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Abstract  

Purpose 

Despite the growing use of 18-fluoro-2-deoxyglucose positron emission tomography (18F-

FDG PET)  texture analysis to measure intratumoural heterogeneity in cancer research, the 

biologic basis of 18F-FDG PET-derived texture variables (TV) is poorly understood. We 

aimed to assess correlations between 18F-FDG PET-derived TVs and whole-slide image 

(WSI)-derived metrics of tumour cellularity and spatial heterogeneity. 

Methods  

Twenty-two patients with non-small cell lung cancer (NSCLC) prospectively underwent 

18F-FDG PET imaging before tumour resection. We tested 9 18F-FDG PET parameters: 

metabolically active tumour volume (MATV), total lesion glycolysis (TLG), mean 

standardised uptake value (SUVmean), first-order entropy, energy, skewness, kurtosis, 

grey-level co-occurrence matrix entropy, and lacunarity (SUV-lacunarity). From the 

haematoxylin and eosin-stained WSIs, we derived mean tumour-cell density (MCD) and 

lacunarity (Path-lacunarity). Spearman’s correlation analysis and agglomerative 

hierarchical clustering were performed to assess variable associations. 

Results 

Tumour volumes ranged from 2.2-74 cm3 (median 17.9 cm3). MCD correlated positively 

with TLG (rs: 0.46, p-value: 0.007) and SUVmean (rs: 0.55; p-value: 0.008) and negatively 

with skewness and kurtosis (rs: -0.47 for both; p-value: 0.028 and 0.026, respectively). 

SUV-lacunarity and Path-lacunarity were positively correlated (rs: 0.5; p-value: 0.018). On 

cluster analysis, larger tumours trended towards higher SUVmean and entropy with a 

predominance of tightly concentrated high SUV-voxels (negative skewness and low 

kurtosis on histogram); on WSI-analysis such larger tumours also displayed generally 

higher MCD and low SUV- and Path-lacunarity.   



 

 

 

Conclusions 

Our data suggest that histopathological MCD and lacunarity are associated with several 

commonly used 18F-FDG PET-derived indices including SUV-lacunarity, MATV, SUVmean, 

entropy, skewness, and kurtosis, and thus may explain biological basis of 18F-FDG PET-

uptake heterogeneity in NSCLC. 
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Introduction 

18-fluoro-2-deoxyglucose positron emission tomography (18F-FDG PET) derived texture 

variables (TVs) are emerging as potentially useful biomarkers in cancer research. They 

quantify metabolic heterogeneity in different scales of space and direction and there is 

growing evidence supporting the role of TVs in making non-invasive inferences in varied 

oncologic applications, including tumour phenotyping and genotyping, response to 

treatment, and survival prognostication [1–4].  However, beyond the over-expression of 

glucose membrane receptors (e.g. GLUT-1) and upregulation of hexokinase activity in 

cancer cells, our understanding of the biological basis that can be inferred from 

histopathology that influences the spatial and intensity distribution of 18F-FDG PET images 

is lacking and largely conjectural[5]. 

Tumour cell density and spatial heterogeneity on haematoxylin and eosin (H&E) 

microscopy are logical targets for studies seeking associations with 18F-FDG PET imaging, 

since glycolysis is a cellular function and proliferating tumour cells are typically driven by 

anaerobic metabolism [6]. The clinical and experimental observation of low uptake of 18F-

FDG (measured by standardised uptake values, SUVs) in areas of low tumour cellularity 

supports this hypothesis [7,8]. To explore associations between tumour cell density and 

spatial variation with 18F-FDG PET metrics, suitable corresponding whole-slide image-

derived (WSI) metrics are required. Tumour cell density is difficult to estimate from WSIs 

because manual counting is impractical whereas subjective estimates are prone to error [9–

11]. Secondly, a voxel-to-pixel match for TVs, derived from 18F-FDG PET images with 

TVs derived from WSIs, may be limited in its ability to uncover true correlations due to the 

difference in scale between the two modalities and the presence of other influencing factors 

such as differences in glucose transporter (GLUT) expression [12]. Hence, simple, intuitive, 

and objective metrics of tissue heterogeneity need to be developed for comparison with 18F-

FDG PET-derived TVs.   
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Automated tumour cell counting, if done with acceptable error, is a practical alternative to 

subjective estimation, that could be applied to large samples of WSIs. Similarly, lacunarity 

- an intuitive metric of gaps in a geometric structure - can be applied to entire WSIs or 18F-

FDG PET volumes by simply converting them into binary maps representing areas of high 

versus low cellularity (or metabolic activity in case of 18F-FDG PET images) [13,14].  

We hypothesised that tumour cell density and lacunarity measured from WSIs are 

correlated with 18F-FDG PET lacunarity and possibly other commonly reported TVs. The 

objectives of this proof-of-concept study were to develop algorithms to quantify mean 

tumour-cell density (MCD) and lacunarity from WSIs, to enable comparison with 18F-FDG 

PET-derived lacunarity and other TVs.  

 

Materials and Methods 

Patients 

Informed written consent was obtained from all patients in this institutional review board 

approved prospective study. The study population comprised 22 patients with NSCLC. 

Inclusion criteria were: a) Histopathologic diagnosis of NSCLC, b) 18F-FDG PET/CT scans 

performed at our institution within 6 weeks before surgery c) Upfront surgery of the 

primary lung tumour. Patients were excluded if they had tumours smaller than 3 cm, since 

it has been shown 18F-FDG PET/CT texture parameters are strongly influence by tumour 

volume (rather than tumour heterogeneity) in smaller lesions [3]. Twenty-two patients 

(mean age: 65.1 years; 8 men, 14 women) were thus included. Nineteen patients had 

adenocarcinoma (ADCA) and 3 had squamous cell carcinoma (SCCA). Clinical stages 

were: stage IA (n=5), stage IB (n=7), stage IIA (n=1), stage IIB (n=2), stage IIIA (n=6), and 

stage IIIB (n=1).  
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Image acquisition 

Patients underwent 18F-FDG PET/CT scans at a median 7 days before surgery (range 1 to 

42 days). 18F-FDG PET/CT scans were acquired on a standardised protocol on a Discovery 

710 scanner (GE Healthcare, Chicago, US). Following a 6-hour fasting period, patients 

were injected with 350-400 MBq 18F-FDG intravenously. As per department protocol, 18F-

FDG PET images were acquired from the base of the skull to the upper thighs 90 minutes 

after tracer injection. Volumetric image reconstruction was performed using the ordered 

subset expectation maximisation algorithm (2 iterations, 24 subsets, with post-construction 

smoothing filter of 4mm), slice thickness of 3.27 mm, and pixel size of 4.7mm. All 

corrections for scatter, randoms, dead time, and decay were applied as standard on the 

scanner. Attenuation correction was obtained with low dose un-enhanced CT (140 kVp and 

65 mAs).  

  

18F-FDG PET-derived heterogeneity parameters  

Reconstructed 18F-FDG PET Digital Imaging and Communications in Medicine (DICOM) 

volumes were imported into in-house image texture-analysis software developed in 

MATLAB (Release 2013b, The MathWorks, Inc., Natick, Massachusetts, United States). A 

semi-automated tumour volume of interest (VOI) delineation workflow was adopted, 

employing an in-house implementation of the three-class fuzzy locally adaptive Bayesian 

(FLAB) segmentation algorithm [15]. First, a VOI was drawn manually by U.B (radiologist 

with 9 years’ experience) around the tumour taking care to exclude metabolically active 

adjacent structures (e.g., myocardium, hilar lymph nodes) and to include at least 2-3mm 

rim of background. This VOI was then processed with FLAB to classify all voxels into 3 

classes, i.e., tumour, background, and region of partial volume averaging. Voxels belonging 

to background class were discarded. A 64-bin quantisation scheme was used since it has 

been shown adequate to characterise typically encountered SUV ranges [16]. We tested 
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nine parameters: five first-order texture parameters (SUVmean, first-order entropy, energy, 

skewness, and kurtosis), two tumour size-related parameters (metabolically active tumour 

volume [MATV] and total lesion glycolysis [TLG]), one second-order parameter, i.e., grey-

level co-occurrence matrix [GLCM] entropy, and one model-based texture parameter, i.e., 

fractal dimension lacunarity (SUV-lacunarity). The justification to include these parameters 

in this study is as follows: SUVmean, MATV, and TLG are related to tumour metabolism 

and volume, and are used widely in the clinic and research. Compared with SUVmax, whose 

value depends only on a single voxel, or SUVpeak (or the lean body mass corrected SULpeak), 

whose value depends on a small 1cm3 volume, SUVmean provides a more global estimate of 

tumour metabolism and is considered less prone to noise [17]. The first-order texture 

parameters characterise the global intensity distribution through histogram shape. Broadly 

speaking, the mean localises the position of the histogram peak, whereas skewness and 

kurtosis describe histogram symmetry and relative proportions of extreme values, 

respectively [16,18]. Compared with most regional and local parameters, first-order 

parameters have been shown to be highly reproducible in inter-observer and moderately-to-

highly reproducible in inter-scan settings [16,18]. Most importantly, all included features 

besides SUV-lacunarity have been shown in recent studies to be potential biomarkers of 

tumour histopathology, treatment response and patient survival [2,19–22]. Lacunarity is a 

parameter that can be used to quantify the presence of gaps in a structure; the larger the 

gaps the higher the lacunarity [23].  We used lacunarity on the premise that large cell-poor 

regions (i.e., high WSI-derived lacunarity [Path-lacunarity]) would appear as large low-

uptake cold spots on 18F-FDG PET images (i.e., high SUV-lacunarity), contributing to 

image heterogeneity and lowering SUVmean. Relevant details of the texture parameters can 

be found in online supplementary resource 1. 

 

Histopathology slide staining and post-processing 
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Haematoxylin & eosin (H&E) staining was performed on 3-micron thick tissue sections 

fixed in 10% buffered formalin for 24 hours and embedded in paraffin. For H&E staining, 

paraffin-embedded tissue sections were stained manually by a technician using Gill No.3 

Haematoxylin Solution (Sigma-AldrichGHS316). All slides were scanned at 20X 

magnification using a Hamamatsu Nanozoomer digital slide scanner (Hamamatsu 

Photonics K.K., Shizuoka, Japan). Low magnification (0.4 – 0.7X) views covering the 

entire tumour in a single frame (1920 x 1080 pixels) were exported into ImageJ v1.51d 

(National Institutes of Health, Maryland, USA) as Tag Image File Format files [24]. The 

tumour regions were delineated freehand by O.F (year-4 pathology trainee) for further 

processing. The segmented tumors were colour deconvolved into haematoxylin-only 

images (H-images) to allow identification of tumour nuclei [25].  

We analysed the low magnification H-images to quantify tumour heterogeneity on the basis 

of spatial variation in nuclear density. Using the k-mean clustering algorithm, we first 

generated a nuclear density map (N-map) from an entire WSI (one per case) at low 

magnification. The N-map was a three-tone image with pixels denoting tissue categorised 

as “cell-poor”, “tumour-cell rich”, and “immune-cell rich”, in order of increasing nuclear 

density (Fig. 1). From the N-map, the relative weight of each tissue class was computed by 

dividing the number of pixels occupied by the particular class with total number of pixels 

occupied by the whole tumour.  

We derived Path-lacunarity by converting each N-map into a binary image of high versus 

low nuclear-density regions and then using the gliding-box algorithm implemented in 

MATLAB [14].  

To compute MCD, we implemented a cell-counting workflow as follows: First, we 

exported a 1920 x 1080 pixel image of a random 20X HPF view into ImageJ.  After colour-

deconvolution, we used manual thresholding to subtract background. Next, we used the 

built-in watershed algorithm to separate any overlapping nuclei. Considering each particle 
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on the resulting image as a single cell nucleus, we used the built-in ImageJ particle counter 

to count all particles in the image. This procedure was repeated on 20 random sites per WSI 

and the resulting cell counts were multiplied by the tissue weights derived from 

corresponding N-maps to obtain MCD. The total sampled area per slide was thus 

approximately 10.36 mm2
 (2.76% of the total area covered by a 25x15mm slide; conversion 

factor: 0.5 micron per pixel at 20X magnification)  [26]. We validated the cell-counting 

workflow using five independent 20X high-power field (HPF) views (total 16431 nuclei) 

annotated manually by a pathologist (OW). Its median error in nuclear count per HPF was 

20.36% [range 6.9% - 35%].   

 

Statistical analysis 

Tumour size, volume, and maximum diameter were reported as medians with ranges. Based 

on N-maps, relative proportions of immune-cell predominant, tumour-cell predominant, 

and cell-poor predominant regions of the WSIs were reported as medians with ranges. 

Examination of variable histograms and scatterplots of variable interactions showed that the 

assumptions of Pearson correlation, i.e., normal distribution of variables, linear 

relationships, and homoscedasticity, were not met [27] . Hence, Spearman rank correlation 

coefficient (rs) was measured to study the relationships among all 18F-FDG PET derived 

and histopathology-derived parameters. Statistical significance was set at a p-value of 

<0.05 in this exploratory analysis [28]. To identify groups of correlated variables, 

agglomerative hierarchical clustering was done using 1-rs as a dissimilarity metric. R 

version 3.3.2 was used for statistical analysis [29]. 

 

Results 
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Measured from 18F-FDG PET images, tumour volumes ranged from 2.2-75 cm3 (median 

17.9 cm3) and diameters ranged from 1.6 cm to 5.2 cm (median 3.4 cm). The immune-cell 

predominant proportion ranged from 0.9% to 16.6% (median: 5.4%), the tumour-cell 

predominant proportion ranged from 15.1% to 55.4% (median: 40.1%), and cell-poor tissue 

ranged from 33.9% to 84.8% (median: 55.1%).   

On correlation analysis, MCD correlated positively with TLG (rs: 0.46, p-value: 0.007) and 

SUVmean (rs: 0.55; p-value: 0.008) and negatively with skewness and kurtosis (rs: -0.47 for 

both; p-value: 0.028 and 0.026 respectively). SUV-lacunarity and Path-lacunarity were also 

positively correlated (rs: 0.5; p-value: 0.018). All correlations are summarised in Fig. 2. 

Cluster analysis revealed two groupings of variables which we labelled Group A and Group 

B (Fig. 3). 

 Variables within each group were positively correlated among themselves and negatively 

with variables belonging to the other group. For example, tumors with large MATV (Group 

A variable) had higher values for other Group A variables and thus showed greater tumour 

cell-rich proportion (MATV/tumour-rich proportion rs: 0.53 ; p-value: 0.01), higher MCD 

(MATV/  rs: 0.26; p-value: 0.236), higher SUVmean (MATV/SUVmean rs: 0.18; p-value: 

0.43), and higher entropy (MATV/GLCM-entropy rs: 0.17; p-value: 0.46). Simultaneously, 

larger tumors showed lower values of Group B variables, i.e., negative skewness and low 

kurtosis (MATV/SUV skewness rs:-0.49; p-value: 0.02, MATV/SUV kurtosis rs: -0.38; p-

value: 0.083). Since Path-lacunarity and SUV-lacunarity were Group B variables, larger 

tumours also generally had low lacunarity (MATV/SUV-lacunarity rs: -0.77; p-value: 

<0.0001; MATV/Path-lacunarity rs: -0.15; p-value: 0.5). Interpreted intuitively, these 

findings suggest that larger tumours had a wider spread of 18F-FDG PET voxel intensities 

as indicated by histogram-derived entropy, kurtosis, and skewness, and had higher tumour 

cell-rich proportions. Although the spread of voxel intensities was larger and hence there 

was greater voxel-to-voxel variability in metabolism, these variations were spread out and 
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did not coalesce into large gaps in metabolic activity (or tumour cellularity on WSI) and 

thus lacunarity remained low. An example of each of a large tumour with high Group 

A/low Group B variables and a small tumour with low Group A/high Group B variables is 

shown in Fig.4  and Fig. 5. 

 

Discussion 

We developed a reproducible workflow with freely available software to quantify nuclear 

density from H&E WSIs. Using H&E stain accumulation on WSI images, we grouped 

tumour regions into tumour-cell rich, immune-cell-rich, and cell-poor regions. This 

grouping allowed us to sample tumour pathological MCD from entire WSIs, and also to 

compute a novel two-dimensional representation of tissue-level heterogeneity as a WSI-

derived analogue of 18F-FDG PET lacunarity.  In our proof-of-concept study, we thus 

showed that it is possible to compare 18F-FDG PET TVs with WSI-derived metrics of 

tumour cell density and spatial heterogeneity. The group-wise correlations we have 

described should enable future studies using 18F-FDG PET TVs to explain some of the 

results on a biological basis. 

We found that MCD correlated positively with TLG (rs: 0.46, p-value: 0.007) and SUVmean 

(rs: 0.55; p-value: 0.008) and negatively with skewness and kurtosis (rs: -0.47 for both; p-

value: 0.028 and 0.026, respectively). SUV-lacunarity and Path-lacunarity were also 

correlated (rs: 0.5; p-value: 0.018). Considering further indirect associations among 18F-

FDG PET-derived and WSI-derived variables allowed us to conjecture two metabolic 

patterns in our dataset. 

Comparing vastly different modalities such as 18F-FDG PET and H&E microscopy, is 

challenging due to difference in scale (resolution of a 18F-FDG PET image is 4-5 mm and 

that of a 20X magnified WSI is 0.5 micron) and cost of large data processing (a single WSI 
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can contain up to 1 GB of data)[26]. Furthermore, whereas 18F-FDG PET images are 

conventionally quantised for texture analysis, quantising large WSI to allow conventional 

texture analysis would require considerable post-processing and, in our opinion, may lose 

variable-to-variable match. Hence we chose a simpler workflow to analyse heterogeneity in 

WSIs that did not involve quantisation of pixel values but binary assignment to zeros or 

ones for cell-poor regions and highly cellular regions respectively. A positive resulting 

correlation between SUV- and Path-lacunarity and between MCD and various 18F-FDG 

PET-derived variables supports our proof-of-concept workflow.  

There are very few previous studies comparing tumour cellularity with 18F-FDG PET 

derived texture features, with comparatively more studies comparing tumour cellularity 

with global metabolism indices such as SUVmean and SUVmax. Most reports support the 

logical relationship between tumour cellularity and 18F-FDG PET metabolism, as found in 

our study, with a few exceptions that we mention here [8,30–35]. In a bid to identify 

biologic explanation of 18F-FDG PET-derived texture variables, Orlhac et al. compared 

texture indices derived from 28 co-registered images obtained from 18F-FDG PET scans, 

autoradiography scans, and histopathologic sections of 3 rats bearing mammary tumours 

[12]. The authors did not find significant correlations between texture indices derived from 

18F-FDG PET images and those derived from histopathologic images, and attributed the 

lack of correlation to differential expression of GLUTs in tissue regions of similar cell 

density. Since our workflow was not based on co-registration of WSIs and 18F-FDG PET 

images but on global trends in TVs based on MCD derived from WSI-samples, we believe 

our workflow allows greater flexibility in local differences between 18F-FDG PET images 

and WSIs. Higashi et al. compared SUVmean with manual tumour cell-counts and GLUT-I 

staining, among other variables [36]. They found a positive correlation between tumour 

cellularity and 18F-FDG PET conditional upon strong GLUT-I staining, concluding that 

GLUT-I expression was the main predictor of 18F-FDG PET activity. While GLUT 
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expression is an important factor modulating tissue sensitivity to 18F-FDG PET uptake, the 

commonly observed fall of 18F-FDG PET as a function of decreasing cell density with 

chemotherapy strongly supports tumour cell density as the primary variable in this 

relationship. Nonetheless, multivariate modelling of 18F-FDG PET metabolism with H&E 

and immunohistochemical parameters including GLUT-I would be a refinement of our 

proof-of-concept design. 

We found two groupings of 18F-FDG PET-histopathologic variables using cluster analysis. 

The variable inter-relationships can be summarised using MATV as the primary variable: 

large tumours had greater MCD, high SUVmean, and a predominance of high-SUV voxel 

with fewer outliers (low skewness and kurtosis). Such tumours also had low SUV-

lacunarity compared to smaller tumours, suggesting less clustering of low-SUV voxels on 

18F-FDG PET images and of cell-poor tissue on WSIs. To our knowledge, there are no in-

vivo studies comparing 18F-FDG PET tumour-volumes with quantitative cell densities. 

However, the positive correlation between MATV, SUVmean,  and GLCM-entropy found in 

our study has been reported previously [21].   

Our study has potential limitations: our cell-counting algorithm counted both benign and 

malignant cells. The presence of stromal cells in MCD estimation would have theoretically 

lowered its correlation with SUVmean
 proportional to the amount of stromal cells present, 

since stromal cells are less metabolically active than proliferating tumour cells [6]. We also 

acknowledge that MCD is not the only factor influencing 18F-FDG PET activity in a tissue; 

variables such as tumour differentiation and expression of GLUT proteins would also 

influence 18F-FDG PET activity and could be added in future implementations. Finally, 

since we did not co-register 18F-FDG PET and WSIs, we did not correlate derived 

parameters on a voxel-to-pixel basis. However, we believe that the large difference in 

resolution between in-vivo 18F-FDG PET imaging and WSI may make such comparisons 

difficult or impractical. 
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Conclusion: 

We observed an association between mean tumour cell density and several 18F-FDG PET 

derived metabolic indices, particularly MATV, SUVmean , skewness, and kurtosis. We also 

found lacunarity, a quantifier of gaps in geometry, to be correlated on 18F-FDG PET 

imaging and WSIs; thus it may be a suitable variable for inter-modality comparison. Our 

results suggest the feasibility of comparing TVs derived from 18F-FDG PET images with 

variables quantified from WSIs.  Future studies could provide a more accurate 

understanding of TVs by including further tissue-variables, e.g., GLUT expression, and 

employing computationally intensive tumour-cell segmentation algorithms. 
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Tables 

 

Table 1  

Variable Value* 

Clinical variables  

Age   68.4 years (55.1-87 years) 

Tumour sub-type  

 Adenocarcinoma 19 

 Squamous cell carcinoma 3 

Sex M:F 8:14 

Tumour stage  

 IA 5 

 IB 7 

 IIA 1 

 IIB 2 

 IIIA 6 

 IIIB 1 

  

18F-FDG PET  variables  

SUVmean  7.2 

Tumour diameter 3.4cm (1.6cm - 5.2cm) 

MATV 17.9 cm3 (2.2cm3-75cm3) 

  

WSI variables  

MCD 3500 (640-5457) 

Path-lacunarity  4.1 (1.6-7.2) 

*For continuous variables, median values are provided, with ranges given in between 

parentheses. MCD=Mean cell density, WSI=Whole-slide imaging 
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Figure legends 

 

Fig.1 Illustrating key steps in our MCD and Path-lacunarity computation workflow. The 

original H&E image (a) is colour-deconvolved to yield the haematoxylin-only H-image (b). 

On the H-image (b), regions with greater haematoxylin clustering indicate high cell-density 

regions. Representative pixels of various tissue-types, i.e., immune-cell predominant, 

cancer-cell predominant, and cell-poor are marked with symbols (cross, square, and circle 

respectively). N-Map (c) is derived after running a 3-class k-means clustering algorithm 

after selecting representative pixels of each tissue type. (d) Path-lacunarity is computed 

from the N-map by re-coding all the high cellularity regions (red and blue regions in (c)) as 

‘1’ and low cellularity regions (green regions in (c)) as ‘0’. 

Fig. 2 (a) Correlation matrix of the measured variables: Positive correlations are shown in 

blue and negative in red, with darker shade implying stronger correlation, as shown in 

colour-key provided. The histogram displayed inside the colour-key shows frequencies of 

different rs values from -1 to +1. (b) Chart of p-values corresponding to the correlation 

matrix in (a). P-values <0.05 are highlighted in colour. *values labeled ‘0’ are <0.0001. 

Fig. 3 (a) Heatmap with each row representing an individual variable and each row, a 

patient. Variables (rows) are grouped and ordered by the strength of correlation among 

them using agglomerative hierarchical clustering. Highly correlated variables exhibit 

similar changes in colour from patient to patient (for example, GLCM entropy and SUV 

entropy) (b) A dendrogram based on cluster analysis shows two groupings of variables 

(blue and red). The lengths of branches between correlated clusters increase with increasing 

dissimilarity between clusters. All connected variables to the right of the vertical dashed 

line have statistically significant rs values. Clustering supporting our hypothesis includes 

the grouping of MCD with SUVmean and with MATV and PET-TLG, and grouping of 

SUV-lacunarity with Path-lacunarity 
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Fig. 4 A prototypical example of a large, highly metabolically active ADCA in an 80-year 

old man (Case 16 on heatmap shown in Fig. 3a). (a) 18F-FDG PET/CT axial section through 

the lungs shows the large 18F-FDG-avid tumour. Specific values of several relevant 

variables are shown in the inset. (b)H-image shows dense tumour/immune cell population 

corresponding to the high SUVmean and negative skew of the 18F-FDG PET image. (c) 

Binary image illustrates low Path-lacunarity (2.8) as smaller sized black regions of low 

cellularity between white regions of high cellularity. 

Fig. 5 A prototypical example of a small tumour in a 64-year old woman with ADCA (Case 

2 on heatmap shown in Fig. 3a). This tumour is at the opposite end of the spectrum to the 

previous example. (a)18F-FDG PET/CT axial image through the lungs exhibits a very low 

activity tumour that has the majority of its voxels displaying SUV values nearer the 

minimum (hence the positive skew). (b) H-image and (c) binary image show large black 

regions of low cellularity separating the white regions of high cellularity. Quantitatively, 

these gaps are represented by the high Path-lacunarity (4.7). 

 

 

 

 


