

King’s Research Portal

DOI:
10.1109/TCOMM.2018.2869791

Link to publication record in King's Research Portal

Citation for published version (APA):
Aliasgari, M., Kliewer, J., & Simeone, O. (2019). Coded Computation Against Processing Delays for Virtualized
Cloud-Based Channel Decoding. IEEE TRANSACTIONS ON COMMUNICATIONS, 67(1), 28-39. Article
8463544. https://doi.org/10.1109/TCOMM.2018.2869791

Citing this paper
Please note that where the full-text provided on King's Research Portal is the Author Accepted Manuscript or Post-Print version this may
differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version for pagination,
volume/issue, and date of publication details. And where the final published version is provided on the Research Portal, if citing you are
again advised to check the publisher's website for any subsequent corrections.

General rights
Copyright and moral rights for the publications made accessible in the Research Portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognize and abide by the legal requirements associated with these rights.

•Users may download and print one copy of any publication from the Research Portal for the purpose of private study or research.
•You may not further distribute the material or use it for any profit-making activity or commercial gain
•You may freely distribute the URL identifying the publication in the Research Portal
Take down policy
If you believe that this document breaches copyright please contact librarypure@kcl.ac.uk providing details, and we will remove access to
the work immediately and investigate your claim.

Download date: 14. Jan. 2025

https://doi.org/10.1109/TCOMM.2018.2869791
https://kclpure.kcl.ac.uk/portal/en/publications/435cb787-0414-4416-9c3b-20e107283ef9
https://doi.org/10.1109/TCOMM.2018.2869791

1

Coded Computation Against Processing Delays for
Virtualized Cloud-Based Channel Decoding

Malihe Aliasgari∗, Member, IEEE, Jörg Kliewer∗, Senior Member, IEEE, and Osvaldo Simeone† Fellow, IEEE,

Abstract—The uplink of a cloud radio access network archi-
tecture is studied in which decoding at the cloud takes place
via network function virtualization on commercial off-the-shelf
servers. In order to mitigate the impact of straggling decoders
in this platform, a novel coding strategy is proposed, whereby
the cloud re-encodes the received frames via a linear code before
distributing them to the decoding processors. Transmission of a
single frame is considered first, and upper bounds on the resulting
frame unavailability probability as a function of the decoding
latency are derived by assuming a binary symmetric channel
for uplink communications. Then, the analysis is extended to
account for random frame arrival times. In this case, the trade-
off between average decoding latency and the frame error
rate is studied for two different queuing policies, whereby the
servers carry out per-frame decoding or continuous decoding,
respectively. Numerical examples demonstrate that the bounds
are useful tools for code design and that coding is instrumental
in obtaining a desirable compromise between decoding latency
and reliability.

Index Terms—Coded computation, network function virtual-
ization, cloud radio access network, large deviation, queueing.

I. INTRODUCTION

Promoted by the European Telecommunications Standards
Institute (ETSI), network function virtualization (NFV) has
become a cornerstone of the envisaged architecture for 5G sys-
tems [2]. NFV leverages virtualization technologies in order to
implement network functionalities on commercial off-the-shelf
(COTS) programmable hardware, such as general purpose
servers, potentially reducing both capital and operating costs.
An important challenge in the deployment of NFV is ensuring
carrier grade performance while relying on COTS components.
Such components may be subject to temporary unavailability
due to malfunctioning, and are generally characterized by
randomness in their execution runtimes. The typical solution
to these problems involves replicating the virtual machines that
execute given network functions on multiple processors, e.g.,
cores or servers [3]–[6].

Among the key applications of NFV is the implementation
of centralized radio access functionalities in a cloud radio

This work was supported in part by U.S. NSF grants CNS-1526547, CNS-
1815322, CCF-1525629, and by the European Research Council (ERC) under
the European Union Horizon 2020 research and innovative programme (grant
agreement No 725731).

Part of the material in this paper was presented at IEEE International
Symposium on Information Theory (ISIT), 2018 [1].

M. Aliasgari and J. Kliewer are with the Department of Electrical and
Computer Engineering, New Jersey Institute of Technology, Newark, New
Jersey 07102-1982 USA (email: ma839@njit.edu; jkliewer@njit.edu)

O. Simeone is with the Department of Informatics, King’s College London,
London, UK (email: osvaldo.simeone@kcl.ac.uk)

access network (C-RAN) [7], [8]. As shown in Fig. 1, each
remote radio head (RRH) of a C-RAN architecture is con-
nected to a cloud processor by means of a fronthaul (FH)
link. Baseband functionalities are carried out on a distributed
computing platform in the cloud, which can be conveniently
programmed and reconfigured using NFV. The most expensive
baseband function in terms of latency to be carried out at the
cloud is uplink channel decoding [7], [9], [10].

The implementation of channel decoding in the cloud by
means of NFV is faced not only with the challenge of
providing reliable operation despite the unreliability of COTS
servers, but also with the latency constraints imposed by re-
transmission protocols. In particular, keeping decoding latency
at a minimum is a major challenge in the implementation
of C-RAN owing to timing constraints from the link-layer
retransmission protocols [11]–[13]. In fact, positive or negative
feedback signals need to be sent to the users within a strict
deadline in order to ensure the proper operation of the proto-
col. In [14], [15] it is argued that exploiting parallelism across
multiple cores in the cloud can reduce the decoding latency by
enabling decoding as soon as one can has computed its task.
However, parallel processing does not address the unreliability
of COTS hardware. A different solution is needed in order to
address both unreliability and delays associated with cloud
decoding.

The problem of straggling processors, that is, of processors
lagging behind in the execution of a certain orchestrated
function, has been well studied in the context of distributed
computing [16]–[21]. Recently, it has been pointed out that,
for the important case of linear functions, it is possible
to improve over repetition strategies in terms of the trade-
off between performance and latency by carrying out linear
precoding of the data prior to processing, e.g., [22]–[30]. The
key idea is that, by employing suitable linear (erasure) block
codes operating over fractions of size 1/K of the original
data, a function may be completed as soon as any K or more
processors, depending on the minimum distance of the code,
have completed their operations. Coding has also been found
to be useful addressing the straggler problem in the context
of coded distributed storage and computing systems, see, e.g.,
[31]–[35].

In this paper, we explore the use of coded computing to
enable reliable and timely channel decoding in a C-RAN archi-
tecture based on distributed unreliable processors. Specifically,
we formally and systematically address the analysis of coded
NFV for C-RAN uplink decoding. The only prior work on
coded computing for NFV is [36], which provides numerical
results concerning a toy example with three processors in

ar
X

iv
:1

70
9.

01
03

1v
2

 [
cs

.I
T

]
 2

8
A

ug
 2

01
8

2

Fig. 1: NFV model for uplink channel decoding. The input information frame u is divided into packets, which are encoded with a linear code Cu with
generator matrix Gu. The packets are received by the RRH through a BSC and forwarded to the cloud. Server 0 in the cloud re-encodes the received packet
with a linear code Cc in order to enhance the robustness against potentially straggling Servers 1, . . . , N .

which a processor in the cloud is either on or off. Unlike
[36], in this work, we derive analytical performance bounds
for a general scenario with any number of servers, random
computing runtimes, and random packet arrivals. Specific
novel contributions are as follows.
• We first consider the transmission of an isolated frame,

and develop analytical upper bounds on the frame un-
availability probability (FUP) as a function of the allowed
decoding delay. The FUP measures the probability that
a frame is correctly decoded within a tolerated delay
constraint. The FUP bounds leverage large deviation
results for correlated variables [37] and depend on the
properties of both the uplink linear channel code adopted
at the user and the NFV linear code applied at the cloud;

• As a byproduct of the analysis we introduce the depen-
dency graph of a linear code and its chromatic number
as novel relevant parameters of a linear code beside
minimum distance, blocklength, and rate;

• We extend the analysis to account for random frame ar-
rival times, and investigate the trade-off between average
decoding latency and frame error rate (FER) for two
different queuing policies, whereby the servers carry out
either per-frame or continuous decoding;

• We provide extensive numerical results that demonstrate
the usefulness of the derived analytical bounds in both
predicting the system performance and enabling the de-
sign of NFV codes.

The rest of the paper is organized as follows. In Section
II, we present the system model focusing, as in [36], on a
binary symmetric channel (BSC) for uplink communications.
Section III presents the two proposed upper bounds on the
FUP as a function of latency. In Section IV we study the
proposed system with random frame arrival times, and Section
V provides numerical results.

II. SYSTEM MODEL

As illustrated in Fig. 1, we consider the uplink of a C-RAN
system in which a user communicates with the cloud via a
remote radio head (RRH). The user is connected to the RRH
via a BSC with cross error probability δ, while the RRH-to-
cloud link, typically referred to as fronthaul, is assumed to be
noiseless. Note that the BSC is a simple model for the uplink

Fig. 2: Coded NFV at the cloud: Server 0 re-encodes the received packets
in Y by a linear NFV code Cc with generator Gc. Each encoded packet ỹi is
then conveyed to Server i for decoding.

channel, while the noiseless fronthaul accounts for a typical
deployment with higher capacity fiber optic cables. As we
briefly discuss in Section VI, the analysis can be generalized
to other additive noise channel, such as Gaussian channels.

The cloud contains a master server, or Server 0, and N
slave servers, i.e., Servers 1, . . . , N . The slave servers are
characterized by random computing delays as in related works
on coded computation [22], [23], [27]. Note that we use here
the term “server” to refer to a decoding processor, although,
in a practical implementation, this may correspond to a core
of the cloud computing platform [14], [15].

In the first part of this paper, we consider transmission of
a single information frame u, while Section IV focuses on
random frame arrival times and queuing effect delays. The
user encodes an information frame u consisting of L bits.
Before encoding, the information frame is divided into K
blocks u1,u2, . . . ,uK ∈ {0, 1}L/K of equal size, each of them
containing L/K bits. As shown in Fig. 1, in order to combat
noise on the BSC, the L/K blocks are encoded by an (n, k)
binary linear code Cu of rate r = k/n defined by generator
matrix Gu ∈ Fn×k

2 , where n = L/(rK) and k = L/K.
Let xj ∈ {0, 1}n with j ∈ {1, . . . ,K} be the K transmitted
packets of length n. At the output of the BSC, the length-n
received vector for the jth packet at the RRH is given as

yj = xj ⊕ zj , (1)

where zj is a vector of i.i.d. Bern(δ) random variables (rvs).
The K received packets (y1, y2, . . . , yK) by the RRH are
transmitted to the cloud via the fronthaul link, and the cloud
performs decoding. Specifically, as detailed next, we assume

3

that each Server 1, . . . , N performs decoding of a single packet
of length n bits while Server 0 acts as coordinator.

Assuming N ≥ K, we adopt the idea of NFV coding
proposed in [36]. Accordingly, as seen in Fig. 2, the K packets
are first linearly encoded by Server 0 into N ≥ K coded
blocks of the same length n bits, each forwarded to a different
server for decoding. This form of encoding is meant to mitigate
the effect of straggling servers in a manner similar to [22],
[23], [27]. Using an (N,K) binary linear NFV code Cc with
K × N generator matrix Gc ∈ FN×K

2 , the encoded packets
are obtained as

Ỹ = YGc, (2)

where Y = [y1, . . . , yK] is the n × K matrix obtained by
including the received signal yj as the jth column and Ỹ =
[ỹ1, . . . , ỹN] is the n×N matrix whose ith column ỹi is the
input to Server i, where i ∈ {1, . . . , N}. From (1), this vector
can be written as

ỹi =

K∑
j=1

yjgc,ji =

K∑
j=1

xjgc,ji +

K∑
j=1

zjgc,ji, (3)

where gc,ji is the (j, i)th entry of matrix Gc.
The signal part

∑K
j=1 xjgc,ji in (3) is a linear combination

of di codewords for the rate-r binary code with generator
matrix Gu, and hence it is a codeword of the same code. The
parameter di, i ∈ {1, . . . , N}, denotes the Hamming weight of
the ith column of matrix Gc, where 0 ≤ di ≤ K. Each server
i receives as input ỹi from which it can decode the codeword∑K

i=1 xigc,ji. This decoding operation is affected by the noise
vector

∑K
j=1 zjgji in (3), which has i.i.d. Bern(γi) elements.

Here, γi is obtained as the first row and second column’s entry
of the matrix Qdi , with Q being the transition matrix of the
BSC with cross over probability δ, i.e.,

Q =

[
1− δ δ
δ 1− δ

]
. (4)

As an example, di = 2, implies a bit flipping probability of
γi = 2δ(1− δ). Note that a larger value of di yields a larger
bit probability γi. We define as Pn,k(γi) the decoding error
probability of the (n, k) linear user code at Server i, which
can be upper bounded by using [38, Theorem 33].

Server i requires a random time Ti = T1,i+T2,i to complete
decoding, which is modeled as the sum of a component T1,i

that is independent of the workload and a component T2,i

that instead grows with the size n of the packet processed at
each server, respectively. The first component accounts, e.g.,
for processor unavailability periods, while the second models
the execution runtime from the start of the computation.
The first variable T1,i is assumed to have an exponential
probability density function (pdf) f1(t) with mean 1/µ1, while
the variable T2,i has a shifted exponential distribution with
cumulative distribution function (cdf) [39]

F2(t) = 1− exp

(
−rKµ2

L

(
t− a L

rK

))
, (5)

for t ≥ aL/(rK) and F2(t) = 0 otherwise. The parameter a
represents the minimum processing time per input bit, while
1/µ2 is the average additional time needed to process one bit.
As argued in [22], [39], the shifted exponential model provides

a good fit for the distribution of computation times over cloud
computing environments such as Amazon EC2 clusters. The
cdf of the time Ti can hence be written as the integral F (t) =∫ t

0
f1(τ)F2(t − τ)dτ . We also assume that the runtime rvs

{Ti}Ni=1 are mutually independent. Due to (5), the probability
that a given set of l out of N servers has finished decoding
by time t is given as

al(t) =

(
N

l

)
F (t)l(1− F (t))N−l. (6)

Let dmin be the minimum distance of the NFV code Cc. Due
to (3), Server 0 in the cloud is able to decode the message u
or equivalently the K packets uj for j ∈ {1, . . . ,K}, as soon
as N − dmin + 1 servers have decoded successfully. Let ûi be
the output of the ith server in the cloud upon decoding. We
assume that an error detection mechanism, such as a cyclic
redundancy check (CRC), is in place so that Server 0 outputs

ûi =

{
ûi, for correct decoding,
∅, otherwise.

The output û(t) of the decoder at Server 0 at time t is then a
function of the vectors ûi(t) for i ∈ {1, . . . , N}, where

ûi(t) =

{
ûi, if Ti ≤ t,
∅, otherwise.

Finally, the frame unavailability probability (FUP) at time t is
defined as the probability

Pu(t) = Pr [û(t) 6= u] . (7)

The event {û(t) 6= u} occurs when either not enough servers
have completed decoding or many servers have completed but
failed decoding by time t. We also define the FER as

Pe = lim
t→∞

Pu(t). (8)

The FER measures the probability that, when all servers have
completed decoding, a sufficiently large number, namely larger
than N − dmin, has decoded successfully.

III. BOUNDS ON THE FRAME UNAVAILABILITY
PROBABILITY

In this section we derive analytical bounds on the FUP
Pu(t) in (7) as a function of the decoding latency t.

A. Preliminaries

Each server i with i ∈ {1, . . . , N} decodes successfully its
assigned packet ỹi if: (i) the server completes decoding by
time t; (ii) the decoder at the server is able to correct the
errors caused by the BSC. Furthermore as discussed, an error
at Server 0 occurs at time t if the number of servers that have
successfully decoded by time t is smaller than N − dmin + 1.

To evaluate the FUP, we hence define the indicator variables
Ci(t) = 1{Ti ≤ t} and Di which are equal to 1 if the
events (i) and (ii) described above occur, respectively, and zero
otherwise. Based on these definitions, the FUP is equal to

Pu(t) = Pr

[
N∑
i=1

Ci(t)Di ≤ N − dmin

]
. (9)

4

Fig. 3: Dependency graph associated with the (8,4) NFV code Cc in Example
1.

The indicator variables Ci(t) are independent Bernoulli rvs
across the servers i ∈ {1, . . . , N}, due to the independence
assumption on the rvs Ti. However, the indicator variable Di

are dependent Bernoulli rvs. The dependence of the variables
Di is caused by the fact that the noise terms

∑K
i=1 zjgc,ji in

(3) generally have common terms. In particular, if two columns
i and j of the generator matrix Gc have at least a 1 in the same
row, then the decoding indicators Di and Dj are correlated.
This complicates the evaluation of bounds on the FUP (9).

B. Dependency Graph and Chromatic Number of a Linear
Code

To capture the correlation among the indicator variables Di,
we introduce here the notion of the dependency graph and
its chromatic number for a linear code. These appear to be
novel properties of a linear code, and we will argue below
that they determine the performance of the NFV code Cc for
the application at hand.

Definition 1. Let G ∈ FK′×N ′
2 be a generator matrix of a

linear code. The dependency graph G(G) = (V, E) comprises
a set V of N ′ vertices and a set E ⊆ V × V of edges, where
edge (i, j) ∈ E is included if both the ith and jth columns of
G have at least a 1 in the same row.

Example 1. For an (8, 4) NFV code Cc with the following
generator matrix

Gc =

1 0 0 0 0 1 1 0
0 0 0 1 1 0 0 1
0 1 0 0 0 0 1 1
1 0 1 0 1 0 0 0

 , (10)

the resulting dependency graph G(Gc) is shown in Fig. 3.

The chromatic number X (G) of the graph G(G) will play
an important role in the analysis. We recall that the chromatic
number is the smallest number of colors needed to color the
vertices of G(G), such that no two adjacent vertices share the
same color (see the example in Fig. 3). Generally, finding the

chromatic number of a graph is NP-hard [40]. However, a
simple upper bound on X (G) is given as [41]

X (G) ≤ ∆(G) + 1, (12)

where ∆(G) is the maximum degree of a graph G(G). A
consequence of (12) is the following.

Lemma 1. Let G be a K ′×N ′ matrix, where αr and αc are
the maximum Hamming weights of the rows and columns in G,
respectively. Then the chromatic number of the corresponding
dependency graph G(G) is upper bounded as

X (G) ≤ min{N,αc(αr − 1) + 1}. (13)

Proof. According to Definition 1 we have the upper bound
∆(G) ≤ αc(αr − 1) and hence (13) follows directly from
(12).

C. Large Deviation Upper Bound

In this subsection, we derive an upper bound on the FUP.
The bound is based on the large deviation result in [37] for
the tail probabilities of rvs X =

∑M
i=1Xi, where the rvs

Xi are generally dependent. We refer to this bound as the
large deviation bound (LDB). The correlation of rvs {Xi} is
described in [37] by a dependency graph. This is defined as
any graph G(X) with Xi as vertices, such that, if a vertex
i ∈ {1, . . . ,M}\{i} is not connected to any vertex in a subset
J ⊂ {1, . . . ,M}, then Xi is independent of {Xj}j∈J .

Lemma 2 ([37]). Let X =
∑M

i=1Xi, where Xi ∼ Bern(pi)
and pi ∈ (0, 1) are generally dependent. For any b ≥ 0,
such that the inequality Xi − E(Xi) ≥ −b holds for all
i ∈ {1, . . . ,M} with probability one, and for any τ ≥ 0
we have

Pr[X ≤ E(X)− τ] ≤ exp

(
− S

b2X (G(X))
ϕ

(
4bτ

5S

))
,

(15)
where S ∆

=
∑N

i=1 Var(Xi) and ϕ(x)
∆
= (1 + x) ln(1 + x)− x.

The same bound (15) holds for Pr(X ≥ E(X) + τ), where
Xi − E(Xi) ≤ b with probability one.

The following theorem uses Lemma 2 to derive a bound on
the FUP.

Theorem 1. Let Pmin
n,k = mini{Pn,k(γi)}Ni=1. For all

t ≥ F−1

(
N − dmin

N −
∑N

i=1 Pn,k(γi)

)
, (16)

the FUP is upper bounded by in (11), shown at the bottom
of the page, where b(t)

∆
= F (t)

(
1− Pmin

n,k

)
and S(t)

∆
=∑N

i=1 F (t) (1− Pn,k(γi)) (1− F (t)(1− Pn,k(γi))). The up-
per bound (11) on the FUP captures the dependency of the

Pu(t) ≤ exp

− S(t)

b2(t)X (Gc)
ϕ

4b(t)
(
NF (t)− F (t)

∑N
i=1 Pn,k(γi)−N + dmin

)
5S(t)

 , (11)

5

FUP on both the channel and the NFV code. In particular,
the bound is an increasing function of the error probabilities
Pn,k(γi), which depend on both codes. It also depends on the
NFV code through parameters dmin and X (Gc).

Proof. Let Xi(t)
∆
= Ci(t)Di and X(t) =

∑N
i=1Xi(t),

where Xi(t) are dependent Bernoulli rvs with probability
E[Xi(t)] = Pr[Xi(t) = 1] = F (t) (1− Pn,k(γi)). It can be
seen that a valid dependency graph G(X) for the variables
{Xi} is the dependency graph G(Gc) defined above. This is
due to the fact that, as discussed in Section III-C, the rvs Xi

and Xj are dependent if and only if the ith and jth column of
Gc have at least a 1 in a common row. We can hence apply
Lemma 2 for every time t by selecting τ = E(X)−N+dmin,
and b(t) as defined above. Note that this choice of b(t) meets
the constraint for b in Lemma 2. For 1/µ1 = 0, (16) can be
simplified as follows:

t ≥ n

(
a− 1

µ
ln

(
dmin −

∑N
i=1 Pn,k(γi)

N −
∑N

i=1 Pn,k(γi)

))
. (17)

Remark 1. When t→∞, we have the limit limt→∞ F (t) =
1, which implies that eventually all servers complete decoding.
Letting dmax ∆

= max{di}Ni=1 and γ
∆
= Qdmax

(1, 2), the first
row and second column’s entry of the matrix Qdmax

, the bound
(11) reduces to

lim
t→∞

Pu(t)≤exp

(
−NPn,k(γ)

(1−Pn,k(γ))X (Gc)
ϕ

(
4(dmin/N−Pn,k(γ))

5Pn,k(γ)

))
.

(18)

This expression demonstrates the dependence of the FUP
bound (11) on the number of servers N , the decoding error
probability Pn,k(γ) for each server, the chromatic number
X (Gc), and minimum distance dmin of the NFV code. In
particular, it can be seen that the FUP upper bound (18)
is a decreasing function of dmin, while it increases with the
chromatic number, Pn,k(γ) and with dmax.

D. Union Bound
As indicated in Theorem 1, the large deviation based bound

in (14) is only valid for large enough t, as can be observed
from (17). Furthermore, it may generally not be tight, since
it neglects the independence of the indicator variables Ci. In
this subsection, a generally tighter but more complex union
bound (UB) is derived that is valid for all times t.

Theorem 2. For any subset A ⊆ {1, . . . , N}, define

P
min(A)
n,k

∆
= min{Pn,k(γi)}i∈A and PAn,k

∆
=
∑
i∈A

Pn,k(γi),

and let GA be the K × |A|, submatrix of Gc, with column
indices in the subset A. Then, the FUP is upper bounded

by (14), shown at the bottom of the page, where SA ,∑
i∈A Pn,k(γi) (1− Pn,k(γi)) and bA

∆
= 1− P

min(A)
n,k .

Proof. Let Ii = 1 − Di be the indicator variable which
equals 1 if Server i fails decoding. Accordingly, we have
Ii ∼ Bern(Pn,k(γi)). For each subset A ⊆ {1, . . . , N}, let
IA =

∑
i∈A Ii. The complement of the FUP Ps(t) = 1−Pu(t)

can hence be written as

Ps(t) =Pr

[
N∑
i=1

Ci(t)Di > N − dmin

]
(19)

=
1(
N
l

) N∑
l=N−dmin+1

al(t)
∑

A⊆{1,...,N}:
|A|=l

·
l∑

j=N−dmin+1

Pr
[
j servers from A decode successfully

and
l−j servers from A fail to decode

]
(20)

=
1(
N
l

) N∑
l=N−dmin+1

al(t)
∑

A⊆{1,...,N}:
|A|=l

(1−Pr[IA≥ l−N+dmin]).

(21)

We can now apply Lemma 2 to the probability in (21)
by noting that G(GA) is a valid dependency graph for the
variables {Ii}, i ∈ A. In particular, we apply Lemma 2 by
setting τA = l − N + dmin − E(IA), bA ≥ Ii − E[Ii], and
SA =

∑
i∈AVar (Ii), leading to

Pr [IA ≥ l −N + dmin] ≤

exp

− SA
b2AX (GA)

ϕ

4bA

(
l −N + dmin − PAn,k

)
5SA

 .

(22)

By substituting (22) into (21), the proof is completed.

IV. RANDOM ARRIVALS AND QUEUING

In this section we extend our analysis from one to multiple
frames transmitted by the users. To this end, we study the
system illustrated in Fig. 4 with random frame arrival times
and queueing at the servers. We specifically focus on the
analysis of the trade-off between average latency and FER.

A. System Model

As illustrated in Fig. 4, we assume that the arrival times of
the received frames are random and distributed according to
a Poisson process with a rate of λ frames per second. Upon
arrival, Server 0 applies an NFV code to any received frame
yr for r = 1, 2, . . ., as described in Section II and sends
each resulting coded packet ỹri to Server i, for i = 1, . . . , N .
At Server i, each packet ỹri enters a first-come-first-serve

Pu(t) ≤ 1− 1(
N
l

) N∑
l=N−dmin+1

al(t)
∑

A⊆{1,...,N}:
|A|=l

1− exp

− SA
b2AX (GA)

ϕ

4bA

(
l −N + dmin − PAn,k

)
5SA

 . (14)

6

Fig. 4: In the model studied in Section IV, frames arrive at the receiver according to a Poisson process with parameter λ. Server 0 in the cloud encodes the
received frames using an NFV code and forwards the encoded packets to servers 1, . . . , N for decoding.

queue. After arriving at the head of the queue, each packet ỹr
i

requires a random time Ti to be decoded by Server i. Here,
we assume that Ti is distributed according to an exponential
distribution in (5) with an average processing time of 1/µ2

per bit. Furthermore, the average time to process a frame of
n bits is denoted as 1/µ. Also, the random variables Ti are
i.i.d. across servers.

If the NFV code has minimum distance dmin, as soon as
N − dmin + 1 servers decode successfully their respective
packets derived from frame yr, the information frame ur can
be decoded at Server 0. We denote as T the average overall
latency for decoding frame ur, which includes both queuing
and processing.

Using (8), (9) and the fact that all servers complete decoding
almost surely as t → ∞, that is Ci(t) → 1 as t → ∞, the
FER is equal to

Pe = Pr

[
N∑
i=1

Ii ≥ dmin

]
, (23)

where Ii is the indicator variable that equals 1 if decoding at
Server i fails. This probability can be upper bounded by the
following corollary of Theorem 1.

Corollary 1. The FER defined in (23) is upper bounded by

Pe ≤ exp

 −S
b2X (GC)

ϕ

4b
(
dmin−

∑N
i=1Pn,k(γi)

)
5S

 ,

(24)
where S ,

∑N
i=1 Pn,k(γi) (1− Pn,k(γi)) and b ∆

= 1− Pmin
n,k .

Proof. The result follows from Theorem 1 by selecting τ =
dmin −

∑N
i=1 Pn,k(γi).

We now discuss the computation of the average delay T for
different queueing management policies.

B. Per-Frame Decoding

We first study the system under a queue management policy
whereby only one frame yr is decoded at any time. Therefore,
all servers wait until at least N − dmin + 1 servers have
completed decoding of their respective packets ỹri before
moving to the next frame r+1, if this is currently available in
the queues. Furthermore, as soon as Server 0 decodes a frame,
the corresponding packets still being present in the servers’
queues are evicted.

As a result, the overall system can be described an M/G/1
queue with arrival time λ and service time distributed accord-
ing to the (N − dmin + 1)th order statistic of the exponential
distribution [42]. The latter has the pdf [43] (25), shown at
the bottom of the page, where FT (t) and fT (t) are the cdf
and pdf of rv Ti, respectively. This queueing system was also
studied in the context of distributed storage systems.

Using the Pollaczek-Khinchin formula [44], the average
delay of an M/G/1 queue can be obtained as (26), shown
at the bottom of the page, where HN and HN2 are gen-
eralized harmonic numbers, defined by HN =

∑N
i=1

1
i and

HN2 =
∑N

i=1
1
i2 [42]. Note that the queue is stable, and

hence the average delay (26) is finite, if the inequality
nλ(HN −Hdmin−1) < µ(N−dmin +1) holds. We refer to the
described queue management scheme as per-frame decoding
(pfd). This set-up is equivalent to the fork-join system studied
in [42].

C. Continuous Decoding

As an alternative queue management policy, as soon as
any Server i decodes its packet ỹri , it starts decoding the
next packet ỹr+1

i in its queue, if this is currently available.
Furthermore, as above, as soon as Server 0 decodes a frame
yr, all corresponding packets ỹr

i still in the servers’ queues are
evicted. We refer this queue management policy as continuous
decoding (cd).

The average delay (26) of per-frame decoding is an upper
bound for the average delay of continuous decoding, i.e.,
we have Tcd ≤ Tpfd [42]. This is because, with per-frame
decoding, all N servers are blocked until N−dmin +1 servers
decode their designed packets. We evaluate the performance of
continuous decoding using Monte Carlo methods in the next
section.

V. SIMULATION RESULTS

In this section we provide numerical results to provide
additional insights into the performance trade-off for the
system shown in Fig. 1. We first consider individual frame
transmission as studied in Section II and Section III, and then
we study random arrivals as investigated in Section IV.

A. Single Frame Transmission

We first consider single frame transmission. The main goals
are to validate the usefulness of the two bounds presented in

7

0 200 400 600 800 1000 1200 1400
10 -6

10 -5

10 -4

10 -3

10 -2

10 -1

10 0

LDB
UB
Exact FUP

(a) Parallel, single server and repetition code.

0 200 400 600 800 1000 1200 1400
10 -6

10 -5

10 -4

10 -3

10 -2

10 -1

10 0

LDB
UB
MC Sim.

(b) Split repetition code, SPC code and Cc code.

Fig. 5: Decoding latency versus FUP for L = 504, N = 8, 1/µ1 = 0, µ2 = 10, a = 1, δ = 0.01, r = 0.5) : (a) LDB, UB and Exact FUP for the parallel,
single-server, and repetition coding; (b) LDB, UB and Monte Carlo simulation (“MC Sim.”) results for split repetition code, SPC code, and the NFV code
Cc defined in (10).

Theorems 1 and 2 as design tools and to assess the importance
of coding in obtaining desirable trade-offs between decoding
latency and FUP. We employ a frame length of L = 504
and N = 8 servers. The user code Cu is selected to be a
randomly designed (3, 6) regular (Gallager-type) LDPC code
with r = 0.5, which is decoded via belief propagation.

We compare the performance of the following solutions: (i)
Standard single-server decoding, whereby we assume, as a
benchmark, the use of a single server, that is N = 1, that
decodes the entire frame (K = 1); (ii) Repetition coding,
whereby the entire frame (K = 1) is replicated at all servers;
(iii) Parallel processing, whereby the frame is divided into
K = N disjoint parts processed by different servers; (iv) Split
repetition coding, whereby the frame is split into two parts,
which are each replicated at N/2 servers. The code has hence
K = 2, dmin = N/2, X (Gc) = N/2, which can be thought
of as an intermediate choice between repetition coding and
the parallel scheme; (v) Single parity check code (SPC), with
N = K+1, whereby, in addition to the servers used by parallel
decoding, an additional server decodes the binary sum of all
other K received packets; and (vi) an NFV code Cc with the
generator matrix Gc defined in (10), which is characterized
by K = 4. Note that, with both single-server decoding and

repetition coding, we have a blocklength of n = 1008 for the
channel code. Single-server decoding is trivially characterized
by X (Gc) = dmin = 1, while repetition coding is such that
the equalities X (Gc) = dmin = 8 hold. Furthermore, the
parallel approach is characterized by n = 126, dmin = 1
and X (Gc) = 1; the split repetition code is characterized by
n = 504, dmin = 4 and X (Gc) = 4; the SPC code has
n = 144, dmin = 2 and X (Gc) = 2; and the NFV code Cc has
n = 252, dmin = 3 and X (Gc) = 3. The exact FUP for a given
function Pn,k(·) can easily be computed for cases (i)-(iii). In
particular, for single server decoding, the FUP equals

Pu(t) = 1− a1(t)(1− PL/r,L(δ)); (27)

for the repetition code, the FUP is

Pu(t) = 1−
N∑
i=1

ai(t)(1− PL/r,L(δ)); (28)

and for the parallel approach, we have

Pu(t) = 1− aN (t)(1− PL/(rN),L/N (δ))N . (29)

In contrast, the exact FUPs for the SPC and code Cc are
difficult to compute, due to the discussed correlation among
the decoding outcomes at the servers.

fTN−dmin+1:N
(t) =

N !

(N − dmin)!(dmin − l)!
fT (t)FT (t)N−dmin(1− FT (t))dmin−1, (25)

Tpfd =
n(HN −Hdmin−1)

(N − dmin + 1)µ
+

λn2[(HN −Hdmin−1)2 + (HN2 −H(dmin−1)2)]

2(N − dmin + 1)2µ2[1− λnµ−1(N − dmin + 1)−1(HN −Hdmin−1)]
, (26)

8

0 200 400 600 800
10 -6

10 -5

10 -4

10 -3

10 -2

10 -1

10 0

LDB
UB
Exact FUP

(a) Parallel, single server and repetition code.

0 200 400 600 800
10 -6

10 -5

10 -4

10 -3

10 -2

10 -1

10 0

LDB
UB
MC Sim.

LDB
UB
MC Sim.

(b) Split repetition code, SPC code and Cc code.

Fig. 6: Decoding latency versus FUP for (L = 504, N = 8, 1/µ1 = 50, µ2 = 20, a = 0.1, δ = 0.01, r = 0.5) : (a) LDB, UB and Exact FUP for the
parallel, single-server, and repetition coding; (b) LDB, UB and Monte Carlo simulation (“MC Sim.”) results for split repetition code, SPC code, and the NFV
code Cc defined in (10).

Fig. 5a shows decoding latency versus FUP for the LDB in
Theorem 1, the UB in Theorem 2, and the exact error (27),
(28), (29), for the first three schemes (i)-(iii), and Fig. 5b
shows the LDB in Theorem 1, the UB in Theorem 2, as well
as Monte Carlo simulation results for schemes (iv), (v), and
(vi). Here, we assume that the latency contribution that, is
independent of the workload, is negligible, i.e., 1/µ1 = 0.
We also set a = 1 and µ2 = 10. As a first observation, Fig. 5
confirms that the UB bound is tighter than the LDB.

Leveraging multiple servers in parallel for decoding is seen
to yield significant gains in terms of the trade-off between
latency and FUP as argued also in [14] by using experimental
results. In particular, the parallel scheme is observed to be
preferred for lower latencies. This is due to the shorter block-
length n, which entails a smaller average decoding latency.
However, the error floor of the parallel scheme is large due
to the higher error probability for short blocklengths. In this
case, other forms of NFV coding are beneficial. To elaborate,
repetition coding requires a larger latency in order to obtain
acceptable FUP performance owing to the larger blocklength
n, but it achieves a significantly lower error floor. For interme-
diate latencies, the SPC code, and at larger latencies also both
the NFV code Cc, and the split repetition code provide a lower
FUP. This demonstrates the effectiveness of NFV encoding in
obtaining a desirable trade-off between latency and FUP.

In order to validate the conclusion obtained using the
bounds, Fig. 5 also shows the exact FUP for the schemes (i)-
(iii), as well as Monte Carlo simulation results for schemes
(iv)-(vi), respectively. While the absolute numerical values of
the bounds in Fig. 5a and 5b are not uniformly tight with
respect to the actual performance, the relative performance of

the coding schemes are well matched by the analytical bounds.
This provides evidence of the usefulness of the derived bounds
as a tool for code design in NFV systems.

Fig. 6 is obtained in the same way as Fig. 5, except for
the parameters µ1 = 0.02, µ2 = 20, and a = 0.1. Unlike
Fig. 5, here latency may be dominated by effects that are
independent of the blocklength n since we have 1/µ1 > 0.
The key difference with respect to Fig. 5 is that, for this choice
of parameters, repetition coding tends to outperform both the
parallel case, and the NFV code Cc, apart from very small
latencies. This is because repetition coding has the maximum
resilience to the unavailability of the servers, while not being
excessively penalized by the larger blocklength n. This is not
the case, however, for very small latency levels, where the
NFV code Cc provides the smallest FUP given its shorter
blocklength as compared to repetition coding and its larger
dmin, with respect to the parallel scheme.

Fig. 7 shows the exact FUP for the extreme cases of
parallel and repetition coding for different number of servers
N ∈ {3, 6, 12}. The figure confirms that, for both schemes, the
latency decreases for a larger number of servers N . However,
by increasing N , the error floor of the parallel scheme grows
due to the higher channel error probability for shorter block
lengths.

B. Random Frame Transmission

We now consider the queueing system described in Section
IV, and present numerical results that provide insights into
the performance of both per-frame and continuous decoding
in terms of FER versus average latency (23). As above, the
decoding error probability is upper bounded by using [38,

9

0 100 200 300 400 500 600 700
10 -6

10 -5

10 -4

10 -3

10 -2

10 -1

10 0

N=3
N=6
N=12

Fig. 7: Decoding latency versus exact FUP for parallel and repetition coding
for different number of servers N ∈ {3, 6, 12} and (L = 240, 1/µ1 =
0, µ2 = 10, a = 1, δ = 0.03, r = 0.5)

Theorem 33]. Both FER and average latency are a function
of the user code rate r. We hence vary r ∈ {1/2, . . . , 1/5}
to parametrize a trade-off curve between FER and latency.
We assume a frame length of L = 112 bits with N = 8
servers, and adopt the same user code Cc as in the previous
subsection. The average delay Tpfd is computed from (26), and
Tcd is obtained via Monte Carlo simulations.

Figs. 8a and 8b compare the performance of repetition
coding, the NFV code Cc with the generator matrix (10), and
the parallel approach as defined above. Fig. 8a considers a
lightly loaded system with λ = 0.1 frames per second and
µ = 500 frames per second, while Fig. 8b shows a highly
loaded system with both λ = 1 frames per second and µ = 50
frames per second.

First, by comparing the two figures we observe that per-
frame decoding and continuous decoding have a similar per-
formance when the system is lightly loaded (see Fig. 8a), while
continuous decoding yields a smaller average latency than
per-frame decoding when the system is heavily loaded (see
Fig. 8b). This is because, in the former case, it is likely that
a frame is decoded successfully before the next one arrives.
This is in contrast to heavily loaded systems in which the
average latency becomes dominated by queuing delays. We
also note that, for repetition coding, the performance of per-
frame decoding and continuous decoding coincides in both
lightly or heavily loaded systems, since decoding is complete
as soon as one server decodes successfully.

Also, by comparing the performance of different codes, we
recover some of the main insights obtained from the study
of the isolated frame transmission. In particular, the parallel
approach outperforms all other schemes for low average delays

due to its shorter block length n. In contrast, repetition coding
outperforms all other schemes in FER for large average delay
because of its large block length n and consequently low
probability of decoding error (not shown). Furthermore, we
observe that split repetition coding is to be preferred for small
values of FER.

Finally, Fig. 9 demonstrates the behavior of the average
latency as the arrival rate λ increases and the system becomes
more heavily loaded. We observe that, for a lightly loaded
system, the latencies of per frame and continuous decoding
are similar, while continuous decoding is preferable for a large
number of λ. This is because per-frame decoding requires
all servers to wait until at least N − dmin + 1 servers have
completed decoding of their respective packets before moving
on to the next frame.

VI. CONCLUSIONS

In this paper, we analyzed the performance of a novel coded
NFV approach for the uplink of a C-RAN system in which
decoding takes place at a multi-server cloud processor. The
approach is based on the linear combination of the received
packets prior to their distribution to the servers or cores, and
on the exploitation of the algebraic properties of linear channel
codes. The method can be thought of as an application of the
emerging principle of coded computing to NFV. In addition,
we obtain novel upper bounds on the FUP as a function of
the decoding latency based on evaluating tail probabilities
for Bernoulli dependent rvs. By extending the analysis from
isolated frame transmission to random frame arrival times, the
trade-off between average decoding latency and FER for two
different policies are derived. Analysis and simulation results
demonstrate the benefits that linear coding of received packets,
or NFV coding, can yield in terms of trade-off between decod-
ing latency and reliability. In particular, a prescribed decoding
latency or reliability can be obtained by selecting an NFV
code with a specific minimum distance and chromatic number,
where the two extremes are parallel NFV-based processing
and repetition coding. The former scheme obtains the smallest
latency but the lowest reliability, whereas the latter scheme
yields the largest latency, but the highest reliability. All other
linear NFV codes operate between these two extreme cases.

Among interesting open problems, we mention the design of
optimal NFV codes and the extension of the principle of NFV
coding to other channels. Note that the approach proposed here
applies directly to other additive noise channels in which the
user code is an additive group. A key example is the additive
Gaussian channel with lattice codes at the user, which will be
studied in future work.

REFERENCES

[1] M. Aliasgari, J. Kliewer, and O. Simeone, “Coded computation against
straggling decoders for network function virtualization,” Proc. IEEE
International Symposium on Information Theory, pp. 711–715, Jun.,
2018.

[2] R. Mijumbi, J. Serrat, J.-L. Gorricho, N. Bouten, F. De Turck, and
R. Boutaba, “Network function virtualization: State-of-the-art and re-
search challenges,” IEEE Communications Surveys & Tutorials, vol. 18,
no. 1, pp. 236–262, 2016.

10

0.02 0.03 0.04 0.05 0.06
10 -8

10 -6

10 -4

10 -2

10 0

Per-frame decoding
Continuous decoding

(a) Lightly loaded system, λ = 0.1, µ = 500.

0.2 0.3 0.4 0.5 0.6 0.7 0.8

10 -6

10 -4

10 -2

10 0

Per-frame decoding
Continuous decoding

(b) Heavily loaded system, λ = 1, µ = 50.

Fig. 8: Average latency versus FER with different values of the user code rate r and for different coding schemes when the system is (a) lightly loaded and
(b) heavily loaded, respectively (L = 112, N = 8, δ = 0.03).

1 2 3 4 5 6 7

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

0.06

0.065

Per-frame decoding
Continuous decoding

Fig. 9: Average latency versus arrival rate λ (L = 112, N = 8, r =
0.5, µ = 500).

[3] European Telecommunications Standards Institute, “Network function
virtualisation (NFV); report on models and features for end-to-end
reliability,” Technical Report GS NFV-REL 003, Apr., 2016.

[4] J. Liu, Z. Jiang, N. Kato, O. Akashi, and A. Takahara, “Reliability
evaluation for NFV deployment of future mobile broadband networks,”
IEEE Wireless Communications, vol. 23, no. 3, pp. 90–96, 2016.

[5] J. G. Herrera and J. F. Botero, “Resource allocation in NFV: A
comprehensive survey,” IEEE Transactions on Network and Service
Management, vol. 13, no. 3, pp. 518–532, 2016.

[6] J. Kang, O. Simeone, and J. Kang, “On the trade-off between compu-
tational load and reliability for network function virtualization,” IEEE
Communications Letters, vol. 21, pp. 1767–1770, 2017.

[7] N. Nikaein, “Processing radio access network functions in the cloud:
Critical issues and modeling,” in Proceedings of the 6th International
Workshop on Mobile Cloud Computing and Services,. ACM, Apr.,
2015, pp. 36–43.

[8] European Telecommunications Standards Institute, “Cloud RAN and
MEC: A perfect pairing,” ISBN No. 979-10-92620-17-7, Feb., 2018.

[9] I. Alyafawi, E. Schiller, T. Braun, D. Dimitrova, A. Gomes, and
N. Nikaein, “Critical issues of centralized and cloudified LTE-FDD radio
access networks,” in Communications (ICC), 2015 IEEE International
Conference on. IEEE, Jun., 2015, pp. 5523–5528.

[10] N. Nikaein, R. Knopp, F. Kaltenberger, L. Gauthier, C. Bonnet, D. Nuss-
baum, and R. Ghaddab, “OpenAirInterface: an open LTE network in
a PC,” in Proceedings of the 20th annual international conference on
Mobile computing and networking. ACM, Sep., 2014, pp. 305–308.

[11] U. Dötsch, M. Doll, H.-P. Mayer, F. Schaich, J. Segel, and P. Sehier,
“Quantitative analysis of split base station processing and determination
of advantageous architectures for LTE,” Bell Labs Technical Journal,
vol. 18, no. 1, pp. 105–128, 2013.

[12] P. Rost and A. Prasad, “Opportunistic hybrid arqenabler of centralized-
RAN over nonideal backhaul,” IEEE Wireless Communications Letters,
vol. 3, no. 5, pp. 481–484, 2014.

[13] S. Khalili and O. Simeone, “Uplink HARQ for cloud RAN via separation
of control and data planes,” IEEE Transactions on Vehicular Technology,
vol. 66, no. 5, pp. 4005–4016, 2017.

[14] V. Q. Rodriguez and F. Guillemin, “Towards the deployment of a
fully centralized cloud-RAN architecture,” in Wireless Communications
and Mobile Computing Conference (IWCMC), 2017 13th International,
Valencia, Spain, Jun., 2017, pp. 1055–1060.

[15] ——, “Cloud-ran modeling based on parallel processing,” IEEE Journal
on Selected Areas in Communications, vol. 36, no. 3, pp. 457–468, 2018.

[16] J. Dean and S. Ghemawat, “MapReduce: simplified data processing on
large clusters,” Commun. of the ACM, vol. 51, no. 1, pp. 107–113, 2008.

[17] G. Ananthanarayanan, S. Kandula, A. G. Greenberg, I. Stoica, Y. Lu,
B. Saha, and E. Harris, “Reining in the outliers in Map-Reduce clusters
using mantri.” in OSDI, vol. 10, no. 1, Oct., 2010, p. 24.

[18] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,
“Spark: Cluster computing with working sets,” Proceeding of the 2nd
USENIX conference on Hot topics in cloud computing, pp. 10–10, 2010.

[19] S. Li, M. A. Maddah-Ali, and A. S. Avestimehr, “Coded distributed
computing: Straggling servers and multistage dataflows,” in Communi-
cation, Control, and Computing (Allerton), 2016 54th Annual Allerton
Conference on. IEEE, Oct., 2016, pp. 164–171.

11

[20] ——, “Coded MapReduce,” in Communication, Control, and Computing
(Allerton), 2015 53rd Annual Allerton Conference on. IEEE, Oct., 2015,
pp. 964–971.

[21] ——, “A unified coding framework for distributed computing with
straggling servers,” in Globecom Workshops (GC Wkshps), 2016 IEEE.
IEEE, Dec., 2016, pp. 1–6.

[22] K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ramchandran,
“Speeding up distributed machine learning using codes,” Proc. IEEE
International Symposium on Information Theory, pp. 1143–1147, Jul.,
2016.

[23] S. Li, M. A. Maddah-Ali, Q. Yu, and A. S. Avestimehr, “A fundamental
tradeoff between computation and communication in distributed com-
puting,” IEEE Transactions on Information Theory, vol. 64, no. 1, pp.
109–128, 2018.

[24] Y. Yang, P. Grover, and S. Kar, “Computing linear transformations
with unreliable components,” IEEE Transactions on Information Theory,
2017.

[25] R. Tandon, Q. Lei, A. Dimakis, and N. Karampatziakis, “Gradient
coding: Avoiding stragglers in synchronous gradient descent,” [Online]
www.arxiv.org arXiv:1612.03301 [cs.IT], 2016.

[26] S. Dutta, V. Cadambe, and P. Grover, “Short-dot: Computing large linear
transforms distributedly using coded short dot products,” Advances In
Neural Information Processing Systems, pp. 2092–2100, 2016.

[27] A. Severinson, A. Graell i Amat, and E. Rosnes, “Block-diagonal coding
for distributed computing with straggling servers,” in Information Theory
Workshop (ITW), Nov., 2017, pp. 464–468.

[28] Q. Yu, M. Maddah-Ali, and S. Avestimehr, “Polynomial codes: An
optimal design for high-dimensional coded matrix multiplication,” in
Advances in Neural Information Processing Systems, 2017, pp. 4403–
4413.

[29] A. Mallick, M. Chaudhari, and G. Joshi, “Rateless codes for near-
perfect load balancing in distributed matrix-vector multiplication,” arXiv
preprint arXiv:1804.10331, 2018.

[30] J. Kosaian, K. Rashmi, and S. Venkataraman, “Learning a code: Machine
learning for approximate non-linear coded computation,” arXiv preprint
arXiv:1806.01259, 2018.

[31] D. Wang, G. Joshi, and G. Wornell, “Using straggler replication to

reduce latency in large-scale parallel computing,” ACM SIGMETRICS
Performance Evaluation Review, vol. 43, no. 3, pp. 7–11, 2015.

[32] G. Joshi, E. Soljanin, and G. Wornell, “Efficient redundancy techniques
for latency reduction in cloud systems,” ACM Transactions on Modeling
and Performance Evaluation of Computing Systems (TOMPECS), vol. 2,
no. 2, p. 12, 2017.

[33] G. Ananthanarayanan, A. Ghodsi, S. Shenker, and I. Stoica, “Effective
straggler mitigation: Attack of the clones.” in NSDI, vol. 13, Apr., 2013,
pp. 185–198.

[34] Y. Yang, M. Chaudhari, P. Grover, and S. Kar, “Coded iterative comput-
ing using substitute decoding,” arXiv preprint arXiv:1805.06046, 2018.

[35] M. F. Aktas, P. Peng, and E. Soljanin, “Effective straggler mitigation:
Which clones should attack and when?” ACM SIGMETRICS Perfor-
mance Evaluation Review, vol. 45, no. 2, pp. 12–14, 2017.

[36] A. Al-Shuwaili, O. Simeone, J. Kliewer, and P. Popovski, “Coded
network function virtualization: Fault tolerance via in-network coding,”
IEEE Wireless Communications Letters, vol. 5, no. 6, pp. 644–647, 2016.

[37] S. Janson, “Large deviations for sums of partly dependent random
variables,” Random Structures & Algorithms, vol. 24, no. 3, pp. 234–
248, 2004.

[38] Y. Polyanskiy, H. V. Poor, and S. Verdú, “Channel coding rate in the
finite blocklength regime,” IEEE Transactions on Information Theory,
vol. 56, no. 5, pp. 2307–2359, 2010.

[39] A. Reisizadehmobarakeh, S. Prakash, R. Pedarsani, and S. Aves-
timehr, “Coded computation over heterogeneous clusters,” [Online]
www.arxiv.org, arXiv:1701.05973 [cs.IT], 2017.

[40] A. Sánchez-Arroyo, “Determining the total colouring number is NP-
hard,” Discrete Mathematics, vol. 78, no. 3, pp. 315–319, 1989.

[41] R. L. Brooks, “On colouring the nodes of a network,” Mathematical
Proceedings of the Cambridge Philosophical Society, vol. 37, no. 02,
pp. 194–197, 1941.

[42] G. Joshi, Y. Liu, and E. Soljanin, “On the delay-storage trade-off
in content download from coded distributed storage systems,” IEEE
Journal on Selected Areas in Communications, vol. 32, no. 5, pp. 989–
997, 2014.

[43] S. M. Ross, Introduction to Probability Models. Academic Press, 2014.
[44] H. C. Tijms, A First Course in Stochastic Models. John Wiley and

Sons, 2003.

	I Introduction
	II System Model
	III Bounds on the Frame Unavailability Probability
	III-A Preliminaries
	III-B Dependency Graph and Chromatic Number of a Linear Code
	III-C Large Deviation Upper Bound
	III-D Union Bound

	IV Random Arrivals and Queuing
	IV-A System Model
	IV-B Per-Frame Decoding
	IV-C Continuous Decoding

	V Simulation Results
	V-A Single Frame Transmission
	V-B Random Frame Transmission

	VI Conclusions
	References

