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When does the norm of a Fourier multiplier
dominate its L∞ norm?

Alexei Karlovich and Eugene Shargorodsky

Abstract

One can define Fourier multipliers on a Banach function space by using the direct and inverse
Fourier transforms on L2(Rn) or by using the direct Fourier transform on S(Rn) and the inverse
one on S′(Rn). In the former case, one assumes that the Fourier multipliers belong to L∞(Rn),
while in the latter one this requirement may or may not be included in the definition. We provide
sufficient conditions for those definitions to coincide as well as examples when they differ. In
particular, we prove that if a Banach function space X(Rn) satisfies a certain weak doubling
property, then the space of all Fourier multipliersMX(Rn) is continuously embedded into L∞(Rn)
with the best possible embedding constant one. For weighted Lebesgue spaces Lp(Rn, w), the
weak doubling property is much weaker than the requirement that w is a Muckenhoupt weight,
and our result implies that ‖a‖L∞(Rn) ≤ ‖a‖MLp(Rn,w)

for such weights. This inequality extends
the inequality for n = 1 from [3, Theorem 2.3], where it is attributed to J. Bourgain. We show
that although the weak doubling property is not necessary, it is quite sharp. It allows the weight
w in Lp(Rn, w) to grow at any subexponential rate. On the other hand, the space Lp(R, ex) has
plenty of unbounded Fourier multipliers.

1. Introduction

Let S(Rn) and S′(Rn) denote the Schwartz spaces of rapidly decreasing functions and
of tempered distributions on Rn, respectively. The action of a distribution a ∈ S′(Rn) on
a function u ∈ S(Rn) is denoted by 〈a, u〉 := a(u). A Fourier multiplier on Rn with symbol
a ∈ S′(Rn) is defined as the operator u 7→ F−1aFu, where

(Fu)(ξ) := û(ξ) :=

∫
Rn
u(x)e−ixξ dx

is the Fourier transform of u ∈ S(Rn), F−1 denotes the inverse Fourier transform, and xξ
denotes the scalar product of x, ξ ∈ Rn. We observe that since u ∈ S(Rn) and a ∈ S′(Rn), the
function Fu belongs to the space S(Rn) and aFu is a tempered distribution. Thus F−1aFu is
well defined and it belongs to S′(Rn). In fact, we have F−1aFu = (F−1a) ∗ u, and therefore,
F−1aFu ∈ C∞poly(Rn) (see, e.g., [18, Theorem 2.3.20] or [29, Theorem 7.19(b)]). Here and in
what follows C∞poly(Rn) denotes the set of all smooth polynomially bounded functions, i.e., the
set of all infinitely differentiable functions f : Rn → C such that for every α ∈ Zn+ there exist
mα ∈ Z+ := {0, 1, 2, . . . } and Cα > 0 satisfying |∂αx f(x)| ≤ Cα(1 + |x|)mα for all x ∈ Rn. Thus,
if u ∈ S(Rn) and a ∈ S′(Rn), then F−1aFu is a regular tempered distribution, whose action
on v ∈ S(Rn) is evaluated as follows:

〈F−1aFu, v〉 =

∫
Rn

(F−1aFu)(x)v(x) dx for all v ∈ S(Rn).
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Let C∞0 (Rn) denote the space of all infinitely differentiable functions on Rn with compact
supports and let D′(Rn) be the space of distributions, that is, the dual space of C∞0 (Rn).
Suppose X(Rn) is a Banach space continuously embedded into the space of distributions
D′(Rn). We say that a distribution a ∈ S′(Rn) belongs to the setMX(Rn) of Fourier multipliers
on X(Rn) if

‖a‖MX(Rn)
:= sup

{‖F−1aFu‖X(Rn)

‖u‖X(Rn)
: u ∈ (S(Rn) ∩X(Rn)) \ {0}

}
<∞.

Many authors adopt the following alternative definition of Fourier multipliers (see, e.g., [5,
p. 368], [6, p. 323], [12, p. 28], [15, p. 7], [28, p. 199]). A function a ∈ L∞(Rn) is said to belong
to the set M0

X(Rn) of Fourier multipliers on X(Rn) if

‖a‖M0
X(Rn)

:= sup

{‖F−1aFu‖X(Rn)

‖u‖X(Rn)
: u ∈

(
L2(Rn) ∩X(Rn)

)
\ {0}

}
<∞.

Here F±1 are understood as mappings on L2(Rn). Since S(Rn) ⊂ L2(Rn), it is clear that

M0
X(Rn) ⊆MX(Rn) ∩ L∞(Rn) ⊆MX(Rn) (1.1)

and

‖a‖MX(Rn)
≤ ‖a‖M0

X(Rn)
. (1.2)

We feel that insufficient attention has been paid so far to the relationship between the above
classes of Fourier multipliers. In this paper, we confine ourselves to the Fourier multipliers
acting on so-called Banach function spaces, which are defined below, and provide sufficient
conditions for equalities to hold in (1.1) (see Theorem 6.1, Subsection 2.2, and Theorem 1.3)
as well as examples when they do not hold (see Theorem 6.2). We pay particular attention to
the question of existence of a constant DX such that ‖a‖L∞(Rn) ≤ DX‖a‖MX(Rn)

.
Our initial motivation came from the following result that appeared in the paper by

E. Berkson and T. A. Gillespie [3], where it was attributed to J. Bourgain. A measurable
function w : Rn → [0,∞] is referred to as a weight if 0 < w(x) <∞ a.e. on Rn. The weighted
Lebesgue space Lp(Rn, w), 1 ≤ p ≤ ∞, is the set of all measurable complex-valued functions f
on Rn satisfying

‖f‖Lp(Rn,w) := ‖fw‖Lp(Rn) <∞.

Recall that a weight w : Rn → [0,∞] belongs to the Muckenhoupt class Ap(Rn), 1 < p <∞, if

sup
Q

(
1

|Q|

∫
Q

wp(x) dx

)1/p(
1

|Q|

∫
Q

w−p
′
(x) dx

)1/p′

<∞, 1

p
+

1

p′
= 1,

where the supremum is taken over all cubes Q ⊂ Rn with sides parallel to the coordinate axes.

Theorem 1.1 ([3, Theorem 2.3]). Suppose that 1 < p <∞ and w ∈ Ap(R). Then there
exists a constant Dp,w > 0 depending on p and w such that for all a ∈MLp(R,w) ∩ L∞(R),

‖a‖L∞(R) ≤ Dp,w‖a‖MLp(R,w)
.

The proof of Theorem 1.1 relies on the deep result on a.e. convergence of Fourier integrals,
that is, the transplanted version of the celebrated Carleson theorem on the a.e. convergence of
Fourier series (see, e.g., [19, Theorem 6.1.1] or [24]). Theorem 1.1 was extended by the first
author [21, Theorem 1] to the case of weighted Banach function spaces X(R, w), in which the
Cauchy singular integral operator (the Hilbert transform) is bounded.
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In this paper, we provide a more elementary proof that the estimate

‖a‖L∞(Rn) ≤ ‖a‖MX(Rn)

holds with the (optimal) constant equal to 1 for a large class of Banach function spaces X(Rn)
and arbitrary n ≥ 1. In particular, it holds for all weighted Lebesgue spaces Lp(Rn, w) with
1 < p <∞ and Muckenhoupt weights w ∈ Ap(Rn).

We need several definitions to state our main result. The set of all Lebesgue measurable
complex-valued functions on Rn is denoted by M(Rn). Let M+(Rn) be the subset of functions
in M(Rn) whose values lie in [0,∞]. The characteristic function of a measurable set E ⊂ Rn
is denoted by χE and the Lebesgue measure of E is denoted by |E|.

Following [1, Chap. 1, Definition 1.1], a mapping ρ : M+(Rn)→ [0,∞] is called a Banach
function norm if, for all functions f, g, fj (j ∈ N) in M+(Rn), for all constants a ≥ 0, and for
all measurable subsets E of Rn, the following properties hold:

(A1) ρ(f) = 0⇔ f = 0 a.e., ρ(af) = aρ(f), ρ(f + g) ≤ ρ(f) + ρ(g),

(A2) 0 ≤ g ≤ f a.e. ⇒ ρ(g) ≤ ρ(f) (the lattice property),

(A3) 0 ≤ fj ↑ f a.e. ⇒ ρ(fj) ↑ ρ(f) (the Fatou property),

(A4) |E| <∞⇒ ρ(χE) <∞,

(A5) |E| <∞⇒
∫
E

f(x) dx ≤ CEρ(f)

with CE ∈ (0,∞) that may depend on E and ρ but is independent of f .
When functions differing only on a set of measure zero are identified, the set X(Rn) of all

functions f ∈M(Rn) for which ρ(|f |) <∞ becomes a Banach space under the norm

‖f‖X(Rn) := ρ(|f |)

and under the natural linear space operations (see [1, Chap. 1, Theorems 1.4 and 1.6]). It is
called a Banach function space.

If ρ is a Banach function norm, its associate norm ρ′ is defined on M+(Rn) by

ρ′(g) := sup

{∫
Rn
f(x)g(x) dx : f ∈M+(Rn), ρ(f) ≤ 1

}
.

It is a Banach function norm itself [1, Chap. 1, Theorem 2.2]. The Banach function space
X ′(Rn) determined by the Banach function norm ρ′ is called the associate space (Köthe dual) of
X(Rn). The Lebesgue space Lp(Rn), 1 ≤ p ≤ ∞, is the archetypical example of Banach function
spaces. Other classical examples of Banach function spaces are Orlicz spaces, rearrangement-
invariant spaces, and variable Lebesgue spaces Lp(·)(Rn).

Let X(Rn) be a Banach function space. We say that f ∈ Xloc(Rn) if fχE ∈ X(Rn) for every
measurable set E ⊂ Rn of finite measure. If w : Rn → [0,∞] is a weight satisfying w ∈ Xloc(Rn)
and 1/w ∈ X ′loc(Rn), then

X(Rn, w) := {f ∈M(Rn) : fw ∈ X(Rn)}

becomes a Banach function space when it is equipped with the norm

‖f‖X(Rn,w) := ‖fw‖X(Rn),

and [X(Rn, w)]′ = X ′(Rn, w−1) (see [22, Lemma 2.4]). It is clear that if w ∈ Ap(Rn), then

w ∈ Lploc(Rn) and 1/w ∈ Lp
′

loc(Rn), whence Lp(Rn, w) is a Banach function space.
For y ∈ Rn and R > 0, let B(y,R) := {x ∈ Rn : |x− y| < R} be the open ball of radius R

centered at y.
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Definition 1.2. We say that a Banach function space X(Rn) satisfies the weak doubling
property if there exists a number τ > 1 such that

lim inf
R→∞

(
inf
y∈Rn

‖χB(y,τR)‖X(Rn)

‖χB(y,R)‖X(Rn)

)
<∞.

Theorem 1.3 (Main result). Let n ≥ 1 and X(Rn) be a Banach function space satisfying
the weak doubling property. If a ∈MX(Rn) ⊂ S′(Rn), then a ∈ L∞(Rn) and

‖a‖L∞(Rn) ≤ ‖a‖MX(Rn)
. (1.3)

The constant 1 on the right-hand side of (1.3) is best possible.

The paper is organized as follows. Section 2 contains auxiliary results. For a Banach function
space, we introduce the bounded L2-approximation property and the norm fundamental
property, study relations between them, and give examples of Banach function spaces, which
do not satisfy these properties. Further, we prove a variant of a well-known lemma on
approximation at Lebesgue points, which is an important ingredient in the proof of our main
result.

The weak doubling property is discussed in Section 3. In particular, we prove that a
Muckenhoupt-type condition AX implies the weak doubling property and show that weighted
Banach function spaces X(R, wj), built upon a translation-invariant Banach function space
X(R) and exponential weights w1(x) = ecx and w2(x) = ec|x| with c > 0, fail to have the weak
doubling property. On the other hand, we also show that Y (Rn, w) satisfies the weak doubling
condition for weights w that can grow at any subexponential rate.

Section 4 contains the proof of our main result. We divide it into two parts. The first part of
the proof is developed for Fourier multipliers belonging to a weighted Lebesgue space L1,σ(Rn).
Our arguments at this step are similar to those used in the proof of [3, Theorem 2.3] with the
important difference that we substitute the application of the theorem on a.e. convergence of
Fourier integrals by a simpler lemma on approximation at Lebesgue points proved in Section 2.
Further, we approximate an arbitrary Fourier multiplier a ∈MX(Rn) by a ∗ ψε ∈ C∞poly(Rn)
with suitably chosen functions ψε ∈ C∞0 (Rn). Note that C∞poly(Rn) is contained in L1,σ(Rn) for
some σ ∈ R, which allows us to complete the proof of Theorem 1.3. We conclude this section
the proof of a multi-dimensional analogue of Theorem 1.1.

In Section 5, we discuss the optimality of the requirement of the weak doubling property in
Theorem 1.3. In particular, we show that for an arbitrary translation-invariant Banach function
space Y (R) and the weight w1(x) = ecx with any c > 0, the weighted Banach function space
Y (R, w1) admits many unbounded Fourier multipliers.

In Section 6, we discuss the classes of Fourier multipliers M0
X(Rn) and MX(Rn) ∩ L∞(Rn)

and prove that they coincide if X(Rn) satisfies the bounded L2-approximation property. We
also construct an example showing that M0

X(Rn) and MX(Rn) ∩ L∞(Rn) may differ. We show

that the classes M0
X(Rn) and MX(Rn) ∩ L∞(Rn) are normed algebras and that the normed

space MX(Rn) and the normed algebra M0
X(Rn) are not complete, in general.

The weak doubling property is of course by no means necessary for the conclusion of
Theorem 1.3 to hold. Using duality and interpolation as in [20] (see also [8, Lemma 6]),
one can prove the estimate (1.3) for arbitrary reflexive reflection-invariant Banach function
spaces. This is done in Section 7 with the help of the interpolation theorem for Calderón
products (X1−θ

0 Xθ
1 )(Rn) and Lozanovskĭı’s formula (X1/2(X ′)1/2)(Rn) = L2(Rn). Here we do

not assume that the space X(Rn) satisfies the weak doubling property. We also show that the
estimate

‖a‖L∞(Rn) ≤ ‖a‖M0
X(Rn)

for all a ∈M0
X(Rn)
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holds if X(Rn) is an arbitrary, not necessarily reflexive, reflection-invariant Banach function
space.

In Section 8, we extend J. Löfström’s result [25] and show that there are no non-trivial
Fourier multipliers on the weighted Banach function space Y (Rn, w) built upon a translation-
invariant Banach function space Y (Rn) in the case of a weight w growing superexponentially
in all directions: MY (Rn,w) = C. On the other hand, we show that there are non-trivial
Fourier multipliers inMY (Rn,w) in the case of (sub)exponentially growing weights like w(x) =
exp(c|x|α) for x ∈ Rn with some constants c > 0 and α ∈ (0, 1].

2. Auxiliary results

2.1. Translation-invariant Banach function spaces

We say that a Banach function space X(Rn) is translation-invariant if for all y ∈ Rn and for
all functions u ∈ X(Rn), one has

‖τyu‖X(Rn) = ‖u‖X(Rn),

where the translation operator τy is defined by (τyu)(x) := u(x− y) for all x ∈ Rn.

Lemma 2.1. Let X(Rn) be a Banach function space and X ′(Rn) be its associate space.
Then X(Rn) is translation-invariant if and only if X ′(Rn) is translation-invariant.

Proof. Suppose X(Rn) is translation-invariant, g ∈ X ′(Rn), and y ∈ Rn. Then for every
f ∈ X(Rn) with ‖f‖X(Rn) ≤ 1, we have ‖τ−yf‖X(Rn) = ‖f‖X(Rn) ≤ 1. By Hölder’s inequality
(see [1, Chap. 1, Theorem 2.4]), g(τ−yf) ∈ L1(Rn). Changing variables, we get∫

Rn
g(x)(τ−yf)(x) dx =

∫
Rn

(τyg)(x)f(x) dx.

Then, in view of [1, Chap. 1, Lemma 2.8],

‖τyg‖X′(Rn) = sup

{∣∣∣∣∫
Rn

(τyg)(x)f(x) dx

∣∣∣∣ : f ∈ X(Rn), ‖f‖X(Rn) ≤ 1

}
= sup

{∣∣∣∣∫
Rn
g(x)f(x) dx

∣∣∣∣ : f ∈ X(Rn), ‖f‖X(Rn) ≤ 1

}
= ‖g‖X′(Rn),

that is, X ′(Rn) is translation-invariant. The reverse implication follows from what was proved
above and the Lorentz-Luxemburg theorem (see [1, Chap. 1, Theorem 2.7]).

2.2. The bounded L2-approximation property

Definition 2.2. We will say that a Banach function space X(Rn) satisfies the bounded
L2-approximation property if for every function u ∈ L2(Rn) ∩X(Rn), there exists a sequence
{uj}j∈N ⊂ C∞0 (Rn) such that

lim
j→∞

‖u− uj‖L2(Rn) = 0, lim sup
j→∞

‖uj‖X(Rn) ≤ ‖u‖X(Rn). (2.1)

Following [1, Chap. 1, Definition 3.1], a function f in a Banach function space X(Rn) is said
to have absolutely continuous norm in X(Rn) if ‖fχEj‖X(Rn) → 0 as j →∞ for every sequence
{Ej}j∈N of measurable sets in Rn satisfying χEj → 0 a.e. on Rn as j →∞. The set of all
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functions of absolutely continuous norm in X(Rn) is denoted by Xa(Rn). If Xa(Rn) = X(Rn),
then the space X(Rn) itself is said to have absolutely continuous norm.

Theorem 2.3. Let X(Rn) be a Banach function space with absolutely continuous norm.
Then X(Rn) has the bounded L2-approximation property.

Proof. It is clear that L2(Rn) ∩X(Rn) is a Banach function space when it is equipped with
the norm

‖f‖L2(Rn)∩X(Rn) = max
{
‖f‖L2(Rn), ‖f‖X(Rn)

}
.

It is easy to see that it has absolutely continuous norm. Then for every u ∈ L2(Rn) ∩X(Rn),
there exists a sequence {uj}j∈N ⊂ C∞0 (Rn) such that

lim
j→∞

‖u− uj‖L2(Rn)∩X(Rn) = 0

(a proof for the case n = 1 can be found in [22, Lemma 2.10(b)], it can be easily extended to
n ∈ N). Hence (2.1) holds.

Now let %(x) = e1/(|x|2−1) if |x| < 1 and %(x) = 0 if |x| ≥ 1. Consider the sequence

%j(x) :=
jn%(xj)∫
Rn %(x) dx

, j ∈ N. (2.2)

As usual, let suppu denote the support of a function u ∈M(Rn).

Theorem 2.4. Let Y (Rn) be a translation-invariant Banach function space and let w be
a continuous function such that w(x) > 0 for all x ∈ Rn. Then Y (Rn, w) has the bounded
L2-approximation property.

Proof. Take any function u ∈ L2(Rn) ∩ Y (Rn, w) and any ε > 0. There exists R > 0 such
that the function v := χB(0,R)u satisfies

‖u− v‖L2(Rn) < ε/2.

It is clear that supp v ⊆ B(0, R) and ‖v‖Y (Rn,w) ≤ ‖u‖Y (Rn,w) in view of axiom (A2).
Since w > 0 is continuous, there exists j0 ∈ N such that for all x ∈ B(0, R) and y ∈ B(0, 1/j0),

(τ−yw)(x)

w(x)
=
w(x+ y)

w(x)
≤ 1 + ε.

Then taking into account that Y (Rn) is translation-invariant, one gets for all y ∈ B(0, 1/j0),

‖τyv‖Y (Rn,w) = ‖wτyv‖Y (Rn) =
∥∥∥τy((τ−yw)v

)∥∥∥
Y (Rn)

= ‖(τ−yw)v‖Y (Rn)

≤ (1 + ε)‖wv‖Y (Rn) = (1 + ε)‖v‖Y (Rn,w). (2.3)

Let vj := %j ∗ v, where %j ∈ C∞0 (Rn) are the functions defined by (2.2). Then vj ∈ C∞0 (Rn)
and one can choose j1 ≥ j0 such that for all j ≥ j1,

‖v − vj‖L2(Rn) < ε/2,

(see, e.g., [7, Theorem 4.22]). Hence, for all j ≥ j1,

‖u− vj‖L2(Rn) < ε.

Since w ∈ Yloc(Rn) and 1/w ∈ Y ′loc(Rn), Y (Rn, w) is a Banach function space and Y ′(Rn, w−1)
is its associate space in view of [22, Lemma 2.4]. Using Hölder’s inequality for Banach function
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spaces (see [1, Chap. 1, Theorem 2.4]) and (2.4), one gets for all g ∈ Y ′(Rn, w−1) and all j ≥ j1,∣∣∣∣∫
Rn
vj(x)g(x) dx

∣∣∣∣ ≤ ∫
Rn

(∫
Rn
|%j(y)||v(x− y)| dy

)
|g(x)| dx

=

∫
Rn
|%j(y)|

(∫
Rn
|v(x− y)||g(x)| dx

)
dy

≤
∫
B(0,1/j)

|%j(y)| ‖τyv‖Y (Rn,w) ‖g‖Y ′(Rn,w−1) dy

≤ (1 + ε) ‖v‖Y (Rn,w) ‖g‖Y ′(Rn,w−1)

∫
Rn
|%j(y)| dy

= (1 + ε) ‖v‖Y (Rn,w) ‖g‖Y ′(Rn,w−1) .

By [1, Chap. 1, Theorem 2.7 and Lemma 2.8], the above inequality implies that for all j ≥ j1,

‖vj‖Y (Rn,w) = sup

{∣∣∣∣∫
Rn
vj(x)g(x) dx

∣∣∣∣ : g ∈ Y ′(Rn, w−1), ‖g‖Y ′(Rn,w−1) ≤ 1

}
≤ (1 + ε) ‖v‖Y (Rn,w) ,

which completes the proof, since ε > 0 is arbitrary.

Theorem 2.6 below shows that one cannot drop the requirement of continuity of the weight w
in Theorem 2.4 (as well as in [8, Lemma 2]). The construction of our counterexample is based
on the fact that there exist compact sets of positive Lebesgue measure with empty interior
(see, e.g., [4, Example 1.7.6] or [14, Chap. 12, Exercise 9]).

Lemma 2.5. Let G ⊂ Rn be a compact set of positive measure with empty interior and let

wG(x) :=

{
1, x ∈ G,
2, x ∈ Rn \G. (2.4)

Suppose ψ ∈ C(Rn) and ‖ψ‖L∞(Rn,wG) ≤ 1. Then for all x ∈ Rn,

|ψ(x)| ≤ 1/2. (2.5)

Proof. For every point x ∈ Rn and ε > 0 there exists δ > 0 such that |ψ(y)| ≥ |ψ(x)| − ε
for each y ∈ B(x, δ). Since G is a closed set with empty interior, B(x, δ) \G is a nonempty
open set. It follows from (2.4) and the condition ‖ψ‖L∞(Rn,wG) ≤ 1 that 2|ψ(y)| ≤ 1 for almost
all y ∈ B(x, δ) \G. Hence |ψ(x)| − ε ≤ 1/2 for all ε > 0. Passing in this inequality to the limit
as ε→ 0, we arrive at (2.5).

Theorem 2.6. Let G ⊂ Rn be a compact set of positive measure with empty interior and
let the weight wG be defined by (2.4). Then the Banach function space L∞(Rn, wG) does not
satisfy the bounded L2-approximation property.

Proof. Let u := 3
4 χG. Then u ∈ L2(Rn) ∩ L∞(Rn, wG) and ‖u‖L∞(Rn,wG) ≤ 3

4 . It follows
from Lemma 2.5 that if ψ ∈ C(Rn) and ‖ψ‖L∞(Rn,wG) ≤ 1, then

‖u− ψ‖L2(Rn) ≥
(∫

G

|u(x)− ψ(x)|2 dx
)1/2

≥

(∫
G

(
3

4
− 1

2

)2

dx

)1/2

≥ 1

4
|G|1/2.

This inequality implies that there is no sequence {uj}j∈N ⊂ C∞0 (Rn) such that (2.1) is fulfilled
for X(Rn) = L∞(Rn, wG).
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For a set F ⊂ Rn, we denote by F ∗ the closure of the set {x+ y ∈ Rn : x ∈ F, y ∈ B(0, 1)}.
The next result is well known. its proof is included for the reader’s convenience.

Lemma 2.7. For every function f ∈ L∞(Rn) with compact support there exists a sequence
{vj}j∈N ⊂ C∞0 (Rn) such that supp vj ⊆ (supp f)∗, ‖vj‖L∞(Rn) ≤ ‖f‖L∞(Rn) for all j ∈ N, and
vj → f a.e. on Rn as j →∞.

Proof. Let {%k}k∈N be the sequence defined by (2.2). By [7, Theorem 4.22], the sequence
νk := %k ∗ f converges to f in L1(Rn) as k →∞. In view of [7, Proposition 4.18], we have
supp νk ⊆ (supp f)∗. By the Young inequality for convolutions (see, e.g., [7, Theorem 4.15]), one
has ‖νk‖L∞(Rn) ≤ ‖%k‖L1(Rn)‖f‖L∞(Rn) = ‖f‖L∞(Rn) for all k ∈ N. Since ‖νk − f‖L1(Rn) → 0
as k →∞, there exists a subsequence {νkj}j∈N of the sequence {νk}k∈N such that νkj → f a.e.
on Rn as j →∞. Then the required sequence {vj}j∈N is defined by vj := νkj for j ∈ N.

We finish this subsection with a result that we will use in the next one.

Lemma 2.8. Suppose a Banach function space X(Rn) has the bounded L2-approximation
property. Then for every function f ∈ L∞(Rn) with compact support there exists a sequence
{vj}j∈N ⊂ C∞0 (Rn) such that

supp vj ⊆ (supp f)
∗
, ‖vj‖L∞(Rn) ≤ ‖f‖L∞(Rn) + 1, lim sup

j→∞
‖vj‖X(Rn) ≤ ‖f‖X(Rn),

and vj → f a.e. on Rn as j →∞.

Proof. Let {uk}k∈N ⊂ C∞0 (Rn) be such that

lim
k→∞

‖f − uk‖L2(Rn) = 0, lim sup
k→∞

‖uk‖X(Rn) ≤ ‖f‖X(Rn).

Consider a function ζ ∈ C∞0 (Rn) such that 0 ≤ ζ(x) ≤ 1 for x ∈ Rn, ζ(x) = 1 for x ∈ supp f ,
and supp ζ ⊆ (supp f)

∗
. Then ζf = f . Further, let η : C→ C be a function, which can be

represented for z = y1 + iy2 ∈ C as η(z) = η(y1 + iy2) = U(y1, y2) + iV (y1, y2) with real-valued
functions U, V ∈ C∞0 (R2). Assume that η(z) = z for all z ∈ C with |z| ≤ ‖f‖L∞(Rn), |η(z)| ≤ |z|
for all z ∈ C, and

max
z∈C
|η(z)| ≤ ‖f‖L∞(Rn) + 1.

Then η ◦ (ζf) = η ◦ f = f .
Set νk := η ◦ (ζuk) for k ∈ N. Then νk ∈ C∞0 (Rn), supp νk ⊆ supp ζ ⊆ (supp f)

∗
,

‖νk‖L∞(Rn) ≤ max
z∈C
|η(z)| ≤ ‖f‖L∞(Rn) + 1,

and

|νk(x)| = |η(ζ(x)uk(x))| ≤ |ζ(x)uk(x)| ≤ |uk(x)| for all x ∈ Rn.

Hence

lim sup
k→∞

‖νk‖X(Rn) ≤ lim sup
k→∞

‖uk‖X(Rn) ≤ ‖f‖X(Rn).

Further, by the mean value theorem, there exists a constant Cη depending on the maxima of
the partial derivatives of the functions U and V such that

‖f − νk‖L2(Rn) = ‖η ◦ (ζf)− η ◦ (ζuk)‖L2(Rn) ≤ Cη‖ζf − ζuk‖L2(Rn)

≤ Cη‖f − uk‖L2(Rn) → 0 as k →∞.
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Hence the sequence {νk}k∈N has a subsequence {νkj}j∈N such that νkj → f a.e. on Rn as j →∞
(see, e.g., [1, Chap. 1, Theorem 1.7(vi)]). Then the required sequence {vj}j∈N is defined by
vj := νkj for j ∈ N.

2.3. The norm fundamental property

Definition 2.9. We say that a Banach function space X(Rn) satisfies the norm funda-
mental property if for every f ∈ X(Rn),

‖f‖X(Rn) = sup

{∣∣∣∣∫
Rn
f(x)ψ(x) dx

∣∣∣∣ : ψ ∈ C∞0 (Rn), ‖ψ‖X′(Rn) ≤ 1

}
.

Let S0(Rn) denote the set of all simple compactly supported functions.

Lemma 2.10. Let X(Rn) be a Banach function space and X ′(Rn) be its associate space.
For every f ∈ X(Rn),

‖f‖X(Rn) = sup

{∣∣∣∣∫
Rn
f(x)s(x) dx

∣∣∣∣ : s ∈ S0(Rn), ‖s‖X′(Rn) ≤ 1

}
. (2.6)

Proof. By [1, Theorem 2.7 and Lemma 2.8], for every f ∈ X(Rn),

‖f‖X(Rn) = sup

{∣∣∣∣∫
Rn
f(x)g(x) dx

∣∣∣∣ : g ∈ X ′(Rn), ‖g‖X′(Rn) ≤ 1

}
. (2.7)

It follows from the inclusion S0(Rn) ⊂ X ′(Rn) and equality (2.7) that

‖f‖X(Rn) ≥ sup

{∣∣∣∣∫
Rn
f(x)s(x) dx

∣∣∣∣ : s ∈ S0(Rn), ‖s‖X′(Rn) ≤ 1

}
. (2.8)

Fix g ∈ X ′(Rn) such that ‖g‖X′(Rn) ≤ 1. Then there exists a sequence {sj}j∈N ⊂ S0(Rn) such
that 0 ≤ |s1| ≤ |s2| ≤ · · · ≤ |g| and sj → g a.e. on Rn as j →∞. Therefore, fsj → fg as j →∞
and |fsj | ≤ |fg| for all j ∈ N a.e. on Rn. By Hölder’s inequality (see [1, Chap. 1, Theorem 2.4]),
fg ∈ L1(Rn). Hence, in view of the Lebesgue dominated convergence theorem,

lim
j→∞

∫
Rn
f(x)sj(x) dx =

∫
Rn
f(x)g(x) dx.

On the other hand, inequality |sj | ≤ |g| implies that ‖sj‖X′(Rn) ≤ ‖g‖X′(Rn) ≤ 1 for all j ∈ N.
Thus, for all g ∈ X ′(Rn) satisfying ‖g‖X′(Rn) ≤ 1, we have∣∣∣∣∫

Rn
f(x)g(x) dx

∣∣∣∣ = lim
j→∞

∣∣∣∣∫
Rn
f(x)sj(x) dx

∣∣∣∣ ≤ sup
j∈N

∣∣∣∣∫
Rn
f(x)sj(x) dx

∣∣∣∣
≤ sup

{∣∣∣∣∫
Rn
f(x)s(x) dx

∣∣∣∣ : s ∈ S0(Rn), ‖s‖X′(Rn) ≤ 1

}
.

This inequality and equality (2.7) imply that

‖f‖X(Rn) ≤ sup

{∣∣∣∣∫
Rn
f(x)s(x) dx

∣∣∣∣ : s ∈ S0(Rn), ‖s‖X′(Rn) ≤ 1

}
. (2.9)

Combining inequalities (2.8) and (2.9), we arrive at equality (2.6).

Theorem 2.11. If X ′(Rn) satisfies the bounded L2-approximation property, then X(Rn)
has the norm fundamental property.
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Proof. Lemma 2.10 implies that it is sufficient to prove the inequality∣∣∣∣∫
Rn
ϕ(x)s(x) dx

∣∣∣∣ ≤ sup

{∣∣∣∣∫
Rn
ϕ(x)ψ(x) dx

∣∣∣∣ : ψ ∈ C∞0 (Rn), ‖ψ‖X′(Rn) ≤ 1

}
(2.10)

for any ϕ ∈ X(Rn) and any s ∈ S0(Rn) with ‖s‖X′(Rn) ≤ 1. According to Lemma 2.8, there
exists a sequence {ψj}j∈N ⊂ C∞0 (Rn) such that

suppψj ⊆ (supp s)
∗
, ‖ψj‖L∞(Rn) ≤ ‖s‖L∞(Rn) + 1, lim sup

j→∞
‖ψj‖X′(Rn) ≤ ‖s‖X′(Rn),

and ψj → s a.e. on Rn as j →∞. Take an arbitrary ε ∈ (0, 1). Then (1− ε)‖ψj‖X′(Rn) ≤ 1
for all sufficiently large j ∈ N. Axiom (A5) and the Lebesgue dominated convergence theorem
imply that

(1− ε)
∣∣∣∣∫

Rn
ϕ(x)s(x) dx

∣∣∣∣ = (1− ε) lim
j→∞

∣∣∣∣∫
Rn
ϕ(x)ψj(x) dx

∣∣∣∣
≤ sup

{∣∣∣∣∫
Rn
ϕ(x)ψ(x) dx

∣∣∣∣ : ψ ∈ C∞0 (Rn), ‖ψ‖X′(Rn) ≤ 1

}
.

Since ε ∈ (0, 1) is arbitrary, (2.10) follows.

Corollary 2.12. IfX(Rn) is a Banach function space such that its associate spaceX ′(Rn)
has absolutely continuous norm, then X(Rn) satisfies the norm fundamental property.

Proof. This follows from Theorems 2.11 and 2.3.

Note that a Banach function space X(Rn) may satisfy the norm fundamental property even
if (X ′)a(Rn) = {0}. For instance, if X(Rn) = L1(Rn), then (X ′)a(Rn) = (L∞)a(Rn) = {0} in
view of [1, Chap. 3, Theorem 5.5(b)]. However, the following result is true.

Corollary 2.13. Let Y (Rn) be a translation-invariant Banach function space and let
w ∈ C(Rn) be a function such that w(x) > 0 for all x ∈ Rn. Then X(Rn) = Y (Rn, w) has the
norm fundamental property.

Proof. In view of Lemma 2.1, the space Y ′(Rn) is translation-invariant. On the other hand,
w−1 ∈ C(Rn) and w−1 > 0. It follows from [22, Lemma 2.4(c)] that X ′(Rn) = Y ′(Rn, w−1). By
Theorem 2.4, the space Y ′(Rn, w−1) satisfies the bounded L2-approximation property. Then
the space Y (Rn, w) has the norm fundamental property due to Theorem 2.11.

Similarly to Theorem 2.4, one cannot drop the requirement of continuity of the weight w in
Corollary 2.13.

Lemma 2.14. Let G ⊂ Rn be a compact set of positive measure with empty interior and
let the weight wG be defined by (2.4). Suppose f ∈ L1(Rn, w−1

G ), f ≥ 0, and supp f ∩G has
positive measure. Then

‖f‖L1(Rn,w−1
G ) > sup

{∣∣∣∣∫
Rn
f(x)ψ(x) dx

∣∣∣∣ : ψ ∈ C(Rn), ‖ψ‖L∞(Rn,wG) ≤ 1

}
.
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Proof. It follows from Lemma 2.5 that∣∣∣∣∫
Rn
f(x)ψ(x) dx

∣∣∣∣ ≤ 1

2

∫
Rn
f(x) dx

for any function ψ ∈ C(Rn) with ‖ψ‖L∞(Rn,wG) ≤ 1. On the other hand,

‖f‖L1(Rn,w−1
G ) =

∫
G

f(x)w−1
G (x) dx+

∫
Rn\G

f(x)w−1
G (x) dx

=

∫
G

f(x) dx+
1

2

∫
Rn\G

f(x) dx >
1

2

∫
Rn
f(x) dx,

since supp f ∩G has positive measure.

Corollary 2.15. Let G ⊂ Rn be a compact set of positive measure with empty interior
and let the weight wG be defined by (2.4). Then the Banach function space L1(Rn, w−1

G ) does
not have the norm fundamental property.

Corollary 2.15 and Theorem 2.11 provide an alternative proof of Theorem 2.6.

2.4. Lemma on approximation at Lebesgue points

Given δ > 0 and a function ψ on Rn, we define the function ψδ by

ψδ(ξ) := δ−nψ(ξ/δ), ξ ∈ Rn.

Recall that a point x ∈ Rn is said to be a Lebesgue point of a function f ∈ L1
loc(Rn) if

lim
R→0+

1

|B(x,R)|

∫
B(x,R)

|f(y)− f(x)| dy = 0.

For σ ∈ R, we will say that a measurable function f belongs to the space L1,σ(Rn) if∫
Rn

(1 + |ξ|)−σ|f(ξ)| dξ <∞.

Lemma 2.16. Let σ1, σ2 ∈ R be such that σ2 ≥ σ1 and σ2 > n. Suppose ψ is a measurable
function on Rn satisfying

|ψ(ξ)| ≤ C(1 + |ξ|)−σ2 for almost all ξ ∈ Rn (2.11)

with some constant C ∈ (0,∞). Then for every Lebesgue point η ∈ Rn of a function a belonging
to the space L1,σ1(Rn), one has∫

Rn
|a(ξ)− a(η)| |ψδ(η − ξ)| dξ → 0 as δ → 0.

Proof. The proof is similar to the proof of [31, Chap. I, Theorem 1.25] (see also [10,
Chap. II, Lemma 1]). We give it here for the convenience of the reader.

Take an arbitrary ε > 0. Since η ∈ Rn is a Lebesgue point of a, there exists a ρ > 0 such
that

r−n
∫
|ζ|<r

|a(η − ζ)− a(η)| dζ ≤ ε for all r ∈ (0, ρ]. (2.12)
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Substituting η − ξ with ζ and splitting the integral, we get for any δ > 0,∫
Rn
|a(ξ)− a(η)| |ψδ(η − ξ)| dξ =

∫
|ζ|<ρ

|a(η − ζ)− a(η)| |ψδ(ζ)| dζ

+

∫
|ζ|≥ρ

|a(η − ζ)− a(η)| |ψδ(ζ)| dζ

=:I1(δ) + I2(δ). (2.13)

Let Sn−1 = {ϑ ∈ Rn : |ϑ| = 1} be the unit sphere in Rn and let

g(r) :=

∫
Sn−1

|a(η − rϑ)− a(η)| dϑ,

where dϑ is an element of the surface area on Sn−1. Then condition (2.12) is equivalent to

G(r) :=

∫r
0

sn−1g(s) ds ≤ εrn for all r ∈ (0, ρ] (2.14)

(see, e.g., [17, Theorem 2.49]). Let

φ(r) := C(1 + r)−σ2 , φ(δ)(r) := δ−nφ(r/δ), r ≥ 0.

Then (2.11) implies that

I1(δ) ≤
∫
|ζ|<ρ

|a(η − ζ)− a(η)|φ(δ)(|ζ|) dζ =

∫ρ
0

rn−1g(r)φ(δ)(r) dr.

Integrating by parts twice and taking into account (2.14) and the inequalities φ′(δ) < 0 and
σ2 > n, we obtain

I1(δ) ≤
[
G(r)φ(δ)(r)

]ρ
0
−
∫ρ
0

G(r)φ′(δ)(r) dr ≤ ερ
nφ(δ)(ρ)−

∫ρ
0

εrnφ′(δ)(r) dr

= nε

∫ρ
0

rn−1φ(δ)(r) dr ≤ nε
∫∞
0

rn−1φ(δ)(r) dr = nε

∫∞
0

sn−1φ(s) ds

≤ Cnε
∫∞
0

(1 + s)n−1−σ2 ds =
Cn

σ2 − n
ε =: Aε. (2.15)

Since a ∈ L1,σ1
(Rn), we get for all δ > 0,

I2(δ) ≤
∫
|ζ|≥ρ

|a(η − ζ)− a(η)|φ(δ)(|ζ|) dζ

≤
(∫

Rn
|a(η − ζ)|(1 + |η − ζ|)−σ1 dζ

)
sup
|ζ|≥ρ

(
(1 + |η − ζ|)σ1φ(δ)(|ζ|)

)
+ |a(η)|

∫
|ζ|≥ρ

φ(δ)(|ζ|) dζ

≤‖a‖1,σ1
sup
|ζ|≥ρ

(
(1 + |η − ζ|)σ2φ(δ)(|ζ|)

)
+ |a(η)|ωn

∫∞
ρ

rn−1φ(δ)(r) dr, (2.16)

where ωn is the surface area of Sn−1. It is clear that for |ζ| ≥ ρ,

(1 + |η − ζ|)σ2φ(δ)(|ζ|) ≤ C(1 + |η|+ |ζ|)σ2δ−n(1 + |ζ|/δ)−σ2

= C
(1 + |η|+ |ζ|)σ2

(δ + |ζ|)σ2
δσ2−n < C

(
1 + |η|
|ζ|

+ 1

)σ2

δσ2−n

≤ C
(

1 + |η|
ρ

+ 1

)σ2

δσ2−n. (2.17)
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Further, ∫∞
ρ

rn−1φ(δ)(r) dr =

∫∞
ρ/δ

sn−1φ(s) ds ≤ C
∫∞
ρ/δ

(1 + s)n−1−σ2 ds

=
C

σ2 − n
(1 + ρ/δ)n−σ2 ≤ C

(σ2 − n)ρσ2−n
δσ2−n. (2.18)

It follows from (2.16)–(2.18) that

I2(δ) ≤ C
(
‖a‖1,σ1

(
1 + |η|
ρ

+ 1

)σ2

+
ωn|a(η)|

(σ2 − n)ρσ2−n

)
δσ2−n.

Hence there exists a δ0 = δ0(ε) > 0 such that

I2(δ) < ε for all δ ∈ (0, δ0),

and inequality (2.15) implies that

I1(δ) + I2(δ) < (A+ 1)ε for all δ ∈ (0, δ0).

Combining this estimate with (2.13), we arrive at the desired result.

3. Weak doubling property

3.1. The infimum of the doubling constants

For a Banach function space X(Rn) and τ > 1, consider the doubling constant

DX,τ := lim inf
R→∞

(
inf
y∈Rn

‖χB(y,τR)‖X(Rn)

‖χB(y,R)‖X(Rn)

)
. (3.1)

We immediately deduce from the lattice property (Axiom (A2) in the definition of a Banach
function space) that 1 ≤ DX,τ1 ≤ DX,τ2 for all 1 < τ1 ≤ τ2. Therefore,

inf
τ>1

DX,τ ≥ 1.

Lemma 3.1. If a Banach function space X(Rn) satisfies the weak doubling property, then

inf
τ>1

DX,τ = 1.

Proof. Since X(Rn) satisfies the weak doubling property, there exists a number % > 1 such
that DX,% <∞. Assume, contrary to the hypothesis, that

D := inf
τ>1

DX,τ > 1.

Take an arbitrary N ∈ N and consider τ = %1/N . Since

DX,τ ≥ D > D0 :=
D + 1

2
> 1,

it follows from the definition of DX,τ that there exists a number R0 > 0 such that for all
R ≥ R0,

inf
y∈Rn

‖χB(y,τR)‖X(Rn)

‖χB(y,R)‖X(Rn)
≥ D0.
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Hence, for all y ∈ Rn and all R ≥ R0,

‖χB(y,%R)‖X(Rn)

‖χB(y,R)‖X(Rn)
=

N∏
j=1

‖χB(y,τjR)‖X(Rn)

‖χB(y,τj−1R)‖X(Rn)
≥ DN

0 .

Therefore, DX,% ≥ DN
0 for all N ∈ N, which is impossible since D0 > 1 and DX,% <∞. The

obtained contradiction completes the proof.

3.2. The doubling property and the AX -condition

Definition 3.2. We say that a Banach function space X(Rn) satisfies the (strong)
doubling property if there exist a number τ > 1 and a constant Cτ > 0 such that for all R > 0
and y ∈ Rn,

‖χB(y,τR)‖X(Rn)

‖χB(y,R)‖X(Rn)
≤ Cτ . (3.2)

The doubling property is considerably stronger than the weak doubling property. Indeed, it
is easy to see that a Banach function space X(Rn) satisfies the weak doubling property if and
only if there exist a number τ > 1, a constant Cτ > 0, a sequence {Rj}j∈N ⊂ (0,∞) satisfying
Rj →∞ as j →∞, and a sequence {yj}j∈N in Rn such that

‖χB(yj ,τRj)‖X(Rn)

‖χB(yj ,Rj)‖X(Rn)
≤ Cτ for all j ∈ N. (3.3)

So, the difference between the doubling property and the weak doubling property is that the
former requires estimate (3.2) to hold for all balls, while the latter requires it to hold only
for some sequence of balls with radii going to infinity. We will return to this comparison in
Subsection 3.5.

Now we give a sufficient condition guaranteeing that a Banach function space X(Rn) satisfies
the doubling property. We say that a Banach function space X(Rn) satisfies the AX -condition
if

sup
Q

1

|Q|
‖χQ‖X(Rn)‖χQ‖X′(Rn) <∞, (3.4)

where the supremum is taken over all cubes with sides parallel to the coordinate axes. This
condition goes back to E. I. Berezhnoi [2].

Lemma 3.3. If X(Rn) is a Banach function space satisfying the AX -condition, then X(Rn)
satisfies the doubling property.

Proof. It is well-known that there exist constants 0 < mn < Mn <∞ such that for every
ball B in Rn and the corresponding inscribed and circumscribed cubes Q and P one has

mn|P | ≤ |B| ≤Mn|Q|.

Then it follows from Axiom (A2) in the definition of a Banach function function norm that
condition (3.4) is equivalent to the condition

CX := sup
B

1

|B|
‖χB‖X(Rn)‖χB‖X′(Rn) <∞,

where the supremum is taken over all balls in Rn. Then, for every y ∈ Rn, τ > 1 and R > 0,

‖χB(y,τR)‖X(Rn) ≤ CX
|B(y, τR)|

‖χB(y,τR)‖X′(Rn)
≤ CX

|B(y, τR)|
‖χB(y,R)‖X′(Rn)

= CXτ
n |B(y,R)|
‖χB(y,R)‖X′(Rn)

.
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It follows from the above inequality and Hölder’s inequality for Banach function spaces (see
[1, Chap. 1, Theorem 2.4]) that

‖χB(y,τR)‖X(Rn) ≤ CXτn
‖χB(y,R)‖X(Rn)‖χB(y,R)‖X′(Rn)

‖χB(y,R)‖X′(Rn)
= CXτ

n‖χB(y,R)‖X(Rn).

Applying this inequality, we immediately get (3.2) with Cτ = CXτ
n for every τ > 1, which

completes the proof.

3.3. Translation-invariant Banach function spaces satisfy the doubling property

Lemma 3.4. Let X(Rn) be a translation-invariant Banach function space.
(a) There exist constants C1, C2 > 0 such that for all R > 0 and y ∈ Rn,

C1 min {1, Rn} ≤ ‖χB(y,R)‖X(Rn) ≤ C2 max {1, Rn} . (3.5)

(b) For all τ > 1, R > 0, and y ∈ Rn,

‖χB(y,τR)‖X(Rn)

‖χB(y,R)‖X(Rn)
≤
(
4
√
n τ
)n
. (3.6)

Proof. (a) All cubes in this proof are assumed to be closed and to have sides parallel
to the coordinate axes. Let Q(x, a) denote the cube centered at x of side length a. Since
the space X(Rn) is translation-invariant, we have ‖χB(x,R)‖X(Rn) = ‖χB(y,R)‖X(Rn) and
‖χQ(x,a)‖X(Rn) = ‖χQ(y,a)‖X(Rn) for all x, y ∈ Rn and a,R > 0. Therefore, we may simply write
BR andQa for arbitrary open balls of radius R and arbitrary cubes of side length a, respectively.

Let a > 0 and F be the family of 2n cubes Qa with pairwise disjoint interiors obtained from
a fixed cube Q2a by dividing each its side in two segments of equal length: Q2a = ∪Qa∈FQa.
Then

‖χQ2a
‖X(Rn) =

∥∥∥∥∥∥
∑
Qa∈F

χQa

∥∥∥∥∥∥
X(Rn)

≤
∑
Qa∈F

‖χQa‖X(Rn) = 2n ‖χQa‖X(Rn) . (3.7)

Using inequality (3.7) m times, one gets for all m ∈ N,

‖χQ2m
‖X(Rn) ≤ 2mn ‖χQ1‖X(Rn) , ‖χQ1‖X(Rn) ≤ 2mn

∥∥χQ2−m

∥∥
X(Rn)

, (3.8)

and hence ∥∥χQ2−m

∥∥
X(Rn)

≥ 2−mn‖χQ1
‖X(Rn). (3.9)

If R ≥ 1, there exists m ∈ N such that 2m−2 < R ≤ 2m−1. Then BR is contained in a cube
Q2m of side length 2m and it follows from the first inequality in (3.8) that

‖χB1‖X(Rn) ≤ ‖χBR‖X(Rn) ≤ ‖χQ2m
‖X(Rn)

≤ 2mn ‖χQ1
‖X(Rn) <

(
4n ‖χQ1

‖X(Rn)

)
Rn. (3.10)

If R ≤ 1, there exists m ∈ N ∪ {0} such that 2−m−1 ≤ R/
√
n < 2−m. Then it is easy to see

that BR contains a cube Q2−m of side length 2−m and it follows from (3.9) that

‖χB1
‖X(Rn) ≥ ‖χBR‖X(Rn) ≥

∥∥χQ2−m

∥∥
X(Rn)

≥ 2−mn‖χQ1
‖X(Rn) >

(
n−n/2 ‖χQ1

‖X(Rn)

)
Rn. (3.11)

Estimates (3.10) and (3.11) imply (3.5) with

C1 = min
{
‖χB1

‖X(Rn), n
−n/2 ‖χQ1

‖X(Rn)

}
, C2 = max

{
‖χB1

‖X(Rn), 4n ‖χQ1
‖X(Rn)

}
.
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Part (a) is proved.
(b) For any R > 0, there exists m ∈ Z such that 2m−2 < τR ≤ 2m−1. Then any ball BτR is

contained in a cube Q2m of side length 2m. Let m0 := [log2 (τ
√
n)] + 1. It is easy to see that

2m−m0−2 < R/
√
n and BR contains a cube Q2m−m0−1 of side length 2m−m0−1. Hence

‖χBτR‖X(Rn)

‖χBR‖X(Rn)
≤

‖χQ2m
‖X(Rn)

‖χQ
2m−m0−1‖X(Rn)

≤ 2(m0+1)n ≤
(
4
√
n τ
)n
,

where the second inequality is obtained by applying (3.7) m0 + 1 times.

Lemma 3.4(b) immediately yields the following.

Corollary 3.5. If X(Rn) is a translation-invariant Banach function space, then it satisfies
the doubling property.

3.4. Translation-invariant spaces with exponential weights fail the weak doubling property

Theorem 3.6. Suppose that X(R) is a translation-invariant Banach function space. If
w(x) := ecx for x ∈ R with a constant c > 0, then the weighted Banach function space X(R, w)
does not satisfy the weak doubling property.

Proof. Let τ > 1. By the second inequality in (3.5), for every y ∈ R and every R ≥ 1, one
has

‖χB(y,R)‖X(R,w) ≤ ec(y+R)‖χB(y,R)‖X(R) ≤ C2e
c(y+R)R.

Set

r :=
τ − 1

4
R, z := y +

(
3

4
τ +

1

4

)
R.

It is easy to see that B(z, r) ⊂ B(y, τR) and x ≥ y + τ+1
2 R for all x ∈ B(z, r). Then these

observations and the first inequality in (3.5) imply that

‖χB(y,τR)‖X(R,w) ≥ ‖χB(z,r)‖X(R,w) ≥ ec(y+ τ+1
2 R)‖χB(z,r)‖X(R)

≥ ec(y+ τ+1
2 R)C1 min {1, r} = C1e

c(y+ τ+1
2 R) min

{
1,
τ − 1

4
R

}
.

Hence

inf
y∈Rn

‖χB(y,τR)‖X(R,w)

‖χB(y,R)‖X(R,w)
≥ C1

C2

ec
τ−1
2 R

R
→∞ as R→∞,

and X(R, w) does not satisfy the weak doubling property.

Theorem 3.7. Suppose that X(Rn) is a translation-invariant Banach function space.
If w(x) := ec|x| for x ∈ Rn with a constant c > 0, then the weighted Banach function space
X(Rn, w) does not satisfy the weak doubling property.

Proof. The proof is similar to that of Theorem 3.6. Let τ > 1. It follows from the second
inequality in (3.5) that for every y ∈ Rn and every R ≥ 1, one has

‖χB(y,R)‖X(Rn,w) ≤ ec(|y|+R)‖χB(y,R)‖X(Rn) ≤ C2e
c(|y|+R)Rn.
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Set

r :=
τ − 1

4
R, z :=

{
y +

(
3
4 τ + 1

4

)
R y
|y| , y 6= 0,(

3
4 τ + 1

4

)
Re1, y = 0,

where e1 := (1, 0, . . . , 0) ∈ Rn. It is not difficult to see that B(z, r) ⊂ B(y, τR) and

|x| ≥ |y|+ τ + 1

2
R for all x ∈ B(z, r).

Hence, taking into account the first inequality in (3.5), we obtain

‖χB(y,τR)‖X(Rn,w) ≥ ‖χB(z,r)‖X(Rn,w) ≥ ec(|y|+
τ+1
2 R)‖χB(z,r)‖X(Rn)

≥ ec(|y|+
τ+1
2 R)C1 min {1, rn} = C1e

c(|y|+ τ+1
2 R) min

{
1,

(
τ − 1

4
R

)n}
.

Thus,

inf
y∈Rn

‖χB(y,τR)‖X(Rn,w)

‖χB(y,R)‖X(Rn,w)
≥ C1

C2

ec
τ−1
2 R

Rn
→∞ as R→∞,

and X(Rn, w) does not satisfy the weak doubling property.

3.5. Comparison of the doubling property and the weak doubling property

Lemma 3.8. If X(Rn) is a Banach function space satisfying the doubling property, then
the function

fX(R) := ‖χB(0,R)‖X(Rn), R ∈ (0,∞), (3.12)

cannot grow faster than polynomially as R→ +∞.

Proof. The proof is analogous to the proof of [30, Lemma 5.2.4]. Suppose there exist τ > 1
and Cτ > 0 such that (3.2) holds for y = 0 and any R > 1. Then there exists m ∈ N such that
τm−1 < R ≤ τm. Applying (3.2) m times, one gets

fX(R) ≤ fX(τm) ≤ Cmτ fX(1) = τm logτ Cτ fX(1) < Rlogτ Cτ τ logτ Cτ fX(1) = CτfX(1)Rlogτ Cτ ,

which completes the proof.

On the other hand, we will show that the weak doubling property of a Banach function space
X(Rn) allows the function fX given by (3.12) to grow at any subexponential rate as R→ +∞.
In fact, we will show that if a weight w grows at a subexponential rate in an open cone and
Y (Rn) is a translation-invariant Banach function space, then the weighted Banach function
space X(Rn) = Y (Rn, w) satisfies the weak doubling property.

Inequalities (3.3) and (3.6) yield the following.

Lemma 3.9. Let Y (Rn) be a translation-invariant Banach function space. Suppose that
w : Rn → [0,∞] is a weight satisfying w, 1/w ∈ L∞loc(Rn). If there exist a number τ > 1, a
constant cτ > 0, a sequence {Rj}j∈N ⊂ (0,∞) satisfying Rj →∞ as j →∞, and a sequence
{yj}j∈N ⊂ Rn such that

ess sup
x∈B(yj ,τRj)

w(x)

ess inf
x∈B(yj ,Rj)

w(x)
≤ cτ for all j ∈ N, (3.13)

then the weighted Banach function space X(Rn) = Y (Rn, w) satisfies the weak doubling
property.
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Lemma 3.10. Let Y (Rn) be a translation-invariant Banach function space and ϕ be a
nonincreasing function such that ϕ(r)→ 0 as r → +∞ and rϕ(r) is nondecreasing for r ≥ 1.
Suppose w : Rn → [0,∞] is a weight satisfying w, 1/w ∈ L∞loc(Rn) and there exist C0, C1 > 0,
γ > 0, θ ∈ Rn with |θ| = 1 such that

C0 exp(|x|ϕ(|x|)) ≤ w(x) ≤ C1 exp(|x|ϕ(|x|)) when

∣∣∣∣ x|x| − θ
∣∣∣∣ < γ, |x| ≥ 1. (3.14)

Then X(Rn) = Y (Rn, w) satisfies the weak doubling property and there exists a constant C > 0
such that

fX(R) ≥ C exp
(
Rϕ(R)

)
(3.15)

for all sufficiently large R, where the function fX : (0,∞)→ (0,∞) is given by (3.12).

Proof. Let us show that (3.13) is satisfied for Rj = ϕ−1/2(j) and yj = (j +m)θ with a
sufficiently large m > 0. Indeed, since

Rj
j

=
ϕ1/2(j)

jϕ(j)
≤ ϕ1/2(j)

ϕ(1)
→ 0 as j →∞,

the balls B(yj , τRj) lie in the cone
∣∣∣ x|x| − θ∣∣∣ < γ provided m is sufficiently large. Then for all

j ∈ N,

ess sup
x∈B(yj ,τRj)

w(x)

ess inf
x∈B(yj ,Rj)

w(x)
≤
C1 exp

[(
j +m+ τϕ−1/2(j)

)
ϕ
(
j +m+ τϕ−1/2(j)

)]
C0 exp

[(
j +m− ϕ−1/2(j)

)
ϕ
(
j +m− ϕ−1/2(j)

)]
≤
C1 exp

[(
j +m+ τϕ−1/2(j)

)
ϕ(j +m)

]
C0 exp

[(
j +m− ϕ−1/2(j)

)
ϕ(j +m)

]
=
C1

C0
exp

[
(τ + 1)ω−1/2(j)ϕ(j +m)

]
≤ C1

C0
exp

[
(τ + 1)ϕ1/2(j)

]
≤ C1

C0
exp

[
(τ + 1)ϕ1/2(1)

]
.

By Lemma 3.9, X(Rn) = Y (Rn, w) satisfies the weak doubling property. Since Y (Rn) is
translation-invariant and rϕ(r) is nonincreasing, it follows from (3.14) that

fX(R) ≥ ‖χB((R−1)θ,1)‖Y (Rn,w) ≥ C0 exp((R− 2)ϕ(R− 2))‖χB((R−1)θ,1)‖Y (Rn)

= C0 exp((R− 2)ϕ(R− 2))‖χB(0,1)‖Y (Rn) ≥ C0 exp(Rϕ(R))‖χB(0,1)‖Y (Rn)

for all sufficiently large R, i.e. (3.15) is satisfied with C = C0‖χB(0,1)‖Y (Rn).

Let 1 ≤ p ≤ ∞. It follows from Lemma 3.9 that X(R) = Lp(R, w) has the weak doubling
property if w : R→ [0,∞] satisfies w, 1/w ∈ L∞loc(R) and w(x) is equal to, e.g., (1 + x)α, α > 0;

exp
(
xβ
)
, β ∈ (0, 1); or exp

(
x

log log(3+x)

)
for x > 0. On the other hand, Theorems 3.6 and 3.7

imply that Lp(R, w) does not satisfy the weak doubling property for w(x) = ecx or w(x) = ec|x|,
x ∈ R, with any c > 0.
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4. Proof of the main result

4.1. The case of a ∈ L1,σ(Rn) for some σ ∈ R

Theorem 4.1. Let X(Rn) be a Banach function space satisfying the weak doubling
property. If σ ∈ R and a ∈MX(Rn) ∩ L1,σ(Rn), then a ∈ L∞(Rn) and

‖a‖L∞(Rn) ≤ ‖a‖MX(Rn)
. (4.1)

Proof. Let DX,% be defined for all % > 1 by (3.1). If, for some % > 1, the quantity DX,% is
infinite, then it is obvious that

‖a‖L∞(Rn) ≤ DX,%‖a‖MX(Rn)
. (4.2)

Since X(Rn) satisfies the weak doubling property, there exists % > 1 such that DX,% <∞. Take
an arbitrary Lebesgue point η ∈ Rn of the function a. Let an even function ϕ ∈ C∞0 (Rn) satisfy
the following conditions:

0 ≤ ϕ ≤ 1, ϕ(x) = 1 for |x| ≤ 1, ϕ(x) = 0 for |x| ≥ %.

Let

fδ,η(x) := eiηxϕ(δx), x ∈ Rn, δ > 0,

and

fδ,η,y(x) := fδ,η(x− y), y ∈ Rn.

Then

(Ffδ,η,y)(ξ) = e−iξy(Ffδ,η)(ξ) = e−iξyδ−n(Fϕ)

(
ξ − η
δ

)
= e−iξy(Fϕ)δ(ξ − η) = e−iξy(Fϕ)δ(η − ξ)

and (
F−1aFfδ,η,y

)
(x) =

1

(2π)n

∫
Rn
ei(x−y)ξa(ξ)(Fϕ)δ(η − ξ) dξ,

a(η)fδ,η,y(x) =
1

(2π)n

∫
Rn
ei(x−y)ξa(η)(Fϕ)δ(η − ξ) dξ.

Hence, for all x, y ∈ Rn and δ > 0,∣∣(F−1aFfδ,η,y
)

(x)− a(η)fδ,η,y(x)
∣∣ =

1

(2π)n

∣∣∣∣∫
Rn
ei(x−y)ξ(a(ξ)− a(η))(Fϕ)δ(η − ξ) dξ

∣∣∣∣
≤ 1

(2π)n

∫
Rn
|a(ξ)− a(η)| |(Fϕ)δ(η − ξ)| dξ.

Since Fϕ ∈ S(Rn) and η is a Lebesgue point of a, it follows from Lemma 2.16 that for any
ε > 0 there exists δε > 0 such that for all x, y ∈ Rn and all δ ∈ (0, δε),∣∣(F−1aFfδ,η,y

)
(x)− a(η)fδ,η,y(x)

∣∣ < ε.

It is clear that |fδ,η,y|χB(y,1/δ) = χB(y,1/δ). Then the above inequality implies that for all y ∈ Rn
and δ ∈ (0, δε),

|a(η)|χB(y,1/δ) ≤
∣∣F−1aFfδ,η,y

∣∣+ εχB(y,1/δ).
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Hence

|a(η)|
∥∥χB(y,1/δ)

∥∥
X(Rn)

≤
∥∥F−1aFfδ,η,y

∥∥
X(Rn)

+ ε
∥∥χB(y,1/δ)

∥∥
X(Rn)

≤ ‖a‖MX(Rn)
‖fδ,η,y‖X(Rn) + ε

∥∥χB(y,1/δ)

∥∥
X(Rn)

≤ ‖a‖MX(Rn)

∥∥χB(y,%/δ)

∥∥
X(Rn)

+ ε‖χB(y,1/δ)‖X(Rn). (4.3)

Since DX,% <∞, the definition of DX,% given in (3.1) implies that there exist δ ∈ (0, δε) and
y ∈ Rn such that ∥∥χB(y,%/δ)

∥∥
X(Rn)∥∥χB(y,1/δ)

∥∥
X(Rn)

≤ DX,% + ε.

Choosing these δ and y, and dividing both sides of inequality (4.3) by
∥∥χB(y,1/δ)

∥∥
X(Rn)

, we get

|a(η)| ≤ (DX,% + ε)‖a‖MX(Rn)
+ ε for all ε > 0.

Hence, for all Lebesgue points η ∈ Rn of the function a, we have

|a(η)| ≤ DX,%‖a‖MX(Rn)
.

Since a ∈ L1,σ(Rn) ⊂ L1
loc(Rn), almost all points η ∈ Rn are Lebesgue points of the function

a in view of the Lebesgue differentiation theorem (see, e.g., [18, Corollary 2.1.16 and
Exercise 2.1.10]). Therefore a ∈ L∞(Rn) and inequality (4.2) is fulfilled for all % > 1. It is
now left to apply Lemma 3.1.

4.2. Proof of Theorem 1.3 for arbitrary a ∈MX(Rn) ⊂ S′(Rn)

For a function w ∈ S(Rn), we will use the following notation

ŵ := Fw, w̌ := F−1w, w̃(ξ) := w(−ξ), (τζw)(ξ) := w(ξ − ζ), eζ(x) := eiζx.

Let a nonnegative even function ψ ∈ C∞0 (Rn) satisfy the condition∫
Rn
ψ(ξ) dξ = 1,

and let

ψε(ξ) := ε−nψ(ξ/ε), ε > 0.

Fix ε > 0 and take arbitrary functions u ∈ S(Rn) ∩X(Rn) and v ∈ C∞0 (Rn). Then we have
û, v̂ ∈ S(Rn). In view of [29, Theorem 7.19(b)] or [18, Theorem 2.3.20], we observe that

a ∗ ψε ∈ C∞poly(Rn) ⊂ S′(Rn) (4.4)

because a ∈ S′(Rn) and ψε ∈ S(Rn). Then (a ∗ ψε)û ∈ S(Rn). By [18, Theorem 2.2.14],∫
Rn

(
F−1(a ∗ ψε)Fu

)
(x)v(x) dx =

∫
Rn

(
F−1(a ∗ ψε)û

) ̂(ξ)v̌(ξ) dξ

=

∫
Rn

(a ∗ ψε)(ξ)û(ξ)v̌(ξ) dξ. (4.5)

Observe that ûv̌ ∈ S(Rn) in view of [18, Proposition 2.2.7]. Then, taking into account that
a ∈ S′(Rn) and ψε ∈ S(Rn), it follows from [18, Theorem 2.2.14] or [29, Theorem 7.19(d)]
that∫

Rn
(a ∗ ψε)(ξ)û(ξ)v̌(ξ) dξ =

(
(a ∗ ψε) ∗ (ûv̌)∼

)
(0) =

(
(a ∗ (ûv̌)∼) ∗ ψε

)
(0)

=

∫
Rn

(a ∗ (ûv̌)∼) (ζ)ψ̃ε(ζ) dζ =

∫
Rn
〈a, τζ(ûv̌)〉ψε(ζ) dζ. (4.6)
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Since τζ û ∈ S(Rn) ⊂ C∞poly(Rn), by the definition of multiplication of a ∈ S′(Rn) by a function
in C∞poly(Rn), we have

〈a, τζ(ûv̌)〉 = 〈a, τζ û · τζ v̌〉 = 〈aτζ û, τζ v̌〉. (4.7)

It is easy to see that τζ û = F (eζu) and τζ v̌ = F−1(e−ζv). Then

〈a, τζ(ûv̌)〉 = 〈aF (eζu), F−1(e−ζv)〉. (4.8)

By the definition of the inverse Fourier transform of aF (eζu) ∈ S′(Rn), we have

〈aF (eζu), F−1(e−ζv)〉 = 〈F−1aF (eζu), e−ζv〉. (4.9)

Combining (4.5)–(4.9), we arrive at the following equality:∫
Rn

(
F−1(a ∗ ψε)Fu

)
(x)v(x) dx =

∫
Rn
〈F−1aF (eζu), e−ζv〉ψε(ζ) dζ. (4.10)

Let s ∈ S0(Rn) be such that ‖s‖X′(Rn) ≤ 1. Put K := supp s and consider a function
φ ∈ C∞0 (Rn) such that 0 ≤ φ ≤ 1. By Lemma 2.7, there exists a sequence {vj}j∈N ⊂ C∞0 (Rn)
such that supp vj ⊆ K∗ and ‖vj‖L∞(Rn) ≤ ‖s‖L∞(Rn) for all j ∈ N and vj → s a.e. on Rn
as j →∞. Since (a ∗ ψε)Fu belongs to S(Rn), we have F−1(a ∗ ψε)Fu ∈ S(Rn) ⊂ L1(Rn).
Therefore φ · F−1(a ∗ ψε)Fu · s also belongs to L1(Rn) and it follows from the Lebesgue
dominated convergence theorem that

lim
j→∞

∫
Rn
φ(x)

(
F−1(a ∗ ψε)Fu

)
(x)vj(x) dx =

∫
Rn
φ(x)

(
F−1(a ∗ ψε)Fu

)
(x)s(x) dx. (4.11)

Further, |vj | ≤ ‖s‖L∞(Rn)χK∗ for all j ∈ N. Since a ∈MX(Rn), one has F−1aF (e−ζu) ∈ X(Rn),
and it follows from axiom (A5) that

(
F−1aF (eζu)

)
χK∗ ∈ L1(Rn). Hence, in view of the

Lebesgue dominated convergence theorem, for all ζ ∈ Rn,

lim
j→∞
〈φF−1aF (eζu), e−ζvj〉 =

∫
Rn
φ(x)

(
F−1aF (eζu)

)
(x) (e−ζs) (x) dx. (4.12)

Hölder’s inequality for X(Rn) (see [1, Chap. 1, Theorem 2.4]) implies for all ζ ∈ Rn,∣∣〈φF−1aF (eζu), e−ζvj〉
∣∣ ≤ ‖s‖L∞(Rn)

∫
Rn

∣∣(F−1aF (eζu)
)

(x)
∣∣χK∗(x) dx

≤ ‖s‖L∞(Rn)‖F−1aF (eζu)‖X(Rn)‖χK∗‖X′(Rn)

≤ ‖s‖L∞(Rn)‖a‖MX(Rn)‖eζu‖X(Rn)‖χK∗‖X′(Rn)

= ‖a‖MX(Rn)‖u‖X(Rn)‖s‖L∞(Rn)‖χK∗‖X′(Rn). (4.13)

Taking into account (4.12)–(4.13) and using the Lebesgue dominated convergence theorem
again, one gets

lim
j→∞

∫
Rn
〈φF−1aF (eζu), e−ζvj〉ψε(ζ) dζ

=

∫
Rn

(∫
Rn
φ(x)

(
F−1aF (eζu

)
(x) (e−ζs) (x) dx

)
ψε(ζ) dζ. (4.14)

It follows from (4.11), (4.14), and (4.10) with φvj in place of v that∫
Rn
φ(x)

(
F−1(a ∗ ψε)Fu

)
(x)s(x) dx

=

∫
Rn

(∫
Rn
φ(x)

(
F−1aF (eζu

)
(x) (e−ζs) (x) dx

)
ψε(ζ) dζ. (4.15)
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Similarly to (4.13) one gets∣∣∣∣∫
Rn
φ(x)

(
F−1aF (eζu

)
(x) (e−ζs) (x) dx

∣∣∣∣ ≤ ‖F−1aF (eζu)‖X(Rn)‖e−ζs‖X′(Rn)

≤ ‖a‖MX(Rn)‖u‖X(Rn)‖s‖X′(Rn). (4.16)

Equality (4.15) and inequality (4.16) immediately yield that for all u ∈ S(Rn) ∩X(Rn), all
s ∈ S0(Rn) satisfying ‖s‖X′(Rn) ≤ 1, and all φ ∈ C∞0 (Rn) satisfying 0 ≤ φ ≤ 1, one has∣∣∣∣∫

Rn
φ(x)

(
F−1(a ∗ ψε)Fu

)
(x)s(x) dx

∣∣∣∣ ≤ ‖a‖MX(Rn)‖u‖X(Rn)‖s‖X′(Rn). (4.17)

Now, take functions φj ∈ C∞0 (Rn) such that 0 ≤ φj ≤ 1 and φj(x) = 1 for all |x| ≤ j and
all j ∈ N. Since F−1(a ∗ ψε)Fu ∈ S(Rn), we have φjF

−1(a ∗ ψε)Fu ∈ C∞0 (Rn) for all j ∈ N.
Inequality (4.17) implies that for all s ∈ S0(Rn) satisfying ‖s‖X′(Rn) ≤ 1 and all j ∈ N, one has∣∣∣∣∫

Rn
φj(x)F−1(a ∗ ψε)Fu(x)s(x) dx

∣∣∣∣ ≤ ‖a‖MX(Rn)
‖u‖X(Rn)‖s‖X′(Rn).

Hence it follows from Lemma 2.10 that for all j ∈ N,

‖φjF−1(a ∗ ψε)Fu‖X(Rn) ≤ ‖a‖MX(Rn)
‖u‖X(Rn).

Since the functions φjF
−1(a ∗ ψε)Fu converge to F−1(a ∗ ψε)Fu everywhere as j →∞, Fatou’s

lemma (see [1, Chap. 1, Lemma 1.5]) implies that F−1(a ∗ ψε)Fu ∈ X(Rn) and

‖F−1(a ∗ ψε)Fu‖X(Rn) ≤ ‖a‖MX(Rn)
‖u‖X(Rn)

for all u ∈ S(Rn) ∩X(Rn). Thus

‖a ∗ ψε‖MX(Rn)
≤ ‖a‖MX(Rn)

.

Since C∞poly(Rn) ⊂ L1,σ(Rn) for some σ ∈ R and a ∗ ψε ∈ C∞poly(Rn), it follows from Theo-
rem 4.1 that a ∗ ψε ∈ L∞(Rn) and

‖a ∗ ψε‖L∞(Rn) ≤ ‖a ∗ ψε‖MX(Rn)
≤ ‖a‖MX(Rn)

for all ε > 0.

It is not difficult to see that w ∗ ψε converges to w in S(Rn) as ε→ 0 for every w ∈ S(Rn) (see,
e.g., [18, Exercise 2.3.2]). Then, for all w ∈ S(Rn),

|〈a,w〉| = lim
ε→0
|〈a,w ∗ ψε〉| = lim

ε→0
|〈a ∗ ψε, w〉| = lim

ε→0

∣∣∣∣∫
Rn

(a ∗ ψε)(x)w(x) dx

∣∣∣∣
≤ lim sup

ε→0
‖a ∗ ψε‖L∞(Rn)‖w‖L1(Rn) ≤ ‖a‖MX(Rn)

‖w‖L1(Rn).

Hence a can be extended to a bounded linear functional on L1(Rn), i.e., it can be identified
with a function in L∞(Rn) and ‖a‖L∞ ≤ ‖a‖MX(Rn)

holds.
Suppose there exists a constant DX > 0 such that ‖a‖L∞(Rn) ≤ DX‖a‖MX(Rn)

for all
a ∈MX(Rn). Then taking a ≡ 1, one gets DX ≥ 1. So, the constant DX = 1 in the estimate
‖a‖L∞ ≤ ‖a‖MX(Rn)

is best possible, which completes the proof of Theorem 1.3.

4.3. Multidimensional analogue of Theorem 1.1

Corollary 4.2. Suppose n ≥ 1 and X(Rn) is a Banach function space satisfying the
AX -condition. If a ∈MX(Rn) ⊂ S′(Rn), then a ∈ L∞(Rn) and

‖a‖L∞(Rn) ≤ ‖a‖MX(Rn)
.

The constant 1 on the right-hand side in the above inequality is best possible.

Proof. This statement follows from Theorem 1.3 and Lemma 3.3.



NORM OF A FOURIER MULTIPLIER Page 23 of 42

We conclude this section with the proof of the following multidimensional analogue of
Theorem 1.1.

Corollary 4.3. Let n ≥ 1 and 1 < p <∞. If w ∈ Ap(Rn) and a ∈MLp(Rn,w) ⊂ S′(Rn),
then a ∈ L∞(Rn) and

‖a‖L∞(Rn) ≤ ‖a‖MLp(Rn,w)
.

The constant 1 on the right-hand side in the above inequality is best possible.

Proof. Since w ∈ Ap(Rn), we have

‖w‖Ap(Rn) = sup
Q

1

|Q|
‖χQ‖Lp(Rn,w)‖χQ‖Lp′ (Rn,w−1)

= sup
Q

(
1

|Q|

∫
Q

wp(x) dx

)1/p(
1

|Q|

∫
Q

w−p
′
(x) dx

)1/p′

<∞,

where 1/p+ 1/p′ = 1 and the supremum is taken over all cubes with sides parallel to the axes.
Thus, the Banach function space X(Rn) = Lp(Rn, w) satisfies the AX -condition. It remains to
apply Corollary 4.2.

We would like to stress again that the Ap condition implies the doubling property (see
Lemma 3.3), which places much stronger restrictions on the behaviour of the weight w at
infinity than the weak doubling property (see Subsection 3.5). Note also that the latter puts
no restrictions on the local behaviour of the weight w. When dealing with weighted function
spaces Y (Rn, w), we usually assume that w ∈ Yloc(Rn) and 1/w ∈ Y ′loc(Rn). It is instructive to
compare the latter conditions with w ∈ Ap(Rn) in the case n = 1, Y (R) = Lp(R) and

w(x) =

 |x|
α, −1 ≤ x < 0,

xβ , 0 ≤ x ≤ 1,
1, |x| > 1,

α, β ∈ R.

It is easy to see that w ∈ Lploc(R) and 1/w ∈ Lp
′

loc(R) if and only if −1/p < α, β < 1− 1/p. On
the other hand, w 6∈ Ap(R) if α 6= β (see [5, Example 2.6]).

5. On optimality of the requirement of the weak doubling property in Theorem 1.3

5.1. Estimates for convolutions

Theorem 5.1 (Cf. [25, p. 91]). Let w∗ be a weight such that w∗ ∈ L1
loc(Rn), let Ω ⊆ Rn

be a set of positive measure, and let

L1
Ω(R, w∗) :=

{
h ∈ L1(R, w∗) : supph ⊆ Ω

}
.

Suppose Y (Rn) is a translation-invariant Banach function space and w is a weight satisfying
w ∈ Yloc(Rn) and 1/w ∈ Y ′loc(Rn). If

w∗(y)w(x− y)w−1(x) ≥ 1 for all x ∈ Rn, y ∈ Ω, (5.1)

then

‖κ ∗ f‖Y (Rn,w) ≤ ‖κ‖L1(Rn,w∗)‖f‖Y (Rn,w) for all f ∈ Y (Rn, w), κ ∈ L1
Ω(R, w∗).
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Proof. Since w ∈ Yloc(Rn) and 1/w ∈ Y ′loc(Rn), we recall that Y (Rn, w) is a Banach function
space and Y ′(Rn, w−1) is its associate space in view of [22, Lemma 2.4]. Using (5.1) and
Hölder’s inequality for Banach function spaces (see [1, Chap. 1, Theorem 2.4]) and taking into
account that Y (Rn) is translation-invariant, one gets for all g ∈ Y ′(Rn, w−1),∣∣∣∣∫

Rn
(κ ∗ f)(x)g(x) dx

∣∣∣∣ ≤ ∫
Rn

(∫
Ω

|κ(y)| |f(x− y)| dy
)
|g(x)| dx

≤
∫
Ω

w∗(y)|κ(y)|
(∫

Rn
w(x− y)|f(x− y)| · w−1(x)|g(x)| dx

)
dy

≤
∫
Rn
w∗(y)|κ(y)|‖τy(wf)‖Y (Rn)

∥∥w−1g
∥∥
Y ′(Rn)

dy

= ‖wf‖Y (Rn)

∥∥w−1g
∥∥
Y ′(Rn)

∫
Rn
w∗(y)|κ(y)| dy

= ‖κ‖L1(Rn,w∗)‖f‖Y (Rn,w)‖g‖Y ′(Rn,w−1).

By [1, Chap. 1, Theorem 2.7 and Lemma 2.8], the above inequality implies that

‖κ ∗ f‖Y (Rn,w) = sup

{∣∣∣∣∫
Rn

(κ ∗ f)(x)g(x) dx

∣∣∣∣ : g ∈ Y ′(Rn, w−1), ‖g‖Y ′(Rn,w−1) ≤ 1

}
≤ ‖κ‖L1(Rn,w∗)‖f‖Y (Rn,w),

which completes the proof.

Corollary 5.2. Suppose Y (R) is a translation-invariant Banach function space.
(a) Let w1(x) = ecx for x ∈ R, with some constant c > 0. Then for all κ ∈ L1(R, w1) and

all f ∈ Y (R, w1),

‖κ ∗ f‖Y (R,w1) ≤ ‖κ‖L1(R,w1)‖f‖Y (R,w1).

(b) Suppose ϕ : R→ R is a function such that ϕ(x) = x for x ≤ 0, and

ϕ(z)− ϕ(x)

z − x
≥ 1 for all z > x ≥ 0. (5.2)

Let w2(x) := ecϕ(x) for x ∈ R, with some constant c > 0. Then for all κ ∈ L1
(−∞,0](R, w2)

and all f ∈ Y (R, w2),

‖κ ∗ f‖Y (R,w2) ≤ ‖κ‖L1(R,w2)‖f‖Y (R,w2).

Proof. (a) Since

w1(y)w1(x− y)w−1
1 (x) = ec(y+(x−y)−x) = 1 for all x, y ∈ R,

the conditions of Theorem 5.1 are satisfied for w = w∗ = w1 and Ω = R.
(b) Take any y < 0 and any x ∈ R. If x ≥ 0, then it follows from (5.2) that

ϕ(x− y)− ϕ(x)

(x− y)− x
≥ 1 =⇒ y + ϕ(x− y)− ϕ(x) ≥ 0.

If y < x < 0, then

ϕ(x− y)− ϕ(0)

(x− y)− 0
≥ 1 =⇒ y + ϕ(x− y)− x ≥ 0.

Finally, if x ≤ y < 0, then

ϕ(y) + ϕ(x− y)− ϕ(x) = y + (x− y)− x = 0.
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Hence

w2(y)w2(x− y)w−1
2 (x) = ec(ϕ(y)+ϕ(x−y)−ϕ(x)) ≥ 1 for all x ∈ R (5.3)

and all y < 0. It is clear that (5.3) holds for y = 0 as well.
Since w2 and 1/w2 are locally bounded, we have w2 ∈ Yloc(R) ∩ L1

loc(R) and 1/w2 ∈ Y ′loc(R).
Hence the conditions of Theorem 5.1 are satisfied for w = w∗ = w2 and Ω = (−∞, 0].

5.2. Banach function spaces with unbounded Fourier multipliers

Let Y (R) be a translation-invariant Banach function space and w be a weight. We know
that the weak doubling property of the space X(R) = Y (R, w) allows the weight w to grow at
any subexponential rate (see Subsection 3.5). It is natural to ask whether Theorem 1.3 still
holds for X(R) = Y (R, w) with the exponential weight w(x) = ecx with c > 0. We show in this
subsection that the answer is negative and that MY (R,w) contains many unbounded functions
in this case. This means that the weak doubling property is optimal in a sense. (This also
provides an alternative indirect proof of Theorem 3.6).

Theorem 5.3. Let Y (R) be a translation-invariant Banach function space and the weights
w1 and w2 be the same as in Corollary 5.2. Then

F
(
S′(R) ∩ L1(R, w1)

)
⊆MY (R,w1), F

(
S′(R) ∩ L1

(−∞,0](R, w2)
)
⊆MY (R,w2). (5.4)

Proof. If a ∈ F
(
S′(R) ∩ L1(R, w1)

)
, then F−1a ∈ L1(R, w1). It follows from Corollary 5.2

that for every function u ∈ S(R) ∩ Y (R, w1),

‖F−1aFu‖Y (R,w1) = ‖(F−1a) ∗ u‖Y (R,w1) ≤ ‖F−1a‖L1(R,w1)‖u‖Y (R,w1). (5.5)

Hence

‖a‖MY (R,w1)
≤ ‖F−1a‖L1(R,w1). (5.6)

The same argument allows one to show that if a ∈ F
(
S′(R) ∩ L1

(−∞,0](R, w2)
)
, then

‖a‖MY (R,w2)
≤ ‖F−1a‖L1(R,w2). (5.7)

Inequalities (5.6)–(5.7) imply embeddings (5.4).

Lemma 5.4. Let Y (R) be a translation-invariant Banach function space and the weights
w1 and w2 be the same as in Corollary 5.2.

(a) If a ∈ F
(
L1(R) ∩ L1(R, w1)

)
, then

‖a‖M0
Y (R,w1)

≤ ‖F−1a‖L1(R,w1). (5.8)

(b) If a ∈ F
(
L1

(−∞,0](R)
)

= F
(
L1(R) ∩ L1

(−∞,0](R, w2)
)
, then

‖a‖M0
Y (R,w2)

≤ ‖F−1a‖L1(R,w2). (5.9)

Proof. If a ∈ F
(
L1(R) ∩ L1(R, w1)

)
, then (5.5) holds for every u ∈ L2(R) ∩ Y (R, w1),

which implies (5.8) and completes the proof of part (a). The proof of part (b) is analogous.

In view of Theorem 5.3, MY (R,wj), j = 1, 2 contain many unbounded functions. Let us give
some concrete examples.
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Let C+ := {z = x+ iy ∈ C : y > 0} and H2(C+) be the Hardy space of all functions f
analytic in C+ such that |f(x+ iy)|2 is integrable for each y > 0 and

sup
y>0

∫
R
|f(x+ iy)|2 dx <∞.

If f ∈ H2(C+), then the boundary function

f(x) = lim
y→0+

f(x+ iy)

exists a.e. on R and belongs to L2(R) (see, e.g., the corollary of [13, Theorem 1.1]). Let H2
+(R)

be the Hardy space of the boundary functions of the functions f ∈ H2(C+).

Corollary 5.5. Let Y (R) be a translation-invariant Banach function space and w be one
of the weights w1 and w2 in Corollary 5.2.

(a) The Hardy space H2
+(R) corresponding to the upper complex half-plane is a subset of

the space MY (R,w).
(b) Let

a−α(ξ) := lim
ε→0+

(ξ + iε)−α, ξ ∈ R \ {0}, 0 < α < 1,

where z−α denotes a branch analytic in the complex plane cut along the negative
half-line. Then a−α ∈MY (R,w).

Proof. (a) It follows from Hölder’s inequality that any function in L2(R), which vanishes
on (0,∞), belongs to L1(R, w). By the Paley-Wiener theorem (see, e.g., [13, Corollary to
Theorem 11.9]), if u ∈ H2

+(R), then Fu(ξ) vanishes for almost all ξ < 0. Hence F−1u(ξ)
vanishes for almost all ξ > 0. Therefore F−1u ∈ L1(R, w) and u ∈ FL1(R, w). Now we can
apply Theorem 5.3 to complete the proof of part (a).

(b) Since 0 < α < 1, it follows from [16, Example 2.3, formula (2.41′)] that

a−α = kαF
−1f+

α−1 = kαFf
−
α−1,

where kα ∈ C is some constant depending on α and

f+
α−1(x) :=

{
xα−1 if x > 0,

0 if x < 0,
f−α−1(x) :=

{
0 if x > 0,

|x|α−1 if x < 0,

define regular distributions in S′(R) (see [16, Example 1.6]). It is clear that f−α−1 ∈ L1(R, w),
whence a−α ∈ F

(
S′(R) ∩ L1(R, w)

)
. It remains to apply Theorem 5.3.

6. Classes M0
X(Rn) and MX(Rn) ∩ L∞(Rn)

6.1. Two classes of Fourier multipliers coincide in the case of a nice underlying space

Theorem 6.1. If a Banach function space X(Rn) satisfies the bounded L2-approximation
property, then

M0
X(Rn) =MX(Rn) ∩ L∞(Rn) and ‖a‖MX(Rn)

= ‖a‖M0
X(Rn)

. (6.1)

Proof. According to (1.1) and (1.2), we only need to prove that

M0
X(Rn) ⊇MX(Rn) ∩ L∞(Rn) and ‖a‖MX(Rn)

≥ ‖a‖M0
X(Rn)

.
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Choose any function a ∈MX(Rn) ∩ L∞(Rn). Take any function u ∈ L2(Rn) ∩X(Rn) and
consider a sequence {uj}j∈N ⊂ C∞0 (Rn) satisfying (2.1). Since a ∈ L∞(Rn) and M0

L2(Rn) =
L∞(Rn) (see, e.g., [18, Theorem 2.5.10]), we have

lim
j→∞

‖F−1aFu− F−1aFuj‖L2(Rn) = 0.

Then there exists a subsequence {F−1aFujk}k∈N of the sequence {F−1aFuj}j∈N that converges
to F−1aFu almost everywhere. Since a ∈MX(Rn), from the inequality in (2.1) we get

lim inf
k→∞

‖F−1aFujk‖X(Rn) ≤ ‖a‖MX(Rn)
lim inf
k→∞

‖ujk‖X(Rn)

≤ ‖a‖MX(Rn)
lim sup
j→∞

‖uj‖X(Rn) ≤ ‖a‖MX(Rn)
‖u‖X(Rn).

Fatou’s lemma (see [1, Chap. 1, Lemma 1.5]) and the above inequality imply that the function
F−1aFu belongs to X(Rn) and for u ∈ L2(Rn) ∩X(Rn),

‖F−1aFu‖X(Rn) ≤ lim inf
k→∞

‖F−1aFujk‖X(Rn) ≤ ‖a‖MX(Rn)
‖u‖X(Rn).

Hence a ∈M0
X(Rn) and ‖a‖M0

X(Rn)
≤ ‖a‖MX(Rn)

.

6.2. Two classes of Fourier multipliers are different in general

The following theorem shows that equalities in (6.1) do not always hold.

Theorem 6.2. For a compact set G ⊂ [0, 1]n of positive measure with empty interior and
a sequence b = {bm}m∈N ⊂ (0, 1) satisfying

lim
m→∞

bm = 0, (6.2)

consider the sequence

Gm := (2m, 0, . . . , 0) +G

= {(y1 + 2m, y2, . . . , yn) ∈ Rn : y = (y1, y2, . . . , yn) ∈ G} , m ∈ N, (6.3)

and define the weight wG,b for y = (y1, . . . , yn) ∈ Rn satisfying y1 ≥ 0 by

wG,b(y) :=

{
bm, y ∈ Gm, m ∈ N,
1, y 6∈

⋃
m∈NGm,

(6.4)

and for y = (y1, . . . , yn) ∈ Rn satisfying y1 < 0 by

wG,b(y) := wG,b(−y). (6.5)

Then there exists a ∈ S(Rn) such that a ∈ML∞(Rn,wG,b) \M0
L∞(Rn,wG,b).

Proof. Let x(0) ∈ G be a Lebesgue point of the function χG and let {%j}j∈N be the sequence
defined by (2.2). It follows from Lemma 2.16 that there exists j ∈ N for which∫

Rn
|χG(y)− χG(x(0))|%j(x(0) − y) dy ≤ 1

2
.

Hence, ∫
Rn
%j(x

(0) − y) dy −
∫
Rn
χG(y)%j(x

(0) − y) dy ≤ 1

2
.

Therefore, 1− (%j ∗ χG)(x(0)) ≤ 1/2, whence

(%j ∗ χG)(x(0)) ≥ 1

2
. (6.6)
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Let a := F%j ∈ S(Rn). Take any u ∈ S(Rn) with ‖u‖L∞(Rn,wG,b) ≤ 1. The same argument as
in the proof of Lemma 2.5 shows that |u(y)| ≤ 1 for all y ∈ Rn. Then by [29, Theorem 7.8(b)],∣∣(F−1aFu)(x)

∣∣ = |(%j ∗ u)(x)| ≤
∫
Rn
%j(y) dy = 1 for all x ∈ Rn

and ‖F−1aFu‖L∞(Rn,wG,b) ≤ 1. Hence a ∈ML∞(Rn,wG,b) and ‖a‖ML∞(Rn,wG,b)
≤ 1.

On the other hand, consider

um := b−1
m χGm , m ∈ N.

It is clear that ‖um‖L∞(Rn,wG,b) = 1. Since um ∈ L1(Rn) ⊂ S′(Rn) and a = F%j ∈ S(Rn), it
follows from [29, Theorem 7.19(c)] that (%j ∗ um)̂ = %̂j ûm = aFum. This equality and [7,
Propositions 4.18, 4.20] imply that F−1aFum = %j ∗ um ∈ C∞0 (Rn) because %j ∈ C∞0 (Rn) and
um ∈ L∞(Rn) has compact support. Therefore,

vm := ‖F−1aFum‖−1
L∞(Rn,wG,b)F

−1aFum ∈ C∞0 (Rn) ⊂ S(Rn)

and ‖vm‖L∞(Rn,wG,b) = 1. Then, as above, |vm(x)| ≤ 1 for all x ∈ Rn and m ∈ N, i.e.∣∣F−1aFum(x)
∣∣ ≤ ‖F−1aFum‖L∞(Rn,wG,b) for all x ∈ Rn, m ∈ N. (6.7)

Let

x(m) := (2m, 0, . . . , 0) + x(0), m ∈ N.

Then, taking into account (6.6), we get for all m ∈ N,

F−1aFum
(
x(m)

)
= b−1

m (%j ∗ χGm)
(
x(m)

)
= b−1

m (%j ∗ χG)
(
x(0)

)
≥ 1

2bm
. (6.8)

Now it follows from (6.7), (6.8) and (6.2) that

‖F−1aFum‖L∞(Rn,wG,b) ≥
1

2bm
→∞ as m→∞,

while ‖um‖L∞(Rn,wG,b) = 1. Hence a 6∈ M0
L∞(Rn,wG,b).

6.3. Normed algebras of Fourier multipliers

Lemma 6.3. Let X(Rn) be a Banach function space. Then the set M0
X(Rn) is a normed

algebra with respect to the norm ‖ · ‖M0
X(Rn)

and

‖ab‖M0
X(Rn)

≤ ‖a‖M0
X(Rn)

‖b‖M0
X(Rn)

for all a, b ∈M0
X(Rn).

Proof. The proof is straightforward.

The proof of the following result requires a bit more effort.

Theorem 6.4. Let X(Rn) be a Banach function space. Then the set MX(Rn) ∩ L∞(Rn)
is a normed algebra with respect to the norm ‖ · ‖MX(Rn)

and

‖ab‖MX(Rn)
≤ ‖a‖MX(Rn)

‖b‖MX(Rn)
for all a, b ∈MX(Rn) ∩ L∞(Rn). (6.9)

Proof. It is clear that MX(Rn) ∩ L∞(Rn) is a normed space, so one only needs to prove
that ab ∈MX(Rn) ∩ L∞(Rn) for all a, b ∈MX(Rn) ∩ L∞(Rn) and that (6.9) holds.
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Take any function u ∈ S(Rn) ∩X(Rn). Then F−1bFu ∈ X(Rn). Since u ∈ S(Rn) ⊂ L2(Rn)
and b ∈ L∞(Rn), we have F−1bFu ∈ L2(Rn). On the other hand, in view of [29, Theo-
rem 7.19(a)], u ∈ S(Rn) and b ∈ S′(Rn) imply that F−1bFu =

(
F−1b

)
∗ u ∈ C∞(Rn). Hence

F−1bF maps S(Rn) ∩X(Rn) into X(Rn) ∩ L2(Rn) ∩ C∞(Rn).
Now take a function v ∈ X(Rn) ∩ L2(Rn) ∩ C∞(Rn) and consider the sequence vm := φmv,

where φm ∈ C∞0 (Rn), 0 ≤ φm ≤ 1, and φm(x) = 1 for |x| ≤ m and m ∈ N. Since |vm| ≤ |v|,
it follows from axiom (A2) that vm ∈ X(Rn) and ‖vm‖X(Rn) ≤ ‖v‖X(Rn) for all m ∈ N.
Further, vm ∈ C∞0 (Rn) and ‖vm − v‖L2(Rn) → 0 as m→∞. Then it follows as in the proof
of Theorem 6.1 that F−1aFv ∈ X(Rn) and

‖F−1aFv‖X(Rn) ≤ ‖a‖MX(Rn)
‖v‖X(Rn).

Taking v = F−1bFu, one gets F−1abFu = F−1aF (F−1bFu) ∈ X(Rn) and

‖F−1abFu‖X(Rn) ≤ ‖a‖MX(Rn)
‖F−1bFu‖X(Rn) ≤ ‖a‖MX(Rn)

‖b‖MX(Rn)
‖u‖X(Rn)

for all u ∈ S(Rn) ∩X(Rn), which immediately implies (6.9).

Theorem 6.4 allows one to prove that if there exists a constant DX > 0 such that

‖a‖L∞(Rn) ≤ DX‖a‖MX(Rn)
for all a ∈MX(Rn) ∩ L∞(Rn), (6.10)

then in fact

‖a‖L∞(Rn) ≤ ‖a‖MX(Rn)
for all a ∈MX(Rn) ∩ L∞(Rn). (6.11)

Indeed, one can apply (6.10) and Theorem 6.4 to the function am with m ∈ N to get

‖a‖mL∞(Rn) = ‖am‖L∞(Rn) ≤ DX‖am‖MX(Rn)
≤ DX‖a‖mMX(Rn)

.

Taking m→∞ in the inequality

‖a‖L∞(Rn) ≤ D
1/m
X ‖a‖MX(Rn)

,

one gets (6.11). One can use this observation instead of Lemma 3.1 to derive (4.1) from (4.2)
under the assumption that a Banach function space X(Rn) satisfies the weak doubling property.
In particular, this implies that [3, Theorem 2.3] holds with the constant Kp,C = 1. It is also
clear that the implication (6.10) ⇒ (6.11) holds with M0

X(Rn) in place of MX(Rn).

6.4. Normed spaces of Fourier multipliers are not complete in general

Theorem 6.5. Let Y (R) be a translation-invariant Banach function space and w be one
of the weights w1 and w2 in Corollary 5.2.

(a) The normed space MY (R,w) is not complete with respect to the norm ‖ · ‖MY (R,w)
.

(b) The normed algebra M0
Y (R,w) is not complete with respect to the norm ‖ · ‖M0

Y (R,w)
.

Proof. (a) Consider the function g0(x) := e−cx/2φ0(x), where the constant c > 0 is from
the definition of the weights w1 and w2, and a function φ0 ∈ C∞(R) is such that φ0(x) = 0
for x ≥ 0 and φ0(x) = 1 for x ≤ −1. It is easy to see that g0 ∈ L1(R, w), whence it may be
identified with the distribution in D′(R). On the other hand, g0 /∈ S′(R) (cf. [29, Chap. 7,
Exercise 3]).

Consider gk(x) := φk(x)g0(x), where φk ∈ C∞0 (R), 0 ≤ φk ≤ 1, and φk(x) = 1 for |x| ≤ k and
all k ∈ N. The Lebesgue dominated convergence theorem implies that ‖gk − g0‖L1(R,w) → 0 as
k →∞. Hence {gk}k∈N is a Cauchy sequence in L1(R, w). Let ak := Fgk for k ∈ N.

It follows from (5.6)–(5.7) that

‖ak − am‖MY (R,w)
≤ ‖F−1(ak − am)‖L1(R,w) = ‖gk − gm‖L1(R,w) for all k,m ∈ N.
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Therefore, {ak}k∈N is a Cauchy sequence in MY (R,w). Suppose it converges to a limit a0

in MY (R,w). Then the sequence F−1akFu = gk ∗ u converges to F−1a0Fu = (F−1a0) ∗ u in
Y (R, w) as k →∞ for any function u ∈ C∞0 (R) ⊂ S(R) ∩ Y (R, w).

On the other hand, Corollary 5.2 implies that gk ∗ u converges to g0 ∗ u in Y (R, w). Hence
(F−1a0) ∗ u = g0 ∗ u for any u ∈ C∞0 (R). Since (F−1a0) ∗ u = g0 ∗ u are continuous functions
(see, e.g., [29, Theorem 6.30(b)]), one gets

〈F−1a0, ũ〉 =
(
(F−1a0) ∗ u

)
(0) = (g0 ∗ u) (0) = 〈g0, ũ〉 for all u ∈ C∞0 (R).

Hence the distributions F−1a0 ∈ S′(R) and g0 ∈ D′(R) \ S′(R) are equal to each other. This
contradiction shows that {ak}k ∈ N does not converge to a limit in MY (R,w).

(b) Consider the functions gm(x) := ex/m f−α−1(x), m ∈ N, where f−α−1 is the same as in the
proof of Corollary 5.5(b). The Lebesgue dominated convergence theorem implies that

‖gm − f−α−1‖L1(R,w) → 0 as m→∞, ‖gm − gk‖L1(R,w) → 0 as m, k →∞.

Then it follows from (5.6)–(5.9) and Corollary 5.5(b) that

‖am − a−α‖MY (R,w)
≤ kα‖gm − f−α−1‖L1(R,w) → 0 as m→∞ (6.12)

and

‖am − ak‖M0
Y (R,w)

≤ kα‖gm − gk‖L1(R,w) → 0 as m, k →∞, (6.13)

where

am(ξ) := kαFgm(ξ) = kαFf
−
α−1(ξ + i/m) = (ξ + i/m)−α,

kα is the constant from the proof of Corollary 5.5(b), and

a−α(ξ) := kαFf
−
α−1(ξ) = lim

ε→0+
(ξ + iε)−α.

Since {gm}m∈N is convergent in L1(R, w), it follows from (6.13) that {am}m∈N is a Cauchy
sequence inM0

Y (R,w). If it had a limit there, then inequality (1.2) would imply that it converges
to the same limit inMY (R,w). On the other hand, we know from (6.12) that {am}m∈N converges
to a−α /∈ L∞(R). Hence {am}m∈N cannot converge to a limit in M0

Y (R,w).

7. Fourier multipliers on reflection-invariant Banach function spaces

7.1. Interpolation in Calderón products of Banach function spaces

Let X0(Rn) and X1(Rn) be Banach function spaces and 0 < θ < 1. The Calderón product
(X1−θ

0 Xθ
1 )(Rn) (see [9, p. 123]) consists of all measurable functions f such that a.e.

pointwise inequality |f | ≤ λ|f0|1−θ|f1|θ holds for some λ > 0 and elements fj in Xj(Rn) with
‖fj‖Xj(Rn) ≤ 1 for j = 0, 1. The norm of f in (X1−θ

0 Xθ
1 )(Rn) is defined to be the infimum of

all values λ appearing in the above inequality. We will need an interpolation theorem, which
follows immediately from [32, Theorem 1] and [1, Chap. 1, Theorem 2.7].

Theorem 7.1. Let X0(Rn) and X1(Rn) be Banach function spaces. Let A be a linear
operator bounded on X0(Rn) and X1(Rn). Then A is bounded on (X1−θ

0 Xθ
1 )(Rn) and

‖A‖B((X1−θ
0 Xθ1 )(Rn)) ≤ ‖A‖

1−θ
B(X0(Rn))‖A‖

θ
B(X1(Rn)).

The following result is contained in [26, Theorem 5] in a slightly different form.
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Lemma 7.2. If X(Rn) is a Banach function space and X ′(Rn) is its associate space, then

(X1/2(X ′)1/2)(Rn) = L2(Rn)

with equality of the norms.

The above lemma is a consequence of the more general Lozanovskĭı’s formula [26, Theorem 2]
(see also [11, Theorem 7.2]):

(X1−θ
0 Xθ

1 )′(Rn) = ((X ′0)1−θ(X ′1)θ)(Rn), 0 < θ < 1,

which is valid with equality of the norms. We refer to Maligranda’s book [27, p. 185] for the
proof of Lozanovskĭı’s Lemma 7.2.

Corollary 7.3. Let X(Rn) be a Banach function space and X ′(Rn) be its associate space.
If A is a linear operator bounded on X(Rn) and on X ′(Rn), then A is bounded on L2(Rn) and

‖A‖B(L2(Rn)) ≤ ‖A‖
1/2
B(X(Rn))‖A‖

1/2
B(X′(Rn)).

This result follows immediately from Theorem 7.1 and Lemma 7.2.

7.2. Fourier multipliers on reflexive reflection-invariant Banach function spaces are bounded

We say that a Banach function space X(Rn) is reflection-invariant if ‖f‖X(Rn) = ‖f̃‖X(Rn)

for every f ∈ X(Rn), where f̃ denotes the reflection of a function f defined by f̃(x) = f(−x)
for x ∈ Rn.

Lemma 7.4. A Banach function space X(Rn) is reflection-invariant if and only if its
associate space X ′(Rn) is reflection-invariant.

This statement follows immediately from [1, Chap. 1, Theorem 2.7 and Lemma 2.8].

Lemma 7.5. If a Banach function space X(Rn) is reflection-invariant, then

‖a‖MX(Rn)
= ‖ã‖MX(Rn)

for all a ∈MX(Rn),

‖a‖M0
X(Rn)

= ‖ã‖M0
X(Rn)

for all a ∈M0
X(Rn).

Proof. If u ∈ (S(Rn) ∩X(Rn)) \ {0}, then ũ ∈ (S(Rn) ∩X(Rn)) \ {0} and

F−1ãFu = F−1(a(Fu)˜)˜ = (F−1aF ũ)˜.
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Therefore, taking into account that X(Rn) is reflection-invariant, we see that

‖ã‖MX(Rn)
= sup

{‖F−1ãFu‖X(Rn)

‖u‖X(Rn)
: u ∈ (S(Rn) ∩X(Rn)) \ {0}

}
= sup

{‖(F−1aF ũ)˜‖X(Rn)

‖u‖X(Rn)
: u ∈ (S(Rn) ∩X(Rn)) \ {0}

}
= sup

{‖F−1aF ũ‖X(Rn)

‖ũ‖X(Rn)
: u ∈ (S(Rn) ∩X(Rn)) \ {0}

}
= sup

{‖F−1aFu‖X(Rn)

‖u‖X(Rn)
: u ∈ (S(Rn) ∩X(Rn)) \ {0}

}
= ‖a‖MX(Rn)

.

Replacing S(Rn) with L2(Rn) one gets a proof for M0
X(Rn).

Lemma 7.6. Let X(Rn) be a Banach function space and X ′(Rn) be its associate space.

(a) If ã ∈M0
X′(Rn), then a ∈M0

X(Rn) and

‖a‖M0
X(Rn)

≤ ‖ã‖M0
X′(Rn)

.

(b) If a ∈M0
X(Rn), then ã ∈M0

X′(Rn) and

‖a‖M0
X(Rn)

≥ ‖ã‖0MX′(Rn)
.

Proof. If u, v ∈ L2(Rn) and a ∈ L∞(Rn), then

∫
Rn

(F−1aFu)(x)v(x) dx = 〈F−1aFu, v〉 = 〈aFu, F−1v〉

= 〈a, Fu · F−1v〉 = 〈a, F−1ũ · F ṽ〉
= 〈a, (F−1u)˜ · (Fv)˜〉 = 〈ã, F−1u · Fv〉
= 〈ãFv, F−1u〉 = 〈F−1ãFv, u〉

=

∫
Rn

(F−1ãFv)(x)u(x) dx. (7.1)

(a) Take u ∈ (L2(Rn) ∩X(Rn)) \ {0}. Then, in view of equality (7.1), Lemma 2.10, Hölder’s
inequality (see [1, Chap. 1, Theorem 2.4]), and the embedding S0(Rn) ⊂ L2(Rn) ∩X ′(Rn), we
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obtain

‖F−1aFu‖X(Rn) = sup


∣∣∣∣∫

Rn
(F−1aFu)(x)s(x) dx

∣∣∣∣
‖s‖X′(Rn)

: s ∈ S0(Rn) \ {0}


= sup


∣∣∣∣∫

Rn
(F−1ãF s)(x)u(x) dx

∣∣∣∣
‖s‖X′(Rn)

: s ∈ S0(Rn) \ {0}


≤ sup

{‖F−1ãF s‖X′(Rn)‖u‖X(Rn)

‖s‖X′(Rn)
: s ∈ S0(Rn) \ {0}

}
≤ ‖u‖X(Rn) sup

{‖F−1ãFv‖X′(Rn)

‖v‖X′(Rn)
: v ∈ (L2(Rn) ∩X ′(Rn)) \ {0}

}
= ‖ã‖M0

X(Rn)
‖u‖X(Rn),

whence

‖a‖M0
X(Rn)

= sup

{‖F−1aFu‖X(Rn)

‖u‖X(Rn)
: u ∈ (L2(Rn) ∩X(Rn)) \ {0}

}
≤ ‖ã‖M0

X(Rn)
,

which completes the proof of part (a).
(b) By the Lorentz-Luxemburg theorem (see [1, Chap. 1, Theorem 2.7]), X(Rn) = X ′′(Rn)

with the equality of the norms. Then (ã)˜ = a ∈M0
X(Rn) =M0

X′′(Rn). Hence, part (b) follows
from part (a).

Lemma 7.7. Let X(Rn) be a Banach function space and X ′(Rn) be its associate space.

(a) Suppose the space X(Rn) satisfies the norm fundamental property. If ã ∈MX′(Rn),
then a ∈MX(Rn) and

‖a‖MX(Rn)
≤ ‖ã‖MX′(Rn)

.

(b) Suppose the space X ′(Rn) satisfies the norm fundamental property. If a ∈MX(Rn),
then ã ∈MX′(Rn) and

‖a‖MX(Rn)
≥ ‖ã‖MX′(Rn)

.

Proof. The proof is similar to that of Lemma 7.6. Interpreting 〈·, ·〉 in (7.1) as the
(S′(Rn), S(Rn)) rather than (L2(Rn), L2(Rn)) or (L∞(Rn), L1(Rn)) duality, one gets for any
u, v ∈ S(Rn) and a ∈ S′(Rn),

∫
Rn

(F−1aFu)(x)v(x) dx =

∫
Rn

(F−1ãFv)(x)u(x) dx. (7.2)
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(a) Take u ∈ (S(Rn) ∩X(Rn)) \ {0}. Then, in view of equality (7.2), Definition 2.9, and
Hölder’s inequality (see [1, Chap. 1, Theorem 2.4]), we obtain

‖F−1aFu‖X(Rn) = sup


∣∣∣∣∫

Rn
(F−1aFu)(x)ψ(x) dx

∣∣∣∣
‖ψ‖X′(Rn)

: ψ ∈ C∞0 (Rn) \ {0}


= sup


∣∣∣∣∫

Rn
(F−1ãFψ)(x)u(x) dx

∣∣∣∣
‖ψ‖X′(Rn)

: ψ ∈ C∞0 (Rn) \ {0}


≤ sup

{‖F−1ãFψ‖X′(Rn)‖u‖X(Rn)

‖ψ‖X′(Rn)
: ψ ∈ C∞0 (Rn) \ {0}

}
≤ ‖u‖X(Rn) sup

{‖F−1ãFv‖X′(Rn)

‖v‖X′(Rn)
: v ∈ (S(Rn) ∩X ′(Rn)) \ {0}

}
= ‖ã‖MX(Rn)

‖u‖X(Rn),

whence

‖a‖MX(Rn)
= sup

{‖F−1aFu‖X(Rn)

‖u‖X(Rn)
: u ∈ (S(Rn) ∩X(Rn)) \ {0}

}
≤ ‖ã‖MX(Rn)

,

which completes the proof of part (a).
(b) By the Lorentz-Luxemburg theorem (see [1, Chap. 1, Theorem 2.7]), X(Rn) = X ′′(Rn)

with the equality of the norms. Then (ã)˜ = a ∈MX(Rn) =MX′′(Rn). Hence, part (b) follows
from part (a).

Theorem 7.8. Let X(Rn) be a reflection-invariant Banach function space and X ′(Rn) be
its associate space.

(a) We have M0
X(Rn) =M0

X′(Rn) and ‖a‖M0
X(Rn)

= ‖a‖M0
X′(Rn)

for all a ∈M0
X(Rn).

(b) If both X(Rn) and X ′(Rn) satisfy the norm fundamental property, then we have
MX(Rn) =MX′(Rn) and ‖a‖MX(Rn)

= ‖a‖MX′(Rn)
for all a ∈MX(Rn).

Proof. We prove part (b). The proof of part (a) is almost exactly the same. By Lemma 7.4,
both X(Rn) and X ′(Rn) are reflection-invariant Banach function spaces. If a ∈MX′(Rn), then
ã ∈MX′(Rn) and

‖a‖MX′(Rn)
= ‖ã‖MX′(Rn)

≥ ‖a‖MX(Rn)
(7.3)

in view of Lemmas 7.5 and 7.7(a). On the other hand, if a ∈MX(Rn), then ã ∈MX′(Rn) and

‖a‖MX(Rn)
≥ ‖ã‖MX′(Rn)

= ‖(ã)˜‖MX′(Rn)
= ‖a‖MX′(Rn)

(7.4)

in view of Lemmas 7.7(b) and 7.5. Combining inequalities (7.3)–(7.4), we arrive at the desired
result.

Now we will show that one cannot drop the norm fundamental property in Theorem 7.8(b).

Theorem 7.9. Suppose G ⊂ [0, 1]n is a compact set of positive measure with empty
interior, b = {bm}m∈N ⊂ (0, 1) is a sequence satisfying (6.2), and wG,b is the weight given
by (6.3)–(6.5). Then the reflection-invariant space L1(Rn, w−1

G,b) does not satisfy the norm-
fundamental property and there exists a ∈ S(Rn) such that a ∈ML∞(Rn,wG,b) \ML1(Rn,w−1

G,b)
.
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Proof. It follows from (6.5) that wG,b(y) = wG,b(−y) for all y ∈ Rn. Therefore, L1(Rn, w−1
G,b)

is a reflection-invariant Banach function space. One can prove, similarly to Corollary 2.15, that
L1(Rn, w−1

G,b) does not satisfy the norm-fundamental property.

Let ρ ∈ C∞0 (Rn) be an even function such that ρ ≥ 0 and ρ(y) = 1 when |y| ≤
√
n+ 3, and

let a := Fρ. Then a ∈ S(Rn) and ã = a.
Take any u ∈ S(Rn) with ‖u‖L∞(Rn,wG,b) ≤ 1. The same argument as in the proof of

Lemma 2.5 shows that |u(y)| ≤ 1 for all y ∈ Rn. Then∣∣(F−1aFu)(x)
∣∣ = |(ρ ∗ u)(x)| ≤

∫
Rn
ρ(y) dy = ‖ρ‖L1(Rn) <∞ for all x ∈ Rn

and ‖F−1aFu‖L∞(Rn,wG,b) ≤ ‖ρ‖L1(Rn). Hence a ∈ML∞(Rn,wG,b) and

‖a‖ML∞(Rn,wG,b)
≤ ‖ρ‖L1(Rn).

On the other hand, consider vm ∈ C∞0 (Rn) such that vm ≥ 0, vm(y) = 1 for |y − y(m)| ≤ 1/4
and vm(y) = 0 for |y − y(m)| ≥ 1/2, where y(m) :=

(
2m− 1

2 ,
1
2 , . . . ,

1
2

)
is the centre of the cube

Qm := (2m− 1, 0, . . . , 0) + [0, 1]n, m ∈ N. Then supp vm ⊂ Qm and wG,b(x) = 1 for x ∈ Qm,
whence

‖vm‖L1(Rn,w−1
G,b

) =

∫
Qm

vm(y) dy ≤ 1.

Since the distance from any point of Gm to any point of Qm is less than or equal to√
22 + 12 + · · ·+ 12 =

√
n+ 3, it follows from the definition of ρ that for all x ∈ Gm,

|F−1aFvm(x)| = |(ρ ∗ vm)(x)| =
∫
Rn
vm(y)ρ(x− y) dy

=

∫
Qm

vm(y)ρ(x− y) dy =

∫
Qm

vm(y) dy ≥ 4−nΩn,

where Ωn is the volume of the unit ball in Rn. Hence

‖F−1aFvm‖L1(Rn,w−1
G,b)
≥ b−1

m

∫
Gm

|F−1aFvm(x)| dx ≥ 4−nΩn|G|
bm

→∞ as m→∞,

while ‖vm‖L1(Rn,w−1
G,b)
≤ 1. Hence a 6∈ ML1(Rn,w−1

G,b)
.

For Banach spaces E0, E1 and a number θ ∈ (0, 1), let [E0, E1]θ denote the space obtained
by the (lower) complex method of interpolation (see, e.g., [9] or [23, Chap. IV, §1.4]).

Theorem 7.10. Let X(Rn) be a Banach function space and X ′(Rn) be its associate space.
If a ∈M0

X(Rn) ∩M
0
X′(Rn), then

‖a‖L∞(Rn) ≤ ‖a‖
1/2

M0
X(Rn)

‖a‖1/2M0
X′(Rn)

. (7.5)

Proof. Since L2(Rn) = (X1/2(X ′)1/2)(Rn) (see Lemma 7.2) and L2(Rn) has absolutely
continuous norm, by [23, Chap. IV, Theorem 1.14], we have L2(Rn) = [X(Rn), X ′(Rn)]1/2
with equality of the norms.

Let X(Rn) and X ′(Rn) denote the closures of X(Rn) ∩X ′(Rn) in the spaces X(Rn) and
X ′(Rn) respectively. Then L2(Rn) = [X(Rn), X ′(Rn)]1/2 with equality of the norms (see the
discussion after the proof of [23, Chap. IV, Theorem 1.3]).

By [23, Chap. IV, Theorem 1.3], X(Rn) ∩X ′(Rn) ⊂ [X(Rn), X ′(Rn)]1/2 = L2(Rn). Since
a ∈M0

X(Rn) ∩M
0
X′(Rn), the operator Wa : f 7→ F−1aFf , defined initially on X(Rn) ∩X ′(Rn),
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can be extended to bounded linear operators

Wa : X(Rn)→ X(Rn), Wa : X ′(Rn)→ X ′(Rn).

Then, by the interpolation theorem for the complex method of interpolation (see, e.g., [23,
Chap. IV, Theorem 1.2]),

‖Wa‖B(L2(Rn)) = ‖Wa‖B([X(Rn),X′(Rn)]1/2,[X(Rn),X′(Rn)]1/2)

≤ ‖Wa‖1/2B(X(Rn),X(Rn))
‖Wa‖1/2B(X′(Rn),X′(Rn))

. (7.6)

Since X(Rn) ∩X ′(Rn) ⊂ L2(Rn) ∩X(Rn) and X(Rn) ∩X ′(Rn) ⊂ L2(Rn) ∩X ′(Rn), we con-
clude that L2(Rn) ∩X(Rn) is dense in X(Rn) and L2(Rn) ∩X ′(Rn) is dense in X ′(Rn).
Hence

‖Wa‖B(X(Rn),X(Rn)) = sup

{‖F−1aFu‖X(Rn)

‖u‖X(Rn)
: u ∈ (L2(Rn) ∩X(Rn)) \ {0}

}
≤ ‖a‖M0

X(Rn)
(7.7)

and

‖Wa‖B(X′(Rn),X′(Rn)) = sup

{‖F−1aFu‖X′(Rn)

‖u‖X′(Rn)
: u ∈ (L2(Rn) ∩X ′(Rn)) \ {0}

}
≤ ‖a‖M0

X′(Rn)
. (7.8)

It is well known (see, e.g., [18, Theorem 2.5.10]) that ML2(Rn) = L∞(Rn) and

‖Wa‖B(L2(Rn)) = ‖a‖ML2(Rn)
= ‖a‖L∞(Rn). (7.9)

Combining (7.6)–(7.9), we arrive at (7.5).

We are now we are in a position to prove the main result of this section.

Theorem 7.11. Let X(Rn) be a reflection-invariant Banach function space.
(a) If a ∈M0

X(Rn), then

‖a‖L∞(Rn) ≤ ‖a‖M0
X(Rn)

. (7.10)

(b) If X(Rn) is reflexive and a ∈MX(Rn) ⊂ S′(Rn), then a ∈ L∞(Rn) and

‖a‖L∞(Rn) ≤ ‖a‖MX(Rn)
. (7.11)

The constant 1 in the right-hand sides of (7.10) and (7.11) is best possible.

Proof. Part (a) follows from Theorems 7.8(a) and 7.10.
(b) By [1, Chap. 1, Corollary 4.4], a Banach function space X(Rn) is reflexive if and only

if both X(Rn) and X ′(Rn) have absolutely continuous norm. Then both X(Rn) and X ′(Rn)
satisfy the norm fundamental property (see Corollary 2.12). If a ∈MX(Rn), then a ∈MX′(Rn)

and

‖a‖MX(Rn)
= ‖a‖MX′(Rn)

(7.12)

in view of Theorem 7.8(b). It follows from [22, Lemma 2.12(b)], that the set C∞0 (Rn) is
dense in the spaces X(Rn) and X ′(Rn). Hence the convolution operator Wa : u 7→ F−1aFu
defined initially on C∞0 (Rn) extends to a bounded linear operator on both X(Rn) and X ′(Rn).
Moreover,

‖Wa‖B(X(Rn)) = ‖a‖MX(Rn)
, ‖Wa‖B(X′(Rn)) = ‖a‖MX′(Rn)

. (7.13)
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By Corollary 7.3, Wa is bounded on L2(Rn) and

‖Wa‖B(L2(Rn)) ≤ ‖Wa‖1/2B(X(Rn))‖Wa‖1/2B(X′(Rn)). (7.14)

It is well known (see, e.g., [18, Theorem 2.5.10]) that ML2(Rn) = L∞(Rn) and

‖Wa‖B(L2(Rn)) = ‖a‖ML2(Rn)
= ‖a‖L∞(Rn). (7.15)

Combining (7.12)–(7.15), we see that

‖a‖L∞(Rn) ≤ ‖a‖
1/2
MX(Rn)

‖a‖1/2MX′(Rn)
= ‖a‖1/2MX(Rn)

‖a‖1/2MX(Rn)
= ‖a‖MX(Rn)

,

which completes the proof of (7.11).
Suppose now that there exists a constant DX > 0 such that ‖a‖L∞(Rn) ≤ DX‖a‖MX(Rn)

for
all a ∈MX(Rn). Then taking a ≡ 1, one gets DX ≥ 1. So, the constant DX = 1 in (7.11) is
best possible. The same can be proved similarly for (7.10).

Unfortunately, we have not been able to answer the following question.

Question 7.12. Can one drop the reflexivity requirement in Theorem 7.11(b)?

8. Concluding remarks

Let Y (R) be a translation-invariant Banach function space. We have seen that for subex-
ponentially growing weights w like (3.14), Y (R, w) has the weak doubling property in view
of Lemma 3.10, and hence MY (R,w) ⊆ L∞(R) according to Theorem 1.3. This inclusion holds
also for reflexive transaltion-invariant Banach function spaces Y (R) and symmetric weights
w = w̃ that may grow arbitrarily fast (see Theorem 7.11). On the other hand, MY (R,w) may
contain unbounded functions if w grows at least exponentially as x→ +∞ and decays to 0
exponentially as x→ −∞ (see Corollaries 5.2 and 5.5). It is natural to ask whether there are
any unbounded Fourier multipliers in the case of weights like

w(x) =

{
exp (|x|α1), x < 0,
exp (xα2), x ≥ 0,

α1, α2 > 1. (8.1)

It turns out that there are no non-trivial Fourier multipliers in the case of weights like (8.1) and,
more generally, of weights on Rn that grow superexponentially in all directions:MY (Rn,w) = C.
This fact was observed first by Löfström [25] in the case Y (Rn) = Lp(Rn) with 1 ≤ p ≤ ∞.
For the convenience of the reader, we present here a slightly modified argument from [25] in
the case of arbitrary translation-invariant Banach function spaces.

Theorem 8.1 (Cf. [25, p. 93]). Suppose X(Rn) is a Banach function space such that for
every x0 ∈ Rn \ {0} there exist ε > 0 and a sequence {xk}k∈N ⊂ Rn satisfying the condition

‖χB(xk,ρ)‖X(Rn)

‖χB(xk−x0,ε)‖X(Rn)
→∞ as k →∞ (8.2)

for every ρ ∈ (0, ε]. If κ is a distribution such that

‖κ ∗ f‖X(Rn) ≤ C‖f‖X(Rn) for all f ∈ C∞0 (Rn), (8.3)

with some constant C > 0, then κ = cδ with some constant c ∈ C, where δ is the Dirac measure.
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Proof. Take any x0 ∈ Rn \ {0}. Suppose x0 ∈ suppκ. Then there exists f ∈ C∞0 (Rn) such
that supp f̃ ⊆ B(x0, ε) and

κ ∗ f(0) =
〈
κ, f̃

〉
= 1.

Since κ ∗ f is continuous (see, e.g., [29, Theorem 6.30(b)]), there exists ρ ∈ (0, ε] such that
|κ ∗ f(x)| > 1/2 for all x ∈ B(0, ρ). Then∣∣(κ ∗ (τxkf)

)
(x+ xk)

∣∣ =
∣∣(τ−xk (κ ∗ (τxkf))

)
(x)
∣∣ = |κ ∗ f(x)| > 1

2

for all x ∈ B(0, ρ). Hence it follows from (8.3) that

1

2
‖χB(xk,ρ)‖X(Rn) ≤

∥∥χB(xk,ρ)

(
κ ∗ (τxkf)

)∥∥
X(Rn)

≤ ‖κ ∗ (τxkf)‖X(Rn)

≤ C‖τxkf‖X(Rn) ≤ C‖f‖L∞(Rn)‖χB(xk−x0,ε)‖X(Rn),

since supp (τxkf) = xk + supp f ⊆ xk +B(−x0, ε) = B(xk − x0, ε). So,

‖χB(xk,ρ)‖X(Rn)

‖χB(xk−x0,ε)‖X(Rn)
≤ 2C‖f‖L∞(Rn) for all k ∈ N,

which contradicts (8.2). This means that x0 ∈ Rn \ {0} cannot belong to the support of κ, i.e.
suppκ = {0}. Hence κ is a linear combination of δ and its partial derivatives (see, e.g., [29,
Theorems 6.24(d) and 6.25]). It is easy to see that then (8.3) implies the equality κ = cδ with
some constant c ∈ C.

Theorem 8.2 (Cf. [25, p. 91-93]). Let Y (Rn) be a translation-invariant Banach function
space and w : Rn → [0,∞] be a weight such that w ∈ Yloc(Rn) and 1/w ∈ Y ′loc(Rn). Suppose
for every x0 ∈ Rn \ {0} there exist ε > 0 and a sequence {xk}k∈N ⊂ Rn satisfying the condition

inf
|x|≤ε, |y|≤ε

w(xk + x)

w(xk − x0 + y)
→∞ as k →∞. (8.4)

Then MY (Rn,w) = C.

Proof. Since Y (Rn) is translation-invariant, it follows from Lemma 3.4(a) that there exist
constants C1, C2 > 0 such that for all k ∈ N and all ρ ∈ (0, ε] one has

‖χB(xk,ρ)‖Y (Rn)

‖χB(xk−x0,ε)‖Y (Rn)
≥ C1 min{1, ρn}
C2 max{1, εn}

=: C(ρ, ε).

Hence

‖χB(xk,ρ)‖X(Rn)

‖χB(xk−x0,ε)‖X(Rn)
=
‖wχB(xk,ρ)‖Y (Rn)

‖wχB(xk−x0,ε)‖Y (Rn)
≥

inf
|x|≤ε

w(xk + x)

sup
|y|≤ε

w(xk − x0 + y)

‖χB(xk,ρ)‖Y (Rn)

‖χB(xk−x0,ε)‖Y (Rn)

≥ C(ρ, ε) inf
|x|≤ε, |y|≤ε

w(xk + x)

w(xk − x0 + y)
→∞ as k →∞.

Thus, the conditions of Theorem 8.1 are satisfied for X(Rn) = Y (Rn, w).
If a ∈MY (R,w), then

‖F−1a ∗ u‖Y (Rn,w) = ‖F−1aFu‖Y (Rn,w) ≤ ‖a‖MY (Rn,w)
‖u‖Y (Rn,w)

for all u ∈ C∞0 (Rn). By Theorem 8.1, F−1a = cδ. Therefore a ∈ C.

Corollary 8.3. Let Y (R) be a translation-invariant Banach function space and w : R→
(0,∞) be the weight given by (8.1). Then MY (R,w) = C.
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Proof. Let α > 1 and ε > 0. Using the mean value theorem, one gets

(ρ+ ε)α − ρα ≥ αρα−1ε→ +∞ as ρ→ +∞.

Let w be the weight defined by (8.1). Take any x0 ∈ R \ {0}. Let ε := |x0|/3, xk := (k + 1)x0,
k ∈ N. If x0 < 0, then it follows from the above that

inf
|x|≤ε, |y|≤ε

w(xk + x)

w(xk − x0 + y)
≥

exp
((

(k + 1− 1/3)|x0|
)α1
)

exp
((

(k + 1/3)|x0|
)α1
)

= exp
((

(k + 2/3)α1 − (k + 1/3)α1
)
|x0|α1

)
→∞ as k →∞,

that is, condition (8.4) is satisfied. Similarly, it can be shown that it is also satisfied if x0 > 0.
Since w ∈ L∞loc(R) ⊂ Yloc(R) and 1/w ∈ L∞loc(R) ⊂ Y ′loc(R), it remains to apply Theorem 8.2.

It might be instructive to contrast the above nonexistence results of non-trivial Fourier
multipliers with the following statements.

Theorem 8.4. Let Y (Rn) be a translation-invariant Banach function space and w be
a weight such that w ∈ Yloc(Rn) and 1/w ∈ Y ′loc(Rn). Suppose there exist R > 0, ε > 0 and
Cε > 0 such that

w(x+ y)

w(x)
≤ Cε for all |x| ≥ R, |y| ≤ ε. (8.5)

Then there exists a constant C > 0 such that for any κ ∈ L∞(Rn) with suppκ ⊆ B(0, ε) and
any f ∈ Y (Rn, w) one has

‖κ ∗ f‖Y (Rn,w) ≤ C‖κ‖L∞(Rn)‖f‖Y (Rn,w). (8.6)

Proof. Since w ∈ Yloc(Rn) and 1/w ∈ Y ′loc(Rn), we see that Y (Rn, w) is a Banach function
space and Y ′(Rn, w−1) is its associate space in view of [22, Lemma 2.4].

If |x| ≤ R+ ε, then

κ ∗ f(x) =

∫
Rn
κ(x− y)f(y) dy =

∫
B(0,R+2ε)

κ(x− y)f(y) dy, (8.7)

since suppκ ⊆ B(0, ε).
If |x| > R+ ε, then

κ ∗ f(x) =

∫
Rn
κ(y)f(x− y) dy =

∫
B(0,ε)

κ(y)f(x− y) dy

=

∫
B(0,ε)

κ(y)χRn\B(0,R)(x− y)f(x− y) dy. (8.8)

Further, axiom (A5) implies the existence of a constant CR,ε > 0 such that∫
B(0,R+2ε)

|f(y)| dy ≤ CR,ε‖f‖Y (Rn,w) for all f ∈ Y (Rn, w). (8.9)

It is clear that

‖κ ∗ f‖Y (Rn,w) ≤ ‖χB(0,R+ε)κ ∗ f‖Y (Rn,w) + ‖χRn\B(0,R+ε)κ ∗ f‖Y (Rn,w). (8.10)

It follows from (8.7), (8.9), and axiom (A4) that

‖χB(0,R+ε)κ ∗ f‖Y (Rn,w) ≤
∥∥χB(0,R+ε)‖κ‖L∞(Rn)‖f‖L1(B(0,R+2ε))

∥∥
Y (Rn,w)

≤ CR,ε‖κ‖L∞(Rn)‖f‖Y (Rn,w)

∥∥χB(0,R+ε)

∥∥
Y (Rn,w)

=: C ′R,ε‖κ‖L∞(Rn)‖f‖Y (Rn,w). (8.11)
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Taking into account that Y (Rn) is translation-invariant and using (8.5), one gets for all
y ∈ B(0, ε),∥∥τy (χRn\B(0,R)f

)∥∥
Y (Rn,w)

=
∥∥wτy (χRn\B(0,R)f

)∥∥
Y (Rn)

=
∥∥τy ((τ−yw)

(
χRn\B(0,R)f

))∥∥
Y (Rn)

=
∥∥(τ−yw)

(
χRn\B(0,R)f

)∥∥
Y (Rn)

≤ Cε
∥∥w (χRn\B(0,R)f

)∥∥
Y (Rn)

= Cε
∥∥χRn\B(0,R)f

∥∥
Y (Rn,w)

. (8.12)

Using (8.8), (8.12) and Hölder’s inequality for Banach function spaces (see [1, Chap. 1,
Theorem 2.4]), and taking into account that Y (Rn) is translation-invariant, one gets for all
g ∈ Y ′(Rn, w−1),∣∣∣∣∫

Rn
(χRn\B(0,R+ε)κ ∗ f)(x)g(x) dx

∣∣∣∣
≤

∫
Rn
χRn\B(0,R+ε)(x)

(∫
B(0,ε)

|κ(y)|
∣∣χRn\B(0,R)f

∣∣ (x− y) dy

)
|g(x)| dx

≤
∫
B(0,ε)

|κ(y)|
(∫

Rn

∣∣χRn\B(0,R)f
∣∣ (x− y)|g(x)| dx

)
dy

≤
∫
B(0,ε)

|κ(y)|
∥∥τy (χRn\B(0,R)f

)∥∥
Y (Rn,w)

‖g‖Y ′(Rn,w−1) dy

≤ Cε‖χRn\B(0,R)f‖Y (Rn,w) ‖g‖Y ′(Rn,w−1)

∫
B(0,ε)

|κ(y)| dy

≤ Cε‖κ‖L1(B(0,ε))‖f‖Y (Rn,w)‖g‖Y ′(Rn,w−1).

By [1, Chap. 1, Theorem 2.7 and Lemma 2.8], the above inequality implies that

‖χRn\B(0,R+ε)κ ∗ f‖Y (Rn,w)

= sup

{∣∣∣∣∫
Rn

(χRn\B(0,R+ε)κ ∗ f)(x)g(x) dx

∣∣∣∣ : g ∈ Y ′(Rn, w−1), ‖g‖Y ′(Rn,w−1) ≤ 1

}
≤ Cε‖κ‖L1(B(0,ε))‖f‖Y (Rn,w) ≤ Cε|B(0, 1)|εn‖κ‖L∞(Rn)‖f‖Y (Rn,w). (8.13)

Combining (8.10), (8.11), and (8.13), one gets (8.6) with C = C ′R,ε + Cε|B(0, 1)|εn.

Corollary 8.5. Let c > 0, 0 < α ≤ 1, and w(x) = exp(c|x|α) for x ∈ Rn. If Y (Rn) is a
translation-invariant Banach function space, then there exist non-trivial Fourier multipliers in
MY (Rn,w).

Proof. Fix ε > 0. Then for all x ∈ Rn and |y| ≤ ε,
w(x+ y)

w(x)
≤ exp (c(|x|+ ε)α)

exp (c|x|α)
= exp

(
c
(
(|x|+ ε)α − |x|α

))
≤ exp (cM(α, ε)) ,

where, by the mean value theorem,

M(α, ε) := max
0≤ρ<∞

((ρ+ ε)α − ρα) < +∞.

Then w satisfies condition (8.5). There exists j ∈ N such that the function %j ∈ C∞0 (Rn) given
by (2.2) satisfies supp %j ⊆ B(0, ε). Put a := F%j . By Theorem 8.4, there exists a constant
C > 0 such that for all u ∈ S(Rn) ∩ Y (Rn, w), one has

‖F−1aFu‖Y (Rn,w) = ‖%j ∗ u‖Y (Rn,w) ≤ C‖%j‖L∞(Rn)‖u‖Y (Rn,w).

Therefore, a ∈MY (Rn,w).
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