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Abstract

In this review article we present some of achie =.. “nus of econophysics and sociophysics which
appear to us the most significant. We briefv exp,’ain what their roles are in building of econo-
and sociophysics research fields. We poinv “o milestons of econophysics and sociophysics
facing to challenges and open problems.

1. Introduction

As the name suggests, ecc wophysics and sociophysics are hybrid fields that can roughly
be defined as quantitative ¢ ppro. ~hes using ideas, models, conceptual and computational
methods of statistical phyv.... applied to socio-economic phenomena. The idea of a social
physics is old since it dat.~ b ck to the first part of the 19th century — this term occurred for
the first time in Saint-S.mon .. hook (1803) [2] in which the author describes society through
the laws of physics 7 ad Hiol- gy. This approach has been popularized later by Adolphe
Quetelet (1835) [3] and . mo ust Comte (1856) [4].

In contempora y ter: s, this idea of social physics led to the emergence of sociophysics
and partially to ec. nophy sics. While the former dates back to the 1970s (papers of Weidlich
in 1971 [5] and Tallen with Shapiro in 1974 [6]), the latter has been coined more than twenty
years ago by | hysicis s (H. Eugene Stanley et. al) [7]. Although sociophysics roots might
be traced back .~ M.ajorana (1942) [8] with his paper on the use of statistical physics to
describe so.'a1 ,...nomena, the major works in sociophysics mainly appeared in the 1970s
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and 1980s with an increasing number of publications applying statistic . ~hysics to model
large scale social phenomena (see [9] for review). Among others, the pop ‘lar .hemes modelled
by sociophysicists are behavioral dissemination, opinion formation, cu’*nra: 'vnamics, crowd
behavior, social contagion and rumors, conflicts, and evolution of l>~ouag

It is worth mentioning that this increasing interest of physicists n sc 1! sciences is mainly
due to two factors: (i) the Golden Age of condensed matter physics ‘ ranks to the success of
the modern theory of phase transitions based on the renormal zatior group techniques that
is, an e-expansion of Wilson and Kogut (the Nobel prize wir ners) | 0] (the application of
real renormalization group in sociology at the turn of the —_.ntu.... is due to Serge Galam
[11, 12, 13]) and (ii) the growing computerization (or digi iza*.on of society that paved the
way to new perspectives by offering a very high numk~r of d=.a (or observations). This
computerization process also concerned financial markets by ~ecording every single transac-
tion or changes in financial prices offering therefore h.>e da abase (made in time lag even
so short as miliseconds) for scholars to be statisticali, investigated. That was the original
purpose of econophysics.

The influence of physics on economics is an old sto.;7 [14, 15, 16]. However, in contrast to
previous works importing models from physics n s ol_-economics, socio- and econo-physics
refer to a new trend since scholars involved i the. » fields are not economists who take their
inspiration from the work of physicists to dev o, tueir discipline but rather physicists who
are moving beyond their disciplinary bour ~ries. Financial markets, or speaking much more
generally, socio-economic life should be con. dered in the wider sense of complex systems
displaying emergent behaviors — creatina new properties, phenomena, and processes, e.g.,
self-organized criticality (SOC) [17. 18] o1 spontaneous log-periodicity — the former is the
prominent example of a multiscale a.~lan _hing paradigm, while the latter resulting from
discrete translational invariance vitlout che need for a pre-existing hierarchy [19, 20, 21].
From this point of view, the link . »* wee 1 the micro- and macroscales is a constant challenge
and well motivated interest. .n this .ontext, much debate and many questions about the
ability of financial economis.s to Jeal with financial reality were generated. The time has
come to reflect on the way o. describing and understanding our contemporary societies.

2. Birth of modern :conopysics

The origin of mode. « econophysics dates back to when it became possible to publish
economically orier ed psvers in physical journal (see ref. [22, 23] for details). Presumably,
one of the first peners b longing to this stream to appear in Physica A in year 1991 was
Lévy walks and ~nhu...cd diffusion in Milan Stock-FExchange by Rosario Nunzio Mantegna
[24] (student f H. I 1gene Stanley) who published a pioneering paper by discovering the
breaking of the ~ent-al limit theorem on the stock market. He replaced it with the Lévy-
Khinchine _c..."~lization of the central limit theorem. That is, he noticed that a stable Lévy
pdf rules the =,ock market in any time scale. This discovery means that the world entered
an age of signii.cantly increasing risk of financial market investments, where not only huge
losses but also colossal profits are possible. This created in turn the basis of moral hazard
on markets, which has now grown on an unprecedented scale leading to destructive social
tensions.



The Mantegna discovery has opened the eyes of the physics commun‘.,, *o non-Gaussian
processes on financial markets, in particular, on the multiscale and sc :le-f.ee properties of
complex systems such as financial markets. This has been inspirin v c¢c~firmed and ex-
panded at canonical work of Rosario N. Mantegna and H. Eugene S*anle, 25] and summa-
rized in their book An Introduction to Econophysics Correlations c nd ¢ v, »lexity in Finance
[26]. Crowning this series of papers is article [27]. It shows that v. - central limit theorem
is present in the financial market away from a crash, while tlie throrem is not applicable
for time series containing the crash. Instead, in the latter cise a scale invariance or data
collapse is observed, because the Gaussian statistics was - _placca there by the scale-free
distribution, i.e. the power law. Apparently, the beginn ng .t 1 odern econophysics is di-
rectly connected with physical analysis of financial mark ~ts tor1-ed on the non-Brownian or
non-Wiener random walks.

We would like to suggest a general point — more thau e of Jhe biggest success/contribution
of econophysics up to now has been in the data analysis (hoth empirical and analytical). That
is, it has been in the identification of empirical r _.iwiues and stylized facts — see for de-
tails book [28], review papers [29, 30], and paper con =rning new stylized facts [31]. These
references also consider the best mathematical mo. .. and tools for dealing with such vast
amount of data. In particular, the high-frecnenc, data become, for a variety of reasons, a
way for understanding the market microstruc. m.

The actual birth of econophysics she '1 he however, dated back to the mid-nineties
of the last century. Interestingly, this new .-end coincided with the opening of high-tech
opportunities for risky investing in the financial markets on a massive scale. Fortunately, a
number of renowned physicists had an ins rumental role at that time in getting approved
econophysics by editorial boards ot . *ch ignificant physical journals as Physica A, The
European Physical Journal B, anr. the International Journal of Modern Physics C. Currently,
almost all major physical journa.~ .re-dy accept econophysical works. It was during this
period that an avalanche of er onophy..cal publications set off.

At the beginning of the z1st ~ntury Hideki Takayasu undertook the task of reviewing
the state of econophysics .. ! its actual and potential uses by publishing materials from
international conferences ~rgs nized by him in the Nikkei Institute in Tokyo [32, 33]. Thanks
to this he made the w' ole w.~ld aware of what econophysics is and what its possibilities,
tasks, and challenges re.

Much attention attr. ter. that time statistical systems that are described by power-law
distributions and cale-i variant correlations — see [34] for details and refs. therein. More
specifically, the ch. llenge is to understand the dynamics of markets manifesting long-range
nonlinear corre’wwions.

One of the attract ve possibilities of insight into this type of phenomenon is offered by the
self-organized ci “~~aty (SOC). The SOC introduces dynamics by separation of time scales
that is, ass. mu . “hat the increasing instability is slow (slow mode), while relaxation is fast
(fast mode). " his fast mode leads to avalanche-like, bursty event release on a broad range
of scales. The aynamics of an avalanche is fundamentally multiscale, it occurs by coupling
across many spatial scales in the system. As is the case for critical phenomena, the dynamics
is insensitive to details of the instability, thus in a socio-economical life containing the finance



systems [35, 36, 37], where series of instabilities and routes to instabili*, ~re possible, one
expects to see some universality, that is a robust emergent behavior. Apr arently, one can
find SOC paradigm in multiscale avalanching, which is sufficient to pr ~vide ~ new, insightful
framework for explanation or at least the proper ordering the obser-=tiow. [17].

3. Scale invariance

The second half of the nineties was dominated by the subje 't of cr ses and bursts/crashes
in the financial markets, as the risks and uncertainties were ~~soc.-*_d with it, and attempts
to forecast extreme events. The logo of these works car be secn as the discovery of log-
periodic oscillations on the stock exchanges presented ir papers '20, 38, 39]. This discovery
itself, its origin, and consequences were summarized in =73 in book Why Stock Market
Crash by Didier Sornette [40]. The discovery of log-p. -iodic Hscillations was an inspiration
for many authors for almost a decade — see review naper Physical approach to complex
systems by Jarostaw Kwapieni and Stanistaw Droz= [**].

The log-periodic correction to scaling is a hallma.’- of discrete scale invariance as defined
only for specific choices of characteristic length. .. - ~olution of the corresponding discrete
scaling relation, it is thus represented by a pow ' -law function modulated by oscillations
that are periodic in the logarithm of explanav i, va.iable. In other words, the discrete scale
invariance leads to complex critical expor-nts o. dimensions - indeed, to log-periodicity as a
correction to scaling, which can appear eve.. spontaneously — see Discrete-Scale Invariance
and Complex Dimensions by Didier Sornette [42]. This spontaneity is, yet, an immanent
endogeneous feature of financial ma- ets, vhich is why its role for econophysics is hard to
overestimate.

Loosely speaking, going from .ontinuous scale invariance to discrete scale invariance can
thus be compared with going f. v the fluid state to the solid state in condensed matter
physics. The symmetry group is lim.. .d to those translations which are multiple of a basic
discrete generator. This is t-ae . r endogeneous causes, in particular, when a system is not
in equilibrium and is furtk . forced out. It can be said that in the frame of econophysics,
both critical phenomena re i vestigated, including, e.g., self-organized criticality, described
by means of pure powe -law. as well as structures hidden in discrete-scale invariance. The
existence of these stri ctu es results from the existence of characteristic length scales forced
by underlying mechanis. 's e 1d resulting, indeed, in log-periodic oscillations. In particular,
very interesting is che s~napile model of Marcel Ausloos et al. where they pointed to the
origin of log perio\'ic osci lations [43].

The approa~’. abouvo 1s an example of so called global analysis. Its aim is to observe well
defined, repea able st ‘ucture in financial time series before the phase transition point ¢, (the
crash point) oce 'rs

Other g oo’ ~~proaches to periodicity in finances have also been developed. It is espe-
cially worth 1.~ mention, e.g., those based on analogy with properties of viscoelastic materials
[44]. The periouic evolution of a stock index before and immediately after the crash is de-
scribed within this approach by Mittag-Leffler generalized exponential function superposed
with various types of oscillations.



Although the global approach seems to be interesting and encouraging, .. e main difficulty
in its application lies in the fractal structure of financial time series. n f.ct we are never
sure, due to this fractal nature of time series, whether oscillations or ven e leading shape
of the price index are connected with the main bubble (i.e., the s»~cific ~tructure of time
series being formed from the beginning of increasing trend till t'.e ¢ us! point ¢.) or with
some mini-bubbles appearing as second or higher order corrections . - solutions of equations
of price evolution. Usually, it is difficult to separate data cor iected with the main bubble
and its mini-bubble corrections before an extreme event (crash happe as and this distinction
becomes explicitly clear only after the event already had h-_penc..

Therefore, the other approach based on complex phenc ner 4 a plied to finances has been
developed to study the scaling properties of financial “ime <ev.es in order to distinguish
whether the involved stochastic process can be long-mem "y correlated or not. Several
techniques have been proposed in literature to attack v..’s prcolem. Their common aim is to
calculate the Hurst exponent H [45] of the system.

Among various techniques to do so the accur: '© w.uu iast algorithm enabling to extract
H from given time series is served by Detrended Fluc mation Analysis (DFA) [46, 47, 48].

The DFA can be used as the basis of so ca.'ea .. al DFA’ applied for the first time in
analysis of financial crashes in [49] and the» ext 1ded in other publications [50, 51]. The
local DFA is nothing else but DFA applied 1 s »aul subseries of a given set of data. This
way it characterizes the local fractal patt — of \'me series instead of its global properties in
large time horizon. Therefore the latter appic~ch is an example of local analysis contrary to
previous global attempt like log-periodic oscillations.

One expects positive autocorrela ions 1. time series if financial system relaxes (i.e., just
after the critical moment t.). Thus, e lc:al Hurst exponent H(t) should reach the value
H > 1/2 corresponding to persis’ ent {long-range autocorrelated) signal. It means however,
that for some time before the cra.™ ‘¢ < ..) the system is antipersistent in order to reproduce
the observed mean Hurst exp ment ve.ue (H) ~ 1/2 for large time limit. In this way, clear
trends in local values of H ¢re 1c.med; these should be carefully translated into repeatable
scheme revealing the majo .. vthcoming events like, e.g., crashes, rupture points, beginning
of bullish periods, etc., w rich are particularly interesting for investors. It seems there exists
a strong connection be ween “rends in local values of H and phase transitions (crashes or
rupture points) on th: m ket caused by the intrinsic organization of the financial market
as a complex system.

The method propose ! in [49, 50, 51] was successfully applied by many authors and well
checked for Europe »n and non-European capital markets (see, e.g., [52, 53, 54, 55, 56, 57, 58]).
Beside providir 4 some mmtrinsic explanation of such major features of financial markets, the
local DFA can be alsc used in a practical way, suggesting short term investment strategies to
agents following ~~r ¢ stocks far from a H = 1/2 values in order to optimize profits [59]. In
a similar w. v v ¢ -ase of correlated fluctuations between foreign currencies exchange rates,
whence sugge. ing strategies can be demonstrated [60, 61].

Challenges are based on empirical data deriving from rapidly changing reality. This
rapid variability has not only an increasing amplitude, but abounds in extreme events (the
so-called swans) and superextreme ones (the so-called dragon kings, see [62] for details).



4. Multiscaling and multifractality

The concept of extended scale invariance, that is multifractality, wit. “<s coupled scales,
becomes today a routine methodology (derived from statistical physics, '63] for study both
complex systems [64, 41, 65, 66] as well as non-linear low degree o” tre >dom dynamical ones
[67]. Generally speaking, this is an inspiring rapidly evolving apy e -h of nonlinear science
in many different fields even outside the traditional physics [6°, 539, .2, 71, 72, 73, 74, 75].
Multifractals are fractal objects and/or signals with heterog neousl - distributed measure.
Therefore, the description of multifractals requires, in general, ~n #.finite family of fractal
dimensions that is, spectrum of dimensions. Apparently, tieir - . ling properties are defined
only locally.

There are several well-functioning techniques [65, 60; ‘some of them have been initi-
ated and inspired by particularly popular Multifracta’ Detren led Fluctuation Analysis [64])
that allow not only the construction of spectrum of (ime... ons for stationary but also non-
stationary series. By the way, these techniques allow to  btain other important character-
istics of multifractality. Intensive research is in pro_vess to classify the market states using
the spectrum of dimensions. Generally speaki ., *he wider this spectrum as a function of
Holder’s exponent, the more collectivized and m v nervous (fluctuating) market is. In ad-
dition, the magnitude of the asymmetry of t. . spe trum allows us to say what fluctuations
dominate the market. It must be said, howeve. tuat the identification of multifractal time
series (signals) is technically difficult due .~ tne significant number of sources of apparent
multifractality [76, 77]. The list of known sources of (true) multifractality is presumably
incomplete. On the possible origin . mu.'tifractality in finance — see for details papers of
Marcel Ausloos and coauthors 78, .2 80, ¢ 1].

The research on this apparent multi. - ctality, indicated already in [76], is the main goal
of recent activity in formal stuc v o mu tifractal observable phenomena caused entirely by
nonlinear correlations. The art cle |21 "ias shown quantitatively how multifractal effects may
arise from the finite sizes (Irnghs) of data and (or) from linear autocorrelations involved
in time series. This kind of spurious multifractality should be clearly separated from the
real multifractality causer. by memory effects dependent on the time scale and thus leading
to different scaling proner.. s at various scales. The ready to use semi-analytic formulas
have been found [82, £3]. They are general enough to be applied also to real data analysis
in other areas (e.g., m..”.cin-, physiology, geology, etc.) in order to distinguish if and how
their observed mult.iiactal properties have real multifractal origin. The similar semi-analytic
study of the influc 1ce of  road data distribution on multifractal phenomena is under search
now [84].

5. Continuou. tir_e random walk on financial markets

At the virv beginning of the present century very flexible continuous-time random walk
(CTRW) formz'ism was adopted by Masoliver, Montero, and Weiss to the systematic descrip-
tion of the financial market evolution [85, 86, 87, 88]. They proposed a dependent model in
which large return increments are infrequent. This model predicts that the volatility should



behave in an anomalous diffusive way at short times, something that is .. °n in some mar-
kets. The possibility of using CTRW formalism to describe empirical de a ¢ ming from some
financial markets was also suggested in refs. [89, 90] on example of L{7v w.'ks with varying
velocity of the walker. The results obtained under this latter mods' are . ~mplementary to
the results obtained under the former one.

The CTRW formalism assumes the interevent-times continuo. and fluctuating; (‘in-
terevent time’ appears in literature under such names as ‘p.using time’, ‘waiting time’,
‘inter-transaction time’, ‘intratrade time’, and ‘interoccurrer.-e tim ’). It must be noted
that term ‘walk’ in the name ‘continuous-time random walk’ .5 co...aonly used in the generic
sense comprising two concepts: namely, both the walk (a soc’ate 1 with finite displacement
velocity of the process) and flight (associated with an instant-aeous single-step displace-
ment /increment of the process). Thus, we have to specify .2 a detailed way what kind of
process we are considering. Apparently, not only the p.~cess ncrements but also interevent
times can be considered as stochastic variables. The.~ variables are characterized by dis-
tributions creating the stochastic process base, ¢ .. uiven the broaden non-Gaussian ones
and/or long-term correlated, giving a fundamentally 1.~w description of stochastic processes,
e.g., favoring extreme value theory and multisc. 1y . sight into the process activity.

Thus, the variance of the stochastic proce~s is 1. + longer sufficient to identify the dynamics
of the process. The non-ergodic or weak ergc i *v behavior of the system isssociated with
new description. The ergodicity breaking -“ecty are essential in understanding fluctuation-
generated phenomena, in particular fluctua.’on-dissipation relations and linear response.
The understanding of mechanisms gererating consistent statistics has therefore become a
central issue. It so happens that t'.e mei ‘ioned above properties of interevent times are
also an immanent feature of financia. mar.ets’ tick data studied in recent decade [91, 92,
93, 94, 95, 96, 97]. Their distinc. reil (and not spurious) multiscaling and multifractality
were found. Thus, not only stocs ~.0ta 10n and currency quotation but (what is even more
significant) also inter-event ti- 1es have these properties.

The results obtained in papc: [95] also suggest something more. Even the statistical
dependence of time steps .- ‘nsufficient to describe the autocorrelation of absolute price
changes. It is necessary o t.ke into account the long-term dependence of the inter-event
times as well. This lon¢ -tern. elationship is one of the most important sources of multifrac-
tality of interevent tir e se.ies What has been said above, forces the use of CTRW formalism
describing market proce. =s Jhat are not renewal. It is a pressing, open issue.

It is worth to nnenti n the threshold phenomena both in physical and social sciences.
The chemical reac.‘ons s’ arting at over-threshold concentrations of reagents, phenomena of
decays and escs es, inciuding photoelectric effect above some threshold are typical examples.
Coming back o the 'nancial markets, there is a lot of empirical data and publications on
this subject. 1.~ *'.reshold phenomena were analyzed with very effective tools of CTRW
formalism \ree. .., [97] and refs. therein). More specifically, the statistics of interevent
times for exce sive losses (those below some negative fixed threshold) and excessive profits
(those greater tuan some positive threshold) can be explained by the same CTRW formalism.



6. Complex networks

Important tools to describe and understand the collective behavio. of financial time
series (based on correlated graphs) include the minimal spanning tree (.."ST) [98]. This was
applied to finance for the first time by Rosario Mantegna [26], cpen'ro a new, extremely
prolific chapter in econophysics and recently to sociophysics.

The MST (is a connected graph) that allows only such un‘,.e pa hs connecting nodes
of a complete graph, which minimizes the sum of edge dist: nces |t9]. In this way, MST
extracts the most important relevant informations in financial .‘me eries [100] and numer-
ous applications [101] (e.g., in seismic, meteorological, ca diol ,ical, and neurological time
series).

The analysis of cluster hierarchy deserves special attenti. » within MST. It well reproduces
the sectorial nature of stock exchange. It must be saic¢ howev r, that the MST is not robust
in a sense that by removing one data one gets anot. = (v.  ologically non-equivalent) tree.
Only the proper family of MST trees enables to give a <. fciently robust result [102, 103].

The MST based work [104] details numerical anu ~mpirical evidence for dynamical, struc-
tural and topological phase transitions on the 7. ~fury, Stock Exchange (FSE) in the tem-
poral vicinity of the worldwide financial crash =7 7/8. Indeed, using the MST technique,
two typical transitions of the topology of « «~mp’ex network representing the FSE were
found. The first transition is from a hierarchical Abergel scale-free MST representing the
stock market before the recent worldwide 1.. ancial crash, to a superstar-like MST decorated
by a scale-free hierarchy of trees. The latter one represents the market’s state for the period
containing the crash. Subsequently, & (rai. ition is observed from this transient, (meta)stable
state of the crash to a hierarchical . -ale-fre > MST decorated by several star-like trees after
the worldwide financial crash.

Another method, called Plan ‘v M axi» 1ally Filtered Graphs (PMFG), is a powerful tool to
study complex datasets [105, 156, 1,7 [t has been shown that by making use of the 3-clique
structure of the PMFG a clus .¢. mg can be extracted allowing dimensionality reduction. This
keeps both local informatio» and giobal hierarchy in a deterministic manner without the use
of any prior information ["08] Filtered graphs can also be used to diversify financial risk by
building a well-diversified |, ~tfolio that effectively reduces investment risk. This is done by
investing in stocks the , oc upy peripheral, poorly connected regions in the financial filtered
networks [109, 110, 111!

However, the 2’gorithn. so far proposed to construct the PMFG is numerically costly
with O(N?) comp 'tation 1 complexity and cannot be applied to large-scale data. There is a
challenge therefore v ~~.rch for novel algorithms that can provide, in a numerically efficient
way, such a re (uctio. to planar filtered graphs.

A new algo.'thm. called the TMFG (Triangulated Maximally Filtered Graph), was intro-
duced to e *~ntly extracts a planar subgraph, which optimizes an objective function. The
method is sc>l.ble to very large datasets and it can take advantage of parallel and GPUs
computing. Th method is adaptable allowing online updating and learning with continuous
insertion and deletion of new data as well changes in the strength of the similarity measure
[112].

Network filtering procedures are also allowing to construct probabilistic sparse modeling



for financial systems that can be used for forecasting, stress testing ..' risk allocation
[113, 114, 115].

The problem of studying the economic growth patterns across ~unu.’=s is actually a
subject of great attention to economists and econophysicists [116 117]. Cluster analysis
methods allow for a comparative study of countries through basic ma (¢ ~onomic indicator
fluctuations. Statistical (or correlation) distances between 15 EU . mntries are first calcu-
lated for various moving time windows. The decrease in time of .ne m~an correlation distance
is observed as an empirical evidence of globalization. Besides, the m st strongly correlated
countries can be partitioned into stable clusters. The Movir_, Ave..ge Minimal Length Path
algorithm indicates the existence of cluster-like structures bot’. 11 the hierarchical organiza-
tion of countries and their relative movements inside th - hierarc’yy.

All mentioned above methods enabled effective explora ‘on of any complex networks,
opening new, extremely interesting research fields and trige :ring a real flood of not only
econophysical and sociophysical works but also far .~vond these research areas (e.g., in
biology, ecology, climatology, medicine, telecomm .. auiowus).

7. Systemic risk and network dynamics.

This type of risk has spread widely culmia'ing in the subprime crisis of 2007/08. The
analysis and control of systemic risk has therefoi »~ become an extremely important social and
economical challenge. This challenge was tax n up by economics, finance, and also by econo-
physics. It was found that the role of the financial institutions’ network was crucial in the
dissemination of the financial crisis ¢t 200./08. The greater the degree of cross-linking, the
greater the risk of system crash. Thi. was ‘ noroughly considered in review entitled: Econo-
physics of Systemic Risk and Net» ork Dyr.amics edited in 2013 by the Abergel, Chakrabarti,
Chakraborti, and Ghosh [118].

7.1. Financial market risk o 1 *he first-passage time problem.

The uncertainty and r'.. are inextricably linked to the activity of financial markets
[119, 120]. One has appr ach .d the very promising issue of risk evaluation and control as a
first-passage time (FPT) pro. 'em. The mean first-passage time (MFPT) was used as a basis
for the assumption of ste hastic volatility (expoited within the Heston model) [121]. One
significant result is the « -ide ice of extreme deviations — which implies a high risk of default
— when the streng’n of the volatility fluctuations increases. This approach may provide an
effective tool for r. "k conf :ol, which can be readily applicable to real financial markets both
for portfolio m-..agem.cnt and trading strategies. Analysis of extreme times considered in
[122] (also as a sigm icant quantity of FPT) is closely related to at least two challenging
problems which ~re .f great practical interest: the American option pricing and the issue of
default tim s «. ' ~redit risk. Both problems require the knowledge of first-passage times to
certain threst. 1ds. It was found that the MFPT versus the threshold level can be represented
as a power law. Thus the usefulness of FPT approach to financial times series analysis has
been proven.



7.2. Agent-based modelling

Agent-based modelling (ABM) opens the possibility for describing “he phenomena and
processes occurring on financial markets (and not only) at ab initio '~vel. Tn general, the
market modelling is one of the challenges of modern econophysics [20, 223, 121, 125, 126, 127].
The main purpose of market modelling is to reveal the laws ard u.de.lying processes of
market behavior supplying (as one of the results) some signatures o. warnings of upcoming
extreme events or crashes.

Agent-based models, also called computational economic . odels are widely exploited,
for instance, in economics (Ausloos et al., 2015 [128]; Farme™ aad Foiey, 2009 [129]), sociology
(Macy and Willer, 2002 [130]) and in the environmental sci me s (1 illari et al., 2006 [131]). A
thorough review was made from the econophysics point ¢ viev- “.1 2014 year in the collective
review publication entitled: Econophysics of Agent-Based Mo °ls edited by Abergel, Aoyama,
Chakrabarti, Chakraborti, and Ghosh [132].

The hallmark of ABMs is the coupling of individua. ~nd collective degrees of freedom of
the analyzed system that is, its micro- and macrc. ~-ales. L'he former is represented by indi-
vidual agents, while the latter one by the system as a v.hole (or its macroparts). Frequently,
agents are divided into two completely different »rc 1ps: stabilizing (e.g., fundamentalists or
rebalancers) and destabilizing market activit; (e.g., chartists, noise traders or portfolio insur-
ers). The competition between them can be a so.~ce of long-range and long-term nonlinear
correlations, critical phenomena and fat-t -.i.2 < stributions.

Firstly, a few inspiring canonical models . ~longing to the field of portfolio analysis are
presented. The pioneering Kim-Marke: ¢z (KM) agent-based model [133, 134] was inspired
by the stock market crash of 19th Oc .ober 187, when DJIA decreased by more than 20% per
day. This model confirmed by numer. ~1 -imulation a common observation that strategies
of portfolio insurers (and not ths ¢ of rebalancers) destabilize financial markets. This model
has raised hopes for the promiring ger .-based modelling capabilities.

Besides, the Levy-Levy-S¢ omon (uLS) model [135] was developed to consider the risk-
averse investors having arbivrary . ng memory. The LLS model describes the spontaneous
periodicity of the market 1tz booms and crashes. Although the results obtained depend
significantly on the initia. ~c aditions assumed, the model has demonstrated (by numerical
simulation) that the w-alth av.ilable on the market (in the form of shares and bonds) will,
after sufficiently long tir.e, ' e taken over by a group of investors equipped with a long
memory (one hundred ste ¢ pack in simulation). This outcome is in line with expectations.

An extremely Hopula® model describing the evolution of the market, going beyond the
aforementioned po.“folio analysis category is the Lux-Marchesi (LM) model [68]. It is able
to correctly de,cribe many stylized facts, for example: volatility clustering, power-law dis-
tribution of re urns, ¢ nd long-term autocorrelation of absolute returns. This model is based
on the concept o ...utual exchange and interaction between different groups of investors (i.e.
chartists an.' tu wwamentalists) and on the process of price adjustments with a demand-supply
imbalance. Acitionally, chartists are divided into optimists and pessimists - the competition
between them as well as with fundamentalists create an effective opinion of agents leading to
strong interconnection of chartists amount with the price amplitude. This interconnection
is responsible for the observed large market fluctuations. A similar influence of portfolio
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insurers is observed within the Kim-Markowitz model. The technical .. dvantage of the
LM model is the large number of free parameters in the model involve

A very important category of models describing the behavior of “nanc'=l markets, and
inspired by models drawn from physics, are primarily Ising-like on ¢~mple. networks, whose
prominent example is the lori numeric model [136]. The agent is ~epr »c. *ed here by three-
state spin vector, where state +1 means buying a stock, -1 selling, vhile 0 means inactive
state. Obviously, the agent activity is limited by amount of hi- capital nowever, his activity
has still a probabilistic character with threshold. Besides, -he ms cket maker is present
guarding the liquidity of the market. The price in this mod_! depc..ds not only on the ratio
of the supply of securities to their demand but also on the av-.la, le securities volume. This
multiparameter model managed to describe all the stylic ~d tacts (i.e. volatility clustering of
returns, the positive correlation between volatility and tradi. » volume, the power-law decay
of autocorrelation).

The above models inspired the econophysicists in a “igniticant way. The first model that
grew out of this society and was characterized by & ..... . uumber of parameters was the Cont-
Bouchaud (CB) model [137] based on a discrete perc-lation phenomenon — a phenomenon
previously analyzed in the field of chemistry ana ta: . cal physics, condensed matter physics
and mathematics. A year later, Dietrich Stavffer a. o used percolations to model the behavior
of financial markets [138].

As a part of the CB model, neighborir - ~etw.ork nodes form a cluster making collectively
investment decisions in a probabilistic mann. = Therefore, it can be said that this model is
based on the so-called lattice-gas mode! isomorphic with canonic Ising model. The market
price is (as usual) a function (here e ;pone. tial) of the difference between demand and sup-
ply. This type of approach is very fle.'hle. generating (depending on the input probability)
either Gaussian distributions or vari us types of power-laws distributions — both observed
on financial markets.

The next interesting ABM is the . ornholdt spin model [139, 140] primarily designed to
recreate the price dynamics m s, ~rt time horizons. Similarly to the KM and LM models,
it assumes that there are ‘w. types of investors on the market: fundamentalists and noisy
traders. The fundament list, only respond to price changes, making the market price as
close as possible to the funa« ental value of stock. The mutually interacting noisy traders
take the probabilistic dec’siors to buy or sell the stocks depending on the market situation.
This situation is describ. ! b/ the local, time-dependent threshold function of influence hav-
ing a threshold ch racte  'The size of this threshold is connected linearly with the volume.
In this model, the nterac .ing traders are responsible for non-Gaussian behavior of the mar-
ket. The Born' u.dt model describes a lot of stylized facts: power-law return distributions,
volatility clus ering, Hositive correlation between volatility and volume, and self-similarity
between volatili. ~« .n various time scales. Unfortunately, the shape of the absolute-returns
autocorrela ou .. ction is not a power law herein.

Although "ne ABMs circumscribed above are valuable and useful, none of them were
used to model he interevent-time statistics so much significant in a study of correlations
on financial markets. In 2014 the model of so-called cunning agents was developed [141],
which reproduces not only stylized facts but also empirical statistics of interevent times.
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One can say that we are dealing with a cunning agent if he accepts a pc...’on, for example,
a long one indicating the willingness to buy additional items and i forris his neighbors
about it, but in fact, simultaneously sells the possessed assets. The ~itua.on is similar in
the short and neutral position. Recently, a model appeared [142], ~hicu -tarting from the
level of stochastic dynamic equations, was able to reproduce ment.one 1 .“ove the empirical
statistics of interevent times.

The interesting extension of the Geometrical Brownian Mr ¢ion was made by Dhesi and
Ausloos [143] who introduced so-called the Irrational Fractic nal Bro wnian Motion model.
They re-examined agent behaviour reacting to time dep~..den., .ews on the log-returns
thereby modifying a financial market evolution. Autho s ¢ _ec ‘Gcally discuss the role of
financial news or economic information as a positive or ~egative reedback of such irrational
(or contrarian) agents upon the price evolution. A kink-like = flect reminiscent of soliton be-
haviour was observed, suggesting how forecasts unceruv. ‘nty i 1duces stock prices. This way
they proposed a measure of irrational force in a marke. which seems to be a very significant
for understanding the dynamics of stock market.

It should be emphasized that agent-based moac!~ along with network models, have
gained immense popularity not only in the socie v u: . ynophysicists but also sociophysicists.

8. Phase transitions, catastrophic and c.'it.-al phenomena

Phase transitions, catastrophic and critic.! phenomena have long been studied both in the
framework of econo- and sociophysics (see, for instance, [20, 144]). However, phase transition
of the global financial system observe 1 at t. = end of 2008 deserves the special attention. This
is because it was just after the bank. ntcy of Lehman Brother [145]. The signature of this
transition is a sharp increase in *.e cusceptibility /sensitivity of the system to the negative
global shock with an initially w.''-cefin .d epicenter focused on mortgage backed securities.
This shock was the source of .he ob. rved cascade of defaults or a succession of problems
associated with the most prec.nin nt global institutions (belonging to the banking, insurance
and mortgage sectors). Th'. ~ascade caused crash on the stock market and the subsequent
panic among economical nst’cutions from the global (‘too-big-too-fall’) to the local ones —
leading many of the lat‘er t« hankruptcy.

The model develo.ed n paper [145] is, in essence, a simplified discrete correlated ran-
dom walk of walkers (0. drr s) on the ladder consisting of the effective credit rating grades
(ECRGs), where t'.e firr either remains at a given ECRG or change its value by one (with
blocking boundary condif on at top and the bottom of the ladder). By using the statistical-
mechanic partit'_a tunceion based on the Ising-like sociological influence function, the con-
ditional single step p obability for each firm is constructing in the exponential form. This
partition functi  coatains the field of panic taking into account the firm’s bankruptcy. For
simplicity, uc "roct coupling between firms is a random variable drawn from the Gaus-
sian distribu.’ m. This model exhibits a critical behaviour that is, the second-order phase
transition at we.l-defined critical point. Besides, the phenomenon of spontaneous symmetry
breaking is observed (by the increasing the number of bankruptcies) due to the nonvanishing
of the panic field. The model offers the phase diagrams and enables the system time evo-
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lution. This is the first so complete model in the field although earlier ... re sociophysical
oriented models by Schweitzer et al. were published [146].

One should also mention works that still raise controversy reg:~ding *he presence of
bifurcation on the stock exchange or, more generally, phase trar~forn. ‘ions of the first
order. The related issue of the critical and catastrophic slowing cowr L. ~nomenon are the
most refined indicators of whether a system is approaching a ci1.. ~al point or a tipping
point — the latter being a synonym for the catastrophic threskold lecated at a catastrophic
bifurcation transition. The still open problem raised by Scheffc - et al. [147] is whether early-
warning signals in the form of a critical or catastrophic sle.ing Gown phenomena (such as
those observed in multiple physical systems) are present o1 fir .nc al market. The possibility
of existence of the above-mentioned early-warning signe's was b'ghlighted in publication of
Koztowska et al. [148] and refs. therein. A specially crea. d page that accompanies this
work (posted at address cited in [149]) allows the reac r to "ook for bifurcation on various
stock markets by using himself the indicators presente. in the publication [148].

A microscopic approach to macroeconomic fr u.co uwas always been a challenge [150]
and refs therein. A birth-death lattice gas model for .. acroeconomic behavior under hetero-
geneous spatial economic conditions takes intc acc ...t the influence of an economic envi-
ronment on the fitness and concentration evolutic 1 of the economic entities. The reaction-
diffusion model can be also mapped onto a high « der logistic map. The role of the selection
pressure along various dynamics (with e “*v o'ffusion on a square symmetry lattice) has
been studied by Monte-Carlo simulation. 1.~ model leads to a sort of phase transition for
the fitness gap as a function of the selection pressure and to cycles. The scalar control pa-
rameter is a sort of a "business plar . Th. business plan(s) allows for spin-offs or merging
and enterprise survival evolution law. or.ce bifurcations, cycles and chaotic behavior are
taken into account.

The problem whether a powe. '= w or an exponential law describes better the distribution
of occurrences of economic rec’ ssion pe.iods is significant not only for econo- and sociophysics
but primarily for socio-econc nica: ~cience and life. In order to clarify the controversy a differ-
ent set of GDP data were r s« nined in [151] for example. The conclusion about a power law
distribution of recession ; eric ds seems to be more reliable though the matter is not entirely
settled. The case of prcsperiy, duration is also studied and it is found to follow also a power
law. Considering the, th . economy is basically a bistable system (recession/prosperity) a
characteristic (de)stabiw. ~ti- n time is posssible to quantitatively derive.

9. Significant el¢ ment s of global economy

The global econo.y has its source in important connections (dependences, interactions,
influences, etc, hetv cen countries and regions [152]. An international trade is a glaring
example of -.... Obviously, the globalization is one of the central processes of our age. The
common perc~ption of such process is that, due to declining communication and transport
costs, distance becomes less and less important. However, the distance coefficient in the
economical gravity model of trade [153] (which grows in time) indicates paradoxically that the
role of distance becomes a more important. In the paper [152] it was shown that the fractality
of the international trade system (ITS) provides a simple solution for this globalization
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puzzle. It was argued that the distance coefficient corresponds to the f .. *al dimension of
ITS and not to the Cartesian distance.

The world economic conditions evolve and are quite varied on di¥eren. time and space
scales. This evolution forces developing of macroeconomic entities witi.'» a geographical
type of framework [154, 155]. For the firm fitness evolution a const ain’ 1. “aken into account
such that the disappearance of a firm modifies the fitness of neaic « neighboring ones (as
in Bak-Sneppen population fitness evolution model [156]). T} e con-entration of firms, the
averaged fitness, the regional distribution of firms, and fitnes for d ferent time moments,
the number of collapsed, merged and new firms as a functio” >f ti... have been recorded and
are discussed. A power law dependence, signature of self-c riti- al \ rganization, is seen in the
firms’ birth and collapse asymptotic values for a high se'~ction r essure (control parameter)
only. A lack of self-organization is also seen at region boil-rs. The research and market
modeling of companies is still one of the main goals o1 ~ono  hysics.

10. Contemporary sociophysics

The systematic research on society that give. 1... *~ the modern sociology is mainly due to
the work of Quetelet [157] (see also [3]). Today it . clear that only a comprehensive approach
to economic phenomena and processes, inclow~e soth psychology, social psychology and
sociology, enables the description and underst.nding of the mechanisms governing socio-
economic life (including also financial marke'<). rhis was shown convincingly in 2006 in the
collective work [158]. We are increasingly attempting to understand the emotional nature
of human activity and activity of '.uma. communities. This emotional component can
be seen particularly clearly in cybe..nace - this has been well presented in the collective
work entitled: Cyberemotions. _ollecticc Emotions in Cyberspace, edited by Janusz A.
Hotyst [159]. This type of inter.‘sciplin axy approach to the complex socio-economic reality
is extremely inspiring, stimule .ing a..” promising. In this context, we should say about the
role of the Sznajd model (‘ur.ted we stand, divided we fall’ — USDF model) [160, 161]. It has
become credible thanks to **~ success in predicting the result of elections in Brazil, opening
the way for contemporar sor.ophysics. The Sznajd model easily introduces the possibility
of obtaining a consensrs by ~xchanging opinions between members of a given community.
It is based on the Isir g v odel with characteristic social interaction — it is by far the most
exploited by sociophysi ” :ts *oy model with the cluster-like ever-growing number of different
variants. A comp’cmentary, important model that should also be mentioned here is the
Bonabeau model 18] sh¢ wing how hierarchies are created in a given community. Let us
add that currer*'y v.. study of various hierarchical structures, cascades, and networks is
fashionable ar 1 very 1dvanced [162, 163].

The social 1. *nac* is one of the most important and the most common social phenomena.
The dynar . *heory of this impact proposed in 1990 [164] gave rise to a huge stream of
works. The s> iophysicists have made a significant contribution to the development of this
trend. Today, 'his type of modeling is a canonical component of the sociophysics without
which one cannot imagine an advanced analysis of the societies” behavior.

The attempts made by physicists to understand so-called social ”forces” have lasted at
least since the mid-1970s [165]. Quite interestingly, the source of social force is attributed
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to technological innovation made by competing goods and new popula‘.c . Another view
about quantifying social forces (found in [166]) pretends that they resu! as _oupling to some
external fields.

The role of emotions in opinion dynamics mentioned above wag —sed .~ a variant of the
ABM complementary to the Sznajd model. The combination of "afor...*ion and emotions
interplay was used successfully to predict the results of Polish elec’on in 2015 [167, 168].
This is the prominent evidence of the practical use of socioph+ sical modeling.

Let us add that the collective work entitled: Why Societ, is a ('omplex Matter edited
by Philip Ball in 2012 [169] also played a prominent role i~ the <’ velopment of contempo-
rary sociophysics. This collective work pointed to socio hyr.cs as a new kind of science.
There the Helbing’s work [170] (see also [171]) has shovm a criial role of information and
communication technology for society.

It should be noted that in the last decade issues ~late . to the evolution of cultures
(including linguistics) have been continuing to represct an attractive, intriguing course of
research [172, 173, 174, 175, 176]. A key tool f ..oicung this evolution is the Axelrod
model and its various variants [172].

The Axelrod model [177] is defined by stochas .o process which, similarly to the voter
model, contains a social interaction between node. of a network, but unlike the voter model
also accounts for homophily. The aim of the mc el is to describe and explain macroscopic
observations in real-world social networ] | hascd on simple microscopic rules. These mi-
croscopic rules are also inspired by empiric.' observations or concluded from sociology or
psychology. Every node of the network is described, in the frame of the model, by a vector
of traits representing internal degre s of 1.2edom. The idea behind the model was simple
— to explain cultural diversity obser, 1 ir societies, despite the fact that people become
more alike within a face to face nte action. Therefore, Axelrod asked why eventually all
differences do not disappear? In i mc del the vector of traits describes culture of an indi-
vidual (regional society or na 1on) in . sense of habits, beliefs, religion, language, hobbies,
views, etc. During the evoludion vo individuals become more similar to each other, unless
they stay different. This *, . crucial observation leading to an interesting result, because
only that one can obtain roz n (or equilibrium) states. Depending on the initial conditions,
simulations can end in < ne o1 "he states: in a homogeneous state with a monoculture or het-
erogeneous with man- s all ~ubcultures, called ’domains’. The coexistence of these many
different subcultures is a “a‘a result, confirming the possibility of existence of heterogeneous
societies, despite 1 cople Hhecome more and more similar.

The model gai. ed inf >rest among physicists a few years later [178] along with the dis-
covery of the pl.ase transitions between homogeneous and heterogeneous states (continuous
or discontinuc 1s type :). To make the model more realistic, it was extended to complex net-
works with very - ent topologies [179] as well as to dynamic complex networks. Moreover,
this latter . suc .. 3 addressed in [180], where different rewiring mechanisms were analyzed.
It was then pu ssible to obtain real-world features, like power-law degree distribution or high
values of clustering coefficient. Besides, it was shown that a key to the proper scaling of
the number of languages is triadic closure — type of rewiring proved to be very important in
social networks [181].
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A 7degree of freedom” in a population is also the religion adhesic .. The pioneering
work on such adhesion aspect, in fact similar to market/company grov <h 7 ad market share
influence, was published almost a decade ago [182]. The observed feat: res a. 1 some intuitive
interpretations point to opinion based models with vector like agent ~athc than scalar ones
(many degrees of freedom instead of one). This supports the a‘sun po ~n of the Axelrod
approach.

It is worth to mention also the works from the borderlir : of econo- and sociophysics
regarding household incomes (especially in the European Unio. and t e United States). The
approach based on the stationary solution of the reinterprete * Fok...-Planck equation turned
out to be particularly useful [183, 184]. This approach al owru t. describe the distribution
of income of all three social classes: low income, mediur-~ and hi_h income well reproducing
the Pareto laws (with different Pareto exponents) for the la." two classes.

Concerning the wealth distribution, one of the mc.* intr resting outputs is the generic
existence of a phase transition, separating a phase w. =re the total wealth of a very large
population is concentrated in the hands of a finite ... o of individuals (condensation phe-
nomenon) from a phase where it is shared by a finitc ‘raction of the population [185]. The
rich phase diagram was examined in [186], in .7hic . ~oth open and closed Pareto macroe-
conomics were studied. The wealth condensation takes place in the social phases both for
closed (with the fixed total wealth) and open (v °*h the fixed mean wealth) macroeconomy.
The wealth condensation takes place also = the ‘'iberal phase for super-open macroeconomy
(it was proved, indeed, in [185]). It was fouwn.' that in the first two cases of macroeconomy,
the condensation is related to the mechonism known from the balls-in-boxes model, while in
the last case, to the fat tails of the Fareto 'istribution. Besides, for a closed macroeconomy
in the social phase, the emergence o1 . ”cc.ruption” phenomenon was pointed out. A size-
able fraction of the total wealth .s @’ways amassed by a single individual. In publications
cited above the dependence of 1" >r:to xponents on microscopic parameters of the model
was found. This is an achieve ment u.:ful both for theoreticians and practitioners in social
sciences.

Recently, several studie . \ =re published [187] (and refs. therein) which have given better
insight into how birth is a “ect .d by exogenous factors. Especially, the adverse conditions (e.g.
famines, epidemics, ear .hqual=s, droughts, floods, etc.) temporarily affect the conception
capacity of populatior s, t¥ as yroducing birth rate troughs nine months after mortality waves.
The challenge here is ti.~ d*scovery of the birth rate patterns and their interpretation. A
promising step in his di-ection was made in paper [187], where several important patterns
were found and di. ~ussed

11. Challeng es anc warnings

It is al. - - "nown that the analysis should take into account the feedback between
econonophys, -, and sociophysics (including socio-psychology and even psychology of leaders
and the policy >f the state). Even roughly approximated modelling of reality should take
into account the rivalry of the rational multicomponent with irrational one. The interdepen-
dence and networking of elements of socio-economical complex systems constitute (within
econo- and sociophysics) the basis for the research even if the available empirical data is
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dirty and uncertain. The researchers realize that they are affecting the -... blems generated
by complex systems. This complexity is the source of emergent phenc mera and processes,
including catastrophic and critical ones (on a macroscale). This may 1 <ult .~ a dichotomy of
descriptions within the micro- and macroscales. It is understand th2* for .--ample, breaking
the principle of ergodicity may lead to the impassable barrier cr- atir g . dichotomy in the
statistical description of socio-economical reality. That is, phenoni. a and processes in the
macro scale mainly result from the properties of the system as a whnle (especially when the
system stays in a critical state) and not only from the behavic - and y roperties of individual
objects forming the system in the microscale. The understs_.ding ..e role of dependency or
correlation, causality, and coevolution or adaptation in ma ket ., o1 the complexity of markets
and emerging phenomena and processes, become one of the gre-.cest challenges for modern
research of a socio-economical reality [188, 189, 190]. Howev. -, the econophysicists discover-
ies has miserable impact on the main stream works ot ./~anci J economy (see Jovanovic and
Schinckus [191]).

Finally, we must say about an event that put . ..euwow on mathematics and financial
physics as a great warning and a lesson for all of us. The portfolio analysis in the nineties
of the previous century was based, in fact, on t. = ¢c ... iical option pricing formula of Black-
Scholes-Merton (BSM) derived in the canon’~al p. ver [192]. The BSM formula was derived
mainly assuming that the prices of basic finan al instruments, on which options were issued,
are subject to the geometrical Brownian >~tiol. while considered options are risk-neutral.
As for the trend, its constant growth woula . = driven by investors constantly seeking arbi-
trage opportunities. Based on this therretical approach, the hedge fund Long-Term Capital
Management (LTCM) was created i'. year '994; the key people behind LTCM were Myron
S. Scholes and Robert C. Merton — ti. No'sel Prize winners.

Although initially successful (.or *hree consecutive years) with annualized return of over
20% netto, from August to Sepv.  oer 1998 (short after the Asian financial crisis in 1997
and 1998 Russian financial crj s) LTV lost, however, about 4.5 miliard (US billion) dollars
severely disrupting global m..rkew. for several months. This was the consequence of violating
the key assumptions of the v..~ory in new market circumstances and neglecting the constant
verification of these assu: *otioms. Besides, used by LTCM leverage of portfolio composition
has reached an unbear-ble 1.0 of debt-to-equity as 25:1. An in-depth systematic econo-
physical analysis of t}is s bje-t, and especially issues related to market risks, was provided
in year 2001 by Jean-P1.%“nr ¢ Bouchaud and Marc Potters in the book Theory of Financial
Risks. From Stati: cical Physics to Risk Management [193].

It must be clea.'v stat :d that we live in an increasingly risky society which is particularly
vulnerable to <awreme types of risk — both market and systemic [194]. Concerning the
financial sectc *, amor g all possible extreme phenomena, indeed crashes are presumably the
most striking ev .+~ with an impact and frequency that has been increasing in the last two
decades inc eas ... the risk of market activity extremely. Understanding what is happening
as well as riss control and management is an urgent challenge for investors and researchers
alike.

The collective effort of many communities is likely to be more effective thanks to the
Econophysics Network [195] (founded in Leicester by Schinckus, Jovanovic, Haven, Sozzo,
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Di Matteo, and Ausloos).
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