

King's Research Portal

DOI: [10.1016/j.physa.2018.10.019](https://doi.org/10.1016/j.physa.2018.10.019)

Document Version Peer reviewed version

[Link to publication record in King's Research Portal](https://kclpure.kcl.ac.uk/portal/en/publications/c57f70a1-f770-4401-92ad-095beef54230)

Citation for published version (APA): Kutner, R., Ausloos, M., Grech, D., Di Matteo, T., Schinckus, C., & Stanley, H. E. (2019). Econophysics and sociophysics: their milestones & challenges. PHYSICA A, 516, 240-253. <https://doi.org/10.1016/j.physa.2018.10.019>

Citing this paper

Please note that where the full-text provided on King's Research Portal is the Author Accepted Manuscript or Post-Print version this may differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version for pagination, volume/issue, and date of publication details. And where the final published version is provided on the Research Portal, if citing you are again advised to check the publisher's website for any subsequent corrections.

General rights

Copyright and moral rights for the publications made accessible in the Research Portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognize and abide by the legal requirements associated with these rights.

•Users may download and print one copy of any publication from the Research Portal for the purpose of private study or research. •You may not further distribute the material or use it for any profit-making activity or commercial gain •You may freely distribute the URL identifying the publication in the Research Portal

Take down policy

If you believe that this document breaches copyright please contact librarypure@kcl.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.

Accepted Manuscript

Econophysics and sociophysics: Their milestones & challenges

Ryszard Kutner, Marcel Ausloos, Dariusz Grech, T. Di Matteo, Christophe Schinckus, H. Eugene Stanley

PII: S0378-4371(18)31357-8 DOI: <https://doi.org/10.1016/j.physa.2018.10.019> Reference: PHYSA 20277

To appear in: *Physica A*

Please cite this article as: R. Kutner, et al., Econophysics and sociophysics: Their milestones & challenges, *Physica A* (2018), https://doi.org/10.1016/j.physa.2018.10.019

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Econophysics and sociophysics: their milestones $\&\$, hallenges

(Managing editor) Ryszard Kutner^{a,*}, (Guest editor) Marcel Ausloo¹, (Cuest editor) Dariusz Grech^c, (Guest editor) T. Di Matteo^{d,e,f}, (Guest editor) \mathcal{L} isto_phe Schinckus^g, (Editor) H. Eugene Stanley^h

^aFaculty of Physics, University of Warsaw, Pasteur 5, PL-02^{ϵ}₂, Wars_{zawa}, Poland b School of Business, University of Leicester, University Road, Leices er LE1 $7RH$, United Kingdom ^cInstitute of Theoretical Physics, University of Wrocław, Maks Born sq. ⁰. PI 50-204 Wrocław, Poland d Department of Mathematics – King's College London, Strand, L_{ondon} WC2R 2LS, United Kingdom ^eDepartment of Computer Science, University College London, Gover Street, London, WC1E 6BT, United Kingdom

 $fComplexity Science Hub Vienna, Joseph State, Strasse 3.4-1080 Vienna, Austria$ ^gSchool of Business & Management, Department of Economics & Finance, RMIT Saigon South h Center for Polymer Studies and Physics Department, L_{α} of a University, Boston, USA

Abstract

In this review article we present some of achievements of econophysics and sociophysics which appear to us the most significant. We brie^{q_V} explain what their roles are in building of econoand sociophysics research fields. We point to milestons of econophysics and sociophysics facing to challenges and open problems.

1. Introduction

As the name suggests, econophysics and sociophysics are hybrid fields that can roughly be defined as quantitative approaches using ideas, models, conceptual and computational methods of statistical phy_{atek} applied to socio-economic phenomena. The idea of a *social* physics is old since it dates back to the first part of the 19th century – this term occurred for the first time in Saint-S_{imon} \sim book (1803) [2] in which the author describes society through the laws of physics ϵ ad biology. This approach has been popularized later by Adolphe Quetelet (1835) [3] and August Comte (1856) [4].

In contemporary terms, this idea of social physics led to the emergence of sociophysics and partially to econophysics. While the former dates back to the $1970s$ (papers of Weidlich in 1971 [5] and Callen with Shapiro in 1974 [6]), the latter has been coined more than twenty years ago by physicists (H. Eugene Stanley et. al) [7]. Although sociophysics roots might be traced back \sim Majorana (1942) [8] with his paper on the use of statistical physics to describe social phenomena, the major works in sociophysics mainly appeared in the 1970s

[∗]Corresponding author

Email address: erka@fuw.edu.pl ((Managing editor) Ryszard Kutner)

This is the editorial paper to VSI entitled: 'Econo- and sociophysics in turbulent world' [1]

and 1980s with an increasing number of publications applying statistic \mathcal{L} , hysics to model large scale social phenomena (see $[9]$ for review). Among others, the popular themes modelled by sociophysicists are behavioral dissemination, opinion formation, cultural dynamics, crowd behavior, social contagion and rumors, conflicts, and evolution of language.

It is worth mentioning that this increasing interest of physicists in social sciences is mainly due to two factors: (i) the Golden Age of condensed matter physics thanks to the success of the modern theory of phase transitions based on the renormalization group techniques that is, an ϵ -expansion of Wilson and Kogut (the Nobel prize win ers) [10] (the application of real renormalization group in sociology at the turn of the centuries is due to Serge Galam $[11, 12, 13]$ and (ii) the growing computerization (or digitization) of society that paved the way to new perspectives by offering a very high number of d° a (or observations). This computerization process also concerned financial markets by recording every single transaction or changes in financial prices offering therefore $h\omega_{\alpha}$ database (made in time lag even so short as miliseconds) for scholars to be statistically investigated. That was the original purpose of econophysics.

The influence of physics on economics is an old story [14, 15, 16]. However, in contrast to previous works importing models from physics in socio-economics, socio- and econo-physics refer to a new trend since scholars involved in the. \cdot fields are not economists who take their inspiration from the work of physicists to develoption their discipline but rather physicists who are moving beyond their disciplinary boundaries. Financial markets, or speaking much more generally, socio-economic life should be considered in the wider sense of complex systems displaying emergent behaviors – creating new properties, phenomena, and processes, e.g., self-organized criticality (SOC) [17, 18] or spontaneous log-periodicity – the former is the prominent example of a multiscale $a \Delta$ lanching paradigm, while the latter resulting from discrete translational invariance without the need for a pre-existing hierarchy [19, 20, 21]. From this point of view, the link $\geq \infty$ ween the micro- and macroscales is a constant challenge and well motivated interest. In this context, much debate and many questions about the ability of financial economists to deal with financial reality were generated. The time has come to reflect on the way of describing and understanding our contemporary societies.

2. Birth of modern \mathscr{L} cono_physics

The origin of mode, econophysics dates back to when it became possible to publish economically oriented papers in physical journal (see ref. $[22, 23]$ for details). Presumably, one of the first papers belonging to this stream to appear in Physica A in year 1991 was Lévy walks and \neg hanced diffusion in Milan Stock-Exchange by Rosario Nunzio Mantegna [24] (student of H. Eugene Stanley) who published a pioneering paper by discovering the breaking of the central limit theorem on the stock market. He replaced it with the Lévy-Khinchine generalization of the central limit theorem. That is, he noticed that a stable Lévy pdf rules the stock market in any time scale. This discovery means that the world entered an age of signinizantly increasing risk of financial market investments, where not only huge losses but also colossal profits are possible. This created in turn the basis of moral hazard on markets, which has now grown on an unprecedented scale leading to destructive social tensions.

The Mantegna discovery has opened the eyes of the physics community to non-Gaussian processes on financial markets, in particular, on the multiscale and $\text{sc } \cdot \text{le-f}$ ee properties of complex systems such as financial markets. This has been inspiring by $c_{\mathcal{C}}$ firmed and expanded at canonical work of Rosario N. Mantegna and H. Eugene S^* and S^* and summarized in their book An Introduction to Econophysics Correlations ϵ of Complexity in Finance [26]. Crowning this series of papers is article [27]. It shows that ι . central limit theorem is present in the financial market away from a crash, while f is the order is not applicable for time series containing the crash. Instead, in the latter c_i se a scale invariance or data collapse is observed, because the Gaussian statistics was replaced there by the scale-free distribution, i.e. the power law. Apparently, the beginning π modern econophysics is directly connected with physical analysis of financial mark \star s focus ed on the non-Brownian or non-Wiener random walks.

We would like to suggest a general point – more than γ ne of the biggest success/contribution of econophysics up to now has been in the data analysis (both empirical and analytical). That is, it has been in the identification of empirical regularities and stylized facts – see for details book [28], review papers [29, 30], and paper conversing new stylized facts [31]. These references also consider the best mathematical models and tools for dealing with such vast amount of data. In particular, the high-frequency data become, for a variety of reasons, a way for understanding the market microstructure.

The actual birth of econophysics should be, however, dated back to the mid-nineties of the last century. Interestingly, this new trend coincided with the opening of high-tech opportunities for risky investing in the financial markets on a massive scale. Fortunately, a number of renowned physicists had an instrumental role at that time in getting approved econophysics by editorial boards of \Box ch significant physical journals as Physica A, The European Physical Journal B, and the International Journal of Modern Physics C. Currently, almost all major physical journals already accept econophysical works. It was during this period that an avalanche of e^{\prime} onophysical publications set off.

At the beginning of the $\angle 1$ st century Hideki Takayasu undertook the task of reviewing the state of econophysics μ ¹ its actual and potential uses by publishing materials from international conferences $\langle \nabla \phi \rangle$ aized by him in the Nikkei Institute in Tokyo [32, 33]. Thanks to this he made the w¹ ole world aware of what econophysics is and what its possibilities, tasks, and challenges are.

Much attention attracted that time statistical systems that are described by power-law distributions and cale-invariant correlations – see $[34]$ for details and refs. therein. More specifically, the challenge is to understand the dynamics of markets manifesting long-range nonlinear corre'ations.

One of the attractive possibilities of insight into this type of phenomenon is offered by the self-organized criticality (SOC). The SOC introduces dynamics by separation of time scales that is, assuming that the increasing instability is slow (slow mode), while relaxation is fast (fast mode). This fast mode leads to avalanche-like, bursty event release on a broad range of scales. The dynamics of an avalanche is fundamentally multiscale, it occurs by coupling across many spatial scales in the system. As is the case for critical phenomena, the dynamics is insensitive to details of the instability, thus in a socio-economical life containing the finance

systems [35, 36, 37], where series of instabilities and routes to instability are possible, one expects to see some universality, that is a robust emergent behavior. Apparently, one can find SOC paradigm in multiscale avalanching, which is sufficient to provide γ new, insightful framework for explanation or at least the proper ordering the observations $[17]$.

3. Scale invariance

The second half of the nineties was dominated by the subject of cr is and bursts/crashes in the financial markets, as the risks and uncertainties were associated with it, and attempts to forecast extreme events. The logo of these works can be seen as the discovery of logperiodic oscillations on the stock exchanges presented in papers [20, 38, 39]. This discovery itself, its origin, and consequences were summarized in \angle 3 in book Why Stock Market Crash by Didier Sornette [40]. The discovery of log-periodic oscillations was an inspiration for many authors for almost a decade – see review paper *Physical approach to complex* systems by Jarosław Kwapień and Stanisław Dro \vec{z}^{A} .

The log-periodic correction to scaling is a hallmark of discrete scale invariance as defined only for specific choices of characteristic length, λ and a solution of the corresponding discrete scaling relation, it is thus represented by a power-law function modulated by oscillations that are periodic in the logarithm of explanatory variable. In other words, the discrete scale invariance leads to complex critical exponents o_r dimensions - indeed, to log-periodicity as a correction to scaling, which can appear even spontaneously – see *Discrete-Scale Invariance* and Complex Dimensions by Didier Sornette [42]. This spontaneity is, yet, an immanent endogeneous feature of financial markets, which is why its role for econophysics is hard to overestimate.

Loosely speaking, going from ontinuous scale invariance to discrete scale invariance can thus be compared with going from the fluid state to the solid state in condensed matter physics. The symmetry group is $\lim_{x\to a} d$ to those translations which are multiple of a basic discrete generator. This is true $\mathring{\cdot}$ r endogeneous causes, in particular, when a system is not in equilibrium and is further forced out. It can be said that in the frame of econophysics, both critical phenomena re investigated, including, e.g., self-organized criticality, described by means of pure power-law_s as well as structures hidden in discrete-scale invariance. The existence of these structures results from the existence of characteristic length scales forced by underlying mechanisms and resulting, indeed, in log-periodic oscillations. In particular, very interesting is the sample model of Marcel Ausloos et al. where they pointed to the origin of log periodic oscillations $[43]$.

The approach above is an example of so called global analysis. Its aim is to observe well defined, repea able st ucture in financial time series before the phase transition point t_c (the crash point) occ ins

Other global approaches to periodicity in finances have also been developed. It is especially worth to mention, e.g., those based on analogy with properties of viscoelastic materials [44]. The periodic evolution of a stock index before and immediately after the crash is described within this approach by Mittag-Leffler generalized exponential function superposed with various types of oscillations.

Although the global approach seems to be interesting and encouraging, \vec{u} e main difficulty in its application lies in the fractal structure of financial time series. In fact we are never sure, due to this fractal nature of time series, whether oscillations or even \mathcal{C} eleading shape of the price index are connected with the main bubble (i.e., the s^{r} verific structure of time series being formed from the beginning of increasing trend till the crash point t_c) or with some mini-bubbles appearing as second or higher order corrections to solutions of equations of price evolution. Usually, it is difficult to separate data connected with the main bubble and its mini-bubble corrections before an extreme event (crash) happens and this distinction becomes explicitly clear only after the event already had heppendix.

Therefore, the other approach based on complex phenometer a plied to finances has been developed to study the scaling properties of financial time series in order to distinguish whether the involved stochastic process can be long-memory correlated or not. Several techniques have been proposed in literature to attack t_{L} is problem. Their common aim is to calculate the Hurst exponent H [45] of the system.

Among various techniques to do so the accuration and fast algorithm enabling to extract H from given time series is served by Detrended Fluctuation Analysis (DFA) [46, 47, 48].

The DFA can be used as the basis of so called α and DFA' applied for the first time in analysis of financial crashes in $[49]$ and then extended in other publications $[50, 51]$. The local DFA is nothing else but DFA applied to small subseries of a given set of data. This way it characterizes the local fractal pattern of time series instead of its global properties in large time horizon. Therefore the latter approach is an example of local analysis contrary to previous global attempt like log-periodic oscillations.

One expects positive autocorrelations μ time series if financial system relaxes (i.e., just after the critical moment t_c . Thus, the local Hurst exponent $H(t)$ should reach the value $H > 1/2$ corresponding to persis ent (long-range autocorrelated) signal. It means however, that for some time before the crash $(t < t_c)$ the system is antipersistent in order to reproduce the observed mean Hurst exp nent value $\langle H \rangle \simeq 1/2$ for large time limit. In this way, clear trends in local values of H are identically these should be carefully translated into repeatable scheme revealing the major κ rthcoming events like, e.g., crashes, rupture points, beginning of bullish periods, etc., which are particularly interesting for investors. It seems there exists a strong connection between trends in local values of H and phase transitions (crashes or rupture points) on the market caused by the intrinsic organization of the financial market as a complex system.

The method propose $\frac{1}{1}$ in [49, 50, 51] was successfully applied by many authors and well checked for Europe in and non-European capital markets (see, e.g., [52, 53, 54, 55, 56, 57, 58]). Beside providing some intrinsic explanation of such major features of financial markets, the local DFA can be also used in a practical way, suggesting short term investment strategies to agents following some stocks far from a $H = 1/2$ values in order to optimize profits [59]. In a similar w. v α case of correlated fluctuations between foreign currencies exchange rates, whence suggesting strategies can be demonstrated $[60, 61]$.

Challenges are based on empirical data deriving from rapidly changing reality. This rapid variability has not only an increasing amplitude, but abounds in extreme events (the so-called swans) and superextreme ones (the so-called dragon kings, see [62] for details).

4. Multiscaling and multifractality

The concept of extended scale invariance, that is multifractality, with is coupled scales, becomes today a routine methodology (derived from statistical physics) [63] for study both complex systems [64, 41, 65, 66] as well as non-linear low degree of freedom dynamical ones [67]. Generally speaking, this is an inspiring rapidly evolving approach of nonlinear science in many different fields even outside the traditional physics $[6^{\circ}, 39, 7, 71, 72, 73, 74, 75]$. Multifractals are fractal objects and/or signals with heterogeneously distributed measure. Therefore, the description of multifractals requires, in general, and infinite family of fractal dimensions that is, spectrum of dimensions. Apparently, their scaling properties are defined only locally.

There are several well-functioning techniques $[65, 66]$ (some of them have been initiated and inspired by particularly popular Multifracta. Detren led Fluctuation Analysis [64]) that allow not only the construction of spectrum of dimensions for stationary but also nonstationary series. By the way, these techniques allow to bain other important characteristics of multifractality. Intensive research is in pro_{ϵ} ress to classify the market states using the spectrum of dimensions. Generally speaking, the wider this spectrum as a function of Hölder's exponent, the more collectivized and $m \rightharpoonup r$ nervous (fluctuating) market is. In addition, the magnitude of the asymmetry of t_i is spectrum allows us to say what fluctuations dominate the market. It must be said, however, that the identification of multifractal time series (signals) is technically difficult due \sim the significant number of sources of apparent multifractality [76, 77]. The list of known sources of (true) multifractality is presumably incomplete. On the possible origin α multifractality in finance – see for details papers of Marcel Ausloos and coauthors [78, $\langle \cdot \rangle$ 80, 81].

The research on this apparent multiplatity, indicated already in $[76]$, is the main goal of recent activity in formal study of multifractal observable phenomena caused entirely by nonlinear correlations. The art cle $\lfloor e^{2} \rfloor$ has shown quantitatively how multifractal effects may arise from the finite sizes ($\lceil \ell_{\text{abs}} \rceil$ of data and (or) from linear autocorrelations involved in time series. This kind α^f spurious multifractality should be clearly separated from the real multifractality caused by memory effects dependent on the time scale and thus leading to different scaling properties at various scales. The ready to use semi-analytic formulas have been found $[82, 53]$. They are general enough to be applied also to real data analysis in other areas (e.g., $m \rightarrow c$ ine, physiology, geology, etc.) in order to distinguish if and how their observed multimactal properties have real multifractal origin. The similar semi-analytic study of the influence of broad data distribution on multifractal phenomena is under search now [84].

5. Continuou, time random walk on financial markets

At the very beginning of the present century very flexible continuous-time random walk (CTRW) formalism was adopted by Masoliver, Montero, and Weiss to the systematic description of the financial market evolution [85, 86, 87, 88]. They proposed a dependent model in which large return increments are infrequent. This model predicts that the volatility should

behave in an anomalous diffusive way at short times, something that is ∞ in some markets. The possibility of using CTRW formalism to describe empirical data coming from some financial markets was also suggested in refs. [89, 90] on example of L \sim walks with varying velocity of the walker. The results obtained under this latter model are complementary to the results obtained under the former one.

The CTRW formalism assumes the interevent-times continuous and fluctuating; ('interevent time' appears in literature under such names as γ using time', γ vaiting time', 'inter-transaction time', 'intratrade time', and 'interoccurrence time'). It must be noted that term 'walk' in the name 'continuous-time random walk' is commonly used in the generic sense comprising two concepts: namely, both the walk (a soc at \mathfrak{t} with finite displacement velocity of the process) and flight (associated with an instantaneous single-step displacement/increment of the process). Thus, we have to specify \cdot a detailed way what kind of process we are considering. Apparently, not only the p_{L} sees increments but also interevent times can be considered as stochastic variables. The variables are characterized by distributions creating the stochastic process base, q the orient the broaden non-Gaussian ones and/or long-term correlated, giving a fundamentally $\mu \cdot w$ description of stochastic processes, e.g., favoring extreme value theory and multiscaling insight into the process activity.

Thus, the variance of the stochastic process is μ longer sufficient to identify the dynamics of the process. The non-ergodic or weak ergo μ to behavior of the system isssociated with new description. The ergodicity breaking $\mathcal{F}^{\text{fact}}$ are essential in understanding fluctuationgenerated phenomena, in particular fluctuation-dissipation relations and linear response. The understanding of mechanisms generating consistent statistics has therefore become a central issue. It so happens that $t'e$ mentioned above properties of interevent times are also an immanent feature of financial markets' tick data studied in recent decade [91, 92, 93, 94, 95, 96, 97. Their distinct real (and not spurious) multiscaling and multifractality were found. Thus, not only stock α ote ion and currency quotation but (what is even more significant) also inter-event times have these properties.

The results obtained in ρ aper [95] also suggest something more. Even the statistical dependence of time steps is insufficient to describe the autocorrelation of absolute price changes. It is necessary to take into account the long-term dependence of the inter-event times as well. This long-term relationship is one of the most important sources of multifractality of interevent time series. What has been said above, forces the use of CTRW formalism describing market processes that are not renewal. It is a pressing, open issue.

It is worth to mention the threshold phenomena both in physical and social sciences. The chemical reactions starting at over-threshold concentrations of reagents, phenomena of decays and esc ϵ _r, including photoelectric effect above some threshold are typical examples. Coming back to the financial markets, there is a lot of empirical data and publications on this subject. $T_{\text{L}} \gamma$ ⁺¹ reshold phenomena were analyzed with very effective tools of CTRW formalism (see, e.g., [97] and refs. therein). More specifically, the statistics of interevent times for excessive losses (those below some negative fixed threshold) and excessive profits (those greater than some positive threshold) can be explained by the same CTRW formalism.

6. Complex networks

Important tools to describe and understand the collective behavior of financial time series (based on correlated graphs) include the minimal spanning tree (MST) [98]. This was applied to finance for the first time by Rosario Mantegna [26], ϵ pening a new, extremely prolific chapter in econophysics and recently to sociophysics.

The MST (is a connected graph) that allows only such up: α backs connecting nodes of a complete graph, which minimizes the sum of edge distances $|9\rangle$. In this way, MST extracts the most important relevant informations in financial \therefore me series [100] and numerous applications [101] (e.g., in seismic, meteorological, cardiological, and neurological time series).

The analysis of cluster hierarchy deserves special attention within MST. It well reproduces the sectorial nature of stock exchange. It must be said however, that the MST is not robust in a sense that by removing one data one gets another (i.e., ologically non-equivalent) tree. Only the proper family of MST trees enables to give a sufficiently robust result $[102, 103]$.

The MST based work [104] details numerical and empirical evidence for dynamical, structural and topological phase transitions on the Γ about Stock Exchange (FSE) in the temporal vicinity of the worldwide financial crash $2\sqrt{7}/8$. Indeed, using the MST technique, two typical transitions of the topology of a complex network representing the FSE were found. The first transition is from a hierarchical Abergel scale-free MST representing the stock market before the recent worldwide *in* ancient crash, to a superstar-like MST decorated by a scale-free hierarchy of trees. The latter one represents the market's state for the period containing the crash. Subsequently, δ transition is observed from this transient, (meta)stable state of the crash to a hierarchical \Box ale-free MST decorated by several star-like trees after the worldwide financial crash.

Another method, called Plan r Maximally Filtered Graphs (PMFG), is a powerful tool to study complex datasets [105, 1/6, $1\degree$]. It has been shown that by making use of the 3-clique structure of the PMFG a clustering can be extracted allowing dimensionality reduction. This keeps both local information and global hierarchy in a deterministic manner without the use of any prior information [108]. Filtered graphs can also be used to diversify financial risk by building a well-diversified μ to the effectively reduces investment risk. This is done by investing in stocks the $\sqrt{ }$ occupy peripheral, poorly connected regions in the financial filtered networks [109, 110, 1_1]

However, the e' _sorithm so far proposed to construct the PMFG is numerically costly with $O(N^3)$ computational complexity and cannot be applied to large-scale data. There is a challenge therefore α search for novel algorithms that can provide, in a numerically efficient way, such a re fuction to planar filtered graphs.

A new algorithm, called the TMFG (Triangulated Maximally Filtered Graph), was introduced to e^{rc} intly extracts a planar subgraph, which optimizes an objective function. The method is sc¹ ble to very large datasets and it can take advantage of parallel and GPUs computing. The method is adaptable allowing online updating and learning with continuous insertion and deletion of new data as well changes in the strength of the similarity measure [112].

Network filtering procedures are also allowing to construct probabilistic sparse modeling

for financial systems that can be used for forecasting, stress testing \ldots risk allocation [113, 114, 115].

The problem of studying the economic growth patterns across γ untries is actually a subject of great attention to economists and econophysicists $[116, 117]$. Cluster analysis methods allow for a comparative study of countries through basic macroeconomic indicator fluctuations. Statistical (or correlation) distances between 15 EU countries are first calculated for various moving time windows. The decrease in time of Λ ne mean correlation distance is observed as an empirical evidence of globalization. Besides, the m st strongly correlated countries can be partitioned into stable clusters. The Moving Average Minimal Length Path algorithm indicates the existence of cluster-like structures both in the hierarchical organization of countries and their relative movements inside the hierarchy.

All mentioned above methods enabled effective exploration of any complex networks, opening new, extremely interesting research fields and triggering a real flood of not only econophysical and sociophysical works but also far ϵ vond these research areas (e.g., in biology, ecology, climatology, medicine, telecommunications).

7. Systemic risk and network dynamics.

This type of risk has spread widely culminating in the subprime crisis of $2007/08$. The analysis and control of systemic risk has therefore become an extremely important social and economical challenge. This challenge was $\tan \eta$ up by economics, finance, and also by econophysics. It was found that the role of the financial institutions' network was crucial in the dissemination of the financial crisis ϵI 2007/08. The greater the degree of cross-linking, the greater the risk of system crash. The was ' noroughly considered in review entitled: $Econo$ physics of Systemic Risk and Network Dynamics edited in 2013 by the Abergel, Chakrabarti, Chakraborti, and Ghosh [118].

7.1. Financial market risk σ is the first-passage time problem.

The uncertainty and $r \gtrsim$ are inextricably linked to the activity of financial markets $[119, 120]$. One has approached the very promising issue of risk evaluation and control as a first-passage time (FPT) problem. The mean first-passage time (MFPT) was used as a basis for the assumption of sto hastic volatility (expoited within the Heston model) $[121]$. One significant result is the ϵ decree of extreme deviations – which implies a high risk of default – when the streng α of the volatility fluctuations increases. This approach may provide an effective tool for r_ik control, which can be readily applicable to real financial markets both for portfolio management and trading strategies. Analysis of extreme times considered in [122] (also as a significant quantity of FPT) is closely related to at least two challenging problems which are of great practical interest: the American option pricing and the issue of default times α , credit risk. Both problems require the knowledge of first-passage times to certain thresholds. It was found that the MFPT versus the threshold level can be represented as a power law. Thus the usefulness of FPT approach to financial times series analysis has been proven.

7.2. Agent-based modelling

Agent-based modelling (ABM) opens the possibility for describing \pm he phenomena and processes occurring on financial markets (and not only) at ab initio Δ vel. In general, the market modelling is one of the challenges of modern econophysics [29, 123, 124, 125, 126, 127]. The main purpose of market modelling is to reveal the laws and underlying processes of market behavior supplying (as one of the results) some signatures or warnings of upcoming extreme events or crashes.

Agent-based models, also called computational economic rodels, are widely exploited, for instance, in economics (Ausloos et al., 2015 [128]; Farmer and Foley, 2009 [129]), sociology (Macy and Willer, 2002 [130]) and in the environmental sci nc s (Fillari et al., 2006 [131]). A thorough review was made from the econophysics point C view \cdot 2014 year in the collective review publication entitled: Econophysics of Agent-Based Models edited by Abergel, Aoyama, Chakrabarti, Chakraborti, and Ghosh [132].

The hallmark of ABMs is the coupling of individual and collective degrees of freedom of the analyzed system that is, its micro- and macrogales. The former is represented by individual agents, while the latter one by the system as a \ldots hole (or its macroparts). Frequently, agents are divided into two completely different Troups: stabilizing (e.g., fundamentalists or rebalancers) and destabilizing market activity $(e.g.,$ chartists, noise traders or portfolio insurers). The competition between them can be a source of long-range and long-term nonlinear correlations, critical phenomena and fat- \mathcal{L} distributions.

Firstly, a few inspiring canonical models \Box longing to the field of portfolio analysis are presented. The pioneering Kim-Markowitz (KM) agent-based model [133, 134] was inspired by the stock market crash of 19th October 1987, when DJIA decreased by more than 20% per day. This model confirmed by numerical simulation a common observation that strategies of portfolio insurers (and not the ϵ of rebalancers) destabilize financial markets. This model has raised hopes for the promising $\sqrt{\text{ger}}$. based modelling capabilities.

Besides, the Levy-Levy-S_C mon (LLS) model [135] was developed to consider the riskaverse investors having arbitrary long memory. The LLS model describes the spontaneous periodicity of the market, its booms and crashes. Although the results obtained depend significantly on the initial conditions assumed, the model has demonstrated (by numerical simulation) that the w alth available on the market (in the form of shares and bonds) will, after sufficiently long time, be taken over by a group of investors equipped with a long memory (one hundred steps back in simulation). This outcome is in line with expectations.

An extremely popular model describing the evolution of the market, going beyond the aforementioned portfolio analysis category is the Lux-Marchesi (LM) model [68]. It is able to correctly $d\epsilon$ cribe many stylized facts, for example: volatility clustering, power-law distribution of re urns, ϵ and long-term autocorrelation of absolute returns. This model is based on the concept of mutual exchange and interaction between different groups of investors (i.e. chartists and μ is a demand-supply chartists) and on the process of price adjustments with a demand-supply imbalance. Additionally, chartists are divided into optimists and pessimists - the competition between them as well as with fundamentalists create an effective opinion of agents leading to strong interconnection of chartists amount with the price amplitude. This interconnection is responsible for the observed large market fluctuations. A similar influence of portfolio insurers is observed within the Kim-Markowitz model. The technical Δ dvantage of the LM model is the large number of free parameters in the model involve

A very important category of models describing the behavior of financial markets, and inspired by models drawn from physics, are primarily Ising-like on ϵ mples networks, whose prominent example is the Iori numeric model [136]. The agent is represented here by threestate spin vector, where state $+1$ means buying a stock, -1 selling, while 0 means inactive state. Obviously, the agent activity is limited by amount of his capital nowever, his activity has still a probabilistic character with threshold. Besides, the matches is present guarding the liquidity of the market. The price in this model depends not only on the ratio of the supply of securities to their demand but also on the available securities volume. This multiparameter model managed to describe all the stylized facts (i.e. volatility clustering of returns, the positive correlation between volatility and trading volume, the power-law decay of autocorrelation).

The above models inspired the econophysicists in a significant way. The first model that grew out of this society and was characterized by a \ldots number of parameters was the Cont-Bouchaud (CB) model [137] based on a discrete percolation phenomenon – a phenomenon previously analyzed in the field of chemistry and statistical physics, condensed matter physics and mathematics. A year later, Dietrich Stauffer also used percolations to model the behavior of financial markets [138].

As a part of the CB model, neighboring network nodes form a cluster making collectively investment decisions in a probabilistic manner. Therefore, it can be said that this model is based on the so-called lattice-gas model isomorphic with canonic Ising model. The market price is (as usual) a function (here ϵ ponential) of the difference between demand and supply. This type of approach is very flexible, generating (depending on the input probability) either Gaussian distributions or various types of power-laws distributions – both observed on financial markets.

The next interesting ABM is the Lornholdt spin model [139, 140] primarily designed to recreate the price dynamics in short time horizons. Similarly to the KM and LM models, it assumes that there are $\star_{\mathbf{w}}$ types of investors on the market: fundamentalists and noisy traders. The fundament list, only respond to price changes, making the market price as close as possible to the fundamental value of stock. The mutually interacting noisy traders take the probabilistic decisions to buy or sell the stocks depending on the market situation. This situation is described by the local, time-dependent threshold function of influence having a threshold character. The size of this threshold is connected linearly with the volume. In this model, the interacting traders are responsible for non-Gaussian behavior of the market. The Born¹ out model describes a lot of stylized facts: power-law return distributions, volatility clustering, positive correlation between volatility and volume, and self-similarity between volatilities on various time scales. Unfortunately, the shape of the absolute-returns autocorrelation \hat{A} consider is not a power law herein.

Although e ABMs circumscribed above are valuable and useful, none of them were used to model the interevent-time statistics so much significant in a study of correlations on financial markets. In 2014 the model of so-called cunning agents was developed [141], which reproduces not only stylized facts but also empirical statistics of interevent times.

One can say that we are dealing with a cunning agent if he accepts a pc. α on, for example, a long one indicating the willingness to buy additional items and \mathbf{i}^T forms his neighbors about it, but in fact, simultaneously sells the possessed assets. The situation is similar in the short and neutral position. Recently, a model appeared $[142]$, which starting from the level of stochastic dynamic equations, was able to reproduce mentioned above the empirical statistics of interevent times.

The interesting extension of the Geometrical Brownian M_{ϵ} on was made by Dhesi and Ausloos [143] who introduced so-called the Irrational Fractic val $Br\omega$ whian Motion model. They re-examined agent behaviour reacting to time dependent news on the log-returns thereby modifying a financial market evolution. Authors specifically discuss the role of financial news or economic information as a positive or egative feedback of such irrational (or contrarian) agents upon the price evolution. A kink-like fect reminiscent of soliton behaviour was observed, suggesting how forecasts uncertainty induces stock prices. This way they proposed a measure of irrational force in a market, which seems to be a very significant for understanding the dynamics of stock market.

It should be emphasized that agent-based models along with network models, have gained immense popularity not only in the society of equal prophysicists but also sociophysicists.

8. Phase transitions, catastrophic and critical phenomena

Phase transitions, catastrophic and critical phenomena have long been studied both in the framework of econo- and sociophysics (see, for instance, [20, 144]). However, phase transition of the global financial system observe μ at the end of 2008 deserves the special attention. This is because it was just after the bank, proton Lehman Brother $[145]$. The signature of this transition is a sharp increase in t he susceptibility/sensitivity of the system to the negative global shock with an initially $w¹$ - ϵ -gin d epicenter focused on mortgage backed securities. This shock was the source of the observed cascade of defaults or a succession of problems associated with the most prominent global institutions (belonging to the banking, insurance and mortgage sectors). This cascade caused crash on the stock market and the subsequent panic among economical institutions from the global ('too-big-too-fall') to the local ones – leading many of the latter to bankruptcy.

The model developed in paper $[145]$ is, in essence, a simplified discrete correlated random walk of walkers (α , $\text{tr } s$) on the ladder consisting of the effective credit rating grades $(ECRG)$, where the firm either remains at a given ECRG or change its value by one (with blocking boundary condition at top and the bottom of the ladder). By using the statisticalmechanic partition function based on the Ising-like sociological influence function, the conditional single step p obability for each firm is constructing in the exponential form. This partition function α contains the field of panic taking into account the firm's bankruptcy. For simplicity, the direct coupling between firms is a random variable drawn from the Gaussian distribution. This model exhibits a critical behaviour that is, the second-order phase transition at well-defined critical point. Besides, the phenomenon of spontaneous symmetry breaking is observed (by the increasing the number of bankruptcies) due to the nonvanishing of the panic field. The model offers the phase diagrams and enables the system time evolution. This is the first so complete model in the field although earlier \ldots re sociophysical oriented models by Schweitzer et al. were published [146].

One should also mention works that still raise controversy regarding the presence of bifurcation on the stock exchange or, more generally, phase transformations of the first order. The related issue of the critical and catastrophic slowing \vec{C} own \vec{P} nomenon are the most refined indicators of whether a system is approaching a critical point or a tipping point – the latter being a synonym for the catastrophic threshold located at a catastrophic bifurcation transition. The still open problem raised by Scheffe \cdot et al. [147] is whether earlywarning signals in the form of a critical or catastrophic slowing ω win phenomena (such as those observed in multiple physical systems) are present on $\lim_{n \to \infty}$ al market. The possibility of existence of the above-mentioned early-warning signals was highlighted in publication of Kozłowska et al. [148] and refs. therein. A specially created page that accompanies this work (posted at address cited in [149]) allows the reader to 'ook for bifurcation on various stock markets by using himself the indicators presented in the publication $[148]$.

A microscopic approach to macroeconomic features has always been a challenge [150] and refs therein. A birth-death lattice gas model for Λ acroeconomic behavior under heterogeneous spatial economic conditions takes into account the influence of an economic environment on the fitness and concentration evolution of the economic entities. The reactiondiffusion model can be also mapped onto a high order logistic map. The role of the selection pressure along various dynamics (with $e^{\pm i \tau y}$ diffusion on a square symmetry lattice) has been studied by Monte-Carlo simulation. T_{L} model leads to a sort of phase transition for the fitness gap as a function of the selection pressure and to cycles. The scalar control parameter is a sort of a "business plan". The business plan(s) allows for spin-offs or merging and enterprise survival evolution law_{k} , once bifurcations, cycles and chaotic behavior are taken into account.

The problem whether a power $\frac{1}{2}$ or an exponential law describes better the distribution of occurrences of economic recession periods is significant not only for econo- and sociophysics but primarily for socio-economical science and life. In order to clarify the controversy a different set of GDP data were $\epsilon_{\alpha\alpha}$ nined in [151] for example. The conclusion about a power law distribution of recession ϕ eric ds seems to be more reliable though the matter is not entirely settled. The case of prosperity, duration is also studied and it is found to follow also a power law. Considering that the economy is basically a bistable system (recession/prosperity) a characteristic (de)stability in time is posssible to quantitatively derive.

9. Significant elements of global economy

The global economy has its source in important connections (dependences, interactions, influences, etc) between countries and regions $[152]$. An international trade is a glaring example of $\overline{}$. Obviously, the globalization is one of the central processes of our age. The common perception of such process is that, due to declining communication and transport costs, distance becomes less and less important. However, the distance coefficient in the economical gravity model of trade [153] (which grows in time) indicates paradoxically that the role of distance becomes a more important. In the paper [152] it was shown that the fractality of the international trade system (ITS) provides a simple solution for this globalization

puzzle. It was argued that the distance coefficient corresponds to the f α and dimension of ITS and not to the Cartesian distance.

The world economic conditions evolve and are quite varied on di ^{τ}erent time and space scales. This evolution forces developing of macroeconomic entities with n a geographical type of framework [154, 155]. For the firm fitness evolution a constraint is taken into account such that the disappearance of a firm modifies the fitness of near ϵ neighboring ones (as in Bak-Sneppen population fitness evolution model $[156]$). The conventration of firms, the averaged fitness, the regional distribution of firms, and fitnes for different time moments, the number of collapsed, merged and new firms as a function of time have been recorded and are discussed. A power law dependence, signature of self-critical organization, is seen in the firms' birth and collapse asymptotic values for a high selection \mathbf{r} essure (control parameter) only. A lack of self-organization is also seen at region borders. The research and market modeling of companies is still one of the main goals of \sim one hysics.

10. Contemporary sociophysics

The systematic research on society that gives \overline{f} the modern sociology is mainly due to the work of Quetelet [157] (see also [3]). Today it is clear that only a comprehensive approach to economic phenomena and processes, including both psychology, social psychology and sociology, enables the description and understanding of the mechanisms governing socioeconomic life (including also financial markets). This was shown convincingly in 2006 in the collective work [158]. We are increasingly attempting to understand the emotional nature of human activity and activity of human communities. This emotional component can be seen particularly clearly in cybers, nace $\frac{1}{2}$ this has been well presented in the collective work entitled: Cyberemotions. Collective Emotions in Cyberspace, edited by Janusz A. Holyst [159]. This type of interdisciplinary approach to the complex socio-economic reality is extremely inspiring, stimulating a_n ^t promising. In this context, we should say about the role of the Sznajd model ('united we stand, divided we fall' – USDF model) [160, 161]. It has become credible thanks to \cdot success in predicting the result of elections in Brazil, opening the way for contemporary sociophysics. The Sznajd model easily introduces the possibility of obtaining a consensus by exchanging opinions between members of a given community. It is based on the Ising model with characteristic social interaction – it is by far the most exploited by sociophysic its t by model with the cluster-like ever-growing number of different variants. A comp'ementary, important model that should also be mentioned here is the Bonabeau model [18] showing how hierarchies are created in a given community. Let us add that currently the study of various hierarchical structures, cascades, and networks is fashionable and very advanced $[162, 163]$.

The social μ nact is one of the most important and the most common social phenomena. The dynamical theory of this impact proposed in 1990 [164] gave rise to a huge stream of works. The sociophysicists have made a significant contribution to the development of this trend. Today, this type of modeling is a canonical component of the sociophysics without which one cannot imagine an advanced analysis of the societies' behavior.

The attempts made by physicists to understand so-called social "forces" have lasted at least since the mid-1970s [165]. Quite interestingly, the source of social force is attributed

to technological innovation made by competing goods and new population. Another view about quantifying social forces (found in $[166]$) pretends that they result as oupling to some external fields.

The role of emotions in opinion dynamics mentioned above was used \therefore a variant of the ABM complementary to the Sznajd model. The combination of information and emotions interplay was used successfully to predict the results of Polish election in 2015 [167, 168]. This is the prominent evidence of the practical use of sociophysical modeling.

Let us add that the collective work entitled: Why Society is a Complex Matter edited by Philip Ball in 2012 [169] also played a prominent role in the μ -velopment of contemporary sociophysics. This collective work pointed to sociophysics as a new kind of science. There the Helbing's work [170] (see also [171]) has shown a cruzial role of information and communication technology for society.

It should be noted that in the last decade issues relate to the evolution of cultures (including linguistics) have been continuing to represent an attractive, intriguing course of research [172, 173, 174, 175, 176]. A key tool for modeling this evolution is the Axelrod model and its various variants [172].

The Axelrod model [177] is defined by stochastic process which, similarly to the voter model, contains a social interaction between nodes of a network, but unlike the voter model also accounts for homophily. The aim of the model is to describe and explain macroscopic observations in real-world social networks, based on simple microscopic rules. These microscopic rules are also inspired by empirical observations or concluded from sociology or psychology. Every node of the network is described, in the frame of the model, by a vector of traits representing internal degrees of μ edom. The idea behind the model was simple – to explain cultural diversity observed in societies, despite the fact that people become more alike within a face to face interaction. Therefore, Axelrod asked why eventually all differences do not disappear? In his model the vector of traits describes culture of an individual (regional society or nation) in μ sense of habits, beliefs, religion, language, hobbies, views, etc. During the evolution two individuals become more similar to each other, unless they stay different. This $\overline{\cdot}$ crucial observation leading to an interesting result, because only that one can obtain $\log n$ (or equilibrium) states. Depending on the initial conditions, simulations can end in the one that states: in a homogeneous state with a monoculture or heterogeneous with many small subcultures, called 'domains'. The coexistence of these many different subcultures is a main result, confirming the possibility of existence of heterogeneous societies, despite people become more and more similar.

The model gail ed interest among physicists a few years later $[178]$ along with the discovery of the p' _{case} transitions between homogeneous and heterogeneous states (continuous or discontinuous types). To make the model more realistic, it was extended to complex networks with very \mathcal{C}^{irf} ent topologies [179] as well as to dynamic complex networks. Moreover, this latter is sue \ldots is addressed in [180], where different rewiring mechanisms were analyzed. It was then possible to obtain real-world features, like power-law degree distribution or high values of clustering coefficient. Besides, it was shown that a key to the proper scaling of the number of languages is triadic closure – type of rewiring proved to be very important in social networks [181].

A "degree of freedom" in a population is also the religion adhesic... The pioneering work on such adhesion aspect, in fact similar to market/company growth and market share influence, was published almost a decade ago [182]. The observed features and some intuitive interpretations point to opinion based models with vector like agent rather than scalar ones (many degrees of freedom instead of one). This supports the a sum $\rho\bar{\psi}$ of the Axelrod approach.

It is worth to mention also the works from the borderline of econo- and sociophysics regarding household incomes (especially in the European Unio. and the United States). The approach based on the stationary solution of the reinterpreted Fokner-Planck equation turned out to be particularly useful [183, 184]. This approach allow μ to describe the distribution of income of all three social classes: low income, medium and high income well reproducing the Pareto laws (with different Pareto exponents) for the last two classes.

Concerning the wealth distribution, one of the $mc⁺$ interesting outputs is the generic existence of a phase transition, separating a phase where the total wealth of a very large population is concentrated in the hands of a finite number of individuals (condensation phenomenon) from a phase where it is shared by a finite fraction of the population [185]. The rich phase diagram was examined in [186], in which both open and closed Pareto macroeconomics were studied. The wealth condensation takes place in the social phases both for closed (with the fixed total wealth) and open \mathbf{w} the fixed mean wealth) macroeconomy. The wealth condensation takes place also in the liberal phase for super-open macroeconomy (it was proved, indeed, in $[185]$). It was found that in the first two cases of macroeconomy, the condensation is related to the mechanism known from the balls-in-boxes model, while in the last case, to the fat tails of the Fareto distribution. Besides, for a closed macroeconomy in the social phase, the emergence of \sqrt{c} ruption" phenomenon was pointed out. A sizeable fraction of the total wealth is always amassed by a single individual. In publications cited above the dependence of Γ ⁺ to exponents on microscopic parameters of the model was found. This is an achievement useful both for theoreticians and practitioners in social sciences.

Recently, several studies were published [187] (and refs. therein) which have given better insight into how birth is a fect d by exogenous factors. Especially, the adverse conditions (e.g. famines, epidemics, earthquakes, droughts, floods, etc.) temporarily affect the conception capacity of populations, thus producing birth rate troughs nine months after mortality waves. The challenge here is t_n d'scovery of the birth rate patterns and their interpretation. A promising step in Δ his direction was made in paper [187], where several important patterns were found and div ussed.

11. Challenges and warnings

It is already known that the analysis should take into account the feedback between econonophysics and sociophysics (including socio-psychology and even psychology of leaders and the policy of the state). Even roughly approximated modelling of reality should take into account the rivalry of the rational multicomponent with irrational one. The interdependence and networking of elements of socio-economical complex systems constitute (within econo- and sociophysics) the basis for the research even if the available empirical data is

dirty and uncertain. The researchers realize that they are affecting the \mathcal{L} -blems generated by complex systems. This complexity is the source of emergent phenomena and processes, including catastrophic and critical ones (on a macroscale). This may result in a dichotomy of descriptions within the micro- and macroscales. It is understand the for example, breaking the principle of ergodicity may lead to the impassable barrier creating a dichotomy in the statistical description of socio-economical reality. That is, phenomena and processes in the macro scale mainly result from the properties of the system as a whole (especially when the system stays in a critical state) and not only from the behavior and properties of individual objects forming the system in the microscale. The understraing the role of dependency or correlation, causality, and coevolution or adaptation in markets or the complexity of markets and emerging phenomena and processes, become one of the gre' cest challenges for modern research of a socio-economical reality $[188, 189, 190]$. However, the econophysicists discoveries has miserable impact on the main stream works of financial economy (see Jovanovic and Schinckus [191]).

Finally, we must say about an event that put α shadow on mathematics and financial physics as a great warning and a lesson for all of us. The portfolio analysis in the nineties of the previous century was based, in fact, on the canonical option pricing formula of Black-Scholes-Merton (BSM) derived in the canonical paper [192]. The BSM formula was derived mainly assuming that the prices of basic financial instruments, on which options were issued, are subject to the geometrical Brownian motion, while considered options are risk-neutral. As for the trend, its constant growth would be driven by investors constantly seeking arbitrage opportunities. Based on this theoretical approach, the hedge fund Long-Term Capital Management (LTCM) was created in year 1994; the key people behind LTCM were Myron S. Scholes and Robert C. Merton – t_n . No^{\prime}, el Prize winners.

Although initially successful ℓ or three consecutive years) with annualized return of over 20% netto, from August to September 1998 (short after the Asian financial crisis in 1997 and 1998 Russian financial crisis) LTCM lost, however, about 4.5 miliard (US billion) dollars severely disrupting global market for several months. This was the consequence of violating the key assumptions of the μ ory in new market circumstances and neglecting the constant verification of these assumptions. Besides, used by LTCM leverage of portfolio composition has reached an unbear ble i_{α} of debt-to-equity as 25:1. An in-depth systematic econophysical analysis of this subject, and especially issues related to market risks, was provided in year 2001 by Jean-Philippe Bouchaud and Marc Potters in the book Theory of Financial Risks. From Statistical Physics to Risk Management [193].

It must be clearly stated that we live in an increasingly risky society which is particularly vulnerable to \sim reme types of risk – both market and systemic [194]. Concerning the financial sector, among all possible extreme phenomena, indeed crashes are presumably the most striking ev^{def} with an impact and frequency that has been increasing in the last two decades increasing the risk of market activity extremely. Understanding what is happening as well as risk control and management is an urgent challenge for investors and researchers alike.

The collective effort of many communities is likely to be more effective thanks to the Econophysics Network [195] (founded in Leicester by Schinckus, Jovanovic, Haven, Sozzo, Di Matteo, and Ausloos).

References

- $[1]$ VSI
- [2] C.-H. Saint-Simon, Lettres d'un habitant de Genève à ses contemporains, (University of Lausanne Publications, Lausanne, 1803).
- [3] A. Quetelet, Sur l'homme et le développement de ses jacuites, ou Essai de physique sociale, (Paris: Guillaumin et Cie, Paris, 1835).
- [4] A. Comte, A general view of positivism (Discours sur l'Esprit positif,1844), (London Routledge, London, 1856).
- [5] W. Weidlich, The statistical description of polarization phenomena in society, Br. J. Math. Stat. Psychol. 24(2), 251 (1971).
- [6] E. Callen and D. Shapiro, A theory of social in italion, Physics Today 12(2), 23 (1974).
- [7] M.H.R. Stanley, L.A.N. Amaral, S.V. Euckrey, S. Havlin, H. Leschhorn, P. Maass, M.A. Salinger, and H.E. Stanley, $\mathcal{S}cc$ in a Behavior in the Growth of Companies, Nature 379, 804 (1996).
- [8] E. Majorana, Il valore delle leggi statistiche nella fisica e nelle scienze sociali, Scientia, Quarta serie, Febbraio-Marzo 1. 12 , 58. English translation: E. Majorana, The value of statistical laws in physics and social ciences, Quant. Finance 5, 133 (2005).
- [9] S. Galam, Sociophysics: σ pertonal testimony, Physica A 336(2), 49 (2004).
- [10] K. Wilson and J. Kogut, The renormalization group and the ϵ -expansion, Phys. Rep. 112, 75 (1974).
- [11] S. Galam, Social paradoxies of majority rule voting and renormalization group, J. Stat. Phys. 61, 943 $(19/0)$.
- $[12]$ S. Galam, Rec^t space enormalization group and totalitarian paradox of majority rule *voting*, Physica A 2ϵ 5, 66 (2000).
- [13] S. Galam, A review of Galam models, arXiv: 0803.1800v1 [physics.soc–ph] 12 Mar 2008.
- [14] M. Ausloo, Econophysics: Comments on a Few Applications, Successes, Methods and $Model_{\odot}$
- [15] Ph. Mirowski, More heat than light: economics as social physics, physics as nature's economics, Historical perspectives on modern economics, (Cambridge Univ. Press, Cambridge, 1989).

- [16] M. Shabas, A world ruled by number: William Stanley Jevons and \vec{u} is rise of mathematical economics, (Princeton Univ. Press, Princeton, 1990).
- [17] N.W. Watkins, G. Pruessner, S.C. Chapman, N.B. Crosby, H.J. J. Sansen, 25 Years of Self-organized Criticality: Concepts and Controversies, Space Sci. Pev. 198, 3 (2016).
- [18] E. Bonabeau, G. Theraulaz G. and J.L. Deneubourg, *Phase diagram of a model of* self-organizing hierarchies, Physica A 217, 373 (1995).
- [19] D. Sornette, *Discrete-scale Invariance and Complex* Γ *. nensions*, Phys. Rep. 297, 239 (1998).
- [20] N. Vandewalle, M. Ausloos, Ph. Boveroux, and A. Mn. ruet, *How the financial crash of* October 1987 could have been predicted, Eur. Phys. J. B \downarrow , 139 (1998).
- [21] N. Vandewalle, M. Ausloos, Ph. Boveroux, and A. Minguet, Visualizing the log-periodic pattern before crashes, Eur. Phys. J. B 9, 355 (1999).
- [22] B.M. Roehner, Patterns of Speculation. A $\mathcal{N}u$ in Observational Econophysics, (Cambridge Univ. Press, Cambridge, 2000).
- [23] G. Tusset, From Galileo to Modern $F_{\text{cono},\text{nics}} 2018$. The Italian Origins of Econophysics, eBook collection 2018, eBook
- [24] R.N. Mantegna, Lévy walks and end-noted diffusion in Milan Stock-Exchange, Physica A 179, 232 (1991).
- [25] R.N. Mantegna and H.E. St nle , Scaling behaviour in the dynamics of economic index, Nature 376, 46 (1995).
- [26] R.N. Mantegna and H.L. Stanley, An Introduction to Econophysics. Correlations and $Complexity$ in Finance, Cambridge Univ. Press, Cambridge, 2002).
- [27] K. Kiyono, Z.R. Struzik, and Y. Yamamoto, Criticality and Phase Transitions in Stock-*Price Fluctuation*, P'_{NS}. Rev. Lett. 96, 068701 (2006).
- [28] M.M. Dacorogna, R. Gencay, U.A. Müller, R.B. Olsen, O.V. Pictet, An Introduction to High Frequency Finance (Academic Press, 2001).
- [29] R. Cont, Empirical Properties of Asset Returns: Stylized Facts and Statistical Issues, Quant. F nance , 223 (2001).
- [30] S. Sin' \Box A.S. Chakrabarti, and M. Mitra, *Discussion & Debate: Can Economics be a* Physical Science?, European Physical Journal Special Topics 225:3087 (2016).
- [31] W. Barfuss, G. P. Massara, T. Di Matteo, T. Aste, Parsimonious Modeling with Information Filtering Networks, Phys. Rev. E 94, 062306 (2016).
- [32] The application of econophysics, Proceedings of the Second Nikkei \sim nophysics Symposium, H. Takayasu (Ed.) (Springer-Verlag, Tokyo, 2004).
- [33] Practical Fruits of Econophysics, Proceedings of the Third Nikkei Fronophysics Symposium, H. Takayasu (Ed.) (Springer-Verlag, Tokyo, 2006).
- [34] Y. Liu, L.A.N. Amaral, P. Cizeau, P. Gopikrishnan, M. Meyer, C.-K. Peng, and H.E. Stanley, Fluctuations and Their Correlations in Econoph sics in Anomalous Diffusion. From Basics to Applications, R. Kutner, A. Pękalski, and Λ Szn α jd-Weron (Eds.), LNP 519, 197 (1999).
- [35] A. Aleksiejuk and J. Ho?yst, Self-organized Criticality in Model of Collective Bank Bankrutcies, Int. J. Modern Phys. C 13, 333 (2002).
- [36] Th. Kron and Th. Grund, Society as a Self-Organized Unitial System, Cybernetics and Human Knowings 16, 65 (2009).
- [37] A. Steyer and J.-B. Zimmermann, Self Comanisea Criticality in Economic and Social Networks. The Case of Innovation Diffusion in Economics with Heterogeneous Interacting Agents, A. Kirma and J.-B. Zimmermann (Eds.) Lecture Notes in Economics and Mathematical Systems Vol. 503 (Springer-Verlag, Berlin 2001) p. 27.
- [38] D. Sornette, A. Johansen, and J.-P. Bouchad, Stock market crashes, prekursors and replicas, J. Physique I, France 6, 147 (1996).
- [39] D. Sornette and A. Johansen, L_n *ne* fi ancial crashes, Physica A 245, 411 (1997).
- [40] D. Sornette, Why Stock Mc ket Crash: Critical Events in Complex Financial Systems, (Princeton Univ. Press, Pinceton 2003).
- [41] J. Kwapień and St. Drozdż, Physical approach to complex systems, Physics Reports 515, 115 (2012).
- [42] D. Sornette, *Discr* te-Sc⁻¹e Invariance and Complex Dimensions, Phys. Rep. 297, 239 (1998).
- [43] M. Ausloos, K. Ivanova, and N. Vandewalle, Crashes: symptoms, diagnoses and remedies, in Empirical sc ences of financial fluctuations. The advent of econophysics, Tokyo, Japan, Nov. 15-17, 2000, Conference Proceedings, H. Takayasu, (Ed.) (Springer Verlag, Berlin, $2(12)$ p_{p.} 62-76.
- [44] M. Kozłowska, A. Kasprzak, R. Kutner, *Fractional Market Model and its verification* on the $\forall \alpha$ saw Stock Exchange, Int. J. Mod. Phys. C 19 (2008) 453.
- [45] H. E. Hurst, Long-Term Storage Capacity of Reservoirs, Trans. Am. Soc. Civ. Eng. 116, 770 (1951).

- [46] C.-K. Peng, S. V. Buldyrev, S. Havlin, M. Simons, H. E. Stanley, A. L. Goldberger, *Mosaic organization of DNA nucleotides*, Phys. Rev. E 49 (1994) 685 .
- [47] G. Rotundo, M. Ausloos, C. Herteliu, B.V. Ileanu, *Hurst exponent of very long birth* time series in XX century Romania. Social and religious as ect. Physica A 429, 109 $(2015).$
- [48] C. Herteliu, B.V. Ileanu, M. Ausloos, and G. Rotundo, E fect o_i religious rules on time of conception in Romania from 1905 to 2001, Human Reproduction 30 (9) , 2202 (2015).
- [49] D. Grech and Z. Mazur, Can One Make any Crash P^* diction in Finance using the Local Hurst Exponent Idea? Physica A 336 (2004) 133-145.
- [50] D. Grech and G. Pamula, The local Hurst exponent of the financial time series in the vicinity of crashes on the Polish stock exchange market, Physica A 387 (2008) 4299.
- [51] L. Czarnecki, D. Grech and G. Pamula, $Comp_{\alpha}$ is is a study of global and local approaches describing critical phenomena on the Polish stock exchange market, Physica A (2008) 6801.
- [52] L. Kristoufek, Local Scaling Properties and Market Turning Points at Prague Stock Exchange, Acta Phys. Pol. B 41 $(20^{\degree} \text{C}^{-129})$.
- [53] A. K. Mansurov, Forecasting currency crisis by fractal analysis technique, Studies on Russia Economic Development (SRED), Vol.19, No 1 (2008) 96.
- [54] J. Alvarez-Ramirez, J. Alvare⁷, E. R. riguez, G. Fernandez-Anaya, *Time-Varying Hurst* Exponent for US Stock Markets, Physica A 387 (2008) 6159.
- [55] K. Karpio, A. J. Orłows i, and P. Lukasiewicz, Stock Indices for Emerging Markets, Acta Phys. Pol. A 117, δ 19 (2010).
- [56] X. Shao-jun, J.Xue-jun, Predicting drastic drop in Chinese stock market with local Hurst exponent, Proceedings of ICMSE Conference (2009) p.1309-1315.
- [57] J. A. O. Matosa, S. M. A. Gama, H. J. Ruskin, A. A. Sharkasi, M. Crane, Time and scale Hurst exponent analysis for financial markets, Physica A 387 (2008) 3910.
- [58] S. Stavroyiann's, V. Nikolaidis and I. A. Makris, On the multifractal properties and the $local \; mult \; factor \; lity \; sensitivity \; index \; of \; euro \; to \; Japanese \; yen \; foreign \; currency \; exchange$ rates, Glob. Business and Econ. Rev. 13 (2011) 93.
- [59] N. Van e_w \therefore and M. Ausloos, Coherent and random sequences in financial fluctuations, Physica \therefore 246, 454 (1997).
- [60] M. Ausloos and K. Ivanova, Correlations Between Reconstructed EUR Exchange Rates versus CHF, DKK, GBP, JPY and USD, Int. J. Mod. Phys. C 12, 169 (2001).

- [61] K. Ivanova and M. Ausloos, False euro (FEUR) exchange rate correlation behaviors and investment strategy, Eur. Phys. J. B 20, 537 (2001)
- [62] D. Sornette, G. Quillon (Eds.) Dragon-kings: mechanism, evidence and empirical evidence, Eur. Phys. J. ST 205(1) 2012.
- [63] Zhi-Qiang Jiang, Wen-Jie Xie, Wei-Xing Zhou, Didier Sornette, Multifractal analysis of financial markets, arXiv:1805.04750v1 [q-fin.ST].
- [64] J.W. Kantelhardt, S.A. Zschiegnera, E. Koscielny-Bundec, S. Havlind, A. Bundea, and H.E. Stanley, Multifractal Detrended Fuctuation Analysis of Nonstationary Time Series, Physica A 316, 87 (2002).
- [65] R.J. Buonocore, T. Di Matteo, and T. Aste, A *umptot* c scaling properties and estimation of the Generalized Hurst Exponents in financial data, Phys.Rev.E 95, 042311 (2017).
- [66] R.J. Buonocore, T. Aste, and T. Di Matteo, Mea. *iring multiscaling in financial time*series, Chaos, Solitons and Fractals $88, 38 \overline{\smash{(20.6)}}$.
- [67] C. Beck and F. Schlögl, *Thermodynamics* \mathcal{F} *chaotic systems. An introduction*, (Cambridge Univ. Press, Cambridge, 1995).
- [68] T. Lux and M. Marchesi, Scaling and cruicality in a stochastic multi-agent model of financial markets, Nature 397, $4\sqrt{5}$ (1999).
- [69] L. Calvet and A. Fisher, *Multifractality in Asset Returns: Theory and Evidence*, Rev. Econ. Stat. 84, 381 (2002).
- [70] B.B. Mandelbrot, The variation certain speculative prices, J. Business 36, 394 (1963).
- [71] T. Di Matteo, T. Aste, and $M_{.n}$. Dacorogna, *Scaling Behaviors in Differently Developed Markets*, Physica A $3\overline{24}$, 183 (2003).
- [72] T. Di Matteo, T. Aste, and M.M. Dacorogna, Long-term Memories of Developed and Emerging Marke \overline{s} : '*Isin*, the Scaling Analysis to Characterize their Stage of Development, J. Banking & Figure 29, 827 (2005).
- [73] T. Di Matteo, Multi-scaling in Finance, Quant. Finance 7, 21 (2007).
- [74] J. Barunik and L. Kristoufek, On Hurst exponent estimation under heavy-tailed distributions, F *rysica* A 39, 3844 (2010) .
- [75] G.P. Λ ³Ss_{1a}, T. Di Matteo, and T. Aste, *Network Filtering for Big Data: Triangulated* $Maximal \cdot Filtered Graph, J. Complex Networks 5(2), 161 (2016).$
- [76] J. Ludescher, M.I. Bogachev, J.W. Kantelhardt, A.Y. Schumann, and A. Bunde, Multifractal Detrended Fluctuation Analysis of Nonstationary Time Series, Physica A 390, 2480 (2011).

- [77] L. Czarnecki and D. Grech, *Multifractal dynamics of stock market*, Acta Phys. Pol. A 117, 623 (2010).
- [78] N. Vandewalle and M. Ausloos, Fractals in Finance, in Fractals and P -yond. Complexity in the Sciences, M. M. Novak (Ed.) (World Scient., Singapore, $1\sqrt{2}$, 0 , p , 355 .
- [79] K. Ivanova and M. Ausloos, Low q-moment multifractal analysis of Gold price, Dow Jones Industrial Average and BGL-USD exchange rate, Lur. Phys. J. B 8, 665 (1999); Err. 12, 613 (1999).
- [80] M. Ausloos and K. Ivanova, *Multi-fractal nature of stock exchange prices*, Comp. Phys. Commun. 147 (2002) 582-585
- [81] Th. Lux and M. Ausloos, *Market Fluctuations I: S. ling, Julti-scaling and their Possible* Origins, in The Science of Disasters: Scaling L^{avg} Governing Weather, Body, Stock-Market Dynamics, A. Bunde, J. Kropp and H^{-1} . Schellnhuber, Eds. (Springer Verlag, Berlin, 2001) pp.377.
- [82] D. Grech and G. Pamula, On the multifractule effects generated by monofractal signals, Physica A 392 (2013) 5845-5864.
- [83] G. Pamula and D. Grech, *Influenc* \int_a^b the maximal fluctuation moment order q on multifractal records normalized by finite size effects, Europhys. Lett. 105 (2014) 50004.
- [84] R. Rak and D. Grech, Quantite ive α proach to multifractality induced by correlations and broad distribution of data, Presica A 508, 48 (2018).
- [85] J. Masoliver, M. Montero, and G.H. Weiss, Continuous-time random-walk model for financial distributions, Phys. Rev. E 67, 021112 (2003).
- [86] J. Masoliver, M. Montero, J. Prelló, and G.H. Weiss, The continuous time random walk formalism in financic matrices, J. Econ. Behav. & Org. 61, 577 (2006).
- [87] E. Scalas, The application of continuous-time random walks in finance and economics, Physica A 362, $2^{\frac{7}{5}}$ ($\frac{7}{006}$).
- [88] R. Kutner and J. Massliver, The continuous time random walk, still trendy: fifty-year history, state of art and outlook Eur. Phys. J. B $90, 50$ (2017).
- [89] R. Kutner, *Stoc*¹ market context of the Lévy walks with varying velocity, Physica A 314, 786 (2002).
- [90] R. Ku ner and F. Switala, Stochastic simulations of time series within Weierstrass-Mandelb. t walks, Quant. Fin. 3, 201 (2003).
- [91] P. Oświęcimka, J. Kwapień, and St. Drożdż, *Multifractality in the stock market: price* increments versus waiting times, Physica A 347, 626 (2005).

- [92] Z. Eisler and J. Kertsz, Size matters: some stylized facts of the sto α market revisited. Eur. Phys. J. B 51, 145 (2006).
- [93] Z. Eisler and J. Kertsz, *Scaling theory of temporal correlations and* \forall *i*-e-dependent fluctuations in the traded value of stocks, Phys. Rev. E 73, 04610 \prime (2⁰⁰⁶).
- [94] J. Perelló, J. Masoliver, A. Kasprzak, and R. Kutner, *Model to, interevent times with* long tails and multifractality in human communications. An oplication to financial trading, Phys. Rev. E 78, 036108 (2008).
- [95] T. Gubiec and R. Kutner, *Backward jump continuous-time* random walk: An application to market trading, Phys.Rev. E 82, 046119 (2010).
- [96] J. Kwapien and St. Drożdż, *Physical approach to emplea systems*, Physics Reports 515, 115 (2012).
- [97] M. Denys, T. Gubiec, R. Kutner, M. Jagielski, and H.E. Stanley, Universality of market superstatistics, Phys. Rev. E 94, 042305 (2016) .
- [98] A.L. Bárabási, *Network Science*, (Cambridge Univ. Press, Cambridge, 2017).
- [99] F. Chin, D. Houck, Algorithms for v ndating minimal spanning trees, J. Comp. System Sciences 16(3), 333 (1978).
- [100] R.N. Mantegna, *Hierarchical structure in financial markets*, Eur. Phys. J. B 11(1), 193 (1999).
- [101] P.L. Graham, P. Hell, On he istory of the minimum spanning tree problem, Annals Hist. Comp., 7(1), 43 (1985).
- [102] H. Yaman, O.E. Karş \in α , \therefore C. Pinar, *The robust spanning tree problem with interval* data, Oper. esearch Lett. 29, 31 (2001).
- [103] Th. Kirschstein, S. L. Scher, C. Becker, Robust estimation of location and scatter by pruning the minimum spanning tree, J. Multivariete Anal. 120, 173 (2013).
- [104] A. Sienkiewicz, T. C. biec, R. Kutner, and Z.R. Struzik, Structural and topological phase transition on the German Stock Exchange, Physica A 392, 5963 (2013).
- [105] M. Tumminello, T. Aste, T. Di Matteo and R. N. Mantegna, A tool for filtering information in complex systems, Edited by H. Eugene Stanley, PNAS 102 , 10421 (2005).
- [106] T. A \sim T. Di Matteo, and S. T. Hyde, *Complex networks on hyperbolic surfaces*, Physica 4 346, 20 (2005).
- [107] T. Aste, R. Gramatica, and T. Di Matteo, Exploring complex networks via topological embedding on surfaces, Phys. Rev. E 86, 036109 (2012).

- [108] Won-Min Song, T. Di Matteo, and T. Aste, *Hierarchical inform* ω in clustering by means of topologically embedded graphs, PLoS One $7(3)$, e31929 (2012).
- [109] F. Pozzi, T. Di Matteo and T. Aste, Spread of risk across financial markets: better to invest in the peripheries, Scientific Reports 3, 1665 (2013).
- [110] N. Musmeci, T. Aste, and T. Di Matteo, Relation between μ ancial market structure and the real economy: comparison between clustering methods, PLoS ONE 10(3), e0116201 (2015).
- [111] N. Musmeci, T. Aste, and T. Di Matteo, Risk diversification: a study of persistence with a filtered correlation-network approach, J. Network Theory in Finance 1(1), 1 (2015).
- [112] R. Morales, T. Di Matteo, and T. Aste, $De_F~ndenc$ structure and scaling properties of financial time series are related, Sc. ntin. Reports 4 (2014) 4589. DOI: 10.1038/srep04589.
- [113] R. J. Buonocore, T. Di Matteo, and R. N. Mantegna, On the interplay between multiscaling and cross-correlation, (2017) arXiv:1802.01113 [q-fin.ST].
- [114] N. Musmeci, T. Aste, and T. Di Matteo, Interplay between past market correlation structure changes and future volatility outbursts, Scientific Reports 6, 36320 (2016).
- [115] T. Aste and T. Di Matteo, Sparse causality network retrieval from short time series, Complexity 2017, Article ID $45'8429$, 13 pages (2017) .
- [116] M. Gligor and M. Ausloos, Convergence and cluster structures in EU area according to fluctuations in macroeconomic *indices*, Journal of Economic Integration 23(2), 297-330 (2008).
- [117] M. Gligor and M. Ausloos $Cⁿ$ ster structure of EU-15 countries derived from the correlation matrix analy is of macroeconomic index fluctuations, Eur. Phys. J. B 57 (2), 139-146 (2007)
- [118] Econophysics o' Sy termic Risk and Network Dynamics edited by F. Abergel, B.K. Chakrabarti, A. C_n kr_{ϵ} oorti, and A. Ghosh, (Springer-Verlag, London 2013)
- [119] Y. Malevergne and D. Sornette, *Extreme Financial Risks. From Dependence to Risk* $Management$ (Springer-Verlag, Heidelberg 2006).
- [120] Uncerta ity and Risk. Mental, Formal, Experimental Representations, M. Abdellaoui, R.D. Luce, M.J. Machina, and B. Munier (Eds) (Springer-Verlag, Heidelberg 2007).
- [121] J. Masoliver and J. Perelló, First-passage and risk evaluation under stochastic volatility, Phys. Rev. E 80, 016108 (2009).
- [122] J. Masoliver and J. Perelló, *Extreme times for volatility processes*, Phys. Rev. E 75, 046110 (2007).

- [123] J.-P. Bouchaud, The Endogenous Dynamics of Markets: Price Impact, Feedback Loops and Instabilities in Lessons from the 2008 Crisis, edited by A. Berd (Lisk Books, Incisive. Media, London, 2011).
- [124] A. Abergel, J.-P. Bouchaud, Th. Foucault, Ch. Lehalle, and M. Rosenbaum Market microstructure. Confronting many viewpoints, (J. Wiley and $\sqrt{2} \sigma s$, 2012).
- [125] F. Slanina, *Essentials of Econophysics Modelling*, (Oxford U₁ iversity Press, Oxford 2014).
- [126] D. Sornette, *Physics and financial economics (1776-2014): Puzzles, Ising and agent*based models, Reports on Progress in Physics 77 (6) : 06200⁻ (2014).
- [127] Ch. Schinckus, 1996-2016: Two decades of economysics: Between methodological diversification and conceptual coherence, Eur. Phy. J. \sim pecial Topics 225, 3299 (2016).
- [128] M. Ausloos, H. Dawid, and U. Merlone, Spatial Interactions in Agent-Based Modeling in Complexity and Geographical Economics: Topics and Tools, P. Commendatore, S. Kayam, I. Kubin (Eds.), (Springer-Verlag, \overline{A} ^re^{*;*} delberg 2015), p. 353.
- [129] J.D. Farmer and D. Foley, The economy $n_{\rm c}$ is agent-based modelling, Nature 457, 957 (2009).
- [130] M.W. Macy and R. Willer, From Factoras to Actors: Computational Sociology and Agent-Based Modeling, Annu. R_{SV} . Sociol. 28 (2002) 143.
- [131] F.C. Billari, Th. Fent, A. P skawetz, J. Scheffran, (Eds.) Agent-Based Computational Modelling. Applications in ℓ em grophy, Social, Economic and Environmental Sciences, (Springer-Verlag, Heidelberg $2\sqrt{96}$).
- [132] F. Abergel, H. Aoyama, B.K. Chakrabarti, A. Chakraborti, A. Ghosh $(Eds.)\nEconophysics\ o\nA, ent-Based\ Models, (Springer-Verlag, 2013).$
- [133] G. Kim, H. Markowitz, *Investment Rules, Margin, And Market Volatility*, Journal of Portfolio Management 16, 45-52 (1989).
- [134] E. Samonido ., E. Zschischang, D. Stauffer, T. Lux, Microscopic models of financial markets, Rep. Prog. Phys. 70, 409 (2007).
- [135] M. Levy H. Levy, and S. Solomon, A microscopic model of stock market: cycles, booms and crashes, Econ. Lett. 45, 103 (1994).
- [136] G. Ion, Avanche dynamics and trading friction effect on stock market returns, Int. J. Mod. Phys. C 10, 1149 (1999).
- [137] R. Cont, J.-P. Bouchaud, *Herd behaviour and aggregate fluctuations in financial mar*kets, Macroecon. Dyn. 4, 170 (2000).

CCEPTED MANUS

- [138] D. Stauffer, Percolation models of financial market dynamics, Adv. Complex Syst. 4 19 (2001).
- [139] S. Bornholdt, Expectation bubbles in a spin model of markets: intermittency from frustation across scales, Int. J. Mod. Phys. C 12 667 (2001).
- [140] T. Kaizoji, Speculative bubbles and crashes in stock markets: an interacting-agent model of speculative activity, Physica A 287 493 (2000)
- [141] M. Denys, T. Gubiec, and R. Kutner, *Reinterpretation* \int_{a} Sieczka-Holyst financial market model, Acta Phys. Pol. A 123(3) 513 (2013).
- $[142]$ V. Gontis, Interplay between Endogenous and Exogenous Fluctuations in Financial Markets. Acta Phys. Pol. A 129, 1023 (2016).
- [143] G. Dhesi and M. Ausloos, *Modelling and Measuring* the Irrational behaviour of Agents in Financial Markets: Discovering the Psychological Soliton, Chaos Solitons & Fractals 88, 119 (2016).
- [144] N. Vandewalle, Ph. Boveroux, A. Minguet, and M. Ausloos, The crash of October 1987 seen as a phase transition: amplitude and universality, Physica A 225(1), 201 (1998).
- [145] P. Sieczka, D. Sornette, and J. Hor, \pm , The Lehman Brothers effect and bankruptcy cascades, Eur. Phys. J. B 82: 257 (2011).
- [146] F. Schweitzer, G. Fagiolo, D. Sornet e, F. Vega-Redondo, A. Vespignani, and D.R. White, *Economic Networks: The New Challenges*, Science 325, 422 (2009).
- [147] M. Scheffer, J. Bascompte, V.A. Brock, V. Brovkin, S.R. Carpenter, V. Dakos, H. Held, E.H. van Nes, M. Lietkerk, and G. Sugihara, Early-warning signals for critical *transitions*, Nature $461/53$ (2009).
- [148] M. Kozłowska, M. Jen s, M. Wiliński, G. Link, T. Gubiec, T.R. Werner, R. Kutner, and Z.R. Struzik, *Lynamic bifurcations on financial markets*, Chaos, Solitons and Fractals 88, 126 $(0.01f)$.
- [149] Bifurcation
- [150] M. Ausloos, P. Clip e , J. Miskiewicz, and A. Pękalski, A (reactive) lattice-gas approach to economic cycles, Physica A 344, 1 (2004).
- [151] M. Auslobs, J. Miskiewicz, and M. Sanglier, The durations of recession and prosperity: does the indistribution follow a power or an exponential law?, Physica A 339, 548 (2004).
- [152] M. Kar_piarz, P. Fronczak, and A. Fronczak, *International Trade Network: Fractal* Properties and Globalization Puzzle, Phys. Rev. Lett. 113, 248701 (2014).
- [153] J.M.C. Santos Silva and T. Silvana, The Log of Gravity, Rev. of Economics and Statistics 88 (4), 641 (2006).

- [154] M. Ausloos, P. Clippe, and A. Pękalski, Model of macroeconomic evolution in stable regionally dependent economic fields, Physica A 337, 269 (2004).
- [155] M. Ausloos, P. Clippe, and A. P ϵ kalski, Evolution of economic entities under heterogeneous political/environmental conditions within a Bak-Sneppen-like dynamics, Physica A 332, 394 (2004).
- [156] P. Bak and K. Sneppen, *Punctuated equilibrium and c iticalit* in a simple model of evolution, Phys. Rev. Lett. 71(24), 4083 (1993).
- [157] A. Quetelet, *Mémoire sur les lois des naissances et de la mortalité à Bruxelles*, Nouveaux mémoires de l'Académie royale des sciences ϵ^* belles-lettres de Bruxelles 1826, 3: 495 (in French).
- [158] B.K. Chakrabarti, A. Chakraborti, and A. Chatteriee, *Econophysics and Sociophysics*. Trends and Persepctives, (Viley-VCH Verlag C^{mhD}) Co KGaA, Veinheim 2006).
- [159] Cyberemotions. Collective Emotions in C_z berspace, J.A. Holyst (Ed.), Springer Complexity (Springer International Publishing $\gtrsim \vec{v}$ zerland 2017).
- [160] K. Sznajd-Weron and J. Sznajd, *Opinion evolution in closed community*, Int. J. Mod. Phys. C 11, 1157 (2000).
- [161] D. Stauffer, Sociophysics: the Sznajd model and its applications, Comp. Phys. Comm. 146(1), 93 (2002).
- [162] D. Pumain, *Hierarchy in N* tural $\sqrt{1}$ Social Sciences, (Springer-Verlag, 2006).
- [163] R. Paluch, K. Suchecki, and J.A. Holyst, Models of random graph hierarchies, Eur. Phys. J. B 88: 216 (2015).
- [164] A. Nowak, J. Szamrej, P. Latané, From Private Attitude to Public Opinion: A Dynamic Theory of Social Impact, Psychological Review 97(3), 362 (1990).
- [165] E.W. Montroll, \sqrt{oci} I dynamics and the quantifying of social forces, Proc. Nat. Acad. Sci. USA 75, $465\sqrt{1978}$.
- [166] M. Ausloos, Another Analytic View about Quantifying Social Forces, Advances in Complex Systems $\sqrt{3}$, 12 $^{\circ}$ 0088 (2013).
- [167] P. Sobk wicz and A. Sobkowicz, Two-Year Study of Emotion and Communication Patterns v_0 ⁿ Lighly Polarized Political Discussion Forum, Social Science Computer Review W_{H_1} \textdegree (2012).
- [168] P. Sobkowicz, Quantitative Agent Based Model of Opinion Dynamics: Polish Elections of 2015, Plos One May 12 (2016).
- [169] Why Society is a Complex Matter. Meeting Twenty-first Century Challenges with a New Kind of Science. With a contribution of Dirk Helbing, P. J. all (Ed.) (Springer-Verlag, Berlin 2012).
- [170] D. Helbing, New Ways to Promote Sustainability and Social We'l Beingin a Complex, Strongly Interdependent World: The FuturICT Approach in Why Society is a Complex Matter. Meeting Twenty-first Century Challenges $v \ddot{\omega}$ a New Kind of Science, (Springer-Verlag, Berlin 2012) p. 55.
- [171] D. Helbing, I. Farkas, and T. Vicsek, Simulating dynamical features of escape panic, Naturew 407, 487 (2000).
- [172] C. Castellano, S. Fortunato, and V. Loreto, Statistical Physics of Social dynamics, Rev. Mod. Phys. 81, 591 (2009)
- [173] Th. Gross and B. Blasius, Adaptive coevolutionary networks: a review, J. Royal Soc. Interface 5, 259 (2008).
- [174] M. Perc, J.J. Jordan, D. Rand, Zhen Wan, S. Boccaletti, and A. Szolnoki, Statistical physics of human cooperation, Phys. Rep. 687, 1 (2017).
- [175] V. Loreto, A. Baronchelli, A. Mukherjee, A. Puglisi, and F. Tria, Statistical physics of language dynamics, J. Stat. Mech.: Theory and Experiment 2011, P04006 (2011).
- [176] Sch. Christian and D. Stauffer, Recent developments in computer simulations of language competition, Computing \overline{h} . Science & Engineering 8, 60 (2006).
- $[177]$ R. Axelrod, The dissemination of culture: A model with local convergence and global polarization, J. Conflict R \mathscr{B} . 41, 2 \mathscr{B} (1997).
- [178] C. Castellano, M. Marsili, and A. Vespignani, Nonequilibrium phase transition in a model for social influence, Phys. Rev. Lett. 85, 3536 (2000).
- [179] K. Klemm, V.M. Egun. z., R.Toral, and M. San Miguel, *Nonequilibrium transitions in* complex networks: A model of social interaction, Phys. Rev. E 67, 026120 (2003).
- [180] T. Raducha $\epsilon_{\rm rad}$ T. Gubiec, *Coevolving complex networks in the model of social inter*actions, Physica A 4 '1, 427 (2017).
- [181] M.A.L. Chavira and R. Marcelin-Jiménez, *Distributed rewiring model for complex net*working: The eff ct of local rewiring rules on final structural properties, Plos One $12(11)$, $e0187538 (201)$.
- [182] M. Aus. os and F. Petroni, *Statistical dynamics of religions and adherents*, Europhys. Lett. 77(3), 38002 (2007).
- [183] V.M. Yakovenko and J.B. Rosser, Colloquium: Statistical mechanics of money, wealth, and income, Rev. Mod. Phys. 81, 1707 (2009).

CCEPTED MANUS

- [184] M. Jagielski and R. Kutner, *Modelling of income distribution in the European Union* with the Fokker-Planck equation, Physica A 392(9), 2130 (2013).
- [185] J.-P. Bouchaud and M. Mezard, Wealth Condensation in a simple model of economy, Physica A 282, 536 (2000).
- [186] Z. Burda, D. Johnston, J. Jurkiewicz, M. Kaminski, M.A. Nowak, G. Papp, and I. Zahed, Wealth condensation in Pareto macroeconomies, P ivs. R, v. E 65, 026102 (2002).
- [187] C. Hertellu, P. Richmond, and B.M. Roehner, $Deci$, error the fluctuations of high frequency birth rates, Physica A 509, 1046 (2018).
- [188] T. Aste and T. Di Matteo, Introduction to Complex and Econophysics Systems: A Navigation map, in Complex Physical, Biophysical and Exploribution Systems in World Scientific Lecture Notes in Complex Systems, edited by Robert L. Dewar & Frank Detering (World Scientific, Singapore 2010), $V \sim 9$, Chap. 1, pp. 1-35.
- [189] R. J. Buonocore, N. Musmeci, T. Aste, and T. Li Matteo, Two different flavours of complexity in financial data, Eur. Phys. J. \sqrt{p} cial Topics 225, 3105 (2016).
- [190] N. Musmeci, V. Nicosia, T. Aste, T. Di Matteo, and V. Latora, The Multiplex Dependency Structure of Financial Markets, Complexity, vol. 2017, Article ID 9586064, 13 pages, 2017, doi:10.1155/2017/9586064 (arxiv:1606.04872).
- [191] F. Jovanovic, Ch. Schinckus, *Leono* hysics and Financial Economics. An Emerging Dialogue, (Oxford Univ. Press, $\sqrt{\cot 2}$ 2017).
- [192] F. Black, M.S. Scholes, and R.C. Merton, The Pricing of Options and Corporate Liabilities, Journal of Political Economy 81, 637 (1973).
- [193] J.-Ph. Bouchaud and M. Potters, Theory of Financial Risks. From Statistical Physics to Risk Management, \cup , mbridge Univ. Press, Cambridge, 2001).
- [194] Y. Malevergne and D. Sornette, Extreme Financial Risks. From Dependence to Risk Management, $(Sr \cdot \text{in} \in \text{Verlag}, \text{Heidelberg}, 2006)$.
- [195] Econophysics $\sqrt{\text{retwo}}$.