
 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 

 

 
 

 

 

King’s Research Portal 
 

Document Version
Peer reviewed version

Link to publication record in King's Research Portal

Citation for published version (APA):
Coles, A. J., Coles, A. I., & Beck, J. C. (2019). Efficient Temporal Planning Using Metastates. In Proceedings of
the Thirty Third AAAI Conference on Artificial Intelligence AAAI Press.

Citing this paper
Please note that where the full-text provided on King's Research Portal is the Author Accepted Manuscript or Post-Print version this may
differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version for pagination,
volume/issue, and date of publication details. And where the final published version is provided on the Research Portal, if citing you are
again advised to check the publisher's website for any subsequent corrections.

General rights
Copyright and moral rights for the publications made accessible in the Research Portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognize and abide by the legal requirements associated with these rights.

•Users may download and print one copy of any publication from the Research Portal for the purpose of private study or research.
•You may not further distribute the material or use it for any profit-making activity or commercial gain
•You may freely distribute the URL identifying the publication in the Research Portal
Take down policy
If you believe that this document breaches copyright please contact librarypure@kcl.ac.uk providing details, and we will remove access to
the work immediately and investigate your claim.

Download date: 08. Jan. 2025

https://kclpure.kcl.ac.uk/portal/en/publications/eb95c599-13a2-48df-931b-a30f2cda59b7


Efficient Temporal Planning Using Metastates

Amanda Coles∗ and Andrew Coles∗ and J. Christopher Beck†
* Department of Informatics, King’s College London, UK.

† Department of Mechanical & Industrial Engineering, University of Toronto, Canada.
email: {amanda,andrew}.coles@kcl.ac.uk, jcb@mie.utoronto.ca

Abstract
When performing temporal planning as forward state-space
search, effective state memoization is challenging. Whereas
in classical planning, two states are equal if they have the
same facts and variable values, in temporal planning this is
not the case: as the plans that led to the two states are subject
to temporal constraints, one might be extendable into at tem-
porally valid plan, while the other might not. In this paper,
we present an approach for reducing the state space explo-
sion that arises due to having to keep many copies of the same
‘classically’ equal state – states that are classically equal are
aggregated into metastates, and these are separated lazily only
in the case of temporal inconsistency. Our evaluation shows
that this approach, implemented in OPTIC and compared to
existing state-of-the-art memoization techniques, improves
performance across a range of temporal domains.

1 Introduction
Planning is fundamental to intelligent autonomous behavior
and reasoning about time is essential to planning in many
real-world domains. One of the most popular paradigms for
planning is forward state-space search, and key to its suc-
cess, is memoization. In classical planning if a given state
(set of propositions and variable assignments) has been seen
before, then it need not be explored again if it is reached by
a different sequence of actions. This reasoning can easily be
extended to a setting where actions have costs, by keeping
only the lowest cost path to a given state.

Temporal planning brings with it further challenges for
memoization (Coles and Coles 2016). Not only are the val-
ues of variables and propositions important, as in classical
planning, but also the path taken to reach a state can deter-
mine whether the partial plan can be extended into a tempo-
rally valid plan to reach the goal. For example, if we took a
longer path to reach a state, we might no longer be able to
meet a deadline. In the worst case in temporal planning, this
results in the need to keep different states for every possible
path to every classically equal state. Coles and Coles (2016)
made some progress on this issue with a technique to prune
isomorphic plans and to identify special cases where achiev-
ing facts earlier can always be proven to be better. However,
there are many cases where states that are not likely to be
interestingly different still have to be considered as such.

In this paper we propose a radically different approach to
dealing with the need to explore classically identical states

in temporal planning. Our approach is based on the idea of
metastates. Instead of inserting multiple copies of a classi-
cally identical state (which are reached by different paths)
into the open list for search to explore, we maintain a sin-
gle metastate that aggregates these. Each time a new state is
generated, we either create a new metastate if it is classically
unique; or if we have previously seen a classically identical
state we add information to the existing metastate to record
that there is an alternative path to the state (which may lead
to different temporal constraints). Now, we search over the
space of metastates, nominally expanding only one member
from each. Since here we are interested in satisfycing plan-
ning we need only consider expanding the other members of
a metastates, if its descendants are temporally inconsistent.

We empirically evaluate our approach on temporal plan-
ning domains and our results show a significant improve-
ment in performance over the state-of-the-art in memoiza-
tion for temporal planning.

2 Background
2.1 Problem Definition
A PDDL2.1 (Fox and Long 2003) planning problem is de-
fined over a collection of propositions P , and a vector of
numeric variables v. These are manipulated and referred to
by actions. The executability of actions is determined by
their preconditions, conjunctions of conditions. A condition
is either a single proposition p ∈ P , ¬p, or a numeric con-
straint over v. We assume all such constraints are linear, and
hence can be represented in the form w.v{>,≥, <,≤,=}c
where w is a vector of constants and c is a constant).

Each durative action A has three sets of preconditions:
pre`A, pre↔A, preaA. These represent the conditions that
must hold at its start, throughout its execution (invariants),
and at the end, respectively. Instantaneous effects can oc-
cur at the start or end of A: eff+`A (eff−`A) denote propo-
sitions added (resp. deleted) at the start; effnum` A denotes
numeric effects. Similarly, eff+aA, eff−a and effnuma record
effects at the end. We assume numeric effects are of the
form: v{+=, -=,=}w.v + c (v ∈ v). Semantically, the val-
ues instantaneous of effects become available small amount
of time, ε, after they occur.

Finally, the action has a duration constraint: a conjunction
of numeric constraints applied to a special variable durA de-



B

CA E
D

33

2 2

1

Figure 1: Example Driverlog Problem

noting its duration. As a special case, instantaneous actions
have duration ε, and only one set of preconditions preA and
effects eff+A, eff−A, and effnumA. A durative action A
can be split into two instantaneous snap-actions,A` andAa,
representing the start and end of the action respectively, and
a set of constraints (invariant and duration constraints). Ac-
tion A` has precondition pre`A and effects eff+`A, eff−`A,
effnum` A. Aa is the analogous action for the end of A.

A solution to the problem is a plan: timestamped a se-
quence of actions with associated durations, that transforms
the initial state I into one that satisfies the goal G. All
pre/invariant conditions must satisfied at the time of/during
execution and actions that have started must have finished.

2.2 Memoization in Temporal Planning
Forward search temporal planning begins from the initial
state: a set propositions that are known to be true and as-
signments to the numeric variables in v. At each state S
during search the planner generates successor states, each
S′ corresponding to the application of a logically applicable
snap action: one whose preconditions are satisfied in S, and
whose effects do violate the invariant conditions pre↔A of
any action A that has started but not yet ended. Searching in
this way ensures all plans are logically valid (all precondi-
tions are satisfied), but does not ensure they are temporally
valid (respect the duration constraints of actions).

In this work we build on the planner OPTIC, which records
temporal constraints in each state in the form of a Sim-
ple Temporal Problem (STP) (Dechter, Meiri, and Pearl
1991) or Mixed Integer Program (MIP), and updates these
as search progresses. Because of these temporal constraints,
state memoization – i.e. determining when two states are
equivalent, to avoid redundant search – is more difficult than
in classical planning. Suppose we have two states A and B,
with the same facts, variable values, and executing actions,
but different temporal constraints. While these may have the
same logically applicable actions, applying the same action
in each to yield A′ and B′ may yield different temporal con-
straints, such that those in A′ are satisfied while those in B′
are not. Thus, we cannot say that A and B are equal, as the
search tree reachable under each may be different.

To understand why this might be, consider the Driverlog
Shift problem depicted in Figure 1. The Driverlog Shift do-
main extends the Driverlog domain by adding a ‘shift’ ac-
tion, that adds a predicate (available ?driver); then, all ac-
tions involving the driver (boarding, disembarking and driv-
ing the truck) have this predicate as an invariant, so must
take place during the execution of shift. Let us assume that
the duration of the shift action is 6 time units and it takes a
nominal 0.1 time units to load and unload packages. This
means that the plan to deliver the package to E (the goal) via
B is not feasible as it will take too long; whereas going via
D is feasible. Suppose in forward-search to reach this plan

we encounter the state where the driver and package are in
the truck at C, having followed the plan that drives via B,
and memoize that we have seen the state with these facts
true. Now, if we later reach this state again, having taken the
path via D, classical memoization would prune the state, as
it has the same facts as one that was seen before. In tempo-
ral planning this would render the problem unsolvable: the
state reached via D, has an STN whose temporal constraints
allow it to be extended into a solution plan; whereas the state
via B, the only one we kept does not. In general, in temporal
planning, we therefore cannot prune a state simply because
it has the same facts as one we have already seen.

Coles and Coles (2016) took a step towards address-
ing this issue by testing for equality based on the plan to
reach states by checking whether these plans are isomorphic.
When OPTIC adds a new snap action to a plan, it is ordered
only after other actions that are required for logical sound-
ness, e.g. after the adder of its precondition. Suppose in our
Driverlog example there are two packages p and q at A to be
loaded onto the truck. OPTIC will generate two states, one
resulting from applying load p, load q and the other, load q,
load p. However, since the two load actions are independent
they will not be ordered with respect to each other, so these
plans are isomorphic partial orders. In terms of the planning
problem isomorphic partial orders are effectively identical
so by identifying such partial orders and keeping only one
such state, the search space can be reduced.

This was effective at reducing the number of nodes ex-
panded by search, but has the limitation that if the two plans
contain different actions, they cannot be isomorphic: it can
detect permutations of the same actions, but not interchang-
ing different but effectively equivalent actions. It is this
point we explore in this paper. For example, in our Driverlog
Shift problem, two plans that start ‘shift’ then go from A to
C – one going via B, the other via D – cannot be isomorphic
as the ‘move’ actions are different, even if the truck in both
is at C. We need to keep both for completeness when the du-
ration of ‘shift’ is tight enough to preclude one of the plans
from reaching a goal state; but if the duration of ‘shift’ is suf-
ficiently long, it would not matter for the purposes of solving
the problem which route was taken to C (although one might
admit a better quality plan). But, regardless of the duration
of ‘shift’, a temporal planner would have to keep both, and
expand them as different states, blowing up the search tree;
whereas a classical planner would keep only one.

While we implement our ideas in OPTIC, this is with-
out loss of generality. Our work is applicable to other
approaches to managing temporal constraints in forward
planning, such as the decision epoch approach (Cushing et
al. 2007) used in SAPA (Do and Kambhampati 2003) and
TFD (Eyerich, Mattmüller, and Röger 2009) as these must
still consider the queue of pending action ends when deter-
mining whether states are equal; as, again, the search tree
reachable under two otherwise equal states may differ.

3 Metastate-Space Search
In this section we introduce the notion of metastates and ex-
plain the details of forward-search metastate space.



3.1 Preliminaries
A state is defined as follows:

Definition 3.1 — A state A state comprises:
• f – the facts that are true in the state.
• v̄ – the values of each state variable.
• P = [p0..pn] – a partial plan. Each pi represents an in-

stantaneous action, start snap action or end snap action.
• Q – a list of actions that started in P , but have not yet

finished. For each 〈a, i, i′, dmin , dmax 〉 ∈ Q:
– a identifies the ground durative action;
– i is its step index in the plan P ;
– dmin , dmax are the minimum/maximum duration of a,

calculated based on the values of v̄ in the state at step i.
• T – temporal constraints over the steps in the plan P .

In classical forward-search planning, two states S and S′
can then be said to be equal if S.f = S′.f and S.v̄ = S′.v̄.
The other parts of the tuple are irrelevant: Q is always
empty, as all actions are instantaneous; T is unnecessary, as
steps in P are totally ordered. Even if P is different in S and
S′, this has no bearing on further state expansion, that deter-
mines this is which preconditions are satisfied and since f
and v̄ are equal for each state the same preconditions must
be satisfied in both. Thus, as the reachable search spaces un-
der S and S′ are identical, S′ can be pruned if it is equal to
another state S that has already been seen.

In temporal forward-search planning, we have to make
three important distinctions:
• The list of actions Q matters: we can only end an action
a – i.e. apply the snap-action aa, if a ∈ Q.

• Whenever an action has been applied, all the invariant
conditions of the actions recorded inQmust be respected.

• T must be consistent. Otherwise, while the plan under
construction may be logically consistent (all precondi-
tions are satisfied), it may be temporally inconsistent –
for instance, if T constrains a long durative action to be
contained entirely within a shorter one.
The first two of these are logical in flavor: a straightfor-

ward inspection of Q will suitably restrict the applicable ac-
tions to respect invariant constraints and start–end planning
semantics, without reference to temporal information per se.
The last, however, poses an issue for state memoization. If
two states S and S′ have the same facts, the same variable
values, and the same actions in Q, the same actions will be
logically consistent extensions of S and S′. But, they might
not be temporally consistent extensions of both S and S′,
due to their effect on the temporal constraints T . Thus, it is
not completeness preserving to keep only one of S or S′.

The current state of the art (Coles and Coles 2016) ad-
dresses the memoization issue in two ways. First they prove
that, for states in which no actions are executing if Q is
empty (i.e. there are no open actions), and S and S′ are
both temporally consistent, it is completeness preserving to
keep only one of them. Because search proceeds in a for-
wards direction, all subsequent plan steps will be ordered
after those already in the plan; and as these constraints w.r.t.
the existing plan steps are only ever minimum separation

constraints (a later step is ordered 0 or ε after some existing
step), any temporally consistent plan extension from S will
also be consistent from S′. Second, for other all other states
(with open actions), this observation no longer applies, in
which case S and S′ are both be kept unless their plans are
isomorphic; i.e. exactly the same actions were applied in a
different order, but leading to identical temporal constraints.
This was shown to be effective compared to simpler alterna-
tive of keeping all states with open actions, but the require-
ment that S and S′ must be reached by identical actions lim-
its pruning that can be achieved.

3.2 Strong and Weak Equality
The core limitation of standard memoization is that to pre-
serve completeness, it must use strict state duplicate detec-
tion. As noted, this is particularly restrictive when com-
paring states with open actions. For instance, a state S is
reached by moving from A to B to C and then starting an
action a, is different to a state S′ moving from A to D to
C and then starting a – even if all the facts in the states are
the same, a is an open action, so plan isomorphism is used.
As the two plans contain different actions, they cannot be
isomorphic, so both S and S′ are kept.

In practice, we hypothesize that it is often sufficient to
only expand one of S or S′, as they are sufficiently similar,
but we want to maintain completeness in the case where ex-
panding the other was necessary. As a step towards this, we
first define notions of strong and weak state equality. Strong
equality is suitable for completeness-preserving memoiza-
tion; weak equality is not, but defines the concept of two
states being ‘sufficiently similar’.

Ancillary to this, we define two helper functions, the num-
ber of times action a is executing in the queue Q of a state:

num exec(Q, a) = |{i | 〈a, i, dmin, dmax〉 ∈ Q}|
...and a set of pairs each comprising an action, and the num-
ber of times that action is executing in a state:
exec(Q) = {〈a,num exec(Q, a)〉 | num exec(Q, a) > 0}

Recall that the semantics of PDDL 2.1 permit an action to
self-overlap (Rintanen 2007) (i.e. a new instance of a can
start before a previous instance of a has ended): this is why
action a may be executing more than once in the same state.

We now define strong equality as follows:

Definition 3.2 — Strong equality
States S = 〈f, v̄, P,Q, T 〉 and S′ = 〈f ′, v̄′, P ′, Q′, T ′〉,

where T and T ′ are temporally consistent, are strongly equal
iff f = f ′, v̄ = v̄′ and either (i) Q = Q′ = ∅; or (ii) the
partial plans P and P ′ are isomorphic.

The notation S = S′ denotes strong equality.
Note that if S = S′, and S = S′′, then trivially, S′ = S′′:

in the first case all queues must necessarily be empty; and in
the second case, isomorphism is transitive.

Weak equality broadens this:

Definition 3.3 — Weak equality
States S = 〈f, v̄, P,Q, T 〉 and S′ = 〈f ′, v̄′, P ′, Q′, T ′〉,

where T and T ′ are temporally consistent, are weakly equal
iff f = f ′, v̄ = v̄′, exec(Q) = exec(Q′).

The notation S ≈ S′ denotes weak equality.



As with strong equality, weak equality is trivially transi-
tive. Additionally, it is a strict relaxation of strong equality:
(S = S′)⇒ (S ≈ S′). For the two cases of strong equality:
• The first case is a restriction of weak equality: if Q =
Q′ = ∅ then exec(Q) = exec(Q′) = ∅.

• In the second case, if P and P ′ are isomorphic they must
contain the same actions; so if P contains a` more times
than aa then so does P ′, so trivially exec(Q) = exec(Q′).

3.3 Metastates
We now make use of strong and weak equality to define a
meta-state-space over which to search; and a search algo-
rithm to do this. We define a meta-state as follows:

Definition 3.4 — Metastate
A metastate M is a tuple 〈Σ,Π,Γ, ρ, ex , re, c re〉, where:
• Σ is a list of member states [σ0..σn], that are pairwise

weakly equal.
• Π is a list of parent metastates, and the action applied to

reach M from the parent – [〈M0, a0〉..〈Mn, an〉].
• Γ, a list of child metastates and the action applied to reach

them – [〈M0, a0〉..〈Mn, an〉].
• q ∈ {⊥,>} is a boolean flag set to > iff the metastate is

queued for expansion.
• ex ∈ Z+

0 , a counter of how many of Σ have been explic-
itly expanded.

• re ∈ {⊥,>} is a boolean flag set to > iff either M has
not yet been expanded; or the most recent expansion of
M was partial due to one or more successors being incon-
sistent according to the temporal constraints.

• c re ∈ Z+
0 counts how many of the children of M could

in principle lead to a larger reachable search space if given
an additional member.
In this definition, Σ records the states in the metastates,

and Π and Γ define the structure of the metastate space: if
there is an edge in the metastate space between two metas-
tates M and M ′ labeled with the action a, then 〈M ′, a〉 ∈
M.Γ and 〈M,a〉 ∈ M ′.Π. The other entries in the tuple are
bookkeeping information to support search, we will explain
the meaning of these and how they are used later.

3.4 Searching with Metastates: Overview
We begin with a high-level overview of search:
a) A search queue of metastates is initialized to the meta-

state containing the initial state.
b) At each iteration, a metastate is popped from the search

queue and expanded. The expansion of a metastate M
expands one of its member states; specifically, σM.ex , the
state in M.Σ with index M.ex .

c) Search aims to expand each metastate only once; how-
ever, to ensure completeness there are two cases in which
a metastate must be re-expanded:

i If there was an action that was logically applicable in the
last-expanded member of M , but which led to a tempo-
rally inconsistent child state (i.e. if M.re). It is neces-
sary to consider other member states of M as they have
different temporal constraints and hence may lead to a
temporally consistent child.

A1

C2

E1

B1 D1

A1

C1

E1

B1 D1

Expanded=[A,B,D,C]
Open = [E]

Expanded=[A,B,C]
Open = [E,D]

(a) (b)

Figure 2: Example metastate spaces, with the order in which
metastates were expanded, and their open lists. The letter
denotes the truck location; the number is |M.Σ|.

ii If one of the children of M , transitively, needs to be re-
expanded. In this case, we must consider other member
states ofM as expanding them will add new members to
the children of M , supporting their re-expansion.

d) Search attempts to avoid explicitly generating all the
member states of a metastate. New members are only
explicitly generated under one of two conditions:

i If search reaches a state S that is weakly equal to the
states in an existing metastate M , S is added to M .

ii If a metastate needs to be re-expanded, c (i), but all the
members of M have already been expanded, a traver-
sal back via the parents of M (M.Π) is used to generate
additional member states for M . If no new members
can be found the c re values of M ’s ancestors are in-
cremented, so that if they acquire new members they are
re-expanded as per c (ii).

To illustrate why re-expansion of metastates or generation
of new metastate members is sometimes necessary, two ex-
ample metastate spaces are depicted in Figure 2. These are
based on the Driverlog Shift example (Figure 1) and the task
is to reach location E and ‘unload’ a package. For simplicity
we assume that in Metastate A (where search begins in this
example) the package and driver are already in the truck and
the ‘shift’ action has started. Further, we only show states
reachable by applying move actions: the letter representing
each metastate corresponds to the location of the truck. Each
state-space demonstrates a different search scenario:
• In Figure 2(a), the metastate C has two members corre-

sponding to the states reached by plans ABC and ADC.
Metastate E, however, only has one member as when C
was expanded, only its first member (reached via ABC)
was used, generating one state in E for the plan ABCE.
The metastate E is then popped from the open list and
expanded. The ‘unload’ action needed here cannot be
applied, due to the ‘shift’ action constraining how much
time can pass: this is because the long route to E, via B,
was taken. E must now be re-expanded (c (i)) but it has
no other member states. Thus, a traversal back via the
parents of E attempts to generate additional members for
E (d (ii)). This traversal finds the second member state of
C (reached via ADC); appends ‘move CE’ to the plan to
yield another state weakly equal to the existing member
of E; then enqueues E for re-expansion. This state will
then be expanded and successfully reach the goal in time.

• In Figure 2(b), B has been expanded, but D has not. Thus,
C has only one member, and when E is unsuccessfully



Algorithm 1: Memoize
Data: memoized , a set of all metastates generated; S a

new state; 〈MP , a〉, the metastate parent of S
and action applied to reach it

Result: enqueue , a list of metastates to subsequently
enqueue

if ∃M ∈ memoized |M.σ0 ≈ S then1
return AddMemberToMetaState(M,S, 〈MP , a〉);2

else3
M ← 〈[S], [〈MP , a〉], [],>, 0,>, 0〉;4
memoized ← memoized ∪M ;5
return [M ]6

Algorithm 2: AddMemberToMetaState
Data: M , a metastate; S, a new weakly-equal member

state; 〈MP , a〉, the metastate parent of S and
action applied to reach it

Result: enqueue , a list of zero or one metastates to
subsequently enqueue

if ∃S′ ∈M.Σ | S′ = S then return [];1
M.Σ←M.Σ + [S];2
if 〈MP , a〉 6∈M.Π then M.Π←M.Π + [〈MP , a〉];3
if M.q then return [];4
if M.re ∨M.c re > 0 then5
M.ex ← |M.Σ| − 1; M.q ← >; return [M ];6

return []7

expanded, a traversal back via its parents (d (ii)) cannot
generate any additional members, as they all have only
one member state. Hence, the c re values in E’s ancestors
(C, B and A) are incremented to note that they have a
child that needs to be re-expanded. When D is popped
from the open list, the state generated (ADC) becomes an
additional member of C (d (i)). C will then be put on the
open list asC.c re>0 (c (ii)); C is re-expanded generating
a new member for E (ADCE), putting E on the open list as
E.re=> (c (i)); E is re-expanded, using this new member,
leading to successful application of ‘unload’.

3.5 Searching with Metastates: Algorithms
Algorithm 1 defines how state memoization is performed
with reference to the metastate space. For each state S en-
countered in search, first a check is made at line 1 to see
if there is an existing metastate whose members are weakly
equal to S. If there is, AddMemberToMetaState is used to
update the metastate. In the simpler case, if there is no such
metastate, then a new one is created, containing just S.

Algorithm 2 deals with adding a new member S to a
metastate M . At line 1 we check whether an existing mem-
ber is strongly equal to S – if it is, S does not need to be kept.
Otherwise, it is added to the members of the metastate.

As our aim is to avoid redundant expansion of the search
space, when a new member has been added to a metastate,
M.q is then checked to see if M is already queued for ex-
pansion: if it is, it need not be queued again. Otherwise, if it
is not queued, then the metastate is returned to be enqueued
only if one of two conditions holds (e (i)/(ii) Section 3.4):

Algorithm 3: Search
Data: The initial state I
Result: A solution plan
IM ← 〈[I], [], [],>, 0,>, 0〉;1
memoized ← {IM };2
Q← [IM ];3
while Q is not empty do4
M ← pop the next metastate from Q;5
S ←M.σM.ex ;6
M.q ← ⊥; M.ex ←M.ex + 1;7
enqueue ← [];8
if M.c re > 0 then9

foreach 〈Mi, ai〉 ∈M.Γ do10
if Mi.q then continue;11
if Mi.re ∨Mi.c re > 0 then12
Si ← apply ai to S;13
if S′.T is temporally consistent14
∧ 6 ∃S′ ∈Mi.Σ | S′ = Si then
Mi.Σ←Mi.Σ + [Si];15
Mi.q ← >;16
enqueue ← enqueue + [Mi];17
M.c re ←M.c re − 1;18

if M.re then19
M.re ← ⊥;20
foreach a that is logically applicable in S do21
S′ ← apply a in S;22
if S′.T is temporally consistent then23

if S′ is a goal state then return S′;24
enqueue ←25
enqueue + Memoize(memoized , S′, 〈M,a〉);

else M.re ← >;26

if M.re ∨ (M.c re > 0) then27
if M.ex = |M.Σ| then M.Σ←28
M.Σ + LookForAnotherMember(M,M, []);
enqueue ← enqueue + [M ];29
M.q ← >;30

foreach M ′ ∈ enqueue do31
while M ′.ex < |M ′.Σ| do32

hM ′ ← heuristic evaluation ofM ′.σM ′.ex ;33

if hM ′ 6=∞ then34

insert M ′ into Q with h-value hM ′;35
break;36

M ′.ex ←M ′.ex + 1;37
if M ′.ex = |M ′.Σ| then M ′.σ ←38
M ′.Σ + LookForAnotherMember(M ′,M ′, []);

if M ′.ex = |M ′.Σ| then39
M ′.q ← ⊥;40
IncrementParentCREValues(M ′);41

return problem unsolvable;42

• if M.re, then the last expansion of M – i.e. an expan-
sion based on a pre-existing member state – did not lead
to a temporally consistent child for each logically appli-
cable action. In this case, expanding M again will derive



children from the new member state.
• if M.c re, then the last expansion of M did lead to a tem-

porally consistent child for each logically applicable ac-
tion, but one or more of these when expanded either did
not lead to a temporally consistent child for each logically
applicable action, or is the ancestor of such a metastate.
In this case, because there is a new member for M , ex-
panding it again will yield new members for its children.
Algorithm 3 presents search itself: a priority-queue-based

search, using a heuristic function. We use WA* with W=5;
and a temporal RPG heuristic, as in OPTIC.

At its core (lines 21– 26) is an ordinary forward-search
expansion loop, generating one successor per applicable ac-
tion; keeping it if it is returned by the Memoized function
(Algorithm 1). There are three possible reasons a metastate
M could be on the open list. First, if either M.re = > – i.e.
if the successors of the previous expansion ofM were not all
temporally consistent (Section 3.4 e (i)), or if M has not yet
been expanded. The aforementioned forward-search expan-
sion loop is used to expand the metastate in these first two
cases. The final case is when c re>0: (Section 3.4 f (ii)) one
or more of M ’s children needs to be re-expanded but needs
additional member states before this can occur; and by re-
expandingM we will generate an additional member for this
child. This is handled by a selective state-expansion, that
only generates member states for the child metastates that
need them (lines 9–18). IfM.re=⊥, this selective loop alone
is sufficient, as the re and c re values in the child metas-
tates record which need additional members: child metas-
tates reached by the other applicable actions can be ignored.

Following expanding the current member S of the cur-
rent metastate M , lines 27–30 determine whether, following
expansion, M needs to be added to the open-list again for
re-expansion. This occurs either because when M was ex-
panded some of its successors were not temporally consis-
tent (i.e. M.re was changed back to true at line 26) (Sec-
tion 3.4 e (i)) or because it has at least one child that still
would benefit from an additional member state being gener-
ated (Section 3.4 e (ii)). The complication here is what to
do in the case where there are no more members of M left
for expansion, i.e. if M.ex = |M.Σ| (Section 3.4 f (ii)). In
this case, a helper function traverses back from M to its par-
ents, to generate additional candidate members of M from
the members of its parents. This is presented in Algorithm 4
– this recursively generates candidate plans for reaching M
from a parent, and if one is found that is temporally con-
sistent, and not strongly equal to an existing member of M ,
then it is returned to be added as a member to M . This cor-
responds to the case in Figure 2(a): when the metastate E
is expanded for the first time, ‘unload’ could not be applied
without violating the temporal constraints; thus, LookForA-
notherMember would be used to look for another member
state for E. When traversing back to its parent, C, and loop-
ing over its two members (ABC and ADC), extending the
first (to yield ABCE) would duplicate the existing member
of E, but extending the second (to yield ADCE) would pro-
duce a new member for E, supporting its re-expansion. Of
course, LookForAnotherMember cannot always generate a
new member in which case it returns an empty list.

Algorithm 4: LookForAnotherMember
Data: MC , a metastate; MT , a metastate; tail , the plan

from MC to MT
Result: enqueue , a list of 0 or 1 metastates to

subsequently enqueue
foreach 〈Mi, ai〉 ∈ MC .Π do1

foreach S ∈Mi.Σ do2
S′ ← apply ([ai]+tail) to S;3
if S′.T is temporally consistent and4
6 ∃S′′ ∈ MT .Σ | S′′ = S′ then
MT .Σ← MT .Σ + [S′];5
MT .q ← >;6
return [MT ];7

rc ← LookForAnotherMember(Mi,MT , [ai]+tail);8
if rc 6= ∅ then return rc;9

return [];10

Algorithm 5: IncrementParentCREValues
Data: M , a metastate
foreach 〈Mi, ai〉 ∈ M .Π do1

if Mi .c re = 0 then2
IncrementParentCREValues(Mi);
Mi.c re ←Mi.c re + 1;3

The final loop in Algorithm 3 at lines 31–41 considers
each metastate M ′ that is to be enqueued on Q. In the nom-
inal case, a member state M ′.σM ′.ex is heuristically evalu-
ated, and its heuristic value is used when placing M in Q.
There are two caveats though. First, if M ′.σM ′.ex is a dead-
end, one of the other members of M ′ (if there is one) may
not be; hence,M ′.ex is incremented, to allow further heuris-
tic evaluation. As this may exhaust the generated members
of M ′, we see again a call to Algorithm 4 to attempt to gen-
erate another member state. Second, if no additional mem-
bers can be generated, it may be that if search later finds
another plan that reaches one of the parents of M ′, from
which it is possible to generate another member of M ′. To
preserve completeness, it is important that this can happen.
This is achieved through the use of the c re values, as up-
dated by Algorithm 5: these count how many of the immedi-
ate children of a metastate are awaiting an additional mem-
ber. Referring back to earlier in Algorithm 3, lines 9–18
then use these values to selectively push additional member
states down to their children until, in turn, the new member
for M ′ is generated.

Finally, we sketch a proof for the completeness of our al-
gorithm. Trivially, any goal states generated are returned
(Algorithm 3 line 24). Thus, to be incomplete, there must
be a state S from which applying a sequence of snap-actions
tail = [a0..an] was the only way to reach a goal state; but
S was never expanded. In the simple case, S is the first
member of a metastate M , and all metastates are queued for
expansion at least once; so S would have been expanded.
Otherwise, S must have been added as a member of an ex-
isting metastate M . In this case, because applying tail to S
is posited as being the only way to reach a goal state, there
must be a subsequence tail sub = [a0..ai], i ≤ n of the tail



 10

 100

 1000

 10000

 100000

 10  100  1000  10000  100000

W
it
h

 M
e

ta
s
ta

te
s
, 

N
o

d
e

s
 E

x
p

a
n

d
e

d

Without Metastates, Nodes Expanded

Cafe (99%)
Driverlog Shift (92%)
Match (98%)
TMS (99%)
P2P (99%)
Turn and Open (1%)
Pipes Deadlines Compiled (97%)
Satellite TW Compiled (21%)
UMTS TW Compiled (97%)
Elevators (64%)
Openstacks (51%)
Pipes Tankage (78%)
Rovers (7%)
Transport (45%)

Figure 3: Scatterplot comparing nodes expanded

snap actions that when applied to any other S′ ∈M.Σ leads
to an inconsistent state. Then, either (i) S ∈M.Σ when this
occurred, so Algorithm 4 would be used to apply tail sub
to S; or (ii) S 6∈ M.Σ when this occurred, so Algorithm 5
would increment M.c re causing M (and hence S) to be
expanded later, as soon as S ∈ M.Σ (Algorithm 2 line 5).
Thus, regardless of when S was added to M.Σ, tail will be
applied to it and hence the goal would be reached. �

4 Evaluation
To evaluate our metastate search algorithm, we use as
a control the state memoization techniques of Coles and
Coles (2016) also implemented in OPTIC. In both cases
we use WA* search (with W=5) guided by OPTIC’s TRPG
heuristic. For evaluation domains, we take International
Planning Competition benchmarks, and temporally interest-
ing domains from the literature. We exclude any domains
where all actions are compression safe. In these domains,
during search there will never be any states with open ac-
tions; hence, as discussed in Coles and Coles (2016), memo-
izing based on the classical planning notion of state equality
is completeness preserving. Moreover, we would only have
one member per metastate, as states with no open actions
are strongly equal to other states with the same facts and
variables, so our search would behave exactly as the control.
This leaves 10 domains with required concurrency (Cush-
ing et al. 2007) – Cafe and Driverlog Shift (Coles et al.
2009); P2P (Huang et al. 2009); TMS and Turn and Open
(IPC2011); the compiled timewindows/deadlines variants of
Pipes No-Tankage, Satellite and UMTS (IPC2004) – and 5
other IPC domains Rovers (2002); Pipes Tankage (2004);
Transport, Elevators and Openstacks (2008).

An overview of the performance of our algorithm com-
pared to the control is shown in Figures 3 and 4: where
one configuration failed to solve a problem this is shown
as 100,000 nodes or 1800 seconds. Nodes below the plotted
line y=x indicate that using metastates improved the perfor-
mance of the planner; those above that it was worsened. In
total 194 problems were solved by at least one configura-
tion, in 73 of these the planner using metastates expanded
fewer nodes and only in 6 did it expand more. The only
reason the planner without metastates might expand fewer
nodes is because the expansion order of our search is not the
same as unmodified WA*, and perturbing expansion order

 0.01

 0.1

 1

 10

 100

 1000

 0.01  0.1  1  10  100  1000

W
it
h

 M
e

ta
s
ta

te
s
, 

T
im

e
 (

s
)

Without Metastates, Time (s)

Cafe
Driverlog Shift
Match*
TMS
P2P*
Turn and Open*
Pipes Deadlines Compiled
Satellite TW Compiled
UMTS TW Compiled
Elevators
Openstacks*
Pipes Tankage
Rovers*
Transport*

Figure 4: Scatterplot comparing time taken

means that the control might happen to reach the goal first.
The results for time taken to solve problems closely mirror
those for nodes expanded, indicating the overheads of the
bookkeeping required for metastates is minimal. In terms
of coverage, using metastates we can solve 189 problem in-
stances; without we solve only 164. A two-tailed Wilcoxon
signed-rank test confirms statistical significance that using
metastates out-performs the control, both in terms of nodes
expanded and time taken to solve problems with P > 0.99.

Of our 14 domains we see a performance improvement
in 9; while the performance in the other 5 remains stable.
We can gain greater insights into this by examining the do-
mains more closely. The numbers in brackets in Figure 3
show the percentage of states generated by the control plan-
ner that had open (currently executing) actions. Recall that
it suffices to use weak equality in states without open ac-
tions; both planners exploit this. Therefore, if there are few
states with open actions the potential of our technique to im-
prove search is limited. This explains why we see relatively
few gains in the Rovers and Turn And Open domains, but
again, we also see no significant performance degradation,
the number of states generated was identical to the control
and both planners produced the same plan.

Perhaps surprisingly performance also remains the same
on two of the domains with required concurrency, Match
and P2P. In each of these domains states with open actions
arise due to an envelope action (light match/serve file) inside
which actions (mend fuse/download) must be fit. However,
whilst the envelope action is open the heuristic easily guides
search to perform the relevant activities and therefore very
little search is required to solve these problems, and so po-
tential gains are limited. Another domain with similar re-
sults is openstacks, as the benchmark set for this problem is
trivial and requires very little to no search.

The remaining 9 domains where we see performance im-
provements are generally the more challenging domains and
those in which the planner without metastates expands a
large number of weakly equal states, when any one of these
would allow it to reach a goal state. Many of these prob-
lems are solved an order of magnitude faster with metastates,
thanks to the reduced size of the metastate search space. A
final note on solution quality, the planners found plans with
the same makespan in 154 of out of the 161 problems that
were mutually solved, in the remaining 7 the solutions pro-
duced using metastates were slightly longer.



References
Coles, A. J., and Coles, A. I. 2016. Have I Been Here Before?
State Memoisation in Temporal Planning. In Proceedings of the
Twenty Sixth International Conference on Automated Planning and
Scheduling (ICAPS).
Coles, A.; Fox, M.; Halsey, K.; Long, D.; and Smith, A.
2009. Managing concurrency in temporal planning using planner-
scheduler interaction. Artificial Intelligence 173(1).
Cushing, W.; Kambhampati, S.; Mausam; and Weld, D. 2007.
When is temporal planning really temporal planning? In Proceed-
ings of the International Joint Conference on Artificial Intelligence.
Dechter, R.; Meiri, I.; and Pearl, J. 1991. Temporal constraint
networks. Artificial Intelligence 49.
Do, M. B., and Kambhampati, S. 2003. Sapa: Multi-objective
Heuristic Metric Temporal Planner. Journal of Artificial Intelli-
gence Research (JAIR) 20.
Eyerich, P.; Mattmüller, R.; and Röger, G. 2009. Using the
Context-enhanced Additive Heuristic for Temporal and Numeric
Planning. In Proceedings of the International Conference on Auto-
mated Planning and Scheduling (ICAPS).
Fox, M., and Long, D. 2003. PDDL2.1: An extension of PDDL
for expressing temporal planning domains. Journal of Artificial
Intelligence Research (JAIR) 20.
Hoffmann, J., and Edelkamp, S. 2005. The Deterministic Part of
IPC-4: An Overview. Journal of Artificial Intelligence Research
(JAIR) 24.
Huang, R.; Chen, Y.; and Zhang, W. 2009. An Optimal Tempo-
rally Expressive Planner: Initial Results and Application to P2P
Network Optimization. In Proceedings of the International Con-
ference on Automated Planning and Scheduling (ICAPS).
Linares López, C.; Celorrio, S. J.; and Olaya, A. G. 2015. The de-
terministic part of the seventh international planning competition.
Artificial Intelligence 223.
Long, D., and Fox, M. 2003. The 3rd International Planning Com-
petition: Results and Analysis. Journal of Artificial Intelligence
Research (JAIR) 20.
Rintanen, J. 2007. Complexity of concurrent temporal planning.
In Proceedings of the Seventeenth International Conference on Au-
tomated Planning and Scheduling (ICAPS), 280–287.


