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ARTICLE

Myogenin promotes myocyte fusion to balance
fibre number and size
Massimo Ganassi 1, Sara Badodi 2, Huascar Pedro Ortuste Quiroga 1,3, Peter S. Zammit 1,

Yaniv Hinits 1 & Simon M. Hughes 1

Each skeletal muscle acquires its unique size before birth, when terminally differentiating

myocytes fuse to form a defined number of multinucleated myofibres. Although mice in

which the transcription factor Myogenin is mutated lack most myogenesis and die perinatally,

a specific cell biological role for Myogenin has remained elusive. Here we report that loss of

function of zebrafish myog prevents formation of almost all multinucleated muscle fibres. A

second, Myogenin-independent, fusion pathway in the deep myotome requires Hedgehog

signalling. Lack of Myogenin does not prevent terminal differentiation; the smaller myotome

has a normal number of myocytes forming more mononuclear, thin, albeit functional, fast

muscle fibres. Mechanistically, Myogenin binds to the myomaker promoter and is required for

expression of myomaker and other genes essential for myocyte fusion. Adult myog mutants

display reduced muscle mass, decreased fibre size and nucleation. Adult-derived myog

mutant myocytes show persistent defective fusion ex vivo. Myogenin is therefore essential

for muscle homeostasis, regulating myocyte fusion to determine both muscle fibre number

and size.
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Regulation of tissue size requires balancing cell number and
cell size. In skeletal muscle, tissue size depends on gen-
erating the correct number of multinucleated muscle fibres

with an appropriate number of nuclei in each; how these pro-
cesses are controlled in vertebrates is mysterious. Formation of
syncytial muscle fibres is a three-step process: commitment as a
myoblast, terminal differentiation into a myocyte, defined here as
irreversible cell cycle exit and expression of muscle-specific actin,
myosin and other genes, and finally myocyte fusion and growth
to form a mature multinucleate myofibre. In specialised cir-
cumstances, such as the mononucleate slow myofibres of larval
zebrafish, myocytes mature into functional innervated and con-
tractile muscle fibres without fusion. The Myogenic Regulatory
Factor (MRF) family of transcription factors (Myod, Myf5, Mrf4
and Myog) are key players in orchestrating each of these steps in
skeletal myogenesis1,2. All MRF genes encode a basic domain and
Helix–Loop–Helix (bHLH) motif, which account for
protein–DNA binding and hetero-dimerization with ubiquitous
E-proteins, respectively, by which they activate expression of
many E-box-containing muscle-specific genes3,4. Whereas three
MRFs drive myoblast formation during early development, Myog
acts later to regulate myoblast terminal differentiation, myofibre
maturation and size1,2. Genetic studies in mice revealed that
among MRFs only Myog is essential for viability; null Myog
mutation leads to perinatal death, due to severely defective muscle
differentiation, although residual differentiated muscle fibres are
present5–8. Absence of Myog does not prevent slow and fast fibre
type diversification7,8. In vitro studies on primary myoblasts or
embryonic stem cells from Myog mutant mice reveal terminal
differentiation comparable to wild-type (wt) albeit yielding
smaller syncytial myotubes6–10, suggesting that extracellular fac-
tors determine the need for Myog function. Congruently,
Myog−/− myoblasts efficiently contribute to multinucleated fibres
in genetic mosaic experiments11. Furthermore, depletion of Myog
after birth reduces myofibre size and affects overall body home-
ostasis, although without perturbing muscle histology12–14.
However, given that other MRFs can and do bind the same DNA
motifs as Myog15, the precise role(s) of Myog remain ill-defined.

Knockdown of zebrafish myog has minor effects on initial
events in myogenesis16–19, whereas combined knockdown of
Myog and Myod strongly reduces myogenesis of fast myofibres17.
These findings were confirmed using a zebrafish mutant
(myogfh265) bearing a stop mutation downstream of the bHLH
domain, which also shows delayed muscle regeneration18,20.
However, as a similar truncation of mouse Myog has residual
activity, we previously suggested that myogfh265 is
hypomorphic18,21. Hence, despite strong evidence for roles for
Myog in later myogenesis not compensated for by other MRFs7,8,
a specific evolutionarily-conserved function in vivo is unclear.

Here we create null alleles in zebrafish myog and reveal a
specific function for Myog in myocyte fusion during skeletal
muscle development. We find that Myog is dispensable for
myoblast terminal differentiation, expression of many muscle-
specific markers, myofibre elongation across the somite, sarco-
mere assembly, innervation and generation of functional con-
tractile muscle. However, lack of Myog prevents most myocyte
fusion and leads to supernumerary mononucleated muscle fibres.
Myog is required for the expression of membrane proteins
involved in cell fusion, such as Myomaker22–25. Despite gross
myocyte fusion defects, zebrafish myog mutants survive to
adulthood with more but thinner muscle fibres and reduced
overall body size. Adult muscle precursor cells lacking Myog
show a persistent fusion defect ex vivo. Interestingly, residual
fusion in myog mutants occurs primarily in the deep myotome
and is dependent upon Hedgehog signalling, indicating the
existence of two pathways to myocyte fusion.

Results
Generation of myogenin mutant alleles. To create a null myog
mutant, we targeted genome editing far upstream of bHLH region
and obtained two nonsense alleles (Fig. 1a). Myogkg128 has an
insertion of 1 bp (A), whereas myogkg125 has a deletion of 3 bp
(TCA). Both mutations create a stop codon in an identical posi-
tion (Y37*), producing a truncated protein lacking both basic and
HLH domains. In situ mRNA hybridisation (ISH) for myog on
myogkg128/+ and myogkg125/+ incross lays at 18 h post fertilization
(hpf) showed reduced signal in mutant embryos compared to
siblings (sibs), presumably by nonsense-mediated decay (NMD)
(Fig. 1b). mRNA downregulation was confirmed by qPCR at 20
hpf (Fig. 1c). Congruently, mutant embryos lacked Myog immu-
noreactivity, whereas F-actin accumulation and overall number of
nuclei per myotome was indistinguishable from wild-type (wt)
(Fig. 1d). Heterozygote and wt siblings showed similar levels of
Myog (Supplementary Fig. 1a). No compensatory upregulation of
other MRFs was noted at 20 hpf. Indeed, lack of Myog sig-
nificantly reduced expression levels of myf5 (40%) and mrf4
(54%), whereas myod remained unchanged (Fig. 2a). These results
demonstrate that homozygous mutant alleles myogkg125 or
myogkg128 block Myog mRNA and protein accumulation.

Myoblasts differentiate and muscle functions without Myo-
genin. To examine muscle differentiation, mutants and sibs were
compared for mylpfa and smyhc1 expression that distinguish fast
and slow muscle26–28. ISH analysis revealed no difference at
15 somite stage (ss) (Supplementary Fig. 1b). In this and sub-
sequent experiments, no differences were observed between wild
type and heterozygous sibs, consistent with their similar Myog
level (Supplementary Fig. 1a). At 22 ss, strong mylpfa mRNA in
fast muscle in anterior somites and smyhc1mRNA in slow muscle
extending more posteriorly were also unaltered in myog mutants
(Supplementary Fig. 1c). At this stage, slow myofibres have
migrated to the lateral surface of the myotome and remain
mononucleated, whereas the more abundant multinucleated fast
muscle fibres are located deeper in the myotome29–31. Moreover,
no obvious difference was observed, either in motility or in fast
and slow myosin heavy chain (MyHC) immunoreactivity at 20
hpf, 1 day post-fertilisation (dpf) or 2 dpf, when embryos have
hatched and make short bursts of controlled swimming (Fig. 2b,c
and Supplementary Fig. 1c-e). Slow myofibre number and
thickness were not affected in mutants (Fig. 2b and Supplemen-
tary Fig. 1e). Thus, without Myogenin, specification and early
development of slow and fast muscles appears normal.

α-Actinin, Titin, F-actin and Acetylcholine Receptor staining
also showed that fibre formation, sarcomere assembly and
innervation had occurred properly in mutants (Fig. 2d–h). At 2
dpf, mutant myofibres were correctly positioned and elongated
across the length of the somite. However, fast muscle appeared
mildly disorganised and slightly reduced in extent (Fig. 2f).
Nevertheless, motor function at 5 dpf assayed by time spent
swimming, total travelled distance and average speed did not
differ between myog mutants and sibs. Irrespective of genotype,
some larvae were consistently more active than others throughout
the 30 min measurement period (Fig. 2i). To test fibre integrity
and anchorage, fish were swum in a viscous methyl-cellulose
(MC) solution, which led to a general decrease of swimming
performance. Despite this challenging environment, mutants did
not perform significantly worse than their siblings (Fig. 2i). When
sib and mutant larvae were grown in MC from 5 to 8 dpf, a
procedure known to damage defective muscle32, myog mutants
retained good muscle morphology (Supplementary Fig. 1f). Thus,
Myogenin is dispensable for the initial phases of myogenesis and
generation of strong functional muscle in zebrafish.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-06583-6

2 NATURE COMMUNICATIONS |  (2018) 9:4232 | DOI: 10.1038/s41467-018-06583-6 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


Muscle size reduction and myofibre number increase in
myog mutant. Although functional muscle was formed, our data
suggested a reduction in myotome size in mutants (Fig. 2).
Measurement of the dorso-ventral extent of ISH staining of fast
mylpfa and slow smyhc1 revealed a reduction of mutant myotome
size, both at 1 and 2 dpf (Fig. 3a, b and Supplementary Fig. 2a).
Nevertheless, the body length of mutants and sibs was compar-
able, suggesting that muscle reduction was not due to reduced
overall body size or delayed development (Fig. 3c and Supple-
mentary Fig. 2b).

To analyse the defect in cellular detail, myogkg128 and
myogkg125 were bred onto Tg(Ola.Actb:Hsa.HRAS-EGFP)vu119,
in which EGFP targets plasma membranes of all cells33 (β-actin:
EGFP hereafter). Confocal sections of β-actin:EGFP;myogkg128/+

incross larvae confirmed that reduction in myotome volume was
present at 2 dpf in mutants and persisted until at least 5 dpf
(Fig. 3d, f). Although myotome cross-sectional area was
consistently reduced in mutants, myotome length was unaffected
(Fig. 3g; Supplementary Fig. 2b). A reduction of fast fibre cross-
sectional area in mutant fish was observed (Fig. 3e). Indeed,
quantitative analysis at 2 dpf revealed a 50% increase of fast fibre
number accompanied by a 45% reduction in mean fibre volume
in mutant embryos (Fig. 3h, i). myogfh265 mutants did not have
reduced size or altered cellularity and we did not observe any
other phenotype in un-manipulated embryos, larvae or adults,
confirming that this allele is hypomorphic18 (Supplementary
Figs 2c–e; 5a). We conclude that Myog controls fast myofibre
number and size.
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Fig. 1 Genome editing generates zebrafish myog null alleles. a Schematic of myog gene exons (boxes) and protein showing the position of kg125, kg128 and
fh265 mutant alleles. The tyrosine to stop mutations (Y37*) produce a truncated protein of 36 amino acids (aa) devoid of both basic (yellow) and
helix–loop–helix (HLH, green) domains. The fh265 hypomorphic allele (Q167*) truncates downstream of bHLH. Beneath, DNA and protein alignment of
wild-type (wt), 3 bp kg125 deletion (red) and 1 bp kg128 insertion (green) alleles with novel stop codons underlined causing an identical truncation. b In situ
mRNA hybridisation (ISH) for myogenin on myogkg128/+ and myogkg125/+ incross lays reveal NMD of mutant myog mRNA at 20 somite stage (20 ss).
Representative images n= 14+ 5 mutants, n= 39+ 22 sibs, respectively. Insets show magnification of boxed areas. c qPCR analysis on wt sibs and
myogkg125 embryos at 22 ss confirms NMD. Mean fold change ± SEM from four independent experiments on genotyped embryos from four separate lays
analysed on separate days, paired t test statistic. Symbol shapes denote matched wt and mutant samples from each experiment. d Immunoreactivity of
Myog is lost in myogkg125 and myogkg128 mutants at 20 ss, whereas F-actin is unaffected. Insets show nuclear staining in myogkg125 and sib using Hoechst
counterstain. Relative myotomal Myog immunofluorescence was assessed by nuclear intensity measurement. All images are lateral views anterior to left,
dorsal to top. Representative images n= 10+ 7 mutants, n= 9+ 19 sibs, respectively. Bars= 50 µm
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Myogenin is required for normal myocyte fusion. Two
hypotheses could explain the overabundance of fast muscle fibres
in myogkg128 and myogkg125 mutant embryos: increased frequency
of terminal differentiation of muscle progenitor cells (MPCs) into
myocytes or reduced fusion of differentiating myocytes into
multinucleate fibres. Most, if not all, fast myofibre nuclei derive
from MPCs expressing either Pax3 or Pax734–42. We found no
differences between myog mutants and sibs in position or number
of Pax3/7 positive cells at 1–2 dpf (Fig. 4a, b). Nor was there a

change in the number of nuclei in the myotome (Fig. 4h). Thus,
no evidence supported the possibility that myocyte formation
from MPCs was increased.

Next, we tested the ability of Myog to promote myocyte fusion.
We injected DNA encoding CAAX-mCherry at the 1-cell stage
into myogkg128/+ incross embryos to label mosaically the plasma
membrane of single fibres. At 2 dpf the majority of labelled fibres
in mutant embryos were mononucleated, whereas those in sibs
were multinucleate (Fig. 4c). To quantify this defect, we injected
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H2B-mCherry mRNA into β-actin:EGFP;myogkg125 embryos to
label nuclei and plasma membranes uniformly. Strikingly, over
92% of muscle fibres in myog mutants were mononucleate,
compared to 33% in sibs (Fig. 4d, e; Supplementary Fig. 3a). The
fraction of nuclei in multinucleate fibres dropped from 81% in
sibs to 16% in mutants (Fig. 4f; Supplementary Fig. 3a). This
phenotype persisted at least until 6 dpf (Supplementary Fig. 3b).
Nuclei in mononucleated myofibres preferentially located near
the centre of the myotome (Fig. 4d). Despite the twofold
reduction in myonuclei per myofibre, the total number of nuclei
within in each myotome was not altered in mutants, paralleling
the increase in myofibre number (Figs. 3h; 4g, h).

To eliminate the possibility of CRISPR off-target effects, we re-
expressed Myog mosaically in myog mutant larvae by injection of
a plasmid containing the zebrafish myog promoter driving wt
zebrafish Myog-IRES-GFP expression. myog:MyogCDS-IRES-GFP
rescued fusion in fast fibres, whereas a control myog:GFP-only
vector did not (Fig. 4i, j). Myog knockdown with a morpholino
fully recapitulated the mutant phenotype with increased number
of mononucleate fibres and decreased somite growth (Supple-
mentary Fig. 3c–e). We conclude that Myogenin is essential for
most myocyte fusion.

To examine the cell autonomy of the need for Myogenin we
analysed myog mutant larvae with mosaic Myog-IRES-GFP re-
expression further. Myog-IRES-GFP significantly rescued fusion;
Myog-expressing fibres in myog mutants contained a range of
nuclear numbers approaching the distribution in controls
(compare Fig. 4e, i). Adjacent unlabelled fibres remained
mononucleate (Fig. 4j). As cells expressing Myog-IRES-GFP
occurred at a rate of about 2–3 per somite and were well-
scattered, this finding indicates that only a single fusing partner
needs to express Myog to permit fusion. Moreover, although
mosaic Myog expression rescued mutants, it did not induce more
fusion than observed in wt in either mutants or sibs (Fig. 4i, j;
Supplementary Fig. 4a–c). Importantly, Myog expression (either
in myog mutants or sibs) failed to elicit fusion of the normally-
mononucleate slow fibres, even though the slow fibres were
adjacent to fast fibres and their MPC precursors, indicating that
the low level of myog mRNA in wt slow MPCs is not the only
reason for their lack of fusion (Supplementary Fig. 4d,e).
However, both mutant and sib slow fibres overexpressing
Myog-IRES-GFP showed significantly reduced myofibrillar width
(Supplementary Fig. 4e,f). Thus, Myog is required in at least one
of two fusing fast myocytes to permit fusion.

Expression of fusogenic genes reduced inmyogmutants. Fusion
of myocytes is a key feature of skeletal myogenesis and requires
several transmembrane proteins43. We hypothesised that Myog
regulates these genes. Myomaker (mymk)22–25,44 mRNA was

strongly reduced (72%) in myog null mutant embryos at 20 hpf,
during initial myocyte fusion, and was also mildly affected in
myogfh265 hypomorphs (Fig. 5a, b; Supplementary Fig. 5a), par-
alleling the previously observed myog nonsense-mediated mRNA
decay in this hypomorphic allele18. Mymk was also reduced in
myodfh261 mutant in proportion to myog mRNA reduction and
loss of fast muscle18,45 (Supplementary Fig. 5a,b). Reduction of
mymk mRNA thus parallels lack of myocyte fusion. Myomixer/
myomerger/minion, a micropeptide recently described to enhance
myoblast fusion44,46,47, was also reduced (34%; Fig. 5b). More-
over, jam3b mRNA was significantly reduced (22%) in mutants,
but jam2a48 and kirrel3l49 were unaffected (Fig. 5a, b).

The extent of reduction of myomaker expression in mutants
argues for direct transcriptional regulation by Myogenin. To test
whether Myog directly regulates mymk transcription in zebrafish,
we scanned 3 kb of putative promoter region upstream of the
myomaker 5'-UTR and found two E-box elements (E-box 1 and
E-box 2, Fig. 5c). ChIP-qPCR assay on 20 hpf embryos revealed
that endogenous Myog binds both E-box elements, with
significant enrichment of Myogenin binding to E-box 1 compared
to two different negative controls. The more proximal E-
box 1 showed greater binding than E-box 2 (Fig. 5d). Combined,
these data support a role for Myogenin in governing myocyte
fusion through direct transcriptional upregulation of mymk and
other fusogenic factors.

Hedgehog drives residual fusion and mymk expression. Myog
mutants retain small numbers of multinucleate fibres in the
medial somite (Fig. 4e; Supplementary Fig 3a,b). Residual mymk
mRNA also persists in myog mutants (Fig. 5a, b), showing that
other factors drive mymk expression in some cells. Residual
mymk mRNA is preferentially enriched in the medial region of
mutant myotome, adjacent to the notochord (Fig. 6a).
Notochord-derived Hedgehog (Hh) signals promote differentia-
tion of slow and a medial subset of fast muscle in
zebrafish19,30,35,37,50–54. Treatment of myog mutant embryos with
the Hh inhibitor cyclopamine (CyA) led to an additional 54%
reduction of mymk mRNA, leaving < 20% of the original mymk
expression compared to vehicle-treated wt siblings (Fig. 6b;
Supplementary Fig. 5c,d). CyA-treated sibs also showed a 22%
mymk reduction (Supplementary Fig. 5c–e) compared to controls.
Congruently, when a β-actin:EGFP;myogkg125/+ incross was
treated with CyA, residual fusion in myog mutants at 2 dpf was
largely lost (Fig. 6c). Blockade of Hh signalling had no detectable
effect on fusion in sibs, although reducing both sib and mutant
fast muscle growth, as previously reported55 (Fig. 6c). These
observations show that in myog mutants Hh signalling sustains
residual mymk expression and myocyte fusion in the deep/medial
myotome close to the notochord.

Fig. 2 Functional muscle differentiation in Myogenin mutants. a qPCR analysis on wt sibs and myogkg125 embryos at 22 ss showing reduction of myf5, mrf4
but not myod RNAs. Mean fold change ± SEM from four independent experiments on genotyped embryos from four separate lays analysed on separate
days, paired t test statistic. Symbol shapes denote matched wt and myog mutant samples from each experiment. b, c Immunodetection of slow and fast
myosins (sMyHC and fMyHC) in 2 dpf larvae from a myogkg125/+ incross showing that myofibre differentiation occurs in mutant. Dots in graphs show slow
myofibre width (average of six myofibres/larva) and number in somite 17 of sib and mutant individuals. Representative images n= 5 mutants, n= 8 sibs.
d–f Phalloidin staining for F-actin or immunolabelling for titin and α-actinin reveals that mutant myofibres display regular sarcomere spacing and are
properly assembled to sustain contraction. Representative images n= 5 mutants, n= 21 sibs (phalloidin); n= 7 mutants, n= 18 sibs (titin); n= 7 mutants,
n= 23 sibs (α-actinin). In f, boxes are shown magnified below. g Sarcomere length from f (average of 6 myofibres/larva) in sibs and mutants. Numbers of
larvae analysed are shown on columns (b, g). h Larvae from a myogkg128/+ incross stained with α-bungarotoxin-Alexa-488 show that mutant embryos
accumulate AChR at both neuromuscular junction (arrows) and muscle-muscle junction (arrowheads) comparable to sibs. Representative images n= 4
mutants, n= 11 sibs. i Motor function of 5 dpf larval zebrafish in fish-water (FW; n= 24 mutants, n= 115 sibs) or 0.6% Methyl-Cellulose (MC; n= 12
mutants, n= 36 sibs) as time spent moving (minutes), distance travelled (mm) and average speed (mm/s). Overall muscle function is unaffected by lack
of Myog in both FW and MC. Activity of both myog mutants and sibs is affected by MC. Each dot represents the behaviour of an individual larva. ns: not
statistically significant in ANOVA. Bars= 50 µm (10 µm in g)
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Adult myog mutants have small muscle with reduced fibre size.
Both putative null myog alleles are homozygous viable. By
4 months (120 dpf), compared to their co-reared sibs, adult
mutants showed a reduction in standard weight, a measure
that compensates for length changes (Fig. 7a, b; Supplementary
Fig. 6a, b). In contrast, myogfh265 mutants were similar to sibs,

consistent with the lack of larval phenotype (Fig. 7b; Supple-
mentary Fig. 6a). The new mutants showed a 35-40% reduction in
weight and lower ‘body mass index’. These data show that muscle
bulk reduction is independent of, and may cause, the observed
length reduction (Supplementary Fig. 6a). Muscle reduction
persisted also in 15 month old mutants (Supplementary Fig. 6c).
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Adult muscle phenotype examined in transverse cryosections
of 120 dpf myogkg128 incross fish revealed a decreased myotome
area, reduced fibre cross-sectional area and increase in fibre
number per unit area of muscle in myogkg128 mutants, compared
to matched sibs (Fig. 7c–f; Supplementary Fig. 6b). The total
number of fibres in single body cross-sections of a mutant (4097)
and a heterozygote sib (3657) were similar and were approxi-
mately 40-fold those in larvae, indicating that fibre formation had
persisted (Supplementary Fig. 6b). The number of nuclei in
mutant fibre cross-sections was reduced threefold compared to
sibs, but a few fibres with several nuclei were still present (Fig. 7g,
h; Supplementary Fig. 6d, e). The total area of both slow and fast
muscle also appeared reduced (Fig. 7i; Supplementary Fig. 6b).
Fibre typing for oxidative metabolism revealed that fast muscle
fibre size was more reduced than slow fibre size. Interestingly, the
slow muscle region overall appeared less oxidative and fibres in
the intermediate and slow regions were disorganised and smaller
in mutant fish (Fig. 7i). Thus, fish lacking Myogenin have severe
defects in adult muscle.

Fusion defect in adult-derived myog mutant MPCs. To deter-
mine whether the deficits in mutant adults derived from defective
development alone, or persisted due to a Myog requirement in
the adult, we analysed cellular dynamics of adult-derived muscle
progenitors cells (MPCs) ex vivo. Initially, we developed a
method to culture satellite cells derived from isolated fibres of
adult zebrafish that yielded MPCs that could undergo terminal
differentiation, up-regulate desmin and accumulate MyHC and
fuse into myotubes in vitro (Fig. 8a). Strikingly, myog mutant
MPCs differentiated as well as sibling MPCs (Fig. 8b), but showed
a dramatic reduction in cell fusion compared to heterozygote
controls (Fig. 8a–d). Indeed, fusion index declined greatly;
whereas the majority of sibling myotubes contained three or more
nuclei, 98% of mutant myotubes were mononucleate (Fig. 8c, d,
Supplementary Fig. 6f). Differentiating Myog-deficient MPCs
expressed desmin and MyHC, elongated and aligned similarly to
control cells (Fig. 8a, b; Supplementary Fig. 6g). These data show
Myog is not required for terminal differentiation of satellite cell-
derived MPCs into myocytes but is required for myocyte fusion
throughout life.

Discussion
The data presented radically change the interpretation of the
evolutionarily conserved role of Myog in skeletal muscle devel-
opment through four major findings. First, Myog is not required
for terminal differentiation of most myoblasts into myocytes.
Second, Myog has a major conserved role in driving the fusion of
myocytes into multinucleate fibres. Third, that a second, Myog-
independent, pathway to muscle fusion exists and, in the zebra-
fish trunk, is promoted by Hh signalling. Lastly, that Myog is
required for normal myogenesis throughout life and that its loss
leads to poor muscle and whole body growth and a persistent

functional fusion deficit in adult satellite cell-derived muscle
progenitors.

In mice lacking Myog, myoblasts can form myocytes expres-
sing proteins of the contractile apparatus5–8. However, a major
deficit of early muscle formation was reported, with dramatic
downregulation of MyHC at e12.5 in both trunk and limb muscle
and a worsening deficit in neonates7,8. This led to the view2, that
‘Myogenin knockout has a …. complete absence of functional
skeletal muscle’. Our data from zebrafish contradict this view; we
observe differentiated muscle fibres, normal sarcomere formation
and normal numbers of nuclei within fibres in the larval myo-
tome of mutants. Nevertheless, although to our knowledge no
compelling images of fusion in the absence of Myog in vivo have
been published, cultured myoblasts and satellite cells from Myog
mutant mice are reported to fuse and myocytes lacking Myog can
fuse with wild-type myocytes in vivo in murine chimaeras7,11. We
conclude that Myog is dispensable for terminal differentiation of
myoblasts into post-mitotic myocytes and contractile myofibres
in zebrafish (Fig. 8e).

Early reports suggested that murine myotomal Myog protein
does not accumulate until after muscle differentiation, despite
the earlier presence of Myog mRNA56,57. Moreover, embryonic
MyHC (Myh3) mRNA is almost normally expressed in e14.5
Myog mutants, whereas maturation to expression of perinatal
MyHC (Myh8) mRNA is dramatically reduced at e18.57,8. The
widespread accumulation of desmin protein, hitherto taken as
an indication of a myoblast state7,8,58, could instead reflect
myocyte formation. The ability of myogenic cells from Myog−/−

to form myotubes in culture also argues for unimpaired myocyte
formation6,7. Consistent with murine data8, we find that balance
of zebrafish slow and fast fibre formation is unaffected by loss of
Myog. However, our finding that several genes required for later
steps in myocyte differentiation (e.g. fusion) are down-regulated
in mutants indicates that a subset of muscle differentiation
genes, the ‘Myog-module’ are regulated by Myog in zebrafish
(Fig. 8e).

Zebrafish Myog is not essential for, but can promote, muscle
terminal differentiation. We previously reported that loss of both
Myf5 and Myod ablates all skeletal myogenesis, whereas com-
bined reduction of Myod and Myog severely reduces fast
muscle17,18. These findings show that, in the absence of MyoD,
Myf5 requires Myog to drive fast myogenesis17. Interestingly,
even hypomorphic myogfh265 mutants that lack a developmental
fusion defect show poor muscle regeneration and apoptosis of
myf5-marked cells20. Hence, we cannot exclude the possibility
that a non-essential subset of myoblasts requires Myog for
terminal differentiation in older zebrafish. Lack of Myog is not
compensated by increased expression of myod and leads to
downregulation of mrf4 mRNA, as observed in mice lacking
Myog5,7,8,12. Surprisingly, we found that myog mutant embryos
accumulate less myf5 mRNA, suggesting that Myog may promote
myf5 expression or be required for the production of myf5-
expressing cells.

Fig. 3 Myogenin is required for normal larval muscle growth. a, b ISH for mylpfa mRNA showing similar level of expression of fast myosin but reduced
extent of somitic muscle in mutants (a, red brackets) at 1 and 2 dpf. Myotome height (b) is significantly reduced in myogkg128 mutants at 1 and 2 dpf.
Representative images n= 9+ 18 mutants, n= 35+ 63 sibs. c Larval length is unaffected in mutant at 2 dpf, showing that muscle reduction is not due to
overall reduced size of mutant larvae. d Schematic of myotome volume measurement. β-actin:EGFP;myogkg128/+ fish were incrossed and progeny imaged by
confocal microscopy. Lateral and three equi-spaced transverse images of somite 17 were collected from each larva at each stage (dashed lines). Transverse
area (red outline) multiplied by somite length (cyan dashed line) yielded myotome volume for each fish at each stage. e Optical transverse-sections of β-
actin:EGFP;myogkg128 mutants show reduced myotome area at 2, 3 and 5 dpf compared to sibs (dashed red lines). Boxes are shown magnified beneath
highlighting smaller fibre cross-sections in mutants (dashed white lines). Representative images n= 6 mutants, n= 14 sibs (2 dpf); n= 5 mutants, n=
18 sibs (3 dpf); n= 9 mutants, n= 13 sibs (5 dpf). fMyotome volume reduction in myogkg128 mutants at 2, 3 and 5 dpf. g–i. Myotome length (g), number of
fast fibres per cross section (h) and fibre volume (i) at 2 dpf compared by t tests. Bars= 50 μm. nt: neural tube, nc: notochord
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Myog mutants have a severe lack of fusion, despite efficient
myocyte differentiation. We find that myog activity is essential for
normal expression of a subset of fusogenic genes, mymk, mymx
and jam3b, mutation of which causes fusion defects strikingly
similar to the myog mutant phenotype23–25,48,49,59. We propose,
therefore, that early terminally-differentiated fast myocytes are

primed for fusion, but lack sufficient expression of critical Myog-
module components until Myog becomes active (Fig. 8e). Inter-
estingly, mymk mRNA was more highly reduced than any other
gene analysed, which could account for the fusion defect
observed. However, as jam3b mRNA is more widely
expressed48,60, its lesser reduction may reflect strong reduction in
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muscle and unaltered expression elsewhere. Thus, the extent of
the Myog-module functionally required for fusion remains to be
determined.

Mosaic Myog re-expression in myog mutant fully rescues
fusion. Strikingly, this effect is cell autonomous and fairly effi-
cient, which leads to several important conclusions. Firstly, as two
adjacent GFP-marked cells are rare, a single isolated Myog-
expressing myocyte appears sufficient to induce fusion to an
adjacent cell lacking Myog. This result parallels the chimaera
analysis showing fusion of Myog−/− with wild-type cells in
murine myogenesis11. Secondly, the existence of rescued fibres
with more than two nuclei suggests that Myog expression in a
binucleate fibre can elicit fusion of adjacent cells lacking Myog. It
may be significant in this regard that Jam3b, Mymk and Minion/
Myomerger/Myomixer have been shown to be required in only
one cell of a fusing pair, although fusion efficiency was reportedly
higher when both cells express Mymk24,47,48.

We observed that Myog occupies E-boxes in the endogenous
mymk 5' proximal region during the period of fusion in vivo. A 3
kb mymk promoter fragment containing these sites drives
reporter expression in zebrafish fast muscle24. Similarly, in mouse
and chick, Mymk expression parallels that of Myog and depends
on conserved E-boxes, including one at -41 bp61,62. Moreover, in
cultured myocytes, Myog binds to conserved sequences in Mymk,
Mymx and Jam3 (www.encodeproject.org/experiments/
ENCSR000AID). Interestingly, the early Xenopus, chick and
mouse myotomes are reported to be composed of mononucleate
fibres63–67. As the murine Myog mutant shows little early defect,
but even partial deletion of a floxed Myog allele after initial fibre
formation shows that Myog is essential for late embryonic and
neonatal myogenesis12,13, the data on murine Myog mutants are
all consistent with a primary fusion defect. Moreover, some
reports in C2C12 cells have suggested that Myog expression
correlates with, and is required for, myocyte fusion, although
conflicting findings exist68,69. We note that zebrafish slow muscle
fibres, which remain mononucleate long after their terminal dif-
ferentiation, accumulate much lower levels of myog mRNA than
fast muscle precursors, paralleling their lower levels of mymk and
mymx mRNA17–19,59,70. However, although overexpression of
Myog in slow myocytes reduces their size and alters myofibril
organisation, it did not drive their fusion to each other or to
adjacent fast myocytes, in contrast to mymk overexpression24.

Zebrafish myog mutants show a similar increase in number of
myofibres to that reported when fusion is blocked in mutants
lacking Jam proteins48. In the case of myog mutants, the increase
in fibres was quantitative; total nuclear number in myofibres

remained constant, suggesting that normal numbers of myoblasts
differentiated, survived and made fibres. It seems that during
early myotome formation, therefore, either no specific sub-
population of ‘founder’ myoblasts determines fibre number, as
occurs in Drosophila embryonic myogenesis71,72 or Myog is
required to prevent cells acting as founder cells. Interestingly,
previous studies reported that fusion-defective myoblasts elongate
and differentiate into mononucleated muscle fibres23,24,48,49. We
hypothesise that, like fish, murine Myog mutants are blocked in
fusion. Perhaps lack of fusion triggers loss of nascent myocytes
that fail to form attachments to skeleton or nerve. In addition,
myoblast populations such as those in neonatal limb may abso-
lutely require Myog for terminal differentiation.

In myog mutant fish a small group of muscle fibres in the deep
myotome undergoes fusion. Residual fusion was also observed in
jam3b and jam2a mutants and mymk mutants were also stated to
be only ‘predominantly mononucleated’, although the extent and
location of residual multinucleate fibres was not reported24,48. We
find that Myog-independent fusion requires Hh signalling, prob-
ably from adjacent midline tissue, which also up-regulates mymk
mRNA in the deep myotome. The low residual level of mymk
mRNA observed in CyA-treated myog mutants could reflect
incomplete loss of Hh function, or additional controls on mymk
expression. As Hh promotes slow and fast muscle differentiation
through activation of Myod by a Cdkn1c/p57 positive feedback
loop19, we speculate that Hh-induced fusion may arise from
increase in Myod-driven mymk expression in myocytes adjacent
to the midline source of Hh. Our data suggest that distinct
myocyte fusion processes contribute to muscle fibre diversity.

Our study quantified the extent of fusion in wild-type and
myog mutant fast muscle. Interestingly, a significant minority
(~30%) of fast fibres are mononucleated at 2 dpf in wild-type,
meaning that ~20% of fast myocytes had not yet fused. Many
of these may reflect dermomyotome-derived fast myocytes that
had recently undergone terminal differentiation, because they
were predominantly located in the lateral myotome36,38. Never-
theless, transplant experiments have reported rates of fusion
above 95%24,48, implying that a rare subset of proliferative somite
cells generates the mononucleate fast fibres. On the other hand, in
myog mutants only about 20% of myocytes fuse. As frequencies of
residual fusion are yet to be reported in jam2a, jam3b, mymk and
mymx mutants23,24,48,59, it is unclear whether some fusion
mutants have more severe defects than others.

Myog mutants are viable but grow less rapidly than their sibs.
Early in life, myog mutants have small fibres and reduced myo-
tome size, which might give them a disadvantage in competitive

Fig. 4 Myogenin promotes fusion of myocytes. a, b Immunodetection and quantification of Pax3/7 positive MPCs in somite 17 of myogkg125/+ incross
embryos at 1 dpf and 2 dpf. Mean ± SEM of dots representing individual embryos. Lack of Myog does not alter number of Pax3/7 MPCs per somite (white
dashed lines). Representative images n= 6 mutants, n= 11 sibs (1 dpf); n= 8 mutants, n= 9 sibs (2 dpf). c Qualitative analysis of myoblast fusion in a
myogkg125/+ incross injected at 1-cell stage with DNA encoding CAAX-membrane targeted mCherry (red). At 2 dpf, larvae were fixed and stained with
Hoechst to highlight nuclei (blue) and analysed from 3D stacks. Nuclei within mCherry-labelled fibres (arrowheads) were mostly single in mutants, but
multiple in sibs. Representative images n= 6 embryos. d Myoblast fusion quantified by injection of H2B:mCherry RNA into 1-cell stage embryos from β-
actin:EGFP;myogkg128/+ incross. Confocal single plane images deep in the myotome of 2 dpf larvae showing muscle fibres and the position of nuclei (insets).
Note the central location away from somite borders (dashed white lines) of most nuclei in mutants (arrowheads), similar to that observed in mononucleate
superficial slow fibres. Representative images n= 6 embryos. e, f Quantification of fusion within the entire myotome 17, showing the fraction of fast fibres
(e) and fraction of nuclei in fast fibres (f) with the indicated number of nuclei. Slow fibre numbers were unaltered. Data report mean values of three larvae
per genotype (see Supplementary Fig. 3a for individual data). p-values indicate probability of rejecting null hypothesis of no difference between mutant and
sibs in χ2 tests. g Number of nuclei per fast fibre is reduced in mutant. h Total number of nuclei within fast fibres in somite 17 of sib and mutant is
unchanged. Dots represent individual embryos. Mean ± SEM. t test. Bars= 50 μm. i, j Mosaic myog:MyogCDS-IRES-GFP plasmid-derived expression of
Myog (Myog O/E) rescues fusion in myogkg128 mutant larvae from a myogkg128/+ incross, compared control myog:GFP plasmid (Control). Quantification (as
in e) of nuclei in GFP+ cells (i, see Supplementary Fig. 4a for individual data). Immunodetection shows Myog overexpression (Myog O/E, magenta) in
myog:MyogCDS-IRES-GFP but not in myog:GFP(Control, green) GFP+ fibres (j). Representative images n= 5 myog:GFP, n= 11 myog:MyogCDS-IRES-GFP
injected mutants, ns: not significant
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feeding leading to reduced growth. Alternatively, Myog could be
required for some other function, such as synthesis of myokines
important to coordinate whole body scaling of tissue size. How-
ever, adult mutants have a disproportionate loss of muscle
compared to their length and a persistent greatly reduced fibre
size and nuclear content throughout life that could reflect
defective adult MPC differentiation.

Zebrafish muscle has been shown to contain fibre-associated
satellite cells41,73,74. To address the role of Myog in adult life, we
developed an MPC culture procedure for zebrafish satellite cells.
This method shows that adult MPCs lacking Myog undergo
terminal differentiation but fuse poorly ex vivo, indicating that
Myog is required throughout life, rather than that the defect in adult
fish derives solely from persistence of early developmental defects
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that are subsequently Myog-independent. Definitive proof of this
conclusion will require deletion of myog function in adult fish.
Nevertheless, combined with the defective regeneration of larval
muscle in myog hypermorphs20, our data strongly suggest that
Myog also functions during adult muscle growth and regeneration.

In striking contrast to the myog mutant phenotype, lack of
Myod reduces fibre number in larvae without affecting fusion or
mymk expression, and the remaining fibres grow larger45. In
myod mutants, a reduction in the number of fast fibres is
accompanied by an increase in MPCs expressing Pax3 and/or
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Pax7, presumably reflecting reduced terminal differentiation18,45.
Given that Myod can activate myog expression and either MRF
can drive terminal differentiation of fast fibres17, these opposite
effects on fibre number and size suggest that the balance of MRFs
influences the mode of muscle growth.

Several studies in mice have also implicated MRFs in adult
fibre size control14,75,76. Like zebrafish, mice conditionally lacking
Myog in the adult show reduced body and fibre size, although
nucleation state of mutant myofibres was not reported12–14.
However, in contrast to its role in promoting fusion and fibre
growth in developing muscle, in the adult context Myog appears
to promote fibre atrophy upon denervation and regulate meta-
bolic capacity in innervated muscle14,77. Moreover, Myog over-
expression in both multinucleate fast muscle in mice and, as
shown here, in mononucleate slow fibres in larval zebrafish leads
to reduced fibre diameter75. As suggested by the differences in
Myog-regulated genes in embryonic and adult cells13, it seems
that Myog performs distinct functions in myoblasts, nascent
myocytes and mature fibres.

Methods
Zebrafish lines and maintenance. All lines used were reared at King’s College
London on a 14/10 h light/dark cycle at 28.5 °C with adults kept at 26.5 °C, with
staging and husbandry as described78. Embryos/larvae were reared at 28.5 °C in the
dark, except for periods outside the incubator. myogfh265 and myodfh261 mutant
alleles18,45 on AB background were genotyped by sequencing as described pre-
viously18. myogkg125 and myogkg128, on the TL background, were genotyped by
sequencing or by loss of EcoRV site in the mutant alleles, following PCR ampli-
fication using primers indicated (Supplementary Table 1). The two new alleles had
indistinguishable phenotypes and no differences were detected between wt and
heterozygous fish, so we refer to mutants and siblings (sibs), and report the specific
myog allele in each experiment in Figures and Supplementary Table 2. Tg(Ola.Actb:
Hsa.HRAS-EGFP)vu119 (ref. 33) was originally on King’s wild-type background. All
experiments were performed on zebrafish derived from F2 or later filial genera-
tions, in accordance with licences held under the UK Animals (Scientific Proce-
dures) Act 1986 and later modifications and conforming to all relevant guidelines
and regulations.

Embryo manipulation. Myogenin mutants were generated targeting the sequence
5′-GGAGCTCCTGTCCTGATATC-3′ on the reverse strand using CRISPR/Cas9
method as previously described79. Mutant lines, myogkg125 and myogkg128, were
bred onto Tg(Ola.Actb:Hsa.HRAS-EGFP)vu119. Muscle (myotome) size was ana-
lysed as previously described18,45 and schematised in Fig. 3d, except for myogfh265/
+ incross embryos, which were immersed in 3 μM BODIPY-FL-C5 (Thermo Fisher
Scientific) in fish water (FW) from 30 hpf until 2 dpf, washed twice and agarose-
mounted for live imaging18,45. H2B-mCherry capped RNA (100 pg per embryo,
kind gift from H. Roehl, University of Sheffield, UK and S. Megason, Harvard
Medical School, USA) or DNA plasmid encoding membrane targeted CAAX-
mCherry (25 pg per embryo80) were injected into 1- to 2-cell stage embryos to
analyse fusion. Morpholino antisense oligonucleotide against myog17,18 (2 ng per
embryo) was injected into 1- to 2-cell stage Tg(Ola.Actb:Hsa.HRAS-EGFP)vu119

embryos, which were fixed with 4% paraformaldehyde (PFA) for 15 min, at 20 ss
when knockdown efficiency was checked by Myog immunodetection, or at 2 dpf
and incubated overnight with Hoechst 33342 (Life Technologies). Cyclopamine81

(50 μM) or ethanol vehicle control was added at 50% epiboly to embryos with
chorions punctured with fine forceps.

Motor function was assayed at 5 dpf in a 30 min trial using DanioVision
(Noldus) and EthoVision XT9 tracking software. Larvae were acclimatised in 0.6%
methyl-cellulose (MC, Sigma Aldrich) or FW vehicle control in 24-well plates for at
least 2 h before tracking. Following tracking, larvae were raised in MC or FW and
analysed by confocal imaging at 8 dpf.

Rescue assay. Myogenin coding sequence was PCR amplified from pBluescript
SK-MG12-ZF-Myogenin70 using listed primers (Supplementary Table 1) and
subsequently cloned into hsp70-4:MyogCDS-IRES-NLSmGFP682. MyogCDS-IRES-
NLSmGFP6 insert was then PCR amplified from hsp70-4:Myog-IRES-NLSmGFP6.
myog promoter:GFP vector (myog:GFP)83 was linearised by PCR removing GFP
sequence using listed primers (Supplementary Table 1). Final myog:MyogCDS-
IRES-GFP plasmid was made using Gibson Assembly (E2621, NEB) and sequence
verified (Genbank:MH593821). Rescue experiments were performed by injecting
20 pg myog:MyogCDS-IRES-GFP or myog:GFP control into 1- to 2-cell stage
myogkg128/+ incross lays. Embryos were fixed at 2 dpf and processed for immu-
nostaining for Myog, GFP, slow MyHC (F59) and Hoechst 33342 as described
below. Each embryo was then mounted for confocal scanning of somites 15-20 on
one side and nuclei within GFP+ fibres were counted.

Imaging and in situ mRNA hybridisation and immunodetection. ISH and
immunodetection were performed as described84. Briefly, fish were fixed in 4%
PFA in phosphate-buffered saline (PBS) for 30 min or 3 h at room temperature or
overnight at 4 °C. Embryos for ISH were stored in 100 % methanol at −20 °C and
rehydrated in PBS prior to ISH. Fish for immunostaining were permeabilised in
PBS 0.5% Triton X-100 (PBSTx) for 5 min, blocked in Goat Serum 5% (Sigma
Aldrich) in PBSTx and incubated with primary antibodies at indicated con-
centrations at least overnight. Fish were then washed in numerous changes of
PBSTx for at least 5 min and incubated and washed similarly with indicated sec-
ondary antibodies and prepared for imaging as described below. Primary anti-
bodies against Myog (M-225 Santa Cruz Biotechnology, 1:50), fast MyHC (EB165
(1:2), Developmental Studies Hybridoma Bank, Iowa (DSHB)), slow MyHC (S58
(1:2) or F59 (1:5), DSHB) or MyHC (A4.1025 (1:5)30, MF20 (1:300, DSHB)), α-
actinin (1:500, A7732, Sigma Aldrich), Pax3/7 (DP312 (1:50), Nipam Patel, UC
Berkeley, USA), Laminin (L9393 (1:400), Sigma Aldrich), GFP (13970 (1:400),
Abcam), Titin (T12 (1:10), D. Fürst, University of Bonn, Germany), desmin
(D8281 (1:100), Sigma Aldrich) were detected with Alexa-conjugated secondary
antibodies (Invitrogen) and Goat anti-Mouse IgA-FITC (Serotec). Digoxigenin-
labelled probes were against myog70, smyhc127, mylpfa26 or mymk, jam3b, jam2a
and kirrel3l made by PCR on 1 dpf cDNA template using listed primer pairs
(Supplementary Table 1) with an added T7 polymerase binding site. For confocal
imaging, embryos were mounted in glycerol, Citifluor (Agar) or 0.8–1% low
melting point agarose and data collected on the somites 17-18 near the anal vent on
a LSM Exciter microscope (Zeiss) equipped with 20 × /1.0W objective and sub-
sequently processed using either Volocity (Perkin Elmer), Fiji (NIH, www.Fiji.sc)
or ZEN (Zeiss) software. Myotome volume, number of fibres and fibre volume were
calculated as described45 and schematised in Fig. 3d. α-Bungarotoxin-Alexa 488
(Invitrogen) and phalloidin staining was as described85. Myogenin immuno-
fluorescent intensity was averaged from at least 10 randomly-selected nuclei at
similar dorso-ventral and mediolateral position within somites 9-10 of each
embryo. Nuclei of interest (NOI) were selected blind by Hoechst 33342 staining
then Myogenin fluorescence was quantified in selected NOI using Fiji. To account
for staining variability between embryos, background was subtracted from nuclear
Myogenin intensity in each embryo by measuring fluorescence intensity of nucleus-
free areas of an equal size to the NOI in each somite region (see Supplementary
Fig. 1a for schematic). Relative average fluorescence intensity of nuclear Myogenin
immunolabelling in mutant was then calculated relative to siblings. All images are
shown as lateral views with anterior to left and dorsal up, unless otherwise stated.

RT-PCR and qPCR. myogkg125/+ incross embryos at 20 hpf were individually
genotyped by sequencing using listed primers (Supplementary Table 1). RNA was

Fig. 6 Hedgehog signalling sustains residual fusion and mymk expression. a ISH for myomaker (mymk) at 20 hpf revealed that residual expression in myog
mutant is enriched in the medial region of the somite close to notochord (arrows in transverse sections from indicated axial level, dorsal to top). Note lack
of expression in mononucleate slow pioneer fibres (arrowheads, upper panel). Representative images n= 6 mutants, n= 14 wt sibs (mymk) b ISH (lateral
view, dorsal to top) and qPCR analysis showing that cyclopamine (CyA) treatment of myogkg125 embryos almost abolished mymk mRNA compared to
ethanol (EtOH) vehicle control. CyA effectiveness is shown by the absence of unstained slow muscle pioneer cells (arrowhead). Mean fold change ± SEM
from three independent experiments on embryos from separate lays of myogkg125 (circles) and myogkg128 (squares and triangles) analysed on separate
days, paired t test statistic. Representative images n= 4 EtOH, n= 6 CyA. c Optical confocal sections of the medial region of somites 17 of β-actin:EGFP;
myogkg128/+ incross treated with vehicle or CyA. Transverse-section panels show medial position (yellow lines) of respective longitudinal section for each
condition. CyA abolished residual fusion in the medial myotome of mutant embryos (arrowheads) but did not detectably affect fusion in sibs. Note that the
residual multinucleate fibres in myogkg125 mutant appear larger than adjacent mononucleate fibres in EtOH but are lacking in CyA. nt: neural tube, nc:
notochord. Representative images n= 5 mutants, n= 3 sibs (EtOH); n= 4 mutants, n= 6 sibs (CyA). Bars= 50 μm
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extracted from pools of four embryos of each genotype using Trizol® (Sigma
Aldrich) and purified with RNA Clean & Concentrator™-25 (Zymo Research) or
RNA Purification Plus Kit (Norgen). Total RNA (300 ng) was reverse transcribed
using Superscript III reverse transcriptase (Invitrogen) following supplier’s
instructions. qPCR on technical triplicates for each sample was performed on 5 ng
of relative RNA using Takyon Low ROX SYBR 2X MasterMix blue dTTP (Takyon)
on a ViiA™7 thermal cycler (Applied Biosystems). For each experimental sample,
ΔCT was calculated by subtracting the CT value for housekeeping gene (actb2)
from that of the target gene. ΔΔCT of each target gene was then calculated by
subtracting the average of the ΔCT obtained in the wt (sibilngs) samples from ΔCT
for each sample. Relative gene expression was calculated using the 2-ΔΔCT

formula86 and the fold change of the expression levels between sibs and mutants
were compared using paired Student’s t test. Results are presented as mean ± SEM
of fold changes from three or four independent experiments. Primers were pur-
chased from Sigma-Aldrich (KiCqStart® SYBR® Green Primers Predesigned, Sigma
Aldrich). All PCRs for genotyping and probe synthesis were performed using
Phusion Taq polymerase (Life Technologies) on a T100 thermal cycler (Bio-Rad).

Chromatin Immunoprecipitation and E-box enrichment analysis. 3 Kb of
putative promoter region of myomaker, retrieved from UCSC genome browser
(GRCz10/danRer10), was scanned for E-box elements using JASPAR 2016 version

p = 0.0010
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Fig. 8 Mutant adult-derived muscle progenitor cells retain fusion deficit ex vivo. a Immunodetection of desmin (green) and MyHC (red) and nuclei (white,
Hoechst) in 15 months old myogkg125 and sibling myogkg125/+ adult-derived MPCs following 5 days of differentiation. Fusion into multinucleated myofibres
occurred only in sib (magnified boxes), coloured arrowheads indicate nuclei of each cell. Representative images, n= 3. b Extent of differentiation (Differentiation
index) is comparable between mutant and heterozygous MPCs. c Fusion index showing deficit in fusion of mutant myocytes. d Number of nuclei in fused MyHC
+ cells is reduced in mutant, χ2 test. Three fish per genotype (three technical replicates each). e Schematic of the role of Myogenin during differentiation, fusion
and growth of muscle fibres. During myogenesis, committed MPCs leave the cell cycle, begin to elongate and express early muscle-specific genes during
terminal differentiation into myocytes. At this stage, Myogenin (MYOG) promotes the expression of myomaker (MYMK), myomixer (MYMX) and jam3b
(JAM3B). These fusogenic proteins prompt myocyte fusion to form muscle fibres. In the absence of Myogenin, myocytes undergo terminal differentiation but
fail to express Myog-module genes, remain mononucleated and grow less throughout life. Residual myocyte fusion in Myogmutants in the medial region of the
somite (bracket) is sustained by Hedgehog (Hh) signalling

Fig. 7 Adult Myogenin mutants have reduced muscle with more but smaller myofibres. aMyogmutant and sib at 120 dpf from myogkg128/+ incross. Bar= 1
cm. Representative images n= 5 mutants, n= 23 sibs. b Myogkg128 or myogkg125 but not myogffh265 showed reduced standard weight compared to co-
reared sibs at 120 dpf. Dots represent individuals. c Laminin immunodetection on cryosections from 120 dpf myog128/+ incross. Bar= 100 µm.
Representative images, n= 3. d–f Number of muscle fibres in 0.1 mm2 of adult muscle is increased in mutants (d), whereas myofibre cross-sectional area
(CSA) is decreased (e) reflecting a shift in CSA frequency distribution compared to sibs. g Fewer myonuclear profiles were present within laminin profiles
in adult muscle cross-sections in mutants than in sibs, measured from 107 to 490 fibres at similar medio-lateral and dorso-ventral positions of trunk
muscle of three fish per genotype. Mean ± SEM, t test. h Proportions of muscle fibres with indicated number of myonuclei within fibre cross-sectional
profile. In sibs, >90% of fibres have more than one nuclear profile, compared with < 15% in mutants. Mean ± SEM, χ2 test. i NADH tetrazolium reductase
stain revealed that in both mutants and sibs three fibre types are present: oxidative/slow (slow), intermediate (int) and glycolytic/fast (fast). Size of more
glycolytic myofibres (yellow and green insets) is more reduced than oxidative fibres (cyan). Assay was performed on three 120 dpf adult male length-
matched fish of each genotype. Representative sib (blue) or mut (red) fibres are highlighted. Mutant presents smaller slow type myofibres ectopically
localised in fast domain (red inset). Representative images, n= 3. Bars= 100 μm (except for red, yellow and cyan insets= 10 μm)
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(JASPAR CORE Vertebrata, jaspar.genereg.net) with default settings. To avoid false
positive scoring, relative profile score threshold was set at 95-99%. 500–600 20 hpf
wt TL embryos were processed as described87. For immunoprecipitation, 30 µg of
chromatin were incubated with 4 µg of Myogenin antibody or normal rabbit serum
as mock. After purification of the immunoprecipitated DNA, enrichment was
analysed by qPCR using primers listed in Supplementary Table 1. Control primer
pairs for genomic gapdh sequence and for chromosome 14 gene-free region were
described87,88. All signals were normalised for input by percentage input calcula-
tion method (www.thermofisher.com).

Adult fish analysis. Siblings (120 dpf or 15 mpf) from heterozygote incrosses were
anaesthetised with tricaine (Sigma Aldrich), blotted dry, weighed on an Ohaus
YA102 balance, nose-to-base of tailfin length measured with a ruler and fin-clipped
for sequence genotyping. Standard weight (K) was calculated using Fulton’s for-
mula K=weight (g) × 100 × length−3 (cm)(reviewed in ref. 89). Body mass index
(BMI) was calculated as ‘weight (g) × length−2 (cm)’. Three 120 dpf adult male
length-matched fish of each genotype were culled using high dose tricaine, evis-
cerated and skinned. Trunk from just behind gills to 5 mm beyond the dorsal fin
was embedded in OCT (CellPath, Fisher Scientific), immersed in freezing iso-
pentane (Fisher Scientific) and stored at −80 °C. Cryosections (15 µm) from three
anteroposterior positions were immunolabelled for Laminin and counterstained
with Hoechst 33342 as described90 and three or four images in consistent med-
iolateral and dorso-ventral somitic areas of sibs and mutants were acquired using
an Axiovert 200M microscope (Zeiss) equipped with LD A-plan ×20/0.85 objec-
tive. Fibre cross-sectional area (CSA) was measured in each image and averaged.
Nuclei/fibre were scored as nuclei within laminin rings at three trunk positions in
three fish of each genotype. The data are presented as the mean of averaged values
from each individual fish. For digital whole section reconstruction several images
where taken on iRiS™ Digital Cell Imaging System, using ×4 objective, and merged
using Photoshop CS5.1.

NADH Tetrazolium Reductase. NADH-TR protocol was adapted from (https://
neuromuscular.wustl.edu/pathol/histol/nadh.htm). Briefly, 15 µm unfixed cryosec-
tions, from three 120 dpf adult male length-matched fish of each genotype, were
incubated in a 1:1 solution of NBT (Nitro-blue tetrazolium, 2 mg/ml, N6876,
Sigma) and NADH (1.6 mg/ml, N8129, Sigma) in 0.05M Tris HCl pH 7.6 at RT for
2 h. Sections were then washed three times with deionized water (dH20), serially
immersed in acetone:water 30%, 60%, 90%, 60%, 30%, ×3 dH20, glycerol mounted
and imaged with Axiophot microscope (Zeiss) equipped with Olympus DP-70
camera.

Isolation and culture of zebrafish MPCs from adult tissue. Isolation and culture
of zebrafish adult muscle fibres was adapted from ref. 91. Briefly, adult fish were
culled in high dose tricaine, washed in PBS, then 70% ethanol, eviscerated and
skinned. Trunk muscle was incubated in 0.2% Collagenase (C0130, Sigma Aldrich),
1% Penicillin/Streptomycin DMEM at 28.5 °C for at least 2 h. Single muscle fibres
were released by trituration using heat-polished glass pipettes and washed three
times with DMEM. 90–100 myofibres per fish were plated on Matrigel (Invitrogen)
coated 24-well plates and cultured in 20% Foetal Bovine Serum in 1% Penicillin/
Streptomycin/ DMEM for 7 days. Cells were washed twice with PBS to remove
muscle fibres and induced to differentiate in 2% Horse Serum 1% Penicillin/
Streptomycin/ DMEM for 5 days at 28.5 °C in 5% CO2 with medium change every
48 h, then fixed with 4% PFA, processed for immunofluorescence and imaged at
20X using an Axiovert 200M microscope (Zeiss). At least five random fields were
acquired in each of three technical replicates on each fish. Six 15 months old adult
male (three myogkg125/+ heterozygotes and three myogkg125 mutants) were dis-
sected for the analysis. Differentiation index= nuclei in MyHC+ myocytes (MF20
and A4.1025) × 100/nuclei in desmin+ cells. Fusion index=Nuclei in myocytes
with ≥ 2 nuclei × 100/ total nuclei in MyHC+ myocytes.

Statistical analyses. Quantitative analysis on images was performed with Fiji
software (NIH, Fiji.sc). Statistical analyses used GraphPad (Prism 6) for unpaired
two-tailed Student’s t test or Statplus:mac v5 for ANOVA with Bonferroni or
Tukey post-hoc tests to assess significant differences between mutant and sibling
groups, unless otherwise stated. χ2 test was used to analyse difference between
distributions using raw values. All data are expressed as mean ± standard error of
the mean (SEM). Unless otherwise stated, numbers on columns represent number
of fish analysed. p values for rejection of the null hypothesis of no difference
between groups are indicated above columns.

Data availability
The authors declare that all the data supporting the findings of this study are
available within the Article and its Supplementary Information files or from the
corresponding author upon reasonable request.
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