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Abstract 

Current techniques to identify growth-restricted fetuses, at risk of health 

complications, have limited accuracy. Placental insufficiency is a key 

pathological process in fetal growth restriction (FGR). I investigated the 

potential clinical benefit of placental biomarkers to identify pregnancies 

delivering small for gestational age (SGA) infants in pregnancies with suspected 

pre-eclampsia and in those with reduced symphysis-fundal height measurement 

using delivery of an SGA infant as a surrogate measure of FGR.  

 

Suspected pre-eclampsia (PELICAN-PE study) 

In a large multicentre prospective cohort study investigating diagnostic accuracy 

of placental growth factor (PlGF) in women with suspected pre-eclampsia, I 

assessed test performance of 47 biomarkers and ultrasound parameters to 

identify women delivering an SGA infant. 

 

PlGF measurement outperformed all other biomarkers and currently used tests 

in predicting delivery of an SGA infant. Combinations of biomarkers added 

minimal value.  

 

Reduced symphysis-fundal height measurement (PELICAN-FGR study) 

I assessed the ability of PlGF and ultrasound parameters to predict delivery of 

an SGA infant in women with reduced symphysis-fundal height (current UK 

standard to identify pregnancies at risk of SGA) in a second multinational 

prospective cohort study.  Test performance statistics were calculated for all 

parameters in isolation and combination. 
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Ultrasound parameters had modest test performance for predicting delivery of 

an SGA infant. PlGF performed no better. Incorporating PlGF with ultrasound 

parameters provided modest improvements. 

 

In women presenting with suspected pre-eclampsia, PlGF measurement is a 

potentially useful adjunct to current practice in identifying those at risk of SGA. 

The findings of the PELICAN-FGR study cannot support the use of PlGF to risk 

stratify women referred with reduced symphysis-fundal height. The prevalence 

of FGR in the two studies differed, with a high number of normal pregnancies in 

those presenting with reduced symphysis-fundal height. The pathological 

process in normotensive versus hypertensive SGA may differ, potentially 

explaining these findings. 
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Chapter 1: Introduction 
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1.1: Being born small-for-gestational-age (SGA): The 

scope of the problem 

 
The small-for-gestational-age infant is defined as an being born with a birth 

weight below a pre-specified threshold, commonly the third or tenth birth weight 

centiles (Robson et al., 2013). Being born SGA is a global health problem with 

an estimated 18 million babies born SGA per annum, contributing to 60-80% of 

neonatal deaths (UNICEF, 2004). These infants are at increased risk of life-

threatening complications compared to those born with birth weights 

appropriate-for gestational-age (AGA), even when born at term (Malin et al., 

2014), likely secondary to the high incidence of fetal growth restriction (failure of 

a fetus to fulfill their growth potential) (FGR) amongst SGA infants.  

 
These complications originate in the antenatal period and include stillbirth 

(Moraitis et al., 2014). As part of “The Lancet stillbirth series” Lawn et al. 

reported FGR (sometimes referred to as intrauterine growth restriction (IUGR)) 

and placental insufficiency as the highest attributable cause of stillbirth in high-

income countries (including, Australia, Canada, The Netherlands, Norway, UK 

and USA), (present in 32% of antenatal and 26% of intrapartum stillbirths) and 

identified FGR as one of the five main targets to achieve a reduction in stillbirth 

globally (Lawn et al., 2011). FGR, secondary to placental insufficiency, has 

previously been reported in approximately 50% of stillbirth cases (Frøen et al., 

2004). 
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Complications of being delivered SGA are not limited to the antenatal period but 

extend into adult life. These include perinatal and neurodevelopmental 

complications and long-term health complications, such as coronary heart 

disease, hypertension and type 2 diabetes mellitus. Maternal factors that 

predispose to SGA are discussed in detail in section 1.1.3.1. 

 

To reduce the short and long-term health complications associated with being 

born SGA, it is paramount that pregnancies at risk are identified early in the 

antenatal period, allowing targeted monitoring and potentially early intervention. 

However, accurately identifying at-risk pregnancies, diagnosing FGR 

antenatally and optimising management of this high-risk group remains 

challenging. This largely relates to a lack of understanding of the pathological 

mechanisms underlying FGR and limited sensitivity of current screening tools 

and diagnostic tests to accurately identify those at risk. In clinical practice, SGA 

is the target of most screening tools currently employed, which partly explains 

the limited sensitivity of these tools as pregnancies complicated by SGA are a 

heterogenous group including those that are constitutionally small in addition to 

a proportion of pregnancies with FGR. Using SGA as a surrogate for FGR leads 

to the inevitable over investigation and possible intervention, including 

iatrogenic delivery and its ensuing complications, in constitutionally small 

pregnancies, which are not thought to be at increased risk of adverse outcome.  
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Within the Lancet stillbirth series, Flenady et al. highlighted ‘the need for further 

research into the underlying mechanisms of fetal growth restriction facilitating 

early detection and effective management of women at increased risk’ (Flenady 

et al., 2011b) and Goldenberg et al. included; ‘improving antenatal screening for 

risk factors for stillbirth, such as fetal growth restriction’, as a high priority 

research theme in the concluding article of the series (Goldenberg et al., 2011).  

 

There is no doubt of the importance of the risks associated with delivering a 

growth restricted infant on an individual and global scale and the impact of this 

on healthcare resources. Accurately predicting those at risk of delivering a 

growth restricted infant, enabling targeted intervention, has the potential to 

improve outcome and avoid some of the devastating consequences linked to 

this condition, whilst also avoiding intervention in the group of constitutionally 

small infants.  

 

1.1.1 Clinical importance of identifying the SGA infant antenatally 

Infants born SGA are at increased risk of short and long-term health 

complications. 
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1.1.1.1 Short term complications 

1.1.1.1.1 Perinatal complications 

Two North American population studies (including 12,317 and 19,759 

pregnancies who delivered preterm) observed increased rates of respiratory 

distress syndrome, intraventricular haemorrhage and necrotising enterocolitis in 

those born SGA compared to those delivering AGA (McIntire et al., 1999, 

Bernstein et al., 2013). In term SGA infants, increased incidence of fetal 

acidosis (McIntire et al., 1999), seizures within the first week of life (Bukowski et 

al., 2003) and perinatal stroke have been reported (Wu et al., 2004), although 

generalisation and reproducibility of the findings of the latter two studies may be 

limited due to their small sample size and study design (single site nested case-

control study). Polycythaemia, hyperbilirubinaemia and hypoglycaemia have 

also been cited as more common in growth-restricted infants, possibly 

secondary to chronic hypoxia and reduced hepatic glycogen stores (Mayer and 

Joseph, 2013). 

 

1.1.1.1.2 Neurodevelopmental complications 

SGA infants have been found to be at increased risk of cerebral palsy 

compared to those born AGA. This risk is reported as decreasing with 

advancing gestational age (Surveillance of Cerebral Palsy in Europe, 2000). A 

population based case-control study in Sweden compared rates of cerebral 

palsy in SGA infants to those born AGA. They found that the risk of cerebral 

palsy in those born SGA at term was 5-7 fold higher, where as in preterm 



 
 

 

 

18 

infants, incidence of cerebral palsy, was not more common with SGA 

(Jacobsson et al., 2008).  

McCormick et al. reported poorer academic performance, lower intelligence, 

poor social interaction and behavioural problems amongst those born SGA in 

two cohorts of 8-10 year olds, with differing birth weights (McCormick et al., 

1996). However they suggest that this relationship may occur due to the 

presence of risk factors for delivering an SGA infant rather than a direct effect 

from low birth weight. Pryor et al. and Walker et al. published similar findings 

with the addition of defects in short-term memory in infants born SGA, 

compared to those born AGA (McCormick et al., 1996, Schothorst and van 

Engeland, 1996, Pryor et al., 1995, Walker and Marlow, 2007). Strauss et al. 

analysed data from the National Collaborative Perinatal Project, a large 

multicentre cohort study, and concluded that there were significant differences 

in IQ at age seven between those born SGA and their AGA counterparts 

(Strauss and Dietz, 1998). However, when they compared the growth and 

development of 220 similar-sex term sibling pairs where one sibling was born 

SGA, they found no significant difference in IQ unless there was associated low 

head circumference. These findings suggest that genetic and environmental 

factors play a significant role in the differences observed in IQ when the whole 

cohort was analysed (Latal-Hajnal et al., 2003). 
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1.1.1.1.3 Stillbirth and neonatal death 

Whilst acknowledging that stillbirth is uncommon in high income countries, a 

systematic review and meta analysis reported SGA as having the highest 

population attributable risk of all pregnancy specific disorders (23%) (Flenady et 

al., 2011a). A large cohort study of 92,218 singleton pregnancies (including 389 

stillbirths) reported that if SGA (birth weight <10th customised centile) was not 

recognised antenatally, the risk of stillbirth increased five-fold, emphasising the 

importance of antenatal detection (Gardosi et al., 2013b). A recent multinational 

study evaluated the effects of preterm and SGA delivery on neonatal and 

postnatal mortality in a pooled analysis of data from low and middle-income 

countries. The relative risk of neonatal mortality in babies born SGA at term was 

1.83 (CI 1.32-2.50) and 6.82 (CI 3.56-13.07) for those born preterm. In babies 

born preterm and SGA, the risk was much higher (15.42 (CI 9.11-26.12)) (Katz 

et al., 2013). Improved recognition of SGA would allow appropriate surveillance 

and timing of delivery. A large Swedish retrospective cohort study including 

26,968 women (681 with SGA infants detected antenatally) concluded that 

instigating a structured antenatal surveillance program for pregnancies 

identified as SGA antenatally resulted in a lower risk of fetal adverse outcome 

(Lindqvist and Molin, 2005).  

 

In 1992, Gardosi et al. proposed that use of customised growth centiles, as 

opposed to population derived centiles, improved detection of the SGA fetus 

(Gardosi et al., 1992). In 2009 they published a retrospective analysis on a 

large American database comprising 34,712 singleton pregnancies and 
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concluded that use of customised birth weight centiles more accurately 

identified those at most risk of adverse outcome, including stillbirth (Gardosi and 

Francis, 2009). However, in a population of women at high-risk of 

uteroplacental insufficiency, use of customised fetal weight limits only detected 

68% of cases antenatally who subsequently delivered an SGA infant, 

highlighting the need for further improvement in identifying those at risk (De 

Jong et al., 2000). Customised birth weight centiles are discussed in more detail 

in section 1.1.2.1.  

 

 

1.1.1.2 Long-term health complications 

1.1.1.2.1 Complications in childhood 

Two large cohort studies, in New Zealand and North America, have reported 

heights and weights of children who were born SGA, to be significantly less 

than those born AGA and this difference persisted into adulthood (Strauss and 

Dietz, 1998, Pryor et al., 1995).  

!

1.1.1.2.2 Complications in adulthood 

Multiple large cohort studies have reported increased incidence of coronary 

heart disease (Frankel et al., 1996, Leon et al., 1998, Bonamy et al., 2011), 

hypertension (Eriksson et al., 2000, Curhan et al., 1996, Huxley et al., 2000) 

and type 2 diabetes mellitus (Forsen et al., 2000, Lithell et al., 1996, Rich-
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Edwards et al., 1999, Newsome et al., 2003) in adults who were born SGA, 

compared to those born AGA.  

 

A possible explanation for these associations involves the concept of 

‘developmental plasticity’, where the fetus adapts in response to the intrauterine 

environment and nutrition in early life (Barker, 2006). One such adaptation is 

insulin resistance, which is associated with the development of type 2 diabetes 

mellitus and hypertension in adult life. This is thought to occur secondary to 

persistence of a protective fetal metabolic adaptation to ensure adequate 

glucose supply to developing organs in a harsh intrauterine environment 

(Phillips, 1996).  

Another possibility is the presence of a maternal genetic susceptibility to 

cardiovascular disease, which may contribute to delivery of an SGA infant, who 

may also inherit this trait. Women with a genetic predisposition to 

cardiovascular disease may have impaired haemodynamic changes in 

pregnancy, resulting in placental dysfunction and inadequate oxygen and 

nutrient supply to the developing fetus. Such women are at increased risk of 

vascular complications, including hypertensive disorders and pre-eclampsia, 

with the ensuing complications of preterm delivery and FGR. This offers some 

explanation why women who give birth to SGA infants have a higher risk of 

coronary heart disease themselves (Smith et al., 2000, Bonamy et al., 2011).   
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Possible mechanisms for these associations remain speculative and it remains 

unclear whether intervention would reduce incidence or improve outcome from 

these multifactorial conditions (Mayer and Joseph, 2013). 

 

1.1.2: Defining the small for gestational age (SGA) infant 

The SGA infant is defined as an infant born with a birth weight below a pre-

specified threshold, commonly the third or tenth birth weight centiles (Robson et 

al., 2013). Other thresholds for defining SGA have been used, including the 

2.5th, 5th and 20th centiles, but the 10th birth weight centile derived from 

appropriate healthy populations is the most frequently reported. This definition 

includes both constitutionally small infants and those with FGR. The latter refers 

to any fetus that fails to fulfill their growth potential, and represents a group at 

high risk of adverse outcome. Figure 1.1 illustrates the relationship between 

SGA and FGR. 
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Figure 1.1 Venn diagram displaying the relationship between SGA and FGR 

The circle depicting FGR is dotted to represent the uncertainty of the proportion 

of SGA infants who have FGR. 

 

FGR, fetal growth restriction 

 

SGA infants are at increased risk of neonatal morbidity (Bernstein et al., 2013, 

McIntire et al., 1999) and mortality (Frøen et al., 2004, Lawn et al., 2005, 

Lackman et al., 2001), compared to their AGA counterparts, likely secondary to 

the high incidence of FGR within the SGA group. It is important to consider 
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which threshold is most appropriate for defining SGA, as this affects the 

proportion of infants within the group that are growth restricted.  

 

If a threshold of the 10th centile from a healthy population is used to define 

SGA, it would be expected that 10% of normal pregnancies (i.e. constitutionally 

small infants) will be included in this group. These pregnancies are not at 

increased risk of adverse outcome (Alfirevic et al., 2010) but by inclusion in this 

definition of SGA they would be subject to extra surveillance which may lead to 

unnecessary anxiety and intervention. Using a lower threshold, such as the 

third centile from a healthy population will reduce the proportion of normal 

pregnancies included to 3%, but would potentially omit cases of FGR, included 

if a higher threshold is employed. Whilst use of any population based threshold 

will omit some cases of FGR it is proposed that those cases of FGR at most risk 

of adverse outcome are likely to be those with low birth weight, and therefore 

using a population based threshold such as the 10th centile offers the best 

probability to identify most cases at risk.  

 

1.1.2.1 Customised birth weight centiles 

Historically, SGA has been defined according to thresholds derived from 

healthy populations. In 1992, Gardosi et al. published data comparing use of 

customised growth centiles to population-based centiles for defining SGA. 

Customised charts incorporated data on maternal height, weight, ethnicity and 

parity, in addition to gestational age at delivery and infant sex, with the aim of 
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differentiating those SGA fetuses who are growth restricted from those who are 

constitutionally small. They concluded that 28% of babies identified as SGA 

using population based centiles, were within normal limits for that individual 

woman if customised centiles were used, whilst 24% of babies assigned as 

SGA using customised centiles were missed using conventional unadjusted 

centiles (Gardosi et al., 1992). Subsequent studies have shown that use of 

customised centiles improves identification of small babies at high-risk of 

adverse outcomes, including stillbirth (Odibo et al., 2011) and neonatal death 

(Clausson et al., 2001) and that a threshold of the 10th centile provides a high 

detection rate for SGA and its related perinatal complications (Gardosi and 

Francis, 2009, Clausson et al., 2001, Figueras et al., 2007, De Jong et al., 

2000). However, there remains some controversy regarding widespread 

adoption of customised centiles into clinical practice. At earlier gestational ages, 

the customised centiles are calculated using Hadlock’s proportionality formula, 

in contrast to conventional birth weight charts, which use the weights of live 

births. Hadlock’s formula uses measurements of head circumference, 

abdominal circumference and femur length to estimate fetal weight (Hadlock et 

al., 1985). It has been proposed that this, rather than incorporation of maternal 

characteristics into the model, causes the improved detection of those most at 

risk (Hutcheon et al., 2008).  

 

A further concern relates to the inclusion of ethnicity as a component of the 

customised fetal growth charts. The recently published Intergrowth 21st project 

aimed to investigate whether there were similarities in fetal growth across 
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geographically diverse areas when other factors affecting fetal growth were 

controlled for (e.g. nutritional intake, maternal health and level of antenatal 

care). They evaluated fetal growth and newborn size in eight geographically 

diverse urban areas and suggested that genetic variation has little effect on 

fetal growth (Villar et al., 2014). The World Health Organisation (WHO) 

Multicentre Growth Reference Study (MGRS) has previously reported very 

similar patterns of infant growth across six sites in Europe, Africa, India, The 

Middle East and North and South America, when there was little variation in 

environmental, health and nutritional status. This led to construction of 

International growth standards from birth to five years of age (WHO., 2006b, 

WHO., 2006a, WHO., 2006c). The authors of the Intergrowth 21st project 

suggest that previously reported differences in fetal growth in diverse 

populations are more likely due to socioeconomic and environmental factors 

rather than genetic variation. These data are currently being analysed to 

construct standardised International prenatal and neonatal growth standards, 

with the aim of integrating these with the standards derived from the WHO 

Multicentre Growth Reference Study.  

 

The UK Royal College of Obstetrics and Gynaecology Guideline: The 

Investigation and Management of the SGA Fetus, published in 2011, prior to 

Intergrowth, suggests that use of customised fetal weight references may 

improve prediction of a SGA neonate and an adverse perinatal outcome 

(Robson et al., 2013). 
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1.1.3 Causes of fetal growth restriction 

FGR is a multifactorial condition and risk factors can broadly be divided into, 

maternal, fetal and placental factors. Maternal factors predisposing to placental 

dysfunction account for the largest proportion of cases, with fetal and other 

placental factors playing a much smaller role. 

1.1.3.1 Maternal factors 

1.1.3.1.1 Pre-eclampsia and Placental dysfunction!

Pre-eclampsia is a pregnancy specific condition which is classically defined as 

new onset of hypertension after 20 weeks’ gestation with documented 

proteinuria (≥ 300 mg/day or urinary protein/creatinine ratio ≥ 30 mg/mmol) 

(Brown et al., 2001). The condition occurs when there is failure of adequate 

trophoblast invasion of the maternal spiral arteries leading to impaired placental 

blood flow and episodes of placental ischaemia, and oxidative stress (Huppertz, 

2008, Kaufmann et al., 2003, Poston et al., 2011). Redman et al. suggest that 

proinflammatory mediators are released into the maternal circulation, triggering 

a widespread inflammatory response with alteration in concentrations of many 

acute phase proteins (Redman and Sargent, 2009). This combination of 

systemic inflammation and placental hypoxia leads to maternal endothelial 

dysfunction and the resulting non-specific clinical presentations of pre-

eclampsia.  

 

In addition to the mechanisms outlined above, increased vascular resistance 

and reduced placental perfusion area (likely secondary to microthrombi 
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deposition and placental infarction and abruption) lead to the frequent 

coexistence of FGR. The relationship between pre-eclampsia and FGR has 

been reported extensively, with severity of pre-eclampsia and gestation at onset 

correlating with presence and severity of FGR. Odegard et al. reported in a 

population based study, a 5% reduction in birth weight in pregnancies 

complicated by pre-eclampsia. This increased to a 12% reduction in birth weight 

with severe pre-eclampsia and birth weight was 23% lower than expected if 

there was early onset of disease (defined as delivery before 32 weeks’ 

gestation). The risk of delivering an SGA infant was four times higher in cases 

complicated by pre-eclampsia compared to controls (Odegard et al., 2000). The 

relationship between late-onset pre-eclampsia and coexistence of FGR is less 

clear with a large Canadian retrospective cohort study including 97,270 

pregnancies reporting that in women delivering beyond 37 weeks’ gestation, 

infant birth weights were similar for women with pre-eclampsia compared to 

those who remained normotensive (Xiong et al., 2002). This supports the theory 

that abnormal uteroplacental perfusion plays a larger role in the pathogenesis of 

early onset pre-eclampsia compared to late onset disease.  

 

Current NICE guidance on the Management of hypertensive disorders during 

pregnancy recommends that all women diagnosed with pre-eclampsia who are 

to be managed conservatively should be offered ultrasound scan to assess fetal 

growth, liquor volume and umbilical doppler measurement (National Institute for 

Health and Clinical Excellence, 2010). However, as discussed in section 

1.1.2.1, sensitivity of ultrasonography to detect SGA and predict adverse 
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outcome is limited, even when customised centiles are used. There is a need 

for an accurate test to detect SGA antenatally, particularly in high-risk 

populations such as women with early onset pre-eclampsia, to identify women 

at increased risk of adverse perinatal outcome. 

 

Several chronic maternal conditions including hypertensive and renal disease, 

diabetes mellitus, systemic lupus erythematous and antiphospholipid syndrome 

are associated with an increased risk of FGR and pre-eclampsia, mainly 

considered to be secondary to placental dysfunction (Howarth et al., 2007, Fink 

et al., 1998, Yasmeen et al., 2001, Yasuda et al., 1995). A large Canadian 

population based study, including 135,466 pregnancies, reported that women 

with any hypertensive disorder in pregnancy were 1.6 times more likely to 

deliver an SGA infant compared to those who remained normotensive (Allen et 

al., 2004).  

It is hypothesised that procoagulant conditions, such as thrombophilias, lead to 

an increased risk of placental thrombosis with altered uteroplacental blood flow 

contributing to the development of FGR and in severe cases to fetal loss (Facco 

et al., 2009, Arias et al., 1998). Acquired thrombophilias such as anticardiolipin 

antibodies and lupus anticoagulant are associated with FGR and development 

of pregnancy complications such as pre-eclampsia and stillbirth (Yasuda et al., 

1995), but evidence of association with inherited thrombophilias is limited and 

conflicting (Facco et al., 2009).  
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1.1.3.1.2 Other maternal factors!

The association between smoking and FGR has been long established. A large 

international prospective cohort study, including 3513 nulliparous women, 

reported that smoking at 15 weeks’ gestation was associated with a 30-40% 

increased risk of SGA for every 5 cigarettes smoked per day, irrespective of 

whether the pregnancy was complicated by hypertension (19.2% of women 

delivering an SGA infant were smokers compared to 10% in those delivering an 

AGA infant) (McCowan et al., 2010). McCowan et al. published that cessation of 

smoking prior to 15 weeks’ gestation gave a risk of delivering an SGA infant 

comparable to a non-smoking population, highlighting the reversibility of this 

risk (McCowan et al., 2009). Smoking causes impaired uterine blood flow and a 

reduction in oxygen carrying capacity. The latter mechanism is also thought to 

contribute to the increased incidence of FGR in women who live at high altitude 

(Krampl, 2002), or have cyanotic heart disease (Patton et al., 1990), 

haemoglobinopathies or anaemia (Barfield et al., 2010). 

 

A systematic review and meta analysis including 78 studies, involving over one 

million women, reported that singleton pregnancies born to underweight women 

were at higher risk of preterm delivery (both spontaneous and iatrogenic) and 

being born SGA compared to those of normal weight (Han et al., 2011). A paper 

included in this systematic review by Ronnenberg et al. proposed reduced fetal 

nutrition as the mechanism of action (Ronnenberg et al., 2003). Low weight 

gain during pregnancy has also been linked to development of FGR (Lang et 

al., 1996), although monitoring maternal weight during pregnancy is not 
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currently recommended (National Institute for Health and Clinical Excellence, 

2008). 

 

Fetal exposure to both prescription and recreational drugs can lead to FGR. 

Use of heroin or cocaine has been associated with delivery of an SGA infant in 

50% and 27% of cases respectively (Naeye et al., 1973, Fulroth et al., 1989). 

This could be partially attributed to the increased risk of chronic placental 

abruption with cocaine use and the coexisting poor nutrition often observed with 

drug misuse. The later is supported by data published by Naeye et al. where 

severity of SGA correlated with degree of malnutrition (Naeye et al., 1973). 

Alcohol consumption in pregnancy has also been linked to FGR and a large 

prospective study including 31,604 pregnancies reported that this risk is dose 

dependent (Mills et al., 1984). However a recent systematic review and meta-

analysis suggested that light to moderate alcohol intake had no effect on risk of 

delivering an SGA infant and that a dose dependent association was only 

established when daily intake exceeded 10g alcohol (one alcoholic drink) per 

day (Patra et al., 2011). Current national guidelines in the UK, issued prior to 

the systematic review discussed above, advise abstinence during pregnancy, 

perhaps related to the risks of alcohol, although there is little evidence that very 

low consumption (less than 1-2 international units of alcohol less than 1-2 times 

per week) affects fetal growth (Fraser, 2006). 

 

There are numerous additional maternal factors, which have been linked with 

delivery of a SGA infant. These include previous delivery of an SGA infant 
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(estimated to increase risk more than two-fold) (Tejani, 1982, Bakketeig et al., 

1993), low socioeconomic status (Wilcox et al., 1995), use of artificial 

reproductive techniques (independent of multiple gestation) (Jackson et al., 

2004, Schieve et al., 2002), short inter-pregnancy interval (Zhu et al., 1999), 

maternal periodontal disease (Khader and Ta'ani, 2005) and extremes of 

maternal age (Lee et al., 1988),. Lee et al. conducted a population study 

including 184,567 women with singleton pregnancies, evaluating the effects of 

maternal age on incidence of low birth weight in women delivering at term. They 

concluded that women under 17 years of age and those over 35 years of age 

were more likely to deliver a SGA infant. They hypothesised that poor 

sociodemographic and prenatal care in women under 17 years of age and 

biologic ageing of maternal tissues and systems in those over 35 years of age 

may contribute to this finding (Lee et al., 1988). The findings of the About 

Teenage Eating (ATE) study support this hypothesis in teenagers. Baker et al. 

reported lower micronutrient intake (including iron, folate and vitamin D) in 

adolescents who delivered SGA infants compared to those delivering AGA 

(Baker et al., 2009). In the Screening for Pregnancy Endpoints (SCOPE) cohort 

(prospective multicentre cohort study including 3513 nulliparous women), 

increasing maternal age was identified as an independent risk factor for 

delivering an SGA infant. This group also reported a correlation between 

maternal dietary intake and risk of SGA, with a high fruit and vegetable intake 

being protective, whilst low fruit intake pre-pregnancy was identified as an 

independent risk factor (McCowan et al., 2010). The exact protective agents in 

fruit and vegetables have not been identified but McCowan et al. proposed that 
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micronutrients (including folate, ascorbate, carotenoids and magnesium) and 

dietary fibre and other phytochemicals may play a role. Alternatively they 

suggest that higher fruit and vegetable intake may merely reflect a healthier 

lifestyle (McCowan et al., 2010). Other groups have published on the 

contribution of micronutrient concentrations to delivering an SGA infant (Mistry 

and Williams, 2011). Mistry et al. measured concentrations of selenium, copper 

and zinc in 126 adolescent pregnant women recruited to the ATE study. Third 

trimester concentrations of selenium were lower in those delivering an SGA 

infant compared to their AGA counterparts, whereas differences in 

concentrations of zinc and copper were not significant (Mistry et al., 2014). 

Selenium is a cofactor for several important enzymes involved in antioxidant 

defence. The authors suggest that low maternal concentrations of selenium 

reduce this defence mechanism, leading to restriction of fetal growth. Whilst 

encouraging, large intervention trials would be needed to assess the impact of 

micronutrient supplementation on incidence of SGA prior to consideration of 

clinical adoption. 

1.1.3.2 Fetal factors 

Chromosomal defects are associated with FGR but the reported incidence of 

chromosomal abnormalities is this group varies between 5-20% (Sabogal, 

2007). One study including 458 fetuses with suspected SGA in the second and 

third trimester, reported an incidence of chromosomal abnormality of 19% in 

cases of severe SGA (abdominal circumference (AC) and estimated fetal weight 

(EFW) were below the 5th centile) (Snijders et al., 1993). Triploidy was the 
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commonest abnormality in fetuses prior to 26 weeks’ gestation with trisomy 18 

(Edward’s syndrome) after 26 weeks in this study (Snijders et al., 1993). Other 

aneuploidies and several genetic syndromes also have associations with 

delivery of an SGA infant. 

 

Congenital malformations in the absence of genetic disorders are a rare cause 

of SGA (accounting for 1-2% of cases), but presence of multiple malformations 

has been reported to increase risk (Khoury et al., 1988).  

 

Fetal infections have been reported in up to 5% of cases delivering an SGA 

infant (Hendrix and Berghella, 2008). Cytomegalovirus (CMV), toxoplasmosis, 

malaria and syphilis are the most commonly cited pathogens, whilst cases 

complicated by rubella infection, have decreased since widespread vaccination 

was adopted in developed countries (Hendrix and Berghella, 2008). However, a 

European multicentre prospective cohort study investigating the association 

between toxoplasmosis and subsequent delivery of a SGA infant found no 

causal relationship (Freeman et al., 2005).  

 

A recent small case control study investigated the presence of congenital CMV 

in 19 pregnancies (nine uncomplicated pregnancies (controls), seven cases of 

idiopathic FGR and three cases of pre-eclampsia) and found evidence of 

congenital CMV infection with abnormal placental pathology in five cases of 

idiopathic FGR (three recurrent and two primary infections) (Pereira et al., 

2014). Whilst acknowledging the very small sample size of this study, the 
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results suggest that subclinical antenatal infections could be responsible for a 

proportion of idiopathic FGR. Larger studies are warranted to substantiate these 

findings. 

 

It has been reported that approximately 3% of cases of FGR are associated 

with multiple pregnancy, with approximately 15-30% of twin pregnancies at risk 

of FGR (Resnik, 2002). FGR in one or more fetuses is associated with neonatal 

adverse outcome (Hendrix and Berghella, 2008).   

 

Whilst many fetal factors can contribute to delivery of an SGA infant, as a group 

fetal factors are causal in only a relatively small number of cases. 

 

1.1.3.3 Placental factors 

Placental abnormalities including placental abruption, infarction, and tumours 

(Zalel et al., 2002, Pham et al., 2006) have all been associated with increased 

risk of SGA likely secondary to reduced uteroplacental blood flow. A large 

American retrospective cohort study including 53,371 pregnancies reported 

SGA (birth weight <10th centile for gestational age) in 14.3% of pregnancies 

complicated by placental abruption compared to 8.1% in controls (Ananth et al., 

1999). Cord malformations, such as velamentous insertion and single umbilical 

artery have also been linked to delivery of an SGA infant. A Finnish 

retrospective cohort study reported increased risk of low birth weight and SGA 

in a series of 216 cases of velamentous cord insertion, compared to normal 
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controls (Heinonen et al., 1996). They suggest that velamentous insertion may 

be a compensatory mechanism counteracting impaired early placentation. If the 

primary implantation site has poor vascularity, they propose that the placenta 

migrates to a better site leading to a velamentous cord insertion. 

 

Placenta praevia and accreta have been quoted in review articles as increasing 

risk of delivering an SGA infant (Mayer and Joseph, 2013, Maulik, 2006), but a 

large retrospective cohort study including 59,149 women, (724 of whom had a 

placenta praevia) found no association (Harper et al., 2010). 

 

1.1.4 FGR and placental pathology  

Placental dysfunction, largely due to maternal factors, accounts for the greatest 

proportion of cases of FGR. Improved knowledge of placental pathology has 

facilitated identification of several pathological processes, which underpin the 

development of FGR. In 2008, Redline published a complex classification 

involving five chronic patterns of placental injury, which occur more frequently in 

the placentae from FGR infants (Redline, 2008). These included three 

categories affecting the maternal and fetal vasculature (maldevelopment, 

obstruction or loss of integrity) and two categories involving inflammatory 

processes (infectious and idiopathic). The idiopathic category included chronic 

histiocytic intervillositis and villitis of unknown aetiology (VUE). In VUE, a large 

maternal immune response is cited, predominately through activation of T 

lymphocytes, which infiltrate the villous stroma. The trigger for this process is 
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unknown but high grade VUE is associated with significant perinatal morbidity 

and mortality (Redline, 2005, Redline and O'Riordan, 2000).  

Redline suggested that VUE is more common in normotensive term gestations 

with FGR whereas maternal vascular disorders are the most frequent finding in 

preterm deliveries and maternal hypertensive disease with FGR. 

 

Redline’s classification is not widely accepted. Vedmedovska et al. published a 

case series of placental pathology from 50 pregnancies complicated by 

placental disease (including FGR) and reported no differences in perivillous 

fibrin deposition between cases and controls (Vedmedovska et al., 2011).  

Perivillous fibrin deposition was classified by Redline as a maternal vasculature 

maldevelopment, observed in the placentae of women with pre-eclampsia. 

Huppertz et al. have proposed a different model for understanding differing 

placental pathologies for pre-eclampsia and FGR, involving dysregulation of 

trophoblast differentiation. Timing of dysregulation influences development of 

pre-eclampsia or FGR or coexistence of these conditions; it is proposed that 

early dysregulation of trophoblast development results in a combination of pre-

eclampsia and FGR whilst later dysregulation of syncytiotrophoblast leads to 

pre-eclampsia and dysregulation of cytotrophoblast development results in 

isolated FGR (Huppertz, 2011).   

 

Both Redlines and Huppertzs models, propose that different pathological 

processes occur in pre-eclampsia and FGR uncomplicated by hypertension. 
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This may be relevant when considering potential diagnostic tools for FGR, as 

concentrations of markers may be altered in normotensive FGR compared to 

FGR with hypertension and different markers may be more useful in these two 

distinct groups. The theory of differing pathological mechanisms in women with 

pre-eclampsia compared to those remaining normotensive but delivering an 

SGA infant is supported by the findings of Pecks et al. (Pecks et al., 2012). This 

group evaluated the oxidative state of low-density lipoproteins (LDL) in FGR 

and pre-eclampsia. Several authors have previously reported an increased 

maternal plasma oxidised LDL concentration in pre-eclampsia (Kim et al., 2007, 

Uzun et al., 2005). Pecks et al. proposed that oxidised LDL impairs trophoblast 

invasion affecting remodeling of the spiral arteries contributing to poor 

placentation and the sequelae of pre-eclampsia, and assumed a similar pattern 

would be evident in those pregnancies complicated by delivering an SGA infant. 

However the authors reported an inverse relationship with low concentrations of 

oxidised LDL in pregnancies delivering an SGA infant (Pecks et al., 2012). 

 

1.1.5 Summary 

Being born SGA is a global health problem, associated with significant neonatal 

morbidity and mortality with complications extending into adult life. Identifying 

pregnancies at risk remains challenging but integration of maternal and fetal 

factors into assessment of growth may improve detection and outcome.  
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FGR is a multifactorial condition, but placental dysfunction secondary to 

maternal disease is the underlying pathological process in the majority of cases.  

Improvements in the understanding of the pathophysiological processes 

underlying placental disease has aided the identification of upstream markers 

altered early in the pathological process allowing earlier detection and targeted 

intervention. 

 

1.2 Current clinical practice for identifying the SGA 

infant in a low-risk population 

 

Antenatal identification of infants who are subsequently delivered SGA remains 

challenging. Currently in the UK, healthcare professionals routinely conduct 

abdominal palpation and measurement of symphysis-fundal height from 24 

weeks’ gestation to assess fetal size and wellbeing and therefore reduced 

symphysis fundal height measurement was chosen as the inclusion criteria for 

the PELICAN FGR study. Several studies have demonstrated that abdominal 

palpation has limited accuracy (sensitivity 16-50%, specificity 45-95%) for 

detecting the SGA fetus, with Kean et al. publishing a false positive rate of 51% 

from their cohort of 2060 women (Bais et al., 2004, Kean and Liu, 1996, Hall et 

al., 1980, Rosenberg et al., 1982). This high false positive rate results in 

unnecessary follow up, incurring significant costs to the health service whilst 

also causing increased anxiety for women. Despite this, abdominal palpation 
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remains part of routine clinical assessment as it provides information regarding 

fetal lie and possible abnormalities in amniotic fluid volume (e.g. oligo- or 

polyhydramnios). 

 

1.2.1 Symphysis fundal height (SFH) measurement 

Symphysis-fundal height measurement is easily performed in the community 

setting as it does not require expensive equipment, but the test performance of 

this technique is low (sensitivity 27% and specificity 88%) (Persson et al., 

1986).  Use of customised symphysis-fundal height charts, which adjust for 

maternal characteristics including maternal height, weight, parity and ethnic 

group, may improve detection of a SGA neonate whilst also reducing 

intervention. However, antenatal detection rates for SGA  <10th birth weight 

centile with use of customised fundal height charts have been reported as only 

48% (Gardosi and Francis, 1999). Similar findings have been reported in an 

Australian study where only approximately half of all cases of SGA (44/87) were 

being detected antenatally with customised symphysis-fundal height charts 

(Roex et al., 2012). Despite these results, implementation of customised charts 

in conjunction with accredited training has been associated with a reduction in 

stillbirth rates in areas of high uptake but these findings are yet to be 

substantiated in a randomised control trial (Gardosi et al., 2013a). A Cochrane 

systematic review identified only one randomised control trial of 1639 women, 

comparing symphysis-fundal height measurement to abdominal palpation. The 

review concluded that whilst this small study reported that symphysis-fundal 
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height measurement was less accurate than abdominal palpation at identifying 

women who subsequently delivered an SGA infant (28% and 48% sensitivity 

respectively) and adoption of this technique had no significant effect on 

perinatal outcome, symphysis-fundal height measurement should not be 

discarded as a screening tool without a much larger trial verifying these findings 

(Neilson, 2000).  

 

1.2.2 Screening by routine ultrasound assessment 

In women with high body mass index (BMI), large fibroids, multiple pregnancy, 

abnormal fetal lie or polyhydramnios, symphysis-fundal height measurement is 

even less accurate and an alternative technique, such as serial ultrasound 

assessment should be considered. Current UK national guidance does not 

advocate screening all women using routine ultrasound to detect SGA due to 

reported low sensitivities (21-54%) (Ben-Haroush et al., 2007, Secher et al., 

1987, Souka et al., 2012, David et al., 1996, Lindqvist and Molin, 2005) with no 

evidence of improved perinatal outcome (Bricker et al., 2008). However, the 

preliminary findings of a recent prospective cohort study in an unselected 

nulliparous population including 4006 women compared routine sonography in 

the third trimester to current practice of selective sonography. Improved 

detection of SGA was reported with routine sonography at 28 and 36 weeks’ 

gestation (sensitivity to detect SGA 57% for routine sonography and 20% for 

selective sonography) (Sovio et al., 2014). Whilst this study suggests that 

adoption of routine third trimester ultrasound screening may improve detection 
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of SGA, test sensitivity is limited, with nearly half of cases still remaining 

undetected in this study population. Ultrasound scanning requires expensive 

equipment and highly trained operators; there is therefore a need to evaluate its 

introduction as a screening approach through a randomised controlled trial prior 

to widespread adoption of routine third trimester scanning. This should consider 

the impact on adverse perinatal outcomes and cost implications to the health 

service.  

 

1.2.3 Doppler measurement 

A systematic review investigating the ability of second trimester uterine artery 

Doppler measurement to predict delivery of an SGA infant concluded that in 

low-risk women, an increased pulsatility index alone or with diastolic notching 

best predicted delivery of an SGA infant. However the authors commented that 

for a test to be clinically useful, it should ideally have a high positive likelihood 

ratio (>10) and low negative likelihood ratio (<0.10) and whilst increased 

pulsatility index and bilateral notching are the most promising indices to reach 

these parameters, their inclusion into a low-risk screening program would incur 

considerable cost, limiting use in a low resource setting. Inclusion of the test in 

settings where routine anomaly scanning is undertaken in the second trimester 

should be achievable, but this would lead to the inevitable identification of false 

positive cases. This could cause unnecessary anxiety in those who test positive 

but do not have the condition and more concerning, as this test has a negative 

likelihood ratio of 0.89, a considerable number of cases would not be detected, 



 
 

 

 

43 

which would be unacceptable for a stand-alone “rule out” screening tool 

(Cnossen et al., 2008). Whilst highly specific for predicting delivery of an SGA 

infant, the pooled sensitivity of increased pulsatility index and bilateral notching 

(12%) is lower than other proposed or currently used screening tools (routine 

ultrasound scan 21-54%, symphysis-fundal height measurement 27%). In 

isolation Doppler studies are unlikely to be of benefit but in combination with 

other parameters test performance could be improved. A further systematic 

review evaluating the effects of routine second trimester uterine artery Doppler 

measurement on pregnancy outcome reported no improvement in maternal or 

neonatal outcome, but only two studies were included in this review (Stampalija 

et al., 2010). At present, there is insufficient conclusive evidence to support the 

routine screening of a low-risk population using this technique. Similar 

conclusions are reported in a systematic review assessing the effects of routine 

umbilical artery measurement on pregnancy outcome in low-risk populations 

and therefore routine screening with this technique is not currently 

recommended (Alfirevic et al., 2010). 

 

In high-risk populations, second trimester uterine artery Doppler measurement 

(specifically increased resistance index >90th gestation specific centile) has 

been shown to have a moderate prediction for delivery of a severely SGA infant 

(sensitivity 82% (CI 76–87%), specificity 92% (CI 92–93%), positive likelihood 

ratio (LR) 10.9 (CI 10.4–11.4%), negative LR 0.20 (CI 14–26%)) (Cnossen et 

al., 2008). Current UK guidance therefore recommends this technique for 

screening high-risk women (Robson et al., 2013).  
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1.2.4 Summary 

Current clinical practice in the UK to identify pregnancies at risk of delivering an 

SGA infant in a low risk population relies on techniques with limited test 

performance. Whilst other tests, such as routine third trimester screening with 

ultrasound assessment or second trimester uterine artery Doppler assessment 

show promise as screening tools in the low risk population, they are not 

currently recommended either due to limited test performance, cost implications 

or lack of data regarding effect on adverse perinatal outcome. At present, there 

is a need for a cost effective screening tool, which will accurately identify those 

at risk of delivering an SGA infant.  
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1.3 Diagnosing the SGA fetus 

 

UK national guidelines suggest that any woman with a symphysis-fundal height 

measurement below the 10th centile or serial measurements that show 

diminished or static growth should be referred for ultrasound assessment of 

fetal size. Abdominal circumference (AC) and/ or estimated fetal weight (EFW) 

are routinely measured; the 10th centile has been quoted as the optimal 

threshold for predicting delivery of an SGA infant and adverse outcome 

(customised EFW for prediction of SGA in a high-risk population sensitivity 

68%, specificity 89%, positive predictive value (PPV) 72%, negative predictive 

value (NPV) 86%, AC for prediction of SGA sensitivity 48-64%, false positive 

rate 38-55%) (Chang et al., 1992, De Jong et al., 2000). However, a recent 

large multicentre prospective observational study reported that EFW less than 

the 3rd centile was more strongly associated with adverse perinatal outcome 

(Unterscheider et al., 2013). Measurement of EFW, in addition to AC, has the 

benefit of allowing use of customised EFW centiles, which may improve 

detection of those pregnancies at greatest risk of adverse outcome (discussed 

in section 1.1.2.1).  

 

However, despite the reported improvement in identifying SGA infants using 

customised centiles, a large proportion are still not detected antenatally. 

DeJong et al. published a series of 215 high-risk pregnancies (defined as 

presence of pre-existing hypertension, age over 35 years, smoker, previous 
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history of FGR or hypertensive disorder of pregnancy) and reported that despite 

use of customised EFW centiles, 32% of those who delivered an SGA infant 

were not detected antenatally (De Jong et al., 2000). Gardosi et al. conducted a 

cohort study in the West Midlands between 2009 and 2011, to investigate 

maternal and fetal risk factors for stillbirth. Of the 389 cases of stillbirth, 195 

were SGA (with birth weight <10th customised centile for gestational age) but 

82% of these cases were not detected antenatally, despite use of customised 

EFW centiles. In pregnancies where SGA was detected antenatally the risk of 

stillbirth was 9.7 compared to 19.8 in those where SGA was not known, 

emphasising the importance of antenatal detection (Gardosi et al., 2013b). On 

further investigation, it was reported that adherence to guidelines on use of 

customised EFW charts and levels of training varied between recruiting centres, 

which may explain why this study reported detection rates below those 

previously noted (Gardosi et al., 2013b). 

 

In addition to assessing fetal size, the amniotic fluid volume is routinely 

assessed. This is usually reported as a single deepest vertical pocket 

measurement or amniotic fluid index (AFI). The latter is calculated by the sum of 

the deepest vertical liquor pool depth in each of the four quadrants. Whilst low 

AFI has been correlated with delivery of an SGA infant (Hashimoto et al., 2013), 

it has low predictive accuracy (sensitivity 14-45% and specificity 57-97%) and is 

a poor predictor of adverse perinatal outcome (Chauhan et al., 2008, Niknafs 

and Sibbald, 2013, Magann et al., 2011). 
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AFI is one of five factors (AFI, fetal breathing, movements, tone and 

cardiotocograph) assessed in the calculation of biophysical profile  (BPP). BPP 

has a maximum score of 10 (each factor scored out of two) and low scores 

have been associated with perinatal mortality (Manning, 2002). However, its 

clinical implementation, even in high-risk pregnancies, has not been shown to 

improve perinatal outcome, or reduce perinatal death, limiting its utility as a 

surveillance tool in SGA (Lalor et al., 2008). 

 

1.3.1 Summary 

Current practice to diagnose the SGA fetus relies on techniques with limited 

diagnostic capability. From the current literature, customised estimated fetal 

weight measurement appears to perform best but still misses a large proportion 

of cases. Given the extent and severity of the morbidity associated with being 

born SGA, and the limitations of current diagnostic tools to identify whose at 

risk, there is a need for a cost effective, accurate test which could improve 

detection. Whilst the pathophysiology of FGR is multifactorial, placental 

dysfunction plays a key role. With improved knowledge of the pathophysiology 

of placental disease, multiple biomarkers have been identified which reflect 

placental function. These could provide a useful adjunct to current techniques in 

identifying at-risk pregnancies.  
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1.4 Biomarkers in placental disease 

 

A biomarker has been defined as “any substance, structure or process that can 

be measured in bio specimens and may be associated with health-related 

outcomes” (Gallo et al., 2011). Biomarkers relating to specific cellular and 

molecular events can inform of early biological mechanisms often prior to 

clinical manifestation of disease. Altered concentrations of biomarkers could 

therefore be utilised to identify those at particular risk of specific diseases and 

would be especially useful where current diagnostic tools are limited, such as 

FGR. 

 

In conditions where the aetiology is multifactorial, the level of understanding of 

the complex pathological processes implicated may dictate which biomarkers 

are selected for prediction. If a final common pathway from the differing 

aetiologies has been identified, then measurement of a single downstream 

biomarker may be appropriate. Alternatively measurement of multiple 

biomarkers chosen to reflect the numerous biological processes associated with 

that particular condition maybe more accurate. The causes of placental 

dysfunction and subsequent FGR are numerous, utilising multiple biological 

pathways. This section will focus on proposed biomarkers of placental disease, 

subdivided according to the biological process with which they are associated. 

Table 1.1 summarises the main biomarkers discussed in the following sections.
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Table 1.1: Biomarkers and mechanism of action 

Biomarkers Biomarker full name Mechanism of action !  or "  in 
placental disease 

Angiogenic factors 

PlGF Placental Growth Factor  Angiogenic marker produced by trophoblastic tissues. "  

VEGF-C Vascular endothelial growth factor C Angiogenic marker produced by trophoblastic tissues. "  

sFlt-1 Soluble fms-like tyrosine kinase-1 Also known as sVEGFR1. Binds VEGF reducing plasma 

concentrations.  

!  

Endoglin Endoglin Anti-angiogenic cell surface glycoprotein. "  TGFβ binding " 

nitric oxide signaling leading to " angiogenesis. 

!  

Angiogenin Angiogenin  Potent angiogenic factor which interacts with endothelial cells 

facilitating migration, invasion, proliferation and formation of 

tubular structures 

!  

C-Met Tyrosine kinase  Proto-oncogene encoding a protein, hepatocyte growth factor 

receptor which binds HGF and promotes angiogenesis  

"  
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Biomarkers Biomarker full name Mechanism of action !  or "   

Endothelial function/damage 

Arginase-1 Arginase 1 Enzymes which compete with nitric oxide synthase (NOS) for l-

arginine, " NO formation and ! superoxide formation by NOS 

!  

Endothelin Endothelin Potent vasoconstricting peptide produced by the endothelium. 

Modulates blood pressure. 

!  

NGAL Neutrophil gelatinase-associated lipocalin Renal factor. Protein released post ischaemic damage or sepsis !  

HIF Hypoxia inducible factor 1-alpha inhibitor Inhibits transcription factor HIF-1alpha, which mediates cellular 

responses to hypoxia, preventing tissue repair. 

!  

PODXL Podocalyxin Renal marker expressed in glomerular podocytes and vascular 

endothelium, remains patency of the filtration slit. Correlates to 

eGFR. 

!  
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Biomarkers Biomarker full name Mechanism of action !  or "   

Cell invasion/ adhesion 

ADAM 9 Disintegrin and metalloproteinase 

domain-containing protein 9 

Modulates cell-cell interactions possibly affecting trophoblast 

invasion and spiral artery formation. Role in angiogenesis. Marker 

in renal and prostate cancers 

!  

CPA-4 Carboxypeptidase A4 Metallocarboxypeptidase, which cleaves angiotensin-1, a potent 

vasoconstrictor. Low concentrations in normal tissue 

"  

ESAM-1 Endothelial Cell-selective adhesion 

molecule 

Junctional type cellular adhesion molecule expressed by vascular 

endothelium. Regulates angiogenesis and endothelial 

permeability. 

"  

ICAM-1 Intercellular adhesion molecule 1 SIgnalling protein involved in immune activation. !  

VCAM Vascular cell adhesion molecule SIgnalling protein involved in immune activation. !  

Kunitz-2 (HAI-2)  Kunitz-type protease inhibitor 2  Trans-membrane serine proteases inhibitor inhibits clotting factors 

and hepatic growth factor activation.  

"  

MMP-9 Matrix metalloproteinase-9 Expressed by cytotrophoblast and aids trophoblast invasion and 

remodeling of spiral arteries 

!  
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Biomarkers Biomarker full name Mechanism of action !  or "   

TIMP-1 Metalloproteinase Inhibitor 1 Inhibits matrix metalloproteases, therefore inhibiting trophoblast 

invasion. Interacts with MMP-12# increasing 

plasminogen#angiostatin which inhibits angiogenesis 

!  

Cell apoptosis 

Caspase Caspase  Cysteine protease involved in apoptosis. Expressed in 

syncytiotrophoblast cytoplasm. Key role in cell digestion. Linked to 

increased apoptosis in placental disease. 

!  

FAS Tumor necrosis factor receptor 

superfamily member 6 

Chemokine that when bound activates cascade of caspases 

mediating apoptosis 

!  

FasL Tumor necrosis factor ligand superfamily 

member 6 

Chemokine that when bound causes apoptosis !  

TNFR1A Tumor necrosis factor receptor 

superfamily member 1A 

TNF a binds to this receptor stimulating IL-1 activation and 

pyrexia and cell death. 

"  
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Biomarkers Biomarker full name Mechanism of action !  or "   

Markers of inflammation 

CRP C reactive protein Non-specific inflammatory marker raised in the acute phase 

immune response. CRP activates the complement system 

!  

CXCL10 CXC motif chemokine 10 Immune activator released by endothelial cells. !  

Elafin Elafin Elastase-specific protease inhibitor involved in inflammation. !  

IL-1ra  Interleukin 1 receptor antagonist Competitive inhibitor of IL-1, which activates inflammatory 

response with release of prostaglandins. 

"  

MIF Macrophage migration inhibitory factor  Pro-inflammatory cytokine "  

PCT Procalcitonin Precursor of calcitonin. Involved in calcium homeostasis (" 

plasma [calcium]) and raised in inflammation. 

!  

ST2 Interleukin-1 receptor-like 1  Receptor for IL33 detected in liver, kidney, pancreas, prostate, 

spleen, small intestine and placenta, (particularly in the 

syncytiotrophoblast). Activation produces modulatory cytokines.  

!  

TGFβ-R2 Transforming growth factor beta- 

receptor 2 

Receptor for TGFβ a multifunctional protein controlling 

proliferation, differentiation and other functions in many cell types. 

"  
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Biomarkers Biomarker full name Mechanism of action !  or "   

Markers of coagulation 

PAI-1 and -2  Plasminogen activator inhibitor 1 and 2 Produced by trophoblasts, inhibits fibrinolysis. PAI-1 is pro-

angiogenic and modulates coagulation, cell adhesion & migration. 

PAI-2 "  

Pentraxin-3 Pentraxin-related protein PTX3  Involved in the activation of the complement system. Role in 

innate resistance to pathogens. 

!  

Metabolic markers 

PAPP-A  Pregnancy specific plasma protein A Metalloprotease produced by the syncytiotrophoblast, which 

cleaves IGFBP-4, increasing IGF-1, which is anti-apoptotic and 

promotes fetal and placental growth. 

"  

IGF-1 Insulin growth factor 1 IGF-1 enhances substrate uptake and suppresses catabolism in 

fetal tissues.  

"  

Leptin Leptin Protein product of Ob gene. Released by the placenta and 

stimulates growth and inhibits apoptosis. Produced in response to 

hypoxia as a possible defense response to sustain growth. 

!  
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Biomarkers Biomarker full name Mechanism of action !  or "   

Renal and cardiovascular biomarkers 

ANP  Natriuretic peptide A Cardiac hormone causing vasodilatation. Released by the atria in 

response to stretch 

!  

BNP Natriuretic peptide B Cardiac hormone causing vasodilatation, and inhibition of renin 

and aldosterone. Synthesised in ventricle in response to volume 

expansion and pressure overload. 

!  

Nephrin Nephrin Renal marker essential for normal glomerular function and 

cardiovascular development.  

!  

Cystatin Cystatin Renal marker. Also inhibits cysteine proteases possibly reducing 

trophoblast invasion. 

!  
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1.4.1 Biomarkers relating to angiogenesis 

Establishing a successful healthy pregnancy is dependent on adequate 

trophoblast invasion of the maternal spiral arteries, forming a low resistance 

feto-maternal circulation. Angiogenesis is the process of new blood vessel 

formation and is essential in facilitating this process. Placental growth factor 

(PlGF) and vascular endothelial growth factor (VEGF), members of the platelet-

derived growth factor family of cysteine knot growth factors, are potent 

angiogenic factors (Clark et al., 1998a, Clark et al., 1998b, Maglione et al., 

1991), which share 53% identity (Iyer et al., 2001, Maglione et al., 1991). PlGF 

is a 149 amino acid long protein, encoded by a single gene, the PlGF gene, on 

chromosome 14 and is expressed by placental trophoblastic tissue (Maglione et 

al., 1993, Clark et al., 1998b, Maglione et al., 1991). There are four isotopes of 

PlGF; PlGF-1 and PlGF-3 are non-heparin binding isoforms, whilst PlGF-2 and 

PlGF-4 have additional heparin binding domains (Hauser and Weich, 1993, 

Yang et al., 2003). PlGF binds directly to VEGFR-1, a tyrosine kinase receptor 

(also known as Flt-1), activating a number of pro-angiogenic genes (Schoenfeld 

et al., 2004, Autiero et al., 2003b).  

 

VEGF is a protein, key for the regulation of angiogenesis. VEGF binds to the 

same tyrosine kinase receptor as PlGF, but also to VEGFR-2, (also known as 

Flk-1), for which it has higher affinity (Bates, 2011). Binding results in a transient 

calcium influx, which triggers a rapid increase in permeability (Bates et al., 

2002). The overall affects increase vascular permeability, angiogenesis and 

vasodilatation (Bates and Harper, 2002). 
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Figure 1.2: Molecular mechanisms of placental growth factor and vascular 

endothelial growth factor. Reproduced from (Fischer et al., 2008) 

 

In addition to direct angiogenic effects, PlGF also displaces VEGF-A from 

VEGFR-1 (Flt-1), allowing it to bind to VEGFR-2, which indirectly enhances 

angiogenesis (Park et al., 1994). PlGF also up regulates the expression of 

several other angiogenic factors (Roy et al., 2005, Marcellini et al., 2006).  

 

Reduced maternal concentrations of PlGF and VEGF have been correlated with 

delivery of an SGA infant in numerous studies prior to onset of disease (Tjoa et 

al., 2001, Bersinger and Odegard, 2004, Thadhani et al., 2004, Espinoza et al., 

2007, Stepan et al., 2007, Diab et al., 2008, Erez et al., 2008, Poon et al., 

2008b, Asvold et al., 2011, Vandenberghe et al., 2011, Benton et al., 2012, 

Chappell et al., 2013, Bersinger and Odegard, 2005).  Both factors bind to 

soluble VEGF receptor-1 (sVEGFR-1) (also known as soluble fms-like tyrosine 

kinase-1 (s-Flt-1)), which prevents interaction of PlGF and VEGF with 

membrane bound Flt-1 in vascular tissues, leading to endothelial dysfunction 
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(Autiero et al., 2003a). VEGF has higher affinity for s-Flt-1 than Flk-1 and 

therefore if low concentrations of PlGF are expressed then VEGF preferentially 

binds to sFlt-1 and Flt-1, which induces only weak tyrosine kinase activity, 

reducing angiogenic activity. Three studies measuring s-Flt-1 in the second 

trimester have correlated increased maternal s-Flt-1 concentrations with 

delivery of an SGA infant (Stepan et al., 2007, Diab et al., 2008, Asvold et al., 

2011). The first two studies published test performance statistics (sensitivity 64-

89% and specificity 54-62%) to detect SGA but were limited by very small case 

numbers (n=9, n=11) and part of the inclusion criteria for both studies was 

abnormal second trimester uterine artery Doppler measurement, a risk factor for 

delivery of an SGA infant. 

 

Further biomarkers involved in angiogenesis include soluble endoglin (s-Eng), 

angiogenin and C-met. S-Eng is an anti-angiogenic soluble TGF-ß co-receptor, 

which inhibits TGF-ß binding, leading to reduced nitric oxide signaling, with 

associated reduction in angiogenesis (Venkatesha et al., 2006). Three small 

case-control studies have reported increased maternal concentrations of S-Eng 

in cases delivering an SGA infant (Erez et al., 2008, Asvold et al., 2011, 

Romero et al., 2008). Two of these studies compared S-Eng concentrations 

between the first two trimesters whilst the third investigated concentrations 

throughout pregnancy. None of the studies commented on whether 

concentration of S-Eng correlated with severity of disease. Angiogenin is a 

potent angiogenic factor, which interacts with endothelial cells facilitating 

migration, invasion, proliferation and formation of tubular structures. Raised 

maternal concentrations of angiogenin have been correlated with pre-eclampsia 

and co-existing SGA but there were no cases of normotensive SGA in this 
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study (n=91) (Shaarawy et al., 2005). In contrast, Yamashiro et al. found no 

difference in maternal or fetal plasma concentrations of angiogenin at delivery 

between SGA and AGA pregnancies (Yamashiro et al., 2000). Both studies 

were case-control design and limited by small sample sizes (n=91 and n=61 

respectively). Larger prospective studies would be necessary to further evaluate 

a possible relationship between angiogenin concentrations and delivery of an 

SGA infant. C-met, also known as hepatocyte growth factor receptor (HGFR), 

binds to HGF and promotes angiogenesis. Zeng et al. published the results of a 

small prospective case-control study (n=44) evaluating the ability of soluble C-

met measured in the second and third trimester to predict pre-eclampsia. When 

sampled between 25-30 weeks’ gestation, the ROC area under the curve (AUC) 

for C-met to predict development of pre-eclampsia was 0.95 (CI 0.9-1.0) (Zeng 

et al., 2009). However, they did not include delivery of an SGA infant as an 

endpoint and to date there are no published data regarding the ability of C-met 

concentrations to predict this outcome. 

 

Conde-Agudelo et al. conducted a systematic review and meta analysis of 

biomarkers for predicting intrauterine growth restriction (IUGR, which they 

defined as failure of the fetus to achieve its optimal growth potential) and 

reported that the overall predictive accuracy of angiogenic biomarkers for IUGR 

was minimal (Conde-Agudelo et al., 2013). The review included 53 studies, 

evaluating 37 biomarkers, including thirteen studies reporting on PlGF, one on 

VEGF, three on s-Flt-1 and two on s-Eng. The overall summary ROC curve of 

PlGF to predict FGR gave an AUC of 0.66 (95% CI 0.44-0.87). However, there 

were multiple limitations to this review. The ROC curve calculation of PlGF to 

predict FGR did not stratify for gestational age at sampling and the only attempt 
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made by the authors to further subdivide according to gestational age split 

these data according to sampling before or after 20 weeks’ gestation. The ROC 

area did improve if sampling occurred after 20 weeks, but only two of the five 

studies in this calculation included women sampled in the third trimester, where 

a predictive test would be particularly helpful to aid decisions regarding timing of 

delivery. All of these studies were case-control design with the exception of one 

prospective cohort study (Espinoza et al., 2007) where the primary outcome 

was pre-eclampsia rather than delivery of an SGA infant. Whilst the authors 

acknowledged the difficulty in defining IUGR, there was great heterogeneity in 

definitions of FGR which included; delivery of an infant with birth weight <5th or 

<10th centiles with or without additional clinical or pathological evidence of FGR 

and IUGR requiring delivery before 34 weeks’ gestation. Many of the studies in 

this review used delivery of an SGA infant (I.e. birth weight <5th or <10th centiles 

for gestational age) as a surrogate for FGR with the inherent problem of 

including constitutionally small infants within this definition. Only six of the 53 

studies used an appropriate reference standard that included birth weight 

centile and additional clinical or pathological evidence of FGR. Only three 

studies fulfilled all five criteria of methodological quality for inclusion in the 

analysis and thresholds for determining an abnormal result differed between 

studies when the same biomarker was being evaluated.  

 A small case-control study (n=88), included in the systematic review and 

fulfilling all five criteria for methodological quality, defined SGA according to 

birth weight, additional clinical data (second trimester uterine artery Doppler 

notching, or absent/reversed umbilical artery end diastolic flow or 

oligohydramnios) and placental pathology. This group reported much more 

encouraging test performance than the pooled ROC AUC published in the 
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meta-analysis by Conde-Agudelo et al. (sensitivity 100% (CI 66–100%), 

specificity 86% (CI 42–100%)) (Benton et al., 2012). This is supported by the 

findings of a recent large, prospective, multicentre observational study in 

women presenting with suspected pre-eclampsia (n=625). In this study, low 

PlGF concentrations <5th centile predicted delivery of an infant with birth weight 

<3rd centile in those sampled before 35 weeks’ gestation, with high sensitivity 

(90%; CI 82 to 95%) and negative predictive values (91%; CI 85 to 96%) 

(Chappell et al., 2013). In addition to the limitations of the systematic review 

and meta-analysis by Conde-Agudelo et al. outlined above, other explanations 

for the improved performance seen in these two studies include the use of a 

PlGF assay that measured the PlGF-1 isoform with minimal cross-reactivity for 

PlGF-2, with proven higher sensitivity and specificity than assays used in the 

other studies (Benton et al., 2011), and both studies sampling high-risk 

populations. Further investigation is required in the general antenatal 

population, prior to considering routine incorporation of PlGF into clinical 

practice. 

 

1.4.2 Biomarkers relating to endothelial function/ oxidative stress/ 

inflammation and coagulation 

The multiple causes of poor uteroplacental blood flow outlined in sections 

1.1.3.1 and 1.1.3.3 (maternal and placental factors), lead to a chronic hypoxic 

state in the placenta and intermittent flow with reperfusion results in widespread 

damage and systemic oxidative stress (a disturbance in the balance between 

reactive oxygen species production and clearance). Nevo et al. and Yinon et al. 

suggest that in in vivo and in vitro models, hypoxia up-regulates anti-angiogenic 
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markers including s-Flt (Nevo et al., 2006) and S-Eng (Yinon et al., 2008). Up-

regulation of s-Flt is mediated by Hypoxia Inducible Factor (HIF-1), which has 

been proposed as a possible biomarker to identify pregnancies at risk of pre-

eclampsia, but was not found to be a good predictor of those with SGA (Rolfo et 

al., 2010, Rajakumar et al., 2007).  

 

It is proposed that oxidative stress up-regulates xanthine oxidase and NAD(P)H 

oxidase in the placenta producing superoxides and oxygen free radicals, which 

cause localised cell injury. Associated release of cytokines (e.g. IL-1, IL-6 and 

TNF-α) activate neutrophils and have direct effects on endothelial cell activation 

(Raijmakers et al., 2004).  
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Figure 1.3: Summary of pathways involving placental oxidative stress 

leading to maternal endothelial dysfunction. Reproduced from (Raijmakers 

et al., 2004) 

 
 

 

Several biomarkers released by the endothelium have been proposed as 

potential diagnostic tools for SGA and pre-eclampsia. These include endothelin, 

arginase, Neutrophil gelatinase-associated lipocalin (NGAL) and podocalyxin. 

Endothelin is a potent vasoconstrictor and it is suggested that increased release 

contributes to hypertension observed in pre-eclampsia. Raised maternal 

concentrations are reported prior to onset of pre-eclampsia, but association with 

SGA has not been established (Shaarawy and Abdel-Magid, 2000). Arginase 
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competes with nitric oxide synthase (NOS) for L-arginine and reduces nitric 

oxide formation with increased superoxide formation by NOS (Sankaralingam et 

al., 2009). Associations have been made with pre-eclampsia, but not reported 

for SGA. NGAL is a protein released post ischaemic damage and sepsis; 

elevated plasma concentrations have been correlated with the presence and 

severity of pre-eclampsia, but not with birth weight (Kim et al., 2013). A recent 

small case-control study evaluated the changes in NGAL urinary concentrations 

in normal pregnancy and pre-eclampsia and reported that whilst the 

NGAL/creatinine ratio was lower in pre-eclampsia than in healthy pregnancies, 

urinary NGAL was not a valuable early marker for pre-eclampsia (Odum et al., 

2014).  

 

Podocalyxin is a renal marker expressed in podocytes and vascular 

endothelium, which is important in maintaining glomerular filtration slit patency.  

Concentrations are raised in several cancers (Nielsen and McNagny, 2009). 

Given the association between hypertensive disorders, renal disease and 

placental dysfunction, podocalyxin may be a useful marker in placental 

disorders although as association with delivery of an SGA infant is yet to be 

reported. 

 

Endothelial cell activation leads to increased expression of adhesion molecules 

such as intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion 

molecule (VCAM) and a further increase in cytokine release, establishing a 

positive feedback loop, further increasing xanthine and NAD(P)H oxidase 

release (Raijmakers et al., 2004). This cycle is key to the ensuing endothelial 

dysfunction reported in placental disease.  
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1.4.2.1 Markers involved with cell adhesion 

A range of markers involved in cell adhesion have been proposed as potential 

targets for prediction of pre-eclampsia and delivery of an SGA infant. In addition 

to ICAM and VCAM, discussed above, data have been published on matrix 

metalloproteinase 9 (MMP9) regarding its suitability as a marker of placental 

dysfunction. MMP9 is expressed by the cytotrophoblast and aids trophoblast 

invasion and remodeling of the spiral arteries (Rahimi et al., 2013). HIgher 

concentrations measured in the first trimester have been reported with placental 

disease, specifically pre-eclampsia compared to controls (Poon et al., 2009), 

but this has not been substantiated in later trimesters and association with SGA 

is less well established (Myers et al., 2005).  High concentrations of an MMP-9 

variant have been reported in cases of severe pre-eclampsia, but SGA was not 

assessed independently in the study (Rahimi et al., 2013). Carboxypeptidase 

A4 (CPA-4) is a metallocarboxypeptidase, which cleaves angiotensin-I, a potent 

vasoconstrictor (Wang et al., 2006, Lipscomb et al., 1970). Low concentrations 

are found in healthy tissue but currently there is no published data relating 

concentrations to FGR. The ADAM (disintegrin and metalloprotease) family of 

proteins is involved with cell-to-cell interactions and potentially affect 

trophoblast invasion and spiral artery formation. There are at least 33 identified 

family members and there is most detail in the literature regarding the ability of 

ADAM-12 to predict placental disease. In a retrospective case-control study, 

Spencer et al. measured ADAM-12 in the first and second trimesters of 

pregnancy and reported reduced first trimester serum concentrations in those 

women who developed pre-eclampsia, but elevated concentrations in the 

second trimester compared to gestation matched controls (Spencer et al., 
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2008). Subsequent to this, Poon et al. published the findings of a case-control 

study evaluating first trimester ADAM-12 concentrations to predict adverse 

pregnancy outcome, including delivery of an SGA infant. They reported that 

measurement of first trimester ADAM-12 did not provide useful prediction of 

SGA bringing into question the clinical utility of this biomarker to determine this 

endpoint (Poon et al., 2008a). 

 

1.4.2.2 Markers involved with cell apoptosis 

Apoptosis is the natural process of programmed cell death, ensuring control of 

cell numbers within a multicellular organism. If excessive, this process results in 

tissue atrophy. Concentrations of several markers involved in cell apoptosis 

have been linked to development of placental disease. Caspase is a serine 

protease expressed in the syncytiotrophoblast cytoplasm that increases cell 

apoptosis. Several isoforms have been identified and one small case control 

study (n=20) reported elevated serum concentrations of caspase-3 in women 

with pre-eclampsia (Park et al., 2008), Activation of tumour necrosis factor 

receptor superfamily member 6 (FAS) by tumour necrosis factor ligand 

superfamily member 6 (FasL), triggers a cascade of caspase release, resulting 

in cell death. Two small case-control studies (n= 20-38) have reported 

increased maternal concentrations of FAS and FasL in women with pre-

eclampsia and severe FGR (Kuntz et al., 2001, Laskowska et al., 2006), but 

larger studies are needed to verify these results.  
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1.4.2.3 Markers of inflammation 

Normal pregnancy induces a systemic inflammatory response and the 

processes outlined above exaggerate this effect. Multiple molecules, which 

have been identified as key to this process (including those listed in Table 1.1) 

are therefore altered in placental disease and are attractive potential diagnostic 

tools as their concentrations change early in the disease process. However, 

due to the multitude of activators of this process, they are often non-specific 

making them less suited to clinical application in identifying those at risk of 

delivering an SGA infant.  

 

1.4.2.4 Markers of coagulation 

The exaggerated inflammatory response observed in placental dysfunction is 

generated by the systemic inflammatory network, which involves not only 

activation of immune cells, but also the clotting and complement systems and 

metabolic changes. Alterations in concentrations of modulators of coagulation, 

such as low plasminogen activator inhibitor 1 and 2 (PAI-1 and 2), have been 

reported in pre-eclampsia and SGA but this study only included 17 women who 

delivered an SGA infant (Chappell et al., 2002). Pentraxin-3 is involved in 

activation of the complement system and plays a role in innate resistance to 

pathogens. Maternal concentrations have been shown to be elevated at time of 

diagnosis of pre-eclampsia and SGA and in one small study (n= 23) 

concentrations correlated to severity, but further evidence from larger cohorts 

are required to verify these findings (Rovere-Querini et al., 2006, Cozzi et al., 

2012). 
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1.4.2.5 Metabolic markers  

The insulin like growth factor (IGF) system is the main regulator of fetal growth. 

Factors include IGF-I and II and their binding proteins (IGFBP1-6). The IGFs 

are small polypeptides, which have structural similarity to proinsulin. They are 

mainly bound to IGFBPs in extracellular tissues, and activity is restricted to the 

unbound fraction. They are produced by maternal and fetal tissues. Fetal IGF-1 

production is mainly regulated by fetal insulin production. IGF-1 enhances 

substrate uptake and suppresses catabolism in fetal tissues. Fetal serum IGF-1 

concentrations have been correlated with birth weight, with lower fetal 

concentrations in SGA fetuses (Maulik et al., 2006). A prospective cohort study 

including 153 women evaluated IGF-1 concentrations in maternal serum and 

reported a significantly lower concentration in those women who delivered a 

preterm SGA infant (median [IQR]: 134 [99–181] µg/L, P <0.05) compared with 

AGA pregnancies (200 [181–221] µg/L), but this association was not significant 

in women delivering at term (Chiesa et al., 2008). A review of the endocrine 

regulation of fetal growth summarised conflicting data regarding altered 

maternal serum concentrations of IGF-1 in cases of FGR. They concluded that 

at present there are no clear data supporting measurement of maternal serum 

IGF-1 as a screening tool for FGR (Murphy et al., 2006). 

 

IGF-II modulates early embryonic growth and overexpression leads to 

excessive growth. Unlike IGF-1, there has been little association with SGA. In 

addition to the insulin growth factors, other metabolic markers have been 

proposed. Dessi et al. have recently published a review article evaluating the 

ability of myo-inositol to predict FGR (Dessi and Fanos, 2013). Myo-inositol is a 

stereoisomer of inositol, a naturally occurring sugar alcohol. This group 
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proposed that in the growth restricted state, insulin concentrations are reduced 

as an adaptive mechanism allowing preservation of fetal energy stores with a 

consequent increased excretion of inositol into the extracellular compartment 

and increased concentrations of metabolites in maternal plasma. This review 

article included six small case-control studies (n=8-56) with four reporting a 

statistically significant increase in concentrations of myo-inositol in the plasma 

of cases complicated by FGR. However, only two of these studies were in 

humans and given the small numbers included, larger cohort studies are 

needed to further investigate these findings.  

 

Pregnancy specific plasma protein A (PAPP-A) is a metalloprotease produced 

by the syncytiotrophoblast, which cleaves IGFBP-4, increasing the free fraction 

of IGF-1 and thus promoting fetal growth. Multiple studies have investigated the 

role of PAPP-A, mainly when measured in the first trimester to determine 

pregnancies at risk of placental dysfunction. Low maternal concentrations have 

been reported in both pre-eclampsia and SGA (Cowans and Spencer, 2007, 

Smith et al., 2002, Vandenberghe et al., 2011, Bersinger and Odegard, 2004) 

but a systematic review and meta analysis assessing the ability of serum 

Down’s syndrome screening markers to predict pre-eclampsia and SGA 

concluded that in isolation, PAPP-A had low predictive accuracy for delivery of 

an SGA infant. This review included 10 studies investigating SGA (seven where 

measurement was in first trimester), and concluded that the most accurate 

predictor for determining a birth weight <10th centile was PAPP-A <1st centile 

(even then with a modest positive LR of 3.50 (2.53-4.82)) (Morris et al., 2008). 

Another ADAM-like metalloprotease has been identified, PAPP-A2, but an 

accurate immunoassay for this marker has not been available and reference 
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ranges in pregnancy had not been established. Kløverpris et al. have recently 

evaluated an immunoassay for PAPP-A2 and have published normal ranges in 

pregnancy (Kloverpris et al., 2013). Assessment of the performance of PAPP-

A2 performance as a marker of placental disease is now awaited.   

 

In addition to the IGF family, increased expression of leptin, a placental protein 

that stimulates growth and inhibits apoptosis, has been reported in pre-

eclampsia, however, differences in maternal concentrations between 

pregnancies delivering an SGA infant and those delivering an AGA infant were 

not statistically significant (Chappell et al., 2002). In addition, leptin 

concentrations are affected by BMI making clinical application more 

challenging, and this itself could be a potential confounder.  

 

1.4.3 Renal and cardiovascular biomarkers 

Given the association of hypertensive and renal disorders with placental 

dysfunction, established markers of these disease processes may be useful in 

identifying those at risk of placental disease. Raised maternal concentrations of 

the cardiac markers natriuretic peptides A and B  (ANP and BNP) have been 

observed in pre-eclampsia (Szabo et al., 2011, Ringholm et al., 2011). BNP is 

synthesized in the ventricle in response to volume expansion and pressure 

overload and causes vasodilatation and inhibition of renin and aldosterone. 

ANP is released by the atria in response to stretch and also results in 

vasodilatation. However, to date there are no published data to support an 

association with delivery of an SGA infant.  
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Several markers of renal function have been linked to placental dysfunction. 

Cystatin is a low molecular weight protein, which is filtered from the 

bloodstream by the glomerulus. Any deterioration in glomerular filtration rate 

leads to increased plasma concentrations of cystatin. Cystatin is also an 

inhibitor of cysteine proteinases and may therefore affect regulation of 

trophoblast invasion by proteinases. Raised maternal cystatin concentrations 

have been correlated with subsequent development of pre-eclampsia 

(Thilaganathan et al., 2009, Thilaganathan et al., 2010, Saleh et al., 2010), 

however, an association with SGA is yet to be established. Nephrin is a 

transmembrane protein that is a structural component of glomerular filtration 

slits. It is essential for normal glomerular function and cardiovascular 

development. Nephrin concentrations are closely correlated to glomerular 

filtration rate (Zheng et al., 2011) and it is proposed that high urinary 

concentrations could be observed in pre-eclampsia. However, there is no 

current evidence to link this marker to placental disease. 

 

1.4.4 Summary 

To date, the ability of an isolated biomarker to accurately identify pregnancies at 

risk of delivering an SGA infant has been debated but from the current literature 

the angiogenic group of factors, specifically PlGF, offers the most promise.  
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1.5 Combinations of clinical parameters and 

biomarkers for determining the SGA infant 

 

Whilst none of the parameters discussed so far have, in isolation, been 

recommended for use in clinical practice to identify the pregnancy at risk of 

SGA, a combined approach may offer improved detection. Several studies have 

evaluated the utility of first trimester biomarker panels for determining delivery 

of an SGA infant (Pihl et al., 2008, Poon et al., 2009), but none have reported 

sufficient test performance to warrant recommendation for use in clinical 

practice. The findings of a systematic review evaluating the predictive 

capabilities of combinations of serum biomarkers measured in the late first and 

early second trimesters (as part of screening for chromosomal disorders) to 

determine subsequent delivery of an SGA infant corroborate this as they report 

low test performance (Hui et al., 2012). However, this review was hampered by 

the heterogeneity of studies included; the authors concluded that large cohort 

studies, with standardised screening test parameters and outcomes, should be 

undertaken to better evaluate these combinations (Hui et al., 2012).  

 

Other studies have incorporated maternal characteristics and/ or ultrasound 

parameters (Karagiannis et al., 2011, Poon et al., 2008b, Poon et al., 2013, 

Papastefanou et al., 2012). However the most promising combinations of 

markers and clinical characteristics proposed had only modest predictive ability 

in determining delivery of an SGA infant; e.g. for a combination of mean arterial 

pressure, maternal characteristics, uterine artery pulsatility index, PAPP-A and 

PlGF, sensitivity was 55.5% for preterm SGA <37 weeks’ gestation for 10% 

false positive rate (Poon et al., 2013). Whilst detection rates of SGA are 
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improved in these studies, compared to those combining biomarkers alone, 

combinations include ultrasound measurements requiring highly skilled 

operators, which may limit acceptability for women and preclude adoption in a 

low resource setting. 

   

1.6 Who and when to screen for SGA 

 
Given the morbidity and mortality associated with being born SGA, identifying 

those at risk and allowing appropriate follow up and timing of delivery may 

improve outcome. However, deciding the most appropriate population to screen 

for SGA is problematic. A population-based approach would be costly and may 

lead to false identification of cases, resulting in increased anxiety and 

potentially unnecessary follow-up and intervention in this group. Consideration 

of the economic implications of adopting a population based approach is also 

important as screening a large population has significant financial implications 

for detection of a condition that whilst common, has poor outcome in only a 

small subgroup. Given the multifactorial nature of SGA, it is unlikely that a low 

cost test with sufficient sensitivity and specificity to identify those at increased 

risk of FGR within a large, low-risk population will be identified.  

 
An alternative approach is to screen a more defined population already 

identified as being at increased risk (e.g. previous history of delivery of an SGA 

infant or reduced symphysis fundal height measurement). Whilst the latter is 

currently utilised to identify those within the antenatal population who warrant 

further investigation for SGA, its low sensitivity and specificity to detect the 

condition lead to true cases being missed. However, this is likely to be a more 

cost effective option than a population based screening program.  
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Timing of screening is also challenging. Assessment early in pregnancy has the 

benefit of identifying women at risk early, allowing appropriate follow-up, but the 

further the time interval from assessment to development of the condition 

generally leads to a reduction in any test performance. Ideally assessment of 

risk should be late enough to minimise false positive and false negative results, 

but early enough to identify cases with sufficient time to plan appropriate follow-

up and timing and place of delivery. To date, most studies assessing biomarker 

panels in predicting subsequent delivery of an SGA infant have involved 

sampling in the first and second trimesters of pregnancy, where test 

performance was insufficient to recommend incorporation into clinical practice. 

It is possible that sampling in the third trimester, closer to time of delivery 

maybe an appropriate alternative.  

 

1.7 Chapter Summary 

 

Whilst numerous biomarkers have been proposed as potential tools for 

identifying those at risk of placental disease, sufficient test performance for 

adoption into clinical algorithms to identify pregnancies at risk of SGA has not 

yet been established. Of all the mechanistic groups discussed, there are most 

published data on the angiogenic factors. The data relating to PlGF and 

prediction of delivery of an SGA infant in a high-risk population are promising, 

but further evaluation is required before recommendations can be made for 

widespread deployment.  
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Whilst acknowledging its limitations (as discussed in section 1.4.1), a recent 

systematic review concluded that at present there is no individual clinically 

useful biomarker for predicting SGA in women with singleton pregnancies 

(Conde-Agudelo et al., 2013). They give the multifactorial nature of SGA as a 

possible explanation for this finding. It is suggested that combining 

measurement of multiple biomarkers, covering a variety of pathological 

processes contributing to delivery of an SGA infant may provide a more 

promising test. However, from the current data summarised in section 1.5, the 

ideal combination providing sufficient test performance for clinical practice, 

whilst also maintaining clinical acceptability, is still elusive. This may be partially 

related to the timing of sampling as most studies reported on samples taken in 

the first and second trimesters, where changes in these markers may be too 

subtle to be detected by current assays or alterations in concentrations may 

occur at later gestations. There is a paucity of evidence assessing 

measurement of third trimester biomarker panels, covering a wide range of 

pathological processes, to determine delivery of an SGA infant. Considering this 

is the most frequent time of presentation with suspected SGA and is closer to 

time of delivery, it seems logical to evaluate tests within this timeframe.  

 

Given the limitations of current parameters for identifying the SGA infant, and 

the current evidence summarised above, there is an acute need for improved 

detection, which has led to the formation of the hypotheses below.   
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1.8 Aims 

1. To assess the ability of third trimester biomarkers and ultrasound 

parameters to determine delivery of a SGA infant in women with 

suspected pre-eclampsia 

 

2. To assess the diagnostic accuracy of PlGF and ultrasound parameters to 

predict the SGA infant in women presenting with suspected SGA.  
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1.9 Hypotheses 

In this work, I collected data from two cohorts (the first with suspected pre-

eclampsia and the second with suspected SGA fetuses) to test the following 

hypotheses: 

1. A combination of biomarkers, identified from 47 biomarkers, selected for 

their biological plausibility, can accurately identify women at risk of 

delivering an SGA infant from a cohort presenting with signs and 

symptoms, but not proven pre-eclampsia (suspected pre-eclampsia). 

 

2. PlGF can more accurately determine delivery of an SGA infant in women 

presenting with suspected SGA (i.e. reduced symphysis fundal height 

measurement, the current clinical tool for referral for further investigation 

in the UK) compared to current ultrasound parameters. 
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Chapter 2: Biomarkers and 

ultrasound parameters to determine 

placental dysfunction 
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2.1 Introduction 

 

Whilst numerous individual biomarkers have been proposed as potential 

diagnostic tools to identify pregnancies at risk of delivering an SGA infant, there 

is currently insufficient evidence to recommend incorporating any of these tests 

into routine clinical practice (Conde-Agudelo et al., 2013). It is suggested that 

given the multifactorial nature of SGA, a combination of biomarkers, which 

reflect a variety of pathological pathways key to development of SGA, may 

provide a more promising approach. A test early in pregnancy for distant 

prediction of delivering an SGA infant would allow appropriate follow up and 

planning of delivery. However, numerous studies measuring biomarker panels 

in the late first and early second trimesters of pregnancy have failed to identify 

women at risk of delivering an SGA infant with sufficient accuracy. This may be 

due to changes in these factors occurring beyond the first and second 

trimesters, alterations being below the level of detection for the selected 

biomarker assays at the time of testing, or lack of discrimination between 

subsequent cases and those with normal pregnancy outcome when measured 

many weeks prior to manifestation of the growth restriction.  

 

Measuring biomarker panels at later gestations may offer more accurate 

prediction, as testing closer to the onset of any condition generally yields 

improved test performance; variation in certain biomarker concentrations 

between those who deliver an appropriate for gestational age infant and those 

whose pregnancies are complicated by SGA may become more marked at later 

gestations, while providing clinical information at a time that influences 

immediate management. Biomarker measurement in the late second and third 
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trimesters of pregnancy to identify those at greatest risk of delivering an SGA 

infant may be especially useful in high-risk pregnancies, such as those with 

hypertensive disorders, as this could provide additional information to aid 

decision making regarding level of monitoring and timing of delivery.  

 

At present there are few published data regarding performance of individual 

biomarkers or panels measured at later gestations to predict delivery of an SGA 

infant.  

 

We identified a large group of biomarkers with either a biological role in 

placental function, known association with pre-eclampsia or involvement with 

placental disease. These biomarkers were measured in women with suspected 

pre-eclampsia, a group at high-risk of placental dysfunction with the aim of 

developing a biomarker panel capable of accurately identifying those at risk of 

delivering an SGA infant. 

 

2.1.1 Involvement with the study 

The primary aim of the PELICAN-PE study was to assess the diagnostic 

accuracy of placental growth factor (PlGF) to determine need for delivery for 

confirmed pre-eclampsia in women presenting with suspected pre-eclampsia. I 

acted as study coordinator for the PELICAN-PE study from August 2011, until 

study completion (February 2012). This involved liaising with all study sites and 

conducting regular site visits, providing database training for new members of 

staff and coordinating study teleconferences to provide updates. I received 

training in use of the PlGF Triage meter and accompanied the study monitor on 
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site visits and assisted in assessing quality control of the meters at enrolling 

sites. In addition to my role as study coordinator, I also recruited over 100 

women from the day assessment unit, antenatal ward and delivery suite at St 

Thomas’ Hospital, London and coordinated and inputted study data. I was a 

member of a panel of expert adjudicators who reviewed all final maternal 

diagnoses to assign final adjudicated diagnoses, adjudicating for sites other 

than where I enrolled women. I was involved in the statistical analysis plan for 

the study and contributed to the first manuscript (as a co-author) arising from 

the results, published in the peer-reviewed journal, Circulation, in November 

2013 (published manuscript in appendix). 

 

In addition to the primary aim of the PELICAN-PE study I also assessed the 

ability of a large panel of biomarkers to determine pre-eclampsia and delivery of 

an SGA infant in women presenting with suspected pre-eclampsia.  

 

2.2 Methods!

 

Data presented in this chapter are taken from the PELICAN-PE study. Women 

were recruited from seven consultant-led maternity units in the United Kingdom 

and Ireland, between January 2011 and February 2012. Ethical approval was 

granted by East London Research Ethics Committee (ref. 10/H0701/117).  

 

Women presenting with signs or symptoms of suspected pre-eclampsia, 

between 20+0 and 40+6 weeks’ gestation with a singleton or twin pregnancy and 

aged ≥16 years were eligible for inclusion in the study. Written informed consent 
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was obtained from participants. A study-specific database was created and 

baseline demographic and pregnancy-specific information were entered. At 

study enrolment, blood was drawn into ethylenediamine tetra-acetic acid and 

samples were labelled, and transported to the laboratory where they were spun 

at 3000 rpm for 10 minutes. Plasma was extracted and stored at -80oC until 

analysis. All cases were adjudicated by a panel of experts to assign a final 

maternal diagnosis using definitions defined below in 2.2.1. All diagnoses were 

assigned without knowledge of any biomarker values. 

 

2.2.1 Definitions 

Definitions were pre-defined by the PELICAN study co-investigator group in 

collaboration with a neonatologist to reflect adverse perinatal outcomes relevant 

to pre-eclampsia, particularly that requiring preterm delivery. A decision was 

made to include the consequences of prematurity rather than preterm delivery 

itself.  

Definitions for maternal hypertensive disorders of pregnancy were taken from 

the American College of Obstetricians and Gynecologist’s practice bulletin 

available at the time of study design and adjudication (ACOG Practice Bulletin, 

2002) and are as follows: 

 

Mild gestational hypertension: 

Systolic BP 140-159 mmHg and/or DBP 90-109 mmHg on two occasions 

4 hours to 1 week apart presenting after gestational week 20 without proteinuria 

or markers of severe pre-eclampsia. 
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Severe gestational hypertension: 

Systolic BP ≥ 160 mmHg or DBP ≥ 110 mmHg on two occasions at least 4 

hours to one week apart presenting after gestational week 20 without 

proteinuria or markers of severe pre-eclampsia. 

 

Chronic hypertension: 

Documented presence of chronic non-gestational hypertension (systolic BP 

>140 mm Hg and/or DBP > 90 mm Hg) prior to this pregnancy, 

or  

On anti-hypertensive medication prior to 20+0 weeks’ gestation, or at 6 weeks 

post partum. 

 

Proteinuria: 

Any of the following*: 

1) Urine protein ≥300 mg/24 hours (or 165mg/12hr) from a timed urine 

collection (preferred definition, if results from 24-hour timed urine collection 

available); 

2) Protein: Creatinine ratio ≥ 30 (mg/mmol). 

3) Urinary protein 1+ on dipstick on two occasions at least 4 hours apart. 

4) Urinary protein ≥2+ on dipstick on one occasion. 

*In the absence of a symptomatic urinary tract infection. 

 

Gestational proteinuria: 
 
De novo proteinuria after 20+0 weeks’ gestation (with a negative proteinuria 

assessment prior to 20+0 weeks’ gestation).
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Chronic proteinuria: 

Proteinuria noted prior to 20+0 weeks; or proteinuria that fails to resolve by 6 

weeks postpartum. 

 

Pre-eclampsia (Traditional Definition): 

Gestational hypertension plus gestational proteinuria.  

Mild pre-eclampsia: 

Mild gestational hypertension plus gestational proteinuria that does not 

meet the criteria for severe pre-eclampsia as stated below. 

 

Severe pre-eclampsia: 

Presence of pre-eclampsia as defined above plus one or more of the 

following: 

• Systolic BP ≥ 160 mmHg or DBP ≥ 110 mmHg on two occasions at 

least 6 hours apart while the patient is on bed rest;  

• Proteinuria of 5 g or higher in a 24-hour urine specimen or 3+ or 

greater on two random urine dipstick assessments collected at least 4 

hours apart; 

• Oliguria of less than 500 mL urine output in 24 hours; 

• Cerebral or visual disturbances; 

• Pulmonary edema or cyanosis; 

• Epigastric or RUQ pain; 

• Impaired liver function (2x upper limit of normal for AST and/or ALT); 

• Thrombocytopenia (platelet count <100,000/mm3); 

• Fetal growth restriction (fetal weight <10th percentile for gestational 

age). 
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Superimposed pre-eclampsia (Traditional definition): 

Chronic hypertension plus gestational proteinuria (defined as urine protein ≥ 

300 mg/24 hours from a timed urine collection). 

 

Superimposed pre-eclampsia (Atypical): 

• Chronic hypertension plus abnormal laboratory test (low platelets or 

elevated liver enzymes). 

• Chronic proteinuria plus gestational hypertension. 

 

Atypical pre-eclampsia: 

In the absence of proteinuria: 

Gestational hypertension plus any of the following: 

• Haemolysis (elevated total bilirubin >1.2 mg/dl); 

• Thrombocytopenia (platelet count <100,000/mm3); 

• Elevated liver function tests (2X upper limit of normal for AST and/or 

ALT). 

• Fetal growth restriction (birth weight <10% percentile) 

 

In the absence of hypertension:        

Gestational proteinuria plus any of the following: 

• Haemolysis (elevated total bilirubin >1.2 mg/dl); 

• Thrombocytopenia (platelet count <100,000/mm3); 

• Elevated liver function tests (2X upper limit of normal for AST and/or 

ALT). 

• Fetal growth restriction (birth weight <10% percentile) 
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Eclampsia: 

The presence of new-onset grand mal seizures in a woman with pre-eclampsia 

or gestational hypertension in the absence of all of the following: 

• Known seizure disorder; 

• Chronic treatment with anti-seizure medications; 

• Known intra-cerebral pathology. 

 

HELLP syndrome: 

Gestational hypertension and/or gestational proteinuria plus elevated liver 

enzymes (2X upper limit of normal), elevated LDH (2X upper limit of normal), 

thrombocytopenia (platelet count <100,000/mm3) and evidence of Haemolysis 

(elevated total bilirubin >1.2 mg/dl). 

 

Delivery of a small for gestational age infant was defined as birth weight <3rd 

and <10th customised centile, calculated using the Gestation Related Optimal 

Weight (GROW) method (Gardosi et al., 1992).  

 

Adverse perinatal outcome was defined as presence of any of the following 

complications: antepartum/intrapartum fetal or neonatal death, neonatal unit 

admission for >48 hrs at term, intraventricular haemorrhage, periventricular 

leucomalacia, seizure, retinopathy of prematurity, respiratory distress 

syndrome, bronchopulmonary dysplasia or necrotising enterocolitis. 

 

Adverse maternal outcome was defined as presence of any of the following 

complications: maternal death, eclampsia, stroke, cortical blindness or retinal 
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detachment, hypertensive encephalopathy, systolic blood pressure ≥160mmhg, 

myocardial infarction, intubation (other than for caesarean section), pulmonary 

oedema, platelets <50×10⁹/l (without transfusion), disseminated intravascular 

coagulation, thrombotic thrombocytopenic purpura/haemolytic uraemic 

syndrome, hepatic dysfunction (alanine transaminase ≥70iu/l), hepatic 

haematoma or rupture, acute fatty liver of pregnancy, creatinine >150 µmol/l, 

renal dialysis, placental abruption, major postpartum haemorrhage, major 

infection. 

 

2.2.2 Biomarker selection and measurement  

A detailed literature review was undertaken, in consultation with medical 

experts, to identify potential biomarkers for assessment. The 47 biomarkers 

selected had either a known association with pre-eclampsia and/or a 

biologically plausible role in placentation, or a role in the pathophysiology of 

placental disease e.g. angiogenesis, inflammation, coagulation. A full list of the 

57 biomarker assays with abbreviations, units and assay information are 

displayed in Tables 2.1 and 2.2. 
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Table 2.1: List of Biomarker abbreviations and units 

Biomarker Biomarker full name Units 

PlGF Placental Growth Factor pg/ml 

ADAM 9 Disintegrin and metalloproteinase domain-

containing protein 9 

pg/ml 

Angiogenin Angiogenin  µg/ml 

ANP  Natriuretic peptide A ng/ml 

Arginase-1 10a Arginase 1  ng/ml 

Arginase-2 11a Arginase 2  ng/ml 

BNP Brain natriuretic peptide ng/ml 

Caspase Caspase  ng/ml 

CCL23 MIP3, C motif chemokine 23 ng/ml 

C-Met-109a Tyrosine kinase  ng/ml 

C-Met-111a Tyrosine kinase  ng/ml 

CPA-4 Carboxypeptidase A4 ng/ml 

CRP C reactive protein µg/ml 

CXCL10 CXC motif chemokine 10 ng/ml 

Cystatin Cystatin ng/ml 

Elafin-131 Elafin  ng/ml 

Elafin-132 Elafin  ng/ml 

Endoglin Endoglin ng/ml 

Endothelin Endothelin pg/ml 

Ephrin Ephrin pg/ml 

ESAM-1 Endothelial Cell-selective adhesion molecule ng/ml 

FAS Tumor necrosis factor receptor superfamily 

member 6 
ng/ml 

FasL Tumor necrosis factor ligand superfamily 

member 6 
ng/ml 

HIF  Hypoxia inducible factor 1-alpha inhibitor ng/ml 

HbF  Haemoglobin Fetal ng/ml 

ICAM-1 Intercellular adhesion molecule 1 ng/ml 

IL-1ra  Interleukin 1 receptor antagonist pg/ml 

Kunitz-2 (HAI-2) 34a Kunitz-type protease inhibitor 2  ng/ml 

Kunitz-2 (HAI-2) 35b Kunitz-type protease inhibitor 2  ng/ml 
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Biomarker Biomarker full name Units 

Kunitz-2 (HAI-2) 40b Kunitz-type protease inhibitor 2  ng/ml 

Leptin Leptin  ng/ml 

Leptin receptor Leptin receptor  ng/ml 

MIF-49a Macrophage migration inhibitory factor  ng/ml 

MIF-49b Macrophage migration inhibitory factor  ng/ml 

MMP-9 Matrix metalloproteinase-9 ng/ml 

Nephrin-100a Nephrin  ng/ml 

Nephrin-101a Nephrin  ng/ml 

NGAL-MT Neutrophil gelatinase-associated lipocalin ng/ml 

PAI-1 (active)  Plasminogen activator inhibitor 1 ng/ml 

PAI-2 Plasminogen activator inhibitor 2 ng/ml 

PAPP-A  Pregnancy specific plasma protein A ng/ml 

PCT-95a Procalcitonin  pg/ml 

PCT-99b Procalcitonin  pg/ml 

Pentraxin-3-64a Pentraxin-related protein PTX3  ng/ml 

Pentraxin-3-67a Pentraxin-related protein PTX3  ng/ml 

Periostin Periostin ng/ml 

PODXL-74b Podocalyxin ng/ml 

sFlt-1 Soluble fms-like tyrosine kinase-1 ng/ml 

ST2-116b Interleukin-1 receptor-like 1  ng/ml 

ST2-75b Interleukin-1 receptor-like 1  ng/ml 

TGFβ Transforming growth factor beta-1 ng/ml 

TIMP-1 Metelloproteinase Inhibitor 1 ng/ml 

TNFR1A Tumor necrosis factor receptor superfamily 

member 1A 
ng/ml 

VEGF-C Vascular endothelial growth factor C ng/ml 

Visfatin-82a Visfatin ng/ml 

WAP4C-HE4-85b WAP four disulfide core domain protein 2  ng/ml 

WAP4C-HE4-91a WAP four disulfide core domain protein 2  ng/ml 
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Table 2.2: Biomarker assay information 

Biomarker 

 

Low 

Cutoff 

 

High 

Cutoff 

 

Assay 

Coefficient 

Variable 

Assay format 

 

PlGF 12 3000 13 Sandwich, Luminex 

ADAM-9 38.07 7913.74 11 Sandwich, Luminex 

Angiogenin 0.14 61.24 7 Competitive, Luminex 

ANP  0.048 71.93 13 Sandwich, Luminex 

Arginase-1 10a 0.035 30.50 9 Sandwich, Luminex 

Arginase-2 11a 1.318 378.14 15 Sandwich, Luminex 

BNP 0.007 5.83 18 Sandwich, Luminex 

Caspase 0.292 114.29 13 Sandwich, Luminex 

CCL23 0.009 3.52 7 Sandwich, Luminex 

C-Met 109a 7.999 453.54 11 Sandwich, Luminex 

C-Met 111a 77.147 1035.48 7 Sandwich, Luminex 

CPA-4 0.119 19.14 5 Sandwich, Luminex 

CRP 0.07871 141.96 5 Competitve, Luminex 

CXCL10 0.006 5.81 10 Sandwich, Luminex 

Cystatin 165.009 9072.87 21 Competitive, 

Microtitre 

Elafin-131 28.670 42668.61 10 Competitve, Luminex 

Elafin-132 21.159 42668.61 5 Competitve, Luminex 

Endoglin 1.981 654.84 18 Sandwich, Microtitre 

Endothelin-1  0.704 901.9 13 Sandwich, Luminex 

Ephrin 43.71 4009.97 20 Sandwich, Luminex 

ESAM-1  1.073 32.77 9 Sandwich, Luminex 

FAS 0.115 152.86 22 Sandwich, Luminex 
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Biomarker 

 

Low 

Cutoff 

 

High 

Cutoff 

 

Assay 

Coefficient 

Variable 

Assay format 

 

FasL 0.156 30.20 11 Sandwich, Luminex 

FIH  0.003 18.50 6 Sandwich, Luminex 

HbF  0.848 386.32 18 Sandwich, Microtitre 

ICAM-1 106.275 30231.73 6 Competitive, Luminex 

IL-1ra  0.477 1434.20 9 Sandwich, Luminex 

Kunitz-2-34a 0.016 10.17 19 Sandwich, Luminex 

Kunitz-2-35b 0.140 57.15 13 Sandwich, Luminex 

Kunitz-2-40b 0.159 57.38 7 Sandwich, Luminex 

Leptin-43a 5.509 148.56 11 Sandwich, Luminex 

Leptin-46b 2.244 1079.61 9 Sandwich, Luminex 

MIF-49a 3.912 25.99 10 Sandwich, Luminex 

MIF-49b 0.414 70.85 9 Sandwich, Luminex 

MMP-9 4.542 202.82 5 Sandwich, Luminex 

Nephrin-100a 0.517 19.98 25 Sandwich, Luminex 

Nephrin-101a 0.094 19.74 22 Sandwich, Luminex 

NGAL-MT 0.625 2924.00 22 Sandwich, Microtitre 

PAI-1-52b 0.194 103.48 12 Sandwich, Luminex 

PAI-2 0.047 77.90 5 Sandwich, Luminex 

PAPP-A  0.189 812.10 7 Sandwich, Luminex 

PCT-95a 12.22 9165.34 14 Sandwich, Luminex 

PCT-99b 9.55 3982.50 14 Sandwich, Luminex 

Pentraxin-3-64a 0.221 91.01 10 Sandwich, Luminex 

Pentraxin-3-67a 0.940 59.41 16 Sandwich, Luminex 

Periostin 0.538 107.38 7 Sandwich, Luminex 
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Biomarker 

 

Low 

Cutoff 

 

High 

Cutoff 

 

Assay 

Coefficient 

Variable 

Assay format 

 

Podocalyxin 0.075 20.79 15 Sandwich, Luminex 

sFlt-1 0.006 27.86 10 Sandwich, Luminex 

ST2-116b 0.038 21.25 14 Sandwich, Luminex 

ST2-75b 0.075 44.63 6 Sandwich, Luminex 

TGF 0.040 63.98 9 Sandwich, Luminex 

TIMP-1 9.127 1917.45 5 Competitive, Luminex 

TNFR-1A 0.230 31.02 18 Sandwich, Luminex 

VEGF-C 0.527 74.07 5 Sandwich, Luminex 

Visfatin 2.535 1738.71 13 Sandwich, Luminex 

WAP4C-HE4-85b 0.129 89.71 11 Sandwich, Luminex 

WAP4C-HE4-91a 1.516 54.27 6 Sandwich, Luminex 
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All samples were analysed for PlGF at the recruiting sites by laboratory staff, 

trained in measurement of plasma PlGF using the Triage®
 
PlGF Test (Alere, 

San Diego, CA). The test utilises a quantitative fluorescence immunoassay, 

measuring free PlGF. A fluorescently labelled murine monoclonal antibody 

against PlGF is fixed within the test device. When the plasma sample is added 

to the test device, free PlGF binds to the fixed antibody and the triage meter 

quantifies the concentration of plasma PlGF by measuring the degree of 

fluorescence. The lower level of detection of the assay is 12 pg/ml. The cost of 

the Alere Triage meter is £2,500 and each PlGF test is priced at £40. 

 

The additional 56 biomarker assays were measured at a single central 

laboratory (Alere, San Diego, CA). Stored samples were thawed to room 

temperature prior to the assays being performed. All immunoassays were either 

antibody sandwich assays or competitive assays (using biotinylated antigen), 

using either Luminex or ELISA technology. For all Luminex assays, the primary 

antibody (mouse-derived recombinant Fab fragment) was conjugated to 

magnetic Luminex beads, which were added to 384-well assay plates. The 

plates were placed on a magnetic ring stand to avoid the beads being removed 

during washing. For Luminex sandwich assays the plasma sample was then 

added and incubated for one hour and then washed. A biotinylated secondary 

antibody was then added and incubated prior to a further wash to remove any 

unbound detection antibody. Streptavidin-conjugated phycoerythrin (which 

binds to biotin on the detection antibody) was then added and washed prior to 

reading using a Luminex 200 reader. 

 

For Luminex competitive assays the initial steps were as above but the plasma 

sample was mixed with a biotinylated antigen prior to transfer to the plate 
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containing the primary antibody. After addition and incubation, washing 

removed any unbound biotinylated antigen. Streptavidin-labelled phycoerythrin 

was then added, which binds to biotin on the detection antigen. The degree of 

fluorescence was then measured using a Luminex 200 reader. 

 

The micro-titre ELISA assays used a streptavidin-coated plate and biotin or 

fluorescein conjugated recombinant Fab fragments. The ELISA sandwich assay 

used a biotin-conjugated recombinant Fab as the capture antibody and a 

fluorescein-conjugated recombinant Fab as the detection antibody. Capture 

antibody was coated on the plate, incubated, washed and sample added. After 

sample incubation, the plate was washed and then incubated with detection 

antibody. Following washing, the plate was incubated with anti-fluorescein 

antibody conjugated to alkaline phosphatase, washed, fluorescent substrate 

added and then read using a Tecan infinite F200 reader. 

 

The ELISA competitive assay used a biotin-conjugated antigen as the capture 

and a fluorescein-conjugated recombinant Fab as the detection antibody. The 

plate was coated with capture antigen, incubated and washed. Addition of 

sample was immediately followed by addition of the detection antibody and 

incubated. The final steps were the same as the ELISA sandwich.  

 

All assays were performed in 384-well microtitre plates using a Perkin-Elmer 

Minitrak robotic liquid handling system for all liquid handling steps. For all 

sandwich assays, one concentration in each set of calibrators included 

neutralizing antibody for correction of endogenous antigen present in the 

plasma pool. Each assay used an eight-point dose curve prepared 
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gravimetrically in EDTA plasma or buffer. Plasma samples were added to the 

384-well plate, containing wells for a calibration curve consisting of multiple 

analyte concentrations and control samples. Calibration curves were prepared 

gravimetrically in plasma from healthy donors.  

 

All results were concealed until a final adjudicated diagnosis had been made 

and laboratory staff were masked to the clinical diagnosis. Results were not 

revealed until all participants had delivered. 

 

Table 2.3 contains individual biomarker median concentrations displayed 

according to birth weight within the study group.   
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Table 2.3: Individual median biomarker concentrations (quartiles) in 

women presenting before 35 weeks’ gestation  

 

Biomarkers Women with SGA 

infant <3rd centile 

(n = 96) 

Women with SGA 

infant <10th centile 

(n = 130) 

Women with infant 

≥ 10th centile  

(n = 144) 

ADAM 9 * 89.6% below limit 

of detection 

91.5% below limit 

of detection 

84.0% below limit 

of detection 

Angiogenin 

(µg/ml) 

11.2  

(7.71 to 19.3) 

11.2  

(7.56 to 18.7) 

9.44  

(6.56 to 15.1) 

ANP (ng/ml) 1.28  

(0.52 to 3.39) 

1.06  

(0.53 to 3.04) 

0.83  

(0.42 to 2.27) 

Arginase 1 

(ng/ml) 

0.66  

(0.43 to 1.09) 

0.65  

(0.43 to 1.10) 

0.70  

(0.39 to 1.10) 

Arginase 2 

(ng/ml) 

15.6 

 (8.70 to 20.1) 

13.9  

(8.70 to 19.2) 

10.2 

(6.63 to 14.1) 

BNP (pg/ml) 0.15  

(0.10 to 0.22) 

0.14  

(0.08 to 0.19) 

0.09  

(0.06 to 0.14) 

CCL23 (ng/ml) 0.22  

(0.17 to 0.33) 

0.23  

(0.17 to 0.33) 

0.28  

(0.21 to 0.35) 

CRP (µg/ml) 17.9  

(8.98 to 33.0) 

15.7 

(7.53 to 32.5) 

12.6   

(6.52 to 23.3) 

CPA-4 (ng/ml) 2.41  

(1.84 to 2.80) 

2.45  

(1.85 to 2.99) 

2.82  

(2.15 to 3.51) 

Caspase 

(ng/ml) 

4.02  

(1.90 to 8.48) 

4.08  

(1.81 to 8.29) 

3.10  

(1.45 to 6.08) 

CXCL10 (ng/ml) 0.23  

(0.15 to 0.33) 

0.23  

(0.16 to 0.32) 

0.22  

(0.16 to 0.30) 

Cystatin C 

(ng/ml) 

3175  

(2234 to 5271) 

3158  

(2230 to 5309) 

2789  

(1873 to 3880) 

C-Met 109a 

(ng/ml) 

123  

(92.7 to 147) 

126  

(94.2 to 152) 

136  

(103 to 171) 

C-Met 111a 

(ng/ml) 

356  

(291 to 426) 

373  

(294 to 441) 

398  

(341 to 494) 
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Biomarkers Women with SGA 

infant <3rd centile 

(n = 96) 

Women with SGA 

infant <10th centile 

(n = 130) 

Women with infant 

≥ 10th centile  

(n = 144) 

Elafin 131 

(ng/ml) 

146  

(98.1 to 191) 

133  

(96.0 to 180) 

128  

(87.8 to 165) 

Elafin 132 

(ng/ml) 

59.18  

(41.13 to 121.35) 

61.40  

(40.54 to 112.69) 

65.51  

(44.99 to 111.07) 

Endoglin 

(ng/ml) 

134  

(67.5 to 243) 

126  

(55.5 to 216) 

33.6  

(16.5 to 104) 

ESAM-1 (ng/ml) 4.97  

(3.99 to 6.11) 

4.97  

(4.18 to 6.15) 

5.29  

(4.49 to 6.37) 

Endothelin-1 

(pg/ml) 

1.42  

(0.91 to 2.40) 

1.42  

(0.87 to 2.40) 

1.61  

(1.04 to 2.53) 

Ephrin (pg/ml) * 94.8% below limit 

of detection 

95.6% below limit 

of detection 

97.2% below limit 

of detection 

HbF (ng/ml) 50.9 

(26.0 to 90.9) 

50.7  

(25.6 to 88.7) 

46.0  

(23.1 to 72.7) 

HIF (ng/ml) 0.18  

(0.08 to 0.41) 

0.19  

(0.07 to 0.40) 

0.13  

(0.06 to 0.30) 

ICAM-1 (ng/ml) 679  

(538 to 932) 

665 

(517 to 914) 

609  

(478 to 828) 

IL1RA (pg/ml) 19.7  

(13.4 to 30.8) 

19.0 

 (13.1 to 31.1) 

23.8  

(16.6 to 34.5) 

ST2 116 (ng/ml) 1.43  

(0.76 to 2.43) 

1.21  

(0.68 to 2.18) 

0.78  

(0.53 to 1.70) 

ST2 75b (ng/ml) 6.74  

(4.81 to 12.4) 

6.39  

(4.49 to 10.2) 

5.86  

(3.17 to 9.15) 

Kunitz 2 34a 

(ng/ml) 

0.42 

 (0.30 to 0.55) 

0.42  

(0.30 to 0.54) 

0.41  

(0.29 to 0.56) 

Kunitz 2 35b 

(ng/ml) 

0.25  

(0.12 to 0.39) 

0.26  

(0.12 to 0.40) 

0.29  

(0.15 to 0.46) 

Kunitz 2 40b 

(ng/ml) 

0.14  

(0.14 to 0.31) 

0.15 

 (0.14 to 0.31) 

0.24  

(0.14 to 0.46) 

Leptin 43a 

(ng/ml) 

17.5  

(14.1 to 22.9) 

17.2  

(13.7 to 22.7) 

17.3  

(10.3 to 25.8) 
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Biomarkers Women with SGA 

infant <3rd centile 

(n = 96) 

Women with SGA 

infant <10th centile 

(n = 130) 

Women with infant 

≥ 10th centile (n = 

144) 

Leptin 46b 

(ng/ml) 

138 

(104 to 178) 

140  

(105 to 182) 

154 

(113 to 199) 

MIF 49a (ng/ml) 10.7  

(8.97 to 13.1) 

10.5 

(8.96 to 13.1) 

11.3  

(9.76 to 12.9) 

MIF 49b (ng/ml) 8.95  

(5.73 to 14.0) 

8.78  

(5.72 to 13.7) 

7.88  

(5.31 to 11.6) 

MMP-9 (ng/ml) 40.3 

(30.3 to 54.6) 

39.7  

(29.5 to 55.7) 

41.6  

(31.5 to 58.4) 

TIMP-1 (ng/ml) 132 

(94.9 to 187) 

126  

(94.7 to 180) 

110 

 (83.6 to 155) 

Nephrin 100a 

(ng/ml) * 

72.9% below limit 

of detection 

74.6% below limit 

of detection 

84.7% below limit 

of detection 

Nephrin 101a 

(ng/ml) 

0.42  

(0.26 to 0.73) 

0.38  

(0.26 to 0.66) 

0.30  

(0.16 to 0.49) 

NGAL (ng/ml) 48.24  

(35.0 to 75.6) 

46.2  

(34.2 to 71.0) 

38.7  

(24.4 to 56.1) 

PAPP-A  

(ng/ml) 

90.7 

(40.6 to 154) 

90.0  

(40.6 to 156) 

135  

(67.4 to 224) 

Pentraxin 3 64a 

(ng/ml) * 

77.1% below limit 

of detection 

77.7% below limit 

of detection 

72.9% below limit 

of detection 

Pentraxin 3 67a 

(ng/ml) 

3.32  

(1.71 to 5.10) 

2.97 

 (1.68 to 5.03) 

1.97  

(0.90 to 3.35) 

Periostin 

(ng/ml) 

9.16  

(6.86 to 11.3) 

9.07  

(6.78 to 11.1) 

8.53  

(6.29 to 10.7) 

PlGF (pg/ml) 11.6  

(5.01 to 33.1) 

16.7  

(6.11 to 58.2) 

195  

(33.2 to 494) 

PAI-1 (ng/ml) 0.50  

(0.24 to 0.81) 

0.45  

(0.24 to 0.78) 

0.46  

(0.26 to 0.73) 

PAI-2 (ng/ml) 9.18  

(7.39 to 11.9) 

9.93  

(7.63 to 12.3) 

11.9  

(9.42 to 14.3) 
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Biomarkers Women with SGA 

infant <3rd centile 

(n = 96) 

Women with SGA 

infant <10th centile 

(n = 130) 

Women with infant 

≥ 10th centile  

(n = 144) 

Podocalyxin 

(ng/ml) 

0.16  

(0.09 to 0.29) 

0.14  

(0.07 to 0.28) 

0.10  

(0.07 to 0.19) 

PCT 95a 

(pg/ml) 

76.0  

(44.6 to 128) 

67.1  

(41.2 to 122) 

45.8  

(27.5 to 72.1) 

PCT 99b 

(pg/ml) 

10.6  

(5.63 to 28.9) 

11.5  

(5.63 to 28.5) 

11.4  

(5.63 to 21.6) 

TGFBeta-2 

(ng/ml) 

1.77  

(1.32 to 2.18) 

1.81  

(1.35 to 2.30) 

1.99  

(1.62 to 2.43) 

FasL (ng/ml) * 72.9% below limit 

of detection 

74.6% below limit 

of detection 

68.1% below limit 

of detection 

TNFR-1A 

(ng/ml) 

7.29  

(5.01 to 11.6) 

7.67  

(5.48 to 11.5) 

7.50  

(5.92 to 10.6) 

FAS (ng/ml) 2.7  

(2.1 to 3.5) 

2.71  

(2.10 to 3.53) 

2.72  

(2.01 to 3.66) 

VEGF-C (ng/ml) 15.2  

(12.9 to 18.3) 

15.1  

(12.9 to 18.0) 

14.1  

(12.1 to 16.6) 

sFlt-1 (ng/ml) 3.60  

(1.54 to 5.82) 

2.74  

(1.33 to 5.38) 

0.95  

(0.50 to 2.49) 

Visfatin (ng/ml) 2.37  

(1.62 to 3.32) 

2.35  

(1.61 to 3.29) 

1.93  

(1.22 to 3.16) 

WAP4C HE4 

85b (ng/ml) 

1.86  

(1.15 to 2.65) 

1.65  

(1.12 to 2.63) 

1.40  

(0.94 to 1.90) 

WAP4C HE4 

91a (ng/ml) 

13.8 

 (12.0 to 17.1) 

13.9  

(12.2 to 16.8) 

13.3  

(11.1 to 15.7) 

 

* Meaningful quartiles cannot be calculated as the concentrations in most 

samples were below the lower limit of assay detection. 
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2.2.3 Statistical analysis  

I undertook the statistical analysis with the medical statistician having devised 

the statistical plan with the study Chief investigator and Principal Investigator at 

St Thomas’ Hospital.  

 

The first part of this analysis evaluated the ability of 47 biomarkers to determine 

subsequent delivery of an SGA infant. Logged values of all 57 biomarker 

assays were used as standard distributional checks showed high levels of 

skewness, which were consistent with underlying log normal distributions. Prior 

to disclosure of pregnancy outcomes, factor analysis of biomarker data was 

undertaken on the whole data set, reducing the 57 biomarker assays to a 

smaller number of highly correlated groups, solely on the basis of the 

correlations between the biomarkers and without reference to outcome. 

Consideration of scree plots and Eigen-values (> two) identified the most 

important factors (Costello and Osborne, 2005) which were rotated (orthogonal 

varimax method) so that each factor related strongly (correlation >0.6) to a 

small number of biomarkers only. Scores were calculated on each factor for 

each subject.  

 

The principal outcome for this analysis was delivery of an SGA infant (defined 

as birth weight less than the 3rd or 10th customised centile). The factor scores 

were entered into a multiple logistic regression model for prediction of 

subsequent SGA. The best performing factors (and their biomarkers) were 

investigated further by using stepwise logistic regression (a parametric method) 

to determine which of the biomarkers within these factors, appeared to provide 

additional information beyond that derived from PlGF (known to be a good 
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predictor of need for delivery for pre-eclampsia) (Chappell et al., 2013). 

Prediction scores were extracted for the best combinations.  

 

Some biomarkers, with high uniqueness scores, were not strongly associated 

with any factor. To investigate whether any of these biomarkers had predictive 

power in addition to that provided by PlGF and biomarkers identified earlier, 

stepwise logistic regression was undertaken. To avoid excluding a biomarker 

that may be of potential value, a standard multiple-testing correction to p-

values, such as Bonferroni was not used. However, for a biomarker to be 

considered useful, it had to pass a series of tests, so that the chance of a false 

positive was greatly reduced. These included: being a component of a 

significant factor (or having high uniqueness and not appearing in any factor), 

being a significant predictor in logistic regression both alone and after allowing 

for PlGF, having a ROC area for the combined score significantly greater than 

PlGF alone, being a useful predictor for both definitions of SGA. A comparison 

of Receiver Operated Curves (ROC) areas (a non-parametric method) of 

individual biomarkers and combinations was made to see if any of the additional 

information was both consistent and large enough to be clinically useful.  

 

The analysis was initially conducted on samples from women enrolled prior to 

35 weeks’ gestation as maternal plasma PlGF concentrations decline towards 

the end of the third trimester reducing test performance beyond 35 weeks’ 

gestation. This was then repeated in women enrolled between 35+0 and 36+6 

weeks’ gestation.  
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The second part of this analysis compared the best performing biomarker(s) to 

currently utilised ultrasound parameters. To allow this comparison data was 

restricted to women who had an ultrasound within 14 days of enrolment (when 

blood was drawn for biomarker analysis). The sensitivity, specificity and 

predictive values were calculated for three ultrasound parameters (estimated 

fetal weight (EFW) or abdominal circumference (AC) <10th centile, absent or 

reversed end diastolic flow in the umbilical artery (AREDF) and oligohydramnios 

(defined as amniotic fluid index <5th centile)) and the best performing biomarker 

to allow comparison. The performance of these parameters was assessed in 

isolation and combination, to determine both delivery of an SGA infant and 

adverse perinatal outcome. 

 

Statistical analysis was carried out in the statistical package Stata (version 

11.2), College Station Texas, USA. Formal significance was taken at p<0.05. 

The study is reported in accordance with STROBE guidelines.  
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2.3 Results 

 

649 women presenting with suspected pre-eclampsia between 20+0 and 40+6 

weeks’ gestation were recruited across seven sites between January 2011 and 

February 2012. 17 of these women did not have a valid enrolment plasma 

sample and there was no outcome data available on a further nine women, 

excluding them from any further analysis. Of the remaining 623 women, 29 had 

multi-fetal pregnancies and were excluded from this analysis. 197 women were 

recruited over 37 weeks’ gestation and the samples from these women were 

not analysed further. This decision followed the findings of the HYPITAT study, 

and publication of National Institute of Clinical Excellence (NICE) guidance on 

the management of hypertensive disorders during pregnancy. The HYPITAT 

study concluded that induction of labour in women presenting with gestational 

hypertension or mild pre-eclampsia beyond 37 weeks’ gestation improved 

maternal outcome (Koopmans et al., 2009). Subsequent NICE guidance 

recommended induction of labour in women presenting with pre-eclampsia 

beyond 37 weeks’ gestation (National Institute for Health and Clinical 

Excellence, 2010) and therefore investigating the utility of biomarkers to 

determine placental dysfunction beyond 37 weeks’ gestation was not justified 

as this would not alter clinical management. With particular reference to PlGF, 

maternal plasma concentrations decline after 32 weeks’ gestation with 

convergence of concentrations between normal and pathological pregnancies 

with advancing gestation (Knudsen et al., 2012) and therefore the clinical utility 

of this biomarker beyond 37 weeks’ gestation is likely to be less predictive of 

outcome even if women remained pregnant.  
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274 women were recruited prior to 35 weeks’ gestation and 126 of these 

women had an ultrasound scan with all parameters recorded within or at 14 

days of enrolment (where PlGF sample was taken). Of these women, 74 

delivered an SGA infant <10th customised centile and 59 were below the 3rd 

centile. 123 women were recruited between 35+0 and 36+6 weeks’ gestation and 

53 of these women had an ultrasound scan and PlGF measured within or at 14 

days. Of these women, 21 delivered an SGA infant <10th centile and 14 had a 

birth weight below the 3rd centile (Figure 2.1).  
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Figure 2.1: Flow diagram of study participants 
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2.3.1 Women presenting prior to 35 weeks’ gestation (n = 274) 

All descriptive Tables are separated according to subsequent infant birth 

weight.  Characteristics of participants at booking and enrolment are displayed 

in Tables 2.4 and 2.5 respectively. There is little difference between groups at 

booking and enrolment except the presence of new onset proteinuria and 

hypertension, which occurred more frequently at enrolment in women who 

subsequently delivered an SGA infant. A likely explanation for this finding is the 

known association between pre-eclampsia and SGA. Table 2.6 details delivery 

and maternal and neonatal outcomes; delivery by planned caesarean section 

was higher in women with an SGA infant (62% in pregnancies complicated by 

SGA <10th centile) compared to those delivering an infant ≥ 10th centile (32%). 

The median gestation at delivery was much lower in the cases complicated by 

SGA, likely secondary to increased iatrogenic delivery in this group (34.4 

weeks, versus 38.1 weeks’ gestation in women delivering an infant with a birth 

weight ≥10th centile). There were six stillbirths and two neonatal deaths, and 

with the exception of one case, all had a birth weight <3rd customised centile. In 

all cases of stillbirth the PlGF concentration at enrolment was <100 pg/ml and 

predated ultrasound abnormalities by 7 to 39 days and stillbirth by 10 to 53 

days. The prevalence of adverse perinatal outcomes (definition excluded SGA) 

was much higher in the SGA groups compared to those delivering AGA infants, 

emphasising the importance of identifying those at risk (39%, 32% and 13% for 

SGA <3rd centile, SGA <10th centile and birth weight ≥10th centile respectively). 

The most common adverse perinatal outcomes in cases with birth weight <3rd 

customised centile at delivery were respiratory distress syndrome (21/39), 

followed by admission to NICU for >48 hrs at term (6/39) and retinopathy of 
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prematurity (5/39). There were four cases each of bronchopulmonary dysplasia 

and necrotising enterocolitis and one case of intraventricular haemorrhage 

within this group. 
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Table 2.4: Characteristics of participants at booking (grouped by 

subsequent infant birth weight) under 35 weeks’ gestation.  Values given 

are median (quartiles) or n (%) as appropriate.  

 

Characteristics Women with 

SGA infant <3rd 

centile (n = 96) 

Women with 

SGA infant <10th 

centile (n=130) 

Women with 

infant ≥ 10th 

centile (n=144) 

Age (years) 31.9 

(27.2 to 36.2) 

31.9 

(27.4 to 36.4) 

31.7 

(26.3 to 35.6) 

BMI (kg/m2) 26.8 

(24.1 to 31.2) 

28.0 

(23.9 to 32.8) 

29.3 

(24.7 to 34.9) 

White ethnicity 63 (65.6) 87 (66.9) 92 (63.9) 

Highest systolic BP 

(mmHg) 

120 (110 to 130) 121 (110 to 130) 120 (110 to 130) 

Highest diastolic BP 

(mmHg)  

74 (65 to 81) 74 (65 to 81) 75 (68 to 82) 

Smoker at booking 17 (18.5) 24 (19.2) 29 (20.4) 

Quit smoking during 

pregnancy 

10 (10.9) 14 (11.2) 19 (13.4) 

Previous medical history: 

Previous 

preeclampsia 

requiring delivery 

<34/40 † 

15 (15.8) 18 (14.0) 12 (8.6) 

Chronic hypertension 11 (11.5) 21 (16.2) 23 (16.0) 

SLE or APS 5 (5.2) 6 (4.6) 6 (4.2) 

Pre-existing diabetes 

mellitus 

2 (2.1) 2 (1.5) 4 (2.8) 

Renal disease 6 (6.3) 9 (6.9) 10 (6.9) 

SLE or APS, Systemic lupus erythematosus or Antiphospholipid syndrome 

BP, Blood Pressure 

† indicates p value <0.05 for comparison of women with SGA infant <3rd centile 

(the main outcome) to women with infant ≥ 10th centile   
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Table 2.5: Characteristics of participants at study enrolment under 35 

weeks’ gestation. Values given are median (quartiles) or n (%) as 

appropriate.  
Characteristics Women with 

SGA infant <3rd 

centile (n = 96) 

Women with 

SGA infant <10th 

centile (n=130) 

Women with 

infant ≥ 10th 

centile (n=144) 

Gestational age at 

sampling (weeks) 

31.0 

(27.6 to 33.0) 

31.0 

(27.6 to 33.1) 

31.1 

(28.0 to 33.6) 

Signs or symptoms of suspected pre-eclampsia 

New onset hypertension † 60 (63) 80 (62) 65 (45) 

Worsening of underlying 

hypertension  

16 (17) 24 (19) 32 (22) 

New onset of dipstick 

proteinuria 

58 (60) 79 (61) 71 (49) 

Dipstick proteinuria: 

Not done 

Negative 

Proteinuria (≥ +1) 

 

18 (19) 

22 (23) 

56 (58) 

 

24 (19) 

34 (26) 

72 (55) 

 

12 (8) 

67 (47) 

65 (45) 

Headaches 24 (25) 32 (25) 49 (34) 

Suspected SGA 
(customised birth weight 

centiles) † 

40 (42) 40 (31) 1 (1) 

Highest systolic BP 

(mmHg) † 

147  

(137 to 160) 

148  

(138 to 160) 

141  

(128 to 156) 

Highest diastolic BP  

(mmHg) † 

94  

(83 to 100) 

94 

(83 to 100) 

90  

(80 to 100) 

Epigastric/ right upper 

quadrant pain 

4 (4) 6 (5) 12 (8) 

Laboratory tests at time of enrolment 

Alanine transaminase 

(U/L) 

15 (11 to 19) 16 (12 to 20) 13 (10 to 19) 

Creatinine (µmol/L)  55 (46 to 64) 55 (46 to 64) 50 (41 to 60) 

Uric acid (µmol/L) † 310  

(217 to 359) 

290  

(195 to 355) 

241  

(184 to 287) 

Platelet count (x109/L) 230  

(199 to 275) 

230  

(191 to 275) 

236  

(202 to 266) 

† indicates p value <0.05 for comparison of women with SGA infant <3rd centile (the 

main outcome) to women with infant ≥ 10th centile 
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Table 2.6: Characteristics of delivery, maternal and neonatal outcome for 

women presenting before 35 weeks’ gestation. Values given are median 

(quartiles) or n (%) as appropriate.  
 

Characteristics Women with 

SGA infant <3rd 

centile (n = 96) 

Women with 

SGA infant <10th 

centile (n = 130) 

Women with 

infant ≥ 10th 

centile  

(n = 144) 

Onset of labour 

Spontaneous † 3 (3) 7 (5) 32 (23) 

Induced 29 (30) 42 (33) 64 (45) 

Pre labour caesarean section 

† 

64 (67) 80 (62) 46 (32) 

Mode of delivery 

Spontaneous † 15 (16) 25 (20) 45 (31) 

Assisted vaginal  5 (5) 8 (6) 21 (15) 

Caesarean section † 75 (79) 95 (74) 78 (54) 

Adverse maternal outcome*  44 (46) 61 (47) 56 (39) 

Gestation at delivery (weeks) 

†  

33.8  

(30.8 to 36.1) 

34.4  

(31.4 to 37.3) 

38.1  

(36 to 39.4) 

Fetal death † 5 (5) 5 (4) 1 (1) 

Neonatal death 2 (2) 2 (2) 0 (0) 

Birth weight (g) † 1537  

(1043 to 1910) 

1660  

(1200 to 2310) 

3128  

(2698 to 3545) 

SGA <10th birth weight 

centile 

96 (100) 130 (100) 0 (0) 

SGA <3rd birth weight centile  96 (100) 96 (74) 0 (0) 

SGA <1st birth weight centile  68 (71) 68 (53) 0 (0) 

Adverse perinatal outcome** 

† 

37 (39) 41 (32) 19 (13) 

Maternal diagnosis 

No maternal disease 0 1 (0.8) 21 (15) 

Gestational hypertension 1 (1) 1 (0.8) 25 (17) 

Chronic hypertension 4 (4) 12 (9) 16 (11) 

Pre-eclampsia 86 (90)  106 (81) 59 (41) 

HELLP syndrome 1 (1) 1 (0.8) 1 (0.7) 

Other diagnosis 4 (4) 9 (7) 22 (16) 
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*Adverse maternal outcome defined as presence of any of the following 

complications: maternal death, eclampsia, stroke, cortical blindness or retinal 

detachment, hypertensive encephalopathy, systolic blood pressure ≥160mmhg, 

myocardial infarction, intubation (other than for caesarean section), pulmonary 

oedema, platelets <50×109/l (without transfusion), disseminated intravascular 

coagulation, thrombotic thrombocytopenic purpura/ haemolytic uraemic 

syndrome, hepatic dysfunction (alanine transaminase ≥70iu/l), hepatic 

haematoma or rupture, acute fatty liver of pregnancy, creatinine >150 µmol/l, 

renal dialysis, placental abruption, major postpartum haemorrhage, major 

infection. 

 

**Adverse perinatal outcome defined as: presence of any of the following 

complications: antepartum/ intrapartum fetal or neonatal death, neonatal unit 

admission for >48 hrs at term, intraventricular haemorrhage, periventricular 

leucomalacia, seizure, retinopathy of prematurity, respiratory distress 

syndrome, bronchopulmonary dysplasia or necrotising enterocolitis. 

 

† indicates p value <0.05 for comparison of women with SGA infant <3rd centile 

(the main outcome) to women with infant ≥ 10th centile  
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Factor analysis of all 57 biomarkers was performed as described in section 

2.2.3. The results of the factor analysis showing the five largest factors are 

displayed in Table 2.7. Factors three and four had the highest odds ratios in 

women recruited before 35 weeks’ gestation. The biomarkers within factors 3 

and 4 were investigated further by using stepwise logistic regression to 

determine which if any of these biomarkers provided additional information 

beyond that derived from PlGF. Prediction scores were calculated to identify the 

best combinations of biomarkers for further analysis. PlGF was consistently the 

strongest predictor and did not need to be forced into the model. 
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Table 2.7: Odds ratios derived from multiple logistic regression analysis 

of the 5 factors in women presenting before 35 weeks’ gestation (Odds 

ratios are for a change of 1 SD in the factor score). 

 

Factor  Biomarkers contained 

in factor 

Women with SGA 

infant <3rd centile 

Odds Ratio 

(95% CI) 

Women with SGA 

infant <10th centile 

Odds Ratio  

(95% CI) 

1 ANP, Arginase-1, 

CCL23, CPA-4, ESAM-

1, FAS, Kunitz-2, 

TGFBeta-1, TNFR-1A, 

WAP4C-HE4-85b, 

WAP4C-HE4-91a 

0.85 (0.64 to 1.13) 0.89 (0.68 to 1.16) 

2 ADAM-9, Ephrin, FasL, 

Kunitz 35b, Kunitz 40b, 

Nephrin, PAI-1, 

Pentraxin-3-64a 

0.79 (0.57 to 1.1) 0.78 (0.58 to 1.03) 

3 Arginase-2, BNP, 

Nephrin, PCT-95a, 

Pentraxin 3-67a, 

Podocalyxin 

1.67 (1.23 to 2.28) 1.57  (1.18 to 2.07) 

4 PlGF, Endoglin, sFlt-1 2.85 (2.13 to 3.82) 2.38  (1.84 to 3.08) 

5 Angiogenin, Caspase, 

FIH, ICAM-1, MIF, 

TIMP-1 

1.04 (0.76 to 1.41) 0.99  (0.74 to 1.31) 
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A summary of the best performing individual biomarkers and combinations 

derived from logistic regression to determine SGA <3rd and <10th birth weight 

centiles are displayed in Table 2.8. PlGF outperformed all other individual 

biomarkers and biomarker ratios in determining delivery of an SGA infant, with a 

ROC area of 0.83 (95% CI 0.78 to 0.88) for SGA <3rd centile and 0.79 (95% CI 

0.73 to 0.84) for SGA <10th centile (Figure 2.2). Biomarker combinations 

incorporating PlGF added little to the test performance of PlGF in isolation, with 

a ROC area of 0.84 (95% CI 0.79 to 0.89) for the most promising combination to 

predict SGA <3rd centile and 0.80 (95% CI 0.74 to 0.85) for SGA <10th centile 

(Figure 2.3). Table 2.9 contains ROC areas for all 57 biomarker assays 

measured in determining SGA <3rd and <10th birth weight centiles. To allow 

comparison of individual biomarker test performance in women enrolled prior to 

35 weeks’ gestation with those women enrolled between 35+0 and 36+6 weeks’ 

gestation (discussed in section 2.3.2), this data has been displayed together in 

Table 2.9. 
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Table 2.8: Test performance statistics for individual biomarkers and 

combinations (derived from logistic regression) to predict SGA <3rd 

centile and <10th centile in women presenting before 35 weeks’ gestation 

(ROC areas with 95 confidence intervals). 

 

Biomarkers or combinations SGA <3rd centile SGA <10th centile 

Nephrin 0.63 (0.56 to 0.70) 0.62 (0.55 to 0.69) 

[CPA-4] 0.63 (0.57 to 0.70) 0.62 (0.55 to 0.68) 

PCT 95a  0.67 (0.61 to 0.74) 0.64 (0.57 to 0.71) 

[PAI-2]               0.68 (0.62 to 0.75) 0.66 (0.59 to 0.72) 

BNP 0.69 (0.62 to 0.75) 0.64 (0.58 to 0.71) 

sFlt-1 0.73 (0.67 to 0.79) 0.69 (0.63 to 0.76) 

Endoglin  0.74 (0.68 to 0.80) 0.73 (0.67 to 0.79) 

[PlGF] 0.83 (0.78 to 0.88) 0.79 (0.73 to 0.84) 

[PlGF/s-Flt ratio] 0.80 (0.75 to 0.85) 0.77 (0.71 to 0.82) 

[PlGF/Endoglin ratio] 0.82 (0.77 to 0.86) 0.78 (0.73 to 0.83) 

[PlGF], [CPA-4] 0.83 (0.78 to 0.88) 0.79 (0.74 to 0.84) 

[PlGF], Nephrin 0.84 (0.79 to 0.88) 0.80 (0.74 to 0.85) 

[PlGF], Nephrin, [CPA-4] 0.84 (0.79 to 0.89) 0.80 (0.74 to 0.85) 

 

 [ ] low concentration of biomarker/ratio correlated to disease 
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Figure 2.2 ROC areas of individual biomarkers measured under 35 weeks’ 

gestation to determine: 

SGA < 3rd centile 

 

 

SGA <10th centile 
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Figure 2.3 ROC areas of biomarker combinations measured under 35 

weeks’ gestation to determine: 

SGA < 3rd centile 

 
 

SGA <10th centile 
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Table 2.9: Individual biomarker test performance (ROC areas with 95 

confidence intervals) under 35 weeks’ gestation and 35+0 to 36+6 weeks’ 

gestation. 

   

   

< 35 weeks’ gestation 35+0 - 36+6 weeks’ gestation 

(<3rd centile)   (<10th centile)   (<3rd centile)   (<10th centile)   

[PlGF] 0.83  

(0.78 to 0.88) 

0.79  

(0.73 to 0.84) 

0.69  

(0.57 to 0.81) 

0.74  

(0.64 to 0.83) 

ADAM-9 0.52  

(0.48 to 0.56) 

0.54  

(0.50 to 0.58) 

0.55  

(0.49 to 0.62) 

0.56  

(0.50 to 0.62) 

Angiogenin  0.59  

(0.51 to 0.66) 

0.58  

(0.51 to 0.64) 

0.61  

(0.49 to 0.73) 

0.57  

(0.46 to 0.68) 

ANP 0.56  

(0.49 to 0.64) 

0.56  

(0.49 to 0.63) 

0.49  

(0.35 to 0.63) 

0.54  

(0.42 to 0.65) 

Arginase 1 0.51  

(0.44 to 0.58) 

0.51  

(0.44 to 0.58) 

0.61  

(0.48 to 0.73) 

0.54  

(0.42 to 0.65) 

[Arginase 2] 0.64  

(0.56 to 0.71) 

0.63  

(0.57 to 0.70) 

0.67  

(0.55 to 0.79) 

0.64  

(0.54 to 0.75) 

BNP 0.69  

(0.62 to 0.75) 

0.64  

(0.58 to 0.71) 

0.65  

(0.54 to 0.77) 

0.68  

(0.58 to 0.78) 

Caspase  0.56  

(0.49 to 0.63) 

0.56  

(0.49 to 0.62) 

0.58  

(0.46 to 0.70) 

0.52  

(0.42 to 0.63) 

[CCL23] 0.57  

(0.50 to 0.64) 

0.58  

(0.51 to 0.65) 

0.52  

(0.40 to 0.65) 

0.54  

(0.43 to 0.65) 

[CPA-4] 0.63  

(0.57 to 0.70) 

0.62  

(0.55 to 0.68) 

0.72  

(0.61 to 0.83) 

0.72  

(0.63 to 0.82) 

CRP 0.58  

(0.51 to 0.65) 

0.55  

(0.48 to 0.62) 

0.68  

(0.57 to 0.80) 

0.59  

(0.48 to 0.70) 

CXCL10 0.51  

(0.44 to 0.59) 

0.53  

(0.46 to 0.59) 

0.46  

(0.32 to 0.61) 

0.51  

(0.40 to 0.63) 

Cystatin C  0.58  

(0.51 to 0.65) 

0.59  

(0.52 to 0.66) 

0.53  

(0.39 to 0.66) 

0.54  

(0.44 to 0.65) 

[C-Met 

109a] 

0.59  

(0.52 to 0.66) 

0.58  

(0.51 to 0.64) 

0.64  

(0.51 to 0.76) 

0.64  

(0.54 to 0.74) 
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 < 35 weeks’ gestation 35+0 -36+6 weeks’ gestation 

(<3rd centile)   (<10th centile)   (<3rd centile)   (<10th centile)   

[C-Met 

111a] 

0.61  

(0.54 to 0.68) 

0.59  

(0.52 to 0.65) 

0.64  

(0.52 to 0.76) 

0.64  

(0.54 to 0.74) 

Elafin 131  0.57  

(0.50 to 0.64) 

0.54  

(0.47 to 0.61) 

0.64  

(0.52 to 0.76) 

0.55  

(0.44 to 0.66) 

Elafin 132  0.48  

(0.41 to 0.55) 

0.47  

(0.41 to 0.54) 

0.60  

(0.49 to 0.72) 

0.52  

(0.42 to 0.63) 

Endoglin  0.74  

(0.68 to 0.80) 

0.73  

(0.67 to 0.79) 

0.58  

(0.46 to 0.70) 

0.65  

(0.55 to 0.76) 

[Endothelin-

1] 

0.53  

(0.45 to 0.60) 

0.54  

(0.48 to 0.61) 

0.57  

(0.45 to 0.70) 

0.55  

(0.45 to 0.66) 

[Ephrin] 0.49  

(0.46 to 0.51) 

0.49  

(0.47 to 0.51) 

0.51 

 (0.50 to 0.52) 

0.51  

(0.49 to 0.52) 

[ESAM-1] 0.55  

(0.48 to 0.63) 

0.55  

(0.48 to 0.62) 

0.67  

(0.55 to 0.79) 

0.66  

(0.55 to 0.76) 

[FAS] 0.53  

(0.45 to 0.60) 

0.49  

(0.42 to 0.56) 

0.53  

(0.40 to 0.65) 

0.55  

(0.45 to 0.66) 

[FasL] 0.52  

(0.46 to 0.58) 

0.54  

(0.48 to 0.59) 

0.52  

(0.41 to 0.62) 

0.54  

(0.45 to 0.62) 

HIF 0.55  

(0.48 to 0.62) 

0.56  

(0.49 to 0.62) 

0.56  

(0.43 to 0.68) 

0.51  

(0.40 to 0.62) 

[HbF] 0.44  

(0.37 to 0.51) 

0.45  

(0.38 to 0.52) 

0.55  

(0.41 to 0.69) 

0.49  

(0.38 to 0.61) 

ICAM-1 0.57  

(0.50 to 0.64) 

0.55  

(0.48 to 0.62) 

0.67  

(0.56 to 0.78) 

0.60  

(0.49 to 0.71) 

[IL-1ra] 0.58  

(0.51 to 0.65) 

0.59  

(0.53 to 0.66) 

0.62  

(0.50 to 0.75) 

0.62  

(0.51 to 0.73) 

Kunitz 2 

34a  

0.52  

(0.45 to 0.59) 

0.51  

(0.44 to 0.58) 

0.36  

(0.24 to 0.48) 

0.40  

(0.30 to 0.51) 

[Kunitz 2 

35b] 

0.57  

(0.50 to 0.64) 

0.56  

(0.49 to 0.63) 

0.74  

(0.63 to 0.85) 

0.73  

(0.65 to 0.82) 
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 < 35 weeks’ gestation 35+0 -36+6 weeks’ gestation 

(<3rd centile)   (<10th centile)   (<3rd centile)   (<10th centile)   

[Kunitz 2 

40b]  

0.58  

(0.51 to 0.65) 

0.60  

(0.53 to 0.66) 

0.69  

(0.57 to 0.81) 

0.68  

(0.58 to 0.78) 

[Leptin 43a]  0.47  

(0.40 to 0.54) 

0.49  

(0.42 to 0.56) 

0.50  

(0.37 to 0.63) 

0.49  

(0.38 to 0.60) 

[Leptin 46b] 0.59  

(0.52 to 0.66) 

0.56  

(0.49 to 0.63) 

0.65  

(0.52 to 0.78) 

0.62  

(0.51 to 0.73) 

[MIF-49a] 0.54  

(0.47 to 0.62) 

0.58  

(0.51 to 0.65) 

0.57  

(0.45 to 0.70) 

0.57  

(0.46 to 0.68) 

[MIF-49b] 0.55  

(0.47 to 0.62) 

0.54  

(0.47 to 0.61) 

0.48  

(0.36 to 0.60) 

0.49  

(0.38 to 0.59) 

[MMP-9] 0.52  

(0.44 to 0.59) 

0.53  

(0.46 to 0.60) 

0.57  

(0.45 to 0.69) 

0.56 

 (0.45 to 0.67) 

Nephrin 

100a  

0.55  

(0.50 to 0.60) 

0.55  

(0.50 to 0.60) 

0.53  

(0.44 to 0.62) 

0.52  

(0.45 to 0.59) 

Nephrin 

101a 

0.63  

(0.56 to 0.70) 

0.62  

(0.55 to 0.69) 

0.67  

(0.55 to 0.80) 

0.63  

(0.52 to 0.74) 

NGAL 0.62  

(0.55 to 0.69) 

0.60  

(0.54 to 0.67) 

0.46  

(0.33 to 0.58) 

0.49  

(0.39 to 0.60) 

PAI-1 

(active) 

0.53  

(0.46 to 0.60) 

0.50  

(0.43 to 0.57) 

0.49  

(0.36 to 0.62) 

0.48  

(0.37 to 0.59) 

[PAI-2] 0.68  

(0.62 to 0.75) 

0.66  

(0.59 to 0.72) 

0.67  

(0.56 to 0.79) 

0.65  

(0.55 to 0.75) 

[PAPP-A]  0.60  

(0.53 to 0.67) 

0.64  

(0.57 to 0.70) 

0.62  

(0.50 to 0.74) 

0.66  

(0.56 to 0.77) 

PCT 95a 0.67  

(0.61 to 0.74) 

0.64  

(0.57 to 0.71) 

0.61  

(0.48 to 0.73) 

0.59  

(0.48 to 0.69) 

PCT 99b 0.51  

(0.44 to 0.58) 

0.52  

(0.45 to 0.59) 

0.38  

(0.26 to 0.51) 

0.45  

(0.34 to 0.55) 

Pentraxin- 

3 64a 

0.49  

(0.44 to 0.55) 

0.48  

(0.43 to 0.53) 

0.46  

(0.36 to 0.57) 

0.45  

(0.36 to 0.54) 
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 < 35 weeks’ gestation 35+0 -36+6 weeks’ gestation 

(<3rd centile)   (<10th centile)   (<3rd centile)   (<10th centile)   

Pentraxin- 3 

67a 

0.64  

(0.57 to 0.71) 

0.63  

(0.56 to 0.69) 

0.59  

(0.46 to 0.71) 

0.61  

(0.50 to 0.71) 

Periostin  0.56  

(0.48 to 0.63) 

0.54  

(0.47 to 0.61) 

0.50  

(0.37 to 0.63) 

0.57  

(0.46 to 0.68) 

Podocalyxin 0.62  

(0.55 to 0.69) 

0.59  

(0.53 to 0.66) 

0.65  

(0.53 to 0.76) 

0.62  

(0.52 to 0.72) 

sFlt-1 0.73  

(0.66 to 0.79) 

0.69  

(0.63 to 0.76) 

0.57  

(0.45 to 0.70) 

0.61 

 (0.51 to 0.71) 

ST2-116b 0.62  

(0.55 to 0.69) 

0.60  

(0.53 to 0.66) 

0.55  

(0.43 to 0.67) 

0.61  

(0.51 to 0.72) 

ST2 -75b 0.59  

(0.52 to 0.66) 

0.57  

(0.51 to 0.64) 

0.49  

(0.35 to 0.62) 

0.55  

(0.44 to 0.66) 

[TGFβ-1] 0.60  

(0.53 to 0.68) 

0.59  

(0.52 to 0.66) 

0.66  

(0.55 to 0.77) 

0.64  

(0.54 to 0.74) 

TIMP-1 0.60  

(0.53 to 0.67) 

0.56  

(0.49 to 0.63) 

0.56 

 (0.45 to 0.68) 

0.52  

(0.41 to 0.63) 

[TNFR-1A] 0.54  

(0.46 to 0.62) 

0.51  

(0.44 to 0.58) 

0.60  

(0.47 to 0.73) 

0.57  

(0.47 to 0.68) 

VEGF-C 0.57  

(0.50 to 0.65) 

0.58  

(0.51 to 0.64) 

0.42  

(0.29 to 0.56) 

0.46  

(0.35 to 0.58) 

Visfatin  0.56  

(0.49 to 0.63) 

0.56  

(0.49 to 0.62) 

0.46  

(0.35 to 0.57) 

0.49  

(0.39 to 0.60) 

WAP4C 

HE4 85b 

0.62  

(0.55 to 0.69) 

0.60  

(0.53 to 0.66) 

0.52  

(0.39 to 0.66) 

0.55  

(0.45 to 0.66) 

WAP4C 

HE4 91a 

0.55  

(0.48 to 0.63) 

0.57  

(0.51 to 0.64) 

0.40  

(0.27 to 0.53) 

0.47  

(0.35 to 0.58) 
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In addition to analysing the test performance of multiple biomarkers, the ability 

of currently utilised ultrasound parameters to determine delivery of an SGA 

infant was assessed and compared to low PlGF. Tables 2.10 and 2.11 

summarise the sensitivity, specificity, positive and negative predictive values 

and positive and negative likelihood ratios of low maternal plasma PlGF (<100 

pg/ml) and currently measured ultrasound parameters (including EFW/AC <10th 

centile, oligohydramnios (AFI <5cm) and AREDF) to determine delivery of an 

SGA infant <3rd and <10th customised centiles respectively. EFW/AC <10th 

centile had the best performance of currently used ultrasound parameters, with 

a sensitivity of 71.2% (95% CI 57.9 to 82.2%) and NPV 78.5% (95% CI 67.8 to 

86.9%) to determine SGA <3rd centile. However PlGF outperformed all currently 

measured ultrasound parameters with a sensitivity of 93.2% (95% CI 83.5 to 

98.1%) and NPV 89.7% (95% CI 75.8 to 97.1%) to determine SGA <3rd centile 

(Table 2.10). When PlGF was combined with currently used ultrasound 

parameters, sensitivity improved to 96.6% (95% CI 88.3 to 99.6%) with NPV 

94.3% (95% CI 80.8 to 99.3%). 

 

In predicting adverse perinatal outcome (excluding SGA in this definition) PlGF 

had higher sensitivity (89.7%) and negative predictive value (89.7%) than all 

other ultrasound measurements (Table 2.12). If PlGF was combined with fetal 

ultrasound parameters (AC or EFW <10th centile) there was a marginal rise in 

test sensitivity to 92.3% (95% CI 79.1 to 98.4%).   
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Table 2.10: Test performance statistics (with 95% confidence intervals) for individual indicators and in combination to predict 

small for gestational age (SGA) <3rd customised birth weight centile in women presenting before 35 weeks’ gestation (n=126) 

Indicator  Sensitivity % 

(95% CI) 

Specificity % 

(95% CI) 

Positive 

predictive value 

% (95% CI) 

Negative 

predictive value 

% (95% CI) 

Positive 

likelihood ratio 

(95% CI) 

Negative 

likelihood ratio 

(95% CI) 

AC or EFW <10th centile 71.2 

(57.9 to 82.2) 

92.5 

(83.4 to 97.5) 

89.4 

(76.9 to 96.5) 

78.5 

(67.8 to 86.9) 

9.5      

(4.0 to 22.5) 

0.31      

(0.21 to 0.47) 

Oligohydramnios 18.6 

(9.7 to 30.9) 

98.5 

(92.0 to 100) 

91.7 

(61.5 to 99.8) 

57.9 

(48.3 to 67.1) 

12.5 

(1.7 to 93.9) 

0.83     

(0.73 to 0.94) 

AREDF 20.3 

(11.0 to 32.8) 

98.5 

(92 to 100) 

92.3 

(64 to 99.8) 

58.4 

(48.8 to 67.6) 

13.6      

(1.8 to 102) 

0.81       

(0.71 to 0.92) 

PlGF <100 pg/ml 93.2 

(83.5 to 98.1) 

52.2 

(39.7 to 64.6) 

63.2 

(52.2 to 73.3) 

89.7 

(75.8 to 97.1) 

2.0       

(1.5 to 2.5) 

0.13 

(0.05 to 0.34) 

Combinations 

AC or EFW <10th centile 

or oligo or AREDF 

72.9 

(59.7 to 83.6) 

91.0  

(81.5 to 96.6) 

87.8  

(75.2 to 95.4) 

79.2 

(68.5 to 87.6) 

8.1 

(3.7 to 17.7) 

0.30  

(0.19 to 0.46) 

AC or EFW <10th centile 

or PlGF <100 pg/ml 

96.6 

(88.3 to 99.6) 

49.3 

(36.8 to 61.8) 

62.6 

(51.9 to 72.6) 

94.3 

(80.8 to 99.3) 

1.90       

(1.5 to 2.4) 

0.07       

(0.02 to 0.3) 

AC or EFW, Abdominal Circumference or Estimated Fetal Weight, Oligohydramnios defined as amniotic fluid index <5th centile for 

gestational age, AREDF, Absent or Reversed End Diastolic Flow in umbilical artery  
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Table 2.11: Test performance statistics (with 95% confidence intervals) for individual indicators and in combination to predict 

small for gestational age (SGA) <10th customised birth weight centile in women presenting before 35 weeks’ gestation (n=126) 

Indicator  Sensitivity %  

(95% CI) 

Specificity %  

(95% CI) 

Positive 

predictive value 

% (95% CI) 

Negative 

predictive value 

% (95% CI) 

Positive 

likelihood ratio 

(95% CI) 

Negative 

likelihood ratio 

(95% CI) 

AC or EFW <10th centile 58.1 

(46.1 to 69.5) 

92.3 

(81.5 to 97.9) 

91.5 

(79.6 to 97.6) 

60.8 

(49.1 to 71.6) 

7.6       

(2.9 to19.8) 

0.5       

(0.3 to 0.6) 

Oligohydramnios 16.2 

(8.7 to 26.6) 

100 

(93.2 to 100) 

100 

(73.5 to100) 

45.6 

(36.3 to 55.2) 

0 0.8       

(0.8 to 0.9) 

AREDF 16.2 

(8.7 to 26.6) 

98.1 

(89.7 to 100) 

92.3 

(64.0 to 99.8) 

45.1 

(35.8 to 54.8) 

8.4 

(1.1 to 62.9) 

0.9  

(0.8 to 1.0) 

PlGF <100 pg/ml 83.8 

(73.4 to 91.3) 

51.9 

(37.6 to 66.0) 

71.3 

(60.6 to 80.5) 

69.2  

(52.4 to 83.0) 

1.7       

(1.3 to 2.4) 

0.3      

(0.2 to 0.6) 

Combinations 

AC or EFW <10th centile 

or oligo or AREDF 

60.8 

(48.8 to 72.0) 

92.3 

(81.5 to 97.9) 

91.8 

(80.4 to 97.7) 

62.3 

(50.6 to 73.1) 

7.9  

(3.0 to 20.6) 

0.42  

(0.32 to 0.57) 

AC or EFW <10th centile 

or PlGF <100 pg/ml 

87.8 

(78.2 to 94.3) 

50.0 

(35.8 to 64.2) 

71.4 

(61.0 to 80.4) 

74.3 

(56.7 to 87.5) 

1.8       

(1.3 to 2.3) 

0.24      

(0.12 to 0.48) 

AC or EFW, Abdominal Circumference or Estimated Fetal Weight, Oligohydramnios defined as amniotic fluid index <5th centile for 

gestational age, AREDF, Absent or Reversed End Diastolic Flow in umbilical artery
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Table 2.12: Test performance statistics (with 95% confidence intervals) for 

individual indicators and in combination to predict adverse perinatal 

outcome in women presenting before 35 weeks’ gestation (n=126) 

 

Indicator  Sensitivity 

%  (95% CI) 

Specificity 

%  (95% CI) 

Positive 

predictive 

value %  

(95% CI) 

Negative 

predictive 

value %  

(95% CI) 

AC or EFW 

<10th centile 

48.7 

(32.4 to 65.2) 

67.8 

(56.9 to 77.4) 

40.4 

(26.4 to 55.7) 

74.7 

(63.6 to 83.8) 

Oligohydramnios 12.8 

(4.3 to 27.4) 

92.0 

(84.1 to 96.7) 

41.7 

(15.2 to 72.3) 

70.2 

(60.9 to 78.4) 

AREDF 12.8 

(4.3 to 27.4) 

90.8 

(82.7 to 95.9) 

38.5 

(13.9 to 68.4) 

69.9 

(60.6 to 78.2) 

PlGF <100 pg/ml 89.7 

(75.8 to 97.1) 

40.2 

(29.9 to 51.3) 

40.2 

(29.9 to 51.3) 

89.7 

(75.8 to 97.1) 

Combinations 

AC or EFW <10th 

centile or 

oligohydramnios 

or AREDF 

53.8 

(37.2 to 69.9) 

67.8 

(56.9 to 77.4) 

42.9 

(28.8 to 57.8) 

76.6 

(65.6 to 85.5) 

AC or EFW 

<10th centile or 

PlGF <100 pg/ml 

92.3 

(79.1 to 98.4) 

36.8 

(26.7 to 47.8) 

39.6 

(29.5 to 50.4) 

91.4 

(76.9 to 98.2) 

 

AC or EFW, Abdominal Circumference or Estimated Fetal Weight 

Oligohydramnios defined as amniotic fluid index <5th centile for gestational age 

ARDEF, Absent or Reversed End Diastolic Flow in umbilical artery   
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2.3.2 Women presenting between 35+0 and 36+6 weeks’ gestation  

(n = 123) 

Of 123 women presenting between 35+0 and 36+6 weeks’ gestation, 39 (31.7%) 

delivered an SGA infant <10th customised centile for birth weight. Patterns in 

demographics at booking and enrolment were similar to those seen in women 

presenting prior to 35 weeks’ gestation (Table 2.13).  

 

Table 2.14 summarises data for delivery and maternal and neonatal outcomes. 

In contrast to women recruited prior to 35 weeks’ gestation, onset and mode of 

delivery and maternal adverse outcome did not vary greatly with infant birth 

weight. However, delivery by caesarean section was very high in the whole 

cohort, at approximately 50%. This is nearly twice that of the current national 

average and may reflect that pregnancies recruited to this study were high risk. 

There were no fetal of neonatal deaths in this group and whilst prevalence of 

adverse perinatal outcomes was higher in pregnancies complicated by delivery 

of an SGA infant compared to those delivering an AGA infant, this was much 

lower than in women recruited prior to 35 weeks’ gestation (12% in women 

recruited between 35+0 and 36+6 weeks and delivering an SGA infant <3rd 

centile compared to 39% in those recruited prior to 35 weeks’ gestation who 

delivered an SGA infant <3rd birth weight centile).  
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Table 2.13: Characteristics of participants recruited between 35+0 to 36+6 

weeks’ gestation at booking and enrolment (grouped by subsequent 

infant birth weight).  Values given are median (quartiles) or n (%) as 

appropriate.  

 

Characteristics Women with 

SGA infant <3rd 

centile (n = 25) 

Women with 

SGA infant <10th 

centile (n=39) 

Women with 

infant ≥ 10th 

centile (n=84) 

At booking: 

Age (years) 

 

32.8 

(25.2 to 36.1) 

 

29.6 

(25.1 to 35.3) 

 

32.4 

(28.0 to 35.0) 

BMI (kg/m2) 28.6  

(25.6 to 30.5) 

28.0  

(24.3 to 30.5) 

28.8  

(24.3 to 32.9) 

White ethnicity 16 (64) 23 (59) 53(63) 

Highest first 

trimester systolic 

BP (mmHg)  

110 (104 to 122) 116 (104 to 122) 120 (110 to 128) 

Highest first 

trimester diastolic 

BP (mmHg)  

70 (60 to 75) 70 (62 to 78) 76 (67 to 80) 

Smoker at booking 6/25 (24) 8/39 (21) 11/80 (14) 

Quit smoking during 

pregnancy 

4/25 (16) 4/39 (10) 8/80 (10) 

Previous pre-

eclampsia requiring 

delivery <34/40 

3 (12) 4 (10) 2 (2) 

Chronic 

hypertension 

2 (8) 3 (7.7) 6 (7) 
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Characteristics Women with 

SGA infant <3rd 

centile (n = 25) 

Women with 

SGA infant <10th 

centile (n=39) 

Women with 

infant ≥ 10th 

centile (n=84) 

At enrolment: 

Gestational age at 

sampling (weeks) 

35.7 

(35.4 to 36.3) 

36 

(35.4 to 36.4) 

36.1 

(35.4 to 36.4) 

New onset 

hypertension † 

20 (80) 31 (79.5) 51 (60.7) 

Worsening of 

underlying 

hypertension 

1 (4) 3 (7.7) 15 (17.9) 

New onset of 

dipstick 

proteinuria 

18 (72) 28 (71.8) 49 (58.3) 

Suspected SGA 

(customised birth 

weight centiles) † 

8 (32) 8 (20.5) 1 (1.2) 

Highest systolic 

BP (mmHg) 

140 (130 to 151) 145 (131 to 153) 143 (132 to 152) 

Highest diastolic 

BP (mmHg) 

90 (82 to 98) 92 (82 to 99) 94 (87 to 99) 

 

BP, Blood Pressure  

 

† indicates p value <0.05 for comparison of women with SGA infant <3rd centile 

(the main outcome) to women with infant ≥ 10th centile   
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Table 2.14: Characteristics of delivery and maternal and neonatal outcome 

for women recruited between 35+0 and 36+6 weeks’ gestation. Values given 

are median (quartiles) or n (%) as appropriate.  
Characteristics Women with 

SGA infant <3rd 

centile (n = 25) 

Women with 

SGA infant <10th 

centile (n=39) 

Women with 

infant ≥ 10th 

centile (n=84) 

Onset of labour 

Spontaneous 4 (16) 6 (15.4) 17 (20.2) 

Induced 16 (64) 23 (59) 47 (56) 

Pre labour caesarean section 5 (20) 

 

10 (25.6) 19 (22.6) 

Mode of delivery 

Spontaneous 9 (36) 13 (33.3) 37 (44) 

Assisted vaginal  3 (12) 4 (10.3) 7 (8.3) 

Caesarean section 12 (48) 21 (53.8) 40 (47.6) 

Adverse maternal outcome* 6 (24) 11 (28.2) 26 (31) 

Gestation at delivery (weeks) 37.3  

(36.7 to 37.9) 

37.1  

(36.4 to 37.9) 

37.7   

(37 to 39.4) 

Fetal death 0 (0) 0 (0) 0 (0) 

Neonatal death 0 (0) 0 (0) 0 (0) 

Birth weight (g) † 2170  

(2030 to 2340) 

2250  

(2055 to 2480) 

3240  

(2925 to 3525) 

SGA <10th birth weight 

centile 

25 (100) 39 (100) 0 (0) 

SGA <3rd birth weight centile  25 (100) 25 (64.1) 0 (0) 

SGA <1st birth weight centile  11 (44) 11 (28.2) 0 (0) 

Adverse perinatal outcome** 3 (12) 4 (10.3) 5 (6) 

Maternal diagnosis 

No maternal disease 0 0 5 (6) 

Gestational hypertension 0 0 14 (17) 

Chronic hypertension 2 (8) 4 (10) 5 (6) 

Pre-eclampsia 20 (80) 31 (80) 38 (45) 

HELLP syndrome 0 0 0 

Other diagnosis 3 (12) 4 (10) 22 (26) 
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*Adverse maternal outcome defined as presence of any of the following 

complications: Maternal death, Eclampsia, Stroke, Cortical blindness or retinal 

detachment, Hypertensive encephalopathy, Systolic blood pressure 

≥160mmHg, Myocardial infarction, Intubation (other than for caesarean section), 

Pulmonary oedema, Platelets <50×10⁹/L (without transfusion), Disseminated 

intravascular coagulation, Thrombotic thrombocytopenic purpura/ haemolytic 

uraemic syndrome, Hepatic Dysfunction (Alanine transaminase ≥70IU/L), 

Hepatic haematoma or rupture, Acute fatty liver of pregnancy, Creatinine >150 

µmol/L, Renal dialysis, Placental abruption, Major postpartum haemorrhage, 

Major infection. 

 

**Adverse perinatal outcome defined as: presence of any of the following 

complications: Antepartum/ intrapartum fetal or neonatal death, Neonatal unit 

admission for >48 hrs at term, Intraventricular haemorrhage, Periventricular 

leucomalacia, seizure, retinopathy of prematurity, respiratory distress 

syndrome, bronchopulmonary dysplasia or necrotising enterocolitis. 

 

† indicates p value <0.05 for comparison of women with SGA infant <3rd centile 

(the main outcome) to women with infant ≥ 10th centile 

 

 

As described in section 2.3.1, factor analysis of all 57 biomarkers was 

performed and the results showing the five largest factors in women enrolled 

between 35+0 and 36+6 weeks’ gestation is displayed in Table 2.15. Factors 

three and four had the highest odds ratios and the biomarkers within these 

factors were investigated further as described in section 2.3.1. 
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Table 2.15: Odds ratios derived from multiple logistic regression analysis 

of the 5 factors in women presenting between 35+0 and 36+6 weeks’ 

gestation (Odds ratios are for a change of 1 SD in the factor score). 

 

 

  

Factor  Biomarkers contained 

in factor 

Women with SGA 

infant <3rd centile 

Women with SGA 

infant <10th centile 

Odds Ratio 

 (95% CI) 

Odds Ratio 

 (95% CI) 

1 ANP, Arginase-1, CCL23, 

CPA-4, ESAM-1, FAS, 

Kunitz-2, TGFBeta-1, 

TNFR-1A, WAP4C-HE4-

85b, WAP4C-HE4-91a 

0.46 (0.26 to 0.78) 0.42  (0.25 to 0.72) 

2 ADAM-9, Ephrin, FasL, 

Kunitz 35b, Kunitz 40b, 

Nephrin, PAI-1, 

Pentraxin-3-64a 

0.97 (0.36 to 2.56) 0.54  (0.21 to 1.41) 

3 Arginase-2, BNP, 

Nephrin, PCT-95a, 

Pentraxin 3-67a, 

Podocalyxin 

1.80 (1.03 to 3.16) 1.73  (1.02 to 2.94) 

4 PlGF, Endoglin, sFlt-1 3.54  (1.52 to 8.26) 6.89  (2.88 to 16.4) 

5 Angiogenin, Caspase, 

FIH, ICAM-1, MIF, TIMP-

1 

1.07  (0.61 to 1.90) 0.85  (0.50 to 1.45) 
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Table 2.16 summarises the best performing individual biomarkers and 

combinations in determining delivery of an SGA infant <3rd and <10th 

customised centiles. In determining SGA <10th centile PlGF outperforms all 

other biomarkers measured with a ROC area of 0.74 (0.64 to 0.83) (Figure 2.4). 

Combinations of biomarkers derived from logistic regression improved test 

performance to determine SGA <10th centile, with PlGF, Nephrin and 

Carboxypeptidase A4 (CPA-4) producing a ROC area of 0.81 (0.73 to 0.90) 

(Figure 2.5). In determining SGA <3rd centile Kunitz 2 had the best individual 

test performance (ROC area 0.74 (0.63 to 0.85)) (Figure 2.4) with combinations 

of PlGF, Nephrin and CPA-4 improving test performance to a ROC area of 0.77 

(0.66 to 0.88) (Figure 2.5). The test performance of all individual biomarkers are 

displayed in Table 2.9. 
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Table 2.16: ROC areas (with 95% confidence intervals) for individual 

biomarkers and combinations (derived from logistic regression) to predict 

small for gestational age (SGA) <3rd and <10th customised birth weight 

centiles in women presenting between 35+0 and 36+6 weeks’ gestation. 

 

Biomarkers or combinations SGA <3rd centile SGA <10th centile 

Nephrin 0.67 (0.55 to 0.80) 0.63 (0.52 to 0.74) 

[PAI-2]           0.67 (0.56 to 0.79) 0.65 (0.55 to 0.75) 

[PlGF] 0.69 (0.57 to 0.81) 0.74 (0.64 to 0.83) 

[CPA-4] 0.72 (0.61 to 0.83) 0.72 (0.63 to 0.82) 

Kunitz 2 35b 0.74 (0.63 to 0.85) 0.73 (0.65 to 0.82) 

[PlGF/s-Flt ratio] 0.66 (0.54 to 0.78) 0.70 (0.60 to 0.80) 

[PlGF/Endoglin ratio] 0.66 (0.54 to 0.78) 0.73 (0.63 to 0.82) 

[PlGF], Nephrin  0.73 (0.62 to 0.84) 0.76 (0.67 to 0.85) 

[PlGF], [CPA-4] 0.77 (0.67 to 0.88) 0.81 (0.73 to 0.90) 

[PlGF], Nephrin, [CPA-4] 0.77 (0.66 to 0.88) 0.81 (0.73 to 0.90) 

 

[ ] low concentrations of biomarker/ ratio correlated to severe disease 
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Figure 2.4: ROC areas of individual biomarkers measured between 35+0 

and 36+6 weeks’ gestation to determine: 

SGA < 3rd centile 
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Figure 2.5: ROC areas of biomarker combinations measured between 35+0 

and 36+6 weeks’ gestation to determine: 

SGA < 3rd centile 
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Tables 2.17 and 2.18 compare test performance of currently utilised ultrasound 

parameters and PlGF to determine delivery of an SGA infant <3rd and <10th 

customised centiles respectively. Similar patterns are seen in test performance 

in this group as were observed in women recruited prior to 35 weeks’ gestation. 

EFW/AC <10th centile has the best test performance of any ultrasound 

parameter assessed to determine delivery of an SGA infant (sensitivity 64.3%, 

NPV 88.1% for SGA <3rd centile) but PlGF outperforms all ultrasound 

parameters (sensitivity 85.7% (95% CI 57.2 to 98.2%), NPV 81.8% (95% CI 

48.2 to 97.7%)) in determining subsequent delivery of an SGA infant. Addition 

of PlGF measurement to currently utilized ultrasound parameters increases test 

sensitivity to determine SGA <3rd centile from 71.4% (95% CI 41.9 to 91.6%) to 

92.9% (95% CI 66.1 to 99.8%). Similar patterns are seen in Table 2.19 for 

prediction of adverse perinatal outcomes, where PlGF in isolation has a 

sensitivity of 100% in determining this endpoint. 
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Table 2.17: Test performance statistics for individual indicators and in combination to predict small for gestational age (SGA) 

<3rd customised birth weight centile in women presenting between 35+0 and 36+6 weeks’ gestation (n= 53) 

Indicator  Sensitivity %  

(95% CI) 

Specificity %  

(95% CI) 

Positive 

predictive value 

% (95% CI) 

Negative 

predictive value 

% (95% CI) 

Positive 

likelihood ratio 

(95% CI) 

Negative 

likelihood ratio 

(95% CI) 

AC or EFW <10th centile 64.3 

(35.1 to 87.2) 

94.9 

(82.7 to 99.4) 

81.8 

(48.2 to 97.7) 

88.1 

(74.4 to 96.0) 

12.5 

(3.1 to 51.1) 

0.4 

(0.2 to 0.8) 

Oligohydramnios 14.3 

(1.8 to 42.8) 

94.9 

(82.7 to 99.4) 

50.0 

(6.8 to 93.2) 

75.5 

(61.1 to 86.7) 

2.8 

(0.4 to 17.9) 

0.9 

(0.7 to 1.1) 

AREDF 14.3 

(1.8 to 42.8) 

97.4 

(86.5 to 99.9) 

66.7 

(9.4 to 99.2) 

76.0 

(61.8 to 86.9) 

5.6 

(0.6 to 56.8) 

0.9 

(0.7 to 1.1) 

PlGF <100 pg/ml 85.7 

(57.2 to 98.2) 

23.1 

(11.1 to 39.3) 

28.6 

(15.7 to 44.6) 

81.8 

(48.2 to 97.7) 

1.11 

(0.9 to 1.5) 

0.6 

(0.2 to 2.5) 

Combinations 

AC or EFW <10th centile 

or oligo or AREDF 

71.4 

(41.9 to 91.6) 

89.7 

(75.8 to 97.1) 

71.4 

(41.9 to 91.6) 

89.7 

(75.8 to 97.1) 

7.0  

(2.6 to 18.7) 

0.32 

(0.14 to 0.73) 

AC or EFW <10th centile 

or PlGF <100 pg/ml 

92.9 

(66.1 to 99.8) 

23.1 

(11.1 to 39.3) 

30.2 

(17.2 to 46.1) 

90.0 

(55.5 to 99.7) 

1.2 

(1.0 to 1.5) 

0.3 

(0.04 to 2.2) 

AC or EFW, Abdominal Circumference or Estimated Fetal Weight, Oligohydramnios defined as amniotic fluid index <5th centile for 

gestational age, AREDF, Absent or Reversed End Diastolic Flow in umbilical artery  



 138 

Table 2.18: Test performance statistics for individual indicators and in combination to predict small for gestational age (SGA) 

<10th customised birth weight centile in women presenting between 35+0 and 36+6 weeks’ gestation (n=53) 

Indicator  Sensitivity %  

(95% CI) 

Specificity %  

(95% CI) 

Positive 

predictive value 

% (95% CI) 

Negative 

predictive value 

% (95% CI) 

Positive 

likelihood 

ratio (95% CI) 

Negative 

likelihood ratio 

(95% CI) 

AC or EFW <10th centile 52.4 

(29.8 to 74.3) 

100 

(89.1 to 100) 

100 

(71.5 to 100) 

76.2 

(60.5 to 87.9) 

0 0.5 

(0.3 to 0.8) 

Oligohydramnios 14.3 

(3.0 to 36.3) 

96.9 

(83.8 to 99.9) 

75.0 

(19.4 to 99.4) 

63.3 

(48.3 to 76.6) 

4.6 

(0.5 to 41.1) 

0.9 

(0.7 to 1.1) 

AREDF 9.5 

(1.2 to 30.4) 

96.9 

(83.8 to 99.9) 

66.7 

(9.4 to 99.2) 

62.0 

(47.2 to 75.3) 

3.1 

(0.3 to 31.5) 

0.9 

(0.8 to 1.1) 

PlGF <100 pg/ml 90.5 

(69.6 to 98.8) 

28.1 

(13.7 to 46.7) 

45.2 

(29.8 to 61.3) 

81.8 

(48.2 to 97.7) 

1.3 

(1.0 to 1.6) 

0.3 

(0.1 to 1.4) 

Combinations 

AC or EFW <10th centile 

or oligo or AREDF 

57.1 

(34.0 to 78.2) 

93.8 

(79.2 to 99.2) 

85.7 

(57.2 to 98.2) 

76.9 

(60.7 to 88.9) 

9.14 

(2.3 to 36.8) 

0.46 

(0.3 to 0.8) 

AC or EFW <10th centile 

or PlGF <100 pg/ml 

95.2 

(76.2 to 99.9) 

28.1 

(13.7 to 46.7) 

46.5 

(31.2 to 62.3) 

90.0 

(55.5 to 99.7) 

1.3 

(1.1 to 1.7) 

0.2 

(0.02 to 1.2) 
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Table 2.19: Test performance statistics for individual indicators and in 

combination to predict adverse perinatal outcome in women presenting 

between 35+0 and 36+6 weeks’ gestation (n=53) 

 
Indicator  Sensitivity 

%  (95% CI) 

Specificity 

%  (95% CI) 

Positive 

predictive 

value % 

(95% CI) 

Negative 

predictive 

value %  

(95% CI) 

AC or EFW <10th 

centile  

50.0 

(6.8 to 93.2) 

81.6 

(68.0 to 91.2) 

18.2 

(2.3 to 51.8) 

95.2 

(83.8 to 99.4) 

Oligohydramnios  0 

(0 to 60.2) 

91.8 

(80.4 to 97.7) 

0 

(0 to 60.2) 

91.8 

(80.4 to 97.7) 

AREDF  25.0 

(0.6 to 80.6) 

95.9 

(86.0 to 99.5) 

33.3 

(0.8 to 90.6) 

94.0 

(83.5 to 98.7) 

PlGF <100 pg/ml 100 

(39.8 to 100) 

22.4 

(11.8 to 36.6) 

9.5 

(2.7 to 22.6) 

100 

(71.5 to 100) 

Combinations 

AC or EFW <10th 

centile or 

oligohydramnios 

or AREDF 

50.0 

(6.8 to 93.2) 

75.5 

(61.1 to 86.7) 

14.3 

(1.8 to 42.8) 

94.9 

(82.7 to 99.4) 

AC or EFW <10th 

centile or PlGF 

<100 pg/ml 

100 

(39.8 to 100) 

20.4 

(10.2 to 34.3) 

9.3 

(2.6 to 22.1) 

100 

(69.2 to 100) 

 

AC or EFW, Abdominal Circumference or Estimated Fetal Weight, 

Oligohydramnios defined as amniotic fluid index <5th centile for gestational age, 

AREDF, Absent or Reversed End Diastolic Flow in umbilical artery  

  



 140 

2.4 Summary 

 

In women presenting prior to 35 weeks’ gestation, PlGF outperformed all other 

individual biomarkers in its ability to determine delivery of an SGA infant in this 

cohort of women with suspected pre-eclampsia. Combinations of biomarkers 

added only modest rises in ROC area and are unlikely to be clinically useful. 

 

Ultrasound parameters utilised in current clinical practice had modest sensitivity 

in determining delivery of an SGA infant, resulting in 33% of cases of SGA <3rd 

centile in this cohort remaining undetected, compared to only 7% of cases being 

missed if low PlGF concentration had been used as a predictive test. Addition of 

PlGF quantification to ultrasound parameters improved detection rates.  

 

In addition, PlGF had high sensitivity to detect adverse perinatal outcome, 

which included stillbirth. The performance of PlGF to detect adverse perinatal 

outcome was particularly marked in women recruited between 35+0 and 36+6 

weeks’ gestation (100% sensitivity (39.8 to 100%)). However caution should be 

exercised regarding the reproducibility of these results as only 53 women 

recruited between 35+0 and 36+6 weeks’ gestation had ultrasound data available 

for analysis.  

 

Participant characteristics at booking and enrolment were similar for women 

presenting beyond 35 weeks’ gestation to those recruited prior to 35 weeks’, 

with new onset of hypertension and proteinuria reported more frequently in 

women who delivered an SGA infant, compared to those delivering AGA 

infants. However, in contrast to women recruited prior to 35 weeks’ gestation, 
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onset and mode of delivery in women recruited after 35 weeks’ gestation were 

not strongly associated with birth weight. This could be explained by women 

presenting at later gestations having less severe disease or that by presenting 

later, closer proximity to delivery limits disease progression to the same extent 

as in women presenting at earlier gestations. The proportion of women having a 

pre-labour caesarean section was much higher in women enrolled prior to 35 

weeks’ gestation, compared to those entering the study between 35+0 and 36+6 

weeks’ gestation, irrespective of birth weight. In addition to the explanations 

given above, the difficulties with successfully inducing labour at early gestations 

may also have contributed to this finding. 

 

Trends in biomarker test performance in women recruited between 35+0 and 

36+6 weeks’ gestation to determine delivery of an SGA infant were similar to 

those observed in women recruited prior to 35 weeks’ gestation with PlGF 

outperforming other biomarkers (ROC area 0.74 (0.64 to 0.83) for SGA <10th 

centile). However, test performance statistics were less impressive than those 

reported in women recruited prior to 35 weeks’ gestation. Combinations of 

biomarkers achieved only modest improvements in test performance over PlGF 

alone (ROC area for combination of PlGF, Nephrin 101a, CPA-4 0.81; 95% CI 

0.73 to 0.90)).  

 

Further discussion of these findings are detailed in Chapter 4: Discussion. 
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Chapter 3: Biomarkers and 

ultrasound parameters to determine 

the small for gestational age infant 
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3.1 Introduction 

 
Following from the positive findings of the PELICAN-PE study, where PlGF 

accurately predicted delivery of an SGA infant in a high-risk population with 

suspected pre-eclampsia, I sought to investigate whether these findings could 

be replicated in a more general antenatal setting. Within the UK, current clinical 

referral pathways rely on symphysis fundal height measurement to identify 

those suspected of carrying an SGA fetus. Women with reduced symphysis-

fundal height measurement are then referred for further assessment, usually by 

ultrasound scan.  

 
I investigated how measuring PlGF in this group of women, at time of 

presentation for ultrasound scan, compared to current tools and whether this 

could provide additional information to the clinician to improve identification of 

pregnancies complicated by SGA.  

 

3.1.1 Involvement with the study 

I developed the study concept and design for PELICAN FGR in conjunction with 

the PELICAN-PE study chief investigators. I submitted a substantial 

amendment to the research ethics committee (East London) via the Integrated 

Research Application System, to request permission to extend the PELCAN-PE 

study protocol to include recruitment of women with suspected SGA (as defined 

in section 3.2). Approval for these amendments was subsequently granted. A 

standard operating protocol was compiled and circulated to all study sites. The 

plan for statistical analysis was agreed between myself, Mr Paul Seed (medical 

statistician), the principal investigator for St Thomas’ Hospital and the study 

chief investigator. 
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I led design of the database fields needed to collect data for women recruited 

with suspected SGA.  

 

I headed a team, who undertook site initiation visits (SIVs) to train staff on use 

of the database and provided support to all sites as part of my role of study 

coordinator. In this role I worked along side an independent study monitor, who 

was responsible for training laboratory staff in the techniques necessary for 

PlGF measurement and also for downloading PlGF results, which were masked 

to all other staff involved in the study. I received training in the use of the PlGF 

Triage meter and assisted the study monitor with ensuring correct calibration of 

meters at enrolling sites. I also led regular study teleconferences to maintain 

contact and updates with all sites. 

 

I led regular site visits to all participating sites with the exception of Vancouver, 

Canada, with whom I maintained regular contact.  

 

In addition to my work coordinating other sites, I personally recruited over 100 

women to this study from our antenatal clinics, ultrasound scan department and 

day assessment unit at St Thomas’ Hospital, London. Two colleagues under my 

supervision and myself were responsible for inputting all data for the 177 

women recruited at St Thomas’ Hospital. I was responsible for data cleaning 

and adjudication of all final maternal diagnoses, along with senior clinicians. I 

undertook the statistical analysis with the medical statistician, and input from the 

study chief investigator and principal investigator for St Thomas’ Hospital.  
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3.2 Methods 

 

The PELICAN-FGR study was a prospective observational study evaluating the 

ability of placental growth factor (PlGF) and current ultrasound parameters to 

determine delivery of a small for gestational age (SGA) infant in women who 

presented measuring small for dates. Women were recruited from eleven 

consultant-led units across the United Kingdom and Canada between 

December 2011 and July 2013. Ethical approval was granted by East London 

Research Ethics Committee (ref. 10/H0701/117).  

 

Study eligibility required women to be aged 16 years or over, with a singleton 

pregnancy, between 24+0 to 36+6 weeks’ gestation and referred with suspected 

SGA by either: 

1) Symphysis-fundal height (cm) measuring more than 2cm (i.e. 3cm or 

more) under that expected for any given gestational age (completed 

weeks) e.g. measuring 33cm or less at 36 weeks’ gestation. 

Or 

2) Symphysis-fundal height less than the 10th centile on a customised chart. 

The above definitions were selected for eligibility criteria as they constituted the 

current parameters utilised in enrolling sites for further investigation for 

suspected SGA. Symphysis-fundal height was measured according to recruiting 

site protocol for measurement. Women with multi-fetal pregnancies, confirmed 

SGA, major fetal anomaly, or ruptured amniotic membranes were excluded (see 

section 2.2.1 for definitions). Written informed consent was obtained from 

participants. A study specific database was designed and implemented with 
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training provided for all users at recruiting sites, prior to recruitment of the first 

participant. Baseline demographic and pregnancy specific data was entered, 

including ultrasound data at study enrolment. An independent data monitor was 

appointed to ensure accurate reporting and regular data monitoring was 

undertaken at all sites.  

 

At study enrolment blood was drawn into ethylenediamine tetra-acetic acid and 

processed and stored as described in section 2.2. All maternal plasma samples 

were analysed for PlGF at the recruiting site using the Triage®
 
PlGF Test 

(Alere, San Diego, CA) as described in section 2.2.2. All laboratory staff 

received standardised training in sample processing delivered by the study 

monitor. All Triage meters were programmed to produce a masked result and 

only provided confirmation of a satisfactory test.  All laboratory staff were 

masked to the clinical diagnosis and all results were concealed until a final 

adjudicated maternal diagnosis was reached. PlGF results were classified as 

normal (PlGF ≥ 5th centile for gestational age), low (<5th centile) or very low 

(<12 pg/ml) i.e. below the lower limit of detection. To assess assay 

reproducibility, replicate samples were tested at a central laboratory. The total 

precision (coefficient of variation) on plasma controls at concentrations of 85 

pg/ml and 1300 pg/ml were 12.8% and 13.2%, respectively. 

 

Any subsequent hospital attendances were recorded in the study database, 

including repeat ultrasound assessments, details of delivery and adverse 

maternal and perinatal outcomes (defined in 2.2.1). 
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All cases were adjudicated by senior obstetricians (with review by two clinicians, 

and additional review by a third if discordancy in order to reach a consensus), 

without knowledge of PlGF concentrations, and a final maternal diagnosis was 

assigned according to the definitions detailed in 2.2.1 and those given below.  

 

3.2.1 Definitions 

Small for gestational age fetus: 

Fetal abdominal circumference and/ or estimated fetal weight (on ultrasound 

assessment) less than the 10th centile for gestational age. 

 

Small for gestational age infant: 

Birth weight less than the 3rd and 10th centile by customised GROW centile. 

 

Suspected fetal growth restriction: 

Symphysis fundal height (cm) measuring more than 2cm (i.e. 3cm or more) 

under that expected for any given gestational age (completed weeks) e.g. 

measuring 33cm or less at 36 weeks’ gestation 

 

Major fetal anomaly: 

Fetal malformations that affect viability and/ or the quality of life of the fetus and 

require intervention. (European Union Registry Of Congenital Anomalies and 

Twins: EUROCAT(Addor et al., 2000)) 
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Oligohydramnios: 

Amniotic fluid index less than 5 cm. 

 

3.2.2 Sample size and power calculation 

The PELICAN-FGR study was powered for the primary endpoint of delivering 

an SGA infant with birth weight less than the 3rd customised birth weight centile. 

Based on data from St Thomas’ Hospital, London, 8% of women referred with 

suspected SGA delivered an SGA infant with birth weight less than the 3rd 

customised centile. The study was powered on the basis of the number of 

cases needed to reliably distinguish good (80%) from moderate (60%) 

sensitivity. 55 cases of SGA <3rd birth weight centile were needed for 90% 

power and 5% significance. Therefore, the planned sample size was 688. 

During data monitoring (whilst still masked to PlGF concentrations), the 

incidence of SGA <3rd birth weight centile in the study population was noted to 

be 13%. This resulted in recruitment of 78 cases from a total of 601 women, at 

which point the study was closed. 

 

3.2.3 Statistical analysis 

The primary outcome (reference standard) of delivering an SGA infant less than 

the 3rd customised birth weight centile, was calculated using version 6.7 of 

Gestation Related Optimal Weight (GROW) calculator (Gardosi and Francis), 

with maternal weights adjusted for normal BMI (18-30 kg/m2). This threshold 

(3rd centile) was chosen as it includes fewer infants who are constitutionally 

small and has a stronger association with perinatal mortality (Moraitis et al., 
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2014). Delivery of an SGA infant less than the 10th customised birth weight 

centile, and adverse perinatal outcomes were considered as secondary 

outcomes. 

 

Gestational age adjusted centiles have been calculated for PlGF from a large 

low risk antenatal population (Knudsen et al., 2012). A PlGF concentration 

below the 5th centile was taken as abnormal as this has been shown to offer a 

combination of high sensitivity and acceptable specificity for pre-eclampsia and 

SGA (Chappell et al., 2013).  

 

Sensitivity, specificity, positive and negative predictive values and positive and 

negative likelihood ratios (with 95% confidence intervals) were calculated for 

PlGF and three ultrasound parameters (estimated fetal weight <10th centile, 

umbilical artery Doppler pulsatility index (UAPI) > 95th centile and 

oligohydramnios) to determine delivery of an SGA infant <3rd and <10th 

customised centiles, both in isolation and in combination. To provide umbilical 

artery Doppler pulsatility index centiles for this analysis, gestation adjusted 

centiles were calculated for each observed value of UAPI based on a mean 

value of 0.405 -0.0134 x gestational age in weeks’, and a standard deviation of 

0.0794 for the log10 UAPI (Parra-Cordero et al., 2007).  

 

Receiver operator characteristic (ROC) curve areas were also calculated for 

each individual parameter and combinations, and in a pre-defined subgroup 

who delivered within six weeks of PlGF sampling. 
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Variables related to health resource use (number of fetal ultrasounds, neonatal 

bed nights in Special Care Baby Unit or in Neonatal Intensive Care Unit, 

attendances at out-patient clinic/ Day Assessment Unit/ Antepartum Hospital 

Clinic after enrolment, maternal bed nights for suspected fetal compromise after 

enrolment, post-partum bed nights) were presented as means with 95% 

confidence intervals.  Due to non-normal distributions, a bias corrected and 

accelerated bootstrap was used with 10,000 replications (Efron, 1987). 

 

Statistical analysis was carried out in Stata statistical package (version 11.2), 

College Station Texas, USA. Formal significance was taken at p<0.05. 

 

This study was reported in accordance with the STAndards for the Reporting of 

Diagnostic accuracy studies (STARD) guidelines. 
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3.3 Results 

 

601 women presenting with suspected SGA between 24+0 and 36+6 weeks’ 

gestation were recruited across 11 sites between December 2011 and July 

2013. We recruited all women who were approached, eligible and consented 

but did not document women who declined to participate. No outcome data 

were available on two participants and five women did not have a valid plasma 

PlGF result. A further two women had no ultrasound data at enrolment 

available. After exclusion of these nine cases, 592 women were included in this 

analysis. Of these women 192 delivered an SGA infant with birth weight <10th 

customised centile and 78 had a birth weight <3rd centile (Figure 3.1). 

 

All descriptive tables are subdivided according to subsequent birth weight. 

Characteristics of participants at booking are given in Table 3.1, with higher 

rates of smoking observed in those who delivered an SGA infant <3rd and <10th 

birth weight centiles. Baseline characteristics of participants at study enrolment 

are summarised in Table 3.2, with little difference in maternal factors between 

groups. At enrolment, only 57.9% of women who delivered an SGA infant <3rd 

centile and 47.1% of women who delivered an SGA infant <10th centile had an 

EFW <10th centile. Details of maternal and neonatal outcomes are shown in 

Table 3.3. Overall, maternal and perinatal adverse outcomes were infrequent 

(3.2 and 2.2% respectively) but rates were numerically higher in those who 

delivered an SGA infant <3rd and <10th centile (SGA-3 6.4% and 5.1% and 

SGA-10 4.7% and 3.1% respectively). Induction of labour and caesarean 

section were more common in cases complicated by SGA in comparison to 

those pregnancies delivering AGA. Final maternal adjudicated diagnoses are 
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given in Table 3.4, with the majority of women experiencing no maternal 

complications during their pregnancy (n=555; 94%). Whilst the number of cases 

of pre-eclampsia were small (n=16) most delivered an SGA infant (n=12).  
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Figure 3.1: Flow diagram of participants 

 

 

 

  

Birth weight ≥3rd 
centile n=58  

SGA <3rd 
centile n=49 

Birth weight ≥ 3rd 
centile n=456  

Total recruited n=601 

Total for analysis n=592 

PlGF ≥ 5th centile n=505 PlGF <5th centile n=87 

SGA <3rd 
centile n=29   

No PlGF result n=5 
No plasma sample for analysis n=2 

Sample incorrectly labelled n=3 

No outcome data n=2 

No ultrasound scan data at 
enrollment n=2 
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Table 3.1: Characteristics of participants at booking.  Values given are 

median (quartiles) or n (%) as appropriate.  

 Women with 

SGA infant 

<3rd centile  

 (n=78) 

Women with 

SGA infant 

<10th centile 

(n=192) 

Women with 

infant ≥10th 

centile 

(n=400) 

All women 

(n=592) 

General maternal  

Age (years) 29.1  

(24.1 to 32.9) 

29.6  

(24.8 to 33.5) 

30.0  

(25.3 to 33.7) 

29.9  

(25.2 to 33.6) 

Body Mass Index at 

booking (kg/m2) † 

22.9  

(20.3 to 25.2) 

21.7  

(20.1 to 24.1) 

21.5  

(20.0 to 23.4) 

21.5  

(20.0 to 23.6) 

White ethnicity 52 (66.7) 122 (63.5) 266 (66.5) 388 (65.5) 

Primiparity  65 (83.3) 163 (84.9) 344 (86.0) 507 (85.6) 

Highest first trimester 

systolic BP (mmHg) 

105  

(100 to 114) 

105  

(100 to 114) 

104  

(100 to 112) 

105  

(100 to 112) 

Highest first trimester 

diastolic BP (mmHg) 

63  

(60 to 70) 

62  

(60 to 70) 

60  

(60 to 69) 

61  

(60 to 70) 

Smoking status 

Never smoked † 46 (59) 128 (66.7) 306 (76.5) 434 (73.3) 

Quit smoking before 

pregnancy 

9 (11.5) 22 (11.5) 31 (7.8) 53 (8.9) 

Quit smoking during 

pregnancy 

10 (12.8) 16 (8.3) 24 (6.0) 40 (6.7) 

Current smoker 13 (16.7) 26 (13.5) 39 (9.8) 65 (11.0) 

Drug use 

History of drug use *† 5 (6.4) 6 (3.1) 3 (0.8) 9 (1.5) 

Current drug user ** 1 (1.3) 2 (1.0) 0 (0.0) 2 (0.3) 

Previous medical history 

Pre-eclampsia with 

delivery <34/40 

0 (0) 0 (0) 1 (0.3) 1 (0.2) 

Chronic hypertension 0 (0) 1 (0.5) 1 (0.3) 2 (0.3) 

SLE/ APS 1 (1.3) 1 (0.5) 0 (0) 1 (0.2) 

Pre-existing diabetes  0 (0) 0 (0) 1 (0.3) 1 (0.2) 

Renal disease 0 (0) 0 (0) 0 (0) 0 (0) 

Self-report previous 

SGA  

9 (11.5) 22 (11.5) 27 (6.8) 49 (8.3) 
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BP, blood pressure 

 

* Drugs used before pregnancy: include cannabis, cocaine, ecstasy, 

amphetamines (speed, crystal meth), and heroin. 

 

** Drugs used during pregnancy: Cannabis only (rare or occasional)  

SLE/ APS, Systemic lupus erythematosus/ anti-phospholipid syndrome 

 

† indicates p value <0.05 for comparison of women with SGA infant <3rd centile 

(the main outcome) to women with infant ≥ 10th centile   
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Table 3.2: Baseline characteristics of participants at study enrolment. 

Values given are median (quartiles) or n (%) as appropriate.  

 Women with 

SGA infant 

<3rd centile  

 (n=78) 

Women with 

SGA infant 

<10th centile 

(n=192) 

Women with 

infant ≥10th 

centile 

(n=400) 

All women 

(n=592) 

Gestational 

age at PlGF 

sampling 

(days) 

238  

(221 to 250) 

235 

(213 to 250) 

236  

(214 to 250) 

236  

(213 to 250) 

Maternal BP 

Highest 

systolic BP 

(mmHg) † 

118 

(109 to129) 

115 

(102 to 121) 

110 

(101 to 118) 

110 

(101 to 120) 

Highest 

diastolic BP 

(mmHg) † 

70 

(60 to 81) 

70 

(60 to 80) 

67 

(60 to 73) 

68 

(60 to 74) 

Dipstick proteinuria 

Not done 11 (14.1) 29 (15.1) 61 (15.3) 90 (15.2) 

Negative 58 (74.4) 148 (77.1) 322 (80.5) 470 (79.4) 

Present (+1 or 

greater) † 

9 (11.5) 15 (7.8) 17 (4.3) 32 (5.4) 

Complications in current pregnancy 

Gestational 

hypertension 

4 (5.1) 4 (2.1) 0 (0) 4 (0.7) 

Pre-eclampsia 0 (0) 1 (0.5) 1 (0.3) 2 (0.3) 

Gestational 

diabetes 

1 (1.3) 3 (1.5) 4 (1.0) 7 (1.2) 

Intrahepatic 

cholestasis of 

pregnancy 

0 (0.0) 1 (0.5) 2 (0.5) 3 (0.5) 
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 Women with 

SGA infant 

<3rd centile 

(n=78) 

Women with 

SGA infant 

<10th centile 

(n=192) 

Women with 

infant ≥10th 

centile 

(n=400) 

All women 

(n=592) 

Fetal  

EFW < 10th 

centile † 

44 (57.9) 88 (47.1) 64 (16.3) 152 (25.9) 

Oligohydramni

os 

(AFI < 5 cm) 

2 (3.6) 

(n=54) 

4 (3.3) 

(n=118) 

1 (0.4) 

(n=228) 

5 (1.4) 

(n=346) 

Absent/ 

reversed 

umbilical 

artery Doppler 

flow 

1 (1.3) 

(n=76) 

1 (0.6) 

(n=176) 

1(0.3) 

(n= 358) 

2 (0.4) 

(n=534) 

Umbilical 

artery Doppler 

pulsatility 

index > 95th 

centile † 

10 (16.1) 

(n=61) 

12 (8.2) 

(n=147) 

14 (4.5) 

(n=312) 

26 (5.7) 

(n=458) 

 

† indicates p value <0.05 for comparison of women with SGA infant <3rd centile 

(the main outcome) to women with infant ≥ 10th centile 
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Table 3.3: Characteristics of delivery and maternal and neonatal outcome. 

Values given are median (quartiles) or n (%) as appropriate.  

 

 Women with 

SGA infant 

<3rd centile 

(n=78) 

Women with 

SGA infant 

<10th centile 

(n=192) 

Women with 

infant ≥10th 

centile 

(n=400) 

All women 

(n=592) 

Median 

gestation at 

delivery (weeks) 

† 

38.7 

(37.1 to 40.1) 

39.4 

(38.0 to 40.4) 

40.0 

(39.0 to 40.9) 

39.9 

(38.9 to 40.7) 

Maternal medications (at any point during pregnancy) 

Dexamethasone† 
5 (6.4) 7 (3.6) 4 (1.0) 11 (1.8) 

Betamethasone 
2 (2.6) 4 (2.1) 0 (0) 4 (0.7) 

Methyldopa 
2 (2.6) 2 (1.0) 0 (0) 2 (0.3) 

Labetalol † 
6 (7.7) 9 (4.7) 2 (0.5) 11 (1.8) 

Heparin 
1 (1.3) 2 (1.0) 3 (0.8) 5 (0.8) 

Nifedipine 
1 (1.3) 2 (1.0) 1 (0.3) 3 (0.5) 

Aspirin 
3 (3.8) 4 (2.1) 8 (2.0) 12 (2.0) 

Oral 

corticosteroids 

0 (0) 3 (1.6) 2 (0.5) 5 (0.8) 

Onset of 

labour 

    

Spontaneous † 24 (30.8) 99 (51.6) 300 (75.0) 399 (67.4) 

Induced † 41 (52.6) 67 (34.9) 66 (16.5) 133 (22.5) 

Pre-labour 

caesarean 

section 

13 (16.7) 26 (13.5) 34 (8.5) 60 (10.1) 
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 Women with 

SGA infant 

<3rd centile 

(n=78) 

Women with 

SGA infant 

<10th centile 

(n=192) 

Women with 

infant ≥10th 

centile 

(n=400) 

All women 

(n=592) 

Mode of 

delivery 

 

Spontaneous 48 (61.5) 125 (65.1) 279 (69.8) 404 (68.2) 

Assisted vaginal 

delivery 

8 (10.3) 23 (12.0) 66 (16.5) 89 (15.0) 

Caesarean 

section 

22 (28.2) 44 (22.9) 55 (13.8) 99 (16.7) 

Adverse 

maternal 

outcome* 

5 (6.4) 9 (4.7) 10 (2.5) 19 (3.2) 

Postpartum 

haemorrhage 

2 (2.6) 5 (2.6) 7 (1.8) 12 (2.0) 

Abruption 1 (1.3) 1 (0.5) 1 (0.3) 2 (0.3) 

HELLP 0 (0) 0 (0) 1 (0.3) 1 (0.2) 

Fetal      

Fetal death 0 (0) 0 (0) 1 (0.3) 1 (0.2) 

Neonatal death 0 (0) 0 (0) 0 (0) 0 (0) 

Median birth 

weight † 

2375 

(2100 to 

2610) 

2660 

(2360 to 

2854) 

3214 

(3000 to 

3470) 

3050 

(2740 to 

3329) 

Adverse 

perinatal 

outcome ** 

4 (5.1) 6 (3.1) 7 (1.8) 13 (2.2) 

HELLP, haemolysis, elevated liver enzymes, low platelets. 
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* Adverse maternal outcome defined as presence of any of the following 

complications: Maternal death, Eclampsia, Stroke, Cortical blindness or retinal 

detachment, Hypertensive encephalopathy, Systolic blood pressure 

≥160mmHg, Myocardial infarction, Intubation (other than for caesarean section), 

Pulmonary oedema, Platelets <50×10⁹/L (without transfusion), Disseminated 

intravascular coagulation, Thrombotic thrombocytopenic purpura/ haemolytic 

uraemic syndrome, Hepatic Dysfunction (Alanine transaminase ≥70IU/L), 

Hepatic haematoma or rupture, Acute fatty liver of pregnancy, Creatinine >150 

µmol/L, Renal dialysis, Placental abruption, Major postpartum haemorrhage, 

Major infection. 

 

** Adverse perinatal outcome defined as presence of any of the following 

complications: Antepartum/ intrapartum fetal or neonatal death, Neonatal unit 

admission for >48 hrs at term, Intraventricular haemorrhage, Periventricular 

leucomalacia, seizure, retinopathy of prematurity, respiratory distress 

syndrome, bronchopulmonary dysplasia or necrotising enterocolitis. 

 

† indicates p value <0.05 for comparison of women with SGA infant <3rd centile 

(the main outcome) to women with infant ≥ 10th centile 
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Table 3.4: Maternal diagnosis according to birth weight and gestation at delivery  

                                            
1 Mild, severe, superimposed and atypical PE are defined in section 2.2.1. 
† indicates p value <0.05 for comparison of women with SGA infant <3rd centile (the main outcome) to women with infant ≥ 10th centile 

 Women with SGA infant 

<3rd centile (%) (n=78) 

Women with SGA infant 

<10th centile (%) (n=192) 

Women with infant ≥10th 

centile (%) (n=400) 

All women (%) 

(n=592) 

Delivery <37 

weeks (n=14) 

Delivery ≥ 37 

weeks (n=64) 

Delivery <37 

weeks (n=19) 

Delivery ≥ 37 

weeks (n=173) 

Delivery <37 

weeks  (n=16) 

Delivery ≥ 37 

weeks (n=384) 

Delivery <37 

weeks (n=35) 

Delivery ≥ 37 

weeks (n=557) 

No maternal 

disease † 
9 (64.2) 59 (92.2) 14 (73.7) 159 (91.9) 13 (81.3) 369 (96.1) 27 (77.1) 528 (94.8) 

Gestational 

hypertension 
0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 8 (2.1) 0 (0) 8 (1.4) 

Chronic 

hypertension 
0 (0) 0 (0) 0 (0) 2 (1.2) 0 (0) 0 (0) 0 (0) 2  (0.4) 

Mild PE 0 (0) 0 (0) 0 (0) 0 (0) 2 (12.5) 1 (0.3) 2 (5.7) 1 (0.2) 

Severe PE 2 (14.3) 2 (3.1) 2 (10.5) 6 (3.5) 0 (0) 0 (0) 2 (5.7) 6 (1.1) 

Superimposed 

PE 
0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 

Atypical PE 2 (14.3) 2 (3.1) 2 (10.5) 2 (1.2) 0 (0) 0 (0) 2 (5.7) 2 (0.4) 

HELLP 

syndrome 
0 (0) 0 (0) 0 (0) 0 (0) 1 (6.3) 0 (0) 1 (2.9) 0 (0) 

Other dx 2 (14.3) 1 (1.6) 1 (5.3) 4 (2.3) 0 (0) 6 (1.6) 3 (6.1) 10 (1.8)1 



 162 

Given the low frequency of maternal complications and adverse perinatal 

outcome it is unsurprising that average length of antenatal and postnatal 

admissions were less than one day (Table 3.5). Length of admission (including 

admission to neonatal unit) was slightly longer in those delivering an SGA infant 

compared to pregnancies delivering AGA. 
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Table 3.5: Health service usage according to birth weight centile; all 

values are given as mean (with 95% confidence intervals).  

 

 Women 

with SGA 

infant <3rd 

centile 

(n=78) 

Women with 

SGA infant 

<10th centile 

(n=192) 

Women with 

infant ≥10th 

centile 

(n=400) 

All women 

(n=592) 

Maternal 

Antenatal bed 

nights after 

enrolment 

1.1  

(0.6 to 2.7) 

0.6  

(0.4 to 1.2) 

0.2  

(0.1 to 0.2) 

0.3  

(0.2 to 0.5) 

Post-partum bed 

nights 
2.6  

(2.1 to 3.1) 

2.0  

(1.8 to 2.3) 

1.4  

(1.3 to 1.6) 

1.6  

(1.5 to1.8) 

Neonatal 

No of ultrasound 

assessments 

2.6  

(2.3 to 3.0) 

2.3  

(2.1 to 2.6) 

1.5  

(1.4 to 1.6) 

1.7  

(1.6 to 1.9) 

Intensive care 

bed nights 

1.1  

(0.2 to 4.7) 

0.6  

(0.2 to 2.0) 

0.09  

(0.02 to 0.3) 

0.3  

(0.1 to 0.7) 

Special care 

bed nights 

2.7  

(1.6 to 5.3) 

1.1  

(0.5 to 2.3) 

0.1  

(0.01 to 0.6) 

0.4  

(0.2 to 0.8) 
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Test performance statistics for PlGF and ultrasound parameters to determine 

delivery of an SGA infant <3rd and 10th customised centiles are given in Table 

3.6, with estimated fetal weight (EFW) <10th centile having the highest 

sensitivity and negative predictive power (sensitivity 57.9% and 47.1%; NPV 

92.6 and 77.2% for SGA <3rd and SGA <10th centiles) of all parameters 

assessed. Addition of PlGF to ultrasound parameters currently utilised to 

identify SGA antenatally, altered test sensitivity from 57.7 to 69.2% (NPV 91.3 

to 92.9%) in determining SGA <3rd centile and from 48.7 to 57.4% (NPV 76.6 to 

78.3%) in determining SGA <10th centile. ROC curve areas for all parameters in 

determining SGA <3rd centile are shown in Figure 3.2. EFW <10th centile, with a 

ROC area of 0.79 (95% CI 0.74 to 0.84), was greater than for low PlGF (0.70; 

95% CI 0.63 to 0.77). A combination of parameters increased the ROC area to 

0.82 (95% CI 0.77 to 0.86).  

 

In contrast to the findings of the PELICAN-PE study, there were no major 

differences in the results between women enrolled prior to 35 weeks’ gestation 

and those enrolled between 35+0 and 36+6 weeks’ gestation. The results of 

this study have therefore not been subdivided according to gestation at 

enrollment. 
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Table 3.6: Test performance statistics for PlGF and all ultrasound parameters (with 95% confidence intervals) to predict SGA 

<3rd and <10th centiles (n = 592)  

Biomarker/ clinical 
indicator 

Sensitivity % 
(95% CI) n/N 

Specificity % 
(95% CI) n/N 

PPV % 
(95% CI) n/N 

NPV % 
(95% CI) n/N 

Positive 
likelihood 

ratio (95% CI) 

Negative 
likelihood 

ratio (95% CI) 
SGA <3rd centile 
 

  

EFW <10th centile 57.9 
(46.0 to 69.1) 

44/76 

78.8 
(75.0 to 82.3) 

402/510 

28.9 
(21.9 to 36.8) 

44/152 

92.6 
(89.8 to 94.9) 

402/434 

2.73 
(2.12 to 3.53) 

0.53 
(0.41 to 0.70) 

Oligohydramnios  
(AFI < 5 cm) 

3.7 
(0.5 to 12.7) 

2/54 

99.0 
(97.0 to 99.8) 

289/292 

40.0 
(5.3 to 85.3) 

2/5 

84.8 
(80.5 to 88.4) 

289/341 

3.60 
(0.62 to 21.1) 

0.97 
(0.92 to 1.03) 

Umbilical artery 
Doppler PI >95th 
centile 

16.4 
(8.2 to 28.1) 

10/61 

96.0 
(93.5 to 97.7) 

381/395 

38.5 
(20.2 to 59.4) 

10/26 

88.2 
(84.8 to 91.1) 

381/432 

4.07 
(1.94 to 8.55) 

0.87 
(0.78 to 0.98) 

PlGF < 5th centile 37.2 
(26.5 to 48.9) 

29/78 

88.7 
(85.7 to 91.3) 

456/514 

33.3 
(23.6 to 44.3) 

29/87 

90.3 
(87.4 to 92.7) 

456/505 

3.29 
(2.26 to 4.80) 

0.71 
(0.60 to 0.84) 

Combinations   
Abnormal AFI or EFW 57.7 

 (43.2 to 71.3) 
30/52 

79.0 
(73.9 to 83.6) 

230/291 

33.0 
(23.5 to 43.6) 

30/91 

91.3 
(87.1 to 94.4) 

230/252 

2.75 
(1.99 to 3.80) 

0.54 
(0.39 to 0.74) 

Abnormal PlGF or AFI 
or EFW 

69.2 
(54.9 to 81.3) 

36/52 

72.2 
(66.6 to 77.2) 

210/291 

30.8 
(22.6 to 40.0) 

36/117 

92.9 
(88.8 to 95.9) 

210/226 

2.49 
(1.92 to 3.22) 

0.43 
(0.28 to 0.64) 
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Biomarker/ clinical 
indicator 

Sensitivity % 
(95% CI) n/N 

Specificity % 
(95% CI) n/N 

PPV % 
(95% CI) n/N 

NPV % 
(95% CI) n/N 

Positive 
likelihood 

ratio (95% CI) 

Negative 
likelihood 

ratio (95% CI) 
SGA <10th centile 
 
EFW <10th centile 47.1 

(39.7 to 54.5) 
88/187 

84.0 
(80.0 to 87.4) 

335/399 

57.9 
(49.6 to 65.8) 

88/152 

77.2 
(72.9 to 81.1) 

335/434 

2.93 
(2.24 to 3.85) 

0.63 
(0.55 to 0.73) 

Oligohydramnios  
(AFI < 5 cm) 

3.4 
 (0.9 to 8.5) 

4/118 

99.6 
(97.6 to 100.0) 

227/228 

80.0 
(28.4 to 99.5) 

4/5 

66.6 
(61.3 to 71.6) 

227/341 

7.73 
(0.87 to 68.4) 

0.97 
(0.94 to 1.00) 

Umbilical artery 
Doppler PI >95th 
centile 

8.2 
(4.3 to 13.8) 

12/147 

95.5 
(92.6 to 97.5) 

297/311 

46.2 
(26.6 to 66.6) 

12/26 

68.8 
(64.1 to 73.1) 

297/432 

1.81 
(0.86 to 3.82) 

0.96 
(0.91 to 1.01) 

PlGF < 5th centile 24.5 
(18.6 to 31.2) 

47/192 

90.0 
(86.6 to 92.8) 

360/400 

54.0 
(43.0 to 64.8) 

47/87 

71.3 
(67.1 to 75.2) 

360/505 

2.45 
(1.67 to 3.60) 

0.84 
(0.77 to 0.92) 

Combinations   
Abnormal AFI or EFW 48.7 

(39.3 to 58.2) 
56/115 

84.6 
(79.3 to 89.1) 

193/228 

61.5 
(50.8 to 71.6) 

56/91 

76.6 
(70.9 to 81.7) 

193/252 

3.17 
(2.22 to 4.54) 

0.61 
(0.50 to 0.73) 

Abnormal PlGF or AFI 
or EFW 

57.4 
(47.8 to 66.6) 

66/115 

77.6 
(71.7 to 82.9) 

177/228 

56.4 
(46.9 to 65.6) 

66/117 

78.3 
(72.4 to 83.5) 

177/226 

2.57 
(1.92 to 3.42) 

0.55 
(0.44 to 0.69) 

 

SGA, small for gestational age; EFW, estimated fetal weight; AFI, amniotic fluid index; PI, pulsatility index; PlGF, placental growth factor.



 167 

Figure 3.2: ROC areas for low PlGF, EFW <10th centile and combination of 

these parameters to predict delivery of an SGA infant <3rd birth weight 

centile in all women sampled (n=592) 
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To explore whether these predictive parameters improved if the interval 

between gestation at sampling to delivery was restricted, a subgroup analysis of 

267 women where delivery occurred within six weeks of PlGF sampling (Table 

3.7) was undertaken. ROC areas were 0.74 (95% CI 0.66 to 0.83), 0.76 (95% 

CI 0.69 to 0.84) and 0.81 (95% CI 0.72 to 0.88) for PlGF, low EFW, and a 

combination of both parameters respectively to predict delivery of an SGA infant 

with birth weight <3rd customised centile (Figure 3.3). These results were similar 

to those of the whole study population (Figure 3.2) suggesting that restricting 

sampling to delivery time had minimal effect in this study cohort. 
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Table 3.7: Test performance statistics for PlGF and ultrasound parameters (with 95 % confidence intervals) to predict SGA <3rd 

and 10th centiles when PlGF sampled within six weeks of delivery (n = 267)  

Biomarker/ clinical 
indicator 

Sensitivity % 
(95% CI) n/N 

Specificity % 
(95% CI) n/N 

PPV % 
(95% CI) n/N 

NPV % 
(95% CI) n/N 

Positive 
likelihood 

ratio (95% CI) 

Negative 
likelihood 

ratio (95% CI) 
SGA<3rd centile 
 

  

EFW <10th centile 62.2  
(46.5 to 76.2) 

28/45 

73.0 
(66.6 to 78.7) 

162/221 

31.8 
(22.3 to 42.6) 

28/88 

90.5 
(85.2 to 94.4) 

162/179 

2.30 
(1.68 to 3.15) 

0.52 
(0.35 to 0.76) 

Oligohydramnios  
(AFI < 5 cm) 

5.9 
(0.7 to 19.7) 

2/34 

97.7 
(93.4 to 99.5) 

126/129 

40.0 
(5.3 to 85.3) 

2/5 

79.7 
(72.6 to 85.7) 

126/158 

2.53 
(0.44 to 14.54) 

0.96 
(0.88 to 1.05) 

Umbilical artery 
Doppler PI >95th 
centile 

22.2 
 (10.1 to 39.2) 

8/36 

96.0 
 (91.9 to 98.4) 

167/174 

53.3 
 (26.6 to 78.7) 

8/15 

85.6 
 (79.9 to 90.2) 

167/195 

5.52 
(2.14 to 14.27) 

0.81 
(0.68 to 0.97) 

PlGF < 5th centile 42.2 
(27.7 to 57.8) 

19/45 

86.6 
(81.4 to 90.8) 

194/224 

38.8 
(25.2 to 53.8) 

19/49 

88.2 
(83.2 to 92.1) 

194/220 

3.15 
(1.96 to 5.08) 

0.67 
(0.52 to 0.86) 

Combinations   
Abnormal AFI or 
EFW 

62.5 
(43.7 to 78.9) 

20/32 

67.2 
(58.3 to 75.2) 

86/128 

32.3 
(20.9 to 45.3) 

20/62 

87.8 
(79.6 to 93.5) 

86/98 

1.90 
(1.32 to 2.74) 

0.56 
(0.35 to 0.89) 

Abnormal PlGF or 
AFI or EFW 

70.0 
(50.6 to 85.3) 

21/30 

58.3 
(49.2 to 67.0) 

74/127 

28.4 
(18.5 to 40.1) 

21/74 

89.2 
(80.4 to 94.9) 

74/83 

1.68 
(1.23 to 2.29) 

0.51 
(0.29 to 0.91) 
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Biomarker/ clinical 
indicator 

Sensitivity % 
(95% CI) n/N 

Specificity % 
(95% CI) n/N 

PPV % 
(95% CI) n/N 

NPV % 
(95% CI) n/N 

Positive 
likelihood 

ratio (95% CI) 

Negative 
likelihood 

ratio (95% CI) 
SGA <10th centile 
 
EFW <10th centile 57.6 

(46.9 to 67.9) 
53/92 

80.0 
(73.3 to 85.7) 

140/175 

60.2 
(49.2 to 70.5) 

53/88 

78.2 
(71.4 to 84.0) 

140/179 

2.88 
(2.04 to 4.06) 

0.53 
(0.41 to 0.68) 

Oligohydramnios  
(AFI < 5 cm) 

6.3 
(1.7 to 15.2) 

4/64 

99.0 
(94.5 to 100) 

98/99 

80.0 
(28.4 to 99.5) 

4/5 

62.0 
(54.0 to 69.6) 

98/158 

6.19 
(0.71 to 54.12) 

0.95 
(0.89 to 1.01) 

Umbilical artery 
Doppler PI >95th 
centile 

12.2 
(5.7 to 21.8) 

9/74 

95.6 
(90.6 to 98.4) 

130/136 

60.0 
(32.3 to 83.7) 

9/15 

66.7 
(59.6 to 73.2) 

130/195 

2.76 
(1.02 to 7.44) 

0.92 
(0.84 to 1.01) 

PlGF < 5th centile 27.4 
(18.7 to 37.5) 

26/95 

86.8 
(80.8 to 91.4) 

151/174 

53.1 
(38.3 to 67.5) 

26/49 

68.6 
(62.1 to 74.7) 

151/220 

2.07 
(1.25 to 3.42) 

0.84 
(0.73 to 0.96) 

Combinations       
Abnormal AFI or EFW 62.3 

(49.0 to 74.4) 
38/61 

75.8 
(66.1 to 83.8) 

75/99 

61.3 
(48.1 to 73.4) 

38/62 

76.5 
(66.9 to 84.5) 

75/98 

2.57 
(1.72 to 3.83) 

0.50 
(0.35 to 0.70) 

Abnormal PlGF or AFI 
or EFW 

67.8 
(54.4 to 79.4) 

40/59 

65.3 
(55.0 to 74.6) 

64/98 

54.1 
(42.1 to 65.7) 

40/74 

77.1 
(66.6 to 85.6) 

64/83 

1.95 
(1.41 to 2.70) 

0.49 
(0.33 to 0.73) 

 

SGA, small for gestational age; EFW, estimated fetal weight; AFI, amniotic fluid index; PlGF, placental growth factor.
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Figure 3.3: ROC areas for low PlGF, EFW <10th centile and combination of 

these parameters to predict delivery of an SGA infant <3rd birth weight 

centile in women sampled within 6 weeks of delivery (n=267) 
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The test performance of PlGF to predict pre-eclampsia and SGA in women with 

suspected pre-eclampsia has previously been shown to be high when 

measured prior to 35 weeks’ gestation and performance diminishes at 

gestations beyond this. The test performance of PlGF and ultrasound 

parameters in women sampled prior to 35 weeks’ gestation were therefore 

calculated to evaluate whether restricting the timing of PlGF sampling improved 

the markers ability to determine delivery of an SGA infant. These results are 

summarised in Table 3.8, with EFW <10th centile having the highest sensitivity 

(55.6%) and NPV (93.1%) for delivery of an SGA infant <3rd birth weight centile. 

Whilst test sensitivity for PlGF to determine delivery of an SGA infant was lower 

than test performance of EFW <10th centile, it is marginally higher than when 

sampling is undertaken up to 37 weeks’ gestation. 
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Table 3.8: Test performance statistics for PlGF and ultrasound parameters (with 95 % confidence intervals) to predict SGA <3rd 

and <10th centiles when PlGF sampled before 35 weeks’ gestation (n = 388) 

Biomarker/ 
clinical 
indicator 

Sensitivity % 
(95% CI) n/N 

Specificity % 
(95% CI) n/N 

PPV %  
(95% CI) n/N 

NPV % 
(95% CI) n/N 

Positive 
likelihood ratio 

(95% CI) 

Negative 
likelihood ratio 

(95% CI) 
SGA<3rd centile 
 
EFW <10th 
centile 

55.6 
(40.0 to 70.4) 

25/45 

79.7 
(75.0 to 83.9) 

271/340 

26.6 
(18.0 to 36.7) 

25/94 

93.1 
(89.6 to 95.8) 

271/291 

2.74 
(1.96 to 3.83) 

0.56 
(0.40 to 0.78) 

Umbilical artery 
Doppler PI >95th 
centile 

16.7 
(6.4 to 32.8) 

6/36 

96.6 
(93.6 to 98.4) 

252/261 

40.0 
(16.3 to 67.7) 

6/15 

89.4 
(85.2 to 92.7) 

252/282 

4.83 
(1.83 to 12.78) 

0.86 
(0.74 to 1.00) 

PlGF < 5th centile 39.1 
(25.1 to 54.6) 

18/46 

89.2 
(85.4 to 92.3) 

305/342 

32.7 
(20.7 to 46.7) 

18/55 

91.6 
(88.1 to 94.3) 

305/333 

3.62 
(2.26 to 5.80) 

0.68 
(0.54 to 0.86) 

Combinations   
Abnormal AFI or 
EFW 

56.3 
(37.7 to 73.6) 

18/32 

82.8 
(76.8 to 87.8) 

164/198 

34.6 
(22.0 to 49.1) 

18/52 

92.1 
(87.2 to 95.6) 

164/178 

3.28 
(2.13 to 5.05) 

0.53 
(0.35 to 0.79) 

Abnormal PlGF 
or AFI or EFW 

71.9 
(53.3 to 86.3) 

23/32 

77.3 
(70.8 to   82.9) 

153/198 

33.8 
(22.8 to 46.3) 

23/68 

94.4 
(89.7 to 97.4) 

153/162 

3.16 
(2.26 to 4.43) 

0.36 
(0.21 to 0.64) 
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Biomarker/ 
clinical 
indicator 

Sensitivity % 
(95% CI) n/N 

Specificity % 
(95% CI) n/N 

PPV % 
(95% CI) n/N 

NPV % 
(95% CI) n/N 

Positive 
likelihood 

ratio (95% CI) 

Negative 
likelihood ratio 

(95% CI) 
SGA <10th centile 

 
EFW <10th 
centile 

44.1 
(34.9 to 53.5) 

52/118 

84.3 
(79.3 to 88.4) 

225/267 

55.3 
(44.7 to 65.6) 

52/94 

77.3 
(72.1 to 82.0) 

225/291 

2.80 
(1.99 to 3.95) 

0.66 
(0.56 to 0.79) 

Umbilical artery 
Doppler PI >95th 
centile 

7.9 
(3.2 to 15.5) 

7/89 

96.2 
(92.6 to 98.3) 

200/208 

46.7 
(21.3 to 73.4) 

7/15 

70.9 
(65.2 to 76.2) 

200/282 

2.04 
(0.76 to 5.47) 

0.96 
(0.90 to 1.02) 

PlGF < 5th centile 25.0 
(17.5 to 33.7) 

30/120 

90.7 
(86.5 to 93.9) 

243/268 

54.5 
(40.6 to 68.0) 

30/55 

73.0 
(67.9 to 77.7) 

243/333 

2.68 
(1.65 to 4.35) 

0.83 
(0.74 to 0.92) 

Combinations   
Abnormal AFI or 
EFW 

43.2 
(31.8 to 55.3) 

32/74 

7.2 
(80.9 to 92.0) 

136/156 

61.5 
(47.0 to 74.7) 

32/52 

76.4 
(69.5 to 82.4) 

136/178 

3.37 
(2.08 to 5.48) 

0.65 
(0.53 to 0.80) 

Abnormal PlGF 
or AFI or EFW 

54.1 
(42.1 to 65.7) 

40/74 

82.1 
(75.1 to 87.7) 

128/156 

58.8 
(46.2 to 70.6) 

40/68 

79.0 
(71.9 to 85.0) 

128/162 

3.01 
(2.03 to 4.47) 

0.56 
(0.43 to 0.72) 

 

Only one case of oligohydramnios in women sampled before 35 weeks’ gestation therefore test accuracy could not be assessed 
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Only 13 women had an adverse perinatal outcome which included one stillbirth, 

four cases of respiratory distress syndrome and nine cases of admission to the 

neonatal intensive care unit for greater than 48 hours at term. The ability of 

PlGF and ultrasound parameters to determine adverse perinatal outcome was 

assessed, with results displayed in Table 3.9. All parameters performed poorly 

in determining this endpoint with EFW <10th centile having the highest 

sensitivity (23.1%) and negative predictive value (97.7%). When a combination 

of abnormal EFW, AFI and PlGF was used to predict adverse perinatal 

outcome, sensitivity and NPV did improve to 66.7% and 99.1% respectively. 
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Table 3.9: Test performance statistics for PlGF and ultrasound parameters 

(with 95 % confidence intervals) to predict adverse perinatal outcome 

 

Biomarker/ 

clinical 

indicator 

Sensitivity % 

(95% CI)  

n/N 

Specificity % 

(95% CI)  

n/N 

PPV  % 

(95% CI)  

n/N 

NPV  % 

(95% CI)  

n/N 

EFW <10th 

centile 

23.1 

(5.0 to 53.8) 

3/13 

74.0 

(70.2 to 77.5) 

424/573 

2.0 

(0.4 to 5.7) 

3/152 

97.7 

(95.8 to 98.9) 

424/434 

Oligohydra

mnios  

(AFI < 5 cm) 

16.7 

(0.4 to 64.1) 

1/6 

98.8 

(97.0 to 99.7) 

336/340 

20.0 

(0.5 to 71.6) 

1/5 

98.5 

(96.6% to 99.5) 

336/341 

Umbilical 

artery 

Doppler PI 

>95th centile 

0  

(0 to 28.5) 

0/11 

94.2  

(91.6 to 96.2) 

421/447 

0  

(0 to 13.2) 

0/26 

97.5  

(95.5 to 98.7) 

421/432 

PlGF < 5th 

centile 

15.4 

(1.9 to 45.4) 

2/13 

85.3 

(82.2 to 88.1) 

494/579 

2.3 

(0.3 to 8.1) 

2/87 

97.8 

(96.1 to 98.9) 

494/505 

Combinations 

Abnormal 

AFI or EFW 

50.0 

(11.8 to 88.2) 

3/6 

73.9 

(68.9 to 78.5) 

249/337 

3.3 

(0.7 to 9.3) 

3/91 

98.8 

(96.6 to 99.8) 

249/252 

Abnormal 

PlGF or AFI 

or EFW 

66.7 

(22.3 to 95.7) 

4/6 

66.5 

(61.2 to 71.5) 

224/337 

3.4 

(0.9 to 8.5) 

4/117 

99.1 

(96.8 to 99.9) 

224/226 
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Very low concentrations of PlGF (<12 pg/ml, lower level of assay detection) 

have previously been correlated with poor outcome (Chappell et al., 2013). 16 

women in the study population had very low PlGF at enrolment and details of 

their pregnancies are given in Table 3.10.  Of these women, 11 delivered an 

SGA infant and seven had hypertensive disorders (7/16; 50% versus 17/577; 

3% in the rest of the cohort).  

 

The test performance of PlGF in a subgroup of 152 women who had EFW <10th 

centile at study enrolment was also assessed (Table 3.11). Sensitivity was 

similar in this subgroup (40.9% to determine SGA <3rd birth weight centile) to 

that displayed in Table 3.6, for the whole study population (37.2%) but NPV was 

lower in the subgroup (77.0% versus 90.3%).  
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Table 3.10: Maternal and neonatal outcomes for women with PlGF <12 

pg/ml. There were no fetal or neonatal complications in this group. 

 

 

Subject 

ID 

Gestation 

at 

sampling 

Gestation 

at delivery 

Birth 

weight 

(g) 

Customised 

birth weight 

centile 

Maternal 

complications 

A 30+0 33+6 1935 10.1 HELLP 

Syndrome 

B 31+4 33+3 1305 0 Severe pre-

eclampsia 

C 31+4 35+4 1825 1.2 Gestational 

diabetes 

mellitus 

D 34+2 39+3 2530 2.7 Atypical pre-

eclampsia 

E 35+2 37+0 2225 0.6 Severe pre-

eclampsia 

F 35+5 36+6 2905 38.5 None 

G 35+5 38+0 2330 2.6 None 

H 35+6 38+0 2260 9.5 Severe pre-

eclampsia 

I 36+0 36+4 2525 38.4 Mild pre-

eclampsia 

J 36+0 37+6 1958 0.1 None 

K 36+1 39+0 2765 8.8 None 

L 36+3 38+3 2600 17.4 None 

M 36+3 41+1 2710 1.3 None 

N 36+4 37+1 2000 0.3 None 

O 36+4 37+3 2398 6.0 Chronic 

hypertension 

P 36+6 40+2 3720 63.2 Gestational 

hypertension 

 

HELLP, haemolysis, elevated liver enzymes, low platelets. 
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Table 3.11: Test performance statistics for PlGF (with 95 % confidence 

intervals) to predict SGA <3rd and <10th centiles in women who had an 

EFW <10th centile at enrolment (n=152) 

 

PlGF Sensitivity % 

(95% CI) n/N 

Specificity % 

(95% CI) n/N 

PPV %  

(95% CI) n/N 

NPV %  

(95% CI) n/N 

SGA <3rd  

centile 

40.9 

(26.3 to 56.8) 

18/44 

80.6 

(71.8 to 87.5) 

87/108 

46.2 

(30.1 to 62.8) 

18/39 

77.0 

(68.1 to 84.4) 

87/113 

SGA <10th 

centile 

29.5 

(20.3 to 40.2) 

26/88 

79.7 

(67.8 to 88.7) 

51/64 

66.7 

(49.8 to 80.9) 

26/39 

45.1 

(35.8 to 54.8) 

51/113 
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In addition to assessing the ability of PlGF to determine delivery of an SGA 

infant, the possibility of identifying a high cut-off for PlGF measurement was 

explored, which would provide a threshold for use of PlGF as a “rule out” test. 

Table 3.12 shows the distribution of cases within the cohort according to PlGF 

centile and subdivides according to birth weight above or below the 3rd centile. 

There was no PlGF cut off that provided adequate performance to rule out 

delivery of an SGA infant. 
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Table 3.12: Distribution of cases across PlGF centiles.  

(Numbers and row percentages are shown).  

 

PlGF centile Birth weight 

≥3rd centile  

n (%) 

Birth weight 

<3rd centile  

n (%) 

Total  

n 

<10th  93 (72.1) 36 (27.9) 129 

10th-20th  65 (89.0) 8 (11.0) 73 

20th-30th  48 (82.8) 10 (17.2) 58 

30th-40th  44 (86.3) 7 (13.7) 51 

40th-50th  32 (91.4) 3 (8.6) 35 

50th-60th  39 (95.1) 2 (4.9) 41 

60th-70th  42 (97.7) 1 (2.3) 43 

70th-80th  49 (94.2) 3 (5.8) 52 

80th-90th  55 (91.7) 5 (8.3) 60 

90th-100th  47 (94.0) 3 (6.0) 50 

Total 514 (86.8) 78 (13.8) 592 
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3.4 Summary 

Within the UK, current clinical practice relies on measurement of ultrasound 

parameters to identify pregnancies at risk of delivering an SGA infant. In this 

prospective, multicentre cohort study, recruiting women with reduced 

symphysis-fundal height (current UK referral tool to identify women at risk of 

SGA), these parameters had modest test performance for predicting delivery of 

an SGA infant. EFW <10th centile had the highest sensitivity and negative 

predictive value to predict delivery of an SGA infant <3rd birth weight centile 

(57.9% and 92.6% respectively). Quantification of maternal plasma PlGF in this 

cohort performed no better than ultrasound parameters (sensitivity 37.2% and 

negative predictive value 90.3% for SGA <3rd centile). This is in contrast to the 

findings of the PELICAN-PE study, where low plasma PlGF had high sensitivity 

(89.6%; 95% CI 81.7 to 94.9%) and negative predictive value (91.3%; 95% CI 

84.6 to 95.8%) to determine delivery of an SGA infant (birth weight <3rd 

customised centile). 

 

Whilst I have focused on the ability of ultrasound parameters and PlGF to 

predict delivery of an SGA infant I also investigated their ability to predict 

adverse perinatal outcome. However, only 13 pregnancies in the whole cohort 

experienced an adverse perinatal outcome, making firm conclusions regarding 

the predictive capability of PlGF and ultrasound parameters for this endpoint 

impossible. The single stillbirth reported in PELICAN FGR was not SGA and 

had a normal PlGF concentration at enrolment.  

I discuss possible explanations for differences observed between the PELICAN-

PE and PELICAN-FGR studies and implications of the study findings in Chapter 

4: Discussion.
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Chapter 4: Discussion 
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4.1 Principal findings 

 

4.1.1 PELICAN-PE study findings 

In this work, I have demonstrated that the angiogenic factor, PlGF accurately 

identifies pregnancies delivering an SGA infant in a high-risk cohort of women 

presenting in the second half of pregnancy with suspected pre-eclampsia 

(sensitivity 93.2%, negative predictive value 89.7%, ROC area 0.83 for SGA 

<3rd birth weight centile in women enrolled prior to 35 weeks’ gestation).  

 

4.1.1.1 Comparison of PlGF test performance to other individual 

biomarkers 

In women sampled before 35 weeks’ gestation, PlGF outperformed all other 

individual biomarkers assessed, with high-test performance to predict delivery 

of an SGA infant. However, test performance statistics for PlGF in women 

enrolled beyond 35 weeks’ gestation (ROC area 0.69 (95% CI 0.57 to 0.81) for 

SGA <3rd birth weight centile) were less impressive than those reported in 

women recruited prior to 35 weeks’ gestation. A possible explanation for this 

finding is the convergence of PlGF concentrations between normal and 

pathological pregnancies with advancing gestation.  

 

Of all 47 biomarkers assessed, the three markers with highest individual test 

performance to predict delivery of an SGA infant (PlGF, Endoglin and sFlt-1) 

were all angiogenic factors. Given that they are all involved in the same 

pathological process, this may explain why addition of Endoglin or sFlt-1 to 

PlGF did not improve overall test performance. The finding that the best 
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performing biomarkers for SGA in suspected pre-eclampsia are involved in the 

regulation of angiogenesis adds support to placental insufficiency being key to 

pathogenesis of FGR in these women. 

 

4.1.1.2 Test performance of individual versus combinations of biomarkers 

Due to the complex underlying pathophysiology of FGR, involving multiple 

pathological processes, I hypothesised that a panel of biomarkers reflecting 

differing pathways might improve test performance over individual biomarkers 

to predict delivery of an SGA infant.  

 

From the analysis of women enrolled to the PELICAN-PE study prior to 35 

weeks’ gestation, the best performing combination of biomarkers, derived from 

factor analysis and multiple logistic regression included PlGF, nephrin and CPA-

4 (ROC area of 0.84 for SGA <3rd birth weight centile). Nephrin is a protein 

essential for normal renal glomerular function and broadly reflects endothelial 

function, whilst CPA-4 is a metalloprotease, which cleaves angiotensin, a major 

component of the renin-angiotensin system, and essential for blood pressure 

homeostasis. Despite their diverse pathophysiology, addition of nephrin and 

CPA-4 to PlGF had little affect on overall test performance to determine SGA 

<3rd birth weight centile over that derived from PlGF measured in isolation. The 

high individual test performance of PlGF to determine SGA <3rd birth weight 

centile may explain why addition of other biomarkers (with modest individual 

test performance (ROC areas of 0.63 for SGA <3rd birth weight centile)) did not 

aid identification of the few cases undetected by PlGF alone.  
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In women sampled beyond 35 weeks’ gestation, isolated biomarkers performed 

less well to determine delivery of an SGA infant, possibly due to other 

processes in addition to placental disease contributing to delivery of an SGA 

infant near term. A combination of biomarkers reflecting other pathological 

processes may therefore be more useful in this group. The same combination 

of PlGF, nephrin and CPA-4 achieved the best test performance in determining 

subsequent delivery of an SGA infant in women sampled beyond 35 weeks’ 

gestation, but this combination achieved only modest improvements in test 

performance over PlGF alone (ROC area for combination of PlGF, Nephrin, 

CPA-4 0.77 (95% CI 0.66 to 0.88) for delivery of an SGA infant <3rd birth weight 

centile). 

 

Using single, rather than multiple biomarkers, has significant advantages when 

translating this work to a clinical setting. It is likely to be more cost effective and 

will reduce the overall error associated with using multiple assays. It will also 

facilitate future comparisons between datasets as reproducibility is likely to be 

easier. 

 

4.1.1.3 Comparison of PlGF test performance with ultrasound parameters 

to determine delivery of an SGA infant and predict adverse perinatal 

outcome in women presenting with suspected pre-eclampsia 

After identifying PlGF as the most promising biomarker for prediction of 

delivering an SGA infant in these high-risk women, I compared its test 

performance to currently utilised ultrasound parameters. I have shown that 

PlGF outperformed all ultrasound parameters in predicting subsequent delivery 

of an SGA infant in women presenting with suspected pre-eclampsia. PlGF also 
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had high sensitivity and negative predictive value to detect adverse perinatal 

outcome, which included stillbirth. A systematic review and meta-analysis of risk 

factors for stillbirth in high-income countries reported SGA as having the highest 

population attributable risk (23%) for this devastating outcome (Flenady et al., 

2011a). There were six cases of stillbirth in this cohort, with five cases 

delivering an infant with birth weight <3rd centile. Only three of these cases were 

detected antenatally by ultrasound scan but all had a low PlGF at study 

enrolment. This supports the hypothesis that PlGF measurement would aid 

identification of such cases early enough to allow appropriate surveillance and 

timely delivery, with the aim of avoiding this major adverse outcome.  

 

The high sensitivity of PlGF in this population is only slightly increased by 

addition of ultrasound parameters. However, ultrasound may give additional 

information that may aid decisions regarding timing of delivery, such as absent 

or reversed umbilical artery end-diastolic flow as PlGF is not yet validated as a 

predictor of stillbirth. Therefore, in women presenting with high risk features for 

pre-eclampsia, I propose combining PlGF and ultrasound data to generate a 

test that has very high negative predictive value. Addition of PlGF to current 

ultrasound parameters has the potential to increase detection of SGA in high-

risk women, allowing appropriate follow up and targeted intervention with the 

aim of reducing adverse perinatal outcomes.  
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4.1.2 PELICAN-FGR study findings 

 

While PlGF has been shown to work well in high-risk women, it would be very 

advantageous for a biomarker to predict SGA in a more general antenatal 

population. I therefore investigated use of PlGF in women with reduced 

symphysis-fundal height measurement, a referral trigger for suspected SGA in 

the UK. I compared the test performance of PlGF to predict subsequent delivery 

of an SGA infant to the performance of ultrasound parameters used in current 

clinical practice. 

 

4.1.2.1 Comparison of PlGF test performance with ultrasound parameters 

to determine delivery of an SGA infant and predict adverse perinatal 

outcome  

In this work I demonstrated that ultrasound parameters used in current clinical 

practice to identify pregnancies at risk of delivering an SGA infant had modest 

test performance. EFW <10th centile had the best test sensitivity of all 

ultrasound parameters assessed but only identified 58% of cases antenatally 

who delivered an infant with a birth weight <3rd centile (sensitivity 57.9% and 

NPV 92.6%). This finding is similar to results of a systematic review and 

subsequent retrospective cohort study which both assessed the predictive 

capability of EFW <10th centile to determine delivery of an SGA infant in high 

risk populations (including women with suspected SGA), and published 

sensitivities of 33-89%, 68% and specificities of 54-91%, 89% respectively 

(Chang et al., 1992, De Jong et al., 2000). Sensitivity to detect SGA in 

unselected populations have been reported as lower than those seen in the 

PELICAN-FGR study (21-47%) (David et al., 1996, Ben-Haroush et al., 2007, 
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Souka et al., 2012). In contrast to the findings in the high-risk PELICAN-PE 

cohort, PlGF quantification performed no better than ultrasound parameters in 

predicting delivery of an SGA infant in this population (sensitivity 37.2% and 

NPV 90.3% for SGA <3rd centile).  

 

Whilst EFW <10th centile had the highest sensitivity and negative predictive 

values of all ultrasound parameters evaluated, oligohydramnios and umbilical 

artery Doppler PI >95th centile had high specificity for SGA (99% and 96% 

respectively for SGA <3rd birth weight centile). This corroborates the findings of 

a recent meta-analysis and systematic review evaluating the association of 

amniotic fluid index and adverse perinatal outcome, where there was a strong 

association between oligohydramnios and delivery of an SGA infant and 

mortality (Morris et al., 2014). However the predictive accuracy for perinatal 

outcome was poor. The very low sensitivities for oligohydramnios and umbilical 

artery Doppler >95th centile to predict delivery of an SGA infant <3rd birth weight 

centile (3.7% and 16.4% respectively) in the PELICAN-FGR cohort, limit their 

use in clinical practice as isolated predictors of SGA but their high specificity for 

identifying pregnancies delivering an SGA infant, makes them useful indicators 

for timing of delivery, as discussed in section 4.1.1.3. 

 

In addition to evaluating the ability of ultrasound parameters and PlGF to predict 

delivery of an SGA infant, I also investigated their ability to predict adverse 

perinatal outcome. Previously, three Cochrane systematic reviews evaluating 

symphysis-fundal height measurement (Neilson, 2000), routine ultrasound 

measurement (Bricker et al., 2008) and umbilical artery doppler assessment in 

normal pregnancies (Alfirevic et al., 2010) concluded that none of these 
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techniques reduced adverse perinatal outcome. However preliminary data from 

a recent large prospective cohort study reported increased sensitivity of 

screening (79%) vs. selective (32%) sonography in the third trimester in an 

unselected nulliparous population for prediction of severe SGA (Sovio et al., 

2014).  

 

The PELICAN-FGR study was powered for the primary endpoint of delivering 

an SGA infant, assuming a rate of SGA <3rd birth weight centile of 8% in women 

referred with suspected SGA (based on data from St Thomas’ Hospital, 

London). The incidence of SGA <3rd centile in the study cohort was higher than 

this at 13% but the low incidence of adverse perinatal outcome (a secondary 

outcome) in the study cohort (with only 13 cases) made conclusions regarding 

the ability of any of the parameters to determine adverse perinatal outcome 

impossible. This is in contrast to the PELICAN-PE study where 19% of the 

population had an adverse perinatal outcome, including nine cases of 

stillbirth/neonatal death. The single stillbirth reported in PELICAN-FGR was not 

SGA and had a normal PlGF concentration at enrolment. It is therefore unlikely 

that placental disease was the underlying pathological process in this case.  

 

4.2 Comparison of PELICAN-PE and PELICAN-FGR 

studies 

 

The PELICAN-PE study reported high-test performance statistics for the ability 

of low concentrations of maternal plasma PlGF to predict delivery of an SGA 

infant in women presenting with suspected pre-eclampsia (Chappell et al., 
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2013). A previous study had reported similar test performance statistics for low 

plasma PlGF concentrations in women delivering an SGA infant with associated 

placental pathology (Benton et al., 2012). In both these studies placental 

dysfunction is the likely major underlying pathological process. PlGF is an 

angiogenic factor primarily released by trophoblast cells and concentrations 

reflect placental function. Therefore if placental dysfunction is the predominant 

pathological process contributing to delivery of an SGA infant, concentrations 

would be expected to closely correlate with presence and severity of SGA, as 

was observed in these studies.  

 

In the PELICAN-FGR study, I sought to investigate whether the findings of 

these two studies could be applied to a lower risk population presenting with 

reduced symphysis-fundal height measurement. Whilst acknowledging that 

other pathological processes maybe involved in subsequent delivery of an SGA 

infant in this population, I hypothesised that placental dysfunction was still likely 

to be the major pathological process resulting in SGA. Therefore, low plasma 

PlGF could still be a useful screening tool to identify pregnancies at risk of 

delivering an SGA infant in this cohort. However, the findings of the PELICAN-

FGR study did not support this hypothesis, with PlGF performing no better than 

ultrasound parameters utilised in current clinical practice to identify pregnancies 

at risk of delivering an SGA infant. Here I will discuss possible explanations for 

the contrasting findings of the PELICAN-PE and PELICAN-FGR studies.  

 

The primary aim of the PELICAN-PE study was to assess the diagnostic 

accuracy of PlGF to determine need for delivery for confirmed pre-eclampsia in 

women presenting with suspected pre-eclampsia. As a secondary outcome, the 
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ability of PlGF to predict delivery of an SGA infant with birth weight <3rd 

customised birth weight centile was assessed. The women enrolled in this study 

were high-risk, with 61% of those recruited prior to 35 weeks� gestation 

developing pre-eclampsia (Chappell et al., 2013). This is in contrast to the low 

frequency of coexisting maternal complications of pregnancy in the PELICAN-

FGR study (555/592, 93% had no coexisting maternal complications of 

pregnancy), where only 4% were diagnosed with a hypertensive disorder. I 

have searched the literature for similar cohorts to that described in these 

studies and data for comparison is sparse. Anumba and colleagues reported an 

incidence of pre-eclampsia of 26% in women presenting to an obstetric day 

assessment unit with gestational hypertension (diastolic >90mmHg in 

community) (Anumba et al., 2010). This study excluded women presenting with 

coexisting FGR, diabetes mellitus and severe hypertension, which may give 

some explanation for the lower incidence than that reported in the PELICAN-PE 

study. The PELICAN co-investigator group anticipated that not all women 

enrolled with suspected pre-eclampsia would develop the disease, in line with 

the findings of Anumba et al. 

 

 

It has been suggested that different pathological processes may occur in the 

placentas of women with hypertensive disorders, especially if early onset 

compared to those who remain normotensive but deliver an SGA infant 

(Redline, 2008). Redline has described five chronic patterns of placental injury 

in placentas from pregnancies complicated by growth restriction, including; 

maternal vascular obstruction, fetal vascular obstruction, villitis of unknown 

aetiology, perivillous fibrin deposition and chronic abruption. He suggests that 
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maternal vascular disorders are more common in those pregnancies 

complicated by hypertensive disorders, whilst villitis of unknown aetiology is 

more common in those who remain normotensive but deliver an SGA infant. It 

is possible that concentrations of individual markers may vary in differing 

pathological processes therefore offering some explanation why the ability of 

PlGF to distinguish SGA in those with associated hypertensive disorders and in 

those who remain normotensive but deliver an SGA infant is not comparable.  

 

Whilst SGA was defined as birth weight less <3rd customised centile in both 

studies, in PELICAN-FGR this encompassed a more heterogeneous population 

whose underlying pathology was not necessarily restricted to placental disease. 

It is possible that the contribution of placental dysfunction in this study 

population was less than I anticipated, offering an explanation as to why PlGF, 

a marker of placental function, may not be as accurate a predictor of delivering 

an SGA infant in a population whose pathology is not limited to placental 

disease.  

 

Gestational age at sampling differed by three weeks between the two studies 

(average gestational age at sampling in those women delivering an SGA infant 

with birth weight <3rd centile was 31 weeks’ gestation in the PELICAN-PE study 

compared to 34 weeks’ gestation in PELICAN-FGR). In women delivering an 

infant with birth weight <3rd customised centile, gestational age at delivery was 

also markedly different in the two studies (33.8 weeks in the PELICAN-PE study 

(Table 2.6) and 38.7 weeks in the PELICAN-FGR study (Table 3.3). PlGF 

concentration peaks at approximately 32 weeks’ gestation and then declines 

towards term (Knudsen et al., 2012). The clinical application of PlGF appears 
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less efficacious if sampling occurs later in the third trimester and if women 

deliver closer to term, likely secondary to the convergence of values between 

normal and pathological pregnancies with advancing gestation (Knudsen et al., 

2012). 

 

4.3 Strengths and limitations of the studies 

 

The PELICAN-PE and PELICAN-FGR studies are the largest reported 

prospective multi-centre studies evaluating the ability of PlGF, measured in the 

third trimester, to predict delivery of an SGA infant in women presenting with 

suspected pre-eclampsia or reduced symphysis-fundal height respectively. The 

PELICAN-PE study evaluated a large panel of biomarkers chosen for their 

biological relevance to placental disease and pre-eclampsia and no previous 

studies have compared such a diverse panel of biomarkers to predict 

subsequent delivery of an SGA infant.  

 

Both studies were large multicentre, multinational prospective cohort studies 

enrolling women from diverse geographical and ethnic backgrounds, aiding 

generalisabilty of the findings. The entry criteria for both studies were chosen 

due to their clinical relevance, being common referral triggers for obstetric 

assessment within the United Kingdom. However, I acknowledge that in other 

healthcare settings symphysis-fundal height measurement is not part of routine 

antenatal care. In such settings, third trimester ultrasound assessment is 

offered in all pregnancies and therefore the findings of the PELICAN-FGR study 

may be less applicable. 
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The studies took a pragmatic approach, in order to evaluate the real life 

applications of these tests, and recruited women who were referred for obstetric 

assessment with either a broad range of signs or symptoms of suspected pre-

eclampsia or suspected SGA on symphysis-fundal height measurement and 

included women with underlying medical conditions. This approach was chosen 

in an attempt to more closely reflect the test performance in a clinical setting, 

rather than evaluating the test against normal healthy pregnant women, in a 

case-control design. However, use of reduced symphysis-fundal height as the 

inclusion criterion for the PELICAN-FGR study identified a heterogeneous 

group, with few cases complicated by placental disease (i.e. pre-eclampsia) and 

may explain why the performance of PlGF, an angiogenic factor, to predict 

delivery of an SGA infant, was lower that I anticipated. Using PlGF in a more 

targeted subgroup may be more appropriate.  

 

PlGF measurement was undertaken at the enrolling site as would occur if the 

test was to be adopted clinically and results were validated by paired sample 

testing at a central laboratory. All additional biomarkers in the PELICAN-PE 

study were measured at the same central laboratory. All final maternal 

diagnoses were made by a panel of senior clinicians, without prior knowledge of 

the PlGF result. All clinical and laboratory staff were masked to biomarker 

results until study completion.  

 

With the exception of PlGF, test results were not validated by a paired sample 

and there was no comparative testing at a second laboratory. In addition, both 

studies only measured PlGF at study enrolment. It could be informative to 
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evaluate serial measurements to assess whether longitudinal changes in PlGF 

concentrations correlate with evolving placental dysfunction. In the PELICAN-

PE study serial plasma sampling would also have had the added benefit of 

allowing testing of all additional biomarkers at advancing gestations, as some 

biomarkers may only become clinically significant closer to outcome. However, 

with regards to PlGF measurement in the PELICAN-PE study, despite varying 

timescales between plasma sampling and delivery, PlGF remained a strong 

indicator of subsequent delivery of an SGA infant.  

 

To allow comparison of ultrasound parameters to biomarkers measured at study 

enrolment, inclusion was restricted to women recruited to the PELICAN-PE 

study who had a recorded ultrasound scan at or within 14 days of study 

enrolment. Of the 397 women recruited prior to 37 weeks’ gestation less than 

half (n=179) had ultrasound scan data available within this timeframe and data 

relating to umbilical artery Doppler were limited to whether there was absent/ 

reversed end diastolic flow. In women enrolled prior to 35 weeks’ there was a 

disparity in the incidence of pre-eclampsia and delivery of an SGA infant with 

birth weight <3rd centile, with higher incidence of both in women who had 

ultrasound scanning (incidence of pre-eclampsia at delivery and SGA <3rd 

centile 74% and 46% respectively in women with ultrasound within 14 days 

compared to 36% and 10% in women with no ultrasound data). This has the 

potential to bias results. 

  

Absent/ reversed end diastolic flow in the umbilical artery Doppler was only 

present in 16 cases included in this analysis (13 prior to 35 weeks’ gestation 

and 3 cases enrolled between 35+0 and 36+6 weeks’ gestation). Absent/ 
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reversed end diastolic flow in the umbilical artery Doppler is a relatively 

uncommon finding even in high-risk populations and occurs late in the 

pathological process. It is used as an end point to aid decisions regarding 

timing of delivery. It may have been more informative to record umbilical artery 

Doppler pulsatility index  (and then transformed them to allow for gestational 

age changes), as alterations in pulsatility index are usually observed prior to the 

development of absent/reversed end diastolic flow and raised pulsatility index 

can therefore be used as an earlier indicator of adverse outcome. These data 

were collected in the PELICAN-FGR cohort but there were only 26 cases with 

umbilical artery Doppler PI >95% centile in the whole cohort (n=592). Data of 

ultrasound scans conducted after enrolment were recorded but there were 

insufficient number of cases in both studies with additional ultrasound scan data 

to justify further analysis. As with serial PlGF measurements, serial ultrasound 

assessment would provide data to allow assessment as to whether longitudinal 

changes in ultrasound parameters can improve identification of pregnancies at 

risk of delivering an SGA infant.  

 

4.4 Significance of findings 

 

To date, no published studies have compared the performance of currently 

utlilised ultrasound parameters and such a diverse panel of biomarkers in the 

third trimester to predict delivery of an SGA infant. In this work I have 

demonstrated that third trimester PlGF quantification in a high-risk cohort of 

women accurately predicts delivery of an SGA infant. I have shown that PlGF 
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outperforms all other individual biomarkers evaluated. Combining the results of 

two or more biomarkers, regardless of their pathogenesis, add little to overall 

test performance. Given that impaired placental function contributes to a 

substantial proportion of cases of SGA (Redline, 2008), an angiogenic placental 

factor such as PlGF has biological plausibility for prediction.  

 

4.4.1 Comparison of PELICAN-PE study findings to other studies 

evaluating the ability of PlGF to predict delivery of an SGA infant 

Previous reports of the ability of PlGF to determine pregnancies at risk of 

delivering an SGA infant are conflicting. Most early studies concentrated on 

sampling in the first and second trimesters. Initial small case-control studies in 

the first half of pregnancy found no significant relationship between PlGF 

concentration and subsequent delivery of an SGA infant (Vandenberghe et al., 

2011, Steinberg et al., 2010, Bersinger and Odegard, 2005) but larger case-

control studies (Karagiannis et al., 2011, Asvold et al., 2011, Romero et al., 

2008, Thadhani et al., 2004) and several prospective cohort studies measuring 

PlGF in the first (Poon et al., 2013, Poon et al., 2008b) and second trimesters 

(Espinoza et al., 2007) have reported an association between low plasma PlGF 

concentrations and delivery of an SGA infant. The few small (n=21 or less) 

mainly case-control studies that have evaluated PlGF quantification in the third 

trimester (including at time of delivery) to predict delivery of an SGA infant 

agree with the findings of the PELICAN-PE study where low PlGF 

concentrations are associated with subsequent delivery of an SGA infant 

(Benton et al., 2012, Wallner et al., 2007, Shibata et al., 2005, Taylor, 2003).  
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Comparison between studies investigating the ability of PlGF to identify 

pregnancies at risk of delivering an SGA infant is further confounded by use of 

a variety of PlGF assays. The majority of studies discussed above used a PlGF 

assay marketed by R&D systems (USA), which is not automated. At present 

there are only two commercially available PlGF immunoassays, which could be 

implemented directly into clinical practice; the Triage placental growth factor 

assay (Alere, USA) and the Elecsys soluble Fms-like tyrosine kinase-

1/placental growth factor ratio (Roche Diagnostics, Germany). A small case 

control study, compared the performance of these two assays as diagnostic 

tests for pre-eclampsia, and reported superior performance for the former assay 

(Benton et al., 2011). The Alere Triage assay was used in the PELICAN-PE and 

PELICAN-FGR studies but was only used in one of the studies discussed 

above (Benton et al., 2012).  

 

4.4.2 PlGF as a predictor of adverse perinatal outcome in the 

PELICAN-PE study 

In addition to demonstrating the ability of third trimester PlGF sampling to 

predict delivery of an SGA infant in a high-risk cohort, low concentrations of this 

marker also identified cases complicated by adverse perinatal outcome. This 

finding is supported by two studies (Smith et al., 2007, Sibiude et al., 2012), but 

the first was a nested case-control study, measuring PlGF in the first trimester 

and the second reported a combined maternal and perinatal adverse outcome. 

Both studies included delivery of an SGA infant within their definitions of 

adverse outcome. In contrast, in the PELICAN-PE study, delivery of an SGA 

infant was a separate secondary endpoint. This allowed identification of an 



 200 

association between low PlGF measurement and adverse perinatal outcome, 

independent of that demonstrated between low PlGF and delivery of an SGA 

infant. This finding has not previously been published in any study evaluating 

PlGF to predict delivery of an SGA infant. 

 

4.4.3 Comparing the performance of PlGF and other individual 

biomarkers and biomarker combinations/ ratios in the PELICAN-PE 

study to other studies investigating biomarker prediction of 

delivering an SGA infant  

Whilst many publications have linked altered concentrations of biomarkers with 

delivery of an SGA infant, there is a paucity of published data regarding the test 

performance of biomarkers, especially measured in the third trimester, to predict 

this endpoint. Most evidence has evaluated the ability of angiogenic biomarkers 

to determine delivery of an SGA infant but few studies have published test 

performance statistics to allow any comparison.  

 

With the exception of PlGF, s-Flt is one of the only markers with published test 

performance statistics for determining delivery of an SGA infant. Stepan et al. 

measured s-Flt in the second trimester of pregnancy in women with abnormal 

uterine artery Doppler flow and reported sensitivity of 64% with specificity of 

54% to predict delivery of an SGA infant with birth weight <5th centile (Stepan et 

al., 2007). Using a different definition for SGA, Bersinger et al. published a 

sensitivity of 56% (95% CI 27 to 81%) and specificity of 88% (95% CI 74 to 

95%) for s-Flt to predict delivery of an SGA infant (Bersinger and Odegard, 

2005). This study was limited by small sample size, (only nine cases of SGA) 
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which is likely to explain the wide confidence intervals quoted. In the PELICAN-

PE cohort the ROC area for s-Flt to predict delivery of an SGA infant with birth 

weight <10th centile was 0.69 (95% CI 0.63 to 0.76), lower than that of PlGF 

(0.79; 95% CI 0.73 to 0.84). The sample size of our study population was much 

greater than any previously published data regarding the performance of s-Flt 

as a predictor of delivering an SGA infant and therefore our data are likely to 

offer more accurate information regarding the ability of s-Flt to determine this 

outcome.  

 

Of the other angiogenic biomarkers discussed in detail in section 1.4.1, Asvold 

et al. have published test performance statistics for endoglin to predict delivery 

of an SGA infant with birth weight <2.5th centile in women without pre-eclampsia 

(Asvold et al., 2011). They report a sensitivity of 61% (95% CI 52 to 69%) and 

specificity of 67% (95% CI 60 to 73%) for endoglin to predict delivery of an SGA 

infant. In the PELICAN-PE cohort the ROC area for endoglin to predict delivery 

of an SGA infant with birth weight <3rd centile was 0.74 (95% CI 0.68 to 0.80), 

less than that for PlGF for the same endpoint (0.83; 95% CI 0.78 to 0.88). 

Asvold et al. sampled s-Flt in the second trimester, which may give some 

explanation for the differing results published compared to the PELICAN-PE 

data. 

 

A recent systematic review and meta-analysis investigating novel biomarkers 

for predicting intrauterine growth restriction concluded that PlGF was the most 

promising of all 37 biomarkers evaluated (Conde-Agudelo et al., 2013). This 

review included 53 studies mostly evaluating biomarker measurement in the 
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first and second trimesters to predict delivery of an SGA infant and no studies 

evaluated PlGF in a similar cohort to this study. Of the 13 studies in this review 

reporting test performance for PlGF to predict delivery of an SGA infant, only 

one used a commercially available automated immunoassay (Benton et al., 

2012) and only five recruited women over 20 weeks’ gestation. Within this 

review, a subgroup analysis including the five studies enroling women over 20 

weeks’ gestation reported a pooled sensitivity for PlGF (at various thresholds 

and using two different assays) for prediction of ‘IUGR’ (by differing definitions) 

of 49% (95% CI 44 to 53%). Given the considerable difference between studies 

included in this analysis and the fact that only one followed a cohort design, 

comparisons between studies was very difficult. In the single cohort study 

included in the subgroup analysis of women enrolled beyond 20 weeks’ 

gestation, delivery of an SGA infant was a secondary endpoint (primary 

outcome was pre-eclampsia). No cohort studies evaluating PlGF quantification 

in the third trimester were included in this review.  

 

The gross heterogeneity of the studies included in this systematic review with 

differing inclusion criteria, study design and use of various PlGF assays, gives 

some explanation as to why the findings were markedly different to that of the 

PELICAN-PE study and emphasise the importance of this study, being the only 

large prospective cohort study evaluating a wide range of third trimester 

biomarkers in predicting delivery of an SGA infant and adverse perinatal 

outcome.  

 

Subsequent to publication of this systematic review, a large prospective cohort 

study on an unselected population evaluated maternal plasma angiogenic 
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markers (PlGF, sFlt-1 and soluble endoglin) at a fixed time point (30-34 weeks’ 

gestation) to determine delivery of an SGA infant. This group reported an 

increased adjusted odds ratio for PlGF/sFlt-1 ratio of 5.5 (95% CI 2.3 to 13.1%) 

to determine delivery of an SGA infant <3rd birth weight centile. Unfortunately 

they did not publish any standard test performance statistics to allow 

comparison to the PELICAN-PE or PELICAN-FGR datasets (Chaiworapongsa 

et al., 2013). Interestingly, the data from the PELICAN-PE study showed that 

use of a PlGF/sFlt-1 ratio added nothing to PlGF measurement alone and in 

fact had a lower ROC area (0.80 (95% CI 0.75-0.85) Table 2.8) than PlGF 

measurement in isolation (0.83 (95% CI 0.78-0.88)) in predicting delivery of an 

SGA infant with birth weight <3rd centile.  

 

4.4.4 Significance of PELICAN-FGR study findings 

Whilst the results of the PELICAN-FGR study do not support extension of the 

findings of the PELICAN-PE study in a more general antenatal population, this 

study is the largest prospective cohort study to evaluate the diagnostic accuracy 

of currently used ultrasound parameters and maternal plasma PlGF 

concentration in women presenting with reduced symphysis-fundal height 

measurement. Publication of the results of the PELICAN-FGR study will ensure 

avoidance of inappropriate extrapolation of the findings of the PELICAN-PE 

study into an unselected population. I have demonstrated that currently utilised 

ultrasound parameters had only modest predictive ability for delivery of an SGA 

infant, in line with previous publications (David et al., 1996, De Jong et al., 

2000, Frøen et al., 2004, Chang et al., 1992). I have also shown that whilst 

oligohydramnios and umbilical artery Doppler >95% centile had low sensitivity 

for predicting delivery of an SGA infant, limiting their clinical utility as isolated 
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tools, they were both highly specific for this condition. This corroborates the 

findings of a recent meta-analysis and systematic review evaluating the 

association of amniotic fluid index and adverse perinatal outcome, where there 

was a strong association between oligohydramnios and delivery of an SGA 

infant and mortality (Morris et al., 2014). 

 

4.5 Clinical application of findings, unanswered 

questions and future research 

 

Whilst the results of my work do not support the widespread addition of PlGF to 

current ultrasound parameters to identify pregnancies at risk of delivering an 

SGA infant in an unselected population, its use as a screening tool in high- risk 

women presenting with signs and symptoms of pre-eclampsia is likely to be 

beneficial. However, in the work presented here I did not investigate whether 

adoption of PlGF into clinical practice would alter clinical outcome.  

 

4.5.1 Assessment of clinical utility of PlGF guided management in 

suspected pre-eclampsia 

I hypothesise that improved identification of those at greatest risk of delivering 

an SGA infant and associated adverse outcome will facilitate appropriate 

targeting of resources and timely intervention with subsequent improvements in 

maternal and neonatal outcome. A randomised controlled trial comparing 

current clinical practice to PlGF guided management should be performed to 

demonstrate effectiveness prior to widespread adoption of PlGF as a screening 
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tool for SGA in a high-risk population presenting with suspected pre-eclampsia. 

Such a study should include a comprehensive economic analysis to enable 

comparison to current care. We have recently received funding from the 

National Institute for Health Research, Research for Patient Benefit programme 

to perform a stepped wedge randomised trial comparing PlGF guided clinical 

management against current practice in women presenting with suspected pre-

eclampsia. All women will have plasma PlGF measured at study entry. The two 

study arms will follow either;  

 

1) current clinical practice according to NICE guidance with PlGF result being 

concealed from the clinician  

or  

 

2) PlGF guided management where the clinician would be informed of the PlGF 

result and if this is <12 pg/ml the patient should be treated according to NICE 

guidance on the management of pre-eclampsia, including close surveillance, 

irrespective of their clinical presentation. If PlGF result is >100 pg/ml then 

women will be offered outpatient consultant-led follow up.  

 

The primary outcome is the proportion of women in each arm with composite 

maternal adverse outcome. A full economic analysis is planned and the study is 

powered for neonatal outcome with delivery of an SGA infant with birth weight 

<3rd customised centile as a secondary endpoint. 
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4.5.2 Use of PlGF in maternal renal disease 

In section 1.1.3 I discussed the many risk factors contributing to the 

development of FGR and the particular importance of maternal factors, which 

mainly predispose to placental disease. Within the PELICAN-PE study I have 

demonstrated that PlGF accurately predicts delivery of an SGA infant in a high-

risk cohort of women with suspected pre-eclampsia. I hypothesise that PlGF 

may have similar ability to predict delivery of an SGA infant and adverse 

perinatal outcome in other high-risk cohorts at risk of placental disease, such as 

women with diabetes mellitus, renal and vascular disease. Diagnosis of pre-

eclampsia using conventional criteria is particularly challenging in women with 

pre-existing hypertension and proteinuria and if PlGF quantification in this group 

of women can identify those at most risk of developing pre-eclampsia and 

delivering an SGA infant, targeted intervention has a real opportunity to improve 

outcome.  

 

Whilst some women included in the PELICAN-PE study initial analysis (n=274) 

had pre-existing medical conditions including diabetes mellitus (n=6) and renal 

disease (n=19), numbers were insufficient to draw any substantive conclusions. 

Further prospective cohort studies investigating the utility of PlGF as a 

screening tool in these populations are warranted. Bramham et al. have 

recently presented data assessing the diagnostic accuracy of PlGF in 129 

women with chronic kidney disease or hypertension and suspected pre-

eclampsia to determine pre-eclampsia or superimposed pre-eclampsia. The 

ROC area for low PlGF for the diagnosis of pre-eclampsia was high (0.89 (SE 

0.07) for women with pre-existing hypertension and 0.98 (SE 0.02) for women 

with chronic kidney disease (with or without chronic hypertension) (Bramham et 
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al., 2014). The number of cases within this cohort, delivering an SGA infant was 

too small for further analysis. In future work, this group is evaluating the 

predictive value of PlGF for adverse pregnancy outcomes in women with 

chronic kidney disease and/or chronic hypertension.  

 

4.5.3 Use of PlGF in women with a previous history of pre-eclampsia 

or delivery of an SGA infant 

In addition to maternal factors highlighted above, women with a previous history 

of pre-eclampsia or delivery of an SGA infant are at increased risk of recurrence 

(Tejani, 1982). The absolute risk of delivering an SGA infant in subsequent 

pregnancies is likely to be lower than that observed in the high-risk cohort of the 

PELICAN-PE study but higher than that seen in the PELICAN-FGR study. 

Therefore, use of PlGF as a predictor of delivering an SGA infant in women who 

had previous pre-eclampsia or delivery of an SGA infant would require 

assessment as it may be a useful tool. Deciding the most appropriate gestation 

at which to measure PlGF is challenging, as sampling at earlier gestations has 

the benefit of identifying high-risk pregnancies for intensive monitoring, 

facilitating timely intervention. However, test performance diminishes with 

greater interval between sampling and delivery. 

 

It was not possible to assess the ability of PlGF to predict delivery of an SGA 

infant in women with a previous history of pre-eclampsia or delivery of an SGA 

infant witihin the PELICAN-FGR study as only one woman enrolled reported a 

previous history of pre-eclampsia and whilst 49 women reported delivering a 

previous SGA infant, in those where actual birth weights were available, few 

had a birth weight <10th customized birth weight centile for gestational age.  
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4.5.4 Use of PlGF in maternal obesity  

Maternal obesity is a growing problem, presenting multiple challenges for the 

clinician. Obesity in pregnancy is associated with many complications including 

pre-eclampsia. In obese pregnant women, identifying pregnancies at risk of 

FGR presents a particular challenge due to the difficulties with applying current 

techniques for screening and diagnosing SGA. Symphysis-fundal height is not 

an appropriate screening tool in obese women and whilst most local guidelines 

on the management of obesity in pregnancy recommend routine third trimester 

ultrasound scanning, obtaining optimal views for accurate measurement of 

ultrasound parameters is often very difficult. Unlike other biomarkers such as 

leptin, maternal weight does not have a significant effect on PlGF 

concentrations and therefore PlGF may offer a useful adjunct to ultrasound 

scan to identify pregnancies at risk of delivering an SGA infant. I propose 

further assessment of the ability of PlGF in an obese pregnant population to 

predict delivery of an SGA infant. 

 

4.4.5 Use of PlGF with Doppler assessment 

The UK National Screening Committee and Royal College of Obstetricians and 

Gynaecologists guidelines do not recommend routine uterine artery Doppler 

screening in mid-trimester for prediction of pre-eclampsia or FGR (UK National 

Screening Committee, 2011, Robson et al., 2013). However, as part of a 

research programme, some UK centres offer second trimester uterine artery 

Doppler assessment to all primiparous women. Whilst screening low-risk 

pregnancies using isolated uterine artery Doppler analysis has not been shown 
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to improve maternal or fetal outcome (Stampalija et al., 2010), its use in a 

combined screening programme with PlGF may be beneficial. Exploring the 

ability of combined second trimester uterine artery Doppler measurement and 

early third trimester PlGF quantification to predict delivery of an SGA infant in 

an unselected population would be an interesting area of future research. An 

economical analysis would be necessary as part of such an evaluation as 

introducing widespread measurement of uterine artery Doppler indices would 

have significant cost implications, although this could be incorporated into 

second trimester anomaly scanning. As the majority of centres enrolling women 

in the PELICAN-FGR study did not routinely undertake second trimester uterine 

artery Doppler screening, these data were not available for analysis.  

Within the UK, uterine artery Doppler assessment is only offered (outside a 

research setting) in pregnancies with pre-existing risk factors for delivery of an 

SGA infant. However, many women who subsequently deliver an SGA infant 

have no pre-existing risk factors. Accurately identifying those at risk of 

delivering an SGA infant remains challenging. Gardosi et al. suggest that wide 

spread implementation of a comprehensive growth assessment protocol (GAP), 

involving use of customised symphysis-fundal height measurement and growth 

charts, aids antenatal identification of pregnancies delivering an SGA infant 

(Gardosi et al., 2014). Umbilical artery Doppler measurement in high-risk 

pregnancies, including those with suspected SGA, has been shown to reduce 

perinatal death (Alfirevic and Neilson, 1995). Gardosi et al. suggests that by 

better identification of at risk pregnancies, allowing targeted monitoring with 

ultrasound and umbilical Doppler measurement; stillbirth rates are reduced 

(Gardosi et al., 2014). Prior to widespread implementation of these findings, I 

suggest they are verified in a large-scale randomised control trial. 
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Current national guidelines suggest that if Doppler measurement is abnormal 

then serial ultrasound and umbilical artery Doppler measurement should be 

conducted from 26-28 weeks’ gestation (Robson et al., 2013). Given the 

modest test performance of ultrasound parameters to predict delivery of an 

SGA infant, using PlGF quantification in this high-risk cohort might improve 

detection and further investigation is recommended. 

 

4.6 Conclusion 

 

The results of the PELICAN-PE study suggest that PlGF measurement could be 

a useful adjunct to current ultrasound parameters in predicting subsequent 

delivery of an SGA infant in a high-risk cohort of women. However the findings 

of PELICAN-FGR do not support its use in a more generalised setting, where 

women presented with reduced symphysis-fundal height. Whilst current 

ultrasound parameters provide only modest prediction of delivering an SGA 

infant (EFW <10th centile, ROC area 0.79 for SGA <3rd centile), addition of PlGF 

to these parameters provided minimal improvement in test performance (PlGF 

and EFW<10th centile ROC area 0.82 for SGA <3rd centile), insufficient to 

recommend inclusion into clinical practice. The contrasting findings of 

PELICAN-PE and PELICAN-FGR emphasises the importance of not 

generalising the findings in one study population to another and highlights the 

need for caution regarding use of new biomarkers in clinical practice without 

validation in the appropriate setting. 
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Preeclampsia complicates 2% to 8% of all pregnancies 
and is characterized by placental and maternal vascular 

dysfunction and associated adverse outcomes.1 Diagnosis is 
based on traditional but unreliable and nonspecific clinical 
markers, most commonly blood pressure and urinary pro-
tein excretion; both are subject to observer error and poor 
test accuracy for identifying women and infants at risk of 
adverse outcome.2 This clinical uncertainty leads to overuse 
of ancillary testing and intervention, with associated expense 
of antenatal monitoring and inpatient admissions, placing 
considerable burden on pregnant women and their families. 
In the United States, preeclampsia is the most common reason 
for iatrogenic preterm delivery.3 Evaluation of biomarkers and 
imaging techniques has shown that none have adequate sensi-
tivity, specificity, and convenience for diagnosis or prediction 

of preeclampsia or complications,2,4 the majority identifying 
advanced disease with established end-organ damage.

Clinical Perspective on p 2131
Recent advances in understanding preeclampsia and fetal 

growth restriction have elucidated important biological 
roles for placentally derived angiogenic factors.5 In normal 
pregnancy, placental growth factor (PlGF), synthesized by 
syncytiotrophoblast,6 increases with gestation in maternal 
circulation, with concentrations peaking at 26 to 30 weeks7 
and declining toward term. PlGF is abnormally low in women 
with preeclampsia in comparison with gestational age-
matched controls8 and is reduced further in severe preeclamp-
sia.9 Development of a test for preeclampsia with the use of a 
pathophysiologically relevant biomarker, such as PlGF, may 

Background—Hypertensive disorders of pregnancy are a major contributor to death and disability for pregnant women and 
their infants. The diagnosis of preeclampsia by using blood pressure and proteinuria is of limited use because they are 
tertiary, downstream features of the disease. Placental growth factor (PlGF) is an angiogenic factor, a secondary marker 
of associated placental dysfunction in preeclampsia, with known low plasma concentrations in the disease.

Methods and Results—In a prospective multicenter study, we studied the diagnostic accuracy of low plasma PlGF 
concentration (<5th centile for gestation, Alere Triage assay) in women presenting with suspected preeclampsia between 
20 and 35 weeks’ gestation (and up to 41 weeks’ gestation as a secondary analysis). The outcome was delivery for 
confirmed preeclampsia within 14 days. Of 625 women, 346 (55%) developed confirmed preeclampsia. In 287 women 
enrolled before 35 weeks’ gestation, PlGF <5th centile had high sensitivity (0.96; 95% confidence interval, 0.89–0.99) 
and negative predictive value (0.98; 0.93–0.995) for preeclampsia within 14 days; specificity was lower (0.55; 0.48–0.61).  
Area under the receiver operating characteristic curve for low PlGF (0.87, standard error 0.03) for predicting preeclampsia 
within 14 days was greater than all other commonly used tests, singly or in combination (range, 0.58–0.76), in women 
presenting with suspected preeclampsia (P<0.001 for all comparisons).

Conclusions—In women presenting before 35 weeks’ gestation with suspected preeclampsia, low PlGF has high sensitivity 
and negative predictive value for preeclampsia within 14 days, is better than other currently used tests, and presents an 
innovative adjunct to management of such women.  (Circulation. 2013;128:2121-2131.)
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have advantages over blood pressure and urinary protein, 
which are the consequences of established disease. Because 
earlier gestation of preeclampsia onset is associated with 
greater maternal and perinatal risks,1 and the difference in 
PlGF concentrations between normal and preeclamptic preg-
nancies is most marked before 35 weeks, PlGF has potential 

to aid the diagnosis of hypertensive disorders of pregnancy 
at gestations critical to clinical outcome. The most clinically 
relevant test for health professionals would identify women 
with preeclampsia associated with deteriorating disease 
requiring iatrogenic delivery. Because women with suspected 
hypertensive disease are routinely monitored every 2 weeks, a 

Figure 1. Flow diagram of participants. 
*Details given in Figure 2. †Preeclampsia requiring 
delivery within 14 days. PlGF indicates placental 
growth factor. 

Figure 2. Flow diagram of participants in study 
enrolled after 35 weeks’ gestation. †Preeclampsia 
requiring delivery within 14 days.
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test should be applicable for a subsequent 14-day window to 
impact management strategies.

The primary aim of this study was to evaluate the diagnostic 
accuracy of plasma PlGF concentrations in women presenting 
with suspected preeclampsia between 20 and 35 weeks’ gesta-
tion (up to 40+6 weeks as a secondary analysis) in determining 

the need for delivery for preeclampsia within 14 days of test-
ing (preeclampsia-D14).

Methods
This prospective observational study was undertaken between January 
2011 and February 2012 in 7 consultant-led maternity units in the 

Table 1. Characteristics at Booking and Enrollment

Gestation at Enrollment (weeks, days)

<35+0 35+0 to 36+6 ≥37+0

n=287 n=137 n=201

Age, y, median (IQR) 31.9 (27.0–35.9) 32.4 (27.5–35.4) 32.1 (27.5–36.0)

Body mass index, kg/m2, median (IQR) 28.6 (24.2–33.6) 28.6 (24.4–32.7) 26.9 (23.1–31.2)

Nulliparous 123 (43) 60 (44) 89 (44)

Singleton pregnancy 275 (96) 123 (90) 198 (99)

White ethnicity
Black ethnicity
Asian ethnicity
Other ethnicity

187 (65)
70 (24)
19 (7)
11 (4)

88 (64)
27 (20)
13 (9)
9 (7)

151 (75)
25 (12)
12 (6)
13 (7)

Highest 1st trimester systolic BP, mm Hg, median (IQR) 120 (110–130) 118 (110–127) 120 (108–123)

Highest 1st trimester diastolic BP, mm Hg, median (IQR) 74 (66–81) 70 (65–80) 72 (65–80)

Current smoking
Quit smoking
Never smoked

24 (8)
52 (19)

204 (73)

10 (7)
22 (17)

101 (76)

19 (9)
30 (15)

151 (76)

Previous medical history

  Previous preeclampsia
  Previous preeclampsia requiring delivery <34/40

55 (20)
30 (11)

17 (12)
6 (4.4)

30 (15)
9 (4.5)

  Chronic hypertension 45 (17) 10 (7.9) 8 (4.5)

  Systemic lupus erythematosus/antiphospholipid syndrome 12 (4.5) 0 1 (0.6)

  Pregestational diabetes mellitus 6 (2.2) 4 (3.2) 0

  Renal disease 19 (7.1) 4 (3.2) 6 (3.4)

At enrollment in assessment unit

  Gestational age, wk, median (IQR) 31.0 (27.9–33.4) 36.0 (35.4–36.4) 38.4 (37.6–39.6)

  Signs/ symptoms of suspected preeclampsia (non exclusive)

   New onset of hypertension 155 (54) 92 (67) 133 (66)

   Worsening of underlying hypertension 56 (20) 21 (15) 39 (19)

   New onset of dipstick proteinuria 161 (56) 85 (62) 108 (54)

   Persistent epigastric/ right upper quadrant pain 18 (6) 8 (6) 13 (6)

   Headaches 84 (29) 44 (32) 77 (38)

   Suspected fetal growth restriction 25 (9) 4 (3) 2 (1)

Highest systolic BP, median (IQR) 144 (131–159) 144 (132–153) 145 (135–155)

Highest diastolic BP, median (IQR) 92 (82–100) 94 (86–100) 95 (87–100)

  Dipstick proteinuria

   Not done 38 (13) 19 (14) 15 (8)

   Negative 103 (36) 34 (25) 81 (40)

   Present (1+ or greater) 146 (51) 84 (61) 105 (52)

  Alanine transaminase, U/L, median (IQR) 14 (11–20)
(n=248)

15 (11–21)
(n=123)

14 (11–19)
(n=177)

  Creatinine, µmol/ L, median (IQR) 51 (44–62)
(n=267)

55 (47–66)
(n=128)

55 (49–64)
(n=194)

  Uric acid, µmol/ L, median (IQR) 257 (189–330)
(n=188)

315 (237–360)
(n=96)

310 (253–380)
(n=149)

  Platelet count, 109/L, median (IQR) 233 (196–271)
(n=269)

213 (175–263)
(n=132)

215 (177–270)
(n=194)

Values are given as number (percentage) unless stated otherwise. BP indicates blood pressure; and IQR, interquartile range.
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United Kingdom and Ireland. Women were eligible if they presented 
or were referred with symptoms or signs of suspected preeclampsia 
between 20+0 and 40+6 weeks of gestation, had a singleton or twin 
pregnancy, and were ≥16 years of age. Symptoms or signs included 
headache, visual disturbances, epigastric or right upper quadrant pain, 

hypertension, dipstick proteinuria, or suspected fetal growth restric-
tion. Participants were included if the healthcare provider deemed 
that the woman required evaluation for suspected preeclampsia. Any 
woman already meeting diagnostic criteria for confirmed preeclamp-
sia at enrollment was not eligible. A woman could only be enrolled 

Table 2. Characteristics at Delivery for Women in Each Gestational Age Group

Gestation at Enrollment (weeks, days)

<35+0 35+0 to 36+6 ≥37+0

Total number of women n=287 n=137 n=201

Maternal characteristics

  Final diagnosis (exclusive), preeclampsia 176 (61) 81 (59) 89 (44)

  Final diagnosis (exclusive)

   Mild preeclampsia 25 (9) 24 (18) 40 (20)

   Severe preeclampsia 76 (26) 31 (23) 23 (11)

   Superimposed preeclampsia 40 (11) 10 (6) 7 (3)

   Atypical preeclampsia 32 (14) 15 (12) 19 (9)

   Eclampsia 1 (0) 1 (1) 0 (0)

   HELLP syndrome 2 (1) 0 (0) 0 (0)

   Gestational hypertension 27 (9) 14 (10) 42 (21)

   Chronic hypertension only 28 (10) 9 (7) 18 (9)

   Isolated proteinuria only 10 (3) 6 (4) 10 (5)

   Isolated SGA (<10th customized birthweight centile) 8 (3) 3 (2) 5 (2)

   Transient hypertension 14 (5) 17 (12) 24 (12)

   Normal 22 (8) 5 (4) 12 (6)

   Other 2 (1) 2 (1) 1 (0)

  Antihypertensive use

   1 drug 51 (18) 31 (23) 42 (21)

   2 drugs 53 (18) 9 (7) 16 (8)

   ≥3 drugs 19 (7) 8 (6) 7 (4)

   Magnesium sulfate use 6 (2) 4 (3) 0

  Onset of labor

   Spontaneous labor 42 (15) 25 (19) 59 (29)

   Induced labor 108 (38) 75 (55) 111 (55)

   Prelabor cesarean delivery 134 (47) 36 (26) 31 (16)

  Adverse maternal outcome* 122 (43) 44 (32) 53 (26)

Neonatal characteristics n=299 n=151 n=204

  Gestation at delivery, wk, median (IQR) 36.7 (33.6–38.6) 37.3 (36.6–38.4) 39.4 (38.6–40.3)

  Preterm delivery <37/40 158 (53) 55 (36) 0

  Mode of delivery

   Spontaneous vaginal delivery 72 (27) 54 (41) 98 (50)

   Assisted vaginal delivery 31 (11) 13 (9.9) 29 (15)

   Cesarean delivery 169 (62) 64 (49) 70 (35)

  Fetal death
  Neonatal death

7
2

0
0

1
0

  Birth weight, g, median (IQR) 2420 (1620–3125) 2820 (2340–3340) 3278 (2980–3560)

  SGA (<10th customized birth weight centile) 142 (47) 57 (38) 52 (25)

  SGA (<3rd customized birth weight centile) 108 (36) 39 (26) 25 (12)

  SGA (<1st customized birth weight centile) 78 (26) 19 (13) 15 (7.3)

  Adverse perinatal outcome† 69 (23) 13 (8.6) 13 (6.4)

Values are given as number (percentage) unless stated otherwise. HELLP indicates hemolysis, elevated liver enzymes, and low platelet count; IQR, interquartile range; 
and SGA, small for gestational age infant. 

*Defined in Table I in the online-only Data Supplement. 
†Defined in Table II in the online-only Data Supplement.
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once. Written informed consent was obtained, and baseline demo-
graphic and pregnancy-specific information was entered onto the 
study database (finalized before the first participant being enrolled). 
Fifteen milliliters of blood (additional to routine blood samples) were 
drawn into ethylenediamine tetra-acetic acid and transported to the 
laboratory within 1 hour, and plasma stored until analysis (−80°C). 
Pregnancy outcome details for mother and infant were obtained from 
case note and electronic database review. Participants were recruited 
until sufficient numbers in each prespecified gestational age range 
had been reached. The study was approved by East London Research 
Ethics Committee (ref. 10/H0701/117).

Definitions and outcomes were prespecified in the study proto-
col. The primary analysis was of diagnostic accuracy of low plasma 
PlGF (<5th centile for gestational age) to predict the need to deliver 
for preeclampsia within 14 days of testing in women with sus-
pected preeclampsia before 35 weeks’ gestation. The prespecified 
secondary analyses included women presenting later (35–36+6; ≥37 
weeks), or by using a lower threshold (<12 pg/mL). All hyperten-
sive disorders of pregnancy, including superimposed and severe 
preeclampsia, were defined according to the American College of 
Obstetricians and Gynaecologists practice bulletin; superimposed 
preeclampsia was defined as new-onset proteinuria in women with 
hypertension before 20 weeks, a sudden increase in proteinuria if 
already present in early gestation, a sudden increase in hyperten-
sion, or the development of hemolysis, elevated liver enzymes, and 
low platelet count (HELLP) syndrome.10 Atypical preeclampsia was 
defined by the International and Australasian Societies for the Study 
of Hypertension in Pregnancy11 as gestational hypertension without 
proteinuria but with other multiorgan involvement or fetal growth 
restriction (<10th customized birthweight centile). The latter12 was 
calculated by using the Gestation Related Optimal Weight method by 
freely available software.13

The final adjudicated diagnosis of pregnancy outcome was the refer-
ence standard for evaluating PlGF test accuracy. This was determined by 
2 independent senior physicians requiring documentation of end points 
required to fulfill the diagnostic criteria; disagreement was resolved by 

a third adjudicator. All adjudicators were masked to PlGF values when 
assigning a final diagnosis; PlGF measurements were not revealed until 
all subject adjudication was complete. Ten percent of database records 
were verified against source data by an independent assessor.

Plasma samples were tested, using the Triage PlGF Test (Alere, 
San Diego, CA), at each study center according to the manufacturer’s 
instructions. All meters were programmed for study duration to pro-
duce a masked result, determining satisfactory test completion only, 
without revealing the value. All laboratory staff were unaware of clin-
ical outcomes. To determine assay reproducibility, replicate samples 
were also tested at a central laboratory. The assay uses fluorescently 
labeled recombinant murine monoclonal antibodies and detects PlGF 
specifically and quantitatively, in the range of 12 to 3000 pg/mL, in 
≈15 minutes. The Total Precision (coefficient of variation) on plasma 
controls at concentrations of 85 and 1300 pg/mL is 12.8% and 13.2%, 
respectively, based on the manufacturer’s package insert generated 
before the study.

As prespecified, women were classified according to the gestation 
of the test, <35, 35 to 36+6, and ≥37 weeks; the test result, normal 
(≥5th centile for gestation), low (<5th centile), and very low (<12 pg/
mL); and the principal outcome, preeclampsia-D14. A positive test 
was PlGF concentration <5th centile for gestational age for normal 
controls (calculated from 247 women with normal pregnancies con-
tributing 1366 samples between 20 and 40 weeks’ gestation).14 Test 
performance was evaluated as sensitivity, specificity, positive and 
negative predictive values, positive and negative likelihood ratios, 
and receiver operating characteristics (ROC) areas. Kaplan-Meier 
survival curves of gestational age at delivery were produced, treat-
ing data as left-censored before the gestation at which the test was 
conducted or at 24 weeks (to avoid very low numbers at gestation 
of the first delivery). The curves represent the probability of deliv-
ery conditional on no delivery before the gestation of the earliest test. 
Median and interquartile ranges for the time from PlGF test to deliv-
ery were calculated. Logistic regression was used to consider whether 
the utility of PlGF was limited to women delivering small for gesta-
tional age infants. Comparison of PlGF with other standard tests for 
preeclampsia (systolic and diastolic blood pressure, proteinuria, uric 
acid, alanine transaminase) was performed for the primary outcome 
by using unadjusted PlGF concentrations. The 4 tests (excluding 
proteinuria, which amounts to confirmation of diagnosis) were com-
bined into a single predictor by using logistic regression, and ROC 
areas were compared for the prediction of the primary end point. For 
implementation to clinical practice in women <37 weeks’ gestation, 
an exploratory analysis was conducted with the aim of identifying a 
single threshold (independent of gestation) with test performance sta-
tistics similar to 5th centile, while retaining the properties of a clini-
cally relevant test (high sensitivity, high negative predictive value). We 
evaluated test biochemical reproducibility by analyzing all samples a 
second time in 1 central laboratory. The required sample sizes were 
calculated for accurate estimation of the sensitivity (within 10%) and 
specificity (within 6%) of PlGF in determining the primary end point. 
We assumed a sensitivity of 0.90, specificity 0.90, and 95% confidence 
intervals (2-tailed), requiring 62 preeclampsia cases and 150 nonpre-
eclamptic women. Because adjudication of the final diagnosis (after 
delivery) lagged behind enrollment, 287 women were recruited before 
35 weeks’ gestation before enrollment was stopped. Statistical analysis 
was performed in the statistical package Stata (version 11.2), College 
Station, TX. The study is reported in accordance with STAndards for 
the Reporting of Diagnostic accuracy studies (STARD) guidelines.

Results
Between January 2011 and February 2012, 649 women were 
recruited (Figures 1 and 2). We recruited all those who were 
approached, eligible, and consented but did not document 
women who declined to take part. Of consented women, 24 
did not have a valid baseline sample (17) or were lost to fol-
low-up (7). The characteristics of the remaining 625 women 
are shown in Table 1, maternal and infant outcomes are in 
Table 2, details of adverse maternal and perinatal outcomes 

Table 3. PlGF Concentrations in Women by Final Diagnosis 
and by Adverse Events, Stratified by Gestational Age Group

Gestation at enrollment (weeks, days)

<35+0 35+0 to 36+6 ≥37+0

Total number of women n=287 n=137 n=201

By diagnosis

  Mild preeclampsia 51 (20–228)
n=25

29 (15–65)
n=24

20 (12–30)
n =40

  Severe preeclampsia 10 (10–25)
n =79

16 (10–28)
n =32

15 (10–21)
n =23

  Superimposed 
preeclampsia

43 (10–432)
n =40

54 (28–100)
n =10

16 (10–120)
n =7

  Atypical preeclampsia 29 (10–106)
n =32

14 (12–52)
n =15

34 (14–73)
n =19

  Gestational hypertension 153 (59–407)
n =27

29 (23–97)
n =14

27 (20–64)
n =42

  All other diagnoses 291 (143–542)
n =84

104 (36–273)
n =42

52 (28–116)
n =7

By adverse events

  No event 107 (20–365)
n=168

40 (15–146)
n=95

31 (15–81)
n=150

  Systolic blood 
pressure ≥160 mm Hg only

32 (10–140)
n=80

25 (14–51)
n=28

21 (16–31)
n=31

  All other adverse events 19 (10–132)
n=39

36 (15–100)
n=14

29 (10–92)
n=20

The values stated are PlGF concentrations (pg/mL), median (IQR). IQR 
indicates interquartile range; and PlGF, placental growth factor.
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are in Tables I and II in the online-only Data Supplement, 
respectively, and unadjusted PlGF concentrations by final 
diagnosis are shown in Table 3.

The diagnostic accuracy of PlGF for predicting preeclamp-
sia-D14 (primary outcome) is shown in Table 4, with the use 
of prespecified thresholds of <5th centile and <12 pg/mL. 

Table 4. Test Performance Statistics for Low PlGF in Prediction of Adverse Outcomes

Gestation at Enrollment (weeks, days)

<35+0 35+0 to 36+6 ≥37+0

n=287 n=137 n=201

PlGF <5th centile for gestation Preeclampsia requiring delivery within 14 days

  Sensitivity
  n/N

0.96 (0.89–0.99)
73/76

0.70 (0.58–0.81)
47/67

0.57 (0.46–0.68)
49/86

  Specificity
  n/N

0.55 (0.48–0.61)
115/211

0.64 (0.52–0.75)
45/70

0.77 (0.68–0.84)
88/115

  Positive predictive value
  n/N

0.43 (0.36–0.51)
73/169

0.65 (0.53–0.76)
47/72

0.65 (0.53–0.75)
49/76

  Negative predictive value
  n/N

0.98 (0.93–0.995)
115/118

0.69 (0.57–0.80)
45/65

0.70 (0.62–0.78)
88/125

  Positive likelihood ratio 2.1 (1.8–2.5) 2.0 (1.4–2.8) 2.4 (1.7–3.5)

  Negative likelihood ratio 0.07 (0.02–0.22) 0.46 (0.31–0.71) 0.56 (0.43–0.73)

PlGF <12 pg/mL Preeclampsia requiring delivery within 14 days

  Sensitivity
  n/N

0.63 (0.51–0.74)
48/76

0.22 (0.13–0.34)
15/67

0.26 (0.17–0·36)
22/86

  Specificity
  n/N

0.90 (0.85–0.94)
190/211

0.91 (0.82–0.97)
64/70

0.89 (0.81–0.94)
102/115

  Positive predictive value
  n/N

0.70 (0.57–0.80)
48/69

0.71 (0.48–0.89)
15/21

0.63 (0.45–0.79)
22/35

  Negative predictive value
  n/N

0.87 (0.82–0.91)
190/218

0.55 (0.46–0.64)
64/116

0.61 (0.54–0.69)
102/166

  Positive likelihood ratio 6.4 (4.1–9.9) 2.6 (1.1–6.3) 2.3 (1.2–42)

  Negative likelihood ratio 0.41 (0.30–0.55) 0.85 (0.73–0.98) 0.84 (0.73–0.97)

Preeclampsia requiring delivery

PlGF <100 pg/mL Within 14 days Before 37 wk

n=287 n=137

  Sensitivity
  n/N

0.96 (0.89–0.99)
73/76

0.95 (0.83–0.99)
37/39

  Specificity
  n/N

0.56 (0.49–0.63)
118/211

0.32 (0.22–0.42)
31/98

  Positive predictive value
  n/N

0.44 (0.36–0.52)
73/166

0.36 (0.26–0.44)
37/104

  Negative predictive value
  n/N

0.98 (0.93–0.995)
118/121

0.94 (0.80–0.99)
31/33

  Positive likelihood ratio 2.2 (1.9–2.6) 1.4 (1.2–1.6)

  Negative likelihood ratio 0.07 (0.02–0.22) 0.16 (0.04–0.64)

PlGF <5th centile for gestation Small for gestational age singleton infants <1st centile

n=275 n=123

  Sensitivity
  n/N

0.93 (0.84–0.98)
63/68

0.91 (0.59–0.99)
10/11

  Specificity
  n/N

0.53 (0.46–0.60)
110/207

0.51 (0.41–0.61)
57/112

  Positive predictive value
  n/N

0.39 (0.32–0.47)
63/160

0.15 (0.08–0.27)
10/65

  Negative predictive value
  n/N

0.96 (0.90–0.99)
110/115

0.98 (0.91–1.00)
57/58

  Positive likelihood ratio 2.0 (1.7–2.3) 1.9 (1.4–2.4)

  Negative likelihood ratio 0.14 (0.06–0.3) 0.2 (0.03–1.2)

PlGF indicates placental growth factor. 
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All values, including outliers, were included. Low PlGF <5th 
centile had high sensitivities and negative predictive values 
for women tested before 35 weeks, declining at later gesta-
tions. For implementation into clinical practice for women 
presenting before 37 weeks’ gestation, an exploratory analysis 
determined that a PlGF threshold of <100 pg/mL predicted 
preeclampsia-D14 or before 37 weeks’ gestation (which-
ever was sooner) with sensitivity and negative predictive 
values similar to diagnostic accuracy estimates obtained by 
using a <5th centile cutoff (Table III in the online-only Data 
Supplement). Raw values of PlGF had higher ROC areas for 
determination of preeclampsia-D14 than PlGF categorized by 
centiles in women before 35 weeks’ gestation (Figure I in the 
online-only Data Supplement).

PlGF <5th centile also had good test accuracy for pre-
dicting subsequent delivery of a small for gestational age 
infant <1st centile (not restricted to diagnosis within 14 days 
of testing). The sensitivity of PlGF for determining pre-
eclampsia-D14 was similar if the infant was subsequently 
born appropriate-for-gestational age (before 35 weeks 0.94 
[0.71–0.99]; 35+0 to 36+6 weeks 0.88 [0.73–0.97]). There was 
no interaction between PlGF and small for gestational age as 
a predictor of preeclampsia-D14 on formal testing with the 
use of logistic regression.

For women presenting before 35 weeks’ gestation, there 
were 3 cases with false-negative results (≥5th centile), all with 
an additional indication for early delivery; 4 cases with PlGF 
<12 pg/mL were delivered after 37 weeks with severe pre-
eclampsia, 3 of whom delivered infants ≤5th customized birth-
weight centile, suggesting placental disease (Table 5). PlGF 
was <5th centile in all cases and <12 pg/mL in 4 of the 7 cases 
of antepartum fetal death (occurring after enrollment; Table 5). 
PlGF <5th centile predicted intrauterine fetal death with sen-
sitivity 1.00 (95% confidence interval, 0.71–1.00); specificity 
0.48 (0.44–0.52); positive predictive value 0.03 (0.02–0.05); 
negative predictive value 1.00 (0.99–1.00). In 5 cases, testing 
at enrollment predated Doppler ultrasound abnormalities by 7 
to 39 days and predated the stillbirth by 10 to 53 days.

The area under the ROC curve for low PlGF in predicting 
preeclampsia-D14 was greater than all other commonly used 
tests, either singly or in combination (P<0.001 for all compar-
isons; Figure 3). The addition of blood pressure or other blood 
tests currently used did not increase the ROC area further in 
comparison with PlGF alone. PlGF was a consistently good 
predictor of preeclampsia-D14 in women with and without ≥ 
1+ dipstick proteinuria. The times (in days) to delivery for the 
3 PlGF groups are presented for women with all diagnoses 
and for preeclampsia cases (Figure 4).

Table 5. False Negatives, Cases With Very Low PlGF and Term Delivery, and Antepartum Deaths in Women Presenting 
<35 Weeks’ Gestation

Subject Gestation (Sampling) Gestation (Delivery) [PlGF], pg/mL Birth Weight BW Centile
Final Adjudicated Diagnosis  

and Other Details

False negative (PlGF normal and delivered within 14 days of sampling with final diagnosis of preeclampsia)

A 28+2 29+5 1224 1330 29 Superimposed preeclampsia; SPPROM, 
spontaneous labor, cesarean delivery

B 29+6 30+0 160 1095 1 Atypical preeclampsia; reduced fetal 
movements and prelabor cesarean 

delivery

C 33+2 34+4 218 2020 5 Severe preeclampsia; previous history of 
early-onset preeclampsia

PlGF very low and not delivered preterm <37/40

D 33+6 37+5 <12 2900 34 Severe preeclampsia

E 34+1 38+1 <12 2350 3 Severe preeclampsia

F 34+2 37+0 <12 2310 5 Severe preeclampsia

G 34+2 37+2 <12 1805 0 Severe preeclampsia

Antepartum deaths

H 23+0 23+1 <12 374 0 Severe preeclampsia

I 25+3 26+6 <12 690 0.5 Severe preeclampsia with placental 
abruption

J 27+5 29+4 <12 570 0 Superimposed preeclampsia

K 28+0 30+2 59 480 0 Twin pregnancy; severe preeclampsia, 
and discordant FGR

L 28+0 35+4 17 2210 1.7 Chronic hypertension with increase 
in blood pressure; FGR not suspected 

antenatally

M 30+4 35+5 <12 2220 12 Chronic hypertension with placental 
abruption

N 33+2 38+6 39 1900 0 Gestational hypertension; FGR not 
suspected antenatally

BW indicates birth; FGR, fetal growth restriction; and SPPROM, spontaneous preterm prelabor rupture of membranes.
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For test reproducibility, 595 paired samples were measured 
both at the study site and at the central laboratory (30 results 
were unevaluable owing to error codes, or mismatched sam-
ple identifications). Four hundred twenty-five were in-range 
(between 12 and 3000 pg/mL) on both evaluations and had 
a Pearson correlation coefficient of 0.950. For all 595 PlGF 
test pairs (including out-of-range values), the Spearman (rank) 
correlation coefficient was 0.948. A Bland-Altman plot is pre-
sented in Figure II in the online-only Data Supplement. Of 
women evaluated, 85.4% would receive the same classifica-
tion in both laboratories; 11.1% moved between low and very 
low (in either direction), and a further 3.5% moved between 
low and normal. No woman moved between very low and nor-
mal. The sensitivity and specificity of the test in predicting the 

primary outcome were changed by <1% when 29 twin preg-
nancies were excluded. There were no adverse events associ-
ated with the collection of the blood necessary for performing 
PlGF testing.

Discussion
This study suggests that PlGF testing presents a realistic and 
innovative adjunct to the management of women with sus-
pected preeclampsia, especially those presenting preterm. 
Low PlGF concentration (<5th centile or ≤100 pg/mL) has 
high sensitivity and negative predictive value in determin-
ing which women presenting with suspected disease at <35 
weeks’ gestation are likely to need delivery for preeclampsia 
within 14 days. A previous review has highlighted the need 
for a test with high sensitivity in this setting, because there is 
greater preference for minimizing false negatives when con-
sidering overall benefits and harms and in ensuring appropri-
ate resource use.15 Time to delivery is markedly different for 
women with very low, low, and normal PlGF values, facilitat-
ing stratified management strategies with appropriate surveil-
lance. PlGF was more predictive of the need for delivery than 
other commonly used signs and tests, either singly or in com-
bination, in current clinical practice. Sensitivity and negative 
predictive values were also high for delivery of an small for 
gestational age infant <1st centile; this indicator is most likely 
to equate to fetal growth restriction of placental origin and 
to be associated with adverse perinatal outcomes. Although 
diagnostic accuracy is greatest for women presenting before 
35 weeks’ gestation, the test may still benefit those presenting 
up to 37 weeks’ gestation (using a threshold of <100 pg/mL) 
for whom stratified surveillance is also advantageous and the 
risks/benefits of delivery remain uncertain.

The strengths of this study include the use of multiple cen-
ters encompassing a wide demographic and ethnic profile and 
a pragmatic approach to enrollment with minimal exclusion 
criteria, enabling generalizability. The main research question 
was chosen to be clinically relevant, with the use of a primary 
outcome where delivery was indicated for the mother or infant, 
despite being preterm. Final diagnoses were independently 
adjudicated by 2 senior clinicians following database record 
review with the use of strict criteria. PlGF concentrations 
were not revealed until all diagnoses had been adjudicated, 
so that the test result could not influence decisions for deliv-
ery. Laboratory staff were also unaware of the diagnosis. The 
analysis followed prespecified methods and outcomes, with 
subsequent transparent evaluation of a single PlGF threshold 
(rather than using a variable 5th centile threshold dependent on 
gestational age) to enable easier adoption into clinical practice.

The optimal choice of primary outcome was difficult. When 
the study was planned, there was no validated composite mea-
sure of adverse outcome for women with preeclampsia. The 
fullPIERS model subsequently published used a composite 
outcome determined by iterative Delphi consensus16; com-
ponents of this composite (other than blood transfusion) are 
reported in our study. Maternal plasma PlGF normally declines 
in the latter part of the third trimester, reducing test perfor-
mance at >35 weeks’ gestation; an ideal test would maintain 
separation between preeclamptic cases and other women, 
which is probably unachievable by using a single biomarker at 
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Figure 3. ROC areas (standard error) for PlGF compared with 
5 other signs/tests (systolic and diastolic blood pressure, uric 
acid, alanine transaminase, and proteinuria) in determining 
preeclampsia requiring delivery within 14 days in 176 women 
presenting before 35+0 weeks gestation with all tests measured 
using parameters singly (A) or in combination (B). ALT indicates 
alanine transaminase; DBP, diastolic blood pressure; PlGF, 
placental growth factor; ROC, receiver operating characteristics; 
and SBP, systolic blood pressure. 
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all gestations. More accurate determination of very low PlGF 
values (less than the current limit of detection of 12 pg/mL) 
could be useful; however, the high clinical sensitivity reported 
in this study relates to the prespecified threshold of <5th centile 
(low PlGF, or PlGF <100 pg/m:) rather than very low PlGF.

This is the largest, and the first prospective multicenter, 
study to evaluate PlGF in women with suspected preeclampsia. 
Other studies have evaluated PlGF and other factors includ-
ing soluble Flt-1 (sFlt-1; soluble fms-like tyrosine kinase-1), 
a trophoblast derived antiangiogenic factor that is increased in 
plasma from preeclamptic women. A case-control study7 and a 
small prospective observational study17 using the Triage assay 
reported promising test performance. A more recent study 
using a different assay for sflt-1/PlGF ratio (Elecsys platform, 
Roche, Penzburg, Germany) found considerably lower sensi-
tivity (0.73) and negative predictive value (0.87) at high speci-
ficity (0.94) in predicting maternal adverse outcome in women 

presenting at <34 weeks’ gestation,18 a level of sensitivity that 
is unlikely to be useful in clinical practice. Direct compari-
son of assays in 128 pregnant women (44 with preeclampsia) 
confirmed higher sensitivity of the Triage test than the sflt-1/ 
PlGF ratio (Elecsys) in diagnosing early-onset preeclampsia,19 
which may relate to different target epitopes of PlGF used in 
the Triage test. Other studies have not reported sensitivity and 
specificity (recommended measures of diagnostic accuracy), 
making direct comparison difficult,20,21 have compared assays 
in women with established disease22 or have tested at a fixed 
time point rather than at presentation.23,24

Suspected preeclampsia is the most frequent clinical pre-
sentation to obstetric day care assessment units, and those 
with early-onset disease are at the greatest risk. Current signs 
and tests do not perform well in predicting need for delivery 
or adverse outcomes.25–27 We hypothesize that adding PlGF 
measurement to current clinical assessment of women with 
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Figure 4. Time to delivery (median, IQR) stratified 
by PlGF concentration for all participants and for 
preeclampsia cases. Red line indicates very low 
PlGF (<12 pg/mL); orange line, low PlGF (<5th 
centile); green line, normal PlGF (≥5th centile). 
The numbers in the table below relate to the figure 
bars. IQR indicates interquartile range; and PlGF, 
placental growth factor
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suspected preeclampsia before 37 (and particularly before 35) 
weeks’ gestation could improve risk stratification, achieve an 
earlier diagnosis based on underlying pathophysiology, enable 
individualized management of women with the disease, with 
the potential to reduce associated maternal morbidity and 
unnecessary health service usage. There may be a double 
benefit: targeting of resources to those at highest risk, while 
minimizing excessive assessment and intervention in women 
at lower risk. One decision-analytic modeling analysis has 
estimated $1400 cost saving associated with the introduction 
of PlGF testing (based on a sensitivity of 0.82) for the man-
agement of pregnant women in a UK setting.28 Cost savings 
may be greater when the Triage platform has been adapted 
to test whole blood at the point-of-care. We would propose 
that further assessment of PlGF should be undertaken in the 
context of a randomized, controlled trial, as recommended for 
all new diagnostic tests, to measure the impact on the health 
of mother and infant through changing diagnostic/ treatment 
decisions, time to treatment, and potential harms, as well.29

Hypertensive disorders of pregnancy remain a challenge 
worldwide, as indicated by the recent Global Burden of 
Disease Study30 ;improved detection and management have 
also been strongly recommended for reduction of stillbirths.31 
Although current strategies focus on blood pressure measure-
ment and assessment of end-organ damage, this study pro-
vides evidence for the recently proposed concept that better 
diagnosis results from measuring secondary rather than ter-
tiary features of preeclampsia.32
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CLINICAL PERSPECTIVE
Current management of women who present with hypertension in pregnancy or other features of suspected preeclampsia is 
hampered by the use of signs (high blood pressure) or tests (proteinuria, abnormal platelets, uric acid, alanine transaminase) 
that reflect end-organ disease and are poorly predictive of subsequent adverse outcomes. In our study, we report the first pro-
spective multicenter study of a biomarker in which we evaluated the diagnostic accuracy of placental growth factor (PlGF) 
in women presenting with suspected preeclampsia between 20 and 41 weeks’ gestation. In women presenting before 35 
weeks, low PlGF (<5th centile) had high sensitivity (0.96; 95% confidence interval, 0.89–0.99) and negative predictive value 
(0.98; 0.93–0.995) in determining delivery for confirmed preeclampsia within 14 days. The area under the receiver operating 
characteristics curve for low PlGF (0.87, standard error 0.03) was greater than all other commonly used tests, singly or in 
combination (range, 0.58–0.76). Suspected preeclampsia is the most frequent clinical presentation to obstetric assessment 
units, and those with early-onset disease are at greatest risk. We hypothesize that adding the PlGF measurement to the current 
clinical assessment of women with suspected preeclampsia before 37 (and particularly before 35) weeks’ gestation could 
improve risk stratification, achieve an earlier diagnosis based on underlying pathophysiology, enable individualized manage-
ment of women with the disease, with the potential to reduce associated maternal morbidity and unnecessary health service 
usage. There may be double benefit: targeting of resources to those at highest risk, while minimizing excessive assessment 
and intervention in women at lower risk.
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Abstract  

Objectives: To assess the diagnostic accuracy of placental growth factor (PlGF) 

and ultrasound parameters to predict delivery of a small-for-gestational-age 

(SGA) infant in women presenting with reduced symphysis-fundal height (SFH).  

Methods: Multicentre, prospective observational study recruiting 601 women 

with singleton pregnancies and reduced SFH between 24-37 weeks’ gestation 

across 11 sites in UK and Canada. Plasma PlGF concentration <5th centile, 

estimated fetal weight (EFW) <10th centile, umbilical artery Doppler pulsatility 

index >95th centile and oligohydramnios (Amniotic Fluid Index <5cm) were 

compared as predictors for a SGA infant <3rd customised birth weight centile 

(SGA-3) and adverse perinatal outcome. Test performance statistics were 

calculated for all parameters in isolation and combination. 

Results: 592 women were analysed. For predicting delivery SGA-3 (n=78), 

EFW <10th centile had 58% sensitivity (95%CI 46 to 69%) and 93% negative 

predictive value (NPV) (95%CI 90 to 95%), PlGF had 37% sensitivity (95%CI 27 

to 49%) and 90% NPV (95%CI 87 to 93%); in combination, PlGF and EFW 

<10th centile had 69% sensitivity (95%CI 55 to 81%) and 93% NPV (95%CI 89 

to 96%). The equivalent ROC areas were 0.79 (95%CI 0.74 to 0.84) for EFW 

<10th centile, 0.70 (95%CI 0.63 to 0.77) for low PlGF and 0.82 (95%CI 0.77 to 

0.86) in combination. 

Conclusions: In women presenting with reduced SFH, ultrasound parameters 

had modest test performance for predicting delivery of SGA-3. PlGF performed 

no better than EFW <10th centile in determining delivery of a SGA infant.   
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Introduction 

Fetal growth restriction (FGR) is a failure to fulfill growth potential, associated 

with increased risk of stillbirth1, neonatal morbidity2, 3 and mortality4-7. 

Complications can extend into adult life, with greater risk of cardiovascular 

disease and type 2 diabetes mellitus8. Evaluation of birth weight centile 

identifies small for gestational age (SGA) infants (typically defined as birth 

weight below the 3rd or 10th birth weight centile); these include constitutionally 

small infants and those with FGR, and as a group these pregnancies are at 

increased risk of adverse neonatal outcome9. 

Identifying the SGA infant remains challenging in the low-risk population, relying 

on imprecise techniques such as SFH measurement10. If SGA is suspected, UK 

national guidance recommends ultrasound measured abdominal circumference 

(AC) or estimated fetal weight (EFW) <10th centile to diagnose an SGA fetus11, 

12. However, a large proportion of SGA infants are not detected antenatally 

(32% of 215 high-risk women1 and 82% of 195 stillbirths with SGA13).  

UK national guidance11 does not advocate routine ultrasound measurement in 

the third trimester as a screening tool for SGA, due to poor prediction 

(sensitivity 38-51%)14-17 and no evidence of improved neonatal outcome18. 

However, preliminary results from a recent large prospective cohort study 

reported increased sensitivity of screening (79%) vs. selective (32%) 

sonography in the third trimester in an unselected nulliparous population for 

prediction of severe SGA19.  

Whilst the pathophysiology of FGR is multifactorial, placental insufficiency is 

causative in many cases. Markers of placental function could provide adjuncts 

to current techniques to identify high-risk pregnancies. Multiple biomarkers have 

been proposed to aid detection but none have sufficient accuracy for 
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incorporation into clinical practice20. However, low maternal Placental Growth 

Factor (PlGF) concentrations can distinguish placental SGA from 

constitutionally small fetuses (sensitivity 100%; specificity 86%)21 and in a high-

risk cohort with suspected preterm pre-eclampsia can predict pre-eclampsia 

and delivery of an SGA infant (birth weight <1st centile) with high sensitivity22. 

We performed a large, prospective, multicentre, cohort study in women with 

suspected SGA (reduced SFH measurement) with the aim of assessing the 

diagnostic accuracy of PlGF and ultrasound parameters to predict delivery of an 

SGA infant.  

 
Methods 
 
Participants and sampling: 

Women were enrolled from eleven consultant-led units across the United 

Kingdom and Canada between December 2011 and July 2013 (approximate 

number of deliveries per year: St Thomas’ Hospital London: 6650; St Marys’ 

Hospital Manchester: 8200; Oxford: 6550; Leeds: 9550; Sheffield: 7000; St 

Georges’ Hospital London: 4950; St Michael’s Hospital Bristol: 5500; Lewisham: 

4000; West Middlesex Hospital: 4700; Sunderland: 3200; Vancouver, Canada; 

7000). Local audit data at St Thomas’ Hospital London in the year prior to the 

study starting (2011) showed that approximately 1300 women were referred 

with reduced symphysis fundal height measurement; of these women, 8% 

delivered an SGA infant with customised birth weight less than the 3rd centile for 

gestational age. Ethical approval was granted by East London Research Ethics 

Committee (ref. 10/H0701/117).  

Women were eligible if they were aged 16 years or over, with a singleton 

pregnancy, between 24+0 and 36+6 weeks’ gestation and referred with 

suspected SGA by either: 1) SFH measuring more than 2 cm (i.e. 3 cm or more) 
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under that expected for any given gestational age in completed weeks (e.g. 

measuring 33cm or less at 36 weeks’ gestation) or 2) SFH < 10th centile on 

customised SFH chart. Women with with multiple pregnancies, SGA already 

confirmed (EFW <10th customised centile), major fetal anomaly (fetal 

malformations that affect viability and/ or the quality of life of the fetus and 

require intervention23) or confirmed rupture of amniotic membranes were 

excluded.  

Written informed consent was obtained from participants. A study specific 

database was designed and finalised prior to recruitment of the first participant. 

On the same day as the ultrasound scan, baseline demographic and pregnancy 

specific data were entered into the database and PlGF testing was performed. 

Blood was drawn into ethylenediamine tetra-acetic acid and labeled with a 

study-specific coded identifier. Samples were transported to the laboratory at 

the recruiting site and spun for 10 minutes at 3000 rpm. Plasma was extracted 

from each sample and stored at -80˚C until analysis. All samples were analysed 

for PlGF at the recruiting site using the Triage®
 
PlGF Test (Alere, San Diego, 

CA) according to manufacturer’s instructions. All laboratory staff received 

standardised training in sample processing delivered by the study monitor. All 

meters were programmed to produce a masked result, determining satisfactory 

test completion only, without revealing the value. All laboratory staff were 

masked to the clinical diagnosis. The assay uses fluorescently-labeled 

recombinant murine monoclonal antibodies and detects PlGF specifically and 

quantitatively, in the range of 12-3000 pg/mL, in approximately 15 minutes. The 

lower limit of detection of the assay is 12 pg/mL and PlGF results were 

classified as normal (PlGF ≥ 5th centile for gestational age), low (<5th centile) 

and very low (<12 pg/mL). To determine assay reproducibility, replicate 
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samples were also tested at a central laboratory. The Total Precision 

(coefficient of variation) on plasma controls at concentrations of 85 pg/mL and 

1300 pg/mL was 12.8% and 13.2%, respectively.  

All case outcomes were adjudicated by two independent senior physicians, 

without knowledge of PlGF concentrations. SGA was defined as delivery of an 

infant with a birth weight less than the 3rd (or 10th, as a secondary analysis) 

customised birth weight centile calculated using the Gestation Related Optimal 

Weight (GROW) method software24. A final maternal diagnosis was assigned 

using definitions from the American College of Obstetricians and Gynecologists’ 

practice bulletin for maternal hypertensive disorders 25 and the International and 

Australasian Societies for the Study of Hypertension in Pregnancy for atypical 

pre-eclampsia, as predefined in the study protocol 26. 

Any hospital attendances subsequent to enrolment were recorded in the study 

database, including repeat ultrasound assessments, details of delivery and 

adverse maternal and perinatal outcomes. Adverse maternal outcome was 

predefined as the presence of any of the following complications: maternal 

death, eclampsia, stroke, cortical blindness or retinal detachment, hypertensive 

encephalopathy, systolic blood pressure ≥160mmHg, myocardial infarction, 

intubation (other than for caesarean section), pulmonary oedema, platelets 

<50×109/l (without transfusion), disseminated intravascular coagulation, 

thrombotic thrombocytopenic purpura/ haemolytic uraemic syndrome, hepatic 

dysfunction (alanine transaminase ≥70iu/l), hepatic haematoma or rupture, 

acute fatty liver of pregnancy, creatinine >150 µmol/l, renal dialysis, placental 

abruption, major postpartum haemorrhage, major infection. Adverse perinatal 

outcome was defined as presence of any of the following complications: 

antepartum/ intrapartum fetal or neonatal death, neonatal unit admission for >48 



 251 

hrs at term, intraventricular haemorrhage, periventricular leucomalacia, seizure, 

retinopathy of prematurity, respiratory distress syndrome, bronchopulmonary 

dysplasia or necrotising enterocolitis. An independent data monitor conducted 

regular data monitoring at all sites. 

Sample size and power:  

The study was powered on the basis of the number of cases needed to reliably 

distinguish good (80%) from moderate (60%) sensitivity. 55 cases were needed 

for 90% power and 5% significance. This number was met for all endpoints by 

recruiting 601 women, giving 78 cases of SGA <3rd birth weight centile.   

Statistical analysis: 

The predefined primary outcome (reference standard) was delivery of a SGA 

infant < 3rd customised birth weight centile, calculated using version 6.7 of 

Gestation Related Optimal Weight (GROW) calculator. SGA < 10th centile, and 

adverse perinatal outcomes were considered as secondary outcomes.  

Gestational-adjusted centiles for PlGF from a large low-risk antenatal population 

were used.27 An abnormal result was taken as maternal PlGF concentration 

below the 5th centile, as this has previously been shown to offer a combination 

of high sensitivity and acceptable specificity for pre-eclampsia and SGA, with a 

high negative predictive value.22 PlGF and three ultrasound parameters (EFW 

<10th centile, oligohydramnios, defined as an amniotic fluid index <5 cm and 

umbilical artery Doppler pulsatility index >95th centile) were compared, both in 

isolation and in combination, as predictors of delivery of an SGA infant <3rd and 

<10th customised centiles. Gestation adjusted centiles were calculated for each 

observed value of umbilical artery Doppler pulsatility index (UAPI) based on a 

mean value of 0.405 -0.0134 x gestational age in weeks’, and a standard 
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deviation of 0.0794 for the log10 UAPI 28. Sensitivity, specificity and positive and 

negative predictive values were calculated with 95% confidence intervals. 

Receiver operator characteristic (ROC) curve areas were also calculated for 

each individual parameter and combinations, and in a pre-defined subgroup 

who delivered within six weeks of PlGF sampling. Fisher’s exact test was used 

to compare the event rate in women with normal and low PlGF measurements. 

Statistical analysis was carried out in the Stata statistical package (version 11.2, 

StataCorp, College Station, Texas, USA).  

This study is reported in accordance with the STAndards for the Reporting of 

Diagnostic accuracy studies (STARD) guidelines (Table S1). 

 
Results 
 
601 women presenting with suspected SGA between 24+0 and 36+6 weeks’ 

gestation were recruited across 11 sites between December 2011 and July 

2013. We recruited all women who were approached, eligible and consented 

but did not document women who declined to participate. No outcome data 

were available for two participants and five women did not have PlGF results 

generated by the test meter. A further two women had no ultrasound data at 

enrolment available. After exclusion of these nine cases, 592 women were 

included in this analysis. Of these women, 192 delivered an SGA infant with 

birth weight <10th customised centile and 78 had a birth weight <3rd customised 

centile (Figure 1). 

Characteristics of participants at booking are given in Table 1; higher rates of 

smoking were observed in women who delivered an SGA infant. Table 2 

displays baseline characteristics at study enrolment. Details of maternal and 

neonatal outcomes and final adjudicated maternal diagnoses are shown in 
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Table 3. The majority of women (n=555) experienced no maternal complications 

during their pregnancy. Whilst the number of cases complicated by pre-

eclampsia was small (n=16) most of these women delivered an SGA infant 

(n=12). Of 13 cases with adverse perinatal outcome there was one stillbirth, 

four cases of respiratory distress syndrome and nine infants admitted to the 

Neonatal Unit at term for greater than 48 hrs. 

Induction of labour and caesarean section occurred more frequently in 

pregnancies delivering an SGA infant, compared to those with birth weights 

appropriate for gestational age. Maternal and perinatal adverse outcomes were 

reported in 3.2% and 2.2% of women and infants respectively. Both 

complications were higher in pregnancies with delivery of an SGA infant (4.7% 

and 3.1% respectively).  

The median concentration of PlGF according to birth weight was 94.5 pg/ml 

(Interquartile Range (IQR) 36.3 to 324 pg/ml) for SGA <3rd centile, 253 pg/ml 

(IQR 125 to 631 pg/ml) for SGA <10th centile and 311 pg/ml (IQR 131 to 742 

pg/ml) for birth weight ≥ 10th centile. The diagnostic accuracy of PlGF and 

ultrasound parameters to determine SGA <3rd and <10th centile are shown in 

Table 4, with EFW having the highest sensitivity and negative predictive value 

of all parameters assessed. Addition of PlGF to currently utilised ultrasound 

parameters altered test sensitivity from 58% to 69% (NPV 93 to 93%) in 

determining SGA <3rd centile and from 47% to 57% (NPV 77 to 78%) in 

determining SGA <10th centile. For women presenting prior to 37 weeks’ 

gestation in whom EFW was measured as ≥10th centile, low PlGF 

concentrations at the time of scanning (<5th centile) would have detected an 

additional nine women with subsequent SGA <3rd centile. This difference in 
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SGA <3rd centile between those with normal PlGF (5.9%; 23/390) compared to 

those with low PlGF (20.5%; 9/44) is significant (p=0.002 by Fisher’s exact test). 

In the whole cohort, the ROC area was higher for EFW <10th centile (0.79; 95% 

CI 0.74 to 0.84) than for low PlGF (0.70; 95% CI 0.63 to 0.77) for prediction of 

SGA < 3rd centile; in combination this increased to 0.82 (95% CI 0.77 to 0.86) 

(Figure 2A). In a planned subgroup analysis of 267 women where delivery 

occurred within six weeks of PlGF sampling (Table S2), ROC areas were 0.76 

(95% CI 0.69 to 0.84) 0.74 (95% CI 0.66 to 0.83) and 0.81 (95% CI 0.72 to 

0.88) for EFW <10th centile, low PlGF and a combination of both parameters 

respectively (Figure 2B).  

The outcomes of 16 participants with a very low PlGF concentration (<12 pg/ml, 

lower level of assay detection) at enrolment, are shown in Table S3. Seven 

women had hypertensive complications of pregnancy (7/16; (44%) versus 

17/577; (3%) in the rest of the cohort) and 11 women delivered an SGA infant 

with birth weight <10th customised centile. 

There were no adverse events associated with blood sampling for PlGF 

measurement. 

 
Discussion 
 

In this multicentre, prospective cohort study of women presenting with reduced 

SFH measurement, currently utilised ultrasound parameters including EFW 

<10th centile had modest test performance for predicting delivery of an SGA 

infant. Maternal PlGF measurement performed no better than these ultrasound 

parameters and provided only minimal increments in overall test performance 

when used in combination. This contrasts with the findings of our previous 

study, assessing the diagnostic accuracy of PlGF in women with suspected pre-
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eclampsia, which reported excellent performance of PlGF (sensitivity 93% and 

NPV 96%) in predicting SGA in women presenting before 35 weeks’ 

gestation22.  

There are several possible explanations for differences observed in these 

studies. The majority of women recruited to this study reported here had no 

maternal complications of pregnancy (556/592; 93%) and only 24 (4%) had a 

hypertensive disorder. This contrasts with our previous high-risk cohort, where 

61% of women enrolled before 35 weeks’ gestation developed pre-eclampsia22. 

Differing pathological processes may occur in the placentas of pregnancies 

complicated by hypertensive disease, particularly if early onset, and those who 

remain normotensive but deliver an SGA infant29. The gestation at delivery of 

SGA infants <3rd centile in this study was 38.7 weeks (with 5% adverse 

perinatal outcome), compared to 33.8 weeks (with 39% adverse perinatal 

outcome) in the previous study, emphasizing the likely different placental 

pathophysiology. The average gestational age was 34 weeks at PlGF sampling 

and 40 weeks at delivery. PlGF appears to have limited clinical utility in women 

presenting late in pregnancy and delivering near term. This may reflect 

convergence of PlGF measurements between normal and pathological 

pregnancies with advancing gestation27 and the heterogeneous aetiology of 

SGA even when categorised as birth weight <3rd customised centile. PlGF is an 

angiogenic factor produced principally by trophoblast cells. Low maternal 

plasma PlGF concentrations reflect placental dysfunction and have been 

described in early onset pre-eclampsia and SGA associated with abnormal 

placental pathology21. 

It is particularly notable that adverse perinatal outcome occurred infrequently 

(2.2%) in this study; this makes conclusions regarding the ability of PlGF to 
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determine adverse outcomes impossible. The single case of stillbirth had 

normal PlGF concentration and was not SGA, therefore placental insufficiency 

is an unlikely aetiology. The neonatal characteristics (Table 3) are markedly 

different to that described in the previous PlGF study, in which nine (2.1%) 

cases of stillbirth/neonatal death were reported with adverse perinatal outcome 

in 19%22. 

This is the largest reported prospective study evaluating the ability of third 

trimester PlGF to predict delivery of an SGA infant in women presenting with 

reduced SFH. Recruitment from 11 centres across the UK and Canada 

provided a diverse ethnic and geographical population. PlGF was measured at 

the recruiting site, as would occur if adopted into clinical practice. PlGF results 

were concealed until assignment of a final maternal diagnosis at study 

completion. The study entry criterion, reduced SFH, was selected for clinical 

relevance, reflecting current referral practice in the UK. A primary endpoint of 

delivering an infant < 3rd customised birth weight centile was selected as it 

includes fewer constitutionally small infants and has a stronger association with 

perinatal mortality7.  

This study only included PlGF measurement at study enrolment. Serial 

measurements to assess whether longitudinal changes in PlGF correlate with 

evolving placental dysfunction could be informative. Where routine antenatal 

third trimester ultrasound in low risk women is performed, the findings of this 

study may be less applicable. 

A systematic review evaluating biomarkers for predicting FGR identified 13 

studies that reported test performance for PlGF in predicting delivery of an SGA 

infant20. In a subgroup of studies recruiting women after 20 weeks’ gestation, 

the pooled PlGF sensitivity (at various thresholds) for prediction of intrauterine 



 257 

growth restriction (by differing definitions) was 49% (95% CI 44-53%). 

Comparisons were difficult due to heterogeneity between studies. The majority 

were case-control studies with only two cohort studies recruiting women over 20 

weeks’ gestation. Of these, one was in an abnormal population (abnormal 

uterine artery Doppler waveforms at 20 weeks’ gestation) while in the other, 

delivery of an SGA infant was a secondary endpoint. No cohort studies 

recruiting in the third trimester were evaluated. A recent study evaluated 

maternal PlGF concentration at a fixed time point (30-34 weeks’ gestation) and 

reported increased adjusted odds ratio for PlGF combined with other 

angiogenic factors in prediction of delivering an SGA infant but did not provide 

test performance statistics to enable comparison30. 

The capabilities of current standard ultrasound parameters to determine 

delivery of an SGA infant must also be considered. A large study published a 

sensitivity of 27% for SFH measurement to predict delivery of an SGA infant10. 

Reported test performance of EFW <10th centile to predict pregnancies 

delivering an SGA infant (sensitivity 21-46%; NPV 90-94%)14, 17. are similar to 

those published in this cohort (sensitivity 48%; NPV 77%). Three Cochrane 

systematic reviews evaluating SFH31, routine ultrasound measurement 

(including EFW)18 and fetal and umbilical artery doppler assessment in low-risk 

pregnancy32 concluded that none of these techniques reduced adverse 

perinatal outcome. Use of customised SFH charts and EFW centiles, which 

adjust for maternal characteristics, may improve SGA detection33, prediction of 

delivering an SGA infant13, 34 and adverse outcome, including stillbirth35 and 

neonatal death36. Implementation of customised charts in conjunction with 

accredited training is associated with reduction in stillbirth rates in areas of high 

uptake37 but has not been validated in a randomised control trial.   
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A systematic review and meta-analysis assessing amniotic fluid index reported 

strong correlation between oligohydramnios and delivering an SGA infant (birth 

weight <10th centile) and mortality but the predictive accuracy for perinatal 

outcome was poor38. This agrees with our findings of high specificity for delivery 

of an SGA infant (99.6%, 95%CI 97.6-100%) but low sensitivity (3.4% 95% CI 

0.9-8.5%), limiting clinical application without incorporating other clinical factors. 

Novel ultrasound parameters such as the cerebroplacental ratio have been 

reported as potentially useful in predicting neonatal unit admission and 

validation is awaited39.   

We previously suggested PlGF measurement as a useful adjunct to current 

clinical practice in women with suspected preterm pre-eclampsia, but the 

findings from this study cannot support its use in women with reduced SFH. 

Whilst EFW < 10th centile has only modest test performance for prediction of 

SGA, addition of PlGF measurement does not significantly improve test 

performance. This study highlights the need for caution in generalising findings 

from one population to another and alerts against overenthusiastic adoption of 

novel biomarkers without appropriate evaluation. 
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Table 1: Characteristics of participants at booking. Values given are median 

(quartiles) or n (%) as appropriate.  

 SGA <3rd 

centile (n=78) 

SGA <10th 

centile 

(n=192) 

Women with 

infant ≥10th 

centile 

(n=400) 

All women 

(n=592) 

General 

maternal  

    

Age (years) 29.1  

(24.1 to 32.9) 

29.6  

(24.8 to 33.5) 

30.0  

(25.3 to 33.7) 

29.9  

(25.2 to 33.6) 

Body Mass Index 

at booking 

(kg/m2) 

22.9  

(20.3 to 25.2) 

21.7  

(20.1 to 24.1) 

21.5  

(20.0 to 23.4) 

21.5  

(20.0 to 23.6) 

White ethnicity 52 (66.7) 122 (63.5) 266 (66.5) 388 (65.5) 

Primiparity  65 (83.3) 163 (84.9) 344 (86.0) 507 (85.6) 

Highest first 

trimester systolic 

BP (mmHg) 

105  

(100 to 114) 

105  

(100 to 114) 

104  

(100 to 112) 

105  

(100 to 112) 

Highest first 

trimester diastolic 

BP (mmHg) 

63  

(60 to 70) 

62  

(60 to 70) 

60  

(60 to 69) 

61  

(60 to 70) 

Smoking status     

Never smoked 46 (59) 128 (66.7) 306 (76.5) 434 (73.3) 

Quit smoking 

before pregnancy 

9 (11.5) 22 (11.5) 31 (7.8) 53 (8.9) 

Quit smoking 10 (12.8) 16 (8.3) 24 (6.0) 40 (6.7) 
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during pregnancy 

Current smoker 13 (16.7) 26 (13.5) 39 (9.8) 65 (11.0) 

Drug use     

History of drug 

use*  

5 (6.4) 6 (3.1) 3 (0.8) 9 (1.5) 

Current drug user 

† 

1 (1.3) 2 (1.0) 0 (0.0) 2 (0.3) 

Previous 

medical history 

    

Pre-eclampsia 

requiring delivery 

<34/40 

0 (0) 0 (0) 1 (0.3) 1 (0.2) 

Chronic 

hypertension 

0 (0) 1 (0.5) 1 (0.3) 2 (0.3) 

SLE/ APS 1 (1.3) 1 (0.5) 0 (0) 1 (0.2) 

Pre-existing 

diabetes mellitus  

0 (0) 0 (0) 1 (0.3) 1 (0.2) 

Renal disease 0 (0) 0 (0) 0 (0) 0 (0) 

Self-report of 

previous small 

baby  

9 (11.5) 22 (11.5) 27 (6.8) 49 (8.3) 

BP, blood pressure, SLE/ APS, Systemic lupus erythematosus/ anti-

phospholipid syndrome 

*Drugs used before pregnancy: include cannabis, cocaine, ecstasy, 

amphetamines (speed, crystal meth) and heroin. 

†Drugs used during pregnancy: Cannabis only (rare or occasional)  



 264 

Table 2: Baseline characteristics of participants at study enrolment. Values 

given are median (quartiles) or n (%) as appropriate.  

 SGA <3rd 

centile 

(n=78) 

SGA <10th 

centile 

(n=192) 

Women with 

infant ≥10th 

centile 

(n=400) 

All women 

(n=592) 

Gestational age at 

study enrolment 

(days) 

238  

(221 to 250) 

235 

(213 to 250) 

236  

(214 to 250) 

236  

(213 to 250) 

Maternal BP     

Highest systolic BP  

(mmHg)  

118 

(109 to129) 

115 

(102 to 121) 

110 

(101 to 118) 

110 

(101 to120) 

Highest diastolic 

BP (mmHg)  

70 

(60 to 81) 

70 

(60 to 80) 

67 

(60 to 73) 

68 

(60 to 74) 

Dipstick 

proteinuria 

    

Not done 11 (14.1) 29 (15.1) 61 (15.3) 90 (15.2) 

Negative 58 (74.4) 148 (77.1) 322 (80.5) 470 (79.4) 

Present (+1 or 

greater) 

9 (11.5) 15 (7.8) 17 (4.3) 32 (5.4) 

Complications in 

current pregnancy 

    

Gestational 

hypertension 

4 (5.1) 4 (2.1) 0 (0) 4 (0.7) 

Pre-eclampsia 0 (0) 1 (0.5) 1 (0.3) 2 (0.3) 

Gestational 1 (1.3) 3 (1.5) 4 (1.0) 7 (1.2) 
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BP, blood pressure, EFW, Estimated fetal weight <10th centile 

  

diabetes 

Intrahepatic 

cholestasis of 

pregnancy 

0 (0.0) 1 (0.5) 2 (0.5) 3 (0.5) 

Fetal      

EFW < 10th centile 44 (57.9) 88 (47.1) 64 (16.3) 152 (25.9) 

Oligohydramnios 

(AFI < 5 cm) 

2 (3.6) 

(n=54) 

4 (3.3) 

(n=118) 

1 (0.4) 

(n=228) 

5 (1.4) 

(n=346) 

Absent/ reversed 

umbilical artery 

Doppler flow 

1 (1.3) 

(n=76) 

1 (0.6) 

(n=176) 

1(0.3) 

(n= 358) 

2 (0.4) 

(n=534) 

Umbilical artery 

Doppler pulsatility 

index > 95th centile 

10 (16.1) 

(n=61) 

12 (8.2) 

(n=147) 

14 (4.5) 

(n=312) 

26 (5.7) 

(n=458) 
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Table 3: Characteristics of delivery and maternal and neonatal outcome. Values 

given are median (quartiles) or n (%) as appropriate.  

 

 SGA <3rd 

centile 

(n=78) 

SGA <10th 

centile 

(n=192) 

Women with 

infant ≥10th 

centile 

(n=400) 

All women 

(n=592) 

Median gestation 

at delivery (weeks) 

38.7 

(37.1 to 40.1) 

39.4 

(38.0 to 40.4) 

40.0 

(39.0 to 40.9) 

39.9 

(38.9 to 40.7) 

Maternal 

diagnosis 

    

No new maternal 

disease in 

pregnancy 

68 (86.3) 173 (89.2) 382 (95.5) 555 (93.4) 

Pre-eclampsia 8 (10.0) 12 (6.2) 4 (0.99) 16 (2.7) 

Gestational 

hypertension 

0 (0) 0 (0) 8 (1.9) 8 (1.3) 

Chronic 

hypertension 

0 (0) 2 (1.0) 0 (0) 2 (0.3) 

Other diagnosis 2 (2.5) 5 (2.6) 6 (1.5) 11 (1.8) 

Maternal 

medications 

    

Dexamethasone 5 (6.4) 7 (3.6) 4 (1.0) 11 (1.8) 

Betamethasone 2 (2.6) 4 (2.1) 0 (0) 4 (0.7) 

Methyldopa 2 (2.6) 2 (1.0) 0 (0) 2 (0.3) 

Labetalol 6 (7.7) 9 (4.7) 2 (0.5) 11 (1.8) 
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Heparin 1 (1.3) 2 (1.0) 3 (0.8) 5 (0.8) 

Nifedipine 1 (1.3) 2 (1.0) 1 (0.3) 3 (0.5) 

Aspirin 3 (3.8) 4 (2.1) 8 (2.0) 12 (2.0) 

Oral 

corticosteroids 

0 (0) 3 (1.6) 2 (0.5) 5 (0.8) 

Onset of labour     

Spontaneous 24 (30.8) 99 (51.6) 300 (75.0) 399 (67.4) 

Induced 41 (52.6) 67 (34.9) 66 (16.5) 133 (22.5) 

Pre-labour 

caesarean section 

13 (16.7) 26 (13.5) 34 (8.5) 60 (10.1) 

Mode of delivery     

Spontaneous 48 (61.5) 125 (65.1) 279 (69.8) 404 (68.2) 

Assisted vaginal 

delivery 

8 (10.3) 23 (12.0) 66 (16.5) 89 (15.0) 

Caesarean section 22 (28.2) 44 (22.9) 55 (13.8) 99 (16.7) 

Adverse maternal 

outcome ‡ 

5 (6.4) 9 (4.7) 10 (2.5) 19 (3.2) 

Postpartum 

haemorrhage 

2 (2.6) 5 (2.6) 7 (1.8) 12 (2.0) 

Abruption 1 (1.3) 1 (0.5) 1 (0.3) 2 (0.3) 

HELLP 0 (0) 0 (0) 1 (0.3) 1 (0.2) 

Fetal      

Fetal death 0 (0) 0 (0) 1 (0.3) 1 (0.2) 

Neonatal death 0 (0) 0 (0) 0 (0) 0 (0) 

Median birth 

weight 

2375 

(2100 to 

2660 

(2360 to 

3214 

(3000 to 

3050 

(2740 to 
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2610) 2854) 3470) 3329) 

Adverse perinatal 

outcome § 

4 (5.1) 6 (3.1) 7 (1.8) 13 (2.2) 

 

HELLP, haemolysis, elevated liver enzymes, low platelets. 

‡ Adverse maternal outcome defined as presence of any of the following 

complications: Maternal death, Eclampsia, Stroke, Cortical blindness or retinal 

detachment, Hypertensive encephalopathy, Systolic blood pressure 

≥160mmHg, Myocardial infarction, Intubation (other than for caesarean section), 

Pulmonary oedema, Platelets <50×109/L (without transfusion), Disseminated 

intravascular coagulation, Thrombotic thrombocytopenic purpura/ haemolytic 

uraemic syndrome, Hepatic Dysfunction (Alanine transaminase ≥70IU/L), 

Hepatic haematoma or rupture, Acute fatty liver of pregnancy, Creatinine >150 

µmol/L, Renal dialysis, Placental abruption, Major postpartum haemorrhage, 

Major infection. 

§ Adverse perinatal outcome defined as presence of any of the following 

complications: Antepartum/ intrapartum fetal or neonatal death, Neonatal unit 

admission for >48 hrs at term, Intraventricular haemorrhage, Periventricular 

leucomalacia, seizure, retinopathy of prematurity, respiratory distress 

syndrome, bronchopulmonary dysplasia or necrotising enterocolitis.  
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Table 4: Test performance statistics for PlGF and ultrasound parameters (with 

95 % confidence intervals) to predict SGA <3rd and <10th centiles (n = 592).  

Biomarker/ clinical 

indicator 

Sensitivity % 

(95% CI)  

n/N 

Specificity % 

(95% CI)  

n/N 

PPV %  

(95% CI) n/N 

NPV %  

(95% CI)  

n/N 

SGA <3rd centile     

EFW <10th centile 57.9 

(46.0 to 69.1) 

44/76 

78.8 

(75.0 to 82.3) 

402/510 

28.9 

(21.9 to 36.8) 

44/152 

92.6 

(89.8 to 94.9) 

402/434 

Oligohydramnios  

(AFI < 5 cm) 

3.7 

(0.5 to 12.7) 

2/54 

99.0 

(97.0 to 99.8) 

289/292 

40.0 

(5.3 to 85.3) 

2/5 

84.8 

(80.5 to 88.4) 

289/341 

Umbilical artery 

Doppler PI >95th 

centile 

16.4 

(8.2 to 28.1) 

10/61 

96.0 

(93.5 to 97.7) 

381/395 

38.5 

(20.2 to 59.4) 

10/26 

88.2 

(84.8 to 91.1) 

381/432 

PlGF <5th centile 37.2 

(26.5 to 48.9) 

29/78 

88.7 

(85.7 to 91.3) 

456/514 

33.3 

(23.6 to 44.3) 

29/87 

90.3 

(87.4 to 92.7) 

456/505 

Combinations     

Abnormal AFI or 

EFW 

57.7 

(43.2 to 71.3) 

30/52 

79.0 

(73.9 to 83.6) 

230/291 

33.0 

(23.5 to 43.6) 

30/91 

91.3 

(87.1 to 94.4) 

230/252 

Abnormal PlGF or 

AFI or EFW 

69.2 

(54.9 to 81.3) 

36/52 

72.2 

(66.6 to 77.2) 

210/291 

30.8 

(22.6 to 40.0) 

36/117 

92.9 

(88.8 to 95.9) 

210/226 

SGA <10th centile     
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EFW <10th centile 47.1 

(39.7 to 54.5) 

88/187 

84.0 

(80.0 to 87.4) 

335/399 

57.9 

(49.6 to 65.8) 

88/152 

77.2 

(72.9 to 81.1) 

335/434 

Oligohydramnios  

(AFI <5 cm) 

3.4 

 (0.9 to 8.5) 

4/118 

99.6 

(97.6 to 100) 

227/228 

80.0 

(28.4 to 99.5) 

4/5 

66.6 

(61.3 to 71.6) 

227/341 

Umbilical artery 

Doppler PI >95th 

centile  §§ 

8.2 

(4.3 to 13.8) 

12/147 

95.5 

(92.6 to 97.5) 

297/311 

46.2 

(26.6 to 66.6) 

12/26 

68.8 

(64.1 to 73.1) 

297/432 

PlGF <5th centile 24.5 

(18.6 to 31.2) 

47/192 

90.0 

(86.6 to 92.8) 

360/400 

54.0 

(43.0 to 64.8) 

47/87 

71.3 

(67.1 to 75.2) 

360/505 

Combinations     

Abnormal AFI or 

EFW 

48.7 

(39.3 to 58.2) 

56/115 

84.6 

(79.3 to 89.1) 

193/228 

61.5 

(50.8 to 71.6) 

56/91 

76.6 

(70.9 to 81.7) 

193/252 

Abnormal PlGF or 

AFI or EFW 

57.4 

(47.8 to 66.6) 

66/115 

77.6 

(71.7 to 82.9) 

177/228 

56.4 

(46.9 to 65.6) 

66/117 

78.3 

(72.4 to 83.5) 

177/226 

EFW, Estimated fetal weight <10th centile; PI, pulsatility index; PlGF, placental 

growth factor 

Footnote: AFI and umbilical artery Doppler were not recorded for all subjects 

  



 271 

Table S1: STARD checklist for reporting of studies of diagnostic accuracy  

 

Section and 

Topic 

Item 

# 

 On page # 

TITLE/ 

ABSTRACT/ 

KEYWORDS 

1 Identify the article as a study of diagnostic 

accuracy (recommend MeSH heading 

'sensitivity and specificity'). 

Title page 1 

INTRODUCTION 2 State the research questions or study aims, 

such as estimating diagnostic accuracy or 

comparing accuracy between tests or across 

participant groups. 

Page 7 

METHODS    

Participants 3 The study population: The inclusion and 

exclusion criteria, setting and locations where 

data were collected. 

Page 7&8 

 4 Participant recruitment: Was recruitment based 

on presenting symptoms, results from previous 

tests, or the fact that the participants had 

received the index tests or the reference 

standard? 

Page 5 

 5 Participant sampling: Was the study population 

a consecutive series of participants defined by 

the selection criteria in item 3 and 4? If not, 

specify how participants were further selected. 

Results  

page 8 
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 6 Data collection: Was data collection planned 

before the index test and reference standard 

were performed (prospective study) or after 

(retrospective study)? 

Page 5 

Test methods 7 The reference standard and its rationale. Pages 6 & 

7 

 8 Technical specifications of material and 

methods involved including how and when 

measurements were taken, and/or cite 

references for index tests and reference 

standard. 

Pages 8&9 

 9 Definition of and rationale for the units, cut-offs 

and/or categories of the results of the index 

tests and the reference standard. 

Pages 8&9 

 10 The number, training and expertise of the 

persons executing and reading the index tests 

and the reference standard. 

Page 8 

 11 Whether or not the readers of the index tests 

and reference standard were blind (masked) to 

the results of the other test and describe any 

other clinical information available to the 

readers. 

Page 8 

Statistical 

methods 

12 Methods for calculating or comparing measures 

of diagnostic accuracy, and the statistical 

methods used to quantify uncertainty (e.g. 95% 

confidence intervals). 

Page 10 

 13 Methods for calculating test reproducibility, if 

done. 

Page 9 
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RESULTS    

Participants 14 When study was performed, including beginning 

and end dates of recruitment. 

Page 12 

 15 Clinical and demographic characteristics of the 

study population (at least information on age, 

gender, spectrum of presenting symptoms). 

Table 1 

 16 The number of participants satisfying the criteria 

for inclusion who did or did not undergo the 

index tests and/or the reference standard; 

describe why participants failed to undergo 

either test (a flow diagram is strongly 

recommended). 

Figure 1 

Test results 17 Time-interval between the index tests and the 

reference standard, and any treatment 

administered in between. 

Tables 2 & 

3 

 18 Distribution of severity of disease (define 

criteria) in those with the target condition; other 

diagnoses in participants without the target 

condition. 

Table 3 

 19 A cross tabulation of the results of the index 

tests (including indeterminate and missing 

results) by the results of the reference standard; 

for continuous results, the distribution of the test 

results by the results of the reference standard. 

Table 4 

Results 

page 9 

 20 Any adverse events from performing the index 

tests or the reference standard. 

There were 

no adverse 

events 
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Estimates 21 Estimates of diagnostic accuracy and measures 

of statistical uncertainty (e.g. 95% confidence 

intervals). 

Table 4 and 

figure 2 

 22 How indeterminate results, missing data and 

outliers of the index tests were handled. 

Figure 1 

 23 Estimates of variability of diagnostic accuracy 

between subgroups of participants, readers or 

centers, if done. 

Not 

applicable 

 24 Estimates of test reproducibility, if done.      Page 9 

DISCUSSION 25 Discuss the clinical applicability of the study 

findings. 

Page 18 
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Table S2: Test performance statistics for PlGF and ultrasound parameters (with 

95% confidence intervals) to predict SGA <3rd centile when PlGF sampled 

within 6 weeks of delivery (n=267).  

Biomarker/ 

clinical indicator 

Sensitivity % 

(95% CI) n/N 

Specificity % 

(95% CI) n/N 

PPV %  

(95% CI) n/N 

NPV %  

(95% CI) n/N 

EFW <10th 

centile 

62.2  

(46.5 to 76.2) 

28/45 

73.0 

(66.6 to 78.7) 

162/221 

31.8 

(22.3 to 42.6) 

28/88 

90.5 

(85.2 to 94.4) 

162/179 

Oligohydramnios  

(AFI < 5 cm) 

5.9 

(0.7 to 19.7) 

2/34 

97.7 

(93.4 to 99.5) 

126/129 

40.0 

(5.3 to 85.3) 

2/5 

79.7 

(72.6 to 85.7) 

126/158 

Umbilical artery 

Doppler PI >95th 

centile 

22.2 

(10.1 to 39.2) 

8/36 

96.0 

(91.9 to 98.4) 

167/174 

53.3 

(26.6 to 78.7) 

8/15 

85.6 

(79.9 to 90.2) 

167/195 

PlGF < 5th 

centile 

42.2 

(27.7 to 57.8) 

19/45 

86.6 

(81.4 to 90.8) 

194/224 

38.8 

(25.2 to 53.8) 

19/49 

88.2 

(83.2 to 92.1) 

194/220 

Combinations  

Abnormal AFI or 

EFW 

62.5 

(43.7 to 78.9) 

20/32 

67.2 

(58.3 to 75.2) 

86/128 

32.3 

(20.9 to 45.3) 

20/62 

87.8 

(79.6 to 93.5) 

86/98 

Abnormal PlGF 

or AFI or EFW 

70.0 

(50.6 to 85.3) 

21/30 

58.3 

(49.2 to 67.0) 

74/127 

28.4 

(18.5 to 40.1) 

21/74 

89.2 

(80.4 to 94.9) 

74/83 

EFW, Estimated fetal weight <10th centile; PI, pulsatility index; PlGF, placental 

growth factor 
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Table S3: Maternal outcomes for women with very low PlGF (<12 pg/mL) at 

sampling. There were no fetal or neonatal complications in this group. 

 

 

Subject 

ID 

Gestation 

at 

sampling 

Gestation 

at 

delivery 

Birth 

weight (g) 

Customised 

birth weight 

centile 

Maternal 

complications 

A 30+0 33+6 1935 10.1 HELLP 

Syndrome 

B 31+4 33+3 1305 0 Severe pre-

eclampsia 

C 31+4 35+4 1825 1.2 Gestational 

diabetes 

mellitus 

D 34+2 39+3 2530 2.7 Atypical pre-

eclampsia 

E 35+2 37+0 2225 0.6 Severe pre-

eclampsia 

F 35+5 36+6 2905 38.5 None 

G 35+5 38+0 2330 2.6 None 

H 35+6 38+0 2260 9.5 Severe pre-

eclampsia 

I 36+0 36+4 2525 38.4 Mild pre-

eclampsia 

J 36+0 37+6 1958 0.1 None 

K 36+1 39+0 2765 8.8 None 
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L 36+3 38+3 2600 17.4 None 

M 36+3 41+1 2710 1.3 None 

N 36+4 37+1 2000 0.3 None 

O 36+4 37+3 2398 6.0 Chronic 

hypertension 

P 36+6 40+2 3720 63.2 Gestational 

hypertension 

 

HELLP, haemolysis, elevated liver enzymes, low platelets. 

 
 

 


