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Abstract. In the k-mappability problem, we are given a string x of
length n and integers m and k, and we are asked to count, for each
length-m factor y of x, the number of other factors of length m of x that
are at Hamming distance at most k from y. We focus here on the version
of the problem where k = 1. The fastest known algorithm for k = 1
requires time O(mn logn/ log logn) and space O(n). We present two new
algorithms that require worst-case time O(mn) and O(n logn log log n),
respectively, and space O(n), thus greatly improving the state of the
art. Moreover, we present another algorithm that requires average-case
time and space O(n) for integer alphabets of size σ if m = Ω(logσ n).
Notably, we show that this algorithm is generalizable for arbitrary k,
requiring average-case time O(kn) and space O(n) if m = Ω(k logσ n).

1 Introduction

The focus of this work is directly motivated by the well-known and challeng-
ing application of genome re-sequencing—the assembly of a genome directed
by a reference sequence. New developments in sequencing technologies [14] al-
low whole-genome sequencing to be turned into a routine procedure, creating
sequencing data in massive amounts. Short sequences, known as reads, are pro-
duced in huge amounts (tens of gigabytes); and in order to determine the part
of the genome from which a read was derived, it must be mapped (aligned) back
to some reference sequence that consists of a few gigabases. A wide variety of
short-read alignment techniques and tools have been published in the past years
to address the challenge of efficiently mapping tens of millions of reads to a
? Partially supported by the Onassis Foundation.
?? Supported by the “Algorithms for text processing with errors and uncertainties”

project carried out within the HOMING programme of the Foundation for Polish
Science co-financed by the European Union under the European Regional Develop-
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genome, focusing on different aspects of the procedure: speed, sensitivity, and
accuracy [10]. These tools allow for a small number of errors in the alignment.

The k-mappability problem was first introduced in the context of genome
analysis in [6] (and in some sense earlier in [2]), where a heuristic algorithm was
proposed to approximate the solution. The aim from a biological perspective is
to compute the mappability of each region of a genome sequence; i.e. for every
factor of a given length of the sequence, we are asked to count how many other
times it occurs in the genome with up to a given number of errors. This is
particularly useful in the application of genome re-sequencing. By computing
the mappability of the reference genome, we can then assemble the genome of
an individual with greater confidence by first mapping the segments of the DNA
that correspond to regions with low mappability. Interestingly, it has been shown
that genome mappability varies greatly between species and gene classes [6].

Formally, we are given a string x of length n and integers m < n and k < m,
and we are asked to count, for each length-m factor y of x, the number of other
length-m factors of x that are at Hamming distance at most k from y.

Example 1. Consider the string x = aabaaabbbb andm = 3. The following table
shows the k-mappability counts for k = 0 and k = 1.

position 0 1 2 3 4 5 6 7
factor occurrence aab aba baa aaa aab abb bbb bbb

0-mappability 1 0 0 0 1 0 1 1
1-mappability 3 2 1 4 3 5 2 2

For instance, consider the position 0. The 0-mappability is 1, as the factor aab
occurs also at position 4. The 1-mappability at this position is 3 due to the
occurrence of aab at position 4 and occurrences of two factors at Hamming
distance 1 from aab: aaa at position 3 and abb at position 5.

The 0-mappability problem can be solved in O(n) time with the well-known
LCP data structure [8]. For k = 1, to the best of our knowledge, the fastest
known algorithm is by Manzini [13]. This solution runs in O(mn log n/ log log n)
time and O(n) space and works only for strings over a constant-sized alphabet.
Since the problem for k = 0 can be solved in O(n) time, one may focus on
counting, for each length-m factor y of x, the number of other factors of x that
are at Hamming distance exactly 1 — instead of at most 1 — from y.

Our contributions. Here we make the following threefold contribution:

(a) We present an algorithm that, given a string x of length n over an integer
alphabet of size σ > 1 and a positive integer m = Ω(logσ n), solves the
1-mappability problem for x in average-case time O(n) and space O(n).
Notably, we show that this algorithm is generalizable for arbitrary k.

(b) We present an algorithm that, given a string of length n over an integer al-
phabet and a positive integer m, solves the 1-mappability problem in O(mn)
time and O(n) space.



(c) We present an algorithm that, given a string of length n over a constant-
sized alphabet and a positive integer m, solves the 1-mappability problem in
O(min{mn, n log n log log n}) time and O(n) space, thus improving on the
algorithm of [13] that requires O(mn log n/ log log n) time and O(n) space.

2 Preliminaries

Let x = x[0]x[1] . . . x[n − 1] be a string of length |x| = n over a finite ordered
alphabet Σ of size |Σ| = σ = O(1). We also consider the case of strings over an
integer alphabet, where each letter is replaced by its rank in such a way that the
resulting string consists of integers in the range {1, . . . , n}.

For two positions i and j on x, we denote by x[i . . j] = x[i] . . . x[j] the factor
(sometimes called substring) of x that starts at position i and ends at position
j (it is of length 0 if j < i). By ε we denote the empty string of length 0. We
recall that a prefix of x is a factor that starts at position 0 (x[0 . . j]) and a suffix
of x is a factor that ends at position n− 1 (x[i . . n− 1]). We denote the reverse
string of x by rev(x), i.e. rev(x) = x[n− 1]x[n− 2] . . . x[1]x[0].

Let y be a string of length m with 0 < m ≤ n. We say that there exists an
occurrence of y in x, or, more simply, that y occurs in x, when y is a factor of
x. Every occurrence of y can be characterised by a starting position in x. Thus
we say that y occurs at the starting position i in x when y = x[i . . i+m− 1].

The Hamming distance between two strings x and y, |x| = |y|, is defined as
dH(x, y) = |{i : x[i] 6= y[i], i = 0, 1, . . . , |x|−1}|. If |x| 6= |y|, we set dH(x, y) =∞.
If two strings x and y are at Hamming distance k, we write x ≈k y.

The computational problem in scope can be formally stated as follows.

1-mappability
Input: A string x of length n and an integer m, where 1 ≤ m < n
Output: An integer array C of size n − m + 1 such that C[i] stores the
number of factors of x that are at Hamming distance 1 from x[i . . i+m− 1]

2.1 Suffix array and suffix tree

Let x be a string of length n > 0. We denote by SA the suffix array of x. SA is
an integer array of size n storing the starting positions of all (lexicographically)
sorted non-empty suffixes of x, i.e. for all 1 ≤ r < n we have x[SA[r−1] . . n−1] <
x[SA[r] . . n−1] [12]. Let lcp(r, s) denote the length of the longest common prefix
between x[SA[r] . . n− 1] and x[SA[s] . . n− 1] for positions r, s on x. We denote
by LCP the longest common prefix array of x defined by LCP[r] = lcp(r − 1, r)
for all 1 ≤ r < n, and LCP[0] = 0. The inverse iSA of the array SA is defined by
iSA[SA[r]] = r, for all 0 ≤ r < n. It is known that SA, iSA, and LCP of a string of
length n, over an integer alphabet, can be computed in time and space O(n) [15,
8]. It is then known that a range minimum query (RMQ) data structure over
the LCP array, that can be constructed in O(n) time and O(n) space [3], can
answer lcp-queries in O(1) time per query [12]. A symmetric construction on



rev(x) can answer the so-called longest common suffix (lcs) queries in the same
complexity. The lcp and lcs queries are also known as longest common extension
(LCE) queries.

The suffix tree T (x) of string x is a compact trie representing all suffixes of
x. The nodes of the trie which become nodes of the suffix tree are called explicit
nodes, while the other nodes are called implicit. Each edge of the suffix tree can
be viewed as an upward maximal path of implicit nodes starting with an explicit
node. Moreover, each node belongs to a unique path of that kind. Thus, each
node of the trie can be represented in the suffix tree by the edge it belongs to and
an index within the corresponding path. The label of an edge is its first letter.
We let L(v) denote the path-label of a node v, i.e., the concatenation of the edge
labels along the path from the root to v. We say that v is path-labelled L(v).
Additionally, D(v) = |L(v)| is used to denote the string-depth of node v. Node
v is a terminal node if its path-label is a suffix of x, that is, L(v) = x[i . . n− 1]
for some 0 ≤ i < n; here v is also labelled with index i. It should be clear that
each factor of x is uniquely represented by either an explicit or an implicit node
of T (x). In standard suffix tree implementations, we assume that each node of
the suffix tree is able to access its parent. Once T (x) is constructed, it can be
traversed in a depth-first manner to compute D(v) for each node v.

It is known that the suffix tree of a string of length n, over an integer alphabet,
can be computed in time and space O(n) [7]. For integer alphabets, in order to
access the children of an explicit node by the first letter of their edge label,
perfect hashing [11] can be used.

3 Efficient Average-Case Algorithm

In this section we assume that x is a string over an integer alphabet Σ. For
clarity of presentation, we first describe the algorithm for k = 1 and then show
how it can be generalized for arbitrary k. Recall that if two strings y and z are
at Hamming distance 1, we write y ≈1 z.

Fact 2 (Folklore). Given two strings y and z of length m, we have that if
y ≈1 z, then y and z share at least one factor of length bm/2c.

Fact 3. Given a string x and any two positions i, j on x, we have that if x[i . . i+
m−1] ≈1 x[j . . j+m−1], then x[i . . i+m−1] and x[j . . j+m−1] have at least one
common factor of length L = bm/3c starting at positions i′ ∈ {i, . . . , i+m−L}
and j′ ∈ {j, . . . , j +m− L} of x, such that i′ − i = j′ − j and i′ = 0 (mod L).

Proof. It should be clear that every factor of x of length m fully contains at
least two factors of length L starting at positions equal to 0 mod L. Then, if
x[i . . i + m − 1] and x[j . . j + m − 1] are at Hamming distance 1, analogously
to Fact 2, at least one of the two factors of length L that are fully contained in
x[i . . i+m− 1] occurs at a corresponding position in x[j . . j +m− 1]; otherwise
we would have a Hamming distance greater than 1. ut



We first initialize an array C of size n −m + 1, with 0 in all positions; for
all i, C[i] will eventually store the number of factors of x that are at Hamming
distance 1 from x[i . . i + m − 1]. We apply Fact 3 by implicitly splitting the
string x into B = b n

bm/3cc blocks of length L = bm/3c—the suffix of length
n mod bm/3c is not taken as a block—starting at the positions of x that are
equal to 0 mod L. In order to find all pairs of length-m factors that are at
Hamming distance 1 from each other, we can find all the exact matches of every
block and try to extend each of them to the left and to the right, allowing
at most one mismatch. However, we need to tackle some technical details to
correctly update our counters and avoid double counting.

We start by constructing the SA and LCP arrays for x and rev(x) in O(n)
time. We also construct RMQ data structures over the LCP arrays for answering
LCE queries in constant time per query. By exploiting the LCP array information,
we can then find in O(n) time all maximal sets of indices such that the longest
common prefix between any two of the suffixes starting at these indices is at
least L and at least one of them is the starting position of some block.

Then for each such set, denoted by P , we have to do the following procedure
for each index i ∈ P such that i = 0 (mod L).

For every other j ∈ P , we try to extend the match by asking two LCE
queries in each direction. I.e., we ask an lcs(i − 1, j − 1) query to find the first
mismatch positions `1 and `′1, respectively, and then lcs(`1 − 1, `′1 − 1) to find
the second mismatch (`2 and `′2, respectively). A symmetric procedure computes
the mismatches r1, r′1 and r2, r′2 to the right, as shown in Figure 1. We omit here
some technical details with regards to reaching the start or end of x.

`2 p `1 q i i+ L− 1 r1 r2

X XX X

`′2 p′ `′1 q′ j j + L− 1 r′1 r′2

X XX X

Fig. 1: Performing two LCE queries in each direction.

Now we are interested in positions p such that `2 < p ≤ `1 and i + L − 1 ≤
p +m − 1 < r1 and positions q such that `1 < q ≤ i and r1 ≤ q +m − 1 < r2.
Each such position p (resp. q) implies that x[p . . p+m−1] ≈1 x[p

′ . . p′+m−1],
where p′ = j − (i− p). Henceforth, we only consider positions of the type p, p′.

Note that if x[p . . p+m−1] ≈1 x[p
′ . . p′+m−1], we will identify the unordered

pair {p, p′} based on the described approach tp,p′ times, where tp,p′ is the total
number of full blocks contained in x[p . . p + m − 1] and in x[p′ . . p′ + m − 1]
after the mismatch position. It is not hard to compute the number tp,p′ in O(1)
time based on the starting positions p and p′ as well as `1 and r1 each time we



identify x[p . . p+m−1] ≈1 x[p
′ . . p′+m−1]. To avoid double counting, we then

increment the C[p] and C[p′] counters by 1/tp,p′ .
By EXTi,j we denote the time required to process a pair of elements i, j of a

set P such that at least one of them, i or j, equals 0 mod L.

Lemma 4. The time EXTi,j is O(m).

Proof. Given i, j ∈ P , with at least one of them equal to 0 mod L, we can find
the pairs (p, p′) of positions that satisfy the inequalities discussed above in O(m)
time. They are a subset of {(i−m+ L, j −m+ L), . . . , (i− 1, j − 1)}. For each
such pair (p, p′) we can compute tp,p′ and increment C[p] and C[p′] accordingly
in O(1) time. The total time to process all pairs (p, p′) for given i, j is thus
O(m). ut

It should be clear that the aforementioned algorithm is generalizable for
arbitrary k. We proceed with proving the following theorem.

Theorem 5. Given a string x of length n over an integer alphabet Σ of size
σ > 1 with the letters of x being independent and identically distributed random
variables, uniformly distributed over Σ, the k-mappability problem can be solved
in average-case time O(kn) and space O(n) if m ≥ (k + 2) · (logσ n+ 1).

Proof. The time and space required for constructing the SA and LCP array for
x and rev(x) and the RMQ data structures over the LCP arrays is O(n).
Let B denote the number of blocks over x and L be the block length. We set

L = b m
k+2c, B = bnLc

to apply the pigeon-hole principle: at least one block must be an exact match
(generalization of Fact 3). Recall that by P we denote a maximal set of indices
of the LCP array such that the length of the longest common prefix between any
two suffixes starting at these indices is at least L and at least one of them is the
starting position of some block. Processing all such sets P requires time

EXTi,j ·Occ

where EXTi,j is the time required to process a pair i, j of elements of a set
P ; and Occ is the sum of the multiples of the cardinality of each set P times
the number of the elements of set P that are equal to 0 mod L. We generalize
Lemma 4 for arbitrary k, showing that EXTi,j = O(m) as follows. We perform
at most 2k + 2 longest common extension queries (to the left and to the right);
list all O(k) blocks that do not contain a mismatch within these extensions;
and then consider O(m) positions to be updated. Additionally, by the stated
assumption on the string x, the expected value for Occ is no more than Bn

σL .
Hence, the algorithm on average requires time

O(n+m · B · n
σL

).



Let m = (k + 2)q + r, for 0 ≤ r ≤ k + 1, q ≥ 1; note that here we assume
that m ≥ k+2; further note that bm/(k+2)c = q. If q satisfies n ≤ σq we have

m · B
σL

=
m · b n

bm/(k+2)cc

σb
m

k+2 c
=
m · bnq c
σq

≤
m · nq
σq

≤ m

q
=

(k + 2)q + r

q

= k + 2 +
r

q
≤ 2k + 3.

Consequently, in the case when

m ≥ (k + 2) · (logσ n+ 1)

we have that
m
B · n
σL

≤ (2k + 3)n

and hence the algorithm requires O(kn) time on average. The extra space usage
is O(n). ut

We thus obtain the following corollary with respect to the 1-mappability
problem; namely, for k = 1.

Corollary 6. Given a string x of length n over an integer alphabet Σ of size
σ > 1 with the letters of x being independent and identically distributed ran-
dom variables, uniformly distributed over Σ, the 1-mappability problem can be
solved in average-case time O(n) and space O(n) if m ≥ 3 · logσ n+ 3.

4 Efficient Worst-Case Algorithms

4.1 O(mn)-time and O(n)-space algorithm

In this section we assume that x is a string over an integer alphabet Σ. The main
idea is that we want to first find all pairs x[i1 . . i1 +m− 1] ≈1 x[i2 . . i2 +m− 1]
that have a mismatch in the first position, then in the second, and so on.

Let us fix 0 ≤ j < m. In order to identify the pairs x[i1 . . i1 + m − 1] ≈1

x[i2 . . i2 +m − 1] with x[i1 + j] 6= x[i2 + j] (i.e. with the mismatch in the jth
position), we do the following. For every i = 0, 1, . . . , n−m, we find the explicit
or implicit node ui,j in T (x) that represents x[i . . i+ j − 1] and the node vi,j in
T (rev(x)) that represents rev(x[i+ j + 1 . . i+m− 1]) = rev(x)[n− i−m. . n−
i − j − 2]. In each such node vi,j , we create a set V (vi,j)—if it has not already
been created—and insert the triple (ui,j , x[i+ j], i).

When we have done this for all possible starting positions of x, we group the
triples in each set V (v) by the node variable (i.e., the first component in the
triples). For each such group in V (v) we count the number of triples that have
each letter of the alphabet and increment array C accordingly. More precisely,
if V (v) contains q triples that correspond to the same node u, among which
r correspond to the letter c ∈ Σ, then for each such triple (u, c, i) ∈ V (v) we



increment C[i] by q − r; we subtract r to avoid counting equal factors in C.
Before we proceed with the computations for the next index j, we delete all the
sets V (v). We formalize this algorithm, denoted by 1-Map, in the pseudocode
presented below and provide an example.

1-Map(x, n,m)

1 T (x)← SuffixTree(x)
2 T (rev(x))← SuffixTree(rev(x))
3 for string-depth j = 0 to m− 1 do
4 for i = 0 to n−m do
5 ui,j ← NodeT (x)(x[i . . i+ j − 1])
6 vi,j ← NodeT (rev(x))(rev(x)[n− i−m. . n− i− j − 2])
7 Insert (ui,j , x[i+ j], i) to V (vi,j)
8 for every node v of string-depth m− j − 2 in T (rev(x)) do
9 Group triples in V (v) by the node variable
10 for a group corresponding to the node u in V (v) do
11 Count number of triples with each letter c ∈ Σ
12 Update C[i] accordingly for each triple (u, c, i)
13 Delete V (v)

Example 7. Suppose we have V (v) = {(u, A, i1), (u, A, i2), (u, A, i3), (u, C, i4),
(u, C, i5), (u, C, i6), (u, G, i7), (u, G, i8), (u, T, i9)}, for some distinct positions i1, i2,
. . . , i9. We then increment C[i1], C[i2], C[i3], C[i4], C[i5], and C[i6] by 6; C[i7]
and C[i8] by 7; and C[i9] by 8.

We now analyze the time complexity of this algorithm. The algorithm iterates
j from 0 to m − 1. In the jth iteration, we need to compute {ui,j , vi,j | i =
0, . . . , n−m}. When j = 0, ui,0 for every i is the root of T (x) and we can find
vi,0 for all i naïvely in O(mn) time. For j > 0, vi,j can be found in O(1) time
from vi,j−1 by moving one letter up in T (rev(x)) for all i, while ui,j can be
obtained from ui,j−1 by going down in T (x) based on letter x[i + j]. We then
include (ui,j , x[i+ j], i) in V (vi,j).

This requires in total O(mn) randomized time due to perfect hashing [11]
which allows to go down from a node in T (x) (or in T (rev(x))) based on a letter
in O(1) randomized time. We can actually avoid this randomization, as queries
for a particular child of a node are asked in our solution in a somewhat off-line
fashion: we use them only to compute vi,0 (m times) and ui,j (from ui,j−1).

Observation 8. For an integer alphabet Σ = {1, . . . , n}, one can answer off-
line O(n) queries in T (x) asking for a child of an explicit or implicit node u
labelled with the letter c ∈ Σ in (deterministic) O(n) time.

Proof. A query for an implicit node u is answered in O(1) time, as there is only
one outgoing edge to check. All the remaining queries can be sorted lexicograph-
ically as pairs (u, c) using radix sort. We can also assume that the children of
every explicit node of T (x) are ordered by the letter (otherwise we also radix
sort them). Finally, all the queries related to a node u can be answered in one
go by iterating through the children list of u once. ut



Lastly, we use bucket sort to group the triples for each V (v) according to
the node variable (recall that the nodes are represented by the edge and the
index within the edge) and update the counters in O(n) time in total (using a
global array indexed by the letters from Σ, which is zeroed in O(|V (v)|) time
after each V (v) has been processed). Overall the algorithm requires O(mn) time.
The suffix trees require O(n) space and we delete the sets V (vi,j) after the jth
iteration; the space complexity of the algorithm is thus O(n). We obtain the
following result.

Theorem 9. Given a string of length n over an integer alphabet and an integer
m, where 1 ≤ m < n, the 1-mappability problem can be solved in O(mn) time
and O(n) space.

Remark 10. Theorem 9 can also be obtained via utilising the gapped suffix array
data structure (see [5] for an efficient construction algorithm).

4.2 O(n logn log logn)-time and O(n)-space algorithm

In this section we assume that x is a length-n string over an ordered alphabet
Σ, where |Σ| = σ = O(1). Consider two factors of x represented by nodes u and
v in T (x); we observe that the first mismatch between the two factors is the
first letter of the labels of the distinct outgoing edges from the lowest common
ancestor of u and v that lie on the paths from the root to u and v. For 1-
mappability we require that what follows this mismatch is an exact match.

Definition 11. Let T be a rooted tree. For each non-leaf node u of T , the heavy
edge (u, v) is an edge for which the subtree rooted at v has the maximal number
of leaves (in case of several such subtrees, we fix one of them). The heavy path of
a node v is a maximal path of heavy edges that passes through v (it may contain
0 edges). The heavy path of T is the heavy path of the root of T .

Consider the suffix tree T (x) and its node u. We say that an (explicit or
implicit) node v is a level ancestor of u at string-depth ` if D(v) = ` and L(v) is
a prefix of L(u). The heavy paths of T (x) can be used to compute level ancestors
of nodes in O(log n) time. However, a more efficient data structure is known.

Lemma 12 ([1]). After O(n)-time preprocessing on T (x), level ancestor queries
of nodes of T (x) can be answered in O(log log n) time per query.

Definition 13. Given a string x and a factor y of x, we denote by range(x, y)
the range in the SA of x that represents the suffixes of x that have y as a prefix.

Every node u in T (x) corresponds to an SA range Iu = range(x,L(u)) =
(umin, umax). We can precompute Iu for all explicit nodes u in T (x) in O(n)
time while performing a depth-first traversal of the tree as follows. For a non-
terminal node v with children u1, . . . , uq, we set vmin = mini{uimin} and vmax =
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Fig. 2: Illustration; the heavy path of T (x) is shown in red.

maxi{uimax}. If v is a terminal node (with children u1, . . . , uq), representing the
suffix x[j . . n − 1], we set vmin = iSA[j] and vmax = max{iSA[j],maxi{uimax}}.
When a considered node v is implicit, say along an edge (p, q), then Iv = Iq.

Our algorithm relies heavily on the following auxiliary lemmas.

Lemma 14. Consider a node u in T (x) with p = L(u). Let suf(u, `) be the
node v such that L(v) = p[` . . |p| − 1]. Given the SA and the iSA of x, v can be
computed in O(log log n) time after O(n)-time preprocessing.

Proof. The SA range of the node u is Iu = (umin, umax); umin corresponds to
the suffix x[SA[umin] . . n− 1]. By removing the first ` letters, the suffix becomes
x[SA[umin] + ` . . n− 1]. The corresponding SA value is vmin = iSA[SA[umin] + `].

Let v1 be the node of T (x) such that L(v1) = x[SA[vmin] . . n−1]. The sought
node v is the ancestor of v1 located at string-depth |p| − `. It can be computed
in O(log log n) time using the level ancestor data structure of Lemma 12. ut

Lemma 15. Let u and v be two nodes in T (x). We denote L(u) by p1 and L(v)
by p2. We further denote by concat(u, v) the node w such that L(w) = p1p2. Given
the SA and the iSA of x, as well as range(x, p1) and range(x, p2), w can be located
in O(log log n) time after O(n log log n)-time and O(n)-space preprocessing.

Proof. We can compute range(x, p1p2) = (wmin, wmax) in O(log log n) time after
O(n log log n)-time and O(n)-space preprocessing [9]; we can then locate w in
O(log log n) time using the level ancestor data structure of Lemma 12. ut

We are now ready to present an algorithm for 1-mappability that requires
O(n log n log log n) time and O(n) space. The first step is to build T (x). We
then make every node u of string-depth m explicit in T (x) and initialize a
counter Count(u) for it. For each explicit node u in T (x), the SA range Iu =
range(x,L(u)) is also stored. We also identify the node vc with path-label c for
each c ∈ Σ in O(σ) = O(1) time.



PerformCount(T,m)

1 HP← HeavyPath(T )
2 for each side-tree Si attached to a node u on HP with D(u) < m do
3 Let (u, v) be the edge that connects Si to HP
4 c← the edge label of (u, v)
5 d← the edge label of the heavy edge (u, u′)
6 for each node z in Si with D(z) = m do
7 w ← suf(z,D(u) + 1)
8 for each c′ 6= c, label of an outgoing edge from u do
9 t← concat(u, concat(vc′ , w))
10 Count(z)← Count(z) + |It|
11 z′ ← concat(u, concat(vd, w))
12 Count(z′)← Count(z′) + |Iz|
13 PerformCount(Si,m−D(u))

We then call PerformCount(T (x),m), which does the following (inspect
also the pseudocode above and Figure 2). At first, a heavy path HP of T (x) is
computed. Initially, we want to identify the pairs of factors of x of length m at
Hamming distance 1 that have a mismatch in the labels of the edges outgoing
from a node in HP. Given a node u in HP, with L(u) = p1, for every side
tree Si attached to it (say by an edge with label c ∈ Σ), we find all nodes of
Si with string-depth m. For every such node z, with path-label p1cp2, we use
Lemma 14 to obtain the node w = suf(z, |p1|+ 1); that is, L(w) = p2. We then
use Lemma 15 to compute range(x, p1c′p2) for all c′ 6= c such that there is an
outgoing edge from u with label c′ and increment Count(z) by |range(p1c′p2)|.
Let the heavy edge from u have label d; we also increment Count(z′), where
z′ = concat(u, concat(vd, w)) is the node with path-label p1dp2, by |Iz| while
processing node z.

This procedure then recurs on each of the side trees; i.e. for side tree Si,
attached to node u, it calls PerformCount(Si,m−D(u)). Finally, we construct
array C from array Count while performing one more depth-first traversal.

On the recursive calls of PerformCount in each of the side trees (e.g. Si)
attached to HP, we first compute the heavy paths (in O(|Si|) time for Si) and
then consider each node of string-depth m of T (x) at most once; as above, we
process each node in O(log log n) time due to Lemmas 14 and 15. As there are
at most n nodes of string-depth m, we do O(n log log n) work in total. This is
also the case as we go deeper in the tree. Since the number of leaves of the trees
we are dealing with at least halves in each iteration, there at most O(log n)
steps. Hence, each node of string-depth m will be considered O(log n) times and
every time we will do O(log log n) work for it. The overall time complexity of the
algorithm is thus O(n log n log log n). The space complexity is O(n). By applying
Theorem 9 we obtain the following result.

Theorem 16. Given a string of length n over a constant-sized alphabet and
an integer m, where 1 ≤ m < n, the 1-mappability problem can be solved in
O(min{mn, n log n log log n}) time and O(n) space.



Remark 17. Note that, alternatively, the data structure presented by Cole et
al [4] for pattern matching with up to k mismatches can be used. For k = 1,
this data structure is of size O(n log n) and can be built in time O(n log n). We
can then find all occ occurrences of a given factor of x with at most 1 mismatch
in time O(log n log log n + occ). However, the ω(n) space required for this data
structure is prohibitive for genome-scale analyses—in Theorem 16 we use O(n)
space.

5 Final Remarks

We have produced a proof-of-concept implementation of our efficient average-
case algorithm for arbitrary k. It takes 706 seconds to execute with an in-
put of 200MB real DNA corpus (n = 209, 714, 087) obtained from http://
pizzachili.dcc.uchile.cl/texts/dna/, for m = 64 and k = 2, on a Desktop
PC using one core of Intel(R) Core(TM) i7-4600U CPU at 2.10GHz and 8GB of
RAM. We have repeated the same test with an input of 100MB real DNA corpus
(n = 104, 856, 983) obtained from the same website, for m = 52 and k = 2. The
assignment took 365 seconds to execute.

The natural next aim is either to extend the presented worst-case solutions
to work for arbitrary k without increasing the time and space complexities dra-
matically or to develop fundamentally new algorithms if this is not possible.
One possible direction is to investigate whether the techniques of [16] are appli-
cable in this context. Another interesting direction would be to consider the edit
distance model instead of the Hamming distance model for this problem.

Furthermore, a practical extension of the k-mappability problem is the fol-
lowing. Given reads from a particular sequencing machine, the basic strategy for
genome re-sequencing is to map a seed of each read in the genome and then try
and extend this match. In practice, a seed could be for example the first 32 let-
ters of the read—the accuracy is higher in the prefix of the read. It is reasonable
to allow for a few (e.g. k = 2) errors when matching the seed to the reference
genome to account for sequencing errors and genetic variation. A closely-related
problem to genome mappability that arises naturally from this application is the
following: What is the minimal value of m that forces at least α of the starting
positions in the reference genome to have k-mappability equal to 0?
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