mathematical solver (i.e. LP) for tackling numeric constraints. We propose a minor
extension to the Temporal RPG heuristic that enables reasoning with control parameters.
We compare and contrast our approach with our closest competition, Scotty (Fernández-
González et al., 2015a). We describe how we encode these parameters in the LP models.
Then, we provide the formal definition and solution of planning with control parameters
problem. We describe a way of managing flexible plans. We implement this work on the
POPF planner, resulting in a new system called POPCORN. We conclude the chapter with
an elaborate set of experiments with POPF and Scotty.

In Chapter 4, we investigate the weaknesses of the heuristic used in POPF, the Temporal
RPG, in temporal-numeric problems with control parameters (specifically, producer-
consumer problems). We identify the existence of control parameters in temporal setting
significantly reduces the basic-informedness of the heuristic. We survey the reasons why
existing heuristic approaches are inefficient in these problems and propose an extension to
the Temporal RPG that considerably improves its informedness. We present a common
production planning problem, in which numeric resources are repeatedly produced and
consumed. We categorise certain actions as producers and consumers based on their pre- and
post-conditions and effects in the domain model. Then, we formulate useful partially-ordered
patterns to provide further informedness to the heuristic. We implement this heuristic on
the POPCORN planner, resulting in a system called POPCORN-R (that is POPCORN with
Refined Infinity Analysis) and benchmark it with POPCORN on a set of highly complex

1.4 Thesis Outline 17

producer-consumer problems and the extended version of Scotty on one of their example
domains.

In Chapter 5, we present the use of control parameters in the task and motion planning
(TAMP) integration as a case study. We present an alternative modelling approach to
robot navigation, where the locations are modelled as continuous regions, not as location
objects or discrete coordinates. We investigate the state-of-the-art modelling techniques
and their weaknesses in robot navigation. We also survey the most well-known TAMP
approaches. We present the technique in a scenario used in the SQUIRREL EU robotics
project. We investigate the modelling technique, plan generation and execution in depth. We
evaluate the technique using POPCORN to solve models with continuous regions, POPF
and TFD (Eyerich et al., 2012) to solve models with discrete locations. We present the
evaluation results for 1600 problem instances run on 3 planners.

Chapter 2

Background

In this chapter, we provide descriptions of previous work that are relevant to this
thesis. The chapter is structured as follows. We start with a brief introduction to the
automated planning, then provide detailed descriptions of the main components of a domain-
independent planning problem describing suitable languages, models and algorithms; as well
as systems that implement these components. We conclude the chapter with a concise survey
on the integration of task and motion planning, as we conduct a case study on this subject
in this thesis.

2.1 Introduction to Automated Planning

An important problem of autonomous behaviour is the problem of choosing which activities
to execute next (Geffner and Bonet, 2013). There are various ways to address this problem.
In the programming-based approach, the programmer explicitly specifies which action to
execute in certain circumstances defined in a program. In the learning-based approach,
the programmer does not impose any decision to the agent, but the decision relies on
experience learned from the environment. In the model-based approach, the decision is
neither dictated by the programmer nor learned from the environment but it is derived from
a model of possible activities, the world state and the goals. Each of these approaches have
different limitations. In programming-based approach, the programmer is responsible for
foreseeing all possible contingencies of the problem and usually results in implementing a
fragile system. The learning-based approach is limited to the experience the agent possess.
The model-based approach takes a list of actions, goals and the world state as the input
and considers all possible scenarios, but it is limited to the computational complexity of the
problem.

The Minesweeper game is a single-player video game, where the objective is to clear
a rectangular board containing bombs without detonating any of them, with the help
of numeric clues indicating the number of bombs in the neighbouring tiles. The three
approaches we discussed earlier would offer solutions to this problem as follows. The
programming-based approach requires the actions to be taken hard-coded in a program. The
learning-based approach requires learning process in a set of training runs in the Minesweeper
game environment. The model-based approach can derive a solution solely from the world

18

2.1 Introduction to Automated Planning 19

1

1 2 1

Unsolved Minesweeper Solved Minesweeper

X

X

Figure 2.1: The illustration of the partially solved (on the left) and the solved (on the right)
Minesweeper game.

state, actions list and the goal conditions.
Automated planning is a model-based approach to autonomous behaviour where the

agent chooses the next action from the actions list considering the world state and the goals.
The authors of The Automated Planning textbook (Geffner and Bonet, 2013) splits model-
based approaches to action selection problem into three parts: the models that express the
dynamics, feedback, and the goals; the languages that express these models in compact (and
standardised) form; the algorithms that exploits the representation of models for generating
the behaviour.

Figure 2.1 illustrates a small 4× 6 unsolved Minesweeper game with two bombs hidden.
In this figure, the bottom left tile is labelled with the location (0,0) and the coordinates
of each tile is incremented by 1 on right and upper directions. In this problem, we have
24 boolean variables that control whether each corresponding tile is already discovered or
not. Another 24 boolean variables control whether each tile has a bomb or not. A state for
this problem is a valuation over these variables. The figure on the left is the initial state
and the one on the right is one of the possible solutions to the problem (one of goal states).
At the initial state, there are 6 already discovered tiles. There are 218 = 262144 possible
states (including possible goal states) in total from the initial state. The available action
to the agent is to unveil a tile. The event of denotation of any bomb results in failure of
the game. Initially, we do not know where the bombs are hidden and what numeric clue we
will obtain when revealing a tile, so the state is partially observable. The system obtains
knowledge about the hidden variables using the observable variables. For instance, when we
consider the clues on tiles (3,1) and (4,2), one can easily recognise that the tile (4,1) must
be a bomb. As the tile (4,3) indicates that there are no surrounding bombs to this tile,
the tiles (3,3), (3,4) and (4,4) can be marked as safe without any hesitation. Following this
move, one can realise that there must be a bomb in tile (2,3), which results in solving the
puzzle successfully.

It is possible to solve this problem instance by writing a hard-coded program where it
takes the initial and goal states. As a result, the program can perform a behaviour that is
somewhat similar to (or indistinguishable from) the behaviour of a human. This program is
likely to fail solving other problems, even if they follow similar set of logical rules. However,
in automated planning, the objective is to design a program that is not only limited to

2.1 Introduction to Automated Planning 20

the Minesweeper game. We expect that it can solve any problem that follows a certain
mathematical structure. The mathematical structure of the problem becomes apparent in
its planning model (discussed later in this chapter). There are various examples of problems
that have similar mathematical (or logical) representations to the Minesweeper game, such
as the Wumpus (Russell and Norvig, 2010) and the Solitaire games. The ability of identifying
the characteristics of a problem based on their representations and solving identical ones
using generic algorithms constructs the core of the automated planning.

The environments of Minesweeper-like games are partially observable (i.e. the agent
holds partial knowledge about the environment) and non-deterministic (that is when the
execution of an action may or may not generate a new state). As might be expected, not
every planning problem is similar to the Minesweeper game. Various games are deterministic,
as in the Rubik’s cube, where the effects of an action always yield to a new child state. Some
restrictive assumptions made on the representation of the environment clarify the scope
of the planning model (Ghallab et al., 2004). The assumptions are mainly based on the
characteristics of the actions and the states of the environment; and they can be enlisted as
follows:

– Deterministic vs. non-deterministic: the planning problem is deterministic if the
execution of the same action at the same state always yields to the same child state.

– Finite vs. infinite state world: in case the problem yields to a finite set of states, it
is considered to be a finite state world. It is worth mentioning that an infinite state
world could arise in two ways: arithmetic operations on numeric variables can yield to
infinitely many child states (an example problem is provided in Section 2.2.2) and/or
the domain of reachable values for one or more numeric variables could be infinite (e.g.
v :: [1,∞], where v is a numeric variable).

– Full vs. partial observability: the state of the environment is fully observable if the
agent holds the complete knowledge of the system.

– Implicit time: the actions do not have any duration so that the state transition is
instantaneous.

Different planning paradigms arise depending on which of these restrictive assumptions
are relaxed in the environment. In this thesis, we study automated planning in deterministic,
fully observable, explicit time and infinite state world environment. This implies that:

– Infinite state world: we tackle problems in which the numerical action parameters
takes their values from infinite domains that create infinite set of states. We give the
details of this restriction in Section 3.

– Determinism: the execution of an action takes the system to a single other state.

– Full observability: one has the complete knowledge about the state of the system.

– Explicit continuous time: in planning domains, we consider action duration and
concurrency. The time is also taken into account during transition from one state
to another and it can be a continuous property of the problem. The details of this
assumption is considered in Section 2.2.3.

2.2 Representations of Planning Problems 21

The formulation of mathematical structures and the detection of the causal relations of
problems is the main concern of automated planning. In the next section, we present the
general formalisation of different planning problems in the increasing order of complexity.
We start with the classical planning problem and conclude the section with the temporal-
numeric planning problem formalism. In this thesis, we are particularly interested in
temporal-numeric planning problem as it allows an explicit representation of time and
numeric resources. In further sections, we survey a standardised modelling language,
PDDL (McDermott et al., 1998; Fox and Long, 2003; Hoffmann and Edelkamp, 2005; Fox
and Long, 2006; Gerevini et al., 2009), adopting these formalisms, and conclude the chapter
with a survey of the highly-reputed algorithms that are used to find a solution for the
problem.

2.2 Representations of Planning Problems

Automated planning is specialised into different paradigms depending on the assumptions
that are taken in the environment and the type of transitions considered between states.
First, we survey classical planning as it is considered to be the starting point of AI planning
research. Second, we study numeric and temporal planning paradigms, which introduce
numeric and temporal features of the world into the planning problem.

2.2.1 Classical Planning

Classical planning is a deterministic, fully observable, discrete and static planning para-
digm (Russell and Norvig, 2010). It is concerned with finding a sequence of actions that takes
the system from an initial state to a goal state, where the effects of actions are deterministic
and known. Classical planning can be considered as a path finding problem over a directed
graph whose nodes represent the states of the system and edges represent state transitions
of applying actions. Geffner and Bonet formalise the classical planning model describing the
relevant concepts as follows (Geffner and Bonet, 2013).

Definition 1 (Classical Planning Model) The classical planning model is defined as a
tuple 〈S,A, s0,G,T 〉, where:

– S is a finite set of states, where each state consists of a set of grounded literals,

– A is a finite set of grounded actions. A(s) ⊆ A represents the set of actions in A that
are applicable in state s ∈ S,

– s0 ∈ S is the initial state. It consists of a finite set of literals that initially hold true,

– G ⊆ S is the non-empty set of goal states,

– T (a, s) is the state transition function that drives the state s to s′ with execution of
action a ∈ A(s). s′ can be represented as s′ = T (a, s).

In this definition, a grounded literal refers to a first-order literal of the form p(q1, . . . , qn),
where p is a predicate of arity n with arguments qn. Each of its arguments is bounded to an
object specified in the problem description. For instance, at(?t ?loc) is a predicate and

2.2 Representations of Planning Problems 22

at(truck1 location1) is a grounded literal. A grounded action (or instantiated action)
refers to an action schema, whose arguments are bounded to objects defined in the problem.

There are two general formalisations of the classical planning model: the propositional
logic formalisation and the multi-valued variable formalisation (based on SAS+) (Bäckström
and Nebel, 1995; Helmert, 2006). We only survey formalisation based on propositional logic
as it is the relevant representation to the thesis. In this formalisation, predicates describe
the static or non-static features of objects (i.e. the agent can traverse between two specified
location objects in a navigation problem), and boolean propositions are added or deleted
(to/from the state world) when an action is applied. The model can be shown as follows:

Definition 2 (Propositional Formalisation of Classical Planning Problem)
The classical planning problem (or a task) formalised using propositional logic is a tuple of
〈F ,A, I,G〉, where:

– F is a finite set of grounded literals (or facts),

– A is a finite set of grounded actions derived from action schemas specified in the
domain,

– I ⊆ F is the finite set of grounded literals that hold true at the initial state,

– G ⊆ F is the finite set of grounded literals that needs to be achieved in order to reach
the goal state.

In the definition, each action a ∈ A is denoted as a tuple a = 〈pre, eff +, eff −〉, where
pre(a)⊆ F denotes the preconditions, eff +(a)⊆ F denotes add effects, eff −(a)⊆ F denotes
delete effects of action a. The effects of a can be shown as eff(a) = eff −∪ eff +. An action
a is applicable at state s iff pre(a)⊆ s. The result of applying action a at state s is a new
state s′ = s \ eff − ∪ eff +.

The propositional formalisation of a classical planning task is commonly known as the
STRIPS formalism (Fikes and Nilsson, 1971). The STRIPS formalism is based on two
important assumptions. First, it assumes all facts that are not known to be true, are false
(closed world assumption (Reiter, 1977)). Second, it assumes that only actions can update
the world state with their own effects (STRIPS assumption). In other words, it assumes
that applying an action updates the values of literals that are affected by the effects of this
action and the values of the rest of the literals remain unchanged. The state transition
function, T (a, s), in STRIPS assumption can be derived from the following equation:

T (a, s) =

s \ eff −(a) ∪ eff +(a), if pre(a) ⊆ s

undefined otherwise

The solution to the classical planning problem can be defined as:

Definition 3 (Classical Planning Solution) Suppose that the π is a sequence of appli-
cable actions π = {a0, a1, . . . , an} that generates a sequence of states {s1, . . . , sn+1}. π

is a solution to the classical planning problem if pre(ai) ⊆ si+1 and sn+1 ∈ G, where
i = {0, . . . ,n}.

2.2 Representations of Planning Problems 23

The cost of applying each action is constant and it is equal to 1. Thus, the cost of the
plan is equal to the plan length. The shortest plan yields to (cost-)optimal plan, which refers
to (in sequential classical planning) a plan that contains fewer actions than other plans for
the problem. The systems that find optimal plans are optimal planners. Satisficing planners
are the ones that generate good plans (or satisficing plans) which are not necessarily optimal.

2.2.2 Numeric Planning

Numeric planning introduces numeric variables to planning that extends the planning task
beyond the propositional logic formalisation. The numeric variables can take their values
from finite (or potentially infinite) domains, such as integer, real numbers or rational sets.
If the numeric domain is finite, the task can be transformed into a planning problem
over a finite set of multi-valued or boolean variables. The existence of numeric variables
enables defining goals and preconditions as multi-valued functions, such as f(x) ≥ c or
f(x) > c; where the variable c denotes a constant number and f(x) is a function over
numeric variable x. This contrasts to classical planning where the preconditions and goals
are boolean atoms (that can either be true or false). In real world applications of numeric
planning, the numeric variables (also known as state variables) include dynamic-changing
resources of the environment, such as the fuel level and the velocity of a vehicle, the volume
setting. It is worth noting that the introduction of numeric variables makes the planning
problem undecidable (Helmert, 2002), as the search space can become infinite and the search
algorithms may run forever without returning a solution or determining that there is a
solution. We give an example below, for which the search algorithms will have to run
forever and would not return a solution.

Numeric planning task can be easily mapped into a classical planning task where the goal
state is reached from an initial state by applying a sequence of deterministic actions. The
only difference between the two is that the numeric planning can yield to infinite number of
states. This problem arises even if the numeric variables are restricted to take their values
from finite domains. Geffner and Bonet describe this problem using the following numeric
planning example (Geffner and Bonet, 2013). Consider a planning problem where an action
assigns the value of variable x to its half (i.e. the assignment effect is x := x/2). The
initial value of x is 1 (x = 1), and the target value is 0 (x = 0). This problem is unsolvable
using search algorithms for finite plans. This problem and many more challenging numeric
planning problems have been addressed over the last decade and can be found in (van den
Briel et al., 2007; Löhr et al., 2013; van den Briel and Kambhampati, 2005; Gerevini et al.,
2008).

The formulation, search and the use of heuristics has become the major challenges in
numeric planning for more than a decade. The 3rd International Planning Competition
(IPC-3) (Long and Fox, 2003) can be considered as the turning point in this direction. A
standardised planning language (PDDL2.1 (Fox and Long, 2003)) is introduced for the use
of the competition, which enabled other researchers to benchmark their approaches. Since
then, various search and heuristic algorithms have been proposed to find solutions for finite
plans (if they exist) (Hoffmann, 2003; Coles et al., 2008b; Piotrowski et al., 2016; Scala et al.,
2016b; Francès and Geffner, 2015).

2.2 Representations of Planning Problems 24

As a step towards formalising the numeric planning problem, the classical planning model
and its formalisation given in the Definition 1 and 2 are extended as follows. In addition to
a set of literals (F), a set of numeric variables (v) is defined. The size of v is r that can
be represented as v = {v1, . . . , vr}. Suppose that F (s) ⊆ F and v(s) = {v1(s), . . . , vr(s)}
denotes a set of literals and a vector of rational numbers (the values of each variable),
respectively, at state s ∈ S. The state notation in Definition 1 is extended such that the
state s is a pair s = 〈F (s), v(s)〉.

The numeric planning problem is an extension of the classical planning problem in
propositional logic given in Definition 2 and it is denoted as a tuple of 〈v,F ,A, I,G〉. Each
action a ∈ A is denoted as a tuple a = 〈pre, pren, eff +, eff −, eff n〉, where pre(a)⊆ F

denotes a set of propositional preconditions, pren(a) denotes a set of numeric preconditions
over the state variables v, eff +⊆ F denotes propositional add effects, eff −⊆ F denotes
propositional delete effects, eff n(a) denotes a set of numeric effects over the state variables
v of action a.

Let exp and exp′ denote arithmetic expressions over v and the rational numbers
that are formulated using the operators {+,−, ∗, /}, comp denotes comparison operators
{≥,>, =,<,≤}, op denotes assignment operators {+=, -=, :=, *=, /=}. A numeric
precondition and a numeric effect are defined as:

Definition 4 (Numeric Precondition) A numeric precondition is a tuple 〈exp, comp,
exp′〉 ∈ pren(a).

Definition 5 (Numeric Effect) A numeric effect is a tuple 〈vi, op, exp〉, where vi is a
state variable in v.

An action a is applicable at a state s if and only if all preconditions pre(a)⊆ s and all
numeric preconditions in pren(a) hold in s. The result of applying action a at s is a new
state s′ = s ∪ eff + ∪ v(s′) \ eff −, where v(s′) is the value vector that results from applying
effn(a) over numeric variables in v.

2.2.3 Temporal Planning

Temporal planning refers to planning using actions with durations allowing them to be
executed concurrently in certain conditions. The earliest instance of reasoning with time
in planning is the introduction of timelines and chronicles used in IxTeT (Ghallab and
Laruelle, 1994). The chronicles consist of temporal constraints over a set of state variables
and a timeline is a chronicle of a single state variable. Their work has pioneered the most
important temporal planning tools, such as simple temporal network (STN).

The temporal-numeric planning problem is an extension of the numeric planning problem
in propositional logic where it is denoted as a tuple of 〈v,F ,A, I,G〉. The representation of
actions in A is extended, so that they include the duration of actions. The resulting actions
are called durative actions, and can be defined as follows.

Definition 6 (Durative Action) A durative action a ∈ A is a tuple a = 〈dur, pre`, eff`,
pre↔, prea, effa〉, where:

2.2 Representations of Planning Problems 25

– pre` and prea denotes the start and the end conditions of the action a, respectively,
where each consists of propositional (pre) and numeric (pren) conditions that must
hold.

– pre↔ denotes the propositional and numeric invariant conditions of the action a that
must hold between the start and the end of the action.

– eff` and effa denotes the start and the end effects of the action a. Suppose that effx
denotes each given collection of effects where x ∈ {`,a}. Each effx consists of:

– eff +
x denotes literals to be added to the world state,

– eff −x denotes literals to be deleted from the world state,

– eff n
x denotes the numeric effects acting on state variables.

– dur denotes the duration constraints of the action a that constrains the time length
between start and end of the action a. Each duration constraint consists of a special
numeric parameter, ?duration, that represents the duration of the action.

The duration parameter ?duration can appear in the numeric effects of the action (eff n
x).

This addition changes the arithmetic expressions used in numeric effects. Suppose that expe
denote an arithmetic expression over v, ?duration parameter and rational numbers, op
denotes assignment operators {+=, -=, :=, *=, /=}. A numeric effect becomes a tuple
〈vi, op, expe〉, where vi is a state variable in v. It is also worth noting that the duration
parameter does not appear in numeric conditions. Each durative action creates two time-
points: at the start and at the end of the action.

The plan (or a solution) to the temporal-numeric planning problem can be defined as:

Definition 7 (Temporal-Numeric Plan (π)) is a list of timestamped actions with dura-
tion in π. It is shown as:

π = {〈ai, tsi, ∆ti〉 | ∀i = {0, . . . ,n}},

where n is the plan length, tsi ∈ R is a timestamp (the time at which the action ai is
applied), ∆ti ∈ R is the duration of the action ai. The plan generates a sequence of at
most 2 · n states (each is denoted by s(t)) by applying the start and the end of action ai at
time-points (t = tsi) and (t = tsi+ ∆ti), respectively. Additionally, the following conditions
must hold true:

– the duration constraints, dur, of each action in π are satisfied,

– pre`(ai) and prea(ai) hold in states s(tsi) and s(tsi + ∆ti), respectively, such that
∀i = {0, . . . ,n},

– pre↔(ai) hold in every state s(t), where tsi < t < tsi + ∆ti, such that ∀i = {0, . . . ,n},

– The trajectory of states generated by application of the actions yields a final state that
satisfies the goal.

2.3 Modelling Language 26

2.2.3.1 Temporal Coordination

The introduction of time in planning has enabled researchers to apply planning technology
in more realistic problems than the sequential puzzle problems (e.g. Minesweeper game).
One of the most important challenges posed in temporal planning is the ability of executing
multiple actions in parallel, where the non-temporal planning approaches are inadequate.
In classical planning actions appear in a sequence where the concurrency between actions is
abstracted.

Although PDDL2.1 introduces the expressive model of durative actions, earlier temporal
planners, such as MIPS-XXL (Edelkamp and Jabbar, 2006) and LPG (Gerevini et al., 2006),
translate PDDL temporal actions into a single temporally-extended STRIPS action. This
semantic representation is called as action compression and it is introduced in TGP (Smith
and Weld, 1999). However, applying action compression to durative actions can cause
incompleteness (Coles et al., 2009c). Later, the idea of required concurrency is introduced
by Cushing et al. (Cushing et al., 2007) to characterise the cause of incompleteness in some
temporal problems.

2.2.3.2 Interaction between Time and Numeric Resources

The temporal-numeric planning formalism models problems with temporal coordination
and discrete numeric change. The numeric effects update state variables instantaneously:
either at the start or at the end of the action. Many real world applications require us
to initiate and control continuous processes, in which the numeric variables are updated in
time-dependent ways. For instance, dropping an object from a height initiates a continuous
process of falling where the height is continuously updated over time. In this example, the
world state is updated with a discrete change at a step (e.g. dropping the object) and a
continuous change between steps (e.g. falling).

Any planning problem requiring interaction between numeric and time properties (as
in dropping an object example) are called hybrid systems and they can include mixed
discrete-continuous numeric change in the world. The theory of hybrid automata provides
an underlying conceptual formalism for modelling and reasoning about mixed discrete-
continuous systems (Henzinger, 2000). Many researchers have proposed heuristic and search
algorithms addressing this problem (Coles et al., 2009b; Li and Williams, 2008; Penna et al.,
2009; Bryce et al., 2015; Bajada et al., 2015).

2.3 Modelling Language

Having presented the temporal-numeric planning model, we report the PDDL language that
expresses the model in a standardised way.

2.3.1 The PDDL Language

The Planning Domain Definition Language (PDDL) (McDermott et al., 1998) was intro-
duced to run The First International Planning Competition (IPC) in 1998 (McDermott,
2000). The objective of the competition is to benchmark state-of-the-art planning systems.

2.3 Modelling Language 27

The first version of PDDL was inspired by STRIPS and ADL (Pednault, 1989) languages.
It includes typed object parameters in addition to the STRIPS and ADL features.

In PDDL, the planning task is modelled in two parts. The domain model includes the
action schemas and their typed constant objects, predicates and model requirements. The
problem instance includes enumerated objects and their types, the facts that are true at the
initial state and the facts that must hold true to reach the goal conditions.

Since IPC-1, PDDL has evolved with each competition, resulting in various official
versions and extensions available today. These languages are described in (Fox and Long,
2003; Hoffmann and Edelkamp, 2005; Gerevini et al., 2009; Kovacs, 2011; Younes and
Littman, 2004; Sanner, 2010). Various other PDDL extensions have been proposed, but they
are not used as official IPC languages, and they can be found in (Dornhege et al., 2009; Fox
and Long, 2006; Kovacs, 2012). PDDL+ (Fox and Long, 2006) is one of these extensions that
allows modelling mixed discrete-continuous planning problems through exogenous events and
continuous processes. In this thesis, we use the PDDL2.1 (Fox and Long, 2003) extension as
our base language, since it is the most frequently used PDDL version describing temporal-
numeric problems. It extends Lifschitz’ STRIPS semantics (Lifschitz, 1987) to encode
numeric and conditional effects, as well as temporally designed actions.

2.3.1.1 The PDDL2.1 Language

PDDL2.1 introduces four levels of expressiveness. Each level introduces an additional
expressive power to the previous one and they are summarised as follows:

– Level 1: STRIPS Encoding,

– Level 2: Numeric extensions,

– Level 3: Discretised durative actions,

– Level 4: Continuous durative actions,

All levels (except level 1) use the arithmetic operators to construct numeric expressions
(as in the form described in Section 2.2.2). The numeric preconditions are constructed
using these numeric expressions and comparison operators. The numeric effects use
numeric expressions and definitive syntax for assignment operators (increase, decrease

and assign). Figure 2.2 captions the pouring water between jugs example presented by
Fox and Long (Fox and Long, 2003). The (amount ?j) and (capacity ?j) are typed state
variables. The precondition of pour action is a numeric constraint over these variables that
can be formulated as (capacity ?jug2) - (amount ?jug2) >= (amount ?jug1). The
first numeric effect of the action assigns the value of (assign ?jug1) to zero, whereas the
second one increases the value of (amount ?jug1) by the value of (amount ?jug2).

In PDDL2.1 language, the conditions and effects in a durative action must be temporally
annotated. The annotation of a condition specifies whether it must hold at the start of the
action (the time point at which the action is applied), the end (the point at which its end
appears) or over the interval from the start to end (invariant over the action duration). The
annotation of an effect specifies whether the effect becomes true at the start or at the end
of the action.

2.3 Modelling Language 28

(define (domain jug-pouring)
(:requirements :typing :fluents)
(:types jug)
(:functions (amount ?j - jug) (capacity ?j - jug))

(:action pour
:parameters (?jug1 ?jug2 - jug)
:precondition (>= (- (capacity ?jug2) (amount ?jug2)) (amount ?jug1))
:effect (and (assign (amount ?jug1) 0)

(increase (amount ?jug2) (amount ?jug1))))

Figure 2.2: Pouring water between jugs example as described by Fox and Long (Fox and
Long, 2003).

(:durative-action scan_ticket
:parameters (?g - gate ?p - person)
:duration (and (>= ?duration (readiness ?p)) (< ?duration 10))
:condition (and (at start (near ?g)))
:effect (and (at start (open ?g))

(at end (not (open ?g)))))

(:durative-action pass_through_door
:parameters (?p - person)
:duration (= ?duration (walking_speed ?p))
:condition(and
(at start (open ?g))
(over all (open ?g)))
:effect (and (at end (passed))))

Figure 2.3: Going through the ticket gate example encoded in PDDL2.1 level 3

Figure 2.3 shows the main actions of an example, in which the objective is to pass through
a ticket gate. In this example the execution of scan_ticket action creates an opportunity
for at most ten time units allowing the execution of pass_through_door action. Observe
that pass_through_door action uses fixed duration specification whereas scan_ticket uses
flexible duration limits. In the fixed duration case, the duration of the action is determined
by the value of the variable (walking_speed ?p) in the state. In the flexible duration case,
the duration of the action is constrained in an interval. This case gives the planner freedom
to choose the duration of the action in this interval at the time of execution.Having flexible
duration creates a more complex branching choice in the search space than in the fixed
duration case.

A continuous durative action includes numeric effects that update the state variable
continuously over time. While the discrete effects occur either at the end or at the start of
the action, the continuous effects occur during the execution of the action. The language
allows increase/decrease effects on variables according to a fixed rate of change over time.
The language includes a reserved syntax, #t, denoting the continuously changing time from
the start of a durative action during its execution. The scope of #t is limited to each
durative action. To illustrate the use of #t, consider the fuel consumption of a car, which

2.4 Planning as Searching through Spaces 29

continuously decreases over time. The continuous decrease effect can be shown as:

(decrease (fuel_level) (* #t (consumption_rate)))

Plan Metrics: An important extension of PDDL2.1 in optimal numeric planning is the
plan metrics field that can be optionally supplied in the problem specification. It specifies
the basis on which the planner evaluates the problem. The numeric expressions that are
desired to be optimised (i.e. maximized or minimized) are defined in the plan metrics field.
An abstract example to the plan metric can be given as follows. Assume the modeller aims
to minimise the linear expression 3x + y in planning procedure, where x and y are state
variables. Then the metric plan can be shown as:

(:metric minimize (+ (* (x) 3) (y)))

2.4 Planning as Searching through Spaces

The planning problem can be considered as a path finding problem over a directed graph.
It can be solved using different space search approaches. The first approach is based on
searching through the world states, in which the nodes represent possible world states and
the edges (or state transitions) represent action execution. This approach is called state space
search. The second approach, called plan space search, is based on searching through plan
spaces (Sacerdoti, 1975; Weld, 1994). In this search, the nodes represent partially specified
plans and the edges represent plan refinement operations, which refers to the modifications
to the partial plan (such as appending actions to the end of the partial plan).

There are three generic branching schema approaches to search through these spaces.
The first approach, called forward search (or progression), starts the search from the initial
state and progresses through states until a goal state is reached. The second approach, called
backward search (or regression), starts the search from the goal and regresses back through
states until the initial conditions are reached. The third approach, called bidirectional search,
the backward and forward search algorithms are run simultaneously and the solution is found
once the algorithms meet at a common state.

Partial order planning refers to the formulation of the planning problem as a search
problem in partially specified plan space. The initial state represents an empty plan and
the goal state represents a complete plan. The state transitions are the plan refinement
operations. A partial plan is a tuple PP = 〈A,L,O,B〉, where A is a set of actions, L a
set of causal links, O a set of ordering constraints, B a set of binding constraints. Ordering
constraints define a partial order on actions and binding constraints define a partial order
on action parameters in PP. B is an empty set if the actions are grounded. A solution
is reached if each precondition (open condition) of actions is linked to an effect of another
action and each unsafe causal link between actions is resolved. Plan space search uses the
least commitment principle, which refers to adding an ordering constraint between actions
to the partial plan only if it is strictly needed to reach the goal.

In this thesis, we focus on forward state space search planning. The system we use,
POPF (Coles et al., 2010), makes use of partial ordering of actions during the search to
improve its performance. In the next section, we mention the most well-known search
algorithms and describe the one used in this system.

2.4 Planning as Searching through Spaces 30

2.4.1 Search Algorithms

Search algorithms are split into two categories: blind search and informed search. Blind
search algorithms are the ones that do not have any information about the search space
(except the initial and the goal states). The most commonly used ones are depth-first and
breadth-first search algorithms. Informed search algorithms obtain additional information
about the problem in order to promote some states over others. These algorithms use a
heuristic, which is an estimation of the cost to reach a goal. For this reason, informed
search is usually called heuristic search. The most well-known informed search algorithms
are A∗ (Hart et al., 1968), weighted A∗ (Pohl, 1970) and greedy best-first search (Pearl, 1985)
algorithms. These algorithms are complete, where it is guaranteed to find a solution if there
exists one. Best-first search is a generic way of referring to the class of complete informed
search algorithms.

Note that not all informed search algorithms are complete. Hill climbing and enforced
hill climbing (EHC) (Hoffmann and Nebel, 2001) are local search algorithms that can fail to
find a solution. Even if it finds one, the solution is likely to be a local optima or a plateau.

Using blind search (and even complete search) algorithms in planning problems
(especially in numeric planning) is non-viable, as they can severely suffer from the size
of the search space. Many planning systems make use of local search to find a solution with
the least state evaluations (Bonet and Geffner, 1999; Hoffmann, 2003; Coles et al., 2009c).

Next, we give details of how heuristics are used in most informed search algorithms and
concentrate on describing weighted A∗ and enforced hill climbing informed search algorithms
as they are used in our base system, POPF.

2.4.1.1 Informed (or Heuristic) Search

The heuristic evaluation methods (we will present them in Section 2.5) return a heuristic
value, h(s), which provides a quick-and-dirty estimate of the minimal cost to reach the goal
from the state s (Geffner and Bonet, 2013). This value is used in evaluation function, f(s),
which incorporates heuristic information in search and it varies between informed search
algorithms. We can describe the weighted A∗ and enforced hill climbing algorithms as
follows.

– Weighted A∗ is a best-first search algorithm. It is a variation of A∗, in which the
evaluation function is a weighted sum of the estimate cost of achieving the goal from a
state s (i.e. h(s)) and the accumulated cost of achieving the state s (i.e. g(s)). Let wg
and wh be real-valued weights, where wg,wh > 1. The evaluation function is defined
as follows:

f(s) = wg · g(s) + wh · h(s) (2.1)

– Enforced Hill Climbing is a local informed search algorithm, which is a variant of the
hill climbing algorithm. It was introduced by Hoffmann and Nebel (Hoffmann and
Nebel, 2001). Starting from a state s, it searches for the successor state s′ of s (using
the complete breadth first search algorithm) that is closest to the goal according to
the relaxed heuristic distance measurement and keeps the states in a queue. When the
breadth first search finds the closest better successor, where h(s′) < h(s), the queue is

2.5 Heuristic Evaluations 31

deleted and the breadth first re-starts from the state s = s′. The search stops when it
reaches a goal (a state, where f(s) = h(s) = 0) or it cannot find a better successor.

2.4.1.1.1 Helpful Actions The idea of automatically deriving heuristic information
from the problem is not only limited to obtaining a heuristic value at a state. The idea
is applied to derive structural information (of the search) in the form of helpful actions
(or preferred operators (Helmert, 2006)) and it was first studied by (Hoffmann and Nebel,
2001). A set of helpful actions are a subset of applicable actions at a state s, which are
more promising than the other applicable actions at s towards meeting the top-level goals
of the problem (the goals that are not true in s). EHC algorithm ignores all the actions
that are not helpful in a given state to enhance the search performance. Consequently, the
branching factor of the problem is significantly reduced and this is how the EHC algorithm
becomes incomplete. If the helpful action list is empty, the EHC immediately fails. However,
the use of helpful actions is not limited to local search. A novel best-first search algorithm
introduced by (Helmert, 2006) incorporates helpful actions. The algorithm uses two open-
lists (one for helpful actions and one for all applicable actions) and alternates between them
based on heuristic value.

The heuristic technique used in POPF makes use of helpful actions. We will give the
details of its base heuristic and the process of extracting helpful actions in Section 2.5.1.2.

Having described the search algorithms, we categorise and briefly describe the most well-
known heuristic evaluation methods used in planning problems (in an increasing complexity
order starting from classical planning).

2.5 Heuristic Evaluations

The heuristic values are automatically derived from a problem. They are used to guide the
search towards a goal. A useful heuristic is the one that is computationally fast and provides
a good estimate of the cost to the goal (i.e. h(s)). Different heuristics are used depending on
the problem we have (Edelkamp and Schroedl, 2012). For instance, the Euclidean distance
is a good heuristic for path finding problems, whereas the sum of the Manhattan distances is
a good heuristic for the sliding puzzle problem. In general, the idea of developing heuristics
is based on reducing the complexity of the original problem to a simplified version (called
relaxation). If the solutions to the original problem are also solutions to the relaxed version
of the problem, the heuristic from the relaxation is indeed admissible. This is a preferred
characteristic in a heuristic, but it is not a compulsory feature.

In general, the heuristic evaluation methods in domain-independent planning are divided
into four categories (Geffner and Bonet, 2013):

– Delete-relaxation (Hoffmann and Nebel, 2001) is the most common domain-indepen-
dent planning heuristic. It maps the planning task 〈F ,A, I,G〉 into the relaxed version
〈F ,A+, I,G〉, in which the grounded actions in A has an empty delete effects list (i.e.
ignores the effects of actions that remove predicates from the world state). In this
relaxation, new facts are added by add effects while the delete effects are ignored. For
instance, when a truck moves from a location to another it remains to be at both

2.5 Heuristic Evaluations 32

locations at the end. Although the resulting plan, the relaxed plan, obtained from
the planning task is meaningless and does not reflect the actual model of the world, it
provides quick and efficient guidance in the search space.

– Pattern databases (Culberson and Schaeffer, 1998) are abstraction heuristics. They are
obtained by abstracting away significant portion of the problem that is small enough to
be solved optimally for every state. The results are stored in the database (Edelkamp,
2001; Haslum et al., 2007).

– Critical Paths heuristics map the shortest-path planning problem in state space into
shortest-path problem in atom space (a simplified problem) (Geffner and Haslum, 2000;
Haslum and Geffner, 2001).

– Landmarks are implicit subgoals that must be achieved when achieving top level goals
of the problem (Richter et al., 2008). Landmarks were first introduced by Porteous,
Sebastia and Hoffmann (Porteous et al., 2001).

2.5.1 Classical Planning Heuristics

For more than a decade, various classical planning heuristic approaches have been proposed,
including the additive and the max heuristics (Bonet et al., 1997; Bonet and Geffner, 1999,
2001)and landmark heuristics (Hoffmann et al., 2004; Helmert et al., 2007; Richter et al.,
2008; Karpas and Domshlak, 2009; Richter and Westphal, 2010). Ivankovic et al. recently
extended the additive heuristic to reason about lifted parameters (i.e. infinite domain action
parameters) that appears in the classical planning problems (Ivankovic et al., 2014). In this
section, we briefly describe relevant heuristic approaches for classical planning problems.
These heuristics are extended to handle temporal and numeric planning problems, which
will be discussed in further sections.

2.5.1.1 The Planning Graph

Blum and Furst developed a compact graph structure called the planning graph used in the
Graphplan system (Blum and Furst, 1997). Although the planning graph is not a heuristic
method, it became the core of many successful heuristics in planning, including the relaxed
planning graph (Hoffmann and Nebel, 2001) and its successors (Hoffmann, 2003; Hoffmann
et al., 2004; Coles et al., 2009c). A planning graph is a directed and layered graph with
two types of nodes and three types of edges. The layers of the graph alternate between
proposition layers containing proposition nodes and action layers containing action nodes.
The first layer is a proposition layer, fl(1), containing all propositions (or facts) that are true
in the initial conditions. The second layer is an action layer, al(1), consisting of applicable
action nodes based on true facts in the first layer. The third layer is a proposition layer, fl(2),
consisting of possibly true facts, and so on. The graph expansion continues until it reaches a
proposition layer satisfying all the goals of the problem. Then, a recursive backward search
algorithm is invoked starting from this proposition layer. For each fact to be achieved,
the planner selects achieving actions (of these facts) in the previous action layer one after
another, which are not exclusive (discussed in the following two paragraphs) of any other
action that has been already selected.

2.5 Heuristic Evaluations 33

The edges in a planning graph link the proposition and action layers. For i ≥ 1,
action layer i and proposition layer i are linked with precondition edges. Action layer i
and proposition layer i + 1 are linked with add-edges denoting the add effects and delete-
edges denoting the delete effects of the actions in action layer i. Figure 2.4 illustrates the
planning graph of a simple logistics problem, where there are two locations, A and B, and
a truck Tr (initially at A) the package Pk (initially at B). The goal is to have the package
at location A. The action (move Tr B A) becomes applicable at action layer al(2), as all of
its conditions hold in the fact layer fl(2) (i.e. it requires the fact (at Pk B) to hold). The
effects of this action delete the fact (at Tr B) from and adds the fact (at Tr A) to the fact
layer fl(3).

An important feature of the planning graph is noticing and propagating mutual exclusion
(mutex) relations among nodes. Two actions, a and b, are marked as exclusive of each other
if a deletes a precondition or adds an effect of b; or two mutex propositions p and q are
preconditions of a and b, respectively. Bonet and Geffner describe the Graphplan system as
a heuristic search planner with a heuristic function and a standard search algorithm (Bonet
and Geffner, 1999). The heuristic value at a state s, hG(s), is derived from the index of the
first layer in the graph that includes all the propositions in s without a mutex.

The Graphplan system stores a set of subgoals that are deemed unsolvable at time t in a
hash table. The system probes the hash table to see if the new set of subgoals at time t has
been previously deemed unsolvable before searching it. This technique is calledmemoisation,
that speeds up the search and allows the system to provide termination guarantees.

(at Tr A)

(at Pk B)

move Tr A B

(at Tr A)

(at Pk B)

(at Tr B)

move Tr A B

move Tr B A

load Pk Tr B

(at Tr A)

(at Pk B)

(at Tr B)

(in Pk Tr)

move Tr A B

move Tr B A

load Pk Tr B

unload Pk Tr A

unload Pk Tr B

(at Tr A)

(at Pk B)

(at Tr B)

(in Pk Tr)

(at Pk A)

fl(1) al(1) fl(2) al(2) fl(3) al(3) fl(4)

Figure 2.4: The planning graph for a simple logistics example. The black dots denote no-ops
(i.e. no operation nodes), black solid lines denote conditions, blue solid lines denote the add
effects and the dashed lines denote the delete effects.

2.5.1.2 The Relaxed Planning Graph Heuristic

Hoffmann and Nebel proposed using the relaxed version of the planning graph as a
heuristic (Hoffmann and Nebel, 2001). The relaxation comes from ignoring delete effects
of actions (the delete-relaxation). The resulting heuristic is called Relaxed Planning Graph
(RPG) heuristic. The heuristic does not contain any mutex relations, and consequently,
it reaches a solution without backtracking. The heuristic applies the graph expansion
and solution extraction techniques as usual and returns the heuristic distance to the goal
(hFF (s)) and a list of helpful actions. The heuristic distance is computed based on the
number of actions chosen during solution extraction. The helpful actions are a subset of

2.5 Heuristic Evaluations 34

these chosen actions that appear at the first action layer of the relaxed planning graph (if
this relaxation is applied to the example in Figure 2.4, (move Tr A B) action would be the
only helpful action in the RPG at state s).

2.5.2 Numeric Planning Heuristics

The complexity of numeric planning is undecidable and it can have infinite state propagation.
Hence, it is crucial to use a heuristic providing basic informedness in polynomial time (at
worst). The basic informedness is an important property of a delete-relaxation, which
refers to whether the heuristic is capable of generating a relaxed plan that achieves all the
preconditions and goals of the original problem, or not. More formally, Hoffmann defines it
in numeric planning task context as follows:

Suppose that (V ,P ,A, I,G) refers to the numeric planning task 〈v,F ,A, I,G〉.

“Basic Informedness: the preconditions and goals can trivially be achieved in
the original task if and only if the same holds in the relaxed task. Assuming a
restricted numeric task (V ,P ,A, I,G), 〈〉 is a plan for (V ,P ,A, I,G) if and only
if 〈〉 is a relaxed plan for (V ,P ,A, I,G), and for a ∈ A, result(I, 〈〉) |= pre(a) if
and only if result(I, 〈〉) |= pre(a+)” (Hoffmann, 2003, pg. 295 and pg. 301).

In this section, we study an extension of the delete-relaxation heuristic of the FF to
numeric planning problems. Then, we survey a hybrid heuristic approach that exploits a
mathematical solver (alongside the RPG heuristic) to compute strong bounds of variables
during constraint propagation. Finally, we talk about a landmark-based numeric planning
heuristic that aims to tackle numeric subgoaling problems.

2.5.2.1 The Metric-RPG Heuristic

The Metric Relaxed Planning Graph (The Metric-RPG) heuristic has been the most popular
numeric planning heuristic (based on the research output in numeric planning) for more
than a decade (Hoffmann, 2003). It extends the propositional delete-relaxation of the
RPG heuristic used in the FF planner to numeric variables. The numeric expressions are
transformed into a restricted task, called the linear numeric task, in which the arithmetic
operations are restricted to {≥,>} in conditions and {+=} in effects. The resulting form,
called Linear Normal Form (LNF), ensures that the numeric variables grow in only one
direction.

In the case of propositions, the heuristic ignores propositional delete effects (same as
in the RPG heuristic). In the case of numeric variables, applying relaxed actions diverges
the bounds by decreasing the lower limits with decrease effects and increasing the upper
limits with increase effects. The bounds of the numeric variables at a layer are computed as
follows. Suppose that v ∈ v denotes the numeric variable v in a vector of numeric variables
v, i denotes the index of the current layer, vmax(i) and vmin(i) denotes the upper and lower
bounds of v, amax ↑ (i, v) and amin ↓ (i, v) denotes the maximum and minimum values of all
possible assignment effects on v, increase(i, v) and decrease(i, v) denotes the increase and
decrease effects on v at layer i, respectively. Then the bounds of v at the next layer i + 1
become:

2.5 Heuristic Evaluations 35

vmax(i+ 1) = max{amax ↑ (i, v), vmax(i) +
∑
increase(i, v)}

vmin(i+ 1) = min{amin ↓ (i, v), vmin(i) +
∑
decrease(i, v)}

The numeric precondition satisfaction is simply done by checking each precondition
whether it is satisfied by any value within the diverging bounds. The heuristic applies
the graph expansion to check whether all numeric and propositional goals become reachable
and the solution extraction to compute the heuristic distance to the goal, h(s), and a list
of helpful actions in order to guide the search. The graph expansion phase is also called the
reachability analysis.

2.5.2.2 The LP-RPG Heuristic

Although the delete-relaxation based heuristics are extremely powerful on guiding the search
in numeric planning problems, they become less informative when predicting the true bounds
(i.e. numerically feasible bounds) of variables. As the graph expands in the Metric-RPG
heuristic, the relaxed bounds of variables are computed: decrease effects do not update the
upper relaxed bound and increase effect do not update the lower relaxed bound. As a result,
the relaxed bounds of a variable get diverged from each other (covering infeasible values as
well as the feasible ones) as the graph expands.

There are situations in planning problems in which the divergence of bounds in the
Metric-RPG heuristic can provide wrong guidance. These problems include resource
persistance and helpful action distortion (Coles et al., 2013). Resource persistence is a
consequence of using the delete-relaxation. When a numeric resource is consumed it does
not disappear in the relaxation of negative effects, so the resource persists. The opportunity
of reusing the resource can suggest that there is a significantly shorter plan available than is
the case in reality. The phenomenon of helpful action distortion emerges as a consequence
of misleadingly shorter plans generated due to resource persistence. This phenomenon, the
helpful action distortion, refers to the failure of capturing actions in the relaxed plan that are
essential towards meeting the goals of the planning problem. This problem usually occurs
in case the planning problem requires repetitive numeric transfer (a numeric resource is
repetitively decreased (or consumed) and increased (or produced)), such as in the Settlers
domain (Long and Fox, 2003). The relaxed plans typically contain too few actions that
produce the resource (i.e. production actions). In this situation, production actions often
do not appear in the helpful action set, and are not included in local search (e.g. EHC). As
a consequence, the heuristic can promote false activities as helpful actions, which can lead
the search to a dead-end.

The most recent work focusing on tackling the weaknesses of the delete-relaxation (e.g.
helpful action distortion and resource persistence) using a mathematical solver is the LP-
RPG heuristic (Coles et al., 2013, 2008b). The heuristic uses linear programming (LP)
solver alongside the Metric-RPG heuristic. Although the heuristic generates an informative
relaxed plan, it suffers from intensive use of LP-solving in order to obtain strong variable
bounds. The number of LP calls per RPG graph is equal to the multiplication of the number
of state variables, actions and layers: the heuristic optimises the upper and lower bounds of
each numeric variable of each action at every action layer.

2.5 Heuristic Evaluations 36

2.5.2.3 Numeric Landmarks Heuristic

The most recent work on landmarks (and in fact, a parallel work to the thesis) is the
work of (Scala et al., 2017) extending the concept of propositional landmarks to numeric
landmarks, which are numeric conditions that must be achieved in an attempt to satisfy
top-level numeric goal conditions. The work is based on subgoaling relaxation (Scala
et al., 2016b). It exploits AND/OR graphs (Keyder et al., 2010) to capture numeric
and propositional subgoal dependencies and relies on solving LPs. The work results in
an admissible heuristic for cost-optimal numeric planning problems. This work is based on
subgoaling relaxation and focusses on solving generalised numeric planning problems. Other
researchers have also surveyed solving generalised numeric planning problems using interval-
based relaxation approaches (Aldinger et al., 2015; Scala et al., 2016a). These approaches
propose solutions to generalised numeric tasks (supporting all arithmetic operations). To
overcome the complexity of the generalised tasks, the Metric-RPG heuristic transforms
numeric tasks into the LNF tasks. Since then, it has been the underlying principle of
numerous numeric planning systems for expressive PDDL languages, such as POPF (Coles
et al., 2010) and Scotty (Fernández-González et al., 2015a) planner families.

In Chapter 4, we investigate numeric producer-consumer relationship between actions
(i.e. numeric resources are exchanged for one another), showing that this relationship
generates numeric subgoals, which are a sort of numeric landmark when achieving top-level
goals. The heuristic approach we propose in this chapter relies on the LNF transformation.

2.5.2.4 The Interval-Based Relaxation

Reasoning with the numeric intervals have been thoroughly studied in the fields of applied
mathematics and interval arithmetic for decades (Young, 1931; Moore et al., 2009). In
the interval-based relaxation (IBR), each numeric variable at a state is mapped into an
interval of real values denoting the set of values the variable can take. The Metric-RPG
heuristic fits to the class of IBR based on this definition. However, the transformation to
the LNF restricts reasoning with the complete scope of the numeric planning problem. This
restriction eventually yields a subset of the general numeric problem.

The first instance of using interval-based methods in general (or unrestricted) numeric
planning is relatively new. Aldinger et al. recently studied using this method in relaxation
theoretically (Aldinger et al., 2015). The authors propose that solving numeric planning
tasks reasoning with all arithmetic base operations (×,÷, +,−) is decidable. However, their
solution fails solving most numeric problems with cyclic dependency between variables. Scala
et al. recently surveyed the generalisation of the IBR to handle non-linear constraints and
cyclic behaviour between variables (Scala et al., 2016a).

2.5.3 The Temporal Relaxed Planning Graph (TRPG) Heuristic

The Temporal Relaxed Planning Graph (TRPG) (Coles et al., 2009c, 2008a) heuristic
extends the RPG heuristic to include time. It considers action durations and manages
the start-end semantics of PDDL2.1 (Fox and Long, 2003). The graph expansion and the
solution extraction of the TRPG is similar to the RPG, except that each fact layer is assigned
with the earliest timestamp that can be reached (instead of a step index). New snap-actions

2.5 Heuristic Evaluations 37

Figure 2.5: Schematic representation of the discretised graph expansion.

Figure 2.6: The illustration of the infinity analysis.

(each durative action is split into two snap-actions denoting the start and the end of action
to reason with the start-end semantics of PDDL2.1) and facts are delayed until the earliest
times at which they can appear.

2.5.3.1 The Infinity Analysis

There is an additional important feature of the TRPG that differs from the RPG during
graph expansion: when a snap-action is applicable at an action layer (where all numeric
and propositional conditions of this action are satisfied), it is relaxed to have arbitrarily
many concurrent copies at the same layer. As a result, the effects of this action are applied
arbitrarily many times in parallel (at the same layer), and this makes the reachable range
of the affected numeric variables become unbounded. Hoffmann (Hoffmann, 2003) observed
this possibility and referred to it as ∞ handling technique and ∞ trick, but in the Metric-
RPG, Hoffmann used an incremental extension of the bounds: allowing actions to be applied
only once per action layer, which carries a risk of building exponential number of relaxed
planning graph layers for a search state. We refer to this concept as the infinity analysis in
this thesis.

In the TRPG the incremental approach cannot be used practically, because the ability
to apply an action repeatedly in tiny time increments blows up the reachability analysis.
Therefore, the TRPG must use infinity analysis to be practical.

To illustrate why using the incremental approach (as in the Metric-RPG) is impractical
in the TRPG, consider the following temporal-numeric problem. Suppose that x is a numeric
variable and g1 is a propositional fact. B is a durative action (its duration is 50). The end
snap-action of B has a numeric condition of x ≥ 1000 and adds g1. A is a non-durative
(instantaneous) action that increases x by 1. The fact g1 initially does not hold and the goal

2.6 Brief Descriptions of the Planning Systems 38

is to achieve it. Suppose the layers of the reachability graph is incremented by ε = 0.001 time
units. Then, the approach repeatedly applies action A and extends the graph 1000 layers
(that is equivalent to 1 time unit) to satisfy x ≥ 1000 condition. The approach expands the
graph for another 49000 layers as the end of B appears at t = 50. Figure 2.5 illustrates this
situation. It is clear that generating countless layers can consume significant portion of the
memory and it can be extremely harmful to the efficiency of the heuristic, whereas it can be
handled with a few layers. Figure 2.6 shows the graph expansion using the infinity analysis.
The instantaneous action A and the start of action B appear at the earliest layer, t = ε,
as they do not have any condition that must hold. The numeric effects of these actions are
considered to be applied arbitrarily many times at this layer. As a result, the variable x
becomes immediately unbounded (i.e. x : [0,∞]), which satisfies the numeric condition at
only one layer. Then, the next action layer becomes t = 50, as it is the earliest time the end
of action B can appear.

2.6 Brief Descriptions of the Planning Systems

In this section, we describe a wide range of planning systems that are closely connected to the
thesis. We thoroughly describe the temporal-numeric planners that our system POPCORN
is built on (e.g. the POPF planner), and other state-of-the-art planners that can reason with
control parameters (e.g. the Scotty planner). We briefly mention other popular planning
systems by generalising based on their planning representations as well as the methods they
use.

2.6.1 The POPF Planner and Its Predecessors

The POPF planner (Coles et al., 2010) is an informed forward search temporal planner that
avoids early commitment to the action orderings and it encodes plans as partially specified
plans. The rest of the features of the planner (e.g. temporal-numeric reasoning and handling
continuous numeric effects, and so on) are inherited from its predecessors FF (Hoffmann and
Nebel, 2001), CRIKEY3 (Coles et al., 2009c) and COLIN (Coles et al., 2009b, 2012). In this
section, we briefly describe these systems in the chronological order they are released. It is
worth mentioning that POPF preserves all of the reasoning capabilities of its predecessors.

– Fast Forward (FF) and Metric-FF The FF planner is developed by Hoffmann
and Nebel that relies on informed forward state space search using the RPG
heuristic (Hoffmann and Nebel, 2001). It exploits EHC as its main search algorithm.
If the EHC fails, it resorts to best-first (weighted A∗) search. The planner makes use
of helpful actions to prune less promising states in the EHC. Figure 2.7 shows the
relationship between the search and the heuristic in the FF system. The same authors
extended the FF planner to reason with linear conditions and discrete numeric change,
resulting in a planner called Metric-FF (Hoffmann, 2003). The Metric-FF planner
performs the same heuristic search strategy as in the FF. It extends the RPG heuristic
to support the computation of a relaxed plan for problems involving discrete numeric
change.

2.6 Brief Descriptions of the Planning Systems 39

Relaxed Planning Graph

Enforced Hill-climbing

State
Heuristic distance

Helpful actions

Problem Solution / Fail

Figure 2.7: The illustration of the FF planner framework. Reproduced from (Hoffmann and
Nebel, 2001).

– CRIKEY3 (Coles et al., 2009c) is a forward state space search temporal planner
that extends the Metric-FF planner to reason with time. It also extends the Metric-
RPG heuristic (the heuristic of the Metric-FF) to include temporal structure of the
plan (resulting in the TRPG heuristic presented in Section 2.5.3). The planner splits
durative actions into start and end snap-actions in order to respect the semantics of
PDDL2.1 language. Each state s in the search space consists of the valuations of the
sets of the propositional facts and the numeric variables, the ordered list of actions
that are already started but not yet finished (i.e. only the start snap-action is applied)
and a collection of temporal constraints over the actions that appears in the plan to
reach s. The planner exploits Simple Temporal Network (STN) (Dechter et al., 1991)
to evaluate these temporal constraints accumulated from successive action choices at
a state.

– COLIN (Coles et al., 2009b, 2012) is an informed forward state space temporal-
numeric planner that can reason with linear continuous effects exploiting full semantics
of PDDL2.1. It uses total ordering as its branching scheme. It is built on CRIKEY3
planner (Coles et al., 2008a) and uses linear programming to evaluate the temporal and
numeric consistency of the state reached. It extends the heuristic used in CRIKEY,
the temporal RPG, to provide guidance in problems with continuous effects. The
relationship between discrete and continuous changes are modelled similar to the
hybrid automata theory. Figure 2.8 illustrates the relationship from the aspects of
state transition and time dimensions of applying an abstract action A. Any discrete
effect on variable v at stepi updates its value from vi to v′i. Any continuous effect on
v between stepi and stepi+1 continuously updates its value from v′i to vi+1. Suppose
that ∆vnow denotes the accumulated rate of continuous change on v between time
stepi and stepnow. The variable vnow gives the value of v between the steps and it is
computed as follows:

vnow = ∆vnow × (stepnow − stepi)

It is worth noting that based on the semantics of continuous numeric change, the
duration of a durative action is a free variable while the rate-of-change remains

2.6 Brief Descriptions of the Planning Systems 40

constant. This strategy is opposite to the approach of Kongming planner (Li and
Williams, 2008), which is introduced further in this section.

A⊢

stepi

stepi+1

stepi-1
vi-1

v′i-1

v'ivi

vnowstepnow

A⊣

StateX StateY

Time

Plan generated

Figure 2.8: Schematic representation of discrete and continuous effects on variable v.

– POPF (Coles et al., 2010) planner extends COLIN to support partial order planning.
It delays the commitment to action ordering decisions and the timestamps and the
valuation of variables. This concept increases the flexibility of the planner in execution.
In case the problem has discrete or continuous time-dependent change, the planner uses
linear programming to check numeric and temporal consistency; otherwise it uses STN
for the same purpose. The planner exploits a slightly modified version of the TRPG
used in COLIN, where each fact can only appear after its achiever (or re-achiever)
action appears in the graph. The POPF planner has another feature called the anytime
mode. When it is enabled, the planner looks for a state that yields the best possible
solution (with respect to the metric objective function, or the makespan by default)
until all states in the search space are being explored. As a numeric planning problem
can yield to infinitely many states, the planner does not terminate until it reaches
the memory or time limits. As we also reason about planning problems with complex
branching factors in this thesis, the termination criterion of our system, POPCORN,
is identical to that of POPF.

2.6.2 Planners Reasoning with Control Parameters

Work exploring the use of control parameters in domain-independent planning is limited.
The duration parameter was introduced in PDDL2.1 (Fox and Long, 2003), but very few
planners can plan with actions that have both flexible durations and duration-dependent
effects. Examples that can include POPF (Coles et al., 2010) and its close cousins,
COLIN (Coles et al., 2009b) and OPTIC (Benton et al., 2012). In addition, some PDDL+
planners (that are not forward heuristic search planners) can also reason with flexible
durations, which are UPMurphi (Penna et al., 2009) (and its relative DiNo (Piotrowski
et al., 2016)) and SMTPlan+ (Cashmore et al., 2016). LPSAT (Wolfman and Weld, 2001)
and TM-LPSAT (Shin and Davis, 2005) use a hybrid of LP and a combinatorial SAT-solver
to plan but these approaches greatly suffer from the absence of heuristic guidance.

The authors of the Kongming (Li and Williams, 2008) and the Scotty planners
(Fernández-González et al., 2015a,b) investigate planning with control parameters in a

2.6 Brief Descriptions of the Planning Systems 41

domain-independent way. Pantke et al. investigate this concept in the production control
application scenario. We describe these systems in detail in this section.

2.6.2.1 Kongming

Kongming is a Graphplan-based hybrid planner, which can reason with numeric parameters
that takes their values from infinite domains, and they call them control variables. The
planner uses an extended PDDL version that allows encoding such parameters in the domain
model. The language used by Kongming will be presented in Chapter 3. The planner
expands the planning graph (each layer in the graph is called a happening) to handle
the discrete causal relationship between actions and captures the interaction of dynamic
continuous action variables with the flow tube representation. The resulting planning graph
is called Hybrid Flow Graph. The flow tubes contain the trajectories of the variables as
the graph expands over time through the planning graph. The graph is then translated
into a mixed integer linear programming (MILP), and solved using an optimisation tool
(CPLEX). The use of Graphplan restricts the representation of time, so it is discretised,
while the rates of change of process effects are taken as control variables. This approach
contrasts with COLIN, POPF and TM-LPSAT where the duration is taken as a variable and
rates of change remain constant (over intervals). It is also worth noting that Kongming does
not allow defining flexible duration bounds for durative actions (all durative actions must
be defined to have fixed durations). Kongming suffers from excessive number of happenings
generated (due to deepening search) that is interleaved with an optimisation tool.

The trajectory of a variable (Rg) at a succeeding layer (or a happening) are computed
using the feasible region of the variable (Ri), the duration of the action d and approximated
dynamics of the variable (the gradient change) dB. Figure 2.9 shows how two flow tubes
are connected when expanding the planning graph. The circular area in green shows the
intersection of the ends of the flow tubes. In order to add a new action (e.g. a2) to the
plan the intersection between the end and start of two flow tubes must correspond to a
non-empty cross section; otherwise the continuous flow will not occur. Since this approach
is unsound, the planner uses MILP solver to confirm the validity of the plan.

Time

v

v̇

Ri1

Rg1

Ri2

Rg2a1

a2

d1 d2

Figure 2.9: Schematic representation of connecting the flow tubes of actions a1 and a2.

2.6 Brief Descriptions of the Planning Systems 42

2.6.2.2 Scotty and cqScotty

Fernández-González, Karpas and Williams have recently studied planning with infinite
domain action parameters (Fernández-González et al., 2015a). They refer to these
parameters as control variables. These parameters are formulated as flexible rates of change
in continuous effects. Their work outlines the development of the Scotty planner. It combines
the flow tube representation of Kongming with the forward-chaining search and the linear
programming used in the COLIN planner. The flow tubes are used to capture continuous
effects with control variables. It uses forward state space search to overcome the limitation
on numbers of happenings in Kongming.

Note that the Scotty planner does not support actions performing discrete numeric
change (Fernández-González et al., 2015b), so that all numeric changes captured in an
action is duration-dependent (including the numeric change with a control variable, where
it is a flexible rate of change over the duration of the action). In this thesis, we investigate
planning with such parameters in a different way. In our approach, the domains of these
parameters are not necessarily dependent on each other and they are independent from the
duration.

The same authors recently extended Scotty to transform non-convex constraints to a
convex linear over approximations to handle non-linear quadratic effects, and uses a Second
Order Cone Programming tool to check consistency (Fernández-González et al., 2017). In
this work, the planner suffers from the fact that the heuristic can promote false activities
in certain conditions, such as resource transfer with control variables. In Chapter 4, we
introduce a generalised approach to tackle this issue for forward heuristic search planners.

The purpose of control parameters in the Kongming and the Scotty planners (and earlier
work using flow tubes (Hofmann and Williams, 2006)) is to convey flexibility of choice to
the executive (Effinger et al., 2009). Therefore, Scotty finds a flexible plan, in which it leaves
the decision of the values of control parameters and the execution times of actions to an
executive during plan execution (even though it can make choices that invalidate the plan).
We describe how the planner obtains a flexible plan below.

In Scotty, all control parameters represent flexible rates of change in continuous effects,
which are restricted to be linear and only include a single control parameter. Each
continuous effect with a control parameter is formalised as 〈x, d, k〉 that is active between the
start and the end times of the continuous effect (tstart and tend, respectively), where x is the
state variable, d is the control parameter and k is a constant. The value of the state variable
x at time t, is computed by x(t) = x(tstart) + k · d · (t− tstart), where tstart ≤ t ≤ tend. It is
clear that this formulation yields a non-linear interaction between the flexible rate of change
(i.e. the control parameter d) and the continuously evolving time variable (i.e. (t− tstart),
which is denoted by #t in the PDDL2.1). In order to avoid this non-linearity, the planner
assigns a fixed value, dvar(t) at time t, to the control parameter d during the execution of the
continuous effect, where dvar(t) is in between the upper and lower bounds of d. This process
results in generating a fixed plan, which consists of a sequence of timestamped actions with
fixed control parameter values. Since a fixed plan is not robust in execution, the planner
extracts a flexible plan from the fixed plan using Qualitative State Plans (QSPs) (Léauté
and Williams, 2005) network and reports it to the executive. When traversing from a fixed

2.6 Brief Descriptions of the Planning Systems 43

Figure 2.10: An example of continuous numeric action parameter encoding in proposed
PDDL language given in Mechatronics Journal (Pantke et al., 2016).

plan to a flexible one, the timestamps of actions and the values of control parameters are
replaced with flexible bounds so that the executive have freedom to choose the execution
times of actions and the control parameter values. It is also worth noting that QSP networks
exploit CPLEX as the underlying solver to find these flexible bounds.

In common with most planning systems that exploit delete-relaxation based heuristics,
the Scotty and the cqScotty planners also suffer from the helpful action distortion issue,
especially in producer-consumer problems where numeric transfer is achieved by control
parameters. These planners fail to recognise actions replenishing consumed resources as
helpful and rely on intensive backtracking to find a solution or run into a dead-end. In
Chapter 4, we introduce an extension to the TRPG heuristic that resolves the issue in these
problems.

2.6.2.3 Two-stage Production Planning and Control

Pantke, Edelkamp and Herzog have recently presented a PDDL-based multi-agent non-linear
planning approach to reason with infinite domain action parameters in production planning
and control (Pantke et al., 2014, 2016), and they call them continuous numeric action
parameters. The authors propose an extension to PDDL language that allows encoding
these parameters in the existing :parameters field in PDDL action. Figure 2.10 illustrates
the example encoding of their proposed PDDL extension. In this example, the ?speed is an
infinite domain action parameter where it is allowed to take any real-valued number between
[0,1]. Observe that the parameter is typed with R symbol in this encoding, yet it remains
unclear how this reserved type description can be parsed or encoded in the PDDL domain
model.

The authors exploit two-stage planning strategy in their work. First, the planner finds
partially grounded total-order plans with lifted infinite domain action parameters. Then,
the planner finds the fully grounded plans by determining the bounds of the variables of
the first n partially grounded plans (using a mathematical optimisation tool) based on their
potential quality. The optimisation tool is not used to check the consistency of a state.
Instead, they use the interval arithmetic relaxation, which gives the possible values (not the
optimal values) at a state. Additionally, the planning horizon is fixed and they do not use
any relaxation heuristic during search.

Although the proposed PDDL extension can be used by fully domain-independent
planning systems, the proposed methodology is not analysed in a domain-independent way.
Instead the plan enumeration (and generation) has been adapted to the problem setting,

2.7 Summary of Temporal-Numeric Planners 44

which is indirectly enforced by an industrial application. We also believe that this work can
suffer from poor scalability in a more complex planning scenario due to lack of heuristic
in search. In this thesis, we seek fast and scalable domain-independent solutions for this
planning field, which can be easily exploited by any other forward heuristic search planner.

Our motivation in introducing control parameters is slightly different to that of Williams
et al. and Fernández-González et al.: we are interested in the planner and the executive
choosing values to construct a fixed plan before the execution. We want to reach a correct
plan and we want a plan that is efficient. Leaving constraint resolution to plan-execution
risks that the constraints cannot be resolved at that time, so our approach proves the
existence of the plan by finding an explicit resolution of the constraints at planning time.
Our control parameters do not necessarily represent rates of change (for example, the cash
withdrawal), and effects of actions can be independent of duration, or not. POPCORN can
capture rates of change as long as duration is fixed. The work of Pantke et al. (Pantke et al.,
2014, 2016) focusses only on a specific production control domain application, whereas we
consider the domain-independent planning applications in forwards search framework using
relaxation-based heuristics.

2.6.3 Other Planners

Several planners exploit Graphplan, including TPSYS (Garrido et al., 2001, 2002) that
can solve required concurrency problems, LPGP (Long and Fox, 2003) that uses linear
program to aid choosing actions in the graph, and the work of (Huang et al., 2009) that
translates the graph to a SAT formula. On the other hand, various planners use forward
state space search to reach a goal, including HSP (Bonet and Geffner, 2001) and SAPA (Do
and Kambhampati, 2003) planners, VHPOP (Younes and Simmons, 2003) that is a partial
order planner, FD (Helmert, 2006) planner that governs multi-valued representation (i.e.
SAS+ formulation) of the classical planning task, TFD planner (Eyerich et al., 2012) that
extends FD to reason with durative actions. A few hybrid planners governs the discretise and
validate approach and exploits planning as model-checking paradigm (Cimatti et al., 1997;
Bogomolov et al., 2014), including UPMurphi (Penna et al., 2009) and DiNo (Piotrowski
et al., 2016) that extends UPMurphi planner to get heuristic guidance.

2.7 Summary of Temporal-Numeric Planners

We described various planning systems in this chapter. Here we summarise the capabilities
of the most relevant approaches in Table 2.1. The important feature is handling infinite
domain action parameters, which is recently achieved by a few planners. Observe that
none of the domain-independent systems can handle duration-independent parameters. We
introduce our approach that fills this gap while preserving the highest domain-independent
planning compatibility (i.e POPF system) and at the same time reasoning with a greater
PDDL expressivity in this thesis.

2.8 Integrated Task and Motion Planning (TAMP) 45

Table 2.1: Comparison of the capabilities of the most recent temporal-numeric planners.

Infinite Domain
Action Parameters

Domain
Indep. Temporal Numeric Duration

Inequal.
Required
Concur.

Partial
ordering

Duration
Indep.

Duration
Dep.Planners

LP-RPG X X X
TPSYS X X X X
LPGP X X X
SAPA X X X X

CRIKEY3 X X X X
TFD X X X X X

COLIN X X X X X
POPF X X X X X X

TM-LPSAT X X X X
UPMurphi X X X X X

DiNo X X X X X
Kongming X X X X X
(cq)Scotty X X X X X

Pantke et al. X X X X X

2.8 Integrated Task and Motion Planning (TAMP)

Over the last decade, a significant progress in ensuring the geometric feasibility of symbolic
plans in highly confined workspaces has been made by various researchers (Srivastava et al.,
2014; Plaku and Le, 2016). Other pioneering approaches can be summarised as follows.

aSyMov (Cambon et al., 2009) is a highly recognised TAMP planner that integrates
the Metric-FF task planner with a motion planner. It extends the Metric-FF to check
whether the symbolic action to be applied results in a geometrically feasible state (based
on the feedback from motion planner). Although the Metric-FF is a domain-independent
planner, extending it to check the state geometric reachability makes the approach domain-
specific. A parallel work to this approach is recently studied by Garrett, Lozano-Perez and
Kaebeling (Garrett et al., 2015, 2018), and their system is called FFRob. In their work,
they identify that aSyMov suffers from the lack of heuristic guidance, thus they propose
an extension to the RPG heuristic in the FF planner that takes geometric information into
account.

Erdogan and Stilman (Erdogan and Stilman, 2013; Erdogan, 2016) encode geometrical
constraints in action descriptions (in PDDL-like representation) and propagate the con-
straints while finding a symbolic plan for a structural design problem. Although the approach
reasons with action level constraints, the task planner is not domain-independent.

Erdem et al. (Erdem et al., 2011), (similar to the approach of Dornhege et al. (Dornhege
et al., 2009)), use a fully symbolic task planner. In their approach, the task and motion
planner guides each other in case any of these planners deem unsolvability. For instance, in
case the task planner cannot find a symbolic plan, the motion planner updates the problem
file for re-planning. If the motion planner fails finding a trajectory, the task planner suggests
a new symbolic route to the motion planner.

In our work, we achieve symbolic plans that are aware of the geometrical constraints
encoded in a domain-independent PDDL environment, so that any domain-independent task
planner that can reason with the full semantics of the PDDL2.1 language and our proposed
language extension (presented in Chapter 3) can be used. Unlike aSymov and FFRob, the

2.8 Integrated Task and Motion Planning (TAMP) 46

geometric constraints, which model the locations as continuous regions, are directly encoded
in the action schemas.

Chapter 3

Planning Using Actions with
Control Parameters

3.1 Introduction

PDDL is a powerful modelling language, but one limitation of the models it supports is
that action parameters are only allowed to be drawn from finite domains. These domains
are enumerated in the problem descriptions and are typically relatively small (a few tens of
objects would already be unusual). A consequence of this constraint is that action schemas
can be grounded, by substitution of parameters with values in all possible ways, to yield a
finite set of actions for each problem instance. There is one parameter that is an exception
to this: the duration of a durative action may be left flexible, so that the planner can choose
its value (possibly subject to constraints). In fact, this is a far-reaching choice, since in
combination with duration-dependent effects, it can make it possible to model domains in
which there is an infinite branching choice of actions applicable in a state. Although the
addition of numeric state variables to the classical propositional language allows construction
of an infinite state space (as discussed in Section 2.2.2), without the flexible duration
parameter, the state space is always locally finite, which is to say that only finitely many
states are reachable from a given initial state, using plans bounded by a given finite length.
The introduction of the flexible duration parameter changes this, so that infinitely many
states may be reachable by plans even bounded to length one. This observation makes clear
that the introduction of a flexible duration parameter fundamentally changes the possible
structure of state spaces. Figure 3.1 illustrates this in a small example where the duration
parameter is fixed or flexible in the forwards search framework. Each circular node represents
a grounded state and the dashed elliptical node represents a partially-grounded state that
can consist of infinitely many grounded states.

In this chapter, we consider a generalisation of the duration parameter, allowing actions
to take multiple parameters from infinite domains. We call these parameters control
parameters, since they often represent physical control parameters that a planner might
select in order to make an action to have a desired effect (or intensity of effect). Examples
include volume settings, velocities, power use, volumes or sizes. As a concrete example,

47

3.1 Introduction 48

I
(drive car1 home work)

?duration = 10
(load car1 bag)

I

. . .

(drive car1 home work)
?duration :: [0, 15]

(load car1 bag)

Figure 3.1: The illustration of the effects of having flexible duration parameter in state
space.

illustrating that duration is not always an appropriate surrogate for control parameters,
consider the action of withdrawing cash from an ATM (or cashpoint). Execution of this
action involves choosing the value of the withdrawal. Although there is probably some small
element of the duration of a withdrawal that is affected by the amount withdrawn, the
transaction is, for all practical purposes, best modelled as a constant duration action that
has an effect on cash in pocket determined by the selected value of the control parameter:
the size of the withdrawal. Current standard PDDL dialects require that either the action
be modelled artificially, using duration to substitute for the control, or else that the choice
of withdrawal amounts be restricted to some fixed and finite menu of choices.

A slightly more complex example, generalising an example drawn from related work on
Kongming (Li and Williams, 2008), is a navigation action for an autonomous underwater
vehicle (AUV), equipped with independent motors to drive horizontal movement (the x-
direction) and vertical movement (the y-direction). In choosing a single leg of movement,
the action requires selection of an x-velocity, a y-velocity and a duration. It is clearly not
possible in PDDL to represent choices in this 3-dimensional choice space using a duration
alone.

In this chapter, we explore the cashpoint example in more detail to illustrate the problems
introduced by the use of control parameters. We then propose a way in which planning
can be performed in domains containing actions with these parameters, implemented in our
planner, POPCORN (Partial-Order Planning with Continuous Real Numerics), an extension
of the POPF planner (Coles et al., 2010), extending and expanding the mechanisms in that
planner to support control parameters beyond duration. In this extension, we retain the
ability in POPF to use temporal actions, including with flexible durations and duration-
dependent effects. We demonstrate that our approach scales to tackle interesting problems,
considering several domains with various characteristics. Our implementation works with
linear constraints, relying on the LP support in similar style to POPF, but we observe
that our strategy can be generalised to different constraints, indicating how this could be
achieved.

This chapter is an extended and revised version of a conference paper (Savaş et al., 2016)
published by the authors at the 22nd European Conference on Artificial Intelligence (ECAI
2016). It provides more detail about the problem definition, the LP encoding and the search
strategy.

The chapter is structured as follows. We survey the related work in the next section.
Section 3.2 gives a more detailed description of the cashpoint motivating example. In
Section 3.4 we provide technical background on the state representation in POPF, and

3.2 A Motivating Example 49

in Section 3.5 we describe how we extend it to implement our approach for planning with
control parameters in POPCORN. In Section 3.6 we show how POPCORN scales to solve
interesting problems. Section 3.7 concludes the chapter.

3.2 A Motivating Example

We now develop the simple cashpoint example to illustrate some aspects of the use of control
parameters. Suppose that we are planning to go to a pub. Initially, we are at home and
have only £2 in our pocket and no snacks. We aim to be at the pub with £20 in our pocket
and a collection of snacks. The plan for this problem is quite simple: we must go to the
cashpoint and collect cash, go to the shop to buy snacks and go to the pub. However, we
only know how much cash to withdraw once the entire plan is constructed, so that we can
determine how much we intend to spend. The action to withdraw cash should allow us (as
planner) to decide how much to withdraw once the rest of the plan is in place.

We propose to extend PDDL2.1 (Fox and Long, 2003) so that actions may include an
additional field: control parameters. These parameters are typed. We currently assume that
they are numeric parameters, although our syntax supports other types. The description of
the cash withdrawal action is shown in Figure 3.2. We list all control parameters, except
?duration, in a new field, :control. Our language has the expressive power to state the
numeric types of the control parameters. A control parameter currently can be defined as an
integer or a number. In the example, the ?cash control parameter is defined as a number
in the WithdrawCash action. Each instantiation of the action has its own instance of this
parameter and each can be given a value independently of the others. The parameter is tied
into the state through action preconditions: in this case, the parameter is restricted to lie
between a minimum withdrawal and the limit of the machine. It also appears in the effects,
increasing what is in the pocket and decreasing what is left in the machine.

An example problem for this domain is shown in Figure 3.3. In this example there are
two ATMs, each with a limited balance, and one shop at which we can buy snacks. In
addition, Figure 3.3 shows the (optional) metric objective of the problem that can play an
important role in the valuation of the control parameter ?cash. The domain also includes a
move action to allow movement between locations. Intuitively, to optimise the plan metric,
we should withdraw sufficient cash to buy snacks and to have £20 at the pub. We would
not want to withdraw more or less cash than required when at the cashpoint.

This problem could be modelled without control parameters, by discretising the amount
that can be withdrawn into a finite set of possible values (say £5, £10, £20, £50). If we
consider a forward searching planner, relying on a standard relaxation-based heuristic, the
planner will choose a withdrawal action to meet the demands of the largest goal (the £20
goal), but the relaxation will ignore the effect of the future snacks purchase. This means,
the planner will not see that it actually needs to withdraw £25, and the final plan might
involve returning to the cashpoint to make a second withdrawal (the precise behaviour will
depend on the search strategy, but this is what happens in POPF, for example). In the
discretised model, the optimal plan (according to the metric) is to withdraw £25 using two
withdrawals before moving away, while the shortest plan withdraws £50. When using the
control parameter model, the planner can decide to withdraw exactly £23 in a single action,

3.2 A Motivating Example 50

(:durative-action WithdrawCash
:parameters (?p - person ?a - location ?m - machine)
:control (?cash - number)
:duration (= ?duration 2)
:condition (and (at start (at ?p ?a))
(over all (at ?p ?a)) (at start (located ?m ?a))
(at start (>= ?cash 5))
(at start (<= ?cash (balance ?m)))
(at start (canWithdraw ?p ?m)))

:effect (and
(at start (decrease (balance ?m) ?cash))
(at end (increase (inpocket ?p) ?cash))))

(:durative-action BuySnacks
:parameters (?p - person ?a - location)
:duration (= ?duration 1)
:condition (and (at start (at ?p ?a))
(over all (at ?p ?a)) (at start (snacksAt ?a))
(at start (>= (inPocket ?p) 5)))

:effect (and (at end (decrease (inPocket ?p) 5))
(at end (gotSnacks ?p))))

Figure 3.2: Main actions of the cashpoint domain.

(:init (at Joe home) (snacksAt Store)
(= (inPocket Joe) 2)
(canWithdraw Joe ATM1) (canWithdraw Joe ATM2)
(located ATM1 Bank) (located ATM2 Bank)
(= (balance ATM1) 50) (= (balance ATM2) 100))

(:goal (and (>= (inPocket Joe) 20)
(gotSnacks Joe) (at Joe Pub)))

(:metric minimize (inPocket Joe))

Figure 3.3: The initial state of the cashpoint problem.

yielding both the shortest and optimal plan.
It is worth emphasising that the POPF planner has no way of handling a non-discretised

model of the cash amounts, except via the use of the duration parameter. Using the duration
parameter to model the cash parameter would be problematic as the duration of the action
would rely on the withdrawal amount, which would be unrealistic. For example, if we
model the WithdrawCash action to increase the (inpocket ?p) variable via ?duration

(say, (inpocket ?p) += ?duration), we could achieve a plan to withdraw exactly £23 in
a single action, but it yields a significantly longer plan as the duration of the action would
have to be at least 23 time units. A more realistic option of using ?duration would be to
increase the variable with a much greater magnitude of the rate of the ?duration than that
of 1 (e.g. (inpocket ?p) += 1000 * ?duration), so that the increase on the makespan
(that is 0.0023 time units) would be insignificant. Exploiting this modelling trick would be
acceptable for this example, but it would only be restricted to problems requiring a single
control parameter per action. In this thesis, we have extended POPF by introducing the
notion of control parameters, which cannot be mimicked using the duration parameter in
problems with multiple non-discretised parameter setting.

The particular challenge we consider in this chapter, is how the value of the control

3.3 Methodological Differences Between Scotty and POPCORN 51

uses LP to check
state consistency

forwards heuristic
search

flexible rates of
change when du-
ration is fixed

generates flexible rates of
change in continuous time
using QSP

control parameters are
piecewise constants du-
ring continuous change

finds a fixed plan du-
ring plan execution

uses flow tubes to
find trajectories of
control parameters

creates an explicit LP variable
for each control parameter

encodes typed control parameters

reasons with duration inde-
pendent control parameters

encodes and handles multiple cont-
rol params. in numeric expressions

finds a fixed plan before execution
using iterative search

partial order planning

POPCORN Scotty

Figure 3.4: Comparison summary of POPCORN and Scotty systems.

parameter can be chosen by the planner, in particular when performing a forward state
space search. In this example, the amount of cash we want to withdraw depends on which
actions we apply after visiting the cashpoint. Early assignment of the value of a control
parameter may lead to generation of poor plans (longer makespan). For instance, assigning
a value to ?cash before buying snacks would result in visiting the cashpoint twice. Therefore,
the determination of the amount to withdraw should be made at a later stage in the plan
construction (possibly after the entire action sequence has been constructed).

Our planner, POPCORN, builds up all the linear constraints acting on the control
parameter ?cash and (checking numeric consistency of every state visited using the linear
program) until the goal state is reached. Then, the planner calls the final linear program
to optimise all variables, e.g. ?cash, subject to the metric objective of the problem. Since
the metric objective is to minimise the (inPocket ?p) state variable in this example, the
planner chooses the minimum bound of this variable as its value. We describe this process
in detail in the remainder of the chapter.

3.3 Methodological Differences Between Scotty and
POPCORN

Scotty is the planner that addresses the most similar class of problems to our system.
The differences between the two regarding to modelling language, representations and
methodology is summarised in Figure 3.4. We will discuss the differences in their LP
encoding and the modelling languages they use in detail in further sections. In this section,
we particularly focus on the differences in terms of how the value assignment is performed
and and elaborate on the weaknesses of progressing in search using a fixed plan (recall that
the Scotty planner finds a fixed plan before extracting a flexible plan).

3.3 Methodological Differences Between Scotty and POPCORN 52

Although the fixed plan generated by Scotty is a semantically meaningful symbolic plan
(yet, temporally and numerically less-informative), it places the plan quality (e.g. the plan
length) in peril. It ignores the fact that the early assignment of values for the control
parameters (during search) has a direct impact on the number of times each action can
occur in the plan. For instance, if the Scotty planner could solve the cashpoint example and
chooses ?cash = 6 (that is in between the upper and lower bounds of the parameter) when
finding a fixed plan, the plan would include four instances of WithdrawCash action whereas
the goal can simply be achieved by a single execution of this action (as it is achieved by
POPCORN). Although extracting a flexible plan removes this early assignment commitment,
it does not help to find a shorter symbolic plan as it is not the concern of the QSP network.
To fix this, the planner could make a smarter value assignment (i.e. ?cash is assigned with
its maximum value) that would possibly yield to a shorter solution plan, but deriving such
an inference in a domain-independent way would be relatively challenging: not all numeric
problems have similar characteristics. Although maximum value assignment could be a
suitable inference on cashpoint domain, it would not work in problems requiring resource
consumption (i.e. battery consumption problem in the simplified generator domain (Coles
et al., 2009b)). This issue was not addressed by the authors of Scotty.

Another issue of using a fixed plan in Scotty is the following. When an action has two
(or more) continuous effects with the same rate of change (i.e. two or more flow tubes that
are inter-dependent to each other through the same control parameter), the value assigned
to the rate may not be accommodating to both continuous changes at the same time. The
authors acknowledges this issue with the following problem:

“Imagine an activity drive with its control variable speed. Assume drive has two
continuous effects that are modified by the control variable speed. On one hand
the state variable x is modified by the flow tube ∆x = speed ·∆t. On the other,
the car’s battery is drained according to ∆battery = −3 ·speed ·∆t” (Fernández-
González et al., 2015a, pg. 1569).

The problem in this example is that, when finding a fixed plan, the planner would prefer
choosing a small value for the speed that consumes the battery and a large value that makes
the car move fast. The observation makes it clear that a viable solution would be to avoid
assigning a fixed value to speed, but in this case the constraints would become quadratic.
The authors have recently tackled this issue by modelling the problem as Second Order Cone
Programs (instead of modelling it as LPs), which allow them to solve such convex quadratic
constraints (as mentioned in Section 2.6, the resulting system is called cqScotty (Fernández-
González et al., 2017)). We will describe how cqScotty models these convex quadratic
constraints in Section 3.4.1.

Recall that the Scotty and cqScotty planners do not support actions applying discrete
numeric change. All numeric effects must be in the form of continuous change. In theory,
both planners could express instantaneous change with a high rate of change and a tiny
increment in time (e.g. (tend−tstart) = 0.001) that approximates step functions. This would
allow approximating the discrete numeric change as in the cashpoint problem. However, this
would only work on one-dimensional variable update (as each continuous change supports
only one control parameter in both planners), and consequently, the duration of the action

3.4 Technical Background 53

v′
i

vi+1 v′
i+1

vi
ε

POPCORN (cq)Scotty

stepi+1

stepi

v(t)

t

(a)

v′
i

vi+1

v′
i

vj

vi

ε

ε

ε

POPCORN (cq)Scotty

stepi+1

stepi

stepj

stepi

〈v
,?
a
+

?b
+

?c
,k
〉

〈v
, ?

a
, k

〉
〈v

, ?
b

, k
〉

〈v
, ?

c
, k

〉

v(t)

t

(b)

Figure 3.5: Discrete numeric change in POPCORN and a possible way to express it in Scotty
and cqScotty. ε = 0.001 time units.

in the plan would be unrealistic (as the duration of 0.001 is highly inaccurate compared to
the actual duration of the WithdrawCash action, which is 2). In case the intended discrete
change is multi-dimensional (e.g. a state variable v is updated by two arbitrary control
parameters ?a, ?b and ?c at a step: v += ?a + ?b + ?c), the planner would create multiple
additive continuous effects (with tiny increments in time) to mimic the discrete change.
Figure 3.5 compares the discrete numeric change on variable v in POPCORN and how it
could theoretically occur in Scotty. Sub-figures (a) and (b) illustrate one-dimensional and
multi-dimensional (e.g. v += ?a + ?b + ?c) discrete changes, respectively.

3.4 Technical Background

As we have noted, duration can be seen as a special control parameter. POPF and its
variants handle this parameter, so it forms a natural starting point from which to generalise
to manage other control parameters. We therefore briefly review how the management of
duration is achieved in POPF and COLIN.

A central innovation in POPF is the extended representation of a state. In classical
forward search planners (discussed in Section 2.2.1), the states are valuations over the state
variables (which may be boolean values in a propositional planner and boolean or numeric
in a metric planner). PDDL2.1 planners must extend this representation to include a record
of which durative actions are executing and when they started: we call this a temporal state.
POPF further extends this representation, so that it searches in a space in which its states
(P -states) represent sets of temporal states.

Definition 8 (P -state) A P -state, S, is a tuple 〈F ,V ,B,Q,P ,C,T 〉, where:

F is a partial valuation over boolean state variables.

V is a partial valuation over numeric state variables.

B maps the numeric state variables to upper and lower bounds (which might be infinite).
Variables with a value defined in V have upper and lower bounds equal to this value.

3.4 Technical Background 54

Q is a set of actions which are started but not yet finished.

P is the collection of steps added to the plan to reach state S.

C is a collection of temporal and metric constraints accumulated over the steps in P .

T is the upper and lower bound on the time at which this state must end.

POPF only imposes a partial ordering on the actions in its plan (through temporal
constraints included in C). POPF postpones commitment to ordering of actions when all
orderings consistent with C are executable. This means that state variables whose values
are not required to satisfy specific precondition constraints might be undetermined, subject
to the resolution of the partial ordering of actions that affect them, which is why F and
V are partial valuations. Where a continuous or duration-dependent effect is active in a
P -state, the constraints in C tie together the bounds on the time in the current state (T)
with the bounds on the value of the affected variable (B).

A P -state represents a set of temporal states because there can be many feasible solutions
to C. The constraints in C can be purely temporal constraints (managed as an Simple
Temporal Network) if there are no continuous or duration-dependent effects in the plan, or
a linear program if time and numeric state variables interact (Coles et al., 2012). From C,
values of B and T are found by solving C for upper and lower bounds on each variable.

POPF manages search through P -states by implementing both an appropriate P -state
progression algorithm and also a variant of the relaxed plan heuristic, based on the Temporal
Relaxed Planning Graph (see Section 2.6). The search choices faced by POPF are whether
to add a new action start to extend a P -state, or else to complete an executing action
(whose end is in Q). In both cases, constraints can be added to C to ensure preconditions
and invariants are satisfied. In this way, POPF avoids branching on the infinite choice of
values of duration, but manages constraints that restrict the possible values of durations,
ensuring feasibility of the constraints at each P -state progression.

In order to implement temporal-numeric planning with control parameters POPCORN
is built on the POPF planner. The partial-order mechanism in POPF minimises the
addition of ordering constraints to avoid early commitment during forward search, in order
to achieve flexible plans. The temporal constraints are added as they are needed to meet the
preconditions of actions in a possible plan. The existing partial-order mechanism of POPF
helps POPCORN to avoid early-commitment in assigning values to the control parameters.
As discussed in Section 3.2, the early commitment in the valuation may lead to poor plans.
The constraints implied by the pre- and post-conditions of actions added to the plan govern
the possible values of control parameters (i.e. restricts the feasible region), as illustrated in
Figure 3.6. The details of this process are described in the rest of this chapter.

3.4.1 LP Temporal and Numeric Scheduling

The POPF planner inherits the use of linear programming from the COLIN planner. It
uses the LP to check the temporal and the numeric consistency of a P -state. The P -state
variables that capture evolution of the numeric state variables along the trajectory of a plan
are defined as follows:

3.4 Technical Background 55

An action with a control parameter A finite set of

i.e: WithdrawCash action action choices

inpocket += ?cash

Leave the choice to the

 constraint space

Initial

state

.

.

Goal state

Figure 3.6: Schematic representation of the search space where there is a control parameter
effect. The nodes represent the state reached, and the edges represent the action applied to
reach the next state. The graphs in black boxes represent the LP constraint space, which is
used to avoid complex branching choice.

A sequence of pairs of vectors of variables, Vi and V ′i , is constructed, one for each step i

in the plan. Each vi ∈ Vi records the value of the state variable v just before the step i.
Similarly, each v′i ∈ V ′i records the value of a state variable v immediately after the step i.
For instance, a state variable v can have a discrete instantaneous numeric change at a step
i. In this case, the constraint v′i = vi + c, where vi is increased by the constant value of c
at the step i, is added to the LP to record this change. The numeric change (including the
continuous linear change) in COLIN is discussed in detail in Section 2.6. The numeric change
in POPCORN occurs using the same formalism of POPF (as described above). However,
since the POPCORN planner is restricted to linear numeric change, the continuous numeric
change with control parameters is not yet explored. Based on this representation, Table 3.1
shows the constraints and variables created to record numeric changes that are connected to
the ?cash(i,s) control parameter, where i and s denote the unique action and step indices,
respectively. balances and inpockets represents the (balance ?m) and (inPocket ?p) state
variables at step s, respectively. [lb, ub] denotes the lower and upper bounds of the variables
at a state. The observation makes clear that each numeric constraint imposed can constrain
the bounds of the variables (and the control parameters).

The rationale behind encoding each control parameter with unique action and step indices
in the LP is the following. Firstly, as mentioned earlier, the scope of each control parameter

3.4 Technical Background 56

Table 3.1: Variables and constraints acting upon the ?cash parameter, that are collected
from the initial state to reach the goal state.

Plan Action LP Variable [lb, ub] Constraints
Withdraw ?cash(0,0) [5, ∞] ?cash(0,0) ≥ 5
(start) [0,50] ?cash(0,0) ≤ bal0
i = 0 bal0 [50,50] = bal0

bal′0 [0,45] = bal0−?cash(0,0)
Withdraw ?cash(0,1) [5,50] =?cash(0,0)

(end) inp1 [2,2] = inp0
inp′1 [7,52] = inp1+?cash(0,1)

BuySnacks inp2 = inp′1
(start) inp′2 [7,52] ≥ 5

BuySnacks inp3 [7,52] = inp′2
(end) inp′3 [2,47] = inp3 − 5

Go Pub inp4 [2,47] = inp′3
(start) inp′4 [2,47] = inp4
Go Pub inp5 [2,47] = inp′4
(end) inp′5 [20,47] ≥ 20

is limited to the action, in which it is defined, so that its LP variable must be unique to the
action. Secondly, it is possible to have repeated occurrences of an action in the plan, however
in the implementation of POPF and its predecessors, each occurrence can only appear once
at a step. Thus, using both the action and the step indices as its key values prevents re-
defining previously defined variables in the LP. We provide a generalised formalisation of
encoding the control parameters in the LP in Section 3.5.4.

The Scotty planner also inherits the use of LP from COLIN. In contrast to our approach,
they avoid defining an LP variable for each control parameter that are encountered along the
trajectory of states in order to avoid non-linear interaction. Instead, each control parameter
is assigned with a piecewise constant between consecutive steps. Recall that the Scotty
planner updates the value of a state variable x with a single control parameter d in continuous
effect between consecutive steps i and j: x(j) = x(i) + k · d · (tj − ti), where tj and ti are
times of steps j and i, respectively, k is a constant. The control parameter d is assigned
with a constant, say di→j , within the LP and it is computed as follows:

di→j = x(j)− x(i)
k · (tj − ti)

(3.1)

To illustrate the differences of LP encoding of control parameters in both systems,
consider the following abstract example. Suppose that a trajectory of LP steps are generated
by applying various actions, where each updates an arbitrary state variable with a single
control parameter, yields a final step stepm (starting from stepk, where k < m) that needs
to be checked for consistency by the LP. The values of the control parameters between these
steps encoded in LP by Scotty and POPCORN are shown in Figure 3.7. Observe that
the control parameters in POPCORN are encoded as flexible LP variables (bounded their
upper and lower bounds), whereas in Scotty they are assigned with piecewise constants. The
observation makes clear that the LP generated by Scotty only checks the numeric consistency

3.4 Technical Background 57

stepk stepm

Scotty

step

d

stepk stepm

POPCORN

step

d

Figure 3.7: Control parameter LP variable values between and at steps of both systems.

of the step stepm with fixed values of control parameters ignoring other possible values the
parameters can take. This process yields finding a fixed solution plan that is highly fragile
to the changes in the environment. As discussed in Section 3.3, the Scotty planner finds
a temporally and numerically flexible plan using QSP once a fixed solution plan is found.
Then, we can say the temporal-numeric consistency of a flexible plan generated by Scotty is
checked by the QSP network (after a totally ordered fixed plan is reached), not by the LP
inherited from COLIN.

The cqScotty planner avoids using piecewise constants for the values of the control
parameters in continuous effects (but they stay constant in numeric preconditions to simplify
the model, as in Scotty), when modelling Second Order Cone Programs (SOCP) to check
temporal-numeric consistency of a state. Although they do not explicitly define decision
variables for control parameters in SOCP, they define a new auxiliary variable ci→j that
represents the product of the control parameter d and the time between two consecutive
steps, tj and ti, where j = i+ 1 and this representation is formulated as follows:

ci→j = d · (tj − ti) (3.2)

This variable is constrained by the linear constraints of the product of the upper and
lower bounds of d (i.e. ub(d) and lb(d), respectively) and the time between steps i and j,
and formulated as:

lb(d) · (tj − ti) ≤ ci→j ≤ ub(d) · (tj − ti) (3.3)

Using this representation, the non-linear formulation of x(j) = x(i) + k · d · (tj − ti)
becomes linear: x(j) = x(i) + k · ci→j .

Additionally, the cqScotty planner can constrain the norm (or the magnitude) of a vector
of control parameters using convex quadratic constraints. For instance, let velx and vely be
two control parameters denoting the velocities of a robot in x- and y-directions and d be
a vector of these control parameters: d = [velx, vely]. The l2-norm constraint on d with a
constant velmax is ‖d‖ = vel2x + vel2y ≤ vel2max. This equation is multiplied by (tj − ti) on
both sides to obtain the SOCP constraint ‖d‖ · (tj − ti) = ‖ci→j‖ ≤ velmax · (tj − ti). The
same trick is used in the continuous decrease effects to overcome the weaknesses of finding

3.5 Planning with Control Parameters 58

fixed plans (discussed in Section 3.3).

3.5 Planning with Control Parameters

The difference between the POPF and POPCORN planners is that POPCORN can reason
with control parameters in addition to duration. Control parameters are, as with duration,
variables that appear only as part of the structure of an action in the plan, not as part of
the state. This means that variables can be added to the constraint collection in a P -state
as new actions are applied, to represent not only the values of the state variables, but also
newly introduced control parameters. This is achieved by extending the existing machinery
in POPF. We consider the details of each component in their related subsections. We
extend the existing problem and state definitions to capture the control parameters defined
in actions. We define the additional constraints and variables added to the LP based on
the numeric preconditions and effects of actions added during state progression. We provide
details of the modifications made to the existing heuristic state evaluation of POPF and
analyse the effects of the control parameters on the search space. We use the cashpoint
example to illustrate elements discussed in the related subsections.

3.5.1 Problem Definition

In this section we present extending temporal and numeric planning formalism discussed in
Section 2.2.2 and Section 2.2.3 to include control parameters. The definition respects the
full semantics of the PDDL2.1 language and additionally includes control parameters.

Let v be a finite set of numeric variables (of size r) and da be a finite set of control
parameters (of size ma) defined in an action a ∈ A. Each numeric variable (e.g. (inPocket

Joe) and (balance ATM1) in the cashpoint example) is denoted by v ∈ v. The ith control
parameter of the action a is denoted by dai ∈ da. The ?cash parameter is the only control
parameter of the WithdrawCash action, thus the size of its control parameter set is 1 (i.e.
mWithdrawCash = 1).

Let f(v, da) be an arbitrary function applied to v and da. Let g(v, da, ?duration) be an
arbitrary function applied to v, da and a special control parameter, ?duration, representing
the duration of the action in which it is defined. Moreover, let comp ∈ {≥,>,≤,<},
op ∈ {↗,←,↘} be sets of comparison and assignment operators, respectively, where
↗ denotes increase assignment, ← denotes direct assignment and ↘ denotes decrease
assignment operators.

We define the temporal and numeric planning problem with control parameters as follows:

Definition 9 (Temporal-Numeric Planning Problem with Control Parameters)
A temporal and numeric planning problem with control parameters is a tuple 〈F , v, I,A,
G,M〉, where:

• F is a finite set of grounded literals,

• v is a finite set of numeric variables,

• I is the initial state,

3.5 Planning with Control Parameters 59

• A is a set of actions. Each action, a ∈ A, is a tuple:

a = 〈dur, cont, prenx, prex, eff n
y , effy〉

– dur is a set of duration constraints of action a, where each is expressible in the
form of 〈g(v, da, ?duration), comp, c〉, where c ∈ R.

– cont is a set of constant bounded control parameter constraints of action a in the
form of 〈f(∅, da), comp, c〉.

– prex and prenx are the propositional and numeric conditions, respectively, that
must hold at a state in which the action starts (`), at a state in which the action
ends (a), or between the start and the end of an action a (↔): x ∈ {`,↔,a}.
The numeric conditions are in the form:

prenx = 〈f(v, da), comp, c〉

– effy are the propositional start (or end) effects of an action a that are to be added
to (or deleted from) the world state. eff n

y are the numeric effects that act on
variable v ∈ v. We denote the decrease effects by eff −y and the increase effects
by eff +

y ; where y ∈ {`,a}. The numeric effect eff n
y is expressible in the form:

eff n
y = 〈v, op, g(v, da, ?duration)〉,

• G is the goal described by a set of propositions, p(G) ⊆ F , and a set of numeric
conditions, v(G), over the state variables,

• M is the metric objective function.

A constant bounded control parameter constraint (in the form of 〈f(∅, da), comp, c〉)
refers to a numeric precondition that can limit the bounds of control parameter(s) with a
constant number (e.g. in cashpoint example we have ?cash ≥ 5). On the other hand, a non-
constant bounded control parameter constraint (in the form of 〈f(v, da), comp, c〉) refers to a
numeric precondition that can limit the bounds of control parameter(s) with state variable(s)
(e.g. ?cash ≤ (balance?m)), which means their values are inter-dependent on each other.
We see that these constraints are recorded separately in the definition. The reason behind
this is that constant bounded control parameter constraints are almost negligible during the
heuristic computation, and they are directly sent to the LP. However, the non-constant ones
require further investigation in the heuristic. Overall, the separation aims to decrease the
complexity of the heuristic that we will introduce in Section 4.

A solution to a temporal-numeric problem with control parameters is an extended version
of the temporal-numeric plan described in Section 2.2.3:

Definition 10 (Controlled Temporal-Numeric Plan (π)) is a list of timestamped ac-
tions with duration and flexible values of the control parameters of actions in π. It is shown
as:

π = {〈ai, tsi, ∆ti, Dai〉 | ∀i = {0, . . . ,n}},

3.5 Planning with Control Parameters 60

where n is the plan length, tsi ∈ R is a timestamp (the time at which the action ai is
applied), ∆ti ∈ R is the duration and Dai is an (mai × 2) matrix (of rational numbers, i.e.
Dai ∈ R(mai×2)) of the lower and the upper bound values of the control parameters of ai.
The plan generates a sequence of at most 2 · n states (each is denoted by s(t)) by applying
the start and the end of action ai at time-points (t = tsi) and (t = tsi + ∆ti), respectively.
Additionally, the following conditions must hold true:

– the duration constraints, dur, of each action in π are satisfied,

– the constant bounded control parameter constraints, cont, of each action in π are
satisfied,

– pre`(ai) and prea(ai) hold in states s(tsi) and s(tsi + ∆ti), respectively, such that
∀i = {0, . . . ,n},

– pre↔(ai) hold in every state s(t), where tsi < t < tsi + ∆ti, such that ∀i = {0, . . . ,n},

– The trajectory of states generated by application of the actions yields a final state that
satisfies the goal.

Observe that, in Definition 10, the solution does not specify a fixed value to each control
parameter. Instead, it reports the lower and upper bound of possible values that each control
parameter can take. We will present another solution to the problem, in which their values
are iteratively chosen by an executive in Section 3.5.5.1. Table 3.2 shows a possible (and a
desired) controlled plan to our running example.

Table 3.2: A desired controlled plan for the cashpoint example.

Timestamp Action Duration Control Parameters
0.001 (Go Joe Home Bank) 5
5.002 (WithdrawCash Joe Bank ATM1) 2 ?cash::[23, 50]
7.003 (Go Joe Bank Store) 5
12.004 (BuySnacks Joe Store) 1
13.005 (Go Joe Store Pub) 5

3.5.2 State Definition

Having presented the conceptual model of the planning task, we investigate how the task
is represented in the state space. The P -state representation used in POPF is further
extended for temporal-numeric planning with control parameters. We call this extended
representation a C-state (Control state).

Definition 11 (C-state) A C-state, S, is a tuple 〈F ,V ,B,Q,P ,C,T ,D〉, where: F , V ,
B, Q, P and T are as defined in a P -state. D maps all control parameters associated with
actions in P to pairs recording the upper and lower bounds on their values in S.

3.5 Planning with Control Parameters 61

When a new action, A, is started, the state progression for POPCORN adds to D

newly created variables corresponding to the control parameters in A, with upper and lower
bounds derived from the preconditions of A (or +∞ or -∞ where no bounds appear in A).
Constraints are added to C that represent the pre- and post-condition requirements on these
control parameters.

State progression of C-states is similar to P -state progression: new actions can be started,
or current actions can be completed. In both cases, the appropriate constraints are added to
C, introducing control parameters where necessary and new state variables, and new bound
are then computed for B, T and D.

(:action descend
:duration (d)
:precondition (and (y <= 200))
:effect ()
:dynamics (4 <= vx <= 8, 3 <= vy <= 6))

Figure 3.8: The Kongming action model for AUV descent. Note that this is not PDDL, but
a variant in which a new :duration field is added to classical actions to associate a fixed
and equal duration to all actions, and :dynamics which defines the control parameters and
their bounds.

3.5.3 Modelling Actions with Control Parameters

In our proposed language extension to PDDL2.1, the ordering of the duration and control
fields in action descriptions is carefully chosen to allow control parameters to appear in
duration constraints. This makes it possible to tie together these parameters in constraints.
For example, we can capture a more general version of the Kongming AUV descend action,
shown in Figure 3.8, allowing a variable duration descent that is also able to descend at
different gradients by separately selecting the x- and y-velocities. The assumption modelled
in the action is that the execution of this action involves moving at a constant velocity
along a straight vector with the chosen x- and y- displacements. To avoid the non-linear
interaction between rates and durations, we model this by choosing the distances travelled
in the x- and y-directions, subject to the constraints that these distances must not imply
violation of the velocity limits. We can also combine multiple control parameters in a single
constraint, as illustrated in the descend action in Figure 3.9. This constraint ensures that
the combined power consumption of the motors (i.e. the power consumption of motors that
traverses the vehicle in the x- and y- directions: ?dx * (powerX ?a) + ?dy * (powerY

?a)) does not exceed the available power output (i.e. ?duration * (power ?a)). This
constraint is an invariant condition ensuring that it holds throuhgout the execution of the
action. Having multiple control parameters makes the control space for this problem multi-
dimensional. This constraint is in the form of 〈f(v, da), comp, c〉. Also note that there are
4 duration constraints (e.g. (<= ?duration (/ ?dx (minVx ?a)))) in the descend action
schema, where each are expressible in the form of 〈g(v, da, ?duration), comp, c〉. This set
of duration constraints ensure that the duration of the action lies within the bounds that
are restricted by the varying displacement on each direction with the predefined maximum

3.5 Planning with Control Parameters 62

and minimum velocity rates. As the duration and power usage constraints hold, the action
increases the position of the vehicle ?a by the displacement rates, ?dx and ?dy, at the end
of its execution.
(:durative-action descend
:parameters (?a - auv)
:control (?dx ?dy - number)
:duration (and
(<= ?duration (/ ?dx (minVx ?a)))
(<= ?duration (/ ?dy (minVy ?a)))
(>= ?duration (/ ?dx (maxVx ?a)))
(>= ?duration (/ ?dy (maxVy ?a))))

:condition (and
(over all (<= (+ (* (powerX ?a) ?dx) (* (powerY ?a) ?dy))

(* ?duration (power ?a)))))
:effect (and (at end (increase (posX ?a) ?dx))

(at end (increase (posY ?a) ?dy))))

Figure 3.9: Descend action with control parameters. This model is in PDDL2.1 extended
with our proposed syntax for control parameters. Note that the linear power constraint (as a
condition) restricts the total power use across the two motors according to the consumption
rates of the motors.

Scotty (Fernández-González et al., 2015a) offers a syntax for representing control
parameters that is very similar to our own. In Scotty, control parameters are intended
to represent the margins of control of processes during execution, so these parameters are
always intended to be interpreted as rates, as can be seen in their use in the continuous effects
in Figure 3.10. However, this model combines duration and control parameters in a quadratic
expression. Scotty overcomes this difficulty by focussing on upper and lower bounds defining
the range of possible values for the control parameters. This use of control parameters cannot
be exploited in problems such as the cashpoint domain, where the parameter is not a rate.

(:durative-action navigate
:control-variables ((velX) (velY))
:duration (and (<= ?duration 5000))
:condition (and
(over all (>= (velX) -4)) (over all (<= (velX) 4))
(over all (>= (velY) -4)) (over all (<= (velY) 4))
(over all (<= (x) 700)) (over all (>= (x) 0))
(over all (<= (y) 700)) (over all (>= (y) 0))

:effect (and
(increase (x) (* 1.0 (velX) #t))
(increase (y) (* 1.0 (velY) #t))))

Figure 3.10: The navigate action for Scotty (Fernández-González et al., 2015a). The syntax
is very similar to our proposal, but the control parameters (e.g. velX and velY) are always
rates of change.

3.5.4 Checking C-state Consistency

It is worth emphasising the main characteristic of control parameters within an action
instance: each control parameter is a local variable, whose scope is limited to the action

3.5 Planning with Control Parameters 63

within which it is defined. They are carried out through the plan with the help of global
variables (e.g. (inPocket ?p) in the cashpoint domain). Each control parameter is introduced
in constraints only at the point when an action is applied. Subsequent constraints can impact
on the values of control values by constraining variables that also appear in constraints with
the control parameters.

Having presented an example encoding of the control parameter constraints in POP-
CORN, within the LP (using the constraints in C) in Section 3.4.1, we now present a formal
structure on the linear constraints. Let a be the index of a grounded action appearing
in step s with ma control parameters. The index of each control parameter is j, where
j = {0, . . . ,ma − 1}. Suppose that v is the vector of state variables (as they appear in the
LP), wv is a vector of constant coefficients of the LP state variables v, da is a set of control
parameter LP variables defined in action a and each can be shown as d(j)(a,s), wd is a vector
of constant coefficients of da, c is a constant and f(v, da) and f(∅, da) are linear functions
applied to r numeric variables (v), and ma control parameters (da). The functions can be
shown as:

f(v, da) = wv · v + wd · da + c

f(∅, da) = wd · da + c

The comp and op are the comparison and assignment operators as defined earlier.
In addition to the existing temporal and numeric constraints that can appear in POPF,

our approach inserts the following constraints to the LP during C-state progression:

• Any numeric precondition that is given in the form:

〈f(v, da), comp, c〉 (non-constant bounded control parameter constraint)

〈f(∅, da), comp, c〉 (constant bounded control parameter constraint)

• Any numeric effect that is in the form:

〈v, op, f(v, da)〉

〈v, op, f(∅, da)〉

The main difference of the constraint formulations encoded in the LP and task (given in
Definition 9) formalism is that the control parameter is defined as a global variable in the
LP using its unique identifiers (e.g. unique action, step and control parameter indices). In
contrast, in the planning task definition, it is defined as a local action variable. This plays a
critical role when propagating constraints with such local parameters in C-state progression.

Following extension of C as part of C-state progression, C is tested for feasibility. If
it is infeasible, then the C-state corresponds to an empty set of temporal states, so it is
pruned and search reverts to an earlier C-state. In POPCORN, C is solved for minimum
and maximum bounds T , B and D. However, an alternative possibility is to tighten bounds
selectively. Furthermore, a solution to C can act as a witness that can be carried forward
in the C-state, rather like a watched literal in modern SAT-solvers, checking it against new
constraints as they are added and only resolving C when the current witness fails.

3.5 Planning with Control Parameters 64

C-state Solvers:

LP

MIP

. . .

I

C(LP)

Solution

C(MIP)

Solution

Figure 3.11: Illustration of state consistency checking according to type of the accumulated
constraints.

The requirement for state checking is that it is possible to check C for feasibility: this does
not necessarily require C to be a linear program. In principle, we can use mixed collections
of constraints, possibly separating C into disconnected sets of constrained variables, using
constraint solvers appropriate to each set of constraints according to type. As a simple
example, we experiment with integer control variables, making C a mixed integer program
(MIP). We envisage the possibility to extend this idea to different types, using specialised
constraint solvers to handle them (see Figure 3.11).

3.5.5 Temporal and Numeric State-Space Search

The duration of an action might not be fixed. It might be determined by either the
values of metric fluents, such as (<= ?duration (v ?p)), or constrained within a range
of values (Coles et al., 2009b), for example, (and (>= ?duration 10) (< ?duration 50)).
Likewise, the value of a control parameter defined in an action is usually not fixed, but
is constrained within an interval and, possibly, constrained by multiple constraints. The
values of state variables subject to continuous or duration dependent effects are similarly
constrained within ranges, [vmin, vmax]. The planner is free to choose the value of a variable
within its bounds. The choices might not be independent, so each choice must be propagated
through C to determine how bounds of other variables are affected.

The existence of control parameters generates a complex branching choice in the search
space, just as is the case for ?duration parameters, but possibly multi-dimensional.
Figure 3.6 illustrates this effect for our cashpoint example. When the planner branches
over this set of infinitely many states, it avoids exploring each state by leaving the choice to
the LP constraint space.

Although the solver can help the planner to prune numerous possible states in a C-state
(in other words, it helps to shrink the size of the C-state), the intervals (of control parameter)
are usually not tight enough to easily draw a decision on their values. In our system, we
leave the valuation of parameters until a partially-grounded plan is reached (a solution is
found) and have accumulated a collection of constraints on the way. Each control parameter
has an interval of feasible values; otherwise the reached plan is numerically infeasible. At
this point, there are two options to proceed on the valuation. The first option is that

3.5 Planning with Control Parameters 65

we can define a metric objective function to optimise a linear function (e.g. in cashpoint
example: (:metric minimize (inPocket Joe))), so that the planner optimises the control
parameter in sequence (or possibly in a desired order of importance). The optimality is
subject to the metric objective function defined. We presented an example on this method
in Section 3.2. The second option is to leave the decision to the executive. We call this
method as controlled plan management and provide the details in the next subsection.

3.5.5.1 Managing a Controlled Plan

As mentioned in Section 3.3, the Scotty planner provides a flexible plan to an executive and
the executive gets freedom to choose any value to each control parameter within its bounds.
The authors of the work of Scotty ignore the fact that the bounds of control parameters
can be inter-dependent to each other (i.e. a value decision drawn by the executive can
potentially change the feasible bounds of other parameters). This issue slightly complicates
the assignment process and requires continuous revision of the feasible bounds of these
parameters. In this section, we tackle this issue by iteratively optimising each parameter
subject to the temporal-numeric constraints that are propagated through the trajectory of
states that yields a flexible plan (or a controlled plan π, see Definition 10). This process can
be considered as a post-processing step, and in principle, it is independent from the plan
execution. This contrasts to the approach of Scotty, where the process is undertaken during
plan execution. We introduce the general approach in this section and consider a scenario,
in which the process occurs in execution time (as in Scotty) in Section 5.3.2.

(:durative-action GiveMoney
:parameters (?p - person ?a - location)
:control (?change - number)
:duration (= ?duration 1)
:condition (and (at start (at ?p ?a)) (over all (at ?p ?a))
(at start (beggarAt ?a))
(at start (>= ?change 1))
(at start (<= ?change (inpocket ?p)))

:effect (and
(at end (moneyGiven))
(at start (decrease (inpocket ?p) ?change))))

Figure 3.12: The GiveMoney action of the extended cashpoint example.

Let SFINAL be the goal state reached at the end of the forward state-space search
and CFINAL be the final collection of temporal-numeric constraints accumulated until
reaching the state SFINAL. At the end of planning, POPCORN returns a controlled plan
π that consists of orderings of timestamped activities and flexible intervals of their control
parameters (if they exist). Choosing a value within any of these intervals can affect the
following attributes of the controlled plan:

1. The timestamps and the durations of actions. This occurs if the duration parameters
of actions are linearly dependent on the control parameter, whose value is recently
assigned. Consequently, the orderings of actions can change.

2. The interval bounds of the other control parameters.

3.5 Planning with Control Parameters 66

Remark 1 Understandably, one can be concerned about the effects of this process on the
timestamps, the durations and the orderings of actions in π. Recall that CFINAL includes
decision variables for the timestamps of actions as well as for their control parameters.
It also includes temporal ordering constraints between actions and duration constraints of
actions in π. Therefore, any numeric decision enforced to CFINAL can easily update these
attributes of the plan, including the bounds of other control parameters.

The choices made for each parameter must be propagated through the constraint space
(starting from the CFINAL), so that the control parameter bounds (as well as other attributes
of the plan) can be updated iteratively. This process is indeed a bounding search, in which
state propagation decisions are undertaken by an executive agent (e.g. a human operator)
or by a control system (e.g. a motion planner). We refer to this post-processing approach
as controlled plan management. In this section, we investigate the approach in a scenario
where the decision-maker is a human operator.

Consider an extended version of the cashpoint example (presented in Section 3.2), where
we want to have given some cash to a beggar on the way to the pub. The amount of cash
we can give is modelled as a control parameter (?change), whose bounds are within [1,
(inPocket ?p)] in sterling (see Figure 3.12). A possible controlled plan generated for this
problem is given in Table 3.3. The WithdrawCash and GiveMoney actions consist of local
control parameters (e.g. ?cash and ?change), whose values are inter-dependent of each
other through the state variable (inPocket ?p). Thus, the valuation of any of the two
control parameters affects the other. For instance, if the executive decides to withdraw £30
(that is in the feasible bounds of ?cash), then the maximum value ?change can take will
decrease from £27 to £71.

It is also possible that the executive can choose a value for the ?change parameter (say
it is £10) before deciding on how much to withdraw. In this case, the minimum value ?cash

can take will increase from £24 to £33. The ordering of the value assignment is critical.
Having already assigned ?change = £10, the assignment of £30 to ?cash will no longer be
a feasible assignment.

Table 3.3: A plan generated by POPCORN for the extended cashpoint example.

Time Action Duration Control Parameters
0.001 (Go Joe Home Bank) 5
5.002 (WithdrawCash Joe Bank ATM1) 2 ?cash::[24, 50]
7.003 (Go Joe Bank beggar) 5
12.004 (GiveMoney Joe beggar) 1 ?change::[1, 27]
13.005 (Go Joe beggar Store) 5
18.006 (buySnacks Joe Store) 1
19.007 (Go Joe Store Pub) 5

It is somewhat easy to compute the values of updated bounds for this example, but
the computation becomes relatively difficult when the complexity of the problem increases.

1A simple LP model is constructed and solved manually to find the values. The model can be found at
https://github.com/Emresav/ECAI16Domains/blob/master/beggarModel

3.5 Planning with Control Parameters 67

Thus, we propose solving CFINAL (plus, the value assignment constraints) iteratively using
a mathematical solver (e.g. LP or MIP) until we reach a bound (until all control parameters
are assigned to a fixed value).

Controlled plan management can be considered as a search problem whose nodes
represent mathematical models (it is either a linear or a mixed integer model) consisting of
temporal-numeric constraints (denoted as E) and edges represent the state transitions based
on executive decisions over the control parameters (denoted as r). We refer to each node E
as a model state, since it forms a mathematical model to be solved. The initial state of the
search is equivalent to CFINAL. Although the process is modelled as a search problem, it
does not adopt any state space search methods (e.g. breadth-first). Instead, the branching
scheme is subjective to the executive: it is based on the sequence of decisions drawn by
the executive. If an infeasible state is reached, the executive has the power to backtrack (or
backjump) at any state model that is recorded to be feasible in the search space. Figure 3.13
shows the iterative controlled plan management search for this example.

Solvers:

LP

MIP

E0 = CFINAL

?cash::[24, 50]
?change::[1, 27]

E1 = E0 + r1

?cash::[33, 50]
E4 = E0 + r4

?change::[1, 7]

E3 = E1 + r3

BOUND
E2 = E1 + r2

INFEASIBLE
E5 = E4 + r5

BOUND

r1: (?change = 10) r4: (?cash = 30)

r3: (?cash = 40)

r2: (?cash = 30) r5: (?change = 5)

E1

Solution

Figure 3.13: Schematic representation of the controlled plan management for the extended
cashpoint example.

In principle, the controlled plan management can be implemented with Algorithm 1. The
algorithm takes CFINAL, uses it as the initial state and at the end it returns a list of executive
value decisions of each flexible control parameter (denoted as R(E)). It propagates all the
temporal-numeric constraints (i.e. the accumulated assignment decisions each denoted as
r, and the initial constraint set CFINAL) through model states until at a model state E,
in which each control parameter is assigned with a fixed value (i.e. D(E) = 0). Then,
the algorithm reports a list of control parameter assignments as a solution. The controlled
plan management constructs the theoretical grounds of managing partially grounded plans
before or during execution. Since the plan execution is not in the scope of this thesis, we
have not yet implemented this feature on our framework. We will combine POPCORN with
the ROSPlan (Cashmore et al., 2015), a framework that integrates domain-independent
planners and execution tools on ROS (Quigley et al., 2009), in the future. Further details
of this work is outlined in Section 6.2.3.

3.5 Planning with Control Parameters 68

Note that the search graph only expands on model states that are deemed to have
feasible solutions. The search traverses purely based on model state choices drawn by the
executive (from the list E). The termination criteria on the algorithm is rather open-ended.
It only terminates when there is no longer flexible control parameters in a model state, which
purely relies on how efficient the executive is during the decision-making process. Overall,
the executive is the only mechanism who makes state propagation (and termination) choices
on feasible regions modelled by the algorithm.

Algorithm 1: Controlled plan management
Data : CFINAL
Result: R(E) - a list of executive assignments to reach the model state E

1 E - list of feasible model states, r - an executive assignment decision at a model state;
2 D(E) - a list of flexible control parameters and their bounds in E;
3 R(CFINAL)← ∅, E ← CFINAL;
4 Dispatch E to the executive and ask to choose a model state E;
5 while D(E) 6= ∅ do
6 Dispatch D(E) to the executive;
7 Retrieve r from the executive;
8 if Solve(E + r) succeeds then
9 E′ ← E + r;

10 R(E′)← R(E) + r;
11 D(E′)← D(E)\ the control parameter of r;
12 insert E′ into E ;
13 Dispatch E to the executive and ask to choose a new model state E;
14 return R(E);

There can be multiple flexible control parameters defined in the same action, but the
controlled plan management applies with no difference (i.e. still assigned one by one).
The rationale behind this assumption is that the domains of these parameters can still be
inter-dependent to each other. An iterative assignment ensures that the executive is fully
informed about the consequences of each commitment undertaken, so that an exhaustive
and uninformed assignment operation can be avoided. In Section 5.3.2, we survey applying
the controlled plan management in robot navigation scenario, in which the executive is the
motion planner.

Lastly, we formalise the new plan achieved after this process is concluded. We modified
the controlled plan definition (see Definition 10) so that it reports specified values for each
control parameter of each action in π. We call the updated plan as a controlled plan with
executive decisions (πexec) and it is shown as follows:

πexec = {〈ai, tsi, ∆ti, rai〉 | ∀i = {0, . . . ,n}},

where rai ∈ R is a vector denoting the specified values for control parameters of action ai.

3.5.6 Modifications to The Temporal RPG Heuristic

The Metric Relaxed Planning Graph (RPG) (Hoffmann, 2003) heuristic has been widely
used in numeric planning over the last decade. The POPF planner uses an extended variant,
based on the Temporal RPG (TRPG), to guide the planner in the search space towards the

3.6 Evaluation 69

Table 3.4: An LP relaxation over a control parameter that does not have a constant upper
bound value.

Maximise: ?cash(0,0)
Subject to:
bal0 = 50
?cash(0,0) ≥ 5
?cash(0,0) − bal0 ≥ −∞
?cash(0,0) − bal0 ≤ 0
?cash(0,0) + bal′0 − bal0 = 0
inp0 = 2
inp′0 − inp0−?cash(0,0) = 0

goal. The difference between the two heuristics is that the TRPG associates timestamps
with each action and fact layer, using rules on relaxed temporal progression to increase the
time as the reachability analysis is developed (Coles et al., 2009b).

Our modification to the TRPG heuristic of POPF is to make an additional optimistic
assumption: if an action a has a control parameter effect on a variable v, then the control
parameter is relaxed to whichever bound in D for the corresponding control variable gives
the largest effect (increasing the upper bound or decreasing the lower bound on the reachable
values for v). In case the bounds on the control variable depend on the value of state variables
(for example, (<= ?cash (balance ?m))), then the heuristic constructs an LP at the fact
layer that the condition appears, using only the time-independent numeric constraints of the
action, to compute the bounds for the heuristic before extracting a relaxed plan. Table 3.4
shows the LP constructed to optimistically approximate the upper bound of the ?cash

variable.
Note that this extension to TRPG can fail to estimate the relaxed bounds of control

parameters correctly at every layer of the relaxed planning graph, especially in problems
requiring repetitive numeric transfer between variables with control parameters. In
Chapter 4, we survey a way of increasing the basic informedness of this heuristic in a wide
range of problems with complex numeric transfer.

3.6 Evaluation

The cashpoint domain demonstrates that there are examples of actions in which it is natural
to model an action with an infinite domain parameter, other than duration. Furthermore,
the descend action shown in Figure 3.9 illustrates that there are also natural reasons to
transcend the use of a single control parameter, making it impossible to express such models
by some compilation of control parameters into flexible durations. This demonstrates that
the extended expressive power of the control parameters we propose offers a way to capture
important and intuitively significant behaviours that cannot be modelled in existing PDDL
formulations.

Although it is clear that the extended expressive power of control parameters has a
valuable role to play in modelling realistic domains, there remains the question of whether
it is possible to plan with this extended expressiveness. In this section, we consider several

3.6 Evaluation 70

different domains in order to explore the scalability of the performance of POPF when
confronting a variety of challenges in the use of control parameters.

Our planner, POPCORN, is a temporal planner that handles discrete numeric change in
state variables that is controlled with continuous-valued variables selected by the planner.
There are no other PDDL2.1 planners available with similar expressive power to compare
on problems using control parameters, including Scotty and cqScotty. Both planners
support control parameters for setting rates of change for continuous change, but not control
parameters used for discrete change, as in the cashpoint example. Therefore, we compare
the performance of POPCORN with POPF (the code base on which POPCORN is built).
This comparison is carried out by discretising the control parameter choices available to
POPF. The purpose of the comparison is to explore the scaling behaviour of POPCORN,
since POPF is solving a related and similar problem to the control parameters choice
problem, but the discretisation imposes both additional constraints (the possible values of
the control parameters are limited) and a simplification (the branching factor is made finite).
A comparison with UPMurphi (Penna et al., 2009) or its close relative, DiNo (Piotrowski
et al., 2016), is also possible, using discretised control parameters (which could be managed
automatically in UPMurphi within its existing machinery). However, its performance does
not scale well in domains with long combinatorial chains, such as the Procurement and
Terraria domains.

In addition to discrete comparison with POPF, we make an approximate comparison
with Scotty on domains with control parameters that are rates of change (using problems
from (Fernández-González et al., 2015a)). Since POPCORN does not handle non-linear
interaction between the rate and the evolving time, we modified these domains so that
the rates (i.e. the control parameters) and the duration parameter form linear constraints
placed in duration constraints field (and the resulting models are run on POPCORN).
This modelling technique is discussed in Section 3.5.3 and an example encoding is given
in Figure 3.9. Although the time is not continuously evolving in the POPCORN
domains, the duration is flexible and it is in linear interaction with the rates. All
domain models and problem instances used in our experiments can be found online:
https://github.com/Emresav/ECAI16Domains

Further in this section, we individually describe the domain models used in our
experiments, identify their characteristics from the planning as search perspective and
their complexity as temporal and numeric problem. We also describe how the problem
instances of each domain is generated and varying complexity levels of the problem instances
are achieved. Then, we present the experimental results and analyse them with respect
to various planning perspectives including the solution time, the makespan, the mean
scheduling time per state and the number of states evaluated by each planner.

3.6.1 The Cashpoint Domain

This domain is based on the motivating example presented in Section 3.2. The cashpoint
domain creates a relatively flat search space, with short plans.

The purpose of using this domain is to confirm that POPCORN effectively generates
plans with control parameters. As the amount of cash required in the goal is increased

3.6 Evaluation 71

relative to cashpoint limits, the plan has to include additional withdrawal actions. This is
expected in the plans generated by POPF as the discretised control parameter choices can
result in multiple instances of the withdrawal action in the plan. Also, it is important that
the planners realise that the plan cannot achieve the goals with a single withdrawal (or,
more generally, insufficient withdrawals) early enough to avoid wasted search effort.

We extend the basic actions of the original domain to include multiple currencies, allowing
new currencies to be obtained using an exchange bureau. This complicates problems by
constructing chains of constraints connecting the values of control parameters across multiple
actions.

In order to make a comparison with POPF, we add a set of WithdrawCash actions
(to the POPF domain) with fixed withdrawal values, namely ?cash ∈ {1, 5, 10, 20}. This
assumption allows us to make a fair comparison in these domains with POPF, which does not
aim to handle control parameters. Regardless of the values we fix for the withdrawal values,
the POPF will usually generate longer plans (i.e. when the problem requires (inpocket

?p) ≤ £20). POPCORN does not require any fixed value, so it is able to solve the problem
for any value of (inpocket ?p) within the bounds defined.

In all domain models we include in these experiments (including this one), we use a set
of 12 problem instances. The numeric goal limits and the types of currencies are increased,
and in some problem instances, the planner is forced to exchange currencies at the exchange
bureau.

3.6.2 The Procurement and Terraria domains

The procurement domain is about finding a plan to manufacture final products, which require
different amounts and types of raw materials to be procured from a store and intermediate
products to be produced at a workshop. The purpose in defining this domain is to explore
the effects of scaling numbers of control parameters in individual actions. Materials can be
purchased in a single action, selecting the numbers of each of the materials available at the
supplier to be included in the single purchase. This problem also contains a deeper search
space, producing longer plans, allowing us to explore the cost of solving increasing numbers
of more complex constraint sets.

The complexity of each instance is increased by extending the depth of the bill of
materials tree. Figure 3.14 shows the most challenging problem instance in which two
of product A, a product B, and a product L are to be delivered to customers Customer1,
Customer2, and Customer3, respectively. The leaf nodes represent raw materials, which can
be obtained from the store. The other nodes represent the intermediate and final products.
To produce a product A, we need to have already sub-assembled two product B and a
product C. These intermediate products require products I, J, K, D, and E. In this domain,
the batch sizes of items procured and produced are taken as control parameters, whereas
these parameters are discretised with the values of 1, 5, 10, 20 for the test runs in POPF.

The Terraria domain is similar to the procurement domain, but it additionally includes a
capacity constraint that limits the total amount of raw material procured. As an extension of
the procurement problem set, the complexity of each Terraria problem instance is extended
by decreasing the capacity limit of raw materials. The purpose of this test is to introduce a

3.6 Evaluation 72

constraint that links multiple control parameters within a single action.

Resource: E

Quantity: 2

Resource: N

Quantity: 2

Resource: J

Quantity: 1

Item: G

Quantity: 2

Resource: H

Quantity: 3

Item: F

Quantity: 1

Resource: M

Quantity: 2

Item: L

Quantity: 2

Resource: N

Quantity: 2

Item: D

Quantity: 3

Resource: E

Quantity: 1

Resource: K

Quantity: 2

Item: C

Quantity: 1

Item: B

Quantity: 2

Resource: J

Quantity: 1

Resource: I

Quantity: 4

Final Product: A

Quantity: 1

Item: B

Quantity: 1

Figure 3.14: Bill of material tree of product A in procurement domain model. Coloured
nodes indicate that those items are already used in the tree.

3.6.3 The 2D-AUV-Power domain

This domain is based on the Kongming AUV domain presented in Section 3.5. The purpose
in introducing this domain is to show that duration and other control parameters in an
action can be successfully constrained within a single constraint.

In this domain, the AUV travels between different waypoints to collect samples in a two
dimensional underwater environment (depth and horizontal distance). Figure 3.9 shows the
descend action with our proposed syntax for control parameters. In this experiment, we
reinterpret this action as a single glide and allow the velocity range to include positive
and negative changes in the y-direction (depth), so that the action can be used to ascend or
descend. The duration of glide is constrained by the maximum and minimum displacement
rates of the vehicle in x- and y-directions. The linear power constraint of (<= (+ (*?dx 3)

(*?dy 4)) 90) limits the total power use of the vehicle across the two motors in gliding. The
complexity of this experiment increases by increasing the sample destinations and decreasing
the power capacity (per glide action) of the vehicle. The displacement rate of the glide action
is fixed with 1, 5, 10 and 20 units (?dx, ?dy ∈ {1, 5, 10, 20}). The AUV can take a sample
whenever the x- and y-positions are in the range the sample destination.

3.6 Evaluation 73

3.6.4 Experimental Results

Figure 3.16 shows the time taken to solve each problem instance, and the number of states
evaluated in the domain models. Observe that POPF generates more states than POPCORN
does for almost all problem instances. The reason behind this behaviour is the existence
of wide plateaus in the search space of POPF, as we defined multiple action schemas (each
defined with fixed control parameter values) for each action that includes at least one control
parameter. For instance, in the cashpoint example, we defined 4 different WithdrawCash

actions in the POPF domain, whereas we have only one of it in the POPCORN domain.
Consequently, the POPF planner generates 4 times more WithdrawCash grounded actions
for a problem instance than the POPCORN does at any search depth where the action is
applicable. This fact consequently affects the solvability of the POPF planner as it can
result in an exhaustive search.

As discussed in Section 3.5.5, the LP avoids early commitment to values of control
parameters, but maintains the constraint space in which they must lie. However, a deeper
search space might lead to an excessive use of the LP during planning. As mentioned
earlier in this section, the procurement domain model creates a deeper search space than
the cashpoint domain. We observe that POPCORN takes longer than POPF to generate
plans in almost all of the procurement problem instances. The reason behind this behaviour
is that POPF realises the use of its Simple Temporal Network (STN) is sufficient to check
state consistency in most of the steps, whereas POPCORN mostly relies on solving LP
models for this purpose. Coles et al. show that using the STN in temporal-numeric domains
is significantly faster than using the LP (Coles et al., 2012).

Figure 3.15 shows the mean time spent solving the LP at each state. These figures
indicate that the constraint-solving time per state explored by POPCORN gradually
increases, because larger-sized linear programs are generated as the problem complexity
increases. Observe that the average mean time spent on the procurement domain is generally
higher than the times on the cashpoint domain evaluated by both planners. The rationale
behind this fact is that the procurement domain induces a chain of numeric subgoals to
satisfy the top-level numeric goal of each problem. This feature of the procurement domain
has two immediate consequences in the planning process. First, the planners spend more
time constructing the chain relationship in the heuristic. Second, these subgoals create
larger-sized linear programming constraint sets, so that the planners (indeed, it is only
POPCORN) spend more time computing the LP model.

Despite the LP costs it is worth noting that POPF generates poor plans. Repetition of
the same action is observed in plans generated by POPF. Even though multiple choices of
the same discrete actions are defined, POPF usually chooses the ones with the least increase
or decrease effects, which leads it to generate poor plans; POPCORN generates better plans
where repetition of the same action is not usually observed. Figure 3.17 compares the
solution quality for each problem instance solved by POPCORN and POPF.

The Scotty planner introduces various domain models with flexible rates of change
(that are control parameters) in continuous effects. Table 3.5 compares the performance
of POPCORN and Scotty in these domain models. As previously said, we avoid non-
linear interaction between control parameters by modelling the problems in the same fashion

3.6 Evaluation 74

0

20

40

60

80

100

120

140

160

1 2 3 4 5 6 7 8 9 10 11 12

M
ST

/S
ta

te
 (

m
s)

Problem Number

Procurement

POPCORN POPF

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

1 2 3 4 5 6 7 8 9 10 11 12

M
ST

/S
ta

te
 (

m
s)

Problem Number

Cashpoint

POPCORN POPF

Figure 3.15: Mean Scheduling Time (MST) per state in procurement and cashpoint
instances.

3.6 Evaluation 75

0.1

1

10

100

1000

10000

0.1 1 10 100 1000 10000

P
O

P
F

So
lu

ti
o

n
 T

im
e

(s
)

POPCORN Solution Time (s)

Cashpoint

Procurement

2D-AUV-Power

Terraria-capacity

10

100

1000

10000

100000

10 100 1000 10000 100000

P
O

P
F

N
u

m
b

er
 o

f
St

at
es

 E
va

lu
at

ed

POPCORN Number of States Evaluated

Cashpoint

Procurement

2D-AUV-Power

Terraria-capacity

Figure 3.16: Comparison of time taken by POPF and POPCORN to solve each problem
instance, and the numbers of states evaluated, in four domains. The crossed points indicate
that only one of the planners found a solution.

3.6 Evaluation 76

10

100

1000

10000

10 100 1000 10000

P
O

P
F

So
lu

ti
o

n
 Q

u
al

it
y

(M
ak

es
p

an
)

POPCORN Solution Quality (Makespan)

Cashpoint

Procurement

2D-AUV-Power

Terraria-capacity

Figure 3.17: Comparison of plan quality (measured in this case as plan makespan) in four
temporal numeric domains. POPCORN is compared with POPF on each problem instance.

Table 3.5: Comparison between POPCORN and Scotty in the 5 problems in Firefighting, 2D
and 3D AUV navigation (Fernández-González et al., 2015a). The numbers in the brackets
are the makespan, while the numbers outside the brackets are the execution times.

Domains: 2D AUV1 2D AUV2 3D AUV Firefighting1 Firefighting2
Scotty 2.6(139) 8.4(260) 0.8(12) 1.2(20) 2.5(14)

POPCORN 0.9(116) 8.8(153) 0.5(12) 0.1(20) 0.7(15)

discussed in Section 3.5. 2D- and 3D-AUV domains are based on an underwater sampling
mission scenario. In the 2D-AUV domain, the vehicle collects sampling data at the same
depth (i.e. water depth), whereas in the 3D-AUV domain the vehicle collects data in different
depths. In this experiment, we slightly modified these domains to challenge the performances
of both planners. Seven and fourteen sampling destinations are defined in 2D AUV1 and
in 2D AUV2 domains, respectively. We observed that Scotty generates longer plans in 2D
AUV domains than POPCORN due to taking longer paths in both problems. The difference
on the plan quality presumably results from the fact that the Scotty planner makes an early
commitment on the control parameter values when finding a fixed plan, and this consequently
leads to repetitive execution of the same action. We suspected to observe this sacrifice on
the plan quality in Section 3.3. The difference in the execution times is insignificant as both
systems rely on solving linear programs during similar forward state space search planning.

In this chapter, we surveyed a detailed treatment of control parameters in terms of
how they are conceptually represented in temporal-numeric planning problem, how they
are encoded in a standardised modelling language and handled in forwards heuristic search.
We proposed an optimistic (yet somewhat unrealistic as it ignores temporal dimension of
the problem) extension to the TRPG heuristic, and in these experiments, we observed that

3.7 Summary 77

this heuristic extension is deemed insufficient in numerically challenging problems. In the
procurement domain, for instance, the numeric resources are repeatedly consumed and/or
produced with control parameters, and a top-level numeric goal can necessitate satisfying a
set of numeric subgoals. This problem is rather difficult for a heuristic with various useful
relaxations (e.g. delete-relaxation, infinity analysis). The rationale behind the insufficiency
of the heuristic is that considering each action to apply arbitrarily many times (i.e. the
infinity analysis) during graph expansion makes the variables unbounded, even if the use of
LP provides somewhat strong relaxed bounds.

As previously said, the complexity of the problem instances is directly related to the
complexity of the numeric goals, and the ones we used in these experiments were fairly
simple to achieve. As the numeric goal complexity is increased (in problems of most domain
models used in this experiments), the heuristic can promote false activities as helpful actions
(previously described in Section 2.5.2.2). The rationale behind this behaviour is that the
heuristic fails to provide strong numeric bounds on variables. Consequently, the heuristic
can lead the search into a dead-end in certain conditions. We identified that the heuristic we
use, the extended TRPG, needs structural revision on its numeric satisfaction mechanism
that aims to provide a certain level of informedness in complex numeric problems. We
describe the core of the numeric resource transfer issue and propose a new extension to the
TRPG heuristic in the next chapter.

3.7 Summary

Physical and logical properties of real world examples require multiple numeric variables to
create realistic planning models. We have shown examples of problems, in which it is most
natural to model a choice of numeric parameter values to control the behaviour of actions, in
a similar way, but in addition to, the duration of flexible-duration actions. Furthermore, the
opportunity to combine multiple control parameters in a single action, so that the control
space is multi-dimensional, is motivated by specific examples.

We have presented a planning approach capable of solving problems in domains with
control parameters and we have demonstrated that it is capable of solving interesting
problems with a range of characteristics, performing scalably and producing efficient plans.
We compare performance with two alternatives: POPF using discretised control parameters
and Scotty, which offers a different role for control parameters that does not include examples
such as the cashpoint, procurement or Terraria domains.

The approach we have proposed, in which constraints governing control parameters are
accumulated into a constraint program that is checked for feasibility as states are progressed,
generalises to other types and to non-linear constraints, subject to the capabilities of the
solver for the constraint program. We intended to explore this in future work.

We have presented a highly optimistic way of handling control parameters in the heuristic
of our base system, the TRPG. We identified that the existence of control parameters creates
rather complicated issues in the heuristic evaluation that needs to be identified and handled
delicately. In the next chapter, we recondition the heuristic used in this chapter to solve
problems that are deemed highly challenging or unsolvable by our system.

Chapter 4

Refined Infinity Analysis for
Planning with Control
Parameters

4.1 Introduction

Although control parameters are a modelling requirement in real world planning appli-
cations, planning with control parameters is rather challenging as a search problem. Their
existence changes the structure of the search space by creating an infinite branching choice of
applicable actions at a state. We described the resulting state representation, the C−state,
in the previous chapter. When at a C−state, the extended TRPG heuristic (presented in
Section 3.5.6) can provide an uninformative heuristic estimates as the use of infinity analysis
immediately makes the relaxed bounds of variables unbounded, even if the minimal use of LP
in the heuristic provides somewhat strong relaxed bounds. Consequently the heuristic fails to
prune unreachable actions (in EHC) and in most cases it leads the search to a dead-end. This
issue is observed in producer-consumer planning problems, in which numeric resources are
repeatedly consumed (and unavailable for other uses) and produced with control parameters
(e.g. the procurement and the terraria domains). Delete-relaxation based heuristics (except
the LP-RPG) struggle solving these sort of problems (with or without control parameters),
as they ignore the consumption of numeric resources.

To aid in illustration of this point, consider a simplified linear Generator domain (Howey
and Long, 2003), in which the limited resource (i.e. the fuel level) is repeatedly transferred
(produced by the refuel action and consumed by the generate action) between states using
actions with control parameters. The generator runs on fuel and in return, it produces
energy. The goal is to have a certain level of energy produced while the generator has to
have fuel to operate. The heuristic fails to include the refuel action in the helpful actions
set as it ignores consumption of the fuel level, and instead it promotes the generate action
as helpful (even if it must include the refuel action). This has been previously identified
as a common issue in producer-consumer problems by Coles et al. (Coles et al., 2008b),
they called helpful action distortion. Another common issue of the delete-relaxation based

78

4.2 An Example Problem 79

heuristics (including the heuristic of the Scotty and the cqScotty planners) is cyclical resource
transfer, which is defined as follows:

“The phenomenon of Cyclical Resource Transfer (CRT) is a consequence of the
encoding of actions that move resources around, combined with the relaxation
of negative effects. To encode movement of a resource, it is removed from one
location and added to another. The removal is encoded as a decrease and this is
relaxed when building the Metric RPG. As a result, moving resources appears
to generate new resource at the destination, making movement a spuriously
attractive alternative to production. ” (Coles et al., 2013, pg. 357).

One way to avoid these weaknesses is to eliminate the infinity analysis (i.e. there can
be arbitrarily many layers in the graph) from the heuristic and use an optimisation tool to
compute the true bounds of every state variable (affected by a control parameter) at every
fact layer of the RPG for every state reached (generalising, in some way, the behaviour of LP-
RPG (Coles et al., 2013)). This is costly, however. The number of LP calls per RPG graph
would be equal to the multiplication of the number of control parameters, numeric variables,
actions and layers. Analysis of LP-RPG indicates that the cost of multiple LP solving in the
heuristic evaluation of states dominates the computation cost for the heuristic (Coles et al.,
2013). The trade-off between obtaining strong max/min bounds on variables, and the cost
of computing them, is critical. Each call to the optimisation tool (in our case it is LP-solve)
carries a cost and excessive use of it can make the whole approach inefficient.

In this chapter, we extend a variant of the TRPG heuristic (Coles et al., 2009b)
(presented in Section 3.5.6) that guides the state progression of C-states alongside the P-
states. Our approach combines the discretisation of alternating layers approach used in the
RPG heuristic of the Metric-FF (Hoffmann, 2003) with infinity analysis used in the TRPG
to form a middle ground between the two. We call this approach refined infinity analysis.
We identify that such a hybrid planning graph approach improves the basic informedness
of the heuristic when planning with control parameters (especially when there is producer-
consumer relationship between actions). Compared to other approaches we avoid making use
of linear programming (LP) as it provides an expensive solution for a heuristic computation.
We investigate the numeric interval relaxation of the state variables that are affected by at
least one control parameter.

The structure of this chapter is as follows: we describe a motivating problem based on the
procurement example before providing technical detail about the contribution in Section 4.2.
We examine the producer-consumer problem in depth in Section 4.3 and in Section 4.4. Then
we introduce our proposed extension to the TRPG heuristic in Section 4.5. We show that
our extension is fast and scalable in a domain-independent way in Section 4.6. Finally, we
conclude with discussion and conclusion in Section 4.7.

4.2 An Example Problem

We mentioned that the procurement domain is a rich producer-consumer problem. We
revisit this domain to use it as our running example here as follows. Suppose that we add
various items together (different types and quantities) to produce intermediate and finished

4.2 An Example Problem 80

products in a workshop. The final and intermediate products are assembled at the workshop,
while the raw materials are outsourced. Figure 4.1 shows the material requirement tree used
in the manufacturing process of the item a. In the figure, item a is the final product, items
c, b, and d are intermediate products (white circular nodes), items g, f, e, i, h are the raw
materials (gray square nodes). In order to assemble one item b, we must have at least two d,
one f and three e in stock. In case these items are not available, the planner should consider
acquiring them: producing d, and supplying e and f.

a

b

e3

f
1

d

h5

i
2

2
2

c g
21

level 0 level 1 level 2

Figure 4.1: The material requirement tree for the motivating example.

This example is a simplified version of the procurement domain we introduced in
Section 3.6. We eliminated the location objects from the original domain so that the
example is only concerned with producer-consumer behaviour between actions. In addition,
the duration of each action is fixed for simplicity. We use a far more complex version of
this domain in our experiments (see Section 4.6.1.2). The main actions of this example are
given in Figure 4.2. In this domain each action has a single control parameter, ?unit, which
controls the amount of item assembled or supplied per execution of that action. The ?unit

parameter takes its value from an infinite domain of [0, 10], however it is also constrained
by the stock level of other items. For instance (>= (stock ?b) (* ?unit 2))) condition
limits the value of the control parameter can take in assemble_A action. For this reason, the
upper bound of ?unit can change at every state, which makes it a non-constant bounded
control parameter (a formal definition of it will be given in the next section).

In this problem the goal is to achieve a stock level of 20 for the final product a: (a ≥
20). The initial stock level of the resources are: 2 of item a, 3 of b, 3 of c, 2 of d, 4 of e, 1 of
f , and the stock level of the rest is zero. Since the numeric goal on a is greater than its stock
level, we need to assemble more of item a. However, the execution of assemble_A action
depends on the stock levels of item b and c, while they depend on stock levels of items d, e, f ,
and g, and so on. Thus, this process requires cascading arrangement of producer-consumer
actions (i.e. assemble and supply actions).

Figure 4.3 shows the modified TRPG reachability graph of POPCORN presented in
Section 3.5.6 and the solution extraction of the problem. The behaviour of the heuristic
in this example is important. For each non-constant bounded control parameter appearing

4.2 An Example Problem 81

(:durative-action assemble_A
:parameters (?a - itemA ?b - itemB ?c - itemC)
:control (?unit - number)
:duration (= ?duration 2)
:condition (and (at start (>= ?unit 0)) (at start (<= ?unit 10))
(at start (>= (stock ?b) (* ?unit 2))) (at start (>= (stock ?c) ?unit))
(at end (>= (stock ?b) 0)) (at end (>= (stock ?c) 0)))

:effect (and (at end (increase (stock ?a) ?unit))
(at start (decrease (stock ?c) ?unit))
(at start (decrease (stock ?b) (* ?unit 2)))))

(:durative-action assemble_B
:parameters (?b-itemB ?e-itemE ?f-itemF ?d-itemD)
:control (?unit - number)
:duration (= ?duration 1)
:condition (and (at start (>= ?unit 0)) (at start (<= ?unit 10))
(at start (>= (stock ?e) (* ?unit 3)))
(at start (>= (stock ?f) (* ?unit 1)))
(at start (>= (stock ?d) (* ?unit 2)))
(at end (>= (stock ?f) 0)) (at end (>= (stock ?e) 0))
(at end (>= (stock ?d) 0)))

:effect (and (at end (increase (stock ?b) ?unit))
(at start (decrease (stock ?e) (* ?unit 3)))
(at start (decrease (stock ?f) (* ?unit 1)))
(at start (decrease (stock ?d) (* ?unit 2)))))

(:durative-action assemble_C
:parameters (?c - itemC ?g - itemG)
:control (?unit - number)
:duration (= ?duration 1)
:condition (and (at start (>= ?unit 0)) (at start (<= ?unit 10))
(at start (>= (stock ?g) (* ?unit 2))) (at end (>= (stock ?g) 0)))

:effect (and (at end (increase (stock ?c) ?unit))
(at start (decrease (stock ?g) (* ?unit 2)))))

(:durative-action assemble_D
:parameters (?d - itemC ?h - itemH ?i - itemI)
:control (?unit - number)
:duration (= ?duration 1)
:condition (and (at start (>= ?unit 0)) (at start (<= ?unit 10))
(at start (>= (stock ?h) (* ?unit 5)))
(at start (>= (stock ?i) (* ?unit 2)))
(at end (>= (stock ?h) 0)) (at end (>= (stock ?i) 0)))

:effect (and (at end (increase (stock ?d) ?unit))
(at start (decrease (stock ?h) (* ?unit 5)))
(at start (decrease (stock ?i) (* ?unit 2)))))

(:durative-action supply_raw_material
:parameters (?d - item)
:control (?unit - number)
:duration (= ?duration 1)
:condition (and (at start (>= ?unit 0)) (at start (<= ?unit 10))
(at start (>= (stock ?d) 0)) (at start (can_supply ?d)))

:effect (and (at end (increase (stock ?d) ?unit))))

Figure 4.2: Main actions of the example domain encoded in PDDL extension we introduced
in Chapter 3.

4.2 An Example Problem 82

b: [3,3]
c: [3,3]
d: [2,2]
e: [4,4]
f: [1,1]
g: [0,0]
h: [0,0]
i: [0,0]

a: [2,2]

B`

Sr`

A`
b: [-∞,3]
c: [-∞,3]
d: [-∞,2]
e: [-∞,4]
f: [-∞,1]
g: [0,0]
h:[0,0]
i: [0,0]

a: [2,2]

Ba

Sra

b: [-∞,∞]
c: [-∞,3]
d: [-∞,2]
e: [-∞,∞]
f: [-∞,∞]
g: [0,∞]
h:[0,∞]
i: [0,∞]

a:[2,2]

C`

D`

Aa
b:[-∞,∞]
c:[-∞,3]
d:[-∞,2]
e:[-∞,∞]
f:[-∞,∞]
g:[0,∞]
h:[0,∞]
i:[0,∞]

a: [2,∞]

?unitA: [0,1.5]
?unitB : [0,0.5]
?unitSr: [0,10]

?unitC : [0,∞]
?unitD: [0,∞]

Goal:
a ≥ 20

Figure 4.3: The extended TRPG reachability graph of POPCORN. We represent as-
semble_A, assemble_B, assemble_C, assemble_D, and supply_raw_material actions as A,
B, C, D and Sr, respectively. The relaxed upper bounds of ?unitA, ?unitB , ?unitC , ?unitD
are computed by the LP, whereas ?unitSr is not.

in the graph, it constructs an LP model (ignoring temporal variables and constraints) and
solves it to find their relaxed upper bounds. Table 4.1 shows the LP model of the ?unit

parameter of assemble_A, and the optimal solution of this model is ?unit(0,0) = 1.5. The
heuristic sets this as the upper bound of the parameter at the first layer the action appears
and never updates it again in further layers.

The heuristic infers that all actions can be applied infinitely many times once they become
applicable during the graph expansion (i.e. the infinity analysis). Although the LP provides
somewhat strong relaxed bounds on these parameters, applying each action infinitely many
times makes the relaxed bounds of the affected variables unbounded (e.g. the relaxed upper
bound of a immediately becomes∞). For this reason, the use of LP becomes almost useless
as its decision is suppressed by the infinity analysis.

When satisfying the numeric goal, a ≥ 20, in solution extraction phase, the goal is
assumed to be reached without considering actions that replenish its resources (that are
assemble_B, assemble_C, assemble_D, and supply_raw_material actions). The heuristic
should have inferred that there is a set of sub-goals that must be satisfied in parallel (that
are indeed analogous to the numeric landmarks of (Scala et al., 2017)), and these sub-
goals are (based on resource requirements of the goal): b ≥ 40, c ≥ 20, d ≥ 80, e ≥ 120,
f ≥ 40, g ≥ 40, h ≥ 400, and i ≥ 160. This behaviour of the heuristic (disregarding
the sub-goals) can eventually lead the search to a dead-end. As mentioned previously, this
is a familiar problem for delete-relaxation based heuristics and it is called helpful action
distortion. The problem comes from the fact that there is insufficient communication, in
the graph expansion, between the variables in the numeric preconditions of actions and
the constraints on the variables in their effects. Considering the numeric constraints of the
problem, we expect that the assemble_A action can only occur once, and then it can only
occur again when its numeric resources are fully replenished. The helpful action distortion
problem is not only restricted to numeric domains. It can be observed in more general

4.2 An Example Problem 83

Table 4.1: The LP relaxation model called by the extended TRPG at the fact layer zero
to find the relaxed upper bound of ?unit of assemble_A action. The construction of this
model is described in depth in Section 3.5.6.

Maximise: ?unit(0,0)
Subject to:
0 ≤?unit(0,0) ≤ 10
0 ≤ b0 − 2·?unit(0,0) ≤ +∞
0 ≤ c0−?unit(0,0) ≤ +∞
a′0 − a0−?unit(0,0) = 0
b′0 − b0 + 2·?unit(0,0) = 0
c′0 − c0+?unit(0,0) = 0
a0 = 2
b0 = 3
c0 = 3
a′0, b′0, c′0 ≥ 0

planning as search problems. Xie et al. describes the problem of choosing wrong activity
as helpful early in the forwards search as early mistakes (Xie et al., 2014; Xie, 2016), which
can not be recovered from as it can require significant backtracking search.

I . . .
A A A

True
Bounds:

a: [2, 2]
b: [3, 3]
c: [3, 3]

a: [2, 3.5]
b: [0, 3]
c: [1.5, 3]

a: [2, 3.5]
b: [0, 3]
c: [1.5, 3]

Conditions:

Effects:

0 ≤?unit(0,1) ≤ 10
b ≥ 2·?unit(0,1)
c ≥?unit(0,1)

a↗ ?unit(0,1)
b↘ 2·?unit(0,1)
c↘ ?unit(0,1)

0 ≤?unit(0,2) ≤ 10
b ≥ 2·?unit(0,2)
c ≥?unit(0,2)

a↗ ?unit(0,2)
b↘ 2·?unit(0,2)
c↘ ?unit(0,2)

0 ≤?unit(0,3) ≤ 10
b ≥ 2·?unit(0,3)
c ≥?unit(0,3)

a↗ ?unit(0,3)
b↘ 2·?unit(0,3)
c↘ ?unit(0,3)

Figure 4.4: The dead-end in forward search due to poor heuristic guidance. I : initial state.

Figure 4.4 illustrates how the forward search is led to a dead-end when the heuristic
repetitively declares the assemble_A as the only helpful action during search. The true
bounds are obtained from the LP solver when checking the state consistency, and they are
subject to numeric constraints that appears in conditions and effects. The variables in these
constraints are encoded in the form described in Section 3.5.4. The start-end snap-actions
are compressed in this figure. Observe that whenever the lower bound of b hits zero (where it
is initially 3), the true bound of a stops increasing (based on the solution obtained from the
LP with accumulated constraints). We consider b as the bottleneck resource of assemble_A at
that state. This detail plays a key role in answering the following questions about repetitive
execution of assemble_A without requiring replenishment:

– How many times can this action be applied without reaching to a dead-end?

4.3 Preliminaries on Producer-Consumer Behaviour 84

– What is the total numeric contribution of this action on satisfying the numeric goal
over variable a at a state s?

We identified that tackling these questions in the heuristic is critical to construct a hybrid
planning graph (i.e. a combination of discretised and continuous alternating layers) that we
propose to achieve in this work. Addressing these questions would allow us to attain some
sort of numeric inference between resources. We aim to improve the numeric informedness
of the heuristic by monitoring how many times such actions can be executed. To achieve
this, we indirectly keep the bottleneck resources under surveillance until the corresponding
numeric goal is satisfied. Another challenge this problem poses is that the planner should
find a plan that minimises the required amount of resources. Thus, a realistic estimate on
how many times such actions can be executed is critical to obtain a good quality solution
plan. We address this issue in detail in Section 4.5.1.

4.3 Preliminaries on Producer-Consumer Behaviour

We briefly exemplified the producer-consumer behaviour arising in a simplified linear
Generator domain in Section 4.1 and in the motivating example in Section 4.2. We can
generalise the behaviour as follows. The producer-consumer behaviour is observed at a
planning problem where the goals of the problem impose the numeric resources to be
repeatedly decreased and increased (produced and consumed) when progressing through
states. We can observe the behaviour in numerous real world applications: manufacturing
of goods, trading commodities, energy conversion, chemical reactions, any application that
requires resource transformation, and so on.

In recent years the constrained producer-consumer behaviour in task planning has been
thoroughly discussed. For instance, Coles et al. (Coles et al., 2013) explored the behaviour
in which resource transfer occurs using variables that take their values from finite domains,
whereas Laborie explored an analogous behaviour in scheduling (Laborie, 2003). Scala et al.
extended the hmax heuristic to capture implicit subgoals in general numeric planning (Scala
et al., 2016b). The work of Coles et al. reflects only a restricted version of real world
producer-consumer problems, where the variables only have a few numeric choices. For
instance, the fuel amount is restricted to be taken from a domain of {5, 10, 50, 200} in a
refuel action. In case the required fuel amount is 75 units, the planner can achieve this at
once by refuelling it 200 units or it can choose to apply a few instances of the refuel actions
by smaller amounts (i.e. 5 or 10 units). Both options produce a poor quality solution as it
is desirable to minimise the use of resources and the makespan. In this work we explore the
behaviour when the variables are not restricted to take their values from a few points, but
from a continuous surface of points. This is achieved with the help of control parameters in
resource transfer actions.

In this section we first define various producer and consumer actions that we consider
in this work. We split consumer actions into two categories: constant and non-constant
bounded consumer actions. This categorisation is an intuitive generalisation to such actions
that differ based on how the control parameters are used in the resource constraints. Using
these definitions we then identify producer-consumer variables.

4.3 Preliminaries on Producer-Consumer Behaviour 85

It is worth mentioning that the definitions we present in this section are derived from the
pre- and post-conditions and effects of actions in the domain model. Thus, the classification
occurs at the parsing stage (of the domain and problem file) in our implementation (which is
prior to initialisation of search and heuristic algorithms). We mention the occurrence limits
of actions (k) and the earliest layer (which is time-stamped) that the action appears, l, in
the definitions. Although the classification of these actions does not change during planning,
the k and l entities are the local variables of the heuristic, so that they are updated every
time we generate a new relaxed plan at a state s. We examine the computation of k in
depth in Section 4.5.

4.3.1 Producer-Consumer Effects and Fluents

Before we identify the producer-consumer behaviour in grounded action level, we survey
individual numeric effects and fluents of actions that are important during constrained
resource transfer. Breaking producer-consumer actions into its components (as its numeric
effects and variables) holds the key role of identifying the problem in the layer-based planning
graph as they make the numeric transition between fact and action layers. In this section we
define the produced-consumed resources and the producer-consumer effects as we frequently
refer to these terms throughout the section.

Let vp ⊆ v and vc ⊆ v are vectors of state variables. vp denotes a vector of produced
resources and vc denotes a vector of consumed resources in a planning problem. We define
produced-consumed resources as follows:

Definition 12 (Produced-Consumed Resources) A numeric variable vp ∈ vp is a
produced resource if and only if any instantiated action a can monotonically increase vp.
A numeric variable vc ∈ vc is a consumed resource if and only if any instantiated action a
can monotonically decrease vc.

It is important that, during graph expansion and extraction, consumed resources should
be considered to be replenished to avoid common heuristic problems. Thus, in this work we
heavily refer to these terms when we identify the switch points between finite and infinite
analysis.

We define a slightly modified version of numeric effects that shows producer and consumer
behaviour, as follows:

Definition 13 (Producer-Consumer Effects) Suppose that v and da are vectors of
numeric variables (size of n) and control parameters of an action a (size of m), respectively.
A numeric effect of an instantiated action a, effy(a), is a producer (or a consumer) if
and only if it monotonically increases (or decreases) a numeric variable vi ∈ v with an
arbitrary function of f(v, da), where y ∈ {`,a} and m,n are constant positive integers.
Each producer-consumer holds the following entities:

– ID is the unique identifier of effy(a).

– op is the assignment operator of effy(a), where op ∈ {↗,←,↘}

– actID is the unique identifier of the instantiated action of effy(a).

4.3 Preliminaries on Producer-Consumer Behaviour 86

– fluentIndex is the index of the produced (or consumed) variable vi.

– vars is an array of indices of the numeric variables and control parameters that affects
vi that appear in linear function of f(v, da).

– weights is an array of constant numeric coefficients of vars.

This definition has the following consequences:

– The consumed-produced resource (vi) of the effect is recorded as the fluentIndex

of the effect. This index distinguishes these resources from other numeric variables
appearing in f(v, da).

– Each numeric effect affected by an action-specific parameter (i.e. a control parameter)
becomes action-specific. Thus, such effects hold a unique action identifier, too.

4.3.1.1 Evaluating Relaxed Minimum and Maximum Values of Numeric Effects

Suppose that v and da are vectors of numeric variables (size of n), the control parameters
of an action a (size of m), respectively, where c ∈ R, w ∈ w and w ∈ Rm+n. All variants
of the Metric-FF planning system, including POPCORN and its predecessors, convert the
planning task into a linear numeric task. The numeric expressions are in a restricted form
(defined as Linear Normal Form (LNF) (Hoffmann, 2003)), where each is a weighted sum
of variables plus a constant. On the grounds of this restriction, we formulate the numeric
expression f(v, da) as a linear function over v and da, as follows:

f(v, da) = w1 · v1 + · · ·+ wn · vn + wn+1 · da1 + · · ·+ wm+n · dam + c

A numeric effect affects its fluent v with a linear function that consists of various state
variables, control parameters (i.e. f(v, da)) and each holds different upper and lower relaxed
bound limits in the heuristic. Applying a numeric effect updates the relaxed bounds of its
fluent v by the aggregated minimum and maximum relaxed bounds of the linear function
that is evaluated based on the relaxed bounds of its components. We denote the aggregated
minimum bound of the linear function by min[f(v, da)], the aggregated maximum bound
of the linear by max[f(v, da)] and they are evaluated as follows:

min[f(v, da)] = w1 · lb(v1) + · · ·+ wn · lb(vn) + wn+1 · lb(da1) + · · ·+ wm+n · lb(dam) + c

max[f(v, da)] = w1 · ub(v1) + · · ·+ wn · ub(vn) + wn+1 · ub(da1) + · · ·+ wm+n · ub(dam) + c

Note that in case any of the lower bounds of variables or parameters take −∞, then
min[f(v, da)] is assigned to −∞. Similarly, in case any of the upper bounds of variables or
parameter take ∞ then max[f(v, da)] is assigned to ∞ at this action layer.

4.3.1.2 Constant and Non-Constant Bounded Control Parameters

Although the control parameters are defined to take their values from an infinite domain,
identifying how their domain bounds react to the changes in the world-state (or when
alternating between layers in heuristic) is indispensable to their use. Depending on the

4.3 Preliminaries on Producer-Consumer Behaviour 87

constraints acting upon them, their domains can get diverged or converged or can remain
unchanged. The behaviour of the parameter, whose bounds remain unchanged is relatively
more predictable than the ones that get diverged (or converged). For instance, a point that is
predicted to lie in the domain of a parameter may lie outside of its domain at the next step
if the parameter has diverging (or converging) bounds. Whereas the point is guaranteed
to remain in its domain if the parameter acts independently (from other variables and
parameters) in the heuristic. One can easily detect its behaviour based on the pre- or post-
conditions in the domain model: if the parameter is only constrained by constant numbers,
its domain will not be affected by the values of other parameter or variables. On the
grounds of this relationship, we provide the formal definitions of distinguished behaviours
of the control parameters as follows:

Definition 14 (Constant Bounded Control Parameters) A control parameter dai ∈
da of an action a is a constant bounded control parameter if and only if the numeric
conditions acting upon dai do not include any other control parameters or variables. Each
condition must be in the form 〈f(∅, dai), comp, c〉.

Definition 15 (Non-Constant Bounded Control Parameters) A control parameter
dai ∈ da of an action a is a non-constant bounded control parameter if and only if there
is at least one condition acting upon dai that includes other control parameters of variables.
These conditions are in the form 〈f(v, da), comp, c〉, where the sizes of v and da are non-
zeros.

For instance, the control parameter in the supply_raw_material action, ?unit, is a
constant bounded control parameter as the action description (see Figure 4.2) only includes
numeric conditions in the form 〈f(∅, dai), comp, c〉 (e.g. (at start (<= ?unit 10))). The
control parameter in the assemble_D action, ?unit, is a non-constant bounded control
parameter as the action description includes at least one numeric condition in the form
〈f(v, da), comp, c〉 (e.g. (at start (>= (stock ?h) (* ?unit 5)))).

4.3.2 Producer-Consumer Actions

Each action in a PDDL domain model holds different role based on their standardised
syntactic representation when expressing their formal semantics. Each numeric and
propositional semantic expressivity option of PDDL versions poses a unique challenge to
planning systems. However, the characteristics of actions (in terms of their functionality in
the domain) are not directly expressed in the language and this consequently necessitates
a detection mechanism to handle them efficiently. For instance, Coles et al. (Coles et al.,
2009a) proposed a way to detect one-shot actions, which delete their own propositional
precondition that cannot be restored, from the domain model. They proposed a method to
handle this type of actions delicately in forwards search. Another work that simplifies the
planning process by detecting (from PDDL domain model) and merging some actions to
form macro-actions (Botea et al., 2005). In this thesis, we propose a way to detect actions
that hold a producer or a consumer or both characteristics synthesised from the domain
model and propose ways to handle them more effectively in the heuristic. We give the
formal definitions of such actions as follows.

4.3 Preliminaries on Producer-Consumer Behaviour 88

Let k be a positive integer denoting the occurrence limit of the action a ∈ A (meaning
that how many times an action is estimated to occur at an action layer), and l be the index
of the action layer, at which the action a appears in the heuristic. A producer action is
defined as follows:

Definition 16 (Producer Action) An instantiated action alk(z) is a producer of z ⊆ v
if and only if

– it increases each v ∈ z; either with a constant: 〈v,↗, c〉, or a linear function of
constant bounded da:〈v,↗, f(∅, da)〉 at action layer l,

– it does not have any numeric condition on any numeric variable in z.

The second bullet point in the definition is critical and it refers that the producer action
increases the values of the state variables in z unconditionally. Thus, we can infer that a
producer action can be considered to be applied arbitrarily many times at action layer l (the
occurrence limit of a producer alk(z) is always k =∞)

Let lb(v) be a constant denoting to the lower bound of v ∈ z, where z ⊆ v. A constant
bounded consumer action is defined as follows:

Definition 17 (Constant Bounded Consumer Action) An instantiated action alk(z)
is a constant bounded consumer of a vector of state variables z if and only if it has at
least a pair of a numeric precondition and a decrease effect acting on all numeric variables
v in z: 〈preny (a), eff −y (a)〉, where:

preny (a) = 〈w · v, {≥,>}, lb(v) + c〉

eff −y (a) = 〈v,↘, f(∅, da)〉

This definition has the following important consequence. A constant bounded consumer
action monotonically decreases the numeric resource v with a linear function of da. Note
that the decrease on v may or may not be strictly monotonic depending on the aggregated
minimum bound of the linear function f(∅, da), which is min[f(∅, da)]. If min[f(∅, da)] is
equal to zero at a state s, the decrease effect on v would be a non-decreasing monotonic effect
(or, we can say it is a fruitless effect). Choosing this action as the consumer of v consistently
during search will eventually lead to a dead-end. If min[f(∅, da)] is greater than zero, the
decrease on v is strictly monotonic and the numeric effect is either a weakly or a strongly
decreasing effect depending on the magnitude of min[f(∅, da)]. The conceptualisation of
this numeric behaviour is vital to this work, as it helps us to determine whether an action
should or should not be promoted as helpful during heuristic evaluation.

We define a non-constant bounded consumer as follows:

Definition 18 (Non-constant Bounded Consumer Action)
An instantiated action alk(z) is a non-constant bounded consumer of z ∈ v iff it has at least
a pair of a numeric precondition and a decrease effect acting on all numeric variables v in
z: 〈preny (a), eff −y (a)〉, where:

preny (a) = 〈w · v, {≥,>}, f(∅, da)〉

4.3 Preliminaries on Producer-Consumer Behaviour 89

eff −y (a) = 〈v,↘, f(∅, da)〉

This definition has two important features, and these are:

1. A non-constant bounded consumer, a, can only be applied if v ≥ f(∅, da). Thus, the
minimum amount that v can take at a state s depends on the aggregated minimum
bound of f(∅, da), min[f(∅, da)]. Analogously, the maximum amount that each
dai ∈ da parameter of action a can take relies on the upper and lower bounds of v,
lb(v) and ub(v), the aggregated maximum bound of f(∅, da), max[f(∅, da)], at state
s.

2. This action has a monotonically decreasing effect on v with a linear function of da.
Since the variables in this effect are inter-dependent to each other, it is a self-consuming
action, where its effects lead to violation of its conditions during search. This behaviour
is analogous to k-shot1 actions defined in prior work (Coles et al., 2009a)

Having defined the principles of both consumer and producer actions, we now define a
far more advanced type that meets the fundamentals of both: a finite achiever action.

Let vp ⊆ v denote a vector of state variables that are produced and vc ⊆ v denote a
vector of state variables that are consumed by the increase (eff +

y (a)) and decrease (eff −y (a))
effects of the action a, respectively. Then we define the finite achiever action as follows:

Definition 19 (Finite Achiever Action) Action alk(vp, vc) is a finite achiever action of
vp, where k is the occurrence limit at layer l, if and only if:

– it has at least a producer numeric effect on each vp in vp in the form:

eff +
y (a) = 〈vp,↗, fp(∅, dai)〉

– it has at least a pair of a numeric condition and an effect acting on each consumed
numeric variable vc in vc: 〈preny (a), eff −y (a)〉, where:

preny (a) = 〈wc · vc − wd · dai , {≥,>}, c〉

eff −y (a) = 〈vc,↘, fc(∅, dai) + c〉

– no other action increases the numeric value of vp.

We can summarise this definition with the following conclusions:

1. A finite achiever action is both a producer and a non-constant consumer action. It
produces each numeric variable vp with a linear function of fp(∅, dai) and consumes
each numeric variable vc with a linear function of fc(∅, dai). Previous work proposed
ways to couple actions and add a new inferred action (called macro-actions) to the
domain to simplify the planning process (Botea et al., 2005; Coles et al., 2007; Gregory
et al., 2010).

1The notation of k in the work of Coles et al. refers to how many times an action can appear during the
search. This contradicts with our definition of k, which we use to describe how many times an action can
appear at an action layer in the heuristic graph.

4.3 Preliminaries on Producer-Consumer Behaviour 90

2. As a finite achiever action is a variant of a non-constant bounded consumer action,
they both share the following common feature. The numeric condition preny (a) and
effect eff −y (a) upon variable vc generates a self-consuming case for such actions.

3. In case any action other than alk(vp, vc), let’s say action m, can increase the value
of vp without consuming any numeric resources, then the amount by which vp can be
increased would not be constrained by any other variable, which means the execution
of the action m would be the economic choice to achieve vp. In this case, promoting
alk(vp, vc) in the heuristic as the primary achiever of vp would not be necessary.

4. This action produces each numeric variable vp to a certain extent. The increasing
amount of this action on vp depends on the available amount of vc. In this action,
the control parameter dai acts as a constrained flow rate between the domains of two
variables. In this definition we also facilitate having multiple producer and consumer
effects on different produced and consumed variables in the same action. This creates
a situation in which multiple resources are simultaneously transformed to other types
of resources. We survey this in depth in Section 4.3.3.

It is certainly possible that we can encode many more instances of actions with a
producer-consumer behaviour in the planning domain. The ones we define in this work
are the most commonly used types in resource transfer with non-constant quantities (with
control parameters). A producer replenishes (and a consumer drains) a resource with a non-
constant quantity subject to availability of other resources. Furthermore, these definitions
not only allow encoding a simple producer-consumer resource transfer, but they also allow
encoding cascading resource transfer (a producer of a resource (x) is a consumer of another
resource (y), and the producer of (y) can be a consumer of (z), and so on). In this work we
address these issues by providing further assistance during heuristic analysis.

4.3.3 Resource Transformation Flow Problem

Each finite achiever action transforms multiple numeric resources to other types. We
conceptualise this transformation as a flow problem, called resource transformation flow,
and define it as follows. Suppose that v is a numeric resource, U is a set of nodes and E

is a set of directed edges in a network flow. f [v, (u1,u2)] denotes the numeric flow of the
resource v on a directed edge (u1,u2) ∈ E, where u1,u2 ∈ U .

We reduce the resource transformation of a finite achiever to a node, g ∈ U , which has
in- and out-flows, f [vc, (uj , g)] and f [vp, (g,hk)], respectively.
f [vc, (uj , g)] denotes the in-flow by which the consumed resource vc is decreased in jth

consumer effect (i.e. fc(∅, dai)) of the action, where it is constrained as follows:

min[fc(∅, dai)] ≤ f [vc, (uj , g)] ≤ max[fc(∅, dai)]

f [vp, (g,hk)] denotes the linear out-flow by which the produced resource vp is increased
in kth producer effect (i.e. fp(∅, dai)) of the action, where:

min[fp(∅, dai)] ≤ f [vp, (g,hk)] ≤ max[fp(∅, dai)]

4.3 Preliminaries on Producer-Consumer Behaviour 91

Figure 4.5 illustrates an example resource transformation flow in a finite achiever action
where it has three consumer and three producer effects. The red edges represent the in-
flow of consumed resources and green edges represent the out-flow of produced resources at
planning step g.

u1

u2

u3

g

h1

h2

h3

f [v1 , (u1 , g)]

f [v2, (u2, g)]

f [v3, (
u3, g

)]

f [v4, (
g,h1)]

f [v5, (g,h2)]

f [v6 , (g,h3)]

Figure 4.5: Resource transformation flow network representation of the resource transfer in
a finite achiever action.

In order to achieve a simultaneous and uninterrupted transformation of resources,
it is necessary to decompose the total transformation flow network into individual
transformations (the flow from a source to a sink). To achieve this, we evaluate the
transformation flow of each consumed resource to its destination produced resource.
We consider each combination of producer-consumer effect affected by the same control
parameter, as each combination represents a transformation flow and its control parameter
behaves as the flow rate. We call each combination of a producer-consumer effect as
constrained resource flow and we define it as follows:

Definition 20 (Constrained Resource Flow) Suppose that the action alk(vp, vc) has n
consumer numeric effects on vc and m producer numeric effects on vp with the same control
parameter dai , where they are in the form:

eff +
y (a) = 〈vp,↗, fp(∅, dai)〉

eff −y (a) = 〈vc,↘, fc(∅, dai)〉

θ(a, dai) denotes a set of size of (n · m) that contains all possible combinations of
constrained resource flows of action a over dai , where each constrained resource flow, denoted
as θ(a, dai) ∈ θ(a, dai), is a pair of eff +

y (a) and eff −y (a).

Considering individual flows from a sink to a source in a network flow is a common
practice in network optimisation. In our case, each individual flow (i.e. the constrained
resource flow) plays a critical role in finding the bottleneck resource of action a, and
consequently helps the heuristic to identify how many times a finite achiever can be executed
subject to available quantity of the bottleneck resource. We elaborate on the use of
constrained resource flow in Section 4.5.1.

4.4 Producer-Consumer Patterns 92

Remark 2 In a finite achiever action, each constrained resource flow occurs with a single
control parameter. This can easily be extended to a multi-variate representation, in which
the flow occurs through multiple flow rates (i.e. multiple control parameters). In this case,
a new representation of the constrained resource flow could be proposed, say θmulti(a, za),
where za ⊆ da. One way to handle this flow would be breaking it into multiple individual
flows through the same control parameter, as follows:

θmulti(a, za) = {θ(a, z) | ∀z ∈ za} (4.1)

We restrict the rest of our approach to the flows with a single control parameter for the
simplicity of our implementation. We consider extending the approach to the multi-variate
representation as a future work.

4.4 Producer-Consumer Patterns

In Section 4.3, we identified the categorisation of various producer-consumer actions and
variables based on their pre- and post-conditions and effects in domain models, while the
interaction between these actions remained undiscovered. In this section we take a step
further identifying the nature of numeric resource transfer (using the producer and consumer
actions defined) in temporal planning setting. We define possible sequential orderings of
producer and consumer actions, which we call patterns. We make use of these patterns
during graph expansion of our proposed approach (see Section 4.5).

We identified that the infinity analysis imposes a significant abstraction on the number of
occurrence limits of consumer actions, which leads to lack of numeric informedness between
actions, and consequently, leads to helpful action distortion. To tackle this problem we
establish a numeric predecessor-successor relationship between producer-consumer actions
with the patterns we introduce here, and these patterns are: basic producer-consumer pattern
and cascading producer-consumer pattern. These patterns form the backbone of our refined
infinity analysis approach.

Suppose that action alk(v1, v2) (we assume alk has only one produced and one consumed
variable for simplicity) is a finite achiever that produces v1, and it consumes v2, the action
clk(v2) is a producer action that produces v2. In definitions of both patterns we reduce the
start-end snapshots of each action to an instantaneous action for simplicity. We present the
basic producer-consumer pattern, as follows:

Definition 21 (Basic Producer-Consumer Pattern)
A basic producer-consumer pattern is a chain of partially-ordered actions consisting of

a producer, clk(v2), and a finite achiever of v1, alk(v1, v2). For l1 ≤ l2 ≤ l3, the following
conditions must hold true:

– al1k1
(v1, v2) appears finite times k1 at action layer l1

– cl2k2
(v2) appears k2 =∞ times at action layer l2

– al3k3
(v1, v2) appears (or in case k1 6= 0, it re-occurs) k3 =∞ times at layer l3

4.4 Producer-Consumer Patterns 93

We can draw the following conclusions from this definition:

1. The finite achiever action appears k1−times at the earliest possible layer, where the
k1 cannot be infinite. This restriction on k1 results from the fact that variable, v2, is
monotonically consumed without any replenishment on it.

2. In case the occurrence limit of the consumer is zero (k1 = 0), the finite achiever action
does not appear at layer l1, and consequently, it only appears at layer l3.

3. Since the producer does not have any numeric resource restrictions (as defined in
Definition 16), it can appear infinitely many times at the earliest possible action layer.

4. Both producer and finite achiever actions appear infinitely many times in the end.
Thus, the optimistic relaxation on the number of alternating layers in the relaxed plan
(i.e. infinity analysis) is preserved.

Basic producer-consumer pattern outlines a relatively simple resource transfer behaviour:
If there is enough consumed variable (v2) available at a state, the planner can consider the
finite execution of the finite achiever as helpful. Once v2 is replenished, the planner can
consider applying it again.

Figure 4.6 shows how the actions are partially-ordered with respect to each other in the
basic pattern. Action A represents the finite achiever, whereas C represents the producer.
The numeric transfer on v1 and v2 occurs with decrease (v ↘) and increase (v ↗) effects.
Here, we show numeric preconditions in a simpler form: (v2 ≥). This pattern is only
triggered when there is a numeric goal to be satisfied on v1. The arrows show the steps
taken during numeric satisfaction of the goal during solution extraction. We discuss the
numeric goal satisfaction in depth in Section 4.5.4.

Ak1

C∞

A∞

pre:

eff:

l1 l2 l3

(v2 ↘)
(v1 ↗)

(v2 ↗)

(v2 ↘)
(v1 ↗)

Goal:
(v1 ≥ c)

(v2 ≥)(v2 ≥)

Figure 4.6: The visual representation of the basic producer-consumer pattern.

We can tie this concept to our motivating example as follows. We can observe at most2 5
different basic producer-consumer patterns (that is indeed equivalent to the number of edges
between intermediate products and raw materials in Figure 4.1) in the example. One of the
most apparent one is the relationship of the action assemble_C (i.e. the finite achiever of

2The number can vary depending on the initial stock levels of resources/products and the numeric goal
limits.

4.4 Producer-Consumer Patterns 94

item C) and the action (supply_raw_material G)3 (i.e. the producer of item g), where
the item g is the consumed resource (i.e. v2) and the item c is the produced resource.
Recall that the initial stock levels of these resources are c = 3 and g = 0. The top-level
goal on the item a infers a sub-goal of c ≥ 20 on item c. As there is initially no item g

available, the assemble_C can not occur before the (supply_raw_material G) appears, as
it replenishes g. Overall, this relationship embodies a basic pattern, where the occurrence
limit of assemble_C at the earliest possible layer is zero (i.e. k1 = 0).

G∞

C∞

l1 l2

(g ↗)

(g ↘)
(c↗)

sub-goal:
(c ≥ 20)

(g ≥ 40)

Figure 4.7: Partial ordering of the
actions (assemble_C) and (supply_
raw_material G) observed in the
procurement example.

Bk1=1

F∞

B∞

l1 l2 l3

(f ↘)
(b↗)

(f ↗)

(f ↘)
(b↗)

sub-goal:
(b ≥ 40)

(f ≥ 40)(f ≥ 1)

Figure 4.8: Partial ordering of activities, (assem-
ble_B) and (supply_raw_material F), observed in
the procurement example.

Another basic pattern instance is the relationship between the assemble_B (a finite
achiever of b) and (supply_raw_material F) (the producer of f) actions4. The initial
stock levels of these resources are given b = 3 and f = 1. The sub-goal imposed on the item
b is b ≥ 40. Based on the pre- and post-conditions of actions, we can infer that the action
assemble_B can occur once (k1 = 1) before (supply_raw_material F) appears. Figure 4.7
and Figure 4.8 shows the partial ordering of actions in both examples, where we represent
(supply_raw_material G) and (supply_raw_material F) as G and F , respectively.

Suppose that l1, l2, . . . , l2n+1 are the action layers in a relaxed planning graph and they
are ordered as follows: l1 ≤ l2 · · · ≤ ln ≤ ln+1 · · · ≤ l2n ≤ l2n+1. We define the cascading
producer-consumer pattern, as follows:

Definition 22 (Cascading Producer-Consumer Pattern) A cascading
producer-consumer pattern F (v1) = (a)lk(v1, v2), (a′)lk(v2, v3), . . . , (a(n))lk(vn−1, vn) is a
chain of partially-ordered actions consisting of finite achievers of v1, and a producer of vn,
which is clk(vn) for which the following conditions must hold:

– F (v1) can appear finite times (k1, k2, . . . , kn 6=∞) at action layers l1, l2, . . . , ln

– clk(vn), the producer, appears kn+1 =∞ times at action layer ln+1

– F (v1) appears infinite times (kn+2, . . . , k2n+1 =∞) at layers ln+2, ln+3, . . . , l2n+1.
3This action is an instantiated (or grounded) instance of the (supply_raw_material ?item) with the

object parameter G
4In the motivating example problem, satisfying numeric goal of b ≥ 40 triggers slightly more complex

pattern, as the initial stock levels of the items d and e are below the required limits. We assume their stocks
are in sufficient levels for this small example.

4.4 Producer-Consumer Patterns 95

In addition to conclusions we previously stated for basic producer-consumer patterns,
we add the following ones for the cascading patterns:

1. A cascading producer-consumer pattern shows the behaviour of a chain of basic
producer-consumer patterns: the variable produced in a basic pattern is consumed
by another basic pattern, and so on.

2. The finite achievers in the chain are different from each other. It is still possible that,
in the planning domain model, some finite achievers show similar producer-consumer
behaviour: the variables they produce and consume can be identical. The difference
between the two can be the additional numeric or propositional conditions/effects they
have. In this case, the planner uses whichever action achieves its produced variable
the earliest in the relaxed plan. By doing this, we avoid restricting the planner with a
total ordering of actions when forming a cascading chain.

3. The necessity of clk(vn) in the pattern depends on the numeric goal that needs to be
satisfied. If the goal indirectly requires replenishment of vn, then it will be listed in
the pattern. This happens when the value of vn at the current state is sufficient to
meet the numeric goal on v1.

Ak1

Bk2

Pkn

Q∞

P∞

B∞

A∞

.

(v
1
≥
c)

l1 l2 l3 ln+1 l2n−1 l2n l2n+1

(v1 ↗)
(v2 ↘)

(v2 ↗)
(v3 ↘)

(vn−1 ↗)
(vn ↘)

(vn ↗)

(vn−1 ↗)
(vn ↘)

(v2 ↗)
(v3 ↘)

(v1 ↗)
(v2 ↘)

(v2 ≥) (v2 ≥)

(v3 ≥) (v3 ≥)

(vn ≥) (vn ≥)

Figure 4.9: The visual representation of the cascading producer-consumer pattern.

Figure 4.9 demonstrates the numeric satisfaction and finite-infinite layering described
in the definition above. Here the recursive arrows show the steps taken during solution
extraction (when satisfying the numeric goal). Observe that this pattern is only triggered
when the heuristic tries to satisfy the numeric goal on v1, which is supposedly (v1 ≥ c). It
is self-evident that multiple use of basic producer-consumer patterns provides a frame for
this pattern, in which the basic patterns are linked to each other with a cascade of numeric
goals to be satisfied. A simple numeric goal cascades down to multiple goals as follows.
The numeric goal (v1 ≥ c) requires (v2 ≥) sub-goal to be satisfied, while it requires (v3 ≥)

4.5 Extending the TRPG Heuristic 96

sub-goal to be satisfied, and so on. The heuristic needs to confirm that all these sub-goals
can be met to generate a relaxed plan that satisfies the main numeric goal.

In our motivating example, each assemble action decreases the value of their consumed
resources, and increases the value of their produced resource by linear functions of ?unit.
Thus, each assemble action in this example is a finite achiever action. Moreover, each
grounded instance of the supply_raw_material action is a producer.

We can observe at most5 4 unique cascading patterns (equivalent to the number of edges
between intermediate and final products given in Figure 4.1) in the example. Each cascading
pattern has a varying size of partially-ordered actions, and each is individually triggered by
a goal (or a sub-goal). For instance, Figure 4.10 shows the cascading pattern triggered by
the numeric goal a ≥ 20. In the figure, all grounded supply_raw_material actions (e.g.
(supply_raw_material G), (supply_raw_material E) and so on.) are represented as Sr
for simplicity. Actions instances in green are the ones that appear finite times, whereas the
rest are applied arbitrarily many times. Observe that actions assemble_C and assemble_D

do not have any finite occurrences as the earliest possible layer that they can appear is l3,
at which their consumed resources are already replenished by a set of producer actions (i.e.
Sr).

Ak1=1

Bk2=1 D∞

Sr∞

C∞

B∞

A∞

goal:
(a
≥

20)

l1 l2 l3 l4 l5

(a↗)(b↘)
(c↘)

(b↗)(d↘)
(e↘)(f ↘)

(d↗)

(e↗) (f ↗)
(g ↗) (h↗)

(i↗)

(c↗)

(i↘)(h↘)

(b↗)(d↘)
(e↘)(f ↘)

(a↗)(b↘)
(c↘)

(b ≥) (c ≥) (b ≥)(c ≥)

(e ≥)
(d ≥)(f ≥)

(e ≥)
(d ≥)(f ≥)

(g ≥)

(i ≥) (h ≥)

Figure 4.10: The cascading pattern triggered by the goal, a ≥ 20. Let l1 ≤ l2 ≤ l3 ≤ l4 ≤ l5.

4.5 Extending the TRPG Heuristic

Having identified the producer-consumer relationship between and within actions, we now
introduce our approach that improves the basic informedness of the heuristic in producer-
consumer problems. Our approach is based on finding a middle ground between the
relaxations used in the heuristic of Metric-FF (discretisation of alternating layers) and in
POPCORN (infinity analysis). We avoid making use of any optimisation tool within the

5The number can vary depending on the initial stock levels and numeric goal limits.

4.5 Extending the TRPG Heuristic 97

heuristic, as it provides an expensive solution for a heuristic computation. We handle the
problem using producer-consumer patterns that we introduced in Section 4.3. In this section
we first study how we determine the occurrence limits of actions (k-value). Second, we
survey determining the numeric contribution of a non-constant bounded control parameter
at an action layer in patterns during graph expansion and extraction. We conclude our
contribution by describing the modifications we made in solution extraction of the extended
TRPG heuristic used in POPCORN.

4.5.1 Action Occurrence Limits

In planning it is desirable to keep the use of resources and the plan makespan minimal
for the benefit of obtaining a good solution quality. When achieving a numeric goal, we
expect that the plan does not include a series of fruitless actions that makes insignificant
contribution to meet a numeric goal. We examined the dead-end behaviour of the heuristic
of POPCORN in our running example (see Figure 4.4), and noticed that a few executions
of the assemble_A action can indeed make some numeric contribution towards the goal.
The planner should infer that only those occurrences are helpful. This can be achieved in
the heuristic by deduction from relaxed numeric bounds. Intuitively, the following question
arises at this point: how many times should the planner consider applying such actions
without running into a dead-end or sacrificing on the solution quality? In this section we
present our approach to estimate the occurrence limit of self-consuming actions to avoid the
problems we stated.

Prior work has considered ways to limit the action occurrences in the search. For
instance, Coles et al. (Coles et al., 2009a) introduces propositional one-shot actions that
are only allowed to be applied once in the search space as these actions are self-violating
(i.e. they remove their propositional conditions, which cannot be achieved by any other
action). Similarly, another work (Coles et al., 2013) considers limiting the occurrences
of bounded consumer-alike actions (without any control parameters) in the search. We
identified that these approaches would significantly affect the applicability of actions with
control parameters. Unlike one-shot or k-shot actions, the consumer actions we defined (e.g.
a finite achiever) are not self-violating, but they are self-consuming: repetitive executions
of our consumer actions do not violate their applicability in the search but it is undesirable
to do so. For this reason, we avoid limiting their occurrences in the search, and instead we
limit it in the heuristic.

Suppose that Q is an ordered list of actions that have started but not yet finished in
search (we refer to them as open end actions) and y denotes the start or end snap-actions,
y ∈ {`,a}. Determining the occurrence limit of a finite achiever action at layer l, alk(vp, vc),
depends on the following entities:

1. Each constrained resource flow θ(a, dai) ∈ θ(a, dai) of the action over dai , where the
affecting linear functions of its producer and consumer producer effects are in the
form:

fp(vp, dai) = wp · vp + w1 · dai + c

fc(vc, dai) = wc · vc + w2 · dai + c

4.5 Extending the TRPG Heuristic 98

2. The coefficients, w1 and w2, of dai in affecting linear functions of both consumer and
producer effects,

3. The relaxed upper bound of the consumed variable vc ∈ vc at layer l, denoted as
ub(vc, l),

4. The relaxed upper bound of the control parameter of the action, ub(dai).

Algorithm 2: Determining occurrence limits
Data : Q - open end actions, l - current action layer, toRevisit - revisit set
Result: k(ay) - occurrence limit of the snap-action ay

1 Ω - local flow, k(ay)←∞;
2 if ay is a snap-action of a finite achiever (a) then
3 if (y =`) ∧ a` 6∈ Q then
4 foreach constrained resource flow of a, θ(a, dai) ∈ θ(a, dai) do
5 Ω← 0, retrieve w1 and w2 from θ(a, dai) ;
6 ratio ← (w1/w2);
7 if ub(vc, l) =∞ then
8 Ω←∞, return k(ay)←∞;
9 else

10 Ω← ub(vc, l)× ratio;
11 if (Ω 6= −∞) ∧ (Ω 6=∞) then
12 if k(a`) > dΩ/ub(dai)e then
13 k(a`)← dΩ/ub(dai)e;
14 insert a` into toRevisit;

15 else if (y =a) ∧ aa.op 6∈ Q then
16 k(aa)← k(a`);
17 else
18 k(ay)← 1;

19 return k(ay);

Using these entities Algorithm 2 describes how we determine the occurrence limits of
actions. We call this algorithm at each action layer during graph expansion. Suppose
that ay denotes the start and end snap-actions of a durative action a. We initially set the
occurrence limits of all snap-actions to ∞ (line 1), and this remains unchanged unless the
action is a finite achiever. We update the k value for all finite achiever actions in Line 2. In
case ay is a start snap-action but the action has not yet started in search, we compute its
k value based on its resource flow, upper bounds of consumed variables and parameters in
line 3. In case ay is an end snap-action but its start has not yet appeared in search, then we
assign the k value of its start snap-action to its end (line 15). This assignment is necessary
to satisfy one of the main principles of TRPG heuristic: the end snap-action can only be
applied if its start appears before it. In case ay is an open end action, then we assume that
it can be applied only once (line 17).

We examine every pair of a consumer and a producer effects that have the same control
parameter (i.e. the constrained resource flow, θ(a, dai)), because the resource transfer
between their variables, vp and vc, are inter-dependent through dai in line 4. We surveyed
the concept of the constrained resource flow θ(a, dai) in depth in Section 4.3.3. We initialise

4.5 Extending the TRPG Heuristic 99

the local flow variable (Ω) for each constrained resource flow to zero (line 5), and evaluate
the local flow of consumed variable vc to produce vp based on relaxed upper bound of the
consumed variable. In case the bound is∞ (which means vc has been replenished in previous
layers), k remains ∞ (line 8); otherwise k value is computed using the coefficients of dai and
the upper bound of vc (line 10). In case the local flow of the resource in θ(a, dai) is finite
(line 11), we assign the smallest local flow per flow rate (that is dai) as the k value of ay
(line 13). Observe that the value assigned is always a finite number. We then record this
snap-action to be revisited in further action layers (line 14). If the k(ay) leaves the algorithm
as ∞ (as in line 8), this snap-action does not need to be revisited again in this heuristic.

It is important that the relaxation considers the most optimistic scenario to check
whether all goals are ever achievable. To maintain this, we use the infinity analysis of TRPG,
which is formed based on this idea: if an action is applicable at a layer, it is considered to be
applicable infinitely many times. We modify this for our case as: if a finite achiever action
is applicable at a layer, it is applicable finite times until at a layer all of its resources are
replenished; then it becomes applicable infinitely many times. This principle ensures that all
finitely applied actions are applied infinitely many times in the end.

As previously mentioned, we record the actions, which needs to re-appear in the graph, in
a set called toRevisit. In every further action layer, we check whether the numeric resources
of these actions are replenished (by simply checking relaxed upper bound of each resource at
that layer). If the upper bounds of all has already reached to∞ (line 8) at a layer, we re-apply
(or revisit) this action (and all of its effects) infinitely many times at this layer. We present
the details of exploiting revisiting mechanism in depth in Section 4.5.3. Consequently, this
leads us to complete the basic producer-consumer pattern (see Definition 21) for the resource
transfer between vp and vc. We follow the same steps for more complex numeric transfer
problems like cascading patterns.

4.5.2 Numeric Contribution of Non-Constant Bounded Parameters

A finite achiever action is a variant of a non-constant bounded consumer action, where the
upper bound of the affecting control parameter depends on the values of other variables.
Recall that an LP was used (only once per parameter) in the heuristic of POPCORN to
compute the relaxed bounds of the non-constant bounded control parameters, which is
deemed insufficient (as it was only used once). Instead of using an LP, we propose to handle
this issue with a realistic and efficient estimate of these parameters with a simple arithmetic
comparison operation subject to their limiting variables. We call the resulting estimate as
the numeric contribution of the corresponding parameter.

Let w be a real-valued constant, where it is predefined in the domain model. We define
the limiting variable as follows:

Definition 23 (Limiting Variable) A limiting state variable of a control parameter dai is
a variable v ∈ v that constrains the bounds of dai with a numeric condition, preny (a), where
it is in the form:

preny (a) = 〈w · v, {≥,>}, f(∅, dai)〉

4.5 Extending the TRPG Heuristic 100

Before we start presenting the method, recall the differences between the true and the
relaxed bounds of a numeric variable. The true bound (of a variable at a state) refers
to the numerically consistent range of values that the variable can take (usually checked
by a mathematical solver, if necessary). Any value lies outside the range makes that
state numerically inconsistent. In producer-consumer actions, the true lower bound of the
bottleneck resource determines whether the repetitive execution of the action helps the
planner to satisfy the numeric goal during search. We studied the relationship between the
bottleneck resource b, and the numeric goal on a in Section 4.2. The relaxed bounds of a
variable refers to an estimate of the bounds of a variable in a relaxation-based heuristic. In
planning graph-based heuristics, the relaxed bounds get diverged (or remain unchanged) as
the heuristic alternates between fact and action layers.

Algorithm 3: Numeric contribution of dai in eff(a) of the snap-action ay
Data : al2k (vp, vc), dai in eff(a), k(ay), l1 - previous fact layer, l2 - current action

layer
Result: C - total contribution of dai

1 ϕ - guaranteed contribution, β - possible contribution;
2 C ← ∞, β ←∞, ϕ←∞;
3 forall pre(a) in the form v ≥ wd · dai + c do
4 if 0 ≤ lb(v, l1) < ϕ then
5 ϕ← lb(v, l1)/wd;
6 if 0 ≤ ub(v, l1)− ub(dai , l1) < β then
7 β ← [ub(v, l1)− ub(dai , l1)]/wd;

8 if k(ay) 6=∞ then
9 C ← (ϕ+ β)/k(ay);

10 return C;

Suppose that l1 ≤ l2, and ub(v, l) and lb(v, l) denote the upper and lower relaxed bounds
of v at layer l, respectively. Algorithm 3 computes the numeric contribution of a non-
constant control parameter in a numeric effect of al2k (vp, vc), eff(a). In this algorithm
we split the numeric contribution in two: guaranteed and possible contributions. Initially
both contributions are set to∞ in line 2. We iterate through all numeric preconditions of a,
pre(a), to find the limiting variable (in line 3-7). In line 4-5, whichever limiting variable over
dai has the least relaxed lower bound at the current action layer determines the guaranteed
numeric contribution of dai . In similar fashion, whichever limiting variable over dai has the
least relative difference between its relaxed upper bound and the relaxed upper bound of
dai (i.e. ub(v, l1) − ub(dai , l1)) determines the possible numeric contribution of dai (line 6-7).
We refer to this relative difference as the slack of a parameter, and it has the following
components:

– The slack of dai always takes a non-negative value, as pre(a) ensures that the least
value ub(v, l1) can take is equal to ub(dai , l1).

– In case the slack of dai is not equal to zero, the upper bound of the limiting variable of
dai must be increased in previous action layers. Then, the slack gives the amount by
which the limiting variable is increased.

4.5 Extending the TRPG Heuristic 101

In the algorithm, the constant wd denotes the coefficient of dai . We use this constant in
this algorithm to evaluate the numeric contribution per execution of the action. In case
the occurrence limit of the action is not ∞, then the total contribution of dai in an effect
at the action layer l is the ratio of the sum of possible and guaranteed contributions and
the occurrence limit of this action (line 9). In case k(ay) = ∞, then the total contribution
remains ∞ as all of its limiting variables are replenished in earlier action layers.

4.5.3 Building the Temporal RPG Using Refined Infinity Analysis

We presented computing the occurrence limits of actions within the heuristic and the numeric
contribution of a non-constant bounded parameter in previous sections. We now describe
how all of these components are integrated in graph expansion phase of the Temporal
RPG (TRPG) exploiting refined infinity analysis. We employ the most up-to-date TRPG
graph expansion algorithm reported in the work of Coles et al. (Coles et al., 2008a). Our
modifications respect the following temporal principles of the TRPG:

– Reasoning with start-end semantics of PDDL 2.1,

– In order to apply the end of an action, its start should appear first,

– The end of an action can only appear after a sufficient time has passed.

These principles aim to provide intelligible guidance for domain models obeying the
start-end semantics of PDDL 2.1 language. The TRPG approach used in Sapa planner (Do
and Kambhampati, 2014) compresses a durative action into a temporally-extended action
that fails to satisfy the first principle given above. The TRPG heuristic we use (of CRIKEY
planner and its successors) splits a durative action into a start and an end snap-action
respecting all of the principles given above. It replaces the layer indices of the RPG with
time-stamped indices to provide more informative temporal relaxation.

Exploiting the refined infinity approach in the TRPG framework requires an extension
to its main principles, and these are:

1. In our approach, a snap-action can appear in multiple layers in the same graph.
Therefore, the heuristic needs to make sure that the start of each end snap-action
instance is included in the same graph.

2. In the existing mechanism of the TRPG, it is not possible to associate the occurrence
limits of snap-action instances with the action layer at which they appear.

We can give an example problem that would arise from ignoring the first requirement
of our approach. Suppose that l1 ≤ l2 ≤ l3 are action layers. The start snap-action of a
appears at layer l1 for k(a`) = 1, and the end snap-action of a at layer l2 for k(aa) = 1.
Assume that the end snap-action is recorded to be revisited in further action layers, and
it re-appears at layer l3 for k(aa) = ∞. In this case, none of the existing principles of the
TRPG ensures that another start snap-action is needed (as a start snap-action instance has
already appeared at layer l1). The heuristic can incorrectly reach to a dead-end. To avoid
this misrepresentation, we add the following principle for our case:

Let alt denote the tth action layer in a relaxed planning graph R = 〈fl0..n, al0..n〉.

4.5 Extending the TRPG Heuristic 102

– The net occurrence limit of the start snap-action of a is equal to the net occurrence
limit of the end snap-action of a:

n∑
t=0

[k(a`)− k(aa)] at alt = 0

An action layer is defined to be a set of snap-actions whose preconditions appeared in
the previous fact layer, however it should also include how many times each snap-action can
be applied at this layer. We replace the action layer representation of the heuristic with a
set of pairs that maps the snap-action to its occurrence limit, as follows:

Let r denote an entry of the action layer alt, and ay denote a snap-action. Each entry is
in the form:

r = 〈ay, k(ay)〉, such that r ∈ alt

Let fl and al denote fact and action layers, respectively, and earliest(a) denote the
earliest time-stamp at which the end of action a can appear, ep denote the endpoint of
an action. Algorithm 4 outlines the modifications we made to the graph expansion of the
TRPG heuristic first used in CRIKEY (Coles et al., 2008a). The algorithm is extended so
that it can take a C−state as an input and it can reason with the refined infinity analysis.

The algorithm takes the propositional and numeric facts at state S as an input to initialise
the initial fact layer (line 4). If we are evaluating a state at which an action has already
started but not yet finished, the earliest possible time-stamp of the end of this action becomes
0, or otherwise it is ∞ (line 2). At line 9, if the end of action a becomes applicable and
sufficient time has passed for the end of a, we obtain the occurrence limit of aa and record
the action and k-limit pair to the current action layer. At line 13, we check whether any
actions can be revisited as a part of refined infinity analysis. If the occurrence limit of the
action to be revisited is computed as ∞, then we record this action to the current action
layer. At line 18 for each numeric effect with a non-constant parameter of a newly added end
snap-action, we compute the numeric contribution of dai and re-evaluate its relaxed bounds.
The updated relaxed bounds of dai are then used when we evaluate the numeric effect that
updates the numeric facts of the next fact layer. At line 22 we add the start snap-action of
the newly added end snap-action to current action layer if all of its conditions are satisfied.
At line 26, similar to line 18, we compute the numeric contribution of non-constant bounded
parameters to evaluate the numeric effect to be added to next fact layer. The earliest time
that the newly added end snap-action is updated based on duration constraints of a (line 30).
Here minDur(a) denotes the minimum duration limit of the action a. The planning graph
expands until there is no end snap-action to be added and no new propositional/numeric
fact becomes true (line 31) in the current relaxed planning graph. The algorithm returns an
ordered list of fact and action layers to be used in relaxed plan solution extraction phase.

In short, the modifications we made to the graph expansion algorithm of the TRPG
(which is Algorithm 4) is mostly on action layers. We altered the action layer representation
to include occurrence limits associated with their snap-actions. We compute the occurrence
limit of snap-actions every time they are added to the planning graph. We re-evaluate
the relaxed bounds of non-constant control parameters based on their estimated numeric
contribution whenever they are encountered in the graph. Then the updated relaxed bounds

4.5 Extending the TRPG Heuristic 103

Algorithm 4: Building the TRPG Using refined infinity analysis
Data : S = 〈F , V , B, Q, P , C, T , D〉 - the state to be evaluated
Result: R = 〈fl0..n, al0..n〉 - a relaxed planning graph

1 fl0 ← [F ,V];
2 t← 0;
3 foreach aa do
4 if a ∈ Q then
5 earliest(a)← 0;
6 else
7 earliest(a)←∞;

8 while t <∞ do
9 flt+ε ← flt;

10 if pre(aa) ⊆ flt ∧ earliest(a) ≤ t then
11 retrieve k(aa) from Algorithm 2;
12 alt ← alt ∪ 〈aa, k(aa)〉;
13 foreach snap-action by ∈ toRevisit do
14 retrieve k(by) from Algorithm 2;
15 if k(by) =∞ then
16 alt ← alt ∪ 〈by, k(by)〉;

17 foreach new aa ∈ alt do
18 foreach numeric effect eff(dai) of aa do
19 retrieve C from Algorithm 3;
20 re-evaluate the relaxed bounds of dai and the values min[f(∅, dai)],

max[f(∅, dai)] of eff(dai) with respect to C;
21 flt+ε ← flt+ε∪ eff +(aa);
22 if pre(a`) ⊆ flt then
23 k(a`)← k(aa);
24 alt ← alt ∪ 〈a`, k(a`)〉;

25 foreach new a` ∈ alt do
26 foreach numeric effect eff(dai) of a` do
27 retrieve C from Algorithm 3;
28 re-evaluate the relaxed bounds of dai and the values min[f(∅, dai)],

max[f(∅, dai)] of eff(dai) with respect to C;
29 flt+ε ← flt+ε∪ eff +(a`);
30 earliest(a) = min[earliest(a), t+minDur(a)];
31 if flt ⊂ flt+ε then
32 t← t+ ε;
33 else if pre(aa) ⊆ flt ∧ earliest(a) > t then
34 t← min[ep];
35 else
36 break;

37 return R = 〈fl0..n, al0..n〉

4.5 Extending the TRPG Heuristic 104

are used at the numeric effect in which they appear. We ensure that the occurrence limit of
start-end snap-actions match to respect all the principles of the TRPG. Last, we check the
revisit queue whether any of the snap-actions become infinitely applicable, and if so, they
are re-added to the planning graph at this action layer.

The main objective of constructing a planning graph is to check whether all goals become
reachable in the most optimistic scenario where we relax the delete effects of actions and their
occurrence limits. For this reason, the graph expansion is sometimes called as reachability
analysis. In addition, the graph expansion phase provides all required details for solution
extraction. The graph expansion terminates when all propositional and numeric goals are
deemed satisfied in the graph, and the graph includes all the end snap-actions of the currently
executing actions. Otherwise, the heuristic reaches to a dead-end. On termination, a relaxed
plan is extracted by regressing through the graph starting from the latest layer. We provide
the details of solution extraction in Section 4.5.4.

Algorithm 5: Adding the sub-goals of recently added achievers to the priority queue
(used in Algorithm 4)
Data : R = 〈fl0..n, al0..n〉 - a relaxed planning graph,

a - action added to the relaxed plan, q - the sub-goal queue
1 foreach propositional precondition pre of a do
2 t← the timestamp at which it pre first appears;
3 if t > 0 then
4 q[t].prop← q[t].prop ∪ pre;

5 foreach numeric precondition pren of a do
6 t← the timestamp at which it pren first holds;
7 if t > 0 then
8 q[t].num← q[t].num ∪ pren;

4.5.4 Solution Extraction

Having described the graph expansion of the TRPG using refined infinity analysis, we
now present the solution extraction process used in our approach in this section. The
solution extraction takes the recently built relaxed planning graph of the state S, i.e.
R = 〈fl0..n, al0..n〉, and all the high-level goals pre-defined by the modeller as the input.
It returns a list of helpful actions that are used guiding the search algorithm, a heuristic
distance to reach all goals and the details of the relaxed solution plan. The solution
extraction is done by regressing through the relaxed graph to satisfy the high-level goals
and sub-goals of the problem recorded in a priority queue. For each goal in the queue, its
achiever action is added to the relaxed plan and its conditions are added to the list to be
satisfied at an earlier layer.

Our extension to the solution extraction is mostly done on numeric goal satisfaction
process. Algorithm 6 provides the details of the process built on top of the solution extraction
phase of Metric-FF (full detail of the algorithm is provided by Coles et al. (Coles et al.,
2013)). In this algorithm, we abstract out start-end and compression safe reasoning of the
TRPG for simplicity. We also assume that all numeric goals are converted into linear normal
form. Before regressing through the graph, the propositional and numeric goals specified

4.5 Extending the TRPG Heuristic 105

Algorithm 6: Solution extraction of the TRPG using refined infinity analysis
Data : R = 〈fl0..n, al0..n〉, G(F) / G(V) - propositional/numeric goals
Result: P - the relaxed plan, H - helpful actions, h - a heuristic value

1 H ← ∅, P ← ∅, h← 0, q ← priority queue of goal layers;
2 foreach f ∈ G(F) do
3 t← the timestamp at which f first appears;
4 q[t].prop← q[t].prop ∪ f ;
5 foreach n ∈ G(V) do
6 t← the timestamp at which n first holds;
7 q[t].num← q[t].num ∪ n;
8 while q 6= ∅ do
9 take one from the end of q, and assign to (t, 〈prop,num〉);

10 foreach f ∈ prop do
11 ay ← an achiever snap-action for f ;
12 h← h+ 1, P(t)← P(t) ∪ 〈ay, 1〉;
13 if t = 0 then add ay to H;
14 call Algorithm 5 with R, q, a; remove add effects of ay from prop;
15 foreach (v ≥ c) ∈ num do
16 if a snap-action ay ∈ al(t) has numeric effect (v ↗ e) ∨ (v ↗ f(∅, dac)), where

e · k(ay) ≥ c, ub(dac) · k(ay) ≥ c then
17 applyT imes← d[c− ub(v, prev(t))]/max[f(∅, dac))]e;
18 h← h+ applyT imes, P(t)← P(t) ∪ 〈ay, applyT imes)〉;
19 if t = 0 then add ay to H;
20 remove the goal (v ≥ c) from num;
21 call Algorithm 5 with R, q, a;
22 if a snap-action ay ∈ al(t) has numeric effect (v ↗ e) ∨ (v ↗ f(∅, dac)), where

e · k(ay) < c, ub(dac) · k(ay) < c then
23 while ub(v, prev(t)) < c do
24 ay ← new increaser of v;
25 applyT imes← d[c− ub(v, prev(t))]/max[f(∅, dac))]e;
26 h← h+ applyT imes, P(t)← P(t) ∪ 〈ay, applyT imes〉;
27 if t = 0 then add ay to H;
28 decrease c by the numeric increase of ay on v;
29 if t > 0 then add (v ≥ c) to q[prev(t)].num;
30 call Algorithm 5 with R, q, a;

31 if a snap-action ay ∈ al(t) has eff(dan) = (v ↗ f(∅, dan)) then
32 while ub(v, prev(t)) < c do
33 retrieve N from Algorithm 7 with eff(dan), R, ay;
34 applyT imes← dc−N/max[f(∅, dan))];
35 h← h+ applyT imes, P(t)← P(t) ∪ 〈ay, applyT imes〉;
36 if t = 0 then add ay to H;
37 decrease c by (c−N);
38 if t > 0 then add (v ≥ c) to q[prev(t)].num;
39 call Algorithm 5 with R, q, a;

4.5 Extending the TRPG Heuristic 106

Algorithm 7: Regression function to find total numeric contribution of a in previous
layers
Data : R = 〈fl0..n, al0..n〉 - a relaxed planning graph, ay - a snap-action to check its

finite instances, eff(dan) - the increaser effect, t - current layer
Result: N - total numeric contribution of a in previous layers of R

1 N ← 0;
2 if action a is a finite achiever action then
3 while t > 0 do
4 t← prev(t);
5 if ay is found in al(t) then
6 retrieve C from Algorithm 3 with a, t, eff(dan), k(ay);
7 N ← N + C;

8 else
9 N ←∞;

10 return N ;

in the problem file are recorded in the priority queue q in line 2 and 5, respectively, at
the timestamps they first appear. The regression of satisfying goals in the graph occurs in
line 8. The achiever of each propositional goal in the queue is added to the relaxed plan,
and the heuristic value is incremented by one (as it indicates the required number of action
instances in relaxed plan that achieves f) in line 10. All propositional add effects of the
achiever action is removed from the propositional goals queue as they are also achieved by
the same action. The process up to this point is identical to the original TRPG extraction.

We consider the achiever actions of numeric goals in a relatively different way in
line 15. Let c and e denote real-valued constants, dan denote a non-constant bounded control
parameter, dac denote a constant bounded control parameter of an action a, prev(t) denote
the timestamp of the previous layer of t, succ(t) denote the timestamp of the successor layer
of t. In case an action has a numeric effect that k(ay) times execution of it can achieve
the numeric goal (v ≥ c), the achiever is added to the relaxed plan as usual (line 16). In
case the k(ay) times execution of the action is not adequate to achieve the goal, then other
achievers of v from earlier layers are added to the relaxed plan until the residual value of
the goal (v ≥ c) is small enough to be reachable in earlier fact layers (line 22). Note that,
for both cases, the action achieves the goal either by a constant or a linear function of a
constant bounded control parameter.

In case the action achieves the numeric goal by a linear function of a non-constant
bounded control parameter, then we can trigger our producer-consumer inference. This
case is shown in line 31. We obtain the total numeric contribution of the snap-action ay

towards v in previous layers, which is denoted as N (line 33) (i.e. we assume that we can
increase v by N in previous layers). The remainder value of the goal, c −N , is considered
to be achieved at the current action layer. We add the residual value as a sub-goal to be
satisfied in previous layers (line 38). The sub-goaling continues as the goal is small enough
to be satisfied in earlier fact layers.

All actions in the relaxed plan considered to be helpful if they appear in the earliest
action layer (lines 13, 19, 27, 36).

4.6 Evaluation 107

4.5.4.1 Differences Between k-value and applyT imes of an Action

Observe that the occurrence limit of an action is not used as the number of times ay appears
in P, but there is somehow a surrogate, called applyT imes. The difference between the two
defines the clear-cut distinction between the graph expansion and solution extraction. The
occurrence limit of an action reports how many times an action can be applied, in the most
optimistic case, to check whether all goals ever become reachable. Whereas applyT imes
reports how many instances of an action are required to appear in the relaxed solution plan
so that it is adequate to reach all goals. The occurrence limit (k) and applyT imes of an
action differs from each other based on the following qualities:

– The k-limit is only used to check the reachability of the goals of the problem, whereas
applyT imes provides detail about approximately how far we are away from reaching
the goal,

– The occurrence limit can not be less than applyT imes,

Note that applyT imes is an estimated limit (but a better indicator to the relaxed solution
than k) to the required number of action instances in the relaxed plan. We compute it using
the aggregated relaxed maximum of the affecting linear function of the numeric effect (i.e.
max[f(∅, dac))] and max[f(∅, dan))]) and the amount that is achievable by the action instance
at the current action layer (i.e. c minus achievable amount in previous layers).

4.5.4.2 The Relaxed Plan

In Section 4.4, we have identified that our running example embodies 5 basic patterns
(between intermediate products and raw materials) and 4 cascading patterns (between
intermediate and final products), which are individually triggered by different numeric goals.
For instance, if the numeric goal was to achieve c ≥ 30, we would only see a basic pattern
(similar to the one shown in Figure 4.7) triggered. Or, if the only numeric goal was b ≥ 50,
we would see a pattern similar to the one in Figure 4.8. The original goal of the problem (i.e.
a ≥ 20), however, is far more complex than these goals and it triggers the cascading pattern
shown in Figure 4.10. One can be concerned about the significance of these patterns in terms
of heuristic evaluation. The actions captured in partially-ordered patterns are the ones that
must be included in the relaxed plan (also in the solution plan), as each includes numeric
landmarks to be achieved when satisfying the top-level goal(s) of the problem. POPCORN
implemented with refined infinity analysis generated the relaxed solution plan (i.e. P) for
the problem (see Appendix A) using the cascading pattern shown in Figure 4.10 and the
solution extraction algorithm. The timeline of the relaxed plan is shown in Figure 4.11. In
the relaxed plan, the time of each action is the earliest time that each can appear in the
planning graph. It becomes apparent in the timeline that the partial-ordering enforced by
the patterns does not restrict the executions of actions concurrently.

4.6 Evaluation

In this section we present a detailed assessment of the refined infinity analysis by comparing
it to the heuristic of POPCORN and cqScotty. To evaluate our approach we conducted

4.6 Evaluation 108

time

ac
tio

ns
0 1 2 3 4 5 6

A

B

Sr

C

D

B

A

Figure 4.11: Timeline of the relaxed plan of our motivating example generated by
POPCORN using refined infinity analysis.

an ablation study on POPCORN and then benchmark it against cqScotty planner on a
new expressive domain. We implemented our approach (i.e. refined infinity analysis) on
POPCORN, called POPCORN-R, where R stands for Refined infinity analysis. All planning
systems (including cqScotty) use enforced hill climbing (EHC) followed by best-first search
(BFS). The planner resorts to BFS if the EHC fails. The stopping criterion on the search is
either reaching a goal state or the planner exceeds the runtime limit (timeout was set to 30
minutes) or it runs out of memory (4GB allocated memory).

In the ablation study, we evaluate the planners POPCORN and POPCORN-R on a set of
benchmark domains6 using a single core 3.4 GHz machine with 16 GB RAM (4GB allocated
memory). Since we were not able to run cqScotty or Scotty in benchmark domains used in
the ablation study (with POPCORN), we modified one of the benchmark domains of Scotty
as we were curious to see how our approach compares with Scotty in their own terms. The
domains used in the ablation study include discrete numeric change with control parameters,
which is currently not handled by any versions of Scotty. This has been confirmed by direct
communication with the authors of this system. Note that the control parameters in these
domains are independent from the duration of the action (i.e. the withdrawal amount from
an ATM). This feature is not yet supported by Scotty. We summarise the domains as follows.

4.6.1 Evaluation Domains

Before we present the evaluation results, we introduce the domain models used in our tests.
We talk about why we choose using these domains and how the problem instances of each
domain model are generated. We are not only concerned about evaluating the improvements
of using refined infinity analysis on solvability and scalability but also checking whether it
is compatible to other planning components. Thus, we considered the following conditions
when choosing or developing the domain models:

6Benchmarks domain/problems, random problem generators, and obtained result details are available at
bitbucket.org/p3540/aaai

4.6 Evaluation 109

– Each action can have mixed propositional-numeric, only numeric or only propositional
causal links.

– Each action can have a varied number of typed object parameters. Note that the
number of typed object parameters of each action controls the number of instantiations
of that action.

– Each action can have a varied number of control parameters.

– Some planning problems exhibit required concurrency. Thus, we allow some actions
to be executed simultaneously.

We use a set of problem instances for each domain model to test the solvability and
scalability of our approach. Each problem instance (that are randomly generated) carries
one or a combination of the following qualities:

– We increase the number of objects each type can have in order to make the problems
more challenging to solve: this change increases the number of instantiated actions
and leads to a wider search space.

– The number of propositional/numeric goal conditions set to be achieved are increased.

– The numeric goals are either simple enough so that the planner does not need to
consider replenishing any consumed resources, or moderately challenging so that it
requires a few replenishing action instances, or extremely challenging so that it requires
many replenishing action instances by cascading sub-goal relationship.

– The numeric and propositional resources available at the initial state are decreased by
removing available predicates or restricting the valuation of numeric resources.

We describe each domain model and their associated set of problem instances as follows:

4.6.1.1 Cashpoint

We introduce two variants of the original cashpoint domain used in Chapter 3: simple
cashpoint, and cashpoint rewards. The purpose of using these domains is to explore the
behaviour of planners where there is a wide range of action choices available while achieving
various different goal conditions. The simple cashpoint domain is almost identical to the
original cashpoint domain. The objective is to acquire a certain amount of money in different
currencies from the bank (or exchange bureau) and to supply various items (e.g. buying
snacks) using the money withdrawn. There are two options to reach the monetary goal:
either by withdrawing it at any of the banks (if the bank has the currency in their reserves)
or by swapping the currency in the pocket at any of the exchange bureaus (using fixed
exchange rates between currencies). In cashpoint rewards domain, the following features are
included on top of the simple version. First, the person can exchange currencies between
their accounts in any of the banks to the extent of their available balance. Second, the
person collects reward points every time they shop and can use it as store credit on their
next purchase. Third, the person can pay using their debit card at the shop so that they
do not need to use cash in the shop. These additions give further freedom of action choices

4.6 Evaluation 110

A

B

F

J4

K

N
6

O
2

P

1

11

E
2

G

22

D
2

C

H

L Q
2

5

M

R3

S

2

21

I

2

1

level 0 level 1 level 2 level 3

Figure 4.12: The complete bill of material tree of the procurement domain model.

to the planner so that the search space is expected to be wider. In both domains, as the
amount of cash required on each currency increased relative to the cash point limits, the
plan has to extend to include additional withdrawal or exchange actions.

This domain is an ideal instance of a planning problem with a single control parameter
per action. Although there is producer-consumer relationship between actions (exchange
between bank accounts and money withdrawal actions), the primary focus of using this
domain is to identify how our approach behaves in a domain with rich typed objects. In
both domains there are five types of objects defined: currency, shop, bank, change office
and item. Since each action is instantiated with a combination of its objects, this feature
broadens the width of the search tree, and results in relatively proliferated branching choice.
It is also worth noting that the duration of each action is constant.

4.6.1.2 Procurement

The procurement domain is a complex version of our motivating example. It is about
finding a plan to manufacture final products, which require different amount and types of
raw materials to be procured from a store and intermediate products to be produced at a
workshop.

The purpose of using this domain in our tests is to examine the great extent of cascading
producer-consumer relationship between actions using a single control parameter per action.
The control parameter manages the amount by which an item can be supplied or produced
per execution of its action. The upper bound of each control parameter is restricted by
linear functions of consumed state variables resulting in a set of linear constraints over the
control parameter. Unlike cashpoint domains this domain also contains a deeper search
space, producing longer plans, allowing us to explore the cost of solving increasing numbers
of more complex constraint sets.

4.6 Evaluation 111

Figure 4.12 shows the complete material requirement tree, also known as bill of material
tree, of this domain. This tree is an extended version of the original procurement domain
(presented in Chapter 3) that is higher in depth and consists of additional nodes. There are
in total 8 final/intermediate items to be produced and 12 raw materials to be supplied. The
square nodes represent raw materials, which can be obtained from the store. The circular
nodes represent the intermediate and final products. To produce a product A, we need to
have already sub-assembled two product B, a product C and have already acquired two raw
material D. Product B and C are the intermediate products that require products F, E, G,
H and I. In this domain, the batch sizes of items procured from the store and produced
at the workshop are taken as control parameters where each can take any value up to one
hundred units.

Each problem instance is generated with a random problem instance generator. The
complexity of each instance depends on four inputs: the number of workshops, customers,
suppliers and the number of product goals to be delivered to each customer. The generator
chooses each product to be delivered (to a customer) and each customer randomly from
the items and customers list, respectively. It also assigns the initial numeric value and the
numeric goal of the product with an integer value up to 15 and 50 units, respectively. The
lower the level (as seen in Figure 4.12) and higher the numeric goal of the product, the
harder the problem instance gets. As the material hierarchy given in the figure is fixed in
the domain model, the item list does not vary between problem instances.

4.6.1.3 Terraria-Capacity

We previously introduced this domain in Chapter 3. The objective in this domain is to
find a plan for producing certain products (as in the procurement domain). There are three
features of this domain that differs from the procurement domain. First, it includes multi-
variate capacity constraints that limit the total amount of raw material procured. Second,
the plan may include assembly of some machines or tools to be used for producing items.
For instance, sawmill needs to be available in order to produce a bed. If it is not available,
the plan needs to include a sequence of actions for assembling a sawmill. This feature
creates a mixed propositional (i.e. having sawmill ready) and numeric causal link between
actions where producer-consumer relationship still exists. This allows us to examine the
completeness of the refined infinity analysis when partial ordering in relaxed planning graph
is necessitated (whether the producer-consumer patterns can be partially ordered). Third,
there are multiple control parameters in individual actions in this domain. The complexity of
each Terraria problem instance is extended by decreasing the capacity limit of raw materials,
and similar to procurement domain, by increasing the amount of required final/intermediate
products from its material/equipment requirement tree.

Although the domain syntactically fits to show producer-consumer behaviour, the
original problem instances (in Chapter 3) were not challenging enough to trigger producer-
consumer behaviour (the replenishment of consumers were not needed). Thus, we added
eight new numerically challenging problem instances to the original problem instance set so
that we can test the domain when the producer-consumer behaviour is triggered. The
complexity of problem instances is increased by adding more numeric conditions to be
achieved and increasing the required numeric limits of these goal conditions.

4.6 Evaluation 112

4.6.1.4 Rovers Control

This domain is a modified version of the well-known Rovers domain introduced in IPC-
3 (Long and Fox, 2003). In this domain we add the following features. First, the
recharge action is modified so that the numeric transfer occurs with a control parameter,
?recharge_amount, which can take any value up to the available energy capacity of the
rover (at most eighty). Second, we add an action replenishing the energy level at the
recharge station: turn_on_solar_panels. If there is insufficient energy at the station, the
solar panel needs to be turned on so that the recharge station can produce energy. This
addition creates an interesting producer-consumer relationship between two actions where
they are both constrained with capacity limits (energy capacity of the recharge station and
the rover). Third, the lower bound of the duration in both recharge and running solar panel
actions is constrained with a control parameter. This linear relationship reflects the fact
that the duration of each durative action depends on the lowest recharge amount chosen by
the planner.

4.6.1.5 Airplane Cargo

This domain is based on the well-known logistics domain used during The First International
Planning Competition (IPC-1) (McDermott, 2000). In this domain the goal is to find a plan
to deliver various cargo packages to destinations via air planes. We made the following
modifications to the benchmark domain to examine the case with control parameters. First,
all actions are temporal and can require concurrency of actions during execution. The
duration of each action is either fixed or a function of the distance between start and end
locations. All actions are typed (e.g. tanker, airport, refinery, cargo, plane) that enables
concurrency between different instantiations of an action. Second, we added fuel tankers
that refill the fuel tank of air planes with a control parameter to make sure it has enough
fuel to arrive at a destination. To do this, the tanker first may need to refill its tank by the
required amount at a refinery station. This modification creates an interesting producer-
consumer relationship between actions, which is subject to tank capacities of the tankers
and air planes.

In this domain all numeric changes of actions are discrete. We define two fly actions
(i.e. fly_airplane and fly_airplane_fast) where the travel time and fuel change rate varies.
In case fast option is chosen the travel time reduces while the fuel consumption increases.
This option creates a further plateau of action choices in the search space. The planner is
expected to choose an option which favours the metric objective function defined in each
problem (in our case it is to minimise total time). The fuel level of each air plane is decreased
by a linear function of the distance between locations in fly air plane actions.

We included this domain in our tests for the following qualities. All goals defined in
problem instances are propositional so that we can survey the behaviour of refined infinity
analysis when satisfying propositional goals. The domain is relatively rich in terms of number
of types defined and typed objects of actions. The required concurrency feature of the domain
provoke finding interesting plans.

We randomise the following artifacts when generating each problem instance:

– The initial locations of fuel trucks, air planes, cargo packages,

4.6 Evaluation 113

– The fuel levels of fuel trucks, air planes and fuel levels of each refinery locations,

– Driving and flying distances between locations.

20

200

2000

20000

20 200 2000 20000

P
O

P
C

O
R

N
-R

POPCORN

Solution Quality (Makespan)
Cashpoint
Procurement
Terraria-capacity
Rovers Control
Airplane Cargo
Cashpoint_rewards

Figure 4.13: The solution quality (makespan) results of POPCORN and POPCORN-R7.

4.6.2 Performing Ablation Study

Having described the domain models and sets of problem instances, we perform ablation
studies using 6 different domain models, where each having 20 random problem instances.
Our objective in this study is to determine whether our approach:

– improves the running performance of the system (scalability),

– can solve problems that have been previously identified as unsolvable (solvability),

– can fit to other components of the base system that are critical in planning
perspective, such as required concurrency and mixed propositional-numeric goal
reasoning (compatibility).

Figure 4.13 compares the solution quality of the new planner POPCORN-R and the
POPCORN in logarithmic scale. Observe that POPCORN-R provides shorter plans to
almost all solvable problems when compared to POPCORN. This improvement states that
our approach avoids considering arbitrary executions of actions as it is well-guided about the
occurrence limits in the search space. The most noticeable improvement in solution quality is

7The points on the edges of the graph indicates that only one of the planners were able to find solution to
the corresponding problem instance. The points on the right top corner were unsolvable to both planners.

4.6 Evaluation 114

observed in terraria-capacity domain, which requires intensive mixed propositional-numeric
goal reasoning. In other words, this domain is rich in both numeric and propositional sub-
goals, where the planners are expected to reason with both sub-goaling perspectives. This
complication is apparently mishandled by POPCORN, where it blindly adds actions to the
plan to be able to find a solution.

0.1

1

10

100

1000

10000

0.1 1 10 100 1000 10000

P
O

P
C

O
R

N
-R

POPCORN

Running Time (s)
Cashpoint
Procurement
Terraria-capacity
Rovers Control
Airplane Cargo
Cashpoint_rewards

Figure 4.14: Running time results of POPCORN and POPCORN-R.

Running time comparison between systems is given in Figure 4.14. Observe that
POPCORN-R is faster and scalable than POPCORN in more than half of the solvable
problem instances. However, some of the solvable instances support that POPCORN-R is
relatively slower than POPCORN. We can comment on this result based on three aspects:
the use of LP in the heuristic, the overhead cost of refined infinity analysis and poorly guided
(and thus exhaustive) search of POPCORN:

The use of LP: The modified TRPG heuristic of POPCORN (described in Section 3.5.6)
makes use of solving LP models to compute the bounds of non-constant bounded control
parameters once in the heuristic. We eliminated this use in the refined infinity analysis. By
doing this, we presume that the use of LP in POPCORN-R is 2 or 3 times less than the one
in POPCORN, where each LP call carries a cost.

Observe that POPCORN is slower in almost all problem instances of the terraria-
capacity domain than POPCORN-R. Recall that this domain includes actions with multiple
control parameters (that are non-constant bounded). It is self-evident that in this domain
POPCORN spends considerable amount of time solving LP models, while POPCORN-R
does not.

Overhead cost of refined infinity analysis: The overhead cost of our approach
becomes apparent on test cases that both systems get equally-informed guidance. These

4.6 Evaluation 115

cases are the ones that are cluttered around the baseline (or slightly skewed to the up left).
This indicates that refined infinity analysis slightly increases the mean scheduling time of the
heuristic (time spent in heuristic). This is an expected result as our approach downgrades
some of the major relaxations imposed in the heuristic (i.e. arbitrary occurrence limits).

Suffering from exhaustive search: The results indicate that POPCORN is noticeably
slower than POPCORN-R in most problem instances. This situation results from the fact
that POPCORN performs exhaustive search on these problem instances, because its heuristic
either promotes wrong activities as helpful or fails to estimate true occurrences of actions.
This problem becomes more recognisable in problem instances that create wider search
spaces. Tests on cashpoint and cashpoint_rewards domain models can be shown as an
evidence to this case as they create wider search space than other domain models. Observe
that POPCORN tends to get slower in numerically harder problem instances, because the
planner does not get adequate guidance at a state where there is a wide range of action
choices. Although terraria-capacity domain does not create as wide search space as cashpoint
domains, the complex goal reasoning of the domain causes an exhaustive search to almost all
solvable problem instances. One possible explanation to this behaviour is that POPCORN
fails to recognise propositional sub-goals that should be triggered by numeric goals (or sub-
goals).

10

100

1000

10000

100000

10 100 1000 10000 100000

P
O

P
C

O
R

N
-R

POPCORN

Number of States Evaluated
Cashpoint
Procurement
Terraria-capacity
Rovers Control
Airplane Cargo
Cashpoint_rewards

Figure 4.15: Number of states evaluated of the planner in six domains (POPCORN vs.
POPCORN-R).

Although our approach holds a minor overhead cost, it yields superior results in the end.
The comparison of the number of states evaluated is an ideal indicator of the improvement. It
reveals the number of times the systems compute heuristic for solving each problem instance.
Figure 4.15 exhibits this comparison between POPCORN and POPCORN-R. Observe that

4.6 Evaluation 116

POPCORN-R plummets the number of heuristic computations in almost all solvable problem
instances. This result supports that POPCORN-R makes intelligent decision on choosing
states to progress. We noticed that POPCORN makes highly random state progression
decisions. We can detect the randomness from the figure: the results of POPCORN show
a significant variation for most domain models. For instance, it varies between 70 states
to almost 90000 states in airplane cargo domain, while POPCORN-R finds a solution to
almost all its solvable instances (90 out of 94) by evaluating less than 1000 states.

Table 4.2: Number of problem instances solved by POPCORN and POPCORN-R.

Domains: cashpoint procurement airplane rover terraria cashpoint_rewards
POPCORN 8/20 6/20 12/20 5/20 11/20 8/20

POPCORN-R 16/20 15/20 17/20 11/20 18/20 17/20

Some of the problem instances are deemed unsolvable to the systems in our experiments.
Table 4.2 presents the number of problem instances solved by each system. We used 20
problem instances per domain model in our tests. The last 5 instances on each domain
model are designed to be extremely hard problems. The most challenging domain in our
tests is rovers domain as it includes highly complex causal and numeric goals. We kept the
difficulty of goals the same as the original benchmark version and extended it to include
control parameters. POPCORN and POPCORN-R can solve 50 and 94 problem instances,
respectively, out of 120 instances in total. Notice that the solvability of POPCORN has
almost doubled with refined infinity analysis. As numeric goals get harder, the POPCORN
fails to handle complex numeric and propositional sub-goaling and is led to dead-ends.
Overall, we can say that POPCORN-R can handle hard (and some of extremely hard)
problem instances whereas POPCORN can handle easy-medium problems and fails on hard
instances.

4.6.2.1 Ablation Study on Unmodified Domains

The ablation study benchmark domains are the modified versions used in Chapter 3. We
tested our approach on the unmodified versions (exactly the same domain and problem sets
of Chapter 3) between POPCORN and POPCORN-R to check whether our work restricts
the solvability of the base system. Recall that unmodified versions are considerably easier
than the modified versions in general. We obtained identical results on logistics and rovers
domain and noticeable improvements on cashpoint, procurement and terraria. Figure 4.16
illustrates the comparison between planners in these domains described in Section 3.6. This
outcome supports the fact that POPCORN uses an LP solver in the heuristic, whereas
POPCORN-R does not.

4.6.3 Comparison with Scotty Planner

The Scotty and POPCORN planners are the only systems available that can reason about
PDDL domains with control parameters. We made various modifications on the motivating
example used in Scotty, the AUV domain, so that it generates producer-consumer situation
between actions. We call the resulting domain AUV-Fuel. We split the glide action to

4.6 Evaluation 117

10

100

1000

10 100 1000

PO
PC
O
R
N
-R

POPCORN

Solution Quality
Cashpoint
Procurement
2D-AUV-Power
Terraria-capacity

10

100

1000

10000

100000

10 100 1000 10000 100000

PO
PC
O
R
N
-R

POPCORN

Number of States Evaluated
Cashpoint
Procurement
2D-AUV-Power
Terraria-capacity

0.1

1

10

100

1000

10000

0.1 1 10 100 1000 10000

PO
PC

O
R

N
-R

POPCORN

Solution Time (s)
Cashpoint
Procurement
2D-AUV-Power
Terraria-capacity

Figure 4.16: Ablation study results on unmodified versions of the domains (the same domains
used in Section 3.6). The "x" markers indicate that only one of the planners could solve the
instance.

4.7 Summary 118

0.1

1

10

100

1000

10000

100000

0.1 1 10 100 1000 10000 100000

P
O

P
C

O
R

N
-R

cqScotty

AUV-Fuel Domain

Number of States Evaluated

Running Time (s)

Makespan

Figure 4.17: The makespan, the running time and the number of states evaluated results
for the AUV-Fuel domain of POPCORN-R and cqScotty.

glide_backward and glide_forward in order to avoid ambiguous plan generation due to
existence of negative control parameters available in the original domain. We added various
resource replenishment actions (i.e. recharge, turn_solar_panels_on) so that it arises basic
producer-consumer relationship. We compared the POPCORN-R and cqScotty on this
domain with 12 problem instances. In cqScotty, the resource transfer occurs with linear
continuous numeric change where the control parameters are the rates of change of the
action duration. In POPCORN-R, the numeric change is discrete and control parameters
are duration-independent. The results are shown in Figure 4.17. The POPCORN-R solves
all while cqScotty solves 5 of the problem instances. We observed that the EHC fails and
the search resorts to BFS for all problems in both systems, which leads to an exhaustive
search and an increase in state evaluation. This situation results from the fact that both
approaches employ RPG-based heuristics. Their heuristics fail to promote glide_backward
action because of the delete-relaxation assumption.

4.7 Summary

In this chapter, we presented a capable approach for providing guidance to forward chaining
P− and C−state space search. The approach is a generalised guidance solution for handling
expressive metric-temporal planning domains with control parameters, which is relevant to
many real world application fields. The refined infinity analysis approach we propose is
an alternative sub-goaling method for planning domains that have no control parameters.
However, it almost is a necessity for domains with infinite numerical action parameters.
Alternative solutions to well-known numeric planning problems (i.e. the producer-consumer
behaviour) are shown to be either highly expensive (i.e. LPRPG) or less-informative than

4.7 Summary 119

our proposed solution. Our proposed approach can be easily employed to any planner that
uses a TRPG-based heuristic (including Scotty) to overcome helpful action distortion. While
the producer-consumer patterns we introduce cover a broad class of problems, there are other
expressive patterns to explore in the future.

Chapter 5

Case Study: Spatial Reasoning
in Task Planning with Control
Parameters

5.1 Introduction

In recent years, the research communities in planning and robotics are highly involved
in the subject of the integration of task and motion planning (TAMP). In general this
integration works as follows. A task planner constructs a semantically meaningful (yet
numerically unparameterised) symbolic plan while the motion planner finds a collision-
free trajectory. Figure 5.1 illustrates task-motion planning interaction in robot navigation.
Although there is a rising number of contributions dedicated to this topic over the last
decade, bridging the gap between the two remains unsolved. In particular, while the task
planner reduces the continuous dynamics of the environment into discrete parameters, the
motion planner reasons with its full complexity. The task planner loses critical knowledge
about the dynamics during the reduction, which usually results in significant sacrifice on the
intelligent behaviour. The rationale behind the discretisation is to avoid infinite branching

Task Planner

Motion
Planner

Symbolic plan

Interface

Updated initial state

PDDL model

Motion planning goals Collision-free trajectory

Pose instantiation

Environment model

State update

Figure 5.1: Schematic representation of the integration of task and motion planning.

120

5.1 Introduction 121

(:durative-action navigate
:parameters(?r1 - robot ?from ?to - waypoint)
...)

Figure 5.2: The navigate action with discrete location parameters.

choice of actions in search, however this can also be slow and inefficient when the number
of grounded actions is relatively large.

The planning paradigm we propose in this thesis extends the capabilities of task planners
in the TAMP integration. It enables the modeller to model locations as continuous regions
by defining a set of numeric constraints over the coordinates of robots and objects (taken as
state variables) and predefined flexible limits of these coordinates (using control parameters).
The POPCORN planner accumulates these constraints in the constraint space. In this
integration, POPCORN generates a controlled plan π (i.e. timestamped actions with flexible
control parameters) subject to temporal-numeric constraints accumulated during planning.
The motion planner assigns a value to each flexible control parameter iteratively using the
controlled plan management (presented in Section 3.5.5.1) during plan execution. If the
motion planner cannot satisfy π with the kinematic constraints, then the initial state needs
to be updated with new bound limits of these constraints and the planner needs to find a
new plan for the updated initial state. This mechanism conveniently fits to the state update
layer illustrated in Figure 5.1.

As a concrete example, showing that discretisation is not always computationally
appropriate, consider the action of navigating a robot from a waypoint to another (see
Figure 5.2 for the action schema) and in a problem description there are 10 robot and 40
waypoint objects. This action is grounded by the substitution of parameters for each possible
value defined in the problem description. This consequently leads to a situation, at which
the planner has finitely many action choices in the search, yielding to at most 10× 40 = 400
grounded navigate actions at each depth. Figure 5.3 illustrates the situation in the forwards
search. This situation becomes a combinatorial search problem and the exhaustive search
can be impractical to solve it (yet, exhaustive search is inevitable if all possible states are
deemed as equally helpful by the heuristic at a state).

I

(navigate robot3 l1 l24)

(navigate robot1 l1 l22)

(navigate robot1 l1 l2)

(navigate robot6 l1 l12)

Figure 5.3: Illustration of navigate action choices with discrete locations in forwards search.
Each edge in the search graph corresponds to a grounded navigate action (given in
Figure 5.2) with respect to 10 predefined robot (e.g. {robot1, . . . , robot10}) and 40 location
(e.g. {l1, . . . , l40}) objects.

In addition to the computational complexity, exploiting discrete locations is brittle to
the physical dynamics of the environment. It often leads to plan invalidation, re-planning

5.2 Observe-and-classify Scenario 122

(:durative-action navigate
:parameters(?r1 - robot)
:control(?from ?to - number)
...)

Figure 5.4: The navigate action with continuous location parameters.

during execution or another consequence would be observing unintelligent behaviour due to
poor quality plan. For instance, in case the discrete waypoint to be visited is physically
blocked so that the robot cannot visit it, the robot will have to re-plan. The rationale
behind these problems is that the task planner ignores the geometric constraints imposed on
activities such as in robot navigation because it is handled by the motion planner. In order
to fill this gap between task and motion planning, in this chapter, we propose replacing the
discrete location representation with continuous regions modelled using control parameters.
To accomplish this we model the location parameters (i.e. ?from, ?to in Figure 5.2) as
linear functions of control parameters, so that:

1. The combinatorial size of grounded actions can be significantly reduced in search.

2. The task planner would have a realistic estimate of the configuration space dynamics.

Figure 5.4 shows the navigation action schema of the proposed approach. In the example
we presented earlier the search space size decreases from 16000 fully-grounded states to 10
partially-grounded states. Figure 5.5 illustrates the resulting search space.

The chapter is structured as follows. We present the observe-and-classify scenario
considered in SQUIRREL EU Project as our motivating example in Section 5.2. We propose
a modelling technique to define continuous regions using control parameters in Section 5.2.1.
We showcase how reasoning with continuous regions is scalable (even if it relies on LP
support) and significantly improves the solution quality with detailed experimental results
in Section 5.4.

I

. . . (+7 more)

(navigate robot1 ?from ?to)

(navigate robot2 ?from ?to)

(navigate robot3 ?from ?to)

Figure 5.5: Illustration of partially-grounded navigate action choices with continuous
locations in forwards search.

5.2 Observe-and-classify Scenario

We now present a scenario used in the SQUIRREL EU robotics project. Consider that a
robot travels around in a two dimensional bedroom-like environment to classify toy objects
scattered around the room. The robot initially needs to confirm the coordinates of each

5.2 Observe-and-classify Scenario 123

(:action move
:parameters(?from ?to - location)
:precondition (and (connected ?from ?to) (robot_at ?from))
:effect (and (not (robot_at ?from)) (robot_at ?to)))

(:action observe
:parameters(?loc - location ?obj - object)
:precondition (and (robot_at ?loc) (can_observe ?obj ?loc))
:effect (and (observed ?obj)))

(:action classify
:parameters(?loc - location ?obj - object)
:precondition (and (observed ?obj) (robot_at ?loc)

(can_classify ?obj ?loc))
:effect (and (classified ?obj)))

Figure 5.6: The STRIPS domain model of the observe-and-classify scenario.

object using visual sensors before it can get closer to grasp and classify the object. Thus,
the robot first gets closer enough to the coordinates where the object is initially assumed to
be located so that it can perform the observe action. Once it is done, the robot gets even
closer to the object to perform the classify action.

The scenario can be modelled in STRIPS as follows. The waypoints at which the robot
can execute observe and classify actions can be defined as discrete action parameters (i.e.
object parameters) in the PDDL model, and each possible value these parameters can take
must be enumerated as an object in the problem description. The STRIPS domain model is
given in Figure 5.6. In this domain, the robot moves from one waypoint to another using the
move action. Most off-the-shelf classical PDDL planners, including (Hoffmann and Nebel,
2001; Bonet and Geffner, 2001; Helmert, 2006), can reason with this model quite efficiently
in a problem with a few tens of objects.

The scenario can also be modelled as a numeric planning model in PDDL2.1 (level 2).
The coordinates of the each waypoint (of the objects and the robot) can be defined as discrete
numeric variables, which are explicitly enumerated in the problem description. Figure 5.7
shows the actions of the model in detail. The values of the state variables used in this model
are initially enumerated in the problem and they are always known at any time point in
search. This contrasts to models with control parameters, in which they are kept flexible.
For this reason, the robot must be precisely at the same coordinates with the object to be
able to execute the corresponding action (using numeric equality conditions). As discussed
in Section 2.2.2, numeric planning yields to more complex branching choice than the one in
classical planning. This observation makes clear that this model is computationally harder
than the STRIPS model.

Both of the models presented express waypoints as discrete notions that are only
allowed to take their values from a domain explicitly defined by the modeller. Figure 5.8
demonstrates an example layout for these modelling scenarios (i.e. classical and numeric).
The robot can observe the toy car at one of the black dotted waypoints (either defined as
objects or coordinates) while it can classify at one of the red dotted waypoints.

5.2 Observe-and-classify Scenario 124

(:action move
:parameters(?from ?to - location)
:precondition (and (connected ?from ?to)

(= (x_robot) (x_location ?from)) (= (y_robot) (y_location ?from)))
:effect (and (assign (x_robot) (x_location ?to))

(assign (y_robot) (y_location ?to))))

(:action observe
:parameters(?loc - location ?obj - object)
:precondition (and (can_observe ?obj ?loc)

(= (x_robot) (x_location ?loc)) (= (y_robot) (y_location ?loc)))
:effect (and (observed ?obj)))

(:action classify
:parameters(?loc - location ?obj - object)
:precondition (and (observed ?obj) (can_classify ?obj ?loc)

(= (x_robot) (x_location ?loc)) (= (y_robot) (y_location ?loc)))
:effect (and (classified ?obj)))

Figure 5.7: The numeric model of the scenario encoded in PDDL2.1 level 2.

classify

observe

Figure 5.8: Schematic representation of the discrete locations defined around a toy.

5.2.1 Modelling Continuous Regions

Having presented discrete modelling solutions for the off-the-shelf planners, we now present
a continuous solution that allows a task planner (integrated in a TAMP system) to reason
about the geometry of the environment during planning. As previously mentioned, instead
of modelling locations as discrete notions using variables (or action parameters) with finite
sets, we model them as continuous regions using control parameters. Suppose that we
define a circular area around the object as a collision-free space and it is surrounded by
two ring-shaped areas where the robot can execute classify and observe actions in each
independently (all areas are concentric). Figure 5.9 illustrates the description. Conceptually,
landing on any point within a region is adequate to apply the corresponding action during
execution.

The regions are modelled as numeric conditions of actions in PDDL model as follows.
The move action has two real-valued control parameters (i.e. {?dx, ?dy} :: [−100, 100]),
which represent the displacements of the robot in x- and y- directions. The move action
increases/decreases the coordinates of the robot with on each direction by linear functions of
?dx and ?dy (i.e. (at end (increase (x_robot) ?dx))). Thus, applying one move action
is sufficient reaching to any coordinates in a 100×100 sized environment. Also, the duration

5.2 Observe-and-classify Scenario 125

classify

observe

collision-free

Figure 5.9: Continuous locations around the toy.

of the action is flexible and it is constrained by a linear function of ?dx and dy (which yields
to the Manhattan distance).

The observe and classify actions have sets of numeric preconditions each defining convex
regions of the corresponding location. The numeric preconditions form circumscribed
octagons as they are linear over-approximations of circular regions. The reason behind
using octagons is that having circular regions create non-linearity which is currently not
handled in POPCORN. Suppose that a circle centered at (xw, yw) coordinates and it has a
radius of r. The Euclidean distance (d) of any point, (xr, yr), within any circle to the center
is d =

√
(xw − xr)2 + (yw − yr)2. Equation 5.1 consists of a set of numeric constraints that

approximates the distance (using octagons). In our scenario, (xr, yr) and (xw, yw) denotes
the coordinates of the robot and the initially predicted coordinates of the object, respectively.
The full PDDL domain model with continuous regions that is used in our experiments is
given in Appendix B.2.1.

−r ≤ |xw − xr| ≤ r

−r ≤ |yw − yr| ≤ r

−
√

2.r ≤ |xw − xr| − |yw − yr| ≤
√

2.r

−
√

2.r ≤ |xw − xr|+ |yw − yr| ≤
√

2.r

(5.1)

Observe that, in Equation 5.1, some expressions are given in the form of absolute values.
The PDDL extension we use in this work does not allow encoding absolute values, thus the
equation set must be split into four possible sets with regard to the signs of variables. Then,
we define 4 observe and 4 classify action schemas in the domain encapsulating each possible
set. For instance, for classify action we model classify_southeast, classify_southwest,
classify_northeast, classify_northwest action schemas, where each of these action schemas
cover a quarter area of each polygon. Figure 5.10 demonstrates 12 quarter-polygons each
covered by individual actions.

In addition to convex region constraints, the observe and classify actions have a literal
condition (i.e. (empty_northeast ?object)) controlling whether the linked continuous
quarter-polygon region is occupied by an obstacle. If so, it is set to be false at the initial

5.3 Plan Generation and Execution 126

classify
(xr, yr)

(xw, yw)

observe

d

northeast

southeastsouthwest

northwest

Figure 5.10: Illustration of linear over-approximation of regions using circumscribed
octagons.

state, so that the robot does not visit the region.
There are certainly other ways to model the continuous regions in PDDL. The model we

showcase here is an ideal instance for handling the scenario we presented. It is also worth
mentioning that the use of control parameters is not only limited to defining continuous
regions in robotic applications. There are various other dynamics that require flexibility
and they can be suitably modelled with control parameters. For instance, suppose that
another scenario requires PDDL modelling to control the movement speed of a robotic arm.
If the speed parameter is not modelled as flexible and the modeller defines only a few numeric
choices for it, the motion planner will immediately invalidate the decision drawn by the task
planner. The modeller must be able to foresee the precise value for it, so that the generated
plan remains valid during execution.

5.3 Plan Generation and Execution

Figure 5.11: The illustration of the plan generation when the objects are in close range.

5.3.1 Plan Generation in Relative Proximity of Objects

One of the many benefits of reasoning with continuous locations is that it provides flexibility
to the planner when satisfying action conditions. To make this statement clear, consider
the following situation in robot navigation. Some areas in the configuration space can

5.3 Plan Generation and Execution 127

be common to more than one continuous region. Any point within this intersection is a
member of all the overlapping regions, so that all actions conditioned on them become
applicable. This flexibility can enable eliminating excessive navigation actions in the plan,
which can consequently lead to a noticeable improvement in the solution quality. As the
planners attempt to keep the plan length minimal by default, they favour navigating to
these intersections. From the planning perspective, choosing intersections is a constraint
satisfiability (and optimisation) problem rather than a combinatorial search issue.

We can exemplify this concept in our running scenario. Consider that two objects are
relatively close to each other so that their observe regions are not disjoint. The scenario is
illustrated in Figure 5.11 for both continuous and discrete cases. Figure on the left shows
the intersection, at which the robot can observe both toys. The goal of classifying both
objects can be reached in 7 plan steps: move, observe car, observe bear, move, classify car,
move, classify bear.

The figure on the right shows the same scenario in the discrete case. In this figure,
the circle and the rectangle dots denote waypoints for the car and the teddy bear toys,
respectively. The red and black waypoints are the ones that the robot can apply classify
and observe actions, respectively. The same goal can be achieved in at least 8 plan steps in
the discrete environment, which includes an additional move action than the one generated
in continuous environment.

Consider a situation when the objects are even closer so that their classify regions
can overlap with each other. While the solution obtained in the discrete environment
remains unchanged, it is achieved in 6 plan steps (one less move action) in the continuous
environment. We analyse the effects of the relative distance on the solution quality in
Section 5.4.2.

5.3.2 Plan Execution using Controlled Plan Management in Con-
tinuous Space

We presented the advantages of transforming a robotics environment into a continuous
formalism from a task planning point of view. In this section, we survey a possible execution
mechanism of the plans with continuous locations.

In the POPCORN planner, the continuous regions are formed in the constraint space.
The generated plan provides the maximum and minimum values of the control parameters
computed from the final collection of constraints accumulated during planning. As the
bounds can be inter-dependent, we proposed an iterative search mechanism, controlled plan
management, that updates the bounds for each numeric valuation decision made by the
executive. This process is presented in Section 3.5.5.1. When exploiting the controlled
plan management in this robotics application scenario, the motion planner can act as the
executive, where it makes coordinate decisions within the supplied bounds iteratively during
execution. The rationale behind applying this search during execution is the following:

1. There are uncertainties that can alter the trajectory plan to a great extent: the initially
claimed feasible regions can be discovered to be unreachable during execution. This
can even result in invalidation of the symbolic plan, yet this remains the greatest
question unresolved in TAMP applications.

5.4 Evaluation 128

2. Since the motion planner does not possess the full knowledge of the feasible
configuration space, making valuation decisions before the execution is likely to result
in losing plan flexibility. This increases the possibility of re-planning during execution.

The only difference between making decisions during and before execution is the
following. If the motion planner needs to backtrack in the controlled plan management
(i.e. revisit its previous coordinate decisions), the system might need to generate a new
controlled plan as it might be impossible to revert to previous model states. In other words,
the backtracking can result in navigating back to a previously visited waypoint to execute
the revised decision.

The location coordinates in this scenario is two-dimensional, so each coordinate decision
enforced by the motion planner includes two numeric valuations (that may be inter-
dependent) at the same time. In this case, the controlled plan management can perhaps
break apart this combined decision into 2 individual decisions and return the final updated
bounds to the motion planner.

5.4 Evaluation

To showcase our approach, we conducted a detailed set of task planning experiments
comparing the effects of encoding locations as discrete notions and convex regions based on
observe-and-classify scenario. We use POPF and TFD planners to solve discrete problems
on a propositional-temporal PDDL model and the POPCORN planner to solve problems
with continuous regions. The PDDL domain models used in the experiments and example
problem instances are given in the Appendix B.1 and the Appendix B.2.

5.4.1 The Environment

In order to make a fair comparison between different approaches, we define problem instances
with different sized regions and varying granularity of discretisations. Overall, our study
involves 1600 problem instances with different features and they are listed as follows:

Table 5.1: The area of each continuous region defined in each testcase.

Testcase\regions (unit sq.) t1 t2 t3 t4 t5 t6 t7 t8
Collision-free 0.126 0.51 0.785 0.785 3.14 3.14 3.14 3.14
classify 0.66 2.638 11.775 27.475 75.36 703.36 958.5 1252.9
observe 77.715 75.8624 164.85 149.15 631.14 10597.5 14424.4 18840

1. There are 8 different testcases in varying sizes of continuous regions. Table 5.1 shows
the area of the regions considered in each testcase. Observe that the areas tend to get
larger as the testcase number increases.

2. Each testcase includes 9 discrete problem sets and 1 continuous problem set. Each
discrete problem set is denoted as pt(x), where x refers to the number of discrete
waypoints defined per continuous region and it varies in between 1 to 40 (i.e. x =
{1, 3, 5, 7, 10, 15, 20, 30, 40}). For instance, in the pt(x = 3) problem set, the discrete

5.4 Evaluation 129

. . .

pt(1) pt(3) pt(5) pt(40)

Figure 5.12: Illustration of defining varying number of discrete waypoints in regions.

circle radius (r)

number
of objects
and goals

continuous
random
generator

discrete
random
generator

a discrete
problem

number of discrete
waypoints per region (x)

continuous
problem

Figure 5.13: The process of continuous and discrete random problem generation.

random generator defines 3 discrete locations in each region. This is illustrated in
Figure 5.12. The process of generating discrete and continuous problems is illustrated
in Figure 5.13.

3. In each problem set, there are 20 problem instances in an increasing complexity order.
The complexity increases in parallel to the number of classified object goals specified
in each problem instance.

In order to compare the plan length and the plan quality, the duration of the move action
is constrained by the Manhattan distance between locations for both discrete and continuous
cases. In the case with continuous regions, the duration of the move action is constrained by
linear functions, such as (>= ?duration (+ (/ ?dy (maxV)) (/ ?dx (maxV)))), where
?dx, ?dy are control parameters representing the displacements in x- and y-directions. In
the discrete case, it is precomputed by the problem generator (we explain the steps below)
and it is constrained by (= ?duration (distance ?w1 w2)) in the move action schema.

The problem instance generation for the continuous case works as follows. First,
the continuous problem generator randomly specifies the coordinates of each object in
configuration space. Second, the generator enumerates various numeric variables, such
as (observe_max_distance) (see Appendix B.2.2), depending on the size of the region
specified in the testcase. The numeric conditions encoded in the PDDL action schemas
forms the feasible convex regions for each action.

In the discrete case, the discrete problem generator takes an already generated continuous
problem instance and the discretisation granularity (i.e. x) as inputs. Then, it randomly
generates x- and y- coordinates and their typed objects (x per region) that lies on each
corresponding continuous region defined in the continuous problem. The generator computes
the Manhattan distance between each coordinate pair and enumerates the (distance

5.4 Evaluation 130

?w1 w2) function for each location object combination. For instance, suppose that the
coordinates of two discrete locations, wp1 and wp2, are randomly defined as (3, 3) and (5, 5),
respectively. The distance between these locations are computed and enumerated in the
problem as (= (distance wp1 wp2) 4) (see Appendix B.1.2). Note that the coordinates
are only considered for this computation and they are not encoded in PDDL.

5.4.2 Results

Having described the setup environment of the experiments, we present the results obtained
in terms of solution quality, running time and the number of move actions found in the
generated plan. We evaluate the planners on the observe-and-classify domain using a single
core 3.4 GHz machine with 16 GB RAM (4GB allocated memory). Timeout was set to 30
minutes (1800 seconds).

5.4.2.1 Running Time

Figure 5.14 and Figure 5.15 illustrate the solution time comparison between planners. The
data points positioned on the top edge of each graph (10000 seconds) represent that the
planner was not able to find any solution to the problem instance within the allowed time.
Note that the TFD and POPF planners use the same PDDL models and problem instances
(as given in Appendix B.1). We can make the following comments on these results:

1. The running time of the discrete domain solutions (of POPF and TFD planners) tend
to increase as the discretisation granularity increases. The planners are obliged to
reason with an exponentially increasing number of combinatorials of typed objects
when grounding the action schemas in parallel to slight increases in granularity. As
a result, the search space exponentially grows due to increasing number of grounded
actions. The effects of this concept was previously discussed in detail in Section 5.1.

2. Running domains with regions (marked as popcorn) take slightly longer time than the
discrete ones. The rationale behind this result is that the POPCORN planner performs
constraint space search (also known as C-state space search described in Section 3.5.5)
and the forward state space search in parallel. The planner uses an external solver (in
our case, it is LP solver) to reason with the accumulated constraints at every C-state.
As discussed in Section 3.6, the overhead cost of using the LP is relatively higher
than the consistency checking with the STN. Although the constraint space reasoning
carries an overhead, the POPCORN planner catches up (and even performs faster)
when the discretisation of waypoints gets refined (i.e. when granularity is greater than
15 waypoints), so the constraint space overhead is overtaken by the combinatorial
blowup when many waypoints are modelled.

3. The solution time of the POPCORN planner is roughly in between the solution time
of the POPF with the granularity of 10 and 15 waypoints; and the solution time
of the TFD with the granularity of 1 and 3 waypoints per region. Then, we can
say the TFD planner is recognisably slower than the POPF and POPCORN in most
problem instances. This results from the fact that the TFD planner is based on multi-
valued formalisation. It translates all propositional variables into multi-valued variable

5.4 Evaluation 131

0.1

1

10

100

1000

10000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

R
un

ni
ng

 T
im

e
(s

)

Problem Number

Testcase 1: POPF vs POPCORN

popf(pt1) popf(pt3) popf(pt5) popf(pt7) popf(pt10)
popf(pt15) popf(pt20) popf(pt30) popf(pt40) popcorn

0.1

1

10

100

1000

10000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

R
un

ni
ng

 T
im

e
(s

)

Problem Number

Testcase 2: POPF vs POPCORN

popf(pt1) popf(pt3) popf(pt5) popf(pt7) popf(pt10)
popf(pt15) popf(pt20) popf(pt30) popf(pt40) popcorn

0.1

1

10

100

1000

10000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

R
un

ni
ng

 T
im

e
(s

)

Problem Number

Testcase 3: POPF vs POPCORN

popf(pt1) popf(pt3) popf(pt5) popf(pt7) popf(pt10)
popf(pt15) popf(pt20) popf(pt30) popf(pt40) popcorn

0.1

1

10

100

1000

10000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

R
un

ni
ng

 T
im

e
(s

)

Problem Number

Testcase 4: POPF vs POPCORN

popf(pt1) popf(pt3) popf(pt5) popf(pt7) popf(pt10)
popf(pt15) popf(pt20) popf(pt30) popf(pt40) popcorn

0.1

1

10

100

1000

10000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

R
un

ni
ng

 T
im

e
(s

)

Problem Number

Testcase 5: POPF vs POPCORN

popf(pt1) popf(pt3) popf(pt5) popf(pt7) popf(pt10)
popf(pt15) popf(pt20) popf(pt30) popf(pt40) popcorn

0.1

1

10

100

1000

10000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

R
un

ni
ng

 T
im

e
(s

)

Problem Number

Testcase 6: POPF vs POPCORN

popf(pt1) popf(pt3) popf(pt5) popf(pt7) popf(pt10)
popf(pt15) popf(pt20) popf(pt30) popf(pt40) popcorn

0.1

1

10

100

1000

10000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

R
un

ni
ng

 T
im

e
(s

)

Problem Number

Testcase 7: POPF vs POPCORN

popf(pt1) popf(pt3) popf(pt5) popf(pt7) popf(pt10)
popf(pt15) popf(pt20) popf(pt30) popf(pt40) popcorn

0.1

1

10

100

1000

10000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

R
un

ni
ng

 T
im

e
(s

)

Problem Number

Testcase 8: POPF vs POPCORN

popf(pt1) popf(pt3) popf(pt5) popf(pt7) popf(pt10)
popf(pt15) popf(pt20) popf(pt30) popf(pt40) popcorn

Figure 5.14: Running time comparison between POPF and POPCORN in 8 testcases.

5.4 Evaluation 132

0.1

1

10

100

1000

10000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

R
un

ni
ng

 T
im

e
(s

)

Problem Number

Testcase 1: TFD vs POPCORN

tfd(pt1) tfd(pt3) tfd(pt5) tfd(pt7) tfd(pt10)
tfd(pt15) tfd(pt20) tfd(pt30) tfd(pt40) popcorn

0.1

1

10

100

1000

10000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

R
un

ni
ng

 T
im

e
(s

)

Problem Number

Testcase 2: TFD vs POPCORN

tfd(pt1) tfd(pt3) tfd(pt5) tfd(pt7) tfd(pt10)
tfd(pt15) tfd(pt20) tfd(pt30) tfd(pt40) popcorn

0.1

1

10

100

1000

10000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

R
un

ni
ng

 T
im

e
(s

)

Problem Number

Testcase 3: TFD vs POPCORN

tfd(pt1) tfd(pt3) tfd(pt5) tfd(pt7) tfd(pt10)
tfd(pt15) tfd(pt20) tfd(pt30) tfd(pt40) popcorn

0.1

1

10

100

1000

10000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

R
un

ni
ng

 T
im

e
(s

)

Problem Number

Testcase 4: TFD vs POPCORN

tfd(pt1) tfd(pt3) tfd(pt5) tfd(pt7) tfd(pt10)
tfd(pt15) tfd(pt20) tfd(pt30) tfd(pt40) popcorn

0.1

1

10

100

1000

10000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

R
un

ni
ng

 T
im

e
(s

)

Problem Number

Testcase 5: TFD vs POPCORN

tfd(pt1) tfd(pt3) tfd(pt5) tfd(pt7) tfd(pt10)
tfd(pt15) tfd(pt20) tfd(pt30) tfd(pt40) popcorn

0.1

1

10

100

1000

10000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

R
un

ni
ng

 T
im

e
(s

)

Problem Number

Testcase 6: TFD vs POPCORN

tfd(pt1) tfd(pt3) tfd(pt5) tfd(pt7) tfd(pt10)
tfd(pt15) tfd(pt20) tfd(pt30) tfd(pt40) popcorn

0.1

1

10

100

1000

10000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

R
un

ni
ng

 T
im

e
(s

)

Problem Number

Testcase 7: TFD vs POPCORN

tfd(pt1) tfd(pt3) tfd(pt5) tfd(pt7) tfd(pt10)
tfd(pt15) tfd(pt20) tfd(pt30) tfd(pt40) popcorn

0.1

1

10

100

1000

10000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

R
un

ni
ng

 T
im

e
(s

)

Problem Number

Testcase 8: TFD vs POPCORN

tfd(pt1) tfd(pt3) tfd(pt5) tfd(pt7) tfd(pt10)
tfd(pt15) tfd(pt20) tfd(pt30) tfd(pt40) popcorn

Figure 5.15: Running time comparison between TFD and POPCORN in 8 testcases.

5.4 Evaluation 133

encoding (i.e. SAS+) before it starts searching for a plan. This translation becomes
highly cumbersome in problems requiring numerous propositional variables.

4. The effects of increasing the sizes of continuous regions (increasing the testcase
number) on the running time was almost negligible in the discrete domain solutions
(the results of POPF and TFD). However, we can observe a noticeable drop in solution
time in continuous domain solutions from the testcase 5 and onward. We can comment
on this as follows. As regions get larger, the overlap areas between the regions tend
to increase. We discuss on this in depth later in this section.

5.4.2.2 Solution Quality

5.4.2.2.1 Makespan Figure 5.16 and Figure 5.17 illustrate the makespan comparison
of the planners in all problem instances. The data points positioned on the top edge of
each graph are the ones that the planners were not be able to find any solution to the
problem instance within the time allowed. We can make the following comments on the
results obtained:

1. The effects of increasing the sizes of continuous regions to the solution quality in
discrete problem solutions is significant: the plan length tends to get larger as the
regions become larger. This results from the fact that the random discretisation in
larger regions increases the relative distance between discrete waypoints. Since the
duration of the move action is constrained by the distance variable (as explained in
Section 5.4.1), the durations of move actions tend to increase in discrete problems as
the continuous regions become larger.

2. Although the variation in the solution qualities of the planners is significant, there
is recognisable correlations between each other. For instance, the solution quality of
POPCORN and TFD (the granularity of 1 and 3) in testcases 3 and 4 shows significant
resemblance between each other. This result confirms that the Manhattan distance
computations used in both discrete and continuous cases are indeed comparable
attributes.

3. The POPCORN planner finds the shortest makespan solutions in most problem
instances, because POPCORN optimises the durations of move actions that relies
on control parameters. Even though POPF and TFD planners considers finding the
shortest makespan, they are restricted to assign values to the duration parameters
from the finitely enumerated distance computations provided in the problem instance.
Thus, distance between discrete locations can be considered as an over-estimation to
the shortest distances between regions.

4. Despite the fact that POPF can solve more problem instances than TFD, the solution
quality difference between each other is considerable. It is worth mentioning that the
scale in the makespan axes of the figures are different (2750 in POPF, 1250 in TFD).
Thus, we can say that the TFD planner finds better solutions compared to the POPF
planner.

5.4 Evaluation 134

0
250
500
750

1000
1250
1500
1750
2000
2250
2500
2750

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

So
lu

tio
n

Q
ua

lit
y

(M
ak

es
pa

n)

Problem Number

Testcase 1: POPF vs POPCORN

popf(pt1) popf(pt3) popf(pt5) popf(pt7) popf(pt10)
popf(pt15) popf(pt20) popf(pt30) popf(pt40) popcorn

0
250
500
750

1000
1250
1500
1750
2000
2250
2500
2750

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

So
lu

tio
n

Q
ua

lit
y

(M
ak

es
pa

n)

Problem Number

Testcase 2: POPF vs POPCORN

popf(pt1) popf(pt3) popf(pt5) popf(pt7) popf(pt10)
popf(pt15) popf(pt20) popf(pt30) popf(pt40) popcorn

0
250
500
750

1000
1250
1500
1750
2000
2250
2500
2750

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

So
lu

tio
n

Q
ua

lit
y

(M
ak

es
pa

n)

Problem Number

Testcase 3: POPF vs POPCORN

popf(pt1) popf(pt3) popf(pt5) popf(pt7) popf(pt10)
popf(pt15) popf(pt20) popf(pt30) popf(pt40) popcorn

0
250
500
750

1000
1250
1500
1750
2000
2250
2500
2750

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

So
lu

tio
n

Q
ua

lit
y

(M
ak

es
pa

n)

Problem Number

Testcase 4: POPF vs POPCORN

popf(pt1) popf(pt3) popf(pt5) popf(pt7) popf(pt10)
popf(pt15) popf(pt20) popf(pt30) popf(pt40) popcorn

0
250
500
750

1000
1250
1500
1750
2000
2250
2500
2750

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

So
lu

tio
n

Q
ua

lit
y

(M
ak

es
pa

n)

Problem Number

Testcase 5: POPF vs POPCORN

popf(pt1) popf(pt3) popf(pt5) popf(pt7) popf(pt10)
popf(pt15) popf(pt20) popf(pt30) popf(pt40) popcorn

0
250
500
750

1000
1250
1500
1750
2000
2250
2500
2750

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

So
lu

tio
n

Q
ua

lit
y

(M
ak

es
pa

n)

Problem Number

Testcase 6: POPF vs POPCORN

popf(pt1) popf(pt3) popf(pt5) popf(pt7) popf(pt10)
popf(pt15) popf(pt20) popf(pt30) popf(pt40) popcorn

0
250
500
750

1000
1250
1500
1750
2000
2250
2500
2750

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

So
lu

tio
n

Q
ua

lit
y

(M
ak

es
pa

n)

Problem Number

Testcase 7: POPF vs POPCORN

popf(pt1) popf(pt3) popf(pt5) popf(pt7) popf(pt10)
popf(pt15) popf(pt20) popf(pt30) popf(pt40) popcorn

0
250
500
750

1000
1250
1500
1750
2000
2250
2500
2750

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

So
lu

tio
n

Q
ua

lit
y

(M
ak

es
pa

n)

Problem Number

Testcase 8: POPF vs POPCORN

popf(pt1) popf(pt3) popf(pt5) popf(pt7) popf(pt10)
popf(pt15) popf(pt20) popf(pt30) popf(pt40) popcorn

Figure 5.16: Makespan comparison between POPF and POPCORN in 8 testcases.

5.4 Evaluation 135

0

250

500

750

1000

1250

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

So
lu

tio
n

Q
ua

lit
y

(M
ak

es
pa

n)

Problem Number

Testcase 1: TFD vs POPCORN

tfd(pt1) tfd(pt3) tfd(pt5) tfd(pt7) tfd(pt10)
tfd(pt15) tfd(pt20) tfd(pt30) tfd(pt40) popcorn

0

250

500

750

1000

1250

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

So
lu

tio
n

Q
ua

lit
y

(M
ak

es
pa

n)

Problem Number

Testcase 2: TFD vs POPCORN

tfd(pt1) tfd(pt3) tfd(pt5) tfd(pt7) tfd(pt10)
tfd(pt15) tfd(pt20) tfd(pt30) tfd(pt40) popcorn

0

250

500

750

1000

1250

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

So
lu

tio
n

Q
ua

lit
y

(M
ak

es
pa

n)

Problem Number

Testcase 3: TFD vs POPCORN

tfd(pt1) tfd(pt3) tfd(pt5) tfd(pt7) tfd(pt10)
tfd(pt15) tfd(pt20) tfd(pt30) tfd(pt40) popcorn

0

250

500

750

1000

1250

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

So
lu

tio
n

Q
ua

lit
y

(M
ak

es
pa

n)

Problem Number

Testcase 4: TFD vs POPCORN

tfd(pt1) tfd(pt3) tfd(pt5) tfd(pt7) tfd(pt10)
tfd(pt15) tfd(pt20) tfd(pt30) tfd(pt40) popcorn

0

250

500

750

1000

1250

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

So
lu

tio
n

Q
ua

lit
y

(M
ak

es
pa

n)

Problem Number

Testcase 5: TFD vs POPCORN

tfd(pt1) tfd(pt3) tfd(pt5) tfd(pt7) tfd(pt10)
tfd(pt15) tfd(pt20) tfd(pt30) tfd(pt40) popcorn

0

250

500

750

1000

1250

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

So
lu

tio
n

Q
ua

lit
y

(M
ak

es
pa

n)

Problem Number

Testcase 6: TFD vs POPCORN

tfd(pt1) tfd(pt3) tfd(pt5) tfd(pt7) tfd(pt10)
tfd(pt15) tfd(pt20) tfd(pt30) tfd(pt40) popcorn

0

250

500

750

1000

1250

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

So
lu

tio
n

Q
ua

lit
y

(M
ak

es
pa

n)

Problem Number

Testcase 7: TFD vs POPCORN

tfd(pt1) tfd(pt3) tfd(pt5) tfd(pt7) tfd(pt10)
tfd(pt15) tfd(pt20) tfd(pt30) tfd(pt40) popcorn

0

250

500

750

1000

1250

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

So
lu

tio
n

Q
ua

lit
y

(M
ak

es
pa

n)

Problem Number

Testcase 8: TFD vs POPCORN

tfd(pt1) tfd(pt3) tfd(pt5) tfd(pt7) tfd(pt10)
tfd(pt15) tfd(pt20) tfd(pt30) tfd(pt40) popcorn

Figure 5.17: Makespan comparison between TFD and POPCORN in 8 testcases.

5.4 Evaluation 136

It is clear that constraint space reasoning produces shortest plans in almost all problem
instances, giving incontrovertible evidence that control parameters make a real practical
difference. Finding shortest plans is important in robot navigation as each move action can
induce wear and tear on expensive robot components, then the use of control parameters
could correspond to a significant financial saving over time.

5.4.2.2.2 Number of Move Actions From task planning perspective, the makespan
is usually the main indicator of the solution quality. However, in robot navigation practice,
it is desirable to obtain a direct trajectory than a trajectory with multiple layovers. We
find the sum of move action occurrences in each plan generated in order to analyse the
solution quality from action repetition perspective. Figure 5.18 and Figure 5.19 illustrates
the number of move action per plan comparison between the planners. The data points lying
on the top edge (where the number of move actions is equal to 80) of each figure indicates
that the planner was not able to find a solution to this problem instance. We can make the
following comments on this results:

1. We previously identified that the TFD planner produces plans with shorter makespan
than the POPF planner does. However, on the contrary to this, one can easily notice
that the plans generated by the TFD planner includes remarkably higher number of
move actions than the ones by any other planner does. This behaviour is undesirable
in our robot navigation scenario in the SQUIRREL project.

2. Adjusting the size of the continuous regions significantly affects the number of move
actions in the plan. Observe that, in both figures, the number of move actions
incrementally increases in plans generated by POPCORN in the first 5 testcases, but
it sharply drops in testcases 6, 7 and 8. The rationale behind this is that once the
regions become large enough, the regions start overlapping with each other. During
navigation, the robot favours these overlapping regions to execute multiple activities
from the same position. This result supports the idea of reducing excessive actions
presented in Section 5.3 and illustrates the scenario in practice.

3. The plans generated by POPCORN (using continuous regions) consists of the least
number of move actions compared to other planners. The reason behind this outcome is
the use of different search techniques. In the discrete case, the planners have extremely
high number of move action choices in the search space due to combinatorial groundings
of this action schema. The following fact supports this statement: as the problem
difficulty increases, the number of excessive move actions increases. In the continuous
case, the number of move action choices is relatively low, where choosing a location is
a matter of constraint satisfiability.

Table 5.2: The overall percentage of problems solved in each testcase.

Testcases: t1 t2 t3 t4 t5 t6 t7 t8 Avg.
POPCORN 100% 95% 95% 95% 100% 100% 95% 95% 96.9%

POPF 75% 74.4% 75% 75% 74.4% 74.4% 74.4% 75% 74.7%
TFD 29% 30% 28.3% 30.0% 30% 28.3% 29.4% 28.9% 29.3%

5.4 Evaluation 137

0

10

20

30

40

50

60

70

80

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

N
um

be
r o

f M
ov

e
A

ct
io

ns

Problem Number

Testcase 1: POPF vs POPCORN

popf(pt1) popf(pt3) popf(pt5) popf(pt7) popf(pt10)
popf(pt15) popf(pt20) popf(pt30) popf(pt40) popcorn

0

10

20

30

40

50

60

70

80

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

N
um

be
r o

f M
ov

e
A

ct
io

ns

Problem Number

Testcase 2: POPF vs POPCORN

popf(pt1) popf(pt3) popf(pt5) popf(pt7) popf(pt10)
popf(pt15) popf(pt20) popf(pt30) popf(pt40) popcorn

0

10

20

30

40

50

60

70

80

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

N
um

be
r o

f M
ov

e
A

ct
io

ns

Problem Number

Testcase 3: POPF vs POPCORN

popf(pt1) popf(pt3) popf(pt5) popf(pt7) popf(pt10)
popf(pt15) popf(pt20) popf(pt30) popf(pt40) popcorn

0

10

20

30

40

50

60

70

80

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

N
um

be
r o

f M
ov

e
A

ct
io

ns

Problem Number

Testcase 4: POPF vs POPCORN

popf(pt1) popf(pt3) popf(pt5) popf(pt7) popf(pt10)
popf(pt15) popf(pt20) popf(pt30) popf(pt40) popcorn

0

10

20

30

40

50

60

70

80

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

N
um

be
r o

f M
ov

e
A

ct
io

ns

Problem Number

Testcase 5: POPF vs POPCORN

popf(pt1) popf(pt3) popf(pt5) popf(pt7) popf(pt10)
popf(pt15) popf(pt20) popf(pt30) popf(pt40) popcorn

0

10

20

30

40

50

60

70

80

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

N
um

be
r o

f M
ov

e
A

ct
io

ns

Problem Number

Testcase 6: POPF vs POPCORN

popf(pt1) popf(pt3) popf(pt5) popf(pt7) popf(pt10)
popf(pt15) popf(pt20) popf(pt30) popf(pt40) popcorn

0

10

20

30

40

50

60

70

80

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

N
um

be
r o

f M
ov

e
A

ct
io

ns

Problem Number

Testcase 7: POPF vs POPCORN

popf(pt1) popf(pt3) popf(pt5) popf(pt7) popf(pt10)
popf(pt15) popf(pt20) popf(pt30) popf(pt40) popcorn

0

10

20

30

40

50

60

70

80

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

N
um

be
r o

f M
ov

e
A

ct
io

ns

Problem Number

Testcase 8: POPF vs POPCORN

popf(pt1) popf(pt3) popf(pt5) popf(pt7) popf(pt10)
popf(pt15) popf(pt20) popf(pt30) popf(pt40) popcorn

Figure 5.18: Number of move actions found in each plan (POPF and POPCORN).

5.4 Evaluation 138

0

10

20

30

40

50

60

70

80

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

N
um

be
r o

f M
ov

e
A

ct
io

ns

Problem Number

Testcase 1: TFD vs POPCORN

tfd(pt1) tfd(pt3) tfd(pt5) tfd(pt7) tfd(pt10)
tfd(pt15) tfd(pt20) tfd(pt30) tfd(pt40) popcorn

0

10

20

30

40

50

60

70

80

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

N
um

be
r o

f M
ov

e
A

ct
io

ns

Problem Number

Testcase 2: TFD vs POPCORN

tfd(pt1) tfd(pt3) tfd(pt5) tfd(pt7) tfd(pt10)
tfd(pt15) tfd(pt20) tfd(pt30) tfd(pt40) popcorn

0

10

20

30

40

50

60

70

80

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

N
um

be
r o

f M
ov

e
A

ct
io

ns

Problem Number

Testcase 3: TFD vs POPCORN

tfd(pt1) tfd(pt3) tfd(pt5) tfd(pt7) tfd(pt10)
tfd(pt15) tfd(pt20) tfd(pt30) tfd(pt40) popcorn

0

10

20

30

40

50

60

70

80

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

N
um

be
r o

f M
ov

e
A

ct
io

ns

Problem Number

Testcase 4: TFD vs POPCORN

tfd(pt1) tfd(pt3) tfd(pt5) tfd(pt7) tfd(pt10)
tfd(pt15) tfd(pt20) tfd(pt30) tfd(pt40) popcorn

0

10

20

30

40

50

60

70

80

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

N
um

be
r o

f M
ov

e
A

ct
io

ns

Problem Number

Testcase 5: TFD vs POPCORN

tfd(pt1) tfd(pt3) tfd(pt5) tfd(pt7) tfd(pt10)
tfd(pt15) tfd(pt20) tfd(pt30) tfd(pt40) popcorn

0

10

20

30

40

50

60

70

80

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

N
um

be
r o

f M
ov

e
A

ct
io

ns

Problem Number

Testcase 6: TFD vs POPCORN

tfd(pt1) tfd(pt3) tfd(pt5) tfd(pt7) tfd(pt10)
tfd(pt15) tfd(pt20) tfd(pt30) tfd(pt40) popcorn

0

10

20

30

40

50

60

70

80

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

N
um

be
r o

f M
ov

e
A

ct
io

ns

Problem Number

Testcase 7: TFD vs POPCORN

tfd(pt1) tfd(pt3) tfd(pt5) tfd(pt7) tfd(pt10)
tfd(pt15) tfd(pt20) tfd(pt30) tfd(pt40) popcorn

0

10

20

30

40

50

60

70

80

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

N
um

be
r o

f M
ov

e
A

ct
io

ns

Problem Number

Testcase 8: TFD vs POPCORN

tfd(pt1) tfd(pt3) tfd(pt5) tfd(pt7) tfd(pt10)
tfd(pt15) tfd(pt20) tfd(pt30) tfd(pt40) popcorn

Figure 5.19: Number of move actions found in each plan (TFD and POPCORN).

5.5 Summary 139

5.4.2.3 Solvability

In this section, we talk about how reasoning with continuous convex regions affects the
solvability compared to the discrete method. Table B.1.2 and Table 5.2 summarises the
number of problem instances solved by each planner and their solvability in each testcase,
respectively. Note that there are 20 problem instances in each problem set. Based on this
table, we can remark the following statements:

1. In the discrete case, increasing the number of points defined in each region reduces the
solvability of the planners. As discussed earlier, this is an expected outcome as action
schema grounding is a combinatorial operation.

2. The results obtained in each testcase are somewhat identical. Then, we can say the
effects of increasing the sizes of regions on the solvability is negligible.

3. The solvability of the TFD planner is extremely low compared to the other planners.
As mentioned earlier, the TFD planner spends considerable time on translating the
discrete variables into SAS+ formula.

Table 5.3: The number of problem instances solved in each problem set (out of 20 instances).

POPF POPCORN
pt1 pt3 pt5 pt7 pt10 pt15 pt20 pt30 pt40 regions

Testcase1 20 20 20 20 20 17 12 4 2 20
Testcase2 20 20 20 20 20 16 12 4 2 19
Testcase3 20 20 20 20 20 17 12 4 2 19
Testcase4 20 20 20 20 20 16 13 4 2 19
Testcase5 20 20 20 20 20 16 12 4 2 20
Testcase6 20 20 20 20 20 16 12 4 2 20
Testcase7 20 20 20 20 20 16 12 4 2 19
Testcase8 20 20 20 20 20 16 12 5 2 19

TFD
pt1 pt3 pt5 pt7 pt10 pt15 pt20 pt30 pt40

Testcase1 20 18 11 3 1 0 0 0 0
Testcase2 20 18 11 4 1 0 0 0 0
Testcase3 20 18 9 3 1 0 0 0 0
Testcase4 20 19 10 4 1 0 0 0 0
Testcase5 20 18 11 4 1 0 0 0 0
Testcase6 20 17 10 3 1 0 0 0 0
Testcase7 20 18 11 3 1 0 0 0 0
Testcase8 20 18 10 3 1 0 0 0 0

5.5 Summary

The action grounding operation can become a combinatorial problem in case the problem
has considerable number of typed objects, and eventually the planning task can be easily
impractical. In this chapter, we presented a scalable approach that radically changes the
accustomed rules of the robot navigation in task planning. We propose representing the
locations as continuous regions that avoids combinatorial problems, improves the solution
quality and reflects the physical notions in a realistic way. Compared to the state-of-the-art

5.5 Summary 140

task and motion planning methods, our approach allows encoding geometric knowledge in
expressive PDDL action level and it is domain-independent. We will consider integrating
this approach with a motion planner in the future to analyse its behaviour in execution level.

Chapter 6

Conclusions

For more than a decade, the addition of time and numbers in automated planning has
broadened its application area from solving only toy problems (e.g. Minesweeper, Solitaire)
to real world problems; including production planning, space exploration missions and
robotics. The control and optimisation of continuously executing dynamic processes is
one of the main concerns of automated behaviour, however they are either ignored or
considered as static by the off-the-shelf planning approaches. In this thesis, we have taken a
further step towards solving realistic problems by introducing and investigating the notion
of infinite domain action parameters (i.e. control parameters). We have introduced an
extension to the standardised PDDL language to include these parameters, so that other
researchers can benchmark their systems on this planning paradigm. Our language enables
modelling different temporal-numeric planning problems with control parameters and it is
not restricted to any specific application area (i.e. it enables modelling the problem in a
domain-independent way). We have developed a temporal-numeric planner, POPCORN,
that can reason with linear conditions and effects with multiple control parameters.
POPCORN couples a forward state space heuristic search with a constraint space search
to reason with both rich planning features (reasoning with time, numeric resources and
causal links) and the dynamics of the environment (using control parameters). Although
the existence of these parameters in planning as a search problem increases the branching
factor, we have shown that (with a detailed set of experiments), coupling two search spaces
(forwards search and constraint space search) is practical and efficient to find solutions for
challenging planning problems.

POPF, the system that POPCORN was built on, has various planning capabilities,
such as reasoning about the continuous numeric change, actions with flexible durations
and required concurrency. Whilst POPCORN preserves the use of all of these features,
it extends the system to reason about multiple numeric parameters that are kept flexible
during planning (that are similar to the ?duration parameter). We have shown that the
use of ?duration parameter is inadequate and unrealistic, as real-world applications can
require multiple flexible parameters that need to be independent from the duration of the
action. The cashpoint and the procurement domains are appropriate real-world examples,
where the ?duration parameter would not be a fitting surrogate for the control parameters.

We have identified that the continuous time relaxation (i.e. the infinity analysis) imposed

141

6.1 Summary of the Thesis 142

on a well-known temporal-numeric planning heuristic (the TRPG heuristic) undermines the
basic informedness of planning problems with control parameters. We have proposed a
novel relaxation technique, the refined infinity analysis, that combines the infinity analysis
with an incremental graph expansion mechanism. We have implemented and tested this
relaxation on the POPCORN planner (the resulting system is called POPCORN-R, which
is POPCORN with Refined infinity analysis) and we have observed significant improvements
on both the solvability and the solution quality of the planner on our benchmark domains,
especially the ones with repetitive resource transfer via a set of producer-consumer actions.
We have also shown that the heuristic scales and it is efficient in various planning problems
with a large set of challenging instances.

We have exploited the proposed modelling technique in a robot navigation scenario
that reinvents the representation of the waypoints on a 2-dimensional layout. It enables
modelling waypoints as continuous regions rather than modelling them as discrete objects.
This technique provides an abstract knowledge about the geometry of the environment to
the task planner, so that it is more resilient to the unseen dynamics of the environment (the
dynamics that are not included in the model, such as poor localisation due to sensor failure)
than the models with discrete objects. We intend to support this statement by integrating
our system in a planning and execution framework in the future (we provide the details in
Section 6.2.3). We have observed recognisable improvements on the plan quality (i.e. the
plans include less navigate actions) when the objects are relatively close to each other. We
have also shown that it helps the planner to avoid combinatorial search problem, as it avoids
grounding actions with location choices.

We summarise the contributions of the thesis by providing details of our methodology
in the next section. We then describe the direction we intend to proceed in the future.

6.1 Summary of the Thesis

We have identified that the existing temporal-numeric planning approaches (their repre-
sentations and modelling languages) pose a significant limitation on the dynamics of real
world problems, in which their domains are restricted to finite values. We have proposed
an extension to the most commonly used temporal-numeric planning language, so that
we can encode multiple action specific flexible numeric variables. We have presented a
planning approach (resulting in a system called POPCORN) handling problems modelled
in this language and have shown that our approach can solve an interesting set of planning
problems, where each carries different planning features (e.g. required concurrency, multiple
or single control parameter per action) in a temporal setting. We compared POPCORN with
our base system POPF, where it was offered a finite set of value options as a surrogate for
control parameters. We observed that POPF was faster than POPCORN in most problem
instances. The reason for this is that POPCORN uses a mathematical solver (i.e. LP solver)
at every C−state to check the state consistency, whereas POPF solves these problems using
only a STN. Although POPF was fast, it generated poor quality solutions (i.e. plan length,
makespan) due to repetitions of the same actions. We have also benchmarked POPCORN
with Scotty on domains in which the control parameters are modelled as rates. We observed
that Scotty generates poor quality plans, because it makes early valuation choices (i.e.

6.1 Summary of the Thesis 143

finding fixed partial solutions during planning) on control parameters.
We have investigated extending the delete-relaxation based temporal-numeric heuristic of

POPF, called the Temporal RPG, in two ways. The first one is a highly optimistic approach
to estimating the bounds of control parameters and makes a minimal use of LP. It simply
ignores the fact that the control parameter bounds can change during graph expansion.
We observed that this extension is insufficient in numerically complex problems, in which
numeric resources are repeatedly consumed and produced. We have identified that such
problems were either unsolvable (due to dead-ends) or caused highly combinatorial search. A
detailed observation has revealed that a relaxation method used in the heuristic, the infinity
analysis, hinders realistic estimation of numeric bounds and require structural revision for
tackling complex producer-consumer problems. We have proposed a new extension to the
heuristic by modifying the infinity analysis, so that it can generate a hybrid (i.e. discrete and
continuous) layered graph. We have also removed the use of the LP in this extension. We
have implemented our approach in POPCORN, and called the new system POPCORN-R.
We have benchmarked the systems POPCORN, POPCORN-R and cqScotty on a distinct
set of domains and highly challenging numeric problems. When benchmarking POPCORN
and POPCORN-R, we observed that our heuristic approach (i.e. POPCORN-R) has almost
doubled the number of solved problems achieved by the planner, and significantly improved
the solution time and quality. The comparison of our approach with cqScotty has revealed
that the heuristic of cqScotty (that is a slightly modified version of the Temporal RPG)
dramatically suffers from the numeric complexity of problems, and it could only solve half
of them.

Lastly, we exploited the planning with control parameters approach in a task and motion
planning scenario based on the SQUIRREL EU robotics project as a case study, in which
the locations were modelled as continuous regions. The purpose of this study was to provide
an estimated geometric information (of locations) to the task planner so that the solution
quality could be improved and the potential combinatorial search problem can be avoided.
In contrast to the existing task and motion planning integrations, our modelling technique
can be handled in a domain-independent way. We have compared the continuous model
with a simple discretised model using POPCORN, POPF and TFD planners on 8 different
testcases (varying in size of regions). The experimental results have revealed that reasoning
with continuous regions shows considerable improvement in the plan quality, especially when
the regions become larger. The rationale behind this result is that the agent can execute
multiple actions in overlapped continuous regions. On the other hand, this is not possible
in models with discrete locations unless it is explicitly defined by the modeller. Although
our modelling approach requires modelling and checking complex numeric constraints, it is
still scalable as it reduces the search space size to a great extent.

Overall, the main contribution of the thesis is the introduction and management of
integer and real-valued action parameters by giving choices off into mathematical programs
(e.g. LP). Hence, by the separation of the combinatorial and numeric decision-making (while
managing to maintain close integration between them), we achieve a sort of master-slave
relationship between the two aspects by enforcing constraints on the combinatorial choices
and exploiting search to reject these constraints when they cannot be satisfied. This yields
a novel extension of the way that the duration parameter is already used in a few planners,

6.2 Future Work 144

including COLIN and POPF.

6.2 Future Work

Our research summarised in the thesis has allowed us to discover a few possible directions
for our prospective work. In this section, we briefly describe our next steps individually on
the grounds of planning with control parameters.

6.2.1 Handling Quadratic Interactions in Domain Models

In this thesis, we restricted any possibility of non-linear interaction between variables
and parameters as we intended to clarify the representation and the position of control
parameters in automated planning. We believe that our research has come to a certain
maturity to move forwards tackling problems with mathematical complexity, that is handling
quadratic functions in pre- and post-conditions and effects of actions with existence of control
parameter(s). We plan to investigate this work in two ways. First, we will examine numeric
effects with control parameters in continuously evolving time (e.g. (increase (x) (* ?v

#t))) in forwards heuristic search framework. The authors of Scotty and cqScotty have
concentrated on this subject with two-staged planning process (i.e. finding a fixed plan
followed by finding a flexible plan). In contrast to their work, we intend to keep the control
parameters as duration-independent notions. This will allow us to solve far more realistic
problems than their scope. For instance, filling a bathtub is a continuous process, in which
the water flow rate is indeed independent from evolving time. We will make use of non-linear
programming (NLP) solvers to handle the interaction.

Our second prospective work in this topic will be examining quadratic interactions
between two control parameters, whose domains are independent from each other, in pre-
and post-conditions and effects of actions. With the help of this feature, we could avoid the
over-approximation technique of continuous regions used in Chapter 5, and even would have
the possibility of defining different shaped regions (e.g. ellipses).

6.2.2 Extending the Heuristic to Handle Multiple Control Para-
meters in Resource Flow

We restricted the scope of the refined infinity analysis to handle numeric expressions with
single numeric variable or a control parameter. In Remark 2, we have discussed the
possibility of extending the capability of this approach to multi-variate numeric expressions
by breaking them apart into individual flows. we will generalise the approach on the
grounds of this idea. We expect that this work will require significant modifications to
the k−limit and the numeric contribution computations. One possibility of achieving more
robust estimates than our current algorithms is to create integer programming models (and
to solve using MIP solver) to find the k−limit and the numeric contributions. Of course, this
possibility will increase the overhead cost of the heuristic, but it will allow solving far more
complex numeric problems than the ones we examined in this work. We will consider this
prospective work for more generalised numeric planning problems (with or without control
parameters).

6.3 List of Publications 145

6.2.3 Investigating the Execution Behaviour of Domains with
Continuous Regions

We have presented a modelling approach in a robot navigation scenario, however we have
not yet examined the behaviour in execution. We will integrate POPCORN with a the
ROSPlan framework (Cashmore et al., 2015), which provides a generic way for planning and
execution in a Robotic Operating System (ROS) (Quigley et al., 2009). ROSPlan can parse
plans produced by POPF, and dispatches actions to be executed in ROS environment. We
will first extend ROSPlan so that it can parse and dispatch plans with control parameters.
We will modify the interface between the ROSPlan system and the generic motion planner of
ROS, so that the motion planner can use the control parameter limits as estimated bounds.

Another challenge in this prospective work is to derive estimated continuous regions in
domain models. In this thesis, the continuous regions were modelled manually and they
were assumed to be collision-free regions. In reality, these regions should be constructed by
the motion planner. We will work on automatically deriving (and updating) these regions
based on feedback from the motion planner. Using learning approaches is a possibility to
derive the most useful region estimates during execution.

6.3 List of Publications

1. Emre Savaş, Maria Fox, Derek Long, and Daniele Magazzeni. Planning Using Actions
with Control Parameters. In Proceedings of the Twenty-Second European Conference
on Artificial Intelligence (ECAI 2016), 2016

2. Emre Ökkeş Savaş. Dissertation Abstract. International Conference on Automated
Planning and Scheduling Doctoral Consortium (ICAPS 2016), 2016

3. Emre Ökkeş Savaş, Maria Fox, Derek Long, and Daniele Magazzeni. Task Planning
with Control Parameters. In Proceedings of the 33rd Workshop of the UK Planning
and Scheduling Special Interest Group (PlanSIG 2016), 2016

4. Michael Cashmore, Maria Fox, Derek Long, Daniele Magazzeni, Bram Ridder, Emre
Savaş. ROSPlan: Planning in the Robot Operating System. In Proceedings of the 6th
Italian Workshop on Planning and Scheduling (IPS 2015), 2015

Appendices

146

Appendix A

The Relaxed Plan generated
using Refined Infinity Analysis

Timestamps: Snap-actions: # times applied (i.e. applyTimes):
0.001:

(assemble_A), start 1
(assemble_B), start 1

1.001:
(assemble_B), end 1
(supply_raw_material E), start ∞
(supply_raw_material F), start ∞
(supply_raw_material G), start ∞
(supply_raw_material H), start ∞
(supply_raw_material I), start ∞

2.001:
(assemble_A), end 1
(assemble_C), start ∞
(assemble_D), start ∞
(supply_raw_material E), end ∞
(supply_raw_material F), end ∞
(supply_raw_material G), end ∞
(supply_raw_material H), end ∞
(supply_raw_material I), end ∞

3.001:
(assemble_C), end ∞
(assemble_D), end ∞

3.002:
(assemble_B), start ∞

4.002:
(assemble_B), end ∞

4.003:
(assemble_A), start ∞

6.003:
(assemble_A), end ∞

147

Appendix B

Observe-and-classify Domains

B.1 Locations as Discrete Notions Approach

B.1.1 The Domain Model
(define (domain squirrel-Discrete)

(:requirements :typing :durative-actions :fluents)

(:types location object)

(:predicates (empty ?loc - location) (ready)

(observed ?obj - object) (classified ?obj - object)

(robot_at ?from - location)

(can_observe ?obj - object ?loc - location)

(can_classify ?obj - object ?loc - location)

(connected ?from ?to - location))

(:functions (distance ?from ?to - location) (maxV))

(:durative-action move_robot

:parameters(?from ?to - location)

:duration (and (= ?duration (/ (distance ?from ?to) (maxV))))

:condition (and (at start (connected ?from ?to))

(at start (ready)) (at start (robot_at ?from)))

:effect (and (at start (not (ready))) (at end (ready))

(at start (not (robot_at ?from))) (at end (robot_at ?to))))

(:durative-action observe-object

:parameters(?loc - location ?obj - object)

:duration (and (= ?duration 5))

:condition (and (at start (ready)) (at start (empty ?loc))

(at start (can_observe ?obj ?loc))

(at start (robot_at ?loc)))

:effect (and (at start (not (ready)))

(at end (ready)) (at end (observed ?obj))))

(:durative-action classify-object

:parameters(?loc - location ?obj - object)

148

B.1 Locations as Discrete Notions Approach 149

:duration (and (= ?duration 5))

:condition (and (at start (ready))

(at start (observed ?obj)) (at start (robot_at ?loc))

(at start (can_classify ?obj ?loc)) (at start (empty ?loc)))

:effect (and (at start (not (ready))) (at end (ready))

(at end (classified ?obj)))))

B.1.2 A problem Instance
(define (problem squirrel-problem0) (:domain squirrel-Discrete)

(:objects obj0 - object

o0observe0 o0observe1 o0observe2 - location

o0classify0 o0classify1 o0classify2 - location

initial_point - location)

(:init (ready) (robot_at initial_point) (= (maxV) 2)

(can_observe obj0 o0observe0) (empty initial_point) (empty o0classify2)

(can_observe obj0 o0observe1) (can_observe obj0 o0observe2)

(can_classify obj0 o0classify0) (can_classify obj0 o0classify1)

(can_classify obj0 o0classify2) (empty o0observe0) (empty o0observe1)

(empty o0observe2) (empty o0classify0) (empty o0classify1)

(connected initial_point o0observe0) (connected initial_point o0observe1)

(connected initial_point o0observe2) (connected initial_point o0classify0)

(connected initial_point o0classify1) (connected initial_point o0classify2)

(connected o0observe0 initial_point) (connected o0observe0 o0observe1)

(connected o0observe0 o0observe2) (connected o0observe0 o0classify0)

(connected o0observe0 o0classify1) (connected o0observe0 o0classify2)

(connected o0observe1 initial_point) (connected o0observe1 o0observe0)

(connected o0observe1 o0observe2) (connected o0observe1 o0classify0)

(connected o0observe1 o0classify1) (connected o0observe1 o0classify2)

(connected o0observe2 initial_point) (connected o0observe2 o0observe0)

(connected o0observe2 o0observe1) (connected o0observe2 o0classify0)

(connected o0observe2 o0classify1) (connected o0observe2 o0classify2)

(connected o0classify0 initial_point) (connected o0classify0 o0observe0)

(connected o0classify0 o0observe1) (connected o0classify0 o0observe2)

(connected o0classify0 o0classify1) (connected o0classify0 o0classify2)

(connected o0classify1 initial_point) (connected o0classify1 o0observe0)

(connected o0classify1 o0observe1) (connected o0classify1 o0observe2)

(connected o0classify1 o0classify0) (connected o0classify1 o0classify2)

(connected o0classify2 initial_point) (connected o0classify2 o0observe0)

(connected o0classify2 o0observe1) (connected o0classify2 o0observe2)

(connected o0classify2 o0classify0) (connected o0classify2 o0classify1)

(= (distance o0observe0 o0observe1) 2.12581)

(= (distance o0observe0 o0observe2) 3.8562)

(= (distance o0observe0 o0classify0) 1.83455)

(= (distance o0observe0 o0classify1) 1.58699)

(= (distance o0observe0 o0classify2) 1.55307)

(= (distance o0observe0 initial_point) 100.456)

B.2 Locations as Continuous Regions Approach 150

(= (distance o0observe1 o0observe0) 2.12581)

(= (distance o0observe1 o0observe2) 2.51036)

(= (distance o0observe1 o0classify0) 0.29126)

(= (distance o0observe1 o0classify1) 0.538821)

(= (distance o0observe1 o0classify2) 0.683348)

(= (distance o0observe1 initial_point) 99.4494)

(= (distance o0observe2 o0observe0) 3.8562)

(= (distance o0observe2 o0observe1) 2.51036)

(= (distance o0observe2 o0classify0) 2.43234)

(= (distance o0observe2 o0classify1) 2.79487)

(= (distance o0observe2 o0classify2) 3.05718)

(= (distance o0observe2 initial_point) 101.96)

(= (distance o0classify0 o0observe0) 1.83455)

(= (distance o0classify0 o0observe1) 0.29126)

(= (distance o0classify0 o0observe2) 2.43234)

(= (distance o0classify0 o0classify1) 0.362535)

(= (distance o0classify0 o0classify2) 0.624845)

(= (distance o0classify0 initial_point) 99.5274)

(= (distance o0classify1 o0observe0) 1.58699)

(= (distance o0classify1 o0observe1) 0.538821)

(= (distance o0classify1 o0observe2) 2.79487)

(= (distance o0classify1 o0classify0) 0.362535)

(= (distance o0classify1 o0classify2) 0.26231)

(= (distance o0classify1 initial_point) 99.1649)

(= (distance o0classify2 o0observe0) 1.55307)

(= (distance o0classify2 o0observe1) 0.683348)

(= (distance o0classify2 o0observe2) 3.05718)

(= (distance o0classify2 o0classify0) 0.624845)

(= (distance o0classify2 o0classify1) 0.26231)

(= (distance o0classify2 initial_point) 98.9026)

(= (distance initial_point o0observe0) 100.456)

(= (distance initial_point o0observe1) 99.4494)

(= (distance initial_point o0observe2) 101.96)

(= (distance initial_point o0classify0) 99.5274)

(= (distance initial_point o0classify1) 99.1649)

(= (distance initial_point o0classify2) 98.9026))

(:goal (and (classified obj0)))

(:metric minimize (total-time)))

B.2 Locations as Continuous Regions Approach

B.2.1 The Domain Model
(define (domain squirrel)

(:requirements :typing :durative-actions :fluents :duration-inequalities)

(:types location object)

(:predicates (observed ?obj - object) (classified ?obj - object)

(object_at ?obj - object ?loc - location) (ready)

B.2 Locations as Continuous Regions Approach 151

(empty_northwest ?loc - location) (empty_southwest ?loc - location)

(empty_southeast ?loc - location) (empty_northeast ?loc - location))

(:functions (x_location ?loc - location) (y_location ?loc - location)

(x_robot) (y_robot) (maxV) (classify_min_distance)

(observe_min_distance) (classify_min_distance_times_sqrt2)

(observe_min_distance_times_sqrt2) (observe_max_distance)

(classify_max_distance_times_sqrt2) (classify_max_distance)

(observe_max_distance_times_sqrt2))

(:durative-action move_robot

:parameters()

:control (?dx ?dy - number)

:duration (and (>= ?duration (/ ?dx (maxV)))

(>= ?duration (/ (- ?dx) (maxV)))

(>= ?duration (/ ?dy (maxV)))

(>= ?duration (/ (- ?dy) (maxV)))

(>= ?duration (+ (/ ?dy (maxV)) (/ ?dx (maxV))))

(>= ?duration (+ (/ (- ?dy) (maxV)) (/ (- ?dx) (maxV))))

(>= ?duration (+ (/ (- ?dy) (maxV)) (/ ?dx (maxV))))

(>= ?duration (+ (/ ?dy (maxV)) (/ (- ?dx) (maxV))))

(<= ?duration 200))

:condition (and (at start (ready))

;; the displacement of robot is inside [-100,100], [-100,100] square

(at start (>= ?dx -100)) (at start (<= ?dx 100))

(at start (>= ?dy -100)) (at start (<= ?dy 100))

(at end (>= ?dx -100)) (at end (>= ?dy -100))

(at end (<= ?dx 100)) (at end (<= ?dy 100))

; the robot must stay within [0, 100] [0, 100] square

(over all (>= (x_robot) 0)) (over all (<= (x_robot) 100))

(over all (>= (y_robot) 0)) (over all (<= (y_robot) 100)))

:effect (and (at start (not (ready))) (at end (ready))

(at start (increase (x_robot) ?dx))

(at start (increase (y_robot) ?dy))))

(:durative-action observe-object-Northeast

:parameters(?loc - location ?obj - object)

:duration (and (= ?duration 5))

:condition (and (at start (ready)) (at start (object_at ?obj ?loc))

(at start (empty_northeast ?loc))

(over all (>= (x_robot) 0)) (over all (<= (x_robot) 100))

(over all (>= (y_robot) 0)) (over all (<= (y_robot) 100))

(at start (> (x_robot) (x_location ?loc)))

(at start (> (y_robot) (y_location ?loc)))

(at start (<= (* 1 (- (x_robot) (x_location ?loc)))

(observe_max_distance)))

(at start (<= (* 1 (- (y_robot) (y_location ?loc)))

(observe_max_distance)))

(at start (<= (- (* 1 (- (x_robot) (x_location ?loc))) (*1

B.2 Locations as Continuous Regions Approach 152

(- (y_robot) (y_location ?loc)))) (observe_max_distance_times_sqrt2)))

(at start (<= (+ (* 1 (- (x_robot) (x_location ?loc))) (*1

(- (y_robot) (y_location ?loc)))) (observe_max_distance_times_sqrt2)))

(at start (>= (* 1 (- (x_robot) (x_location ?loc)))

(observe_min_distance)))

(at start (>= (* 1 (- (y_robot) (y_location ?loc)))

(observe_min_distance)))

(at start (>= (- (* 1 (- (x_robot) (x_location ?loc))) (* 1

(- (y_robot) (y_location ?loc)))) (observe_min_distance_times_sqrt2)))

(at start (>= (+ (* 1 (- (x_robot) (x_location ?loc))) (* 1

(- (y_robot) (y_location ?loc)))) (observe_min_distance_times_sqrt2)))

(at end (<= (* 1 (- (x_robot) (x_location ?loc)))

(observe_max_distance)))

(at end (<= (* 1 (- (y_robot) (y_location ?loc)))

(observe_max_distance)))

(at end (<= (- (* 1 (- (x_robot) (x_location ?loc))) (* 1

(- (y_robot) (y_location ?loc)))) (observe_max_distance_times_sqrt2)))

(at end (<= (+ (* 1 (- (x_robot) (x_location ?loc))) (* 1

(- (y_robot) (y_location ?loc)))) (observe_max_distance_times_sqrt2)))

(at end (>= (* 1 (- (x_robot) (x_location ?loc)))

(observe_min_distance)))

(at end (>= (* 1 (- (y_robot) (y_location ?loc)))

(observe_min_distance)))

(at end (>= (- (* 1 (- (x_robot) (x_location ?loc))) (* 1

(- (y_robot) (y_location ?loc)))) (observe_min_distance_times_sqrt2)))

(at end (>= (+ (* 1 (- (x_robot) (x_location ?loc))) (* 1

(- (y_robot) (y_location ?loc)))) (observe_min_distance_times_sqrt2)))

)

:effect (and (at start (not (ready))) (at end (ready))

(at end (observed ?obj))))

(:durative-action observe-object-Northwest

:parameters(?loc - location ?obj - object)

:duration (and (= ?duration 5))

:condition (and (at start (ready)) (at start (object_at ?obj ?loc))

(at start (empty_northwest ?loc))

(over all (>= (x_robot) 0)) (over all (<= (x_robot) 100))

(over all (>= (y_robot) 0)) (over all (<= (y_robot) 100))

(at start (< (x_robot) (x_location ?loc)))

(at start (> (y_robot) (y_location ?loc)))

(at start (<= (* 1 (- (x_location ?loc) (x_robot)))

(observe_max_distance)))

(at start (<= (* 1 (- (y_robot) (y_location ?loc)))

(observe_max_distance)))

(at start (<= (- (* 1 (- (x_location ?loc) (x_robot))) (* 1

(- (y_robot) (y_location ?loc)))) (observe_max_distance_times_sqrt2)))

(at start (<= (+ (* 1 (- (x_location ?loc) (x_robot))) (* 1

(- (y_robot) (y_location ?loc)))) (observe_max_distance_times_sqrt2)))

B.2 Locations as Continuous Regions Approach 153

(at start (>= (* 1 (- (x_location ?loc) (x_robot)))

(observe_min_distance)))

(at start (>= (* 1 (- (y_robot) (y_location ?loc)))

(observe_min_distance)))

(at start (>= (- (* 1 (- (x_location ?loc) (x_robot))) (* 1

(- (y_robot) (y_location ?loc)))) (observe_min_distance_times_sqrt2)))

(at start (>= (+ (* 1 (- (x_location ?loc) (x_robot))) (* 1

(- (y_robot) (y_location ?loc)))) (observe_min_distance_times_sqrt2)))

(at end (<= (* 1 (- (x_location ?loc) (x_robot)))

(observe_max_distance)))

(at end (<= (* 1 (- (y_robot) (y_location ?loc)))

(observe_max_distance)))

(at end (<= (- (* 1 (- (x_location ?loc) (x_robot))) (* 1

(- (y_robot) (y_location ?loc)))) (observe_max_distance_times_sqrt2)))

(at end (<= (+ (* 1 (- (x_location ?loc) (x_robot))) (* 1

(- (y_robot) (y_location ?loc)))) (observe_max_distance_times_sqrt2)))

(at end (>= (* 1 (- (x_location ?loc) (x_robot)))

(observe_min_distance)))

(at end (>= (* 1 (- (y_robot) (y_location ?loc)))

(observe_min_distance)))

(at end (>= (- (* 1 (- (x_location ?loc) (x_robot))) (* 1

(- (y_robot) (y_location ?loc)))) (observe_min_distance_times_sqrt2)))

(at end (>= (+ (* 1 (- (x_location ?loc) (x_robot))) (* 1

(- (y_robot) (y_location ?loc)))) (observe_min_distance_times_sqrt2)))

)

:effect (and (at start (not (ready))) (at end (ready))

(at end (observed ?obj))))

(:durative-action observe-object-southwest

:parameters(?loc - location ?obj - object)

:duration (and (= ?duration 5))

:condition (and (at start (ready)) (at start (object_at ?obj ?loc))

(at start (empty_southwest ?loc))

(over all (>= (x_robot) 0)) (over all (<= (x_robot) 100))

(over all (>= (y_robot) 0)) (over all (<= (y_robot) 100))

(at start (< (x_robot) (x_location ?loc)))

(at start (< (y_robot) (y_location ?loc)))

(at start (<= (* 1 (- (x_location ?loc) (x_robot)))

(observe_max_distance)))

(at start (<= (* 1 (- (y_location ?loc)(y_robot)))

(observe_max_distance)))

(at start (<= (- (* 1 (- (x_location ?loc) (x_robot))) (* 1

(- (y_location ?loc) (y_robot)))) (observe_max_distance_times_sqrt2)))

(at start (<= (+ (* 1 (- (x_location ?loc) (x_robot))) (* 1

(- (y_location ?loc) (y_robot)))) (observe_max_distance_times_sqrt2)))

(at start (>= (* 1 (- (x_location ?loc) (x_robot)))

(observe_min_distance)))

(at start (>= (* 1 (- (y_location ?loc) (y_robot)))

B.2 Locations as Continuous Regions Approach 154

(observe_min_distance)))

(at start (>= (- (* 1 (- (x_location ?loc) (x_robot))) (* 1

(- (y_location ?loc) (y_robot)))) (observe_min_distance_times_sqrt2)))

(at start (>= (+ (* 1 (- (x_location ?loc) (x_robot))) (* 1

(- (y_location ?loc) (y_robot)))) (observe_min_distance_times_sqrt2)))

(at end (<= (* 1 (- (x_location ?loc) (x_robot)))

(observe_max_distance)))

(at end (<= (* 1 (- (y_location ?loc)(y_robot)))

(observe_max_distance)))

(at end (<= (- (* 1 (- (x_location ?loc) (x_robot))) (* 1

(- (y_location ?loc) (y_robot)))) (observe_max_distance_times_sqrt2)))

(at end (<= (+ (* 1 (- (x_location ?loc) (x_robot))) (* 1

(- (y_location ?loc) (y_robot)))) (observe_max_distance_times_sqrt2)))

(at end (>= (* 1 (- (x_location ?loc) (x_robot)))

(observe_min_distance)))

(at end (>= (* 1 (- (y_location ?loc) (y_robot)))

(observe_min_distance)))

(at end (>= (- (* 1 (- (x_location ?loc) (x_robot))) (* 1

(- (y_location ?loc) (y_robot)))) (observe_min_distance_times_sqrt2)))

(at end (>= (+ (* 1 (- (x_location ?loc) (x_robot))) (* 1

(- (y_location ?loc) (y_robot)))) (observe_min_distance_times_sqrt2)))

)

:effect (and (at start (not (ready))) (at end (ready))

(at end (observed ?obj))))

(:durative-action observe-object-southeast

:parameters(?loc - location ?obj - object)

:duration (and (= ?duration 5))

:condition (and (at start (ready)) (at start (object_at ?obj ?loc))

(at start (empty_southeast ?loc))

(over all (>= (x_robot) 0)) (over all (<= (x_robot) 100))

(over all (>= (y_robot) 0)) (over all (<= (y_robot) 100))

(at start (> (x_robot) (x_location ?loc)))

(at start (< (y_robot) (y_location ?loc)))

(at start (<= (* 1 (- (x_robot) (x_location ?loc)))

(observe_max_distance)))

(at start (<= (* 1 (- (y_location ?loc)(y_robot)))

(observe_max_distance)))

(at start (<= (- (* 1 (- (x_robot) (x_location ?loc))) (* 1

(- (y_location ?loc) (y_robot)))) (observe_max_distance_times_sqrt2)))

(at start (<= (+ (* 1 (- (x_robot) (x_location ?loc))) (* 1

(- (y_location ?loc) (y_robot)))) (observe_max_distance_times_sqrt2)))

(at start (>= (* 1 (- (x_robot) (x_location ?loc)))

(observe_min_distance)))

(at start (>= (* 1 (- (y_location ?loc) (y_robot)))

(observe_min_distance)))

(at start (>= (- (* 1 (- (x_robot) (x_location ?loc))) (* 1

(- (y_location ?loc) (y_robot)))) (observe_min_distance_times_sqrt2)))

B.2 Locations as Continuous Regions Approach 155

(at start (>= (+ (* 1 (- (x_robot) (x_location ?loc))) (* 1

(- (y_location ?loc) (y_robot)))) (observe_min_distance_times_sqrt2)))

(at end (<= (* 1 (- (x_robot) (x_location ?loc)))

(observe_max_distance)))

(at end (<= (* 1 (- (y_location ?loc)(y_robot)))

(observe_max_distance)))

(at end (<= (- (* 1 (- (x_robot) (x_location ?loc))) (* 1

(- (y_location ?loc) (y_robot)))) (observe_max_distance_times_sqrt2)))

(at end (<= (+ (* 1 (- (x_robot) (x_location ?loc))) (* 1

(- (y_location ?loc) (y_robot)))) (observe_max_distance_times_sqrt2)))

(at end (>= (* 1 (- (x_robot) (x_location ?loc)))

(observe_min_distance)))

(at end (>= (* 1 (- (y_location ?loc) (y_robot)))

(observe_min_distance)))

(at end (>= (- (* 1 (- (x_robot) (x_location ?loc))) (* 1

(- (y_location ?loc) (y_robot)))) (observe_min_distance_times_sqrt2)))

(at end (>= (+ (* 1 (- (x_robot) (x_location ?loc))) (* 1

(- (y_location ?loc) (y_robot)))) (observe_min_distance_times_sqrt2)))

)

:effect (and (at start (not (ready))) (at end (ready))

(at end (observed ?obj))))

(:durative-action classify-object-Northeast

:parameters(?loc - location ?obj - object)

:duration (and (= ?duration 5))

:condition (and (at start (ready)) (at start (object_at ?obj ?loc))

(at start (observed ?obj)) (at start (empty_northeast ?loc))

(over all (>= (x_robot) 0)) (over all (<= (x_robot) 100))

(over all (>= (y_robot) 0)) (over all (<= (y_robot) 100))

(at start (> (x_robot) (x_location ?loc)))

(at start (> (y_robot) (y_location ?loc)))

(at start (<= (* 1 (- (x_robot) (x_location ?loc)))

(classify_max_distance)))

(at start (<= (* 1 (- (y_robot) (y_location ?loc)))

(classify_max_distance)))

(at start (<= (- (* 1 (- (x_robot) (x_location ?loc))) (* 1

(- (y_robot) (y_location ?loc)))) (classify_max_distance_times_sqrt2)))

(at start (<= (+ (* 1 (- (x_robot) (x_location ?loc))) (* 1

(- (y_robot) (y_location ?loc)))) (classify_max_distance_times_sqrt2)))

(at start (>= (* 1 (- (x_robot) (x_location ?loc)))

(classify_min_distance)))

(at start (>= (* 1 (- (y_robot) (y_location ?loc)))

(classify_min_distance)))

(at start (>= (- (* 1 (- (x_robot) (x_location ?loc))) (* 1

(- (y_robot) (y_location ?loc)))) (classify_min_distance_times_sqrt2)))

(at start (>= (+ (* 1 (- (x_robot) (x_location ?loc))) (* 1

(- (y_robot) (y_location ?loc)))) (classify_min_distance_times_sqrt2)))

(at end (<= (* 1 (- (x_robot) (x_location ?loc)))

B.2 Locations as Continuous Regions Approach 156

(classify_max_distance)))

(at end (<= (* 1 (- (y_robot) (y_location ?loc)))

(classify_max_distance)))

(at end (<= (- (* 1 (- (x_robot) (x_location ?loc))) (* 1

(- (y_robot) (y_location ?loc)))) (classify_max_distance_times_sqrt2)))

(at end (<= (+ (* 1 (- (x_robot) (x_location ?loc))) (* 1

(- (y_robot) (y_location ?loc)))) (classify_max_distance_times_sqrt2)))

(at end (>= (* 1 (- (x_robot) (x_location ?loc)))

(classify_min_distance)))

(at end (>= (* 1 (- (y_robot) (y_location ?loc)))

(classify_min_distance)))

(at end (>= (- (* 1 (- (x_robot) (x_location ?loc))) (* 1

(- (y_robot) (y_location ?loc)))) (classify_min_distance_times_sqrt2)))

(at end (>= (+ (* 1 (- (x_robot) (x_location ?loc))) (* 1

(- (y_robot) (y_location ?loc)))) (classify_min_distance_times_sqrt2)))

)

:effect (and (at start (not (ready))) (at end (ready))

(at end (classified ?obj))))

(:durative-action classify-object-Northwest

:parameters(?loc - location ?obj - object)

:duration (and (= ?duration 5))

:condition (and (at start (ready)) (at start (object_at ?obj ?loc))

(at start (observed ?obj)) (at start (empty_northwest ?loc))

(over all (>= (x_robot) 0)) (over all (<= (x_robot) 100))

(over all (>= (y_robot) 0)) (over all (<= (y_robot) 100))

(at start (< (x_robot) (x_location ?loc)))

(at start (> (y_robot) (y_location ?loc)))

(at start (<= (* 1 (- (x_location ?loc) (x_robot)))

(classify_max_distance)))

(at start (<= (* 1 (- (y_robot) (y_location ?loc)))

(classify_max_distance)))

(at start (<= (- (* 1 (- (x_location ?loc) (x_robot))) (* 1

(- (y_robot) (y_location ?loc)))) (classify_max_distance_times_sqrt2)))

(at start (<= (+ (* 1 (- (x_location ?loc) (x_robot))) (* 1

(- (y_robot) (y_location ?loc)))) (classify_max_distance_times_sqrt2)))

(at start (>= (* 1 (- (x_location ?loc) (x_robot)))

(classify_min_distance)))

(at start (>= (* 1 (- (y_robot) (y_location ?loc)))

(classify_min_distance)))

(at start (>= (- (* 1 (- (x_location ?loc) (x_robot))) (* 1

(- (y_robot) (y_location ?loc)))) (classify_min_distance_times_sqrt2)))

(at start (>= (+ (* 1 (- (x_location ?loc) (x_robot))) (* 1

(- (y_robot) (y_location ?loc)))) (classify_min_distance_times_sqrt2)))

(at end (<= (* 1 (- (x_location ?loc) (x_robot)))

(classify_max_distance)))

(at end (<= (* 1 (- (y_robot) (y_location ?loc)))

(classify_max_distance)))

B.2 Locations as Continuous Regions Approach 157

(at end (<= (- (* 1 (- (x_location ?loc) (x_robot))) (* 1

(- (y_robot) (y_location ?loc)))) (classify_max_distance_times_sqrt2)))

(at end (<= (+ (* 1 (- (x_location ?loc) (x_robot))) (* 1

(- (y_robot) (y_location ?loc)))) (classify_max_distance_times_sqrt2)))

(at end (>= (* 1 (- (x_location ?loc) (x_robot)))

(classify_min_distance)))

(at end (>= (* 1 (- (y_robot) (y_location ?loc)))

(classify_min_distance)))

(at end (>= (- (* 1 (- (x_location ?loc) (x_robot))) (* 1

(- (y_robot) (y_location ?loc)))) (classify_min_distance_times_sqrt2)))

(at end (>= (+ (* 1 (- (x_location ?loc) (x_robot))) (* 1

(- (y_robot) (y_location ?loc)))) (classify_min_distance_times_sqrt2)))

)

:effect (and (at start (not (ready))) (at end (ready))

(at end (classified ?obj))))

(:durative-action classify-object-southwest

:parameters(?loc - location ?obj - object)

:duration (and (= ?duration 5))

:condition (and (at start (ready)) (at start (object_at ?obj ?loc))

(at start (observed ?obj)) (at start (empty_southwest ?loc))

(over all (>= (x_robot) 0)) (over all (<= (x_robot) 100))

(over all (>= (y_robot) 0)) (over all (<= (y_robot) 100))

(at start (< (x_robot) (x_location ?loc)))

(at start (< (y_robot) (y_location ?loc)))

(at start (<= (* 1 (- (x_location ?loc) (x_robot)))

(classify_max_distance)))

(at start (<= (* 1 (- (y_location ?loc)(y_robot)))

(classify_max_distance)))

(at start (<= (- (* 1 (- (x_location ?loc) (x_robot))) (* 1

(- (y_location ?loc) (y_robot)))) (classify_max_distance_times_sqrt2)))

(at start (<= (+ (* 1 (- (x_location ?loc) (x_robot))) (* 1

(- (y_location ?loc) (y_robot)))) (classify_max_distance_times_sqrt2)))

(at start (>= (* 1 (- (x_location ?loc) (x_robot)))

(classify_min_distance)))

(at start (>= (* 1 (- (y_location ?loc) (y_robot)))

(classify_min_distance)))

(at start (>= (- (* 1 (- (x_location ?loc) (x_robot))) (* 1

(- (y_location ?loc) (y_robot)))) (classify_min_distance_times_sqrt2)))

(at start (>= (+ (* 1 (- (x_location ?loc) (x_robot))) (* 1

(- (y_location ?loc) (y_robot)))) (classify_min_distance_times_sqrt2)))

(at end (<= (* 1 (- (x_location ?loc) (x_robot)))

(classify_max_distance)))

(at end (<= (* 1 (- (y_location ?loc)(y_robot)))

(classify_max_distance)))

(at end (<= (- (* 1 (- (x_location ?loc) (x_robot))) (* 1

(- (y_location ?loc) (y_robot)))) (classify_max_distance_times_sqrt2)))

(at end (<= (+ (* 1 (- (x_location ?loc) (x_robot))) (* 1

B.2 Locations as Continuous Regions Approach 158

(- (y_location ?loc) (y_robot)))) (classify_max_distance_times_sqrt2)))

(at end (>= (* 1 (- (x_location ?loc) (x_robot)))

(classify_min_distance)))

(at end (>= (* 1 (- (y_location ?loc) (y_robot)))

(classify_min_distance)))

(at end (>= (- (* 1 (- (x_location ?loc) (x_robot))) (* 1

(- (y_location ?loc) (y_robot)))) (classify_min_distance_times_sqrt2)))

(at end (>= (+ (* 1 (- (x_location ?loc) (x_robot))) (* 1

(- (y_location ?loc) (y_robot)))) (classify_min_distance_times_sqrt2)))

)

:effect (and (at start (not (ready))) (at end (ready))

(at end (classified ?obj))))

(:durative-action classify-object-southeast

:parameters(?loc - location ?obj - object)

:duration (and (= ?duration 5))

:condition (and (at start (ready)) (at start (object_at ?obj ?loc))

(at start (observed ?obj)) (at start (empty_southeast ?loc))

(over all (>= (x_robot) 0)) (over all (<= (x_robot) 100))

(over all (>= (y_robot) 0)) (over all (<= (y_robot) 100))

(at start (> (x_robot) (x_location ?loc)))

(at start (< (y_robot) (y_location ?loc)))

(at start (<= (* 1 (- (x_robot) (x_location ?loc)))

(classify_max_distance)))

(at start (<= (* 1 (- (y_location ?loc)(y_robot)))

(classify_max_distance)))

(at start (<= (- (* 1 (- (x_robot) (x_location ?loc))) (* 1

(- (y_location ?loc) (y_robot)))) (classify_max_distance_times_sqrt2)))

(at start (<= (+ (* 1 (- (x_robot) (x_location ?loc))) (* 1

(- (y_location ?loc) (y_robot)))) (classify_max_distance_times_sqrt2)))

(at start (>= (* 1 (- (x_robot) (x_location ?loc)))

(classify_min_distance)))

(at start (>= (* 1 (- (y_location ?loc) (y_robot)))

(classify_min_distance)))

(at start (>= (- (* 1 (- (x_robot) (x_location ?loc))) (* 1

(- (y_location ?loc) (y_robot)))) (classify_min_distance_times_sqrt2)))

(at start (>= (+ (* 1 (- (x_robot) (x_location ?loc))) (* 1

(- (y_location ?loc) (y_robot)))) (classify_min_distance_times_sqrt2)))

(at end (<= (* 1 (- (x_robot) (x_location ?loc)))

(classify_max_distance)))

(at end (<= (* 1 (- (y_location ?loc)(y_robot)))

(classify_max_distance)))

(at end (<= (- (* 1 (- (x_robot) (x_location ?loc))) (* 1

(- (y_location ?loc) (y_robot)))) (classify_max_distance_times_sqrt2)))

(at end (<= (+ (* 1 (- (x_robot) (x_location ?loc))) (* 1

(- (y_location ?loc) (y_robot)))) (classify_max_distance_times_sqrt2)))

(at end (>= (* 1 (- (x_robot) (x_location ?loc)))

(classify_min_distance)))

B.2 Locations as Continuous Regions Approach 159

(at end (>= (* 1 (- (y_location ?loc) (y_robot)))

(classify_min_distance)))

(at end (>= (- (* 1 (- (x_robot) (x_location ?loc))) (* 1

(- (y_location ?loc) (y_robot)))) (classify_min_distance_times_sqrt2)))

(at end (>= (+ (* 1 (- (x_robot) (x_location ?loc))) (* 1

(- (y_location ?loc) (y_robot)))) (classify_min_distance_times_sqrt2)))

)

:effect (and (at start (not (ready))) (at end (ready))

(at end (classified ?obj)))))

B.2.2 A problem Instance
(define (problem squirrel-problem0) (:domain squirrel)

(:objects obj0 - object loc0 - location)

(:init (ready) (object_at obj0 loc0) (= (maxV) 2)

(= (classify_min_distance) 0.2) (= (classify_max_distance) 0.5)

(= (observe_min_distance) 0.5) (= (observe_max_distance) 5)

(= (classify_min_distance_times_sqrt2) 0.282843)

(= (classify_max_distance_times_sqrt2) 0.707107)

(= (observe_min_distance_times_sqrt2) 0.707107)

(= (observe_max_distance_times_sqrt2) 7.07107)

(= (x_robot) 0) (= (y_robot) 0) ;; initial_point

(= (x_location loc0) 70.736) (= (y_location loc0) 28.683))

(:goal (and (classified obj0)))

(:metric minimize (total-time)))

Bibliography

Ai-Chang, M., Bresina, J., Hsu, J., Jonsson, A., Kanefsky, B., McCurdy, M., Morris, P.,
Rajan, K., Vera, A., and Yglesias, J. Mapgen: Mixed-initiative activity planning for the
mars exploration rover mission. In Proceedings of the Fourteenth International Conference
on Automated Planning and Scheduling (ICAPS 2004), 2004.

Aldinger, J., Mattmüller, R., and Göbelbecker, M. Complexity of interval relaxed numeric
planning. In Joint German/Austrian Conference on Artificial Intelligence (Künstliche
Intelligenz), pages 19–31. Springer, 2015.

Bäckström, C. and Nebel, B. Complexity results for sas+ planning. Computational
Intelligence, 11(4):625–655, 1995.

Bajada, J. Temporal planning for rich numeric contexts. PhD thesis, King’s College London,
2016.

Bajada, J., Fox, M., and Long, D. Temporal planning with semantic attachment of non-linear
monotonic continuous behaviours. In Proceedings of the Twenty-Fourth International
Joint Conference on Artificial Intelligence (IJCAI 2015), pages 1523–1529, 2015.

Benton, J., Coles, A., and Coles, A. Temporal Planning with Preferences and Time-
Dependent Continuous Costs. In Proceedings of the Twenty-First International Conference
on Automated Planning and Scheduling, ICAPS, 2012.

Blum, A. L. and Furst, M. L. Fast planning through planning graph analysis. Artificial
intelligence, 90(1):281–300, 1997.

Bogomolov, S., Magazzeni, D., Podelski, A., and Wehrle, M. Planning as model checking
in hybrid domains. In Proceedings of the Twenty-Eighth AAAI Conference on Artificial
Intelligence, pages 2228–2234, 2014.

Bonet, B. and Geffner, H. Planning as heuristic search: New results. In European Conference
on Planning, pages 360–372. Springer, 1999.

Bonet, B. and Geffner, H. Planning as heuristic search. Artificial Intelligence, 129(1-2):
5–33, 2001.

Bonet, B., Loerincs, G., and Geffner, H. A robust and fast action selection mechanism
for planning. In Proceedings of the fourteenth national conference on artificial
intelligence and ninth conference on Innovative applications of artificial intelligence

160

Bibliography 161

(AAAI’97/IAAI’97), pages 714–719, 1997. URL https://www.aaai.org/Papers/

Workshops/1997/WS-97-10/WS97-10-002.pdf.

Botea, A., Enzenberger, M., Müller, M., and Schaeffer, J. Macro-FF: Improving AI Planning
with Automatically Learned Macro-Operators. Journal of Artificial Intelligence Research,
24:581–621, 2005.

Bryce, D., Gao, S., Musliner, D. J., and Goldman, R. P. Smt-based nonlinear pddl+
planning. In Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence,
pages 3247–3253, 2015.

Bylander, T. The computational complexity of propositional strips planning. Artificial
Intelligence, 69(1-2):165–204, 1994.

Cambon, S., Alami, R., and Gravot, F. A hybrid approach to intricate motion, manipulation
and task planning. The International Journal of Robotics Research, 28(1):104–126, 2009.

Cashmore, M., Fox, M., Larkworthy, T., Long, D., and Magazzeni, D. Auv mission control
via temporal planning. In Proceedings of the International Conference on Robotics and
Automation (ICRA), pages 6535–6541. IEEE, 2014.

Cashmore, M., Fox, M., Long, D., Magazzeni, D., Ridder, B., Carrera, A., Palomeras, N.,
Hurtos, N., and Carreras, M. Rosplan: Planning in the robot operating system. In
Proceedings of the Twenty-Fifth International Conference on Automated Planning and
Scheduling, pages 333–341, 2015.

Cashmore, M., Fox, M., Long, D., and Magazzeni, D. A compilation of the full pddl+
language into smt. In Proceedings of the Twenty-Sixth International Conference on
Automated Planning and Scheduling, 2016.

Cimatti, A., Giunchiglia, E., Giunchiglia, F., and Traverso, P. Planning via model checking:
A decision procedure for ar. Recent Advances in AI planning, pages 130–142, 1997.

Coles, A., Coles, A., Fox, M., and Long, D. "extending the use of inference in temporal
planning as forwards search". In Proceedings of the Nineteenth International Conference
on Automated Planning and Scheduling, 2009a.

Coles, A., Coles, A., Fox, M., and Long, D. Temporal Planning in Domains with Linear
Processes. In Proceedings of the Twenty-First International Joint Conference on Artificial
Intelligence (IJCAI 2009). AAAI Press, July 2009b.

Coles, A., Coles, A., Fox, M., and Long, D. Forward-Chaining Partial-Order Planning.
In Proceedings of the Twentieth International Conference on Automated Planning and
Scheduling (ICAPS 2010), pages 42–49, 2010.

Coles, A., Coles, A., Fox, M., and Long, D. COLIN: Planning with Continuous Linear
Numeric Change. Journal of Artificial Intelligence Research (JAIR), pages 1–96, 2012.

Coles, A., Coles, A., Fox, M., and Long, D. A hybrid LP-RPG heuristic for modelling
numeric resource flows in planning. Journal of Artificial Intelligence Research, 46:343–
412, 2013.

https://www.aaai.org/Papers/Workshops/1997/WS-97-10/WS97-10-002.pdf
https://www.aaai.org/Papers/Workshops/1997/WS-97-10/WS97-10-002.pdf

Bibliography 162

Coles, A., Fox, M., and Smith, A. Online identification of useful macro-actions for planning.
In Proceedings of the International Conference on Automated Planning and Scheduling
(ICAPS), pages 97–104, 2007.

Coles, A., Fox, M., Long, D., and Smith, A. Planning with Problems Requiring Temporal
Coordination. In Proceedings of the Twenty-Third AAAI Conference on Artificial
Intelligence (AAAI 2008), July 2008a.

Coles, A., Fox, M., Long, D., and Smith, A. A Hybrid Relaxed Planning Graph-lp Heuristic
for Numeric Planning Domains. In Proceedings of the Eighteenth International Conference
on Automated Planning and Scheduling (ICAPS 2008), pages 52–59, 2008b.

Coles, A., Fox, M., Halsey, K., Long, D., and Smith, A. Managing concurrency in temporal
planning using planner-scheduler interaction. Artificial Intelligence, 173:1–44, 2009c.

Culberson, J. C. and Schaeffer, J. Pattern databases. Computational Intelligence, 14(3):
318–334, 1998.

Cushing, W., Kambhampati, S., Weld, D. S., et al. When is temporal planning really
temporal? In Proceedings of the 20th international joint conference on Artifical
intelligence, pages 1852–1859. Morgan Kaufmann Publishers Inc., 2007.

Dechter, R., Meiri, I., and Pearl, J. Temporal constraint networks. Artificial Intelligence,
49(1-3):61–95, 1991.

Do, M. and Kambhampati, S. Sapa: A domain-independent heuristic metric temporal
planner. In Proceedings of the Sixth European Conference on Planning, pages 82–91,
2014.

Do, M. B. and Kambhampati, S. Sapa: A multi-objective metric temporal planner. Journal
of Artificial Intelligence Research, 20:155–194, 2003.

Dornhege, C., Eyerich, P., Keller, T., Trüg, S., Brenner, M., and Nebel, B. Semantic
attachments for domain-independent planning systems. In Proceedings of the Nineteenth
International Conference on Automated Planning and Scheduling, pages 114,121, 2009.

Edelkamp, S. Planning with pattern databases. In Sixth European Conference on Planning,
pages 13–34, 2001.

Edelkamp, S. and Jabbar, S. Cost-optimal external planning. In Proceedings of the National
Conference on Artificial Intelligence, volume 21, page 821. Menlo Park, CA; Cambridge,
MA; London; AAAI Press; MIT Press; 1999, 2006.

Edelkamp, S. and Schroedl, S. Heuristic search - Theory and Applications. Morgan Kauf-
mann, 2012.

Effinger, R. T., Williams, B. C., Kelly, G., and Sheehy, M. Dynamic Controllability of
Temporally-flexible Reactive Programs. In Proceedings of the Nineteenth International
Conference on Automated Planning and Scheduling, 2009.

Bibliography 163

Erdem, E., Haspalamutgil, K., Palaz, C., Patoglu, V., and Uras, T. Combining high-
level causal reasoning with low-level geometric reasoning and motion planning for robotic
manipulation. In Proceedings of the International Conference on Robotics and Automation
(ICRA), pages 4575–4581. IEEE, 2011.

Erdogan, C. Planning in constraint space for multi-body manipulation tasks. PhD thesis,
Georgia Institute of Technology, 2016.

Erdogan, C. and Stilman, M. Planning in constraint space: automated design of functional
structures. In Proceedings of the International Conference on Robotics and Automation
(ICRA), pages 1807–1812. IEEE, 2013.

Eyerich, P., Mattmüller, R., and Röger, G. Using the context-enhanced additive heuristic
for temporal and numeric planning. Towards Service Robots for Everyday Environments,
76:49–64, 2012.

Fernández-González, E., Karpas, E., and Williams, B. C. Mixed Discrete-Continuous
Heuristic Generative Planning Based on Flow Tubes. In Proceedings of the Twenty-Fourth
International Joint Conference on Artificial Intelligence, 2015a.

Fernández-González, E., Karpas, E., and Williams, B. C. Mixed Discrete-Continuous
Heuristic Generative Planning Based on Flow Tubes. In Proceedings of the 3rd Workshop
on Planning and Robotics (PlanRob), pages 106–115, 2015b.

Fernández-González, E., Karpas, E., and Williams, B. C. Mixed discrete-continuous
planning with convex optimization. In Proceedings of the Thirty-First AAAI Conference
on Artificial Intelligence (AAAI-17), pages 4574–4580, 2017.

Fikes, R. E. and Nilsson, N. J. Strips: A new approach to the application of theorem proving
to problem solving. Artificial Intelligence, 2(3-4):189–208, 1971.

Fox, M. and Long, D. PDDL2.1: An Extension to PDDL for Expressing Temporal Planning
Domains. Journal of Artificial Intelligence Research (JAIR), 20:61–124, 2003.

Fox, M. and Long, D. Modelling mixed discrete-continuous domains for planning. Journal
of Artificial Intelligence Research, 27:235–297, 2006.

Francès, G. and Geffner, H. Modeling and computation in planning: Better heuristics from
more expressive languages. In Proceedings of the Twenty-Fifth International Conference
on Automated Planning and Scheduling, pages 70–78, 2015.

Garrett, C. R., Lozano-Pérez, T., and Kaelbling, L. P. Ffrob: An efficient heuristic for
task and motion planning. In Algorithmic Foundations of Robotics XI, pages 179–195.
Springer, 2015.

Garrett, C. R., Lozano-Perez, T., and Kaelbling, L. P. Ffrob: Leveraging symbolic planning
for efficient task and motion planning. The International Journal of Robotics Research,
37(1):104–136, 2018. URL https://doi.org/10.1177/0278364917739114.

https://doi.org/10.1177/0278364917739114

Bibliography 164

Garrido, A., Onaindía, E., and Barber, F. A temporal planning system for time-optimal
planning. In Portuguese Conference on Artificial Intelligence, pages 379–392. Springer,
2001.

Garrido, A., Fox, M., and Long, D. A temporal planning system for durative actions of
pddl2.1. In Proceedings of the 15th European Conference on Artificial Intelligence, pages
586–590. IOS Press, 2002.

Geffner, H. and Bonet, B. A concise introduction to models and methods for
automated planning. Synthesis Lectures on Artificial Intelligence and Machine
Learning, 8(1):1–141, 2013. URL http://www.morganclaypool.com/doi/abs/10.2200/

S00513ED1V01Y201306AIM022.

Geffner, H. and Haslum, P. Admissible heuristics for optimal planning. In Proceedings of
the 5th Internat. Conf. of AI Planning Systems (AIPS 2000), pages 140–149, 2000.

Gerevini, A., Saetti, A., and Serina, I. An approach to temporal planning and scheduling
in domains with predictable exogenous events. Journal of Artificial Intelligence Research,
25:187–231, 2006.

Gerevini, A. E., Saetti, A., and Serina, I. An approach to efficient planning with numerical
fluents and multi-criteria plan quality. Artificial Intelligence, 172(8-9):899–944, 2008.

Gerevini, A. E., Haslum, P., Long, D., Saetti, A., and Dimopoulos, Y. Deterministic planning
in the fifth international planning competition: Pddl3 and experimental evaluation of the
planners. Artificial Intelligence, 173(5):619–668, 2009.

Ghallab, M. and Laruelle, H. Representation and control in ixtet, a temporal planner. In
Proceedings of the AIPS, pages 61–67, 1994.

Ghallab, M., Nau, D., and Traverso, P. Automated Planning Theory and Practice. Morgan
Kaufmann, 2004. ISBN 1-55860-856-7.

Gregory, P., Long, D., and Fox, M. Constraint Based Planning with Composable Substate
Graphs. In Proceedings of the Nineteenth European Conference on Artificial Intelligence
(ECAI 2010), pages 453–458. IOS Press, 2010.

Hart, P. E., Nilsson, N. J., and Raphael, B. A formal basis for the heuristic determination
of minimum cost paths. IEEE transactions on Systems Science and Cybernetics, 4(2):
100–107, 1968.

Haslum, P. and Geffner, H. Heuristic planning with time and resources. In Sixth
European Conference on Planning, 2001. URL https://www.ida.liu.se/divisions/

aiics/publications/ECP-2001-Heuristic-Planning-Time.pdf.

Haslum, P., Botea, A., Helmert, M., Bonet, B., Koenig, S., et al. Domain-independent
construction of pattern database heuristics for cost-optimal planning. In Proceedings of
the Twenty-Second AAAI Conference on Artificial Intelligence, volume 7, pages 1007–
1012, 2007.

http://www.morganclaypool.com/doi/abs/10.2200/S00513ED1V01Y201306AIM022
http://www.morganclaypool.com/doi/abs/10.2200/S00513ED1V01Y201306AIM022
https://www.ida.liu.se/divisions/aiics/publications/ECP-2001-Heuristic-Planning-Time.pdf
https://www.ida.liu.se/divisions/aiics/publications/ECP-2001-Heuristic-Planning-Time.pdf

Bibliography 165

Helmert, M. Decidability and undecidability results for planning with numerical state
variables. In Proceedings of the Sixth International Conference on Artificial Intelligence
Planning and Scheduling (AIPS), 2002.

Helmert, M. The fast downward planning system. Journal of Artificial Intelligence Research,
26:191–246, 2006.

Helmert, M., Haslum, P., Hoffmann, J., et al. Flexible abstraction heuristics for optimal
sequential planning. In Proceedings of the Seventeenth International Conference on
Automated Planning and Scheduling (ICAPS 2007), pages 176–183, 2007.

Henzinger, T. A. The theory of hybrid automata. Verification of Digital and Hybrid Systems,
pages 265–292, 2000.

Hoffmann, J. The Metric-FF Planning System: Translating ‘Ignoring Delete Lists’ to
Numeric State Variables. Journal of Artificial Intelligence Research, pages 291–341, 2003.

Hoffmann, J. and Edelkamp, S. The deterministic part of ipc-4: An overview. Journal of
Artificial Intelligence Research, 24:519–579, 2005.

Hoffmann, J. and Nebel, B. The ff planning system: Fast plan generation through heuristic
search. Journal of Artificial Intelligence Research, 14:253–302, 2001.

Hoffmann, J., Porteous, J., and Sebastia, L. Ordered landmarks in planning. Journal of
Artificial Intelligence Research, 22:215–278, 2004.

Hofmann, A. G. and Williams, B. C. Exploiting Spatial and Temporal Flexibility for
Plan Execution for Hybrid, Under-actuated Robots. In Proceedings of the Twenty-First
National Conference on Artificial Intelligence, pages 948–955, 2006.

Howey, R. and Long, D. VAL’s Progress : The Automatic Validation Tool for PDDL 2.1
used in The International Planning Competition. Proceedings of the ICAPS Workshop on
The Competition: Impact, Organization, Evaluation, Benchmarks, 2003.

Huang, R., Chen, Y., and Zhang, W. An optimal temporally expressive planner: Initial
results and application to p2p network optimization. In Proceedings of the Nineteenth
International Conference on Automated Planning and Scheduling, 2009.

Ivankovic, F., Haslum, P., Thiébaux, S., Shivashankar, V., and Nau, D. S. Optimal planning
with global numerical state constraints. In Proceedings of the Twenty-Fourth International
Conference on Automated Planning and Scheduling, 2014.

Karpas, E. and Domshlak, C. Cost-optimal planning with landmarks. In Proceedings of the
Twenty-First International Joint Conference on Artificial Intelligence (IJCAI-09), pages
1728–1733, 2009.

Keyder, E., Richter, S., and Helmert, M. Sound and complete landmarks for and/or graphs.
In Proceedings of the Nineteenth European Conference on Artificial Intelligence (ECAI
2010), volume 215, pages 335–340, 2010.

Bibliography 166

Kovacs, D. L. Bnf definition of pddl 3.1. Unpublished manuscript from the IPC-2011 website,
2011.

Kovacs, D. L. A multi-agent extension of pddl3.1. In Proceedings of the Third Workshop
on the International Planning Competition (IPC), ICAPS-2012, Atibaia, Brazil, pages
19–27, 2012.

Laborie, P. Algorithms for propagating resource constraints in AI planning and scheduling:
Existing approaches and new results. Artificial Intelligence, 143:151–188, 2003. URL
http://linkinghub.elsevier.com/retrieve/pii/S0004370202003624.

Laborie, P. and Ghallab, M. Planning with sharable resource constraints. In Proceedings
of the Fourteenth international joint conference on Artificial intelligence, volume 2, pages
1643–1649, 1995.

Léauté, T. and Williams, B. C. Coordinating agile systems through the model-based
execution of temporal plans. In Proceedings of the Twentieth National Conference on
Artificial Intelligence, pages 114–120, 2005.

Li, H. X. and Williams, B. C. Generative Planning for Hybrid Systems Based on Flow
Tubes. In Proceedings of the Eighteenth International Conference on Automated Planning
and Scheduling (ICAPS 2008), pages 206–213, 2008.

Lifschitz, V. On the semantics of strips. In Reasoning about Actions and Plans: Proceedings
of the 1986 Workshop, pages 1–9, 1987.

Löhr, J., Eyerich, P., Winkler, S., and Nebel, B. Domain predictive control under uncertain
numerical state information. In Proceedings of the Twenty-Third International Conference
on Automated Planning and Scheduling, 2013.

Long, D. and Fox, M. The 3rd international planning competition: Results and analysis.
Journal of Artificial Intelligence Research, 20:1–59, 2003.

McDermott, D., Ghallab, M., Howe, A., Knoblock, C., Ram, A., Veloso, M., Weld, D.,
and Wilkins, D. Pddl - the planning domain definition language. Technical Report CVC
TR98003/DCS TR1165. New Haven, CT, 1998.

McDermott, D. M. The 1998 ai planning systems competition. AI magazine, 21(2):35, 2000.

Moore, R. E., Kearfott, R. B., and Cloud, M. J. Introduction to interval analysis. SIAM,
2009.

Muscettola, N., Nayak, P. P., Pell, B., and Williams, B. C. Remote agent: To boldly go
where no ai system has gone before. Artificial Intelligence, 103(1-2):5–47, 1998.

Pantke, F., Edelkamp, S., and Herzog, O. Planning with Numeric Key Performance
Indicators over Dynamic Organizations of Intelligent Agents. In German Conference on
Multi Agent System Technologies, pages 138–155. Springer, 2014.

Pantke, F., Edelkamp, S., and Herzog, O. Symbolic Discrete-Time Planning with Continuous
Numeric Action Parameters for Agent-controlled Processes. Mechatronics, 34:38–62, 2016.

http://linkinghub.elsevier.com/retrieve/pii/S0004370202003624

Bibliography 167

Pearl, J. Heuristics. intelligent search strategies for computer problem solving. The Addison-
Wesley Series in Artificial Intelligence, Reading, Mass.: Addison-Wesley, 1985, Reprinted
version, 1985.

Pednault, E. P. Adl: Exploring the middle ground between strips and the situation
calculus. Proceedings of the First International Conference on Principles of Knowledge
Representation and Reasoning, 89:324–332, 1989.

Penna, G. D., Magazzeni, D., Mercorio, F., and Intrigila, B. UPMurphi: A Tool for Universal
Planning on PDDL+ Problems. In Proceedings of the Nineteenth International Conference
on Automated Planning and Scheduling, 2009.

Piacentini, C., Alimisis, V., Fox, M., and Long, D. Combining a temporal planner with an
external solver for the power balancing problem in an electricity network. In Proceedings
of the Twenty-Third International Conference on Automated Planning and Scheduling,
2013.

Piotrowski, W., Fox, M., Long, D., Magazzeni, D., and Mercorio, F. Heuristic Planning for
PDDL+ Domains. In Proceedings of the Twenty-Sixth International Joint Conference on
Artificial Intelligence (IJCAI). AAAI Press, July 2016.

Plaku, E. and Le, D. Interactive search for action and motion planning with dynamics.
Journal of Experimental & Theoretical Artificial Intelligence, 28(5):849–869, 2016.

Pohl, I. Heuristic search viewed as path finding in a graph. Artificial intelligence, 1(3-4):
193–204, 1970.

Porteous, J., Sebastia, L., and Hoffmann, J. On the extraction, ordering, and usage of
landmarks in planning. In 6th European Conference on Planning, 2001.

Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R., and Ng,
A. Y. Ros: an open-source robot operating system. In ICRA workshop on open source
software, volume 3, 2009.

Reiter, R. On closed world data bases. Logic and Data Bases, 1977.

Richter, S. and Westphal, M. The lama planner: Guiding cost-based anytime planning with
landmarks. Journal of Artificial Intelligence Research, 39:127–177, 2010.

Richter, S., Helmert, M., and Westphal, M. Landmarks revisited. In Proceedings of the
Twenty-Third AAAI Conference on Artificial Intelligence, volume 8, pages 975–982, 2008.

Rintanen, J. et al. Complexity of concurrent temporal planning. In Proceedings of the
Seventeenth International Conference on Automated Planning and Scheduling (ICAPS
2007), pages 280–287, 2007.

Russell, S. and Norvig, P. Artificial intelligence a modern approach: international edition.
Pearson, 2010. ISBN 978-1292153964.

Sacerdoti, E. D. The nonlinear nature of plans. Technical report, Stanford Research Insti-
tute, 1975.

Bibliography 168

Sanner, S. Relational dynamic influence diagram language (rddl): Language description.
Unpublished ms. Australian National University, page 32, 2010.

Savaş, E., Fox, M., Long, D., and Magazzeni, D. Planning Using Actions with Control
Parameters. In Proceedings of the Twenty-Second European Conference on Artificial
Intelligence (ECAI 2016), pages 1185–1193. IOS Press, 2016.

Scala, E., Haslum, P., Thiebaux, S., and Ramirez, M. Interval-based relaxation for general
numeric planning. In Proceedings of the European Conference on Artificial Intelligence,
pages 655–663. IOS Press, 2016a.

Scala, E., Haslum, P., and Thiébaux, S. Heuristics for numeric planning via subgoaling. In
Proceedings of the International Joint Conferences on Artificial Intelligence, pages 3228–
3234, 2016b.

Scala, E., Haslum, P., Magazzeni, D., and Thiébaux, S. Landmarks for numeric planning
problems. In Proceedings of the Twenty-Sixth International Joint Conference on Artificial
Intelligence, pages 4384–4390. AAAI Press, 2017.

Shin, J. A. and Davis, E. Processes and continuous change in a SAT-based planner. Artificial
Intelligence, 166(1-2):194–253, 2005.

Smith, D. and Weld, D. Temporal planning with mutual exclusion reasoning. In Proceedings
of the International Joint Conference on Artificial Intelligence, pages 326–333, 1999.

Srivastava, S., Fang, E., Riano, L., Chitnis, R., Russell, S., and Abbeel, P. Combined
task and motion planning through an extensible planner-independent interface layer. In
Proceedings of the International Conference on Robotics and Automation (ICRA), pages
639–646. IEEE, 2014.

van den Briel, M., Benton, J., Kambhampati, S., and Vossen, T. An {LP}-Based Heuristic
for Optimal Planning. In Proceedings of the Thirteenth International Conference on
Principles and Practice of Constraint Programming, pages 651–665, 2007.

van den Briel, M. H. and Kambhampati, S. Optiplan: Unifying ip-based and graph-based
planning. Journal of Artificial Intelligence Research, 24:919–931, 2005.

Weld, D. S. An introduction to least commitment planning. AI magazine, 15(4):27–61,
1994.

Wolfman, S. A. and Weld, D. S. Combining linear programming and satisfiability solving for
resource planning. The Knowledge Engineering Review, 16:85–99, 2001. ISSN 0269-8889.

Xie, F. Exploration in Greedy Best-First Search for Satisficing Planning. PhD thesis,
University of Alberta, 2016.

Xie, F., Müller, M., Holte, R., and Imai, T. Type-based exploration with multiple search
queues for satisficing planning. In Proceedings of the Twenty-Eighth AAAI Conference on
Artificial Intelligence, pages 2395–2402, 2014.

Bibliography 169

Younes, H. L. and Littman, M. L. Ppddl1.0: An extension to pddl for expressing planning
domains with probabilistic effects. Technical Report CMU-CS-04-162, 2004.

Younes, H. L. and Simmons, R. G. Vhpop: Versatile heuristic partial order planner. Journal
of Artificial Intelligence Research, 20:405–430, 2003.

Young, R. C. The algebra of many-valued quantities. Mathematische Annalen, 104(1):
260–290, 1931.

	Introduction
	Motivation
	Contributions of the Thesis
	Thesis Statement
	Thesis Outline

	Background
	Introduction to Automated Planning
	Representations of Planning Problems
	Classical Planning
	Numeric Planning
	Temporal Planning

	Modelling Language
	The PDDL Language

	Planning as Searching through Spaces
	Search Algorithms

	Heuristic Evaluations
	Classical Planning Heuristics
	Numeric Planning Heuristics
	The Temporal Relaxed Planning Graph (TRPG) Heuristic

	Brief Descriptions of the Planning Systems
	The POPF Planner and Its Predecessors
	Planners Reasoning with Control Parameters
	Other Planners

	Summary of Temporal-Numeric Planners
	Integrated Task and Motion Planning (TAMP)

	Planning Using Actions with Control Parameters
	Introduction
	A Motivating Example
	Methodological Differences Between Scotty and POPCORN
	Technical Background
	LP Temporal and Numeric Scheduling

	Planning with Control Parameters
	Problem Definition
	State Definition
	Modelling Actions with Control Parameters
	Checking C-state Consistency
	Temporal and Numeric State-Space Search
	Modifications to The Temporal RPG Heuristic

	Evaluation
	The Cashpoint Domain
	The Procurement and Terraria domains
	The 2D-AUV-Power domain
	Experimental Results

	Summary

	Refined Infinity Analysis for Planning with Control Parameters
	Introduction
	An Example Problem
	Preliminaries on Producer-Consumer Behaviour
	Producer-Consumer Effects and Fluents
	Producer-Consumer Actions
	Resource Transformation Flow Problem

	Producer-Consumer Patterns
	Extending the TRPG Heuristic
	Action Occurrence Limits
	Numeric Contribution of Non-Constant Bounded Parameters
	Building the Temporal RPG Using Refined Infinity Analysis
	Solution Extraction

	Evaluation
	Evaluation Domains
	Performing Ablation Study
	Comparison with Scotty Planner

	Summary

	Case Study: Spatial Reasoning in Task Planning with Control Parameters
	Introduction
	Observe-and-classify Scenario
	Modelling Continuous Regions

	Plan Generation and Execution
	Plan Generation in Relative Proximity of Objects
	Plan Execution using Controlled Plan Management in Continuous Space

	Evaluation
	The Environment
	Results

	Summary

	Conclusions
	Summary of the Thesis
	Future Work
	Handling Quadratic Interactions in Domain Models
	Extending the Heuristic to Handle Multiple Control Parameters in Resource Flow
	Investigating the Execution Behaviour of Domains with Continuous Regions

	List of Publications

	Appendices
	The Relaxed Plan generated using Refined Infinity Analysis
	Observe-and-classify Domains
	Locations as Discrete Notions Approach
	The Domain Model
	A problem Instance

	Locations as Continuous Regions Approach
	The Domain Model
	A problem Instance

