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Abstract 

The ability to control Förster Resonance Energy Transfer (FRET) between emitters via the 

design of nanostructured materials with appropriate electromagnetic properties is important in 

the development of fast and enhanced sources of illumination, high-efficiency photovoltaic 

devices and biomedical applications, such as nanorulers. While the engineering of the local 

density of states allows an efficient control over the spontaneous emission rate, its influence 

on the FRET process has been an ongoing debate and has led to disparate experimental and 

theoretical results. In particular, hyperbolic metamaterials have recently been shown to 

drastically increase the fluorescence decay rate. Here, we experimentally demonstrate an 

increase in the FRET rate for Donor-Acceptor (D-A) pairs separated by fixed distances (3.4, 

6.8 and 10.2 nm) located inside a hyperbolic metamaterial comprised of an array of gold 

nanorods. While the modification of the local density of states surrounding the D-A pairs 

strongly influences the FRET rate, leading to a 13-fold increase inside the metamaterial, the 

FRET efficiency is shown to remain mostly unaffected. For comparison, we also study the 

modification of energy transfer rate and efficiencies of D-A pairs placed on top of a gold film, 

on top of a nanorod-based metamaterial and inside a nanorod-based metamaterial coated with 

polymer in order to prevent quenching. The free-space emission intensities of the acceptor were 

also investigated, leading up to an 18-fold increase in the emission intensity. The designed 



2 
 

geometry shows great potential in the development of FRET-based applications such as 

biomedical imaging, organic solar-cells and light-emitting sources. 

KEYWORDS: Hyperbolic metamaterials, plasmonics, Förster resonance energy transfer 

 

Förster resonance energy transfer (FRET) is the non-radiative transfer of excited state 

energy from a donor fluorophore to an acceptor fluorophore via a dipole-dipole coupling 

process. It was first correctly described by German physical chemist Theodor Förster in the 

1940s (1-2), and today is a powerful tool used in various domains ranging from biophysics, in 

order to detect molecular interactions at the nanoscale (3-5); to organic photovoltaics (6) and 

light-emitting devices (7-8). While the design of nanostructured materials with appropriate 

electromagnetic properties has widely been shown to allow the control of spontaneous emission 

via the engineering of their local density of electromagnetic states (LDOS), the possibility of 

using these same environments to control the energy transfer between emitters has gained a lot 

of interest. In particular, structures such as plasmonic films (9), microcavities (10), 

nanoparticles (11) and nanoantennas (12-13) have been the focus of many experimental and 

theoretical studies, leading to contradictory results.  

While an enhancement of FRET in modified electromagnetic environments has been 

suggested in several experimental studies (10, 14, 15) and sometimes linked to the modification 

of the LDOS through linear or quadratic dependences, recent theoretical findings have shown 

FRET and LDOS to be unrelated (16). Additionally, inhibition of FRET has also been 

experimentally shown (17), whereas other studies have demonstrated no influence of the 

electromagnetic environment on the FRET process (9,18). This lack of effect of the 

electromagnetic environment on FRET has however been recently related to the particular 

experimental parameters considered in each experimental study (16). This emphasizes the 
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importance of the precise control of the electromagnetic properties of the complex 

environments and their relation with the spectral properties of the D-A pairs, the distance and 

orientation of the donors and acceptors with regard to their surrounding environment but also 

the donor-acceptor distance within a pair. These factors have all been shown to influence the 

FRET process, exhibiting regimes where FRET rates and efficiencies are either enhanced or 

suppressed.  

Recently, hyperbolic metamaterials, constituting a well-known flexible platform for the 

control of spontaneous emission (19-21), have also been considered for the control of the FRET 

process. Hyperbolic metamaterials (HMM) are strongly anisotropic materials, with a dielectric 

permittivity tensor having the real part of the diagonal components of opposite signs. Their 

unique topology provides a high density of electromagnetic states and broadband enhancement 

of spontaneous emission (20). Typical designs of hyperbolic metamaterials include metallo-

dielectric multilayers (22), nanorod assemblies (23) or natural hyperbolic materials (24). To 

date, the study of FRET using hyperbolic metamaterials has been performed on a multi-layered 

system, for which inhibition of FRET for donor-acceptor (D-A) pairs located on top of the 

metamaterial was experimentally demonstrated (25); it was shown that the energy transfer rate 

at various distances above the metamaterial is not correlated to the Purcell factor, and therefore 

the LDOS, with the effect of the material environment on the energy transfer being much 

weaker than on the Purcell factor.   

Here, we experimentally investigate the energy transfer in D-A pairs placed at the end 

of double stranded DNA linkers of three different lengths (10, 20 and 30 base pairs, 

corresponding to 3.4, 6.8 and 10.2 nm) located inside a nanorod-based hyperbolic 

metamaterial. The relatively straightforward and cost-effective manufacturing process of these 

metamaterials, using a self-assembly approach, combined with the possibility to precisely tune 

their geometrical parameters, allows their electromagnetic properties to be tailored in a wide 
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spectral range and over large areas. This study of FRET, through D-A pairs attached to rigid 

DNA linkers and time-resolved analysis of the emission dynamics of the donor, reveals a 

strongly position-dependent modification of the energy transfer characteristics, with a large 

increase of the FRET rate especially inside the metamaterial. The FRET efficiencies and free-

space emission intensity of the acceptor have also been investigated. 

 

Results and Discussions 

Material environments. In this experimental study, five different environments were 

considered in order to investigate the dependence of the LDOS on the energy transfer between 

the donor and the acceptor. A glass coverslip was used as a reference sample, while a gold thin 

film (50 nm thickness) and a gold nanorod-based metamaterial with and without alumina (see 

SEM image, Figure 1a), allowing the D-A pairs to be located inside and on top of the 

metamaterial, were considered. A free-standing polymer coated gold nanorod-based 

metamaterial was also investigated to limit quenching of the emission for pairs located close 

to each individual nanorod. Figure 1 depicts the different environments used. 

 

 

    

Figure 1.  Material environments. (a) SEM image of the free-standing nanorod-based 

hyperbolic metamaterial (tilted at 30°). (b-f) Different material environments used in this 
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experimental study. The D-A pairs were deposited (b) on a glass coverslip, (c) on a 50 nm thick 

gold film, (d) on top of the nanorod-based hyperbolic metamaterial, (e) inside the nanorod-

based metamaterial coated with a 7.5 nm thick layer of polyelectrolytes and (f) inside the bare 

nanorod-based metamaterial. 

 

The nanorod-based metamaterials were fabricated by gold electrodeposition into highly 

ordered nanoporous alumina templates on glass coverslips, following the method described in 

Ref. 26. The geometrical parameters of the nanorod arrays used in the experiments were 

approximately 50 ± 2 nm rod diameter, 100 ± 2 nm inter-rod spacing and 260 ± 5 nm rod 

height. The alumina surrounding the gold nanorods was subsequently dissolved in order to 

obtain free-standing nanorods. Figure 2a shows the optical properties of the free-standing gold 

nanorods in the water-based annealing buffer in which the D-A pairs were suspended. The real 

part of the permittivity component along the nanorods (ɛzz) becomes negative around 580 nm, 

corresponding to the characteristic epsilon-near-zero (ENZ) range of the metamaterial (Figure 

2c). The metamaterial therefore operates in the hyperbolic regime of dispersion for 

wavelengths above 580 nm, coinciding with the region of spectral overlap of the donor and 

acceptor (Figure S1).  
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Figure 2. Experimental extinction spectra (-logT) of the gold nanorod-based hyperbolic 

metamaterial in different host environments and effective permittivities modelled using 

an EMT. (a, b) Experimental extinction spectra of the metamaterial (a) in water-based 

annealing buffer and (b) embedded in alumina. The measurements were taken for different 

angles of incidence of TM-polarised light.  (c, d) Spectra of the real (Re) and imaginary (Im) 

parts of the principal components of the effective permittivity tensor of the metamaterial with 

nanorods in (c) water-based buffer and (d) embedded in alumina.  

 

An additional sample was then fabricated in order to study the energy transfer for D-A pairs 

located on top of the metamaterial. This sample was made with the same geometrical 

parameters as the free-standing gold nanorods sample described above but kept in the alumina 
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matrix (Figure 2b). Due to the fabrication process, the gold nanorods are recessed below the 

surface of the porous alumina matrix, as depicted in Figure 1d. While in this case the spectral 

overlap of the donor and acceptor mostly lies in the elliptic dispersion regime of the 

metamaterial, the spectral proximity of the ENZ region is still expected to influence the FRET 

process, as was also confirmed for the Purcell effect (20). 

In order to coat the gold nanorod-based metamaterial with a thin layer of polymer, a new 

sample was used. The geometrical parameters of the nanorods were estimated as 52 ± 2 nm rod 

diameter, 100 ± 2 nm inter-rod spacing and 127 ± 5 nm rod height. The coating of the gold 

nanorod sample with a thin layer of polymer (7.5 nm) to prevent quenching was performed 

using a layer-by-layer deposition technique as described in the Methods section. Figure S2a 

depicts the extinction spectra of the coated nanorod sample in air for different angles of 

incidence for TM-polarised light. 

 As expected, the extinction peaks strongly depend on the nanorod environment, with 

the structure exhibiting two peaks associated with electron motion parallel and perpendicular 

to the nanorods. While these two modes overlap in the case where the gold nanorods are 

surrounded with air (Figure S2b), an increased splitting is observed in environments of higher 

refractive indices.  

 

Time-resolved photoluminescence and Laplace transform analysis. The FRET rate 

modification together with the LDOS enhancement in the different environments were 

evaluated by recording the decay dynamics of the donor, for different D-A separations, using 

a time-correlated single photon counting (TCSPC) technique. The emission decays were then 

analysed using an inverse Laplace transform method as described in the Methods section. 

Figure 3(a,c,e,g,i) reports the normalised decay curves for the various environments. In the 
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case of the donor alone, the lifetime of the donor is decreased by the presence of the gold film 

and the metamaterial samples, corresponding to an increase in the decay rate of the donor ΓD =

1 τD⁄   and revealing the modification of the LDOS for each environment. Evidence of the 

energy transfer between the donor and the acceptor is provided by the further reduction of the 

donor's lifetime in the presence of the acceptor, to 𝜏DA = 1 𝛤DA⁄  for each D-A separation, due 

to the additional decay channel for energy transfer between the donor and the acceptor.  

From the fluorescence decays and lifetime distributions (Figure 3), one can see that 

while a mono-exponential decay of fluorescence and narrow lifetime distribution (Figure 3a,b) 

are observed in the case of the donors alone deposited on glass, both the presence of the 

acceptor and the modification of the environment surrounding the D-A pairs significantly 

influence the decay dynamics of the donor. In the presence of the acceptor and, therefore, an 

additional decay channel, the lifetime distributions of the donor on glass exhibit a slight shift 

towards shorter lifetimes together with only a slight broadening of lifetime distribution, leading 

to the almost single exponential decays observed in Figure 3a. However, when located near a 

plasmonic environment, the fluorescence decay curves of the donor and their corresponding 

lifetime distributions become more complex, especially in the case of the D-A pairs placed 

inside the bare HMM. The decay dynamics of the donor alone inside the bare HMM, averaged 

over the ensemble, is strongly accelerated, reflecting a strong dependence of the decay rate on 

the distance and orientation of the molecules with regard to the surrounding nanorods (as was 

shown in Ref. 20). The random positions of the molecules as well as the random orientations 

of their dipole moments within the environment lead to a broadened lifetime distribution 

dominated by short lifetime contributions, accompanied by smaller contributions of longer 

lifetimes represented by the low amplitude tail (Figure 3f). This ultimately leads to a multi-

exponential profile of the decay dynamics. With the addition of the acceptor, the donor lifetime 

distributions inside the bare HMM are further shifted towards shorter lifetimes. As for the other 
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systems, including the molecules located on top of the gold film thinly coated with PMMA or 

on top of the HMM in its alumina matrix, as well as the HMM constituted of coated nanorods, 

the modification of the decay rate is generally more moderate. Nevertheless, the decay 

dynamics of the donor in all cases become strongly multi-exponential with the decrease in D-

A distance.  
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Figure 3. Normalised decay dynamics of the donor for different donor-acceptor 

separations in different environments (a,c,e,g,i) and Laplace analysis (b,d,f,h,j). (a, b) On 

glass, (c,d) on a 50 nm thick gold film, (e,f) inside the gold nanorod-based metamaterial, (g,h) 
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on top of the gold nanorod-based metamaterial, (i,j) inside the polymer coated gold nanorod-

based metamaterial. 

 

 

Figure 4. Decay dynamics and lifetime distribution analysis. (a) Average lifetime of the 

donor in different electromagnetic environments as a function of the D-A separation. (b) FRET 
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rates and (c) FRET efficiencies for different electromagnetic environments as a function of the 

increase in local density of states (LDOS). 

 

FRET rates and efficiencies. The decay rate of the donor within a given environment can be 

expressed as a function of the decay rate of the donor alone ΓD and the energy transfer rate 

ΓFRET, such that ΓDA = ΓD + ΓFRET. While this relation is derived for a single D-A pair, in the 

presence of an ensemble of D-A pairs with different orientations relative to the nanorods, the 

respective rates should be considered as averaged over all possible orientations.   

In order to evaluate the modification of the FRET rate and FRET efficiency in the different 

environments, the lifetime distributions, obtained by the inverse Laplace transform analysis of 

the emission dynamics of the donor in each environment, were used to calculate an amplitude-

averaged lifetime defined by  〈𝜏〉 = ∫ 𝛼𝑖𝑑𝜏𝑖
∞

0
, where 𝜏𝑖 is the lifetime component of the donor 

and 𝛼𝑖 its corresponding amplitude (27). From Figure 4a, an average lifetime of approx. 3.2 ± 

0.2 ns is observed in the case of the donor alone on a glass substrate, which is consistent with 

the value reported in the literature (28). In all other cases, the average lifetimes are reduced, 

especially for the D-A pairs inside the bare HMM, reaching a few hundreds of picoseconds. 

The more moderate decrease of the average lifetimes in the remaining environments can be 

related to a smaller contribution of the short lifetime component of the distribution, compared 

to the case of the bare HMM. 

From these average lifetimes, averaged over all locations and all orientations, the rate 

ΓFRET  and efficiency EFRET of energy transfer were calculated using equations 5 and 6, as 

described in the Methods section. In order to evaluate the influence of the LDOS on the energy 

transfer, the FRET rates and efficiencies were represented in Figure 4b,c as a function of the 

decay rate of the donor alone in different environments, representing the modification of the 
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LDOS. From the values of the donor decay rate given in Figure 4b, the increase in the LDOS 

from the glass substrate to the top of the metamaterial and the gold film is moderate, with rates 

increasing from 0.31 ns-1 to 0.40 ns-1 and 0.45 ns-1, respectively, corresponding to 

enhancements of 1.3-fold and 1.45-fold. The same observation was made in the case of the 

polymer coated nanorod-based metamaterial, where the decay rate of the donor is equal to 0.42 

ns-1 (1.35-fold enhancement). In the case of the D-A pairs located inside the bare metamaterial, 

the increase of the decay rate of the donor is more significant, from 0.31 ns-1 to 3.77 ns-1, 

corresponding to a LDOS enhancement of 12-fold. This increase of the decay rate of the donor 

inside the bare metamaterial arises from a strong dependence of the spontaneous emission 

properties on the position of the D-A pairs with regard to the adjacent nanorods and their local 

fields (29). For all separations between donor and acceptor, the FRET rate was found to 

increase linearly with the LDOS. An increase reaching up to 13-fold was measured for D-A 

pairs located inside the bare metamaterial. The non-trivial behaviour of the FRET 

characteristics in the complex environments studied could also have been related to various 

other factors. The study of an ensemble of D-A pairs rather than single pairs has been shown 

to lead to collective effects or cross-talk between FRET pairs, playing an important role in the 

energy transfer process, as described in several studies (25,30). To ensure the concentration 

used for all measurements is low enough so these effects are negligible in our study, the decay 

dynamics of the donor were measured at three different concentrations of D-A pairs. For each 

D-A separation, all three decay dynamics have been shown to be identical, confirming the low 

influence of these effects on the experimental results (see Figure S3). Other factors such as 

inaccurate pairing of the D-A pairs, leading to different distances between donors and acceptors 

could also influence the experimental results.  

Using the donor decay dynamics observed above and equation 6, FRET efficiencies were 

calculated for the three separations between the donor and the acceptor in each environment. 
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As observed from Figure 4c, a separation of 3.4 nm (10 base pairs) between the donor and the 

acceptor led to a measured FRET efficiency of about 60% on glass, while a FRET efficiency 

of about 47 % and 30 % were measured for separations of 6.8 nm and 10.2 nm, respectively. 

Our analysis reveals that in most cases, FRET efficiencies show only slight variations with the 

increase in LDOS. These small variations are consistent with an increase of the FRET rate as 

increasing the donor decay rate for each environment and keeping the efficiency constant 

requires the FRET rate to increase14, as shown in Eq. 5-6. This study of FRET through time-

resolved analysis of the emission dynamics of the donor has revealed no significant dependence 

of the FRET efficiency on material environment but has shown a linear increase of the FRET 

rate with the LDOS, most pronounced inside the metamaterial. Interestingly, FRET observed 

in the vicinity of hyperbolic metamaterials constructed with metal-dielectric multilayers shows 

inhibition of the FRET rate (25). The latter has been explained by possible collective dye-

plasmon interactions, present in the case of concentrated enough molecular ensembles. These 

collective effects have however been ruled out our experimental study performed at lower 

concentrations.  

Free-space donor-acceptor emission intensity. The manifestation of FRET in D-A pairs 

located in different environments can also be explored via the study of the relative emission 

intensity between the donor and the acceptor. Here the intensity of the acceptor free-space 

emission collected through the substrate was recorded and normalised to the peak emission 

intensity of the donor. The direct emission intensity of the acceptor at the excitation wavelength 

of the donor, measured separately for each material environment, was subtracted beforehand. 

Figure 5 depicts the results obtained where the energy transfer generally manifests itself by the 

increase of acceptor emission intensity for shorter separations between the donor and the 

acceptor. 
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Figure 5. Free-space D-A emission intensity for different D-A separations in different 

environments and reflection spectra. (a-e) Free-space D-A emission intensity for different 

D-A separations (a) on glass, (b) on a 50 nm thick gold film, (c) on top of the gold nanorod-

based metamaterial, (d) inside the polymer coated gold nanorod-based metamaterial, (e) inside 

the bare gold nanorod-based metamaterial. The data were normalised to the peak emission 

intensity of the donor. (f) Experimental attenuated total reflection (ATR) measurements of the 
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bare (top panel) and coated (bottom panel) nanorod-based hyperbolic metamaterial for TM 

polarisation. The embedding material surrounding the nanorods is a water-based annealing 

buffer. The greyed area represents the free-space emission spectrum of the donor and acceptor. 

 

Compared to the D-A pairs placed on glass (Figure 5a), the acceptor emission intensities 

in the case of the gold film and on top of the metamaterial are both increased (Figure 5b,c) 

whereas in the case of molecules inside the bare metamaterial, the emission intensity is greatly 

reduced for all separations (Figure 5e). According to the study reported in Ref. 21, the reduced 

free-space emission of the acceptor can be due to the coupling of the emitted light to the 

waveguided mode supported by the structure. In order to verify this hypothesis, the dispersion 

of reflection for TM-polarised waves was measured for both bare and coated metamaterial 

embedded in annealing buffer. Figure 5f (top panel) shows that one of the TM-polarised 

waveguided modes supported by the bare metamaterial structure overlaps significantly with 

the emission of the acceptor, thus favouring the coupling of the acceptor emission to this mode. 

Photoluminescence measurements were then performed on the polymer coated free-standing 

gold nanorod-based metamaterial as shown in Figure 5d. It is shown that the free-space 

intensity of the acceptor is largely enhanced for all D-A separations. In this case, the presence 

of the coating around the nanorods acts as a spacer between the metal and the dye molecules 

in order to avoid quenching but also contributes, together with the geometrical properties of 

the sample, to the modification of the optical properties of the material, thus altering its mode 

structure. This therefore affects the position of the waveguided modes of the metamaterial and 

in this case does not prevent the free-space emission of the acceptor, as there is no significant 

overlap between the emission of the dye and the modes supported by the structure (Figure 5f - 

bottom panel). An increase of the free-space emission intensity of the acceptor inside the coated 

HMM reaching up to 18-fold has been observed for larger D-A separations. 
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Conclusion 

We have investigated the energy transfer between a donor and an acceptor fluorophores with 

precise separations located in different electromagnetic environments. In most environments 

with increased LDOS, an increase in the donor spontaneous emission rate as well as the FRET 

rate were observed, in comparison to the rates of emitters placed on glass. In particular, D-A 

pairs placed inside the gold nanorod-based metamaterial, showing a 12-fold increase of the 

LDOS, exhibited a 13-fold increase of the FRET rate along with only slight variations of the 

FRET efficiency compared to those located on glass. The free-space intensity measurements 

of the acceptor emission for D-A pairs inside the metamaterial also revealed a strong decrease 

in the acceptor emission attributed to the coupling of the emission to the waveguided mode 

supported by the system at the emission wavelength of the acceptor. For the emitters located 

on top of a gold film, on top of the nanorod-based metamaterial or inside the polymer coated 

metamaterial, the increases in the decay rates of the donor as well as the FRET rates remained 

moderate, and the free-space emission of the acceptor normalised to the donor emission 

increased in all cases compared to the emission intensity on glass. The highest increase in 

intensity was observed in the case of the polymer coated metamaterial. The coating of the 

nanorod-based metamaterial with a thin polymer layer has shown to be a good solution to avoid 

quenching but also strongly reduces the decay rates compared to the emitters located inside the 

bare metamaterial, for which the small separations between the fluorophores and the nanorods 

have a strong effect on the emission rate (20). The homogeneity of the coating still remains a 

challenge and needs to be improved for future experiments. This could potentially be achieved 

by functionalising the gold nanorods with thiols of fixed lengths in order to avoid multi-step 

deposition processes. These results show the potential of highly tunable hyperbolic 
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metamaterial for the control of the energy transfer between emitters and the design of fast and 

enhanced light-emitting devices.   

 

Methods  

Donor-acceptor pairs. For this study, D-A pairs are constituted of ATTO 550 and ATTO 647N 

molecules. These dyes typically exhibit strong absorption (Ɛ ATTO550=1.2×105 M-1.cm-1 at 554 

nm; ƐATTO647N=1.5×105 M-1.cm-1 at 644 nm), high fluorescence quantum yield (QATTO550=0.80; 

QATTO647N=0.65) and high photostability. As presented in Figure S1, the normalised emission 

spectrum of the donor and the normalised absorption spectrum of the acceptor show a spectral 

overlap which is one of the key conditions for FRET to occur. The Förster radius, R0, for these 

two molecules freely suspended in water is equal to 6.5 nm, assuming dynamic random 

averaging of the donor and the acceptor (κ=2/3). In order to control the separation between 

donor and acceptor, the emitters were attached to complementary single-stranded DNA 

oligonucleotides (Eurofins Genomics) of known lengths and then hybridised. Three different 

lengths of DNA strands were used: 10, 20 and 30 base pairs respectively corresponding to 3.4 

nm, 6.8 nm and 10.2 nm, providing three different FRET efficiencies. Prior to hybridisation, 

the complementary oligonucleotides were suspended at the same molar concentration (100 

µmol.L-1) in a water-based annealing buffer composed of 10 mmol.L-1 Tris-HCL, 1 mmol.L-1 

EDTA and 30 mmol.L-1 NaCl. The pH of the solution was then adjusted to 7.85 with NaOH. 

Equal volumes of both complementary strands were then mixed and heated at 90°C for 5 

minutes and cooled to room temperature for an hour. Prior to the measurements, the emitters 

solutions were diluted 100 times to a final concentration of 1 µmol.L-1. 
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Fabrication of the metamaterial. The nanorod-based hyperbolic metamaterials were 

fabricated by electrodepositing gold into a porous alumina template, following the method 

described in Ref. 26. In the case of the bare and polymer coated samples, the alumina matrix 

was removed using a solution of 0.3M NaOH and 99.5% ethanol. The polymer coated nanorod 

sample was then prepared using a layer-by-layer deposition of polyelectrolytes (31). Each 

polyelectrolyte layer was prepared by alternating the deposition of poly(allylamine 

hydrochloride) and polystyrene sulfonate. For each deposition step, the plasmonic gold 

nanorod metamaterial was immersed in a polyelectrolyte solution (10 mg.mL-1 in 1 mmol.L-1 

NaCl aqueous solution) for 30 minutes and washed with pure water (18 MΩ) to remove any 

unbound electrolyte. The layer-by-layer process was initiated with the cationic poly(allylamine 

hydrochloride) layer in order to facilitate the attachment of the first polyelectrolyte layer to the 

gold nanorods through amine-gold interactions. The thickness of the deposited polyelectrolyte 

layer was measured by TEM on a sacrificial sample. The nanorods were pulled off the substrate 

by sonication and subsequently covered with gold nanoparticles (2-3 nm diameter) in order to 

visualise the gap between the nanorods and the gold nanoparticles. To perform the 

measurements, 0.5 µL of solution was drop casted on the different samples.  

 

Optical characterisation. Transmission measurements were taken using a tungsten-halogen 

lamp for varying polarisations and angles of incidence on the sample. The light was collimated 

onto the sample from the substrate side and the transmitted light collected by an objective lens. 

The transmitted light is then coupled to a spectrometer equipped with a CCD camera via a 

multimode optical fibre. An attenuated total reflection (ATR) configuration was used for the 

detection of the waveguided modes, not available from free-space. In this case, the sample was 

placed in contact with a glass semi-cylinder and was illuminated through it. 
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Time-resolved photoluminescence measurements. Time-resolved photoluminescence 

measurements were carried out using time-correlated single photon counting (TCSPC). A laser 

beam from a supercontinuum laser (20 MHz repetition rate, 400 fs pulse, 0.4 mW), filtered 

with a 10 nm bandpass filter centered on 532 nm, was focused on the sample using a high-

numerical aperture oil-immersion objective (100x, NA = 1.49) and the PL signal was collected 

via the same objective. Different sets of filters were used in order to record the decay dynamics 

of both the donor (bandpass 575/40 nm) and the acceptor (bandpass 705/72 nm), and also 

remove the laser contribution to the measured signal (Notch filter 532 nm and longpass >550 

nm filter). 

 

Theoretical FRET Analysis. Considering a single donor and acceptor separated by a distance 

𝑟, the rate of energy transfer Γ𝐹𝑅𝐸𝑇(𝑟) is given by  

Γ𝐹𝑅𝐸𝑇(𝑟) = (
9000 ln 10

128𝜋5𝑁𝐴𝑛4) 𝐽(𝜆)
𝑄𝐷 𝜅

2

𝜏𝐷𝑟6   (1) 

where 𝑛 is the refractive index of the medium in which the D-A pairs are suspended and 𝑁𝐴 is 

Avogadro’s number. The term 𝐽(𝜆)  in equation 1 is an overlap integral, representing the 

spectral overlap between the donor emission and the acceptor absorption spectra, and is defined 

as  

𝐽(𝜆) = ∫ 𝐹𝐷(𝜆)𝜖𝐴(𝜆)𝜆4∞

0
𝑑𝜆  (2) 

where 𝐹𝐷(𝜆) is the donor emission spectrum normalised to an area of 1, 𝜖𝐴(𝜆) is the molar 

extinction coefficient of the acceptor (in units of mol-1.cm-1) and 𝜆 is the wavelength of light 

(in nm). 𝑄𝐷 is the quantum yield of the donor in the absence of the acceptor, 𝜏𝐷 is the lifetime 

of the donor in the absence of the acceptor and 𝜅2 is an orientation factor describing the relative 



21 
 

orientation of the transition dipole moments of the donor and the acceptor. Depending on the 

relative orientation of the donor and acceptor dipole moments, 𝜅2 can take values between 0 

and 4. In the case of dynamic random averaging by rotational diffusion of the donor and 

acceptor, 𝜅2 is usually assumed to be equal to 2/3. However, this value can change in the case 

of static averaging, for which the orientation between donor and acceptor is constrained or does 

not change during the excited-state lifetime (32). The presence of DNA linkers between the 

donor and the acceptor, as used in this study, has been shown to influence the value of  𝜅2 and 

its theoretical determination, specific to each D-A pair, requires the study of the molecular 

binding of the system (33,34). In the case of dynamic random averaging of the donor and 

acceptor in uniform electromagnetic environment, equation 3 can then be expressed in terms 

of the Förster radius 𝑅0, corresponding to the distance at which the probabilities of spontaneous 

decay of the excited donor and energy transfer are equal, yielding 

Γ𝐹𝑅𝐸𝑇(𝑟) =
1

𝜏𝐷
(

𝑅0

𝑟
)

6
  (3) 

In other words, 𝑅0 is the distance between the donor and acceptor at which the efficiency of 

energy transfer is equal to 50 %, leading to the following expression of the FRET efficiency 

𝐸𝐹𝑅𝐸𝑇 =
1

1+(
𝑟

𝑅0
)

6  (4) 

When located in a plasmonic environment, the energy transfer between the donor and acceptor 

can be affected by multiple factors. Both the relative orientation of the donor and acceptor 

dipole moments with regard to the plasmonic environment and the respective distance of the 

donor and acceptor to the plasmonic nanorods contribute to a modified FRET rate and 

efficiency, averaged over all positions and orientations of the D-A pairs. In this study, the 

FRET rate (ΓFRET) and efficiency (EFRET) have been calculated solely from the lifetimes of the 

donor in absence (Γ𝐷) and presence (Γ𝐷𝐴) of the acceptor, using the following equations 
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ΓFRET = ΓDA − ΓD =
1

τDA
−

1

τD
   (5) 

EFRET = 1 −
ΓD

ΓDA
= 1 −

τDA

τD
   (6) 

 

Fluorescence lifetime data analysis. Time-resolved measurements were analysed using an 

inverse Laplace transform method (20,35), allowing the determination of lifetime distributions 

of the donor in the absence and presence of the acceptor. This method does not require any 

preliminary estimation of the lifetime distribution and is based on the solution of the equation 

 𝐼(𝑡) = ∫ 𝐹(𝜏)𝑒
−𝑡

𝜏⁄ 𝑑𝜏
∞

0
  (7) 

where 𝐼(𝑡) is the measured decay deconvoluted from the instrumental response function and 

𝐹(𝜏) is the relative weight of the exponential decay components. In order to account for the 

noise in the experimental fluorescence decays and thus the ill-defined character of inverse 

methods, a constrained regularization procedure was implemented (35,36) and an iterative 

fitting was performed to obtain stable results.. 

 

EMT modelling. The optical properties of the metamaterial were modelled using an effective 

medium theory (EMT) based on Maxwell-Garnett approximation (37). The in-plane (xy-

directions) and out of plane (z-direction) components of the effective dielectric permittivity are 

expressed as 

 𝜖𝑥𝑦
𝑒𝑓𝑓

= 𝜖ℎ
(1+𝑝)𝜖𝐴𝑢+(1−𝑝)𝜖ℎ

(1−𝑝)𝜖𝐴𝑢+(1+𝑝)𝜖ℎ
   (8) 

 𝜖𝑧
𝑒𝑓𝑓

= 𝑝𝜖𝐴𝑢 + (1 − 𝑝)𝜖ℎ   (9) 
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where 𝑝 = 𝜋(𝑟 𝑑⁄ )2 is the nanorod concentration with 𝑟 the radius of the nanorods and 𝑑 the 

distance between the nanorods. 𝜖𝐴𝑢 and 𝜖ℎ are the permittivities of gold and the host medium, 

respectively. This model is valid away from the Brillouin zone edge of the nanorod array. 
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Double-stranded DNA donor-acceptor pairs embedded in a gold nanorod array were used to 

investigate FRET processes inside the hyperbolic metamaterial. 


