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Abstract 

PAK1 and PAK4 are members of the p-21 activated kinase family of serine/threonine 

kinases. PAK1 has previously been implicated in both the formation and disassembly 

of invasive cell protrusions, termed invadopodia. We recently reported a novel role 

for PAK4 during invadopodia maturation and confirmed a specific role for PAK1 in 

invadopodia formation; findings we will review here. Moreover, we found that PAK4 

induction of maturation is delivered via interaction with the RhoA regulator PDZRho-

GEF. We can now reveal that loss of PAK4 expression leads to changes in 

invadopodia dynamics. Ultimately we propose that PAK4 but not PAK1 is a key 

mediator of RhoA activity and provide further evidence that modulation of PAK4 

expression levels leads to changes in RhoA activity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

As melanoma cells move through complex tissue there is a regulated rearrangement 

of the actin cytoskeleton a process thought to be co-ordinated by Rho family 

GTPases 1. Moreover, during tissue migration cancer cells need to navigate the 3D 

architecture of the densely packed stroma. To achieve efficient migration these cells 

are thought to employ protease-secreting invasive protrusions rich in actin, termed 

invadopodia 2. These invadopodial structures are now widely accepted to occur both 

in vitro and in vivo and are also thought to be critical for intravasation of the 

vasculature3, 4.  

 

Kinase activity forms a vital part of cytoskeletal dynamics including the regulation of 

invadopodia5. The p-21 activated kinase (PAK) family of serine/threonine kinases are 

known effectors of Rho GTPases Rac and Cdc42 that control cytoskeletal dynamics 

and cell movement 6. The human PAK family consists of six isoforms, which are 

separated into two groups according to their sequence and structural homology: 

group I, containing PAKs 1-3; and group II, containing PAKs 4-66.  

 

The overexpression of PAKs is found in a wide variety of cancer tissue types and is 

often associated with an increase in invasive potential and poor prognosis6. PAK1 

has been shown to localise to invadopodia 7, however, studies investigating the 

specific function of this protein in invadopodia formation/function have yielded 

conflicting results. Previous studies in melanoma provide evidence that PAK1 is 

important for the formation of invadopodia via the phosphorylation of cortactin at 

Ser1138. However, a more recent study in breast cancer suggests that PAK1 (once 

again via the phosphorylation of cortactin at Ser113), promotes the disassembly of 

invadopodia protrusions; with a depletion of PAK1 leading to an increase in matrix 

degradation7. Additionally, several investigations have been conducted into the 

function of PAK1 in the invadopodia-like protrusion, podosomes. These studies 

agree that reduced PAK1 activity results in a decrease in podosome formation 9 and 

increased PAK1 expression enhanced the formation of this protrusion10. Despite the 

controversy PAK1 is clearly associated with invadopodia dynamics, in contrast, the 

role of related family member PAK4 had not been previously explored.  Although, it 

had been shown that PAK4 was localised to podosomes and that depletion of PAK4 



reduced podosome number11. We were therefore interested to test if PAK4 also 

played a functional role in invadopodia.  

 

Whilst PAK1 and PAK4 are structurally distinct and activated differently 6 they share 

a plethora of overlapping substrates and the unique signalling pathways that may 

drive invasive potential during tumourigenesis have not been clearly defined 12. 

Research into these potential differences could help guide the further development 

of therapeutic drugs. Currently, pharmaceutical companies are focused on 

developing group or isoform specific inhibitors13-15. Therefore, data indicating 

whether both groups contribute to invasion and metastasis in the same way, may 

determine whether the use of pan-selective inhibitors is more beneficial than isoform 

selective inhibitors in treating some cancer types. Despite the difficulties in 

separating PAK1 and PAK4 functions mouse knockout (KO) phenotypes suggest 

that at least for PAK4 there are isoform specific functions as PAK4 KO mice are 

embryonically lethal whilst PAK1 KO mice remain viable and fertile6.  

 

We sought to address this issue of isoform specificity by performing the same 

quantitative invasion assays on cells depleted of either PAK1 or PAK4 expression16. 

From this work we were able to provide further evidence that the predominant role of 

PAK1, at least in melanoma, is to drive invadopodia formation rather than 

disassembly. Using a gelatin degradation assay we were able to show that cells 

depleted of PAK1 expression do not initiate actin puncta; indicative of invadopodia 

formation and there is no subsequent degradation of the underlying matrix. However 

we observed a different phenotype in PAK4 depleted cells. These cells were able to 

form actin puncta but were then unable to degrade the underlying matrix. Thus by 

systematically testing PAK1 and PAK4 depletion in the same cell lines, using the 

same functional assay, we were able to identify a differential function.  Where PAK1 

activity is focussed towards the early stages of invadopodia formation and PAK4 

activity restricted to the later maturation stages (Figure 1A). The formation of puncta 

but loss of degradation placed PAK4 at the maturation phase of the invadopodia 

lifecycle and we detected a loss of membrane type-1-matrix metalloproteinase (MT1-

MMP) localisation. To further explore the difference between the two PAK isoforms 

we performed live cell imaging to ascertain the lifetime of invadopodia formation in 

the depleted cells. To directly image invadopodial dynamics stable control shRNA, 



PAK1shRNA and PAK4shRNA A-375M2 cells were infected with lentivirus to stably 

express LifeAct-mRFP  These cells were plated onto gelatin and immediately  

treated with GM6001 to inhibit invadopodia formation. The inhibitor was then 

removed 1h prior to imaging to synchronise the population and maximise data 

acquisition. Invadopodia assembly and disassembly rates were calculated by 

measuring the fluorescence intensity of the actin rich invadopodia. As expected the 

actin puncta that we could detect in PAK1 depleted cells were extremely unstable 

and accurate quantification of lifetimes was not achievable. However in contrast to 

PAK1 depleted cells the actin puncta in PAK4 depleted cells exhibited a longer 

lifetime than control cells (Figure 1B and C). Thus, the invadopodia formed in PAK4 

depleted cells were more persistent and fail to turnover at the expected rate (Figure 

1B and C). These data, further support a role for PAK4 activity at the later stages 

where disassembly is considered the final requirement during the invadopodia 

lifecycle.   

 

These observations coupled with our finding that both PAK1 and PAK4 kinase 

activity is required in the invadopodia, led us to explore the possibility that PAK1 and 

PAK4 may have different substrates in the invadopodia. Whilst PAK1 

phosphorylation of cortactin is established during formation8, PAK4 activity had not 

been previously reported in invadopodia. We have now identified PDZ-RhoGEF as a 

PAK4 binding protein, already known to be phosphorylated and inactivated by 

PAK417, with functional significance in invadopodia dynamics. The novel function of 

this PAK4/PDZ-RhoGEF pathway in invadopodia dynamics was confirmed by the 

use of a dominant negative mutant of PDZ-RhoGEF which could bind, but not 

activate Rho18, 19. The expression of this mutant in cells with depleted PAK4 protein 

resulted in the rescue of invadopodia formation and degradation back to levels seen 

in wildtype cells. Furthermore, the expression of wildtype PDZ-RhoGEF mimicked a 

PAK4 depletion phenotype, reducing both the percentage of cells with invadopodia 

and the invadopodia induced matrix degradation. PDZ-RhoGEF, along with PAK4 

was found to be localised to invadopodia supporting the suggestion that the 

proposed signalling pathway occurs within these protrusions. This localisation also 

suggests that RhoA activation is likely required at some stage during the lifecycle of 

the protrusion (low levels of Rho activity in invadopodia can be easily achieved by 

the localisation of PDZ-RhoGEF away from the protrusion). Our hypothesis is that 



PAK4 phosphorylates and inactivates PDZ-RhoGEF which in turn suppresses RhoA 

activity and allows the invadopodia to mature.  PDZ-RhoGEF is known to be specific 

for Rho, with no binding to Cdc42 or Rac1. Moreover this GEF preferentially 

activates RhoA, over RhoB and RhoC20.  Investigations into the function of RhoA in 

invadopodia have yielded contradictory results. Some studies have suggested that 

reduced RhoA expression decreases invadopodia formation and degradation21, while 

others have found no effect on invadopodia degradation when RhoA activation is 

inhibited or activated22. However, recent studies suppressing RhoA activity promoted 

invadopodia formation 23 and work with podosomes have indicated that RhoA 

inactivation is required for podosome formation24 whilst the constitutive activation of 

this protein reduces podosome formation24, 25. It has been suggested that a balance 

of RhoA activation and inactivation is important for podosome function with both the 

constitutive activation and reduction of RhoA activity resulting in reduced podosome 

degradation26. Our findings suggest that the same may be true for invadopodia 

function and provide additional evidence that the control of RhoA activity is important 

in invadopodia function. To date, the mechanism by which the PAK4/PDZ-

RhoGEF/RhoA pathway functions in invadopodia is unknown. RhoA plays a key role 

in the actin cytoskeletal dynamics and actomyosin contractility which is important in 

the formation of protrusions such as invadopodia27. Therefore, one potential 

mechanism by which the inhibition of RhoA brought about by the PAK4/PDZ-

RhoGEF/RhoA pathway can function at invadopodia, is through a reduction in the 

contractile force exerted on the protrusion to allow for the extension of the 

membrane. Furthermore, with RhoA activation being important for focal adhesions 

(incorporation of stress fibres), which is often associated with invadopodia 

dissolution, RhoA inactivation at invadopodia may tip the balance away from 

invadopodia formation towards disassembly as RhoA activity is redirected towards 

the formation of  focal adhesions. It will be interesting to explore further how levels of 

RhoA activity correlate with invadopodia dynamics. 

 

We were able to show both in our recent melanoma work and previous work 28 with 

prostate cancer cells that depletion of PAK4 leads to an increase in RhoA activity 

measured both by activity pulldown assays and FRET biosensors. There is a 

particular level of complexity surrounding the role of PAK1/PAK4 in regulation of 

RhoA activity. PAK4 is purported to contain a GEF interacting domain (GID)6 not 



found in PAK1, however both PAK1 and PAK4 have been reported to inhibit RhoA 

activator, GEF-H129-31. Phosphorylation of GEF-H1 by PAK1 or PAK4 at serine 885 

initiates a 14-3-3 binding event that is thought to sequester GEF-H1 on microtubules 

and inhibit activation of RhoA. Indeed, our previous work demonstrated that PAK4 

depletion can elevate the level of RhoA activity28 whilst concomitantly decreasing 

GEF-H1 S885 phosphorylation32, 33. In contrast RhoA activation has not been 

observed in PAK1 depleted cells34. Moreover these PAK1:GEF-H1 studies were not 

conducted in melanoma cell lines and in our study we did not see modulation of 

GEF-H1 serine phosphorylation in PAK1 nor PAK4 depleted cells. It should be noted 

that PAK2 and PKA can also phosphorylate GEF-H1 at this site35, 36.  In our recent 

study we also did not find a change in RhoA activity in PAK1 depleted cells using the 

FRET biosensors.  

 

To further investigate the relationship between PAK4 and regulation of RhoA  we 

have extended our monitoring of the prominence of actin stress fibres in our PAK4 

depleted cells as a readout for RhoA activity. Control and PAK4 depleted  WM-115 

and A-375M2 cells were seeded onto glass or gelatin coated coverslips allowed to 

adhere for 3 h and then fixed and stained for F-actin. The cells were imaged (Figure 

2A) and the images quantified for the presence of prominent F-actin stress fibres. 

Interestingly we found that on both glass and gelatin PAK4 depleted cells display an 

increase in prominent actin stress fibres (Figure 2B). To confirm that this increase in 

actin stress fibres is specific to loss of PAK4 expression we also expressed  GFP-

alone or GFP-PAK4r (resistant to the PAK4 specific siRNA sequence) in PAK4siRNA 

treated cells prior to plating. All cells were fixed and stained for F-actin  and the 

presence of prominent actin stress fibres quantified. Importantly we found that PAK4 

depleted cells and PAK4 depleted cells expressing GFP-alone exhibited higher 

levels of actin stress fibres compared to control but that PAK4 depleted cells 

expressing siRNA resistant GFP-PAK4r returned to control levels (Figure 2C and 

D).  

 

In conclusion, using our systematic approach we have demonstrated that both PAK1 

and PAK4 play an important role in melanoma cell invasion (Figure 3) but have 

distinct pathways in invadopodia function; with PAK4 promoting maturation and/or 

degradation through the localised inhibition of PDZ-RhoGEF. Taken together our 



recent study16 and previous work28 strongly points to a significant regulatory role for 

PAK4 in the RhoA pathway via its interaction with multiple RhoA GEFs. We believe 

that this is a distinction between PAK1 and PAK4 that is likely to play out in multiple 

cells and processes.



Methods/Materials  

 

Cell culture 

The melanoma cell line A-375M2 was grown in Dulbecco’s modified eagle’s medium: 

nutrient F-12 ham (DMEM F-12) (containing L-glutamine), and the WM-115 cell line 

was grown in minimum essential medium (MEM) (containing L-glutamine). All the 

growth media were supplemented with 10% foetal bovine serum (FBS), penicillin and 

streptomycin sulphate. A-375M2 cells were transiently transfected using 

Lipofectamine® 2000 transfection reagent, according to the manufacturer’s 

instructions. Where indicated ethanol washed coverslips were coated with gelatin 

and fixed with glutaraldehyde.  

 

siRNA/constructs 

Oligonucleotides (Dharmacon, UK) were transiently transfected at a concentration of 

25nM using HiPerFect transfection reagent (Qiagen), according to the 

manufacturer’s instructions. Control siRNA oligonucleotide 

(AATTCTCCGAACGTGTCACGT) PAK4 Oligo 1 siRNA oligonucleotide 

(GGTGAACATGTATGAGTGT) PAK4 Oligo 2 siRNA oligonucleotide 

(CGAGAATGTGGTGGAGATGTA). GFP-PAK4r was constructed by site-directed 

mutagenesis, according to the manufacturer’s instructions, using the QuikChange 

Multisuite II kit (Stratagene). pENTR-PAK437 was used as template DNA for site-

directed mutagenesis reactions. GFP Alone vector was purchased from Clontech.   

 

Immunofluorescence 

Cells were fixed with 4% (w/v) paraformaldehyde (PFA) and permeabilised using 

0.2% (v/v) triton X-100 and then washed with PBS. Non-specific binding was blocked 

by 3% BSA. Coverslips were incubated for 2 hours with the primary antibody and 

then washed with PBS. Cells were incubated for 1 hour with secondary antibody and 

fluorophore conjugated phalloidin (Invitrogen). Coverslips were then washed with 

PBS and mounted using Fluorsave™ reagent. Images were acquired using an 

Olympus IX71 microscope.  

 

 



Invadopodia lifetime Imaging  

Stable control shRNA, PAK1shRNA and PAK4shRNA A-375M2 cells were infected 

with lentivirus to stably express LifeAct-mRFP (kind gift from Prof. Maddy Parsons). 

Stable control and knockdown cells expressing LifeAct-mRFP were seeded on 

gelatin (not fluorophore conjugated) and treated with 25uM GM6001 (VWR) 

overnight to inhibit invadopodia formation. The inhibitor was removed 1h before 

imaging by replacing media. Images were taken at 15 second intervals over 15 mins 

using a Nikon A1R confocal microscope. Invadopodia assembly and disassembly 

rates were calculated by measuring the fluorescence intensity of the actin rich 

invadopodia using imageJ (Intensity vs. time plot). Data values were exported and 

visualised in Excel and invadopodia assembly (from lowest data point to max peak) 

and disassembly (max peak to the following lowest data point) were calculated. 
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Figure Legends  

 

Figure 1: PAK4 activity is restricted to the maturation phase of invadopodia 

lifecycle. (A) Possible functions for PAK1 and PAK4 in the invadopodia lifecycle. 

PAK1 plays a role in the formation of nascent invadopodia. PAK4 functions  in the 

maturation/degradation stage of the invadopodia lifecyle. (B) and (C) Lifetime 

imaging of A-375M2 cells with depleted PAK4 expression. Lifeact-mRFP transfected 

cells were plated on gelatin and images were taken at 15 second intervals over 15 

mins. Representative images are shown in 75 second intervals for each condition. 

Significance was calculated to wildtype cells. Data are mean values ± S.E.M. of 15 

cells, over 3 independent experiments; * = P < 0.05.  

 

Figure 2 PAK4 specifically influences RhoA activity  

Cells were plated on glass or gelatin matrix coated coverslips 4 days post-

transfection of siRNA oligonucleotides to reduce PAK4 expression. (A) 

Representative images of WM-115 and A-375M2 cells on glass and gelatin for each 

condition. Scale bar = 10μm (B) Quantification of the percentage of cells with 

prominent actin fibres. Significance was calculated to wildtype and control cells 

transfected with non-specific siRNA. Data are mean values ± S.E.M. of 150 cells, 

over 3 independent experiments; * = P < 0.05. Control = cells transfected with non-

specific siRNA. (C) Cells were plated in 6 well plates and transfected with siRNA 

oligonucleotides to reduce PAK4 expression. Two days post-transfection the cells 

were transfected with GFP alone or GFPPAK4r constructs. After 48 hrs, these cells 

were seeded on glass coverslips and incubated overnight, fixed and stained for F-

actin. Quantification of the percentage of cells with prominent actin fibres. 

Significance was calculated to control cells transfected with non-specific siRNA. Data 

are mean values ± S.E.M. of 150 cells, over 3 independent experiments; * = P < 

0.05. Control = cells transfected with non-specific siRNA. (D) Representative images 

of A-375M2 cells for each condition. Scale bar = 10μm  

 

Figure 3: PAK1 and PAK4 differential function in invadopodia dynamics. PAK4 

localises to the invadopodia and inhibits the function of PDZ-RhoGEF. This in turn 

prevents the activation of RhoA to promote invadopodia maturation and turnover. 

This may be through the inhibition of membrane contraction. Active RhoA may 



function in invadopodia to retract the protrusion during disassembly. Speculative 

pathways are labelled in red. PAK1 does not signal through PDZ-RhoGEF in 

invadopodia. It may function via the phosphorylation of cortactin or another 

substrate. 

 

 

 








