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Abstract

Background: Cardiac conduction properties exhibit large variability, and af-

fect patient-specific arrhythmia mechanisms. However, it is challenging to clin-

ically measure conduction velocity (CV), anisotropy and fibre direction. Our

aim is to develop a technique to estimate conduction anisotropy and fibre di-

rection from clinically available electrical recordings. Methods: We developed

and validated automated algorithms for estimating cardiac CV anisotropy, from

any distribution of recording locations on the atrial surface. The first algorithm

is for elliptical wavefront fitting to a single activation map (method 1), which

works well close to the pacing location, but decreases in accuracy further from

the pacing location (due to spatial heterogeneity in the conductivity and fibre

fields). As such, we developed a second methodology for measuring local con-

duction anisotropy, using data from two or three activation maps (method 2:

ellipse fitting to wavefront propagation velocity vectors from multiple activa-

tion maps). Results: Ellipse fitting to CV vectors from two activation maps

(method 2) leads to an improved estimation of longitudinal and transverse CV

compared to method 1, but fibre direction estimation is still relatively poor.
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Using three activation maps with method 2 provides accurate estimation, with

approximately 70% of atrial fibres estimated within 20◦. We applied the tech-

nique to clinical activation maps to demonstrate the presence of heterogeneous

conduction anisotropy, and then tested the effects of this conduction anisotropy

on predicted arrhythmia dynamics using computational simulation. Conclu-

sions: We have developed novel algorithms for calculating CV and measuring

the direction dependency of atrial activation to estimate atrial fibre direction,

without the need for specialised pacing protocols, using clinically available elec-

trical recordings.

Keywords: Conduction Velocity, Anisotropy, Atrial Fibres, Atrial Fibrillation,

Fibrosis.

1. Introduction

Patient specific electrophysiology, anatomy and structure affect atrial fib-

rillation (AF) mechanisms. These features exhibit large variability between

patients, and also change with AF progression. As such, determining each of

their individual contributions to AF dynamics and sustaining mechanisms in

an individual patient is both important and challenging. Changes that occur

during AF that modify atrial conduction include down-regulation and lateral-

isation of connexins, deposition of collagen and interstitial fibrosis, as well as

changes in atrial fibre direction, including fibre disarray [1, 2]. Each of these

factors affect the heterogeneity and anisotropy of atrial conduction. However,

the quantitative relationship between fibrotic remodelling and longitudinal and

transverse conduction velocity (CV), and the effects of each of these on AF in

individual patients are unknown.

Measurements of the velocity and directional dependency of the propagation

of the electrical signal across cardiac tissue can indicate properties of the under-

lying myocardium, where slower CV is thought to occur in diseased tissue [3].

Calculating CV and its anisotropy in clinical electrophysiology cases is a chal-

lenge, and there is currently no agreement on the best technique to quantify CV
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clinically [4, 5, 6, 7, 8]. Typically clinical measurements of conduction properties

calculate the overall conduction speed and previous studies have found corre-

lations between this measurement and other properties, including measures of

atrial fibrosis from structural imaging data [9], electrogram amplitude and frac-

tionation [10], and arrhythmia properties such as critical driver locations [11].

These varied and often weak correlations may represent the presence of distinct

direction dependent changes in conduction [12], requiring the measurement of

both longitudinal and transverse CV to show a clear relationship.

Previous studies have estimated longitudinal and transverse CVs from a

single activation map [13, 14]. However, these methodologies require manual

selection of longitudinal fiber direction, which is not feasible for analysing high-

density global activation maps. We previously developed an automated tech-

nique for estimating CV and source location, assuming a planar or circular wave-

front and constant CV [15], using recordings from an arbitrary arrangement of

points. This algorithm may be applied to any multipolar catheter arrangement,

provided the measuring point locations can be approximated locally as lying on

plane.

Here we initially extend our algorithm to consider an elliptical wavefront of

activation, to automatically provide estimates of both longitudinal and trans-

verse CV from a single activation map (method 1: elliptical wavefront fitting

to a single activation map). The algorithm works in cases of surface curvature

by determining for each subset of recording points on the atrial surface a two-

dimensional flattening that preserves geodesic distances between these surface

points. This methodology performs well in the vicinity of the pacing location,

but the accuracy decreases further from this location due to the effects of het-

erogeneities in the fibre field. As such, we develop a second methodology for

estimating conduction anisotropy using ellipse fitting to planar estimates of CV

measured from two or three pacing directions to estimate the longitudinal fibre

direction, and longitudinal and transverse CV magnitudes (method 2: ellipse

fitting to wavefront propagation velocity vectors from multiple activation maps).

Our aim is to develop a technique that may be used to estimate conduction
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anisotropy and fibre direction from clinically available electrical recordings.

2. Methods

We initially describe a novel methodology for automatically estimating lon-

gitudinal and transverse CV by elliptical wavefront fitting to a single activation

map using a methodology that incorporates surface curvature (method 1; Sec-

tions 2.1- 2.3); we then develop a technique for estimating fibre direction and

anisotropy by ellipse fitting to wavefront propagation velocity vectors estimated

from two or three activation maps (method 2; Section 2.4). Finally, we de-

scribe the clinical data (Section 2.5) and the simulation data (Section 2.6) used

for testing the algorithms.

2.1. CV estimation: assuming a planar or circular wavefront

We previously developed a methodology for calculating the propagation CV

assuming a planar or circular wavefront with isotropic conductivity measured at

an arbitrary arrangement of points. For these two cases we quote the equations,

and direct the interested reader to [15] for a derivation. We will then go on

to derive the equation for an elliptical wavefront in Section 2.2 as might be

observed on a homogeneous anisotropic plane.

Referring to Figure 1 (A), we consider a wavefront that originates from an

unknown source location s = (sx, sy) at an unknown time T , which propagates

with unknown constant speed v. Our known recordings are at measuring loca-

tions xi = (xi, yi), for n measuring points corresponding to i = 0, . . . , n − 1,

ordered by activation time ti. We then express our equations in terms of these

parameters together with the following unknown parameters: φ0, the angle sub-

tended at s by the x-axis and the earliest measuring point x0, and the radius

of curvature d0 = ||x0 − s||, which represents the unknown distance from the

source location s to the the earliest measuring point x0.

For planar wavefronts, the activation time of measuring location xi can be
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derived geometrically as

ti = α0 + α1Xi + α2Yi, (1)

where Xi = xi − x0, Yi = yi − y0 are the differences in the coordinates to the

first measuring points, and α = (T, v−1 cosφ0, v
−1 sinφ0)>. This is a linear

least squares problem, for which the unknown parameters α are solved to give

estimates for v, φ0 and T .

For circular wavefronts, the activation time of point xi can be derived to be

ti = T +
1

v

√
d20 + 2(d0 cosφ0Xi + d0 sinφ0Yi) +X2

i + Y 2
i . (2)

Note that for this case, the source location is given by s = x0 −

d0 cosφ0

d0 sinφ0

.

To solve, we consider

ti = β0 + β1

√
(β2

2 + β2
3) + 2(β2Xi + β3Yi) +X2

i + Y 2
i , (3)

where the coefficients β = (T, v−1, d0 cosφ0, d0 sinφ0)>.

Equation (3) is a non-linear least-squares problem in β, which can be solved

by minimising

√∑m−1
i=0

(
ti − t̂i

)2
. It is solved using lsqnonlin in Matlab, with

initial estimates for φ0 and v derived from the planar fit. The unknowns are

then easily deduced from the values of β.

2.2. CV estimation: ellipse fitting to CV vectors from multiple activation maps

(method 1)

For the case of elliptical wavefronts, we consider an equivalent set-up with

measurements at known recording locations xi, again ordered by activation

time ti, and the following unknowns: a source location s with activation time

T , longitudinal and transverse velocity (CVL and CVT respectively), and ellipse

long axis orientation θ. Our approach is to apply a linear transformation to

map the elliptical wavefront to a circular wavefront, such that the transformed

coordinates satisfy Equation (2). The necessary transformation M (see Figure 1

(B)) consists of a rotation by −θ to align the ellipse long axis onto the x-axis,
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followed by a y-axis scaling to stretch the ellipse short axis to equal the long,

that is:

M =

1 0

0 CVL

CVT

 cos θ sin θ

− sin θ cos θ

 . (4)

Measured  
coordinates

Rotated  
coordinates

Distorted  
coordinatesB

A

θab

xi

x0

φ0

s

φ0

d0

di
x0

xi

s

2

Figure 1: Conduction velocity is estimated assuming planar, circular or elliptical

wavefront propagation. (A) Set-up considered for estimating the CV and source location

of a circular wavefront, from [15] with permission. (B) An elliptical wavefront is mapped to a

circular wavefront by first rotating by −θ and then scaling the y-axis, such that the circular

wavefront algorithm can be applied.

Let d̂0, φ̂0 be the distance and angle from the activation source to the first

activation point after the transformation M is applied. Observe that the trans-

formed Xi, Yi (i.e. X̂i and Ŷi) are unknown functions of CVL, CVT and θ:

X̂i = Xi cos θ + Yi sin θ, (5)

Ŷi =
CVL
CVT

(Yi cos θ −Xi sin θ) . (6)
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Equation 2 then becomes:

ti = T +
1

CVL

√
d̂0

2
+ 2(d̂0 cos φ̂0X̂i + d̂0 sin φ̂0Ŷi) + X̂i

2
+ Ŷi

2
. (7)

Substituting for X̂i and Ŷi in terms of knowns Xi and Yi, we get:

ti = γ0 + γ1

[
(γ22 + γ23) + 2γ2

(√
1− γ25Xi + γ5Yi

)
+ 2γ3

(
γ4

√
1− γ25Yi − γ4γ5Xi

)
+

(√
1− γ25Xi + γ5Yi

)2

+

(
γ4

√
1− γ25Yi − γ4γ5Xi

)2 ] 1
2

,

(8)

where the coefficients γ = (T, 1
CVL

, d̂0 cos φ̂0, d̂0 sin φ̂0,
CVL

CVT
, sin θ)>.

Upon numerically solving for γ and deducing ŝ, the original source location

is found by applying the inverse transformation M−1:

s =

cos θ − sin θ

sin θ cos θ

1 0

0 CVT

CVL

 ŝ. (9)

2.3. Geodesic distances

We assume that the atrium is thin-walled with fibers running tangentially,

and that it is transmurally homogeneous. CV calculations were performed on

atrial surface meshes generated from an electro-anatomic mapping (EAM) sys-

tem, or on simulation meshes downsampled to match the resolution of the EAM

system meshes. For method 1, CV vectors were calculated for each element of

the mesh using recording locations within an area of 1cm × 1cm around the ele-

ment mid-point, to model recordings from electrodes on a multi-polar catheter,

and provide a sufficient number of points for fitting. For method 2, a smaller

area of 0.5cm × 0.5cm was used to calculate more local planar CV (mean num-

ber of points included in the fit: 19.97 ± 0.41, range 12-20). These areas were

determined in initial parameter sensitivity testing.

To reduce the dimensionality of the 3D recording locations to 2D space, a

representation that best preserves the geodesic distances in the locality of the

selected recordings was used; shown in Figure 2. First of all, a subset of the
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mesh was taken for analysis, by selecting the vertices that are within a bounding

box of the recording point subset (Fig 2 A). The geodesic distances between all

of these vertices were calculated using Dijkstra’s algorithm, which finds the

shortest path between vertices (Fig 2 B). We then use the multi-dimensional

scaling approach of Zigelman et al. on the matrix of geodesic distances to give

2D coordinates that best preserve geodesic distances [16, 17] (Fig 2 C).

To estimate CV for the 2D locations with associated activation times, we

considered each of the planar, circular and elliptical wavefront equations. CV

estimates were calculated for random selections (using randperm in Matlab) of

twenty recording locations together with their activation times (Fig 2 D). In the

instance that there were fewer than twenty recording locations in a region, all

recordings were used for the fit. CV vectors were estimated in 2D (see Fig 2 D,

bottom left arrow) and translated to start at the mid-point of the element clos-

est to the centre of the patch of tissue (see Fig 2 D, central arrow). CV vectors

were then projected back to the 3D geometry using barycentric coordinates to

preserve the relative location within the element of the CV vector start point

(centre of the element) and end points (Fig 2 E). In this way, assuming ellip-

tical wavefront propagation with homogeneous CV, conduction anisotropy was

estimated from a single activation map by fitting to activation times measured

at a set of recording locations.

2.4. Ellipse fitting to CV vectors from multiple activation maps (method 2)

Cardiac tissue conducts anisotropically, with faster conduction along the

longitudinal fibre direction, and slower conduction transverse to the fibres. As

such, CV depends on direction of propagation, with the set of possible wavefront

propagation CV vectors approximately forming an ellipse [13]. We assume here

that atrial tissue propagation can be approximated by a monodomain surface

model, and that clinical and simulated wavefronts can be modelled with an

elliptical wavefront equation. In the instance that multiple activation maps

constructed from different pacing sites were available, conduction anisotropy

was instead estimated by fitting an ellipse to the observed set of wavefront
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Activation map

0 145 80 92

(ms) (ms)

Geodesic calculation

0 13
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Local 2D flattening
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CV estimation
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CV: 1.08m/s
(ms)

0.3 1.8
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CV spatial map

A B

C D E

*

Figure 2: Methodology for estimating CV on an atrial surface mesh. (A) Select a

local patch of tissue (1cm × 1cm) from an activation time map for analysis, centred around

a measurement location. (B) Calculate geodesic distances on this patch of tissue. These

are shown from an example vertex (indicated by the asterisk) to all other vertices, and then

calculated with each vertex as a starting node to obtain a matrix of geodesic distances. (C)

Flatten this patch to 2D using a geodesic method to preserve distances. (D) Estimate the speed

and direction of the wave propagation for a subset of 20 of the recording locations. Assign the

CV vector to the central measurement location. (E) Repeat for each point of the geometry

to build up a spatial map of wavefront propagation velocity assuming a planar wavefront,

or of longitudinal and transverse CV with ellipse orientation indicating the longitudinal fibre

direction assuming an elliptical wavefront.
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propagation velocity vectors (assuming planar propagation), with one vector

from each activation map. In this case, we assume that wavefront curvature

is sufficiently small that the speed is independent of curvature and a planar

wavefront fit is appropriate.

The equation of an ellipse is given parametrically for t ∈ [0, 2π) as:x
y

 =

x0
y0

+

cos θ − sin θ

sin θ cos θ

a cos t

b sin t

 , (10)

where (x0, y0) is the known centre location corresponding to the element mid-

point, θ is the unknown long axis orientation and a and b are the unknown long

and short axis magnitudes corresponding to the longitudinal and transverse CVs

respectively, giving a total of three unknowns.

We followed the method of Ray and Srivastava [18] for fitting to an ellipse.

Specifically, to find the best fit ellipse to the CV vector end-points, we minimised

the residuals measured along radii of the ellipse.

We first considered the case of two activation maps, in which we either fixed

the ellipse orientation or anisotropy ratio, and then the case of three activation

maps for which it was possible to estimate all three unknowns. In each case,

the CV vectors were projected to 2D to estimate the ellipse fit, and then the

calculated long axis vector direction was expressed back on the 3D geometry

using a barycentric coordinate mapping.

For the case of fixed ellipse orientation (i.e. θ known in Equation 10), we

used an atlas of endocardial atrial fibres from a previously published bilayer

model [19] mapped to our target geometry using our universal atrial coordinate

system [20]. We assumed that endocardial activation patterns were predomi-

nantly determined by endocardial fibres. Ellipse orientation for each element

was then aligned such that the long axis of the ellipse was in the longitudinal

fibre direction, see Figure 3. In this way, longitudinal CV (a) and transverse

CV (b) could be estimated locally using just two CV vectors. Alternatively, we

fixed the anisotropy ratio (a
b ) and fitted both the ellipse orientation (θ) and

longitudinal CV (a).
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First CV map

Second CV map

Fibre atlas

Longitudinal CV

Transverse CV

0 2

(m/s)

Fibre direction

CV1

CV2

Figure 3: Technique for estimating longitudinal and transverse CV from two ac-

tivation maps (method 2). Wavefront propagation velocity maps constructed from two

activation maps with different pacing locations (Bachmann’s bundle and the coronary sinus)

are combined with a fibre atlas to estimate longitudinal and transverse CV. Planar CV is es-

timated for each of the activation maps; the colour indicates the CV magnitude, and the lines

indicate the CV vector directions. The ellipse orientation is fixed such that the longitudinal

CV runs along the fibre direction (indicated by the lines on the fibre atlas panel) and the

transverse CV runs perpendicular to the fibres. The ellipse that best fits the two planar CV

vectors is calculated. Longitudinal and transverse CV are then given by the magnitude of the

major and minor radii respectively. The two heterogeneous wavefront propagation CV maps,

calculated using the planar CV algorithm, are converted to a higher homogeneous longitudinal

CV and lower transverse CV map.
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2.5. Clinical electroanatomic and imaging data

The patient studied was a 78 year old male undergoing a first clinically

indicated left atrial ablation procedure for the treatment of paroxysmal AF

who provided written informed consent for inclusion in the study. The study

protocol was approved by a Research Ethics Committee (reference 15/LO/1803,

http://www.isrctn.com/ISRCTN10910054). Cardiac magnetic resonance (CMR)

imaging was acquired prior to the procedure including atrial 3D contrast en-

hanced gated magnetic resonance angiogram (GMRA) and 3D late gadolinium

enhanced (LGE) imaging. The high contrast GMRA was segmented accord-

ing to an in-house segmentation pipeline to generate a left atrial endocardial

geometry [21].

Paced maps were acquired while pacing at two different locations along a de-

capolar catheter that was positioned in the coronary sinus (CS) throughout the

procedure. Left atrial geometry was created within the Carto electro-anatomic

mapping system (EAMS) (Biosense Webster, Irvine, CA) using Fast Anatomical

Mapping (FAM) following respiratory training. Mapping points were acquired

using a Lasso catheter (1mm electrodes, 4mm electrode spacing) and activa-

tion times annotated on the bipolar electrograms using the automated Carto

ConfiDense module with the following settings: LAT stability - 4ms; Catheter

stability - 4mm; point density - 1mm. Ellipse fitting to CV vectors from two

activation maps (method 2) was used to predict the longitudinal and transverse

CV, assuming an atlas distribution of fibres (i.e. θ known in Equation 10).

2.6. Simulations

To test the robustness of the algorithms in a controlled environment, we

ran simulations using the monodomain tissue model and Courtemanche et al.

human atrial cell model [22] on a left atrial (LA) geometry, using the CARP

simulator [23]. A finite element mesh was constructed from the segmented

MRI geometry by remeshing to create a more homogeneous element size of

300µm using mmgtools software (http://www.mmgtools.org/), and then fiber

directions were assigned to the element mid-points of the mesh by mapping the
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endocardial LA fibre direction field of an atrial bilayer model [19], which we

treat here as an atlas distribution. AF electrical remodelling and repolarisation

heterogeneity were included in the model by modifying the cell model ionic

conductances of the LA body, left atrial appendage (LAA) and pulmonary veins

(PVs) as in our previous studies [24, 25].

To simulate atrial pacing in the catheter laboratory, activation maps were

constructed by stimulating the model in the following locations: the left superior

PV (LSPV), the right superior PV (RSPV), the LAA, the proximal coronary

sinus (CS), the distal CS and where Bachmann’s bundle (BB) meets the LA

wall. These data were used as inputs for the CV estimation algorithms (meth-

ods 1 and 2). The resulting estimates of longitudinal and transverse CV and

longitudinal fibre direction were compared to the gold standard simulation val-

ues. The gold standard simulation values for the longitudinal and transverse

CV were each calculated as the planar CV estimated by fitting to 100 points

for a homogeneous isotropic 2D sheet simulation with either the longitudinal

or transverse conductivity value. Results are expressed as the median and in-

terquartile range (iqr) of the absolute error in CV measurements, or the error in

fibre angle expressed as a value in the range [0, 90). Regions of the spatial map

were defined as accurate when the angle error was less than 20◦. The accuracy

of the ellipse fitting algorithms using CV vectors from two or more activation

maps (method 2) depends on accuracy of the planar wavefront propagation CV

estimates, which are then used to estimate the anisotropy. Areas of wavefront

collision result in inaccurate planar CV estimates (with high fit residuals) be-

cause the assumption of a single wavefront breaks down. For these locations,

fibre directions and CV magnitudes were interpolated from neighbouring values

using Shepard interpolation.

2.7. Incorporating clinically measured conduction anisotropy in simulation stud-

ies

To investigate the effects of atrial conduction properties on arrhythmia dy-

namics, models were constructed with different conductivity properties. The
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first model was tuned isotropically to match the spatial distribution of longi-

tudinal CVs, such that the effects of fibre direction and conduction anisotropy

were ignored. The second model was tuned anisotropically to match local lon-

gitudinal and transverse CV estimates from the clinical data.

Similar to our previous study [26], sinus rhythm pacing was applied at the

earliest activation site of the LA as reported by Lemery et al [27] at a cycle

length of 700ms. Reentry was initiated in the model by rapidly pacing the

RSPV at a cycle length of 160ms for five beats, to model spontaneous initiation

by ectopic PV triggers [28], at a coupling interval following sinus rhythm chosen

depending on inducibility. To indicate the distribution of rotational activity

and wavefront breakup locations in the simulation output, phase singularity

(PS) density maps were calculated as in our previous publications [24, 26, 25].

These maps were then partitioned into low and high PS regions, which were

taken to be > 1 standard deviation from the mean PS value [26].

3. Results

3.1. Validation of elliptical wavefront fitting (method 1) in 2D simulations

The single activation map elliptical wavefront fitting algorithm (method 1,

Section 2.2, Equation 8) was first applied to data from a two-dimensional sheet

simulation, with homogeneous CV and fixed anisotropy, with longitudinal fibres

aligned with the x-axis. This is shown in Figure 4. Wavefront propagation CV

magnitude is higher when the activation is aligned with the fibre direction (see

Figure 4 (A)). Using the activation time map shown in Figure 4 (B) to estimate

the atrial fibre direction shows that the algorithm more accurately predicts the

fibre direction close to the source location, indicated by the closer alignment of

the estimated fibres with the x-axis in the centre of the domain (see Figure 4

(E)). Longitudinal fibre estimation was accurate; median error 0.6◦ (iqr: 0.2-

1.1◦). Longitudinal CV magnitude estimation is accurate close to the pacing

location (green region in Figure 4 (C)), but overestimated further from the

pacing location (red region in Figure 4 (C)); median absolute error: 0.03m/s
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(iqr: 0.01–0.06 m/s) (simulation value 1.10m/s). The algorithm accurately

estimates the transverse CV magnitude (shown by the homogeneous distribution

in Figure 4 (D)); median absolute error 0.03m/s (iqr: 0.02–0.04 m/s) (simulation

value 0.55m/s).

A B C

D
0 1050 2

(m/s) (ms)

0 2

(m/s)

E

Figure 4: Validation of elliptical wavefront fitting (method 1) in 2D simulations

for a homogeneous anisotropic sheet. (A) Planar CV magnitude and direction vectors

(displayed as black arrows). (B) Activation time map with predicted fibre direction overlaid

(displayed as black lines). (C) Estimated longitudinal CV (gold standard longitudinal CV is

1.10m/s). (D) Estimated transverse CV (gold standard transverse CV is 0.55m/s). (E) Box

plots at 1mm intervals showing the distribution of angle errors as a function of position along

the y-axis.

3.2. Application of the ellipse wavefront fitting algorithm (method 1) to atrial

geometry simulations

The single activation map elliptical wavefront fitting algorithm (method 1,

Section 2.2, Equation 8) was next tested on realistic atrial geometry simulations.

The ability of the algorithm to accurately estimate longitudinal and transverse
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CV and fibre direction is quantified in Table 1 for six pacing locations. The

median estimated longitudinal and transverse CV magnitudes were close to the

actual values for all pacing locations (range of median values for longitudinal

CV: 1.09− 1.15m/s, actual 1.10m/s; range of median values for transverse CV:

0.54−0.60m/s, actual 0.55m/s). Longitudinal and transverse CV error and fibre

direction angle error are relatively similar across the pacing locations. The per-

centage of the atrial surface area for which atrial fibres are accurately estimated

is also similar (39.43− 47.07%).

Table 1: Single activation map ellipse wavefront fitting algorithm (method 1) re-

sults. Simulation longitudinal CV is 1.10m/s, transverse CV is 0.55m/s. Accurate (%) is the

percentage of the atrial area for which the angle estimation is within 20 degrees of the input

fibre direction. Errors are quoted as the median of the absolute errors and the iqr.

Pacing Error CVL (m/s) Error CVT Error θ (◦) Accurate %

BB 0.26 (0.08− 0.76) 0.16 (0.06− 0.29) 25.6 (9.8− 54.2) 42.82

CS1 0.27 (0.09− 0.73) 0.15 (0.06− 0.27) 24.8 (9.2− 54.2) 44.02

CS2 0.26 (0.08− 0.79) 0.17 (0.08− 0.31) 28.8 (10.7− 59.9) 39.43

LAA 0.34 (0.13− 0.87) 0.12 (0.04− 0.24) 22.2 (8.9− 47.2) 46.75

LSPV 0.33 (0.15− 0.68) 0.10 (0.04− 0.21) 21.7 (9.6− 44.9) 47.07

RSPV 0.28 (0.11− 0.69) 0.15 (0.06− 0.27) 25.6 (10.4− 52.6) 42.35

The spatial distributions of angle error and longitudinal and transverse CV

estimates indicate that these values are generally more accurate close to the

pacing location, and less accurate further away. Changes in fibre direction be-

tween the pacing location and recording location mean that the assumption of

fixed CV along a fixed longitudinal and transverse fibre axis no longer holds

and estimates are less accurate. An example is shown in Figure 5 with pacing

from the LSPV (Figure 5 A). The LSPV map is more accurate on the posterior

wall and roof (B, C and H) since the pacing location is closer to these regions,

and less accurate on the anterior wall (I). The longitudinal and transverse CV

maps are more homogeneous than the corresponding planar wavefront propa-

gation velocity map; however, there are regions in which the longitudinal CV is
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overestimated (red and white regions in B, resulting in larger errors in D). Fibre

directions in the atrial body are well estimated by the algorithm (compare the

atlas fibres shown in F and G and the predicted fibres in H and I); however, there

are inaccuracies where there are abrupt changes in fibre direction in the input

map (for example on the posterior wall below the left inferior PV, Figure 5 G

and H). As such, fibre direction and longitudinal and transverse CV cannot be

accurately estimated for the entire atrial surface from a single activation map.

3.3. Validation of anisotropy and fibre direction estimation from multiple sim-

ulated activation maps (method 2).

The methodology developed for estimating fibre direction and anisotropy by

ellipse fitting to wavefront propagation velocity vectors from multiple activa-

tion maps (method 2, Section 2.4, Equation 10) was tested on atrial geometry

simulations. The dependence of the ellipse fitting methodology on the choice of

underlying activation maps was investigated by varying the activation pacing

directions used for the estimation.

Table 2 shows results using two activation maps, assuming an atlas distribu-

tion of fibre directions (i.e. assuming θ is known in Equation 10). Longitudinal

CV magnitude estimates show a similar degree of error to the single activa-

tion map ellipse fitting method 1, whereas transverse CVs are estimated more

accurately (range of median absolute errors in transverse CV for method 1:

0.10− 0.17m/s and for method 2: 0.06− 0.10m/s).

Table 2: Two activation map ellipse fitting results, using an atlas of fibre directions

(method 2). Simulation longitudinal CV is 1.10m/s, transverse CV is 0.55m/s. Errors are

quoted as the median of the absolute errors and the iqr.

Pacing Error CVL (m/s) Error CVT (m/s)

BB-LSPV 0.22 (0.06− 0.88) 0.07 (0.03− 0.15)

CS1-LSPV 0.31 (0.08− 0.90) 0.06 (0.03− 0.12)

CS2-BB 0.11 (0.04− 0.42) 0.09 (0.04− 0.18)

RSPV-LAA 0.34 (0.09− 0.90) 0.06 (0.03− 0.13)

17



0 150

(ms)

0 2

(m/s)

0 90

(deg)

A B C

D E F

G H I
0 0.9

(m/s)

Figure 5: Ellipse wavefront fitting algorithm for a single activation map (method 1)

applied to atrial geometry simulations. An example is shown here with pacing from the

LSPV. (A) Activation map. (B) Longitudinal CV. (C) Transverse CV. (D) Absolute error in

longitudinal CV. (E) Absolute error in transverse CV. (F) Atlas fibre map used for simulation

(shown as black lines) in anteroposterior view. (G) Atlas fibre map in posteroanterior view.

(H) Estimated fibre direction map coloured by angle error, with correctly estimated areas

shown in blue, and incorrectly estimated areas in red for the posteroanterior view. Estimated

fibre directions are displayed as black lines. (I) Equivalent map to (H) for the anteroposterior

view.
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For the case of assumed anisotropy ratio (i.e. assuming a/b is known in

Equation 10), the longitudinal CV is estimated more accurately than using

method 1 or method 2 for the case of assumed fibre direction (range of median

absolute errors in longitudinal CV for method 1: 0.26−0.34m/s and for method

2 with assumed anisotropy ratio: 0.17 − 0.20m/s). However, fibre direction

estimation is less accurate (method 2 with assumed anisotropy ratio: median

angle error 26.9–35.0◦, accurate region 30.0–39.7%).

The algorithm was next applied to simulations with three activation maps

from different pacing directions (method 2, Section 2.4, Equation 10). Figure 6

shows an example set-up in which the fibre direction estimation and longitudinal

and transverse CV estimation are visually better than the results of applying

the ellipse fit to a single activation map (method 1). For all three combinations

of pacing directions tested, there are areas of the map in which angle estimation

is inaccurate; however, these regions are much smaller than the cases using one

or two pacing directions. These areas are typically in the vicinity of wavefront

collision in one of the underlying activation maps (for example the collision

region ranging from the RSPV to the MV in Figure 6 B is seen as an area

of high angle errors in Figure 6 F), or are regions where the three activation

maps display similar CV vector directions. Regions corresponding to wavefront

collision in one of the planar maps are excluded from the ellipse fitting algorithm

by employing a threshold on the planar fit residual, since the planar CV vectors

are inaccurate in this case (the assumption of a single wavefront breaks down,

see yellow regions in Figure 6 J-L), and replaced by interpolated vectors, which

introduces error (compare Figure 6F with J-L).

The accuracy of the three activation map method is quantified in Table 3.

Transverse CV is estimated with increased accuracy compared to the previous

methodologies, and approximately 70% of fibre directions are estimated accu-

rately for this method, compared to 30 − 50% for the cases with one or two

pacing directions (compare Tables 1, 2 and 3). To test the effects of the pla-

nar wavefront approximation on the estimated CV values used as the input to

method 2, we compared planar and circular CV estimates. CVs for the planar

19



and circular fits were similar: mean absolute difference in planar and circular

CVs: 0.03± 0.07m/s; 5.9% of points with CV difference >0.1m/s.

Table 3: Three activation map ellipse fitting algorithm (method 2) results from

testing on simulated data. Simulation longitudinal CV is 1.10m/s, transverse CV is

0.55m/s. Accurate (%) is the percentage of the atrial area for which the angle estimation is

within 20 degrees of the input fibre direction. Errors are quoted as the median of the absolute

errors and the iqr.

Pacing Error CVL (m/s) Error CVT Error θ (◦) Accurate %

CS1-LSPV-BB 0.17 (0.06− 0.76) 0.06 (0.03− 0.11) 11.8 (5.26− 24.9) 67.74

RSPV-CS2-LAA 0.17 (0.06− 0.86) 0.06 (0.03− 0.11) 10.7 (4.92− 21.5) 72.33

BB-LAA-LSPV 0.19 (0.06− 0.88) 0.06 (0.02− 0.11) 12.1 (5.40− 24.8) 68.09

3.4. Effects of errors in assumed fibre field on longitudinal and transverse CV

estimation

Ellipse fitting to wavefront propagation velocity vectors using two activation

maps (method 2, Section 2.4, Equation 10) requires an additional assumption

to fit the three unknown parameters; for example, θ may be assumed from

an atlas. Since patient-specific atrial fibres are not known, and an individual

patient may show large deviations from any given fibre atlas, we investigated the

effects of deviations in the assumed fibre atlas from the actual fibre directions

on estimated longitudinal and transverse CV using simulation. The results of

adding Gaussian error terms to fibre direction are shown in Table 4. The error

terms are independent identically distributed normal error terms of a given

standard deviation, and the resulting median absolute error in both longitudinal

and transverse CV increases with increased perturbation in fibre direction.

3.5. Clinical example using method 2 with an assumed fibre atlas

Figure 7 shows the results of estimating anisotropy by applying the ellipse

fitting algorithm to wavefront propagation velocity vectors from two clinically

recorded activation maps, assuming an atlas distribution of fibre directions
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Figure 6: Estimating anisotropy and fibre direction by ellipse fitting to planar

wavefront propagation CV estimates from three simulated activation maps. Ac-

tivation maps with planar wavefront propagation CV vectors overlaid (black arrows) from

pacing at (A) BB, (B) proximal CS, (C) LSPV. Anteroposterior views for (D) longitudinal

CV map, (E) transverse CV map, (F) estimated fibre direction map coloured by fibre angle

error (estimated fibre directions are displayed as black lines). Posteroanterior views for (G)

longitudinal CV map, (H) transverse CV map, (I) estimated fibre direction map coloured by

fibre angle error. Average residuals for pacing at (J) BB, (K) proximal CS, (L) LSPV.
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Table 4: The effects of random errors in the assumed fibre atlas on longitudinal

and transverse CV estimation.

Angle perturbation sd (deg) Error CVL (m/s) Error CVT (m/s)

0 0.11 (0.04− 0.42) 0.09 (0.04− 0.19)

14.3 0.17 (0.05− 0.44) 0.11 (0.05− 0.24

28.6 0.22 (0.08− 0.43) 0.16 (0.07− 0.29)

43.0 0.24 (0.10− 0.41) 0.20 (0.08− 0.32

57.3 0.25 (0.12− 0.40) 0.22 (0.10− 0.33)

(method 2, Section 2.4, Equation 10, with θ from an atlas). CV is seen to exhibit

anisotropy since the estimated longitudinal CV values are higher than the trans-

verse values. The distribution of longitudinal and transverse CV are spatially

heterogeneous, and the ratio between them is also heterogeneous (for example

both are high on the LA roof, whereas there are larger differences between them

on the posterior wall). This is quantified as a histogram of anisotropy values

in Figure 7(C), in which a large range of values is observed, with a mean of

1.49± 0.24.

3.6. Simulating heterogeneous CV and heterogeneous anisotropy

The effects of calibrating CV and its anisotropy by matching local longi-

tudinal and transverse CV measurements (a heterogeneous CV field with het-

erogeneous anisotropy) was compared to tuning to longitudinal CV alone (an

isotropic heterogeneous CV field). These models differ in their reentry dynam-

ics and rotor locations, as shown in Figure 8. This is quantified in the box and

whisker plots in Figure 8, in which PSs anchor to regions of low longitudinal CV

for the isotropic case; that is, median longitudinal CV in high phase singularity

(PS) regions is significantly lower than in low PS regions (1.25m/s in high PS

regions vs 1.46m/s in low PS regions, p<0.001 by two-sided Wilcoxon rank sum

test). However, for the anisotropic case, this association is lost and the longitu-

dinal and transverse CV do not change between low and high PS regions (see

Figure 8 F). As such, anisotropy plays a significant role and removes any direct
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Figure 7: The left atrium clinically exhibits heterogeneous anisotropy in CV. (A)

Calculation of longitudinal and transverse CV maps. Two CV maps were constructed by

assuming planar wavefront propagation for activation maps paced from the proximal and

distal CS. Ellipse orientation was fixed using an atrial fibre atlas, and then the long and short

axis magnitudes were estimated by fitting to the two local CV vectors to estimate longitudinal

and transverse CV (method 2 with θ fixed). Black arrows for the CV maps indicate planar

CV direction, and black lines for the fibre atlas indicate the fibre direction. Black regions of

the mesh are not included in the calculations. (B) Activation time maps corresponding to

the CV maps given in A. Orange regions of the mesh indicate excluded areas. (C) Spatial

anisotropy map and histogram of anisotropy ratios, with mean 1.49 ± 0.24.
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effect of CV on PS location.
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Figure 8: Heterogeneous CV and heterogenous anisotropy modelling removes any

direct effect of CV on PS location in simulation studies. (A) Longitudinal CV (pos-

teroanterior and anteroposterior views). (B) Transverse CV. Black regions of the mesh are

not included in the calculations. Phase singularity density maps for isotropic conductivity in

(C) and anisotropic conductivity in (D). Mean number of PSs is 1.45 for the isotropic case and

1.28 for the anisotropic case. (E) Box and whisker plots showing the longitudinal CV values

in low and high phase singularity (PS) regions for the isotropic conductivity simulations. (F)

Box and whisker plots showing the longitudinal CV and transverse CV values in low and high

phase singularity (PS) regions for the anisotropic conductivity simulations.

4. Discussion

4.1. Main findings

We have developed and tested automated algorithms for estimating cardiac

conduction anisotropy, including longitudinal and transverse CV and fibre di-

rection, from distributions of recording locations. The algorithms work for any

arrangement of points on the atrial surface and for any pacing location. The first
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algorithm is applied to a single activation map by fitting to elliptical wavefront

propagation (method 1), which works well close to the pacing location; however,

it decreases in accuracy further from the pacing location where the assumption

of homogeneous conduction anisotropy breaks down. As such, we developed

a methodology for measuring local conduction anisotropy – to capture hetero-

geneities in fibre direction – and longitudinal and transverse CV using data

from two or three activation maps (method 2). The use of two activation maps

requires an additional assumption: either that the atrial fibres follow an atlas

distribution of fibres, or that the anisotropy ratio is known. Ellipse fitting to

CV vectors from two activation maps leads to an improved estimation of lon-

gitudinal and transverse CV compared to the single activation map elliptical

wavefront technique (method 1), but fibre direction estimation is still relatively

poor. Using three activation maps (method 2) to estimate the longitudinal and

transverse CV and atrial fibre direction provides a more accurate estimation,

with approximately 70% of atrial fibres estimated within 20 degrees. We applied

the technique to clinical activation maps to demonstrate the presence of hetero-

geneous conduction anisotropy, and then tested the effects of this conduction

anisotropy on predicted arrhythmia dynamics using computational simulation.

These techniques may be applied to measure the direction dependency of atrial

activation, without the need for specialised pacing protocols, in order to relate

conduction anisotropy to other clinical variables.

4.2. Algorithm validation

The single activation map elliptical wavefront fitting algorithm (method 1)

extends our previous planar and circular fitting algorithms [15] by assuming an

elliptical propagation wavefront to provide an estimate of both longitudinal and

transverse CV and fibre direction. The elliptical wavefront fit is derived from

our circular wavefront fit by applying a linear transformation to convert ellip-

tical wavefronts to circular wavefronts (see Figure 1). The technique requires a

minimum of five recording points per fit, compared to the requirement of three

for the planar wavefront and four for the circular wavefront, which increases

25



resolution requirements, or equivalently decreases measurement locality. This

technique assumes homogeneous propagation of the elliptical wavefront between

the source location and recording points, which requires a homogeneous fibre

field with homogeneous longitudinal and transverse CV. As such, the technique

decreases in accuracy with increased distance from the source location, since

underlying fibre fields are typically heterogeneous (see Figure 5). To measure

heterogeneities in the fibre field, a second methodology was developed that esti-

mates local conduction anisotropy by ellipse fitting to local CV vectors measured

from multiple activation maps (method 2). As such, method 2 has greater data

requirements since multiple activation maps are required, but it likely has the

advantage that it provides a more local measure.

For two activation maps (method 2), a further assumption is required to

fit the three unknowns (Equation 10), and the choice of whether to assume

an atlas distribution of fibres (θ) or a known anisotropy ratio (a/b) depends

on a balance between which is known with more certainty and which is the

more desirable measurable. Our sensitivity testing showed that estimation is

sensitive to the assumed anisotropy ratio, the atlas distribution of fibres and

the measurement area used for the CV estimation. The optimal region size will

depend on the wavelength of the underlying propagation [29], the tissue depth,

the point density, and the recording device.

The single activation map technique (method 1) showed similar overall ac-

curacy across pacing locations, but each estimation was more accurate in the

locality of the pacing location, which should be considered when selecting pacing

locations. The multiple activation map technique (method 2) was sensitive to

both areas of wavefront collision in the activation maps and may also decrease

in accuracy in areas where CV vectors across each map are close to collinear; as

such, pacing locations should be chosen as sites that are as close to orthogonal

as possible. The combinations tested in this study show similar overall accuracy,

and importantly three maps characterise a large proportion of the atrial surface,

without the need for special pacing protocols for each atrial region. Method 2

with three activation maps was far superior to both method 1 and method 2
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with two activation maps, suggesting these additional data requirements may

be justified in studies investigating anisotropy. However, method 2 with three

activation maps is more computationally intensive; run times are as follows for

Matlab running on a MacBook Pro: method 1 with 500 points: 3 minutes;

method 1 with 5000 points: 28 minutes; method 2 (2 maps), 500 points: 7

minutes; method 2 (2 maps), 5000 points: 66 minutes; method 2 (3 maps), 500

points: 10 minutes; method 2 (3 maps), 5000 points: 94 minutes.

4.3. Comparison to other methodologies

Our methodology for calculating CV assuming either planar, circular or el-

liptical wavefront propagation is a cosine-fit type algorithm, which extends the

work of Weber et al. [30] and Roney et al. [15] to work for different types of

wavefronts and any arrangement of points on a curved surface. We incorporated

surface curvature into our CV estimation in a similar way to Verma et al. [8].

The elliptical wavefront formulation extends the circular wavefront algorithm to

give an estimate of conduction anisotropy, as well as source location. Mazeh et

al. [31] derived an analytic expression for CV and curvature from four recording

points on either a square or a circle. Their algorithm is similar to our circu-

lar wave fitting algorithm (Section 2.1), which generalises to any arrangement

of measuring points [15]. Several previous studies use triangulation methods,

which have the advantage that they provide a very local measure of CV, but are

also sensitive to noise in activation times [6, 4] and assume planar propagation.

Our methodology works for any arrangement of recording points, rather than

requiring a regular grid of recordings [32], and it is fully automated. One major

disadvantage of our method is that it assumes a single wavefront underlying the

recording points. The fit residual indicates whether this is a suitable assump-

tion, and the data may be divided into separate wavefronts as a pre-processing

step. Both polynomial surface fitting [33] and radial basis function methodolo-

gies [34] are suitable for multiple wavefronts and any arrangement of points,

but have larger data requirements and may over interpolate data. Kay and

Gray developed a method for estimating wavefront curvature from isopotential
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lines, which they demonstrate is accurate for high resolution optical mapping

data [35]. Their technique could be extended to estimate curvature from lines

of constant phase or normalised unipolar electrogram voltage, but it has larger

data requirements than our our methodology.

Linnenbank et al. [13] also measured longitudinal and transverse CV from

a single activation map, where they investigate the effects of grid size on their

methodology. Our methodology offers an extension to their method by auto-

matically selecting the longitudinal direction, which is necessary for processing

large quantities of clinical data. Post-processing of the CV vector fields to cal-

culate the divergence and curl operators may allow further characterisation of

underlying activation patterns, including identification of electrical sources and

reentrant activity [36]. Our techniques could be applied to activation times as-

signed using other methodologies, or from phase mapping [37]. Other studies

have investigated the relationship between voltage and CV with fibre direction

[38].

4.4. Clinical conduction exhibits heterogeneous anisotropy

We provide a proof of principle example, which shows that the methodology

may be applied to clinical data to measure heterogeneous longitudinal and trans-

verse CV across the LA (see Figure 7). Heterogeneities in these measurements

may be important in determining critical sites that sustain AF, and measuring

the directional dependency of atrial conduction may show improved correlations

with measures of structural remodelling. For example, Krul et al. measured a

slowing of transverse conduction but not longitudinal with increased fibrosis in

the left atrial appendage [12], and Angel et al. demonstrated diverse fibrosis

architecture with decreased transverse CV in goats [39]. Considering transverse

CV and longitudinal CV separately may improve correlations with atrial fibrosis

[9]. The effects of the number of activation maps on the estimated atrial fibre

direction from clinical data will be investigated in future studies.
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4.5. Anisotropy affects rotor location

Our simulation studies (see Figure 8) demonstrate the importance of conduc-

tion anisotropy in determining arrhythmia dynamics. In particular, simulated

rotor location changes when both longitudinal and transverse conductivity val-

ues are tuned, and the association between rotor location and low CV seen in

the isotropic case is no longer seen in the anisotropic case. This is an important

consideration when constructing patient-specific models.

4.6. Determining atrial fibre direction

It is not possible to measure atrial fibre directions globally in vivo using cur-

rent imaging technologies. Previous studies have applied diffusion tensor (DT)-

MRI to small sections of atrial tissue, for example the sino-atrial node [40], to the

whole atria ex-vivo [41], or have used micro-CT [42] or contrast-enhancement

MRI [43] to construct myofibre orientation. The high resolution atrial DT-MRI

study of Pashakhanloo et al [41] demonstrates inter-patient variability, while

simulation and experimental studies suggest that atrial fibre directions may af-

fect arrhythmia dynamics and the outcome of ablation strategies [44, 45, 25]. As

such, inferring patient-specific atrial fibre directions is important. Our method-

ology may be used to estimate a functional fibre atlas in individual patients.

The relationship between this fibre field and structural remodelling indicated

by late-gadolinium enhancement MRI data could then be studied to investigate

the interplay between fibre disarray and changes in longitudinal and transverse

CV.

4.7. Limitations

The techniques developed here are not fully three-dimensional, but rather

work on cardiac surfaces, and as such transmural propagation is not accounted

for. Typically clinical measurements are either endocardial or epicardial and

transmural recordings are not available; however, our algorithms could be ex-

tended to three dimensions in the case that transmural recordings are available.

29



A second significant limitation of our approach is that areas of wavefront colli-

sion are excluded from the ellipse fitting algorithm and fibres are interpolated

in these regions, introducing significant error in the instance of a locally het-

erogeneous fibre field. The planar wavefront fitting algorithm used to estimate

the CV vectors assumes a single wavefront of activation, but this assumption

breaks down in the case of wavefront collision. Adapting the planar algorithm

to fit to the two wavefronts separately would overcome this limitation and allow

more accurate estimation of a greater proportion of atrial fibres for a given set

of activation map inputs. Planar CV estimates will be inaccurate for wave-

fronts with high curvature; for example in cases of focal propagation, or due to

fibrosis or discrete changes in fibre direction [2]. The planar algorithm exhibits

increased inaccuracy in CV estimation at the edges of a simulated domain or

tissue. In addition, spatial inaccuracies due to respiratory related motion, and

temporal inaccuracies in local activation time assignment in the case of fraction-

ated electrograms will lead to inaccuracy and a degree of uncertainty in the CV

assignment [46]. Fibre direction estimation was only 70% accurate for the three

activation map case. Furthermore, we did not consider changes in curvature

and speed that may occur at the edge of a bath in the bidomain model [47].

We only considered one, two or three activation maps as it is unlikely that

more than three activation maps with different pacing directions would be clin-

ically available. The fibre atlas used in this study for estimating longitudinal

and transverse CV from two activation maps was from a previously published

rule-based approach based on histological descriptions, but other fibre fields

may be more appropriate [48, 41]. We did not consider two layers with different

fibre direction and so did not investigate the combined contribution of epicardial

and endocardial fibres, but rather assumed that endocardial activation patterns

were predominantly determined by endocardial fibres.

4.8. Conclusions

Overall, we have developed a technique that may be used to estimate conduc-

tion anisotropy and fibre direction from clinically available electrical recordings.
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The proposed algorithm is not limited to atrial data, but is also applicable to

ventricular data in the instance that transmural activation is not considered.

Our methodology will be used for estimating patient-specific fibre distributions

and conduction anisotropy, which may be used to tune computational models

and to investigate the correlations between these features and structural remod-

elling, electrogram features and re-entry properties.
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