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Enhancement of Partial Volume Correction in
MR-guided PET Image Reconstruction by using

MRI Voxel Sizes
Martin A. Belzunce, Abolfazl Mehranian and Andrew J. Reader

Abstract—Positron emission tomography suffers from poor
spatial resolution which results in quantitative bias when eval-
uating the radiotracer uptake in small anatomical regions,
such as the striatum in the brain which is of importance in
the study of neurodegenerative diseases. These partial volume
effects need to be compensated for by employing partial volume
correction (PVC) methods in order to achieve quantitatively
accurate images. Two important PVC methods applied during
the reconstruction are resolution modelling, which suffers from
Gibbs artifacts, and penalized likelihood using anatomical priors.
The introduction of clinical simultaneous PET-MR scanners has
attracted new attention for the latter methods and brought
new opportunities to use MRI information to assist PET image
reconstruction in order to improve image quality. In this context,
MR images are usually down-sampled to the PET resolution
before being used in MR-guided PET reconstruction. However,
the reconstruction of PET images using the MRI voxel size could
achieve a better utilization of the high resolution anatomical
information and improve the PVC obtained with these methods.
In this work, we evaluate the importance of the use of MRI
voxel sizes when reconstructing PET images with MR-guided
MAP methods, specifically the modified Bowsher method. We
also propose a method to avoid the artifacts that arise when
PET reconstructions are performed in a higher resolution matrix
than the standard for a given scanner. The MR-guided MAP
reconstructions were implemented with a modified Lange prior
that included anatomical information with the Bowsher method.
The methods were evaluated with and without resolution mod-
elling for simulated and real brain data. We show that the use
of the MRI voxel sizes when reconstructing PET images with
MR-guided MAP enhances PVC by improving the contrast and
reducing the bias in six different regions of the brain using
regional metrics for a single simulated data set and ensemble
metrics for ten noise realizations. Similar results were obtained
for real data, where a good enhancement of the contrast was
achieved. The combination of MR-guided MAP reconstruction
with PSF modelling and MRI voxel sizes proved to be an
attractive method to achieve considerable enhancement of PVC,
while reducing and controlling the noise level and Gibbs artifacts.

Index Terms—Positron emission tomography, Partial volume
correction, Image reconstruction, MR-guided reconstruction,
voxel sizes

I. INTRODUCTION

POSITRON emission tomography (PET) provides quan-
titative functional images. However, it is well known

that PET suffers from poor spatial resolution, around 4 mm

Martin A. Belzunce, Abolfazl Mehranian, and Andrew J. Reader are with
King’s College London, School of Biomedical Engineering and Imaging
Sciences, St Thomas’ Hospital, London, UK.

Manuscript received Jan 26, 2018. This work was supported by King’s
College London.

in clinical scanners, which results in quantitative bias when
evaluating the radiotracer uptake in small anatomical regions.
These effects due to the low resolution of the scanner are
usually referred to as partial volume effects (PVE) and can
be defined as the apparent loss in intensity or activity of an
object with positive contrast in the image, when it occupies
only partially the sensitive volume of the imaging system [1],
[2], which in PET is the tube of response (TOR) measured by
two detector crystals. PVE occurs when two adjacent regions
spill-over counts between them due to the low resolution of the
scanner, therefore hot regions suffer a loss of intensity while
cold regions show an increase in their intensities.

The main consequence of PVE is the introduction of a bias
when the activity concentration in a specific region needs to
be quantified. For example, in brain imaging the uptake in
cortical gray matter is of interest and it has only a few mm
width (from 1 to 4.5 mm) and, as a result, the quantification
on this region is greatly affected by PVE [3], [4]. This effect
is also important in other smaller regions of the brain, such
as the striatum, which is of importance in the assessment of
a number of neurological diseases, such as Parkinson’s and
Alzheimer’s disease [5]–[8]. For this reason, it is important
to correct for this effect with partial volume correction (PVC)
methods.

The goal of PVC is to compensate for the effect of limited
resolution in a PET scanner, restoring the true activity distribu-
tion quantitatively and qualitatively in the reconstructed image.
These techniques can be applied on the reconstructed images
or during the reconstruction process. The two main methods
in the latter group are resolution modelling and penalized
likelihood (PL) using anatomical priors. Resolution modelling
is applied in statistical iterative reconstruction methods [9],
where the spatial resolution of the scanner, characterized with
the point-spread function (PSF), is incorporated in the system
matrix to enhance the spatial resolution of the reconstructed
images [10]–[12]. However, the enhancement of the contrast
and improvement in the resolution of the reconstructed images
comes at the cost of the introduction of Gibbs artifacts
due to the irrevocable loss of high frequency components
during the acquisition [12], [13]. Gibbs artifacts can lead to
significant quantitative errors in small hot regions [14], such
as tumours or grey matter structures in the brain, hence it is
not in widespread use in clinical applications, especially in
cases where good quantification is required rather than lesion
detection.

The second type of PVC methods applied during recon-



struction incorporate anatomical information to reduce the
noise in the image and, at the same time, enhance boundaries
between anatomical regions, under the assumption that there
is a match between the boundaries in the molecular image
and the anatomical image. These methods are mainly based
on PL or maximum a posteriori (MAP) algorithms and a
wide variety of methods have been proposed to incorporate
anatomical information in the prior energy function [15]–[24].
The introduction of clinical simultaneous PET-MR scanners
has attracted new attention to these methods and brought
new opportunities to use MRI information to assist PET
image reconstruction for improving PET image quality. In this
context, MR images are usually down-sampled to the PET
resolution before being used in MR-guided PET reconstruction
[18], [23], [24]. However, the reconstruction of PET images
at the MRI voxel sizes could achieve a better utilization of the
high resolution anatomical information and improve the PVC
obtained with these methods.

In this work, we evaluate the importance of the use of MRI
voxel sizes when reconstructing PET images with MR-guided
MAP methods, specifically the modified Bowsher method [17].
However, when the PET reconstruction needs to be done in
a higher resolution matrix than the standard, limited by the
sampling of lines of response (LORs), a number of artifacts
arise in the image reconstruction depending on the projector
and system matrix used. We propose a method to overcome
these difficulties and we employ it to perform MR-guided
MAP reconstructions using the MRI image as an anatomical
prior in its original resolution, with the aim to enhance PVC.
The MR-guided MAP reconstructions were implemented with
a modified Lange prior that included anatomical information
with the Bowsher method. The methods were evaluated for
reconstructions with and without resolution modelling for
simulated and real brain data. The images were assessed quan-
titatively computing image quality metrics using six different
brain regions of interest (ROIs).

II. IMAGE RECONSTRUCTION IN A HIGH RESOLUTION
MATRIX

The Biograph mMR PET-MR scanner (Siemens Healthcare,
Erlangen, Germany) was used to evaluate the problems that
arise when reconstructing images in a higher resolution than
the standard voxel size with the goal of using anatomical infor-
mation, such as an MRI image, in its original resolution. The
mMR scanner sinograms have a radial bin size of 2.045 mm
and the standard reconstructed images have a 2.09×2.09×2.03
mm3 voxel size.

Fig. 1 shows a reconstructed image with the MLEM al-
gorithm using the Siddon projector [25] for the standard and
also a 1×1×1 mm3 voxel size, where the reconstruction in a
higher resolution matrix (middle column) introduces artifacts
and gaps in the images. The main issue in this reconstruction
is produced by the under-sampling of the projection data when
using a Siddon projector with radial distances (separation
between LORs) larger than the voxel sizes.

This issue can be solved by modifying the ray-tracing
projector to take every pixel into consideration. For example,

tube of response (TOR) [26] or multi-ray projectors [27]
could be used. However, in these methods the complexity and
the computational requirements are much higher than for a
ray-tracing projector. In addition, in most of the cases the
computational cost scales with the upsampling factor needed.
For instance, in a multi-ray projector the number of rays
needed depends on the pixel size of the reconstructed images
making it not very efficient.

In this work, we propose a simple, flexible and efficient
approach to overcome this issues, where an interpolation
matrix is applied in image space before projecting the data
with the Siddon algorithm. Therefore, this modified system
matrix has two components:

Phr = XlrDhr→lr (1)

where Phr is the projection system matrix that projects a
high resolution image into the standard sinogram size of the
scanner, Xlr is the Siddon projector for the standard voxel
size and Dhr→lr is a matrix that interpolates a high resolution
image into the standard image size.

In the implementation of this method, special attention
needs to be taken in the upsampling interpolation needed in
the transpose of the projection matrix:

PThr = DT
hr→lrX

T
lr (2)

where the upsampling matrix needs to be DT
hr→lr, which

is the transpose of the downsampling matrix Dhr→lr, to
avoid having an unmatched projector/backprojector. A trilinear
interpolation was used in our implementation of this method
because it is a computationally efficient interpolation, even
available in hardware on some platforms; and also, thanks
to its simplicity, the upsampling matrix can be readily im-
plemented as the transpose of the downsampling matrix. The
latter can be achieved by computing the downsampling and
upsampling weights starting from the high resolution voxel
coordinates. This way, each voxel of the high resolution image
is related to the same eight nearest neighbours of the low
resolution matrix in both the upsampling and downsampling
operations.

It could be argued that because of the simplicity of the
method, the benefits of using smaller voxel sizes could be
negligible. With the aim of showing that the modified system
matrix can recover higher spatial frequencies than the standard
system matrix, provided that they are available in the data, we
computed the singular values of the standard and modified
system matrix for a 16 × 16 × 8 mm3 patch in the centre of
the field of view (FOV). In Fig. 2 the singular values of the
standard (2 mm voxel size) and the proposed (1 mm voxel
size) system matrices, without and with PSF modelling, are
shown. It can be seen that the proposed system matrix is able
to recover higher spatial frequencies than the standard method.
This is more notable for the case of PSF modelling, where the
inherent recovery of higher frequencies is enhanced.

Finally, the modified system matrix for smaller voxel sizes
was validated using a 2 hour scan of the NEMA IQ phantom
acquired with a Biograph mMR scanner. A long scan was used
in order to obtain reconstructed images with low noise where
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Fig. 1. NEMA phantom scan reconstructed in the standard mMR voxel size
and in a higher resolution matrix size (1.0×1.0×1.0 mm3 voxel size) with
the standard MLEM reconstruction using a Siddon projector (middle) and the
proposed method (right).

Fig. 2. Singular values of the standard (2 mm voxel size) and the proposed
(1 mm voxel size) system matrices, without and with PSF modelling, for a
patch in the centre of the FOV.

artifacts are easily visible. The images were reconstructed
using the standard mMR PET voxel size of 2.09×2.09×2.03
mm3 and a 1.05× 1.05× 1.00 mm3 voxel size for the higher
resolution image. Fig. 1 shows how the proposed method (right
image) can overcome the artifacts problem (middle image) of
reconstructing the image in a higher resolution matrix with a
Siddon projector.

III. MR-GUIDED PENALIZED LIKELIHOOD
RECONSTRUCTION

Penalized likelihood (PL) reconstruction, also known as
maximum a postierori (MAP), has been developed to reduce
noise using prior assumptions regarding the unknown image.
In order to achieve this, the image is reconstructed by maxi-
mizing a Poisson log-likelihood function with a penalty term:

θ̂ = argmax
θ
{L(m|θ)− βU(θ)} (3)

where θ is the unknown image, m is the measured data and
L(m|θ) is the log-likelihood function for Poisson data. The
energy function U(θ) is designed to penalize large differences
between the estimated voxel values and the their neighbours,
since the image is expected to be smooth with the exception
of boundaries. The hyperparameter β controls the level of
regularization or smoothness in the reconstruction.

The energy function U(θ) depends on the local differences
between every voxel j and the neighbours Nj of each such
voxel:

U(θ) =

N∑
j

∑
k∈Nj

ξjkwjkψ(t) (4)

where N is the number of voxels in the reconstructed image,
k is a voxel in the set of neighbours Nj of pixel j, ψ is the
potential function, t is a measure of the difference of intensities
between voxel j and k, and ξjk and wjk are weights for the
local difference based on the proximity and similarity of voxels
j and k.

A. Lange Prior

A common penalty function is the quadratic or Tikhonov
prior, where the potential function used is the quadratic func-
tion ψ(t) = 1

2 t
2. This prior generates an over-smooth image

that blurs real edges of the image and, for that reason, edge-
preserving priors have been proposed by many authors, such
as total-variation (TV) [29]–[31]. A flexible edge-preserving
function, that unlike total-variation has a continuous second-
derivative, is the Lange or Fair function [30]:

ψ(t) = δ

[
|t|
δ
− log

(
1 +
|t|
δ

)]
(5)

where δ is a hyperparameter that controls the level of edge-
preservation in the prior. With a large δ value the potential
function behaves similarly to the quadratic, while for a small
value it behaves similarly to TV.

Commonly, the difference t between a voxel and its neigh-
bours is the local intensity difference θj − θk. However,
this approach is not robust to avoid penalizing real edges in
the image and is very sensitive to the δ hyperparameter. To
overcome this issue, the use of patch-based penalty functions
was proposed by Wang and Qi [32], where to compute the
difference between pixels j and k, the intensity difference
between the voxels of a square box (patch) centred in pixel j
and the respective voxels of a patch centred in k is computed.

Inspired by the smoothed total variation [31] that it has
been widely evaluated as a prior in the context of PET image
reconstruction [24], a smoothed Lange prior is proposed in
this work. In this case, the potential function is evaluated
with the root mean square difference between a voxel j and
all its neighbours, in contrast to the standard version where
the potential function is evaluated for each local difference
between voxel j and each neighbour pixel i. This makes the
energy function more robust to distinguish between noise and
edges, and less sensitive to the δ hyperparameter, while being
less computationally intensive than the patch-based version.
Furthermore, for the smoothed Lange prior, |t| is less likely
to be 0 (although still possible) as it is computed over a
set of neighbours instead of being local differences between
voxels (see Fig. 3), and this therefore avoids possible problems
when δ is also close to 0. An empirical comparison between
the Lange and smoothed Lange priors can be found in the
Supplementary Material.



The energy function for the smoothed Lange prior is then
defined by:

U(θ) =

N∑
j

ψ

√∑
k∈Nj

ξjkwjk(θj − θk)2

 (6)

where ψ is the Lange potential function of equation 5.
In Fig. 3, the difference between the standard (local), the
smoothed and the patched-version of the Lange prior [33] are
summarized.

For the optimization of Eq. 3 we employed Green’s one
step late (OSL) MAP-EM algorithm [34], where the ML-
EM algorithm is modified by including an additive term in
the sensitive image, which consists of the first derivative of
the penalty function evaluated at the previous iteration. The
derivative of the smoothed Lange prior is then needed:

∂U(θ)

∂θj
=

∑
k∈Nj

ξjkwjk(θj − θk)

δ +
√∑

k∈Nj
ξjkwjk(θj − θk)2

(7)

The OSL approach was employed because it has been
widely used and its implementation is straightforward. How-
ever, the OSL MAP-EM algorithm has been shown to converge
to the MAP solution only for potential functions that have
a bounded derivative and provided that the regularization
hyperparameter β is small enough to avoid negative values
in the denominator of the MAP-EM algorithm [30]. For this
reason, special attention needs to be paid to the hyperparameter
selection to avoid failure of convergence and negative values
in the reconstructed images. In this work, we have only used
β values that met this requirement. An alternative approach
that guarantees convergence was proposed by De Pierro [35],
although its convergence is slower.

B. MR-guided MAP

Standard PET MAP reconstruction has the problem of
smoothing real edges in the image and, as a consequence,
reducing the contrast of the reconstructed images, even for
edge-preserving priors. In order to avoid the loss of boundary
information, the use of anatomical information provided by
other imaging technologies, such as MRI, has been proposed
and evaluated widely [18], [24]. Different approaches and
priors have been previously proposed to incorporate MR
anatomical information in MAP reconstructions.

A well-established anatomical prior is the Bowsher prior,
which selects (using a binary similarity weight) only a set
of neighbouring voxels to be included in the penalty func-
tion based on the anatomical information available [15]. A
modified Bowsher method (asymmetric) was proposed in [17],
which has shown a superior quantitative accuracy than the
standard reconstruction methods [18]. A known disadvantage
of the Bowsher method is that it is vulnerable to mismatches
between the activity distribution and the anatomical structures.
In [24], we evaluated more sophisticated priors that address
the limitations of the Bowsher prior in the presence of PET-
MR mismatches. However, the Bowsher method achieved the

best performance in terms of PVC, showing lower normalized
root mean square error (NRMSE) in the grey and white matter
for simulated data.

Since this work focuses on the enhancement of PVC,
here we use the modified (asymmetric) Bowsher method
[17], which have the additional advantage of being simple to
incorporate different priors, such as the smoothed Lange prior.

In our implementation of the smoothed Lange penalty
function, the similarity weight wjk of Eq. 6 takes a binary
value, thereby enabling smoothing within anatomical regions
and avoiding smoothing across anatomical boundaries. To
compute the weights wjk, the B most similar neighbours to
voxel j in the anatomical image (i.e. MRI) are set with a
value of 1, while the others with 0. For the weight ξjk, we
used the inverse of the Euclidean distance between voxel j
and k. These proximity weights were normalized so that the
sum of the proximity weights ξjk for the set of neighbours
Nj is 1. This way, the same regularization hyperparameter β
can be used for different neighbourhood sizes. When the voxel
sizes are different, the size of the patch in mm must be the
same in order to use the same β value.

IV. EVALUATION

Simulated and real patient data were used for the assessment
of the PVC performance of each method.

A. Simulation Study

Ten realizations of a brain scan were calculated using a
brain phantom based on the Brainweb phantom [36], which
was used to create an [18F]FDG PET phantom, an attenuation
map and a T1-weighted image. For the PET phantom, we used
the discrete anatomical model of a normal brain available in
the Brainweb dataset, which is a volume where each voxel
is labelled with one tissue type out of nine classes available.
Uptake values for each of the tissue types were set to match
the contrast of a typical [18F]FDG PET scan, with uptake
in the grey matter being 4 times greater than the uptake in
the white matter. The attenuation map was defined using only
two tissue types: soft tissue and bone. For the T1-weighted
simulation, the Brainweb tool was used [36]. The voxel size
of the phantom was 1× 1× 1 mm3.

The PET scan was simulated by smoothing the [18F]FDG
phantom with a 4.3 mm FWHM kernel (corresponding to the
spatial resolution of the mMR scanner) [37] and projecting
the image into a span 11 sinogram using the mMR scanner
geometry. Then the resulting sinograms were multiplied by
the attenuation factors, obtained from the attenuation map, and
by the normalization factors of the mMR scanner [38]. Next,
Poisson noise was introduced by simulating a random process
for every sinogram bin, obtaining the sinogram with true
events. A uniform sinogram multiplied by the normalization
factors was used for the randoms and a smoothed version of
the emission sinogram for the scatters. Finally, Poisson noise
was introduced to randoms and scatters and added to the trues
sinogram.

This process was performed for each of the ten realizations.
All of them were simulated with a total of 4.7× 108 prompt



Fig. 3. Description of three different possibilities to implement a Lange prior: standard or local, smoothed and patch-based. For each implementation, the
value used for the voxel j, the voxel k and the intensity difference between them is shown; as well as the level (voxel, patch, neighbours and image) at which
the intensity differences are sum in the potential function ψ and in the energy function U .

counts, including 25% random events and a scatter fraction of
28%, in order to match the statistics of the real patient data
set described in the following section.

B. Real Patient Data

Real patient data acquired with the mMR scanner for a
[18F]FDG brain study was used to evaluate the enhancement
of PVC in the cortical and subcortical gray matter. The data
were from an Alzheimer’s disease (AD) patient injected 80
min before the scan with 228 MBq. The scan duration was
23 min and a total of 4.7× 108 prompt counts were acquired.
T1-MPRAGE data was acquired simultaneously with a voxel
size of 1.05 × 1.05 × 1.1 mm3, which was registered to
a MLEM reconstructed image using FSL-FLIRT (FMRIB’s
Linear Image Registration Tool) [39], [40] in order to avoid
any misalignment between the PET and the MRI images. The
contrast and coefficient of variation in the grey matter for a set
of cortical and subcortical regions, which can be seen in Fig.
4, were computed to compare the different methods. For the
cortical grey matter, the middle frontal gyrus and the inferior
parietal lobule were used, the latter being one of the affected
regions in the early stages of AD as observed in [18F]FDG
studies [41]; while for the subcortical regions, the caudate, the
nucleus accumbens and the putamen were used. All the regions
of interest (ROIs) were segmented with freesurfer [42].

C. Image Reconstruction

Simulation and real data studies were reconstructed with
our own software [43]. MLEM, MAP and MR-guided MAP
reconstructions of each data set were carried out with 400
iterations for the simulated data and 400 iterations for the real
patient data, for the standard mMR PET voxel size and for
the MRI voxel size, which we call MRvox from here on, using
the modified system matrix of section II. Both MAP and MR-
guided MAP reconstructions used the smoothed Lange prior

A B C

D E F

Fig. 4. T1-MPRAGE image of the real patient data overlaid with the ROIs
used to assess the image quality and PVC: cortical grey matter (A), middle
frontal gyrus (B), inferior parietal lobule (C), putamen (D), caudate (E) and
the nucleus accumbens (F).

defined in Eq. 6. In the MR-guided MAP reconstructions, the
similarity weights were obtained with the Bowsher method
and were computed from the T1-weighted image using 40
most similar neighbours in a 5× 5× 5 neighbourhood for the
two different voxel sizes. For the standard PET voxel size,
the T1-weighted image was downsampled to match the PET
matrix.

The reconstructions were performed without and with res-
olution modelling implemented in image space [11]. The
reconstructions without resolution modelling consisted of a
narrow Gaussian PSF of 2.5 mm FWHM and a Siddon
projector, while for the resolution modelling the PSF was
of 4.5 mm FWHM. These parameters were chosen to match
the reconstructions without and with resolution modelling of
the Siemens e7 tools [44]. For the real data, the correction



sinograms were computed with e7 tools.
Finally, the data sets were also reconstructed similarly to

the method routinely used clinically, but without subsets. The
MLEM reconstructions were performed with 60 iterations,
while the MLEM reconstructions with resolution modelling
were run for 80 iterations, broadly equivalent to 3 and 4
iterations with 21 subsets respectively (clinical set up). In
both cases, the images were smoothed with a 4 mm FWHM
Gaussian filter.

D. Parameter Selection

In the MAP reconstructions with the smoothed Lange prior
there are two hyperparameters to select, the standard MAP
regularization parameter β and the parameter δ of the Lange
potential function that controls edge preservation. A set of
both parameters were selected empirically for the different
reconstructions but taking into account a set of considerations
to do the selection in a reproducible fashion. It can be observed
in Eq. 5 that the δ hyperparameter affects the scaling of the
function and therefore the β value needs to be modified to
achieve a similar amount of regularization. For this reason we
implemented a hyperparameter selection method, where the β
values are scaled automatically based on the δ value.

First, a δ value and a range of β parameters, which generates
different levels of regularization, were selected and named δ0
and β0 respectively. The β0 values were selected to be 0.1, 0.2,
0.5, 1 and 2 times the mean value of the sensitivity image in
the centre of the field of view. Therefore these hyperparameters
are also independent of the system matrix used (standard or
modified for the MRvox voxel size) because in OSL MAP-EM
the penalty term is additive to the sensitive image.

Second, a δ0 value was selected empirically to achieve a
TV behaviour in the prior, as can be seen in the shape of the
potential function in blue in Fig. 5, and to be effective with
the β0 values selected previously. This parameter is related
with the range of intensity differences in the image that will
be penalized (∆θ), which we set at 25% the dynamic range
of the image. δ0 then was set at 0.1×∆θ.

Finally, greater values of δ were chosen to obtain a quadratic
like prior and the β values were scaled to obtain a similar
amount of regularization to that obtained with δ0:

β = k(δ)β0 k(δ) =
∆θ + δ0
∆θ + δ

(8)

where β is the final regularization hyperparameter used in
the regularization term and k(δ) is the scaling parameter that
depends on the δ value. In Fig. 5, a plot of the Lange potential
function for two different δ values and scaled using k(δ) is
shown for a ∆θ of 0.3.

The Bowsher parameters were fixed as described in the
previous section.

E. Metrics

For the real and simulated data sets, the contrast and coeffi-
cient of variation in the cortical grey matter, the middle frontal
gyrus, the inferior parietal lobule, the caudate, the nucleus
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Fig. 5. Lange potential function for two different δ values and scaled using
k(δ) for a ∆θ of 0.3.

accumbens and the putamen were computed. The regions of
interest (ROIs) were segmented with freesurfer (in Fig. 4 for
the real patient data), but for the case of simulated data the
regions were restricted to include only grey matter voxels (as
in the original phantom) in order to avoid segmentation errors.

The contrast of the selected region against the white matter
was used as the main metric to evaluate the PVC obtained
with the different methods under evaluation:

ClRW =
1
NR

∑NR

j θlj
1
NW

∑NW

k θlk
(9)

where θlj is the value of voxel j of the reconstructed image
at iteration l, j is one of the NR voxels of the ROI being
analysed and i is one of the NW voxels that make up the ROI
of the white matter.

The coefficient of variation in each of the six ROIs was
employed as a noise metric:

COV l =
1

1
NR

∑NR

j θlj

√√√√√ 1

NR − 1

NR∑
j

θlj − 1

NR

NR∑
j

θlj

2

(10)

All the metrics were computed in the MRvox voxel size.
For the standard voxel size reconstructions, the images were
interpolated into the higher resolution matrix before computing
the metrics. For the simulated data set, these regional metrics
were computed only for one realization.

In addition, an error-variance analysis was performed using
10 noise realizations. The normalized root mean square error
(NRMSE) at a ROI level was used as error metric, which
can be considered as an alternative measure to bias, and the
COV at voxel level as a metric of noise. Both metrics were
computed for each ROI for every iteration. The NRMSE for
an individual ROI is defined by:

NRMSElR =

√√√√√ 1

M

M∑
m=1

(
θlRm − θtrueR

)2
θtrueR

(11)



where θlRm is the mean voxel value in the ROI R of the
reconstructed image at iteration l for the noise realization m,
M the total number of realizations and θtrueR is the mean voxel
value in the ROI R for the phantom.

The mean ensemble COV of every voxel in a given region
(COVER) was used to measure noise:

COV lER =
1

NR

NR∑
j

√
1

M−1
∑M
m=1

(
θljm − θlj

)2
θlj

(12)

where θljm is the value of voxel j at iteration l for the noise
realization m, the voxel j is one of the NR voxels of the ROI
under analysis and θlj is the ensemble mean value of voxel j.

V. RESULTS

A. Simulation Study

In Fig. 6, the contrast and regional COV values are shown
as a function of the iteration number for a single realization
for each of the reconstruction methods evaluated: MLEM
and MR-guided MAP without and with resolution modelling
for standard and MRvox voxel sizes. Each of the different
MR-guided MAP reconstructions are shown for only two
different selections of regularization hyperparameters, with
a fixed δ value and two different β values. The parameter
selection was performed so that a good performance in terms
of contrast (therefore good PVC) is obtained, as well as
good image quality by visual inspection. An exploration of
the regularization hyperparameters for the MR-guided MAP
reconstruction with resolution modelling and standard voxel
sizes is show in Fig. 7, where it can be seen that for MR-
guided reconstructions the δ value chosen did not have any
notable impact on the performance since it was possible to
find a β value for each of the δ evaluated (δ = 0.03 for a
pseudo TV prior and δ = 3 for a pseudo quadratic prior) so
as to obtain matched performance. For this reason in Fig. 6,
we only used δ = 0.03. The β value for maximum contrast
(in red text in Fig. 7) was one of the values chosen for the
comparison.

In Fig. 8 the reconstructed images are shown for the
same reconstructions as in Fig. 6. In the first column, the
phantom is shown. The MLEM images at iteration 400 are
displayed in the second column, while in the third column
the MLEM reconstructions as used clinically are shown (60
iterations without PSF and 80 iterations with PSF modelling,
and a 4 mm FWHM Gaussian filter. The MR-guided MAP
reconstructions are shown in the fourth and fifth columns. For
every type of reconstruction, the images are shown from top
to bottom for the standard voxel size, the PET standard voxel
size and resolution modelling, MRvox voxel size and MRvox
voxel size and resolution modelling.

In Fig. 6 and Fig. 8, it can be observed that the MR-
guided reconstructions successfully reduced the noise, as was
expected and shown in previous work, especially for the case
of simulated data where the brain structures match perfectly
[24]. Importantly, the use of MRvox voxel size enhanced the
contrast of the images for all the reconstruction methods.

However, for the MLEM reconstructions it came at the cost
of an increase of noise. The MR-guided reconstructions with
MRvox voxel size not only enhanced the contrast but also the
noise was reduced compared to the standard voxel size. A
possible reason for the latter is that the spill over of counts
outside the grey matter structures is reduced do to a more
accurate location of the edges and to the resolution recovery
obtained with resolution modelling.

The reconstructions with resolution modelling for standard
and MRvox voxel sizes obtained a higher contrast but at the
cost of higher COV in the striatum due to Gibbs artifacts,
which are common overshoot artifacts observed in small
objects when using resolution modelling [14]. The use of MR-
guidance avoided these artifacts.

For the error-variance analysis performed with multiple
realizations, the NRMSE vs ensemble COV in the six chosen
ROIs are presented in Fig. 9 as a function of the iteration
number, for the same reconstructions hyperparameters as the
ones for a single realization. Here also the MR-guided re-
constructions using the MRI image in its original resolution
outperformed the reconstructions with the standard voxel size.
The reconstructions with MRvox and PSF obtained the lowest
error and the second lowest COV for the same regularization
hyperparameters, showing that in combination they form a
powerful PVC method. In Fig. 10, the mean images of the
10 noise realizations are presented in the top row for the
MLEM, MLEM-PSF, MR-guided MAP-PSF and MR-guided
MAP-PSF-MRvox. The two latter are shown for the stronger
regularization parameter of the two shown in Fig. 9. In the
bottom row, the standard deviation at voxel level is also shown,
where it can be seen that the MR-guided MAP-PSF obtained
lower noise when using standard voxel size compared to the
MRvox voxel sizes.

Finally, in order to draw a comparison between the two best
performing methods (MR-guided MAP-PSF and MR-guided
MAP-PSF-MRvox), they were evaluated for a wider range of
β values (from β = 2.1× 102 to β = 4.2× 104). In Fig.
11, the NRMSE vs ensemble COV in the six chosen ROIs
are shown at iteration 400 as a function of the regularization
hyperparameter β, for the two mentioned methods. This figure
shows that the use of MRvox voxel sizes reduces considerably
the error in MR-guided reconstruction for the same noise level.

B. Real Patient Data

In Fig. 12, the contrast and COV metrics are shown for the
same methods evaluated in the simulation study for standard
and 1.05×1.05×1.0 mm3 (MRvox) voxel sizes, where similar
results to those obtained with simulated data are observed.
The MR-guided MAP reconstructions reduced the noise levels
considerably. Despite the good recovery of the cortical and
subcortical brain structures, a loss of contrast is seen for the
standard voxel size. The latter is avoided when reconstructing
with MRvox voxel sizes, where better delineation of the
structures of the brain and an enhancement of the contrast
is achieved, obtaining similar contrast values as the standard
MLEM reconstruction. The inclusion of resolution modelling
proved to be essential in order to obtain PVC, but once again
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Fig. 6. Contrast vs COV in six ROIs as a function of the iteration number for MLEM, MR-guided MAP and MR-guided MAP with PSF modelling
reconstructions using standard and MR voxel sizes, for a single noise realization of the simulation study. The metrics were sampled every 20 iterations,
starting at iteration 20 and finishing at iteration 400. The contrast in the ground truth was 4.
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the use of MRvox voxel sizes showed an important additional
enhancement of the contrast for the same noise level (between
15% and 20%). The noise reduction with MR-guided methods
was less considerable than for the simulation study.

In Fig. 13, the reconstructed images of the real data study
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reconstructed images for standard and MRvox voxel sizes at iteration number
400, for the simulation study. MLEM reconstructed images as performed in
clinical routine are also presented in the MLEM smoothed column. The MR-
guided MAP reconstructions in the bottom row (PSF-MRvox) show the best
contrast and resolution. The colour scale is in arbitrary units.
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Fig. 9. NRMSE vs Ensemble COV over 10 noise realizations for MLEM, MR-guided MAP and MR-guided MAP with PSF modelling reconstructions for
standard and MRvox voxel sizes as a function of the iteration number.
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are shown for the same reconstruction methods evaluated in
Fig. 12. The use of MRvox voxel sizes achieved better contrast
when comparing equivalent methods. For MR-guided recon-
structions, the loss of contrast due to the regularization was
successfully compensated for by using the MRI anatomical
information in its original resolution. As was shown with
simulated data, the combination of MR-guided MAP recon-
struction with PSF modelling and MRI voxel sizes enhances
considerably the contrast while reducing and controlling the

noise level and artifacts seen in resolution modelling.

VI. DISCUSSION

For both real and simulated data, an important enhancement
of the contrast was observed when using the MRI anatomical
information in its native resolution (MRvox voxel sizes) in
MR-guided reconstructions. The modelling of the PSF was a
very important factor for achieving good PVC and enhance-
ment of the contrast for all the methods under evaluation, but
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Fig. 11. NRMSE vs Ensemble COV over 10 noise realizations for MR-guided
MAP with PSF modelling reconstructions for standard and MRvox voxel sizes
at iteration number 400 as a function of the regularization parameter β. The
β values used were 2.1 × 102 (only for the standard voxel size), 4.2 × 102,
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the best performance in terms of PVC was obtained when
resolution modelling was combined with MR-guided recon-
structions with MRvox voxel sizes. This combination prevents
the spill out of activity and, therefore, avoids the smoothing
outside the correct anatomical boundaries. Moreover, the use
of MR-guided reconstructions eliminates the Gibbs artifacts
that are introduced by resolution modelling methods [12],
[13]. Fig. 14 looks into this effect, where two transverse and
coronal patches of the reconstructed images are fused with the
T1-weighted image. For the case of reconstructions without
resolution modelling (NO PSF row in the figure), a non negli-
gible amount of activity is located outside the brain structures
where the activity was presumably located (based on the PSF
reconstructions of the bottom row). This is a consequence of
the low resolution of the PET images and it is exacerbated
by the smoothing applied in the regularization, even when
anatomical boundaries are used as prior information, and for
that reason an important loss of contrast is observed in those
cases where resolution modelling is not implemented.

When using multiple realizations to compare MR-guided
MAP-PSF reconstructions with standard and MRvox voxel
sizes, a similar enhancement of the contrast to that obtained for
a single realization was observed. However, a lower ensemble
COV was obtained for the standard voxel size and this is
also seen in the standard deviation images of Fig. 10. This
could be due to slightly different regularization strength. In
the proposed implementation and hyperparameter selection
the same regularization hyperparameters produced a similar,
although not the same, regularization strength for different
methods and different voxel sizes, as can be observed in the
reconstructed images such as in Fig. 8. Fig. 11 confirms the
better performance of using MRvox voxel sizes for matched
regularization levels by comparing these two methods for a
larger range of hyperparameters, showing that for the same
level of COV a considerably lower error is achieved.

For real data, it cannot be assured that the improvement

of the contrast is in fact improving the quantification in the
images by accurately correcting the PVE. However, when
the image is studied locally as in the patches shown in Fig.
14, there is a very high correlation between the grey matter
in the T1-weighted image and the [18F]FDG uptake in the
PET image. This is even more noticeable when resolution
modelling is used. In addition, when we compare the results
between simulated and real data, a good enhancement of the
contrast was obtained in both cases, although it was more
modest for real data. The use of MR-guided MAP-PSF with
MRvox voxel sizes produced a further reduction of the noise
for simulated data, but this was not observed for real data.
A possible reason for these results is the perfect boundary
matching between the PET and T1-weighted image phantoms
in the simulated data.

Finally, the proposed method that allows the reconstruction
of images with smaller voxel sizes is only necessary when
ray-tracing approaches are used as projectors, especially for
the Siddon algorithm used in this work. Other ray-tracing
algorithms with an embedded interpolation, such as the Joseph
method [45], would still need a similar approach when the high
resolution voxel sizes are approximately half the size of the
standard voxel sizes or smaller. The use of PSF modelling can
also make the downsampling matrix redundant, but then only
reconstructions with resolution modelling could be performed
and with a higher computational cost due to projecting high
resolution images. For voxel-driven [46] or distance-driven
[47] projectors, the modified system matrix would not be nec-
essary but they have an even more considerable computational
cost that scales with the reduction of the voxel size.

VII. CONCLUSIONS

In order to be able to reconstruct the images with smaller
voxel sizes than the standard for a given scanner, we proposed
a simple and effective modification to a system matrix based
on a ray-tracing projector, where a downsampling matrix is
applied before the projector. Then, this system matrix was used
in MR-guided MAP reconstructions with a modified Lange
prior that included anatomical information with the Bowsher
method. These reconstruction achieves a good enhancement of
the contrast for both simulated and real data. The use of MRI
voxel sizes combined with resolution modelling reconstruc-
tions proved to enhance PVC substantially, increasing 15%-
20% the contrast in the striatum, without introducing artifacts
and reducing the noise in the images.

To conclude, we showed the importance of the use of MRI
voxel sizes when reconstructing PET images with MR-guided
MAP methods since it shows an enhancement of the contrast
and a reduction of the errors due to PVE as it was shown for
simulated data. These improvements are due to a better use of
the anatomical information by using it in its native resolution,
which allows the preservation of high frequency detail; and
because of the use of a higher resolution matrix, where higher
frequencies can be recovered, especially for reconstructions
with resolution modelling.
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Fig. 12. Contrast vs COV in six brain regions as a function of the iteration number for MLEM, MR-guided MAP and MR-guided MAP with PSF modelling
reconstructions using standard and MR voxel sizes for the real data study. The metrics were sampled every 20 iterations, starting at iteration 20 and finishing
at iteration 400.
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