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Abstract 
 
The molecular complexity of triple-negative breast cancers (TNBCs) provides a 

challenge for patient management. We set out to characterise this heterogeneous 

disease by combining transcriptomics and genomics data, with the aim of revealing 

convergent pathway dependencies with the potential for treatment intervention. A 

Bayesian algorithm was used to integrate molecular profiles in two TNBC cohorts, 

followed by validation using five independent cohorts (n = 1,168), including three 

clinical trials. A four-gene decision tree signature was identified which robustly 

classified TNBCs into six subtypes. All four genes in the signature (EXO1, TP53BP2, 

FOXM1 and RSU1) are associated with either genomic instability, malignant growth, 

or treatment response. One of the six subtypes, MC6, encompassed the largest 

proportion of tumours (~50%) in early diagnosed TNBCs. In TNBC patients with 

metastatic disease, the MC6 proportion was reduced to 25%, and was independently 

associated with a higher response rate to platinum-based chemotherapy. In TNBC cell 

line data, platinum-sensitivity was recapitulated, and a sensitivity to the inhibition of 

the phosphatase PPM1D was revealed. Molecularly, MC6-TNBCs displayed high 

levels of telomeric allelic imbalances, enrichment of CD4+ and CD8+ immune 

signatures, and reduced expression of genes negatively regulating the mitogen-

activated protein kinase (MAPK) signalling pathway. These observations suggest that 

our integrative classification approach may identify TNBC patients with discernible 

and theoretically pharmacologically tractable features that merit further studies in 

prospective trials. 
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Introduction 

Triple-negative breast cancers (TNBCs), defined by the lack of oestrogen receptor 

(ER), progesterone receptor (PgR) and human epidermal growth factor receptor 2 

(HER2) expression, display remarkable molecular complexity and heterogeneous 

clinical behaviour (1). The overall prognosis of women with TNBC after metastatic 

relapse is significantly poorer when compared to that of women with other breast 

cancer subtypes (2). Chemotherapy remains the only systemic therapeutic approach 

for TNBC patients. Although subpopulations can be identified that are more 

responsive to chemotherapy, such as those with BRCA1 mutations, its effectiveness 

remains limited in an unselected TNBC population. Many agents are presently in 

clinical development, including PARP inhibitors and platinum salts (3-5), MEK 

inhibitors (6), and immunological agents (7). For some, predictive biomarkers have 

been recognised, while for others appropriate molecular features enabling optimal 

patient selection are still lacking (8,9). 

Several studies have sought to take advantage of molecular profiling to classify 

TNBCs and subsequently provide clinically relevant information (10-13). One of the 

most recent classifications, TNBCtype-4, is based on gene expression and classifies 

TNBC into four subtypes. Among those, basal-like 1 (BL1) TNBCs were shown to 

achieve significantly higher pathological complete response (pCR) rates (49%) 

compared to all other subtypes (31%) when treated with neoadjuvant chemotherapy. 

However, classification approaches making use of multi-omics data are warranted to 

identify patients that may benefit from treatment beyond the standard-of-care (12). 
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TNBCs are characterised by extensive genomic instability (14,15). Measures 

capturing overall levels of genomic instability, like a chromosomal instability gene 

signature (CIN70), are informative for outcome prediction in ER-negative breast 

cancer patients (16). Similarly, genomic signatures, including Scars of Chromosomal 

Instability measures (SCINS) (17), Number of Telomeric Allelic Imbalance (NtAI) 

(18), the Homologous Recombination Deficiency (HRD) score (19), and HRDetect 

(20), are indicative of BRCAness and predictive of response to chemotherapy, 

particularly in the neoadjuvant setting (21). In metastatic TNBC trials (TNT (22) and 

TBCRC009 (23)), these methods were not able to identify patients specifically 

responding to platinum-based chemotherapy, suggesting some refinement of such 

approaches are required. 

Here, we developed a four-gene decision tree signature based on integrated 

transcriptomics and genomics data that robustly classifies TNBC into 6 subtypes 

across 1,168 TNBCs. In TNBC patients with metastatic disease, our classification 

identified a subgroup of tumours sensitive to platinum-based chemotherapy. 

Molecular characteristics of this subgroup included increased number of allelic 

imbalanced aberrations in their telomeres, decreased inactivation of MAPK 

signalling, and enrichment of CD4+ and CD8+ immune signatures. 

Materials and methods 

Clinical sample data 

TNBCs from the previously described Guy’s TNBC (E-MTAB-5270 and E-MTAB-

2626) (24) were selected based on IHC status of HER2, ER and PgR. For 88 TNBCs, 
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patient matched Affymetrix GeneChip Human Exon 1.0ST gene expression and 

Affymetrix SNP 6.0 copy number data were available.  

METABRIC TNBC is a subset of the METABRIC study (EGAD00010000164) (10). 

Triple-negative status was based on IHC-assessed ER and HER2 status. Patient 

matched Illumina Human HT-12 v3 gene expression and Affymetrix SNP 6.0 copy 

number data were available for 112 TNBCs and processed, as reported previously 

(24). 

A triple-negative subset of TCGA BRCA (25) was used as the TCGA TNBC cohort. 

For 95 TNBCs, defined by ER and HER2 status, gene expression was available on the 

Agilent 244K Custom Gene Expression array. 

The TNBC616 cohort is a compilation of 24 different breast cancer cohorts 

(Supplementary Table S1). A total of 3,495 breast cancers were obtained, of which 

616 were defined as triple-negative based on HER2, ER and PgR status. Details are 

provided in the online Supplementary Information. 

Clinical trial data 

The PrECOG 0105 cohort comprised 80 patients enrolled in a single-arm, phase II, 

early-stage study assessing the efficacy of neoadjuvant treatment using gemcitabine 

and carboplatin plus iniparib (26) (NCT00813956) (5). Response to treatment was 

stratified using the residual cancer burden (RCB) index (27). Patients with RCB > 1 

were considered treatment-unresponsive; those with an RCB of 0 were deemed to 

have pCR, while those with an RCB of 1 had a partial response. Affymetrix HuGene 

1.0st microarray gene expression was available and processed using the affy 

Bioconductor package (28) following RMA normalisation (29). 
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Sanofi Phase II (NCT00540358) (3) and Sanofi Phase III (NCT00938652) (4) are 

both two-arm clinical trials in TNBC patients with metastatic disease testing the 

efficacy of gemcitabine and carboplatin, with or without iniparib. A total of 123 and 

519 patients in Phase II and Phase III, respectively, were randomly assigned to either 

arm. From the 74 (Phase II) and 319 (Phase III) patients for which gene expression 

data from the primary lesions were obtained, objective response was available for 61 

and 224 patients. Gene expression was available on the Affymetrix Human Genome 

U133 Plus 2.0 microarray and was processed similarly to the PrECOG 0105 data. 

Affymetrix SNP 6.0 copy number data 

Raw Affymetrix SNP 6.0 data was normalised, allele-specific signal intensity 

measures were generated, and log R-ratio and B-allele frequencies were obtained 

using PennCNV-Affy (30,31). Allele specific copy number data was obtained using 

the ASCAT algorithm (32). 

Cancer cell lines data 

Transcriptomics and drug response data for TNBC cell lines (n = 16) was acquired 

from the Genomics of Drug Sensitivity in Cancer (GDSC) (33). The area under the 

dose response curve (AUC) values represent the relative sensitivity (low AUC) and 

resistance (high AUC) for each drug within each cell line. Associations between drug 

response and MC6 were assessed using Mann-Whitney U tests. 

Statistical methods 

Detailed information on the integrative analysis and statistical methods are described 

in the online Supplementary Information. In brief, genomics and transcriptomics data 

was integrated independently in Guy’s TNBC and METABRIC TNBC using the 
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COpy Number and EXpression In Cancer (CONEXIC) algorithm (34). The identified 

four-gene signature required for TNBC subtyping was normalised before applied to 

additional cohorts.  

Results 

Integrative analysis of transcriptomics and genomics data identifies a four-gene 

decision tree signature 

To determine if combined transcriptomics and genomics data could lead to a robust 

TNBC classification, we applied the previously published CONEXIC algorithm (34) 

to two independent TNBC cohorts; Guy’s TNBC (n = 88) (24) and TNBCs from the 

METABRIC study (METABRIC TNBC; n = 112) (10) (Figure 1A and 

Supplementary Table S2). CONEXIC constructs gene sets, defined as groups of genes 

which share similar expression patterns across all samples. As a next step, CONEXIC 

builds decision trees for each of these gene sets, using gene expression levels of copy 

number driven genes (modulators, copy number >=5). Within Guy’s TNBC and 

METABRIC TNBC, CONEXIC identified 38 and 36 gene sets with decision trees, 

respectively (Supplementary Tables S3-S6). We next sought to identify concurrent 

gene sets between the 38 Guy’s and 36 METABRIC gene sets by comparing all 1,368 

possible gene set combinations for overlapping genes (Figure 1B) and identified 92 

sets with statistically significant concurrent genes (Figure 1C, grey squares), 

including 3 gene sets that shared a common modulator in their respective decision 

trees, namely EXO1 (Figure 1C, black squares, and Figure 1D). In Guy’s-set 33 

(Supplementary Table S7) and METABRIC-set 15 (Supplementary Table S8), genes 

involved in the inactivation of the mitogen-activated protein kinase (MAPK) pathway 
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were significantly enriched. As no overlapping GO-terms were identified between 

Guy’s-set 27 (Supplementary Figure S9) and METABRIC-set 15, we focused on 

Guy’s-set 33 and METABRIC-set 15 (Supplementary Figure S1). 

A four-gene decision tree signature consistently classifies TNBCs into six subtypes in 

test cohorts.  

We applied both decision tree signatures to a total of 1,168 TNBCs, including (i) 95 

TNBCs of TCGA BRCA (25); (ii) TNBC616 (see Supplementary Table S1 and 

online Supplementary Information); (iii) PrECOG 0105 (n = 64) (5), and both a phase 

II and a phase III trial in TNBC patients with metastatic disease; (iv) Sanofi Phase II 

(n = 74) (3) and (v) Sanofi Phase III (n = 319) (4) (Figure 1A). Transcriptomics data 

in each of the trials was derived from treatment naïve primary breast cancer tissue.  

The classification defined by the decision tree of Guy’s-set 33, which is based on the 

expression levels of five genes (ST8SIA1, EXO1, NEK2, C8orf46 and MMS22L), 

nominated TNBCs in some cohorts, such as TCGA BRCA and Sanofi III, mostly as 

one class (Supplementary Figure S2) and could not be tested in TNBC616 as 

expression levels for MMS22L and C8orf46 were not available for assessment. 

Further investigations based on the Guy’s-set 33 decision tree were therefore not 

performed. In contrast, applying the METABRIC-set 15 decision tree signature based 

on the expression levels of four genes (TP53BP2, EXO1, FOXM1 and RSU1), 

established six subtypes, named MC1 to MC6, including one large subtype and five of 

varying sizes (Figure 2). The most frequent subtype (MC6) comprised 44.6%, 47.7%, 

46.6% and 56.8% of all patients in METABRIC TNBC, Guy’s TNBC, TNBC616 and 

TCGA TNBC, respectively. In the PrECOG 0105 trial, the proportion of the MC6 

subtype increased to 64%, whereas in TNBC patients with metastatic disease (Sanofi 
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Phase II and III), its proportion reduced to ~24%. In contrast, the frequency of MC1-

TNBCs increased from ~7.2% in the non-trial cohorts to ~22.4% in the metastatic 

setting. No difference in overall survival or risk of developing metastasis was 

observed when the four genes were tested separately in a univariate or multivariate 

Cox survival analysis, neither do the different MC subtypes demonstrate any 

association with increased or decreased overall and progression free survival or risk 

of developing metastasis (Supplementary Table S10-S13). 

Molecular characterisation of MC subtypes 

MC subtypes are non-synonymous with other breast cancer classifications. 

Currently, TNBCs are classified by TNBCtype-4 (12), the PAM50 subtypes (35-37) 

and the IntClust breast cancer classification (10). We sought to evaluate if the four-

gene decision tree classification converges to these ones (Figure 3A and 

Supplementary Table S14 and S15). MC6-TNBCs consisted exclusively of PAM50 

basal-like cases (100%, P = 2e-08, Fisher’s exact test), although only 57% of the 

basal-like TNBCs were classified as MC6. MC1-TNBCs were enriched for Luminal 

A (36%, P = 3e-04, Fisher’s exact test) and Normal-Like (36%, P = 3e-03, Fisher’s 

exact test), and MC2-TNBCs for HER2-enriched (57%, P = 2e-03, Fisher’s exact 

test). TNBCs of the remaining three MC subtypes fell across all PAM50 subtypes. 

Except for three TNBCs, MC6-TNBCs belonged to the IntClust 10 group (78%, P = 

1e-02, Fisher’s exact test), whereas TNBCs of other MC subtypes were classified 

mostly as IntClust 4, 5, 3 and 1, although no significant enrichments were observed. 

MC6-TNBCs were found to be enriched for the BL1 subtype (61%, P = 1e-06, 

Fisher’s exact test), whereas MC1-TNBCs and MC2-TNBCs were primarily of the 
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LAR subtype (86% and 67%, P = 1e-04 and 1e-02, respectively, Fisher’s exact test). 

Thus, the MC subtypes diverged from established breast cancer classifications 

MC subtypes differ in their immune gene enrichment. 

Based on Lehmann’s immunomodulatory (IM) classification (12), 37% of the MC6-

TNBCs were IM-positive, MC1- and MC2-TNBCs were exclusively IM-negative, 

and MC3-, MC4- and MC5-TNBCs were mostly IM-negative (74%) (Figure 3A). 

Next, we performed a gene set enrichment analysis (38) on gene expression data from 

METABRIC TNBC to further deconvolute immune cell enrichment across the MC 

subtype. Using 28 different immune gene sets (39), activated CD4+ and CD8+ 

immune signatures were found enriched in MC6-TNBCs (Q = 3e-08, and 1e-04, 

respectively, Mann-Whitney U test), and low in MC1-TNBCs (Q = 2e-05 and 1e-05, 

Mann-Whitney U test) (Figure 3A and Supplementary Table S16). MC6-TNBC had 

lower mastocytes and CD56dim natural killer cell activation in comparison to other 

MC subtypes (Q = 5e-03, and 3e-02, respectively, Mann-Whitney U test). In MC3-

TNBCs, increased central memory CD8+, effector memory CD8+ and immature 

dendritic cells expression levels were observed (Q = 4e-02, 4e-02 and 4e-02, 

respectively, Mann-Whitney U test). MC2-TNBCs had reduced expression of the 

memory B cell signature (Q = 4e-02, Mann-Whitney U test), whereas in MC1-

TNBCs, Th1 expression was reduced (Q = 4e-02, Mann-Whitney U test). This clearly 

demonstrates a variety of immune cell features across the MC subtypes. 

Pathway deregulation in MC subtypes. 

DUSP4, DUSP5, DUSP6, DUSP10 and SPRED2 were amongst the METABRIC-set 

15 gene set (Figure 1D and Supplementary Table S8) and are involved in the negative 

regulation of the MAPK signalling pathway. We investigated their expression levels 
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across the MC subtypes and found that MC6-TNBCs had the lowest expression of 

these genes in comparison to the other subtypes (P < 0.05, Mann-Whitney U test) 

(Figure 3B and Supplementary Figure S3A). Genomic regions encompassing DUSP4, 

DUSP5 and DUSP6 were deleted (Supplementary Table S17), potentially resulting in 

decreased expression levels. To further corroborate the lack of negative regulation of 

MAPK inactivation, a set of genes previously reported under control of this inhibitory 

mechanism (40) was interrogated in the MC subtypes and found increased in MC6-

TNBCs compared to TNBCs of other MC subtypes (P < 0.05, Mann-Whitney U test) 

(Figure 3B and Supplementary Figure S3B). These results demonstrate the highly 

selective features of MC6-TNBCs. 

In MC5-TNBCs, genes highly expressed were enriched for ErbB signalling (Q = 6e-

03, Hypergeometric test), particularly through the epidermal growth factor receptor 

pathway (P = 1e-02, Fisher’s exact test). MC4-TNBCs were enriched for PI3K/Akt 

signalling (Q = 5e-03, Hypergeometric test) and DNA replication (P = 2e-02, Fisher’s 

exact test). Although not enriched for Lehmann’s IM classification, many genes 

upregulated in MC3-TNBCs are involved in innate and adaptive immune response (P 

= 7e-04 and 1e-03, respectively, Fisher’s exact test), and chemokine signalling (Q = 

3e-03, Hypergeometric test). MC2-TNBCs were enriched for metabolic processes (Q 

= 2e-28, Hypergeometric test), and MC1-TNBCs for steroid hormone mediated 

signalling (P = 3e-02, Fisher’s exact test), particularly oestrogen and androgen 

receptor signalling (P = 7e-04 and 2e-02, respectively, Fisher’s exact test). The 

unique pathway activities underlying the MC subtypes further demonstrate the 

molecular complexity of TNBC and further strengthen our TNBC classification. 
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Increased levels of telomeric allelic imbalanced aberrations in MC6-TNBCs. 

Next, we investigated the levels of genomic instability. MC6-TNBCs showed 

significantly higher levels of chromosomal instability (P < 0.05, Mann-Whitney U 

test) (Figure 3C and Supplementary Figure S3C) as defined by the CIN70 gene 

expression signature (16,41). MC1-TNBCs had the lowest levels of chromosomal 

instability. To further decipher this genomic instability, we investigated diverse 

genomic instability measurements based on copy number data (17,18). MC6-TNBCs 

displayed a high burden of allelic imbalanced aberrations in their telomeres (P = 9e-

07, Mann-Whitney U test) (Figure 3C). MC5-TNBCs exhibited a medium burden. In 

contrast, the remaining MC subtypes did not harbour specific types of copy number 

aberrations. 

MC6 identifies TNBCs responsive to platinum-based chemotherapy in Sanofi Phase 

III clinical trial.  

Given the selective features of MC6-TNBCs, we next assessed whether this subtype 

carried any predictive value in treatment response to DNA damaging agents. Using 

three clinical trials (Figure 1A), TNBCs from each cohort were dichotomised as either 

being MC6-TNBCs or non-MC6 (referred to as remaining TNBCs). We included the 

TNBCtype-4 classification as a comparator, as BL1-TNBCs were previously shown 

to be responsive to neoadjuvant chemotherapy (12). In the neoadjuvant PrECOG 0105 

trial, the RCB 0/I pathological response rate in BL1-TNBCs (11/17, 65%) was similar 

to that of MC6-TNBCs (25/41, 61%) (Figure 4A). However, out of the 64 patients 

enrolled in the PrECOG 0105 trial, the MC6 subtype identified 39% of the responders 

with an accuracy of 55%, in contrast to the BL1 subtype, identifying 17%, with an 

accuracy of 41%. In the metastatic TNBC Sanofi Phase II trial, neither the BL1 nor 

the MC6 subtype was predictive of the overall response rate (ORR) (Figure 4B and 
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Supplementary Table S18). However, in the metastatic TNBC Sanofi Phase III trial, 

the MC6 subtype was a significant predictor of treatment response in a multivariate 

model (OR = 2.41, CI = 1.01 to 5.81, P < 0.05), with an ORR in MC6-TNBCs of 46% 

(28/61), compared to an ORR of 30% (49/163) in the remaining TNBCs (Figure 4C). 

The ORR in BL1-TNBCs was 41% (23/56), as compared with 32% (54/168) in the 

remaining TNBCs. In contrast to BL1, the MC6 subtype did reach significance in the 

univariate and in the multivariate model (OR = 1.78, CI = 0.76 to 4.19, P = 0.18) 

(Supplementary Table S19). 

MC6 cell lines are sensitive to cisplatin.  

To test the hypothesis that MC6-TNBCs are responsive to platinum-based 

chemotherapeutics, we exploited drug sensitivity profiles of 16 TNBC tumour cell 

lines generated as part of the GDSC project (33). We found that the median AUC of 

cisplatin in the MC6 TNBC cell lines (n = 4) was 0.89, compared to 0.92 in cell lines 

from other MC subtypes (n = 11) (P = 5.6e-02, Mann-Whitney U test), suggesting an 

enhanced sensitivity to platinum salts in the MC6 subtype. With the aim of 

identifying novel alternative therapeutic sensitivities, we also assessed the 

associations between >200 GDSC drug response profiles and the MC6 subtype 

(Supplementary Table S20). We found that amongst the GDSC drug sensitivity 

profiles, MC6 TNBC cell lines displayed the greatest sensitivity to CCT007093 (42), 

a small molecule inhibitor of the DNA-damage activated phosphatase, PPM1D (43) 

(P = 7.7e-03, Mann-Whitney U test, Supplementary Figure S4).  

Discussion 
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With the purpose of classifying molecular heterogeneous TNBCs into clinically 

relevant subtypes, our multi-omics integrative approach differs from previously 

published methods (10-13). Our classification was constructed using data exclusively 

from TNBCs, strengthening the exploration of their molecular complexity in more 

detail. Robustness of our approach was increased by applying the CONEXIC 

algorithm (34) to two independent TNBC cohorts to then identify concurrent gene 

sets and modulatory genes. Guy’s-set 33 and METABRIC-set 15 shared similarities in 

both their gene set and modulatory genes. The latter represented well known cancer-

associated genes potentially contributing to tumour progression, and thereby 

substantiating our analytical approach to identify candidate drivers with effects on 

gene expression patterns. However, upon validation of both decision trees, only 

METABRIC-set 15 was taken forward due to the consistently reproducible MC 

subtypes. Of note, the molecular features of primary tumours of patients that will be 

developing metastasis seem to be distinct, as was reflected by the change in 

proportion of the MC1 and MC6 subtype between non-trial genomic and metastatic 

TNBC cohorts. The MC6 subtype identified metastatic TNBC patients who showed 

improved response to platinum-based chemotherapy in the Sanofi Phase III, but not in 

the neoadjuvant PrECOG 0105 trial (5). In early stage TNBCs, which are more likely 

to respond to platinum-based chemotherapy, the MC6 subtype is not able to 

differentiate between those that do, and do not respond to this treatment. However, in 

the metastatic setting, where patients are less responsive to platinum-based 

chemotherapy, MC6 appears to be more discriminative as a predictor. In contrast, 

genomic signatures lack predictive value in the metastatic setting (22,23). 

The four-gene decision tree signature consists of TP53BP2, RSU1, FOXM1 and 

EXO1. The expression of TP53BP2, a known regulator of apoptosis and cell growth, 
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has been reported to be copy number dependent, and associated with poor response to 

chemotherapy in TNBC (14). RSU1, Ras suppressor-1, is involved in the RAS signal 

transduction pathway and was proposed as a biomarker for metastasis in breast 

cancers (44). The proto-oncogenic transcription factor FOXM1 has frequently been 

shown to mediate cell proliferation, survival, migration, progression and 

tumourigenesis in TNBC (45); can modulate cisplatin sensitivity by regulating the 

expression of EXO1 in ovarian cancer (46); and is part of a recently identified KRAS-

associated signature in colorectal cancer (47). All four genes provide biological 

rationales for being good candidates for classification approaches. 

To further substantiate the finding that MC6-TNBCs were more sensitive to platinum-

based chemotherapeutics, cisplatin drug response profiles were assessed across 16 

TNBC cell lines categorised by MC subtypes. In line with findings from Sanofi Phase 

III, MC6 cell lines appeared overall more sensitive to cisplatin than those of other 

subtypes. In addition, MC6 TNBC cell lines were found to exhibit enhanced 

sensitivity to CCT007093, a chemical inhibitor of PPM1D (42). In parallel, MC6 

TNBC cell lines displayed lower expression of DUSP10 and SPRED2 as a part of the 

MAPK inactivation signature; both are negative regulators of p38. Loss of DUSP4, 

DUSP5 and DUSP6 in TNBC has been previously reported by others (48-50). Thus, 

we hypothesise that the sensitivity to CCT007093 may be a result of p38-dependent 

cell death, thereby pointing to a potential PPM1D dependency for this group of 

TNBCs. Given that PPM1D modulates the activity of a series of substrates including 

p38, ATM, CHK1 and CHK2 (43), this association further demonstrates the 

connectivity between genomic instability and TNBC. 
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The proposed decision tree is an ideal classification approach to be performed with 

relative ease using other platforms, including qPCR and NanoString, due to the small 

number of genes required. However, there are some limitations, as in its current form, 

the four-gene decision tree signature relies on the distribution of each of the four 

genes and careful standardisations experiments would need be implemented. Further 

validation of our classification across independent clinical trials are warranted to 

investigate if association with treatment effect to platinum-based chemotherapy is 

specific or rather reflects a combinatorial effect with gemcitabine in Sanofi Phase III. 

The management of TNBC, especially in the metastatic setting, can be complex. With 

single-agent chemotherapy still considered the standard-of-care, targeted therapeutic 

strategies are required, which will rely on appropriate biomarkers for optimal patient 

selection. The unique molecular features of the MC subtypes reflect the intrinsic 

heterogeneity of TNBC and revealed targetable pathways, such as the p38 MAPK 

signalling pathway in MC6-TNBC. The same subset also showed elevated levels of 

genomic instability in telomeric regions, a type of genomic instability which may be 

the result of escaping from telomere crisis. EXO1, a modulatory gene, may further 

contribute to this process (51,52). Further characterisations of the MC subtypes are 

warranted to establish their association with genomic signatures from whole-genome 

sequence data (53,54). 

In conclusion, we sought to decipher the complex nature of TNBC, with the goal of 

informing patient selection for current and future treatment strategies. We showed 

that a four-gene decision tree signature based on copy number dependent genes 

classifies TNBCs into six subtypes. Given the current lack of selection criteria for 
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TNBC patients with metastatic disease, this classification warrants further testing in 

randomised metastatic TNBC trials, such as TNT (22). 
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Figure Legends 

 

Figure 1. Identification of concurrent cancer gene sets with CONEXIC. (A) Research 

design and workflow. After selecting a decision tree, a molecular characterisation of 

the subtypes was performed in two discovery and five validation sets. Treatment 

response to DNA damaging agents was assessed in three clinical trials. (B) The 

number of gene sets, decision trees and modulators identified by the CONEXIC 

algorithm in Guy’s TNBC and METABRIC TNBC. Overlap in gene set composition 

between the two cohorts was assessed using a one-sided Fisher’s exact test. (C) Level 

plot of concurrent gene sets between Guy’s TNBC and METABRIC TNBC. Dark 

grey boxes indicate gene sets with significantly overlapping genes. Black boxes, as 

dark grey boxes, in addition to overlapping modulators. Gene sets are ordered by size, 

as indicated by the scales. (D) Venn diagram depicting the number of common genes 

between Guy’s-set 27, Guy’s-set 33, and METABRIC-set 15.  

Figure 2. TNBC cohorts classified using the METABRIC-set 15 four-gene decision 

tree signature. Pie charts illustrating the proportion of the MC subtypes in four 

primary invasive TNBC cohorts, namely METABRIC TNBC, Guy’s TNBC, 

TNBC616 and TCGA TNBC, as well as three clinical TNBC studies, including 

Sanofi Phase II, Sanofi Phase III and PrECOG 0105. The total number of tumours in 

each cohort is listed in brackets. The percentage for each subgroup is shown next to 

the respective pies.  

Figure 3. Molecular characterisation of the MC subtypes in METABRIC TNBC. (A) 

The four-gene decision tree underlying the MC subtypes is shown, followed by a heat 

map representing the expression levels of the four modulatory genes. The coloured 
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bars represent sample-specific characteristics, including PAM50, IntClust, 

TNBCtype-4, CIN70 signature and the immunomodulatory status. The heatmap at the 

bottom illustrates the enrichment of immune gene signatures. (B) (left) MAPK 

inactivation scores, calculated by summarising the expression levels of DUSP4, 

DUSP5, DUSP6, DUSP10 and SPRED2, in MC6-TNBCs (magenta) and the 

remaining TNBCs (grey). Significance was assessed using Wilcoxon rank-sum tests. 

(right) Z-scores for the DUSP6 gene set were obtained using ssGSEA. Significance 

was assessed using a Wilcoxon rank-sum test. (C) Boxplots displaying the CIN70 

signature (left) and NtAI (right) in MC6-TNBCs (magenta) and the remaining TNBCs 

(grey). Significance was assessed using Wilcoxon rank-sum tests. 

Figure 4. Response rates for the MC6 and BL1 subtypes in clinical trials. (A) 

Response to neoadjuvant platinum-based chemotherapy, as assessed by the RCB 

index, in BL1-TNBCs and MC6-TNBCs obtained from the PrECOG 0105 clinical 

trial. (B) ORR in Sanofi Phase II and (C) Sanofi Phase III. Response rates are 

dichotomised by being BL1 or not (left), and MC6 or not (right). Subtypes were 

assessed as predictors of treatment response using a multivariate logistic regression, 

by including age and race for Sanofi II, and age, race, and grade for Sanofi III into the 

models. 
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