
This electronic thesis or dissertation has been 

downloaded from the King’s Research Portal at 

https://kclpure.kcl.ac.uk/portal/  

Take down policy 

If you believe that this document breaches copyright please contact librarypure@kcl.ac.uk providing 

details, and we will remove access to the work immediately and investigate your claim. 

END USER LICENCE AGREEMENT 

Unless another licence is stated on the immediately following page this work is licensed 

under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International 

licence. https://creativecommons.org/licenses/by-nc-nd/4.0/ 

You are free to copy, distribute and transmit the work

Under the following conditions: 

 Attribution: You must attribute the work in the manner specified by the author (but not in any
way that suggests that they endorse you or your use of the work).

 Non Commercial: You may not use this work for commercial purposes.

 No Derivative Works - You may not alter, transform, or build upon this work.

Any of these conditions can be waived if you receive permission from the author. Your fair dealings and 

other rights are in no way affected by the above. 

The copyright of this thesis rests with the author and no quotation from it or information derived from it 

may be published without proper acknowledgement. 

Using Statistical and Machine Learning Methods to Improve Treatment Success in
Patients with Schizophrenia

Agbedjro, Deborah

Awarding institution:
King's College London

Download date: 26. Dec. 2024



Using Statistical and Machine Learning Methods
to Improve Treatment Success in Patients

with Schizophrenia

Deborah Agbedjro

A thesis submitted for the degree of Doctor of Philosophy in Biostatistics

King’s College London
Institute of Psychiatry, Psychology & Neuroscience

Department of Biostatistics



Contents

List of Tables 10

List of Figures 18

Abstract of thesis 19

Acknowledgements 21

List of abbreviations 22

1 Introduction 24
1.1 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.1.1 Schizophrenia and cognitive remediation therapy (CRT) . . . . . . . . . . 24
1.1.2 Prediction modelling for precision medicine . . . . . . . . . . . . . . . . . 27
1.1.3 Moderation of schizophrenia CRT treatment . . . . . . . . . . . . . . . . 29
1.1.4 High dimensional data and statistical learning . . . . . . . . . . . . . . . . 31

1.2 Introduction to methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
1.2.1 Prediction model performance measures and validation techniques . . . 39
1.2.2 Missing data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
1.2.3 Dimension reduction of multiple outcomes . . . . . . . . . . . . . . . . . . 57
1.2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

1.3 Thesis aims and objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
1.4 Thesis structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

1.4.1 Simulation study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
1.4.2 Prediction model development . . . . . . . . . . . . . . . . . . . . . . . . 60

2 Prediction modelling combining statistical learning with missing data imputation:
a simulation study 61
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

2.1.1 Statistical learning methods for prediction modelling . . . . . . . . . . . . 63
2.1.2 Missing data imputation techniques . . . . . . . . . . . . . . . . . . . . . 69
2.1.3 Handling overfitting using Efron’s bootstrap validation as for Harrell et al.

(1996) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
2.1.4 Monte Carlo simulation study . . . . . . . . . . . . . . . . . . . . . . . . . 77
2.1.5 Hypotheses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

2.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
2.2.1 20-Covariate Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
2.2.2 100-Covariate Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
2.2.3 R packages, parallel computing and random number generators used . . 90
2.2.4 Encountered problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

2



CONTENTS 3

2.3 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
2.3.1 Results from 20-covariate datasets, 10 true predictors . . . . . . . . . . . 92
2.3.2 Results from 100-covariate datasets, 15 true predictors . . . . . . . . . . 160
2.3.3 Selection of moderators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

2.4 Summary of results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
2.5 Discussion and conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

2.5.1 Advantages and limitations . . . . . . . . . . . . . . . . . . . . . . . . . . 194

3 Development of MissForest-Lasso prediction model using CRT randomised con-
trolled clinical trial data 196
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

3.1.1 DoCTRS randomised controlled trials . . . . . . . . . . . . . . . . . . . . 197
3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

3.2.1 Development of composite score from cognitive outcomes using factor
analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

3.2.2 MissForest-Lasso precision medicine models . . . . . . . . . . . . . . . . 215
3.2.3 Secondary analysis: MissForest-Lasso prognostic models . . . . . . . . . 218

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
3.3.1 Development of composite score from cognitive outcomes using factor

analyses: results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
3.3.2 MissForest-Lasso precision medicine models: results . . . . . . . . . . . 231
3.3.3 Secondary analysis: results . . . . . . . . . . . . . . . . . . . . . . . . . . 243
3.3.4 Results: summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244

3.4 Discussion and conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
3.4.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250

4 Final discussion and conclusion 251
4.1 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254

4.1.1 Simulation study drawbacks . . . . . . . . . . . . . . . . . . . . . . . . . . 254
4.1.2 Limitations of precision medicine model development . . . . . . . . . . . 257

4.2 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
4.3 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260

References 273

Appendices 274

A Other simulation result tables and figures 275
A.1 MICE-Lasso and MICE-Elasticnet simulations results tables and figures . . . . . 275
A.2 MissForest-Lasso and MissForest-Elasticnet simulation results . . . . . . . . . . 289
A.3 Simulation result figures: method comparison . . . . . . . . . . . . . . . . . . . . 295
A.4 Selection of moderators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329

B R code 333
B.1 Musoro et al 2014 code error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333

B.1.1 Wrong commands for best and tolerance model coefficients (Musoro et
al 2014) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333

B.1.2 Correct commands for best and tolerance model coefficients . . . . . . . 334
B.2 MissForest-Lasso R function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335
B.3 Harrell bootstrap validation for MissForest-Lasso . . . . . . . . . . . . . . . . . . 338



CONTENTS 4

C Database of cognitive training and remediation studies 344
C.1 Study information variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345
C.2 Cognitive variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356
C.3 Demographics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359
C.4 Medications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362
C.5 Quality of life, self-esteem and functioning measures . . . . . . . . . . . . . . . . 364
C.6 Symptom data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369

D Prediction models results 375
D.1 Plot of the correlation matrix of the potential predictors used to develop the pre-

diction models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376
D.2 Results for the precision medicine Models 2a and 2b with WCST PE as outcome 377
D.3 Prognostic Models 3, 4a and 4b: results . . . . . . . . . . . . . . . . . . . . . . . 378



List of Tables

1.1 Comparison in terms of performance of some different statistical learning methods 36

2.1 Definition of performance measures . . . . . . . . . . . . . . . . . . . . . . . . . 84
2.2 Simulation study scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
2.3 Variable selection simulation study results for scenarios S1 (without missing

data, no assumption of moderation) and S2 (with missing data, complete out-
come, no assumption of moderation) for Lasso and MICE-Lasso best and tol-
erance models in the case of 20 covariates and 300 samples of 250 and 1000
observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

2.4 Accuracy simulation study results for MICE-Lasso analysis with Harrell (1996)
bootstrap validation: scenarios S1 (without missing data, no assumption of mod-
eration) and S2 (with missing data, complete outcome, no assumption of moder-
ation) based on 300 data sets of 20 variables each (n=250) . . . . . . . . . . . . 95

2.5 Variable selection simulation study results for scenarios S1 (without missing
data, no assumption of moderation) and S2 (with missing data, complete out-
come, no assumption of moderation) for MICE-Elasticnet best and tolerance
models in the case of 20 covariates and 300 samples of 250 and 1000 obser-
vations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

2.6 Accuracy simulation study results for MICE-Elasticnet analysis with Harrell
bootstrap validation: scenarios S1 (without missing data, no assumption of mod-
eration) and S2 (with missing data, complete outcome, no assumption of moder-
ation) based on 300 data sets of 20 variables each (n=250) . . . . . . . . . . . . 97

2.7 Variable selection simulation study results for scenarios S3 (assumption of
moderation, without missing data) and S4 (assumption of moderation, with miss-
ing data) for MICE-Lasso best and tolerance models in the case of 20 covari-
ates and 300 samples of 250 and 1000 observations . . . . . . . . . . . . . . . . 103

2.8 Variable selection simulation study results for scenarios S3 (assumption of
moderation, without missing data) and S4 (assumption of moderation, with miss-
ing data) for MICE-Elasticnet best and tolerance models in the case of 20 co-
variates and 300 samples of 250 and 1000 observations . . . . . . . . . . . . . 104

2.9 Accuracy simulation study results MICE-Lasso analysis with Harrell bootstrap
validation: scenarios S3 (assumption of moderation, without missing data) and
S4 (assumption of moderation, with missing data, complete outcome) based on
300 data sets of 20 variables each (n=250) . . . . . . . . . . . . . . . . . . . . . 105

2.10 Accuracy simulation study results for MICE-Elasticnet analysis with Harrell
bootstrap validation: scenarios S3 (assumption of moderation, without missing
data) and S4 (assumption of moderation, with missing data, complete outcome)
based on 300 data sets of 20 variables each (n=250) . . . . . . . . . . . . . . . 106

5



LIST OF TABLES 6

2.11 Variable selection simulation study results for scenarios S3 (assumption of
moderation, without missing data) and S5 (assumption of moderation, missing
data also in the outcome) for MICE-Lasso best and tolerance models in the case
of 20 covariates and 300 samples of 250 and 1000 observations . . . . . . . . . 107

2.12 Variable selection simulation study results for scenarios S3 (assumption of
moderation, without missing data) and S5 (assumption of moderation, missing
data also in the outcome) for Elasticnet and MICE-Elasticnet best and toler-
ance models in the case of 20 covariates and 300 samples of 250 and 1000
observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

2.13 Accuracy simulation study results for MICE-Lasso analysis with Harrell boot-
strap validation: scenarios S3 (assumption of moderation, complete data) and
S5 (assumption of moderation, missing data also in the outcome) based on 300
data sets of 20 variables each (n=250). . . . . . . . . . . . . . . . . . . . . . . . 109

2.14 Accuracy simulation study results for MICE-Elasticnet analysis with Harrell
bootstrap validation: scenarios S3 (assumption of moderation, complete data)
and S5 (assumption of moderation, missing data also in the outcome ), based
on 300 data sets of 20 variables each (n=250) . . . . . . . . . . . . . . . . . . . 110

2.15 Variable selection simulation study results for scenarios S3 (assumption of
moderation, complete data) and S6 (assumption of moderation, missing data,
complete outcome, interaction terms in imputation model) for Lasso and MICE-
Lasso best and tolerance models in the case of 20 covariates and 300 samples
of 250 and 1000 observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

2.16 Accuracy simulation study results for MICE-Lasso analysis with Harrell boot-
strap validation: scenarios S3 (assumption of moderation, without missing data)
and S6 (assumption of moderation, missing data, interaction terms in the impu-
tation model), based on 300 data sets of 20 variables each (n=250) . . . . . . . 112

2.17 Variable selection simulation study results for scenarios S1 (without missing
data, no assumption of moderation) and S2 (with missing data, complete out-
come, no assumption of moderation) for MissForest-Lasso best and tolerance
models in the case of 20 covariates and 300 samples of 250 and 1000 obser-
vations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

2.18 Accuracy simulation study results for Lasso and MissForest-Lasso analysis
with Harrell bootstrap validation: scenarios S1 (without missing data, no assump-
tion of moderation) and S2 (with missing data, complete outcome, no assumption
of moderation) based on 300 data sets of 20 variables each (n=250) . . . . . . 121

2.19 Variable selection simulation study results for scenarios S3 (assumption of
moderation, without missing data) and S4 (assumption of moderation, with miss-
ing data) for Lasso and MissForest-Lasso best and tolerance models in the
case of 20 covariates and 300 samples of 250 and 1000 observation . . . . . . 123

2.20 Accuracy simulation study results for MissForest-Lasso analysis with Harrell
bootstrap validation: scenarios S3 (assumption of moderation, without missing
data) and S4 (assumption of moderation, with missing data) based on 300 data
sets of 20 variables each (n=250) . . . . . . . . . . . . . . . . . . . . . . . . . . 124

2.21 Variable selection simulation study results for scenarios S3 (assumption of
moderation, without missing data) and S5 (assumption of moderation, with miss-
ing data also in the outcome) for Lasso and MissForest-Lasso best and toler-
ance models in the case of 20 covariates and 300 samples of 250 and 1000
observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126



LIST OF TABLES 7

2.22 Accuracy simulation study results for MissForest-Lasso analysis with Harrell
bootstrap validation: scenarios S3 (assumption of moderation, complete data)
and S5 (assumption of moderation, missing data also in the outcome), based on
300 data sets of 20 variables each (n=250) . . . . . . . . . . . . . . . . . . . . . 127

2.23 Variable selection simulation study results for scenarios S1 (without missing
data, no assumption of moderation) and S2 (with missing data, complete out-
come, no assumption of moderation) for Random Forests and MissForest-
Random Forests (MR) best models in the case of 20 covariates and 300 sam-
ples of 250 and 1000 observations . . . . . . . . . . . . . . . . . . . . . . . . . . 128

2.24 Accuracy simulation study results for MissForest-Random Forest analysis with
Harrell bootstrap validation: scenarios S1 (without missing data, no assumption
of moderation) and S2 (with missing data, complete outcome, no assumption of
moderation) based on 300 data sets of 20 variables each (n=250,1000) . . . . . 129

2.25 Accuracy simulation study results for MissForest-Random Forest analysis with
Harrell bootstrap validation: scenarios S3 (assumption of moderation, without
missing data) and S4 (assumption of moderation, with missing data, complete
outcome) based on 300 data sets of 20 variables each (n=250,1000) . . . . . . 129

2.26 Variable selection simulation study results for scenarios S3 (assumption of
moderation, without missing data) and S4 (assumption of moderation, with miss-
ing data) for Random Forets and MissForest-Random Forests best models in
the case of 20 covariates and 300 samples of 250 and 1000 observations . . . 131

2.27 Variable selection simulation study results for scenarios S3 (assumption of
moderation, without missing data) and S5 (assumption of moderation, with miss-
ing data also in the outcome) for Random Forests and MissForest-Random
Forests (MR) best models in the case of 20 covariates and 300 samples of 250
and 1000 observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

2.28 Accuracy simulation study results for MissForest-Random Forest analysis with
Harrell bootstrap validation: S3 (assumption of moderation, complete data) and
S5 (assumption of moderation, missing data also in the outcome), based on 300
data sets of 20 variables each (n=250,1000) . . . . . . . . . . . . . . . . . . . . 132

2.29 Accuracy simulation study results for MICE-Lasso analysis with Harrell (1996)
bootstrap validation: scenarios S3 (assumption of moderation, complete data)
and S5 (assumption of moderation, missing data also in the outcome), based on
300 data sets of 100 variables each (n=500) with between-covariate correlation
of 0.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

2.30 Accuracy simulation study results for MICE-Elasticnet analysis with Harrell
(1996) bootstrap validation: scenarios S3 (assumption of moderation, complete
data) and S5 (assumption of moderation, missing data also in the outcome),
based on 300 data sets of 100 variables each (n=500) with between-covariate
correlation of 0.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

2.31 Variable selection simulation study results for scenarios S3 (assumption of moderation,
without missing data) and S5 (assumption of moderation, missing data also in the out-
come) for MICE-Lasso and MICE-Elasticnet best and tolerance models in the case of
100 covariates and 300 samples of 500 observations, between-covariate correlation of
0.2 and 0.8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164



LIST OF TABLES 8

2.32 Accuracy simulation study results for MissForest-Lasso analysis with Harrell
(1996) bootstrap validation: scenarios S3 (assumption of moderation, complete
data) and S5 (assumption of moderation, missing data also in the outcome),
based on 300 data sets of 100 variables each (n=500) with between-covariate
correlation of 0.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

2.33 Accuracy simulation study results for MissForest-Elasticnet analysis with Har-
rell (1996) bootstrap validation: scenarios S3 (assumption of moderation, com-
plete data) and S5 (assumption of moderation, missing data also in the out-
come), based on 300 data sets of 100 variables each (n=500) with between-
covariate correlation of 0.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

2.34 Variable selection simulation study results for scenarios S3 (assumption of moderation,
without missing data) and S5 (assumption of moderation, missing data also in the out-
come) for MissForest-Lasso and MissForest-Elasticnet best and tolerance models in
the case of 100 covariates and 300 samples of 500 observations, between-covariate
correlation of 0.2 and 0.8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

2.35 Accuracy simulation study results for MissForest-Conditional RF analysis with
Harrell bootstrap validation: scenarios S3 (assumption of moderation, complete
data) and S5 (assumption of moderation, missing data also in the outcome),
based on 300 data sets of 100 variables each (n=500), with between-covariate
correlation being 0.2 and 0.8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

2.36 Comparison of average sensitivity (SEN), false positive rate (FPR) and positive
predictive value (PPV) of selection for the predictors (P) and for the moderators
(M) for the 3% tolerance models in the simulation study. . . . . . . . . . . . . . . 182

2.37 Summary table of results for the simulation study . . . . . . . . . . . . . . . . . . 188

3.1 Study information variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
3.2 Outcome variables details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
3.3 Summary baseline characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 206
3.4 Baseline, end-of-treatment and follow-up correlation matrices for the 11 out-

comes that are not total scores and have pairs positive covariance coverage . . 219
3.5 EFA of 9 items, fit measures at baseline (n=460) . . . . . . . . . . . . . . . . . . 221
3.6 EFA of nine items, fit measures at the end-of-treatment (n=412). N/A stands for

‘not available’ because of non-convergence. Abbreviations: res=residual . . . . . 223
3.7 EFA of nine items, fit measures at follow-up (n=290). N/A stands for ‘not avail-

able’ because of non-convergence. Abbreviations: res=residual . . . . . . . . . . 223
3.8 One-factor cross-sectional CFA based on EFA . . . . . . . . . . . . . . . . . . . 225
3.9 Longitudinal confirmatory factor (LFA) analsysis with six continuous outcomes

(463 observations) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
3.10 Partial structural invariance model parameter estimates . . . . . . . . . . . . . . 227
3.11 Standardised factor scores statistics within treatment group . . . . . . . . . . . . 230
3.12 Standardised factor scores statistics within treatment group for the study ‘Fisz-

don 1’ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
3.13 WCST PE statistics within treatment group . . . . . . . . . . . . . . . . . . . . . 232
3.14 Model 1 selected variables and corresponding estimated coefficients . . . . . . . 235
3.15 Models 2a and 2b tuning parameters . . . . . . . . . . . . . . . . . . . . . . . . . 236
3.16 Models 2a and 2b selected variables and corresponding estimated unstandard-

ised coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
3.17 Model 1 Apparent Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
3.18 Models 2a and 2b apparent performance . . . . . . . . . . . . . . . . . . . . . . 239



LIST OF TABLES 9

3.19 Model 1 internally validated performance . . . . . . . . . . . . . . . . . . . . . . 240
3.20 Model 2a and 2b internally validated performances . . . . . . . . . . . . . . . . . 240
3.21 WCST PE statistics within treatment group for the study ‘Fiszdon 1’ . . . . . . . . 241
3.22 Final Model 1 uncalibrated and re-calibrated coefficients . . . . . . . . . . . . . . 242
3.23 Model 3 internally validated performance . . . . . . . . . . . . . . . . . . . . . . 244
3.24 Model 4a and 4b internally validated performances . . . . . . . . . . . . . . . . 244

A.1 Accuracy simulation study results for MICE-Lasso analysis with bootstrap val-
idation on the remaining data for scenarios S1-S2, based on 300 data sets of
20 variables each (n=250) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276

A.2 Accuracy simulation study results for MICE-Lasso analysis with bootstrap val-
idation on the remaining data for scenarios S1-S2, based on 300 data sets of
20 variables each (n=1000) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276

A.3 Accuracy simulation study results for MICE-Lasso analysis with Harrell (1996)
bootstrap validation: scenarios S1 (without missing data, no assumption of mod-
eration) and S2 (with missing data, complete outcome, no assumption of moder-
ation) based on 300 data sets of 20 variables each (n=1000) . . . . . . . . . . . 277

A.4 Accuracy simulation study results for MICE-Elasticnet analysis with Harrell
bootstrap validation: scenarios S1 (without missing data, no assumption of mod-
eration) and S2 (with missing data, complete outcome, no assumption of moder-
ation) based on 300 data sets of 20 variables each (n=1000) . . . . . . . . . . . 278

A.5 Accuracy simulation study results for MICE-Lasso analysis with Harrell boot-
strap validation: scenarios S3 (assumption of moderation, without missing data)
and S4 (assumption of moderation, with missing data, complete outcome) based
on 300 data sets of 20 variables each (n=1000) . . . . . . . . . . . . . . . . . . 279

A.6 Accuracy simulation study results for MICE-Elasticnet analysis with Harrell
bootstrap validation: scenarios S3 (assumption of moderation, without missing
data) and S4 (assumption of moderation, with missing data, complete outcome)
based on 300 data sets of 20 variables each (n=1000) . . . . . . . . . . . . . . 280

A.7 Accuracy simulation study results for MICE-Lasso analysis with Harrell boot-
strap validation: scenarios S3 (assumption of moderation, without missing data)
and S5 (assumption of moderation, with missing data also in the outcome) based
on 300 data sets of 20 variables each (n=1000) . . . . . . . . . . . . . . . . . . 281

A.8 Accuracy simulation study results for MICE-Elasticnet analysis with Harrell
bootstrap validation: scenarios S3 (assumption of moderation, without missing
data) and S5 (assumption of moderation, with missing data also in the outcome)
based on 300 data sets of 20 variables each (n=1000) . . . . . . . . . . . . . . 282

A.9 Accuracy simulation study results for MICE-Lasso analysis with Harrell boot-
strap validation: scenarios S3 (assumption of moderation, without missing data)
and S6 (assumption of moderation, missing data, interaction terms in the impu-
tation model), based on 300 data sets of 20 variables each (n=1000) . . . . . . 283

A.10 Accuracy simulation study results for MICE-Lasso analysis with Harrell (1996)
bootstrap validation: scenarios S3 (assumption of moderation, complete data)
and S5 (assumption of moderation, missing data also in the outcome), based on
300 data sets of 100 variables each (n=500) with between-covariate correlation
of 0.8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287



LIST OF TABLES 10

A.11 Accuracy simulation study results for MICE-Elasticnet analysis with Harrell
(1996) bootstrap validation: scenarios S3 (assumption of moderation, complete
data) and S5 (assumption of moderation, missing data also in the outcome),
based on 300 data sets of 100 variables each (n=500) with between-covariate
correlation of 0.8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288

A.12 Accuracy simulation study results for MissForest-Lasso analysis with Harrell
bootstrap validation: scenarios S1 (without missing data, no assumption of mod-
eration) and S2 (with missing data, complete outcome, no assumption of moder-
ation) based on 300 data sets of 20 variables each (n=1000) . . . . . . . . . . . 290

A.13 Accuracy simulation study results for MissForest-Lasso analysis with Harrell
bootstrap validation: scenarios S3 (assumption of moderation, without missing
data) and S4 (assumption of moderation, with missing data, complete outcome)
based on 300 data sets of 20 variables each (n=1000) . . . . . . . . . . . . . . 291

A.14 Accuracy simulation study results for MissForest-Lasso analysis with Harrell
bootstrap validation: scenarios S3 (assumption of moderation, without missing
data) and S5 (assumption of moderation, with missing data also in the outcome)
based on 300 data sets of 20 variables each (n=1000) . . . . . . . . . . . . . . 292

A.15 Accuracy simulation study results for MissForest-Lasso analysis with Harrell
(1996) bootstrap validation: scenarios S3 (assumption of moderation, complete
data) and S5 (assumption of moderation, missing data also in the outcome),
based on 300 data sets of 100 variables each (n=500) with between-covariate
correlation of 0.8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293

A.16 Accuracy simulation study results for MissForest-Elasticnet analysis with Har-
rell (1996) bootstrap validation: scenarios S3 (assumption of moderation, com-
plete data) and S5 (assumption of moderation, missing data also in the out-
come), based on 300 data sets of 100 variables each (n=500) with between-
covariate correlation of 0.8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294

A.17 Comparison of average sensitivity (SEN), false positive rate (FPR) and positive
predictive value (PPV) of selection for the predictors (P) and for the moderators
(M) for the best λ models in the simulation study. . . . . . . . . . . . . . . . . . . 330

A.18 Comparison of average sensitivity (SEN), false positive rate (FPR) and positive
predictive value (PPV) of selection for the predictors (P) and for the moderators
(M) for the 1 SE tolerance models in the simulation study. . . . . . . . . . . . . . 331

A.19 Comparison of average sensitivity (SEN), false positive rate (FPR) and positive
predictive value (PPV) of selection for the predictors (P) and for the moderators
(M) for the 15% tolerance models in the simulation study. . . . . . . . . . . . . . 332

D.2 Final Model 3 uncalibrated and re-calibrated coefficients . . . . . . . . . . . . . . 378
D.1 Final Model 2a and 2b uncalibrated and re-calibrated coefficients . . . . . . . . 378
D.3 Final Model 4a and 4b uncalibrated and re-calibrated coefficients . . . . . . . . 378



List of Figures

1.1 Main steps for prediction modelling (Steyerberg and Vergouwe 2014) . . . . . . . 40
1.2 Calibration lines in the cases of underfitting and overfitting . . . . . . . . . . . . . 43
1.3 Musoro et al (2014) model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.1 Lasso soft-thresholding penalty . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
2.2 Optimism-corrected MSE estimates from Lasso and MICE-Lasso (ML) run on

300 simulated 20-covariate datasets with 250 and 1000 observations (top and
bottom rows respectively) comparing the scenarios with moderation assumption
S3 (without missing data), S4 (with missing data, complete outcome), S5 ( with
missing data also in the outcome) and S6 (missing data, complete outcome and
interaction terms in the imputation model) . . . . . . . . . . . . . . . . . . . . . . 113

2.3 Calibration slope βLP estimates for MICE-Lasso (ML) run on 300 simulated
20-covariate datasets with 250 and 1000 observations (top and bottom rows
respectively) for the scenarios with moderation assumption S3 (without missing
data), S4 (with missing data, complete outcome), S5 ( with missing data also in
the outcome) and S6 (missing data, complete outcome and interaction terms in
the imputation model) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

2.4 Average internal and external MSE optimism estimates with 2.5th and 97.5th
percentiles for MICE-Lasso (ML) run on 300 simulated 20-covariate datasets
with 250 and 1000 observations for the scenarios with moderation assumption
S3 (without missing data), S4 (with missing data, complete outcome), S5 ( with
missing data also in the outcome) and S6 (missing data, complete outcome and
interaction terms in the imputation model) . . . . . . . . . . . . . . . . . . . . . . 115

2.5 Average percentage of true predictors (TP) selected among the actual TP
(SEN) estimates with 2.5th and 97.5th percentiles from MICE-Lasso (ML) run
on 300 simulated 20-covariate datasets with 250 and 1000 observations for the
scenarios with moderation assumption S3 (without missing data), S4 (with miss-
ing data, complete outcome), S5 ( with missing data also in the outcome) and S6
(missing data, complete outcome and interaction terms in the imputation model) 116

2.6 Average percentage of true predictors (TP) among the selected variables
(PPV) estimates with 2.5th and 97.5th percentiles from MICE-Lasso (ML) run
on 300 simulated 20-covariate datasets with 250 and 1000 observations for the
scenarios with moderation assumption S3 (without missing data), S4 (with miss-
ing data, complete outcome), S5 ( with missing data also in the outcome) and S6
(missing data, complete outcome and interaction terms in the imputation model) 117

11



LIST OF FIGURES 12

2.7 Comparison of variable inclusion frequency by MICE-Lasso (ML) run on 300
simulated 20-covariate datasets with 250 observations for the scenarios with
moderation assumption S3 (without missing data), S4 (with missing data, com-
plete outcome), S5 ( with missing data also in the outcome) and S6 (missing
data, complete outcome and interaction terms in the imputation model) with
MCAR data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

2.8 Optimism-corrected MSE estimates from 4 methods run on 300 simulated 20-
covariate datasets with 250 observations for scenarios S1 (without missing
data, no assumption of moderation) and S2 (with missing data, complete out-
come, no assumption of moderation) . . . . . . . . . . . . . . . . . . . . . . . . . 133

2.9 Optimism-corrected MSE estimates from 4 methods run on 300 simulated 20-
covariate datasets with 250 observations for scenarios S3 (assumption of mod-
eration, without missing data) and S4 (assumption of moderation, with missing
data) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

2.10 Optimism-corrected MSE estimates from 4 methods run on 300 simulated 20-
covariate datasets with 250 observations for scenarios S3 (assumption of mod-
eration, without missing data) and S5 (assumption of moderation, with missing
data also in the outcome) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

2.11 Calibration slope βLP estimates for 4 methods run on 300 simulated 20-covariate
datasets with 250 observations for scenarios S1 (without missing data, no as-
sumption of moderation) and S2 (with missing data, complete outcome, no as-
sumption of moderation) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

2.12 Calibration slope βLP estimates for 4 methods run on 300 simulated 20-covariate
datasets with 250 observations for scenarios S3 (assumption of moderation,
without missing data) and S4 (assumption of moderation, with missing data) . . . 137

2.13 Calibration slope βLP estimates for 4 methods run on 300 simulated 20-covariate
datasets with 250 observations for scenarios S3 (assumption of moderation,
without missing data) and S5 (assumption of moderation, with missing data also
in the outcome) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

2.14 Average internal and external MSE optimism estimates with 2.5th and 97.5th
percentiles for 4 methods run on 300 simulated 20-covariate datasets with 250
observations for scenarios S1 (without missing data, no assumption of modera-
tion) and S2 (with missing data, complete outcome, no assumption of moderation)139

2.15 Average internal and external MSE optimism estimates with 2.5th and 97.5th
percentiles for 4 methods run on 300 simulated 20-covariate datasets with 250
observations for scenarios S3 (assumption of moderation, without missing data)
and S4 (assumption of moderation, with missing data) . . . . . . . . . . . . . . . 140

2.16 Average internal and external MSE optimism estimates with 2.5th and 97.5th
percentiles for 4 methods run on 300 simulated 20-covariate datasets with 250
observations for scenarios S3 (assumption of moderation, without missing data)
and S5 (assumption of moderation, with missing data also in the outcome) . . . 141

2.17 Average percentage of true predictors (TP) selected among the actual TP
(SEN) estimates with 2.5th and 97.5th percentiles from 3 methods run on 300
simulated 20-covariate datasets with 250 observations for scenarios S1 (with-
out missing data, no assumption of moderation) and S2 (with missing data, com-
plete outcome, no assumption of moderation) . . . . . . . . . . . . . . . . . . . . 142



LIST OF FIGURES 13

2.18 Average percentage of true predictors (TP) selected among the actual TP
(SEN) estimates with 2.5th and 97.5th percentiles from 3 methods run on 300
simulated 20-covariate datasets with 250 observations for scenarios S3 (as-
sumption of moderation, without missing data) and S4 (assumption of modera-
tion, with missing data) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

2.19 Average percentage of true predictors (TP) selected among the actual TP
(SEN) estimates with 2.5th and 97.5th percentiles from 3 methods run on 300
simulated 20-covariate datasets with 250 observations for scenarios S3 (as-
sumption of moderation, without missing data) and S5 (assumption of modera-
tion, with missing data also in the outcome) . . . . . . . . . . . . . . . . . . . . . 144

2.20 Average percentage of true predictors (TP) among the selected variables
(PPV) estimates with 2.5th and 97.5th percentiles from 3 methods run on 300
simulated 20-covariate datasets with 250 observation for scenarios S1 (without
missing data, no assumption of moderation) and S2 (with missing data, complete
outcome, no assumption of moderation) . . . . . . . . . . . . . . . . . . . . . . . 145

2.21 Average percentage of true predictors (TP) among the selected variables
(PPV) estimates with 2.5th and 97.5th percentiles from 3 methods run on 300
simulated 20-covariate datasets with 250 observations for scenarios S3 (as-
sumption of moderation, without missing data) and S4 (assumption of modera-
tion, with missing data) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

2.22 Average percentage of true predictors (TP) among the selected variables
(PPV) estimates with 2.5th and 97.5th percentiles from 3 methods run on 300
simulated 20-covariate datasets with 250 observations for scenarios S3 (as-
sumption of moderation, without missing data) and S5 (assumption of modera-
tion, with missing data also in the outcome) . . . . . . . . . . . . . . . . . . . . . 147

2.23 Estimated percentage of correct (true) models found by 4 methods run on 300
simulated 20-covariate datasets with 250 observations for scenarios S1 (with-
out missing data, no assumption of moderation) and S2 (with missing data, com-
plete outcome, no assumption of moderation) . . . . . . . . . . . . . . . . . . . . 148

2.24 Estimated percentage of almost correct models (only one variable off) found
by 4 methods run on 300 simulated 20-covariate datasets with 250 observa-
tions for scenarios S1 (without missing data, no assumption of moderation) and
S2 (with missing data, complete outcome, no assumption of moderation) . . . . 149

2.25 Estimated percentage of almost correct models (only one variable off) found
by 4 methods run on 300 simulated 20-covariate datasets with 250 observa-
tions for scenarios S3 (assumption of moderation, without missing data) and S4
(assumption of moderation, with missing data) . . . . . . . . . . . . . . . . . . . 150

2.26 Estimated percentage of almost correct models (only one variable off) found
by 4 methods run on 300 simulated 20-covariate datasets with 250 observa-
tions for scenarios S3 (assumption of moderation, without missing data) and S5
(assumption of moderation, missing data also in the outcome) . . . . . . . . . . . 151

2.27 Comparison of variable inclusion frequency by 3 methods run on 300 sim-
ulated 20-covariate datasets with 250 observations for scenario S1 (no as-
sumption of moderation, complete data) . . . . . . . . . . . . . . . . . . . . . . . 152

2.28 Comparison of variable inclusion frequency by 3 methods run on 300 simu-
lated 20-covariate datasets with 250 observations for scenario S2 with MCAR
data (no assumption of moderation, complete outcome) . . . . . . . . . . . . . . 153



LIST OF FIGURES 14

2.29 Comparison of variable inclusion frequency by 3 methods run on 300 simu-
lated 20-covariate datasets with 250 observations for scenario S2 with MAR
data (no assumption of moderation, complete outcome) . . . . . . . . . . . . . . 154

2.30 Comparison of variable inclusion frequency by 3 methods run on 300 simu-
lated 20-covariate datasets with 250 observations for scenario S3 (assumption
of moderatio , complete data) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

2.31 Comparison of variable inclusion frequency by 3 methods run on 300 simu-
lated 20-covariate datasets with 250 observations for scenario S4 with MCAR
data (assumption of moderation, complete outcome) . . . . . . . . . . . . . . . . 156

2.32 Comparison of variable inclusion frequency by 3 methods run on 300 simu-
lated 20-covariate datasets with 250 observations for scenario S5 with MCAR
data (assumption of moderation, missing data also in the outcome) . . . . . . . . 157

2.33 Comparison of variable inclusion frequency by 3 methods run on 300 simu-
lated 20-covariate datasets with 250 observations for scenario S4 with MAR
data (assumption of moderation, complete outcome) . . . . . . . . . . . . . . . . 158

2.34 Comparison of variable inclusion frequency by 3 methods run on 300 simu-
lated 20-covariate datasets with 250 observations for scenario S5 with MAR
data (assumption of moderation, missing data also in the outcome) . . . . . . . . 159

2.35 Optimism-corrected MSE estimates from 5 methods run on 300 simulated 100-
covariate datasets (correlation 0.2) with 500 observations for scenarios S3
(assumption of moderation, without missing data) and S5 (assumption of mod-
eration, missing data also in the outcome) . . . . . . . . . . . . . . . . . . . . . . 171

2.36 Optimism-corrected MSE estimates from 5 methods run on 300 simulated 100-
covariate datasets (correlation 0.8) with 500 observations for scenarios S3
(assumption of moderation, without missing data) and S5 (assumption of mod-
eration, missing data also in the outcome) . . . . . . . . . . . . . . . . . . . . . . 172

2.37 Calibration slope βLP estimates for 5 methods run on 300 simulated 100-
covariate datasets (correlation = 0.2) with 500 observations for scenarios S3
(assumption of moderation, without missing data) and S5 (assumption of mod-
eration, with missing data also in the outcome) . . . . . . . . . . . . . . . . . . . 173

2.38 Calibration slope βLP estimates for 5 methods run on 300 simulated 100-
covariate datasets (correlation = 0.8) with 500 observations for scenarios S3
(assumption of moderation, without missing data) and S5 (assumption of mod-
eration, with missing data also in the outcome) . . . . . . . . . . . . . . . . . . . 174

2.39 Average internal and external MSE optimism estimates with 2.5th and 97.5th
percentiles for 5 methods run on 300 simulated 100-covariate datasets (correlation=0.2)
with 500 observations for scenarios S3 (assumption of moderation, without
missing data) and S5 (assumption of moderation, with missing data also in the
outcome) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

2.40 Average internal and external MSE optimism estimates with 2.5th and 97.5th
percentiles for 5 methods run on 300 simulated 100-covariate datasets (correlation=0.8)
with 500 observations for scenarios S3 (assumption of moderation, without
missing data) and S5 (assumption of moderation, with missing data also in the
outcome) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

2.41 Average percentage of true predictors (TP) selected among the actual TP
(SEN) estimates with 2.5th and 97.5th percentiles from 4 methods run on 300
simulated 100-covariate datasets (correlation=0.2) with 500 observations for
scenarios S3 (assumption of moderation, without missing data) and S5 (assump-
tion of moderation, with missing data also in the outcome) . . . . . . . . . . . . . 177



LIST OF FIGURES 15

2.42 Average percentage of true predictors (TP) selected among the actual TP
(SEN) estimates with 2.5th and 97.5th percentiles from 4 methods run on 300
simulated 100-covariate datasets (correlation=0.8) with 500 observations for
scenarios S3 (assumption of moderation, without missing data) and S5 (assump-
tion of moderation, with missing data also in the outcome) . . . . . . . . . . . . . 178

2.43 Average percentage of true predictors (TP) among the selected variables
(PPV) estimates with 2.5th and 97.5th percentiles from 4 methods run on 300
simulated 100-covariate datasets (correlation=0.2) with 500 observations for
scenarios S3 (assumption of moderation, without missing data) and S5 (assump-
tion of moderation, with missing data also in the outcome) . . . . . . . . . . . . . 179

2.44 Average percentage of true predictors (TP) among the selected variables
(PPV) estimates with 2.5th and 97.5th percentiles from 4 methods run on 300
simulated 100-covariate datasets (correlation=0.8) with 500 observations for
scenarios S3 (assumption of moderation, without missing data) and S5 (assump-
tion of moderation, with missing data also in the outcome) . . . . . . . . . . . . . 180

2.45 Summary figure of results for the simulation study . . . . . . . . . . . . . . . . . 189

3.1 Scree plot for EFA at baseline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
3.2 Longitudinal factor analysis (LFA) model . . . . . . . . . . . . . . . . . . . . . . . 228
3.3 Random effects meta-analysis of factor scores . . . . . . . . . . . . . . . . . . . 229
3.4 Model 1 predicted versus observed outcome values and corresponding apparent

calibration lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
3.5 Model 2a predicted versus observed outcome values and corresponding appar-

ent calibration lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

A.1 Comparison of variable inclusion frequency by MICE-Lasso (ML) run on 300
simulated 20-covariate datasets with 250 observations for the scenarios with
moderation assumption S3 (without missing data), S4 (with missing data, com-
plete outcome), S5 ( with missing data also in the outcome) and S6 (missing
data, complete outcome and interaction terms in the imputation model) with MAR
data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284

A.2 Comparison of variable inclusion frequency by MICE-Lasso (ML) run on 300
simulated 20-covariate datasets with 1000 observations for the scenarios with
moderation assumption S3 (without missing data), S4 (with missing data, com-
plete outcome), S5 ( with missing data also in the outcome) and S6 (missing
data, complete outcome and interaction terms in the imputation model) with
MCAR data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285

A.3 Comparison of variable inclusion frequency by MICE-Lasso (ML) run on 300
simulated 20-covariate datasets with 1000 observations for the scenarios with
moderation assumption S3 (without missing data), S4 (with missing data, com-
plete outcome), S5 ( with missing data also in the outcome) and S6 (missing
data, complete outcome and interaction terms in the imputation model) with MAR
data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286

A.4 Comparison of inclusion frequency of the variables in 300 simulated 20-covariate
datasets (250 obs) for the best MissForest-LASSO models with bootstrap tun-
ing with single imputation VS 10 imputations. . . . . . . . . . . . . . . . . . . . . 295

A.5 Optimism-corrected MSE estimates from 4 methods run on 300 simulated 20-
covariate datasets with 1000 observations for scenarios S1 (without missing
data, no assumption of moderation) and S2 (with missing data, complete out-
come, no assumption of moderation) . . . . . . . . . . . . . . . . . . . . . . . . . 296



LIST OF FIGURES 16

A.6 Optimism-corrected MSE estimates from 4 methods run on 300 simulated 20-
covariate datasets with 1000 observations for scenarios S3 (assumption of
moderation, without missing data) and S4 (assumption of moderation, with miss-
ing data) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297

A.7 Optimism-corrected MSE estimates from 4 methods run on 300 simulated 20-
covariate datasets with 1000 observations for scenarios S3 (assumption of
moderation, without missing data) and S5 (assumption of moderation, with miss-
ing data also in the outcome) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298

A.8 Calibration slope βLP estimates for 4 methods run on 300 simulated 20-covariate
datasets with 1000 observations for scenarios S1 (without missing data, no as-
sumption of moderation) and S2 (with missing data, complete outcome, no as-
sumption of moderation) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299

A.9 Calibration slope βLP estimates for 4 methods run on 300 simulated 20-covariate
datasets with 1000 observations for scenarios S3 (assumption of moderation,
without missing data) and S4 (assumption of moderation, with missing data) . . . 300

A.10 Calibration slope βLP estimates for 4 methods run on 300 simulated 20-covariate
datasets with 1000 observations for scenarios S3 (assumption of moderation,
complete data) and S5 (assumption of moderation, missing data also in the out-
come) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301

A.11 Average internal and external MSE optimism estimates with 2.5th and 97.5th
percentiles for 4 methods run on 300 simulated 20-covariate datasets with 1000
observations for scenarios S1 (without missing data, no assumption of modera-
tion) and S2 (with missing data, complete outcome, no assumption of moderation)302

A.12 Average internal and external MSE optimism estimates with 2.5th and 97.5th
percentiles for 4 methods run on 300 simulated 20-covariate datasets with 1000
observations for scenarios S3 (assumption of moderation, without missing data)
and S4 (assumption of moderation, with missing data) . . . . . . . . . . . . . . . 303

A.13 Average internal and external MSE optimism estimates with 2.5th and 97.5th
percentiles for 4 methods run on 300 simulated 20-covariate datasets with 1000
observations for scenarios S3 (assumption of moderation, without missing data)
and S5 (assumption of moderation, with missing data also in the outcome) . . . 304

A.14 Average percentage of true predictors (TP) selected among the actual TP
(SEN) estimates with 2.5th and 97.5th percentiles from 3 methods run on 300
simulated 20-covariate datasets with 1000 observations for scenarios S1 (with-
out missing data, no assumption of moderation) and S2 (with missing data, com-
plete outcome, no assumption of moderation) . . . . . . . . . . . . . . . . . . . . 305

A.15 Average percentage of true predictors (TP) selected among the actual TP
(SEN) estimates with 2.5th and 97.5th percentiles from 3 methods run on 300
simulated 20-covariate datasets with 1000 observations for scenarios S3 (as-
sumption of moderation, without missing data) and S4 (assumption of modera-
tion, with missing data) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306

A.16 Average percentage of true predictors (TP) selected among the actual TP
(SEN) estimates with 2.5th and 97.5th percentiles from 3 methods run on 300
simulated 20-covariate datasets with 1000 observations for scenarios S3 (as-
sumption of moderation, without missing data) and S5 (assumption of modera-
tion, with missing data also in the outcome) . . . . . . . . . . . . . . . . . . . . . 307



LIST OF FIGURES 17

A.17 Average percentage of true predictors (TP) among the selected variables
(PPV) estimates with 2.5th and 97.5th percentiles from 3 methods run on 300
simulated 20-covariate datasets with 1000 observations for scenarios S1 (with-
out missing data, no assumption of moderation) and S2 (with missing data, com-
plete outcome, no assumption of moderation) . . . . . . . . . . . . . . . . . . . . 308

A.18 Average percentage of true predictors (TP) among the selected variables
(PPV) estimates with 2.5th and 97.5th percentiles from 3 methods run on 300
simulated 20-covariate datasets with 1000 observations for scenarios S3 (as-
sumption of moderation, without missing data) and S4 (assumption of modera-
tion, with missing data) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309

A.19 Average percentage of true predictors (TP) among the selected variables
(PPV) estimates with 2.5th and 97.5th percentiles from 3 methods run on 300
simulated 20-covariate datasets with 1000 observations for scenarios S3 (as-
sumption of moderation, without missing data) and S5 (assumption of modera-
tion, with missing data also in the outcome) . . . . . . . . . . . . . . . . . . . . . 310

A.20 Estimated percentage of correct (true) models (simultaneously with respect to
all predictors) found by 4 methods run on 300 simulated 20-covariate datasets
with 1000 observations for scenarios S1 (without missing data, no assumption
of moderation) and S2 (with missing data, complete outcome, no assumption of
moderation) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311

A.21 Estimated percentage of almost correct models (only one variable off) found by
4 methods run on 300 simulated 20-covariate datasets with 1000 observations
for scenarios S1 (without missing data, no assumption of moderation) and S2
(with missing data, complete outcome, no assumption of moderation) . . . . . . 312

A.22 Estimated percentage of almost correct models (only one variable off) found
by 4 methods run on 300 simulated 20-covariate datasets with 1000 observa-
tions for scenarios S3 (assumption of moderation, without missing data) and S4
(assumption of moderation, with missing data) . . . . . . . . . . . . . . . . . . . 313

A.23 Estimated percentage of almost correct models (only one variable off) found
by 4 methods run on 300 simulated 20-covariate datasets with 1000 observa-
tions for scenarios S3 (assumption of moderation, without missing data) and S5
(assumption of moderation, with missing data also in the outcome) . . . . . . . . 314

A.24 Comparison of variable inclusion frequency by 3 methods run on 300 sim-
ulated 20-covariate datasets with 1000 observations for scenario S1 (no as-
sumption of moderation, complete data) . . . . . . . . . . . . . . . . . . . . . . . 315

A.25 Comparison of variable inclusion frequency by 3 methods run on 300 simu-
lated 20-covariate datasets with 1000 observations for scenario S2 with MCAR
data (no assumption of moderation, complete outcome) . . . . . . . . . . . . . . 316

A.26 Comparison of variable inclusion frequency by 3 methods run on 300 simu-
lated 20-covariate datasets with 1000 observations for scenario S2 with MAR
data (no assumption of moderation, complete outcome) . . . . . . . . . . . . . . 317

A.27 Comparison of variable inclusion frequency by 3 methods run on 300 simu-
lated 20-covariate datasets with 1000 observations for scenario S3 (assump-
tion of moderation, complete data) . . . . . . . . . . . . . . . . . . . . . . . . . . 318

A.28 Comparison of variable inclusion frequency by 3 methods run on 300 simu-
lated 20-covariate datasets with 1000 observations for scenario S4 with MCAR
data (assumption of moderation, complete outcome) . . . . . . . . . . . . . . . . 319



LIST OF FIGURES 18

A.29 Comparison of variable inclusion frequency by 3 methods run on 300 simu-
lated 20-covariate datasets with 1000 observations for scenario S4 with MAR
data (assumption of moderation, complete outcome) . . . . . . . . . . . . . . . . 320

A.30 Comparison of variable inclusion frequency by 3 methods run on 300 simu-
lated 20-covariate datasets with 1000 observations for scenario S5 with MCAR
data (assumption of moderation, missing data also in the outcome) . . . . . . . . 321

A.31 Comparison of variable inclusion frequency by 3 methods run on 300 simu-
lated 20-covariate datasets with 1000 observations for scenario S5 with MAR
data (assumption of moderation, missing data also in the outcome) . . . . . . . . 322

A.32 Comparison of variable inclusion frequency by 3 methods run on 300 sim-
ulated 100-covariate datasets with 500 observations and between-covariate
correlation of 0.2 for scenario S3 (assumption of moderation, complete data) . 323

A.33 Comparison of variable inclusion frequency by 3 methods run on 300 sim-
ulated 100-covariate datasets with 500 observations and between-covariate
correlation of 0.8 for scenario S3 (assumption of moderation, complete data) . 324

A.34 Comparison of variable inclusion frequency by 3 methods run on 300 sim-
ulated 100-covariate datasets with 500 observations and between-covariate
correlation of 0.2 for scenario S5 with MCAR data (assumption of moderation,
missing data also in the outcome) . . . . . . . . . . . . . . . . . . . . . . . . . . 325

A.35 Comparison of variable inclusion frequency by 3 methods run on 300 sim-
ulated 100-covariate datasets with 500 observations and between-covariate
correlation of 0.8 for scenario S5 with MCAR data (assumption of moderation,
missing data also in the outcome) . . . . . . . . . . . . . . . . . . . . . . . . . . 326

A.36 Comparison of variable inclusion frequency by 3 methods run on 300 sim-
ulated 100-covariate datasets with 500 observations and between-covariate
correlation of 0.2 for scenario S5 with MAR data (assumption of moderation,
missing data also in the outcome) . . . . . . . . . . . . . . . . . . . . . . . . . . 327

A.37 Comparison of variable inclusion frequency by 3 methods run on 300 sim-
ulated 100-covariate datasets with 500 observations and between-covariate
correlation of 0.8 for scenario S5 with MAR data (assumption of moderation,
missing data also in the outcome) . . . . . . . . . . . . . . . . . . . . . . . . . . 328

D.1 Plot of the correlation matrix of the potential predictors . . . . . . . . . . . . . . . 376
D.2 Model 2b predicted versus observed outcome values and corresponding appar-

ent calibration lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377



Abstract of thesis

Background: People with schizophrenia (SCZ) suffer from impaired cognitive abilities and

these are associated with poor functional outcomes. Cognitive Remediation Therapy (CRT)

has been shown effective in improving the cognitive deficits of SCZ. Because there is evidence

for CRT treatment heterogeneity of outcomes, there is a need to identify CRT predictors of

differential response using moderation analysis of high dimensional psychiatric data, which

typically contain relatively large percentages of missingness. This will contribute to precision

medicine treatment, understanding mechanism responsible of differential therapy responses,

and better prognosis.

Aims: The primary aim of this PhD consisted of developing a CRT precision medicine

model, using computer intensive statistical learning methods able to deal with high dimensional

psychiatric data containing large percentages of missingness in the predictors and smaller per-

centages in the outcome. Secondary aims were overcoming the following problems: variable

selection or measurement of variable importance in the model, multicollinearity and overfitting,

and summarising commensurate outcomes in one latent outcome.

Methods: A simulation study comparing four statistical learning methods (Lasso, Elastic-

net, Random Forests and Conditional Inference Random Forests) combined with two missing

data imputation techniques (Multivariate Imputation using Chained Equations and MissForest)

was run. The combined methods were assessed according to their optimism-corrected (via

bootstrap internal validation) prediction accuracy and variable selection performance in differ-

ent scenarios. The best method was chosen to develop a CRT precision medicine model using

individual participant data from seven randomised controlled trials with approximately 400 pa-

tients. Factor scores from a latent summary measure of cognitive commensurate outcomes,

obtained via Factor Analysis, was used as the model dependent variable, to accommodate the

above univariate statistical learning methods.

Results: In the simulations, the method combining MissForest imputation with Lasso was
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the best compromise between prediction accuracy and clinical interpretability. MissForest-

Lasso was then used to develop an internally validated precision medicine model, which se-

lected only a weak moderator of treatment response. The model was therefore mainly prog-

nostic.

Conclusion: In future research, more modalities of data, such as genetics, OMICS and

neuroimaging data, are recommended to successfully identify moderators of CRT success.
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Chapter 1

Introduction

This thesis will pursue statistical learning methods and missing data imputation techniques

in order to develop a precision medicine model, predicting treatment outcome heterogeneity

among patients with schizophrenia (SCZ) treated with Cognitive Remediation Therapy (CRT).

This chapter will introduce the concept of SCZ and the intervention CRT as one of its psy-

chological treatments. Precision medicine with the identification of moderators of treatment

will be explained. Then, I will discuss how statistical learning methods can overcome some

limitations of classical statistical methods in the analysis of large psychiatric datasets. In a

second part, I will introduce the methods to develop prediction models and their performance

assessment through discrimination, calibration and validation. As missing data constitute an

important problem in mental health studies, imputation techniques will be presented alongside

approaches combining them with statistical learning methods. Finally, dimension reduction

techniques, such as factor analysis, will be considered in order to deal with multiple outcomes

that measure the same construct. The aim and specific objectives of the thesis will ultimately

be defined.

1.1 Literature review

1.1.1 Schizophrenia and cognitive remediation therapy (CRT)

Schizophrenia is a severe and debilitating mental health condition. Worldwide, one in every

100 people will develop SCZ, but only about 10% of these will achieve complete symptom

remission (Jaaskelainen et al. 2013). Despite a significant investment in both pharmacological

and psychosocial interventions, the majority of the people affected will have long term disability

and not meet personal and professional life goals. Schizophrenia is generally considered as a
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disorder with poor prognosis. A study investigating 18 prospective long-term studies found that

less than 50% of patients had poor outcomes and, equally, less than 50% had good outcomes

(Van Os and Kapur 2009).

Schizophrenia is a disorder characterized mainly by positive, negative and cognitive symp-

toms (Van Os and Kapur 2009):

• Positive symptoms or psychosis are irrational thoughts and feelings ‘added on’ to a

person that reflect an excess or distortion of normal function. The following are positive

symptoms:

– Delusions: abnormal beliefs and convictions (persecutory delusions are known to

be the most common),

– Hallucinations: abnormal sensory experiences (auditory, visual and tactiles),

– Disorganized speech: derailment, lack of association, use of newly coined words

while speaking,

– Catatonic behaviour : muscular rigidity and tightness or hyperactivity;

• Negative symptoms refer to a decrease or absence of normal function, resulting in re-

duced motivation:

– Avolition: lack of motivation, drive,

– Anhedonia: inability to experience pleasure,

– Asociality : inability and unwillingness to socialise,

– Reduced emotional intensity and reactivity ;

• Cognitive symptoms are a diminution in neurocognitive abilities:

– Attention deficit,

– Slower information processing: lacking insight and understanding, problem solving

difficulties,

– Memory deficit (working and long term memory),

– Low executive functioning: difficulty with organization and following directions.

Historically the treatment emphasis has been on tackling positive symptoms. Nevertheless,

there is increasing recognition that cognitive deficits are associated with the illness’ functional

problems (Cella, Huddy, et al. 2012), such as the ability to live in the community, work, func-

tion in a social environment and the quality of life (Rajji, Miranda, and Mulsant 2014). It is
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suggested that treating cognitive deficits in patients improves general outcomes of SCZ and

prognosis. Cognitive abilities or cognition are terms used to identify thinking skills such as at-

tention, information processing speed, working and long term memory, executive functioning

and ability to plan and regulate behaviour. Cognitive abilities in people with SCZ are typically

one standard deviation below the general population (Fioravanti et al. 2005). Cognitive deficits

negatively affect recovery and vocational functioning (in particular social cognitive problems,

M. Green and Harvey 2014).

The two main important intervention modalities for people with SCZ are pharmacological

and psychosocial. Pharmacological treatments largely rely on the use of anti-psychotic medi-

cations. There is evidence that this treatment has an effect on positive symptoms, but has little

or no effect on cognitive and negative symptoms (Van Os and Kapur 2009). There is evidence

that psychosocial therapies also successfully reduce positive symptoms; for example, cogni-

tive behavioural therapy for psychosis reduces distress and negative affect related to psychosis

but cognitive deficits are not addressed (Morrison 2001). In contrast, cognitive remediation

therapy (CRT) is a psychological intervention targeting specifically the cognitive symptoms of

SCZ. CRT is defined as “a behavioural training based intervention that aims to improve cogni-

tive processes (e.g. attention, memory, executive function, processing speed, social cognition

and metacognition) with the goal of durability and generalization” (Wykes, Huddy, et al. 2011).

CRT uses drill and practice, i.e. repetitive exercises and intensive training to improve cognition

over time. CRT has been shown in more than 40 randomised controlled trials to be benefi-

cial and cost-effective in reducing the burden of cognitive problems in people with SCZ, even

after controlling for sources of bias like unmasked assessment (Wykes, Huddy, et al. 2011).

This treatment is delivered in combination with pharmacological or psychological treatments for

positive symptoms. There are two approaches for CRT (Cella, Huddy, et al. 2012):

• drill and practice: consists of gradually more challenging exercises without a specific

procedure to follow, trial and error or implicit learning strategies.

• drill and practice plus strategy : identifies the particular cognitive deficit and applies an

explicit learning strategy in everyday life.

Although there is evidence for the effectiveness of CRT, the current CRT approach does not tai-

lor the most suitable intervention for an individual. In fact, there was evidence of heterogeneity

in the effect sizes of CRT across trials for the 40 study meta-analysis by Wykes, Huddy, et al.

2011. A way to improve the efficacy of this intervention is trying to explain the heterogeneity of

treatment outcome through precision medicine (see next Subsection 1.1.2).
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1.1.2 Prediction modelling for precision medicine

Clinical trials support the efficacy of CRT for people with SCZ in improving cognition, however

there is variability in outcomes. Wykes, Huddy et al. (2011) in their 40-study meta-analysis

reported that cognitive effect sizes ranged from -0.24 to 2.35 (29 studies with non significant

effect size) with overall effect size of 0.45 (95% confidence interval: 0.31-0.59). However, the

authors did not find any variables explaining the heterogeneity of cognitive effects. Therefore,

identifying patients who can benefit from treatment and key predictor variables of treatment

success is essential for improving treatment efficacy. This concept is increasingly referred to

as precision or personalised or stratified medicine or care, which aims to tailor intervention to

particular groups of patients (PROGRESS, Hingorani et al. 2013). Precision medicine is also

used for diagnosis and risk assessments (Redekop and Mladsi 2013). ‘Precision medicine’ and

‘personalised medicine’ are terms used interchangeably, but ‘precision medicine’ is more ap-

propriate as the aim is to identify the best approach of the intervention for a particular person,

while ‘personalised’ could be misunderstood to think that treatments are developed for each

person (Help me understanding genetics: Precision medicine 2018). It is fundamental to de-

velop prediction models from patients’ characteristics such as demographics, clinical, genetic

and psychological variables (i.e. baseline variables, measured before treatment), which can

predict likely treatment outcome. Such models provide guidance for clinical decision making

and help clinicians to recommend the best treatment approach. Those patients’ characteris-

tics or biomarkers, that predict which treatment will be optimally suited for a patient, are called

moderators.

In statistical terms, a moderator is a variable that affects the strength of the relationship

between a dependent and independent variable. In this case, it amplifies or weakens the rela-

tionship between treatment type and outcome (VanderWeele 2015), it identifies whom or under

what conditions treatment works (Kraemer, Wilson, et al. 2002). A moderator predicts differen-

tial treatment response, but it does not need to be a prognostic factor for the outcome. However,

there are moderators that are also predictors. A moderator, by definition, precedes treatment

(or what it moderates), that in turn precedes the outcome. This means that a moderator needs

to be measured before treatment, i.e. it is a baseline variable independent from the treatment

variable. Moderation can be also defined as effect modification by baseline variables (Dunn et

al. 2015). An effect modifier is a variable for which the effect of an intervention on the outcome

differs across the variable levels, like a moderator, but it is not necessarily a baseline variable

(VanderWeele 2009). An effect modifier can also be a post randomization variable, for example

a process variable (see next Subsection 1.1.3).
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Prediction modelling is used to identify moderators of treatment heterogeneity which reli-

ably predict future outcome of new unseen patients (Steyerberg 2009). Identifying moderators

of treatment effect is typically done using regression-based approaches that assess the effect

on the outcome of statistical interaction terms (Dunn et al. 2015) given by the product of base-

line variables and treatment type (i.e. new treatment and treatment as usual or no treatment,

Kraemer, Frank, and Kupfer 2006). However, it is important here to clarify that the significant

effect of a statistical interaction term in a regression model might not identify effect modification

and could instead be evidence of biological interaction or both. Biological interaction between

the effects of two exposures (interventions) on the outcome in causal inference (counterfactual

framework) happens when the effect of the exposures on the outcome is different from the

combination of the two effects considered separately (VanderWeele 2009). The presence of

statistical interaction depends on the scale of the measurement used, for example there may

be significant statistical interaction on the risk difference scale (the most common) and not on

the risk ratio scale or the odds ratio scale (Kupper and Hogan 1978). In this thesis, I will refer

to statistical interaction to identify effect modification by baseline variables with the plain term

‘interaction’.

The gold standard study, that can identify and distinguish moderators of a treatment, is the

randomised controlled trial (RCT). It is the most effective way to find moderators in study data.

The key characteristics of an RCT is the random allocation of patients in treatment and con-

trol groups (Sibbald and Roland 1998). An RCT consists of having a control or comparison

treatment in the study, which avoids misleading effects like regression to the mean or drift in

measurement or confounding. An RCT is a planned experiment to evaluate the benefits of

one or more treatments, usually for patients with a specific medical condition. The main rea-

son to do RCTs is to produce comparable treatment and control groups by equally distributing

confounders between the two groups, and therefore to obtain unbiased estimates of treatment

effect. A well-designed trial provides the most rigorous method for evaluating efficacy (or effec-

tiveness) of treatments and safety (BS Everitt and Wessely 2009). In particular, RCTs need to

be:

• Controlled : any intervention needs to be compared to one or more other interventions; in

drug therapy trials, there will often be a placebo control or another active condition which

is regularly used in clinical practice; in psychological treatments, the control condition will

often be treatment as usual (TAU).

• Unbiased : there needs to be a fair comparison between the treatments, with no bias
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whether deliberate or accidental; thus, randomisation is crucial, i.e. patients are randomly

allocated to a particular treatment group such that the allocation cannot be predicted in

advance and the obtained results are unbiased.

• Large and appropriately powered : in order to obtain a precise estimate and to balance

measured and unmeasured confounders of any treatment effect, sufficiently large num-

bers are required. Also, having a large sample size lowers the risk of overfitting the data,

when analysed with a statistical model.

Typically, evidence-based medicine with continuous outcome uses RCTs to evaluate a marginal

effect of the treatment of interest (i.e. the average effect of treatment on the population). On

the other hand, precision medicine focuses on the differences between individuals and aims to

predict differential treatment response (Leon 2012).

Traditional evidence-based medicine tries to infer causal relationships between covariates

and outcome. In recent years, there has been a need to shift from ‘explaining’ towards ‘pre-

dicting’ treatment outcome for new individuals, and precision medicine better suits this new

goal (Shmueli 2010). Predictive modelling tries to minimize model bias and sampling variance

at the same time through validation techniques (see Subsection 1.2.1), in order to accurately

predict response in new data. Instead, explanatory modelling aims to minimize model bias

and then sampling variance to theoretically predict (infer) an association between covariate

and outcome using the same dataset used to develop the model. In prediction modelling the

theoretical model itself is typically not of interest and, sometimes, an accurate prediction model

can be seen as a ‘black box’, lacking clinical interpretability (see next Subsection 1.1.4 about

statistical learning). Consequently, the best explanatory model may differ from the best predic-

tive model, and predictive power cannot be drawn from explanatory power (Stahl and Pickles

2018). On the contrary, prediction modelling is a promising tool also for explanatory research

to generate new theories, to act as explorative data analysis and to allow the comparison of

competing theories and the identification of new patterns (Shmueli 2010).

1.1.3 Moderation of schizophrenia CRT treatment

Despite the effectiveness of CRT for the cognitive symptoms of SCZ, there is considerable

heterogeneity in treatment success among patients. However, little is known about why some

patients respond better to treatment than others. Thus, identifying potential moderators of CRT

may help to tailor general treatment to individuals better.
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So far, moderators for CRT have been investigated in single studies and in traditional (ag-

gregated) meta-analyses of CRT effects on cognitive performance and on functioning. McGurk

et al. (2007) was a 26-study meta-analysis that showed evidence for the following methodologi-

cal quality moderators on functioning: studies that provided adjunctive psychiatric rehabilitation

had stronger effect sizes than studies without psychiatric rehabilitation; similarly, CRT programs

that used drill plus strategy were more effective than drill and practice only CRT. Also age was

found to moderate CRT with younger patients reacting better to treatment than older patients

(McGurk et al. 2007). Wykes, Huddy et al. (2011), a 40-study meta-analysis, could replicate

all the moderation findings of McGurk et al. (2007) apart from identifying age as moderator on

functioning. However, moderators of CRT on cognition have not been found yet.

Adjunctive psychiatric rehabilitation and type of therapy (drill and practice vs drill plus strat-

egy) were considered as moderators of treatment in the literature. However, they cannot be

considered as such in a causal inference framework as they only refer to the active treatment

and are not applicable to the control treatment. These variables that measure an aspect of a

specific treatment are called process variables (Dunn et al. 2015). Therapy alliance, compli-

ance, treatment strategy are all examples of such variables. By definition a process variable is

an intermediate outcome of therapy and so a conditional variable, i.e. can only be observed

for the people who receive the treatment of interest. The mechanism investigated by McGurk

et al. (2007) and Wykes, Huddy et al. (2011) would be called ‘effect modification by a post-

randomisation variable’. The term ‘treatment effect moderation’ is usually restricted to effect

modification by baseline (pre-treatment) variables (see previous Subsection 1.1.2).

Suggestions that study age (years since publication date), therapy duration, computer pre-

sentation, presence of adjunctive psychiatric rehabilitation, and type of therapy moderate CRT

on cognitive outcome have been put forward by Wykes, Huddy et al. (2011) in their meta-

analysis study using meta-regression. However, these still need to be confirmed or re-tested

because their meta-analysis suffered from missingness by design (the variables measured in

each study were not the same for all studies). Putative patient characteristic moderators that

were proposed were: age (McGurk et al. 2007, Wykes, Reeder, Landau, Matthiasson, et al.

2009) and symptoms (Garety et al. 2008). Also, Cella, Huddy, et al. 2012) reviewed the litera-

ture about moderators for CRT on cognition in single RCTs and advanced a number of potential

moderators to be further investigated including age, severity of baseline cognitive deficits and

level of psychopathology.

Although there have been attempts to understand heterogeneity of CRT success through

successful moderation analyses (McGurk et al. 2007), some of the results could not be repli-
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cated for lack of data (Wykes, Huddy, et al. 2011) and, to my knowledge, no precision medicine

model for CRT was developed so far. In particular, moderators of CRT on cognition have not

been found yet. Therefore there is still need to identify and confirm moderators of CRT by

analysing multiple RCTs’ data. Using individual participant data meta-analysis, instead of

meta-regression of aggregated effect sizes and sample sizes only, may reduce reporting bi-

ases, improve the generalisability of the results to populations and increase statistical power

(Riley et al. 2013, Curran and Hussong 2009, Higgins et al. 2001).

The data available for this PhD project are individual participant data from seven RCTs

for CRT (see Subsection 3.1.1). Because of the small number of studies for which we have

accessible data, an individual patient meta-regression analysis cannot be done. This is one of

the reasons why statistical learning methods will be considered (see next Subsection 1.1.4).

1.1.4 High dimensional data and statistical learning

Assessing moderators of CRT on cognitive outcome for people with SCZ involves a large num-

ber of variables measured in relatively small samples: measures of baseline cognitive abilities,

medications, demographics, symptoms and other variables need to be included as predictors

in the statistical analysis together with all their interactions with the treatment variable. All these

potential predictor values form a high dimensional dataset, i.e. a dataset characterized by

few dozen to many thousands of continuous variables and/or levels of categorical variables

not necessarily measured on a relatively large sample size (Clustering High-Dimensional Data

2012).

Classical statistical models (e.g. linear regression models) are not suitable to cope with

a number of potential predictors close to or higher than the number of observations. Model

selection methods (such as stepwise selection) are often based on inclusion or exclusion of

a variable depending on its p-value or similar procedures, such as Akaike’s Information Crite-

rion (AIC) or Bayesian Information Criterion (BIC). These procedures result in overestimating

treatment effects (Tibshirani 1996) and in overfitting: the larger the number of variables rela-

tive to sample size is, the higher the variance of the coefficient estimates will be (Harrell 2001,

James et al. 2013). Subsequently, results can often not be replicated (Ioannidis 2005, Nuzzo

2014, Stahl, Pickles, et al. 2012). Also, in high dimensional datasets, classical methods cannot

address the problem of multicollinearity. This arises when there are two or more predictor

variables in a model that are highly correlated, resulting in high variance in prediction.

In recent years, computer intensive Statistical Learning Methods (SLMs), including ma-

chine learning, are increasingly used to overcome the described problems of classical infer-
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ential methods (Hastie, Tibshirani, and Friedman 2008). Statistical learning unifies classical

statistics (which makes probabilistic assumptions about underlying phenomena) and machine

learning (highly computer intensive algorithms for prediction). SLMs typically focus on predic-

tion accuracy and less on inference (see previous Subsection 1.1.2).

Classical methods develop and test their models on the same sample, but the error in

predicting new cases obtained this way is underestimated and models are unlikely to generalize

well. If a given method applied on the same training sample returns a small prediction error

(training error ), but a large error when applied on new data (test error ), the model overfits the

data. A key aspect of statistical learning is the use of internal validation to assess model fit

on unseen (hold-out) data, using cross-validation and bootstrapping procedures to overcome

overfitting (see Subsection 1.2.1).

We can distinguish between supervised learning, i.e. the model building process is guided

by the presence of the outcome, and unsupervised learning, i.e. we only observe the input data

without any measurements of the outcome and we try to recognise the data patterns or clusters

in the data (James et al. 2013). This project only focuses on supervised learning methods.

In supervised statistical learning, we assume that there is a relationship between a quan-

titative outcome y = (y1, . . . , yn)T and a matrix of features (predictors) as column vectors

X = (x1, . . . ,xp), according to an unknown function f : y = f(X)+ε, where ε is a random error

term, which is independent of X, such that E(ε) = 0. Supervised statistical learning models

are developed according to statistical decision theory. For this theory, the error in prediction of

y using an approximation of f , f̂ , measured by the loss functions L(y, f̂(X)), is minimised by

penalizing it in order to have a criterion for choosing the most suitable predictive function. We

can then rewrite all statistical learning methods as minimization problems of “Loss + Penalty”.

The penalty function depends on tuning parameters which are non-negative and need to be de-

termined through resampling methods like cross-validation and the bootstrap (see Subsection

1.2.1), in order to minimise the out-of-sample error: this process is called tuning.

Key concepts in supervised statistical learning are the trade-off between model prediction

accuracy and model interpretability and the bias-variance trade-off (Hastie, Tibshirani, and

Friedman 2008, James et al. 2013):

• Prediction accuracy-interpretability trade-off: in general, if the interpretability of a

method is low, then its prediction accuracy and hence flexibility are high. For example,

linear regression is a relatively restrictive and inflexible method, because its function rep-

resents only a simple hyperplane (or line in the case of simple linear regression with one

covariate). However, it is highly clinically interpretable. Other methods (such as support
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vector machine, which we will see below) are more flexible because their functions gener-

ate complicated shapes in space and can accommodate the data well with high prediction

accuracy, but at the same time they are difficult to interpret. Depending on the analysis

one needs to run, the suitable trade-off between prediction accuracy and interpretability

is chosen (James et al. 2013).

• Bias-variance trade-off: the variance of a statistical learning method f̂ is the variability

of f̂ if we estimated it using a different data set. The bias of a statistical learning method

refers to the error between the true f , which may be extremely complicated, and f̂ , a sim-

pler approximation of f . As the flexibility of a method increases, the bias tends to initially

decrease faster than the variance increases. However, at a certain point, increasing flexi-

bility does not influence much the bias, which levels off, but starts to significantly increase

the variance (Hastie, Tibshirani, and Friedman 2008). The expected prediction error (or

extra-sample error) of a model can be expressed as the following sum: “irreducible error

(i.e. V ar(ε))+ bias2+variance”. The aim is to minimise the expected prediction error by

finding the best compromise between bias and variance. As the sum of squared bias

and variance is the mean squared error (MSE), it is sufficient to minimise the MSE. This

is done by assessing the model at hold-out data with different tuning parameters and

selecting the tuning parameter giving the model with the minimum MSE.

A brief overview of supervised statistical learning methods (James et al. 2013) follows:

• Regularised regression methods (RMs): such methods aim to avoid overfitting and

thus improve prediction accuracy of regression models when the number of predictors

(features) is large relative to sample size. RMs reduce variance of estimation at the cost of

some bias which is induced by introducing a constraint on the magnitude of the regression

coefficient parameter estimates. The coefficients for RMs are estimated by minimising the

residual sum of squares (loss function) plus a penalty monitored by a set of tuning param-

eters, which controls the strength of the regularization. As a consequence, the model co-

efficients are shrunk towards zero. Some RMs may shrink all coefficients relatively by the

same amount without performing variable selection (e.g. Ridge L2 regularization), while

other RMs like the ‘Least Absolute Shrinkage and regression Operator’ (LASSO, Tibshi-

rani 1996, see Subsection 2.1.1) and Elasticnet (Zou and Hastie 2005, see Subsection

2.1.1) shrink some of the coefficients to be exactly zero resulting in variable selection

and interpretability of the model. Also RMs with less used types of penalty are used

for variable selection: the Dantzig Selector (performance similar to Lasso, Candes and
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Tao 2007, Bickel, Ritov, and Tsybakov 2009), the Group-Lasso penalty (selects or omits

groups of variables when potential predictors are structured into groups known a-priori,

Yuan and Lin 2011), Adaptive Lasso (coefficients of strong predictors are shrunk less than

coefficients of weak predictors in large samples, Zou 2006) and Smoothly Clipped Abso-

lute Deviation (SCAD, similar performance to Adaptive Lasso, Fan and Li 2001). Most

RMs are based on the Generalized Linear Models (GLM), while penalized Generalized

Linear Mixed Models (GLMM) which allow the analyses of repeated measurements or

other clustered data, are at early stages of development (Tutz and Groll 2011, Schelldor-

fer, Meier, and Bühlmann 2014, R package lmmen, 2017).

• Non-linear models: apart from the classical polynomial regression that extends simple

linear models by adding powers of the predictor variable as new predictors, and their reg-

ularised versions, step functions (piece-wise constant functions) are used as non-linear

models for qualitative variables. Another non-linear class of methods used in statistics are

non-parametric regression splines methods (James et al. 2013). These are even more

flexible than polynomials since the range of the matrix of explanatory variables is divided

into different regions, in each of which a polynomial function is fit to the data and the

obtained polynomial lines are joint smoothly at the region boundaries or knots. The regu-

larised versions of regression splines are the smoothing splines: we penalize the residual

sum of squares criterion and minimise it in order to get more smoothness and to avoid

overfitting. In case we need to analyse multiple predictors with a non-linear model, gen-

eralised additive models (GAMs, Hastie, Tibshirani, and Friedman 2008) or multivariate

adaptive regression splines (MARS, JH Friedman 1991) are used.

• K-Nearest-Neighbours (KNN, N. Altman 1992): given a new patient feature value, the

non-parametric method KNN first identifies the K patients in the training data that have

the closest feature values to the new observation. Then it predicts the observation’s

outcome value with the mode of the nearest neighbours outcome in case of discrete data

or their mean in case of continuous data. The number of neighbours, K, is a tuning

parameter usually chosen through resampling methods. The method prediction accuracy

is good, however the model is not easy to interpret. KNN is also used for missing data

imputation (see Subsection 1.2.2).

• Trees (Breiman, JH Friedman, et al. 1984): Classification and regression trees (CART)

are obtained by recursively partitioning the predictor space (i.e. the set of possible values

for the covariates) into disjoint regions, according to an error minimisation criterion, and
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fitting an interpretable non-parametric prediction model within each partition. A given test

observation is predicted with the mean or the mode of the training data in the region to

which it belongs. The obtained whole tree usually overfits the data because it is usually

too complex. Instead, a smaller tree with fewer splits can have a reduced variance and

better interpretation at the cost of some bias. Therefore, the whole tree is then pruned

back (i.e the terminal branches are cut) using cross-validation (see Subsection 1.2.1)

to minimise the test error. Prediction accuracy after pruning is usually not very good

(Breiman, JH Friedman, et al. 1984). CART can impute missing data (see Subsection

1.2.2).

• Random Forests (RF, Breiman 2001, see Subsection 2.1.1): RF consists of averaging

trees built on bootstrap samples drawn from the training set, in order to have a good

prediction accuracy. The trees in a RF are decorrelated because only a random sample

of predictors are chosen each time a split in a tree is considered. The number of variables

selected at each split is a tuning parameter for RF. RF improves the error rate of trees at

the cost of less interpretability. However, it can assess variable importance (Hastie,

Tibshirani, and Friedman 2008). Like CART, RF is used for missing data imputation (see

Subsection 1.2.2).

• Support vector machines (SVM, Cortes and Vapnik 1995): in classification problems,

SVM finds the best separating hyperplane that minimises the classification error and max-

imises the geometric margin of classification. The data are separated according to their

classes. There are also regression SVM (Smola and Schölkopf 1998).

• Neural Networks (NN, Kriesel 2007): these are machine learning models used in both

regression and classification settings consisting of sums of non-linearly transformed linear

models. They can be used to extract patterns and detect trends that are too complex to be

noticed by either humans or other computer techniques. In recent years, an extension of

the NN, Deep Learning, became increasingly popular for the ability to learn by example,

like humans naturally do. They are particularly suited to extremely large data sets such

as web data and mobile healths data (Goodfellow, Bengio, and Courville 2016).

Table 1.1 (adapted from Hastie, Tibshirani, and Friedman 2008) contrasts the methods han-

dling of missing values, robustness to outliers, transformation sensitivity, computational costs,

accuracy and interpretability, showing that the gold standards for prediction are RF, SVM and

NN even though they lack accessibility of information. However, RF provides a rank of impor-

tance for the variables, which gives some interpretability to the method. On the other hand,
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decision trees are fairly good for interpretability, but perform quite poorly in prediction. A com-

promise is the Lasso (and similarly Elasticnet), which is a learning method that provides fairly

accurate results and good extraction of information.

Clinicians often want to interpret the model to identify key components of prediction and

understand underlying processes in order to improve or develop new treatments. Also, a pre-

diction tool in clinical practice is often preferable when it only has a small number of variables,

even if such a parsimonious model implies a small loss in prediction accuracy. In fact, measur-

ing many variables can be costly and also clinicians do not want to overwhelm the patient with

too many tests and questionnaires.

A serious and common problem in psychiatric studies is the presence of missing data,

which largely depends on patients’ attendance to assessments. Data analyses, which drop

observations containing missing values, loose a lot of information and can result in biased

estimates (see Subsection 1.2.2).

All statistical (machine) learning algorithms have their advantages and disadvantages. One

common advantage is that almost no assumptions about the data are needed. RMs like Lasso

and Elasticnet are usually helpful when the aim is getting parsimonious and interpretable mod-

els from fully pre-specified models (i.e. full models), without introducing selection bias. More-

Table 1.1: Comparison in terms of performance of some different statistical learning methods
(K-NN=K-nearest neighbour, MARS=multivariate adaptive regression splines, SVM=support
vector machine, NN=neural networks). Key: A=good, B=fair and C=poor. Adapted from Hastie
et al. (2008).

Characteristic Lasso K-NN,
ker-
nels

MARS Trees Random
forests

SVM NN

Natural handling of data of
“mixed" type

C C A A A C C

Handling of missing values C A A A A C C

Robustness to outliers in in-
put space

B A C A A C C

Insensitiveness to monotone
transformation of inputs

C C C A A C C

Computational cost (large
N )

A C A A B C C

Ability to deal with irrelevant
inputs

A C A A A C C

Ability to extract linear com-
binations of features

A B C C C A A

Interpretability A C A B B C C

Predictive power B A B C A A A
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over, RMs deal well with large number of variables relative to sample size and high collinearity.

However, although RMs’ variable selection will include almost all the true predictors, many

noise variables will be also chosen, if their inclusion improve the bias-variance trade-off to get

minimal error (Fan and Lv 2009). On the other hand, RF will not perform variable selection

and models will need all the input variables to predict the outcome. However, RF can return a

rank of importance in prediction strength for the variables. RF can be preferable when dealing

with genetic data, such as genome wide association studies, which are easy to measure, or

when generating hypothesis on potential predictors is the goal. RF will predict with low vari-

ance, but the estimates will be more biased than RMs’ estimates (Breiman 2001). If non-linear

trends or interactions are present, RF will automatically model them. When data are highly

correlated, RF’s bias is minimised. RF can be used to impute missing data although it induces

some bias (Cutler et al. 2009). Similarly, KNN can impute missing data and is accurate in

model predictions, but it results to be a total ‘black box’. Moreover, datasets with a large num-

ber of variables relative to sample size lead to the inability for KNN to find nearby neighbours

for a given observation, and therefore to an increase in prediction error (James et al. 2013).

On the contrary, MARS are simple to understand and interpret and perform automatic variable

selection. However, MARS do not handle multicollinearity well and prefer datasets with a low

number of variables relative to the sample size. Finally, NN and SVM are good for their high

predictive power and their excellent handling of very large datasets. However, they are complex

and difficult to understand. NN and Deep Learning will suit particularly well web-data analyses

and other large scale data.

Prediction accuracy often varies very little between statistical learning methods if the num-

ber of variables is not extremely large, i.e. does not exceed about half the sample size (Khon-

doker et al. 2013, Stahl, Pickles, et al. 2012). Moreover, statistical learning methods may

perform better in prediction in slightly different populations (Hand 2006).

There is increasing literature that applies these methods to healthcare and mental health

research (Hahn, Nierenberg, and Whitfield-Gabrieli 2017), in particular the following articles

analysed psychiatric data :

• Stahl et al. (2012) applied classification RMs and SVM to the reanalysis of infant event-

related potential (ERP) data with small sample size in comparison to the number of fea-

ture variables. The authors internally validated the methods through cross-validation (see

Subsection 1.2.1) and both methods were able to separate above chance groups of in-

fants according to their risk of a later diagnosis of autism. A discussed disadvantage of

the study was the inability of the selected methods to perform variable selection.
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• Koutsouleris et al. (2016) developed two internally and externally validated machine

learning models to predict end-of-treatment and follow-up outcomes in patients with first-

episode psychosis. Their method consisted of combining KNN missing data imputation

with SVM in a repeated nested cross-validation analysis. The authors also validated the

methods through leave-site-out validation as they analysed data from 44 studies (König

et al. 2007 and Steyerberg and Harrell 2016 and see Subsection 1.2.1). Statistical sig-

nificance was determined using permutation testing. Nevertheless, selection bias was

induced in the model development as a stepwise forward variable selection process us-

ing SVM was adopted. Moreover, leave-site-out and external validation analyses were

done by using only a selected set of variables determined by the model itself without

using the full developed model.

• Ramsay et al. (2018) aimed to identify baseline predictors of cognitive improvement after

receiving CRT using the LASSO with cross-validation tuning. However, only 10 potential

predictors measured on a single study were considered. Furthermore, the model was

not validated (see Subsection 1.2.1). Finally, statistical significance was inferred by re-

gressing the outcome on the variables selected by the LASSO with subsequent selection

bias.

Prediction modelling in psychiatry has got many challenges (Bzdok and Meyer-Lindenberg

2018 and Iniesta, Stahl, and McGuffin 2016) and the aim of this PhD research is to overcome

some of these, namely, developing a precision medicine model with good prediction accuracy,

ideally good clinical interpretability and able to handle the large number of variables in the

available clinical data with substantial amounts of missing data. Therefore, RMs such as Lasso

and Elasticnet for automatic feature variable selection, and RF, for ease of handling missing

data and its variable importance rank will be considered.

1.2 Introduction to methods

In this second part of the introduction, I will describe the general steps of developing, assessing

and validating prediction models. I will then introduce the concept of missing data and some

applications of statistical learning methods combined with missing data imputation techniques.

Finally, a statistical way to reduce dimensionality of multiple outcomes will be presented.
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1.2.1 Prediction model performance measures and validation techniques

A good prediction model should perform well, i.e. be accurate in prediction and in separating

groups of patients according to their risk, and be valid, i.e. able to make reliable predictions

especially on unseen data (Steyerberg 2009).

Steyerberg and Vergouwe (2014) give clear guidelines on building prediction models, which

consist of seven phases described in the flow chart 1.1. It is important that the prediction prob-

lem is well defined after having inspected the existing literature. The data to train and validate

the model need to be checked in terms of reliability and completeness (missing data problem)

and potential predictors need to be suitably coded. The model is then specified according to

prior clinical knowledge, to avoid multicollinearity or overfitting depending on the method used.

After estimating the model parameters, the model apparent performance and the model vali-

dated performance on new data (to evaluate replication of results) are assessed (steps 5 and

6 see Figure 1.1). Finally the developed validated model is then presented through a formula

or a software function.

Performance measures are typically used to assess how well a model fits the same data,

which it was trained with. However, these are not estimates of how well the model predicts

new data points. It is then important to distinguish between performance on the training data

(apparent performance), on hold-out data (internal performance) and on completely new data

(external performance). In the next two paragraphs, I will first present prediction model perfor-

mance measures and then explain how to assess the model performance correctly to obtain

reliable measures of validity for the model.
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Figure 1.1: Main steps for prediction modelling (Steyerberg and Vergouwe 2014)

1. PROBLEM DEFINITION, LITERATURE REVIEW AND DATA INSPECTION: The re-
search question is stated and what is currently known about the potential predictors
is searched for. The outcome is defined and how the treatment effect is dealt with in
the prognostic analysis is explained (e.g. is it included in the model or ignored?). In-
formation about the selection criteria of the patients and the available data is provided
such as reliability and completeness of the dataset (missing data problem). The SLMs

which are appropriate for the research question and the data at hand are identified.

2. CODING OF PREDICTORS: Categorical variables to include in the model as po-
tential predictors need to be inspected since categories with small frequency can be
merged with others in order to have a more accurate model. The dichotomisation of

continuous variables can be done if clinically sensible and user-friendly only in a later
phase of the model development depending on the quantity of predictive information lost.

3. MODEL SPECIFICATION: Strategies of variable selection are chosen (predictor selection should
also be driven by a priori clinical knowledge). The method is defined with underlying assumptions
and ways of overcoming problems such as statistical overfitting, multicollinearity and missing data.

4. MODEL ESTIMATION: The specified model coefficients or parameters are estimated.

5. MODEL PERFORMANCE: The predictive value of the model is assessed through calibra-
tion and discrimination. Perfect calibration happens when predictions coincide with observed
values. In case of imperfect calibration, a correction is applied that ameliorates prediction ac-
curacy. Discrimination is the ability of the model to distinguish a patient with a successful out-
come from a patient without. Perfect calibration does not imply good discrimination: a model
which predicts the incidence for all subjects is not useful because it does not discriminate be-

tween patients. Discriminative performance for continuous outcomes can be quantified with the
mean-squared error (MSE). The lower the MSE the better is the model prediction accuracy.

6. MODEL VALIDITY: Overfitting is the main concern in prediction model building and resam-
pling techniques are used to assess the validity of a model in the model building process. In-
ternal validation of a prediction model refers to the reproducibility of the results in the whole
underlying population from which the original sample was drawn. This can be done by us-

ing a random subsample of your original sample to develop (or train) the model (training set)
and the rest to validate it (test set). External validation refers to generalisability (or transporta-
bility) of findings to ‘plausibly related’ populations. Model performance needs to be assessed
with independent data from outside the development sample (Debray et al. 2015). This can

be done by temporal validation (test the model over patients recently treated), by geographical
validation (from other hospital) or by strong external validation (completely different setting).

7. MODEL PRESENTATION: as a formula or user-friendly
software (e.g. in Excel or as a web based calculator).

Performance

Step 5 in Figure 1.1 assesses the performance of the model. Measures of overall performance

are the R2, i.e. the amount of variability in outcomes that is explained by the prediction model
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for continuous outcomes (0 ≤ R2 ≤ 1) and the Brier Score (Brier 1950), i.e. the distance

between observed and predicted probabilities, for binary outcomes. However, the R2 estimator

for the population is upwardly biased because it increases every time a predictor is added to

the model without accounting for overfitting. Therefore it needs shrinkage. This is typically

achieved in inferential statistics through the adjusted-R2 version that considers the degrees of

freedom used in the model.

The overall model performance quantifies how close predictions are to the actual outcome

(using measures such as explained variation, R2). Performance can further be evaluated in

terms of discrimination and calibration:

• discrimination: the ability of the model to separate (discriminate) between high risk and

low risk patients.

• calibration: the ability of the model to make unbiased estimates of the outcome, mea-

suring the agreement between observed outcomes and predictions, e.g. if a prediction

model assigned a 15% probability to develop a condition for each patient of a sample

of 100 patients and 15 of them later developed the condition, the predictions would be

calibrated (reliable).

Discrimination in classification is usually measured with the Area Under the Receiver Op-

erating Characteristic (ROC) curve or C statistic or with the misclassification error. Instead, for

continuous outcomes, the training Mean Squared Error (MSE) is used:

MSE =
1

n

n∑
i=1

(yi − ŷi)2, (1.1)

where n = sample size, yi, i = 1, . . . , n are the observed outcomes, ŷi the predicted outcomes

via the model f̂ .

The statistical learning version of the R2 is the pseudo-R2 = 1 − MSE/V ar(y). It differs

from the classical regression R2 as, for the pseudo-R2, the variance of the outcome would be

given by the total sum of squares divided by n− 1 and the MSE is given by the residual sum of

squares divided by n. The classical R2 has both denominators equal to n.

Calibration is assessed via the calibration slope β and the calibration-in-the-large α obtained

by

• regressing the logit (i.e. the logarithm of the odds) of the observed probabilities that y = 1
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on the logit of the probabilities that ŷ = 1 in the case of binary outcomes:

logit(y = 1) = α+ βlogit(ŷ = 1) (1.2)

The above curve 1.2 is the one that better approximates the relationship between the

predicted probabilities of the event and the true probabilities.

• regressing the observed outcome y = (y1, . . . , yn)T on the predicted outcome ŷ in the

case of continuous outcomes:

y = α+ βŷ (1.3)

The line returned by the above equation 1.3 is called the calibration line and it is the

line that better approximates the relationship between the predictions and the observed

values.

One way to quantify the unreliability of predictions is to measure what has to be done to make

the calibration curve superimposed on the ideal curve, i.e. the 45 degree line.

When β = 1 and α = 0, the model is perfectly calibrated and its calibration curve will be the

45 degree line. This happens when the model is an unbiased estimator of the outcome (e.g.

GLM) and the calibration parameters are computed using the same training data used to build

the model. The model is overfitting if β < 1, i.e. low predictions are too low and high predictions

are too high, and underfitting if β > 1, when high predictions are too low and low predictions are

too high (see Figure 1.2). The calibration-in-the-large α will be different from 0 to compensate.

Good calibration does not imply good discrimination: the null model, without covariates, is

well calibrated for definition, as the predicted risk is the same for all patients, but it is not a

discriminative model distinguishing between severity of risks. Assuming the model has good

calibration, a model which predicts risks with more variability has better discrimination.

Validity

The sixth step of model building (see Figure 1.1) verifies the validity of the developed prediction

model, assessed in the model building process through the model performance measures of

calibration and discrimination, to ensure model generalizability to unseen data. Model validation

addresses one of the major causes of model failure to predict well: overfitting. Overfitting leads

to a too optimistic view of the developed model performance, since a model may predict well

the data it was developed with (training data), but can fail in the prediction of new subjects

from the underlying population. This optimism is the bias due to overfitting. Optimism is
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Figure 1.2: Calibration lines for continuous outcomes in the cases of underfitting and overfit-
ting. Observed outcomes are regressed on the model predicted outcomes. When the model
underfits the data (Figure 1.2a), a high prediction ŷ0 will be too low compared to the corre-
sponding observed y0: ŷ0 < y0. Vice-versa, when the model overfits the data (Figure 1.2b), a
high prediction ŷ0 will be too high compared to the corresponding observed y0: ŷ0 > y0.

(a) Underfitting, β > 1 (b) Overfitting, β < 1

defined as true performance minus apparent performance, where true performance refers to

the underlying population, and apparent performance refers to the estimated performance in

the model development sample.

We can define three types of model validation:

• Apparent validation: testing the model on the whole original model development sample

(n data points);

• Internal validation: reproducibility of the model for the underlying population and setting

where the development sample originated from;

• External validation: generalizability of the model to populations that are plausibly re-

lated, testing the model on new subjects.

Apparent validation is not a reliable method of assessing the predictive performance of a model.

The performance measures of a prediction model are valid when they are evaluated on a test
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sample which is independent from the training data. This can be done by internal and external

validation. Internal validation is the estimate of replicability of the model using unseen sam-

ples from the same populations and it constitutes a minimum requirement to assess a model

(Steyerberg 2009, Harrell 2001). External validation assesses the application of a model to

different populations, e.g. the transportability to new settings, geographical and temporal, and

is regarded as the gold standard to assess performance and clinical utility. In particular, when

prediction models are developed on data from several studies, internal-external validation

or leave-site-out validation (Steyerberg and Harrell 2016 and König et al. 2007) is recom-

mended to estimate external validity of the model. Leave-site-out validation consists of leaving

each study out in turn, developing the model on the remaining studies and testing it on the

left out study. The final model is based on the pooled dataset and its validated performance is

given by the average of the test performances.

Usually, independent data from new clinical populations for external validation are not avail-

able and the minimum requirement is to estimate the internal validity of a model. Internal val-

idation can be done in several ways. The easiest procedure consists of developing the model

on half or 2/3 of the sample (training set) and validating it on the rest of the data (test set)

and this procedure is called data-splitting or validation set. However, to validate the model

more accurately, a large sample needs to be available. K-cross-validation (CV) is repeated

data-splitting and solves some of its problems: the data is divided into k equal folds, then the

first fold is omitted and the model is trained on the remaining k − 1 folds to be then tested on

the left-out fold and return an estimate of performance; the process is repeated k times with

the remaining folds and an average performance is returned that is nearly unbiased (biased

upward, Borra and Di Ciaccio 2010). If k = n, then we will have a leave-one-out CV which

minimises the bias, but has larger variance than k-CV (Hastie, Tibshirani, and Friedman 2008).

The 5-10 CV is regarded as the best compromise between bias and variance (James et al.

2013 and Hastie, Tibshirani, and Friedman 2008). However, CV does not validate the model

on the full size sample and thus the number of repetitions needed to achieve good estimates of

performance often exceeds 200 (Harrell 2001). Therefore, if k = 5, the whole CV process will

need to be repeated at least 40 times.

Another resampling method used for model validation is the bootstrap (Efron and RJ Tib-

shirani 1994, Harrell, Lee, and Mark 1996). In statistical inference the bootstrap is a robust

statistical method used to quantify the uncertainty of an estimator (when we do not know its

distribution), by mimicking the underlying population sampling process. In prediction modelling

and statistical learning, bootstrap resampling is typically used to estimate prediction accuracy



1.2. INTRODUCTION TO METHODS 45

of unseen data. Bootstrap resampling is also used to tune a model (e.g. RMs and RF, see

Subsection 2.2). To perform bootstrap validation, one repeatedly fits the model in bootstrap

samples (of the same size as the original sample, but drawn with replacement) and evaluates

the performance of the model on the original sample. The estimate of the likely performance of

the model on new data is estimated by the average of all the bootstrap sample model estimates

of performance computed on the original sample. This estimate is slightly biased downward

(Hastie, Tibshirani, and Friedman 2008). In order to reduce the bias in the bootstrap estimate

of model performance, Efron (1979, pages 247-252) suggested estimating the optimism in the

model and then subtracting it from the apparent performance, derived from the original sample,

to obtain a bias-corrected estimate of performance. This improved version of bootstrap valida-

tion was later reproposed by Harrell, Lee and Mark (1996) and Steyerberg (2009) and will be

used in this project as the preferred internal validation method (refer to the paragraph below).

Internal validation can be used to recalibrate the model and obtain improved performance on

new data. Thus, when presenting the model (step seven in Figure 1.1), the recalibrated model

should be presented if calibration performance is not optimal. For example, validated estimates

of calibration measures can be used to recalibrate a linear regression model M(X) = Xb, with

X being the matrix of explanatory variables included vector 1 for the intercept and b being the

vector of coefficients, this way: Mrecalibrated(X) = αvalidated + βvalidatedXb. Thus, shrinkage of

b will occur if βvalidated < 1 and unshrinkage of b if βvalidated > 1 (Steyerberg and Vergouwe

2014).

Validation in statistical learning

In statistical learning, the simplest and most widely used method for estimating prediction error

is cross-validation (CV, Hastie, Tibshirani, and Friedman 2008). Let us call Ti = (xi, yi), i =

1, . . . , n the observations of the individual i, where xi is the vector of inputs and yi is the

outcome. Let T = {(x1, y2), . . . , (xn, yn)} be an independent and identically distributed (i.i.d.)

sample from the multidimensional distribution F . If we estimate the model f̂T from our data T ,

then ŷ = f̂T (x0) is the predicted value of y at x = x0. We call L[y, f̂(x)] the measure of error

between the response y and the prediction f̂(x). Therefore, the expected prediction error (also

called true error, generalization error or extra-sample error ) for f̂T (x0) is defined:

ErrT ,F := E0,F

[
L[y0, f̂T (x0)|T ]

]
, (1.4)
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where the notation E0,F means the expectation over a new observation (x0, y0) from the pop-

ulation F and T is fixed. Thus, ErrT ,F refers to the error for this specific training set T , and

therefore it is a conditional error.

CV directly estimates the expected extra-sample error ErrF (Hastie, Tibshirani, and Fried-

man 2008), i.e. the average of ErrT ,F over training sets T :

ErrF := ET ,FE0,F

[
L[y0, f̂T (x0)|T ]

]
, (1.5)

when the method f̂T (x) is applied to an independent test sample T from the joint distribution

of x and y.

CV is preferred as a validation and model selection technique for its simplicity and for the

fact that the training sets do not overlap with the test set, as on the contrary it happens with

the traditional bootstrap technique. However, the training sets are not independent samples as

they will have at least k − 2 folds of observations in common and also the test sets (left-out

folds) come from the same data. In contrast, when using the bootstrap, the different bootstrap

samples are independently and randomly drawn from the original sample. As a consequence,

it is known that the CV estimate of the extra-sample error is biased upward as it is the estimate

of the error for a smaller sample size, i.e the sample size of k − 1 folds (Borra and Di Ciaccio

2010, Hastie, Tibshirani, and Friedman 2008). Also its variance is larger than the bootstrap

estimate. To some extent, the CV error depends on the initial random split. As a result, to avoid

this and to reduce the variance, the process is repeated more times (for example 20 times

for k = 10, Harrell 2001) with different random partitions (repeated CV by Burmann 1989).

However, repeating the CV procedures many times can be computationally expensive and time

consuming. On the other hand, the traditional bootstrap procedure computes slightly more

biased estimates of the error because of the overlapping of training set (bootstrap sample)

and test set (original dataset), but it yields smaller variance with a reasonably small number

of resampling steps: 100 (number of bootstrap samples, Harrell 2001, Smith et al. 2014). The

bias in the bootstrap estimate of error is reduced with the .632+ bootstrap estimator (Efron

and Tibshirani 1997). However, this change in the bootstrap was supported by a heuristic

argument instead of a theoretical justification (Arlot 2010), even though empirical studies show

the improvement over the traditional bootstrap (Efron and Tibshirani 1997).

The improved version of bootstrap validation (see paragraph above, Efron 1979,Harrell,

Lee, and Mark 1996 and see Subsection 2.1.3) and the CV validation methods can both esti-

mate optimism in any model performance measures (Steyerberg 2009) in an almost unbiased



1.2. INTRODUCTION TO METHODS 47

way (to note that in statistical learning, only the optimism in the extra-sample error is usually

estimated and not in the calibration measures as recalibration is not popular when models are

biased estimators). However, bootstrapping is the fastest method of performing optimism cor-

rection, as a smaller number of resampling steps are needed compared to CV in order to have

stable estimates of performance.

1.2.2 Missing data

A problem for the application of statistical learning models like regularised regression methods

in psychiatric studies is missing data. People not attending treatment visits and follow-up,

or refusing to answer to items in questionnaires, or the researchers’ error in measuring the

variables may lead to substantial amounts of missing data in baseline variables and outcomes.

Missing data can be defined as data meant to be collected for studying a specific problem

but were not (although data can also be missing by design, especially in secondary analysis).

They are common, but they are often inadequately handled in both observational and exper-

imental research (Wood, White, and Thompson 2004, Chan and D. Altman 2005 and Sterne

et al. 2009). Typically, in prediction modelling a big amount of baseline data is used, as some-

times identification of predictors is the aim. This results in a larger quantity of missing data

compared to the analysis of primary outcomes in RCTs, where generally only the outcome

variable measured at baseline is needed.

In explanatory or inferential statistics missing data are well studied (Rubin 1976, Carpenter

and Kenward 2007). The process by which observations become missing is called the miss-

ingness mechanism. However, the missingness mechanism is usually unknown and the data

alone or the missingness pattern or its relationship to the observations cannot identify such

a mechanism. Therefore, assumptions are usually made on the missingness mechanism in

order to be able to analyse the data to draw sensible inferences. Rubin (1976) defined three

classes of missingness mechanisms in a pure likelihood/Bayesian way, but here I will use a

frequentist definition (Carpenter and Kenward 2013) and the notation is given below. Given a

sample of n individuals from an infinite population, let yi = (yi,1, yi,2, . . . , yi,p)
T represent the

p measurements of the variables intended to be collected for the ith individual, i = 1, . . . , n.

Let yi,O be the subset of p variables that are observed for the individual i and yi,M be the

subset that are missing. Then let Ri,j be the binary indicator of missingness for each unit i and

variable j: if yi,j is observed, then Ri,j = 1 and if yi,j is missing, then Ri,j = 0. Let us define

Ri = (Ri,1, Ri,2, . . . , Ri,p)
T . The three classes of missingness mechanism are:



1.2. INTRODUCTION TO METHODS 48

• Missing completely at random (MCAR): The data are MCAR if the missingness mech-

anism neither depends on covariates relevant to the analysis, nor does it depend on the

unseen data. In other words, the probability of a value being missing is unrelated to the

observed and unobserved data for that individual:

P (Ri|yi) = P (Ri)

Here, the incomplete population is a random sample of the complete population, then

the subjects with missing data are representative of the population. For example: missing

observations because a page of the questionnaire was missing, or because of a data pro-

cessing error, or due to a change in the data collection procedure. In this case analysing

only those individuals with observed data gives valid and unbiased results, even though

the estimates will be less precise than when in presence of a complete data set. However,

MCAR data are not always plausible.

• Missing at random (MAR): The data are MAR if the missingness mechanism does not

depend on the unobserved data conditional on the observed data:

P (Ri|yi) = P (Ri|yi,O)

The probability of missingness may depend marginally on the unobserved data but it is

independent of the missing data when we condition on the observed data. For exam-

ple, if the probability of a missing observation depends on an earlier observation, after

accounting for the earlier observation, the probability of observing the missing observa-

tion is independent of its value. Therefore, if only the subjects with complete data were

analysed, we would get invalid results because they will be biased as the fully observed

subset of data will not be representative. Also, there will be loss of information since we

would have thrown away information on cases with even one missing observation. To

obtain valid estimates, the variables predictive of non-response need to be included in

the analysis (e.g. covariates in a regression). In addition, simple summary statistics are

invalid as estimates of population parameters under MAR. It is important to note that it is

not possible to assess any residual dependence between missingness mechanism and

the missing variable, i.e. the assumption of MAR cannot be tested.

• Missing not at random (MNAR): The data are MNAR if the chance of missingness de-



1.2. INTRODUCTION TO METHODS 49

pends on the unseen data, even after conditioning on all the observed data:

P (Ri|yi) 6= P (Ri|yi,O)

It is difficult to analyse MNAR data because under the MNAR assumption conditional dis-

tributions of partially observed variables are not the same in individuals with and without

observed data (as they are under MAR). Consequently, under MNAR one will need to

model both the response of interest and the missingness mechanism through sensitivity

analyses and may expect quite different conclusions from different models.

In statistics, Multiple Imputation (MI, Rubin 1981) is a popular method to impute (that is fill in)

missing data. MI consists of creating m different imputed datasets from the original dataset with

missing observations. Then each of them completed datasets are analysed and them analysis

results are pulled into one valid result through Rubin’s Rules (Rubin 1981). An extension of MI

is Multivariate Imputation using Chained Equations (MICE, Van Buuren and Oudshoorn 2000,

see Subsection 2.1) which allows the imputation of data in the presence of missing multiple

outcome values (e.g. hierarchical or longitudinal data) and missing predictors. Inferences

from analyses with multiply imputed data are only valid when data are MAR. However, any

suitable additional variable measurements (i.e. auxiliary variables predictive of the missing

values, Hippel and Lynch 2013), included in the imputation model, provide more observed data

to condition on and thus make the MAR assumption more plausible (Carpenter and Kenward

2007, Ibrahim, Lipsitz, and Horton 2001 and Rubin, Stern, and Hehovar 1995). However, if

too many auxiliary variables are included in the imputation model of regression analyses with

missing predictors for example, parameter estimates result biased downward and less precise,

mainly when the correlations between variables are low and the sample size is small Hardt,

Herke, and Leonhart 2012. This would also affect prediction accuracy of the model.

Missing data in statistical learning

When there are missing data in the dataset meant for the analysis, the usual approach in

statistical learning is to analyse only cases with complete observations or impute the missing

observations with plausible values through specific techniques depending on the missingness

mechanism. There are three approaches for treating missing data:

1. if the data are MCAR, one can run a complete records analysis, i.e. discard observations

with any missing values, when the percentage of missing data is low (the validity of this

method is stated above),
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2. impute the missing values (commonly through mean substitution) before training the

model but this will add uncertainty to the analysis: if resampling is used to estimate

validated performance and imputation is not incorporated in the resampling process, es-

timates of model performance will be biased (Kuhn and K. Johnson 2013),

3. or impute the missing data in the model training phase: the information in the training set

is used to predict the test set missing data. This strategy incorporates the uncertainty due

to imputation in the analysis and is preferred.

The following statistical learning methods deal effectively with missing data using approach

2, also when the percentage of missing data is high: (non-parametric) CART (Breiman, JH

Friedman, et al. 1984) and (parametric) MARS (when the data are MAR, Hastie, Tibshirani,

and Friedman 2008). CART fills in missing data through surrogate splits. MARS will automat-

ically impute missing data by estimating the joint probability distribution of the data P (Xi,yi)

and sampling Xi,yi pairs (Bishop 2007). While CART based imputation methods are able to

impute high dimensional datasets with high accuracy without making any assumption on the

data, MARS in datasets with a large number of variables require a number of samples that

increases exponentially with the variables number for accurate estimation, if there are no ap-

propriate model assumptions. Also Random Forest (RF) can handle mixed type of missing data

and Tang and Ishwaran (2017) lately wrote a comprehensive review of the different RF miss-

ing data algorithms. They included the original RF proximity algorithm proposed by Breiman

(2003) and implemented in the randomForest R-package (Liaw and Wiener 2002b), the ‘on-

the-fly-imputation’ (OTFI) algorithms implemented in the randomSurvivalForest R-package

(Ishwaran, Kogalur, et al. 2008), which allow data to be imputed while simultaneously grow-

ing a survival tree, and the algorithm MissForest (implemented in the R package missForest,

Stekhoven and Buhlmann 2012 and see Subsection 2.1.2) that takes a different approach by

remodelling the missing data problem as a prediction problem. The first two algorithms have

been unified within the randomForestSRC R-package to include not only survival, but classifica-

tion and regression settings (Ishwaran and Kogalur 2016). By comparing the RF missing data

algorithms with a simulation study, Tang and Ishwaran (2017) found that the imputation per-

formance of all RF procedures improved (i.e. the imputation error decreased) with increasing

correlation of features. Moreover, MissForest had the least imputation error when there was

high correlation between variables, even though it had the longest computational time. In the

simulation study, all RF algorithms on average performed well with MCAR and MAR data, but

performance in NMAR data was generally poor unless correlation was high (>0.8).
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Other techniques used in statistical learning to impute missing data are: (non-parametric)

K-nearest neighbours (KNN, Jönsson and Wohlin 2004, Liao et al. 2014) and the (parametric)

Expectation Maximisation (EM, Dempster, Laird, and Rubin 1977) algorithm. The KNN method

imputes a missing value of an individual using values calculated from the k individuals with

observations close to the ones of the individual with the missing value. The replacement value

is the mode of the nearest neighbours in case of discrete data or the mean for continuous data.

However, in this local method the nearest neighbours will not be close to the target individual

in high dimensional input spaces and this can result in high variance (Hastie, Tibshirani, and

Friedman 2008). KNN is somewhat related to RF (Tang and Ishwaran 2017). Both methods are

a type of nearest neighbour method, although RF is more adaptive than KNN and in fact can

be more accurately described as an adaptive nearest neighbour method. The EM algorithm

deals with missing data by marginalising the joint distribution of the observed variables over

the distribution of the unobserved variables and it requires MAR data for the imputation to be

reliable. However, the EM algorithm is slow, computationally expensive with high dimensional

data and often does not converge if the percentage of missing data is high.

In statistical learning, a common approach is to treat the imputed missing values as ob-

served, but this ignores the uncertainty due to imputation that in turn will add uncertainty into

the predictive accuracy of the models used on imputed data. One solution to this is measuring

this additional uncertainty by imputing multiple times and hence creating many different training

sets (like MI). Therefore, the predictive model for y can be fit to each completed training set

and the variation in the performance across training sets can be assessed through estimating

the mean performance (Hastie, Tibshirani, and Friedman 2008).

The third approach mentioned above to treat missing data in prediction modelling (i.e. incor-

porating the imputation in the model training process) is only possible when the missing data

imputation technique can develop an imputation model on the observed training set, able to

impute the test data by using the training data only. This will properly validate the model incor-

porating the missing data technique. KNN and bagged-tree imputation (Kuhn and K. Johnson

2013) can do likewise, but the dataset with missing values will need to contain a sufficiently

large number of complete records (i.e. a study participant for whom all the variables are mea-

sured without missing values), on which to build the imputation model. However, sometimes the

data only contain a small number or no complete records at all. Therefore, methods like MICE

(see above), RF by proximities or MissForest can only be applied independently to training and

test data by introducing some bias in the validated performance measures. Internal validation

techniques like Efron’s bootstrap as for Harrell et al. (1996) aim to correct validation bias.
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In many clinical trial datasets, including the data available for this project, there are high

percentage of missing data and no complete records. Therefore, parametric MICE and the

best RF imputation technique (MissForest) will be considered (see Subsection 2.1.2).

Combining missing data imputation and regularised regression methods

In 2014 (i.e. when this PhD project started), to my knowledge, three main publications proposed

regularised regression methods combined with imputation methods:

1. Multiple imputation-least absolute shrinkage and selection operator (MI-LASSO) method

by Chen and Wang (2013) combining MICE and the Group-Lasso (Yuan and Lin 2011),

2. MICE combined with the Lasso by Musoro et al. (2014),

3. Imputed-LASSO by Lu and Petkova (2014) combining Random Forest (RF) imputation by

proximities and the Lasso.

In their method MI-Lasso, Chen and Wang (2013) applied the Group-Lasso to the multiply

imputed datasets jointly, not to each imputed dataset separately, i.e. they used the large stacked

dataset formed by the different multiply imputed datasets altogether. This allowed them to

select the variables consistently across the imputed datasets by minimizing the sum of squares

penalized through the Group-Lasso penalty. Therefore, the estimated coefficients for the group,

formed by the same variable across multiply imputed data, would either all be exactly 0 or all be

different from 0. Then the final covariate coefficients were estimated by applying Rubin Rules

(RR, Rubin 1981) on the groups of coefficients selected by the Group-Lasso. The authors

also presented a simulation study (linear regression data-generating model for the outcome,

multivariate normal distribution, continuous or dichotomous covariates, compound symmetry

or first-order autoregressive covariance structure, p = 20 or 40, n = 100 or 200) comparing

Lasso and the traditional stepwise selection method in absence of missing data, and the MI-

LASSO and RR-stepwise selection method (Wood, White, and Royston 2008) in presence of

missing data (MCAR or MAR, 60% or 35% complete cases). Simulation results showed that

MI-LASSO could identify the true predictors in a linear regression model similarly to Lasso

when the data were complete and the selected models had similar MSEs. When missing data

were present, MI-LASSO was superior to Lasso complete records analysis and to the stepwise

regression methods. However, the authors did not validate their method internally or externally.

Furthermore, the disadvantage of the Group-Lasso variable selection performance (as for the

Lasso) is its vulnerability to high correlation between variables: groups of noise variables are

more likely to be selected (Yunus 2017).
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Musoro et al. 2014 combined the Lasso with MICE and validated the method internally via

Efron’s bootstrap validation (Harrell, Lee, and Mark 1996 and Steyerberg 2009). The authors

aimed to quantify optimism in the predictive performance of Lasso and investigate how internal

validation should be applied in the presence of multiply imputed data. Their proposed model is

illustrated in Figure 1.3. They ran a Lasso model with bootstrap tuning on each of 10 imputed

dataset and retained the models corresponding to the best penalty λ (best model with minimum

MSE) and to a tolerance penalty λ giving an MSE which was within 3% of the optimum (3%

tolerance model, more parsimonious in the variable selection).

Figure 1.3: Musoro et al (2014) model.

Incomplete data X

Impute 10 datasets through MICE: Ii, i = 1, . . . , 10

i = 1

Fit the Lasso model on Ii

Determine the best tuning parameter λ from a
grid of 40 values via bootstrap tuning with 100
bootstrap samples and return the best model

i← i+1

Select a ‘tolerance’ λ giving a model
with MSE within 3% of the optimum,

which will be a more parsimonious model

i > 10

Return final best and tolerance
models given by the averaged
β̂i over the 10 best and 10

tolerance models respectively

Y ES

NO

To validate the model prediction accuracy through bootstrap validation (Harrell, Lee, and

Mark 1996, see the Subsection 2.1.3) with 100 bootstrap samples, the authors analysed four

approaches in order to handle the multiply imputed datasets in the bootstrap resampling:
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1. in a bootstrap run the same subjects across the imputed data sets were selected, so that

the bootstrap samples differed only by the imputed data values,

2. records selected in a bootstrap run could differ over the imputed datasets,

3. only one of the imputed data sets was selected and resampling procedures were per-

formed as in the case of absence of missing data,

4. the MI procedure was incorporated in the validation, i.e. the proposed model was run on

each randomly drawn bootstrap sample.

The fourth approach is the one which is theoretically valid, as it includes the MI uncertainty in

the validation process and this was confirmed in the simulation study results that the authors ran

(see below). Performance was assessed through validated discrimination and calibration, i.e.

by looking at bootstrap corrected MSE and calibration slopes. When a model was miscalibrated

(i.e. the agreement between predicted and observed outcome was poor), it was recalibrated by

using the bootstrap-corrected calibration-in-the large and the calibration slope.

The authors ran a simulation study with 20 covariates (10 continuous and 10 binary vari-

ables) drawn from a multivariate standard normal distribution, with a sparse correlation matrix.

The outcome was predicted by 5 continuous and 5 binary variables according to a linear re-

gression model. Eight variables contained MCAR missing values in the percentage of 20%

and 50%, but the outcome was complete. Such datasets were simulated 1000 times with 250

and 1000 observations. Two further independent datasets (with 250 and 1000 observations re-

spectively) used for external validation were generated. Lasso was first fitted on the complete

data in order to estimate the apparent MSE and obtain an estimate of the external MSE by

fitting the trained model on the simulated external data. Following this, the expected optimism

was estimated via bootstrap resampling as for Harrell, Lee and Mark (1996) and via the four

approaches with and without missing data through MICE-Lasso and Lasso respectively.

In the case of complete data and 250 observations, the best Lasso model almost always

selected all the true predictors, but also retained a large number of irrelevant covariates (with

the selection frequency ranging from about 45% to 55%) as expected (Fan and Lv 2009, see

Subsection 2.1.1). This was even larger (66% to 75%) in the case of missing data because

covariates were counted if they were included in at least one of the imputed datasets. A better

variable selection was performed by the tolerance models (25% to 47% with missing data).

With 1000 observations there was much lower selection of noise covariates (3% to 25% with

missing data). Both missing data settings had optimistic apparent MSEs.
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The estimated optimism of approaches 1 to 3 were optimistic and only approach 4 showed

an optimism similar to the optimism obtained comparing apparent and external validation (slightly

biased upward). This confirmed the superiority of the fourth approach. The calibration esti-

mates showed there was over-shrinkage of coefficients.

Musoro et al. (2014) compared their method to MI-LASSO (Chen and Wang 2013) and the

performance of the tolerance model from Musoro et al. (2014) was similar to the performance

of MI-LASSO.

Lu and Petkova (2014) combined RF imputation with the logistic Lasso in a method they

called Imputed-LASSO. The RF imputation prior to applying the Lasso was a modification of

the original RF imputation by proximities as for Breiman (2003). The imputation was iterative

(four iterations): in the initial iteration, median imputation was done and a RF model was built

on the imputed data, then proximities (measures of the similarity between two subjects given by

the proportion of times they end up in the same final leaf) for the imputed data were calculated

and new imputations were obtained from the average or vote weighted by these proximities.

In the remaining iterations, a new forest was built on the new imputed data from the previous

iteration, and proximities and imputations were updated accordingly. Only one imputed dataset

was created.

A complex simulation study was run in order to compare different variable selection methods

(including CART, for which the variables that appear in the tree were considered as selected;

RF, for which only the top 10 variables were considered as selected; and Elasticnet) with the

Imputed-Lasso method in presence and absence of missing data. The simulations covered

many different scenarios: complete data and equal prevalence of cases and non-cases, miss-

ing observations (5% MCAR giving 50% complete cases) and equal prevalence, unequal preva-

lence of cases and non-cases. The noise and true predictors (10 true predictors and 50 noise

variables for a sample size of 400) were generated to have the following six situations: inde-

pendent predictors, correlated (true-noise or true-true) predictors, predictor interactions omitted

or included and presence of unobserved true predictors. The variables were described by the

authors as being categorical (3 levels), but in the model specifications the dummy coded lev-

els did not appear and results were reported as if the variables were treated as continuous.

Results showed that in absence of missing data and equal prevalence, the LASSO and Elas-

ticnet performed better than CART and RF (top ten variables) in variable selection when there

was correlation between true and noise predictors, but in the case of correlated true predictors

Lasso performed less well than Elasticnet and RF outperformed the other methods. When there

were missing observations and equal prevalence of cases, CART showed the same results as
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in absence of missing data revealing robustness to sample size decrease with MCAR data. RF

performed well when there was equal probability of missingness between variables (chapter

‘Tree-based methods’ in Cutler et al. 2009), but for the unequal probability of missingness sce-

nario RF tended to select more often the noise variables with large probability of missingness

as expected (Strobl, AL Boulesteix, and Zeileis 2007). Imputed-LASSO excelled in selecting

true predictors with both equal and unequal probabilities and chose fewer false positives than

regular LASSO, especially when the interactions were included in the model. Imputed-LASSO

selection was not affected, even though after RF imputation the correlation between variables

with more missing data and the outcome variable increased more than the correlation between

those with less missingness. However, in the case of correlations between true predictors, the

increment in correlation between predictors and response due to RF imputation caused the

Imputed-LASSO to be much more likely to select the true variables with larger missingness

only. This confirmed the inconsistency in selecting strongly correlated true variables (correla-

tion = 0.8) that characterizes LASSO (Zou and Hastie 2005). Imputed-LASSO also performed

better than other methods in terms of prediction accuracy, apart from the case of correlated true

predictors with equal missingness probability, where RF achieved best prediction. For the sce-

narios with unequal prevalence of cases and non-cases, again Imputed-LASSO outperformed

the methods above, except for the case in which half of the true predictors were not included

in the model. This suggests that if data are unbalanced and regularised regression methods

select only a few predictors, then this might be because of a large proportion of missing ob-

served predictors. Finally, regarding prediction accuracy, Elasticnet and LASSO outperformed

the other methods when data were complete, and in the case of incomplete data, Imputed-

LASSO was superior. Split-sample validation was used to internally validate the methods.

In order to assess which method combining missing data imputation techniques and sta-

tistical learning models performs best in prediction accuracy and at the same time allows in-

terpretability, I will compare Musoro et al.’s (Musoro et al. 2014) MICE-Lasso with a technique

similar to the one proposed by Lu and Petkova (2014) using Efron’s bootstrap internal valida-

tion as for Harrell, Lee and Mark (1996). While Lu and Petkova (2014) used a RF imputation

method by proximities followed by the Lasso, I will use the more accurate RF imputation method

MissForest (Stekhoven and Buhlmann 2012, Tang and Ishwaran 2017), which uses iterative RF

predictions to fill in the missing data, before applying the Lasso. Then I will also consider the

case of categorical variables and the ratio 1:2 between number of model covariates and sam-

ple size. Furthermore, I will compare MICE-Lasso and MissForest-Lasso with a RF model

after MissForest imputation through a simulation study. Group-Lasso combined with MICE
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(MI-Lasso, Chen and Wang 2013) performed slightly better in variable selection compared to

MICE-Lasso, according to the reported simulations of Musoro et al. (2014). However, I decided

to use the Lasso penalty instead of Group-Lasso because the model that the PhD project aims

to develop needs to be accessible by non-statisticians and clinicians, and Lasso is easier to

understand and more popular than Group-Lasso.

Recently, two more methods combining regularised regression and data imputation, not

known at the time I chose the methods, have been introduced:

• MI-based weighted Elasticnet or MI-WENet (Wan et al. 2015): Elasticnet is run on stacked

multiply imputed (through MICE) data with weights accounting for the proportion of the

observed information for each observation,

• Multiple Imputation Random Lasso or MIRL (Liu et al. 2016): Random Lasso has an

improved performance compared to the Lasso when the correlation among variables is

high. MIRL has been shown to deal with high proportions of missing data (50%) efficiently.

These two methods were not compared with the above three methods.

1.2.3 Dimension reduction of multiple outcomes

In psychiatric research, disease complexity is often not adequately characterised by a single

outcome. This is the case of commensurate outcomes, i.e. multiple observed outcomes

(Teixeira-Pinto et al. 2009) measuring the same underlying construct using the same scale.

The cognitive outcomes of the clinical data available for this PhD project are commensurate

outcomes. In particular, there is an interest in executive function, processing speed and mem-

ory outcomes which are descriptions of different aspects of cognition. Most statistical learning

methods can handle only one outcome unlike traditional statistics which offers a variety of mod-

elling approaches, such as joint modelling and generalized linear mixed models. Multivariate

regularised generalised linear mixed models can deal with commensurate outcomes, but such

methods had only just been developed when I started the project, with slow and not well de-

bugged algorithms (see Subsection 1.1.4). Therefore, I will only use univariate regularised

regression methods in the PhD and will then need to summarize the different observed cog-

nitive outcomes in one variable. A common procedure to summarize outcomes measuring an

unobserved (latent) construct is Factor Analysis (FA).

Factor analysis is a statistical technique which postulates that the correlation of the ob-

served variables is explained by a smaller number of underlying unobserved variables and tries

to identify and test the measurement model (Lattin, Carroll, and P. Green 2003). Exploratory
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FA (EFA), a technique within FA, aims to determine the underlying relationships between mea-

sured variables. It is first used when no a priori hypothesis about factors or patterns of the

multiple observed outcomes is assumed. In a second step, confirmatory FA (CFA), another

special form of FA, is used to test whether measures of a construct are consistent with the EFA

suggestions, also using an independent data set. FA can provide a valid and reliable aggregate

measure for the latent summary variable (the factor scores). Models requiring a single outcome

like regularised regression methods (Lasso and Elasticnet) can then be applied.

Therefore, I will apply FA to estimate factor scores of a summary latent measure for the

multiple outcomes. The factor scores will then be used as a main clinical outcome measure for

the prediction model I aim to develop.

1.2.4 Summary

People with SCZ experience cognitive difficulties and these are associated with poor functional

outcomes (Rajji, Miranda, and Mulsant 2014). There is evidence for the effectiveness of CRT

treatment in reducing the cognitive problems of SCZ (Wykes, Huddy, et al. 2011). Identifying

CRT predictors of differential response using moderation analysis of individual participant data

from different RCTs would help to minimise treatment response heterogeneity of outcomes, as

well as contributing to personalised treatment and better prognosis. However, identifying mod-

erators of CRT involves analysing high dimensional data with large percentages of missing data

in predictors and outcomes. Therefore, the implementation of suitable missing data imputation

techniques such as MICE (Van Buuren and Oudshoorn 2000) and MissForest (Stekhoven and

Buhlmann 2012), combined with statistical learning methods such as regularised regression

methods (Lasso, Elasticnet, Hastie, Tibshirani, and Friedman 2008) and RF (Breiman 2001)

is needed. Regularised regression methods are good for ease of interpretation, while RF is

optimal in prediction accuracy.

A simulation study will assess the most suitable combined method as the one showing the

best trade-off between accuracy and interpretability. The chosen method will be then applied

to the clinical data. Because of the univariate nature of regularised regression methods and

because there is an interest in analysing multiple outcomes simultaneously, FA will be used to

summarise commensurate outcomes with one latent outcome. A precision medicine prediction

model, with the summary measure as dependent variable, will be developed.
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1.3 Thesis aims and objectives

The primary project aims consist of:

• developing a robust prediction model for precision medicine using computer intensive

statistical learning methods (Hastie, Tibshirani, and Friedman 2008) able to deal with

large percentages of missing data in the predictors, and lower percentages of missing

data in the outcome. This will allow the analysis of large incomplete psychiatric data, by

maximising the quantity of information they provide;

• identifying moderators of cognitive remediation therapy (CRT, Wykes, Brammer, et al.

2002) in people with SCZ. A precision medicine prediction model would allow clinicians

to tailor a treatment to an individual patient according to their characteristics, and to un-

derstand the mechanism responsible for differential treatment responses.

These are the statistical aims of the project:

1. To address common key problems of psychiatric studies simultaneously such as:

• missing data

• variable selection or measurement of variable importance in the model

• overfitting

• multicollinearity

• analysis of multiple studies’ individual data using statistical learning

• factor analysis of commensurate outcomes

• longitudinal invariance of a latent factor

Please see Sections 1.1 and 1.2 for definitions and explanations;

2. To explore the best trade-off between prediction accuracy and interpretability in the choice

of the most suitable statistical learning model.

1.4 Thesis structure

The thesis is formed of 2 main chapters:
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1.4.1 Simulation study

In Chapter 2, I will compare the following prediction models combining missing data imputa-

tion techniques (MICE and MissForest) with statistical learning methods such as regularised

regression methods (Lasso and Elasticnet) and Random Forests through a simulation study.

Different missing data scenarios, correlation between covariates and sample sizes will be anal-

ysed. The model returning the best compromise between validated prediction accuracy and

variable selection performance will be then used to develop the precision prediction model for

CRT in Chapter 3.

1.4.2 Prediction model development

In Chapter 3, I will present the multiple randomised controlled trials’ individual participant data

used in the project with respective information and summary statistics. Next, I will run a factor

analysis of the cognitive outcomes in order to find a summarising latent factor, which will be

used as a dependent variable in the development of a precision medicine model for CRT. Then,

I will build another precision medicine model with one of the cognitive outcomes as the depen-

dent variable; the particular cognitive outcome was chosen because of its clinical importance

and popularity in the literature. This model will allow me to study the effect of imputing missing

dependent variable values on prediction accuracy and feature variable selection. Finally, the

performances of the developed models will be compared and results discussed in light of the

existing literature.



Chapter 2

Prediction modelling combining

statistical learning with missing data

imputation: a simulation study

2.1 Introduction

In the previous chapter I identified two modelling approaches for clinical prediction models,

which are a compromise of showing good prediction accuracy, ability of variable selection and

clinical interpretability, namely regularized regression (the Least absolute shrinkage and selec-

tion operator or Lasso by Tibshirani 1996 and Elasticnet by Zou and Hastie 2005) and Random

Forests (Breiman 2001). Both modelling approaches are known to handle high-dimensional

data sets.

Lasso and Elasticnet were proposed because of their variable selection property and inter-

pretability, while Random Forest was chosen because of its generally good prediction accuracy,

ability to model more complex relationships and variable importance measures (James et al.

2013). Regularised regression methods also allow to handle missing data appropriately when

combined with imputation methods (MICE in Chen and Wang 2013 and Random Forests im-

putation by proximities in Lu and Petkova 2014). However, it is not known how well these

combined models perform in selecting the correct variables (or estimating the correct variable

importance) when applied to complex data sets, e.g. including categorical variables with more

than two levels and datasets with the number of covariates in the model (also comprising inter-

actions terms) close to the sample size. Similarly, it is not known how good the discrimination

and calibration abilities of the models to predict unseen cases is. Because for clinical datasets

61
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the truth is not known, Monte Carlo (MC) simulations (Burton et al. 2006) were used to assess

the performance of such methodologies. By simulating data from known probability distributions

as inputs to model uncertainty and known relationships between independent and dependent

variables with different missing data mechanisms and correlation matrices, I can evaluate the

characteristics and behaviour of complex processes in the comparison of the expected and

observed behaviour of a modelling technique.

In this chapter, I will assess the performance of the above three statistical learning tech-

niques (Lasso, Elasticnet and Random Forests) combined together with two missing data han-

dling procedures (Multivariate imputation using chained equation (MICE) by Van Buuren and

Oudshoorn 2000 and another iterative method (MissForest) based on random forests predic-

tions by Stekhoven and Buhlmann 2012) using MC simulations in terms of

• variable selection

• prediction accuracy

• ability to handle missing data

• clinical interpretability and usefulness.

Namely, the proposed methods evaluated in this simulation study will be the following combi-

nations of the mentioned methods:

• MICE-Lasso (Musoro et al. 2014) and MICE-Elasticnet: Lasso (or Elasticnet) was run on

the imputed datasets and averages of the estimated coefficients across imputed datasets

constituted the final model coefficients

• MissForest-Lasso and MissForest-Elasticnet: single MissForest imputation was followed

by Lasso (or Elasticnet)

• MissForest-RF and MissForest-Conditional RF: single MissForest imputation was fol-

lowed by RF (or Conditional RF)

MICE-RF will not be considered in the simulation study because the main purpose of using RF

was to compare its usually very good prediction accuracy with the less good accuracy of the

more interpretable regularised regression methods (Lasso and Elasticnet). Therefore, only RF

combined with a RF imputation method was of interest to this aim.

The method showing the best trade-off between prediction accuracy and model parsimony

to allow clinical interpretability will be chosen for the analyses of the cognitive remediation

therapy RCT data sets.
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In the following sections I will first describe the statistical learning methods and missing

data procedures and how the performance was assessed using bootstrap validation as for

Harrell, Lee and Mark (1996). Next, I will explain the concept of MC simulations, how they

are performed in classical inferential statistics and how they need to be adapted to assess

prediction models using statistical learning methods. Then, I will justify the choice of the main

simulation parameters to estimate, introduce the different simulation scenarios, and present

some hypotheses of what I expect from the simulation results, according to the knowledge to

date. Finally, I will explain how simulations were conducted and report the results.

2.1.1 Statistical learning methods for prediction modelling

Random forests and Conditional Random Forests

Random Forests (RF, Breiman 2001) is a statistical learning non-parametric method based on

Classification and Regression Trees (CART, Breiman, JH Friedman, et al. 1984).

CART CART are non-parametric prediction models which perform recursive binary splitting to

partition the covariates space into disjoint regions R1, . . . , RG. Then, every test observation that

falls into a particular region is predicted with the mean (regression) or the mode (classification)

of the outcome for the training observations in that region. Recursive binary splitting finds the

best split at each step according to a performance criterion: minimising the residual sum of

squares (RSS) for continuous outcomes and the classification error rate or the Gini index or the

cross-entropy for binary outcomes. In the case of regression trees, at each step all predictors

X1, . . . , Xp are considered together with all possible values of cutpoints sjij for each of the

predictors (j referring to the predictor Xj , j = 1, . . . , p, and ij referring to the different values

taken by predictor Xj , with ij = 1, . . . , nj). Then, the predictor and respective cutpoint that

minimise the RSS of the resulting tree are chosen. Thus, if at the first step Xk and sklk =: s are

the chosen predictor with respective cutpoint, R1(k, s) := {X|Xk < s} and R2(k, s) := {X|Xk ≥

s} are the two half-hyperplanes in which the space is divided first. This also means that the

RSS for the tree generated by this first split is the minimum of the possible RSSs obtained from

other combinations of predictor and cutpoint:

RSS(k, s) =
∑

i:xi∈R1(k,s)

(yi − ŷR1)2 +
∑

i:xi∈R2(k,s)

(yi − ŷR2)2 (2.1)
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where ŷRg , g = 1, 2 are the mean responses for the training observations within the g-th box

(region), g = 1, 2 respectively. Then, the same procedure is repeated recursively in each of the

regions created in the previous step and so on until a stopping criterion is met, e.g. until there

is a maximum of four observations in every region. The predictions for the test observations

in a particular region are the mean responses for the training observations belonging to that

region.

Since T0, the large tree constructed this way, may predict well the training observations, but

could overfit the test data for its complexity, it is practice to do some tree pruning to generate

a simpler subtree with lower variance but some bias. To do that, a cost complexity pruning

is applied to T0 in order to avoid computing all the subtrees test errors using computationally

costly cross-validation procedures: for each value of a sequence of a tuning parameter α > 0

there is a subtree T ⊂ T0 that minimises

|T |∑
m=1

∑
i:xi∈Rm

(yi − ŷRm)2 + α|T | (2.2)

where |T | indicates the number of the terminal nodes of T and Rm is the box that corresponds

to the mth terminal node. Then, through cross-validation the subtree is tuned on α.

Random Forest RF is given by the combination of a large number of trees and the RF algo-

rithm for continuous outcomes (similar for categorical outcomes) is the following:

1. Draw a bootstrap sample from the training data (sample drawn with replacement of the

same size as the training data).

2. Develop an unpruned tree on the bootstrap dataset as follows:

(a) Draw a random sample of the predictors of size m without replacement (m = p/3

is adviced if the outcome is continuous, m =
√
p if the outcome is binary, or m

can be treated as a tuning parameter to minimise the RF error and chosen through

resampling methods).

(b) Construct the first recursive binary split of the data.

(c) Repeat step 2a for each subsequent split until a stopping criterion which for example

could be that the tree needs to have maximum four observations per region (terminal

node). Compute each region mean.

(d) Use the developed tree to predict the out-of-bag (OOB) datasets (data in the training
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sample not taken in the bootstrap samples, used as test sets) and compute the OOB

mean squared error between predicted and observed outcome for the tree.

3. Repeat steps 1-2 a large number of times (e.g. 500).

4. Average the trees OOB mean squared errors to obtain the OOB error for RF.

5. Average the trees predictions to obtain the RF predictions.

Thus, the accuracy of the prediction can be estimated by testing each tree on the out-of-bag

(OOB) sample, which comprises the observations in the original sample not included in the

bootstrap sample where the individual tree is trained. The OOB error is the mean squared error

(MSE, for continuous outcomes) or misclassification error (for categorical outcomes) averaged

over the errors obtained testing each tree on the OOB samples. RF often yields a favourable

error rate, it is known to perform very well with high dimensional data with large number of

variables compared to the number of observations, in presence of complex interactions and

non-linear data structures and it can handle missing data (see the Subsection 1.2.2). It can

assess variable importance determined by the mean decrease in OOB accuracy (or mean

decrease in node impurity from splitting on the variable for binary outcomes) or by a permutation

test (which is implemented in the R package ‘randomForest’ by Breiman, Cutler, et al. 2006).

The permutation test works as follows: for each tree the OOB error is recorded, then the same

is done after permuting each predictor by breaking the link with the outcome and any interacting

variables and the differences between the two accuracies are then averaged over all trees and

normalized by the standard error.

RF with conditional inference trees The above described RF variable importance mea-

sures are biased when variables have different scales of measurement or different number of

categories: RF will prefer categorical variables with more levels and the continuous variables

to the categorical variables with less levels (Strobl, AL Boulesteix, and Zeileis 2007). For ex-

ample, in the case of different level of correlation among predictors, the described permutation

test, which is unconditional, considers that each variable is independent of the response as

well as of all other predictors. Since the correlated predictors are obviously not independent,

all of the correlated variables get high importance scores compared to the uncorrelated ones

(Strobl, AL Boulesteix, and Zeileis 2007). By using the conditional inference trees (imple-

mented in ‘cforest’ (R package ‘party’) by Hothorn, Hornik, and Zeileis 2006) and by applying

a bootstrap resampling without replacement, the biased variable importance measure prob-

lem seemed to be improved (Strobl, AL Boulesteix, and Zeileis 2007). To definitely solve the
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problem of biased variable importance measure for correlated variables, Strobl, Boulesteix, et

al. (2008) proposed a new conditional variable importance measure implemented in the ‘party’

package. Conditional inference trees are different from normal trees (like CART) because of

how the recursive binary splitting algorithm is performed. While trees result in an exhausting

search through all possible two-ways splits by causing general overfitting and biased variable

selection at each split, conditional inference trees separate the variable selection for splitting

and the splitting procedure in this way: a χ2 test investigates the significance of the association

between the outcome and one of the covariates and the covariate with strongest association

is selected for splitting, then a permutation test finds the optimal binary split for that covariate.

This is called unbiased recursive partitioning (Hothorn, Hornik, and Zeileis 2006). Conditional

inference trees select the correct covariate in a split more often than the traditional exhaustive

search procedure and do not need pruning as in this way they avoid overfitting.

Lasso and Elasticnet

The Lasso (Tibshirani 1996) and the Elasticnet (Zou and Hastie 2005) are regularized re-

gression methods which perform shrinkage of the coefficients to enhance prediction accuracy.

Unlike the regularised regression method Ridge (see Subsection 1.1.4), they perform variable

selection by setting the smallest estimated coefficients exactly to 0 to reduce model complexity.

Let y be the n-vector outcome, X the n× p design matrix of the p explanatory variables and β

the p-vector of least squares coefficients. The Lasso and Elasticnet estimated coefficients are

given by:

βlasso = arg min
β

{
‖y −Xβ‖22 + λ‖β‖1

}
(2.3)

βenet = arg min
β

{
‖y −Xβ‖22 + λ[α‖β‖22 + (1− α)‖β‖1]

}
(2.4)

where ‖ · ‖1 and ‖ · ‖2 are the l1 and l2 norms respectively, and λ > 0 and 0 < α < 1 are called

tuning parameters and are selected via resampling methods (cross-validation or bootstrap) in

order to minimise the MSE (or classification error) or by minimising criteria such as Akaike

Information Criterion (AIC) and Bayesian Information Criterion (BIC) through grid search. For

example, tuning the model via bootstrapping resampling happens in the following way:

1. Choose a set of tuning parameters to evaluate

2. For each tuning parameter (or for each couple of tuning parameters as for Elasticnet)

follow these steps:
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(a) draw a bootstrap sample from the model training set

(b) fit the model on the bootstrap sample

(c) predict the out-of-bag sample (observations not in the bootstrap sample)

(d) repeat steps 2a-2c a large number of times (e.g. 100, Harrell, Lee, and Mark 1996)

(e) calculate the average performance (MSE) across out-of-bag predictions

3. Determine the tuning parameter set which returns the optimal performance (minimal

MSE)

4. Fit the final model to all the training data using the optimal tuning parameter set.

A cross-validation (CV) tuning procedure is similar to the above, only step 2 changes as instead

of bootstrap resampling, CV is performed. In a repeated CV tuning, for each tuning parameter

set CV is repeated n times on n different random partitions of the training data, and the final

optimal tuning parameter set is given by the one returning the minimal average model MSE

across the n CVs (Krstajic et al. 2014).

Lasso and Elasticnet properties The Lasso performs more variable selection than Elastic-

net returning a sparse vector of estimated coefficients. Therefore the Lasso will work more

efficiently when there are large proportions of noise variables. Because the l1 penalty is not

strictly convex, the Lasso will only choose one variable in a group of highly correlated variables

since the penalised RSS optimal solution for equal variables is not unique (Zou and Hastie

2005). In contrast, Elasticnet will select or exclude the whole group of correlated covariates

as the Elasticnet penalty is convex and returns a unique solution, i.e two equal estimated co-

efficients for equal variables. Thus, the level of correlation of the variables and the purpose

of the analysis will dictate which method is best to use between the two. Due to shrinkage,

these methods are able to handle datasets with a higher number of variables compared to the

number of observations (p ≥ n). In the p > n case, the Lasso selects at most n variables before

it saturates, because of the nature of the convex optimization problem (Zou and Hastie 2005).

This limiting feature does not happen in the case of Elasticnet. The bias due to shrinkage in

the parameter estimation of Lasso and Elasticnet is compensated with a reduction of variance

compared to linear regression. However, there are drawbacks to these methods. One of them

lies in the fact that, when the true (ordinary least squares, OLS) β components are larger than

the chosen λ, the Lasso (and similarly the Elasticnet) estimator has a bias approximately of

size λ, shifting the true coefficients larger than λ towards 0 by a factor of size λ (see Figure
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Figure 2.1: Lasso soft-thresholding penalty: the Lasso estimator is shifted towards 0 from the
truth (unbiased OLS estimator) by a constant λ when the true coefficients are larger than λ.
When the true coefficients are smaller than λ, they are shrunk towards 0.

2.1, Fan and Li 2001). Therefore, when the tuning parameters are automatically selected by

a data-driven rule, these regularised regression methods tend to overfit the data, by selecting

more fake predictors: model selection inconsistency (Fan and Lv 2009 and Zou 2006). Dif-

ferent more complex penalties were proposed to avoid this bias, e.g. the SCAD penalty (Fan

and Li 2001) and the adaptive Lasso (Zou 2006). However, a simpler solution to this overfitting

problem can be choosing the Lasso (or Elasticnet) model corresponding to a stronger penalty

that returns a higher MSE compared to the minimum, but with an accuracy still comparable to

the optimum. This way the model is simpler and the number of false positives selected variables

is lower. For example, the one-standard-error rule (Breiman, JH Friedman, et al. 1984, Hastie,

Tibshirani, and Friedman 2008, James et al. 2013), applied in the case of cross-validation (CV)

tuning, selects the most parsimonious model whose error is no more than one standard error

above the error of the best model. Also Musoro et al. (2014) studied a stronger penalty other

than the best for the Lasso: the 3% tolerance penalty corresponding to the model having an

error within 3% of the minimum. The stronger the penalty, the more parsimonious the model.
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Typically the 3% tolerance penalty results stronger than the one-standard-error penalty, unless

the standard error of the minimum error is larger than the minimum error’s 3% proportion.

The other drawback for regularised regression methods is the fact that they only perform

complete records analysis, i.e. they only use the non-missing cases when missing data are

present. For this reason, I considered using missing data imputation techniques (see next

Subsection 2.1.2)

2.1.2 Missing data imputation techniques

For an overview of missing data handling methods in statistical learning see Subsection 1.2.2.

In order to take advantage of the variable selection and high dimensional data handling

properties of these regularised regression methods when missing data are present, two data

imputation techniques were combined with the above methods: MICE (implemented in the

‘mice’ R package, Van Buuren and Oudshoorn 2000) and MissForest (implemented in the

‘missForest’ R package, Stekhoven and Buhlmann 2012).

Multivariate imputation using chained equations (MICE)

MICE (Van Buuren and Oudshoorn 2000) is a classical parametric statistical method (not com-

monly used in statistical learning) to impute missing values that completes each variable by

regressing it on all the other variables in the imputation model sequentially until all variables

are complete. This process is repeated multiple times in order to incorporate missing data

uncertainty. MICE can deal with mixed type of variables (continuous and categorical). MICE

assumes that a full multivariate distribution exists and missing values are sampled from condi-

tional distributions based on this full distribution. In case the rate of missing information is not

high and the assumptions are met, only 5 to 10 imputations are needed to have efficient results

(Rubin 1981). However, in general more imputations, depending on the percentage of missing

data are recommended. MICE procedures assume that the data are at least missing at random

(MAR) to deliver reliable imputation results (Van Buuren and Oudshoorn 2000). However, it is

not possible to test this assumption (Carpenter and Kenward 2013).

In classical statistics, the planned analysis results obtained on the different imputed datasets

are then combined using Rubin’s Rules (Rubin 1981): the estimated parameters are averaged

across the imputed datasets and the combined variance is given by a linear combination of

the average within imputation variance and the between imputation variance. The imputation

model of MICE needs to include all variables that will be investigated in the planned statistical
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models, including any potential interaction that will be tested and the dependent variable of the

model (KG Moons et al. 2006). Including auxiliary (i.e. additional) variables in the imputation

model, which are not in the substantive model (i.e. planned analysis model), and which are

predictive of missingness and predictive of the missing values of variables in the substantive

model, can improve the efficiency of imputations, by reducing bias and make the MAR as-

sumption more plausible (Hippel and Lynch 2013). When auxiliary variables are not predictive

of missingness or not correlated with the variables in the substantive model, their inclusion in

the imputation model can generate noise and unstable imputation estimates in small sample

regression analyses (Hardt, Herke, and Leonhart 2012.

MICE algorithm The MICE algorithm was introduced by Van Buuren and Oudshoorn (2000)

and implemented in the mice() R-function. The algorithm imputes missing values by Gibbs

sampling: by default, each variable containing missing values is predicted from all other vari-

ables in data set. These prediction equations are used to impute plausible values for the miss-

ing data. The process iterates until convergence over the missing values is achieved.

Let us assume that Y is a partially observed random sample from the p-variate multivariate

distribution P (Y |θ), where θ is a vector of unknown parameters. The MICE algorithm obtains

the posterior distribution of θ by sampling iteratively from conditional distributions of the form

P (Y1|Y−1, θ1), . . . , P (Y1|Y−p, θp).

The first iteration of the algorithm draws missing parameters and missing values from ob-

served marginal distributions to obtain θj∗(1), j = 1, . . . , p and Yj∗(1), j = 1, . . . , p. The t−th

iteration is a Gibbs sampler that draws parameters and data from conditional distributions such

as:

θ∗(t)1 ∼ P (θ1|Y obs
1 ,Y

(t−1)
2 , . . . ,Y (t−1)

p )

Y ∗(t)1 ∼ P (Y1|Y obs
1 ,Y

(t−1)
2 , . . . ,Y (t−1)

p , θ∗(t)1 )

...

θ∗(t)p ∼ P (θp|Y obs
p ,Y

(t−1)
1 , . . . ,Y

(t−1)
p−1 )

Y ∗(t)p ∼ P (Yp|Y obs
p ,Y

(t−1)
1 , . . . ,Y

(t−1)
p−1 , θ∗(t)p )

where Y (t)
j =

(
Y obs
j ,Yj∗(t)

)
is the j−th imputed variable at iteration t.

It is important to monitor convergence, but apparently the number of iterations can often be

a small number. This process is repeated m times in order to generate m different imputed
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datasets.

MissForest

The non-parametric missing value imputation algorithm MissForest (Stekhoven and Buhlmann

2012) is an iterative imputation method based on Random Forests (RF) which accommodates

non-linear relation structures and complex interactions, mixed type of variables (continuous

and categorical), by performing well under moderate to high missingness and even (in certain

cases) under the MNAR assumption (Cutler et al. 2009). MissForest intrinsically constitutes

a multiple imputation scheme: for each variable in turn a RF is trained on all other variables

observed values in a first step, then missing values are predicted through the built RF model,

next repeatedly a RF is trained on the predicted observations, and then used to predict the

missing values until the difference between the newly imputed data matrix and the previous

one increases for the first time. No prior knowledge about the data is needed apart from the

fact that the observations need to be pairwise independent. It outperforms MICE and other

imputation methods mainly in datasets with non-linearities and with different percentages of

missing values (Shah et al. 2014). Waljee et al. (2013) showed that MissForest outperformed

well known methods such as k-nearest neighbours (Troyanskaya et al. 2001) and parametric

MICE (Van Buuren and Oudshoorn 2000). Tang and Ishwaran (2017) revealed that MissForest

was the best performing RF imputation method with performance improving with increasing

correlation. One disadvantage was the longer computational time for high-dimensional data

compared to the other RF missing data imputation algorithms (Tang and Ishwaran 2017). Also

Shah et al. (2014) acknowledged the ability of MissForest to better manage complex data, but

they showed that MissForest, as all RF imputation methods, can be biased in some situations

due to the fact that it cannot impute values beyond the observed ones, not constituting a model-

based prediction. However, they assessed bias and certainty of parameter estimates and not

prediction accuracy.

MissForest algorithm Let X, (n × p)-dimensional data matrix, be our data, with x1, . . . ,xp

being the columns variables of X. For each variable xj with missing values at entries i(j)mis ⊆

{1, . . . , n}, let us separate the dataset into 4 parts:

• y(j)obs, the observed values of variable xj ,

• y(j)mis, the missing values of variable xj ,

• x(j)
obs, the variables other than xj with observations i(j)obs = {1, . . . , n} \ i(j)mis,
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• x(j)
mis, the variables other than xj with observations imis.

RF can automatically handle missing values by weighting the frequency of the observed values

in a variable with the RF proximities after being trained on the initially mean imputed dataset

(Breiman 2001). However, this approach requires a complete response variable for training the

forest. Therefore,

1. to begin an initial guess for the missing values is made in X using mean imputation or

another imputation method for mixed data (continuous and categorical variables).

2. Then, variables xj , j = 1, . . . , p are sorted according to the amount of missing data start-

ing from the lowest amount.

3. For each variable xj , the missing values are imputed by first fitting an RF with response

y
(j)
obs and predictors x(j)

obs.

4. Then missing values y(j)mis are predicted by applying the trained RF to x(j)
mis.

5. The imputation procedure is repeated until the difference between the last imputed data

and the previous one increases for the first time with respect to both continuous and

categorical variables (Stekhoven and Buhlmann 2012).

This simulation study combines MissForest to Lasso/Elasticnet for the first time. MissForest

was already combined to Cox regression (Shah et al. 2014) and Lasso was already combined

to MICE (Musoro et al. 2014) and to RF imputation by proximities (Lu and Petkova 2014. Also,

other regularised regression penalties were used in combination with MICE, e.g. the Group-

Lasso (Chen and Wang 2013). I particularly chose the Lasso and Elasticnet penalties for their

variable selection property, their popularity and easy understanding for all audiences.

It is well known that RF imputation can produce biased estimates of missing values by

predicting them in a way which produces estimates too similar to the observed data (Shah

et al. 2014 and Lu and Petkova 2014). Also, prediction models applied to RF imputed data

(single imputation) do not incorporate missing data uncertainty and might result too optimistic

in predictions. Therefore, when prediction models are applied to RF imputed data, performance

results need to be internally validated to correct for these biases (see Subsection 1.2.1).

2.1.3 Handling overfitting using Efron’s bootstrap validation as for Harrell et al.

(1996)

Internal validation procedures are used to estimate a prediction model performance on new

cases belonging to the same population of the data used to train the model. As it is explained
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in Subsection 1.2.1, Bootstrap resampling can be used as an internal validation method that

returns nearly unbiased and relatively low variance estimates of future model performance. It

has already been mentioned that internally validating the models through bootstrap resampling

allows using all the available data to estimate the final model parameters and fewer model fits

are required than CV (see Subsection 1.2.1). With bootstrap validation, one repeatedly fits

the model in a bootstrap sample and evaluates the performance of the model on the original

sample. The estimate of the likely performance of the final model on new data is estimated by

the average of all the bootstrap sample model estimates of accuracy computed on the original

sample that is slightly biased downward. Efron (1979, pages 247-252) improved the accuracy

of the bootstrap estimate of model performance by estimating the optimism in the final model fit

and by subtracting it from the apparent performance derived from the original sample to obtain

a bias-corrected (overfitting-corrected) estimate of performance. The following are the steps

needed to run an Efron’s optimism bootstrap validation for a given model as for Harrell, Lee

and Mark (1996):

1. Develop the model M using all n observations and measure the apparent performance

measure of interest Papparent computed on the same n observations used to develop M .

2. Draw a bootstrap sample from the original sample.

3. Train the model on the bootstrap sample naming it model Mboot.

4. Compute the apparent (training) performance for model Mboot on the same bootstrap

sample denoting it Pboot.

5. Compute the performance of model Mboot on the original data and denote it Ptest

6. The optimism in the fit from the bootstrap sample is Pboot − Ptest

7. Repeat steps 2 to 6 at least 100 times

8. Average all the optimism estimates from the bootstrap samples to obtain the internal

optimism Ointernal.

9. The bootstrap corrected performance of the original model M is Pcorrected = Papparent −

Ointernal, nearly unbiased estimate of the expected value of the external performance of

the process that generated M .

Therefore, Pcorrected is an honest estimate of internal validity that penalizes for overfitting.
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Bootstrapping can be used to estimate optimism in any performance measure. For example,

bias-corrected estimates of calibration slope and calibration-in-the-large measures can also be

obtained via Efron’s optimism bootstrap (see Subsection 1.2.1).

Bootstrapping is here preferred to cross-validation as an internal validation method be-

cause of the fewer resampling steps required (and then cheaper computational cost) in order to

compute nearly unbiased estimates of optimism (Harrell, Lee, and Mark 1996 and Steyerberg

2009).

Some details on Efron’s optimism bootstrap as for Harrell, Lee and Mark (1996)

In this paragraph I will restate Efron’s optimism bootstrap procedure (Harrell, Lee, and Mark

1996) in precise language using the theory of probability (Efron 1979, Hastie, Tibshirani, and

Friedman 2008, Borra and Di Ciaccio 2010). As for the notation used in Subsection 1.2.1, let us

call Ti = (xi, yi), i = 1, . . . , n the observations of the individual i, where xi is the vector of inputs

and yi is the outcome. Efron’s bootstrap procedure considers T = {(x1, y2), . . . , (xn, yn)} as

an i.i.d. sample from the multidimensional distribution F . If the model f̂T is estimated from our

data T , then ŷ = f̂T (x0) is the predicted value of y at x = x0. Let us consider f̂T (x0) as a

plug-in statistic f̂T (x0) =: f̂(x0, F̂ ) for some function f̂ , where F̂ is the empirical distribution

function of the data. We are here relying on the assumption that the empirical distribution of

the sample (the set of all the possible nn bootstrap samples from the sample under interest)

converges to the true distribution F as the sample size becomes large. The bootstrap using all

of the nn samples is called the ideal bootstrap. However, the bootstrap generally only draws a

number of the nn samples randomly with replacement, and approximates the ideal bootstrap as

the the number of boostrap samples becomes large. Let us call L[y, f̂(x)] a measure of error

between the response y and the prediction f̂(x). Thus, the prediction error (also called true

error, generalization error or extra-sample error ) for f̂T (x0) is defined:

ErrT ,F := E0,F

[
L[y0, f̂T (x0)|T ]

]
, (2.5)

where the notation E0,F means the expectation over a new observation (x0, y0) from the popu-

lation F and T is fixed. ErrT ,F refers to the error for this specific training set T , it is a conditional

error. The apparent error (also called training error ) is defined as follows:

errT ,F̂ := EF̂

[
L[y, f̂T (x)|T ]

]
=

1

n

n∑
i=1

L[yi, f̂T (xi)]. (2.6)
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It is called the apparent error because EF̂ averages on the losses on the training data T and

the same data is used to fit the method and assess its error.

The bootstrap procedure can estimate the true error ErrT ,F (2.5) by applying the plug-

in principle (for which the true distribution F is approximated by the empirical distribution F̂ ,

consequence of Slutsky’s theorem) as follows:

ÊrrT ∗,F̂ =
1

n

n∑
i=1

L[yi, f̂T ∗(xi)], (2.7)

where T ∗ = {(x∗1, y∗1), . . . , (x∗n, y
∗
n)} is a bootstrap sample, f̂T ∗(xi) is the predicted value at

x = xi, according to the model f̂T ∗ trained on the bootstrap sample T ∗. However, this estimate

of the true error is given for a fixed single bootstrap sample and this makes it to have high

variance across bootstrap samples. Let us then define the expected extra-sample error (or

average prediction error or expected prediction error ):

ErrF := ET ,F [ErrT ,F ] = ET ,F

[
E0,F

[
L[y0, f̂T (x)|T ]

]]
(2.8)

that averages over new observations and training sets T drawn randomly. The ideal bootstrap

plug-in estimate of this quantity is:

ÊrrF̂ = ET ∗,F̂

[
ErrT ∗,F̂

]
= ET ∗,F̂

[
n∑
i=1

L[yi, f̂T ∗(xi)]/n

]
, (2.9)

since it averages over an infinite number of bootstrap samples (or over the nn possible combi-

nations of the empirical distribution F̂ ). Therefore, an approximation corresponding to a finite

number of bootstrap samples needs to be applied:

Êrr
∗
F̂ =

1

B

B∑
b=1

n∑
i=1

L[yi, f̂T ∗
b

(xi)]/n. (2.10)

The bootstrap approach estimates the bias in the apparent error errT ,F̂ (2.6) as an estimator of

the true error ErrT ,F and then corrects errT ,F̂ (2.6) by subtracting its estimated bias. This bias

is called optimism:

op := ErrT ,F − errT ,F̂ (2.11)

It is important to note that the optimism of the apparent error can also be defined by focusing

on a more restrictive estimate of the prediction error: the in-sample error, i.e. the expectation of

the losses according to a fixed function f̂T over the new possible outcomes while the covariates
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are considered fixed at their observed samples (Hastie, Tibshirani, and Friedman 2008, Borra

and Di Ciaccio 2010). However, the in-sample error is not discussed further in the thesis as the

extra-sample error is used instead.

Let us define now the average optimism (expected optimism):

ωF := ET ,F [op] = ET ,F

[
ErrT ,F − errT ,F̂

]
, (2.12)

i.e. the average difference between the true prediction error and the apparent error over data

sets T with pairs of observations Ti = (xi, yi) ∼ F . With this definition, it will usually turn out

that the expected optimism ωF (2.12) is positive as the apparent error rate errT ,F̂ is downward

biased in estimating the prediction error. Harrell, Lee, and Mark 1996 and Steyerberg 2009

define the optimism in the opposite way: op:= errT ,F̂ − ErrT ,F , thus it will be negative most of

the times (see section 2.1.3). However, these definitions are equivalent except for the sign.

The plug-in bootstrap estimate of the expected optimism ωF is:

ω̂F̂ = ET ∗,F̂

[
ÊrrT ∗,F̂ − êrrT ∗,F̂ ∗

]
, (2.13)

where the F̂ ∗ is the empirical distribution function of the bootstrap sample T ∗. This ideal boot-

strap quantity is approximated by

ω̂∗
F̂

=
1

nB

B∑
b=1

n∑
i=1

{L[yi, f̂T ∗
b

(x∗i )]− L[y∗ib, f̂T ∗
b

(x∗i )]}, (2.14)

where f̂T ∗
b

(x∗i ) is the predicted value at x∗i of the model trained on the bth bootstrap sample,

b = 1, . . . , B, and y∗ib is the outcome of the i-th observation for the b-th bootstrap sample,

b = 1, . . . , B. Therefore, the final estimate of prediction error is then given by:

ÊrrT ,F = errT ,F̂ + ωF̂ , (2.15)

i.e. the apparent error plus the bias of the apparent error (the expected optimism). The boot-

strap approximation of the estimated prediction error (2.15) is:

Êrr
∗
T ,F̂ = errT ,F̂ + ω̂∗

F̂
. (2.16)

This bootstrap estimate of the prediction error (2.15) for a large number of bootstrap samples

is nearly unbiased (Efron and RJ Tibshirani 1994).
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These details on Efron’s optimism bootstrap algorithm meant to formalise the concept of op-

timism correction of the estimated extra-sample error. Optimism correction can also be applied

to all performance measures, e.g. calibration and discrimination measures.

K-fold CV can perform optimism correction yielding similar nearly unbiased estimates of

optimism, but with larger variance than bootstrap. In order to achieve stable estimates, a larger

number of resampling steps are required through repeated CV, which results in longer compu-

tational time.

I will apply optimism-correction of discrimination and calibration performance measures to

the combined methods assessed in my simulation study.

2.1.4 Monte Carlo simulation study

A Monte Carlo (MC) simulation study is a numerical technique in statistics for conducting exper-

iments on the computer involving random sampling from probability distributions (Burton et al.

2006). In the traditional frequentist inferential approach of statistical modelling, MC simulations

are typically used to assess the properties of estimators, hypothesis tests and confidence in-

tervals, so that the methods can be used with confidence. For example, simulations are used

to assess the bias of an estimator in finite samples, its consistency under departures from as-

sumptions, its sampling variance and how it compares to competing estimators in terms of bias

and precision, or to assess whether a constructed confidence interval for a parameter achieves

the established nominal level of coverage (Boos and Stefanski 2013). Exact analytical deriva-

tions of these properties are rarely possible (Harrison 2010).

MC simulations allow to approximate the sampling distribution of an estimator under par-

ticular conditions (e.g. finite sample size, true distribution of the data) in order to address the

issues above, which are analytically intractable or for which the experimentation is costly or too

time-consuming or not feasible.

MC simulations in classical statistics A classical statistics MC simulation study, that ap-

proximates the true value θ0 of an estimator θ̂, involves the following steps:

1. Generate S independent datasets under the assumptions of interest,

2. Compute the numerical value of the estimator θ̂ from each dataset: θ̂1, . . . , θ̂S ,

3. Compute the mean θ̄ of θ̂1, . . . , θ̂S that will be the MC approximation of the true value of θ̂
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under the assumptions of interest (if S is large enough):

m̂ean = S−1
S∑
s=1

θ̂s = θ̄, ŜD =

√√√√(S − 1)−1
S∑
s=1

(θ̂s − θ̄)2, (2.17)

where ŜD is also called the empirical standard error of the simulation estimate.

If using the mean and SD of the estimates over all simulations is not considered appropriate,

then non-parametric summary measures using quantiles of the distribution could be obtained.

When K different estimators θ̂(1), . . . , θ̂(K) for the true parameter θ0 of a distribution based

on i.i.d. draws Y1, . . . , Yn for the random variable Y need to be compared, the following esti-

mated performance measures for each estimator will assess them:

• bias: b̂ias
(k)

= θ̄(k) − θ0,

• accuracy : M̂SE
(k)

= ŜD(k)
2

+ (b̂ias
(k)

)2,

• coverage for estimator θ̂(k), i.e. the proportion of times the 100(1−α)% confidence interval

θ̂
(k)
s ± Z1−α/2ŜE(θ̂

(k)
s ), s = 1, . . . , S include θ0, α being the level of significance chosen,

Z1−α/2 being the 1− (α/2) quantile of the standard normal distribution and ŜE(θ̂
(k)
s ), s =

1, . . . , S is the standard error of the estimate of interest within each simulation.

Simulations are fully independent when they involve generating a completely different set

of independent draws Y1, . . . , Yn (n-sized sample) for the random variable Y for each estimator

θ̂(k) and scenario considered (i.e varying sample size, correlation between variables, etc.).

Simulations are moderately independent, when the same set of simulated independent draws

are used to compare different estimators for the same scenario (Burton et al. 2006).

The suitable number of simulations S depends on the true value θ0 of θ the parameter of

interest, on the variance of θ (that may be known from asymptotic theory or preliminary runs),

and on the required accuracy δ, i.e. the permissible difference from the true value (Burton et al.

2006):

S =
Z1−α/2V ar(θ)

δ
. (2.18)

MC simulations in statistical learning In statistical learning the above method for assessing

simulations cannot be used in most applications, because it is impossible to obtain a sufficiently

precise estimate of the bias for most methods (e.g. Lasso, Elasticnet and Random Forests,

see Subsection 2.1.1). Reliable estimates of the bias are only available if reliable unbiased

estimates are available, which is typically not the case for some penalized estimates (Tibshirani
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1996). The main target parameters of the present simulation study are (1) the extra-sample

prediction error (estimated by the MSE of the predictions, see Subsections 1.2.1 and 2.1.4,

usual target in statistical learning prediction modelling) and (2) the percentage of selected true

predictors. The statistical learning models I aim to analyse (Lasso, Elasticnet and Random

Forest) do not have closed theoretical formulas for the prediction error as, for example, does

linear regression.

Therefore, the present simulation study comparing different methods was not assessed in

the classical way. The estimators of the main target parameter, the MSE of the predictions, do

not have a known true value and so bias, accuracy (i.e. the MSE of the MSE) and coverage

of each estimator were not assessed. Instead, by assuming a true linear regression model for

the dependent variable, through simulations, I saw how much the prediction error of a regu-

larised model (or Random Forests) departed from the theoretical MSE given by the true linear

regression model. To have an estimate of uncertainty, I looked at the interval given by the 2.5th

and 97.5th percentiles of the parameter simulation distribution (or its empirical standard error

across simulations, i.e. the standard deviation of the estimates, for the percentages of selected

true predictors). Confidence intervals could not be computed, because the SE of the estimate

of interest within each simulation step is not very meaningful as penalized estimation methods

produce biased estimates (Fan and Lv 2009).

These will be the generic steps performed in the simulations:

1. Generate S independent datasets with K standardised covariates each, having a given

correlation structure, and generate a dependent variable from the K covariates according

to a multiple linear regression model,

2. Run the statistical learning models of interest on each dataset

3. Compute the numerical value of the target parameters from each model and each dataset.

4. Compute the mean of the measured target parameters across simulations and record the

2.5th and 97.5th percentiles of the simulation distribution (or its empirical standard error)

to have an estimate of uncertainty.

5. Compare the means of target parameters between models and with true multiple linear

regression model parameter.
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2.1.5 Hypotheses

In this simulation study, I aimed to compare validated prediction accuracy and variable selec-

tion performance of Lasso, Elasticnet, Random Forests and Random Forests with conditional

inference trees (which I will call in short Conditional Random Forest) when missing data were

imputed through MICE or MissForest. I expected the following general results:

1. Lasso would need a stronger penalty to correct for model selection inconsistency with

increasing ratio between number of covariates and sample size (Fan and Lv 2009)

2. Elasticnet would outperform Lasso when predictors are highly correlated (Zou and Hastie

2005)

3. Random Forests would perform best in prediction accuracy but would often consider more

important the continuous variables than the categorical ones (Strobl, Boulesteix, et al.

2008);

4. Random Forest and MissForest performances would improve with increasing correlation

between the variables (Tang and Ishwaran 2017);

5. MICE combined with Lasso as for Musoro et al. 2014 would return good variable selection

for a penalty λ corresponding to a model having the MSE within 3% of the minimum and

not for the best λ returning the model with the minimum MSE;

6. MissForest combined with Lasso would prevent the noise terms with large missingness

from being selected (this would not happen when true predictors were strongly correlated

between them, Lu and Petkova 2014);

7. MissForest combined with Random Forests would tend to give more often importance to

the noise variables with large probability of missingness (Cutler et al. 2009);

8. MissForest would outperform MICE (when combined with Lasso) with increasing ratio

noise to true predictors variables in the imputation model (Hardt, Herke, and Leonhart

2012)

9. Prediction accuracy would decrease and optimism increase when missing data were

present also in the dependent variable (Chen and Wang 2013);

10. The performances of the methods would be equivalent with MAR or MCAR missing data

(Chen and Wang 2013).



2.2. METHODS 81

2.2 Methods

The six combined methods analysed in the simulation study were:

• MICE-Lasso (Musoro et al. 2014): MICE (Van Buuren and Oudshoorn 2000) was applied

to the original incomplete dataset (included the outcome) and 10 imputed datasets were

returned. Then the Lasso (Tibshirani 1996) was run on each of the 10 imputed datasets

with bootstrap resampling tuning for λ: given a grid of 40 penalty values λ, for each λ a

Lasso model was constructed on a bootstrap sample (drawn randomly with replacement

and of the same size of that imputed data set) and a bootstrap corrected mean squared

error (MSE) was computed by comparing the observed and predicted values in the im-

puted data set. This was repeated 100 times for each penalty value and the average MSE

was computed. The best penalty was the one returning the lowest average MSE. Four

models per imputed data set were retained: the one corresponding to the optimal penalty

(denoted as best) and three tolerance models. One tolerance model corresponded to a

penalty that had an MSE within 1 standard error of the minimum MSE (denoted as 1SE,

applying the ‘one-standard-error rule’ as for Breiman, JH Friedman, et al. 1984, Hastie,

Tibshirani, and Friedman 2008, James et al. 2013) and the other 2 models had MSEs

within 3% and 15% of the minimum respectively, yielding more parsimony (Musoro et al.

2014 only analysed the ‘best’ and the 3% tolerance models). These four penalties models

were referred to as:

– Best model

– 1 SE tolerance model

– 3% tolerance model

– 15% tolerance model

The final best and tolerance models had regression coefficients that were the averages

over the ten imputed data sets (see flowchart 1.3);

• MICE-Elasticnet: it used the same procedure as MICE-Lasso with the Lasso replaced

by the Elasticnet penalty (Zou and Hastie 2005) and the grid of penalty values being of

length 20 for the tuning parameter λ and 9 for the tuning parameter α (0.1 to 0.9) for a

total of 180 combined penalty values (Lasso was not allowed to be selected). Because

of the larger number of tuning parameter sets, this simulation was computationally more

expensive;
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• MissForest-Lasso and MissForest-Elasticnet: they consisted of applying the Lasso/E-

lasticnet as above on the original data imputed once by MissForest (Stekhoven and

Buhlmann 2012).

• MissForest-Random Forests(RF) and Conditional RF: they consisted of applying RF

or Conditional RF on the original data imputed once by MissForest.

The combined methods to compare were run on the simulated datasets as for the scenario

under interest. The performance of the methods was evaluated in terms of prediction accuracy,

through discrimination and calibration (see section 1.2.1), and variable selection. For each

method, discrimination was assessed in the following way:

1. the model (developed on the whole dataset) was evaluated on the original sample to

obtain an estimate of apparent discrimination, MSEapparent =
∑n

i=1(ŷ− y)2/n, where n is

the sample size, y is the simulated outcome and ŷ the predicted outcome;

2. then the expected optimism for the MSE, referred to as internal optimism (Optimisminternal,

see Table 2.1), was estimated for each method-scenario combination through bootstrap

internal validation as described by Harrell 2001 (see section 2.1.3);

3. an estimate of internally validated discrimination for the model was given by the aver-

age across simulations of the optimism-corrected mean squared error (MSEcorrected) and

corresponding pseudo-R2
corrected = 1-MSEcorrected/Var(outcome) (Breiman 2001). In or-

der to compute the pseudo-R2
corrected, the empirical mean outcome variance across the

simulated datasets was used.

4. finally, the models were evaluated on a new independent complete simulated dataset to

obtain an estimate of external discriminative performance, MSEexternal.

5. The observed optimism of the model performance on external data was the difference be-

tween MSEapparent and MSEexternal(Optimismexternal). Optimisminternal and Optimismexternal

are expected to be close if the resampling procedure gives unbiased estimates of opti-

mism.

Calibration was measured through the average calibration slope of the linear predictor (LP)

of the model built on the original data, βLP . Because the methods under interest do not return

unbiased estimates of the coefficients, βLP cannot be exactly 1, but it constitutes an apparent

measure of calibration (Musoro et al. 2014).

Variable selection for the Lasso and Elasticnet was measured through:
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• Sensitivity of selection (SEN ): mean percentages of the selected true predictors (TPs)

among the TPs

• False-positive rate of selection (FPR): mean percentages of the selected noise variables

(also called fake or false predictors, FPs) among the FPs

• Positive predictive value of selection (PPV ): mean percentages of the selected TPs

among the selected variables:

I also calculated the percentage of true models selected across simulations by the Lasso

and the Elasticnet and the individual inclusion frequency of the variables in the models. The

variable individual inclusion frequency for Random Forest was as follows: a variable was con-

sidered included in the model when its importance was among the top 10 variable importances.

I finally looked at the percentage of times the TPs were among the n top coefficient variables

(with n being the number of TPs) as ranked by the model (for all analysed models included RF

and conditional RF).

The criterion for good prediction accuracy was an MSEcorrected close to the theoretical MSE

of the true linear regression generative model for the dependent variable, which I considered a

minimal optimal bound, with corresponding internal and external estimates of optimism being

close to each other. Values for the MSEcorrected departing from the theoretical MSE by more

than 30% of the theoretical MSE were subjectively considered poor.

Based on discussion with clinicians, I defined the following subjective criteria for good vari-

able selection for regularised regression methods:

• SEN ≤ 70% poor

• SEN > 70% and 60% < PPV < 70% acceptable

• SEN > 70% and 70% ≤ PPV < 90% good

• SEN > 70% and PPV ≥ 90% very good

However, subjective classification of poor, acceptable or good results might differ in different

settings and, in the early stage of developing a model, lower performance can still be accept-

able. RF or Conditional RF had good variable selection performance when the individual TP

frequency of being among the first n important variables (with n being the number of TP) ranged

from 65% to 100% and at the same time the FP individual frequency ranged between 0% to

30%.
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Table 2.1: Definition of performance measures

Measure Definition

MSEapparent Performance on the original dataset of the model trained on the same
original dataset

MSEexternal Performance of the model on an independent new complete dataset
Optimisminternal mean(MSEboot-MSE test). Average optimism of the bootstrap model per-

formances on the original data, i.e. average difference between the boot-
strap performances (on bootstrap data) and the test performances (on
original data)

Optimismexternal MSEapparent−MSEexternal. Optimism of the model performance on exter-
nal data

βLP Calibration slope, i.e. slope of the linear predictor (LP) of the model esti-
mated from regressing the observed outcome on the LP from the original
data

βLP ∗ Optimism-corrected calibration slope of the linear predictor through boot-
strap validation.

As a measure of variability for the estimates, a 2.5th to 97.5th percentile range across

simulation runs was returned for each estimate, instead of returning a confidence interval based

on biased estimates (see Subsection 2.1.4). The variability for SEN, FPR and PPV was also

measured by sample standard deviation across simulations.

As I was aiming to accurately predict the outcome rather than to estimate the coefficients in

an unbiased way, I did not measure the coefficient estimates’ bias.

The method with the best trade-off between good prediction accuracy and good variable

selection performances was chosen.

Because of the computational intensity of the analysed combined methods and the subse-

quent large time required to run them, I only simulated 300 datasets per scenario.

The simulations were moderately independent (Burton et al. 2006), i.e. I used the same set

of simulated independent datasets to compare the different combined methods for the same

scenario in order to detect any differences between methods.

I simulated data sets with i) 20 covariates (250 and 1000 observations) and ii) 100 co-

variates (500 observations). For each combination, I simulated MCAR and MAR missingness

pattern with different percentages of missing data and different correlation matrices. To sim-

ulate an RCT where treatment response was different between treatment and control arm, I

simulated interactions between a binary variable (treatment arm) and other variables (baseline

predictors). The imputation models of MICE and MissForest included all the variables in the

substantive model (planned analysis), comprising the outcome, when there was no moderation

assumption. On the contrary, when some interaction terms were true predictors of the outcome,
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imputation and substantive models were different: the interaction terms were not included in

the imputation model (apart from MICE-Lasso, see below). MissForest imputation models did

not contain interactions because RF imputation techniques already account for existing inter-

actions in the data (Cutler et al. 2009 and Stekhoven and Buhlmann 2012). Missingness of the

predictor variables was simulated not to depend on the interaction terms.

In the following Subsections 2.2.1 and 2.2.2, I will present the studied scenarios in details

and justify the choices.

2.2.1 20-Covariate Dataset

I ran the 20 covariate simulation study as for Musoro et al. 2014 (but with additional settings) in

order to replicate their results and compare their method to the other three proposed methods in

this study. Firstly, 20 continuous covariatesXj , j = 1, . . . , 20 with the number of observations n

being both 250 and 1000, were drawn from a multivariate standard normal distribution N(0,P ),

where the correlation matrix P was sparse with the following non-zero correlations:

ρ1,5 = 0.72

ρ1,6 = −0.52

ρ2,8 = 0.74

ρ4,12 = −0.82 (2.19)

ρ6,16 = −0.34

ρ10,20 = −0.38

ρ11,19 = 0.37

ρ19,20 = −0.65

Then variables X1 to X10 were dichotomized to binary variables at the following percentiles:

• X1,X2,X6,X7 at their 50th percentile

• X3,X4,X8,X9 at their 30th percentile

• X5,X10 at their 20th percentile

Two settings were considered for the generation of the outcome:

1. No assumption of moderation: the continuous outcome y was generated by 5 continuous
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and 5 binary variables from the following linear regression model:

y = Xβ + ε, (2.20)

whereX = (1,X1, . . . ,X20) was the design matrix of explanatory variables which columns

were the constant vector 1 for the intercept and the 20 covariates Xj , j = 1, . . . , 20,

ε ∼ N(0, σ2I), σ = 1.74, and β = (β0, β1, . . . , β20) was the vector of the regression

coefficients:

β0 = 1.140

βi = 0, i = 1, . . . , 5

β6 = −0.839

β7 = 1.131

β8 = −1.540

β9 = 1.426

β10 = 0.854

βk = 0, k = 11, . . . , 15

β16 = 0.457

β17 = −0.494

β18 = −0.738

β19 = 1.589

β20 = 0.845

2. Interactions between predictors and a binary variable, assumption of moderation: to as-

sess the ability of the model to recognize moderator variables, interaction terms between

the first binary variable X1 (now turned into a weak predictor, β1 = 0.1) and some of the

covariates were added to the predictors:

• X1 ·X7, with β1,7 = 0.6,

• X1 ·X13, with β1,13 = 0.9,

• X1 ·X16, with β1,16 = 1.0,
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• X1 ·X20, with β1,20 = 1.2.

SEN, FPR and PPV for the selection of the true interaction terms only were also recorded

to assess the model identification of potential moderators.

Musoro et al. 2014 only considered the setting with no assumption of moderation.

Finally, eight out of the 20 covariates were set to have missing values both MCAR and MAR.

In the case of MCAR data, observations to be missing were drawn from a binomial distribution

with probabilities 0.2 for X2,X7,X12,X17 and 0.5 for X3,X8,X13,X18. For MAR data, the

probability of missingness depended on the non-missing covariates (apart from variable X5)

according to two logistic models giving average percentages of missingness of approximately

20% and 50% for the same variables:

• the probability of 20% was given by 1+exp(−0.831−0.79X1−0.35X4−0.89X6−1.51X9−

2.01X10 − 2.75X11 − 2.06X14 + 1.39X15 − 3.44X16 − 0.89X19 + 0.67X20),

• the probability of 50% was given by 1+exp(−0.561−0.69X1+0.36X4−0.25X6−0.16X9+

0.86X10 + 0.26X11 − 2.27X14 − 1.19X15 − 0.13X16 − 1.08X19 − 2.12X20).

Table 2.2 shows the simulation scenarios considered in the study for the 20 covariate

datasets.

Table 2.2: Simulation study scenarios

Scenario Description

S1 No missing data, No assumption of moderation
S2 Missing data (MCAR and MAR), No assumption of moderation, complete out-

come
S3 No missing data, Assumption of moderation
S4 Missing data (MCAR and MAR), Assumption of moderation, complete outcome
S5 Missing data in outcome (20% missingness MCAR and MAR)
S6 Interactions in the imputation model, complete outcome (only for MICE-Lasso)

In the 20 covariate dataset study, because of the correlational structure, I did not perform

simulations with the computational expensive MissForest-Elasticnet model. As no sets of cor-

related variables were simulated (there were not highly correlated true predictors, there was

only high correlation between fake and true predictors, see equation (2.19)), Elasticnet would

perform less well than Lasso (Zou and Hastie 2005).

For the 20 covariate dataset scenario, Random Forests (RF) was run only without con-

ditional trees since the correlation matrix of the variables was sparse and the there were only

continuous and binary variables. The tuning parameter given by the number of variables chosen
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randomly at each split to build the trees (see Subsection 2.1.1) was chosen through bootstrap

tuning (100 bootstrap datasets).

Minor analyses Four secondary analyses were conducted:

1. Scenarios S1 and S2 (see Table 2.2) were also analysed for MICE-Lasso with a 20 times

repeated 10-cross-validation tuning procedure (the number of repetitions was suggested

by Steyerberg 2009 and Harrell, Lee, and Mark 1996 to achieve stable estimates of MSE)

to check whether there was an advantage in terms of prediction accuracy compared to

using bootstrap tuning.

2. MICE-Lasso was also studied in the scenarios S1 and S2 with a bootstrap validation

where each model, trained on a bootstrap sample, was tested on the OOB observations

(observations not drawn in the bootstrap sample) and not on the whole original sample,

in order to compare the average test MSEs with the optimism-corrected MSE estimates

from the bootstrap validation procedure as for Harrell, Lee and Mark (1996). By testing

on the OOB samples, some of the optimism in the MSE estimate should be avoided and

the optimism correction would not be needed (James et al. 2013).

3. I also tried a ‘majority method’ for MICE-Lasso in the scenario S2 (Heymans et al. 2007):

instead of getting the final model coefficients by averaging the selected variables coeffi-

cients in each of the 10 imputed datasets, I retained a variable in the final model with the

following 3 rules: 1. kept if it was selected in at least seven datasets, 2. kept if selected

in at least 8 datasets and 3. kept if selected in at least 9 datasets.

4. Finally, MissForest-Lasso was also run with 10 MissForest imputations instead of one

imputation and coefficients estimates were averaged across imputed datasets for the final

model (as for MICE-Lasso Musoro et al. 2014) in scenario S2. This was done in order

to compare variable selection performance of the 10-imputation MissForest-Lasso with

MICE-Lasso.

2.2.2 100-Covariate Dataset

The 100 covariate dataset was meant to reflect in a simplified way the real data at hand in terms

of high dimensionality, different degrees of correlation between variables and number of levels

of categorical variables.
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The 100 variables were first drawn from a standard multivariate distribution with a fixed

sample size of 500 and two different covariance (correlation) compound symmetry matrices:

all variables weakly correlated with ρ = 0.2 or all variables highly correlated with ρ = 0.8. I

did these choices of correlation because I wanted to study the case in which there was low

correlation between variables and the case of multicollinearity, in contrast to the sparse mixed

high and low correlations matrix used in the 20-covariates scenarios suggested by Musoro et

al. (2014). The first 25 variables were subsequently dichotomised as follows:

• X1 to X10 at their 50th percentile

• X11 to X20 at their 30th percentile

• X21 to X25 at their 20th percentile

Finally, X26 to X50 were changed into categorical variables with 3 levels in the following way:

• X26 to X35 were split at their 20th and 80th percentiles

• X36 to X45 were split at their 30th and 60th percentiles

• X46 to X50 were split at their 40th and 70th percentiles

In the 100 covariate case, only one outcome generation was simulated, compared to the 20-

covariate case, as dictated by the project real data moderation analysis needs: the true pre-

dictors of the outcome were 8 predictors (3 binary variables, 2 categorical with 3 levels and 3

continuous predictors) and 5 interaction terms between a binary predictor and 4 moderators (1

binary predictor, 1 polychoric predictor with 3 categories - i.e. 2 dummy variables - and 2 con-

tinuous predictors). The generative model was again a linear regression as in the 20 covariate

scenario:

y = Xβ + ε, (2.21)

where X = (X1, . . . ,X24,X26.1,X26.2,X27.1,X27.2, . . . ,X49.1,X49.2,X50,X51, . . . ,X100,

X1 ·X2,X1 ·X3, . . . ,X1 ·X26.1,X1 ·X26.2, . . . ,X1 ·X100) was the design matrix of explanatory

variables which columns were 249 covariates (included all the dummies, e.g. for the 3-levels

categorical variable X26 the two dummies were X26.1,X26.2; and included all the interaction

terms, no intercept), ε ∼ N(0, I) and β was the sparse 249-entry-vector of the coefficients, of

which the non zero entries with respective covariates and dummy predictors were the following

for a total of 15 true predictor terms:

• X1,X2,X3,X26,X27,X51,X52,X53 with coefficients β1 = −0.7, β2 = −0.8, β3 = −0.9, β26.1 =

−1.1, β26.2 = −1.3, β27.1 = 1.5, β27.2 = 1.2, β51 = 1,, β52 = 0.8, β53 = 0.7,
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• X1 ·X2, with β1,2 = 0.7,

• X1 ·X26.1, with β1,26.1 = −1.1,

• X1 ·X26.2, with β1,26.2 = 1.3,

• X1 ·X51, with β1,51 = −0.9,

• X1 ·X52, with β1,52 = 0.8.

In order to reflect the real data, all variables (included the outcome) but 6 predictors (3

TP and 3 FP) were set to have missing values MCAR and MAR in different scenarios, with

high mean percentage of missing values (approximately 40%). In the case of MCAR data,

observations to be missing were drawn from a binomial distribution with probabilities 0.2 for 27

variables (X3 to X10,X27 to X34 and from X53 to X63), 0.5 for other 67 variables (X1,X11 to

X25,X35 to X50, X52, X64 to X97) and 0.2 for the outcome variable Y . For MAR data, the

probability of missingness depended on the 3 non-missing TP according to a logistic model

per average percentage of missingness 20% and 50% for the same variables as for the MCAR

case:

• covariates with 20% missingness had the missing probability given by 1+exp(−3.1+X2+

0.9X26 −X51),

• covariates with 50% missingness had the missing probability given by 1+exp(−0.5−X2+

X26 + 0.1X51),

• the outcome had the 20% missing probability given by 1 + exp(−1− 2.5X2 + 2X51).

For the 100 covariate dataset scenario, Random Forests (RF) was run with conditional

inference trees to take into account the correlation between variables and the different number

of levels of the categorical variables (Strobl, Boulesteix, et al. 2008). The tuning parameter

given by the number of variables chosen randomly at each split to build the trees was chosen

as the one giving the lowest ‘out-of-bag’ (OOB) error.

The only scenarios considered for the 100 covariate design were the ones reflecting the

project real data situation: S3 and S5 (see Table 2.2) with two degrees of correlation each (low

correlation ρ = 0.2 and high correlation ρ = 0.8).

2.2.3 R packages, parallel computing and random number generators used

All the analyses were run in the statistical software R (Team 2016). This is a list of the R

packages used in the simulation study:
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• doParallel (Calaway et al. 2017): to parallelize computation

• caret (Kuhn 2016): implementing

– Lasso and Elasticnet from glmnet (Friedman, Hastie, and Tibshirani 2010)

– Random Forests from randomForest (Liaw and Wiener 2002a)

– Conditional inference Random Forests from party (Hothorn, B uhlmann, et al. 2006)

• mice (Van Buuren and Groothuis-Oudshoorn 2011): to run multivariate imputation using

chained equations

• missForest (Stekhoven 2013): to run the algorithm of MissForest (iterative non-parametric

missing value imputation through Random Forests)

Parallel computing was performed on an Intel Haswell E5-2660 v3 machine with 2.60GHz

of frequency and 10 cores (8GB ram per core).

I used the R random number generator by specifying the seed at each step between and

within simulations which required it, and making sure that the sequence of random numbers

was long before repetition in the case of the 20 covariate dataset simulations (see Subsection

2.2.1). In the 100 covariate study (subsection 2.2.2), I only fixed the starting seeds. In the case

of parallel computing, I used the command clusterSetRNGStream in the package doParallel

to fix the seeds (see R code in the Appendix section B.2).

2.2.4 Encountered problems

There were many problems I experienced in order to run this simulation study. Firstly, as the

considered methods algorithms required a large amount of computational time to run, I learnt

parallel computing to speed up the jobs and I familiarised with the operating-system Linux in

order to use Google Cloud, a Goldsmith server and the King’s College Rosalind cluster, that

were the only facilities allowing me to run these computationally expensive simulation jobs.

Without a strong background in computer science, I learnt how to write more efficient R code

to further diminish the simulation running time. This learning process took me months of trial

and error. I started by running R in Google Cloud which had more memory and more parallel

cores options, but it was too expensive. Thus, I was given an account in a dssc server by

Dr. Daniel Stamate (Department of Computing at Goldsmith University). Even though I had

enough memory, I could only run one job on multiple cores at a time. Therefore, I used the

Rosalind cluster to run multiple batch jobs on multiple cores each with the required memory
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to increase efficiency of simulations. I learnt some Linux language and how to set a batch job

and different ways to save the jobs outputs. I ended up to improve the timing of each set of

simulations to 20 days, instead of 45 days, being able to run at least 10 sets of simulations

at the same time depending on the cluster availability. The MissForest-Random Forests and

MICE-Lasso/Elasticnet simulations were the most computationally expensive in time: MICE

because of the 10 imputations and Random Forests because of its bootstrap tuning procedure.

However, apart from the queues to wait before a job started to run, the cluster has had plenty

of failures both in the parallel environment and in the cluster storage by causing my simulation

study progress to slow down significantly.

Secondly, after having started using the Rosalind cluster and having got the first results, I

realized that there was an error in the R code used by Musoro et al. 2014 to run their simu-

lations, which I replicated (see the error in the Appendix section B.1). Thus, I had to edit the

error and rerun the jobs in order to get the correct results, which therefore differed in parts from

Musoro et al. (2014). I wrote to the authors about their incorrect code without receiving any

answer.

2.3 Simulation results

2.3.1 Results from 20-covariate datasets, 10 true predictors

MICE-Lasso and MICE-Elasticnet: 20-covariate data results

Lasso S1: No missing data, No assumption of moderation In absence of missing obser-

vations and interaction terms in the true linear predictor, when the sample size was 250, the

Lasso best apparent model (with bootstrap tuning) on average overfitted the data, by selecting

52.9% (SD 18.7) of the false predictors (FP) altogether with 99.8% (SD 1.4) of the true predic-

tors (TP) for an acceptable PPV of 66.4% (SD 8.7) (see Table 2.3). As a consequence, only

0.7% of the times the Lasso selected the true model covariates and 1.7% of the times it se-

lected the true model but only one TP. Moreover, only 58.7% of the times the 10 TPs were the

top 10 ranked selected variables, while 9 of them were in the top 10 variables for 95.0% of the

times. Overfitting was reflected in the estimated average apparent MSE (2.840 with 2.5th and

97.5th percentiles: 2.315 and 3.406) which was lower than theoretical MSE (3.028) and sub-

sequently much lower than the bootstrap-corrected MSE (3.262, 2.5th and 97.5th percentiles:

2.663 and 3.946, see Table 2.4), giving an average pseudo-R2 of 0.669 (2.5th and 97.5th per-

centiles being 0.606 and 0.732, the outcome mean variance of the simulated datasets was
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10.539 (SD 0.954)). The estimate of internal optimism for the MSE was slightly higher in abso-

lute value than the estimate of external optimism showing that the resampling procedure gave

nearly unbiased estimates of optimism. However, the discrepancy between internal and ex-

ternal estimates of optimism got bigger with the increasing tolerance percentage of the tuning

parameter. In concordance with Musoro et al. 2014 results, there was suboptimal calibration

due to overshrinkage, showed by the mean calibration slope βLP which was higher than 1 (see

Table 2.4).

The Lasso 3% tolerance models performed on average better in terms of variable selection,

at the cost of less but still acceptable accuracy in prediction (MSEcorrected=3.474, 2.5th and

97.5th percentiles 2.834 and 4.215, see Table 2.4). Instead, the 1 SE tolerance models were

similar to the best models and the 15% tolerance models were too much parsimonious with poor

prediction accuracy (see Table 2.4). The 3% tolerance models on average selected 98.0% (SD

4.0) of the TPs together with only 15.6% (SD 12.5) of the FPs for a good PPV of 87.3% (SD

9.0). Also, the number of times in which the 10 TPs were the top ten selected variables in terms

of absolute value and the number of times the true model was selected were larger than those

for the best model (see Table 2.3).

The 1000 observation datasets models gave improved and more precise accuracy esti-

mates (the best model MSEcorrected was 3.092 (2.819 to 3.397) and relative pseudo-R2 was

0.704 (0.645 to 0.758), the mean outcome variance of simulated datasets being 10.552 (SD

0.461), see Table A.3 in the Appendix for the other measures) and performed slightly better

variable selection (see Table 2.3). Both internal and external MSE optimism estimates were

greatly reduced in absolute value and resulted much closer to each other, so that the bias due

to resampling was now lower.

Minor analyses 1-2 results The simulations for the Lasso model, run with 20 times repeated

10-cross-validation tuning instead of bootstrap did not show any improved performance in terms

of overfitting and the computational time required was larger: it took approximately 3 days

longer then the analysis with bootstrap tuning.

The simulations of Lasso in which the bootstrap validation was done by testing the bootstrap

models on the OOB data obtained average test MSEs (see tables A.1 and A.2 in the Appendix)

similar to the average MSE bootstrap-corrected estimate from Harrell’s bootstrap procedure

(see tables 2.4 and A.3), but the increased computational time made us entirely opt for Harrell’s

bootstrap validation methods (Harrell, Lee, and Mark 1996).
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Table 2.3: Variable selection simulation study results for scenarios S1 (without missing data, no assumption of moderation) and S2 (with
missing data, complete outcome, no assumption of moderation) for Lasso and MICE-Lasso best and tolerance models in the case of 20
covariates and 300 samples of 250 and 1000 observations. The following results are shown: the estimated percentages of the times all
the 10 true predictors (TP) are selected at the same time, the estimated percentages of the times the true model is selected apart from one
variable, the percentages of the times the TP are the top ranked variables among the selected, the percentage of times the TP are the top
ranked variables apart from one TP, the average percentages of selected TP among the TP (sensitivity, SEN), the average percentages of
selected false positive predictors (FP) among FP (false positive rate, FPR), and the average percentages of selected TP among the selected
variables (positive predictive value, PPV). The mean percentages are shown along with their standard deviation (SD).

LASSO MICE-LASSO

Variable selection complete MCAR MAR

Best 1 SE tolerance 3% tolerance 15% tolerance Best 1 SE tolerance 3% tolerance 15% tolerance Best 1 SE tolerance 3% tolerance 15% tolerance

250 observations

% true models 0.7 3.7 16.0 13.0 0 0 0 1.7 0 0 0 2.7
% true models but 1 P 1.7 11.0 32.0 47.7 0 0 0 13.0 0 0 0.7 19.3

% TP in top 10 58.7 62.3 60.0 14.7 21.3 30.7 38.0 19.0 30.0 38.0 42.3 21.0
% TP in top 10 but 1 36.3 33.0 33.7 51.7 44.7 44.3 41.0 44.3 39.7 40.3 39.0 41.3

SEN (SD) 99.8 (1.4) 99.5 (2.25) 98.0 (4.0) 87.6 (8.9) 100 (0) 99.9 (0.8) 99.5 (2.3) 93.3 (7.8) 100 (0) 99.8 (1.3) 99.3 (2.7) 92.9 (7.4)
FPR (SD) 52.9 (18.7) 33.4 (17.6) 15.6 (12.5) 1.8 (4.6) 99.4 (3.0) 94.6 (9.2) 74.1 (17.7) 22.7 (15.2) 99.4 (2.8) 91.6 (11.08) 66.4 (18.7) 18.6(13.8)
PPV (SD) 66.4 (8.7) 76.2 (10.1) 87.3 (9.0) 98.3 (4.4) 50.2 (0.8) 51.5 (2.7) 58.0 (6.3) 81.8 (9.9) 50.2 (0.7) 52.3 (3.4) 60.7 (7.3) 84.6 (9.8)

1000 observations

% true models 0.3 7.3 80.3 18.3 0 1.7 25.3 4.0 0 1.7 25.3 33.7
% true models but 1 P 1.0 19.3 17.7 81.7 0 9.0 36.0 18 0 0 15.7 57.0

% TP in top 10 99.3 99.7 99.0 18.3 92.3 97.3 65.0 22.3 95.0 98.0 97.0 36.7
% TP in top 10 but 1 0.7 0.3 1.0 81.7 7.7 2.7 31.7 16.7 5.0 2.0 3.0 63.3

SEN (SD) 100 (0) 100 (0) 99.9 (1.0) 91.9 (3.9) 100 (0) 100 (0) 100.0 (0.6) 94.1 (4.9) 100 (0) 100 (0) 100 (0) 93.9 (4.9)
FPR (SD) 51.3 (19.1) 25.2 (15.6) 2.1 (4.5) 0.1 (0.6) 99.7 (2.4) 88.2 (11.6) 32.8 (15.7) 2.4 (4.7) 99.5 (2.4) 86.4 (12.0) 27.8 (15.1) 1.5 (3.9)
PPV (SD) 67.2 (8.6) 81.0 (9.7) 98.2 (4.0) 99.9 (0.5) 50.1 (0.7) 53.3 (3.5) 76.3 (9.0) 97.8 (4.4) 50.1 (0.6) 53.9 (3.7) 79.3 (9.3) 98.5 (3.7)
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Table 2.4: Accuracy simulation study results for MICE-Lasso analysis with Harrell (1996) bootstrap validation: scenarios S1 (without
missing data, no assumption of moderation) and S2 (with missing data, complete outcome, no assumption of moderation) based on 300
data sets of 20 variables each (n=250). Means of all estimates along with their corresponding 2.5th and 97.5th percentile values within
parenthesis. The theoretical MSE is 1.742 = 3.028

Estimates Complete cases

Best model 1 SE tolerance 3% tolerance 15% tolerance

MSEapparent 2.840 (2.315,3.406) 2.937 (2.398,3.544) 3.127 (2.553,3.772) 4.002 (3.271,4.905)
βLP 1.062 (1.041,1.084) 1.102 (1.075,1.131) 1.161 (1.124,1.200) 1.334 (1.261,1.429)
Tuning λ 0.065 (0.039,0.085) 0.106 (0.076,0.134) 0.168 (0.134,0.209) 0.360 (0.293,0.410)
MSEext 3.509 (3.289,3.791) 3.590 (3.347,3.890) 3.781 (3.486, 3.172) 4.718 (4.113,5.420)
Optimismext -0.669 (-1.212,-0.010) -0.653 (-1.198,-0.014) -0.654 (-1.216,0.055) -0.716 (-1.460,0.176)
Optimismint -0.422 (-0.534,-0.332) -0.383 (-0.482,-0.295) -0.348 (-0.442,-0.267) -0.294 (-0.404,-0.216)
MSEcorrected 3.262 (2.663,3.946) 3.320 (2.716,4.034) 3.474 (2.834,4.215) 4.311 (3.534,5.291)
βLP∗ 1.028 (1.015,1.042) 1.069 (1.051,1.088) 1.122 (1.100,1.157) 1.309 (1.235,1.379)

MCAR

MSEapparent 2.842 (2.204,3.622) 2.916 (2.250,3.726) 3.094 (2.379,3.952) 3.955 (2.999,5.156)
βLP 1.038 (1.014,1.063) 1.078 (1.048,1.108) 1.128 (1.095,1.179) 1.325 (1.233,1.418)
Tuning λ 0.046 (0.024,0.074) 0.085 (0.053,0.122) 0.145 (0.097,0.201) 0.354 (0.244,0.466)
MSEext 3.683 (3.343,4.209) 3.700 (3.344,4.211) 3.829 (3.446,4.439) 4.676 (3.919,5.642)
Optimismext -0.841 (-1.736,0.001) -0.784 (-1.632,0.054) -0.735 (-1.528,0.147) -0.721 (-1.493,0.253)
Optimismint -0.848 (-1.157,-0.590) -0.743 (-1.015,-0.508) -0.647 (-0.860,-0.415) -0.428 (-0.613,-0.294)
MSEcorrected 3.690 (2.880,4.650) 3.659 (2.840,4.643) 3.709 (2.865,4.698) 4.478 (3.347,5.589)
βLP∗ 0.959 (0.926,0.988) 1.001 (0.965,1.033) 1.044 (1.017,1.097) 1.229 (1.161,1.312)

MAR

MSEapparent 2.868 (2.280,3.601) 2.951 (2.335,3.712) 3.138 (2.470,3.939) 4.026 (3.106,5.097)
βLP 1.045 (1.022,1.070) 1.085 (1.058,1.119) 1.145 (1.105,1.197) 1.323 (1.243,1.437)
Tuning λ 0.049 (0.026,0.072) 0.089 (0.058,0.120) 0.150 (0.106,0.193) 0.347 (0.261,0.449)
MSEext 3.644 (3.296,4.112) 3.683 (3.338,4.119) 3.836 (3.428,4.312) 4.740 (4.041,5.590)
Optimismext -0.776 (-1.618,0.039) -0.732 (-1.501,0.053) -0.699 (-1.417,0.080) -0.711 (-1.556,0.218)
Optimismint -0.714 (-0.942,-0.523) -0.631 (-0.835,-0.466) -0.563 (-0.721,-0.399) -0.394 (-0.551,-0.275)
MSEcorrected 3.582 (2.874,4.471) 3.582 (2.859,4.479) 3.681 (3.474,5.621) 4.434 (3.474,5.621)
βLP∗ 0.982 (0.956,1.005) 1.025 (0.994,1.051) 1.068 (1.045,1.122) 1.257 (1.192,1.344)
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Table 2.5: Variable selection simulation study results for scenarios S1 (without missing data, no assumption of moderation) and S2 (with
missing data, complete outcome, no assumption of moderation) for MICE-Elasticnet best and tolerance models in the case of 20 covariates
and 300 samples of 250 and 1000 observations. The following results are shown: the estimated percentages of the times all the 10 true
predictors (TP) are selected at the same time, the estimated percentages of the times the true model is selected apart from one variable,
the percentages of the times the TP are the top ranked variables among the selected, the percentage of times the TP are the top ranked
variables apart from one TP, the average percentages of selected TP among the TP (sensitivity, SEN), the average percentages of selected
false positive predictors (FP) among FP (false positive rate, FPR), and the average percentages of selected TP among the selected variables
(positive predictive value, PPV). The mean percentages are shown along with their standard deviation (SD)

ELASTICNET MICE-ELASTICNET

Variable selection Complete data MCAR MAR

Best 1 SE tolerance 3% tolerance 15% tolerance Best 1 SE tolerance 3% tolerance 15 %tolerance Best 1 SE tolerance 3% tolerance 15% tolerance

250 observations

% true models 0 19.0 5.3 0.7 0 0 0.3 0 0 0.3 0.3 1.0
% true models but 1 P 2.0 33.0 18.7 4.0 0 0 0.3 3 0 1.0 2.0 5.7

% TP in top 10 56.7 44.7 15.3 2.7 20.7 31.3 34.0 27.7 28.3 35.3 31.0 20.0
% TP in top 10 but 1 36.3 44.3 28.0 7.7 43.3 42.7 40.0 36.3 37.7 41.7 47.7 38.3

SEN (SD) 99.8 (1.4) 96.0 (6.0) 80.3 (18.2) 36.0 (30.1) 100 (0) 99.7 (1.6) 99.3 (3.0) 94.9 (13.5) 100 (0) 99.6 (2.1) 98.8 (3.9) 92.1 (18.2)
FPR (SD) 57.0 (20.6) 18.6 (25.2) 10.2 (20.8) 3.6 (10.9) 99.8 (1.3) 94.1 (14.3) 84.1 (23.5) 52.2 (26.5) 99.7 (1.8) 90.0 (19.0) 77.4 (28.8) 45.5 (28.3)
PPV (SD) 64.8 (9.0) 87.2 (14.7) 93.0 (12.7) 97.2 (7.9) 50.0 (0.3) 51.8 (4.9) 55.4 (9.4) 67.6 (13.3) 50.1 (0.5) 53.3 (7.2) 58.2 (12.3) 71.4 (15.3)

1000 observations

% true models 0.3 83.3 0.7 0.3 0 1.7 25.3 4.0 0 3.0 26.0 3.0
% true models but 1 P 0.7 14.3 33.3 0.3 0 9.0 36.0 18.0 0 13.7 46.7 13.3

% TP in top 10 99.3 98.7 1.3 0.3 92.3 97.3 65.0 22.3 95.0 97.0 56.3 14.7
% TP in top 10 but 1 0.7 1.3 33.0 0.3 7.7 2.7 31.7 16.7 5.0 3.0 40.3 12.0

SEN (SD) 100 (0) 99.9 (1.0) 79.9 (9.5) 14.5 (8.7) 100 (0) 100.0 (0.6) 96.4 (5.5) 60.6 (33.4) 100 (0) 100 (0) 95.6 (5.8) 52.4 (32.5)
FPR (SD) 52.0 (19.0) 2.2 (7.4) 0.1 (1.8) 0 (0) 99.6 (2.5) 57.5 (31.3) 20.5 (30.9) 6.4 (13.8) 99.4 (2.5) 46.3 (30.1) 13.2 (24.8) 3.6 (10.9)
SEN (SD) 66.8 (8.5) 98.18 (5.1) 99.9 (1.4) 100 (0) 50.1 (0.7) 66.2 (14.0) 87.3 (17.3) 95.2 (9.7) 50.2 (0.7) 71.2 (14.2) 91.4 (14.4) 97.3 (7.7)
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Table 2.6: Accuracy simulation study results for MICE-Elasticnet analysis with Harrell bootstrap validation: scenarios S1 (without missing
data, no assumption of moderation) and S2 (with missing data, complete outcome, no assumption of moderation) based on 300 data sets
of 20 variables each (n=250). Means of all estimates along with their corresponding 2.5th and 97.5th percentile values within parenthesis.
The theoretical MSE is 1.742 = 3.028

Estimates Complete cases

Best model 1 SE tolerance 3% tolerance 15% tolerance

MSEapparent 2.839 (2.318,3.408) 3.360 (2.568,4.215) 4.451 (2.836,6.060) 6.858 (3.683,9.430)
βLP 1.069 (1.050,1.090) 1.232 (1.118,1.342) 1.433 (1.197,1.680) 2.670 (1.464,6.064)
Tuning α 0.605 (0.100,0.900) 0.900 (0.900,0.900) 0.900 (0.900,0.900) 0.900 (0.900,0.900)
Tuning λ 0.114 (0.065,0.251) 0.352 (0.220,0.455) 0.667 (0.455,0.739) 1.641 (1.199,1.947)
MSEext 3.519 (3.282,3.818) 4.056 (3.508,4.756) 5.154 (3.681,6.548) 7.472 (4.496,9.775)
Optimismext -0.678 (-1.238,-0.020) -0.696 (-1.316,0.050) -0.702 (-1.480,0.207) -0.614 (-1.783,0.779)
Optimismint -0.848 (-1.157,-0.590) -0.743 (-1.015,-0.508) -0.626 (-0.860,-0.415) -0.445 (-0.613,-0.294)
MSEcorrected 3.687 (3.005,4.489) 4.103 (3.215,5.092) 5.077 (3.429,6.759) 7.302 (4.169,9.969)
βLP∗ 0.959 (0.926,0.988) 1.001 (0.965,1.033) 1.060 (1.017,1.097) 1.233 (1.161,1.312)

MCAR

MSEapparent 2.843 (2.203,3.622) 3.067 (2.294,3.993) 3.556 (2.515,4.952) 5.222 (3.370,7.734)
βLP 1.049 (1.024,1.075) 1.157 (1.075,1.263) 1.303 (1.153,1.511) 1.893 (1.407,3.091)
Tuning α 0.370 (0.110,0.785) 0.899 (0.880,0.900) 0.900 (0.900,0.900) 0.900 (0.900,0.900)
Tuning λ 0.125 (0.061,0.209) 0.316 (0.194,0.450) 0.585 (0.385,0.820) 1.517 (1.066,2.060)
MSEext 3.691 (3.345,4.209) 3.856 (3.441,4.487) 4.319 (3.642,5.686) 5.919 (4.377,8.230)
Optimismext -0.848 (-1.731,-0.011) -0.789 (-1.563,0.088) -0.763 (-1.497,0.201) -0.697 (-1.697,0.477)
Optimismint -0.848 (-0.934,-0.752) -0.743 (-0.825,-0.654) -0.647 (-0.715,-0.566) -0.428 (-0.480,-0.374)
MSEcorrected 3.690 (3.343,4.010) 3.659 (3.324,3.968) 3.709 (3.362,4.021) 4.478 (4.040,4.859)
βLP∗ 0.959 (0.949,0.971) 1.001 (0.990,1.012) 1.044 (1.031,1.057) 1.229 (1.208,1.250)

MAR

MSEapparent 2.869 (2.280,3.602) 3.142 (2.394,4.110) 3.709 (2.609,5.227) 5.485 (3.493,8.123)
βLP 1.056 (1.032,1.082) 1.175 (1.092,1.278) 1.332 (1.169,1.553) 1.996 (1.444,3.307)
Tuning α 0.403 (0.100,0.810) 0.899 (0.899,0.900) 0.900 (0.900,0.900) 0.900 (0.900,0.900)
Tuning λ 0.128 (0.067,0.224) 0.330 (0.210,0.451) 0.608 (0.417,0.820) 1.558 (1.108,2.066)
MSEext 3.655 (3.317,4.122) 3.893 (3.473,4.512) 4.454 (3.615,5.749) 6.187 (4.404,8.540)
Optimismext -0.786 (-1.613,0.026) -0.751 (-1.491,0.031) -0.746 (-1.477,0.092) -0.702 (-1.715,0.386)
Optimismint -0.706 (-0.931,-0.523) -0.589 (-0.778,-0.433) -0.496 (-0.659,-0.349) -0.351 (-0.489,-0.216)
MSEcorrected 3.576 (2.865,4.461) 3.731 (2.888,4.723) 4.205 (3.050,5.744) 5.837 (3.806,8.477)
βLP∗ 0.995 (0.965,1.017) 1.084 (1.034,1.137) 1.204 (1.124,1.306) 1.693 (1.415,2.152)
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Elasticnet S1: No missing data, No assumption of moderation The Elasticnet model un-

derperformed the Lasso by overfitting more the data in the best model case (see Table 2.6, Lu

and Petkova 2014). However, all the results were similar to the Lasso results (the Elasticnet

tuning parameter α for the best model was always close to 1 for the best model) apart from

slightly higher estimates of the MSE optimism in absolute value and higher estimates of cor-

rected MSE for the best models. The shrinkage got stronger with increasing model tolerance

compared to the Lasso model. Only the 1 SE tolerance model could give acceptable variable

selection as the other stronger penalties led to drastic shrinkage of the coefficients and very

poor accuracy. The internal and external MSE optimism estimates were closer to each other

compared to the Lasso estimates in the case of 250 observations, revealing that Elasticnet

internally validated performance was likely to be more similar to the performance on new data

than the Lasso.

In the 1000 observation dataset models the external optimism estimates were very similar

to the internal optimism estimates apart from the 3% and 15% tolerance model corresponding

estimates which diverted from each other (see Table A.4 in the Appendix). This indicates

that the estimates of internal optimism were biased for stronger penalties. While Elasticnet

variable selection improved in the best models and 1SE models when the sample size was

1000, it worsened for higher model tolerance levels as in these cases Elasticnet over-shrank

the coefficients and also excluded the TPs (see Figure 2.27).

MICE-Lasso S2: Missing data, No assumption of moderation, complete outcome When

missing data were present, the MICE-Lasso best model (Musoro et al. 2014) selected all the

variables, both false and true predictors, 98.3% of the times (see Figures 2.29 and 2.28), giving

a poor variable selection performance (see Table 2.3). Only the models with MSE within 3% or

15% of the minimum had acceptable variable selection. The noise variables with more missing

data (X3 and X13, 50% missingness, see Subsection 2.2.1), not correlated with any other

variable, were selected almost 100% of the times, also in the 3% tolerance model. Moreover,

the best and 1SE tolerance models never selected the true model nor the true model but one

TP and the larger tolerance models only chose all the TPs but one TP up to 19.3% of the times

in the case of MAR data and up to 13% of the times for the MCAR data (see Table 2.3).

The best model variable selection result was unexpected, because Musoro et al (2014)

found a much better result: the best model still retained a large number of irrelevant covariates

but with a much lower selection frequency ranging from about 66% to 75%. The authors ex-

plained the large quantity of chosen FPs, as one may expect, with the fact that covariates were
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counted every time they were selected by Lasso in at least one of the imputed datasets. The

big difference between my result and Musoro’s result is due to an error in Musoro’s function to

compute the best and tolerance models: their best λ was in fact a tolerance λ and their given

tolerance λs were actually even stronger penalties (see Appendix section B.1).

Even though the method performed poorly in variable selection, the prediction accuracy

result for the 250 observations scenario was similar compared to the complete data case

and within 22% of the theoretical MSE. There was a decrease of only approximately 6% in

the corrected-pseudo-R2 for the best model (optimism-corrected MSE being 3.690, 2.5th and

97.5th percentiles: 2.880 and 4.650, for MCAR data and 3.582, 2.5th and 97.5th percentiles:

2.874 and 4.471, for MAR data, see Table 2.4) compared to the complete data scenario. The

increased penalty MSEs were still acceptable apart from the 15% tolerance MSE which was

very poor. Calibration performance slightly improved compared to scenario S1 without missing

data. The combined model dealt with MCAR data slightly worse than MAR data.

When the sample size was larger (1000 observations), the increase in the corrected-pseudo-

R2 was only about 1% compared to the smaller sample size and all estimates were more pre-

cise.

Minor analysis 3 results The results from the ‘majority method’ selection (see the Methods

Subsection 2.2.1) did not improve variable selection.

MICE-Elasticnet S2: Missing data, No assumption of moderation, complete outcome

MICE-Elasticnet performance was similar to MICE-Lasso in both prediction accuracy and vari-

able selection apart from the fact that given the same tolerance level, MICE-Elasticnet gave

more parsimonious models in the case of 1000 observations (see tables 2.5, 2.6 and A.4, last

one in the Appendix). MICE-Elasticnet performed better than Elasticnet (scenario S1 without

missing data) in terms of prediction accuracy (see Figures 2.8, A.5, 2.11, A.8 ).

Lasso S3: No missing data, Assumption of moderation When interaction terms were

present among the predictors and there were no missing data, the average optimism-corrected

MSE for the best Lasso model was acceptable compared to the theoretical MSE: 3.410 (2.5th

and 97.5th percentiles: 2.788 and 4.131, see Table 2.9) for the 250 observation datasets, giv-

ing a corrected-pseudo-R2 of 0.774 (percentiles being 0.722 and 0.820, the mean variance of

the outcome across the simulated datasets being 15.150 (SD 1.385)). Corrected MSE corre-

sponding to stronger penalties were still within 20% of the theoretical MSE apart from the 15%
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tolerance model MSE which was very poor. Overall, the average estimated internal optimism

for the MSE was larger in absolute value than the optimism for the case without interactions

showing that having double the number of covariates in the model (40) with the same num-

ber of people (250) increases the bias due to overfitting. Calibration slope estimates were just

above 1, similar in value to the ones corresponding to scenario S1 in which interactions were

not included.

Variable selection performance for the Lasso was slightly inferior to the performance in the

case without interactions (see Table 2.7). On average, 92.3% (SD 3.3) TPs among the actual

TPs were selected in the best model for an acceptable PPV of 62.6% (SD 7.9). The PPV

increased to 90.4% (SD 4.4) with the 15% tolerance model, accompanied by a small decrease

in the percentage of selected TPs among the actual TPs, for a very good variable selection. All

the tolerance models performed better than the best model in terms of variable selection, but

the 15% tolerance model had poor prediction accuracy (see Table 2.9). Another important fact

is that both best and tolerance models hardly ever selected exactly the TPs in the model, they

always included FPs (see Table 2.7). Instead, scenario S1 without interactions showed that at

least the 3% and 15% tolerance model applied to 32% and 47.7% of the datasets respectively

selected exactly the true model predictors but one TP (2.3). By looking at figure 2.30, I can see

that in particular one true predictor was hardly ever selected (V1) as its true coefficient is the

smallest and it strongly correlates with V5, a noise variable (ρ1,5 = 0.72, see Subsection 2.2.1).

In the case of 1000 observations, all results improved in both prediction accuracy and vari-

able selection (see tables 2.7 and A.5 in the Appendix).

Elasticnet S3: No missing data, Assumption of moderation Elasticnet behaved like the

Lasso in presence of interaction terms among the predictors (see tables 2.8, 2.10 and A.6,

last table in the Appendix). Again, given the same tolerance level, Elasticnet tended to pe-

nalise more than Lasso by resulting in poorer prediction accuracy compared to Lasso tolerance

models.

MICE-Lasso S4: Missing data, Assumption of moderation, complete outcome When in-

teractions were in the linear predictor and there were missing data, the prediction accuracy

of MICE-Lasso was inferior compared to the accuracy obtained when missing data were ab-

sent (scenario S3). The missing data imputation through MICE caused the model to have a

higher optimism-corrected MSE for the best model, which was poor: 4.119 (2.5th and 97.5th

percentiles: 3.168 and 5.157, see Table 2.9), still giving a good corrected pseudo-R2 of 0.727
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(2.5th and 97.5th percentiles: 0.656 and 0.791) for the 250 observations dataset with MCAR

data. MAR data gave slightly better results. The bias due to optimism was greatly reduced

when the sample size was 1000 (see Table A.5).

The variable selection performance was as bad as scenario S2: the best model selected

all the variables almost 100% of the times, irrespective of them being noise variables or true

predictors (see Table 2.7 and figures 2.31 and 2.33). Again the variables X3 and X13 (noise

variables with a large percentage of missing data, see Subsection 2.2.1) were always selected

because of the filled in values by MICE that generated correlation between the imputed vari-

ables and the outcome.

MICE-Elasticnet S4: Missing data, Assumption of moderation, complete outcome The

performances for MICE-Elasticnet were again very similar to MICE-Lasso for this scenario (see

tables 2.8, 2.10 and A.6, last table in the Appendix). Another time MICE-Elasticnet outper-

formed Elasticnet (scenario S3 without missing data) because of MICE imputation of missing

data, but this time only in the accuracy performance of the tolerance models with tolerance

levels 3% or higher.

MICE-Lasso S5: Assumption of moderation, Missing data also in outcome (20% missing-

ness MAR and MCAR) Missingness in the outcome affected negatively the accuracy perfor-

mance of MICE-Lasso, which was already poor, by decreasing the optimism-corrected pseudo-

R2 (calculated using the variance of the complete outcome) by approximately 4% in the case

of MCAR data (optimism-corrected MSE: 4.576, 2.5th and 97.5th percentiles being 3.387 and

5.892) and by 2% in the case of MAR data (optimism-corrected MSE: 4.385, 2.5th and 97.5th

percentiles being 3.320 and 5.644) compared to scenario S4 (without missing data in the out-

come) for the 250 observation datasets (see Table 2.13). There was a consistent difference

between MAR and MCAR results (see also scenario S2 for MICE-Lasso above) favouring MAR

results. Still good proportions of variance were explained by the model applied to both missing

data types.

As regards variable selection, MICE-Lasso tended to include all variables in the model also

in this scenario. The variable selection performance was worse than in scenario S4 (see Table

2.11).

The larger sample size case did provide better results (see tables A.7 and 2.11, however

this scenario performance was inferior to the other scenarios.
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MICE-Elasticnet S5: Assumption of moderation, Missing data also in outcome (20%

missingness MAR and MCAR) Performance for MICE-Elasticnet and MICE-Lasso were

close apart from the fact that MICE-Elasticnet penalised more the models given the same

tolerance level (see tables 2.12, 2.14 and A.8, last table in the Appendix).

MICE-Lasso S6: Interactions in the imputation model, complete outcome Adding inter-

action terms in the imputation model when the outcome was complete did not improve the

prediction accuracy of MICE-Lasso. The average internal optimism estimates were the largest

amongst the MICE-Lasso scenarios (best model: -1.451, 2.5th and 97.5th percentiles -1.965

and -1.047, see Table 2.16 and figure 2.4) for 250 observation datasets. Also the difference

between internal and external MSE optimism was the worst, meaning that adding the 20 in-

teractions terms in the imputation model caused more noise in the missing data filling, as only

four interaction terms were TP (see Subsection 2.2.1).

The variable selection performance was also inferior to the other scenarios for MICE-Lasso

for MCAR data, while it was almost equivalent to scenario S5 for MAR data (see Table 2.15 and

figures 2.6, A.1 and 2.7, last one with MAR data in the Appendix).

The 1000 observation datasets results were improved with respect to the smaller sample

size data (see tables 2.15 and A.9 and figures 2.2, 2.4, 2.6, A.3 and A.2, last two figures in the

Appendix).
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Table 2.7: Variable selection simulation study results for scenarios S3 (assumption of moderation, without missing data) and S4 (assumption
of moderation, with missing data) for MICE-Lasso best and tolerance models in the case of 20 covariates and 300 samples of 250 and
1000 observations. The following results are shown: the estimated percentages of the times all the 10 true predictors (TP) are selected at
the same time, the estimated percentages of the times the true model is selected apart from one variable, the percentages of the times the
TP are the top ranked variables among the selected, the percentage of times the TP are the top ranked variables apart from one TP, the
average percentages of selected TP among the TP (sensitivity, SEN), the average percentages of selected false positive predictors (FP)
among FP (false positive rate, FPR), and the average percentages of selected TP among the selected variables (positive predictive value,
PPV). The mean percentages are shown along with their standard deviation (SD)

LASSO MICE-LASSO

Variable selection Complete data MCAR MAR

Best 1 SE tolerance 3% tolerance 15% tolerance Best 1 SE tolerance 3% tolerance 15% tolerance Best 1 SE tolerance 3% tolerance 15% tolerance

250 observations

% true models 0 0 0 0 0 0 0 0 0 0 0 0
% true models but 1 0 0 1.3 2.7 0 0 0 0 0 0 0 0

% TP in top 10 0 0 1.0 2.7 0 0 0 0 0.3 0 0 0
% TP in top 10 but 1 17.3 20.3 20.7 13.7 4.7 6.3 4.3 4.3 6.3 8.0 7.0 0.3

SEN (SD) 92.3 (3.3) 91.7 (3.5) 90.5 (4.2) 84.2 (6.0) 95.5 (3.3) 94.4 (3.2) 92.8 (3.4) 86.3 (6.9) 96.0 (3.5) 94.8 (3.5) 93.3 (3.3) 86.8 (5.6)
FPR (SD) 35.9 (11.9) 25.6 (10.2) 16.6 (7.9) 5.9 (4.6) 86.6 (8.8) 72.3 (12.1) 52.6 (12.8) 20.2 (9.2) 85.6 (9.0) 71.4 (12.2) 50.7 (12.2) 19.7 (8.8)
PPV (SD) 62.6 (7.9) 70.2 (8.6) 78.2 (8.3) 90.4 (6.7) 40.9 (2.7) 45.3 (4.5) 53.1 (6.2) 74.0 (8.9) 41.3 (2.8) 45.7 (4.5) 54.2 (6.3) 74.4 (8.2)

1000 observations

% true models 0 0 0 0 0 0 0 0 0 0 0 0
% true models but 1 0 0.3 13.7 15.7 0 0 0 0.7 0 0 0 0

% TP in top 10 1.3 1.7 13.7 15.7 1.0 0.7 0 0.7 4.0 3.0 0.3 0
% TP in top 10 but 1 89.3 90.3 76.3 46.7 65.3 72.3 73.3 17.0 65.7 68.7 65.0 14.3

SEN (SD) 93.7 (1.8) 93.5 (1.3) 93.2 (1.3) 88.6 (3.2) 95.9 (3.2) 94.9 (2.9) 93.5 (1.3) 89.3 (3.3) 97.4 (3.2) 96.5 (3.3) 94.1 (2.2) 89.4 (3.3)
FPR (SD) 35.7 (11.1) 22.1 (9.1) 7.5 (5.0) 2.6 (3.2) 86.3 (7.3) 66.7 (10.0) 31.1 (8.3) 10.8 (5.2) 87.3 (7.4) 68.5 (10.0) 32.3 (8.3) 12.0 (5.2)
PPV (SD) 63.0 (7.5) 73.5 (8.2) 89.1 (6.6) 95.7 (5.0) 41.1 (2.2) 47.4 (3.9) 65.8 (6.2) 84.3 (6.5) 41.2 (2.3) 47.1 (3.8) 65.1 (5.9) 82.8 (6.3)
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Table 2.8: Variable selection simulation study results for scenarios S3 (assumption of moderation, without missing data) and S4 (assumption
of moderation, with missing data) for MICE-Elasticnet best and tolerance models in the case of 20 covariates and 300 samples of 250 and
1000 observations. The following results are shown: the estimated percentages of the times all the 10 true predictors (TP) are selected at
the same time, the estimated percentages of the times the true model is selected apart from one variable, the percentages of the times the
TP are the top ranked variables among the selected, the percentage of times the TP are the top ranked variables apart from one TP, the
average percentages of selected TP among the TP (sensitivity, SEN), the average percentages of selected false positive predictors (FP)
among FP (false positive rate, FPR), and the average percentages of selected TP among the selected variables (positive predictive value,
PPV). The mean percentages are shown along with their standard deviation (SD)

ELASTICNET MICE-ELASTICNET

Variable selection Complete data MCAR MAR

Best 1 SE tolerance 3% tolerance 15% tolerance Best 1 SE tolerance 3% tolerance 15% tolerance Best 1 SE tolerance 3% tolerance 15% tolerance

250 observations

% true models 0 0 0 0 0 0 0 0 0 0 0 0
% true models but 1 0 1.3 0 0 0 0 0 0 0 0 0 0

% TP in top 10 0 1.3 0 0 0 0 0 0 0.3 0 0 0
% TP in top 10 but 1 15.3 12.3 2.3 0.3 4.3 3.3 1.3 0 5.3 5.0 0.7 0

SEN (SD) 92.7 (3.3) 89.3 (5.1) 76.8 (14.8) 41.9 (27.4) 96.7 (3.4) 94.7 (4.1) 92.8 (5.2) 84.3 (13.6) 96.9 (3.5) 95.4 (4.1) 93.4 (5.5) 84.8 (15.9)
FPR (SD) 40.9 (14.9) 18.2 (16.7) 11.2 (15.0) 5.1 (8.9) 92.8 (7.4) 74.7 (20.1) 59.6 (23.9) 34.0 (18.9) 92.5 (7.5) 74.5 (20.7) 60.8 (24.1) 35.0 (19.3)
PPV (SD) 59.9 (8.7) 78.6 (13.6) 85.8 (14.0) 90.6 (11.5) 39.5 (2.1) 45.4 (7.5) 51.8 (11.6) 64.4 (13.0) 39.6 (2.1) 45.7 (8.1) 51.6 (12.0) 64.0 (13.1)

1000 observations

% true models 0 0 0 0 0 0 0 0 0 0 0 0
% true models but 1 0 8.3 0 0 0 0 0 0 0 0 0.3 0

% TP in top 10 1.3 8.3 0 0 1.0 0 0 0 4.0 0.3 0.3 0
% TP in top 10 but 1 89.0 80.0 25.0 0 65.7 64.7 13.0 0 65.3 56.3 8.7 0

SEN (SD) 93.7 (1.8) 93.3 (1.0) 81.6 (5.0) 20.3 (5.2) 95.9 (3.2) 93.6 (1.4) 84.9 (5.6) 32.8 (21.1) 97.5 (3.2) 94.0 (2.4) 86.5 (5.2) 36.7 (23.2)
FPR (SD) 36.3 (11.5) 8.4 (4.9) 1.5 (2.3) 0.1 (0.7) 87.1 (7.5) 30.8 (13.0) 8.6 (10.3) 2.4 (5.4) 87.9 (7.4) 32.7 (14.6) 10.6 (11.0) 3.2 (6.5)
PPV (SD) 62.7 (7.5) 87.9 (6.3) 97.3 (4.1) 99.3 (4.0) 40.9 (2.3) 66.7 (8.1) 88.0 (10.3) 94.9 (8.8) 41.0 (2.3) 65.6 (8.4) 85.6 (10.6) 93.6 (9.5)
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Table 2.9: Accuracy simulation study results MICE-Lasso analysis with Harrell bootstrap validation: scenarios S3 (assumption of modera-
tion, without missing data) and S4 (assumption of moderation, with missing data, complete outcome) based on 300 data sets of 20 variables
each (n=250). Means of all estimates along with their corresponding 2.5th and 97.5th percentile values within parenthesis. The theoretical
MSE is 1.742 = 3.028

Estimates Complete cases

Best model 1 SE tolerance 3% tolerance 15% tolerance

MSEapparent 2.764 (2.232,3.313) 2.873 (2.328,3.483) 3.076 (2.485,3.729) 3.939 (3.121,4.889)
βLP 1.062 (1.044,1.079) 1.089 (1.069,1.112) 1.132 (1.102,1.165) 1.259 (1.204,1.332)
Tuning λ 0.077 (0.054,0.095) 0.111 (0.085,0.134) 0.165 (0.134,0.209) 0.328 (0.262,0.410)
MSEext 3.482 (3.266,3.794) 3.557 (3.313,3.914) 3.759 (3.436,4.214) 4.799 (4.070,5.835)
Optimismext -0.719 (-1.300,-0.093) -0.684 (-1.283,-0.050) -0.683 (-1.281,0.017) -0.860 (-1.706,-0.064)
Optimismint -0.646 (-0.806,-0.521) -0.578 (-0.731,-0.462) -0.523 (-0.665,-0.420) -0.486 (-0.620,-0.373)
MSEcorrected 3.410 (2.788,4.131) 3.451 (2.826,4.194) 3.598 (2.937,4.384) 4.425 (3.541,5.495)
βLP∗ 1.025 (1.012,1.036) 1.052 (1.035,1.069) 1.092 (1.067,1.118) 1.216 (1.167,1.273)

MCAR

MSEapparent 3.105 (2.347,3.918) 3.214 (2.413,4.079) 3.435 (2.570,4.381) 4.444 (3.260,5.729)
βLP 1.054 (1.034,1.076) 1.083 (1.057,1.111) 1.128 (1.093,1.169) 1.274 (1.198,1.371)
Tuning λ 0.072 (0.049,0.099) 0.107 (0.077,0.145) 0.165 (0.123,0.221) 0.358 (0.270,0.475)
MSEext 3.800 (3.438,4.254) 3.876 (3.473,4.419) 4.109 (3.592,4.898) 5.359 (4.241,6.776)
Optimismext -0.695 (-1.513,0.125) -0.662 (-1.457,0.174) -0.674 (-1.502,0.209) -0.914 (-1.944,0.197)
Optimismint -1.014 (-1.356,-0.770) -0.908 (-1.210,-0.688) -0.798 (-1.065,-0.608) -0.636 (-0.857,-0.475)
MSEcorrected 4.119 (3.168,5.157) 4.122 (3.150,5.159) 4.234 (3.208,5.322) 5.080 (3.784,6.407)
βLP∗ 0.992 (0.965,1.016) 1.022 (0.993,1.047) 1.067 (1.032,1.096) 1.204 (1.148,1.272)

MAR

MSEapparent 3.078 (2.460,3.814) 3.188 (2.556,3.947) 3.412 (2.720,4.289) 4.432 (3.452,5.587)
βLP 1.055 (1.038,1.075) 1.084 (1.061,1.109) 1.129 (1.098,1.168) 1.272 (1.207,1.361)
Tuning λ 0.071 (0.051,0.098) 0.106 (0.077,0.140) 0.163 (0.121,0.214) 0.353 (0.266,0.471)
MSEext 4.054 (3.620,4.593) 4.162 (3.682,4.745) 4.426 (3.862,5.147) 5.705 (4.695,6.957)
Optimismext -0.976 (-1.763,-0.196) -0.973 (-1.738,-0.212) -1.014 (-1.770,-0.274) -1.273 (-2.279,-0.292)
Optimismint -0.909 (-1.162,-0.683) -0.823 (-1.056,-0.615) -0.737 (-0.959,-0.543) -0.615 (-0.805,-0.453)
MSEcorrected 3.986 (3.190,4.882) 4.011 (3.206,4.908) 4.149 (3.304,5.089) 5.046 (3.959,6.233)
βLP∗ 1.004 (0.986,1.022) 1.034 (1.013,1.057) 1.077 (1.051,1.108) 1.213 (1.166,1.278)
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Table 2.10: Accuracy simulation study results for MICE-Elasticnet analysis with Harrell bootstrap validation: scenarios S3 (assumption of
moderation, without missing data) and S4 (assumption of moderation, with missing data, complete outcome) based on 300 data sets of 20
variables each (n=250). Means of all estimates along with their corresponding 2.5th and 97.5th percentile values within parenthesis. The
theoretical MSE is 1.742 = 3.028

Estimates Complete cases

Best model 1 SE tolerance 3% tolerance 15% tolerance

MSEapparent 2.761 (2.220,3.287) 3.411 (2.492,4.631) 4.858 (2.796,7.019) 8.191 (3.771,11.757)
βLP 1.068 (1.050,1.088) 1.197 (1.100,1.326) 1.370 (1.147,1.600) 2.059 (1.351,3.554)
Tuning α 0.581 (0.100,0.900) 0.899 (0.900,0.900) 0.900 (0.900,0.900) 0.900 (0.900,0.900)
Tuning λ 0.149 (0.083,0.357) 0.398 (0.220,0.580) 0.738 (0.580,0.941) 1.708 (1.199,1.947)
MSEext 3.495 (3.260,3.792) 4.178 (3.500,5.471) 5.889 (3.716,8.452) 9.596 (4.819,13.304)
Optimismext -0.734 (-1.343,-0.096) -0.768 (-1.475,-0.044) -1.032 (-2.216,0.032) -1.405 (-3.321,0.230)
Optimismint -0.653 (-0.817,-0.534) -0.564 (-0.721,-0.447) -0.519 (-0.654,-0.408) -0.430 (-0.563,-0.278)
MSEcorrected 3.414 (2.752,4.096) 3.975 (2.998,5.333) 5.376 (3.310,7.548) 8.621 (4.253,12.151)
βLP∗ 1.035 (1.022,1.047) 1.109 (1.069,1.154) 1.200 (1.123,1.294) 1.534 (1.304,1.863)

MCAR

MSEapparent 3.104 (2.351,3.916) 3.537 (2.685,4.651) 4.383 (3.099,6.144) 6.964 (4.354,10.529)
βLP 1.064 (1.039,1.090) 1.170 (1.104,1.256) 1.312 (1.170,1.516) 1.861 (1.390,2.964)
Tuning α 0.413 (0.120,0.810) 0.877 (0.735,0.900) 0.900 (0.900,0.900) 0.900 (0.900,0.900)
Tuning λ 0.203 (0.081,0.387) 0.448 (0.257,0.675) 0.780 (0.534,1.074) 1.873 (1.301,2.496)
MSEext 3.810 (3.446,4.243) 4.255 (3.630,5.132) 5.260 (3.968,7.149) 8.214 (5.368,11.979)
Optimismext -0.705 (-1.514,0.134) -0.717 (-1.493,0.198) -0.876 (-1.923,0.179) -1.250 (-2.783,0.033)
Optimismint -1.004 (-0.817,-0.534) -0.819 (-0.721,-0.447) -0.695 (-0.654,-0.408) -0.523 (-0.563,-0.278)
MSEcorrected 4.109 (3.172,5.145) 4.356 (3.327,5.644) 5.078 (3.727,6.846) 7.487 (4.925,11.087)
βLP∗ 1.003 (1.022,1.047) 1.080 (1.069,1.154) 1.177 (1.123,1.294) 1.526 (1.304,1.863)

MAR

MSEapparent 3.078 (2.454,3.816) 3.492 (2.710,4.423) 4.271 (3.076,6.169) 6.690 (4.262,10.325)
βLP 1.066 (1.047,1.089) 1.167 (1.099,1.243) 1.299 (1.156,1.477) 1.788 (1.382,2.605)
Tuning α 0.378 (0.115,0.770) 0.874 (0.690,0.900) 0.900 (0.900,0.900) 0.900 (0.900,0.900)
Tuning λ 0.210 (0.086,0.370) 0.453 (0.267,0.639) 0.781 (0.531,1.035) 1.856 (1.364,2.443)
MSEext 3.774 (3.444,4.229) 4.193 (3.662,5.042) 5.120 (3.880,7.216) 7.911 (5.031,11.657)
Optimismext -0.696 (-1.504,0.067) -0.702 (-1.494,0.040) -0.849 (-1.833,0.023) -1.221 (-2.764,0.090)
Optimismint -0.902 (-1.160,-0.673) -0.761 (-0.975,-0.555) -0.667 (-0.861,-0.486) -0.522 (-0.713,-0.356)
MSEcorrected 3.980 (3.170,4.869) 4.253 (3.336,5.277) 4.938 (3.682,6.816) 7.212 (4.804,10.838)
βLP∗ 1.016 (0.995,1.036) 1.090 (1.055,1.132) 1.183 (1.121,1.274) 1.522 (1.324,1.872)
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Table 2.11: Variable selection simulation study results for scenarios S3 (assumption of moderation, without missing data) and S5 (assump-
tion of moderation, missing data also in the outcome) for MICE-Lasso best and tolerance models in the case of 20 covariates and 300
samples of 250 and 1000 observations. The following results are shown: the estimated percentages of the times all the 10 true predictors
(TP) are selected at the same time, the estimated percentages of the times the true model is selected apart from one variable, the percent-
ages of the times the TP are the top ranked variables among the selected, the percentage of times the TP are the top ranked variables apart
from one TP, the average percentages of selected TP among the TP (sensitivity, SEN), the average percentages of selected false positive
predictors (FP) among FP (false positive rate, FPR), and the average percentages of selected TP among the selected variables (positive
predictive value, PPV). The mean percentages are shown along with their standard deviation (SD)

LASSO MICE-LASSO

Variable selection Complete data MCAR MAR

Best 1 SE tolerance 3% tolerance 15% tolerance Best 1 SE tolerance 3% tolerance 15% tolerance Best 1 SE tolerance 3% tolerance 15% tolerance

250 observations

% true models 0 0 0 0 0 0 0 0 0 0 0 0
% true models but 1 0 0 1.3 2.7 0 0 0 0 0 0 0 0

% TP in top 10 0 0 1.0 2.7 0 0 0 0 0.3 0.3 0 0
% TP in top 10 but 1 17.3 20.3 20.7 13.7 0 0.7 1.7 0.7 3.0 4.7 4.3 0.7

SEN (SD) 92.3 (3.3) 91.7 (3.5) 90.5 (4.2) 84.2 (6.0) 96.6 (3.4) 95.1 (3.5) 93.7 (3.4) 87.5 (6.4) 97.5 (3.2) 96.6 (3.7) 95.2 (4.1) 88.9 (6.1)
FPR (SD) 35.9 (11.9) 25.6 (10.2) 16.6 (7.9) 5.9 (4.6) 94.1 (5.0) 84.4 (8.5) 67.4 (11.8) 30.2 (11.5) 93.6 (5.3) 84.3 (8.8) 67.8 (12.2) 31.0 (11.6)
PPV (SD) 62.6 (7.9) 70.2 (8.6) 78.2 (8.3) 90.4 (6.7) 39.1 (1.5) 41.5 (2.7) 46.9 (4.6) 65.6 (8.2) 39.5 (1.7) 41.9 (2.8) 47.2 (4.9) 65.4 (8.3)

1000 observations

% true models 0 0 0 0 0 0 0 0 0 0 0 0
% true models but 1 0 0.3 13.7 15.7 0 0 0 0.3 0 0 0 0

% TP in top 10 1.3 1.7 13.7 15.7 0.7 0.3 0 0.3 11.3 9.7 1.0 0
% TP in top 10 but 1 89.3 90.3 76.3 46.7 37.3 43.7 43.0 8.7 47.3 46.3 37.0 3.3

SEN (SD) 93.7 (1.8) 93.5 (1.3) 93.2 (1.3) 88.6 (3.2) 97.0 (3.3) 96.0 (3.3) 93.9 (1.9) 89.6 (3.6) 99.2 (2.1) 99.0 (2.4) 96.8 (3.3) 90.4 (3.5)
FPR (SD) 35.7 (11.1) 22.1 (9.1) 7.5 (5.0) 2.6 (3.2) 93.6 (4.8) 79.6 (7.4) 42.5 (9.8) 13.9 (5.4) 94.9 (5.0) 82.5 (7.6) 47.0 (9.6) 17.6 (5.2)
PPV (SD) 63.0 (7.5) 73.5 (8.2) 89.1 (6.6) 95.7 (5.0) 39.4 (1.5) 43.1 (2.5) 58.6 (5.6) 80.6 (6.2) 39.6 (1.4) 43.0 (2.4) 56.7 (5.1) 76.7 (5.2)
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Table 2.12: Variable selection simulation study results for scenarios S3 (assumption of moderation, without missing data) and S5 (assump-
tion of moderation, missing data also in the outcome) for Elasticnet and MICE-Elasticnet best and tolerance models in the case of 20
covariates and 300 samples of 250 and 1000 observations. The following results are shown: the estimated percentages of the times all
the 10 true predictors (TP) are selected at the same time, the estimated percentages of the times the true model is selected apart from one
variable, the percentages of the times the TP are the top ranked variables among the selected, the percentage of times the TP are the top
ranked variables apart from one TP, the average percentages of selected TP among the TP (sensitivity, SEN), the average percentages of
selected false positive predictors (FP) among FP (false positive rate, FPR), and the average percentages of selected TP among the selected
variables (positive predictive value, PPV). The mean percentages are shown along with their standard deviation (SD)

ELASTICNET MICE-ELASTICNET

Variable selection Complete data MCAR MAR

Best 1 SE tolerance 3% tolerance 15% tolerance Best 1 SE tolerance 3% tolerance 15% tolerance Best 1 SE tolerance 3% tolerance 15% tolerance

250 observations

% true models 0 0 0 0 0 0 0 0 0 0 0 0
% true models but 1 0 1.3 0 0 0 0 0 0 0 0 0 0

% TP in top 10 0 1.3 0 0 0 0 0 0 0 0 0 0
% TP in top 10 but 1 15.3 12.3 2.3 0.3 0.3 1.0 1.0 0 3.7 3.3 1.7 0

SEN (SD) 92.7 (3.3) 89.3 (5.1) 76.8 (14.8) 41.9 (27.4) 97.8 (3.2) 95.8 (3.7) 94.0 (4.7) 87.0 (11.4) 98.5 (2.9) 97.2 (3.9) 95.8 (4.8) 89.6 (11.9)
FPR (SD) 40.9 (14.9) 18.2 (16.7) 11.2 (15.0) 5.1 (8.9) 97.5 (3.6) 86.0 (13.6) 72.7 (20.1) 43.2 (20.0) 97.5 (3.6) 87.0 (14.3) 74.8 (21.2) 47.6 (21.0)
PPV (SD) 59.9 (8.7) 78.6 (13.6) 85.8 (14.0) 90.6 (11.5) 38.5 (1.1) 41.4 (4.2) 45.9 (8.0) 58.7 (12.1) 38.7 (1.1) 41.6 (4.6) 45.9 (8.6) 57.0 (11.8)

1000 observations

% true models 0 0 0 0 0 0 0 0 0 0 0 0
% true models but 1 0 8.3 0 0 0 0 0 0 0 0 0 0

% TP in top 10 1.3 8.3 0 0 0.3 0 0 0.0 11.3 0.7 0.0 0.0
% TP in top 10 but 1 89.0 80.0 25.0 0.0 38.3 37.3 4.7 0.0 47.3 28.0 1.0 0.0

SEN (SD) 93.7 (1.8) 93.3 (1.0) 81.6 (5.0) 20.3 (5.2) 97.1 (3.3) 94.0 (2.2) 86.4 (6.5) 42.5 (26.1) 99.3 (2.0) 97.0 (3.3) 90.0 (5.7) 57.4 (27.3)
FPR (SD) 36.3 (11.5) 8.4 (4.9) 1.5 (2.3) 0.1 (0.7) 94.1 (5.0) 43.0 (15.9) 13.9 (12.6) 4.4 (7.2) 95.6 (4.7) 51.1 (18.7) 23.8 (16.9) 9.4 (10.3)
PPV (SD) 62.7 (7.5) 87.9 (6.3) 97.3 (4.1) 99.3 (4.0) 39.2 (1.5) 59.0 (8.3) 81.9 (11.4) 91.6 (10.2) 39.4 (1.3) 55.7 (8.7) 73.1 (12.0) 85.1 (11.5)
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Table 2.13: Accuracy simulation study results for MICE-Lasso analysis with Harrell bootstrap validation: scenarios S3 (assumption of
moderation, complete data) and S5 (assumption of moderation, missing data also in the outcome) based on 300 data sets of 20 variables
each (n=250). Means of all estimates along with their corresponding 2.5th and 97.5th percentile values within parenthesis. The theoretical
MSE is 1.742 = 3.028

Estimates Complete cases

Best model 1 SE tolerance 3% tolerance 15% tolerance

MSEapparent 2.764 (2.232,3.313) 2.873 (2.328,3.483) 3.076 (2.485,3.729) 3.939 (3.121,4.889)
βLP 1.062 (1.044,1.079) 1.089 (1.069,1.112) 1.132 (1.102,1.165) 1.259 (1.204,1.332)
Tuning λ 0.077 (0.054,0.095) 0.111 (0.085,0.134) 0.165 (0.134,0.209) 0.328 (0.262,0.410)
MSEext 3.482 (3.266,3.794) 3.557 (3.313,3.914) 3.759 (3.436,4.214) 4.799 (4.070,5.835)
Optimismext -0.719 (-1.300,-0.093) -0.684 (-1.283,-0.050) -0.683 (-1.281,0.017) -0.860 (-1.706,-0.064)
Optimismint -0.646 (-0.806,-0.521) -0.578 (-0.731,-0.462) -0.523 (-0.665,-0.420) -0.486 (-0.620,-0.373)
MSEcorrected 3.410 (2.788,4.131) 3.451 (2.826,4.194) 3.598 (2.937,4.384) 4.425 (3.541,5.495)
βLP∗ 1.025 (1.012,1.036) 1.052 (1.035,1.069) 1.092 (1.067,1.118) 1.216 (1.167,1.273)

MCAR

MSEapparent 3.312 (2.424,4.240) 3.415 (2.488,4.376) 3.633 (2.614,4.699) 4.669 (3.244,6.144)
βLP 1.053 (1.031,1.075) 1.083 (1.053,1.112) 1.130 (1.085,1.176) 1.283 (1.195,1.384)
Tuning λ 0.070 (0.047,0.096) 0.105 (0.072,0.141) 0.163 (0.114,0.218) 0.362 (0.249,0.490)
MSEext 4.036 (3.606,4.610) 4.092 (3.642,4.701) 4.301 (3.734,5.110) 5.534 (4.362,6.987)
Optimismext -0.724 (-1.798,0.310) -0.678 (-1.742,0.314) -0.669 (-1.692,0.316) -0.866 (-2.007,0.265)
Optimismint -1.264 (-1.709,-0.903) -1.150 (-1.551,-0.807) -1.022 (-1.390,-0.707) -0.794 (-1.067,-0.537)
MSEcorrected 4.576 (3.387,5.892) 4.565 (3.371,5.881) 4.655 (3.411,5.994) 5.463 (3.893,7.044)
βLP∗ 0.980 (0.946,1.013) 1.010 (0.978,1.044) 1.055 (1.017,1.094) 1.196 (1.129,1.271)

MAR

MSEapparent 3.286 (2.503,4.187) 3.392 (2.585,4.314) 3.615 (2.756,4.610) 4.675 (3.542,6.013)
βLP 1.055 (1.037,1.075) 1.084 (1.059,1.111) 1.130 (1.095,1.171) 1.280 (1.209,1.382)
Tuning λ 0.069 (0.048,0.094) 0.104 (0.074,0.139) 0.161 (0.119,0.214) 0.356 (0.267,0.484)
MSEext 3.977 (3.536,4.609) 4.029 (3.599,4.667) 4.226 (3.695,5.021) 5.437 (4.378,6.791)
Optimismext -0.692 (-1.727,0.303) -0.637 (-1.643,0.333) -0.611 (-1.651,0.359) -0.762 (-1.964,0.375)
Optimismint -1.099 (-1.449,-0.774) -1.012 (-1.338,-0.705) -0.917 (-1.213,-0.624) -0.756 (-1.002,-0.496)
MSEcorrected 4.385 (3.320,5.644) 4.404 (3.330,5.651) 4.532 (3.427,5.809) 5.431 (4.087,7.028)
βLP∗ 0.997 (0.968,1.022) 1.026 (0.999,1.053) 1.069 (1.040,1.103) 1.208 (1.157,1.278)
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Table 2.14: Accuracy simulation study results for MICE-Elasticnet analysis with Harrell bootstrap validation: scenarios S3 (assumption of
moderation, complete data) and S5 (assumption of moderation, missing data also in the outcome ), based on 300 data sets of 20 variables
each (n=250). Means of all estimates along with their corresponding 2.5th and 97.5th percentile values within parenthesis. The theoretical
MSE is 1.742 = 3.028

Estimates Complete cases

Best model 1 SE tolerance 3% tolerance 15% tolerance

MSEapparent 2.761 (2.220,3.287) 3.411 (2.492,4.631) 4.858 (2.796,7.019) 8.191 (3.771,11.757)
βLP 1.068 (1.050,1.088) 1.197 (1.100,1.326) 1.370 (1.147,1.600) 2.059 (1.351,3.554)
Tuning α 0.581 (0.100,0.900) 0.899 (0.900,0.900) 0.900 (0.900,0.900) 0.900 (0.900,0.900)
Tuning λ 0.149 (0.083,0.357) 0.398 (0.220,0.580) 0.738 (0.580,0.941) 1.708 (1.199,1.947)
MSEext 3.495 (3.260,3.792) 4.178 (3.500,5.471) 5.889 (3.716,8.452) 9.596 (4.819,13.304)
Optimismext -0.734 (-1.343,-0.096) -0.768 (-1.475,-0.044) -1.032 (-2.216,0.032) -1.405 (-3.321,0.230)
Optimismint -0.653 (-0.817,-0.534) -0.564 (-0.721,-0.447) -0.519 (-0.654,-0.408) -0.430 (-0.563,-0.278)
MSEcorrected 3.414 (2.752,4.096) 3.975 (2.998,5.333) 5.376 (3.310,7.548) 8.621 (4.253,12.151)
βLP∗ 1.035 (1.022,1.047) 1.109 (1.069,1.154) 1.200 (1.123,1.294) 1.534 (1.304,1.863)

MCAR

MSEapparent 3.314 (2.421,4.251) 3.722 (2.728,4.761) 4.514 (3.228,6.048) 7.071 (4.670,9.899)
βLP 1.064 (1.035,1.092) 1.170 (1.104,1.255) 1.313 (1.174,1.490) 1.861 (1.406,2.594)
Tuning α 0.415 (0.130,0.780) 0.871 (0.730,0.900) 0.900 (0.900,0.900) 0.900 (0.900,0.900)
Tuning λ 0.202 (0.078,0.379) 0.440 (0.225,0.665) 0.767 (0.469,1.070) 1.872 (1.228,2.618)
MSEext 4.032 (3.598,4.597) 4.402 (3.769,5.257) 5.316 (4.104,6.967) 8.260 (5.471,11.412)
Optimismext -0.718 (-1.793,0.317) -0.680 (-1.667,0.346) -0.802 (-1.911,0.397) -1.190 (-2.846,0.297)
Optimismint -1.249 (-1.682,-0.895) -1.016 (-1.373,-0.707) -0.845 (-1.136,-0.570) -0.604 (-0.869,-0.374)
MSEcorrected 4.563 (3.500,5.672) 4.738 (3.607,5.927) 5.359 (3.978,6.912) 7.674 (5.238,10.469)
βLP∗ 0.989 (0.954,1.024) 1.073 (1.032,1.113) 1.180 (1.115,1.254) 1.561 (1.363,1.843)

MAR

MSEapparent 3.292 (2.507,4.206) 3.666 (2.774,4.680) 4.363 (3.157,5.856) 6.681 (4.373,9.718)
βLP 1.067 (1.045,1.091) 1.162 (1.098,1.242) 1.288 (1.162,1.459) 1.752 (1.372,2.553)
Tuning α 0.355 (0.110,0.745) 0.857 (0.655,0.900) 0.900 (0.900,0.900) 0.900 (0.900,0.900)
Tuning λ 0.221 (0.091,0.403) 0.456 (0.279,0.670) 0.775 (0.539,1.070) 1.862 (1.350,2.564)
MSEext 3.969 (3.531,4.604) 4.270 (3.704,5.229) 5.032 (3.988,6.787) 7.624 (5.266,10.951)
Optimismext -0.678 (-1.673,0.313) -0.605 (-1.693,0.361) -0.669 (-1.828,0.361) -0.943 (-2.477,0.530)
Optimismint -0.831 (-1.431,-0.771) -0.737 (-1.218,-0.630) -0.659 (-1.067,-0.534) -0.547 (-0.888,-0.348)
MSEcorrected 4.400 (3.310,5.627) 4.639 (3.487,5.882) 5.311 (3.838,6.693) 7.681 (4.934,10.465)
βLP∗ 1.007 (0.979,1.034) 1.086 (1.052,1.127) 1.186 (1.125,1.267) 1.541 (1.369,1.807)
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Table 2.15: Variable selection simulation study results for scenarios S3 (assumption of moderation, complete data) and S6 (assumption
of moderation, missing data, complete outcome, interaction terms in imputation model) for MICE-Lasso best and tolerance models in the
case of 20 covariates and 300 samples of 250 and 1000 observations. The following results are shown: the estimated percentages of
the times all the 10 true predictors (TP) are selected at the same time, the estimated percentages of the times the true model is selected
apart from one variable, the percentages of the times the TP are the top ranked variables among the selected, the percentage of times the
TP are the top ranked variables apart from one TP, the average percentages of selected TP among the TP (sensitivity, SEN), the average
percentages of selected false positive predictors (FP) among FP (false positive rate, FPR), and the average percentages of selected TP
among the selected variables (positive predictive value, PPV). The mean percentages are shown along with their standard deviation (SD)

LASSO MICE-LASSO

Variable selection Complete data MCAR MAR

Best 1 SE tolerance 3% tolerance 15% tolerance Best 1 SE tolerance 3% tolerance 15% tolerance Best 1 SE tolerance 3% tolerance 15% tolerance

250 observations

% true models 0 0 0 0 0 0 0 0 0 0 0 0
% true models but 1 0 0 1.3 2.7 0 0 0 0 0 0 0 0

% TP in top 10 0 0 1.0 2.7 0 0 0 0 0.3 0 0 0
% TP in top 10 but 1 17.3 20.3 20.7 13.7 2.7 3.0 3.7 3.7 2.0 5.0 5.7 3.0

SEN (SD) 92.3 (3.3) 91.7 (3.5) 90.5 (4.2) 84.2 (6.0) 98.6 (2.7) 97.2 (3.5) 94.8 (3.6) 88.7 (5.8) 98.2 (3.2) 96.4 (3.6) 94.2 (3.6) 88.1 (6.5)
FPR (SD) 35.9 (11.9) 25.6 (10.2) 16.6 (7.9) 5.9 (4.6) 98.4 (3.7) 93.5 (9.4) 77.5 (18.4) 30.9 (17.2) 96.5 (5.8) 88.7 (11.6) 69.2 (16.8) 24.5 (10.9)
PPV (SD) 62.6 (7.9) 70.2 (8.6) 78.2 (8.3) 90.4 (6.7) 38.5 (1.0) 39.5 (2.6) 44.2 (6.2) 66.5 (11.1) 38.9 (1.6) 40.7 (3.5) 46.8 (6.4) 70.4 (8.9)

1000 observations

% true models 0 0 0 0 0 0 0 0 0 0 0 0
% true models but 1 0 0.3 13.7 15.7 0 0 0 1.0 0 0 0 1.0

% TP in top 10 1.3 1.7 13.7 15.7 0.7 0.7 0 1.0 1.3 0.7 0 1.0
% TP in top 10 but 1 89.3 90.3 76.3 46.7 34.7 51.7 65.0 25.0 48.3 62.7 67.0 24.3

SEN (SD) 93.7 (1.8) 93.5 (1.3) 93.2 (1.3) 88.6 (3.2) 97.5 (3.2) 95.5 (3.1) 93.7 (1.6) 89.9 (3.4) 97.0 (3.3) 95.5 (3.1) 93.7 (1.6) 89.5 (3.4)
FPR (SD) 35.7 (11.1) 22.1 (9.1) 7.5 (5.0) 2.6 (3.2) 97.4 (4.1) 85.4 (10.3) 38.2 (11.5) 10.7 (5.6) 96.7 (4.0) 83.3 (9.6) 36.9 (10.5) 10.9 (5.5)
PPV (SD) 63.0 (7.5) 73.5 (8.2) 89.1 (6.6) 95.7 (5.0) 38.5 (1.3) 41.3 (3.1) 61.4 (7.1) 84.6 (7.1) 38.5 (1.2) 41.9 (2.9) 62.1 (6.6) 84.3 (6.9)
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Table 2.16: Accuracy simulation study results for MICE-Lasso analysis with Harrell bootstrap validation: scenarios S3 (assumption of
moderation, without missing data) and S6 (assumption of moderation, missing data, interaction terms in the imputation model), based on
300 data sets of 20 variables each (n=250). Means of all estimates along with their corresponding 2.5th and 97.5th percentile values within
parenthesis. The theoretical MSE is 1.742 = 3.028

Estimates Complete cases

Best model 1 SE tolerance 3% tolerance 15% tolerance

MSEapparent 2.764 (2.232,3.313) 2.873 (2.328,3.483) 3.076 (2.485,3.729) 3.939 (3.121,4.889)
βLP 1.062 (1.044,1.079) 1.089 (1.069,1.112) 1.132 (1.102,1.165) 1.259 (1.204,1.332)
Tuning λ 0.077 (0.054,0.095) 0.111 (0.085,0.134) 0.165 (0.134,0.209) 0.328 (0.262,0.410)
MSEext 3.482 (3.266,3.794) 3.557 (3.313,3.914) 3.759 (3.436,4.214) 4.799 (4.070,5.835)
Optimismext -0.719 (-1.300,-0.093) -0.684 (-1.283,-0.050) -0.683 (-1.281,0.017) -0.860 (-1.706,-0.064)
Optimismint -0.646 (-0.806,-0.521) -0.578 (-0.731,-0.462) -0.523 (-0.665,-0.420) -0.486 (-0.620,-0.373)
MSEcorrected 3.262 (2.663,3.946) 3.320 (2.716,4.034) 3.474 (2.834,4.215) 4.311 (3.534,5.291)
βLP∗ 1.025 (1.012,1.036) 1.052 (1.035,1.069) 1.092 (1.067,1.118) 1.216 (1.167,1.273)

MCAR

MSEapparent 3.013 (2.302,3.900) 3.111 (2.347,4.052) 3.331 (2.455,4.349) 4.345 (3.109,5.696)
βLP 1.030 (0.997,1.063) 1.057 (1.012,1.096) 1.102 (1.043,1.154) 1.248 (1.155,1.349)
Tuning λ 0.046 (0.018,0.078) 0.076 (0.028,0.120) 0.131 (0.055,0.194) 0.324 (0.196,0.447)
MSEext 3.956 (3.468,4.982) 3.898 (3.473,4.668) 3.994 (3.486,4.691) 5.150 (3.885,6.541)
Optimismext -0.944 (-2.424,0.152) -0.787 (-2.135,0.203) -0.663 (-1.684,0.240) -0.806 (-1.768,0.169)
Optimismint -1.451 (-1.965,-1.047) -1.286 (-1.734,-0.903) -1.050 (-1.412,-0.744) -0.678 (-0.917,-0.487)
MSEcorrected 4.464 (3.464,5.527) 4.397 (3.566,5.254) 4.381 (3.440,5.469) 5.023 (3.571,6.411)
βLP∗ 0.940 (0.904,0.975) 0.970 (0.930,1.003) 1.012 (0.970,1.051) 1.157 (1.088,1.219)

MAR

MSEapparent 2.963 (2.156,3.693) 3.078 (2.227,3.876) 3.305 (2.387,4.181) 4.303 (3.115,5.499)
βLP 1.037 (1.012,1.065) 1.065 (1.031,1.098) 1.109 (1.063,1.151) 1.251 (1.184,1.335)
Tuning λ 0.050 (0.023,0.079) 0.082 (0.041,0.121) 0.136 (0.079,0.192) 0.325 (0.227,0.451)
MSEext 3.833 (3.418,4.588) 3.811 (3.420,4.416) 3.951 (3.495,4.584) 5.128 (4.153,6.501)
Optimismext -0.870 (-2.083,-0.065) -0.733 (-1.764,0.023) -0.646 (-1.403,0.132) -0.826 (-1.835,0.243)
Optimismint -1.340 (-1.853,-1.012) -1.170 (-1.595,-0.880) -0.956 (-1.307,-0.696) -0.645 (-0.883,-0.476)
MSEcorrected 4.304 (3.244,5.425) 4.248 (3.198,5.372) 4.260 (3.213,5.397) 4.947 (3.696,6.182)
βLP∗ 0.955 (0.920,0.988) 0.983 (0.948,1.020) 1.027 (0.983,1.069) 1.168 (1.100,1.235)
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Figure 2.2: Optimism-corrected MSE estimates from MICE-Lasso (ML) run on 300 simulated
20-covariate datasets with 250 and 1000 observations (top and bottom rows respectively) com-
paring the scenarios with moderation assumption S3 (without missing data), S4 (with missing
data, complete outcome), S5 ( with missing data also in the outcome) and S6 (missing data,
complete outcome and interaction terms in the imputation model). ML estimated MSEs are
shown for the best λ selection as well as for three tolerance models: one model corresponding
to a λ giving the MSE within 1 standard error (SE) of the minimum, the 2nd within 3% and the
3rd within 15%, through bootstrap tuning. For S3, the Lasso (L) corrected MSEs are shown.
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Figure 2.3: Calibration slope βLP estimates for MICE-Lasso (ML) run on 300 simulated 20-
covariate datasets with 250 and 1000 observations (top and bottom rows respectively) for
the scenarios with moderation assumption S3 (without missing data), S4 (with missing data,
complete outcome), S5 ( with missing data also in the outcome) and S6 (missing data, complete
outcome and interaction terms in the imputation model). ML estimated calibration slopes are
shown for the best λ selection as well as for three tolerance models: one model corresponding
to a λ giving the MSE within 1 standard error (SE) of the minimum, the 2nd within 3% and the
3rd within 15%, through bootstrap tuning. For S3, the Lasso (L) calibration slopes are shown.
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Figure 2.4: Average internal and external MSE optimism estimates with 2.5th and 97.5th
percentiles for MICE-Lasso (ML) run on 300 simulated 20-covariate datasets with 250 and
1000 observations for the scenarios with moderation assumption S3 (without missing data), S4
(with missing data, complete outcome), S5 ( with missing data also in the outcome) and S6
(missing data, complete outcome and interaction terms in the imputation model). ML estimated
internal and external MSE optimism are shown for the best λ selection as well as for three
tolerance models: one model corresponding to a λ giving the MSE within 1 standard error (SE)
of the minimum, the 2nd within 3% and the 3rd within 15%, through bootstrap tuning. For S3,
the Lasso (L) optimism estimates are shown.
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Figure 2.5: Average percentage of true predictors (TP) selected among the actual TP (SEN)
estimates with 2.5th and 97.5th percentiles from MICE-Lasso (ML) run on 300 simulated 20-
covariate datasets with 250 and 1000 observations for the scenarios with moderation assump-
tion S3 (without missing data), S4 (with missing data, complete outcome), S5 ( with missing
data also in the outcome) and S6 (missing data, complete outcome and interaction terms in the
imputation model). ML estimated percentages of TP selected among the actual TP variables
are shown for the best λ selection as well as for three tolerance models: one model corre-
sponding to a λ giving the MSE within 1 standard error (SE) of the minimum, the 2nd within 3%
and the 3rd within 15%, through bootstrap tuning. For S3, the Lasso (L) estimates are shown.
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Figure 2.6: Average percentage of true predictors (TP) among the selected variables (PPV)
estimates with 2.5th and 97.5th percentiles from MICE-Lasso (ML) run on 300 simulated 20-
covariate datasets with 250 and 1000 observations for the scenarios with moderation assump-
tion S3 (without missing data), S4 (with missing data, complete outcome), S5 ( with missing
data also in the outcome) and S6 (missing data, complete outcome and interaction terms in the
imputation model). ML estimated percentages of TP among the selected variables are shown
for the best λ selection as well as for three tolerance models: one model corresponding to a
λ giving the MSE within 1 standard error (SE) of the minimum, the 2nd within 3% and the 3rd
within 15%, through bootstrap tuning. For S3, the Lasso (L) estimates are shown.
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Figure 2.7: Comparison of variable inclusion frequency by MICE-Lasso (ML) run on 300 simulated 20-covariate datasets with 250
observations for the scenarios with moderation assumption S3 (without missing data), S4 (with missing data, complete outcome), S5 ( with
missing data also in the outcome) and S6 (missing data, complete outcome and interaction terms in the imputation model) with MCAR data.
ML variable inclusion frequencies are shown for the best λ selection as well as for three tolerance models: one model corresponding to a λ
giving the MSE within 1 standard error (SE) of the minimum, the 2nd within 3% and the 3rd within 15%, through bootstrap tuning.
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MissForest-Lasso: 20-covariate data results

MissForest-Lasso S2: Missing data, No assumption of moderation, complete outcome

When interactions were not included in the linear predictor, the best MissForest-Lasso model

had an acceptable prediction accuracy performance similar to MICE-Lasso with a slightly smaller

percentile interval (MSEcorrected=3.668 with 2.5th and 97.5th percentiles being 2.924 and 4.557

for MCAR, and MSEcorrected=3.610 with 2.5th and 97.5th percentiles being 2.886 and 4.346 for

MAR 250 observation data, see Table 2.18). With increasing penalty tolerance, the MSEcorrected

was still acceptable apart from the 15% tolerance penalty. Internal and external MSE optimism

estimates were similar in magnitude to Lasso’s estimates in scenario S1 but the bias due to

resampling was smaller for MissForest-Lasso than Lasso. The missing data imputation by

MissForest seemed to adjust the optimism in the internal validation so that it was more similar

to the optimism one would get by applying the model on completely new data. Also average

calibration slope estimates were similar to Lasso scenario S1 for best and tolerance models,

whilst MICE-Lasso (scenario S2) had slightly smaller estimates due to the poor variable selec-

tion leading to overfitting.

MissForest-Lasso had a variable inclusion frequency comparable to Lasso in scenario S1

(see Figures 2.29 and 2.28). The estimated PPV ranged from 64.9% (SD 8.4) for the best

model to 96.8% (SD 5.9) for the 15% tolerance model for MCAR data and from 65.0% (SD

8.5) to 96.7% (SD 5.8) for MAR data; while the estimated SEN ranged from 99.4% (SD 2.4)

to 75.2% (SD 15.7), with the tolerance models showing good variable selection, which was a

result very similar to Lasso’s results (see Table 2.17). MissForest-Lasso could also select up

to 7% true models with 3% tolerance penalty for MCAR data and up to 8% for MAR data. The

percentage of true models but one TP was estimated up to 24.7% for MCAR data and up to

21.7% for MAR data, much better performance compared to MICE-Lasso scenario S2 (see

Table 2.3).

Results improved with larger sample size (see tables 2.17 and A.12 in the Appendix).

Minor analysis 4 results In scenario S2, MissForest-Lasso with 10 MissForest imputations

outperformed MICE-Lasso in variable selection, suggesting the superiority of the imputation

method MissForest compared to MICE (see Figure A.4 in the Appendix, comparing the single

imputation MissForest-Lasso with the 10-imputation MissForest-Lasso).
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Table 2.17: Variable selection simulation study results for scenarios S1 (without missing data, no assumption of moderation) and S2 (with
missing data, complete outcome, no assumption of moderation) for Lasso and MissForest-Lasso best and tolerance models in the case of
20 covariates and 300 samples of 250 and 1000 observations. The following results are shown: the estimated percentages of the times all
the 10 true predictors (TP) are selected at the same time, the estimated percentages of the times the true model is selected apart from one
variable, the percentages of the times the TP are the top ranked variables among the selected, the percentage of times the TP are the top
ranked variables apart from one TP, the average percentages of selected TP among the TP (sensitivity, SEN), the average percentages of
selected false positive predictors (FP) among FP (false positive rate, FPR), and the average percentages of selected TP among the selected
variables (positive predictive value, PPV). The mean percentages are shown along with their standard deviation (SD)

LASSO MissForest-LASSO

Variable selection Complete data MCAR MAR

Best 1 SE tolerance 3% tolerance 15% tolerance Best 1 SE tolerance 3% tolerance 15% tolerance Best 1 SE tolerance 3% tolerance 15% tolerance

250 observations

% true models 0.7 3.7 16.0 13.0 0 1.0 7.0 5.0 0 2.3 9.0 2.0
% true models but 1 1.7 11.0 32.0 47.7 1.3 4.3 24.7 18.7 1.7 7.7 21.7 19.3

% TP in top 10 58.7 62.3 60.0 14.7 31.7 36.7 32.7 6.7 34.0 35.0 33.0 2.7
% TP in top 10 but 1 36.3 33.0 33.7 51.0 64.0 58.3 60.3 38.0 63.0 61.7 61.3 41.0

SEN (SD) 99.8 (1.4) 99.5 (2.3) 98.0 (4.0) 87.6 (8.9) 99.4 (2.4) 98.4 (3.9) 95.7 (6.3) 75.2 (15.7) 99.4 (2.3) 98.8 (3.4) 96.2 (5.9) 76.2 (14.5)
FPR (SD) 52.9 (18.7) 33.4 (17.6) 15.6 (12.5) 1.8 (4.6) 56.4 (19.9) 37.6 (17.4) 19.1 (13.4) 2.8 (5.1) 56.0 (19.1) 36.7 (18.0) 18.9 (13.4) 3.1 (5.5)
PPV (SD) 66.4 (8.7) 76.2 (10.1) 87.3 (9.0) 98.2 (4.4) 64.9 (8.4) 73.5 (9.2) 84.4 (9.3) 96.8 (5.9) 65.0 (8.5) 74.2 (9.9) 84.6 (9.4) 96.7 (5.8)

1000 observations

% true models 0 0 0 0 0 0 0 0 0 0 0 0
% true models but 1 0 0.3 13.7 15.7 0 0 0 1.0 0 0 0 1.0

% TP in top 10 1.3 1.7 13.7 15.7 0.7 0.7 0 1.0 1.3 0.7 0 1.0
% TP in top 10 but 1 89.3 90.3 76.3 46.7 34.7 51.7 65.0 25.0 48.3 62.7 67.0 24.3

SEN (SD) 93.7 (1.8) 93.5 (1.3) 93.2 (1.3) 88.6 (3.2) 97.5 (3.2) 95.5 (3.1) 93.7 (1.6) 89.9 (3.4) 97.0 (3.3) 95.5 (3.1) 93.7 (1.6) 89.5 (3.4)
FPR (SD) 35.7 (11.1) 22.1 (9.1) 7.5 (5.0) 2.6 (3.2) 97.4 (4.1) 85.4 (10.3) 38.2 (11.5) 10.7 (5.6) 96.7 (4.0) 83.3 (9.6) 36.9 (10.5) 10.9 (5.5)
PPV (SD) 63.0 (7.5) 73.5 (8.2) 89.1 (6.6) 95.7 (5.0) 38.5 (1.3) 41.3 (3.1) 61.4 (7.1) 84.6 (7.1) 38.5 (1.2) 41.9 (2.9) 62.1 (6.6) 84.3 (6.9)
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Table 2.18: Accuracy simulation study results for MissForest-Lasso analysis with Harrell bootstrap validation: scenarios S1 (without
missing data, no assumption of moderation) and S2 (with missing data, complete outcome, no assumption of moderation) based on 300
data sets of 20 variables each (n=250). Means of all estimates along with their corresponding 2.5th and 97.5th percentile values within
parenthesis. The theoretical MSE is 1.742 = 3.028

Estimates Complete cases

Best model 1 SE tolerance 3% tolerance 15% tolerance

MSEapparent 2.840 (2.315,3.406) 2.937 (2.398,3.544) 3.127 (2.553,3.772) 4.002 (3.271,4.905)
βLP 1.062 (1.041,1.084) 1.102 (1.075,1.131) 1.161 (1.124,1.200) 1.334 (1.261,1.429)
Tuning λ 0.065 (0.039,0.085) 0.106 (0.076,0.134) 0.168 (0.134,0.209) 0.360 (0.293,0.410)
MSEext 3.509 (3.289,3.791) 3.590 (3.347,3.890) 3.781 (3.486,4.172) 4.718 (4.113,5.420)
Optimismext -0.669 (-1.212,-0.010) -0.653 (-1.198,0.014) -0.654 (-1.216,0.055) -0.716 (-1.460,0.176)
Optimismint -0.422 (-0.534,-0.333) -0.383 (-0.482,-0.295) -0.346 (-0.442,-0.267) -0.309 (-0.404,-0.216)
MSEcorrected 3.262 (2.663,3.946) 3.320 (2.716,4.034) 3.474 (2.834,4.215) 4.311 (3.534,5.291)
βLP∗ 1.028 (1.015,1.042) 1.069 (1.051,1.088) 1.126 (1.100,1.157) 1.296 (1.235,1.379)

MCAR

MSEapparent 3.156 (2.583,3.900) 3.271 (2.672,4.037) 3.503 (2.843,4.279) 4.574 (3.594,5.664)
βLP 1.065 (1.041,1.089) 1.107 (1.079,1.140) 1.171 (1.130,1.214) 1.368 (1.278,1.473)
Tuning λ 0.069 (0.041,0.095) 0.115 (0.081,0.149) 0.187 (0.149,0.234) 0.429 (0.328,0.574)
MSEext 3.764 (3.417,4.289) 3.855 (3.479,4.381) 4.098 (3.597,4.739) 5.276 (4.416,6.221)
Optimismext -0.608 (-1.287,0.121) -0.584 (-1.262,0.136) -0.595 (-1.323,0.162) -0.702 (-1.601,0.259)
Optimismint -0.512 (-0.717,-0.329) -0.459 (-0.649,-0.284) -0.411 (-0.584,-0.247) -0.341 (-0.481,-0.200)
MSEcorrected 3.668 (2.924,4.557) 3.730 (2.971,4.629) 3.914 (3.109,4.818) 4.915 (3.910,6.027)
βLP∗ 1.023 (1.002,1.044) 1.068 (1.043,1.093) 1.133 (1.099,1.169) 1.335 (1.264,1.431)

MAR

MSEapparent 3.109 (2.465,3.772) 3.221 (2.550,3.926) 3.446 (2.732,4.187) 4.500 (3.600,5.612)
βLP 1.064 (1.039,1.089) 1.106 (1.075,1.139) 1.169 (1.129,1.217) 1.368 (1.280,1.494)
Tuning λ 0.069 (0.035,0.095) 0.115 (0.076,0.149) 0.186 (0.134,0.234) 0.428 (0.328,0.574)
MSEext 3.788 (3.396,4.420) 3.879 (3.460,4.523) 4.112 (3.600,4.756) 5.262 (4.429,6.206)
Optimismext -0.678 (-1.541,0.107) -0.657 (-1.487,0.124) -0.667 (-1.507,0.115) -0.762 (-1.673,0.169)
Optimismint -0.501 (-0.714,-0.329) -0.449 (-0.640,-0.287) -0.401 (-0.573,-0.250) -0.337 (-0.479,-0.200)
MSEcorrected 3.610 (2.886,4.346) 3.670 (2.929,4.429) 3.847 (3.088,4.641) 4.837 (3.938,5.964)
βLP∗ 1.025 (0.999,1.049) 1.070 (1.045,1.099) 1.133 (1.104,1.174) 1.335 (1.266,1.448)
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MissForest-Lasso S4: Missing data, Assumption of moderation, complete outcome Dis-

crimination performance for MissForest-Lasso in presence of missing data and moderators

among the predictors was comparable to MICE-Lasso in the same scenario. The optimism-

corrected MSE for the best model was poor compared to the theoretical MSE: 4.174 (2.5th

and 97.5th percentiles: 3.360, 5.101) for MCAR data and slightly less 4.087 (2.5th and 97.5th

percentiles: 3.292, 5.094) for MAR data with 250 observations (see Table 2.20). The estimates

of internal and external MSE optimism were again the smallest in absolute value after Lasso

and Elasticnet. However, the difference between internal and external MSE optimism were not

improved compared to MICE-Lasso. MissForest-Lasso behaved similarly with MAR and MCAR

data, denoting that the RF imputation algorithm was less sensitive to correlation between vari-

ables. Calibration slopes estimates were good, also close to MICE-Lasso estimates.

Variable inclusion frequency for MissForest-Lasso is again similar to Lasso in scenario S3

with complete data (see Figures 2.30, 2.33 and 2.31). The TPs were almost always selected:

average percentage of TP among TPs was 90.2 (SD 4.4) for the best model for MCAR data to

a minimum of 71.8 (SD 10.8) for the 15% tolerance model (slightly better for MAR data, see

2.19). Among the selected variables on average 62.8% (SD 7.3) were TPs for the best model

and 89.9% (SD 7.2) for the 15% tolerance model. Therefore, only the 3% and 15% tolerance

models showed good variable selection.

The 1000 observation dataset MissForest-Lasso results were even closer to Lasso results

(see tables 2.19, A.13 in the Appendix).
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Table 2.19: Variable selection simulation study results for scenarios S3 (assumption of moderation, without missing data) and S4 (assump-
tion of moderation, with missing data) for MissForest-Lasso best and tolerance models in the case of 20 covariates and 300 samples of
250 and 1000 observations. The following results are shown: the estimated percentages of the times all the 10 true predictors (TP) are
selected at the same time, the estimated percentages of the times the true model is selected apart from one variable, the percentages of the
times the TP are the top ranked variables among the selected, the percentage of times the TP are the top ranked variables apart from one
TP, the average percentages of selected TP among the TP (sensitivity, SEN), the average percentages of selected false positive predictors
(FP) among FP (false positive rate, FPR), and the average percentages of selected TP among the selected variables (positive predictive
value, PPV). The mean percentages are shown along with their standard deviation (SD)

LASSO MissForest-LASSO

Variable selection Complete data MCAR MAR

Best 1 SE tolerance 3% tolerance 15% tolerance Best 1 SE tolerance 3% tolerance 15% tolerance Best 1 SE tolerance 3% tolerance 15% tolerance

250 observations

% true models 0 0 0 0 0 0 0 0 0 0 0 0
% true models but 1 0 0 1.3 2.7 0 0 0.7 1.0 0 0 0.7 0

% TP in top 10 0 0 1.0 2.7 0 0 0.7 1.0 0 0 0.7 0
% TP in top 10 but 1 17.3 20.3 20.7 13.7 5.3 8.0 8.0 3.0 5.0 5.0 5.3 2.7

SEN (SD) 92.3 (3.3) 91.7 (3.5) 90.5 (4.2) 84.2 (6.0) 90.2 (4.4) 89.1 (4.8) 86.3 (6.2) 71.8 (10.8) 91.0 (4.5) 90.2 (4.6) 87.5 (5.7) 73.5 (9.9)
FPR (SD) 35.9 (11.9) 25.6 (10.2) 16.6 (7.9) 5.9 (4.6) 36.7 (10.8) 26.3 (9.1) 16.8 (8.0) 5.4 (4.3) 37.6 (12.4) 27.6 (10.9) 17.4 (8.3) 6.0 (4.6)
PPV (SD) 62.6 (7.9) 70.2 (8.6) 78.2 (8.3) 90.4 (6.7) 62.8 (7.3) 68.8 (7.8) 77.2 (8.6) 89.9 (7.2) 62.4 (7.8) 68.3 (8.7) 76.9 (8.6) 89.1 (7.6)

1000 observations

% true models 0 0 0 0 0 0 0 0 0 0 0 0
% true models but 1 0 0.3 13.7 15.7 0 0 4.7 4.7 0 0.3 3.7 3.0

% TP in top 10 1.3 1.7 13.7 15.7 2.3 1.0 4.7 4.7 1.7 1.3 3.0 3.0
% TP in top 10 but 1 89.3 90.3 76.3 46.7 63.3 71.3 65.0 40.7 63.0 68.3 64.3 37.3

SEN (SD) 93.7 (1.8) 93.5 (1.3) 93.2 (1.3) 88.6 (3.2) 93.8 (2.3) 93.5 (1.8) 92.8 (1.8) 86.1 (3.6) 93.9 (2.4) 93.6 (2.1) 92.9 (2.0) 86.4 (3.1)
FPR (SD) 35.7 (11.1) 22.1 (9.1) 7.5 (5.0) 2.6 (3.2) 38.3 (10.9) 24.2 (9.4) 9.2 (5.3) 2.7 (3.0) 40.9 (11.7) 27.2 (9.6) 11.0 (5.9) 3.5 (3.7)
PPV (SD) 63.0 (7.5) 73.5 (8.2) 89.1 (6.6) 95.7 (5.0) 62.7 (6.7) 71.6 (8.1) 86.8 (6.7) 95.5 (4.9) 61.4 (6.9) 69.1 (7.7) 84.7 (7.0) 94.3 (5.7)
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Table 2.20: Accuracy simulation study results for MissForest-Lasso analysis with Harrell bootstrap validation: scenarios S3 (assumption
of moderation, without missing data) and S4 (assumption of moderation, with missing data) based on 300 data sets of 20 variables each
(n=250). Means of all estimates along with their corresponding 2.5th and 97.5th percentile values within parenthesis. The theoretical MSE
is 1.742 = 3.028

Estimates Complete cases

Best model 1 SE tolerance 3% tolerance 15% tolerance

MSEapparent 2.764 (2.232,3.313) 2.873 (2.328,3.483) 3.076 (2.485,3.729) 3.939 (3.121,4.889)
βLP 1.062 (1.044,1.079) 1.089 (1.069,1.112) 1.132 (1.102,1.165) 1.259 (1.204,1.332)
Tuning λ 0.077 (0.054,0.095) 0.111 (0.085,0.134) 0.165 (0.134,0.209) 0.328 (0.262,0.410)
MSEext 3.482 (3.266,3.794) 3.557 (3.313,3.914) 3.759 (3.436,4.214) 4.799 (4.070,5.835)
Optimismext -0.719 (-1.300,-0.093) -0.684 (-1.283,-0.050) -0.683 (-1.281,0.017) -0.860 (-1.706,-0.064)
Optimismint -0.646 (-0.806,-0.521) -0.578 (-0.731,-0.462) -0.523 (-0.665,-0.420) -0.486 (-0.620,-0.373)
MSEcorrected 3.410 (2.788,4.131) 3.451 (2.826,4.194) 3.598 (2.937,4.384) 4.425 (3.541,5.495)
βLP∗ 1.025 (1.012,1.036) 1.052 (1.035,1.069) 1.092 (1.067,1.118) 1.216 (1.167,1.273)

MCAR

MSEapparent 3.364 (2.697,4.191) 3.508 (2.796,4.397) 3.785 (3.001,4.746) 4.991 (3.912,6.283)
βLP 1.069 (1.049,1.091) 1.099 (1.074,1.129) 1.148 (1.110,1.190) 1.310 (1.233,1.404)
Tuning λ 0.088 (0.068,0.513) 0.129 (0.068,0.513) 0.197 (0.068,0.513) 0.426 (0.068,0.513)
MSEext 3.822 (3.427,4.364) 3.958 (3.505,4.631) 4.316 (3.692,5.154) 5.959 (4.775,7.447)
Optimismext -0.458 (-1.177,0.356) -0.450 (-1.212,0.446) -0.531 (-1.390,0.422) -0.968 (-2.099,0.219)
Optimismint -0.825 (-1.073,-0.596) -0.725 (-0.959,-0.519) -0.643 (-0.840,-0.447) -0.555 (-0.736,-0.382)
MSEcorrected 4.174 (3.360,5.101) 4.218 (3.377,5.188) 4.407 (3.527,5.440) 5.519 (4.345,6.897)
βLP∗ 1.021 (1.001,1.043) 1.055 (1.033,1.082) 1.103 (1.074,1.140) 1.261 (1.207,1.335)

MAR

MSEapparent 3.269 (2.633,4.077) 3.409 (2.802,4.230) 3.671 (2.977,4.573) 4.838 (3.901,6.094)
βLP 1.066 (1.043,1.087) 1.096 (1.070,1.126) 1.144 (1.114,1.181) 1.303 (1.233,1.395)
Tuning λ 0.084 (0.061,0.459) 0.125 (0.061,0.459) 0.191 (0.061,0.459) 0.414 (0.061,0.459)
MSEext 3.792 (3.418,4.341) 3.919 (3.464,4.562) 4.248 (3.611,5.112) 5.843 (4.725,7.240)
Optimismext -0.524 (-1.353,0.239) -0.510 (-1.308,0.299) -0.577 (-1.441,0.291) -1.005 (-2.240,0.109)
Optimismint -0.815 (-1.085,-0.605) -0.721 (-0.983,-0.520) -0.644 (-0.890,-0.450) -0.563 (-0.766,-0.393)
MSEcorrected 4.087 (3.292,5.094) 4.132 (3.344,5.124) 4.315 (3.466,5.338) 5.395 (4.309,6.784)
βLP∗ 1.023 (1.001,1.044) 1.056 (1.030,1.080) 1.103 (1.072,1.138) 1.258 (1.204,1.332)
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MissForest-Lasso S5: Assumption of moderation, Missing data also in outcome (20%

missingness MAR and MCAR) When there were missing data also in the outcome vari-

able, MissForest-Lasso outperformed MICE-Lasso in the same scenario with an acceptable

optimism-corrected MSE of 3.704 (2.5th and 97.5th percentiles: 2.926 and 4.588) for the best

model when the sample size was 250 and the data were MAR (see Table 2.22 for the worse but

still acceptable MCAR data result). With increasing penalty tolerance, only the 1 SE and 3%

corrected MSE of the MAR case were still acceptable, while the MCAR estimates were all very

poor. MissForest-Lasso had better discrimination performance when the outcome had missing

data compared to when it was complete (scenario S4) for these simulated data. However, there

is a problem underlining this apparent improvement: while the internal MSE optimism estimates

were smaller in absolute values than estimates in scenario S3, there was the largest difference

between internal and external MSE optimism as the latter was large in absolute value (see

Figure 2.16). As a consequence, this good model performance would not be likely to replicate

on new observations. Calibration was similar to scenario S4 when the outcome was complete.

Variable selection for this scenario was worse than S4 (see Table 2.21 and figures 2.34 and

2.32). This time only the 3% tolerance model variable selection was good, the other models’

performances were acceptable apart from the 15% tolerance model performance which was

poor.

The results slightly improved when the sample size was 1000, but the performance was still

inferior compared to other scenarios (see tables A.14 and 2.21).
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Table 2.21: Variable selection simulation study results for scenarios S3 (assumption of moderation, without missing data) and S5 (assump-
tion of moderation, with missing data also in the outcome) for Lasso and MissForest-Lasso best and tolerance models in the case of 20
covariates and 300 samples of 250 and 1000 observations. The following results are shown: the estimated percentages of the times all
the 10 true predictors (TP) are selected at the same time, the estimated percentages of the times the true model is selected apart from one
variable, the percentages of the times the TP are the top ranked variables among the selected, the percentage of times the TP are the top
ranked variables apart from one TP, the average percentages of selected TP among the TP (sensitivity, SEN), the average percentages of
selected false positive predictors (FP) among FP (false positive rate, FPR), and the average percentages of selected TP among the selected
variables (positive predictive value, PPV). The mean percentages are shown along with their standard deviation (SD)

LASSO MissForest-LASSO

Variable selection Complete data MCAR MAR

Best 1 SE tolerance 3% tolerance 15% tolerance Best 1 SE tolerance 3% tolerance 15% tolerance Best 1 SE tolerance 3% tolerance 15% tolerance

250 observations

% true models 0 0 0 0 0 0 0 0 0 0 0 0
% true models but 1 0 0 1.3 2.7 0 0 0 0.3 0 0 0 0

% TP in top 10 0 0 1.0 2.7 0 0 0 0.3 0 0 0 0
% TP in top 10 but 1 17.3 20.3 20.7 13.7 0 0.3 0.7 0.3 2.7 1.7 2.3 0.7

SEN (SD) 92.3 (3.3) 91.7 (3.5) 90.5 (4.2) 84.2 (6.0) 88.6 (5.3) 86.0 (6.3) 82.1 (7.6) 62.0 (12.3) 90.2 (5.0) 88.4 (5.9) 85.4 (6.4) 67.9 (11.8)
FPR (SD) 35.9 (11.9) 25.6 (10.2) 16.6 (7.9) 5.9 (4.6) 36.0 (11.1) 25.8 (10.5) 16.4 (7.8) 4.8 (4.4) 40.1 (12.1) 29.9 (10.6) 20.5 (8.8) 6.7 (5.0)
PPV (SD) 62.6 (7.9) 70.2 (8.6) 78.2 (8.3) 90.4 (6.7) 62.9 (7.2) 68.8 (8.7) 76.8 (8.8) 89.9 (8.4) 61.7 (7.8) 65.8 (8.2) 73.3 (8.6) 87.2 (8.4)

1000 observations

% true models 0 0 0 0 0 0 0 0 0 0 0 0
% true models but 1 0 0.3 13.7 15.7 0 0 4.3 0.7 0 0 0.7 0

% TP in top 10 1.3 1.7 13.7 15.7 1.3 1.0 4.0 0.7 1.3 1.3 0.7 0
% TP in top 10 but 1 89.3 90.3 76.3 46.7 51.7 55.0 42.7 24.3 47.7 47.0 28.0 19.0

SEN (SD) 93.7 (1.8) 93.5 (1.3) 93.2 (1.3) 88.6 (3.2) 93.8 (2.6) 93.4 (2.1) 92.2 (2.8) 83.8 (4.6) 94.2 (2.5) 93.8 (2.3) 91.8 (3.0) 85.6 (3.1)
FPR (SD) 35.7 (11.1) 22.1 (9.1) 7.5 (5.0) 2.6 (3.2) 40.2 (11.2) 26.1 (9.5) 10.8 (5.4) 3.4 (3.3) 46.7 (11.9) 33.3 (10.2) 15.2 (7.0) 5.3 (4.0)
PPV (SD) 63.0 (7.5) 73.5 (8.2) 89.1 (6.6) 95.7 (5.0) 61.8 (7.0) 70.0 (8.1) 84.8 (6.8) 94.3 (5.4) 59.3 (6.7) 64.6 (7.4) 79.8 (7.4) 91.3 (6.1)
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Table 2.22: Accuracy simulation study results for MissForest-Lasso analysis with Harrell bootstrap validation: scenarios S3 (assumption of
moderation, complete data) and S5 (assumption of moderation, missing data also in the outcome), based on 300 data sets of 20 variables
each (n=250). Means of all estimates along with their corresponding 2.5th and 97.5th percentile values within parenthesis. The theoretical
MSE is 1.742 = 3.028

Estimates Complete cases

Best model 1 SE tolerance 3% tolerance 15% tolerance

MSEapparent 2.764 (2.232,3.313) 2.873 (2.328,3.483) 3.076 (2.485,3.729) 3.939 (3.121,4.889)
βLP 1.062 (1.044,1.079) 1.089 (1.069,1.112) 1.132 (1.102,1.165) 1.259 (1.204,1.332)
Tuning λ 0.077 (0.054,0.095) 0.111 (0.085,0.134) 0.165 (0.134,0.209) 0.328 (0.262,0.410)
MSEext 3.482 (3.266,3.794) 3.557 (3.313,3.914) 3.759 (3.436,4.214) 4.799 (4.070,5.835)
Optimismext -0.719 (-1.300,-0.093) -0.684 (-1.283,-0.050) -0.683 (-1.281,0.017) -0.860 (-1.706,-0.064)
Optimismint -0.646 (-0.806,-0.521) -0.578 (-0.731,-0.462) -0.523 (-0.665,-0.420) -0.486 (-0.620,-0.373)
MSEcorrected 3.410 (2.788,4.131) 3.451 (2.826,4.194) 3.598 (2.937,4.384) 4.425 (3.541,5.495)
βLP∗ 1.025 (1.012,1.036) 1.052 (1.035,1.069) 1.092 (1.067,1.118) 1.216 (1.167,1.273)

MCAR

MSEapparent 3.132 (2.448,3.872) 3.283 (2.553,4.032) 3.551 (2.764,4.388) 4.761 (3.686,5.978)
βLP 1.075 (1.050,1.102) 1.108 (1.077,1.146) 1.161 (1.118,1.216) 1.343 (1.255,1.470)
Tuning λ 0.090 (0.068,0.513) 0.134 (0.068,0.513) 0.204 (0.068,0.513) 0.455 (0.068,0.513)
MSEext 4.365 (3.743,5.132) 4.619 (3.895,5.522) 5.106 (4.163,6.226) 7.083 (5.582,8.833)
Optimismext -1.234 (-2.021,-0.334) -1.336 (-2.189,-0.380) -1.555 (-2.575,-0.506) -2.323 (-3.692,-0.931)
Optimismint -0.831 (-1.122,-0.582) -0.737 (-0.979,-0.522) -0.659 (-0.882,-0.461) -0.547 (-0.760,-0.372)
MSEcorrected 3.963 (3.094,4.937) 4.019 (3.108,5.013) 4.210 (3.265,5.200) 5.308 (4.175,6.583)
βLP∗ 1.028 (1.004,1.050) 1.066 (1.039,1.097) 1.118 (1.084,1.160) 1.297 (1.220,1.399)

MAR

MSEapparent 2.910 (2.233,3.653) 3.046 (2.351,3.860) 3.288 (2.519,4.152) 4.402 (3.417,5.579)
beta LP 1.068 (1.046,1.094) 1.100 (1.074,1.135) 1.149 (1.113,1.194) 1.321 (1.241,1.450)
βLP 1.068 (1.046,1.094) 1.100 (1.074,1.135) 1.149 (1.113,1.194) 1.321 (1.241,1.450)
Tuning λ 0.081 (0.061,0.513) 0.122 (0.061,0.513) 0.185 (0.061,0.513) 0.415 (0.061,0.513)
MSEext 4.260 (3.637,5.099) 4.461 (3.738,5.452) 4.872 (3.961,6.137) 6.680 (5.168,8.522)
Optimismext -1.351 (-2.478,-0.554) -1.415 (-2.543,-0.582) -1.584 (-2.816,-0.624) -2.278 (-3.766,-0.978)
Optimismint -0.795 (-1.073,-0.570) -0.711 (-0.960,-0.507) -0.645 (-0.860,-0.447) -0.559 (-0.744,-0.374)
MSEcorrected 3.704 (2.926,4.588) 3.757 (2.959,4.669) 3.933 (3.087,4.874) 4.961 (3.935,6.081)
βLP∗ 1.027 (1.002,1.053) 1.063 (1.034,1.095) 1.112 (1.075,1.155) 1.281 (1.212,1.379)
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MissForest-Random Forests: 20-covariate data results

Random Forests S1: No missing data, No assumption of moderation RF discrimination

performance was the worst among the methods in scenario S1 without missing data: aver-

age MSEcorrected=5.014 (2.5th and 97.5th percentiles 4.194 and 5.915, see Table 2.24) for a

corrected pseudo-R2 of 0.523 (2.5th and 97.5th percentiles 0.442 and 0.599) in the 250 obser-

vation analysis. However, there was no bias due to internal validation resampling, meaning that

this performance would reflect the performance the model will have on new data.

RF tended to give more importance to continuous variables than binary ones even when

they were FP (see Figure 2.27). As a results, TPs had variable an importance rank frequency

similar to the inclusion frequency of the 15% tolerance model of Elasticnet, but continuous FP

were selected more times that binary FP (see Figure 2.27: the first 10 variables are binary and

the last 10 are continuous). Only 2.3% of the times RF had the TPs as the 10 most important

variables (see Table 2.23), whilst Lasso had them in the top ten 58.7% (see Table 2.3) and

Elasticnet 56.7% (see Table 2.5) for the best models.

When the sample size was 1000, all results improved a great deal as expected even though

the model was still underfitting the data (see tables 2.23 and 2.24).

Table 2.23: Variable selection simulation study results for scenarios S1 (without missing data,
no assumption of moderation) and S2 (with missing data, complete outcome, no assumption
of moderation) for Random Forest and MissForest-Random Forests (MR) best models in
the case of 20 covariates and 300 samples of 250 and 1000 observations. The following
results are shown: the percentages of the times the TP are the top ranked variables among the
selected, the percentage of times the TP are the top ranked variables apart from one TP.

MissForest-RANDOM FOREST

250 observations 1000 observations

Variable importance Complete MCAR MAR Complete MCAR MAR

% TP in top 10 2.3 0.3 0.3 22.0 1.7 1.7
% TP in top 10 but 1 37.0 16.7 11.0 53.3 73.7 59.0
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Table 2.24: Accuracy simulation study results for MissForest-Random Forest analysis with Harrell bootstrap validation: scenarios S1
(without missing data, no assumption of moderation) and S2 (with missing data, complete outcome, no assumption of moderation) based on
300 data sets of 20 variables each (n=250,1000). Means of all estimates along with their corresponding 2.5th and 97.5th percentile values
within parenthesis. The theoretical MSE is 1.742 = 3.028

Estimates 250 observations 1000 observations

Complete cases MCAR MAR Complete cases MCAR MAR

MSEapparent 4.837 (4.039,5.700) 4.767 (3.911,5.780) 4.584 (3.740,5.519) 4.160 (3.816,4.505) 3.924 (3.520,4.357) 3.728 (3.267,4.184)
βLP 1.140 (4.039,5.700) 1.122 (3.911,5.780) 1.124 (3.740,5.519) 1.119 (3.816,4.505) 1.106 (3.520,4.357) 1.103 (3.267,4.184)
MSEext 5.087 (4.701,5.603) 5.308 (4.744,5.951) 5.087 (4.925,6.727) 4.327 (4.093,4.530) 4.549 (4.252,4.860) 4.327 (4.369,5.313)
Optimismext -0.250 (-1.325,0.823) -0.541 (-1.899,0.767) -1.000 (-2.470,0.295) -0.167 (-0.613,0.245) -0.624 (-1.247,-0.053) -1.022 (-1.889,-0.319)
Optimismint -0.177 (-0.335,-0.060) -0.492 (-0.721,-0.331) -0.526 (-0.765,-0.353) -0.165 (-0.231,-0.105) -0.466 (-0.596,-0.366) -0.483 (-0.600,-0.374)
MSEcorrected 5.014 (4.194,5.915) 5.259 (4.299,6.483) 5.111 (4.186,6.147) 4.325 (3.957,4.674) 4.390 (3.939,4.865) 4.211 (3.711,4.706)
βLP∗ 1.172 (1.129,1.220) 1.181 (1.134,1.237) 1.180 (1.130,1.240) 1.145 (1.119,1.172) 1.146 (1.117,1.179) 1.145 (1.117,1.172)

Table 2.25: Accuracy simulation study results for MissForest-Random Forest analysis with Harrell bootstrap validation: scenarios S3
(assumption of moderation, without missing data) and S4 (assumption of moderation, with missing data, complete outcome) based on 300
data sets of 20 variables each (n=250,1000). Means of all estimates along with their corresponding 2.5th and 97.5th percentile values
within parenthesis. The theoretical MSE is 1.742 = 3.028

Estimates 250 observations 1000 observations

Complete cases MCAR MAR Complete cases MCAR MAR

MSEapparent 6.115 (5.154,7.148) 6.079 (4.976,7.357) 5.892 (4.836,7.047) 5.071 (4.692,5.415) 4.924 (4.464,5.439) 4.666 (4.133,5.173)
βLP 1.159 (5.154,7.148) 1.142 (4.976,7.357) 1.145 (4.836,7.047) 1.134 (4.692,5.415) 1.123 (4.464,5.439) 1.123 (4.133,5.173)
MSEext 6.649 (6.061,7.342) 6.867 (6.224,7.734) 6.649 (6.271,8.086) 5.400 (5.116,5.682) 5.603 (5.257,6.060) 5.400 (5.359,6.743)
Optimismext -0.534 (-1.933,0.723) -0.788 (-2.384,0.524) -1.153 (-2.772,0.330) -0.330 (-0.855,0.156) -0.679 (-1.430,-0.008) -1.229 (-2.477,-0.322)
Optimismint -0.118 (-0.245,0.007) -0.463 (-0.688,-0.267) -0.540 (-0.813,-0.309) -0.095 (-0.145,-0.047) -0.427 (-0.575,-0.329) -0.516 (-0.709,-0.372)
MSEcorrected 6.292 (5.298,7.341) 6.542 (5.376,7.831) 6.432 (5.299,7.720) 5.165 (4.799,5.527) 5.351 (4.871,5.926) 5.182 (4.550,5.717)
βLP∗ 1.153 (1.117,1.193) 1.165 (1.126,1.209) 1.168 (1.127,1.220) 1.126 (1.106,1.145) 1.134 (1.112,1.156) 1.136 (1.108,1.164)
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MissForest-Random Forests S2: Missing data, No assumption of moderation, complete

outcome MissForest combined with RF performance in presence of missing data was very

similar to the 15% tolerance model performance of MICE-Lasso and MissForest-Lasso. The

optimism-corrected MSE was very poor: 5.259 (2.5th and 97.5th percentiles: 4.299 and 6.483)

for MCAR 250 observation data (see Table 2.24 for MAR data). Estimates of optimism were

smaller in absolute value than MICE-combined methods estimates and close to MissForest-

Lasso estimates. Internal and external MSE optimism were very close for MCAR data, however

there was bias in the estimate of internal optimism for MAR data.

MissForest-RF ranked the TPs among the top 10 variables with much less probability than

the other methods. However, this probability was still higher than the probability of including FP,

and the included FPs were mainly continuous FPs. Random Forest often tended to give more

importance to the continuous noise variables with large probability of missingness (V13, see

Figures 2.29 and 2.28).

MissForest-Random Forests S3: No missing data, Assumption of moderation After in-

cluding interaction terms, the accuracy performance seemed to worsen as it happened with the

other methods: average MSEcorrected=6.292 (2.5th and 97.5th percentiles: 5.298 and 7.341),

but the average pseudo-R2 was similarly 0.583 (2.5th and 97.5th percentiles: 0.511 and 0.649)

for the 250 observations dataset. Again the estimates of optimism were the smallest among

all the methods in absolute value. However, there was some discrepancy between internal and

external MSE optimism (the latter being the largest), meaning that the internal validation pro-

cess was giving too optimistic results compared to the external validation (see Table 2.25 and

figure 2.15).

Variable importance was again biased because of the different scale of the variables and

results were worse than scenario S1 (see Figure 2.30 and Table 2.26): RF never had all the TPs

in the top 10 most important variables in the 250 observation datasets. The results worsening

when interaction variables were added to the linear predictor was consistent with the other

methods performance worsening in this scenario. When the sample size was small relative

to the number of covariates, and most covariates were noise variables, the methods accuracy

diminished. In fact, the larger sample size analysis (n=1000) returned slightly better results

(see tables 2.25, 2.26 and figures A.27).

MissForest-Random Forests S4: Missing data, Assumption of moderation, complete

outcome In presence of missing data, the optimism increased in absolute value compared to
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scenario S3 with complete data, showing the bias caused by missing data imputation uncer-

tainty. As a consequence, the optimism-corrected MSE increased was very poor: 6.542 (2.5th

and 97.5th percentiles being 5.376 and 7.831) for MCAR data and 6.432 (2.5th and 97.5th per-

centiles being 5.299 and 7.720) for MAR data (see Table 2.25). The difference between internal

and external MSE optimism was larger for MAR data as it happened in scenario S2.

The inclusion frequency of the TP in the top 10 most important variables was similar to the

other MissForest-RF scenarios, i.e. continuous FP with a large percentage of missing data

(V13) were considered as important as binary TPs (see Figures 2.31 and 2.33). Furthermore,

the TPs were never exactly the top 10 variables in terms of importance (see Table 2.26).

MissForest-Random Forests S5: Missing data also in outcome (20% missingness MAR

and MCAR), Assumption of moderation MissForest-RF had better discrimination perfor-

mance when the outcome was not complete: MSEcorrected=5.632 (2.5th and 97.5th percentiles

being 4.558 and 6.744) for MCAR data and 5.469 (2.5th and 97.5th percentiles being 4.301

and 6.613) in the case of 250 observations (see Table 2.28). As a consequence, the difference

between internal and external MSE optimism was the largest among the other methods (see

Figure 2.16) with the internal optimism being the least in absolute value and the external being

the largest compared to the other method estimates.

Variable importance performance was always too parsimonious with respect to the binary

TPs: their inclusion frequency ranged between 7% and 60% (see Figures 2.29 and 2.32).

Again MissForest-RF never ranked all the TPs as most important variables at the same time

(see Table 2.27)

Table 2.26: Variable selection simulation study results for scenarios S3 (assumption of moder-
ation, without missing data) and S4 (assumption of moderation, with missing data) for Random
Forets and MissForest-Random Forests best models in the case of 20 covariates and 300
samples of 250 and 1000 observations. The following results are shown: the percentages of
the times the TP are the top ranked variables among the selected, the percentage of times the
TP are the top ranked variables apart from one TP.

MissForest-RANDOM FOREST

250 observations 1000 observations

Variable importance Complete MCAR MAR Complete MCAR MAR

% TP in top 10 0 0 0 0 0 0
% TP in top 10 but 1 0 0 0 0.3 0 0
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Table 2.27: Variable selection simulation study results for scenarios S3 (assumption of moderation, without missing data) and S5 (assump-
tion of moderation, with missing data also in the outcome) for Random Forests and MissForest-Random Forests (MR) best models in the
case of 20 covariates and 300 samples of 250 and 1000 observations. The following results are shown: the percentages of the times the
TP are the top ranked variables among the selected, the percentage of times the TP are the top ranked variables apart from one TP.

MissForest-RANDOM FOREST

250 observations 1000 observations

Variable importance Complete MCAR MAR Complete MCAR MAR

% TP in top 10 0 0 0 0 0 0
% TP in top 10 but 1 0 0 0 0.3 0 0

Table 2.28: Accuracy simulation study results for MissForest-Random Forest analysis with Harrell bootstrap validation: scenarios S3
(assumption of moderation, complete data) and S5 (assumption of moderation, missing data also in the outcome), based on 300 data
sets of 20 variables each (n=250,1000). Means of all estimates along with their corresponding 2.5th and 97.5th percentile values within
parenthesis. The theoretical MSE is 1.742 = 3.028

Estimates 250 observations 1000 observations

Complete cases MCAR MAR Complete cases MCAR MAR

MSEapparent 6.115 (5.154,7.148) 5.069 (4.034,6.111) 4.893 (3.809,5.861) 5.071 (4.692,5.415) 4.148 (3.675,4.645) 3.938 (3.489,4.325)
βLP 1.159 (5.154,7.148) 1.124 (4.034,6.111) 1.131 (3.809,5.861) 1.134 (4.692,5.415) 1.106 (3.675,4.645) 1.108 (3.489,4.325)
MSEext 6.649 (6.061,7.342) 7.358 (6.584,8.340) 6.649 (6.271,8.086) 5.400 (5.116,5.682) 5.990 (5.554,6.546) 6.211 (5.673,6.974)
Optimismext -0.534 (-1.933,0.723) -2.288 (-3.832,-0.842) -2.620 (-4.371,-1.163) -0.330 (-0.855,0.156) -1.843 (-1.909,-1.161) -2.273 (-3.313,-1.487)
Optimismint -0.118 (-0.245,0.007) -0.562 (-0.792,-0.384) -0.576 (-0.868,-0.374) -0.095 (-0.145,-0.047) -0.468 (-0.578,-0.375) -0.472 (-0.613,-0.359)
MSEcorrected 6.292 (5.298,7.341) 5.632 (4.558,6.744) 5.469 (4.301,6.613) 5.165 (4.799,5.527) 4.616 (4.107,5.146) 4.409 (3.889,4.856)
βLP∗ 1.153 (1.117,1.193) 1.151 (1.114,1.199) 1.149 (1.104,1.201) 1.126 (1.106,1.145) 1.122 (1.100,1.144) 1.118 (1.092,1.144)
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Figure 2.8: Optimism-corrected MSE estimates from 4 methods run on 300 simulated 20-covariate datasets with 250 observations for
scenarios S1 (without missing data) and S2 (with missing data). The methods are: MICE-Lasso (ML), MICE-Elasticnet (ME), MissForest-
Lasso (MF) and MissForest-Random Forests (MR). ML, ME and MF estimated MSEs are shown for the best λ selection as well as for three
tolerance models: one model corresponding to a λ giving the MSE within 1 standard error (SE) of the minimum, the 2nd within 3% and the
3rd within 15%, through bootstrap tuning. For S1 (first plot from the left), the Lasso (L), Elasticnet (E) and Random Forest (RF) corrected
MSEs are shown.
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Figure 2.9: Optimism-corrected MSE estimates from 4 methods run on 300 simulated 20-covariate datasets with 250 observations for
scenarios S3 (assumption of moderation, without missing data) and S4 (assumption of moderation, with missing data). The methods are:
MICE-Lasso (ML), MICE-Elasticnet (ME), MissForest-Lasso (MF) and MissForest-Random Forests (MR). ML, ME and MF estimated MSEs
are shown for the best λ selection as well as for three tolerance models: one model corresponding to a λ giving the MSE within 1 standard
error (SE) of the minimum, the 2nd within 3% and the 3rd within 15%, through bootstrap tuning. For S3 (first plot from the left), the Lasso
(L), Elasticnet (E) and Random Forest (RF) corrected MSEs are shown.
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Figure 2.10: Optimism-corrected MSE estimates from 4 methods run on 300 simulated 20-covariate datasets with 250 observations for
scenarios S3 (assumption of moderation, without missing data) and S5 (assumption of moderation, with missing data also in the outcome).
The methods are: MICE-Lasso (ML), MICE-Elasticnet (ME), MissForest-Lasso (MF) and MissForest-Random Forests (MR). ML, ME and
MF estimated MSEs are shown for the best λ selection as well as for three tolerance models: one model corresponding to a λ giving the
MSE within 1 standard error (SE) of the minimum, the 2nd within 3% and the 3rd within 15%, through bootstrap tuning. For S3 (first plot
from the left), the Lasso (L), Elasticnet (E) and Random Forest (RF) corrected MSEs are shown.
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Figure 2.11: Calibration slope βLP estimates for 4 methods run on 300 simulated 20-covariate datasets with 250 observations for
scenarios S1 (without missing data) and S2 (with missing data). The methods are: MICE-Lasso (ML), MICE-Elasticnet (ME), MissForest-
Lasso (MF) and MissForest-Random Forests (MR). ML, ME and MF estimated calibration slopes are shown for the best λ selection as well
as for three tolerance models: one model corresponding to a λ giving the MSE within 1 standard error (SE) of the minimum, the 2nd within
3% and the 3rd within 15%, through bootstrap tuning. For S1 (first plot from the left), the Lasso (L), Elasticnet (E) and Random Forest (RF)
calibration slopes are shown.
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Figure 2.12: Calibration slope βLP estimates for 4 methods run on 300 simulated 20-covariate datasets with 250 observations for
scenarios S3 (assumption of moderation, without missing data) and S4 (assumption of moderation, with missing data). The methods
are: MICE-Lasso (ML), MICE-Elasticnet (ME), MissForest-Lasso (MF) and MissForest-Random Forests (MR). ML, ME and MF estimated
calibration slopes are shown for the best λ selection as well as for three tolerance models: one model corresponding to a λ giving the MSE
within 1 standard error (SE) of the minimum, the 2nd within 3% and the 3rd within 15%, through bootstrap tuning. For S3 (first plot from the
left), the Lasso (L), Elasticnet (E) and Random Forest (RF) calibration slopes are shown.
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Figure 2.13: Calibration slope βLP estimates for 4 methods run on 300 simulated 20-covariate datasets with 250 observations for
scenarios S3 (assumption of moderation, without missing data) and S5 (assumption of moderation, missing data also in the outcome). The
methods are: MICE-Lasso (ML), MICE-Elasticnet (ME), MissForest-Lasso (MF) and MissForest-Random Forests (MR). ML, ME and MF
estimated calibration slopes are shown for the best λ selection as well as for three tolerance models: one model corresponding to a λ giving
the MSE within 1 standard error (SE) of the minimum, the 2nd within 3% and the 3rd within 15%, through bootstrap tuning. For S3 (first plot
from the left), the Lasso (L), Elasticnet (E) and Random Forest (RF) calibration slopes are shown.
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Figure 2.14: Average internal and external MSE optimism estimates with 2.5th and 97.5th percentiles for 4 methods run on 300 simulated
20-covariate datasets with 250 observations for scenarios S1 (without missing data) and S2 (with missing data). The methods are: MICE-
Lasso (ML), MICE-Elasticnet (ME), MissForest-Lasso (MF) and MissForest-Random Forests (MR). ML, ME and MF estimated internal and
external MSE optimism are shown for the best λ selection as well as for three tolerance models: one model corresponding to a λ giving the
MSE within 1 standard error (SE) of the minimum, the 2nd within 3% and the 3rd within 15%, through bootstrap tuning. For S1 (first plot
from the left), the Lasso (L), Elasticnet (E) and Random Forest (RF) optimism estimates are shown.
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Figure 2.15: Average internal and external MSE optimism estimates with 2.5th and 97.5th percentiles for 4 methods run on 300 simulated
20-covariate datasets with 250 observations for scenarios S3 (assumption of moderation, without missing data) and S4 (assumption
of moderation, with missing data). The methods are: MICE-Lasso (ML), MICE-Elasticnet (ME), MissForest-Lasso (MF) and MissForest-
Random Forests (MR). ML, ME and MF estimated internal and external MSE optimism are shown for the best λ selection as well as for three
tolerance models: one model corresponding to a λ giving the MSE within 1 standard error (SE) of the minimum, the 2nd within 3% and the
3rd within 15%, through bootstrap tuning. For S3 (first plot from the left), the Lasso (L), Elasticnet (E) and Random Forest (RF) optimism
estimates are shown.
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Figure 2.16: Average internal and external MSE optimism estimates with 2.5th and 97.5th percentiles for 4 methods run on 300 simulated
20-covariate datasets with 250 observations for scenarios S3 (assumption of moderation, without missing data) and S5 (assumption of
moderation, with missing data also in the outcome). The methods are: MICE-Lasso (ML), MICE-Elasticnet (ME), MissForest-Lasso (MF)
and MissForest-Random Forests (MR). ML, ME and MF estimated internal and external MSE optimism are shown for the best λ selection
as well as for three tolerance models: one model corresponding to a λ giving the MSE within 1 standard error (SE) of the minimum, the 2nd
within 3% and the 3rd within 15%, through bootstrap tuning. For S3 (first plot from the left), the Lasso (L), Elasticnet (E) and Random Forest
(RF) optimism estimates are shown.
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Figure 2.17: Average percentage of true predictors (TP) selected among the actual TP (SEN) estimates with 2.5th and 97.5th percentiles
from 3 methods run on 300 simulated 20-covariate datasets with 250 observations for scenarios S1 (without missing data) and S2 (with
missing data). The methods are: MICE-Lasso (ML), MICE-Elasticnet (ME) and MissForest-Lasso (MF). ML, ME and MF estimated percent-
ages of TP selected among the actual TP variables are shown for the best λ selection as well as for three tolerance models: one model
corresponding to a λ giving the MSE within 1 standard error (SE) of the minimum, the 2nd within 3% and the 3rd within 15%, through
bootstrap tuning. For S1 (first plot from the left), the Lasso (L) and the Elasticnet (E) estimates are shown.
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Figure 2.18: Average percentage of true predictors (TP) selected among the actual TP (SEN) estimates with 2.5th and 97.5th percentiles
from 3 methods run on 300 simulated 20-covariate datasets with 250 observations for scenarios S3 (assumption of moderation, without
missing data) and S4 (assumption of moderation, with missing data). The methods are: MICE-Lasso (ML), MICE-Elasticnet (ME) and
MissForest-Lasso (MF). ML, ME and MF estimated percentages of TP selected among the actual TP variables are shown for the best λ
selection as well as for three tolerance models: one model corresponding to a λ giving the MSE within 1 standard error (SE) of the minimum,
the 2nd within 3% and the 3rd within 15%, through bootstrap tuning. For S3 (first plot from the left), the Lasso (L) and the Elasticnet (E)
estimates are shown.
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Figure 2.19: Average percentage of true predictors (TP) selected among the actual TP (SEN) estimates with 2.5th and 97.5th percentiles
from 3 methods run on 300 simulated 20-covariate datasets with 250 observations for scenarios S3 (assumption of moderation, without
missing data) and S5 (assumption of moderation, missing data also in the outcome). The methods are: MICE-Lasso (ML), MICE-Elasticnet
(ME) and MissForest-Lasso (MF). ML, ME and MF estimated percentages of TP selected among the actual TP variables are shown for
the best λ selection as well as for three tolerance models: one model corresponding to a λ giving the MSE within 1 standard error (SE) of
the minimum, the 2nd within 3% and the 3rd within 15%, through bootstrap tuning. For S3 (first plot from the left), the Lasso (L) and the
Elasticnet (E) estimates are shown.
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Figure 2.20: Average percentage of true predictors (TP) among the selected variables (PPV) estimates with 2.5th and 97.5th percentiles
from 3 methods run on 300 simulated 20-covariate datasets with 250 observation for scenarios S1 (without missing data) and S2 (with
missing data). The methods are: MICE-Lasso (ML), MICE-Elasticnet (ME) and MissForest-Lasso (MF). ML, ME and MF estimated percent-
ages of TP among the selected variables are shown for the best λ selection as well as for three tolerance models: one model corresponding
to a λ giving the MSE within 1 standard error (SE) of the minimum, the 2nd within 3% and the 3rd within 15%, through bootstrap tuning. For
S1 (first plot from the left), the Lasso (L) and the Elasticnet (E) estimates are shown.
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Figure 2.21: Average percentage of true predictors (TP) among the selected variables (PPV) estimates with 2.5th and 97.5th percentiles
from 3 methods run on 300 simulated 20-covariate datasets with 250 observations for scenarios S3 (assumption of moderation, without
missing data) and S4 (assumption of moderation, with missing data). The methods are: MICE-Lasso (ML), MICE-Elasticnet (ME) and
MissForest-Lasso (MF). ML, ME and MF estimated percentages of TP among the selected variables are shown for the best λ selection as
well as for three tolerance models: one model corresponding to a λ giving the MSE within 1 standard error (SE) of the minimum, the 2nd
within 3% and the 3rd within 15%, through bootstrap tuning. For S3 (first plot from the left), the Lasso (L) and the Elasticnet (E) estimates
are shown.
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Figure 2.22: Average percentage of true predictors (TP) among the selected variables (PPV) estimates with 2.5th and 97.5th percentiles
from 3 methods run on 300 simulated 20-covariate datasets with 250 observations for scenarios S3 (assumption of moderation, without
missing data) and S5 (assumption of moderation, missing data also in the outcome). The methods are: MICE-Lasso (ML), MICE-Elasticnet
(ME) and MissForest-Lasso (MF). ML, ME and MF estimated percentages of TP among the selected variables are shown for the best λ
selection as well as for three tolerance models: one model corresponding to a λ giving the MSE within 1 standard error (SE) of the minimum,
the 2nd within 3% and the 3rd within 15%, through bootstrap tuning. For S3 (first plot from the left), the Lasso (L) and the Elasticnet (E)
estimates are shown.
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Figure 2.23: Estimated percentage of correct (true) models (simultaneously with respect to all predictors) found by 4 methods run on
300 simulated 20-covariate datasets with 250 observations for scenarios S1 (without missing data) and S2 (with missing data, complete
outcome). The methods are: MICE-Lasso (ML), MICE-Elasticnet (ME), MissForest-Lasso (MF) and MissForest-Random Forests (MR). ML,
ME and MF estimated percentages of selected true models are shown for the best λ selection as well as for three tolerance models: one
model corresponding to a λ giving the MSE within 1 standard error (SE) of the minimum, the 2nd within 3% and the 3rd within 15%, through
bootstrap tuning. For S1 (first plot from the left), the Lasso (L), the Elasticnet (E) and the Random Forest (RF) estimates are shown. For the
models RF and MR it is assumed that the true model is returned when the top 10 important variables are true predictors.
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Figure 2.24: Estimated percentage of almost correct models (only one variable off) found by 4 methods run on 300 simulated 20-
covariate datasets with 250 observations for scenarios S1 (without missing data) and S2 (with missing data, complete outcome). The
methods are: MICE-Lasso (ML), MICE-Elasticnet (ME), MissForest-Lasso (MF) and MissForest-Random Forests (MR). ML, ME and MF
estimated percentages of selected true models are shown for the best λ selection as well as for three tolerance models: one model
corresponding to a λ giving the MSE within 1 standard error (SE) of the minimum, the 2nd within 3% and the 3rd within 15%, through
bootstrap tuning. For S1 (first plot from the left), the Lasso (L), the Elasticnet (E) and the Random Forests (RF) estimates are shown. For
the models RF and MR, only the best model is computed through bootstrap tuning of the parameter given by the number of variables chosen
randomly at each split to build the trees and it is assumed that the true model is returned when the top 10 important variables are the true
predictors.
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Figure 2.25: Estimated percentage of almost correct models (only one variable off) found by 4 methods run on 300 simulated 20-
covariate datasets with 250 observations for scenarios S3 (assumption of moderation, without missing data) and S4 (assumption of
moderation, with missing data). The methods are: MICE-Lasso (ML), MICE-Elasticnet (ME), MissForest-Lasso (MF) and MissForest-
Random Forests (MR). ML, ME and MF estimated percentages of selected true models are shown for the best λ selection as well as for
three tolerance models: one model corresponding to a λ giving the MSE within 1 standard error (SE) of the minimum, the 2nd within 3%
and the 3rd within 15%, through bootstrap tuning. For S3 (first plot from the left), the Lasso (L), the Elasticnet (E) and the Random Forests
(RF) estimates are shown. For the models RF and MR, only the best model is computed through bootstrap tuning of the parameter given by
the number of variables chosen randomly at each split to build the trees and it is assumed that the true model is returned when the top 10
important variables are the true predictors.
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Figure 2.26: Estimated percentage of almost correct models (only one variable off) found by 4 methods run on 300 simulated 20-
covariate datasets with 250 observations for scenarios S3 (assumption of moderation, without missing data) and S5 (assumption of
moderation, missing data also in the outcome). The methods are: MICE-Lasso (ML), MICE-Elasticnet (ME), MissForest-Lasso (MF) and
MissForest-Random Forests (MR). ML, ME and MF estimated percentages of selected true models are shown for the best λ selection as
well as for three tolerance models: one model corresponding to a λ giving the MSE within 1 standard error (SE) of the minimum, the 2nd
within 3% and the 3rd within 15%, through bootstrap tuning. For S3 (first plot from the left), the Lasso (L), the Elasticnet (E) and the Random
Forests (RF) estimates are shown. For the models RF and MR, only the best model is computed through bootstrap tuning of the parameter
given by the number of variables chosen randomly at each split to build the trees and it is assumed that the true model is returned when the
top 10 important variables are the true predictors.
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Figure 2.27: Comparison of variable inclusion frequency by 3 methods run on 300 simulated 20-covariate datasets with 250 observations
for scenario S1 (no assumption of moderation, complete data). The methods are: Lasso, Elasticnet and Random Forest. Lasso and
Elasticnet variable inclusion frequencies are shown for the best λ selection as well as for three tolerance models: one model corresponding
to a λ giving the MSE within 1 standard error (SE) of the minimum, the 2nd within 3% and the 3rd within 15%, through bootstrap tuning.
For Random Forests only the best model is computed through bootstrap tuning of the parameter given by the number of variables chosen
randomly at each split to build the trees and a variable is considered included in the model when its importance is among the top 10 variable
importances.
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Figure 2.28: Comparison of variable inclusion frequency by 3 methods run on 300 simulated 20-covariate datasets with 250 observations
for scenario S2 with MCAR data (no assumption of moderation, complete outcome). The methods are: MICE-Lasso (ML), MICE-Elasticnet
(ME), MissForest-Lasso (MF) and MissForest-Random Forests (MR). ML, ME and MF variable inclusion frequencies are shown for the best λ
selection as well as for three tolerance models: one model corresponding to a λ giving the MSE within 1 standard error (SE) of the minimum,
the 2nd within 3% and the 3rd within 15%, through bootstrap tuning. For MR only the best model is computed through bootstrap tuning of
the parameter given by the number of variables chosen randomly at each split to build the trees and a variable is considered included in the
model when its importance is among the top 10 variable importances.
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Figure 2.29: Comparison of variable inclusion frequency by 3 methods run on 300 simulated 20-covariate datasets with 250 observations
for scenario S2 with MAR data (no assumption of moderation, complete outcome). MICE-Lasso (ML), MICE-Elasticnet (ME), MissForest-
Lasso (MF) and MissForest-Random Forests (MR). ML, ME and MF variable inclusion frequencies are shown for the best λ selection as well
as for three tolerance models: one model corresponding to a λ giving the MSE within 1 standard error (SE) of the minimum, the 2nd within
3% and the 3rd within 15%, through bootstrap tuning. For MR only the best model is computed through bootstrap tuning of the parameter
given by the number of variables chosen randomly at each split to build the trees and a variable is considered included in the model when
its importance is among the top 10 variable importances.
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Figure 2.30: Comparison of variable inclusion frequency by 3 methods run on 300 simulated 20-covariate datasets with 250 observations
for scenario S3 (assumption of moderatio , complete data). The methods are: Lasso, Elasticnet and Random Forest. Lasso and Elasticnet
variable inclusion frequencies are shown for the best λ selection as well as for three tolerance models: one model corresponding to a λ giving
the MSE within 1 standard error (SE) of the minimum, the 2nd within 3% and the 3rd within 15%, through bootstrap tuning. For Random
Forests only the best model is computed through bootstrap tuning of the parameter given by the number of variables chosen randomly at
each split to build the trees and a variable is considered included in the model when its importance is among the top 10 variable importances.
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Figure 2.31: Comparison of variable inclusion frequency by 3 methods run on 300 simulated 20-covariate datasets with 250 observations
for scenario S4 with MCAR data (assumption of moderation, complete outcome). The methods are: MICE-Lasso (ML), MICE-Elasticnet
(ME), MissForest-Lasso (MF) and MissForest-Random Forests (MR). ML, ME and MF variable inclusion frequencies are shown for the best λ
selection as well as for three tolerance models: one model corresponding to a λ giving the MSE within 1 standard error (SE) of the minimum,
the 2nd within 3% and the 3rd within 15%, through bootstrap tuning. For MR only the best model is computed through bootstrap tuning of
the parameter given by the number of variables chosen randomly at each split to build the trees and a variable is considered included in the
model when its importance is among the top 10 variable importances.



2.3.
S

IM
U

LATIO
N

R
E

S
U

LTS
157

Figure 2.32: Comparison of variable inclusion frequency by 3 methods run on 300 simulated 20-covariate datasets with 250 observations
for scenario S5 with MCAR data (assumption of moderation, missing data also in the outcome). The methods are: MICE-Lasso (ML),
MICE-Elasticnet (ME), MissForest-Lasso (MF) and MissForest-Random Forests (MR). ML, ME and MF variable inclusion frequencies are
shown for the best λ selection as well as for three tolerance models: one model corresponding to a λ giving the MSE within 1 standard
error (SE) of the minimum, the 2nd within 3% and the 3rd within 15%, through bootstrap tuning. For MR only the best model is computed
through bootstrap tuning of the parameter given by the number of variables chosen randomly at each split to build the trees and a variable
is considered included in the model when its importance is among the top 10 variable importances.
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Figure 2.33: Comparison of variable inclusion frequency by 3 methods run on 300 simulated 20-covariate datasets with 250 observations
for scenario S4 with MAR data (assumption of moderation, complete outcome). The methods are: MICE-Lasso (ML), MICE-Elasticnet (ME),
MissForest-Lasso (MF) and MissForest-Random Forests (MR). ML, ME and MF variable inclusion frequencies are shown for the best λ
selection as well as for three tolerance models: one model corresponding to a λ giving the MSE within 1 standard error (SE) of the minimum,
the 2nd within 3% and the 3rd within 15%, through bootstrap tuning. For MR only the best model is computed through bootstrap tuning of
the parameter given by the number of variables chosen randomly at each split to build the trees and a variable is considered included in the
model when its importance is among the top 10 variable importances.
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Figure 2.34: Comparison of variable inclusion frequency by 3 methods run on 300 simulated 20-covariate datasets with 250 observations
for scenario S5 with MAR data (assumption of moderation, missing data also in the outcome). The methods are: MICE-Lasso (ML), MICE-
Elasticnet (ME), MissForest-Lasso (MF) and MissForest-Random Forests (MR). ML, ME and MF variable inclusion frequencies are shown for
the best λ selection as well as for three tolerance models: one model corresponding to a λ giving the MSE within 1 standard error (SE) of the
minimum, the 2nd within 3% and the 3rd within 15%, through bootstrap tuning. For MR only the best model is computed through bootstrap
tuning of the parameter given by the number of variables chosen randomly at each split to build the trees and a variable is considered
included in the model when its importance is among the top 10 variable importances.
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2.3.2 Results from 100-covariate datasets, 15 true predictors

MICE-Lasso and MICE-Elasticnet: 100-covariate data results

Lasso and Elasticnet S3: No missing data, Assumption of moderation When the 100

covariates were weakly correlated (ρ=0.2) in absence of missing data and with moderators

among the TPs (scenario S3), Lasso and Elasticnet best models had a similar good apparent

performance. However, when correcting for optimism, the mean corrected MSE for the Lasso

best model was 1.315 (2.5th and 97.5th percentiles being 1.101 and 1.493, see Table 2.29),

within 30% of the theoretical MSE (1), and the corresponding corrected pseudo-R2 was 0.742

(2.5th and 97.5th percentiles being 0.694 and 0.786, the mean variance of the simulated out-

comes being 5.120 (SD 0.327)). With increasing penalty tolerance, the corrected MSEs were

poor for the Lasso, even though the pseudo-R2 for the 3% tolerance model was only 6% lower

compared to the best model. The Elasticnet best model had a similar mean bootstrap-corrected

MSE estimate (see Table 2.30), but the tolerance Elasticnet models accuracies got worse than

Lasso given the same increasing λ tolerance.

In this 100 covariate data scenario, the linear predictor had 234 FPs and only 15 TPs (see

Subsection2.2.2). Despite the sparsity of the true vector of coefficients (6.4% non-zero entries),

Lasso and Elasticnet best models had high sensitivity of selection by choosing approximately

89.0% (SD 5) of the TPs and 19.0% (SD 5) of the FPs. However, the large number of FPs in

the model specification caused the best and the 1 SE tolerance models to always select more

FPs than TPs (PPV of up to 32.2%, SD 7.1, see Table 2.31). With increasing penalty tolerance,

the number of false positive rate decreased and only the 3% tolerance model of Lasso showed

good variable selection performance. The exact true model and the true model but 1 TP were

never selected. There was some general underfitting in the variable inclusion frequency for the

best Lasso model, which increased with increasing tolerance (see Figure A.32).

When there was high correlation between covariates (ρ=0.8), prediction accuracy was

slightly better compared to the weak correlation scenario (see tables A.10 and A.11 in the

Appendix). In contrast, the variable selection was less precise (see Table 2.31). Lasso and

Elasticnet tended to select more FPs as they were highly correlated with the TPs for an almost

acceptable variable selection performance (3% tolerance model SEN being 70% (SD 14) and

PPV being only 58% (SD 6)).
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MICE-Lasso and MICE-Elasticnet S5: Assumption of moderation, Missing data also in

outcome (20% missingness MAR and MCAR When there were missing data in both out-

come and predictors and the predictors were weakly correlated (ρ=0.2), MICE-Lasso showed

better prediction accuracy than MICE-Elasticnet (see tables 2.29 and 2.30). However, the aver-

age optimism-corrected MSE of the best MICE-Lasso model was very far from the theoretical

MSE (2.879, 2.5th and 97.5th percentiles being 2.379 and 3.349, i.e 41% decrease in corrected

pseudo-R2 for MCAR data; 2.662, 2.5th and 97.5th percentiles being 2.220 and 3.227, for a

35% decrease in the pseudo-R2 for MAR data) and it was much worsened compared to the

complete data scenario, and the tolerance models estimates were also even poorer (see Fig-

ure 2.35). Average estimates of MSE internal and external optimism were far away from each

other with the external estimate being smaller in absolute value (see Figures 2.39). When data

were MAR, the bias due to resampling was reduced compared to MCAR because of the better

accuracy.

On the other hand, the 0.8 correlation setting accuracy results were closer to the complete

data scenario S3 (see tables A.10 and A.11 in the Appendix) with the best MICE-Lasso and

MICE-Elasticnet models showing a decrease in pseudo-R2 of only approximately 6% for MCAR

data and 10% for MAR data compared to scenario S3. Strongly correlated variables with MAR

missing data were imputed in a less accurate way then MCAR missing data, contrarily to what

happened in the low correlation case.

Alike in the 20-covariate case, MICE-Elasticnet had a better discriminative performance

than Elasticnet in the higher tolerance models (see Figures 2.35 and 2.36). Moreover, mean

optimism-corrected MSE estimates for both MICE-Lasso and MICE-Elasticnet seemed to be

lower than Elasticnet estimates for the tolerance models, due to the decrease in mean internal

optimism with increasing tolerance level.

The behaviour of MICE-Lasso and MICE-Elasticnet in variable selection (in both correlation

scenarios) reflected the poor performance in the 20-covariate simulations (see section 2.3.1).

Again all variables were selected most of the times without any preferences for TPs (see Table

2.31 and figures A.36, A.37, A.34 and A.35).
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Table 2.29: Accuracy simulation study results for MICE-Lasso analysis with Harrell (1996) bootstrap validation: scenarios S3 (assumption
of moderation, complete data) and S5 (assumption of moderation, missing data also in the outcome), based on 300 data sets of 100
variables each (n=500) with between-covariate correlation of 0.2. Means of all estimates along with their corresponding 2.5th and 97.5th
percentile values within parenthesis. The theoretical MSE is 1.

Estimates Complete data

Best model 1 SE tolerance 3% tolerance 15% tolerance

MSEapparent 0.951 (0.780,1.096) 1.025 (0.841,1.173) 1.366 (1.170,1.559) 1.606 (1.380,1.823)
βLP 1.093 (1.078,1.113) 1.107 (1.088,1.130) 1.190 (1.151,1.235) 1.268 (1.203,1.355)
Tuning λ 0.048 (0.039,0.061) 0.126 (0.107,0.149) 0.060 (0.049,0.072) 0.185 (0.149,0.234)
MSEext 1.125 (1.035,1.216) 1.143 (1.053,1.238) 1.349 (1.214,1.520) 1.552 (1.365,1.746)
Optimismext -0.174 (-0.334,-0.027) -0.118 (-0.285,0.038) 0.017 (-0.149,0.194) 0.054 (-0.134,0.246)
Optimismint -0.365 (-0.413,-0.315) -0.319 (-0.365,-0.273) -0.187 (-0.228,-0.142) -0.133 (-0.172,-0.095)
MSEcorrected 1.315 (1.101,1.493) 1.343 (1.140,1.526) 1.553 (1.352,1.765) 1.739 (1.510,1.970)
βLP∗ 1.035 (1.026,1.045) 1.053 (1.042,1.065) 1.124 (1.100,1.149) 1.175 (1.137,1.214)

MCAR

MSEapparent 1.817 (1.503,2.143) 1.812 (1.498,2.135) 1.864 (1.543,2.178) 2.051 (1.686,2.461)
βLP 0.940 (0.904,0.973) 0.949 (0.909,0.988) 1.070 (1.007,1.139) 1.171 (1.088,1.278)
Tuning λ 0.017 (0.016,0.019) 0.050 (0.034,0.072) 0.018 (0.016,0.024) 0.091 (0.056,0.142)
MSEext 2.413 (2.055,2.821) 2.374 (1.993,2.792) 2.039 (1.802,2.342) 1.998 (1.782,2.274)
Optimismext -0.596 (-1.110,-0.119) -0.562 (-1.087,-0.094) -0.176 (-0.646,0.254) 0.053 (-0.385,0.473)
Optimismint -1.062 (-1.332,-0.806) -1.054 (-1.322,-0.802) -0.859 (-1.086,-0.655) -0.728 (-0.923,-0.547)
MSEcorrected 2.879 (2.379,3.349) 2.866 (2.372,3.335) 2.722 (2.264,3.185) 2.779 (2.299,3.251)
βLP∗ 0.855 (0.817,0.901) 0.858 (0.821,0.904) 0.954 (0.922,0.987) 1.032 (0.999,1.064)

MAR

MSEapparent 1.661 (1.400,1.971) 1.658 (1.400,1.964) 1.727 (1.450,2.079) 1.914 (1.569,2.369)
βLP 0.950 (0.919,0.981) 0.959 (0.922,0.994) 1.071 (1.015,1.142) 1.165 (1.081,1.273)
Tuning λ 0.016 (0.016,0.019) 0.048 (0.032,0.070) 0.018 (0.016,0.023) 0.087 (0.054,0.131)
MSEext 2.468 (2.060,2.916) 2.430 (2.020,2.868) 2.082 (1.817,2.403) 2.027 (1.809,2.332)
Optimismext -0.808 (-1.306,-0.396) -0.772 (-1.270,-0.364) -0.355 (-0.776,0.035) -0.113 (-0.500,0.271)
Optimismint -1.002 (-1.245,-0.789) -0.996 (-1.237,-0.786) -0.811 (-1.008,-0.644) -0.685 (-0.852,-0.538)
MSEcorrected 2.662 (2.220,3.227) 2.654 (2.216,3.213) 2.537 (2.101,3.050) 2.599 (2.129,3.156)
βLP∗ 0.859 (0.815,0.900) 0.862 (0.818,0.901) 0.953 (0.918,0.984) 1.028 (0.990,1.059)
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Table 2.30: Accuracy simulation study results for MICE-Elasticnet analysis with Harrell (1996) bootstrap validation: scenarios S3 (assump-
tion of moderation, complete data) and S5 (assumption of moderation, missing data also in the outcome), based on 300 data sets of 100
variables each (n=500) with between-covariate correlation of 0.2. Means of all estimates along with their corresponding 2.5th and 97.5th
percentile values within parenthesis. The theoretical MSE is 1.

Estimates Complete data

Best model 1 SE tolerance 3% tolerance 15% tolerance

MSEapparent 0.951 (0.766,1.111) 1.038 (0.847,1.209) 1.981 (1.613,2.377) 3.123 (2.414,3.914)
βLP 1.095 (1.079,1.117) 1.112 (1.092,1.138) 1.447 (1.302,1.666) 2.116 (1.668,2.853)
Tuning α 0.900 (0.900,0.900) 0.900 (0.900,0.900) 0.900 (0.900,0.900) 0.900 (0.900,0.900)
Tuning λ 0.053 (0.040,0.065) 0.321 (0.220,0.455) 0.068 (0.051,0.083) 0.651 (0.455,0.941)
MSEext 1.127 (1.040,1.218) 1.151 (1.064,1.242) 1.912 (1.598,2.337) 3.119 (2.347,3.978)
Optimismext -0.176 (-0.341,-0.012) -0.113 (-0.272,0.042) 0.069 (-0.161,0.318) 0.004 (-0.403,0.375)
Optimismint -0.361 (-0.412,-0.310) -0.295 (-0.340,-0.247) -0.088 (-0.121,-0.057) -0.071 (-0.098,-0.042)
MSEcorrected 1.311 (1.084,1.503) 1.332 (1.129,1.516) 2.069 (1.701,2.455) 3.194 (2.484,3.976)
βLP∗ 1.040 (1.031,1.049) 1.068 (1.054,1.083) 1.320 (1.225,1.448) 1.638 (1.421,1.954)

MCAR

MSEapparent 1.921 (1.563,2.262) 1.891 (1.547,2.224) 1.910 (1.549,2.296) 2.119 (1.625,2.669)
βLP 0.891 (0.838,0.938) 0.919 (0.852,0.989) 1.131 (0.996,1.322) 1.308 (1.099,1.665)
Tuning α 0.214 (0.125,0.345) 0.764 (0.615,0.890) 0.318 (0.170,0.500) 0.869 (0.805,0.900)
Tuning λ 0.035 (0.032,0.047) 0.220 (0.118,0.365) 0.050 (0.034,0.079) 0.426 (0.231,0.702)
MSEext 2.753 (2.215,3.384) 2.617 (2.080,3.277) 2.170 (1.901,2.519) 2.213 (1.916,2.607)
Optimismext -0.832 (-1.507,-0.249) -0.726 (-1.416,-0.150) -0.260 (-0.849,0.249) -0.094 (-0.586,0.396)
Optimismint -1.258 (-1.546,-0.981) -1.214 (-1.494,-0.954) -0.934 (-1.151,-0.735) -0.799 (-0.982,-0.636)
MSEcorrected 3.179 (2.379,3.349) 3.105 (2.372,3.335) 2.844 (2.264,3.185) 2.918 (2.299,3.251)
βLP∗ 0.787 (0.745,0.835) 0.804 (0.765,0.850) 0.954 (0.918,0.990) 1.058 (1.019,1.099)

MAR

MSEapparent 1.740 (1.443,2.063) 1.715 (1.434,2.024) 1.770 (1.441,2.192) 1.984 (1.512,2.611)
βLP 0.905 (0.855,0.953) 0.933 (0.871,1.005) 1.138 (1.003,1.326) 1.306 (1.092,1.633)
Tuning α 0.219 (0.130,0.340) 0.773 (0.605,0.890) 0.318 (0.170,0.485) 0.874 (0.785,0.900)
Tuning λ 0.034 (0.032,0.043) 0.211 (0.109,0.344) 0.048 (0.033,0.075) 0.404 (0.203,0.675)
MSEext 2.823 (2.279,3.466) 2.679 (2.137,3.339) 2.201 (1.905,2.595) 2.231 (1.930,2.682)
Optimismext -1.083 (-1.723,-0.574) -0.964 (-1.653,-0.456) -0.431 (-0.988,0.026) -0.247 (-0.707,0.182)
Optimismint -1.210 (-1.475,-0.975) -1.175 (-1.426,-0.955) -0.906 (-1.087,-0.746) -0.776 (-0.930,-0.637)
MSEcorrected 2.950 (2.461,3.533) 2.890 (2.421,3.441) 2.675 (2.229,3.259) 2.760 (2.215,3.509)
βLP∗ 0.787 (0.742,0.831) 0.802 (0.757,0.841) 0.942 (0.903,0.978) 1.040 (0.991,1.083)
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Table 2.31: Variable selection simulation study results for scenarios S3 (assumption of moderation, without missing data) and S5 (assump-
tion of moderation, missing data also in the outcome) for MICE-Lasso best and tolerance models in the case of 100 covariates and 300
samples of 500 observations, between-covariate correlation of 0.2 and 0.8. The following results are shown: the estimated percentages of
the times all the 10 true predictors (TP) are selected at the same time, the estimated percentages of the times the true model is selected
apart from one variable, the percentages of the times the TPs are the top ranked variables among the selected, the percentage of times the
TP are the top ranked variables apart from one TP, the average percentages of selected TP among the TP (sensitivity, SEN), the average
percentages of selected false positive predictors (FP) among FP (false positive rate, FPR), and the average percentages of selected TP
among the selected variables (positive predictive value, PPV). The mean percentages are shown along with their standard deviation (SD)

LASSO MICE-LASSO

Variable selection Complete data MCAR MAR

Best 1 SE tolerance 3% tolerance 15% tolerance Best 1 SE tolerance 3% tolerance 15% tolerance Best 1 SE tolerance 3% tolerance 15% tolerance

correlation = 0.2

% true models 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
% true models but 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

% TP in top 10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
% TP in top 10 but 1 9.3 5.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

SEN (SD) 88.9 (4.8) 86.0 (5.8) 74.8 (6.2) 63.2 (8.2) 94.7 (3.0) 94.6 (3.0) 90.0 (4.7) 83.7 (6.5) 94.0 (2.4) 93.8 (2.6) 89.7 (4.7) 83.6 (7.0)
FPR (SD) 18.6 (4.5) 13.2 (3.7) 2.1 (1.3) 0.8 (0.5) 100.0 (0.3) 100.0 (0.4) 94.7 (2.6) 83.2 (6.8) 100.0 (0.4) 100.0 (0.4) 94.3 (2.7) 82.7 (6.7)
PPV (SD) 24.7 (4.5) 31.3 (6.1) 76.4 (13.0) 92.8 (8.8) 5.7 (0.2) 5.7 (0.2) 5.8 (0.3) 6.1 (0.6) 5.7 (0.1) 5.7 (0.1) 5.8 (0.3) 6.1 (0.6)

correlation = 0.8

% true models 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
% true models but 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

% TP in top 10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
% TP in top 10 but 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

SEN (SD) 71.9 (6.2) 68.7 (6.0) 57.9 (5.7) 51.0 (6.7) 93.5 (4.9) 92.7 (5.1) 81.5 (5.2) 77.1 (5.2) 93.5 (4.3) 92.5 (4.4) 82.0 (5.4) 76.8 (6.3)
FPR (SD) 11.6 (3.6) 8.3 (2.8) 2.2 (1.2) 1.2 (0.7) 97.5 (1.1) 96.7 (1.3) 74.1 (6.9) 47.1 (9.1) 97.3 (1.3) 96.3 (1.6) 68.1 (8.5) 39.3 (9.2)
PPV (SD) 30.5 (6.2) 37.5 (8.0) 70.1 (13.6) 82.9 (13.4) 5.8 (0.3) 5.8 (0.3) 6.7 (0.7) 9.9 (1.8) 5.8 (0.2) 5.8 (0.3) 7.3 (0.9) 11.7 (2.4)

ELASTICNET MICE-ELASTICNET

Variable selection Complete data MCAR MAR

Best 1 SE tolerance 3% tolerance 15% tolerance Best 1 SE tolerance 3% tolerance 15% tolerance Best 1 SE tolerance 3% tolerance 15% tolerance

correlation = 0.2

% true models 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
% true models but 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

% TP in top 10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
% TP in top 10 but 1 10.0 3.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

SEN (SD) 89.0 (4.8) 85.8 (5.8) 53.1 (4.9) 36.0 (8.0) 99.2 (2.2) 99.0 (2.4) 95.3 (3.9) 92.8 (4.7) 99.0 (2.3) 98.7 (2.7) 94.7 (3.5) 92.1 (4.8)
FPR (SD) 18.8 (4.6) 12.8 (3.9) 0.5 (0.1) 0.4 (0.0) 100.0 (0.0) 100.0 (0.0) 99.7 (1.7) 96.6 (5.4) 100.0 (0.0) 100.0 (0.0) 99.5 (1.7) 95.9 (5.6)
PPV (SD) 24.5 (4.7) 32.2 (7.1) 99.0 (3.2) 100.0 (0.7) 6.0 (0.1) 6.0 (0.1) 5.8 (0.2) 5.8 (0.4) 6.0 (0.1) 5.9 (0.2) 5.8 (0.2) 5.8 (0.4)

correlation = 0.8

% true models 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
% true models but 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

% TP in top 10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
% TP in top 10 but 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

SEN (SD) 72.3 (5.9) 67.2 (6.3) 40.3 (5.8) 31.3 (6.4) 99.6 (1.5) 99.1 (2.4) 92.0 (5.2) 87.2 (5.5) 99.2 (2.2) 98.5 (2.9) 91.4 (5.3) 86.9 (5.8)
FPR (SD) 12.1 (3.8) 7.0 (2.4) 0.6 (0.3) 0.5 (0.2) 100.0 (0.1) 100.0 (0.3) 93.7 (5.5) 79.9 (10.9) 100.0 (0.3) 100.0 (0.9) 90.5 (7.5) 73.2 (12.6)
PPV (SD) 29.7 (6.4) 41.3 (8.4) 93.9 (9.7) 97.9 (6.0) 6.0 (0.1) 6.0 (0.1) 6.0 (0.4) 6.7 (0.9) 6.0 (0.1) 6.0 (0.2) 6.1 (0.5) 7.3 (1.3)
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MissForest-Lasso and MissForest-Elasticnet: 100-covariate data results

When missing data in predictors and outcome were present, MissForest outperformed MICE

as an imputation method when combined with Lasso in both low and high correlation sce-

narios. MissForest-Lasso discrimination estimates were still poor compared to the theoretical

MSE, but closer to the complete data scenario S3 accuracy performance than MICE-Lasso

(see tables 2.32 and A.15 and figures 2.35 and 2.36). Also estimates of internal and external

optimism were smaller in absolute value for MissForest-Lasso than MICE-Lasso (see Figures

2.39 and 2.40) and the differences between MAR and MCAR data results were now reduced.

Instead, MissForest-Elasticnet tolerance models enormously underfitted the data such that the

300 runs estimates of accuracy were mostly missing and unstable (see Table 2.33 and A.16).

Only MissForest-Lasso calibration performance for the low correlation scenario was poorer with

respect to MICE-Lasso (see Figures 2.37 and 2.38).

Variable selection for MissForest-Lasso was generally poor in the low correlation scenario,

but much better than MICE-Lasso performance (see Table 2.34 and compare figures A.32, A.33

with A.36,A.37, A.34, A.35). As in the other scenarios, the sensitivity of selection (SEN) de-

creased with increasing penalty strength and the opposite happened to the positive predictive

value (PPV). All the MissForest-Lasso models did not have high SEN in both correlation sce-

narios (up to 66.1%, SD 6.7, in the best models and up to 46.2%, SD 7.9, in the 3% tolerance

models) and only the 3% and 15% tolerance models in the low correlation scenario had high

PPV (83.5%, SD 14.2 and 94.7%, SD 8.9) respectively, see Table 2.34).

The pattern of results between weak and strong correlation settings repeated: accuracy

estimates for the 0.8 correlation scenario were poor according to my subjective criteria, but

more precise and closer to the complete data scenario estimates (within 50% to 70% of the

theoretical MSE) than the 0.2 correlation scenario; while on average the tolerance models

had a lower PPV (56% SD 13 in the 3% tolerance MissForest-Lasso model) in the same high

correlation scenario compared to the weak correlation case.
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Table 2.32: Accuracy simulation study results for MissForest-Lasso analysis with Harrell (1996) bootstrap validation: scenarios S3 (as-
sumption of moderation, complete data) and S5 (assumption of moderation, missing data also in the outcome), based on 300 data sets
of 100 variables each (n=500) with between-covariate correlation of 0.2. Means of all estimates along with their corresponding 2.5th and
97.5th percentile values within parenthesis. The theoretical MSE is 1.

Estimates Complete data

Best model 1 SE tolerance 3% tolerance 15% tolerance

MSEapparent 0.951 (0.780,1.096) 1.025 (0.841,1.173) 1.366 (1.170,1.559) 1.606 (1.380,1.823)
βLP 1.093 (1.078,1.113) 1.107 (1.088,1.130) 1.190 (1.151,1.235) 1.268 (1.203,1.355)
Tuning λ 0.048 (0.039,0.061) 0.126 (0.107,0.149) 0.060 (0.049,0.072) 0.185 (0.149,0.234)
MSEext 1.125 (1.035,1.216) 1.143 (1.053,1.238) 1.349 (1.214,1.520) 1.552 (1.365,1.746)
Optimismext -0.174 (-0.334,-0.027) -0.118 (-0.285,0.038) 0.017 (-0.149,0.194) 0.054 (-0.134,0.246)
Optimismint -0.365 (-0.413,-0.315) -0.319 (-0.365,-0.273) -0.187 (-0.228,-0.142) -0.133 (-0.172,-0.095)
MSEcorrected 1.315 (1.101,1.493) 1.343 (1.140,1.526) 1.553 (1.352,1.765) 1.739 (1.510,1.970)
βLP∗ 1.035 (1.026,1.045) 1.053 (1.042,1.065) 1.124 (1.100,1.149) 1.175 (1.137,1.214)

MCAR

MSEapparent 1.739 (1.409,2.071) 1.860 (1.547,2.192) 2.333 (1.973,2.689) 2.674 (2.259,3.079)
βLP 1.168 (1.131,1.215) 1.203 (1.155,1.265) 1.470 (1.335,1.679) 1.764 (1.529,2.173)
Tuning λ 0.087 (0.068,0.459) 0.114 (0.068,0.459) 0.275 (0.068,0.459) 0.405 (0.068,0.459)
MSEext 1.713 (1.500,1.981) 1.776 (1.546,2.082) 2.354 (1.972,2.778) 2.872 (2.359,3.431)
Optimismext 0.025 (-0.339,0.400) 0.084 (-0.288,0.463) -0.021 (-0.470,0.421) -0.198 (-0.739,0.320)
Optimismint -0.625 (-0.762,-0.497) -0.516 (-0.644,-0.397) -0.218 (-0.321,-0.130) -0.128 (-0.221,-0.057)
MSEcorrected 2.363 (1.947,2.781) 2.376 (1.977,2.786) 2.551 (2.159,2.936) 2.802 (2.361,3.231)
βLP∗ 1.026 (1.003,1.052) 1.068 (1.045,1.097) 1.252 (1.188,1.336) 1.443 (1.322,1.640)

MAR

MSEapparent 1.699 (1.441,2.000) 1.816 (1.559,2.128) 2.281 (1.955,2.632) 2.619 (2.241,3.016)
βLP 1.165 (1.127,1.213) 1.197 (1.148,1.256) 1.460 (1.318,1.683) 1.772 (1.524,2.224)
Tuning λ 0.086 (0.068,0.459) 0.112 (0.068,0.459) 0.280 (0.068,0.459) 0.423 (0.068,0.459)
MSEext 1.831 (1.581,2.180) 1.900 (1.631,2.215) 2.513 (2.112,3.017) 3.025 (2.547,3.610)
Optimismext -0.131 (-0.535,0.258) -0.084 (-0.480,0.271) -0.233 (-0.756,0.187) -0.405 (-0.998,0.025)
Optimismint -0.608 (-0.725,-0.497) -0.503 (-0.606,-0.405) -0.213 (-0.301,-0.126) -0.124 (-0.207,-0.052)
MSEcorrected 2.307 (1.967,2.670) 2.318 (1.991,2.696) 2.494 (2.151,2.852) 2.743 (2.378,3.139)
βLP∗ 1.026 (1.000,1.052) 1.066 (1.037,1.098) 1.243 (1.173,1.327) 1.438 (1.304,1.612)
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Table 2.33: Accuracy simulation study results for MissForest-Elasticnet analysis with Harrell (1996) bootstrap validation: scenarios S3
(assumption of moderation, complete data) and S5 (assumption of moderation, missing data also in the outcome), based on 300 data sets
of 100 variables each (n=500) with between-covariate correlation of 0.2. Means of all estimates along with their corresponding 2.5th and
97.5th percentile values within parenthesis. The theoretical MSE is 1.

Estimates Complete data

Best model 1 SE tolerance 3% tolerance 15% tolerance

MSEapparent 0.951 (0.766,1.111) 1.038 (0.847,1.209) 1.981 (1.613,2.377) 3.123 (2.414,3.914)
βLP 1.095 (1.079,1.117) 1.112 (1.092,1.138) 1.447 (1.302,1.666) 2.116 (1.668,2.853)
Tuning α 0.900 (0.900,0.900) 0.900 (0.900,0.900) 0.900 (0.900,0.900) 0.900 (0.900,0.900)
Tuning λ 0.053 (0.040,0.065) 0.321 (0.220,0.455) 0.068 (0.051,0.083) 0.651 (0.455,0.941)
MSEext 1.127 (1.040,1.218) 1.151 (1.064,1.242) 1.912 (1.598,2.337) 3.119 (2.347,3.978)
Optimismext -0.176 (-0.341,-0.012) -0.113 (-0.272,0.042) 0.069 (-0.161,0.318) 0.004 (-0.403,0.375)
Optimismint -0.361 (-0.412,-0.310) -0.295 (-0.340,-0.247) -0.088 (-0.121,-0.057) -0.071 (-0.098,-0.042)
MSEcorrected 1.311 (1.084,1.503) 1.332 (1.129,1.516) 2.069 (1.701,2.455) 3.194 (2.484,3.976)
βLP∗ 1.040 (1.031,1.049) 1.068 (1.054,1.083) 1.320 (1.225,1.448) 1.638 (1.421,1.954)

MCAR

MSEapparent 1.740 (1.424,2.059) 2.132 (1.752,2.623) 4.123 (3.482,4.832) 4.258 (3.678,4.954)
βLP 1.172 (1.132,1.224) 1.344 (1.211,1.547) 20.555 (3.134,133.146) 203.357 (6.282,566.300)
Tuning λ 0.101 (0.065,0.135) 0.232 (0.135,0.357) 1.389 (0.941,1.947) 2.289 (1.528,3.162)
MSEext 1.715 (1.498,1.985) 2.072 (1.661,2.615) 5.010 (4.077,5.258) 5.207 (5.196,5.265)
Optimismext 0.024 (-0.372,0.378) 0.061 (-0.361,0.445) -0.887 (-1.529,-0.187) -0.949 (-1.535,-0.254)
Optimismint -0.664 (-0.812,-0.526) -0.418 (-0.608,-0.273) -0.178 (-0.320,-0.068) -0.116 (-0.220,-0.030)
MSEcorrected 2.403 (1.968,2.825) 2.550 (2.022,3.159) 4.301 (3.651,4.986) 4.374 (3.764,5.101)
βLP∗ 1.034 (1.013,1.062) 1.176 (1.112,1.248) 2.811 (1.530,7.513) 9.066 (2.107,26.418)

MAR

MSEapparent 1.696 (1.410,2.007) 2.093 (1.722,2.462) 3.968 (3.280,4.614) 4.111 (3.388,4.639)
βLP 1.168 (1.131,1.220) 1.344 (1.213,1.588) NA (2.836,93.107) NA (8.821,29.264)
Tuning λ 0.100 (0.065,0.135) 0.241 (0.135,0.357) 1.417 (1.199,1.947) 2.373 (1.947,3.162)
MSEext 1.833 (1.582,2.137) 2.236 (1.809,2.760) 4.997 (4.054,5.241) 5.204 (5.196,5.264)
Optimismext -0.137 (-0.548,0.229) -0.143 (-0.670,0.242) -1.029 (-1.727,-0.426) -1.093 (-1.727,-0.553)
Optimismint -0.650 (-0.778,-0.529) -0.429 (-0.592,-0.282) -0.193 (-0.315,-0.075) -0.126 (-0.224,-0.037)
MSEcorrected 2.346 (2.002,2.742) 2.522 (2.074,3.029) 4.160 (3.471,4.795) 4.237 (3.536,4.798)
βLP∗ 1.035 (1.011,1.064) 1.162 (1.096,1.236) 2.634 (1.423,7.384) 50.914 (1.862,19.458)
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Table 2.34: Variable selection simulation study results for scenarios S3 (assumption of moderation, without missing data) and S5 (assump-
tion of moderation, missing data also in the outcome) for MissForest-Lasso best and tolerance models in the case of 100 covariates and
300 samples of 500 observations, between-covariate correlation of 0.2 and 0.8. The following results are shown: the estimated percentages
of the times all the 10 true predictors (TP) are selected at the same time, the estimated percentages of the times the true model is selected
apart from one variable, the percentages of the times the TPs are the top ranked variables among the selected, the percentage of times the
TP are the top ranked variables apart from one TP, the average percentages of selected TP among the TP (sensitivity, SEN), the average
percentages of selected false positive predictors (FP) among FP (false positive rate, FPR), and the average percentages of selected TP
among the selected variables (positive predictive value, PPV). The mean percentages are shown along with their standard deviation (SD).
The asterisk is present when the means and standard deviations were computed by removing the missing performances.

LASSO MissForest-LASSO

Variable selection Complete data MCAR MAR

Best 1 SE tolerance 3% tolerance 15% tolerance Best 1 SE tolerance 3% tolerance 15% tolerance Best 1 SE tolerance 3% tolerance 15% tolerance

correlation = 0.2

% true models 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
% true models but 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

% TP in top 10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
% TP in top 10 but 1 9.3 5.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

SEN (SD) 88.9 (4.8) 86.0 (5.8) 74.8 (6.2) 63.2 (8.2) 66.1 (6.7) 61.6 (6.4) 45.4 (6.2) 36.7 (6.5) 64.0 (6.4) 60.5 (6.3) 42.2 (8.0) 32.0 (8.0)
FPR (SD) 18.6 (4.5) 13.2 (3.7) 2.1 (1.3) 0.8 (0.5) 11.5 (4.2) 7.0 (2.9) 1.1 (0.8) 0.6 (0.3) 11.7 (4.1) 7.2 (3.0) 1.2 (0.8) 0.6 (0.3)
PPV (SD) 24.7 (4.5) 31.3 (6.1) 76.4 (13.0) 92.8 (8.8) 29.6 (7.3) 40.4 (10.4) 83.5 (14.2) 94.7 (8.9) 28.3 (7.0) 39.0 (10.1) 81.2 (14.9) 93.7 (10.5)

correlation = 0.8

% true models 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
% true models but 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

% TP in top 10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
% TP in top 10 but 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

SEN (SD) 71.9 (6.2) 68.7 (6.0) 57.9 (5.7) 51.0 (6.7) 64.9 (6.6) 62.3 (7.0) 46.2 (7.9) 38.2 (7.5) 64.8 (6.6) 62.3 (7.1) 48.2 (7.2) 37.4 (7.6)
FPR (SD) 11.6 (3.6) 8.3 (2.8) 2.2 (1.2) 1.2 (0.7) 11.6 (3.3) 8.5 (2.5) 3.0 (1.3) 1.8 (1.0) 11.6 (3.0) 8.7 (2.3) 3.1 (1.4) 1.8 (0.9)
PPV (SD) 30.5 (6.2) 37.5 (8.0) 70.1 (13.6) 82.9 (13.4) 28.3 (6.2) 34.3 (7.0) 56.3 (13.0) 67.1 (17.1) 28.1 (5.6) 33.7 (6.8) 56.1 (13.6) 66.9 (16.0)

ELASTICNET MissForest-ELASTICNET

Variable selection Complete data MCAR MAR

Best 1 SE tolerance 3% tolerance 15% tolerance Best 1 SE tolerance 3% tolerance 15% tolerance Best 1 SE tolerance 3% tolerance 15% tolerance

correlation = 0.2

% true models 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
% true models but 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

% TP in top 10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
% TP in top 10 but 1 10.0 3.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

SEN (SD) 89.0 (4.8) 85.8 (5.8) 53.1 (4.9) 36.0 (8.0) 66.7 (6.5) 53.1 (6.4) 3.2 (4.7) 0.1 (0.9) 64.0 (6.4) 60.5 (6.3) 42.2 (8.0) 32.0 (8.0)
FPR (SD) 18.8 (4.6) 12.8 (3.9) 0.5 (0.1) 0.4 (0.0) 11.8 (4.1) 2.6 (1.6) 0.4 (0.0) 0.4 (0.0) 11.7 (4.1) 7.2 (3.0) 1.2 (0.8) 0.6 (0.3)
PPV (SD) 24.5 (4.7) 32.2 (7.1) 99.0 (3.2) 100.0 (0.7) 29.0 (7.3) 66.3 (16.3) 100.0* (0.0) 100.0* (0.0) 28.3 (7.0) 39.0 (10.1) 81.2 (14.9) 93.7 (10.5)

correlation = 0.8

% true models 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
% true models but 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

% TP in top 10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
% TP in top 10 but 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

SEN (SD) 72.3 (5.9) 67.2 (6.3) 40.3 (5.8) 31.3 (6.4) 65.8 (7.0) 56.3 (8.6) 31.1 (8.1) 13.0 (11.8) 65.3 (7.0) 57.6 (7.3) 29.0 (6.9) 11.2 (10.2)
FPR (SD) 12.1 (3.8) 7.0 (2.4) 0.6 (0.3) 0.5 (0.2) 12.3 (3.8) 5.5 (2.3) 2.2 (2.2) 1.4 (2.6) 12.1 (3.4) 5.8 (1.7) 1.7 (1.0) 0.8 (0.9)
PPV (SD) 29.7 (6.4) 41.3 (8.4) 93.9 (9.7) 97.9 (6.0) 27.3 (5.8) 43.5 (9.0) 62.8 (22.3) 72.8* (29.0) 27.4 (5.4) 41.9 (8.4) 64.9 (18.9) 79.0* (24.4)
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MissForest-Conditional Random Forests: 100-covariate data results

Conditional Random Forests S3: No missing data, Assumption of moderation Con-

ditional RF had the worst prediction accuracy among the methods best models when data

were complete: optimism-corrected MSE=1.897 (2.5th and 97.5th percentiles being 1.716 and

2.095, pseudo R2=0.629, 0.581-0.667) for the low correlation scenario and 1.376 (1.215-1.553,

pseudo R2=0.731, 0.681-0.770) for the high correlation scenario (see Table 2.35). Also both

MSE optimism internal and external were larger in absolute value, but close to each other (see

Figure 2.39 and 2.40). Conditional RF accuracy was better with strongly correlated features

than weakly correlated features like the other methods.

Despite the worst prediction accuracy result, the Conditional RF model always had the 15

TPs as top 15 features in the variable importance rank (see Figures A.32 and A.33), showing

the best variable selection performance among the analysed methods.

MissForest-Conditional RF S5: Assumption of moderation, Missing data also in outcome

(20% missingness MAR and MCAR MissForest-Conditional RF had poor discrimination sim-

ilar to MissForest-Lasso, but had the best variable selection performance for scenario S5 (see

Figures 2.35, 2.36, A.36, A.34, A.33, A.35, and Table 2.35). This missing data case accuracy

result was better than the Conditional RF complete data scenario result. However, the mean

calibration slope was the highest among the other methods best models calibration slopes in

the low correlation scenario. Moreover, the estimated mean MSE internal and external opti-

misms were the largest in absolute value among the methods and were not close to each other

in both correlation cases.
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Table 2.35: Accuracy simulation study results for MissForest-Conditional RF analysis with Harrell bootstrap validation: scenarios S3
(assumption of moderation, complete data) and S5 (assumption of moderation, missing data also in the outcome), based on 300 data sets
of 100 variables each (n=500). Means of all estimates along with their corresponding 2.5th and 97.5th percentile values within parenthesis.
The theoretical MSE is 1.

Estimates correlation = 0.2 correlation = 0.8

Complete data MCAR MAR Complete data MCAR MAR

MSEapparent 1.256 (1.133,1.405) 1.351 (1.167,1.561) 1.290 (1.098,1.502) 0.996 (0.870,1.141) 0.956 (0.825,1.106) 0.974 (0.844,1.132)
βLP 1.257 (1.133,1.405) 1.318 (1.167,1.561) 1.298 (1.098,1.502) 1.107 (0.870,1.141) 1.107 (0.825,1.106) 1.105 (0.844,1.132)
MSEext 2.102 (1.932,2.324) 2.771 (2.458,3.132) 2.102 (6.271,8.086) 1.382 (1.271,1.506) 1.656 (1.472,1.898) 1.655 (1.488,1.866)
Optimismext -0.847 (-1.093,-0.605) -1.419 (-1.841,-1.027) -1.605 (-2.073,-1.179) -0.386 (-0.565,-0.227) -0.701 (2.774,-0.472) -0.681 (-0.912,-0.449)
Optimismint -0.642 (-0.707,-0.570) -0.931 (-1.084,-0.784) -0.889 (-1.032,-0.744) -0.380 (-0.429,-0.332) -0.487 (-0.564,-0.415) -0.499 (-0.582,-0.421)
MSEcorrected 1.897 (1.716,2.095) 2.283 (1.971,2.623) 2.179 (1.874,2.507) 1.376 (1.215,1.553) 1.443 (1.255,1.653) 1.472 (1.287,1.670)
βLP∗ 1.218 (1.170,1.268) 1.239 (1.172,1.333) 1.218 (1.162,1.291) 1.094 (1.072,1.118) 1.080 (1.062,1.105) 1.081 (1.059,1.107)
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Figure 2.35: Optimism-corrected MSE estimates from 5 methods run on 300 simulated 100-covariate datasets (correlation 0.2) with
500 observations for scenarios S3 (assumption of moderation, without missing data) and S5 (assumption of moderation, missing data
also in the outcome). The methods are: MICE-Lasso (ML), MICE-Elasticnet (ME), MissForest-Lasso (MFL), MissForest-Elasticnet (MFE),
MissForest-Conditional RF (MC). ML, ME, MFL and MFE estimated MSEs are shown for the best λ selection as well as for three tolerance
models: one model corresponding to a λ giving the MSE within 1 standard error (SE) of the minimum, the 2nd within 3% and the 3rd within
15%, through bootstrap tuning. For S3 (first plot from the left), the Lasso (L), Elasticnet (E) and Conditional RF (CF) corrected MSEs are
shown.
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Figure 2.36: Optimism-corrected MSE estimates from 5 methods run on 300 simulated 100-covariate datasets (correlation 0.8) with
500 observations for scenarios S3 (assumption of moderation, without missing data) and S5 (assumption of moderation, missing data
also in the outcome). The methods are: MICE-Lasso (ML), MICE-Elasticnet (ME), MissForest-Lasso (MFL), MissForest-Elasticnet (MFE),
MissForest-Conditional RF (MC). ML, ME, MFL and MFE estimated MSEs are shown for the best λ selection as well as for three tolerance
models: one model corresponding to a λ giving the MSE within 1 standard error (SE) of the minimum, the 2nd within 3% and the 3rd within
15%, through bootstrap tuning. For S3 (first plot from the left), the Lasso (L), Elasticnet (E) and Conditional RF (CF) corrected MSEs are
shown.
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Figure 2.37: Calibration slope βLP estimates for 5 methods run on 300 simulated 100-covariate datasets (correlation = 0.2) with 500
observations for scenarios S3 (assumption of moderation, without missing data) and S5 (assumption of moderation, missing data also
in the outcome). The methods are: MICE-Lasso (ML), MICE-Elasticnet (ME), Missforest-Lasso (MFL), MissForest-Elasticnet (MFE) and
MissForest-Conditional RF (MC). ML, ME, MFL and MFE estimated calibration slopes are shown for the best λ selection as well as for three
tolerance models (when available): one model corresponding to a λ giving the MSE within 1 standard error (SE) of the minimum, the 2nd
within 3% and the 3rd within 15%, through bootstrap tuning. For S3 (first plot from the left), the Lasso (L), Elasticnet (E) and Conditional RF
(CF) calibration slopes are shown.
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Figure 2.38: Calibration slope βLP estimates for 5 methods run on 300 simulated 100-covariate datasets (correlation = 0.8) with 500
observations for scenarios S3 (assumption of moderation, without missing data) and S5 (assumption of moderation, missing data also
in the outcome). The methods are: MICE-Lasso (ML), MICE-Elasticnet (ME), Missforest-Lasso (MFL), MissForest-Elasticnet (MFE) and
MissForest-Conditional RF (MC). ML, ME, MFL and MFE estimated calibration slopes are shown for the best λ selection as well as for three
tolerance models (when available): one model corresponding to a λ giving the MSE within 1 standard error (SE) of the minimum, the 2nd
within 3% and the 3rd within 15%, through bootstrap tuning. For S3 (first plot from the left), the Lasso (L), Elasticnet (E) and Conditional RF
(CF) calibration slopes are shown.
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Figure 2.39: Average internal and external MSE optimism estimates with 2.5th and 97.5th percentiles for 5 methods run on 300 simulated
100-covariate datasets (correlation=0.2) with 500 observations for scenarios S3 (assumption of moderation, without missing data) and S5
(assumption of moderation, with missing data also in the outcome). The methods are: MICE-Lasso (ML), MICE-Elasticnet (ME), MissForest-
Lasso (MFL), MissForest-Elasticnet (MFE) and MissForest-Conditional RF (MC). ML, ME, MFL and MFE estimated internal and external
MSE optimism are shown for the best λ selection as well as for three tolerance models (when available): one model corresponding to a λ
giving the MSE within 1 standard error (SE) of the minimum, the 2nd within 3% and the 3rd within 15%, through bootstrap tuning. For S3
(first plot from the left), the Lasso (L), Elasticnet (E) and Conditional Random Forest (CF) optimism estimates are shown.
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Figure 2.40: Average internal and external MSE optimism estimates with 2.5th and 97.5th percentiles for 5 methods run on 300 simulated
100-covariate datasets (correlation=0.8) with 500 observations for scenarios S3 (assumption of moderation, without missing data) and S5
(assumption of moderation, with missing data also in the outcome). The methods are: MICE-Lasso (ML), MICE-Elasticnet (ME), MissForest-
Lasso (MFL), MissForest-Elasticnet (MFE) and MissForest-Conditional RF (MC). ML, ME, MFL and MFE estimated internal and external
MSE optimism are shown for the best λ selection as well as for three tolerance models (when available): one model corresponding to a λ
giving the MSE within 1 standard error (SE) of the minimum, the 2nd within 3% and the 3rd within 15%, through bootstrap tuning. For S3
(first plot from the left), the Lasso (L), Elasticnet (E) and Conditional Random Forest (CF) optimism estimates are shown.
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Figure 2.41: Average percentage of true predictors (TP) selected among the actual TP (SEN) estimates with 2.5th and 97.5th percentiles
from 4 methods run on 300 simulated 100-covariate datasets (correlation=0.2) with 500 observations for scenarios S3 (assumption of
moderation, without missing data) and S5 (assumption of moderation, missing data also in the outcome). The methods are: MICE-Lasso
(ML), MICE-Elasticnet (ME), MissForest-Lasso (MFL) and MissForest-Elasticnet. ML, ME, MFL and MFE estimated percentages of TP
selected among the actual TP variables are shown for the best λ selection as well as for three tolerance models (when available): one
model corresponding to a λ giving the MSE within 1 standard error (SE) of the minimum, the 2nd within 3% and the 3rd within 15%, through
bootstrap tuning. For S3 (first plot from the left), the Lasso (L) and the Elasticnet (E) estimates are shown.
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Figure 2.42: Average percentage of true predictors (TP) selected among the actual TP (SEN) estimates with 2.5th and 97.5th percentiles
from 4 methods run on 300 simulated 100-covariate datasets (correlation=0.8) with 500 observations for scenarios S3 (assumption of
moderation, without missing data) and S5 (assumption of moderation, missing data also in the outcome). The methods are: MICE-Lasso
(ML), MICE-Elasticnet (ME), MissForest-Lasso (MFL) and MissForest-Elasticnet. ML, ME, MFL and MFE estimated percentages of TP
selected among the actual TP variables are shown for the best λ selection as well as for three tolerance models (when available): one
model corresponding to a λ giving the MSE within 1 standard error (SE) of the minimum, the 2nd within 3% and the 3rd within 15%, through
bootstrap tuning. For S3 (first plot from the left), the Lasso (L) and the Elasticnet (E) estimates are shown.



2.3.
S

IM
U

LATIO
N

R
E

S
U

LTS
179

Figure 2.43: Average percentage of true predictors (TP) among the selected variables (PPV) estimates with 2.5th and 97.5th percentiles
from 3 methods run on 300 simulated 100-covariate datasets (correlation=0.2) with 500 observations for scenarios S3 (assumption
of moderation, without missing data) and S5 (assumption of moderation, missing data also in the outcome). The methods are: MICE-
Lasso (ML), MICE-Elasticnet (ME), MissForest-Lasso (MFL) and MissForest-Elasticnet (MFE). ML, ME and MF estimated percentages of
TP among the selected variables are shown for the best λ selection as well as for three tolerance models (when available): one model
corresponding to a λ giving the MSE within 1 standard error (SE) of the minimum, the 2nd within 3% and the 3rd within 15%, through
bootstrap tuning. For S3 (first plot from the left), the Lasso (L) and the Elasticnet (E) estimates are shown.
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Figure 2.44: Average percentage of true predictors (TP) among the selected variables (PPV) estimates with 2.5th and 97.5th percentiles
from 3 methods run on 300 simulated 100-covariate datasets (correlation=0.8) with 500 observations for scenarios S3 (assumption
of moderation, without missing data) and S5 (assumption of moderation, missing data also in the outcome). The methods are: MICE-
Lasso (ML), MICE-Elasticnet (ME), MissForest-Lasso (MFL) and MissForest-Elasticnet (MFE). ML, ME and MF estimated percentages of
TP among the selected variables are shown for the best λ selection as well as for three tolerance models (when available): one model
corresponding to a λ giving the MSE within 1 standard error (SE) of the minimum, the 2nd within 3% and the 3rd within 15%, through
bootstrap tuning. For S3 (first plot from the left), the Lasso (L) and the Elasticnet (E) estimates are shown.
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2.3.3 Selection of moderators

In scenarios S3, S4, S5 and S6 for the 20-covariate study and in the 100-covariate study

(scenarios S3 and S5), the selection of true interaction terms identifying moderators was gen-

erally as good as or slightly poorer than the selection of the overall true predictors in terms

of positive predictive value for the models Mice-Lasso, Mice-Elasticnet, MissForest-Lasso and

MissForest-Elasticnet (PPV, see Tables both in the Appendix and here below A.17 for the best

models, A.18 for the 1 SE models, A.19 for the 15% tolerance models and 2.36 for the 3% tol-

erance models). Only MissForest-Lasso 3% and 15% models and MissForest-Elasticnet 1SE

and 3% models in the 100-covariate study showed better PPV for moderators especially in

the high correlated variables scenario. The discrepancy between predictors and moderators

PPV results was largest for the best models and reduced as the tolerance level for the tuning

parameter increased.

The sensitivity (SEN) of selection for the moderators was always slighly better than the

SEN for the overall predictors in the 20-covariate scenario. In the 100-covariate scenario the

SEN for the overall predictors was higher than the SEN for moderators apart from the SEN

for the methods Mice-Lasso and Mice-Elasticnet, which however selected all variables without

distinguishing between true and false predictors.

The false positive rate (FPR) of selection for the moderators was lower (better) than the

FPR for the overall predictors across all scenarios with missing data and for all levels of penalty

tolerance.

An acceptable to good moderator selection performance according to our subjective criteria

was only achieved in the 20-covariate scenario by the methods in the tolerance models for the

complete data scenarios, by MissForest-Lasso for the missing data scenarios in the 3% models

(together with Mice-Elasticnet only for 1000 observation datasets) and by MissForest-Lasso

and Mice-Lasso in the 15% tolerance models (see Figures 2.36 and A.19 in the Appendix). In

the 100-covariate scenario, where the models included 119 interaction terms, of which only 5

terms were true predictors, the selection was generally poor.
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Table 2.36: Comparison of average sensitivity (SEN), false positive rate (FPR) and positive predictive value (PPV) of selection for the predictors (P) and
for the moderators (M) for the 3% tolerance models in the simulation study. Average SEN, FPR and PPV are given in percentages with corresponding SD.

Selection of predictors and moderators in the 3% tolerance models

Scenario 3 Scenario 4: complete outcome Scenario 5: incomplete outcome (20%) Scenario 6: interactions in imputation model

Data Complete MCAR MAR MCAR MAR MCAR MAR

20-covariate N=250 N=1000 N=250 N=1000 N=250 N=1000 N=250 N=1000 N=250 N=1000 N=250 N=1000 N=250 N=1000

Mice-Lasso
SEN of P (SD) 90.5 (4.2) 99.9 (1.3) 92.8 (3.4) 93.5 (1.3) 93.3 (3.3) 94.1 (2.2) 93.7 (3.4) 93.9 (1.9) 95.2 (4.1) 96.8 (3.3) 94.8 (3.6) 93.7 (1.6) 94.2 (3.6) 93.7 (1.6)
SEN of M (SD) 95.7 (9.5) 99.8 (2.5) 98.5 (6.0) 99.9 (1.4) 99.2 (4.5) 100 (0) 98.6 (5.8) 100 (0) 99.3 (4.23) 100 (0) 99.6 (3.2) 100 (0) 98.8 (5.5) 100 (0)
FPR of P (SD) 16.6 (7.9) 2.1 (5) 52.6 (12.8) 31.1 (8.3) 50.7 (12.2) 32.3 (8.3) 67.4 (11.8) 42.5 (9.8) 67.8 (12.2) 47 (9.6) 77.5 (18.4) 38.2 (11.5) 69.2 (16.8) 36.9 (10.5)
FPR of M (SD) 16.7 (9.3) 9.8 (6.8) 45.9 (14.1) 28.6 (10.0) 44.6 (13.4) 31.8 (9.6) 58.1 (14.0) 37.5 (11.2) 58.6 (14.2) 43.0 (10.6) 74.8 (20.1) 36.3 (13.0) 65.9 (18.3) 35.7 (11.7)
PPV of P (SD) 78.2 (8.3) 98.2 (6.6) 53.1 (6.2) 65.8 (6.2) 54.2 (6.3) 65.1 (5.9) 46.9 (4.6) 58.6 (5.6) 47.2 (4.9) 56.7 (5.1) 44.2 (6.2) 61.4 (7.1) 46.8 (6.4) 62.1 (6.6)
PPV of M (SD) 63.2 (14.8) 75.5 (14.2) 37.9 (8.3) 50.0 (9.6) 38.6 (8.2) 46.9 (8.1) 32.1 (6.0) 42.9 (7.8) 32.1 (6.2) 39.2 (6.2) 27.4 (6.4) 44.2 (9.5) 29.8 (6.6) 44.3 (8.4)
Mice-Elasticnet
SEN of P (SD) 76.8 (14.8) 81.6 (5) 92.8 (5.2) 84.9 (5.6) 93.4 (5.5) 86.5 (5.2) 94 (4.7) 86.4 (6.5) 95.8 (4.8) 90 (5.7)
SEN of M (SD) 85.6 (17.7) 95.7 (10.1) 98.1 (7.8) 95.3 (10.8) 98.3 (6.6) 97.4 (7.9) 98.5 (6.3) 93.8 (12.4) 99.3 (4.3) 98.3 (6.3)
FPR of P (SD) 11.2 (15) 1.5 (2.3) 59.6 (23.9) 8.6 (10.3) 60.8 (24.1) 10.6 (11) 72.7 (20.1) 13.9 (12.6) 74.8 (21.2) 23.8 (16.9)
FPR of M (SD) 12.6 (15.5) 2.4 (3.7) 57.2 (23.4) 9.1 (10.9) 58.0 (23.7) 11.2 (11.8) 68.5 (21.6) 13.7 (12.4) 70.4 (22.2) 25.2 (16.2)
PPV of P (SD) 85.8 (14) 97.3 (4.1) 51.8 (11.6) 88 (10.3) 51.6 (12) 85.6 (10.6) 45.9 (8) 81.9 (11.4) 45.9 (8.6) 73.1 (12)
PPV of M (SD) 74.2 (21.7) 92.6 (11.0) 34.5 (11.8) 79.1 (18.0) 34.6 (13.2) 75.3 (18.2) 29.6 (8.9) 70.2 (17.9) 29.4 (9.5) 55.7 (15.5)
MissForest-Lasso
SEN of P (SD) 90.5 (4.2) 99.9 (1.3) 86.3 (6.2) 92.8 (1.8) 87.5 (5.7) 92.9 (2) 82.1 (7.6) 92.2 (2.8) 85.4 (6.4) 91.8 (3)
SEN of M (SD) 95.7 (9.5) 99.8 (2.5) 89.1 (14.3) 99.4 (3.8) 90.8 (13.6) 99.3 (4.0) 84.6 (15.9) 98.9 (5.1) 92.3 (12.6) 99.7 (2.9)
FPR of P (SD) 16.6 (7.9) 2.1 (5) 16.8 (8) 9.2 (5.3) 17.4 (8.3) 11 (5.9) 16.4 (7.8) 10.8 (5.4) 20.5 (8.8) 15.2 (7)
FPR of M (SD) 16.7 (9.3) 9.8 (6.8) 15.7 (8.7) 10.5 (7.0) 15.9 (9.4) 11.5 (7.0) 15.7 (8.8) 11.4 (6.9) 19.0 (9.8) 16.5 (8.0)
PPV of P (SD) 78.2 (8.3) 98.2 (6.6) 77.2 (8.6) 86.8 (6.7) 76.9 (8.6) 84.7 (7) 76.8 (8.8) 84.8 (6.8) 73.3 (8.6) 79.8 (7.4)
PPV of M (SD) 63.2 (14.8) 75.5 (14.2) 62.7 (14.9) 74.2 (13.8) 63.5 (15.4) 72.0 (13.1) 61.9 (16.2) 72.3 (13.6) 59.2 (14.3) 63.8 (11.9)

100-covariate (N=500) ρ = 0.2 ρ = 0.8 ρ = 0.2 ρ = 0.8 ρ = 0.2 ρ = 0.8

Mice-Lasso
SEN of P (SD) 74.8 (6.2) 57.9 (5.7) 90 (4.7) 81.5 (5.2) 89.7 (4.7) 82 (5.4)
SEN of M (SD) 67.1 (13.4) 53.5 (9.5) 89.5 (12.3) 65.5 (13.6) 88.9 (13.4) 66.7 (14.6)
FPR of P (SD) 2.1 (1.3) 2.2 (1.2) 94.7 (2.6) 74.1 (6.9) 94.3 (2.7) 68.1 (8.5)
FPR of M (SD) 1.1 (1.3) 0.7 (0.9) 89.2 (4.8) 58.5 (9.2) 88.4 (4.8) 53.1 (10)
PPV of P (SD) 76.4 (13) 70.1 (13.6) 5.8 (0.3) 6.7 (0.7) 5.8 (0.3) 7.3 (0.9)
PPV of M (SD) 78.2 (20.1) 82.3 (20.1) 4 (0.6) 4.6 (1.1) 4.1 (0.6) 5.2 (1.3)
Mice-Elasticnet
SEN of P (SD) 53.1 (4.9) 40.3 (5.8) 95.3 (3.9) 92 (5.2) 94.7 (3.5) 91.4 (5.3)
SEN of M (SD) 43.9 (8.3) 46.7 (13.8) 98.9 (4.9) 91.3 (12.3) 98.7 (5) 90.9 (11.8)
FPR of P (SD) 0.5 (0.1) 0.6 (0.3) 99.7 (1.7) 93.7 (5.5) 99.5 (1.7) 90.5 (7.5)
FPR of M (SD) 0 (0.2) 0 (0.1) 98.6 (3) 88.3 (8.8) 98.2 (3) 83.9 (10.8)
PPV of P (SD) 99 (3.2) 93.9 (9.7) 5.8 (0.2) 6 (0.4) 5.8 (0.2) 6.1 (0.5)
PPV of M (SD) 99 (5.4) NA 4 (0.2) 4.2 (0.6) 4.1 (0.2) 4.4 (0.7)
MissForest-Lasso
SEN of P (SD) 74.8 (6.2) 57.9 (5.7) 45.7 (6.4) 46.5 (7.9) 42.3 (8.4) 48.1 (7.4)
SEN of M (SD) 67.1 (13.4) 53.5 (9.5) 38.7 (10.8) 48.4 (11.5) 34.1 (14.7) 44.8 (12.1)
FPR of P (SD) 2.1 (1.3) 2.2 (1.2) 1.2 (0.7) 3 (1.3) 1.2 (0.8) 3 (1.3)
FPR of M (SD) 1.1 (1.3) 0.7 (0.9) 0.5 (0.7) 1 (1.2) 0.4 (0.6) 1.2 (1.4)
PPV of P (SD) 76.4 (13) 70.1 (13.6) 83.1 (14.1) 56.2 (12.9) 81.2 (14.5) 57 (13.2)
PPV of M (SD) 78.2 (20.1) 82.3 (20.1) 83.8 (21.3) 74.4 (23.6) 83.9 (24.1) 69.5 (26.1)
MissForest-Elasticnet
SEN of P (SD) 53.1 (4.9) 40.3 (5.8) 3.2 (4.8) 31.6 (8.2) 3.5 (5.4) 29.3 (7.1)
SEN of M (SD) 43.9 (8.3) 46.7 (13.8) 0.9 (4.4) 30.4 (12.3) 1.6 (5.7) 26.7 (11)
FPR of P (SD) 0.5 (0.1) 0.6 (0.3) 0.4 (0) 2.4 (2.5) 0.4 (0.1) 1.6 (1)
FPR of M (SD) 0 (0.2) 0 (0.1) 0 (0) 0.2 (0.9) 0 (0.1) 0.1 (0.4)
PPV of P (SD) 99 (3.2) 93.9 (9.7) 99.8 (2.3) 61.4 (22) 99.1 (5.9) 65.7 (18.7)
PPV of M (SD) 99 (5.4) NA 95.8 (14.4) 93.8 (16.5) 95.7 (14.4) 95.1 (14.1)
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2.4 Summary of results

Summary for 20-covariate data simulation study

MICE-Lasso, MICE-Elasticnet, MissForest-Lasso and MissForest-RF were compared in terms

of prediction accuracy and variable selection in the 20-covariate simulation study (see Subsec-

tion 2.2.1).

Overall MissForest-Lasso performed better in accuracy and variable selection compared to

the other methods in both 250 and 1000 observations dataset cases across scenarios with

missing data.

The models showing at the same time an acceptable prediction accuracy and good variable

selection were the 1 SE and 3% tolerance Lasso models in all scenarios without missing data

and the 1 SE and 3% tolerance models of MissForest-Lasso in the missing data scenarios

where there was no assumption of moderation and the outcome was complete (for 3% tolerance

models estimates see the summary Table 2.37 and the summary Figure 2.45).

Prediction accuracy results for 20-covariate data study The optimism-corrected MSE was

in all simulations above the theoretical MSE. The corrected MSEs increased with increasing

penalty and with introducing missingness and was higher if missingness was MCAR. The cor-

rected MSE was poor (then not acceptable) for all the 15% tolerance models. The corrected

MSE for the best, 1 SE and 3% tolerance models were acceptable (within 30% of the theo-

retical MSE) for scenarios S1 (no moderation assumption, complete data), S2 (no moderation

assumption, missing data, complete outcome) and S3 (moderation assumption and complete

data) for MissForest-Lasso and MICE-Lasso. The corrected MSE for the best, 1SE and 3%

tolerance MissForest-Lasso models in scenario S5 (moderation assumption, missing data also

in the outcome) were also acceptable in the case of MAR data.

In scenario S1, without missing data and in absence of moderator variables among the

predictors, Lasso outperformed Elasticnet and RF in prediction accuracy when the sample size

was 250 (see Figures 2.8). In scenario S1, the difference between MSE internal and external

optimism was the least for RF (see Figure 2.14), indicating that its larger variance performance

is also what will be obtained on new data.

In scenario S2, when missing data were present with a complete outcome, the methods

performance overall slightly decreased: the regularised regression methods combined with

MICE or MissForest best and 1SE tolerance models had similar accuracy, which was superior

to MissForest-RF that seemed to underfit the data.
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When interactions were added to the linear predictor in scenario S3 without missing data,

Lasso had again the best performance while Elasticnet tolerance models and RF were under-

fitting the data (see Figures 2.9). In scenario S4 with missing data, the accuracy was mod-

erately inferior alike for scenario S2: the best and 1SE tolerance models of MICE-Lasso and

MissForest-Lasso had similar accuracy and their result was the best among the methods.

All methods performed their worst in scenario S5 when missing data were in the outcome,

apart from MissForest-Lasso that maintained a performance similar to scenario S4 with com-

plete outcome (see Figure 2.10). However, the difference between internal and external MSE

optimism revealed that this estimated discrimination was too optimistic for MissForest-Lasso

(see Figure 2.16).

In scenario S6, including interactions in the MICE imputation model introduced more noise

in the analysis compared to scenario S4 (see Figure 2.2).

Calibration performance for each method was constant across scenarios and MICE-Lasso

and MissForest-Lasso best and 1SE models had the best average calibration slope estimates

(see Figures 2.11, 2.12, 2.13 and 2.3).

All the accuracy results of the 1000 observation datasets analyses were very much im-

proved compared to the smaller sample size (see Figures A.5, A.6, A.7, A.8, A.9, A.10, A.11,

A.12, A.13 in Appendix).

Variable selection results for 20-covariate data study In all scenarios with datasets of

250 observations, all methods selected more than 70% of the true predictors (TP) with higher

percentages in the low tolerance models apart from Elasticnet and MICE-Elasticnet, which had

poor sensitivity of selection (SEN) in the 15% tolerance models. Also false-positive predictors

(FP) were selected, increasing in number with introducing missing data, with the highest (and

very poor) false positive rate of selection (FPR) for the best models of MICE-Lasso and MICE-

Elasticnet. However, with increasing penalty the number of FP decreased, leading to better

positive predictive values (PPV) and good variable selection performance for the 1 SE, 3% and

15% tolerance models of Lasso, Elasticnet and MissForest-Lasso in all scenarios (apart from

the 1 SE tolerance model in scenario S5 with incomplete outcome for MissForest-Lasso, which

had only an acceptable performance).

In scenarios S1 (without assumption of moderation) and S3 (with assumption of moderation)

in absence of missing data with 250 observations, Lasso and Elasticnet selected all the TPs

almost always in the best and 1SE tolerance models (see Figures 2.17 and 2.18), but included

also many noise predictors (see Figures 2.20 and 2.21). Rarely only the TPs were selected all
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together (see Figure 2.23 and tables 2.3, 2.5, 2.17, 2.23, for S1 and 2.7, 2.8, 2.19 and 2.26 for

S3) and slightly more often all the TP were chosen at the same time apart from one TP (see

Figures 2.24 for S1 and 2.25 for S3). Shrinkage in Elasticnet tolerance models was stronger

compared to Lasso given the same level of penalty tolerance. Instead RF had individual TPs

included in the 10 most important variables between only 20% and 100% of the times (see

Figure 2.27) and had the 10 TPs included in the top 10 important variables in up to 2.3% of the

times and 9 of the TP in up to 37.0% of simulations (see table 2.23) for S1, and never for S3.

MissForest-Lasso best models variable selection performance stands out in scenarios S2

and S4 (with missing data) because it is the only one comparable to Lasso’s in scenario S1

(see Figures 2.29, 2.28, 2.17 and 2.20 for S2 and figures 2.33, 2.31, 2.18 and 2.21 for S4). On

the contrary, MICE-Lasso and MICE-Elasticnet selected all the variables almost always without

distinction between TPs and FPs. As opposed to this, MissForest-RF variable selection was

consistent with RF performance in scenario S1.

Variable selection performance was slightly negatively affected by the fact that the outcome

was not complete in scenario S5: all methods selected variables with similar pattern as in

scenario S4 (see Figures 2.19, 2.22, 2.26, 2.34 and 2.32).

The moderator selection performance (see Subsection 2.3.3) was overall slightly inferior

than the general variable selection performance.

When the sample size was 1000, again all results ameliorated by maintaining the same

patterns between methods (see Figures A.14, A.15,A.16, A.17, A.18, A.19, A.20, A.21, A.22,

A.23,A.24, A.25, A.26, A.27, A.28, A.29, A.30, A.31, A.2, A.3 in the Appendix).

In conclusion, MissForest-Lasso performed best overall.

Summary for 100-covariate data simulation study

This simulation study based on 100-covariate data assessed variable selection and accuracy

performance for five combined methods, i.e. MICE-Lasso, MICE-Elasticnet, MissForest-Lasso,

MissForest-Elasticnet and MissForest-Conditional RF, in the scenarios S3 (complete data, as-

sumption of moderation) and S5 (missing data also in the outcome, assumption of moderation)

with two sub-scenarios: correlation between covariates being 0.2 or 0.8.

All methods performed poorly in prediction accuracy in presence of missing data, accord-

ing to my subjective criteria for model used in clinical practice (see Subsection 2.2) and the

methods delivering the best discrimination were MissForest-Lasso best model and MissForest-

Conditional RF. The best variable selection performance in the scenario with missing data was

MissForest-Conditional RF in both correlation settings. The 3% tolerance MissForest-Lasso
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model showed relatively good variable selection results, which were the closest to MissForest-

Conditional RF results when correlation was low.

Among the regularised regression methods, MissForest-Lasso tolerance model results were

best in accuracy and variable selection as for the 20-covariate data simulation study (see the

summary Table 2.37 and the summary Figure 2.45).

Prediction accuracy result for 100-covariate data study In absence of missing data (S3),

Lasso outperformed Elasticnet and Conditional RF in prediction accuracy for both correlation

sub-scenarios (see Figures 2.35, 2.36, 2.37, 2.38, 2.39 and 2.40) as it happened in the 20-

covariate data study (see Subsection 2.3.1).

When missing data were present (S5), MissForest-Lasso and MissForest-Conditional RF

were superior to the other methods but still performed relatively poorly according to my defini-

tion for clinical use (see Figures 2.35 and 2.36). However, calibration for MissForest-Conditional

RF in the low correlation scenario was the poorest among the methods (see Figures 2.37 and

2.38) with MissForest-Lasso coming next, suggesting that recalibration of models is usually

necessary. Also the mean MSE internal and external optimism were the largest in absolute

values and the farthest from each other for MissForest-Conditional RF in the low correlation

scenario (followed by MissForest-Lasso best and 1SE models, however the optimism estimates

were smaller for MissForest-Lasso and close to each other for the higher tolerance models, see

Figures 2.39 and 2.40).

Overall, the methods accuracy results improved with higher correlation between covariates.

Variable selection result for 100-covariate data study In scenario S3, as the vector of

true coefficients was sparse (15 non-zero entries vs 234 zeros) and the variables were equally

correlated, Lasso and Elasticnet best penalty models chosen variables on average contained

more FPs than TPs. Instead, only the models with 3% and higher tolerance penalties retained

variables with higher percentage of TPs than FPs in both correlation scenarios (see Figures

2.43 and 2.44).

In scenario S5, MissForest-Conditional RF always included the 15 TPs in the top 15 impor-

tant variables showing that conditional trees RF variable importance (VI) measure is less biased

than the traditional RF VI. The latter would have preferred the continuous variables with larger

probability of missingness, instead the conditional VI treats all variable alike. On the other hand,

MICE-combined methods selected both TPs and FPs altogether almost all the times (same as

MICE methods in the 20-covariate scenario), while MissForest-Lasso tended to select higher
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percentages of FPs than TPs with the best penalties and to choose higher percentages of TPs

with the tolerance penalties for acceptable PPV (in the same way as Lasso). However, the 3%

MissForest-Lasso tolerance model performed reasonable well in the low correlation setting with

mean positive predictive value of selection larger than 80% (see Figures 2.41 and 2.42).

The moderator selection performance was generally poorer than the overall true predictors

variable selection in terms of SEN in the low correlation scenarios for MissForest-Lasso and

better in the high correlation case. The PPV of moderators was better than the PPV for the

overall predictors for MissForest-Lasso (see Subsection 2.3.3).

In general the low correlation scenario had better variable selection results.
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Table 2.37: Summary table of results for the simulation study. The average corrected pseudo-R2 and positive predictive value of selec-
tion (PPV) for the predictors, showed as a proportion (PPVpr =PPV/100), are presented for all the methods and the main scenarios in
the simulation study. The 20-covariate study results are given for the datasets with 250 observations only. Mice-Lasso, Mice-Elasticnet,
MissForest-Lasso and MissForest-Elasticnet estimates are shown for the 3% tolerance model only. Scenario 1: complete data, no mod-
eration; Scenario 2: missing data, no moderation, complete outcome; Scenario 3: complete data, moderation; Scenario 4: missing data,
moderation, complete outcome; Scenario 5: missing data also in the outcome, moderation; Scenario 6: missing data, moderation, complete
outcome, interaction terms in the imputation model. For Scenarios 1 and 3, the Lasso, the Elasticnet, Random Forests and Conditional
Random Forests estimates are shown.

Summary table of results for 3% tolerance models

Data No moderation Moderation

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Scenario 6

20-covariate (N=250) Complete MCAR MAR Complete MCAR MAR MCAR MAR MCAR MAR

Mice-Lasso
pseudo-R2 0.67 (0.03) 0.65 (0.04) 0.65 (0.04) 0.76 (0.03) 0.72 (0.04) 0.72 (0.03) 0.69 (0.04) 0.70 (0.04) 0.71 (0.04) 0.72 (0.04)

PPVpr 0.87 (0.09) 0.58 (0.06) 0.61 (0.07) 0.78 (0.08) 0.53 (0.06) 0.54 (0.06) 0.47 (0.05) 0.47 (0.05) 0.44 (0.06) 0.47 (0.06)
Mice-Elasticnet

pseudo-R2 0.52 (0.09) 0.61 (0.06) 0.60 (0.07) 0.64 (0.08) 0.66 (0.06) 0.67 (0.06) 0.64 (0.05) 0.66 (0.05)
PPVpr 0.93 (0.13) 0.55 (0.09) 0.58 (0.12) 0.86 (0.14) 0.52 (0.12) 0.52 (0.12) 0.46 (0.08) 0.46 (0.09)

MissForest-Lasso
pseudo-R2 0.67 (0.03) 0.63 (0.04) 0.63 (0.04) 0.76 (0.03) 0.71 (0.04) 0.71 (0.03) 0.72 (0.03) 0.74 (0.03)

PPVpr 0.87 (0.09) 0.84 (0.09) 0.85 (0.09) 0.78 (0.08) 0.77 (0.09) 0.77 (0.09) 0.77 (0.09) 0.73 (0.09)
MissForest-Random Forests

pseudo-R2 0.52 (0.04) 0.50 (0.05) 0.51 (0.05) 0.58 (0.04) 0.57 (0.04) 0.57 (0.04) 0.63 (0.04) 0.64 (0.04)

Data Scenario 3 Scenario 5

100-covariate (N=500) Complete MCAR MAR

Correlation between variables ρ = 0.2 ρ = 0.8 ρ = 0.2 ρ = 0.8 ρ = 0.2 ρ = 0.8

Mice-Lasso
pseudo-R2 0.63 (0.02) 0.73 (0.02) 0.55 (0.03) 0.72 (0.03) 0.57 (0.03) 0.71 (0.03)

PPVpr 0.99 (0.03) 0.94 (0.10) 0.06 (0.00) 0.06 (0.00) 0.06 (0.00) 0.06 (0.00)
Mice-Elasticnet

pseudo-R2 0.70 (0.03) 0.72 (0.02) 0.50 (0.04) 0.68 (0.03) 0.51 (0.04) 0.68 (0.03)
PPVpr 0.99 (0.03) 0.94 (0.10) 0.06 (0.00) 0.06 (0.00) 0.06 (0.00) 0.06 (0.00)

MissForest-Lasso
pseudo-R2 0.70 (0.03) 0.72 (0.02) 0.50 (0.04) 0.68 (0.03) 0.51 (0.04) 0.68 (0.03)

PPVpr 0.76 (0.13) 0.70 (0.14) 0.83 (0.14) 0.56 (0.13) 0.81 (0.14) 0.57 (0.13)
MissForest-Elasticnet

pseudo-R2 0.59 (0.04) 0.57 (0.04) 0.16 (0.05) 0.48 (0.08) 0.19 (0.05) 0.47 (0.08)
PPVpr 0.99 (0.03) 0.94 (0.10) 1.00 (0.02) 0.61 (0.22) 0.99 (0.06) 0.66 (0.19)

MissForest-Conditional Random Forests
pseudo-R2 0.63 (0.02) 0.73 (0.02) 0.55 (0.03) 0.72 (0.03) 0.57 (0.03) 0.71 (0.03)
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Figure 2.45: Summary figure of results for the simulation study. The average corrected pseudo-R2 and positive predictive value of selection
(PPV) for the predictors, showed as a proportion (PPVpr =PPV/100), are presented for all the methods and the main scenarios in the
simulation study. The methods are: MICE-Lasso (ML), MICE-Elasticnet (ME), MissForest-Lasso (MFL) and MissForest-Elasticnet (MFE).
The 20-covariate study results are given for the datasets with 250 observations only. Mice-Lasso, Mice-Elasticnet, MissForest-Lasso and
MissForest-Elasticnet estimates are shown for the 3% tolerance model only. Scenarios abbreviations: S1: complete data, no moderation;
S2: missing data, no moderation, complete outcome; S3: complete data, moderation; S4: missing data, moderation, complete outcome; S5:
missing data also in the outcome, moderation; S6: missing data, moderation, complete outcome, interaction terms in the imputation model.
For S1 and S3, the Lasso (L), the Elasticnet (E), Random Forests (RF) and Conditional Random Forests (CF) estimates are shown.
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2.5 Discussion and conclusion

In this chapter, I assessed strategies to combine statistical learning prediction modelling tech-

niques and imputation methods in order to obtain unbiased estimates of various predictive per-

formance measures (MSE, MSE optimism and calibration slope) and to perform reliable vari-

able selection. My investigation covered a range of data set characteristics: different sample

sizes, missing data scenarios, correlation matrices, types of variables and relationship between

predictors and outcome (i.e. assumption of moderation).

In Subsection 2.1.5, I presented ten hypothesis of what I would have expected as results

from the simulation study. The following is what I obtained:

• Lasso needed a stronger penalty than the optimal penalty (returning the smallest average

MSE) with little loss of prediction accuracy to correct for its model selection inconsistency

(high false positive rate, Fan and Lv 2009) and deliver good variable selection when the

ratio between number of covariates and sample size was higher, as expected (hypothesis

1). In the 20-covariate dataset complete data scenarios with sample size = 250, the 1

SE tolerance penalty was sufficient to return a high sensitivity of selection (>70%) for the

Lasso and reach good variable selection performance with a prediction accuracy compa-

rable to the optimum. This is consistent with the literature (Breiman, JH Friedman, et al.

1984 and Hastie, Tibshirani, and Friedman 2008). Instead, in the 100-covariate dataset

study (sample size = 500) complete data case, a stronger penalty was needed (3%) to

achieve a high positive predictive value (>70%) for good variable selection. The strongest

assessed 15% tolerance typically showed poor prediction accuracy. However, selected

variables of the 15% tolerance model were in most scenarios true predictors. Therefore,

the 15% tolerance model may be considered if the selection of a parsimonious set of

strongest true predictors is the key research question or to identify such in secondary

analyses.

• Elasticnet did not outperform Lasso when predictors were highly correlated, contrarily to

what I expected (hypothesis 2). Elasticnet had similar best model performance to the

Lasso in both variable selection and prediction accuracy. However, using stronger penal-

ties resulted in poorer performance of Elasticnet compared to Lasso. This unexpected

pattern may happen because, in the high correlation case (0.8), not only were the true

predictors (TP) correlated between each other, but they were also equally highly cor-

related with false positives variables (FP). A similar pattern was described by Lu and

Petkova (2014). Also, when the correlation matrix was sparse with mixed high and low
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correlations (20-covariate case), the presence of some high correlation between FP and

TP (see equation (2.19)) negatively affected the variable selection performance of Elas-

ticnet.

• Random Forests did not perform best in prediction accuracy, contrarily to what I expected

(hypothesis 3). Instead, it underfitted the data in all complete data scenarios giving the

worst predictive performance. This was more pronounced when the sample size was

small (250), there was sparse and low correlation between TP and sparse and low to

moderate correlation between TP and FP in the 20-covariate simulation study. Also Con-

ditional Random Forests did not achieve good prediction when the correlation between

all the variables was low (0.2) in the 100-covariate simulation study: this was a common

result to all methods. On the contrary, when the correlation between variables was high

(0.8), prediction accuracy was good as expected (similar to MissForest-Lasso), especially

in the missing data scenario when Conditional Random Forests followed MissForest im-

putation (hypothesis 4). Regarding the variable importance performance Random Forests

tended to give more importance to continuous variables than binary ones even when they

were FP, as expected. This was due to the bias of the Random Forests variable impor-

tance measure (Strobl, AL Boulesteix, and Zeileis 2007). Conditional Random Forests did

not have this problem and always gave more importance to the TP, as expected (Strobl,

Boulesteix, et al. 2008).

• Conditional Random Forests and MissForest imputation accuracy performances improved

with increasing correlation between the variables, as expected (hypothesis 4, Tang and

Ishwaran 2017). This result extended also to MICE-Lasso and MICE-Elasticnet in predic-

tion accuracy.

• MICE combined with Lasso as for Musoro et al. (2014) did not return good variable selec-

tion for the 3% tolerance model. There was an error in the code used by the authors (see

Section B.1 in the Appendix) for which their applied tolerance penalty percentages were

in truth higher than what they thought for both prediction accuracy and variable selection.

Their published 3% tolerance variable selection results were equivalent to my simulation

results of the 15% tolerance models. Therefore, their positive results for variable selection

and their recommendations are not valid.

• MissForest combined with Lasso did not select the noise terms with large missingness,

as expected for Random Forests imputation methods (hypothesis 6, Lu and Petkova
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2014). Lasso seemed to counterbalance the known bias of any Random Forest impu-

tation method (Cutler et al. 2009), preventing the noise terms with large missingness

(variables X3 and X13, see Subsection 2.2.1) from appearing important when the corre-

lation matrix was sparse with high and low correlations. When variables were all strongly

or all weakly correlated between each other, this phenomenon diminished.

• MissForest combined with Random Forests tended to give more often importance to the

noise variables with large probability of missingness, as expected (hypothesis 7, Cutler et

al. 2009). Again this was due to the bias of Random Forest imputation which applies when

there is a difference in the prevalence of missing values and in the scale among predic-

tors (Lu and Petkova 2014). When MissForest was combined with Conditional Random

Forests, the above problem did not occur and all variables were treated alike, giving a

variable selection result better than the other methods.

• MissForest outperformed MICE, when combined with Lasso, in all missing data scenarios,

also with increasing ratio FP to TP in the imputation models (i.e. the scenarios with as-

sumption of moderation), as expected (hypothesis 8, Hardt, Herke, and Leonhart 2012).

For both MissForest and MICE, the inclusion of many noise variables in the imputation

model introduced uncertainty. This negatively affected the prediction and selection per-

formance of MissForest-Lasso in the 100-covariate case where the ratio FP to TP was

the highest (234:15). The 20-covariate dataset study showed that having missing data

in the outcome and using a more parsimonious imputation model (even excluding some

of the TPs, i.e. four interaction terms) gave better MICE-Lasso performance than having

a complete outcome with many noisy interaction terms in the imputation model. How-

ever, MissForest dealt better with noise than MICE. Moreover, after both Random Forest

imputation and MICE, variables that had more missing observations had increased cor-

relation with the outcome variable more than those with less missingness. However, this

increment had limited effect on the variable selection of MissForest-Lasso compared to

MICE-Lasso.

• Prediction accuracy decreased and optimism estimates increased when missing data

were present also in the dependent variable, as expected (hypothesis 9). MissForest-

Lasso and MissForest-Random Forests showed better validated prediction when missing

data were introduced in the outcome compared to the scenario with complete outcome.

MissForest algorithm minimises the error in the RF predictions iteratively until the error

cannot be returned smaller (see MissForest algorithm in Subsection 2.1.2). However, the
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good validated accuracy of MissForest was too optimistic and did not repeat in the simu-

lated external validation. All other methods accuracy decreased with missing data in the

outcome. Moreover, missingness in the outcome caused worse variable selection per-

formance for all methods in the 20-covariate datasets with MissForest-Lasso performing

best among the studied methods (I assume that MissForest-Conditional Random Forests

would have performed even better as for the 100-covariate scenario results). As the 100-

covariate study only explored the scenario with missing data in the outcome, I assume

that there would be better prediction accuracy and variable selection when the outcome

is complete, similarly to what happened in the 20-covariate case.

• The performances of the studied methods were not equivalent with MAR or MCAR data,

contrarily to what I expected (hypothesis 10). The MAR scenarios gave slightly better

results in prediction accuracy than the MCAR scenarios, because MAR missingness de-

pends on the other observed variables and the imputation algorithm can account for it

(Moritz et al. 2015). This was not convenient for MCAR data in the simulations. MAR

data performance was slightly worse than MCAR only in the case of strong correlations

between variables and the opposite was true for the low correlation scenario.

Given the results, MissForest-Lasso using the 1 SE and 3% tolerance penalties and MissForest-

Conditional Random Forests were the best performing methods in prediction accuracy and

MissForest-Conditional Random Forests was better in variable selection (for Random Forests

the latter stands for variable importance) in the missing data scenarios.

MissForest-Lasso 1 SE and 3% tolerance models in particular had good results when the

average percentage of missing data was 15% (20% or 50%, 12 complete variables), the out-

come was complete and there was no assumption of moderation in the 20-covariate dataset

scenarios.

In the extreme case of the 100-covariate dataset, in which the ratio noise to active pre-

dictors was 234:15 for the moderation assumption, the missing data percentage was approxi-

mately 40% (20% or 50%, only 6 complete variables) and there was 20% missingness in the

outcome, MissForest-Lasso had poor general performance according to my subjective criteria,

even though it had the best prediction accuracy altogether with MissForest-Conditional Random

Forests and the second best variable selection result after MissForest-Conditional Random For-

est. In this 100-covariate scenario, the 3% tolerance MissForest-Lasso model was preferred

to the 1 SE tolerance model for its better variable selection as happened with Lasso in the

complete data case.
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MissForest-Lasso selected predictor variables well in the low correlation setting but per-

formed poorly in the extreme high correlation setting, even though the selection of only moder-

ators was better than the overall variable selection when covariates were highly correlated. This

was expected, as in general Random Forests methods deal with interactions and non-linearities

in the data better. Instead, MissForest-Conditional Random Forests was advantageous by bet-

ter identifying predictor variables using importance measures in both correlation settings (but

retaining all variables in the model). However, for clinical practicability MissForest-Lasso would

be more useful as the final model will only contain a limited number of predictors chosen from

an initial larger number of variables, by reducing the clinicians data collection on new samples.

A working prediction model is only of usefulness in clinical practice when the number of vari-

ables is small enough to assess a patient in a reasonable time. Selecting a false predictor,

which still provides good prediction accuracy due its strong correlation with the true predic-

tor, may therefore be preferable. On the contrary, MissForest-Conditional Random Forests will

need all the variables used to develop the model measured by the clinicians in order to make

predictions on new patients. Also, it is impossible to express the model linear predictor with an

equation as it can be done for regularised regression.

For the purpose to develop a precision medicine model for the psychological treatment

CRT with a relative large number of variables and with low to moderate correlations between

variables, I prefer MissForest-Lasso 3% tolerance model as the best compromise between

prediction accuracy, interpretability and usefulness as a tool in clinical practice. However, if

the number of variables relative to sample size increases and/or strong correlation between

variables is expected, MissForest-Conditional Random Forests should be considered, e.g. in

the analyses of MRI brain imaging data.

2.5.1 Advantages and limitations

For the first time, variable selection and bootstrap-validated prediction accuracy for Lasso and

Elasticnet have been analysed for different levels of penalty tolerance in a simulation study with

different missing data scenarios (MAR and MCAR), missing data percentages (15%, 40%),

sample sizes (250, 500 and 1000), number of covariates in the model (20, 40, 249), correlation

between covariates (mixed and sparse, all 0.2 and all 0.8), ratios noise to active predictors

(10:10, 24:15 and 234:15), with or without missing data in the outcome (20%) and with or with-

out a moderation assumption. All simulations demonstrated that MissForest imputation com-

bined with Lasso produced better results for prognostic and personalized medicine prediction

models than MICE, as it better adapts to complex data with non-linearities and interactions.
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It also demonstrated that MissForest-Lasso is in a variety of settings is a good compromise

between prediction accuracy and interpretability and therefore a first choice for clinicians to

develop prediction models. Model performance was not always good according to my crite-

ria, but these refer to final models assessed in clinical practice. In earlier stages, lower model

performances are acceptable.

However, I did not run all the scenario combinations and new scenarios, such as intermedi-

ate correlations of variables, for all methods for time reasons as the algorithms were computa-

tionally expensive in time. Also, having two separate studies (20 and 100 covariate data), with

different settings and methods, removes continuity to the interpretation of results that might be

true for the analysed scenario-combination and false for the scenario-combination that was not

explored. For example, I decided to only run the scenario S5, i.e. with assumption of moder-

ation and missing data also in the outcome for the 100-covariate data simulations. Moreover,

in this 100-covariate scenario there were the highest percentage of missing data, the highest

ratio FP to TP and the most extreme correlation settings. This mimics our clinical data set best.

However, because this simulation scenario S5 performed the poorest in the 20-covariate study

for all methods, I assume that the methods in the 100-covariate case would perform better

when the outcome is complete.

Furthermore, it would have been better to simulate more complex missing data patterns

and correlation scenarios in the large covariate data set, to make the simulations more realistic,

especially to decide between MissForest-Lasso and MissForest-Conditional Random Forests

models and their variable selection abilities. However, my results suggests that MissForest-

Lasso performs well if variables are not highly correlated. Nevertheless, the critical cut-off point

is not known for larger number of variables.



Chapter 3

Development of MissForest-Lasso

prediction model using CRT

randomised controlled clinical trial

data

3.1 Introduction

In the previous chapter 2, I compared the accuracy and variable selection performances of the

combined methods MICE-Lasso, MICE-Elasticnet, MissForest-Lasso, MissForest-Elasticnet,

MissForest-Random Forests and MissForest-Conditional Random Forests through simulations.

The method showing the best trade-off between accuracy and variable selection performance

was MissForest-Lasso.

In this chapter, I will apply MissForest-Lasso to identify moderators of Cognitive Remedia-

tion Therapy (CRT) heterogeneity in patients with schizophrenia in order to develop prediction

models of treatment success. I will use individual participant data from multiple randomized

controlled trials (RCT) assessing the effectiveness of CRT. These precision medicine models

will use characteristics of patients measured before treatment (baseline variables) and interac-

tions between baseline variables and treatment type as predictors.

In this introductory section, I will write about the Database of Cognitive Training and Reme-

diation Studies (DoCTRS) and the CIRcuiTS Combined Data (CCD) used to build the model.

Then I will describe how I merged the databases and present the pooled database summary

statistics and missing data.

196
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The second section of the chapter will explain the methodology for the development of

the prediction models. I will develop three models, one using a summary score of cognitive

ability measures of memory, processing speed and executive function as treatment outcome

and two using the Wisconsin Card Sorting Test Perseverative Errors (WCST PE) measure of

executive function as treatment outcome. The summary measure will be computed through

factor analysis in order to predict altogether different end-of-treatment cognitive abilities with an

univariate prediction model (i.e. allowing for single dependent variable). WCST PE, one of the

clinical most relevant measures, was chosen as the dependent variable of the other models in

order to apply the model to an observed outcome instead of a latent measure. The two models

with WCST PE as the dependent variable will be run as follows: one model will only use the

complete outcome cases, the other model will also include the patients with missing outcome.

There will be no missing outcome data for the latent variable model. Finally, to assess the

predictive power and influence of identified moderators, I will also develop prediction models

without the assumption of moderation of treatment outcome.

The third section will be dedicated to the results and comparison of the predictive perfor-

mances of the developed models.

3.1.1 DoCTRS randomised controlled trials

Individual participant data from nine different RCTs were used to develop and validate the

prediction model. The datasets available were from the Database of Cognitive Training and

Remediation Studies (DoCTRS, containing only seven studies at the time when the PhD project

began), the Computerised Interactive Remediation of Cognition Training for Schizophrenia or

CIRcuiTS Combined Data (CCD, one study) and two later DoCTRS RCTs by Fiszdon et al.

(2016):

1. The DoCTRS is run by NIMH in the USA and it is an attempt to open source data/data

sharing. At the time of the start of the PhD, the DoCTRS comprised data from seven

different RCTs called after their investigators: ‘Wykes 1’ (Wykes, Reeder, Corner, et al.

1999), ‘Bell’, (Bell et al. 2008), ‘Keefe’ (Keefe et al. 2012), ‘Wykes 2’ (Wykes, Reeder,

Landau, Everitt, et al. 2007), ‘Wykes 3’ (Wykes, Newton, et al. 2007), ‘Keshavan’ (Eack

et al. 2009) and ’Silverstein’ (Silverstein et al. 2009). To be eligible for all of the studies,

a patient needed to be diagnosed with SCZ according to the Diagnostic and Statistical

Manual of Mental Disorders (DSM) and the International Classification of Diseases (ICD)

criteria. In three studies (‘Bell’, ‘Keefe’ and ‘Keshavan’) the eligibility criteria extended to
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people with schizoaffective disorder. Two studies (‘Keefe’ and ‘Keshavan’) required the

patients to be aged between 18 and 55; one study (‘Wykes 2’) accepted people with a

minimum age of 17 and the remaining did not have age eligibility criteria.

The DoCTRS contained five datasets of variables measured on 430 patients and one

dataset regarding the study information (the list of variables can be found in the Appendix

C). Each variable in the datasets (apart from the demographics and the study information

datasets) was measured up to six different time points per person (screening, baseline,

two midpoints, end-of-treatment and follow-up). The datasets were the following:

• Study information (see Table 3.1): 192 variables providing information about hetero-

geneities and similarities of the different studies, database divided in 13 sections:

– General study information

– Summary of subject and study characteristics

– Intervention and comparison condition characteristics

– Techniques used in cognitive remediation intervention

– Treatment targets

– Cognitive remediation delivery methods

– Cognitive remediation delivery format

– Cognitive remediation delivery setting

– Other treatment features

– Defining “completion”

– Eligibility criteria

– Summary of study assessment schedule

• Cognitive data: 38 cognitive outcomes (12 memory outcomes, one processing speed

outcome and 25 executive function outcomes, see Table 3.2), 9 global cognition

variables and 9 other types variables (not to be used as dependent variables but

included as covariates in the prediction model) and six variables without any record

(null variables). The six occasion measurements for the variables were not available

for all studies. All non-null variables were available as raw and scaled versions apart

from four outcome variables that were only available in a scaled version (t-score).

• Demographics: general patients baseline characteristics (36 variables) such as age,

gender,ethnicity, racial category, marital status, education years, education category,

primary psychiatric diagnosis, age of onset of psychiatric symptoms and age of first

treatment for psychiatric symptoms;
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• Medications (MED): type and dose of antipsychotics used (30 variables with five time

points’ measures per patient – only one midpoint)

• Functioning, self-esteem and quality of life measures: measures of functional out-

comes and wellbeing (59 variables with five time points’ measurements per per-

son). Again not all the studies had the five time measurements available. The mea-

sures were: Rosenberg Self-esteem Scale (RSE, alternative scoring, three studies),

Heinrich-Carpenter Quality of Life Scale (HCQOL, two studies), Social Adjustment

Scale II (SAS-II, only ‘Keshavan’) and Social Behaviour Scale (SBS, three studies).

• Symptom data: positive and negative symptom measures (131 variables measured

on five different occasions not available for all studies). The measures were: Pos-

itive and Negative Syndrome Scale (PANSS, Kay, Fiszbein, and Opler 1987, two

studies), Brief Psychiatric Rating Scale (BPRS, Overall and Gorham 1962, two stud-

ies), Scale for the Assessment of Negative Symptoms (SANS, Andreasen 1982, only

‘Bell’) and Scale for the Assessment of Positive Symptoms (SAPS, Andreasen 1984,

only ‘Bell’).

2. The CCD (Cella, Bishara, et al. 2014, Reeder et al. 2017) was collected for a RCT from

two centres: CIR01 London and CIR02 Sussex for a total of 120 patients and 30 baseline

variables and 310 variables measured at three time points: baseline, end-of-treatment

and follow-up. Eligibility criteria were: DSM diagnosis of SCZ or schizoaffective disor-

ders, no less than one year’s contact with mental health services, 17 to 65 years old and

performance more than one SD below the normative mean in working memory. Only

ten of the variables were cognitive outcomes (three memory outcomes, one processing

speed and six executive function outcomes, see Table 3.2). About 280 variables were

common to DoCTRS, of which eight were common outcomes (one memory, one pro-

cessing speed and six executive function outcomes, see Table 3.2) and 192 were all the

study information variables. The longitudinal variables for this dataset were recorded for

all the three time points. Common measures of quality of life and symptom data were

SBS and PANSS respectively.

3. The two RCTs investigated by Fiszdon were titled: ‘Predictors of response to cognitive

remediation in SCZ’ (75 individuals, (2016) and ‘Efficacy of Social Cognition Training in

Schizophrenia’ (52 individuals, unpublished). The participants had confirmed diagnosis of

schizophrenia spectrum disorder (schizophrenia, schizo-affective disorder, psychosis not

otherwise specified or affective disorder with psychotic features) and were aged 18–65
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years. About 20 variables were common to DoCTRS in each study.

The first study, ‘Fiszdon 1’, had eight common outcomes to DoCTRS (two memory mea-

sures, i.e the California Verbal Learning Test-II (CVLT) and Wechsler Memory Scale

(WMS); one processing speed outcome, i.e. the Trail Making Test Part A (TMTA) and

four executive function outcomes, i.e the Wisconsin Card Sorting Test (WCST) measur-

ing % perseverative errors and % conceptual level, the Trail Making Test Part B (TMTB)

and the verbal fluency test (FAS), see Table 3.2). All the study information variables were

in common. The longitudinal variables for this dataset were recorded for three time points.

In the data common measures of symptoms were the five-factor PANSS variables.

The second RCT, ‘Fiszdon 2’, had only three common outcomes to DoCTRS (one mem-

ory outcome, i.e. Letter number span (LNS), one processing speed outcome, i.e. Trail

Making Test Part A (TMTA) and one executive function outcome, i.e. Category fluency

Animal naming (CATFLU), see Table 3.2). Longitudinal variables were only measured at

two time points: baseline and end-of-treatment. However, 23 of this study participants

were common to the first study, this implying their exclusion from any analysis using the

first study whole data.

DoCTRS and CCD were used for model development and the Fiszdon study data for the

model external validation. Fiszdon’s data were used as validation set because they became

available later during the PhD with other DoCTRS data (the latter had less common variables

to the model development data compared to Fiszdon).

Studies’ description The studies ‘Wykes 1,2 and 3’ and ‘Circuits’ were conducted in the UK,

while the other were conducted in the USA. All the studies’ data were previously analysed sin-

gularly reporting some significant (‘Wykes 1’, Wykes, Reeder, Corner, et al. 1999, ‘Wykes 2’,

Wykes, Reeder, Landau, Everitt, et al. 2007, ‘Wykes 3’, Wykes, Newton, et al. 2007, ‘Kesha-

van’, Eack et al. 2009 and ‘Fiszdon’, Fiszdon et al. 2016) or borderline significant improvement

(‘Circuits’, Reeder et al. 2017) for some of the single cognitive outcomes after receiving CRT.

Namely, the study ‘Wykes 1’ (Wykes, Reeder, Corner, et al. 1999) and ‘Wykes 3’ (Wykes,

Newton, et al. 2007) showed that executive function significantly improved after CRT and the

outcome used was the number of WCST categories achieved (see Table 3.2).

The RCT ‘Wykes 2’ (Wykes, Reeder, Landau, Everitt, et al. 2007) presented a significant

result for the outcome Wechsler Adult Intelligence Scale (WAIS) working memory digit span

test (see Table 3.2), indicating that memory was enhanced after treatment. Keefe et al. (2012)
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used the MATRICS Consensus Cognitive Battery (MCCB, see Table 3.2) to measure cognitive

function in their study and there was a significant effect of CRT only at midpoint, but not at

the end-of-treatment. The memory outcome California Verbal Learning Test (CVLT) short-term

free recall and the executive function outcomes TMTB and Tower of London (TOL) Ratio of

initiation to Execution time (see Table 3.2) were tested in RCT ‘Keshavan’ (Eack et al. 2009) and

significant improvements were found for each outcome after CRT. Finally, in the study ‘Circuits’

(Reeder et al. 2017) the tested executive function outcome WCST perseverative errors revealed

a borderline significant effect of CRT.

Merging process and data preprocessing

I merged the source databases DoCTRS and CCD into one single target database for the

model building process by using all the available variables (variables in the final database could

also be only measured for one study and one time point). The DoCTRS ‘Silverstein’ study

was excluded from our analysis because it did not have any measure of cognitive outcomes,

meaning that 82 patients out of 550 were dropped from the pooled database.

In the next step, I familiarized myself with the structures of target and validation datasets

to clean the data sets and to harmonize the available variables. Data cleaning and inspection

revealed a variety of issues which had to be solved by consulting the clinical expert in my

project:

• 19 patients were taking antipsychotics with more than 5000 mg of chlorpromazine equiv-

alent per day, which is a lethal dose and therefore not plausible. Thus, in agreement

with the clinician, either I considered these doses as missing or substituted them with

the highest likely value under 5000 mg of chlorpromazine equivalent present in the data

(2833 mg) depending on the plausibility of the other records for the patients having these

high doses.

• Variables in DoCTRS had more or different categories compared to the corresponding

variables in CCD. Therefore, I harmonized the different levels of these categorical vari-

ables (for example ‘race’, ‘marital status’, ‘education level achieved’) by collapsing several

levels into one. Also, some common variables were continuous in one database and cat-

egorical in the second: these were merged as categorical or ordinal variables (e.g. time

since/age of first treatment for psychiatric symptoms, time since/age of first psychiatric

hospitalization).
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• I created several variables that were already present in CCD but not in some studies

of DoCTRS by combining two other variables in DoCTRS (for example: the cognitive

outcome Wisconsin Card Sorting Test (WCST) percentage of total error already present in

CCD was created in DoCTRS by combining WCST non-perseverative errors with WCST

perseverative errors; the chlorpromazine equivalent per day values were computed from

the daily doses of each antipsychotic taken by patients, etc).

Therefore, the final merged corrected database for model training had data from seven

studies (see summary statistics of most important variables in Table 3.3): ‘Wykes 1, 2 and

3’, ‘Bell’, ‘Keefe’, ‘Keshavan’ and ‘Circuits’. The overall sample size was 468 and the number

of variables was 547. The variables were measured in up to six different occasions, thus a

wide format of the database contained 2896 time-point specific variables, of which 1706 were

variables with at least one record, and 2808 were the person-by-time observations.

The cognitive outcome variables were in total 38: 12 describing ‘memory’, one processing

speed and 25 ‘executive function’, only four of them were common to the two databases, three

of which were common to six studies (i.e. Wechsler Adult Intelligence Scale (WAIS) Digit Span,

memory measure; WCST percentage of total error and WCST perseverative errors, executive

function measures); and the last one was common to only five studies: WCST categories

achieved).

Summary baseline statistics

Summary characteristics for important demographics, symptoms, quality of life, global cognition

baseline putative predictors and baseline cognitive outcomes per study are provided in Table

3.3 (only the statistics for the 7 studies data used to train the model are shown).

Study characteristics Study sample sizes were small (mean=68, range=40–120). Four stud-

ies were carried out in the United Kingdom (the 3 ‘Wykes’ and ‘Circuits’) and the others were

done in the United States. The average number of cognitive domains measured per study

was 14.1, with a range of 10–20. The studies ‘Wykes 3’ and ‘Keshavan’ had on average the

youngest patients (see Table 3.3). All studies had a larger proportion of male participant than

female (mean percentage across studies 69%, SD 7) and on average 12.44 participant years

of education per study (SD 0.91, 6 studies).

Overall sample characteristics The study samples used for model training consisted of in-

dividuals with age ranging from 14 to 66 (overall mean age = 34.81 years [SD = 11.50], see
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Table 3.3 for study-specific summary statistics) who were mostly men (68%) with 12.60 years

of education (range = 2–20 in six studies). Positive, negative and general symptom severity (as

measured by PANSS summary scores), when reported (three studies), was mainly in the mini-

mal to moderate range. ‘Wykes 1’ and ‘Wykes 3’s measures of symptoms through BPRS were

also mild. Within-study ranges suggested that some studies included more severely symp-

tomatic individuals.

The 75 participants of the study ‘Fiszdon 1’ were used for model external validation. Indi-

viduals were on average in their late forties (47.8, range 27-64) with 12.4 years of education

(range 7-16). Symptoms severity was minimal to mild according to PANSS measures (mean

PANSS total = 52.7, range 31-93).

Treatment characteristics All studies compared cognitive remediation therapy (CRT, see

Subsection 1.1.1) to treatment as usual (TAU). As reported by some of the studies, TAU con-

sisted of routine psychiatric care delivered within the UK National Health Service. Community,

inpatient or rehabilitation wards were the settings for TAU. TAU included medication review

and monitoring by psychiatrist, meetings with a mental health nurse for support, attendance at

day centres, some occupational therapy, computer games, residential support with self-care or

rehabilitation programmes (Keefe et al. 2012, Eack et al. 2009 and Reeder et al. 2017)

There were some differences in how CRT and TAU were delivered between studies (see

Table 3.1). For example, only the study ‘Bell’ used additional employment and vocational re-

habilitation in both CRT and TAU. Moreover ‘Bell’ also used the intervention life style group

in the CR condition. The study ‘Keefe’ did not offer psycho-medicine management in CRT,

contrarily to the other studies. The drill and practice technique was central to the interven-

tion in the studies: ‘Bell’, ‘Keefe’ and ‘Circuits’. The UK studies gave more importance to the

metacognitive training and errorless learning techniques than the US studies. In vivo practice

techniques were central to the intervention in ‘Keshavan’. Four studies involved the use of drill

and practice exercises on a computer (‘Bell’, ‘Keefe’, ‘Keshavan’ and ‘Circuits’). CR delivery

format was one-on-one for all studies but ‘Keefe’ and ‘Keshavan’, which had a mix of individ-

ual and group sessions. The typical duration of a CR session was 60 minutes (90 minutes for

‘Keshavan’) delivered on average 4.8 times per week (range 2-10) for a mean duration of CR

intervention of 26.5 weeks (range 8-96, 12 for the UK studies). CR trainers were all research

staff (doctoral, master or non-graduated level) apart from ‘Circuits’s staff that were master-level

clinicians. Only three studies, ‘Bell’, ‘Keefe’ and ‘Fiszdon 1’ paid participants to undergo both

therapy and assessment sessions. In ‘Keshavan’ and ‘Circuits’, participants were only paid for
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assessments.

Missing data

There was a substantial amount of missing data in the pooled database: missingness by de-

sign (some studies did not have screening and mid-points measures by design, data are MCAR)

and missingness due to drop-outs and intermittent missing values (e.g. some patients had the

follow-up measure, but not the end-of-treatment measure). The overall mean percentages of

missing data across studies per time point (including missingness by design) were the follow-

ing: screening 95%, baseline 73%, 1st mid-point 92%, 2nd mid-point 96%, end-of-treatment

75%, and follow-up 78%. Missingness per time points across the studies where variables were

measured (i.e. excluding missingness by design) was: screening 39% (SD 44, study ‘Keefe’),

baseline 11% (SD 26, all studies), 1st mid-point 24% (SD 15, studies ‘Keefe’, ‘Keshavan’ and

‘Bell’), 2nd mid-point 84% (SD 30, study ‘Bell’), end-of-treatment 18% (SD 23, all studies) and

follow-up 26% (SD 25, all studies). The missing-data patterns are similar between treatment

groups and they are heterogeneous between studies. There were overall 76% completers and

a completer was defined as a patient having had at least 20 hours of therapy received.

VARIABLES STUDIES

B C Kf Ks W1 W2 W3 F1

Study country USA UK USA USA UK UK UK USA

Other CR approach used in CRT? Yes No No No No No No No
Other intervention used in comparison condition? No No No Yes Yes Yes Yes No

Patients in CR condition get antipsychotics management? Yes Yes No Yes Yes Yes Yes Yes

Rank order of Drill and Practice technique in CRT 1 3 1 NC NC NC NC 1
Rank order of Strategy training technique in CRT 1 2 2 4 2 3 3 2

Rank order of metacognitive training technique in CRT NC 1 NC NC 2 1 1 NC
Rank order of errorless learning technique in CRT 2 4 NC NC 3 3 3 NC

Rank order of general cognition among targets of CRT 1 1 1 2 3 2 2 1
Rank order of attention among targets of CRT 3 NP NP NP 4 4 4 2

Rank order of verbal memory among targets of CRT 4 2 NP NP 2 3 3 3
Rank order of other target among targets of CRT NP NP NP 3 1 1 1 NP

CR sessions delivered one-on-one? Yes Yes No No Yes Yes Yes Yes

Typical duration of CR session (minutes) 60 60 60 90 60 60 60 60
Target number of CR sessions per week 10 3 5 2 4 5 4 5

Duration of CR intervention (in weeks) 52 12 8 96 12 12 12 8
Duration and frequency of control condition similar to CR? No Yes Yes No Yes No No Yes

Did doctoral-level clinicians administer CR? Yes No No Yes No No No NA
Did trainers without graduate training administer CR? Yes No Yes No Yes Yes Yes NA

Were CR trainers research staff? Yes No Yes Yes Yes Yes Yes NA

Patients with diagnosis of schizoaffective disorder eligible? Yes Yes Yes Yes No No No Yes

Weeks between baseline and end-of-treatment assessment 52 12 12 104 12 12 12 8
Weeks between post-treatment and 1st follow-up assessment 52 12 NA NA 24 24 12 8

Table 3.1: Study information variables: the most important. Abbreviations: B=‘Bell’, C=‘Circuits’, Kf=‘Keefe’,
Ks=‘Keshavan’, W1=‘Wykes 1’, W2=‘Wykes 2’, W3=‘Wykes 3’, F1=‘Fiszdon 1’, CRT=cognitive remediation therapy,
NC=non central to the intervention, NP=no priority target, NA=missing
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Table 3.2: Outcomes variables details. Abbreviations as follows: R=raw score, T=t-score, M=memory, EF=executive function, PS=processing speed, Cont=continuous,
Cat=categorical, W1=‘Wykes 1’, B=‘Bell’, Kf=‘Keefe’, W2=‘Wykes 2’, W3=‘Wykes 3’, Ks=‘Keshavan’, C=’Circuits’, MD=missing data, b=baseline, e=end-of-treatment,
f=follow-up.

Outcome Description Measure Scale Studies Overall MD(%)

b e f

BVMTR Brief Visuospatial Memory Test - Revised (included in the MCCB) 3-trial total recall; R. M Cont Kf 90 89 100
CATFLU Category fluency: Animal naming (n animals named in 60 s); R EF Cont B, Kf, W3 65 69 84
CPT IP Continuous Performance Test - Identical Pairs (Mean across 2-, 3-, and 4-digit conditions; R. EF Cont Kf 90 89 100
CVLT LFR California Verbal Learning Test: Long-term Free Recall M Cont Ks 88 90 100
CVLT SFR California Verbal Learning Test: Short-term Free Recall M Cont Ks 88 90 100
CVLT TR California Verbal Learning Test: Total Recall M Cont Ks 88 90 100
FAS A Verbal fluency (FAS): Age- and education-adjusted score EF Cont W1, W2, W3 66 69 72
FAS NR Verbal fluency (FAS): Total number of correct responses EF Cont W1, W2, W3, B 50 56 63
HAY A Hayling section 2 category A errors (A score) EF Cont W2, W3, C 75 76 77
HAY B Hayling section 2 category B errors (B score) EF Cont W2, W3, C 75 76 77
HAY T Hayling total scaled score (section 1 + section 2 + section 2 errors scaled scores) EF Cat W2, C 49 70 70
HAY TE Hayling overall scaled score EF Cont W2, W3, C 66 53 56
LNS Letter-Number Span (n of correct trials); R. M Cont Kf, W3, Ks 63 66 78
MCCB Ve MATRICS Verbal Learning domain; T. M Cont Kf 90 89 100
MCCB Vi MATRICS Visual Learning domain; T. M Cont Kf 90 89 100
MCCB WM MATRICS Working Memory domain; T. M Cont Kf 90 89 100
MCCB RP MATRICS Reasoning and Problem Solving domain; T. EF Cont Kf 90 89 100
MSET A Modified six elements task: Number of tasks attempted EF Cat W1, W2, W3 66 70 72
MSET R Modified six elements task: Number of rules broken EF Cat W1, W2, W3 66 70 72
MSET T Modified six elements task: Total score: no. of tasks attempted - no. of rule breaks EF Cat W1, W2, W3 66 70 72
NAB M Neuropsychological Assessment Battery: Mazes subtest; R. EF Cont Kf 90 89 100
REY T2 Rey complex figure test immediate recall; R. M Cont C 74 76 76
REY T3 Rey complex figure test delayed recall; R. M Cont C 74 76 76
TMTA Trailmaking test part A (Paper & pencil): time to completion (seconds) PS Cont B, Kf, W2, W3 47 52 69
TMTB Trailmaking test Part B (Paper & pencil): time to completion (seconds) EF Cont B,W2, W3, Ks 46 54 69
TMTB E Trailmaking test Part B (Paper & pencil): Number of errors EF Cat B, W2, W3 58 70 69
TMTB C Trailmaking test Condition 2/letters+numbers (Computerized): trial 1, time to completion EF Cont W1 92 93 94
TOLDX M Tower of London - DX: Total move score (range: 0 to 189) EF Cont Ks 87 90 100
TOLDX IE Tower of London - DX: Ratio of initiation to Execution time (range: 0 to 1) EF Cont Ks 87 90 100
WAIS DG Wechsler Adult Intelligence Scale Digit Span; R. M Cont W1, B, W2, W3, Ks, C 12 23 39
WAIS PA Wechsler Adult Intelligence Scale Picture Arrangement; R. EF Cont W1, B, Ks 64 70 84
WAIS PC Wechsler Adult Intelligence Scale Picture Completion; R. EF Cont W1, B, W3 68 86 87
WCST C Wisconsin Card Sorting Test: Categories Achieved (0 to 6) EF Cat W1, B, W2, W3, C 25 33 40
WCST NE Wisconsin Card Sorting Test: Non-Perseverative Errors (0 to 128) EF Cont W1, B, W2, W3, Ks 37 47 63
WCST PC Wisconsin Card Sorting Test: Percent Conceptual Responses (0 to 100) EF Cont W1, B, W2, W3, Ks 37 47 63
WCST PE Wisconsin Card Sorting Test: Perseverative Errors (0 to 128) EF Cont W1, B, W2, W3, Ks, C 13 24 40
WCST TE Wisconsin Card Sorting Test: Percentage Total Errors; R. EF Cont W1, B, W2, W3, Ks, C 13 25 40
WMS Wechsler Memory Scale; III: spatial span subtest (sum of scores on backwards and forwards condi-

tions); R.
M Cont Kf 90 89 100
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Table 3.3: Summary baseline characteristics: 24 baseline variables with up to 66% missing data across studies are here summarised (the first 18 variables are some of the predictors
and the remaining 6 are some of the outcomes). Means (SD) or counts (%) with an asterisk are computed in presence of missing data (i.e. by excluding the missing values). Abbreviations:
CRT=cognitive remediation theraphy, Demo=demographics, M=mean, SCZ=schizophrenia, T=treatment, H=hospitalization, QoL=quality of life, IQ=intelligent quotient, P=perseverative; for
PANSS, SBS, WAIS, WCST, TMTA/B, LNS, FAS and CATFLU see Table 3.2.

VARIABLES STUDIES

Mean (SD), Count (%) Bell Circuits Keefe Keshavan Wykes 1 Wykes 2 Wykes 3

Predictors CRT Control All CRT Control All CRT Control All CRT Control All CRT Control All CRT Control All CRT Control All

Demo. Sample size 42 35 77 59 61 120 27 26 53 31 27 58 18 17 35 43 42 85 21 19 40
Age 41.12 37.37 39.42 39.98 37.64 38.79 36.07 37.92 36.98 25.42 25.67 25.53 36.56 41.06 38.74 36.67 35.69 36.19 18.76 17.47 18.15

(9.98) (8.93) (9.64) (11.24) (10.93) (11.10) (10.27) (10.38) (10.27) (6.50) (6.33) (6.37) (7.57) (9.97) (8.98) (11.61) (9.03) (10.37) (2.57) (2.17) (2.44)
Male 27 17 44 43 37 80 22 17 39 20 20 40 14 13 27 26 36 62 13 13 26

(64.29) (48.57) (57.14) (72.88) (60.66) (66.67) (81.48) (65.38) (73.58) (64.52) (74.07) (68.97) (77.78) (76.47) (77.14) (60.47) (85.71) (72.94) (61.90) (68.42) (65.00)
Not white 24 17 41 34 41 75 8* 11* 19* 10 8 18 2 5 seven 11 12 23 9 11 20

(57.14) (48.57) (53.25) (57.63) (67.21) (62.50) (29.63)* (42.31)* (35.85)* (32.26) (29.63) (31.03) (11.11) (29.41) (20.00) (25.58) (28.57) (27.06) (42.86) (57.89) (50.00)
Not married 38 33 71 55 55 110 23 26 49 NA NA NA 17 17 34 39 41 80 21 19 40

(90.48) (94.29) (92.21) (93.22) (90.16) (91.67) (85.19) (100) (92.45) NA NA NA (94.44) (100) (97.14) (90.70) (97.62) (94.12) (100) (100) (100)
M. Education years 12.86 12.49 12.69 13.51 13.16 13.33 13.37 13.62 13.49 NA NA NA 12.14 12.59 12.36 11.88 11.06 11.48 11.50 11.08 11.30

(2.67) (1.76) (2.30) (2.62) (2.36) (2.49) (2.37) (2.14) (2.24) NA NA NA (1.94) (2.09) (2.00) (1.75) (2.42) (2.14) (1.90) (1.27) (1.62)
1st diagnosis SCZ 29 20 49 47 47 94 18 21 39 21 17 38 18 17 35 43 42 85 21 19 40

(69.05) (57.14) (63.64) (79.66) (77.05) (78.33) (66.67) (80.77) (73.58) (67.74) (62.96) (65.52) (100) (100) (100) (100) (100) (100) (100) (100) (100)
>10 years since 1st T. NA NA NA 43 31 74 14 20 34 NA NA NA NA NA NA 22 22 44 NA NA NA

NA NA NA (72.88) (50.82) (61.67) (51.85) (76.92) (64.15) NA NA NA NA NA NA (51.16) (52.38) (51.76) NA NA NA
>10 yrs since 1st H. 26* 25* 51* 36 27 63 NA NA NA NA NA NA NA NA NA 19* 16* 35* NA NA NA

(61.90)* (71.43)* (66.23)* (61.02) (44.26) (52.50) NA NA NA NA NA NA NA NA NA (44.19)* (38.10)* (41.18)* NA NA NA

Symptoms M. PANSS positive 18.05 19.37 18.65 12.71* 12.25* 12.48* NA NA NA NA NA NA NA NA NA 14.19* 12.5* 13.37* NA NA NA
(5.72) (5.35) (5.56) (5.2)* (4.78)* (4.98)* NA NA NA NA NA NA NA NA NA (5.41)* (4.99)* (5.24)* NA NA NA

M. PANSS negative 18.48 19.74 19.05 12.98* 13.18* 13.09* NA NA NA NA NA NA NA NA NA 18.62* 16.62* 17.65* NA NA NA
(6.30) (5.46) (5.93) (6.23)* (5.77)* (5.97)* NA NA NA NA NA NA NA NA NA (7.30)* (7.23)* (7.29)* NA NA NA

M. PANSS general 39.36 39.83 39.57 30.11* 29.12* 29.6* NA NA NA NA NA NA NA NA NA 30.07* 27.55* 28.84* NA NA NA
(8.42) (7.51) (7.97) (8.30)* (8.20)* (8.23)* NA NA NA NA NA NA NA NA NA (8.20)* (6.83)* (7.62)* NA NA NA

QoL,
self-
esteem,
functioning

Mean SBS total NA NA NA 11.05* 10.53* 10.79* NA NA NA NA NA NA 13.33 11.12* 12.29* 11.6 13.17* 12.37* 12.76 14.44* 13.54*
NA NA NA (8.84)* (7.42)* (8.11)* NA NA NA NA NA NA (7.74) (8.07)* (7.85)* (8.45) (11.21)* (9.86)* (9.13) (9.12)* (9.04)*

M. RSE confirmation NA NA NA NA NA NA NA NA NA NA NA NA 16.83 16.12* 16.50* 17.33 16.68* 17.01* 16 18.21 17.05
NA NA NA NA NA NA NA NA NA NA NA NA (4.48) (5.45)* (4.89)* (4.40) (4.20)* (4.29)* (4.14) (3.77) (4.07)

M. RSE deprecation NA NA NA NA NA NA NA NA NA NA NA NA 15.28 13.19* 14.29* 16.21 15.22* 15.73* 16.14 16.58 16.35
NA NA NA NA NA NA NA NA NA NA NA NA (5.30) (3.64)* (4.65)* (4.49) (4.66)* (4.57)* (3.66) (4.81) (4.20)

Medications M. Chlorpromazine 699.20* 753.17 724.05* 426.83* 538.92* 482.88* NA NA NA 381.18 460.68 418.19 833.78 910.29 870.94 292.95 259.2 276.28 260.89 253.38 257.32
(372.52)* (615.33) (496.38)* (362.77)* (425.64)* (397.73)* NA NA NA (271.99) (335.05) (302.89) (572.57) (587.86) (572.76) (307.29) (321.63) (313.04) (224.84) (206.87) (213.75)

Global
cognition

Mean IQ NA NA NA 88.41 86.56 87.47 NA NA NA 97.74 98.52 98.1 NA NA NA NA NA NA NA NA NA
NA NA NA (12.72) (15.03) (13.91) NA NA NA (7.66) (9.74) (8.62) NA NA NA NA NA NA NA NA NA

M. WAIS vocabulary 38.00 34.29 36.31 35.08 31.77 33.40 NA NA NA 9.97 9.56 9.78 36.35* 38.75* 37.52* 26.98 28.05 27.51 30.52 30.11 30.32
(15.08) (16.44) (15.72) (13.53) (14.77) (14.21) NA NA NA (2.66) (2.82) (2.72) (14.89)* (18.96)* (16.76)* (13.98) (14.00) (13.92) (12.37) (12.57) (12.30)

M. WAIS digit-symbol 51.00 50.14 50.61 44.93 43.25 44.08 NA NA NA 8.61 8.00 8.33 NA NA NA NA NA NA 40.71 40.78* 40.74*
(14.02) (17.11) (15.40) (15.17) (16.96) (16.06) NA NA NA (2.47) (2.60) (2.53) NA NA NA NA NA NA (8.74) (12.17)* (10.32)*

Cognitive
outcomes

Mean WCST P. errors 22.48 28.17 25.06 28.12* 27.84* 27.98* NA NA NA 12.45 11.15 11.84 35.76* 44.44* 39.97* 36.49 41.62 39.02 27.48 30* 28.64*
(18.22) (21.41) (19.81) (17.30)* (16.57)* (16.87)* NA NA NA (9.72) (7.85) (8.85) (18.44)* (27.42)* (23.28)* (24.70) (26.53) (25.60) (19.63) (15.88)* (17.81)*

Mean TMTA 47.02 44.06 45.68 NA NA NA 35.05* 39.54 37.53* NA NA NA NA NA NA 62.20 71.89 66.99 46.81 48.97 47.83
(22.81) (24.39) (23.43) NA NA NA (12.11)* (20.83) (17.45)* NA NA NA NA NA NA (33.08) (79.60) (60.53) (22.38) (21.12) (21.54)

Mean TMTB 124.64 115.73* 120.72* NA NA NA NA NA NA 66.29 69.31* 67.67* NA NA NA 174.97* 164.08* 169.66* 136.05 117.34 127.16
(98.01) (59.82)* (83.00)* NA NA NA NA NA NA (26.09) (34.94)* (30.20)* NA NA NA (143.73)* (130.39)* (136.63)* (118.07) (52.56) (92.27)

Mean LNS NA NA NA NA NA NA 12.48* 12.31 12.38* NA NA NA NA NA NA 6.79* 6.64 6.71* 8.14 7.74 7.95
NA NA NA NA NA NA (3.70)* (4.05) (3.85)* NA NA NA NA NA NA (2.97)* (3.22) (3.08)* (3.02) (2.84) (2.91)

Mean FAS responses 31.81 30.46 31.19 NA NA NA NA NA NA NA NA NA 27.89 28.81* 28.32* 26.67 28.12* 27.37* 27.43 26.16 26.82
(11.58) (10.70) (11.14) NA NA NA NA NA NA NA NA NA (14.49) (12.64)* (13.45)* (10.64) (10.12)* (10.35)* (10.66) (8.21) (9.48)

Mean CATFLU 15.67 14.60 15.18 NA NA NA 17.90* 17.46 17.66* NA NA NA NA NA NA NA NA NA 14.52 14.47 14.50
(5.01) (4.80) (4.91) NA NA NA (4.06)* (5.22) (4.70)* NA NA NA NA NA NA NA NA NA (4.95) (5.24) (5.02)
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3.2 Methods

3.2.1 Development of composite score from cognitive outcomes using factor

analyses

The multiple cognitive outcomes of our project, contained in the pooled database of Cognitive

Training and Remediation Studies (see Table 3.2), were collected in order to assess Cognitive

Remediation Therapy (CRT) effectiveness. Groups of outcomes were assumed to measure

different aspects (memory, processing speed and executive function) of the same underlying

construct: cognitive abilities. However, there was no reliable and validated scale summarising

these outcomes. Because all outcomes were commensurate outcomes, i.e. measuring differ-

ent aspects of the same underlying construct using the same scale (Teixeira-Pinto et al. 2009),

a factor analysis (FA) will be used to find preferably one or few latent constructs able to explain

the common variance of the outcomes and thus to summarize the outcomes as efficiently as

possible. The estimated latent factor will then be used as dependent variable in a univariate

MissForest-Lasso model. FA will be conducted in the following steps: exploratory factor analy-

sis (EFA) followed by confirmatory factor analysis (CFA, used in the model development stage)

will be run on the observed outcomes (called ‘items’ in FA), then I will confirm the measurement

structure invariance across time using a longitudinal factor analysis (LFA, Meredith and Teresi

2006, see Paragraph below). Because most observed outcome variables were measured at

three time points (baseline, end-of-treatment and follow-up) at least, the FA will use the three

time points data. Even though I want to apply this FA results to a univariate regularised regres-

sion that only requires the end-of-treatment outcome (latent variable at end-of-treatment) as

dependent variable and the baseline measure of the latent outcome as one of the covariates, I

decided to also include the third time point to give more validity to the latent factor structure.

Factor analysis of outcomes The software used for the cross-sectional EFAs and CFAs and

the LFA was Mplus7 (User’s Guide: L. Muthén and B. Muthén 2012). The R package ‘lavaan’

(Rosseel 2012) was used to produce unbiased estimates for the latent factor (see below the

Paragraph ‘Factor scores’). The analyses were restricted to the continuous items only, because

methods computing unbiased estimates for the latent factor from mixed continuous and cate-

gorical indicators were not implemented in the softwares available for the project (B. Muthén

and Yang Hsu 1993). Therefore, the six categorical items were excluded.

The default estimator for factor analysis of continuous data in Mplus7 was used: the Maxi-

mum Likelihood (ML) estimator, which assumes normality of the data. If there is excess kurtosis
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in the continuous variables, the ML estimates will still be consistent when the model is correct.

However, in this case standard errors and fit statistics will need correction (Lattin, Carroll, and

P. Green 2003).

Firstly, the data were described and prepared for the FA: total scores variables (i.e. com-

binations of variable subgroups) among the outcomes were eliminated as well as one variable

in pairs of highly correlated variables (correlation coefficient ρ >0.9). The covariance coverage

between two variables is the proportion of observations that have values for both variables.

When some items were measured for some studies and the other items were only available

for the remaining studies, the covariance coverage between them was 0: i.e. no overlapping

observations. One outcome variable in pairs of variables with 0 covariance coverage was ex-

cluded to initialise the Expectation Maximisation (EM) algorithm needed to run the analysis.

The choice of these variables to be excluded was dictated by their relative frequency: the vari-

able in the pair with 0 covariance coverage with more missing data was excluded. To meet the

assumption of normality, very skewed variables (i.e absolute value of skewness greater than

1.5) were log-transformed if they had strictly positive values, or transformed through the Yeo-

Johnson transformation (Yeo and R. Johnson 2000) if they also had non-positive values. The

Expectation Maximisation algorithm (Dempster, Laird, and Rubin 1977, see Subsection 1.2.2)

implemented in FA dealt with missing data in the factor model development process.

Secondly, EFA was used to explore the number of factors and assess the suitable items

loading on the factors at the different time points (baseline, end-of-treatment and follow-up)

separately, in order to identify a common factor structure. The EFA solutions corresponding

to the Geomin oblique rotation (Lattin, Carroll, and P. Green 2003), which allows the factor to

be correlated, were used. EFA models were done with different numbers of factors up to a

maximum which allowed identifiability of the EFA model (e.g. two items cannot identify one

factor, Lattin, Carroll, and P. Green 2003). EFA models were assessed according to:

1. the presence of Heywood cases, i.e.negative residual variances (primary indication of

bad fit for the EFA). If an item shows negative residual variance, it means that it accounts

for all or most of the variance of the latent factor and is therefore redundant. If there was a

relative small number of items with negative residual variances, the corresponding items

were excluded and the EFA was run again;

2. Kaiser’s eigenvalue-greater-than-one rule: the number of eigenvalues (extracted variance

in a factor)greater than 1 is considered as an estimate of the optimal number of common

factors. However, this method of determining the number of factors sometimes yields an
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unreasonably high number of factors (Costello and Osborne 2005), which would cause

overfactoring (i.e. a large number of factors relative to the number of items);

3. the scree plots, which display the eigenvalues associated with a factor in descending

order versus the number of the factor. The scree plot always shows a downward curve

and the point prior to the ‘elbow’ (i.e. where the slope of the curve is clearly levelling off)

indicates the number of factors that should be generated by the analysis. Scree plots

are more efficient than Kaiser’s rule, but they also have a tendency to overestimate the

number of factors (Fabrigar et al. 1999).

4. the variance explained by the factors;

5. the absolute size of the loadings (if larger than or equal to 0.2 and significantly different

from 0). A standardised factor loading is the correlation between observed item and

latent variable. Items having weak loadings (i.e. smaller than 0.2 and non-significantly

different from 0) on a factor were removed from the analysis and the EFA was rerun.

The rotated cross-loadings determine the quality of the variables measuring the factors.

Too many item cross-loadings are indication of a model without simple structure (i.e. the

model structure given by the items loading significantly on only one factor), leading to

poor interpretation. The rotation used for the factors to reach a simple structure was the

oblique rotation Geomin;

6. the interpretation of the factors and their quality (number of variables loading on a factor,

overfactoring (too many factors), factor determinacy if the items are all continuous and

usefulness of factors);

7. the following model fit assessments (Lattin, Carroll, and P. Green 2003):

• the Chi-square test statistic which tests that the implied model does not fit signifi-

cantly worse than a model where the variables correlate freely (saturated model).

P-values greater than 0.05 indicate good fit. However, this test statistic is sensitive

to the sample size and thus less reliable than the other fit measures. Here is the

formula of the Chi-square statistic:

T = 2nFML(π̂), (3.1)

where n is the number of observations, FML the fit function given by the differ-

ence between the log-likelihood for the saturated model and the implied model log-
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likelihood and π̂ is the maximum likelihood estimate under the null hypothesis, i.e.

the implied model;

• the Root Mean Square Error of Approximation (RMSEA) which assesses the null

hypothesis of approximate fit (rather than perfect fit). It is a function of the χ2 test

statistic, the degrees of freedom of the implied model d and the number of observa-

tions in the sample n:

RMSEA =

√
max

(
T 2 − d
nd

, 0

)√
G, (3.2)

where T is the χ2 test statistic as defined in (3.1) and G the number of groups (in our

case G = 1). Values of the statistic smaller than 0.05 indicate close fit. The RMSEA

adjusts for sample size contrarily to the Chi-square test statistic.

EFA is an iterative process: when items poorly measured the factors or factors were poorly

measured in the EFA, the EFA analysis was repeated by excluding one item (or factor) at a

time. The items with negative residual variance had the priority to be excluded one at a time;

then the items not loading significantly on a factor were excluded, by considering all the other

assessments in combination, and the EFA was rerun after each item exclusion.

Thirdly, I tested the chosen number of factors and the factor structures through Confirma-

tory Factor Analysis (CFA) as suggested by the EFAs cross-sectionally. It is important to

specify that here CFA is used in the model development stage and not to confirm a given factor

structure supported by the literature. CFA can be used to develop a scale without necessarily

confirming it on a sample different from the EFA to simply evaluate a scale’s internal structure

(Brown 2006). CFA models were assessed through the criteria below:

• Measures of goodness of fit (some of them were already used in the EFA):

– the Chi-square test statistic (3.1);

– the Root Mean Square Error of Approximation (RMSEA, (3.2));

– the baseline comparison indexes: Tucker and Lewis Index (TLI) and Comparative

Fit Index (CFI), that compare the fit of the baseline model with the implied model.

The baseline model is the independence model, i.e the model with uncorrelated out-

comes with unrestricted variances and unrestricted means and/or thresholds. Values

of TLI and CFI less than 0.9 indicate poor fit; 0.9-0.95 indicate good fit, values close

to 1 indicate very good fit and values grater than 1 might indicate overfitting. They
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are on average the same across sample sizes and CFI has less variance than TLI.

TLI =

Tb
db
− Tm
dm

Tb
db
− 1

CFI = 1− max(Tm − dm, 0)

max(Tm − dm, Tb − db, 0)
, (3.3)

where Tb and Tm are the χ2 statistics for the baseline model (independence model)

and the implied model respectively and db and dm are the respective model degrees

of freedom;

• The reproduced correlation matrix and the standardized residuals (discrepancies be-

tween observed and reproduced correlations, which measures is the Standard Root Mean

square Residual fit index - SRMR, less than 0.08 for good fit - for normally distributed

data) were considered;

• Model modification indices (estimated for all parameters that are fixed or constrained to

be equal), i.e. the expected drop in chi-square if the parameter is estimated. Modification

indices are considered to improve the fit of the model: for example it is good practice to

free the constraint in the model that shows the highest modification index to ameliorate

the model fit;

• Factor loadings for a simple structure;

• The percentage of variance explained by the factors in the items (the R2);

• Factors determinacy which measures how well the scores for the latent factors are esti-

mated. It is the correlation between the estimated score and the true score and ranges

from 0 to 1 with 1 being best;

• Factors discriminant validity which is measured by the correlations between the factors

and indicates factor uniqueness;

When competing CFA models were present, model selection was done according to the follow-

ing criteria and tests:

• non-nested models were compared by looking at the following indices (if items were all

continuous):

– Akaike’s information criterion, AIC = Tm − 2dm; the model with the lower AIC is

deemed the better fit;
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– Bayesian information criterion, BIC = Tm − dm log n; again choose the model with

the smaller value. BIC rewards parsimony (fewer parameters), compared to AIC;

• nested models were compared through Likelihood Ratio Test (LRT) and AIC/BIC.

The three final cross-sectional CFA models (baseline, end-of-treatment and follow-up) were

chosen by combining the assessment of the criteria above.

Finally, a Longitudinal confirmatory Factor Analysis (LFA) model was fit to the data

to formally test invariant factorial structure across time. Factorial invariance is also known

as measurement equivalence and metric invariance. The following longitudinal models were

analysed in steps so that at each step constraints on parameters were added:

1. Configural invariance (baseline model): the measurement model was assumed the same

across time points without any constraint on loadings, intercepts/thresholds or variances;

2. Metric (weak) invariance: constraints on loadings were added so that they were equal

across measurement occasions;

3. Scalar (strong) invariance: intercepts/thresholds of the items with same loading were

constrained to be equal at each time point;

4. Structural (full) invariance:

a) residual variances were constrained to be equal for non-invariant items,

b) factor variances were constrained to be invariant across time,

c) factor means were assumed the same across time.

The increasingly constrained nested models were compared with the LRT and when they had

equivalent fit, the strictest (more parsimonious) model was chosen. When an invariance model

did not test equal all the parameters supposed to be the same, then the parameters which could

not be fixed across time were freed to be estimated and the model was called with the term

‘partial invariance’ instead of ‘invariance’ model. For example, if in a scalar invariance model

one intercept could not be fixed to be equal to the others for model goodness of fit reasons,

then that intercept was let free to be estimated and the returned model became a partial scalar

invariance model.

Factor scores In order to obtain values for the single summary outcome latent measure to

use as a dependent variable in the model, factor scores for the latent construct were estimated.
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Factor scores are the estimated predictions for the unobserved values of the factors for indi-

viduals in the sample. To estimate the factor scores, the direction of the regression model

is reversed: best prediction of the factors given the observed variables. Factor scores are

weighted sums of the observed variables. Geometrically speaking, they are the locations of

each of the individual observations in the reduced factor space (Lattin, Carroll, and P. Green

2003).

Factor scores for baseline and end-of-treatment were computed from cross-sectional 1-

factor CFAs having the same factorial structure tested in LFA, which was invariant across time.

The factor scores were computed using the Bartlett method (Bartlett 1937 and Bartlett

1938), which is not implemented in Mplus7, but in R (Team 2016) with the package lavaan

(functions: cfa(), with option mimic="Mplus" to have the same output as Mplus7 in the CFA;

and lavPredict() to compute the factor scores, with option method = "Bartlett"). I did not

use the factor scores directly from the LFA in order to avoid induced correlation between base-

line and follow-up scores. The Bartlett method produces unbiased estimates of factor scores

when factor indicators are continuous (SL 2005). Mplus7 only uses the regression method

(Thomson 1934 and Thurston 1935), which computes biased estimates of factor scores that

cannot be used as dependent variables (B. Muthén and Yang Hsu 1993 and Skrondal 2001).

The Bartlett method estimates factor scores with mean 0 and variance being the squared mul-

tiple correlation between items and factor. Therefore, factor scores were standardised to vari-

ance 1.

Factor scores estimation allows to analyse the units with at least one observed item assum-

ing missingness is MAR. This allows to estimate factor scores for patients with one or more

unmeasured items.
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Meta-analysis of factor scores A meta-analysis of factor scores was run in order to see if

the factor scores showed a CRT positive effect in the seven DoCTRS RCTs (see Subsection

3.1.1) as well as to assess between study heterogeneity. First, I estimated factor scores treat-

ment effect sizes for each study. Then, I collapsed the results by performing a meta-analysis.

Because I assumed between study heterogeneity, a random effects meta-analysis model was

used (Armitage, Berry, and Matthews 2002). Effect sizes (Cohen’s di, i = 1, . . . , 7) for the seven

studies were calculated as follows:

di = (mt
i −mc

i )/SD
pooled
i , (3.4)

where mt
i and mc

i are the means for the cases and the control respectively for the study i, i =

1, . . . , 7, and SDpooled
i indicates the pooled standard deviation for the two groups for study i.

The standard error (SEi) of the effect size was estimated using the following formula:

SE =
√
Ni/(ntin

c
i ) + d2i /2(Ni − 2), (3.5)

where nti and nci are the numbers of patients in the treatment and the control group respectively

for the study i, and Ni (= nti + nci ) was the sample size of study i.

I also explored the degree of heterogeneity across the studies using the Q and the I2

statistic. The Q statistic is based on the squared differences between each study effect and

their fixed effect average, and I2 is derived from Q and is interpreted as the proportion of total

variability explained by the heterogeneity between studies. If the studies are homogeneous

both should be small.

The random effects meta-analysis with the above effect size formulas and heterogeneity

tests is implemented in the command metan (Bradburn, Deeks, and D. Altman 1998) of the

statistical software Stata 14 (Stata 2015).

Factor scores for ‘Fiszdon’ The data from the study ‘Fiszdon 1’ (see Subsection 3.1.1)

were used as validation set for the prediction models to develop, thus factor scores for this

study needed to be computed. The 23 subjects in common between the studies ‘Fiszdon 1’

and ‘Fiszdon 2’ also had values for other outcomes measured in ‘Fiszdon 2’ and not in ‘Fiszdon

1’. Therefore, I also considered the 23 subjects’ data from ‘Fiszdon 2’ in order to compute

factor scores for the external validation of the prediction models. It is valid to use variables from

another RCT measured on common participants to compute factor scores when the underlying

FA model is longitudinal and tested for measurement invariance across time. This property is
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called group invariance of item parameters (Baker 2001): if the estimated LFA has a good fit,

then the parameters do not change across time, independently of when the score was taken

from the same people, provided that it is a pre and post-treatment score and with the same

treatment.

3.2.2 MissForest-Lasso precision medicine models

Three MissForest-Lasso precision medicine models (see Subsection 2.2) were developed:

1. Model 1 having the factor scores as outcome (see Subsection 3.2.1;

2. Model 2a having the clinically important cognitive measure of executive function Wiscon-

sin Card Sorting Test Perseverative Errors (WCST PE); only the observations with the

outcome were included;

3. Model 2b having one of the most important cognitive measure with least missing data as

outcome; all the observations belonging to the studies that measured the outcome (also

observations with missing outcome) were included.

The first model was built because there is an interest in analysing multiple cognitive outcomes

simultaneously with a summary measure of memory, processing speed and executive function

as a dependent variable. Only the observations with estimated factor scores were included

in the analysis as the FA already included the uncertainty due to a missing data imputation

process: the EM algorithm.

In contrast, Models 2a/b were developed in order to apply MissForest-Lasso to an observed

outcome which has already been validated and is known to be reliable unlike the factor scores,

and to compare performances with complete and missing outcome. In Model 2b, missing data

for WCST PE will be imputed by MissForest and not in a factor analysis procedure.

To develop the models, I followed the general guidelines by Steyerberg and Vergouwe

(2014), which consists of seven phases described in Figure 1.1 (see Subsection 1.2.1. In

the different steps, I did the following:

• Step 1 (problem definition): aims of the prediction problem were defined as well as the

outcome of interest. Summary statistics for the outcomes were presented per treatment

arm (CRT vs TAU).

• Step 2 (coding of predictors): categorical predictors were transformed into dummies

(binary factors contrasting the reference level and another level of the categorical variable,
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for example if a categorical variable has 5 categories, then it will generate 4 dummies as

covariates in the model). Categorical variables with small number of observations within

a level (≤ 10) were recoded in order to avoid near-zero-variance dummy predictors (Kuhn

and K. Johnson 2013). Furthermore, the levels of categorical variables were coded so

that the reference level was the one with most observations. The ordinal covariates were

treated as continuous.

• Step 3 (model specification): although fully pre-specified prediction models (i.e. mod-

els including all available variables) minimise selection bias (Steyerberg 2009), our model

was specified by dropping the variables with more than 70% missing data to reduce the

bias due to imputation. If there was perfect multicollinearity between variables (corre-

lation coefficient 1 or -1), the most useful variable in each group of perfectly correlated

variables was chosen based on clinical expertise. Categorical variables with more than

seven levels, which could not be collapsed in a smaller number of levels, were dropped

for model interpretability due to small sample size. In Model 1, both factor scores at base-

line and single observed baseline items, from which factor scores were computed, were

included in the model linear predictor. This allows identifying the key cognitive variables

as predictors and may increase prediction accuracy. This is feasible as the Lasso allows

including correlated variables without resulting in multicollinearity, by selecting only one

variable among strongly correlated variables (Zou and Hastie 2005). Also different scales

of PANSS variables were included to assess which scale had more predictive power. The

study ID variable was not included in the model. Instead the study information variables

were used in order to make the model generalisable to new study data.

• Step 4 (model estimation): MissForest missing data imputation computed random for-

est models with the default settings: 100 trees for forest, the maximum number of itera-

tions to be performed (given that the stopping criterion is not met beforehand) being 10,

and the default number of predictors sampled for splitting at each node of a tree being

max (bp/3c , 1) for continuous dependent variables and
⌊√

p
⌋

for categorical ones, where

p is the number of variables in the imputation model (see section 2.1.2 for details about

MissForest). After imputing the data through MissForest, the Lasso models on the com-

pleted data were estimated with bootstrap tuning (100 bootstrap samples and 40 values

for the tuning parameter λ, see Subsection 2.2). The grid for λ was decided in order to

avoid the Lasso choice of the null model (intercept only), which is of no interest to us.

This would result in constant-valued predictions, which have zero variance and undefined
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pseudo-R2. To define such a range for λ, it is sufficient to run the model once without

specified grid and look at the resampling performances in the output: the tuning parame-

ters that correspond to missing data in the estimates of pseudo-R2 are not useful (these

are usually large). Simulations (see Section 2.3) suggested that the 3% tolerance λmodel

(delivering an MSE within 3% of the minimum) provides the best compromise between

variable selection and prediction accuracy. Also the models corresponding to the follow-

ing λs were estimated: the best λ, the one-SE tolerance λ and the 15% tolerance λ as

in the simulation study (see Subsection 2.2), in order to again confirm the 3% tolerance

model as the model at the same time interpretable and good in prediction accuracy.

• Step 5 (model performance): estimates of apparent discrimination and calibration per-

formance for MissForest-Lasso were presented (for definitions, see Subsection 1.2.1).

First, MissForest imputation accuracy was assessed with the out-of-bag (OOB) imputa-

tion normalized root mean squared error (NRMSE, see Oba et al. 2003) for the continu-

ous part of the imputed data, and with the proportion of falsely classified entries (PFC)

for the categorical part of the imputed data set (in both cases good performance of Miss-

Forest leads to a value close to 0 and bad performance to a value around 1). Second,

Lasso apparent discriminative performance was evaluated with the MSE and the pseudo-

R2 by applying the model on the development data; apparent calibration was measured

through the calibration slope β and the calibration-in-the-large α (see Subsection 1.2.1).

Predictions-versus-observed values plots, corresponding to the different λs models, were

compared.

• Step 6 (model validity): The MissForest-Lasso models were internally validated using

the bootstrap optimism-correction as for Harrell, Lee, and Mark 1996 (see Subsection

2.1.3) as describe in the simulations methods (see Section 2.2). Apparent performance

estimates were corrected with the bootstrap-estimated optimism to obtain internally vali-

dated performance estimates. Internal and external optimisms were compared (see Table

2.1 for definitions).

• Step 7 (model presentation): the three chosen models were the models correspond-

ing to the 3% tolerance penalty λ according to the simulation results with 100 covari-

ates (see Subsection 2.3.2). The chosen models’ linear predictors were recalibrated with

the optimism-corrected calibration parameters βcorr and αcorr (see Subsection 1.2.1).

Let us write the model as M(X) = Xb, where X is the matrix of predictors plus a

vector identically equal to 1 for the intercept and b is the vector of the estimated co-
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efficients. Thus, the recalibrated model Mrecalibrated was obtained through the formula:

Mrecalibrated(X) = αcorr + βcorrXb, and recalibrated coefficients were presented in a

table.

Finally, I compared the three models in terms of prediction accuracy and variable selection.

3.2.3 Secondary analysis: MissForest-Lasso prognostic models

Models 1, 2a and 2b described in Subsection 3.2.2 were rerun with the same method without

assuming moderation of treatment, i.e. without including interaction terms in the linear predictor,

to obtain Models 3, 4a and 4b respectively. This secondary analysis was done to assess the

importance of eventually selected moderators, by looking at the models’ changes in prediction

accuracy and variable selection.

3.3 Results

3.3.1 Development of composite score from cognitive outcomes using factor

analyses: results

Data preparation The 32 continuous outcomes measuring cognition (12 memory, one pro-

cessing speed and 19 executive function variables) were available for 467 out of 468 patients

(see Table 3.2).

At least 19 outcome variables were measured at three time points (baseline, end-of-treatment

and follow-up), the others were only present at baseline and end-of-treatment (included some

mid-point measurement which was not used in the analysis).

The outcomes were approximately normally distributed based on histogram, skewness and

kurtosis assessments apart from two outcomes. These two outcomes were exaggeratedly pos-

itively skewed and leptokurtic at baseline and end-of-treatment: TMTA and TMTB (see Table

3.2 for definitions; kurtosis was 75.0 and 10.0 for TMTA at baseline and end-of-treatment re-

spectively, 19.7 and 65.3 for TMTB; skewness was 2.6 and 7.0 for TMTA, 3.8 and 6.6 for TMTB).

Both variables were log-transformed and skewness and kurtosis were reduced to acceptable

levels: skewness now was less than 1 and kurtosis less than 2.5. Furthermore, to improve

normality in the variable CATFLU, one subject was removed from the data (ID 145) because

he/she had CATFLU=58 at follow-up, meaning that a patient could name 58 animals in 60 sec-

onds, which is unlikely. In agreement with the PhD project clinician, I considered it to be a

typographical error.
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Table 3.4: Baseline, end-of-treatment and follow-up correlation matrices for the outcomes that are not total scores and have pairs positive covariance coverage: the
correlation between each pair of variables is computed using all complete pairs of observations on those variables.

LNS WAIS D WAIS PC CATFLU FAS A FAS NR TMTA TMTB WCST NE WCST PC WCST PE

LNS

WAIS D 0.406
0.508
0.627

WAIS PC 0.552 0.325
0.407 0.458
0.465 0.351

CATFLU 0.492 0.280 0.308
0.474 0.284 0.271
0.034 0.109 0.176

FAS A 0.527 0.373 0.292 0.424
0.384 0.381 0.176 0.601
0.485 0.449 0.280 0.044

FAS NR 0.584 0.379 0.272 0.462 0.981
0.453 0.423 0.161 0.449 0.982
0.467 0.483 0.284 0.332 0.979

TMTA −0.382 −0.146 −0.473 −0.451 −0.524 −0.527
−0.445 −0.133 −0.334 −0.439 −0.326 −0.368
−0.363 −0.268 −0.423 −0.255 −0.378 −0.367

TMTB −0.476 −0.055 − 0.434 −0.303 −0.282 −0.365 0.620
−0.364 −0.061 −0.404 −0.531 −0.160 −0.262 0.598
−0.473 −0.355 −0.615 −0.282 −0.269 −0.343 0.575

WCST NE −0.277 −0.040 −0.177 −0.010 −0.073 −0.151 0.188 0.106
−0.248 0.018 0.006 −0.192 0.025 −0.069 0.052 0.040
−0.063 −0.087 −0.104 −0.131 0.060 −0.050 0.046 0.060

WCST PC 0.411 0.020 0.478 0.240 0.113 0.284 −0.241 −0.346 −0.476
0.471 0.032 0.243 0.319 0.089 0.161 −0.304 −0.348 −0.549
0.293 0.208 0.362 0.220 0.103 0.208 −0.247 −0.313 −0.104

WCST PE −0.245 −0.084 −0.429 −0.347 −0.073 −0.210 0.165 0.372 −0.040 −0.726
−0.344 −0.059 −0.180 −0.301 −0.177 −0.282 0.380 0.488 0.070 −0.734
−0.309 −0.207 −0.335 −0.214 −0.076 −0.127 0.283 0.337 0.051 −0.677
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Four continuous outcome variables were total scores of subgroups of outcomes: CVLT TR

(summarising the other two CVLT outcomes, see Table 3.2), HAY T and HAY TE (combining

the two HAY tests sections A and B), WCST TE (combining the two WCST error measures, see

Table 3.2). These total scores were excluded from the FA.

After excluding the total scores variables, 21 outcome variables had 0 covariance coverage

with the other variables (no observations in common). As there was no preference of retaining

any variables from a clinical perspective, the outcomes with higher percentage of missing data

that had 0 covariance coverage with most other variables were eliminated, so that only 11

outcomes were left. The latter had covariance coverage in the range 0.087-0.892 at baseline,

0.075-0.872 at the end-of-treatment and 0.107-0.966 at follow-up.

Available data per time point for the 11 items were: 461 patients at baseline, 413 at the

end-of-treatment and 291 at follow-up.

More than 2/3 of the correlations between the 11 items (see Table 3.4) looked stable or got

weaker across the 3 time points, as expected. Among the variables, two were highly correlated:

the correlation coefficients between FAS A and FAS N were 0.981 at baseline, 0.982 at end-

of-treatment and 0.979 at follow-up (see Table 3.4). Therefore, the item FAS A with higher

percentage of missing data was excluded.

Therefore, only ten items were used to conduct the FA: two items were memory outcomes,

one was a processing speed outcome and the other eight were executive function outcomes:

• Memory outcomes:

– LNS: Letter-Number Span (n of correct trials), measured in ‘Keefe’, ‘Keshavan’ and

‘Wykes 3’;

– WAIS D: Wechsler Adult Intelligence Scale Digit Span, measured in all studies apart

from ‘Keefe’

• Processing speed:

– TMTA: Trailmaking test part A (Paper & pencil), time to completion (seconds), mea-

sured in ‘Bell’, ‘Keefe’, ‘Wykes 2’ and ‘Wykes 3’;

• Executive function outcomes:

– CATFLU: Category fluency, Animal naming (n animals named in 60 s); measured in

‘Bell’, ‘Keefe’ and ‘Wykes 3’;
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– FAS NR: Verbal fluency (FAS), Total number of correct responses, measured in

‘Wykes 1’, ‘Wykes 2’, ‘Wykes 3’ and ‘Bell’;

– TMTB: Trailmaking test Part B (Paper & pencil), time to completion (seconds), mea-

sured in ‘Bell’, ‘Wykes 2’, ‘Wykes 3’ and ‘Keshavan’;

– WAIS PC: Wechsler Adult Intelligence Scale Picture Completion, measured in ‘Wykes

1’, ‘Bell’ and ‘Wykes 3’;

– WCST NE: Wisconsin Card Sorting Test, Non-Perseverative Errors (0 to 128), mea-

sured in ‘Wykes 1’, ‘Bell’, ‘Wykes 2’, ‘Wykes 3’ and ‘Keshavan’;

– WCST PC: Wisconsin Card Sorting Test, Percent Conceptual Responses (0 to 100),

measured in ‘Wykes 1’, ‘Bell’, ‘Wykes 2’, ‘Wykes 3’ and ‘Keshavan’;

– WCST PE: Wisconsin Card Sorting Test, Perseverative Errors (0 to 128), measured

in ‘Wykes 1’, ‘Bell’, ‘Wykes 2’, ‘Wykes 3’, ‘Keshavan’ and ‘Circuits’.

Their mean percentage of missing data (including missingness by design) was 55.4% (46.9%

at baseline, 54.5% at the end-of-treatment and 64.9% at follow-up).

Outcomes Cross-Sectional Exploratory Factor Analyses (EFA) at baseline, end-of-treatment

and follow-up

Baseline EFA The EFA at baseline used 460 out of 467 observations as at baseline the 10

outcomes had values for only 460 patients. The item WCST PC was removed because its

negative residual variance prevented the 2 and 3-factor EFAs from achieving convergence.

Factors Parameters Chi-square RMSEA Negative res. variance Weak loadings
χ2 df p-value

1 27 90.298 27 <0.0001 0.071 - -
2 35 46.474 19 0.0004 0.056 - WCST NE
3 42 20.093 12 0.0653 0.038 WAIS PC, WCST NE WCST PE

Table 3.5: EFA of 9 items, fit measures at baseline (n=460). Abbreviations: res=residual

The EFA RMSEA and χ2-test in Table 3.5 suggest that the factor model with three factors

presents the best fit. Kaiser’s rule of eigenvalues greater than one suggested the existence of

three factors (the first eigenvalue was 4.0 while the rest were less than 1.2) and this somewhat

confirmed the EFA RMSEA and χ2 test results. Instead, the scree plot suggested 2 factors

for these data (see Figure 3.1). Moreover, the 3-factor structure estimated a negative residual
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variance for the item WCST PE and removing it leads to overfactoring. Therefore, due to the

criteria described in the methods, I considered only the 1 and 2-factor structures in Table 3.5,

which would fit the data better:

• 1 FACTOR: the 1-factor model (9 items) did not yield any negative residual variances

or weak loadings and showed an almost good RMSEA (0.071) and 38% of variance

explained.

• 2 FACTORS: WCST NE was dropped from the analysis because of its weak loading

and the EFA was rerun. The analysis showed very good fit (RMSEA=0.032, variance

explained=43%) and the factor structure was the following:

– 1st factor: WAIS D, LNS, CATFLU, FAS N, WAIS PC

– 2nd factor: WAIS D, TMTA, TMTB, WCST PE.

The cross-loading WAIS D was much stronger on the first factor (0.826 on the first factor

vs 0.526 on the second). However, the two factors were highly correlated (ρ =-0.738).

Figure 3.1: Scree plot for EFA at baseline, nine continuous outcomes, 460 observations

End-of-treatment EFA This analysis used 412 out of 467 observations as the ten outcomes

had values for only 412 patients at the end-of-treatment. In order to make the EFA converge

for two factors, the item WCST PC was excluded (the 3-factor analysis did not converge even

after eliminating this item).

The scree plot was similar to the one from the EFA at baseline (see Figure 3.1), suggesting

2 factors, and again three eigenvalues were larger than one, with the first being much larger

than the others.



3.3. RESULTS 223

Factors Parameters Chi-square RMSEA Negative res. variance Weak loadings
χ2 df p-value

1 27 96.715 27 <0.0001 0.079 - -
2 35 34.025 19 0.0183 0.044 WAIS D -
3 N/A N/A N/A N/A N/A N/A N/A

Table 3.6: EFA of nine items, fit measures at the end-of-treatment (n=412). N/A stands for ‘not
available’ because of non-convergence. Abbreviations: res=residual

• 1 FACTOR: the 1-factor model (9 items) did not show any negative residual variances or

weak loadings. The RMSEA was 0.079 and the variance explained was 37%.

• 2 FACTORS: By removing the item with negative residual variance WAIS D (Table 3.6),

the model with two factors did not converge.

Follow-up EFA Because of loss to follow-up, only 290 out of 467 observations were available

for the ten items at follow-up. Again the outcome WCST PC was dropped from the EFA analysis

in order to achieve convergence for two factors (the 3-factor analysis did not converge even after

eliminating this item). The scree plot continued to suggest 1 factor also at follow-up and the

number of eigenvalues higher than one was two.

Factors Parameters Chi-square RMSEA Negative res. variance Weak loadings
χ2 df p-value

1 27 71.662 27 <0.0001 0.076 - WCST NE
2 35 30.469 19 0.0461 0.046 - WCST NE
3 N/A N/A N/A N/A N/A N/A N/A

Table 3.7: EFA of nine items, fit measures at follow-up (n=290). N/A stands for ‘not available’
because of non-convergence. Abbreviations: res=residual

• 1 FACTOR: By removing the item WCST NE with non-significant loading (see Table 3.7),

the EFA did not converge because of the negative residual variance of the item WAIS PC.

After dropping this further outcome, the analysis converged without any problems with a

poor RMSEA = 0.107 (7 items) but a better amount of variance explained: 42% compared

to the other time points.

• 2 FACTORS: Similarly to the 1-factor case, WCST NE and WAIS PC were removed and

the model with two factors showed two weak loadings. Excluding this two further items

(one at a time) will lead to over-factoring: five items loading on only two factors.
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EFA conclusion In conclusion, two or three factor solutions did not provide meaningful solu-

tions at all three time points. The 1-factor model was possible at all time points. The 1-factor

structure was similar across time: it was based on the same 9 items at baseline and end-of-

treatment and 7 of the 9 items at follow-up. The 1-factor model was therefore selected. Also,

the 1-factor structure makes sense from a clinical perspective as different cognitive outcomes

can be summarised with one latent construct. The single factor model explained 38%, 37%

and 42% of the variance at baseline, end-of-treatment and follow-up respectively.

Cross-Sectional Confirmatory Factor Analyses at baseline, follow-up and end-of-treatment

In the next step, I performed a CFA to further validate/confirm the 1-factor model at each time

point. According to the EFA identified structures, in the CFAs at baseline and end-of treatment

the 9-item structure was confirmed, while at follow-up the 7-item structure was analysed.

Baseline CFA, N=460 By testing the 9-item structure of the EFA at baseline, the CFA model

obtained showed almost good fit (RMSEA=0.071, 90% confidence interval (CI): 0.055–0.088;

CFI=0.873; TLI=0.831; SRMR=0.071). However, there was no evidence that the factor ex-

plained some variance in the item WAIS D (variance explained (R2)=0.032, p-value=0.139) and

there was only some evidence that item WCST NE was explained by the factor (R2=0.066,

p-value=0.036).

End-of-treatment CFA The 9-item end-of-treatment configuration fit the data similarly to the

baseline CFA (RMSEA=0.070, 90% CI: 0.054–0.087; CFI=0.867; TLI=0.822; SRMR= 0.093).

Like in the baseline CFA, theR2 for item WAIS D was not significantly different from 0 (R2=0.024,

p-value=0.228) as well as the R2 for item WCST NE (R2=0.061, p-value=0.054).

Follow-up CFA The CFA testing the 7-item structure at follow-up converged with inadequate

fit: RMSEA=0.107, 90% CI: 0.081–0.136; CFI=0.839; TLI=0.758; SRMR=0.073.

CFA conclusion In summary, the CFAs showed only fair fit (at baseline and end-of-treatment)

or inadequate fit (at follow-up) based on fit indexes. However, the estimated factor loadings

were similar across time points apart from the loading for the item WAIS D, which was much

stronger at follow-up compared to baseline and end-of-treatment (see Table 3.8). The con-

firmed item structures at baseline and end-of-treatment included the two memory outcomes
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Items Baseline (N=460) End-of-treatment (N=412) Follow-up (N=290)

Estimate (SE) P-value Estimate (SE) P-value Estimate (SE) P-value

LNS 0.771 (0.041) <0.001 0.698 (0.046) <0.001 0.790 (0.059) <0.001
WAIS D 0.178 (0.060) 0.003 0.156 (0.065) 0.016 0.622 (0.059) <0.001
CATFLU 0.635 (0.058) <0.001 0.699 (0.057) <0.001 0.635 (0.086) <0.001
FAS N 0.644 (0.051) <0.001 0.546 (0.061) <0.001 0.645 (0.058) <0.001
TMTA -0.765 (0.035) <0.001 -0.776 (0.034) <0.001 -0.653 (0.064) <0.001
TMTB -0.885 (0.027) <0.001 -0.886 (0.029) <0.001 -0.719 (0.059) <0.001
WCST PE -0.477 (0.049) <0.001 -0.583 (0.048) <0.001 -0.373 (0.067) <0.001
WCST NE -0.258 (0.062) <0.001 -0.247 (0.064) <0.001 - -
WAIS PC 0.593 (0.069) <0.001 0.615 (0.077) <0.001 - -

Table 3.8: 1-factor cross-sectional CFA based on EFA (n=460 at baseline with nine items,
n=412 at the end-of-treatment with nine items, and n=290 at follow-up with seven items): stan-
dardised parameter estimates (factor variance=1)

(LNS and WAIS D), one processing speed outcome (TMTA) and six executive function out-

comes (CATFLU, FAS N, TMTA, TMTB, WAIS PC, WCST NE and WCST PE), while at follow-

up it included the two memory items, the processing speed item and only four of the executive

function outcomes (CATFLU, FAS N, TMTB and WCST PE). I am confident that the afore men-

tioned followed procedures and presented final models constitute reasonable measurements

for memory, processing speed and executive function.

Longitudinal Confirmatory Factor Analysis

The cross-sectional results suggested that different factor structures may be necessary at

baseline/end-of treatment and follow-up. I explored this further by examining the impact of

forcing a common pattern on the participants with data in at least one included item at all time

points. This was done by applying the following configuration of six items to the single longitu-

dinal factor:

• memory outcome: LNS

• processing speed: TMTA,

• executive function outcomes: CATFLU, FAS N, TMTB and WCST PE

The items WAIS D and WCST NE were excluded because their variance was not explained by

the factor in the EFAs. The item WAIS PC was excluded because prevented the missing data

algorithm in the LFA from converging.

The model with fixed structure across time, exhibiting configural invariance, provided a very

good fit (RMSEA = 0.034, 90% confidence interval (CI): 0.024–0.044; CFI = 0.974 and SRMR

= 0.070). The fit was equally good when factor loading invariance was imposed (p = 0.793 from
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the χ2-test for difference testing between configural and metric invariance models - LRT) which

suggests that a similar meaning to the latent constructs under study applies at baseline, end-of

treatment and follow-up (RMSEA = 0.032, 90% CI: 0.021–0.041; CFI = 0.975 and SRMR =

0.079). The model that constrained also the means to be equal across time (scalar invariance)

did not fit significantly differently from the metric invariance model and showed very good model

fit (p = 0.333 for LRT, RMSEA = 0.031, 90% CI: 0.021-0.040; CFI = 0.975 and SRMR = 0.076).

Structural invariance was explored by constraining residual variances to be the same across

time as well as factor covariances and means. The residual variance invariance model was

not significantly different from the scalar invariance model (p=0.502 for LRT), but modification

indices suggested to free the residual variance for the item log(TMTB) at follow-up (modification

index=9.714 and expected parameter change=0.044) to have a better fit. After doing so, the

obtained partial residual variance invariance model showed a good fit, equivalent to the other

more flexible invariance models, with RMSEA = 0.031, 90% CI: 0.021-0.040; CFI = 0.973 and

SRMR = 0.083. Factorial covariance and factor mean invariance were next investigated and

a final partial factor covariance and mean invariance model was obtained: RMSEA = 0.030,

90% CI: 0.020-0.039; CFI = 0.974 and SRMR = 0.083, equivalent in fit to the partial residual

variance invariance model: LRT p=0.969 (see Table 3.9).

Because all the invariance models in Table 3.9 showed equivalent fit, the strictest (most

parsimonious) model was chosen, i.e. the partial structural (factor covariance and mean) in-

variance model with the following goodness of fit indexes:

• RMSEA: 0.030 (90% confidence interval 0.020-0.039)

• CFI: 0.974

• TLI: 0.973

• SRMR: 0.083

Table 3.9: Longitudinal confirmatory factor (LFA) analsysis with six continuous outcomes (463 observations).
Abbreviations: LL=loglikelihood, LRT=likelihood ratio test, P=partial, res. var.= residual variance, Cov=covariance.
LRT tests for the invariance models are against the less constrained model above

Invariance Constraints across time LL (df) LRT RMSEA (90% CI) CFI SRMR

Configural - -9109.729(75) - 0.034(0.024-0.044) 0.974 0.070
Metric loadings -9112.857(65) p=0.793 0.032(0.021-0.041) 0.916 0.079
Scalar intercepts -9118.517(55) p=0.333 0.031(0.021-0.040) 0.975 0.076
P. res. var. all res. var. but TMTB -9125.521(45) p=0.173 0.031(0.021-0.040) 0.973 0.083
P. factor cov. factor cov. and mean but -9125.552(43) p=0.969 0.030(0.020-0.039) 0.974 0.083
and mean 1 cov.
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The estimated loadings are all above 0.4 shown in Table 3.10.

Items Estimate (SE) p-value
Unstandardised Standardised

(same across time) baseline end-of-treat follow-up

LNS 2.887 (0.214) 0.732 (0.034) 0.739 (0.034) 0.728 (0.037) <0.001
CATFLU 3.374 (0.335) 0.659 (0.044) 0.667 (0.043) 0.655 (0.046) <0.001
FAS N 7.077 (0.693) 0.601 (0.045) 0.609 (0.045) 0.597 (0.047) <0.001
log(TMTA) -0.382 (0.024) -0.773 (0.026) -0.780 (0.025) -0.770 (0.027) <0.001
log(TMTB) -0.550 (0.030) -0.892 (0.021) -0.896 (0.021) -0.823 (0.031) <0.001
WCST PE -10.015 (0.986) -0.480 (0.041) -0.488 (0.041) -0.476 (0.041) <0.001

Baseline end-of-treatment follow-up

Factor variance 1.000 ( - ) 1.041* (0.039) 0.977* (0.082)
Factor means 0.000 ( - ) 0.297* (0.032) 0.297* (0.032)

Table 3.10: Partial structural invariance model parameter estimates (n=463, six items, one
factor at three time points). The unstandardised estimates were the same across time. The
star sign * indicates <0.001

LFA Conclusion The 1-factor LFA analysis on six continuous items (measuring memory, pro-

cessing speed and executive function: LNS, CATFLU, FAS, log(TMTA), log(TMTB) and WCST

PE) and three time points (baseline, end-of-treatment and follow-up, see Figure 3.2 and Table

3.10) tested partial structural invariance showing a good fit (see Table 3.9). This suggested that

the structural model was a reliable measure of the underlying cognition construct.
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Figure 3.2: LFA model for the latent summary measure of cognitive abilities across 3 time points (six items).
Single-headed arrows indicate the hypothesized relationships between items and factor. Standardized loadings
are shown next to each path. Double-headed arrows represent covariation between two variables. The correlation
coefficient is shown above the double headed arrows. The errors of the item regressions on the factors are omitted.
Circles represent latent factors and the rectangles represent the observed items.*= < 0.001.
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Factor scores and their meta-analysis: results

Figure 3.3: Random effects meta-analysis of factor scores

In the next step, I estimated the factor scores for the latent measure of memory, processing

speed and executive function separately at baseline and end-of-treatment. The cross-sectional

CFAs used to compute the factor scores (FS) at baseline and at the end-of-treatment, on the

6-items structure (LNS, CATFLU, FAS, log(TMTA), log(TMTB) and WCST PE) confirmed in the

LFA, had all standardised loadings above 0.4 and showed acceptable fit:

• CFA at baseline (454 observations): RMSEA = 0.064 (90% CI 0.036-0.094), CFI = 0.957

and SRMR = 0.050

• CFA at end-of-treatment (411 observations): RMSEA = 0.058 (90% CI 0.026-0.090), CFI

= 0.966 and SRMR = 0.061

The obtained FS were strongly correlated across time (ρ = 0.836) and they were slightly

skewed. FS were standardised to mean 0 and variance 1. Looking at the standardised FS

means within treatment groups (CRT vs TAU), I can see that cases seem to improve between

baseline and end-of-treatment while controls seem to worsen (see Table 3.11).
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Table 3.11: Standardised factor scores statistics within treatment group

Factor scores

Time point Mean (Var) Range

CRT (n=209) Control (n=202) CRT (n=209) Control (n=202)

Baseline 0.021 (0.988) -0.022 (1.014) -3.281 to 2.402 -4.049 to 2.314
end-of-treatment 0.099 (0.991) -0.103 (1.001) -3.337 to 2.452 -4.592 to 2.189

Meta-analysis of factor scores: results Figure 3.3 illustrates a forest plot for cognitive factor

scores for memory, processing speed and executive function, depicting an overall significant

positive effect of CRT of 0.207 (effect size (ES), 95% confidence interval: 0.024 to 0.390, p-

value = 0.027). The I2 was 0.5%, suggesting that almost all variance of the effect size could

be explained by sampling variance and not by study differences, which were very small. Also

the Q statistic for the test of heterogeneity yielded a p-value of 0.420, confirming that there was

no evidence of heterogeneity between trials. This result provides justification to the decision of

not including the study site as a covariate in the prediction models I developed.

Factor scores for Fiszdon (Model 1) In this paragraph, factor scores for the external valida-

tion of the prediction models to develop were computed. Because LNS and CATFLU were not

measured in this study and they were needed to compute the baseline and end-of-treatment

outcome factor scores (see Section 3.3.1), I used the values for LNS and CATFLU measured

on 23 out of the 75 patients before and after receiving CRT in a separate RCT by the same prin-

cipal investigator Fiszdon (‘Fiszdon 2’, ‘Efficacy of Social Cognition Training in Schizophrenia

(DCTRS)’, see Subsection 3.1.1).

The mean percentage of missing data at baseline for these six outcomes was 23% (range

0-69), and similarly at the end-of-treatment it was 24% (0-70).

In order to compute the factor scores for Fiszdon’s data, Muthén and Muthén on the Mplus

discussion suggested to rerun the analysis by inputting the new data constraining all param-

eters to be fixed as in the 6-item CFA models at baseline and end-of-treatment (B. Muthén

and L. Muthén n.d.). The obtained CFAs fits were almost good at baseline, but poor at the

end-of-treatment:

• CFA at baseline (75 observations): RMSEA = 0.057 (90% confidence interval: 0.000-

0.132), CFI = 0.943 and TLI = 0.939;

• CFA at end-of treatment (64 observations): RMSEA = 0.127 (90% confidence interval:

0.058-0.194), CFI = 0.789 and TLI = 0.774.
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The factor scores for Fiszdon were only slightly skewed and again a pattern of improvement

in the cases and worsening in the controls could be observed (see Table 3.12)

Table 3.12: Standardised factor scores statistics within treatment group for the study ‘Fiszdon
1’

Factor scores for the study ‘Fiszdon 1’

Time point Mean (Var) Range

CRT (n=41) Control (n=23) CRT (n=41) Control (n=23)

Baseline 0.1272 (0.9124) -0.2544 (1.1193) -1.8186 to 2.2052 -3.3604 to 1.7102
end-of-treatment 0.2119 (0.8742) -0.3778 (1.0413) -1.8214 to 2.0506 -3.2973 to 1.6046

3.3.2 MissForest-Lasso precision medicine models: results

Step 1: Prediction problem definition and potential predictors inspection

Model 1: I aimed to identify moderators of CRT success through the development of a precision

medicine prediction model from individual data of the seven RCTs described in the section

3.1.1, using the method MissForest-Lasso studied in the previous chapter 2. The outcome

of interest was the summary cognitive measure of memory, processing speed and executive

function in patients accessing CRT compared to controls at the end-of-treatment (see section

3.2.1). Predictors were studies and patients characteristics including demographics, quality

of life, symptom data, global cognition, the outcome measured before treatment (all baseline

variables) and interactions between all these baseline variables and treatment type. For the

literature about moderators of CRT, see Section 1.1.3.

Models 2a and 2b: the aims were 1) to develop a precision medicine model for CRT suc-

cess by using the same data and in the same way as Model 1, but with the observed cognitive

measure Wisconsin Card Sorting Test number of Perseverative Errors (WCST PE) instead of

a latent outcome as a dependent variable; 2) to study the applied performance of MissForest-

Lasso with and without missing data in the dependent variable. WCST PE measures executive

function and is one of the most clinically important cognitive measure. In our case it was also

the cognitive outcome with least missing data (14%). It was included in the development of

factor scores for the latent summary measure, but while the latent factor was predominantly

correlated with log(TMTB) (standard loadings > 0.82), WCST PE was only moderately cor-

related with the factor (approximately -0.48). WCST PE was therefore substantially different

from the factor as a cognitive measure. However, WCST PE was only measured in six out of

seven studies (‘Keefe’ was excluded). The distribution of WCST PE was slightly skewed (<
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1.5) at both baseline and end-of-treatment, but showed similar distributions across time and

treatment arms. A transformation of the outcome was therefore not necessary. Raw statistics

showed an improvement (i.e. less perseverative errors) in WCST PE from baseline to the end-

of-treatment, which seems to be greater in cases than in controls (see Table 3.13). Baseline

WCST PE correlated 0.63 with WCST PE at the end of treatment.

Table 3.13: WCST PE statistics within treatment group

WCST PE

Time point Mean (Var) Range

CRT (n=212) Control (n=198) CRT (n=212) Control (n=198)

Baseline 29.94 (404.41) 30.13 (495.76) 3 to 96 4 to 94
end-of-treatment 24.52 (420.06) 27.05 (405.86) 4 to 95 4 to 96

Model 2a only included individuals having the outcome (N=356) and Model 2b also included

individuals in the six studies with missing outcome (N=410) and required the imputation of

missing outcome.

Step 2: Optimal coding of predictors

The number of categorical and ordinal variables with small number of observations within a

level (1 or 2 people, e.g. in the variable ‘additional psychiatric diagnosis’) was 49. Thus, levels

were collapsed in a reasonable way in order to have at least 10 people per category.

Step 3: Model specification

After dropping the baseline variables with more than 70% missing data, the mean percentage

of missing data (including missing data by design) was 39% among the baseline predictors.

The number of study information variables excluded because they were perfectly multicollinear

with at least one variable was 44 (not including the dummy-coded terms for the categorical

variables), thus only 24 study information variables were left in the model (see Table 3.1). In

agreement with the clinician, I also removed six categorical medicine data variables because

the number of levels was greater than seven and they were therefore of little predictive useful-

ness (for example: the different antipsychotic medicine used by patients).

Model 1: Model 1 had the summary cognitive measure as a dependent variable, i.e. the

factor scores computed in the factor analysis on six cognitive outcomes CATFLU, FAS, LNS,

WCST, log(TMTA), log(TMTB) (see 3.2.1). The model’s linear predictor included 112 baseline
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variables plus the intercept and all the 2-way interaction terms with the treatment variable. The

predictors in the model after the above exclusions were the following:

• baseline outcome factor scores

• baseline cognitive outcomes CATFLU, FAS, LNS, WCST, log(TMTA), log(TMTB)

• treatment : ‘Comparison condition’ - Reference category (RC), ‘Cognitive Remediation

condition’

• patients demographics (see Table 3.3):

– gender: ‘male’ (RC),‘female’

– baseline age

– race: ‘White’ (RC), ‘Asian’, ‘Black’, ‘Other’

– education category: ‘secondary education’ (RC),‘primary education or less’, ‘ter-

tiary/further education’

– education years

– primary diagnosis: ‘Undifferentiated SCZ’ (RC), ‘Acute and transient psychotic dis-

order’, ‘Disorganized SCZ’, ‘Paranoid SCZ’, ‘Psychotic disorder suggestive of SCZ’,

‘Other’, ‘Schizophrenia’

– marital status: ‘single/unmarried’ (RC), ‘married’, ‘separated/divorced/widowed’

– time since 1st contact: ‘more than 10 years’ (RC),‘6-10 years’,‘2-5 years’,‘1 year’

– time since 1st hospitalization: ‘more than 10 years’ (RC),‘6-10 years’,‘2-5 years’,‘1

year’

• baseline global cognition variables (see Table 3.3):

– Ammons Quick Test (AQT) for the Intelligence Quotient (IQ)

– WAIS digit-symbol

– WAIS vocabulary

• medication variables:

– Chlorpromazine (see Table 3.3)

– Depot (injectable): ‘no’ (RC), ‘yes’

– Generation: ‘Atypical’ (RC), ‘Typical’
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• Symptom data:

– the 30 PANSS measures (7 positive, seven negative and 16 general measures, Kay,

Fiszbein, and Opler 1987)

– 4 summary PANSS measures (general, positive, negative, total, Kay, Fiszbein, and

Opler 1987)

– 5 summary PANSS factors (negative, excitement, cognitive, positive and depression,

Lindenmayer, Bernstein-Hyman, and Grochowski 1994)

• Quality of life measures:

– 3 RSE (confirmation, deprecation and total score - alternative scoring)

– 22 SBS measures

• 24 study information variables, see Table 3.1

Therefore, after transforming the categorical variables into dummies, there were 278 covari-

ates in the model.

As a result of the Factor Analysis in the Subsection 3.2.1, the observations used to train the

model were 411, each of which had a factor score estimated (i.e. the dependent variable was

complete).

Models 2a and 2b: the model specification for Models 2a and 2b were the same as for

Model 1, apart from the fact that no baseline observed cognitive outcomes were included in the

linear predictor but WCST PE, i.e. the values of the dependent variable at baseline. Overall

the model had 106 baseline variables, i.e. 266 covariates and was trained on 356 individuals

in Model 2a and on 410 individuals in Model 2b.

Correlation matrix The correlations between the variables in the model specification were

usually small to moderate with only a few strong correlations (see Figure D.1 in the Appendix).

Step 4: Model estimation

Model 1: The first part of MissForest-Lasso combined method, consisting of the MissForest

imputation algorithm (Stekhoven and Buhlmann 2012), computed random forest models with

the default settings (37 predictors sampled for splitting at each node of a tree with continuous

dependent variables and 10 for trees with categorical dependent variables).
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The second part of the method, i.e. the Lasso model, was fitted to the imputed data with

bootstrap tuning (100 bootstrap samples and 40 values for the tuning parameter λ, range 0.001-

2.500).

The estimated Lasso coefficients for Model 1 are shown in Table 3.14. The tuning param-

eters minimising the MSE in the bootstrap resampling with the four different tolerance levels

were: best λ = 0.0453, one SE λ = 0.0554, 3% tolerance λ = 0.1012 and 15% tolerance λ =

0.2761.

The best λ model selected 28 covariates (without counting the intercept, including 9 interac-

tions), the one SE model similarly selected 22 (5 interactions), the 3% tolerance model selected

11 (1 interaction) and the 15% tolerance model selected only the baseline outcome.

Table 3.14: Model 1 estimated coefficients for the selected variables are shown. The esti-
mates corresponding to four different λs were given: λ minimising the MSE, the 1 SE λ and λs
giving the MSE within 3% and 15% of the minimum respectively. The word ‘other’ was used
to indicate the union of a categorical variable levels for which the dummy was not selected.
The colon ‘:’ indicates an interaction. All the interaction terms are shown below the separating
horizontal line. The star sign * means that the estimates were less than |10−4| in absolute
value: 0<0.0001*<0.0001 and -0.0001<-0.0001*<0. These coefficients can be regarded as
neglectable.

Covariate Model 1

Best λ 1 SE tol λ 3% tol λ 15% tol λ

Intercept 2.5832 2.3270 1.5138 -0.0038
Age -0.0031 -0.0022

Race, Black vs ‘other’ -0.0082
Education category, primary or less vs ‘other’ -0.1443 -0.1286 -0.0270

Education Years 0.0067 0.0042
Time since 1st Contact, ‘2-5 years’ vs ‘other’ 0.0444 0.0403

PANSS uncooperativeness (G8) 0.0062
SBS Slowness 0.0041

WAIS digit-symbol -0.0020 -0.0010
log(TMTA) -0.4719 -0.4230 -0.2659
log(TMTB) -0.3125 -0.2813 -0.1829
Cognition 0.3060 0.3538 0.4957 0.5827

Strategy training technique rank order, 3rd vs ‘other’ -0.0595 -0.0385
Errorless learning technique rank order, No central vs ‘other’ 0.0247 0.0399 0.0255
Verbal Memory target rank order, No priority target vs ‘other’ 0.0011 0.0011 0.0001∗

3rd vs ‘other’ -0.0014 -0.0013 -0.0001∗

CR sessions delivered one-on-one, yes vs no -0.0001∗

Target follow-up, 24 weeks vs ‘other’ -0.0709 -0.0702 -0.0384
no follow-up vs ‘other’ 0.0103 0.0065 0.0001∗

CATFLU 0.0161 0.0127 0.0014
LNS 0.0536 0.0484 0.0358

CRT:Race, Other vs ‘White or Asian or Black’ -0.0759 -0.0020
CRT:Time since 1st Contact, ‘6-10 years’ vs ‘other’ -0.1195 -0.0572

‘1 year’ vs ‘other’ 0.0245
CRT:PANSS social avoidance (G16) 0.0280 0.0194

CRT:PANSS suspiciousness (P6) 0.0056 0.0026
CRT:SBS laughing 0.0009

CRT:Metacognitive training technique rank order, No central vs ‘other’ 0.0007
CRT:Doctoral-level clinicians, yes vs no 0.0008

CRT:Duration of CRT (weeks) 0.0004 0.0006 0.0002
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Models 2a and 2b: MissForest was run using the same default settings as in Model 1,

only the numbers of predictors sampled for splitting at each node of a tree with continuous

dependent variables changed from 37 to 35 because there were less predictors compared to

Model 1 (see formula in Subsection 3.2). Also the Lasso had the same bootstrap tuning settings

as in Model 1, only the range for λ changed: 0.316-5.012.

The estimated Lasso coefficients for Models 2a and 2b are shown in Table 3.16. The best λ

models selected 12 and 16 covariates (including one interaction, without counting the intercept)

for Models 2a and 2b respectively (11 covariates were in common, not the interaction); the one

SE λ models selected 7 and 8 (no interactions, 6 covariates in common), the 3% tolerance

models retained 4 and 5 variables (no interactions, 4 covariates in common) and the both the

15% tolerance models chose only the baseline outcome. The tuning parameters minimising

the MSE are presented in Table 3.15.

Table 3.15: Models 2a and 2b tuning parameters.

Model
Tuning parameter

best λ 1 SE λ 3% λ 15% λ

Model 2a 1.7317 2.4678 3.5169 5.0119
Model 2b 1.5029 2.1418 3.0522 5.0119

Table 3.16: Models 2a and 2b estimated unstandardised coefficients for the selected variables
are shown. The estimates corresponding to four different λs were given: λ minimising the MSE,
the 1 SE λ and λs giving the MSE within 3% and 15% of the minimum respectively. The word
‘other’ was used to indicate the union of a categorical variable levels for which the dummy was
not selected. The colon ‘:’ indicates an interaction. The star sign * means that the estimates
were less than |10−4| in absolute value: 0<0.0001*<0.0001 and -0.0001<-0.0001*<0. These
coefficients can be regarded as neglectable.The highlighted rows correspond to the covariates
selected by both the models.

Outcome = WCST PE Model 2a Model 2b

Covariate Best λ 1 SE tol λ 3% tol λ 15% tol λ Best λ 1 SE tol λ 3% tol λ 15% tol λ

Intercept 8.5566 13.3485 15.2644 15.0965 10.1934 14.2627 17.0385 15.9746
Age 0.0240 0.0271

Education category, primary or less vs ‘other’ 0.5729 1.1970 0.4715
Education Years -0.0363 -0.0008

Time since 1st Contact, ‘2-5 years’ vs ‘other’ -0.4113
AQT for IQ -0.0236 -0.0427 -0.0272 -0.0255 -0.0398 -0.0415

PANSS abstract thinking (N5) 1.3109 0.7427 0.0686 1.2594 0.8163 0.1455
PANSS lack of judgement (G12) 0.0058

PANSS poor rapport (N3) 1.1483 0.4413 0.7675 0.2976
PANSS social avoidance (G16) -0.1498 -0.3707

PANSS suspiciousness (P6) -0.0600
PANSS lack of spontaneity (N6) 0.3273 0.0901

SBS concentration 0.0544
Metacognitive training, No central vs ‘other’ -3.2742 -0.6417 -0.8744

Duration of CRT (weeks) -0.0127 -0.0469 -0.0394 -0.0098
Target follow-up, 24 weeks vs ‘other’ 2.8428 2.6128 1.3634 3.7705 3.4089 2.3948

WCST Perseverative Errors 0.4587 0.4487 0.4282 0.3703 0.4190 0.4141 0.4018 0.3369

CRT:Gender, female vs male 0.4552
CRT:Time since 1st Contact, ‘2-5 years’ vs ‘other’ -0.1768
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Step 5: Model performance

Data imputation performance Model 1: The performance of MissForest imputation was

acceptable: the NRMSE was 0.5172 and the PFC was 0.0529 (see Method’s Subsection 3.2.2,

Step 6, for benchmarks for good performance). Models 2a and 2b: the NRMSEs were 0.4804

and 0.4863, and the PFCs 0.0418 and 0.0378 respectively.

Apparent performance Model 1: The apparent discriminative and calibrative performance

(see Section 1.2.1 for definitions) are shown in Table 3.17. The increase in the apparent MSE

with increasing tolerance level was small for the tolerance levels up to 3% (outcome vari-

ance=1). In fact, the apparent pseudo-R2 showing a good apparent discrimination for these

penalties. Also, the apparent calibration was good: the slope β was always just above 1 for the

same low tolerance models and the calibration-in-the-large α was close to 0 in all models.

According to the apparent calibration performance, predicted and observed cognition values

agreed reasonably well with each other (see Figure 3.4).

Table 3.17: Model 1 apparent performance: the mean squared error (MSE), the pseudo-R2,
the calibration slope β and the calibration-in-the-large α are shown. The star sign * means
that the estimates were less than |10−4| in absolute value: 0<0.0001*<0.0001 and -0.0001<-
0.0001*<0.

Apparent Performance
Model 1

best λ 1SE λ 3% λ 15% λ

Apparent MSE 0.2433 0.2539 0.2885 0.3791
Apparent pseudo-R2 0.7567 0.7461 0.7115 0.6209

Apparent β 1.0809 1.0929 1.1524 1.4953
Apparent α 0.0001* 0.0001* 0.0001* -0.0001*
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Figure 3.4: Model 1 predictions versus observed outcome values for the best λ model, the one
SE, the 3% and the 15% tolerance models. Apparent calibration lines are shown.

Models 2a and 2b: The apparent discrimination and calibration measures are presented

in Table 3.18. The apparent pseudo-R2 indicated that Model 2a explained at most 46% of the

outcome variance with the best penalty. The apparent calibration slope (> 1) together with the

calibration-in-the large α revealed underfitting of the data in all models 2a (see Figure 3.5).

The 3% tolerance Model 2a performed slightly worse in prediction accuracy relative to the best

Model 2a, compared to the 3% tolerance and best factor scores models 1. The performance

was slightly better when the outcome missing data were imputed in Model 2b (see Table 3.18,

the apparent calibration lines for Model 2b are in Figure D.2 in the appendices).
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Figure 3.5: Model 2a predictions versus observed outcome values for the best λ model, the
one SE, the 3% and the 15% tolerance models. Apparent calibration lines are shown.

Apparent performance Model 2a Model 2b

best λ 1SE λ 3% λ 15% λ best λ 1SE λ 3% λ 15% λ

Apparent MSE 224.8601 238.7501 257.3441 275.4046 199.9324 211.7426 227.6079 253.4311
Apparent pseudo-R2 0.4562 0.4226 0.3777 0.3340 0.5165 0.4879 0.4863 0.3871

Apparent β 1.2182 1.2954 1.4085 1.6493 1.2041 1.2759 1.3824 1.7063
Apparent α -5.6216 -7.6117 -10.5242 -16.7294 -5.2209 -7.0584 -9.7840 -18.0706

Table 3.18: Model 2a and 2b apparent performance: the mean squared error (MSE), the
pseudo-R2, the calibration slope β and the calibration-in-the-large α are shown. The star sign
* means that the estimates were less than |10−4| in absolute value: 0<0.0001*<0.0001 and
-0.0001<-0.0001*<0.
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Step 6: Model validated performance

Internal validation Model 1: The bootstrap-corrected estimates of performance are shown in

Table 3.19. The pseudo-R2 after correction was only slightly lower than the apparent measure

Table 3.19: Model 1 bootstrap-corrected performance: the mean squared error (MSE), the
pseudo-R2, the calibration slope β and the calibration-in-the-large α are shown.

Performance
Model 1

best λ 1SE λ 3% λ 15% λ

Corrected MSE 0.2474 0.2585 0.2929 0.3803
Corrected pseudo-R2 0.7526 0.7415 0.7071 0.6197

Corrected β 1.088 1.0982 1.1553 1.4959
Corrected α -0.0017 -0.0010 -0.0012 0.0002

for the best and low tolerance level models, indicating good discrimination. The models also

resulted well calibrated after correcting for optimism. Validated discrimination and calibration

measures were all only slightly lower than the apparent measures, suggesting that there was

little bias due to overfitting.

Models 2a and 2b: again there was little estimated optimism so that the bias-corrected

performance estimates were very similar to the apparent performance estimates (see Table

3.20). Model performance was better for Model 2b with imputed missing outcomes.

Table 3.20: Models 2a and 2b bootstrap-corrected performance: the mean squared error
(MSE), the pseudo-R2, the calibration slope β and the calibration-in-the-large α are shown.

Performance Model 2a Model 2b

best λ 1SE λ 3% λ 15% λ best λ 1SE λ 3% λ 15% λ

Corrected MSE 225.0474 239.3642 258.8875 275.5891 200.2395 212.0586 227.9758 253.4845
Corrected pseudo-R2 0.4558 0.4211 0.3739 0.3335 0.5158 0.4872 0.4487 0.3870

Corrected β 1.2150 1.2938 1.4068 1.6477 1.1990 1.2743 1.3851 1.7133
Corrected α -5.5555 -7.5781 -10.4812 -16.6936 -4.9801 -6.9487 -9.8222 -18.2273

External validation In order to externally validate the models, I used the data from the CRT

randomised controlled trial ‘Fiszdon 1’ (Fiszdon et al. 2016) as test set (75 patients).

Some variables selected by the developed models (see Tables 3.14 and 3.16) were not

available in ‘Fiszdon 1’:

• cognitive outcomes: LNS, CATFLU

• time since 1st contact

• education category
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• Ammons Quick Test (AQT) for the IQ

• SBS laughing

• WAIS digit-symbol

I could then only externally validate the 15% tolerance models as they only selected the

baseline outcome as predictors (see Table 3.14).

WCST PE for the study ‘Fiszdon 1’ There seemed to be an improvement in the outcome

WCST PE at the end of treatment among cases in the study ‘Fiszdon 1’ (see Table 3.21). The

scores in the controls seemed to worsen after TAU and they had very large variance compared

to the cases. The correlation of WCST PE measured at baseline with the values measured at

the end-of-treatment was 0.8619.

Table 3.21: WCST PE statistics within treatment group for the study ‘Fiszdon 1’

WCST PE for the study ‘Fiszdon 1’

Time point Mean (Var) Range

CRT (n=40) Control (n=23) CRT (n=40) Control (n=23)

Baseline 19.5000 (279.6837) 33.1200 (699.1933) 4 to 94 7 to 94
end-of-treatment 16.7250 (182.2558) 35.3913 (736.4308) 5 to 89 5 to 89

Model performance on external data Model 1: With the computed factor scores for ‘Fiszdon

1’ as outcome and baseline covariate, I ran the 15% tolerance model on the external data and

obtained the following measures of performance:

• Pseudo-R2 = 0.6952

• Calibration slope β = 1.4847

The baseline outcome alone here explained about 70% of the variance of the outcome.

The calibration slope larger than one showed how the model was underfitting the data. This

result was not very far from the 15% tolerance original model performance, even though it

had better pseudo-R2 (see Table 3.19). However, the internal and external optimisms (see

Table 2.1 for definitions) for the MSE, for the calibration slope and for the calibration-in-the-

large were very different: the external optimism estimates were much larger than the internal

optimism estimates, meaning that applying the model to new data will be likely not to replicate

the accuracy results obtained with the original model:

• MSE: internal optimism = -0.0012 vs external optimism = 0.0744;
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• Calibration slope: internal optimism = -0.0006 vs external optimism = 0.0106;

• Calibration-in-the-large: internal optimism = -0.0002 vs external optimism = 0.0022.

Covariate Model 1

Uncalibrated coef. Re-calibrated coef.

Intercept 1.513 1.7477
Education category, primary or less vs ‘other’ -0.0578 -0.0680

log(TMTA) -0.2659 -0.3084
log(TMTB) -0.1829 -0.2125
Cognition 0.4957 0.5715

Errorless learning technique rank order, No central vs ‘other’ 0.0255 0.0282
Verbal memory target rank order, No priority target vs ‘other’ 0.0001∗ -0.0012

Target follow-up, 24 weeks vs ‘other’ -0.0384 -0.0456
no follow-up vs ‘other’ 0.0001∗ -0.0012

CATFLU 0.0014 0.0004
LNS 0.0358 0.0402

CRT:Duration of treatment 0.0002 -0.0010

Table 3.22: Final (3% tolerance) Model 1 uncalibrated and re-calibrated coefficients (coef).
The word ‘other’ was used to indicate the union of a categorical variable levels for which the
dummy was not selected. The colon ‘:’ indicates an interaction. The star sign * means that
the estimates were less than |10−4| in absolute value: 0<0.0001∗ <0.0001 and -0.0001<-
0.0001∗ <0.

Models 2a and 2b: The 15% tolerance model consisted of intercept and baseline outcome

for both Models 2a and 2b (see Table 3.16). The estimated coefficients were slightly different

between the two models. The externally validated performances were again poor if I consider

the large divergence between internal and external optimism:

• Pseudo-R2 = 0.6096 and 0.5670 for Model 2a and 2b respectively;

• Calibration slope β = 2.7004 and 2.9684 for Model 2a and 2b respectively.

Step 7: Model presentation

Model 1: I recalibrated the 3% tolerance model with the optimism-corrected calibration mea-

sures in Table 3.19, and presented the 12 recalibrated coefficients in Table 3.22.

The final model variable selection performance suggested that there was one moderator

of CRT: the duration of CRT intervention (in weeks). Selected potential predictors of memory,

processing speed and executive function were:

• education category (‘primary or less’ vs ‘other’)

• 4 out of 6 cognitive outcomes (log(TMTA), log(TMTB), CAFLU and LNS) and the summary

measure of the outcomes at baseline (cognition in Table 3.22)
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• 3 study information variables (4 covariates):

– rank order of importance of errorless learning technique (‘No central to the interven-

tion’ vs ‘Central to the intervention’)

– rank of importance for verbal memory target (‘No priority target’ vs ‘Priority target’)

– Target interval between post-treatment and 1st follow-up assessment in weeks (3

levels: ‘no follow-up’, ‘24 weeks’, ‘52 and 12 weeks’; selected contrasts: ‘no follow-

up’ vs ‘52 and 12 weeks’, and ‘24 weeks’ vs ‘52 and 12 weeks’)

Models 2a and 2b: the 3% models did not select any interaction terms failing to deliver

precision medicine predictions (see Table 3.16). The recalibrated coefficients are in Table D.1

in the Appendix. Three of the retained covariates were in common between Models 2a and 2b

other then the baseline outcome WCST PE:

• Ammons Quick Test (AQT) for the IQ

• PANSS abstract thinking

• Target interval between post-treatment and 1st follow-up assessment in weeks (‘24 weeks’

vs ‘52 weeks, 12 weeks or no follow-up’)

Results showed that MissForest-Lasso when imputing missing outcomes slightly outperformed

the complete outcome cases MissForest-Lasso in prediction accuracy. Also, variable selection

remained stable between the two models. Only Model 2b selected one more potential predictor:

the study specific information variable measuring the planned duration of CRT.

3.3.3 Secondary analysis: results

The final prognostic (i.e. with assumption of no moderation of treatment) Model 3 (outcome =

factor scores), Model 4a (outcome = WCST PE complete) and Model 4b (outcome = WCST PE

with missing data) returned similar accuracy and variable selection results to Models 1, 2a and

2b respectively (see Tables 3.23, 3.24 and D.2 and D.3 in the Appendix).

By comparing variable selection and accuracy of Model 3 and Model 1, it was clear that the

potential moderator selected by Model 1 (duration of treatment in weeks, see Table 3.22) was

very weak. In fact, all variables retained by Model 1 were also chosen by Model 3 apart from

the moderator which was not included in Model 3 specification, and the prediction accuracy

was very close. All coefficients were similar between models (compare Tables 3.22 and D.2

in the Appendix). Only two more variables (study-specific variables) were selected by Model 3
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and not by Model 1: the planned session duration in minutes (90 vs 60) and the indicator for

one-to-one delivery of CRT session, although their effect was very weak (see Table D.2 in the

Appendix).

The results from Models 4a and 4b confirmed the variable selection of Models 2a and 2b

which did not select any interaction term (see Tables D.1 and D.3 in the Appendix)

Table 3.23: Model 3 bootstrap-corrected performance: the mean squared error (MSE), the
pseudo-R2, the calibration slope β and the calibration-in-the-large α are shown.

Performance
Model 3

best λ 1SE λ 3% λ 15% λ

Corrected MSE 0.2542 0.2637 0.2933 0.3803
Corrected pseudo-R2 0.7458 0.7363 0.7067 0.6197

Corrected β 1.0840 1.0950 1.1547 1.4959
Corrected α -0.0017 -0.0012 -0.0014 0.0002

Table 3.24: Models 2a and 2b bootstrap-corrected performance: the mean squared error
(MSE), the pseudo-R2, the calibration slope β and the calibration-in-the-large α are shown.

Performance Model 4a Model 4b

best λ 1SE λ 3% λ 15% λ best λ 1SE λ 3% λ 15% λ

Corrected MSE 225.0474 239.3642 258.8875 275.5891 195.5025 209.2188 223.5056 255.1736
Corrected pseudo-R2 0.4558 0.4211 0.3739 0.3335 0.5272 0.4940 0.4595 0.3829

Corrected β 1.2150 1.2938 1.4068 1.6477 1.1805 1.2598 1.3731 1.7194
Corrected α -5.5555 -7.5781 -10.4812 -16.6936 -4.5059 -6.5711 -9.5142 -18.3826

External validation for Models 3, 4a and 4b was done on the 15% tolerance models be-

cause again some of the model selected variables were not available in the external data from

the study ‘Fiszdon 1’. As the 15% tolerance models only had the intercept and the baseline

outcome in the linear predictor similarly to the Models 1, 2a and 2b, and the estimated coeffi-

cients were very similar, the externally validated performance for Models 3, 4a and 4b was very

similar (poor) as the one of Models 1, 2a and 2b.

3.3.4 Results: summary

The developed precision medicine Model 1 with a summary measure of executive function,

processing speed and memory as outcome had good internally validated discrimination and

calibration (i.e. the 3% tolerance λ model performance in Table 3.19). However, only one

potential moderator was selected: duration of treatment in weeks. Moreover, the final Model 1

could not be externally validated because some of the variables in the linear predictor were not
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measured in the external data study. External performance for the model corresponding to the

15% tolerance λ was too optimistic compared to the internally validated performance.

When the outcome was the observed executive function measure WCST PE, Model 2a

(complete outcome) and Model 2b (individuals with missing outcome included) did not show

good performance (see 3% tolerance λ model performance in Table 3.20), failed to be validated

externally and did not select any moderators. However, the variable selection was consistent

between these two models (see Table D.1) and the prediction accuracy was slightly better for

Model 2b with missing outcome, meaning that MissForest imputation adjusted for some of the

bias induced in the complete outcome cases analysis.

Assuming absence of moderation, the prognostic Models 3, 4a and 4b (the outcomes be-

ing the summary cognitive measure, WCST PE complete cases and WCST PE with missing

data respectively) performed similarly to the corresponding Models 1, 2a and 2b in both pre-

diction accuracy and variable selection. This result suggested that the only selected putative

moderator was weak and not of clinical importance.

There was one variable selected in all six models (common among the potential predictors

of summary factor scores and WCST PE): the study information variable measuring the target

interval between post-treatment and 1st follow-up assessment in weeks.

3.4 Discussion and conclusions

The purpose of this chapter was to identify moderators of Cognitive Remediation Therapy (CRT)

response in people with SCZ and to develop a robust precision medicine prediction model using

individual participant data from seven randomised controlled trials (RCT). The potential predic-

tors and moderators were baseline variables: patients demographics, cognition, symptoms,

quality of life, study information characteristics and all their interactions with treatment type.

Study information variables were included in order to adjust for any potential between study

heterogeneity.

Three different MissForest-Lasso precision medicine models were developed: Model 1,

Model 2a and Model 2b. The initial model specifications were the same, but Model 1 had

a summary measure of executive function, processing speed and memory as outcome, while

Model 2a and Model 2b had the executive function measure Wisconsin Card Sorting test Perse-

verative Errors (WCST PE) as a dependent variable. Model 2a performed a complete outcome

analysis and Model 2b also included individuals with missing outcome in order to compare

MissForest-Lasso performance with and without missing outcome values. Only Model 1 in-
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cluded a moderator, while the other two models were purely prognostic. While Model 1 showed

good internally validated prediction accuracy, Models 2a and 2b performed poorly. None of the

models were successfully validated externally due to limited data.

The factor scores of the summarised measure employed as outcome in Model 1 were com-

puted using separate cross-sectional confirmatory factor analyses (CFAs) at each of the 3

different time points. The CFAs had a fixed factorial structure across time which was previously

tested for longitudinal invariance. The 1-factor CFAs presented very good fits, but reliability and

validity were not tested (see Subsection 3.2.1). The meta-analysis of factor scores presented

a significant effect size result (0.21, 95% confidence interval: 0.02 to 0.39), while no one of the

six cognitive outcomes implicated in the computation of the factor scores showed any signifi-

cant effect of CRT at the end-of-treatment in the seven single study published analysis results

(Wykes, Reeder, Corner, et al. 1999, Wykes, Reeder, Landau, Everitt, et al. 2007, Wykes,

Newton, et al. 2007, Bell et al. 2008, Keefe et al. 2012, Keshavan et al. 2008 and Reeder et al.

2017). The latent variable estimated factor scores summarising these six outcomes seemed to

be more precise and capture the positive overall effect of CRT in the different domains (memory,

processing speed and executive function) considered altogether. This significant positive effect

of CRT for the factor scores in the seven trials meta-analysis was consistent with the 40-studies

meta-analysis by Wykes, Huddy, et al. (2011), which showed a significant effect size of 0.45

(95% confidence interval: 0.31–0.59) for the outcome global cognition. However, there was no

evidence of heterogeneity of outcome between the seven studies in the meta-analysis of factor

scores, as in contrast there was in the meta-analysis by Wykes, Huddy, et al. (2011). In fact,

the factor scores prediction model only identified one weak moderator.

The only potential moderator of CRT selected by Model 1 was the study information variable

measuring the planned therapy duration. This variable was considered as a putative treatment

moderator also in the literature (McGurk et al. 2007 and Wykes, Huddy, et al. 2011). The re-

calibrated model (see Table 3.22) indicated that planned shorter duration of CRT seemed to

be associated with increased cognitive abilities at the end of treatment. However, by rerunning

Model 1 without interaction terms in the model specification (no moderation assumption, see

Model 3 in Subsection 3.3.3), the prediction accuracy and the variable selection results were

very similar. This showed the weakness of the moderation effect. Since planned therapy du-

ration can be seen as a proxy for study quality and had a small effect, it was of little use for a

precision medicine model.

Some of the selected potential predictors in Model 1 were widely acknowledged by previous

research, in particular:
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• higher baseline cognitive status is predictive of improved cognition at the end-of-treatment

(Kurtz et al. 2009, Lindenmayer, Ozog, et al. 2017). Not only were the baseline factor

scores selected, but also four out of six of the single observed outcomes from which the

factor scores were computed were potential predictors: log(TMTA), log(TMTB), CATFLU

and LNS.

• education category contribution in the prediction suggests that those who have higher

levels of education may be more responsive to treatment (Lindenmayer, Ozog, et al.

2017, Barnett et al. 2006, Koenen et al. 2009 and Ramsay et al. 2018)

Model 1 also selected three study characteristics variables as potential predictors:

• Rank order of verbal memory target (no priority vs priority target): when verbal memory

was one of the least important treatment targets, the patients from that study seemed to

have lower end-of-treatment cognitive improvement compared to studies having verbal

memory as priority target as most important technique in the intervention. From a clinical

point of view, this may indicate that targeting memory in the treatment delivery has a

good repercussion on the recovery of cognitive abilities. However, only the study ‘Bell’

had verbal memory as the least important treatment target. When characteristics are

unique to one study, then it is not possible to distinguish between study site and study

characteristics if there is no variation within study.

• Rank order of errorless learning technique: if the errorless training technique was not

central to the intervention in a trial, CRT seemed to have better results on cognition than

in the trials where such a technique was the most important in the treatment delivery.

• Target interval between post-treatment and 1st follow-up assessment in weeks (3 levels:

‘no follow-up’, ‘24 weeks’, ‘52 and 12 weeks’): the two selected contrasts (see Table

3.22) suggested that trials having planned a follow-up after 12 or 52 weeks, delivered a

more effective treatment on the cognitive outcome compared to trials with no follow-up or

with 24 weeks between end-of-treatment and follow-up. This variable was selected in all

models and could be seen as a proxy for methodological trial quality.

The study characteristics variables seemed to adjust well for differences between trails.

It is interesting to note that the variable selection performance of all models suggested a

weak effect of CRT on the outcome measure as the treatment type variable was never selected.

This is consistent with the small significant effect size of CRT effect in the seven studies’ meta-

analysis.
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According to the simulation study in Chapter 2, the developed MissForest-Lasso models

having a model specification of 278 covariates for Model 1 (411 observations) and 266 covari-

ates for Model 2a/b (356 and 410 observations respectively), with a correlation matrix of mainly

low correlations between variables (see Figure D.1 in the Appendix) and a mean percentage of

missing data of approximately 40%, should have an almost acceptable variable selection per-

formance and a poor prediction accuracy. The tendency for these models would be underfitting

the data by delivering more parsimonious models in terms of selected variables. However, be-

ing 3% tolerance models, these models have been shown to yield a positive predictive value of

selection of approximately 80%. Therefore, I assume that the selected variables are predictors

of the outcome with 80% probability. On the other hand, the underfitting nature of Models 2a/b

(Model 1 resulted in good prediction accuracy) should promote generalisability to new data.

This might explain why the external validation of the developed 15% tolerance models was

optimistic compared to the internal validation.

The Lasso has recently been used to examine predictors of cognitive improvement in re-

sponse to CRT for patients with recent onset SCZ in order to overcome the problem of overfitting

a model by including a large number of predictors relative to sample size (Ramsay et al. 2018).

However, the analysis was run on a single study data of 42 patients all undertaking the active

treatment, with only 10 pre-selected covariates in the model. Therefore, the analysis had less

power than the present analysis and could not identify potential moderators. Moreover, Ram-

say et al. 2018 worked on complete datasets without tackling the problem of missing data as I

did.

Limitations for this analysis were the following:

• I could not assess measurement invariance of the latent summary measure of cognition

factorial structure also across studies as I did across time, because of limited data (large

proportion of missingness by design). This analysis would have given a more robust

structure for our latent outcome. Also the CFAs were not conducted on independent

datasets, as it should be done to achieve more validity.

• Models 2a (only individuals with the outcome) and 2b (also individuals with missing out-

come) had similar variable selection performances and the prediction accuracy of Model

2b was slightly better than Model 2a, suggesting that MissForest-Lasso corrected for the

complete outcome cases analysis bias. However, Chen and Wang (2013) in their simula-

tion study showed that deleting incomplete observations in a complete cases Lasso anal-

ysis yielded not only a much larger prediction error than MI-Lasso (group Lasso penalty
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combined with MICE), but also lower sensitivity of selection, especially when missing data

were MAR. In our case, Model 2a was only restricted to complete outcome cases and not

to all complete cases, so that the bias induced in the analysis was lower compared to a

complete cases analysis. A simulation study comparing complete outcome cases analy-

sis with outcome imputation analysis for MissForest-Lasso would be needed to formally

assess variable selection in this case.

• The large amount of missing data due to drop out and by design certainly introduced bias

in all the analyses run in the chapter (FA and MissForest-Lasso model). In the FA, the

factor scores were estimated with the Bartlett Method, which is based on regression esti-

mators and is not very efficient in presence of missing data. Factor scores estimated with

expected posterior-weighted (full) maximum likelihood methods would have been signifi-

cantly more reliable than regression estimators when large percentages of missing data

were present (Estabrook and Neale 2013). However, this technique was not implemented

in the softwares available for the project. MissForest-Lasso showed relatively good per-

formance if data were MAR, but I cannot exclude MNAR data, as missingness due to

drop out will induce more bias under this assumption. A further simulation study scenario

analysing MissForest-Lasso under the MNAR assumption would be useful to understand

how biases are managed.

• There was some bias in the estimation of the factor scores using the Bartlett method,

because I developed the cross-sectional CFA models using the factorial structure sug-

gested by the longitudinal factor analysis, in which baseline informed the factor model at

end-of-treatment and follow-up. As a results, internal validated estimates of prediction

accuracy for the develop model might still be too optimistic.

• As factor scores for the outcome could have been computed also at follow-up, a longi-

tudinal MissForest-Lasso prediction model could have been developed. The advantage

of such a model would be the analysis of the CRT durable effect on cognition. However,

only experimental R packages running longitudinal regularised regression were available

at the time of the analysis. Therefore, I limited my model to only predict end-of-treatment

outcome from baseline scores. Recently, the promising R package lmmen has been pub-

lished (2017) and it will be possible to develop longitudinal lasso models to predict CRT

cognitive improvement at each time point longitudinally in order to emphasize the durabil-

ity of the CRT effect on cognitive abilities (McGurk et al. 2007, Wykes, Huddy, et al. 2011,

Fiszdon et al. 2016)
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• Because of lack of data, a proper leave-site-out validation (Steyerberg and Harrell 2016)

was not run. It is recommended that a leave-site-out validation is conducted to explore

geographic transportability of the model results.

• A rigorous clinical usefulness analysis for continuous outcomes need to be developed in

order to understand whether the developed model is more useful than the ‘treat all’ or

‘treat none’ default policies. However, due to the poor prediction accuracy of Models 2a/b

and the failed external validity for Model 1, a clinical usefulness analysis would not be

meaningful.

• A limitation for assessing variables for clinical practice was not being able to provide in-

ference estimates for Lasso. Although inferential statistics for Lasso have been proposed

(Lockhart et al. 2014 and Hastie 2015), this inference estimates are vulnerable to substan-

tial bias and not yet safe to use from the current experimental statistical packages (e.g.

R package covTest). Therefore, there is not evidence for the model selected variables

to be significant predictors or moderators of CRT. They can only be treated as potential

predictors and moderators to be tested in future research. Recently, permutation tests

p-values have been developed which can be used for such purposes (Arbet et al. 2017).

To the best of my knowledge, there is no literature about precision medicine models for

psychiatric data able to identify moderators of treatment, even though moderators were found

in meta-regression analyses (McGurk et al. 2007 and Wykes, Huddy, et al. 2011, see Sub-

section 1.1.3). For precision medicine prediction to work, it is recommended that more data

modalities are used in the model specification, such as brain imaging data, genetics, OMICS

data altogether with demographics, symptoms, medicine and quality of life data (Bzdok and

Meyer-Lindenberg 2018 and Eyre, Singh, and Reynolds 2016).

3.4.1 Conclusion

It is safe to conclude that the developed MissForest-Lasso prediction medicine model (Model

1) had good internally validated discrimination and calibration. However, there was not enough

signal in the data for moderation, and external validation and impact assessments are still re-

quired before the model is deployed for use as a decision support tool. The strongest prognostic

factor was the baseline outcome.

Future studies should use a reliable and validated scale of cognitive outcomes and include

putative predictors and moderators from a larger range of data modalities.



Chapter 4

Final discussion and conclusion

There has been considerable progress in clinical psychology and psychiatry in recent decades

(Dwyer, Falkai, and Koutsouleris 2018). A large number of risk prediction models using statis-

tics and machine learning have been proposed with good internal and external validated per-

formances (Bernardini et al. 2017). For example, criteria have been developed and validated

for prevention of schizophrenia (SCZ), to identify individuals at risk of onset of psychosis (i.e.

clinical high-risk or prodromal adolescents and young adults) and to follow them over time

(Koutsouleris et al. 2016). However, psychotherapeutic or pharmaceutical treatments for men-

tal illnesses are generally effective in only 30–50% of patients (Dwyer, Falkai, and Koutsouleris

2018). Therefore, a shift towards tailoring psychiatric treatment for individual patients or sub-

groups of patients with similar characteristics is needed through precision medicine (Wium-

Andersen et al. 2016). Nevertheless, to date only a few precision medicine models are known

in psychiatry and, to my knowledge, none have been developed for SCZ’s psychological treat-

ment Cognitive Remediation Therapy (CRT, Wykes, Brammer, et al. 2002). Precision medicine

models would predict CRT heterogeneity among patients and allow a patient to be assigned

the most likely best treatment.

This PhD project aimed to improve the methodology for precision medicine models and to

apply them to a clinical data set. Specifically, the two main purposes of the project were:

• to develop a precision medicine prediction model using statistical learning methods (Hastie,

Tibshirani, and Friedman 2008) combined with imputation techniques able to yield good

variable selection performance and to deal with large percentages of missing data in the

predictors, and lower percentages of missing data in the outcome,

• to find moderators of CRT in people with SCZ using individual participant data of multiple

randomised controlled trials.
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In attempting the above aims, I had to address the following statistical problems: having a

large number of variables relative to sample size, overfitting, multicollinearity, variable selection

or measurement of variable importance in the model, dimension reduction of commensurate

outcomes and longitudinal invariance of a latent factor.

Using simulations mimicking a variety of plausible settings of data in clinical trials (see

Chapter 2), I compared the accuracy and variable selection performance of different modelling

techniques combining statistical learning methods such as Least Absolute Shrinkage and Se-

lection Operator (Lasso, Tibshirani 1996), Elasticnet (Zou and Hastie 2005), Random Forests

(Breiman 2001) and Conditional Inference Random Forests (Strobl, Boulesteix, et al. 2008)

with two missing data imputation techniques: Multivariate Imputation using Chained Equations

(MICE, Van Buuren and Oudshoorn 2000) and the non-parametric Random Forests imputa-

tion MissForest (Stekhoven and Buhlmann 2012). I demonstrated that MissForest imputation

was superior in handling missing data than MICE. The combined methods MissForest-Lasso

and MissForest-Conditional Random Forests yielded the best prediction accuracy performance

among the other methods when in presence of high percentages of missing data in the predic-

tors (up to 40% on average) and lower percentages of missing data in the outcome (up to 20%),

especially when variables were strongly correlated. These two methods outperformed Lasso

and Elasticnet combined with MICE, and Elasticnet combined with MissForest. MissForest-

Lasso and MissForest-Conditional Random Forests performance demonstrated a good trade-

off between prediction accuracy and interpretability as the Lasso naturally performs variable

selection and Random Forests returns a measure of variable importance according to the fea-

ture contribution in predictions. MissForest-Conditional Random Forests always ranked the true

predictors as top variables.

Hastie et al. (2008) suggest the use of the one-standard error penalty (also called tolerance

penalty) for Lasso regression models as a rule of thumb to achieve better variable selection,

instead of the use of the best penalty minimising the error. However, they did not provide any

mathematical proof or experimental justification for the rule. Musoro et al. 2014 also advised

to choose the Lasso model corresponding to an even stronger penalty, giving an error within

3% of the minimum, in order to correct for model selection inconsistency. They presented a

simulation study to support their recommendation. In my simulations, I compared both one-

standard error and 3% tolerance penalties variable performance with the best penalty and a

15% tolerance penalty. The simulation results suggest that when the vector of true predictors is

sparse and there are many variables relative to sample size, the so called 3% tolerance penalty

model performs better in variable selection than the one-standard error penalty recommended
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by Hastie et al. (2008) with similar prediction accuracy.

Both Lasso and Random Forests (like most statistical learning methods) allow the analy-

ses of a large number of variables relative to sample size, therefore these methods could be

used to develop precision medicine models for CRT, including all the psychiatric baseline vari-

ables (demographics, symptoms, medicine, quality of life, study information, baseline cognitive

outcomes) and their interactions with treatment type even though the sample size was rela-

tively small (278 covariates vs 411 observations). Bias due to overfitting in the models was

corrected with bootstrap internal validation as for Harrell, Lee and Mark (1996). However, if

there was strong multicollinearity (correlation of 0.8 between variables), the Lasso’s variable

selection performance decreased and Conditional Random Forests worked better in ranking

all true predictors as most important variables. From my simulation results, I deduce that an

ideal correlation matrix for a reliable feature selection for Lasso is given by low to moderate

correlations among true predictors and between true predictors and noise variables.

In the simulations with strong correlation (0.8) between predictors and irrelevant covariates,

MissForest-Lasso feature selection performed inconsistently, but with good prediction accuracy.

This happened because, if noise variables are highly correlated with the true predictors, their

correlations with the outcome are on average almost as strong as the true predictors’ correlation

with the outcome. Random sampling may cause that false predictors are slightly better ones

and then tend to be selected by Lasso model selection. As the wrongly retained fake predictors

are still predictive (even in a new data set), a good prediction accuracy is still obtained, which

is similar to MissForest-Conditional Random Forests accuracy.

MissForest-Lasso was chosen as the most suitable method to develop a precision medicine

model for CRT as, when the number of potential predictors is large, the variable selection pro-

cess allows clinical use and interpretability. For example, when the analysis involves data ob-

tained through questionnaires and multiple time consuming individual tests, MissForest-Lasso

variable selection will allow the number of tests to be measured on new patients by clinicians

for predicting new outcomes to be reduced and more manageable. In contrast, MissForest-

Conditional Random Forest requires all the variables in the initial model specification to be

measured in order to make predictions and be of use for clinicians. Therefore, it is not an ideal

method for prediction, as it is often not feasible or too expensive collecting large amounts of

data and patients can only be assessed for a limited amount of time. MissForest-Conditional

Random Forests would be more suitable for OMICS and MRI data analysis. However, it is im-

portant to notice that, in this PhD project, these methods were not assessed for extremely large

datasets as bioinformatics, neuroimaging or genetics data, where thousands of variables with
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relatively small sample sizes are involved.

I identified an error in the code of MICE-Lasso by Musoro et al. (2014, see the Appendix

Section B.1) and the replication of their simulations showed that MICE-Lasso selection perfor-

mance was not as good as published. The failed variable selection performance of MICE-Lasso

in presence of missing data was due to averaging the selected coefficients across imputed

datasets, which resulted in a final model including almost all variables, without distinction be-

tween true predictors and noise variables. This happened because the false predictors with

missing data were made more correlated to the outcome through MICE and were therefore

selected. A secondary analysis running multiple MissForest-Lasso imputation was performed

to compare variable selection with MICE-Lasso for some scenarios (see Figure A.4 comparing

single MissForest imputation with ten MissForest imputations in the Appendix). The induced

correlation between variables with missingness and the outcome was reduced in MissForest

imputation compared to MICE, as discussed in Section 2.3. This confirms the superiority of the

MissForest algorithm, which predicts missing data in a more accurate way than MICE, through

iterative random forests models, when data are complex. For example, Shah et al. (2014)

suggest the use of MissForest instead of MICE for complex epidemiological data.

I applied MissForest-Lasso to develop a precision medicine model for CRT using individual

participant data from seven RCTs. I successfully conducted a factor analysis to obtain factor

scores from a latent summary measure of commensurate cognitive outcomes as a dependent

variable. Although reliability was not measured for the factorial structure of the latent measure,

longitudinal invariance was tested and the structure was confirmed across time. My results

showed that the 3% tolerance MissForest-Lasso model had good internally validated perfor-

mance and selected only one potential moderator of treatment: the planned duration of CRT.

This variable was considered as a putative moderator in the literature (McGurk et al. 2007 and

Wykes, Huddy, et al. 2011). However, secondary analyses suggested that this potential mod-

erator effect was very weak and that the model could not be considered a precision medicine

model.

4.1 Limitations

4.1.1 Simulation study drawbacks

In the simulation methods, the outcome (complete or with missing data) was always used to

impute the missing data in the covariates through both MICE and MissForest imputation in

the model development. However, the inclusion of the outcome in the imputation model to
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develop a prediction model can be problematic. If the aim is predicting the outcome given the

covariates, filling in missing data in the covariates exploiting their correlation with the outcome

can introduce bias (optimism of the performance estimates). For this reason, Kuhn et Johnson

(2013) strongly advise not to include the outcome in the imputation model and to use imputation

methods (KNN, Troyanskaya et al. 2001 or bagged-trees imputation, Kuhn and K. Johnson

2013) which allow the missing data in the test set to be imputed from the information given by

the training set covariates only. The latter imputation methods can only be used when there are

enough complete records in the training dataset, which was not in this case. When I internally

or externally validated the models in the simulation study, the test or external data were always

imputed according to an imputation model iteratively built on themselves and not on the training

data. This is because MICE and MissForest specifically impute their input dataset for their

complex algorithmic nature. This is also the reason why the accuracy of the imputation for MICE

or MissForest is superior to other imputation methods. However, I applied bootstrap internal

validation in order to correct for bias in the estimation of the prediction accuracy performance.

In classical statistics it is valid to use multiple imputation for the outcome measure, but

depending on the assumptions it can be risky (Van Buuren 2007). When all covariates are

complete, and the outcome is incomplete, a correct imputation model will yield valid inferences

on the parameter estimates from the imputed data when accounting for the random error (Rubin

1981). Under a missing not at random (MNAR) assumption (i.e. missingness depends on

the unobserved data), the inferences obtained from just the complete records may be wrong.

Therefore, the imputation of the outcome is useful when we know or suspect that the data are

MNAR. Under the missing at random (MAR) assumption (i.e. missingness depends on the

observed data), there is no advantage to impute the outcome when the imputation model and

the substantive model coincide (i.e. the variables used for imputation are the same as included

in the main model), and the results may have large variance because of simulation error when

the number of imputations is small (Van Buuren 2007).

In prediction modelling, the NMAR assumption always challenges missing data imputation

techniques. I did not consider missing data under an NMAR assumption in the simulation study

and recommend to include such scenario in future studies to analyse the consequent prediction

accuracy and variable selection of the combined methods. Imputing data assumes MAR and

this assumption is often reasonable if a large number of variables are used for the imputation

model (Hippel and Lynch 2013). However, the best way to assess prediction bias is external

validation. If the combined model predicts well on new cases, the imputation step seems to

work.
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In the case of MissForest, I adopted single imputation. In classical statistics, single impu-

tation can give correct estimation of model parameters when there is no mean-variance rela-

tionship, but standard error estimates are biased towards zero, inflating type I error rates. This

is because single imputation is ‘optimistic’ about the extent of error that would be observed.

Multiple imputation for continuous covariates accounts for the random error we would have ob-

served, if we had retroactively measured these missing values. The Expectation Maximisation

(EM, Dempster, Laird, and Rubin 1977) algorithm works in a similar way by averaging over a

range of possible observed outcomes. Multiple imputation is a process of iteratively generating

additive error for conditional mean imputation, so that through a small number of imputations,

models and their errors can be combined to get correct estimates of model parameters and

their standard errors.

In prediction modelling, bias due to missing data uncertainty can be corrected through

optimism-correction via bootstrap internal validation including the imputation step in the re-

sampling scheme (Shao and Sitter 1996). However, the statistical learning imputation method

MissForest, by averaging over many unpruned classification or regression trees, intrinsically

can be seen as a multiple imputation scheme (Stekhoven and Buhlmann 2012). Nevertheless,

if the aim is assessing uncertainty of MissForest imputed values, another simulation study with

a multiple MissForest imputation scheme could be performed, where variables are selected via

the penalty Group-Lasso in order to manage the different imputed datasets variable selection

in a simple and sensible way (Chen and Wang 2013).

Since MICE is an iterative method based on Gibbs sampling, it is important to monitor con-

vergence of chains (sequences of draws of parameters and data from conditional distributions,

Van Buuren and Oudshoorn 2000). To assess convergence of multiple chains, the stationari-

ness of each chain by the end of the default burn-in period (5 iterations for the R package mice)

needs to be examined visually, by looking at trace plots of summaries of the imputed values

distribution (means and standard deviations) against iteration numbers. Also, looking at a small

number of different chains (imputations) for each imputed variable using a different set of ini-

tial values for each imputation is a further check of convergence and stability of the algorithm.

However, these checks were not done in our simulation study because of the time required to

do so.

As the selection of true moderators was an important aim in our thesis, the lack of infor-

mation on how MissForest-Random Forest ranked true moderators in the variable importance

measure in the 20-covariate scenario is a limitation of the simulation study.

Alternative models worth to be assessed in future simulation studies would be Bayesian
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Lasso (Park and Casella 2008) and Bayesian Networks (BNs, N. Friedman, Geiger, and Gold-

szmidt 1997). Unlike Lasso, Bayesian Lasso provides inference estimates on the selected

parameters to guide variable selection, which is performed using both Bayesian and likeli-

hood approaches. BNs is a machine learning algorithm which explicitly models the interde-

pendence between the variables under investigation through Bayesian learning algorithms that

discover the Bayesian structure and/or estimate parameter values from data. Like the Lasso

and Bayesian Lasso, BNs can perform variable selection (Tawfik and Goodwin 2004). Like Ran-

dom Forests, BNs can manage missing data (Niloofar and Ganjali 2014). Unlike RF and the

Lasso, BNs are able to represent uncertainty and causality. BNs decision models have already

been successfully used in psychiatry for supporting the diagnosis of dementia, Alzheimer’s dis-

ease and mild cognitive impairment using multiple study datasets with different attributes. This

analysis overcame problems with studies where some domains were measured with different

questionnaires (Seixas et al. 2014).

4.1.2 Limitations of precision medicine model development

I developed a precision medicine model with a latent summary measure of executive function,

processing speed and memory cognitive outcomes as the dependent variable. Factor scores

for this latent factor were computed in an unbiased way through the Bartlett method with re-

spective estimated standard errors. However, I used the factor scores as our outcome without

accounting for their standard errors and this generates bias. Factor scores computation was

done once for all in the factor analysis prior to developing the prediction model, without making

this scores estimation part of the bootstrap resampling process for internal validation, which

would have corrected for this bias. For this reason, I made sure that the two cross-sectional

confirmatory factor analysis (CFA) models, from which the scores were estimated, had very

good fits. Standard errors of factor scores for an individual are larger when there are missing

items (B. Muthén and L. Muthén n.d.), thus the high percentage of missingness by design in

our data influenced negatively the size of standard errors even though the CFAs fitted the data

well.

A correct bootstrap internal validation process for the factor scores would have estimated

the factor scores for each bootstrap dataset by generating different outcomes for each boot-

strap dataset model. However, this would have been done prior to MissForest imputation and

there would have been convergence problems in the factor analysis for a large proportions of

bootstrap datasets because of the missing data.

Another solution would have been using recently developed regularised structural equation
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models (Jacobucci, Grimm, and McArdle 2016), which would have accounted for all forms of

error and the imputation method would have been EM. Nevertheless, the problem with our data

remains the high percentage of missing data, thus also a regularised structural equation model

could have had convergence problems, which do not happen with MissForest.

In the precision medicine model I did not use a validated and reliable scale developed with

robust psychometrics methods for the dependent variable. This was not feasible, as it often

takes years and a large research team to develop an acceptable scale (Quirk et al. 2013).

In this thesis, the developed models did not necessarily include the main effects of the

interaction terms. This is the case in Lasso or Elasticnet regression when the coefficients are

shrunk to zero and are not included in the final model.

In inferential statistics, models with interaction effects should include the main effects of the

variables that were used to compute the interaction terms, regardless of the coefficients being

significantly different from zero or not. even if these main effects are not significantly different

from zero. Otherwise, main effects and interaction effects can get confounded: for example, if

one of the main effects is not in the model, the significance of the interaction could be due to

the absent main effect and not be reflective of an actual interaction. In fact, arbitrary changes

in the zero point of the original variables can result in important changes in the apparent effects

of the interaction terms.

However, in prediction modelling, the main purpose is to predict well and not to give a

causal interpretation. Lasso selects what is informative for prediction. If we consider Lasso as

a method to get the highest predictive performance with the smallest number of features, it is

acceptable that Lasso selects an interaction term but not the main effects. It simply means that

the main effects are not informative (their effect is zero), but interactions are (Hastie 2015).

Not including the main effects corresponding to the selected interaction terms in the CRT

Lasso model is therefore not a problem if the analysis aim is prediction modelling. However,

this piece of research was also interested in the interpretability of the model for use in clinical

practice, and excluding the main effects from the model limits an interpretation to this purpose.

It is possible to either include or exclude both main effect and interaction terms simultaneously

by using the Group-Lasso penalty which selects or omits groups of variables when potential

predictors are structured into groups known a-priori (Yuan and Lin 2011).
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4.2 Recommendations

Future research should consider a more theoretical rigorous approach to assess prediction

accuracy and variable selection of methods combining statistical learning and imputation tech-

niques, instead of only the use of simulations.

To improve precision models of CRT and explain heterogeneity of treatment success, more

modalities of data delivering sufficient phenotypic detail for the subjects, such as medical his-

tory, comorbities, progression in symptoms, genetics, neuroimaging and OMICS data, are re-

quired from a larger number of studies with a contained percentage of missingness (Bzdok and

Meyer-Lindenberg 2018 and Eyre, Singh, and Reynolds 2016).

I recommend to use a MissForest-Lasso model with a tolerance penalty corresponding

to an error within 3% of the minimum and not the best penalty (which gives the minimum

error) to correct for the Lasso model selection inconsistency in high dimensional data (Fan

and Lv 2009 and Zhao and Yu 2006). I also suggest to use this method when in presence of

complete outcome, with datasets with limited percentages of missing data and mixed low and

high correlations between variables, to have both good accuracy and variable selection results.

To overcome the challenge of highly correlated data with MissForest-Lasso, the perfor-

mance of the Semi-standard PArtial Covariance (SPAC, Xue and Qu n.d.) method should be

assessed instead of the Lasso, because it has been shown capable of diminishing correlated

effects from other covariates and still incorporating signal strength. SPAC showed better vari-

able selection performance than Lasso, adaptive Lasso and SCAD penalties.

It could be shown that the Lasso performs well for any degree of correlation if suitable

tuning parameters are selected (Hebiri and Lederer 2013), but my simulation results and other

studies (Fan and Lv 2009, Lu and Petkova 2014), have shown that feature variable selection

may underperform for situations in which there is high correlation between active variables and

noise terms. I, therefore, recommend using the Lasso method with care if variables are strongly

correlated. A variable preselection for retaining only one among highly correlated variables,

based on clinical expertise may be useful. Alternatively, if some strong correlation is present,

the highly correlated variable should still be considered as potential true predictor in trying to

understand the model.

Longitudinal analysis using statistical learning models such as penalised linear mixed mod-

els (Groll and Tutz 2012, Tutz and Groll 2011 and Schelldorfer, Meier, and Bühlmann 2014)

should be used for CRT precision medicine. Accounting for the correlation between follow-up

measures of the outcome and baseline and end-of-treatment at the same time in the model
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might give more power to the model to capture moderators of treatment effects.

4.3 Concluding remarks

This PhD project simulation study showed that the combined methods MissForest-Lasso and

MissForest-Conditional Random Forests have relatively good prediction accuracy and variable

selection or importance performance in datasets with a high number of variables relative to

sample size, with low to moderate correlations, when high percentages of missing data are

present in the predictors and lower percentages of missing data are present in the outcome.

This piece of research also attempted to identify moderators of CRT with a MissForest-

Lasso model applied to seven RCTs data without success, as there was no signal for mod-

eration in the available data. Different types of data and more studies will be needed for this

purpose in future research.
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Table A.1: Accuracy simulation study results for MICE-Lasso analysis with bootstrap validation on the remaining data for scenarios
S1-S2, based on 300 data sets of 20 variables each (n=250). Means of all estimates along with their corresponding 2.5th and 97.5th
percentile values within parenthesis. The theoretical MSE is 1.742 = 3.028

Estimates Complete cases MCAR MAR

Best model 10% tolerance 40% tolerance Best model 10% tolerance 40% tolerance Best model 10% tolerance 40% tolerance

MSEinternal 3.479 (3.236,3.710) 3.593 (3.345,3.826) 4.463 (4.158,4.763) 4.721 (4.390,5.050) 4.348 (4.048,4.614) 4.530 (4.185,4.833) 4.383 (4.071,4.642) 4.186 (3.893,4.424) 4.593 (4.255,4.912)
βLP∗ 1.002 (0.993,1.010) 1.102 (1.090,1.115) 1.290 (1.273,1.309) 0.871 (0.849,0.891) 0.970 (0.948,0.993) 1.175 (1.149,1.205) 0.918 (0.902,0.933) 1.016 (0.996,1.035) 1.218 (1.197,1.242)
αLP∗ -0.006 (-0.030, 0.016) -0.195 (-0.229,-0.160) -0.548 (-0.602,-0.489) 0.215 (0.167,0.259) 0.031 (-0.022,0.081) -0.349 (-0.408,-0.287) 0.130 (0.088,0.173) -0.054 (-0.105,-0.004) -0.433 (-0.501,-0.368)

Table A.2: Accuracy simulation study results for MICE-Lasso analysis with bootstrap validation on the remaining data for scenarios
S1-S2 based on 300 data sets of 20 variables each (n=1000). Means of all estimates along with their corresponding 2.5th and 97.5th
percentile values within parenthesis. The theoretical MSE is 1.742 = 3.028

Estimates Complete cases MCAR MAR

Best model 10% tolerance 40% tolerance Best model 10% tolerance 40% tolerance Best model 10% tolerance 40% tolerance

MSEinternal 3.137 (3.032,3.245) 3.182 (3.081,3.291) 4.125 (3.991,4.269) 3.361 (3.236,3.482) 3.342 (3.215,3.469) 4.111 (3.944,4.272) 3.366 (3.243,3.486) 3.360 (3.232,3.481) 4.168 (4.010,4.323)
βLP∗ 1.014 (1.010,1.017) 1.074 (1.069,1.080) 1.309 (1.301,1.319) 0.986 (0.982,0.990) 1.041 (1.035,1.047) 1.274 (1.263,1.283) 0.993 (0.989,0.997) 1.048 (1.042,1.054) 1.285 (1.274,1.294)
αLP∗ -0.027 (-0.038, 0.017) -0.141 (-0.155,-0.127) -0.584 (-0.613,-0.556) 0.020 (0.008,0.032) -0.084 (-0.097,-0.072) -0.525 (-0.551,-0.492) 0.014 (-0.000,0.028) -0.092 (-0.108,-0.076) -0.542 (-0.570,-0.512)
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Table A.3: Accuracy simulation study results for MICE-Lasso analysis with Harrell (1996) bootstrap validation: scenarios S1 (without
missing data, no assumption of moderation) and S2 (with missing data, complete outcome, no assumption of moderation) based on 300
data sets of 20 variables each (n=1000). Means of all estimates along with their corresponding 2.5th and 97.5th percentile values within
parenthesis. The theoretical MSE is 1.742 = 3.028

Estimates Complete cases

Best model 1 SE tolerance 3% tolerance 15% tolerance

MSEapparent 2.985 (2.718,3.274) 3.024 (2.749,3.317) 3.189 (2.887,3.509) 3.922 (3.542,4.295)
βLP 1.032 (1.022,1.041) 1.060 (1.050,1.072) 1.137 (1.118,1.156) 1.309 (1.263,1.354)
Tuning λ 0.034 (0.022,0.043) 0.064 (0.054,0.076) 0.144 (0.134,0.149) 0.324 (0.293,0.367)
MSEext 3.144 (3.505,3.757) 3.176 (3.543,3.795) 3.369 (3.256, 3.491) 4.244 (3.958,4.499)
Optimismext -0.159 (-0.433,0.149) -0.152 (-0.424,0.148) -0.180 (-0.480,0.123) -0.323 (-0.687,0.049)
Optimismint -0.107 (-0.136,-0.077) -0.074 (-0.120,-0.064) -0.074 (-0.101,-0.045) -0.077 (-0.112,-0.044)
MSEcorrected 3.092 (2.819,3.397) 3.116 (2.836,3.418) 3.264 (2.996,3.594) 3.998 (3.616,4.357)
βLP∗ 1.020 (1.014,1.025) 1.049 (1.040,1.056) 1.126 (1.111,1.141) 1.297 (1.255,1.335)

MCAR

MSEapparent 2.999 (2.650,3.398) 3.032 (2.682,3.437) 3.201 (2.823,3.630) 3.932 (3.486,4.443)
βLP 1.023 (1.016,1.031) 1.051 (1.042,1.062) 1.128 (1.113,1.148) 1.301 (1.261,1.345)
Tuning λ 0.026 (0.017,0.034) 0.055 (0.042,0.065) 0.135 (0.120,0.150) 0.317 (0.287,0.351)
MSEext 3.179 (3.107,3.284) 3.194 (3.111,3.303) 3.369 (3.230,3.552) 4.274 (3.943,4.686)
Optimismext -0.181 (-0.527,0.192) -0.162 (-0.506,0.192) -0.168 (-0.509,0.182) -0.315 (-0.673,0.081)
Optimismint -0.179 (-0.256,-0.108) -0.156 (-0.231,-0.089) -0.115 (-0.184,-0.054) -0.097 (-0.147,-0.043)
MSEcorrected 3.178 (2.819,3.605) 3.188 (2.830,3.617) 3.315 (2.935,3.756) 4.028 (3.588,4.553)
βLP∗ 1.005 (0.994,1.016) 1.033 (1.020,1.047) 1.110 (1.092,1.129) 1.281 (1.240,1.323)

MAR

MSEapparent 2.993 (2.654,3.324) 3.028 (2.686,3.363) 3.196 (2.842,3.551) 3.923 (3.477,4.351)
βLP 1.025 (1.017,1.032) 1.053 (1.042,1.063) 1.130 (1.114,1.147) 1.303 (1.263,1.343)
Tuning λ 0.027 (0.018,0.035) 0.057 (0.045,0.066) 0.137 (0.123,0.151) 0.318 (0.290,0.343)
MSEext 3.172 (3.101,3.265) 3.191 (3.111,3.292) 3.369 (3.241,3.538) 4.241 (3.918,4.605)
Optimismext -0.179 (-0.508,0.150) -0.163 (-0.501,0.149) -0.174 (-0.510,0.132) -0.318 (-0.706,0.066)
Optimismint -0.169 (-0.205,-0.138) -0.143 (-0.178,-0.110) -0.114 (-0.145,-0.084) -0.115 (-0.148,-0.077)
MSEcorrected 3.162 (2.819,3.504) 3.171 (2.825,3.519) 3.310 (2.942,3.667) 4.037 (3.591,4.474)
βLP∗ 1.019 (1.012,1.025) 1.038 (1.029,1.046) 1.097 (1.085,1.108) 1.228 (1.200,1.259)
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Table A.4: Accuracy simulation study results for MICE-Elasticnet analysis with Harrell bootstrap validation: scenarios S1 (without missing
data, no assumption of moderation) and S2 (with missing data, complete outcome, no assumption of moderation) based on 300 data sets
of 20 variables each (n=1000). Means of all estimates along with their corresponding 2.5th and 97.5th percentile values within parenthesis.
The theoretical MSE is 1.742 = 3.028

Estimates Complete cases

Best model 1 SE tolerance 3% tolerance 15% tolerance

MSEapparent 2.985 (2.716,3.270) 3.216 (2.900,3.545) 4.985 (4.031,5.513) 7.741 (6.571,8.406)
βLP 1.032 (1.024,1.043) 1.147 (1.111,1.199) 1.451 (1.356,1.542) 2.785 (1.981,3.406)
Tuning α 0.880 (0.700,0.900) 0.900 (0.900,0.900) 0.900 (0.900,0.900) 0.900 (0.900,0.900)
Tuning λ 0.038 (0.032,0.051) 0.170 (0.135,0.220) 0.558 (0.455,0.580) 1.487 (1.199,1.528)
MSEext 3.144 (3.096,3.206) 3.402 (3.233,3.645) 5.491 (4.479,6.069) 8.580 (7.621,9.216)
Optimismext -0.159 (-0.434,0.149) -0.186 (-0.479,0.113) -0.505 (-0.995,-0.044) -0.839 (-1.485,-0.180)
Optimismint -0.108 (-0.136,-0.077) -0.077 (-0.105,-0.047) -0.076 (-0.118,-0.038) -0.035 (-0.098,0.027)
MSEcorrected 3.093 (2.819,3.393) 3.293 (2.973,3.636) 5.061 (4.100,5.591) 7.776 (6.578,8.416)
βLP∗ 1.021 (1.015,1.026) 1.134 (1.105,1.158) 1.396 (1.301,1.470) 2.399 (1.916,2.945)

MCAR

MSEapparent 2.999 (2.650,3.398) 3.199 (2.762,3.630) 4.408 (3.389,5.318) 6.949 (4.889,8.163)
βLP 1.024 (1.018,1.032) 1.134 (1.086,1.177) 1.397 (1.255,1.496) 2.312 (1.703,3.045)
Tuning α 0.727 (0.380,0.895) 0.899 (0.880,0.900) 0.900 (0.900,0.900) 0.900 (0.900,0.900)
Tuning λ 0.035 (0.032,0.045) 0.176 (0.147,0.214) 0.525 (0.455,0.580) 1.417 (1.199,1.570)
MSEext 3.180 (3.108,3.285) 3.378 (3.190,3.636) 4.814 (3.683,5.805) 7.690 (5.577,8.930)
Optimismext -0.182 (-0.528,0.191) -0.178 (-0.513,0.168) -0.406 (-0.877,0.049) -0.742 (-1.350,-0.129)
Optimismint -0.181 (-0.258,-0.110) -0.136 (-0.215,-0.075) -0.104 (-0.157,-0.052) -0.061 (-0.121,-0.007)
MSEcorrected 3.020 (2.484,3.611) 3.496 (2.712,4.345) 4.555 (2.936,6.167) 6.919 (3.743,9,497)
βLP∗ 1.006 (0.995,1.018) 1.095 (1.063,1.128) 1.301 (1.217,1.391) 1.930 (1.626,2.345)

MAR

MSEapparent 2.993 (2.654,3.324) 3.203 (2.812,3.596) 4.508 (3.421,5.476) 7.108 (5.313,8.166)
βLP 1.026 (1.019,1.032) 1.138 (1.094,1.172) 1.409 (1.264,1.505) 2.370 (1.765,3.066)
Tuning α 0.761 (0.400,0.900) 0.899 (0.900,0.900) 0.900 (0.900,0.900) 0.900 (0.900,0.900)
Tuning λ 0.035 (0.032,0.043) 0.176 (0.147,0.210) 0.529 (0.455,0.580) 1.423 (1.199,1.528)
MSEext 3.173 (3.102,3.270) 3.384 (3.208,3.606) 4.932 (3.791,5.913) 7.872 (5.919,8.876)
Optimismext -0.180 (-0.509,0.150) -0.182 (-516,0.129) -0.424 (-0.860,-0.017) -0.765 (-1.307,-0.174)
Optimismint -0.164 (-0.250,-0.096) -0.122 (-0.192,-0.053) -0.098 (-0.149,-0.043) -0.056 (-0.113,-0.003)
MSEcorrected 3.158 (2.842,3.510) 3.325 (2.948,3.734) 4.606 (3.528,5.586) 7.163 (5.382,8.198)
βLP∗ ) 1.010 (0.999,1.019) 1.105 (1.073,1.134) 1.327 (1.239,1.410) 2.040 (1.684,2.446)
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Table A.5: Accuracy simulation study results for MICE-Lasso analysis with Harrell bootstrap validation: scenarios S3 (assumption of
moderation, without missing data) and S4 (assumption of moderation, with missing data, complete outcome) based on 300 data sets of 20
variables each (n=1000). Means of all estimates along with their corresponding 2.5th and 97.5th percentile values within parenthesis. The
theoretical MSE is 1.742 = 3.028

Estimates Complete cases

Best model 1 SE tolerance 3% tolerance 15% tolerance

MSEapparent 2.966 (2.697,3.251) 3.009 (2.733,3.302) 3.181 (2.885,3.500) 3.911 (3.528,4.338)
βLP 1.033 (1.026,1.040) 1.052 (1.044,1.061) 1.109 (1.097,1.125) 1.240 (1.211,1.276)
Tuning λ 0.041 (0.031,0.049) 0.066 (0.054,0.076) 0.137 (0.119,0.149) 0.298 (0.262,0.328)
MSEext 3.182 (3.114,3.268) 3.217 (3.140,3.311) 3.419 (3.292,3.555) 4.312 (4.017,4.612)
Optimismext -0.216 (-0.487,0.092) -0.208 (-0.475,0.101) -0.238 (-0.541,0.063) -0.401 (-0.765,-0.050)
Optimismint -0.169 (-0.205,-0.138) -0.143 (-0.177,-0.110) -0.114 (-0.145,-0.084) -0.114 (-0.148,-0.077)
MSEcorrected 3.135 (2.850,3.440) 3.152 (2.863,3.457) 3.295 (2.995,3.617) 4.025 (3.638,4.472)
βLP∗ 1.019 (1.012,1.025) 1.038 (1.029,1.046) 1.097 (1.085,1.108) 1.228 (1.200,1.259)

MCAR

MSEapparent 3.320 (2.906,3.716) 3.363 (2.941,3.769) 3.558 (3.112,4.002) 4.386 (3.836,4.927)
βLP 1.030 (1.023,1.036) 1.050 (1.043,1.058) 1.110 (1.098,1.124) 1.248 (1.217,1.284)
Tuning λ 0.039 (0.031,0.046) 0.065 (0.055,0.073) 0.141 (0.126,0.156) 0.318 (0.284,0.351)
MSEext 3.338 (3.221,3.502) 3.386 (3.252,3.570) 3.652 (3.456,3.904) 4.772 (4.335,5.275)
Optimismext -0.019 (-0.426,0.377) -0.024 (-0.435,0.366) -0.095 (-0.493,0.274) -0.387 (-0.827,0.046)
Optimismint -0.237 (-0.318,-0.148) -0.209 (-0.287,-0.124) -0.168 (-0.235,-0.091) -0.154 (-0.207,-0.094)
MSEcorrected 3.557 (2.924,4.557) 3.572 (2.971,4.629) 3.726 (3.109,4.818) 4.540 (3.910,6.027)
βLP∗ 1.013 (1.004,1.021) 1.034 (1.024,1.043) 1.094 (1.081,1.107) 1.232 (1.202,1.264)

MAR

MSE apparent 3.253 (2.899,3.611) 3.296 (2.941,3.656) 3.488 (3.114,3.873) 4.297 (3.846,4.751)
βLP 1.029 (1.023,1.035) 1.050 (1.043,1.057) 1.109 (1.096,1.122) 1.245 (1.216,1.277)
Tuning λ 0.038 (0.030,0.045) 0.063 (0.054,0.073) 0.138 (0.124,0.151) 0.311 (0.287,0.337)
MSEext 3.310 (3.193,3.446) 3.350 (3.217,3.488) 3.594 (3.384,3.801) 4.659 (4.258,5.067)
Optimismext -0.057 (-0.407,0.295) -0.054 (-0.405,0.289) -0.106 (-0.482,0.234) -0.362 (-0.787,0.081)
Optimismint -0.224 (-0.304,-0.147) -0.197 (-0.276,-0.125) -0.159 (-0.235,-0.090) -0.150 (-0.210,-0.087)
MSEcorrected 3.610 (2.886,4.346) 3.670 (2.929,4.429) 3.847 (3.088,4.641) 4.837 (3.938,5.964)
βLP∗ 1.014 (1.004,1.023) 1.034 (1.024,1.044) 1.094 (1.080,1.108) 1.230 (1.202,1.260)
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Table A.6: Accuracy simulation study results for MICE-Elasticnet analysis with Harrell bootstrap validation: scenarios S3 (assumption of
moderation, without missing data) and S4 (assumption of moderation, with missing data, complete outcome) based on 300 data sets of 20
variables each (n=1000). Means of all estimates along with their corresponding 2.5th and 97.5th percentile values within parenthesis. The
theoretical MSE is 1.742 = 3.028

Estimates Complete cases

Best model 1 SE tolerance 3% tolerance 15% tolerance

MSEapparent 2.966 (2.697,3.254) 3.186 (2.849,3.550) 5.410 (4.367,5.953) 9.898 (8.468,10.788)
βLP 1.033 (1.027,1.040) 1.111 (1.086,1.157) 1.398 (1.317,1.468) 2.228 (1.793,2.548)
Tuning α 0.881 (0.800,0.900) 0.900 (0.900,0.900) 0.900 (0.900,0.900) 0.900 (0.900,0.900)
Tuning λ 0.046 (0.040,0.051) 0.154 (0.135,0.220) 0.565 (0.455,0.580) 1.497 (1.199,1.528)
MSEext 3.183 (3.114,3.267) 3.426 (3.260,3.685) 6.119 (4.858,6.945) 11.203 (9.975,12.007)
Optimismext -0.217 (-0.489,0.091) -0.240 (-0.534,0.057) -0.709 (-1.242,-0.238) -1.305 (-2.137,-0.498)
Optimismint -0.171 (-0.205,-0.140) -0.121 (-0.153,-0.088) -0.127 (-0.171,-0.089) -0.078 (-0.158,-0.002)
MSEcorrected 3.137 (2.855,3.442) 3.307 (2.952,3.691) 5.537 (4.502,6.079) 9.976 (8.547,10.838)
betaLP∗ 1.019 (1.014,1.025) 1.102 (1.076,1.121) 1.323 (1.230,1.397) 1.942 (1.628,2.238)

MCAR

MSEapparent 3.319 (2.906,3.716) 3.652 (3.168,4.123) 5.806 (4.781,6.742) 9.981 (8.221,11.591)
βLP 1.030 (1.024,1.036) 1.134 (1.105,1.170) 1.405 (1.325,1.498) 2.356 (1.895,3.179)
Tuning α 0.841 (0.619,0.900) 0.900 (0.900,0.900) 0.900 (0.900,0.900) 0.900 (0.900,0.900)
Tuning λ 0.047 (0.037,0.060) 0.198 (0.150,0.259) 0.618 (0.542,0.739) 1.605 (1.430,1.906)
MSEext 3.339 (3.220,3.504) 3.787 (3.501,4.147) 6.547 (5.188,7.451) 11.298 (9.376,12.730)
Optimismext -0.020 (-0.426,0.378) -0.135 (-0.522,0.250) -0.741 (-1.290,-0.160) -1.316 (-2.206,-0.482)
Optimismint -0.239 (-0.319,-0.149) -0.175 (-0.247,-0.096) -0.153 (-0.212,-0.092) -0.092 (-0.169,-0.015)
MSEcorrected 3.558 (3.104,4.002) 3.827 (3.316,4.351) 5.959 (4.930,6.911) 10.073 (8.334,11.678)
βLP∗ 1.015 (1.006,1.023) 1.106 (1.080,1.129) 1.318 (1.239,1.394) 1.991 (1.700,2.390)

MAR

MSEapparent 3.253 (2.902,3.610) 3.584 (3.143,4.046) 5.666 (4.671,6.591) 9.781 (8.063,11.094)
βLP 1.030 (1.024,1.035) 1.133 (1.104,1.167) 1.395 (1.321,1.461) 2.264 (1.905,2.843)
Tuning α 0.831 (0.609,0.900) 0.900 (0.900,0.900) 0.900 (0.900,0.900) 0.900 (0.900,0.900)
Tuning λ 0.046 (0.037,0.063) 0.197 (0.149,0.258) 0.603 (0.536,0.715) 1.568 (1.445,1.822)
MSEext 3.311 (3.194,3.446) 3.725 (3.484,4.040) 6.373 (5.163,7.289) 11.072 (9.293,12.179)
Optimismext -0.059 (-0.407,0.294) -0.141 (-0.503,0.203) -0.707 (-1.262,-0.157) -1.292 (-2.202,-0.489)
Optimismint -0.225 (-0.306,-0.149) -0.166 (-0.240,-0.098) -0.150 (-0.206,-0.097) -0.093 (-0.165,-0.014)
MSEcorrected 3.478 (3.088,3.886) 3.750 (3.262,4.212) 5.816 (4.842,6.754) 9.874 (8.116,11.142)
betaLP∗ 1.016 (1.006,1.025) 1.106 (1.081,1.127) 1.312 (1.233,1.385) 1.945 (1.657,2.263)
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Table A.7: Accuracy simulation study results for MICE-Lasso analysis with Harrell bootstrap validation: scenarios S3 (assumption of
moderation, without missing data) and S5 (assumption of moderation, with missing data also in the outcome) based on 300 data sets of 20
variables each (n=1000). Means of all estimates along with their corresponding 2.5th and 97.5th percentile values within parenthesis. The
theoretical MSE is 1.742 = 3.028

Estimates Complete cases

Best model 1 SE tolerance 3% tolerance 15% tolerance

MSEapparent 2.966 (2.697,3.251) 3.009 (2.733,3.302) 3.181 (2.885,3.500) 3.911 (3.528,4.338)
βLP 1.033 (1.026,1.040) 1.052 (1.044,1.061) 1.109 (1.097,1.125) 1.240 (1.211,1.276)
Tuning λ 0.041 (0.031,0.049) 0.066 (0.054,0.076) 0.137 (0.119,0.149) 0.298 (0.262,0.328)
MSEext 3.182 (3.114,3.268) 3.217 (3.140,3.311) 3.419 (3.292,3.555) 4.312 (4.017,4.612)
Optimismext -0.216 (-0.487,0.092) -0.208 (-0.475,0.101) -0.238 (-0.541,0.063) -0.401 (-0.765,-0.050)
Optimismint -0.169 (-0.205,-0.138) -0.143 (-0.177,-0.110) -0.114 (-0.145,-0.084) -0.114 (-0.148,-0.077)
MSEcorrected 3.135 (2.850,3.440) 3.152 (2.863,3.457) 3.295 (2.995,3.617) 4.025 (3.638,4.472)
βLP∗ 1.019 (1.012,1.025) 1.038 (1.029,1.046) 1.097 (1.085,1.108) 1.228 (1.200,1.259)

MCAR

MSEapparent 3.514 (3.022,3.940) 3.558 (3.059,3.989) 3.760 (3.237,4.216) 4.635 (3.965,5.219)
βLP 1.029 (1.023,1.035) 1.050 (1.043,1.059) 1.112 (1.098,1.128) 1.257 (1.217,1.302)
Tuning λ 0.038 (0.031,0.046) 0.065 (0.055,0.074) 0.142 (0.125,0.158) 0.326 (0.290,0.365)
MSEext 3.451 (3.301,3.649) 3.499 (3.333,3.720) 3.771 (3.540,4.076) 4.949 (4.466,5.568)
Optimismext 0.063 (-0.456,0.510) 0.059 (-0.440,0.500) -0.011 (-0.531,0.427) -0.314 (-0.832,0.156)
Optimismint -0.299 (-0.423,-0.192) -0.269 (-0.386,-0.167) -0.220 (-0.331,-0.124) -0.191 (-0.292,-0.108)
MSEcorrected 3.813 (3.232,4.280) 3.827 (3.243,4.288) 3.980 (3.382,4.460) 4.826 (4.110,5.390)
βLP∗ 1.011 (0.999,1.021) 1.032 (1.019,1.043) 1.093 (1.079,1.110) 1.236 (1.206,1.274)

MAR

MSEapparent 3.452 (3.046,3.855) 3.496 (3.082,3.907) 3.697 (3.259,4.124) 4.555 (4.003,5.115)
βLP 1.027 (1.022,1.033) 1.048 (1.040,1.057) 1.109 (1.096,1.124) 1.249 (1.216,1.282)
Tuning λ 0.035 (0.029,0.043) 0.061 (0.052,0.071) 0.137 (0.122,0.152) 0.315 (0.287,0.347)
MSEext 3.448 (3.309,3.638) 3.473 (3.321,3.645) 3.685 (3.486,3.887) 4.740 (4.299,5.248)
Optimismext 0.004 (-0.473,0.445) 0.022 (-0.437,0.443) 0.012 (-0.430,0.421) -0.184 (-0.670,0.341)
Optimismint -0.277 (-0.387,-0.171) -0.251 (-0.355,-0.148) -0.209 (-0.307,-0.107) -0.188 (-0.298,-0.089)
MSEcorrected 3.729 (3.245,4.196) 3.746 (3.267,4.211) 3.906 (3.414,4.388) 4.743 (4.186,5.335)
βLP∗ 1.012 (1.001,1.023) 1.033 (1.021,1.045) 1.093 (1.078,1.109) 1.232 (1.202,1.266)



A
.1.

M
IC

E
-LA

S
S

O
A

N
D

M
IC

E
-E

LA
S

TIC
N

E
T

S
IM

U
LATIO

N
S

R
E

S
U

LTS
TA

B
LE

S
A

N
D

FIG
U

R
E

S
282

Table A.8: Accuracy simulation study results for MICE-Elasticnet analysis with Harrell bootstrap validation: scenarios S3 (assumption of
moderation, without missing data) and S5 (assumption of moderation, with missing data also in the outcome) based on 300 data sets of 20
variables each (n=1000). Means of all estimates along with their corresponding 2.5th and 97.5th percentile values within parenthesis. The
theoretical MSE is 1.742 = 3.028

Estimates Complete cases

Best model 1 SE tolerance 3% tolerance 15% tolerance

MSEapparent 2.966 (2.697,3.254) 3.186 (2.849,3.550) 5.410 (4.367,5.953) 9.898 (8.468,10.788)
βLP 1.033 (1.027,1.040) 1.111 (1.086,1.157) 1.398 (1.317,1.468) 2.228 (1.793,2.548)
Tuning α 0.881 (0.800,0.900) 0.900 (0.900,0.900) 0.900 (0.900,0.900) 0.900 (0.900,0.900)
Tuning λ 0.046 (0.040,0.051) 0.154 (0.135,0.220) 0.565 (0.455,0.580) 1.497 (1.199,1.528)
MSEext 3.183 (3.114,3.267) 3.426 (3.260,3.685) 6.119 (4.858,6.945) 11.203 (9.975,12.007)
Optimismext -0.217 (-0.489,0.091) -0.240 (-0.534,0.057) -0.709 (-1.242,-0.238) -1.305 (-2.137,-0.498)
Optimismint -0.171 (-0.205,-0.140) -0.121 (-0.153,-0.088) -0.127 (-0.171,-0.089) -0.078 (-0.158,-0.002)
MSEcorrected 3.137 (2.855,3.442) 3.307 (2.952,3.691) 5.537 (4.502,6.079) 9.976 (8.547,10.838)
betaLP∗ 1.019 (1.014,1.025) 1.102 (1.076,1.121) 1.323 (1.230,1.397) 1.942 (1.628,2.238)

MCAR

MSEapparent 3.514 (3.022,3.941) 3.873 (3.337,4.412) 5.915 (4.984,6.974) 9.991 (8.354,11.560)
βLP 1.030 (1.024,1.036) 1.141 (1.112,1.172) 1.407 (1.326,1.504) 2.374 (1.918,3.231)
Tuning α 0.807 (0.570,0.890) 0.900 (0.900,0.900) 0.900 (0.900,0.900) 0.900 (0.900,0.900)
Tuning λ 0.049 (0.037,0.072) 0.214 (0.159,0.282) 0.631 (0.542,0.739) 1.655 (1.463,1.947)
MSEext 3.451 (3.301,3.651) 3.929 (3.593,4.307) 6.543 (5.368,7.638) 11.266 (9.496,12.823)
Optimismext 0.063 (-0.456,0.507) -0.056 (-0.574,0.377) -0.628 (-1.253,0.009) -1.275 (-2.336,-0.344)
Optimismint -0.300 (-0.425,-0.193) -0.224 (-0.338,-0.127) -0.184 (-0.285,-0.092) -0.104 (-0.261,0.034)
MSEcorrected 3.814 (3.232,4.278) 4.097 (3.496,4.664) 6.099 (5.134,7.173) 10.095 (8.474,11.754)
βLP∗ 1.013 (1.001,1.024) 1.107 (1.083,1.131) 1.320 (1.251,1.392) 2.001 (1.720,2.391)

MAR

MSEapparent 3.452 (3.047,3.854) 3.805 (3.332,4.296) 5.620 (4.502,6.699) 9.568 (7.046,11.260)
βLP 1.029 (1.023,1.035) 1.137 (1.103,1.170) 1.381 (1.264,1.470) 2.156 (1.689,2.715)
Tuning α 0.751 (0.420,0.885) 0.900 (0.900,0.900) 0.900 (0.900,0.900) 0.900 (0.900,0.900)
Tuning λ 0.050 (0.037,0.083) 0.220 (0.168,0.277) 0.615 (0.542,0.723) 1.605 (1.463,1.906)
MSEext 3.447 (3.312,3.635) 3.816 (3.549,4.139) 6.021 (4.450,7.183) 10.518 (7.642,12.106)
Optimismext 0.005 (-0.470,0.444) -0.011 (-0.451,0.405) -0.401 (-1.059,0.225) -0.951 (-2.110,0.107)
Optimismint -0.278 (-0.387,-0.173) -0.215 (-0.312,-0.111) -0.183 (-0.292,-0.081) -0.114 (-0.271,0.030)
MSEcorrected 3.730 (3.247,4.196) 4.020 (3.498,4.550) 5.804 (4.673,6.867) 9.681 (7.269,11.371)
betaLP∗ 1.014 (1.004,1.025) 1.103 (1.079,1.127) 1.299 (1.223,1.370) 1.882 (1.631,2.185)



A
.1.

M
IC

E
-LA

S
S

O
A

N
D

M
IC

E
-E

LA
S

TIC
N

E
T

S
IM

U
LATIO

N
S

R
E

S
U

LTS
TA

B
LE

S
A

N
D

FIG
U

R
E

S
283

Table A.9: Accuracy simulation study results for MICE-Lasso analysis with Harrell bootstrap validation: scenarios S3 (assumption of
moderation, without missing data) and S6 (assumption of moderation, missing data, interaction terms in the imputation model), based on
300 data sets of 20 variables each (n=1000). Means of all estimates along with their corresponding 2.5th and 97.5th percentile values
within parenthesis. The theoretical MSE is 1.742 = 3.028

Estimates Complete cases

Best model 1 SE tolerance 3% tolerance 15% tolerance

MSEapparent 2.966 (2.697,3.251) 3.009 (2.733,3.302) 3.181 (2.885,3.500) 3.911 (3.528,4.338)
βLP 1.033 (1.026,1.040) 1.052 (1.044,1.061) 1.109 (1.097,1.125) 1.240 (1.211,1.276)
Tuning λ 0.041 (0.031,0.049) 0.066 (0.054,0.076) 0.137 (0.119,0.149) 0.298 (0.262,0.328)
MSEext 3.182 (3.114,3.268) 3.217 (3.140,3.311) 3.419 (3.292,3.555) 4.312 (4.017,4.612)
Optimismext -0.216 (-0.487,0.092) -0.208 (-0.475,0.101) -0.238 (-0.541,0.063) -0.401 (-0.765,-0.050)
Optimismint -0.169 (-0.205,-0.138) -0.143 (-0.177,-0.110) -0.114 (-0.145,-0.084) -0.114 (-0.148,-0.077)
MSEcorrected 3.135 (2.850,3.440) 3.152 (2.863,3.457) 3.295 (2.995,3.617) 4.025 (3.638,4.472)
βLP∗ 1.019 (1.012,1.025) 1.038 (1.029,1.046) 1.097 (1.085,1.108) 1.228 (1.200,1.259)

MCAR

MSEapparent 3.256 (2.832,3.721) 3.306 (2.876,3.771) 3.508 (3.060,3.988) 4.315 (3.759,4.932)
βLP 1.021 (1.013,1.030) 1.040 (1.025,1.052) 1.101 (1.081,1.119) 1.240 (1.207,1.276)
Tuning λ 0.028 (0.017,0.039) 0.052 (0.032,0.068) 0.129 (0.102,0.149) 0.305 (0.270,0.340)
MSEext 3.301 (3.188,3.430) 3.319 (3.198,3.467) 3.546 (3.341,3.792) 4.619 (4.139,5.152)
Optimismext -0.044 (-0.455,0.409) -0.013 (-0.418,0.416) -0.038 (-0.412,0.354) -0.304 (-0.736,0.102)
Optimismint -0.296 (-0.400,-0.202) -0.254 (-0.350,-0.159) -0.171 (-0.247,-0.093) -0.144 (-0.206,-0.081)
MSEcorrected 3.552 (3.120,4.076) 3.560 (3.122,4.088) 3.678 (3.223,4.201) 4.460 (3.887,5.101)
βLP∗ 1.000 (0.990,1.009) 1.017 (1.005,1.029) 1.077 (1.057,1.096) 1.218 (1.185,1.252)

MAR

MSEapparent 3.146 (2.784,3.532) 3.194 (2.826,3.588) 3.387 (3.005,3.805) 4.163 (3.694,4.680)
βLP 1.022 (1.015,1.029) 1.042 (1.030,1.052) 1.101 (1.086,1.115) 1.236 (1.207,1.270)
Tuning λ 0.029 (0.019,0.039) 0.053 (0.040,0.065) 0.128 (0.111,0.145) 0.298 (0.271,0.328)
MSEext 3.269 (3.168,3.412) 3.288 (3.181,3.433) 3.499 (3.315,3.709) 4.495 (4.070,4.924)
Optimismext -0.122 (-0.453,0.288) -0.094 (-0.418,0.289) -0.113 (-0.446,0.267) -0.331 (-0.720,0.051)
Optimismint -0.285 (-0.377,-0.203) -0.244 (-0.329,-0.163) -0.169 (-0.245,-0.095) -0.145 (-0.208,-0.075)
MSEcorrected 3.432 (3.032,3.878) 3.439 (3.046,3.888) 3.556 (3.151,4.026) 4.308 (3.833,4.842)
βLP∗ 1.003 (0.994,1.013) 1.020 (1.009,1.032) 1.079 (1.064,1.094) 1.216 (1.191,1.246)
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Figure A.1: Comparison of variable inclusion frequency by MICE-Lasso (ML) run on 300 simulated 20-covariate datasets with 250
observations for the scenarios with moderation assumption S3 (without missing data), S4 (with missing data, complete outcome), S5 ( with
missing data also in the outcome) and S6 (missing data, complete outcome and interaction terms in the imputation model) with MAR data.
ML variable inclusion frequencies are shown for the best λ selection as well as for three tolerance models: one model corresponding to a λ
giving the MSE within 1 standard error (SE) of the minimum, the 2nd within 3% and the 3rd within 15%, through bootstrap tuning.
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Figure A.2: Comparison of variable inclusion frequency by MICE-Lasso (ML) run on 300 simulated 20-covariate datasets with 1000
observations for the scenarios with moderation assumption S3 (without missing data), S4 (with missing data, complete outcome), S5 ( with
missing data also in the outcome) and S6 (missing data, complete outcome and interaction terms in the imputation model) with MCAR data.
ML variable inclusion frequencies are shown for the best λ selection as well as for three tolerance models: one model corresponding to a λ
giving the MSE within 1 standard error (SE) of the minimum, the 2nd within 3% and the 3rd within 15%, through bootstrap tuning.
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Figure A.3: Comparison of variable inclusion frequency by MICE-Lasso (ML) run on 300 simulated 20-covariate datasets with 1000
observations for the scenarios with moderation assumption S3 (without missing data), S4 (with missing data, complete outcome), S5 ( with
missing data also in the outcome) and S6 (missing data, complete outcome and interaction terms in the imputation model) with MAR data.
ML variable inclusion frequencies are shown for the best λ selection as well as for three tolerance models: one model corresponding to a λ
giving the MSE within 1 standard error (SE) of the minimum, the 2nd within 3% and the 3rd within 15%, through bootstrap tuning.
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Table A.10: Accuracy simulation study results for MICE-Lasso analysis with Harrell (1996) bootstrap validation: scenarios S3 (assumption
of moderation, complete data) and S5 (assumption of moderation, missing data also in the outcome), based on 300 data sets of 100
variables each (n=500) with between-covariate correlation of 0.8. Means of all estimates along with their corresponding 2.5th and 97.5th
percentile values within parenthesis. The theoretical MSE is 1.

Estimates Complete cases

Best model 1 SE tolerance 3% tolerance 15% tolerance

MSEapparent 1.000 (0.852,1.146) 1.053 (0.916,1.215) 1.322 (1.153,1.501) 1.528 (1.337,1.738)
βLP 1.054 (1.044,1.065) 1.063 (1.050,1.077) 1.127 (1.099,1.155) 1.188 (1.145,1.242)
Tuning λ 0.044 (0.031,0.054) 0.141 (0.107,0.187) 0.056 (0.039,0.068) 0.224 (0.167,0.293)
MSEext 1.112 (1.041,1.183) 1.128 (1.054,1.212) 1.320 (1.188,1.465) 1.516 (1.336,1.718)
Optimismext -0.112 (-0.255,0.044) -0.075 (-0.206,0.075) 0.002 (-0.159,0.160) 0.012 (-0.179,0.203)
Optimismint -0.302 (-0.351,-0.259) -0.255 (-0.303,-0.211) -0.122 (-0.160,-0.090) -0.090 (-0.120,-0.063)
MSEcorrected 1.302 (1.134,1.491) 1.308 (1.152,1.494) 1.444 (1.263,1.629) 1.617 (1.414,1.832)
βLP∗ 1.016 (1.010,1.024) 1.026 (1.019,1.036) 1.078 (1.061,1.099) 1.122 (1.096,1.156)

MCAR

MSEapparent 1.168 (0.977,1.382) 1.176 (0.981,1.389) 1.368 (1.133,1.617) 1.586 (1.309,1.892)
βLP 1.014 (1.000,1.026) 1.018 (1.004,1.033) 1.068 (1.049,1.092) 1.107 (1.077,1.142)
Tuning λ 0.016 (0.016,0.018) 0.054 (0.037,0.078) 0.018 (0.016,0.022) 0.106 (0.071,0.153)
MSEext 1.542 (1.363,1.745) 1.526 (1.356,1.727) 1.429 (1.276,1.597) 1.507 (1.333,1.759)
Optimismext -0.374 (-0.629,-0.122) -0.350 (-0.608,-0.090) -0.061 (-0.316,0.211) 0.078 (-0.197,0.382)
Optimismint -0.368 (-0.438,-0.306) -0.307 (-0.378,-0.246) -0.143 (-0.189,-0.098) -0.103 (-0.144,-0.065)
MSEcorrected 1.536 (1.310,1.768) 1.483 (1.261,1.716) 1.510 (1.274,1.763) 1.689 (1.413,1.997)
βLP∗ 1.004 (0.993,1.015) 1.016 (1.005,1.028) 1.078 (1.059,1.103) 1.142 (1.105,1.194)

MAR

MSEapparent 1.091 (0.928,1.276) 1.102 (0.940,1.291) 1.325 (1.120,1.569) 1.551 (1.306,1.832)
βLP 1.017 (1.004,1.030) 1.022 (1.006,1.035) 1.074 (1.054,1.098) 1.116 (1.087,1.157)
Tuning λ 0.016 (0.016,0.019) 0.061 (0.043,0.089) 0.019 (0.016,0.024) 0.117 (0.078,0.176)
MSEext 1.522 (1.363,1.717) 1.502 (1.351,1.686) 1.425 (1.285,1.608) 1.530 (1.344,1.780)
Optimismext -0.431 (-0.651,-0.222) -0.400 (-0.616,-0.185) -0.099 (-0.321,0.138) 0.021 (-0.221,0.270)
Optimismint -0.529 (-0.646,-0.417) -0.526 (-0.642,-0.414) -0.398 (-0.489,-0.310) -0.314 (-0.393,-0.234)
MSEcorrected 1.620 (1.350,1.911) 1.628 (1.357,1.923) 1.724 (1.456,2.040) 1.865 (1.575,2.191)
βLP∗ 0.979 (0.956,0.996) 0.980 (0.957,0.997) 1.024 (1.005,1.041) 1.055 (1.036,1.074)
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Table A.11: Accuracy simulation study results for MICE-Elasticnet analysis with Harrell (1996) bootstrap validation: scenarios S3 (assump-
tion of moderation, complete data) and S5 (assumption of moderation, missing data also in the outcome), based on 300 data sets of 100
variables each (n=500) with between-covariate correlation of 0.8. Means of all estimates along with their corresponding 2.5th and 97.5th
percentile values within parenthesis. The theoretical MSE is 1.

Estimates Complete cases

Best model 1 SE tolerance 3% tolerance 15% tolerance

MSEapparent 0.998 (0.842,1.148) 1.092 (0.935,1.262) 2.134 (1.806,2.549) 2.944 (2.384,3.617)
βLP 1.054 (1.044,1.066) 1.073 (1.055,1.095) 1.435 (1.274,1.677) 2.140 (1.595,3.105)
Tuning α 0.897 (0.800,0.900) 0.900 (0.900,0.900) 0.900 (0.900,0.900) 0.900 (0.900,0.900)
Tuning λ 0.048 (0.032,0.065) 0.546 (0.357,0.739) 0.075 (0.051,0.106) 0.976 (0.739,1.199)
MSEext 1.113 (1.040,1.184) 1.150 (1.062,1.261) 2.151 (1.733,2.541) 3.018 (2.369,3.888)
Optimismext -0.115 (-0.258,0.049) -0.058 (-0.193,0.102) -0.017 (-0.285,0.264) -0.074 (-0.468,0.318)
Optimismint -0.313 (-0.373,-0.261) -0.209 (-0.264,-0.159) -0.092 (-0.137,-0.060) -0.077 (-0.114,-0.046)
MSEcorrected 1.311 (1.134,1.491) 1.302 (1.152,1.494) 2.226 (1.263,1.629) 3.021 (1.414,1.832)
βLP∗ 1.018 (1.011,1.026) 1.047 (1.033,1.066) 1.202 (1.130,1.304) 1.379 (1.223,1.647)

MCAR

MSEapparent 1.156 (0.963,1.369) 1.165 (0.967,1.383) 1.362 (1.087,1.666) 1.582 (1.246,1.963)
βLP 0.992 (0.972,1.014) 1.011 (0.985,1.043) 1.086 (1.048,1.140) 1.138 (1.081,1.231)
Tuning α 0.172 (0.115,0.270) 0.819 (0.670,0.900) 0.290 (0.165,0.465) 0.894 (0.855,0.900)
Tuning λ 0.040 (0.032,0.059) 0.261 (0.151,0.398) 0.062 (0.041,0.092) 0.525 (0.298,0.814)
MSEext 1.686 (1.459,1.924) 1.609 (1.405,1.850) 1.501 (1.351,1.678) 1.603 (1.402,1.885)
Optimismext -0.530 (-0.831,-0.232) -0.444 (-0.755,-0.136) -0.139 (-0.420,0.159) -0.021 (-0.285,0.284)
Optimismint -0.407 (-0.482,-0.339) -0.314 (-0.394,-0.228) -0.159 (-0.219,-0.106) -0.115 (-0.162,-0.069)
MSEcorrected 1.564 (1.310,1.768) 1.478 (1.261,1.716) 1.521 (1.274,1.763) 1.698 (1.413,1.997)
βLP∗ 1.005 (0.994,1.016) 1.029 (1.013,1.049) 1.128 (1.069,1.232) 1.862 (1.121,2.481)

MAR

MSEapparent 1.074 (0.906,1.263) 1.090 (0.920,1.287) 1.331 (1.083,1.637) 1.575 (1.258,1.955)
βLP 0.998 (0.975,1.017) 1.020 (0.992,1.048) 1.101 (1.058,1.166) 1.162 (1.094,1.295)
Tuning α 0.191 (0.120,0.310) 0.844 (0.730,0.900) 0.327 (0.200,0.505) 0.897 (0.870,0.900)
Tuning λ 0.041 (0.032,0.063) 0.291 (0.176,0.449) 0.067 (0.044,0.102) 0.586 (0.348,0.928)
MSEext 1.663 (1.456,1.944) 1.576 (1.399,1.825) 1.505 (1.343,1.702) 1.647 (1.428,1.954)
Optimismext -0.588 (-0.884,-0.327) -0.486 (-0.789,-0.217) -0.175 (-0.450,0.092) -0.072 (-0.357,0.194)
Optimismint -0.671 (-0.809,-0.549) -0.639 (-0.764,-0.523) -0.475 (-0.569,-0.391) -0.390 (-0.473,-0.312)
MSEcorrected 1.745 (1.472,2.066) 1.729 (1.452,2.057) 1.805 (1.518,2.142) 1.965 (1.640,2.365)
βLP∗ 0.935 (0.908,0.955) 0.947 (0.921,0.968) 1.014 (0.994,1.032) 1.051 (1.032,1.071)



A.2. MISSFOREST-LASSO AND MISSFOREST-ELASTICNET SIMULATION RESULTS 289

A.2 MissForest-Lasso and MissForest-Elasticnet simulation results
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Table A.12: Accuracy simulation study results for MissForest-Lasso analysis with Harrell bootstrap validation: scenarios S1 (without
missing data, no assumption of moderation) and S2 (with missing data, complete outcome, no assumption of moderation) based on 300
data sets of 20 variables each (n=1000). Means of all estimates along with their corresponding 2.5th and 97.5th percentile values within
parenthesis. The theoretical MSE is 1.742 = 3.028

Estimates Complete cases

Best model 1 SE tolerance 3% tolerance 15% tolerance

MSEapparent 2.985 (2.718,3.274) 3.024 (2.749,3.317) 3.189 (2.887,3.509) 3.922 (3.542,4.295)
βLP 1.032 (1.022,1.041) 1.060 (1.050,1.072) 1.137 (1.118,1.156) 1.309 (1.263,1.354)
Tuning λ 0.034 (0.022,0.043) 0.064 (0.054,0.076) 0.144 (0.134,0.149) 0.324 (0.293,0.367)
MSEext 3.144 (3.095,3.206) 3.176 (3.118,3.247) 3.369 (3.256,3.491) 4.244 (3.958,4.499)
Optimismext -0.159 (-0.433,0.149) -0.152 (-0.424,0.148) -0.180 (-0.480,0.123) -0.323 (-0.687,0.049)
Optimismint -0.107 (-0.136,-0.077) -0.092 (-0.120,-0.064) -0.074 (-0.101,-0.045) -0.077 (-0.112,-0.044)
MSEcorrected 3.092 (2.819,3.397) 3.116 (2.836,3.418) 3.264 (2.966,3.594) 3.998 (3.616,4.357)
βLP

∗ 1.020 (1.014,1.025) 1.049 (1.040,1.056) 1.126 (1.111,1.141) 1.297 (1.255,1.335)

MCAR

MSEapparent 3.058 (2.729,3.410) 3.105 (2.772,3.457) 3.293 (2.941,3.667) 4.071 (3.654,4.527)
βLP 1.033 (1.024,1.040) 1.054 (1.044,1.065) 1.115 (1.098,1.133) 1.257 (1.220,1.300)
Tuning λ 0.041 (0.035,0.367) 0.069 (0.035,0.367) 0.146 (0.035,0.367) 0.331 (0.035,0.367)
MSEext 3.535 (3.351,3.805) 3.633 (3.406,3.923) 4.031 (3.698,4.446) 5.456 (4.863,6.134)
Optimismext -0.478 (-0.875,-0.092) -0.528 (-0.921,-0.148) -0.738 (-1.161,-0.293) -1.385 (-2.029,-0.866)
Optimismint -0.070 (-0.156,0.008) -0.051 (-0.137,0.024) -0.030 (-0.114,0.039) -0.052 (-0.122,0.009)
MSEcorrected 3.213 (2.851,3.644) 3.237 (2.878,3.666) 3.396 (3.009,3.848) 4.192 (3.732,4.729)
βLP ∗ 1.018 (1.007,1.030) 1.048 (1.035,1.060) 1.129 (1.112,1.149) 1.311 (1.266,1.355)

MAR

MSEapparent 2.898 (2.598,3.204) 2.945 (2.633,3.253) 3.124 (2.792,3.478) 3.867 (3.441,4.311)
βLP 1.030 (1.022,1.038) 1.051 (1.041,1.063) 1.110 (1.094,1.127) 1.251 (1.214,1.292)
Tuning λ 0.037 (0.031,0.328) 0.065 (0.031,0.328) 0.139 (0.031,0.328) 0.319 (0.031,0.328)
MSEext 3.516 (3.312,3.777) 3.595 (3.358,3.873) 3.937 (3.608,4.305) 5.245 (4.686,5.885)
Optimismext -0.618 (-1.026,-0.270) -0.651 (-1.060,-0.279) -0.813 (-1.269,-0.421) -1.379 (-1.937,-0.842)
Optimismint -0.164 (-0.258,-0.076) -0.136 (-0.232,-0.049) -0.110 (-0.190,-0.032) -0.132 (-0.196,-0.061)
MSEcorrected 3.062 (2.714,3.390) 3.081 (2.734,3.416) 3.234 (2.873,3.596) 3.999 (3.541,4.471)
βLP∗ 1.022 (1.008,1.039) 1.044 (1.029,1.062) 1.105 (1.087,1.126) 1.249 (1.212,1.288)
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Table A.13: Accuracy simulation study results for MissForest-Lasso analysis with Harrell bootstrap validation: scenarios S3 (assumption
of moderation, without missing data) and S4 (assumption of moderation, with missing data, complete outcome) based on 300 data sets of
20 variables each (n=1000). Means of all estimates along with their corresponding 2.5th and 97.5th percentile values within parenthesis.
The theoretical MSE is 1.742 = 3.028

Estimates Complete cases

Best model 1 SE tolerance 3% tolerance 15% tolerance

MSEapparent 2.966 (2.697,3.251) 3.009 (2.733,3.302) 3.181 (2.885,3.500) 3.911 (3.528,4.338)
βLP 1.033 (1.026,1.040) 1.052 (1.044,1.061) 1.109 (1.097,1.125) 1.240 (1.211,1.276)
Tuning λ 0.041 (0.031,0.049) 0.066 (0.054,0.076) 0.137 (0.119,0.149) 0.298 (0.262,0.328)
MSEext 3.182 (3.114,3.268) 3.217 (3.140,3.311) 3.419 (3.292,3.555) 4.312 (4.017,4.612)
Optimismext -0.216 (-0.487,0.092) -0.208 (-0.475,0.101) -0.238 (-0.541,0.063) -0.401 (-0.765,-0.050)
Optimismint -0.169 (-0.205,-0.138) -0.143 (-0.177,-0.110) -0.114 (-0.145,-0.084) -0.114 (-0.148,-0.077)
MSEcorrected 3.135 (2.850,3.440) 3.152 (2.863,3.457) 3.295 (2.995,3.617) 4.025 (3.638,4.472)
βLP∗ 1.019 (1.012,1.025) 1.038 (1.029,1.046) 1.097 (1.085,1.108) 1.228 (1.200,1.259)

MCAR

MSEapparent 3.406 (3.042,3.808) 3.457 (3.082,3.866) 3.661 (3.273,4.094) 4.518 (4.047,5.057)
βLP 1.033 (1.024,1.041) 1.055 (1.044,1.065) 1.116 (1.102,1.133) 1.261 (1.225,1.303)
Tuning λ 0.043 (0.035,0.367) 0.072 (0.035,0.367) 0.154 (0.035,0.367) 0.343 (0.035,0.367)
MSEext 3.291 (3.178,3.429) 3.342 (3.220,3.509) 3.627 (3.418,3.886) 4.857 (4.357,5.419)
Optimismext 0.115 (-0.249,0.478) 0.115 (-0.253,0.468) 0.034 (-0.360,0.412) -0.339 (-0.823,0.139)
Optimismint -0.158 (-0.248,-0.072) -0.123 (-0.210,-0.040) -0.086 (-0.165,-0.004) -0.105 (-0.186,-0.035)
MSEcorrected 3.562 (3.179,3.961) 3.576 (3.190,3.981) 3.743 (3.341,4.182) 4.618 (4.134,5.157)
βLP∗ 1.016 (1.007,1.026) 1.038 (1.027,1.050) 1.103 (1.087,1.119) 1.249 (1.216,1.286)

MAR

MSEapparent 3.306 (2.959,3.659) 3.356 (2.998,3.726) 3.554 (3.164,3.939) 4.386 (3.905,4.909)
βLP 1.032 (1.024,1.039) 1.053 (1.044,1.062) 1.114 (1.099,1.130) 1.258 (1.222,1.300)
Tuning λ 0.042 (0.035,0.367) 0.070 (0.035,0.367) 0.150 (0.035,0.367) 0.338 (0.035,0.367)
MSEext 3.295 (3.183,3.467) 3.339 (3.201,3.523) 3.602 (3.389,3.866) 4.764 (4.276,5.299)
Optimismext 0.011 (-0.409,0.405) 0.016 (-0.383,0.407) -0.047 (-0.495,0.357) -0.377 (-0.852,0.135)
Optimismint -0.159 (-0.258,-0.056) -0.126 (-0.218,-0.025) -0.091 (-0.180,0.003) -0.108 (-0.190,-0.026)
MSEcorrected 3.610 (2.886,4.346) 3.670 (2.929,4.429) 3.847 (3.088,4.641) 4.837 (3.938,5.964)
βLP∗ 1.018 (1.007,1.028) 1.039 (1.028,1.050) 1.103 (1.088,1.119) 1.249 (1.213,1.281)
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Table A.14: Accuracy simulation study results for MissForest-Lasso analysis with Harrell bootstrap validation: scenarios S3 (assumption
of moderation, without missing data) and S5 (assumption of moderation, with missing data also in the outcome) based on 300 data sets of
20 variables each (n=1000). Means of all estimates along with their corresponding 2.5th and 97.5th percentile values within parenthesis.
The theoretical MSE is 1.742 = 3.028

Estimates Complete cases

Best model 1 SE tolerance 3% tolerance 15% tolerance

MSEapparent 2.764 (2.232,3.313) 2.873 (2.328,3.483) 3.076 (2.485,3.729) 3.939 (3.121,4.889)
βLP 1.062 (1.044,1.079) 1.089 (1.069,1.112) 1.132 (1.102,1.165) 1.259 (1.204,1.332)
Tuning λ 0.077 (0.054,0.095) 0.111 (0.085,0.134) 0.165 (0.134,0.209) 0.328 (0.262,0.410)
MSEext 3.482 (3.266,3.794) 3.557 (3.313,3.914) 3.759 (3.436,4.214) 4.799 (4.070,5.835)
Optimismext -0.719 (-1.300,-0.093) -0.684 (-1.283,-0.050) -0.683 (-1.281,0.017) -0.860 (-1.706,-0.064)
Optimismint -0.646 (-0.806,-0.521) -0.578 (-0.731,-0.462) -0.523 (-0.665,-0.420) -0.486 (-0.620,-0.373)
MSEcorrected 3.410 (2.788,4.131) 3.451 (2.826,4.194) 3.598 (2.937,4.384) 4.425 (3.541,5.495)
βLP∗ 1.025 (1.012,1.036) 1.052 (1.035,1.069) 1.092 (1.067,1.118) 1.216 (1.167,1.273)

MCAR

MSEapparent 3.132 (2.448,3.872) 3.283 (2.553,4.032) 3.551 (2.764,4.388) 4.761 (3.686,5.978)
βLP 1.075 (1.050,1.102) 1.108 (1.077,1.146) 1.161 (1.118,1.216) 1.343 (1.255,1.470)
Tuning λ 0.090 (0.068,0.513) 0.134 (0.068,0.513) 0.204 (0.068,0.513) 0.455 (0.068,0.513)
MSEext 4.365 (3.743,5.132) 4.619 (3.895,5.522) 5.106 (4.163,6.226) 7.083 (5.582,8.833)
Optimismext -1.234 (-2.021,-0.334) -1.336 (-2.189,-0.380) -1.555 (-2.575,-0.506) -2.323 (-3.692,-0.931)
Optimismint -0.831 (-1.122,-0.582) -0.737 (-0.979,-0.522) -0.659 (-0.882,-0.461) -0.547 (-0.760,-0.372)
MSEcorrected 4.174 (3.360,5.101) 4.218 (3.377,5.188) 4.407 (3.527,5.440) 5.519 (4.345,6.897)
βLP∗ 1.028 (1.004,1.050) 1.066 (1.039,1.097) 1.118 (1.084,1.160) 1.297 (1.220,1.399)

MAR

MSEapparent 2.910 (2.233,3.653) 3.046 (2.351,3.860) 3.288 (2.519,4.152) 4.402 (3.417,5.579)
βLP 1.068 (1.046,1.094) 1.100 (1.074,1.135) 1.149 (1.113,1.194) 1.321 (1.241,1.450)
Tuning λ 0.081 (0.061,0.513) 0.122 (0.061,0.513) 0.185 (0.061,0.513) 0.415 (0.061,0.513)
MSEext 4.260 (3.637,5.099) 4.461 (3.738,5.452) 4.872 (3.961,6.137) 6.680 (5.168,8.522)
Optimismext -1.351 (-2.478,-0.554) -1.415 (-2.543,-0.582) -1.584 (-2.816,-0.624) -2.278 (-3.766,-0.978)
Optimismint -0.795 (-1.073,-0.570) -0.711 (-0.960,-0.507) -0.645 (-0.860,-0.447) -0.559 (-0.744,-0.374)
MSEcorrected 4.087 (3.292,5.094) 4.132 (3.344,5.124) 4.315 (3.466,5.338) 5.395 (4.309,6.784)
βLP∗ 1.027 (1.002,1.053) 1.063 (1.034,1.095) 1.112 (1.075,1.155) 1.281 (1.212,1.379)
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Table A.15: Accuracy simulation study results for MissForest-Lasso analysis with Harrell (1996) bootstrap validation: scenarios S3 (as-
sumption of moderation, complete data) and S5 (assumption of moderation, missing data also in the outcome), based on 300 data sets of
100 variables each (n=500) with between-covariate correlation of 0.8. Means of all estimates along with their corresponding 2.5th and
97.5th percentile values within parenthesis. The theoretical MSE is 1.

Estimates Complete cases

Best model 1 SE tolerance 3% tolerance 15% tolerance

MSEapparent 1.000 (0.852,1.146) 1.053 (0.916,1.215) 1.322 (1.153,1.501) 1.528 (1.337,1.738)
βLP 1.054 (1.044,1.065) 1.063 (1.050,1.077) 1.127 (1.099,1.155) 1.188 (1.145,1.242)
Tuning λ 0.044 (0.031,0.054) 0.141 (0.107,0.187) 0.056 (0.039,0.068) 0.224 (0.167,0.293)
MSEext 1.112 (1.041,1.183) 1.128 (1.054,1.212) 1.320 (1.188,1.465) 1.516 (1.336,1.718)
Optimismext -0.112 (-0.255,0.044) -0.075 (-0.206,0.075) 0.002 (-0.159,0.160) 0.012 (-0.179,0.203)
Optimismint -0.302 (-0.351,-0.259) -0.255 (-0.303,-0.211) -0.122 (-0.160,-0.090) -0.090 (-0.120,-0.063)
MSEcorrected 1.302 (1.134,1.491) 1.308 (1.152,1.494) 1.444 (1.263,1.629) 1.617 (1.414,1.832)
βLP∗ 1.016 (1.010,1.024) 1.026 (1.019,1.036) 1.078 (1.061,1.099) 1.122 (1.096,1.156)

MCAR

MSEapparent 1.122 (0.948,1.308) 1.179 (0.995,1.367) 1.476 (1.263,1.716) 1.699 (1.459,1.957)
βLP 1.053 (1.043,1.067) 1.064 (1.051,1.082) 1.147 (1.110,1.195) 1.239 (1.167,1.345)
Tuning λ 0.045 (0.035,0.367) 0.061 (0.035,0.367) 0.182 (0.035,0.367) 0.305 (0.035,0.367)
MSEext 1.310 (1.178,1.469) 1.337 (1.193,1.526) 1.657 (1.408,1.972) 1.964 (1.623,2.367)
Optimismext -0.189 (-0.415,0.057) -0.157 (-0.385,0.079) -0.182 (-0.474,0.095) -0.265 (-0.602,0.074)
Optimismint -0.368 (-0.438,-0.306) -0.307 (-0.378,-0.246) -0.143 (-0.189,-0.098) -0.103 (-0.144,-0.065)
MSEcorrected 1.490 (1.290,1.729) 1.486 (1.280,1.720) 1.619 (1.405,1.872) 1.802 (1.567,2.059)
βLP∗ 1.004 (0.993,1.015) 1.016 (1.005,1.028) 1.078 (1.059,1.103) 1.142 (1.105,1.194)

MAR

MSEapparent 1.145 (0.977,1.322) 1.202 (1.021,1.387) 1.504 (1.281,1.734) 1.742 (1.472,2.012)
βLP 1.054 (1.044,1.065) 1.065 (1.053,1.080) 1.143 (1.108,1.197) 1.236 (1.165,1.360)
Tuning λ 0.045 (0.035,0.367) 0.060 (0.035,0.367) 0.174 (0.035,0.367) 0.300 (0.035,0.367)
MSEext 1.305 (1.183,1.455) 1.327 (1.195,1.499) 1.635 (1.413,1.938) 1.950 (1.633,2.325)
Optimismext -0.160 (-0.384,0.051) -0.125 (-0.347,0.086) -0.131 (-0.417,0.131) -0.208 (-0.559,0.092)
Optimismint -0.378 (-0.448,-0.311) -0.316 (-0.381,-0.253) -0.148 (-0.193,-0.106) -0.109 (-0.153,-0.070)
MSEcorrected 1.620 (1.350,1.911) 1.628 (1.357,1.923) 1.724 (1.456,2.040) 1.865 (1.575,2.191)
βLP∗ 1.005 (0.992,1.019) 1.018 (1.003,1.032) 1.081 (1.058,1.109) 1.142 (1.105,1.197)
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Table A.16: Accuracy simulation study results for MissForest-Elasticnet analysis with Harrell (1996) bootstrap validation: scenarios S3
(assumption of moderation, complete data) and S5 (assumption of moderation, missing data also in the outcome), based on 300 data sets
of 100 variables each (n=500) with between-covariate correlation of 0.8. Means of all estimates along with their corresponding 2.5th and
97.5th percentile values within parenthesis. The theoretical MSE is 1.

Estimates Complete cases

Best model 1 SE tolerance 3% tolerance 15% tolerance

MSEapparent 0.998 (0.842,1.148) 1.092 (0.935,1.262) 2.134 (1.806,2.549) 2.944 (2.384,3.617)
βLP 1.054 (1.044,1.066) 1.073 (1.055,1.095) 1.435 (1.274,1.677) 2.140 (1.595,3.105)
Tuning α 0.897 (0.800,0.900) 0.900 (0.900,0.900) 0.900 (0.900,0.900) 0.900 (0.900,0.900)
Tuning λ 0.048 (0.032,0.065) 0.546 (0.357,0.739) 0.075 (0.051,0.106) 0.976 (0.739,1.199)
MSEext 1.113 (1.040,1.184) 1.150 (1.062,1.261) 2.151 (1.733,2.541) 3.018 (2.369,3.888)
Optimismext -0.115 (-0.258,0.049) -0.058 (-0.193,0.102) -0.017 (-0.285,0.264) -0.074 (-0.468,0.318)
Optimismint -0.313 (-0.373,-0.261) -0.209 (-0.264,-0.159) -0.092 (-0.137,-0.060) -0.077 (-0.114,-0.046)
MSEcorrected 1.311 (1.134,1.491) 1.302 (1.152,1.494) 2.226 (1.263,1.629) 3.021 (1.414,1.832)
βLP∗ 1.018 (1.011,1.026) 1.047 (1.033,1.066) 1.202 (1.130,1.304) 1.379 (1.223,1.647)

MCAR

MSEapparent 1.118 (0.951,1.302) 1.324 (1.126,1.570) 2.526 (1.789,3.370) 4.270 (2.267,5.634)
βLP 1.054 (1.043,1.067) 1.102 (1.069,1.166) 2.006 (1.302,3.131) 25.617 (1.718,164.182)
Tuning λ 0.056 (0.040,0.106) 0.142 (0.083,0.280) 0.956 (0.655,1.199) 1.834 (1.199,2.482)
MSEext 1.316 (1.177,1.483) 1.488 (1.262,1.869) 2.963 (2.222,4.026) 4.841 (2.904,5.854)
Optimismext -0.198 (-0.433,0.037) -0.164 (-0.451,0.083) -0.437 (-0.957,0.035) -0.571 (-1.280,0.077)
Optimismint -0.407 (-0.482,-0.339) -0.314 (-0.394,-0.228) -0.159 (-0.219,-0.106) -0.115 (-0.162,-0.069)
MSEcorrected 1.525 (1.329,1.771) 1.638 (1.375,1.922) 2.685 (1.961,3.541) 4.385 (2.393,5.757)
βLP∗ 1.005 (0.994,1.016) 1.029 (1.013,1.049) 1.128 (1.069,1.232) 1.862 (1.121,2.481)

MAR

MSEapparent 1.145 (0.967,1.338) 1.327 (1.102,1.598) 2.566 (1.970,3.322) 4.376 (2.931,5.519)
βLP 1.055 (1.044,1.067) 1.096 (1.067,1.148) 2.011 (1.445,3.233) NA (2.231,117.110)
Tuning α 0.051 (0.040,0.065) 0.117 (0.065,0.220) 0.908 (0.580,1.199) 1.779 (1.199,2.482)
Tuning λ 0.041 (0.032,0.063) 0.291 (0.176,0.449) 0.067 (0.044,0.102) 0.586 (0.348,0.928)
MSEext 1.307 (1.187,1.476) 1.442 (1.240,1.815) 2.950 (2.254,4.022) 4.913 (3.303,5.836)
Optimismext -0.163 (-0.429,0.065) -0.115 (-0.374,0.126) -0.384 (-0.889,0.050) -0.537 (-1.277,0.146)
Optimismint -0.419 (-0.492,-0.344) -0.317 (-0.404,-0.231) -0.161 (-0.217,-0.111) -0.119 (-0.161,-0.083)
MSEcorrected 1.564 (1.324,1.801) 1.644 (1.342,1.979) 2.727 (2.126,3.512) 4.495 (3.047,5.655)
βLP∗ -0.419 (-0.492,-0.344) -0.317 (-0.404,-0.231) -0.161 (-0.217,-0.111) -0.119 (-0.161,-0.083)
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Figure A.4: Comparison of inclusion frequency of the variables in 300 simulated 20-covariate
datasets (250 obs) for the best MissForest-LASSO models with bootstrap tuning with single
imputation VS ten imputations. Here we can see how MissForest outperformed MICE by not
selecting all variables almost always.

A.3 Simulation result figures: method comparison
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Figure A.5: Optimism-corrected MSE estimates from 4 methods run on 300 simulated 20-covariate datasets with 1000 observations for
scenarios S1 (without missing data) and S2 (with missing data). The methods are: MICE-Lasso (ML), MICE-Elasticnet (ME), MissForest-
Lasso (MF) and MissForest-Random Forests (MR). ML, ME and MF estimated MSEs are shown for the best λ selection as well as for three
tolerance models: one model corresponding to a λ giving the MSE within 1 standard error (SE) of the minimum, the 2nd within 3% and the
3rd within 15%, through bootstrap tuning. For S1 (first plot from the left), the Lasso (L), Elasticnet (E) and Random Forest (RF) corrected
MSEs are shown.
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Figure A.6: Optimism-corrected MSE estimates from 4 methods run on 300 simulated 20-covariate datasets with 1000 observations for
scenarios S3 (assumption of moderation, without missing data) and S4 (assumption of moderation, with missing data). The methods are:
MICE-Lasso (ML), MICE-Elasticnet (ME), MissForest-Lasso (MF) and MissForest-Random Forests (MR). ML, ME and MF estimated MSEs
are shown for the best λ selection as well as for three tolerance models: one model corresponding to a λ giving the MSE within 1 standard
error (SE) of the minimum, the 2nd within 3% and the 3rd within 15%, through bootstrap tuning. For S3 (first plot from the left), the Lasso
(L), Elasticnet (E) and Random Forest (RF) corrected MSEs are shown.
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Figure A.7: Optimism-corrected MSE estimates from 4 methods run on 300 simulated 20-covariate datasets with 1000 observations for
scenarios S3 (assumption of moderation, without missing data) and S5 (assumption of moderation, with missing data also in the outcome).
The methods are: MICE-Lasso (ML), MICE-Elasticnet (ME), MissForest-Lasso (MF) and MissForest-Random Forests (MR). ML, ME and
MF estimated MSEs are shown for the best λ selection as well as for three tolerance models: one model corresponding to a λ giving the
MSE within 1 standard error (SE) of the minimum, the 2nd within 3% and the 3rd within 15%, through bootstrap tuning. For S3 (first plot
from the left), the Lasso (L), Elasticnet (E) and Random Forest (RF) corrected MSEs are shown.
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Figure A.8: Calibration slope βLP estimates for 4 methods run on 300 simulated 20-covariate datasets with 1000 observations for
scenarios S1 (without missing data) and S2 (with missing data). The methods are: MICE-Lasso (ML), MICE-Elasticnet (ME), MissForest-
Lasso (MF) and MissForest-Random Forests (MR). ML, ME and MF estimated calibration slopes are shown for the best λ selection as well
as for three tolerance models: one model corresponding to a λ giving the MSE within 1 standard error (SE) of the minimum, the 2nd within
3% and the 3rd within 15%, through bootstrap tuning. For S1 (first plot from the left), the Lasso (L), Elasticnet (E) and Random Forest (RF)
calibration slopes are shown.
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Figure A.9: Calibration slope βLP estimates for 4 methods run on 300 simulated 20-covariate datasets with 1000 observations for
scenarios S3 (assumption of moderation, without missing data) and S4 (assumption of moderation, with missing data). The methods
are: MICE-Lasso (ML), MICE-Elasticnet (ME), MissForest-Lasso (MF) and MissForest-Random Forests (MR). ML, ME and MF estimated
calibration slopes are shown for the best λ selection as well as for three tolerance models: one model corresponding to a λ giving the MSE
within 1 standard error (SE) of the minimum, the 2nd within 3% and the 3rd within 15%, through bootstrap tuning. For S3 (first plot from the
left), the Lasso (L), Elasticnet (E) and Random Forest (RF) calibration slopes are shown.
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Figure A.10: Calibration slope βLP estimates for 4 methods run on 300 simulated 20-covariate datasets with 1000 observations for
scenarios S3 (assumption of moderation, without missing data) and S5 (assumption of moderation, missing data also in the outcome). The
methods are: MICE-Lasso (ML), MICE-Elasticnet (ME), MissForest-Lasso (MF) and MissForest-Random Forests (MR). ML, ME and MF
estimated calibration slopes are shown for the best λ selection as well as for three tolerance models: one model corresponding to a λ giving
the MSE within 1 standard error (SE) of the minimum, the 2nd within 3% and the 3rd within 15%, through bootstrap tuning. For S3 (first plot
from the left), the Lasso (L), Elasticnet (E) and Random Forest (RF) calibration slopes are shown.
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Figure A.11: Average internal and external MSE optimism estimates with 2.5th and 97.5th percentiles for 4 methods run on 300 simulated
20-covariate datasets with 1000 observations for scenarios S1 (without missing data) and S2 (with missing data). The methods are: MICE-
Lasso (ML), MICE-Elasticnet (ME), MissForest-Lasso (MF) and MissForest-Random Forests (MR). ML, ME and MF estimated internal and
external MSE optimism are shown for the best λ selection as well as for three tolerance models: one model corresponding to a λ giving the
MSE within 1 standard error (SE) of the minimum, the 2nd within 3% and the 3rd within 15%, through bootstrap tuning. For S1 (first plot
from the left), the Lasso (L), Elasticnet (E) and Random Forest (RF) optimism estimates are shown.
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Figure A.12: Average internal and external MSE optimism estimates with 2.5th and 97.5th percentiles for 4 methods run on 300 simulated
20-covariate datasets with 1000 observations for scenarios S3 (assumption of moderation, without missing data) and S4 (assumption
of moderation, with missing data). The methods are: MICE-Lasso (ML), MICE-Elasticnet (ME), MissForest-Lasso (MF) and MissForest-
Random Forests (MR). ML, ME and MF estimated internal and external MSE optimism are shown for the best λ selection as well as for three
tolerance models: one model corresponding to a λ giving the MSE within 1 standard error (SE) of the minimum, the 2nd within 3% and the
3rd within 15%, through bootstrap tuning. For S3 (first plot from the left), the Lasso (L), Elasticnet (E) and Random Forest (RF) optimism
estimates are shown.
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Figure A.13: Average internal and external MSE optimism estimates with 2.5th and 97.5th percentiles for 4 methods run on 300 simulated
20-covariate datasets with 1000 observations for scenarios S3 (assumption of moderation, without missing data) and S5 (assumption of
moderation, with missing data also in the outcome). The methods are: MICE-Lasso (ML), MICE-Elasticnet (ME), MissForest-Lasso (MF)
and MissForest-Random Forests (MR). ML, ME and MF estimated internal and external MSE optimism are shown for the best λ selection
as well as for three tolerance models: one model corresponding to a λ giving the MSE within 1 standard error (SE) of the minimum, the 2nd
within 3% and the 3rd within 15%, through bootstrap tuning. For S3 (first plot from the left), the Lasso (L), Elasticnet (E) and Random Forest
(RF) optimism estimates are shown.
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Figure A.14: Average percentage of true predictors (TP) selected among the actual TP (SEN) estimates with 2.5th and 97.5th percentiles
from 3 methods run on 300 simulated 20-covariate datasets with 1000 observations for scenarios S1 (without missing data) and S2
(with missing data). The methods are: MICE-Lasso (ML), MICE-Elasticnet (ME) and MissForest-Lasso (MF). ML, ME and MF estimated
percentages of TP selected among the actual TP variables are shown for the best λ selection as well as for three tolerance models: one
model corresponding to a λ giving the MSE within 1 standard error (SE) of the minimum, the 2nd within 3% and the 3rd within 15%, through
bootstrap tuning. For S1 (first plot from the left), the Lasso (L) and the Elasticnet (E) estimates are shown.
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Figure A.15: Average percentage of true predictors (TP) selected among the actual TP (SEN) estimates with 2.5th and 97.5th percentiles
from 3 methods run on 300 simulated 20-covariate datasets with 1000 observations for scenarios S3 (assumption of moderation, without
missing data) and S4 (assumption of moderation, with missing data). The methods are: MICE-Lasso (ML), MICE-Elasticnet (ME) and
MissForest-Lasso (MF). ML, ME and MF estimated percentages of TP selected among the actual TP variables are shown for the best λ
selection as well as for three tolerance models: one model corresponding to a λ giving the MSE within 1 standard error (SE) of the minimum,
the 2nd within 3% and the 3rd within 15%, through bootstrap tuning. For S3 (first plot from the left), the Lasso (L) and the Elasticnet (E)
estimates are shown.



A
.3.

S
IM

U
LATIO

N
R

E
S

U
LT

FIG
U

R
E

S
:M

E
TH

O
D

C
O

M
PA

R
IS

O
N

307

Figure A.16: Average percentage of true predictors (TP) selected among the actual TP (SEN) estimates with 2.5th and 97.5th percentiles
from 3 methods run on 300 simulated 20-covariate datasets with 1000 observations for scenarios S3 (assumption of moderation, without
missing data) and S5 (assumption of moderation, missing data also in the outcome). The methods are: MICE-Lasso (ML), MICE-Elasticnet
(ME) and MissForest-Lasso (MF). ML, ME and MF estimated percentages of TP selected among the actual TP variables are shown for
the best λ selection as well as for three tolerance models: one model corresponding to a λ giving the MSE within 1 standard error (SE) of
the minimum, the 2nd within 3% and the 3rd within 15%, through bootstrap tuning. For S3 (first plot from the left), the Lasso (L) and the
Elasticnet (E) estimates are shown.
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Figure A.17: Average percentage of true predictors (TP) among the selected variables (PPV) estimates with 2.5th and 97.5th percentiles
from 3 methods run on 300 simulated 20-covariate datasets with 1000 observations for scenarios S1 (without missing data) and S2
(with missing data). The methods are: MICE-Lasso (ML), MICE-Elasticnet (ME) and MissForest-Lasso (MF). ML, ME and MF estimated
percentages of TP among the selected variables are shown for the best λ selection as well as for three tolerance models: one model
corresponding to a λ giving the MSE within 1 standard error (SE) of the minimum, the 2nd within 3% and the 3rd within 15%, through
bootstrap tuning. For S1 (first plot from the left), the Lasso (L) and the Elasticnet (E) estimates are shown.
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Figure A.18: Average percentage of true predictors (TP) among the selected variables (PPV) estimates with 2.5th and 97.5th percentiles
from 3 methods run on 300 simulated 20-covariate datasets with 1000 observations for scenarios S3 (assumption of moderation, without
missing data) and S4 (assumption of moderation, with missing data). The methods are: MICE-Lasso (ML), MICE-Elasticnet (ME) and
MissForest-Lasso (MF). ML, ME and MF estimated percentages of TP among the selected variables are shown for the best λ selection as
well as for three tolerance models: one model corresponding to a λ giving the MSE within 1 standard error (SE) of the minimum, the 2nd
within 3% and the 3rd within 15%, through bootstrap tuning. For S3 (first plot from the left), the Lasso (L) and the Elasticnet (E) estimates
are shown.
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Figure A.19: Average percentage of true predictors (TP) among the selected variables (PPV) estimates with 2.5th and 97.5th percentiles
from 3 methods run on 300 simulated 20-covariate datasets with 1000 observations for scenarios S3 (assumption of moderation, without
missing data) and S5 (assumption of moderation, missing data also in the outcome). The methods are: MICE-Lasso (ML), MICE-Elasticnet
(ME) and MissForest-Lasso (MF). ML, ME and MF estimated percentages of TP among the selected variables are shown for the best λ
selection as well as for three tolerance models: one model corresponding to a λ giving the MSE within 1 standard error (SE) of the minimum,
the 2nd within 3% and the 3rd within 15%, through bootstrap tuning. For S3 (first plot from the left), the Lasso (L) and the Elasticnet (E)
estimates are shown.
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Figure A.20: Estimated percentage of correct (true) models (simultaneously with respect to all predictors) found by 4 methods run on 300
simulated 20-covariate datasets with 1000 observations for scenarios S1 (without missing data) and S2 (with missing data). The methods
are: MICE-Lasso (ML), MICE-Elasticnet (ME), MissForest-Lasso (MF) and MissForest-Random Forests (MR). ML, ME and MF estimated
percentages of selected true models are shown for the best λ selection as well as for three tolerance models: one model corresponding to a
λ giving the MSE within 1 standard error (SE) of the minimum, the 2nd within 3% and the 3rd within 15%, through bootstrap tuning. For S1
(first plot from the left), the Lasso (L), the Elasticnet (E) and the Random Forest (RF) estimates are shown. For the models RF and MR it is
assumed that the true model is returned when the top 10 important variables are true predictors.
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Figure A.21: Estimated percentage of almost correct models (only one variable off) found by 4 methods run on 300 simulated 20-covariate
datasets with 1000 observations for scenarios S1 (without missing data) and S2 (with missing data). The methods are: MICE-Lasso (ML),
MICE-Elasticnet (ME), MissForest-Lasso (MF) and MissForest-Random Forests (MR). ML, ME and MF estimated percentages of selected
true models are shown for the best λ selection as well as for three tolerance models: one model corresponding to a λ giving the MSE within
1 standard error (SE) of the minimum, the 2nd within 3% and the 3rd within 15%, through bootstrap tuning. For S1 (first plot from the left),
the Lasso (L), the Elasticnet (E) and the Random Forests (RF) estimates are shown. For the models RF and MR, only the best model is
computed through bootstrap tuning of the parameter given by the number of variables chosen randomly at each split to build the trees and it
is assumed that the true model is returned when the top 10 important variables are the true predictors.
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Figure A.22: Estimated percentage of almost correct models (only one variable off) found by 4 methods run on 300 simulated 20-covariate
datasets with 1000 observations for scenarios S3 (assumption of moderation, without missing data) and S4 (assumption of moderation,
with missing data). The methods are: MICE-Lasso (ML), MICE-Elasticnet (ME), MissForest-Lasso (MF) and MissForest-Random Forests
(MR). ML, ME and MF estimated percentages of selected true models are shown for the best λ selection as well as for three tolerance
models: one model corresponding to a λ giving the MSE within 1 standard error (SE) of the minimum, the 2nd within 3% and the 3rd within
15%, through bootstrap tuning. For S3 (first plot from the left), the Lasso (L), the Elasticnet (E) and the Random Forests (RF) estimates
are shown. For the models RF and MR, only the best model is computed through bootstrap tuning of the parameter given by the number
of variables chosen randomly at each split to build the trees and it is assumed that the true model is returned when the top 10 important
variables are the true predictors.
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Figure A.23: Estimated percentage of almost correct models (only one variable off) found by 4 methods run on 300 simulated 20-covariate
datasets with 1000 observations for scenarios S3 (assumption of moderation, without missing data) and S5 (assumption of moderation,
missing data also in the outcome). The methods are: MICE-Lasso (ML), MICE-Elasticnet (ME), MissForest-Lasso (MF) and MissForest-
Random Forests (MR). ML, ME and MF estimated percentages of selected true models are shown for the best λ selection as well as for
three tolerance models: one model corresponding to a λ giving the MSE within 1 standard error (SE) of the minimum, the 2nd within 3%
and the 3rd within 15%, through bootstrap tuning. For S3 (first plot from the left), the Lasso (L), the Elasticnet (E) and the Random Forests
(RF) estimates are shown. For the models RF and MR, only the best model is computed through bootstrap tuning of the parameter given by
the number of variables chosen randomly at each split to build the trees and it is assumed that the true model is returned when the top 10
important variables are the true predictors.
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Figure A.24: Comparison of variable inclusion frequency by 3 methods run on 300 simulated 20-covariate datasets with 1000 observa-
tions for scenario S1 (no assumption of moderation, complete data). The methods are: Lasso, Elasticnet and Random Forest. Lasso and
Elasticnet variable inclusion frequencies are shown for the best λ selection as well as for three tolerance models: one model corresponding
to a λ giving the MSE within 1 standard error (SE) of the minimum, the 2nd within 3% and the 3rd within 15%, through bootstrap tuning.
For Random Forests only the best model is computed through bootstrap tuning of the parameter given by the number of variables chosen
randomly at each split to build the trees and a variable is considered included in the model when its importance is among the top 10 variable
importances.
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Figure A.25: Comparison of variable inclusion frequency by 3 methods run on 300 simulated 20-covariate datasets with 1000 ob-
servations for scenario S2 with MCAR data (no assumption of moderation, complete outcome). The methods are: MICE-Lasso (ML),
MICE-Elasticnet (ME), MissForest-Lasso (MF) and MissForest-Random Forests (MR). ML, ME and MF variable inclusion frequencies are
shown for the best λ selection as well as for three tolerance models: one model corresponding to a λ giving the MSE within 1 standard
error (SE) of the minimum, the 2nd within 3% and the 3rd within 15%, through bootstrap tuning. For MR only the best model is computed
through bootstrap tuning of the parameter given by the number of variables chosen randomly at each split to build the trees and a variable
is considered included in the model when its importance is among the top 10 variable importances.
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Figure A.26: Comparison of variable inclusion frequency by 3 methods run on 300 simulated 20-covariate datasets with 1000 obser-
vations for scenario S2 with MAR data (no assumption of moderation, complete outcome). MICE-Lasso (ML), MICE-Elasticnet (ME),
MissForest-Lasso (MF) and MissForest-Random Forests (MR). ML, ME and MF variable inclusion frequencies are shown for the best λ
selection as well as for three tolerance models: one model corresponding to a λ giving the MSE within 1 standard error (SE) of the minimum,
the 2nd within 3% and the 3rd within 15%, through bootstrap tuning. For MR only the best model is computed through bootstrap tuning of
the parameter given by the number of variables chosen randomly at each split to build the trees and a variable is considered included in the
model when its importance is among the top 10 variable importances.
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Figure A.27: Comparison of variable inclusion frequency by 3 methods run on 300 simulated 20-covariate datasets with 1000 obser-
vations for scenario S3 (assumption of moderation, complete data). The methods are: Lasso, Elasticnet and Random Forest. Lasso and
Elasticnet variable inclusion frequencies are shown for the best λ selection as well as for three tolerance models: one model corresponding
to a λ giving the MSE within 1 standard error (SE) of the minimum, the 2nd within 3% and the 3rd within 15%, through bootstrap tuning.
For Random Forests only the best model is computed through bootstrap tuning of the parameter given by the number of variables chosen
randomly at each split to build the trees and a variable is considered included in the model when its importance is among the top 10 variable
importances.
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Figure A.28: Comparison of variable inclusion frequency by 3 methods run on 300 simulated 20-covariate datasets with 1000 obser-
vations for scenario S4 with MCAR data (assumption of moderation, complete outcome). The methods are: MICE-Lasso (ML), MICE-
Elasticnet (ME), MissForest-Lasso (MF) and MissForest-Random Forests (MR). ML, ME and MF variable inclusion frequencies are shown
for the best λ selection as well as for three tolerance models: one model corresponding to a λ giving the MSE within 1 standard error (SE) of
the minimum, the 2nd within 3% and the 3rd within 15%, through bootstrap tuning. For MR only the best model is computed through boot-
strap tuning of the parameter given by the number of variables chosen randomly at each split to build the trees and a variable is considered
included in the model when its importance is among the top 10 variable importances.
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Figure A.29: Comparison of variable inclusion frequency by 3 methods run on 300 simulated 20-covariate datasets with 1000 observa-
tions for scenario S4 with MAR data (assumption of moderation, complete outcome). The methods are: MICE-Lasso (ML), MICE-Elasticnet
(ME), MissForest-Lasso (MF) and MissForest-Random Forests (MR). ML, ME and MF variable inclusion frequencies are shown for the best λ
selection as well as for three tolerance models: one model corresponding to a λ giving the MSE within 1 standard error (SE) of the minimum,
the 2nd within 3% and the 3rd within 15%, through bootstrap tuning. For MR only the best model is computed through bootstrap tuning of
the parameter given by the number of variables chosen randomly at each split to build the trees and a variable is considered included in the
model when its importance is among the top 10 variable importances.
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Figure A.30: Comparison of variable inclusion frequency by 3 methods run on 300 simulated 20-covariate datasets with 1000 obser-
vations for scenario S5 with MCAR data (assumption of moderation, missing data also in the outcome). The methods are: MICE-Lasso
(ML), MICE-Elasticnet (ME), MissForest-Lasso (MF) and MissForest-Random Forests (MR). ML, ME and MF variable inclusion frequencies
are shown for the best λ selection as well as for three tolerance models: one model corresponding to a λ giving the MSE within 1 standard
error (SE) of the minimum, the 2nd within 3% and the 3rd within 15%, through bootstrap tuning. For MR only the best model is computed
through bootstrap tuning of the parameter given by the number of variables chosen randomly at each split to build the trees and a variable
is considered included in the model when its importance is among the top 10 variable importances.
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Figure A.31: Comparison of variable inclusion frequency by 3 methods run on 300 simulated 20-covariate datasets with 1000 observa-
tions for scenario S5 with MAR data (assumption of moderation, missing data also in the outcome). The methods are: MICE-Lasso (ML),
MICE-Elasticnet (ME), MissForest-Lasso (MF) and MissForest-Random Forests (MR). ML, ME and MF variable inclusion frequencies are
shown for the best λ selection as well as for three tolerance models: one model corresponding to a λ giving the MSE within 1 standard
error (SE) of the minimum, the 2nd within 3% and the 3rd within 15%, through bootstrap tuning. For MR only the best model is computed
through bootstrap tuning of the parameter given by the number of variables chosen randomly at each split to build the trees and a variable
is considered included in the model when its importance is among the top 10 variable importances.
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Figure A.32: Comparison of variable inclusion frequency by 3 methods run on 300 simulated 100-covariate datasets with 500 obser-
vations and between-covariate correlation of 0.2 for scenario S3 (assumption of moderation, complete data). The methods are: Lasso,
Elasticnet and Conditional RF. Lasso and Elasticnet variable inclusion frequencies are shown for the best λ selection as well as for three
tolerance models: one model corresponding to a λ giving the MSE within 1 standard error (SE) of the minimum, the 2nd within 3% and the
3rd within 15%, through bootstrap tuning. For Conditional Random Forests (RF) only the best model is computed through bootstrap tuning
of the parameter given by the number of variables chosen randomly at each split to build the trees and a variable is considered included in
the model when its importance is among the top 15 variable importances. Note that Conditional RF always had exactly the TPs as the
15 most important variables.
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Figure A.33: Comparison of variable inclusion frequency by 3 methods run on 300 simulated 100-covariate datasets with 500 obser-
vations and between-covariate correlation of 0.8 for scenario S3 (assumption of moderation, complete data). The methods are: Lasso,
Elasticnet and Conditional RF. Lasso and Elasticnet variable inclusion frequencies are shown for the best λ selection as well as for three
tolerance models: one model corresponding to a λ giving the MSE within 1 standard error (SE) of the minimum, the 2nd within 3% and the
3rd within 15%, through bootstrap tuning. For Conditional Random Forests (RF) only the best model is computed through bootstrap tuning
of the parameter given by the number of variables chosen randomly at each split to build the trees and a variable is considered included in
the model when its importance is among the top 15 variable importances. Note that Conditional RF always had exactly the TPs as the
15 most important variables.
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Figure A.34: Comparison of variable inclusion frequency by 3 methods run on 300 simulated 100-covariate datasets with 500 obser-
vations and between-covariate correlation of 0.2 for scenario S5 with MCAR data (assumption of moderation, missing data also in the
outcome). The methods are: Lasso, Elasticnet and Conditional RF. Lasso and Elasticnet variable inclusion frequencies are shown for the
best λ selection as well as for three tolerance models: one model corresponding to a λ giving the MSE within 1 standard error (SE) of the
minimum, the 2nd within 3% and the 3rd within 15%, through bootstrap tuning. For Conditional Random Forests (RF) only the best model is
computed through bootstrap tuning of the parameter given by the number of variables chosen randomly at each split to build the trees and
a variable is considered included in the model when its importance is among the top 15 variable importances. Note that Conditional RF
always had exactly the TPs as the 15 most important variables.
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Figure A.35: Comparison of variable inclusion frequency by 3 methods run on 300 simulated 100-covariate datasets with 500 obser-
vations and between-covariate correlation of 0.8 for scenario S5 with MCAR data (assumption of moderation, missing data also in the
outcome). The methods are: Lasso, Elasticnet and Conditional RF. Lasso and Elasticnet variable inclusion frequencies are shown for the
best λ selection as well as for three tolerance models: one model corresponding to a λ giving the MSE within 1 standard error (SE) of the
minimum, the 2nd within 3% and the 3rd within 15%, through bootstrap tuning. For Conditional Random Forests (RF) only the best model is
computed through bootstrap tuning of the parameter given by the number of variables chosen randomly at each split to build the trees and
a variable is considered included in the model when its importance is among the top 15 variable importances. Note that Conditional RF
always had exactly the TPs as the 15 most important variables.
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Figure A.36: Comparison of variable inclusion frequency by 3 methods run on 300 simulated 100-covariate datasets with 500 obser-
vations and between-covariate correlation of 0.2 for scenario S5 with MAR data (assumption of moderation, missing data also in the
outcome). The methods are: Lasso, Elasticnet and Conditional RF. Lasso and Elasticnet variable inclusion frequencies are shown for the
best λ selection as well as for three tolerance models: one model corresponding to a λ giving the MSE within 1 standard error (SE) of the
minimum, the 2nd within 3% and the 3rd within 15%, through bootstrap tuning. For Conditional Random Forests (RF) only the best model is
computed through bootstrap tuning of the parameter given by the number of variables chosen randomly at each split to build the trees and
a variable is considered included in the model when its importance is among the top 15 variable importances. Note that Conditional RF
always had exactly the TPs as the 15 most important variables.
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Figure A.37: Comparison of variable inclusion frequency by 3 methods run on 300 simulated 100-covariate datasets with 500 obser-
vations and between-covariate correlation of 0.8 for scenario S5 with MAR data (assumption of moderation, missing data also in the
outcome). The methods are: Lasso, Elasticnet and Conditional RF. Lasso and Elasticnet variable inclusion frequencies are shown for the
best λ selection as well as for three tolerance models: one model corresponding to a λ giving the MSE within 1 standard error (SE) of the
minimum, the 2nd within 3% and the 3rd within 15%, through bootstrap tuning. For Conditional Random Forests (RF) only the best model is
computed through bootstrap tuning of the parameter given by the number of variables chosen randomly at each split to build the trees and
a variable is considered included in the model when its importance is among the top 15 variable importances. Note that Conditional RF
always had exactly the TPs as the 15 most important variables.
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A.4 Selection of moderators
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Table A.17: Comparison of average sensitivity (SEN), false positive rate (FPR) and positive predictive value (PPV) of selection for the predictors (P) and
for the moderators (M) for the best λ models in the simulation study. Average SEN, FPR and PPV are given in percentages with corresponding SD.

Selection of predictors and moderators in the best λ models

Scenario 3 Scenario 4: complete outcome Scenario 5: incomplete outcome (20%) Scenario 6: interactions in imputation model

Data Complete MCAR MAR MCAR MAR MCAR MAR

20-covariate N=250 N=1000 N=250 N=1000 N=250 N=1000 N=250 N=1000 N=250 N=1000 N=250 N=1000 N=250 N=1000

Mice-Lasso
SEN of P (SD) 92.3 (3.3) 100 (1.8) 95.5 (3.3) 95.9 (3.2) 96 (3.5) 97.4 (3.2) 96.6 (3.4) 97 (3.3) 97.5 (3.2) 99.2 (2.1) 98.6 (2.7) 97.5 (3.2) 98.2 (3.2) 97 (3.3)
SEN of M (SD) 96.6 (8.6) 99.8 (2.0) 98.6 (3.2) 100 (0) 99.6 (3.2) 100 (0) 99.5 (3.5) 100 (0) 99.9 (1.4) 100 (0) 100 (0) 100 (0) 99.5 (3.5) 99.9 (1.4)
FPR of P (SD) 35.9 (11.9) 51.3 (11.1) 86.6 (8.8) 86.3 (7.3) 85.6 (9) 87.3 (7.4) 94.1 (5) 93.6 (4.8) 93.6 (5.3) 94.9 (5) 98.4 (3.7) 97.4 (4.1) 96.5 (5.8) 96.7 (4)
FPR of M (SD) 33.4 (14.4) 33.9 (12.4) 81.9 (11.3) 81.3 (10.5) 80.6 (11.7) 82.2 (10.5) 90.9 (7.7) 90.2 (7.4) 90.1 (8.0) 92.0 (7.9) 97.8 (5.0) 96.6 (5.4) 95.4 (7.5) 95.2 (5.8)
PPV of P (SD) 62.6 (7.9) 67.2 (7.5) 40.9 (2.7) 41.1 (2.2) 41.3 (2.8) 41.2 (2.3) 39.1 (1.5) 39.4 (1.5) 39.5 (1.7) 39.6 (1.4) 38.5 (1) 38.5 (1.3) 38.9 (1.6) 38.5 (1.2)
PPV of M (SD) 46.2 (12.1) 45.9 (9.9) 24.8 (3.0) 25.0 (2.7) 25.1 (3.0) 24.7 (2.5) 22.7 (1.7) 22.9 (1.5) 22.9 (1.7) 22.6 (1.7) 21.5 (1.0) 21.7 (1.0) 21.9 (1.7) 21.9 (1.2)
Mice-Elasticnet
SEN of P (SD) 92.7 (3.3) 93.7 (1.8) 96.7 (3.4) 95.9 (3.2) 96.9 (3.5) 97.5 (3.2) 97.8 (3.2) 97.1 (3.3) 98.5 (2.9) 99.3 (2)
SEN of M (SD) 97.3 (7.7) 99.8 (2.0) 99.8 (2.0) 100(0) 99.8 (2.5) 100 (0) 99.8 (2.5) 100 (0) 99.9 (1.4) 100 (0)
FPR of P (SD) 40.9 (14.9) 36.3 (11.5) 92.8 (7.4) 87.1 (7.5) 92.5 (7.5) 87.9 (7.4) 97.5 (3.6) 94.1 (5) 97.5 (3.6) 95.6 (4.7)
FPR of M (SD) 38.8 (17.2) 34.3 (12.7) 90.2 (9.7) 82.5 (10.6) 89.9 (9.8) 83.0 (10.5) 96.0 (5.6) 91.0 (7.5) 96.1 (5.6) 93.1 (7.4)
PPV of P (SD) 59.9 (8.7) 62.7 (7.5) 39.5 (2.1) 40.9 (2.3) 39.6 (2.1) 41 (2.3) 38.5 (1.1) 39.2 (1.5) 38.7 (1.1) 39.4 (1.3)
PPV of M (SD) 43.0 (12.0) 45.6 (9.9) 23.0 (2.2) 24.7 (2.7) 23.0 (2.3) 24.6 (2.5) 21.7 (1.1) 22.8 (1.5) 21.8 (1.1) 22.4 (1.5)
MissForest-Lasso
SEN of P (SD) 92.3 (3.3) 100 (1.8) 90.2 (4.4) 93.8 (2.3) 91 (4.5) 93.9 (2.4) 88.6 (5.3) 93.8 (2.6) 90.2 (5) 94.2 (2.5)
SEN of M (SD) 96.6 (8.6) 99.8 (2.0) 92.8 (11.5) 99.3 (4.3) 93.2 (11.2) 99.2 (4.5) 90.0 (13.3) 98.8 (5.5) 94.5 (10.8) 99.4 (3.8)
FPR of P (SD) 35.9 (11.9) 51.3 (11.1) 36.7 (10.8) 38.3 (10.9) 37.6 (12.4) 40.9 (11.7) 36 (11.1) 40.2 (11.2) 40.1 (12.1) 46.7 (11.9)
FPR of M (SD) 33.4 (14.4) 33.9 (12.4) 32.7 (12.8) 34.6 (12.3) 33.9 (14.1) 36.8 (12.3) 31.9 (12.4) 35.8 (12.9) 35.4 (13.6) 41.8 (13.6)
PPV of P (SD) 62.6 (7.9) 67.2 (7.5) 62.8 (7.3) 62.7 (6.7) 62.4 (7.8) 61.4 (6.9) 62.9 (7.2) 61.8 (7) 61.7 (7.8) 59.3 (6.7)
PPV of M (SD) 46.2 (12.1) 45.9 (9.9) 45.1 (10.7) 45.4 (10.4) 44.6 (11.4) 43.5 (9.1) 44.9 (11.0) 44.2 (9.7) 43.9 (12.2) 40.4 (8.6)

100-covariate (N=500) ρ = 0.2 ρ = 0.8 ρ = 0.2 ρ = 0.8 ρ = 0.2 ρ = 0.8

Mice-Lasso
SEN of P (SD) 88.9 (4.8) 71.9 (6.2) 94.7 (3) 93.5 (4.9) 94 (2.4) 93.5 (4.3)
SEN of M (SD) 88.5 (12.6) 59.5 (15) 99.5 (3) 93.9 (10.4) 99.6 (2.8) 95.3 (9.1)
FPR of P (SD) 18.6 (4.5) 11.6 (3.6) 100.2 (0.3) 97.5 (1.1) 100.1 (0.4) 97.3 (1.3)
FPR of M (SD) 14.6 (4.8) 7.4 (3.6) 99.5 (0.6) 94.3 (2.2) 99.4 (0.7) 94.1 (2.4)
PPV of P (SD) 24.7 (4.5) 30.5 (6.2) 5.7 (0.2) 5.8 (0.3) 5.7 (0.1) 5.8 (0.2)
PPV of M (SD) 21.6 (6.1) 28 (10.8) 4 (0.1) 4 (0.4) 4 (0.1) 4.1 (0.4)
Mice-Elasticnet
SEN of P (SD) 89 (4.8) 72.3 (5.9) 99.2 (2.2) 99.6 (1.5) 99 (2.3) 99.2 (2.2)
SEN of M (SD) 88.8 (12.6) 60.3 (15) 100 (0) 99.9 (1.2) 100 (0) 100 (0)
FPR of P (SD) 18.8 (4.6) 12.1 (3.8) 100 (0) 100.0 (0.1) 100 (0) 100.0 (0.3)
FPR of M (SD) 14.9 (5) 7.8 (3.8) 100 (0) 100 (0.2) 100 (0) 99.9 (0.5)
PPV of P (SD) 24.5 (4.7) 29.7 (6.4) 6 (0.1) 6 (0.1) 6 (0.1) 6 (0.1)
PPV of M (SD) 21.5 (6) 27.4 (11.1) 4 (0) 4 (0) 4 (0) 4 (0)
MissForest-Lasso
SEN of P (SD) 88.9 (4.8) 71.9 (6.2) 65.9 (6.5) 64.7 (7) 63.9 (6.6) 64.8 (6.6)
SEN of M (SD) 88.5 (12.6) 59.5 (15) 46.3 (11.5) 45.4 (14.7) 42.5 (10) 42.5 (15)
FPR of P (SD) 18.6 (4.5) 11.6 (3.6) 11.1 (4) 11.7 (3.1) 11.7 (4.1) 11.5 (3)
FPR of M (SD) 14.6 (4.8) 7.4 (3.6) 8 (3.8) 7 (3.1) 7.8 (3.4) 7.1 (3)
PPV of P (SD) 24.7 (4.5) 30.5 (6.2) 30.2 (7.5) 27.8 (5.4) 28.4 (7.1) 28.3 (5.5)
PPV of M (SD) 21.6 (6.1) 28 (10.8) 22.5 (11.5) 23.6 (10.9) 21.5 (11.2) 22 (10.3)
MissForest-Elasticnet
SEN of P (SD) 89 (4.8) 72.3 (5.9) 66 (6.9) 65.9 (7.4) 64.4 (6.6) 65.1 (6.8)
SEN of M (SD) 88.8 (12.6) 60.3 (15) 46.5 (11.4) 47.7 (14.7) 43.1 (10.4) 43.5 (14.9)
FPR of P (SD) 18.8 (4.6) 12.1 (3.8) 11.8 (4.1) 12.4 (3.8) 12.2 (4.1) 11.9 (3.2)
FPR of M (SD) 14.9 (5) 7.8 (3.8) 8.6 (4) 7.4 (3.1) 8.3 (3.7) 7.3 (3)
PPV of P (SD) 24.5 (4.7) 29.7 (6.4) 28.7 (6.7) 27.3 (5.8) 27.6 (6.7) 27.6 (5.8)
PPV of M (SD) 21.5 (6) 27.4 (11.1) 21 (9) 23.3 (9.7) 20.5 (10) 22.2 (11.2)
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Table A.18: Comparison of average sensitivity (SEN), false positive rate (FPR) and positive predictive value (PPV) of selection for the predictors (P) and
for the moderators (M) for the 1 SE tolerance models in the simulation study. Average SEN, FPR and PPV are given in percentages with corresponding
SD.

Selection of predictors and moderators in the 1SE tolerance models

Scenario 3 Scenario 4: complete outcome Scenario 5: incomplete outcome (20%) Scenario 6: interactions in imputation model

Data Complete MCAR MAR MCAR MAR MCAR MAR

20-covariate N=250 N=1000 N=250 N=1000 N=250 N=1000 N=250 N=1000 N=250 N=1000 N=250 N=1000 N=250 N=1000

Mice-Lasso
SEN of P (SD) 91.7 (3.5) 100 (1.3) 94.4 (3.2) 94.9 (2.9) 94.8 (3.5) 96.5 (3.3) 95.1 (3.5) 96 (3.3) 96.6 (3.7) 99 (2.4) 97.2 (3.5) 95.5 (3.1) 96.4 (3.6) 95.5 (3.1)
SEN of M (SD) 96.3 (8.9) 99.8 (2.0) 99.1 (4.7) 99.9 (1.4) 99.2 (4.5) 100 (0) 99.5 (3.5) 100 (0) 99.3 (4.0) 100 (0) 99.8 (2.5) 99.9 (1.44) 99.4 (3.8) 100 (0)
FPR of P (SD) 25.6 (10.2) 25.2 (9.1) 72.3 (12.1) 66.7 (10) 71.4 (12.2) 68.5 (10) 84.4 (8.5) 79.6 (7.4) 84.3 (8.8) 82.5 (7.6) 93.5 (9.4) 85.4 (10.3) 88.7 (11.6) 83.3 (9.6)
FPR of M (SD) 24.2 (12.1) 22.1 (10.4) 65.3 (13.7) 60.2 (12.4) 64.4 (14.7) 62.3 (12.7) 77.5 (11.7) 71.6 (10.5) 77.2 (12.3) 75.2 (10.3) 92.1 (10.9) 82.6 (12.2) 86.1 (13.7) 79.9 (11.6)
PPV of P (SD) 70.2 (8.6) 81 (8.2) 45.3 (4.5) 47.4 (3.9) 45.7 (4.5) 47.1 (3.8) 41.5 (2.7) 43.1 (2.5) 41.9 (2.8) 43 (2.4) 39.5 (2.6) 41.3 (3.1) 40.7 (3.5) 41.9 (2.9)
PPV of M (SD) 54.4 (13.6) 57.2 (12.8) 29.5 (4.9) 31.4 (4.9) 30.0 (5.6) 30.6 (4.7) 25.8 (3.4) 27.5 (3.1) 25.0 (3.6) 26.5 (2.9) 22.6 (2.6) 24.7 (3.0) 24.0 (3.5) 25.4 (3.0)
Mice-Elasticnet
SEN of P (SD) 89.3 (5.1) 93.3 (1) 94.7 (4.1) 93.6 (1.4) 95.4 (4.1) 94 (2.4) 95.8 (3.7) 94 (2.2) 97.2 (3.9) 97 (3.3)
SEN of M (SD) 95.9 (9.5) 99.8 (2.0) 99.3 (4.3) 100(0) 99.4 (3.8) 100 (0) 99.4 (3.8) 100 (0) 99.7 (2.9) 100 (0)
FPR of P (SD) 18.2 (16.7) 8.4 (4.9) 74.7 (20.1) 30.8 (13) 74.5 (20.7) 32.7 (14.6) 86 (13.6) 43 (15.9) 87 (14.3) 51.1 (18.7)
FPR of M (SD) 19.3 (17.0) 10.8 (6.6) 71.9 (20.8) 29.0 (13.7) 71.4 (21.5) 32.8 (14.8) 82.0 (16.4) 39.4 (15.8) 83.1 (17.4) 48.4 (18.1)
PPV of P (SD) 78.6 (13.6) 87.9 (6.3) 45.4 (7.5) 66.7 (8.1) 45.7 (8.1) 65.6 (8.4) 41.4 (4.2) 59 (8.3) 41.6 (4.6) 55.7 (8.7)
PPV of M (SD) 63.5 (18.8) 73.4 (13.2) 28.4 (7.4) 50.4 (10.8) 28.8 (8.4) 47.2 (9.8) 25.1 (4.6) 42.6 (9.8) 25.0 (5.2) 37.6 (8.8)
MissForest-Lasso
SEN of P (SD) 91.7 (3.5) 100 (1.3) 89.1 (4.8) 93.5 (1.8) 90.2 (4.6) 93.6 (2.1) 86 (6.3) 93.4 (2.1) 88.4 (5.9) 93.8 (2.3)
SEN of M (SD) 96.6 (8.6) 99.8 (2.0) 91.9 (12.1) 99.4 (3.8) 92.7 (11.4) 99.3 (4.3) 88.0 (14.1) 99.0 (4.9) 93.7 (11.63) 99.6 (3.2)
FPR of P (SD) 25.6 (10.2) 25.2 (9.1) 26.3 (9.1) 24.2 (9.4) 27.6 (10.9) 27.2 (9.6) 25.8 (10.5) 26.1 (9.5) 29.9 (10.6) 33.3 (10.2)
FPR of M (SD) 24.2 (12.1) 22.1 (10.4) 23.5 (10.3) 22.4 (10.7) 25.0 (12.0) 25.0 (10.9) 23.1 (11.1) 23.8 (10.7) 26.4 (11.5) 30.3 (11.2)
PPV of P (SD) 70.2 (8.6) 81 (8.2) 68.8 (7.8) 71.6 (8.1) 68.3 (8.7) 69.1 (7.7) 68.8 (8.7) 70 (8.1) 65.8 (8.2) 64.6 (7.4)
PPV of M (SD) 54.4 (13.6) 57.2 (12.8) 53.21 (12.2) 56.8 (12.9) 52.5 (13.7) 53.7 (11.3) 52.94 (13.3) 55.1 (12.3) 50.9 (12.6) 48.7 (10.1)

100-covariate (N=500) ρ = 0.2 ρ = 0.8 ρ = 0.2 ρ = 0.8 ρ = 0.2 ρ = 0.8

Mice-Lasso
SEN of P (SD) 86 (5.8) 68.7 (6) 94.6 (3) 92.7 (5.1) 93.8 (2.6) 92.5 (4.4)
SEN of M (SD) 82.8 (13.5) 53.3 (13.5) 99.4 (3.4) 92.1 (11.4) 99.1 (4.1) 93.3 (10.1)
FPR of P (SD) 13.2 (3.7) 8.3 (2.8) 100.0 (0.4) 96.7 (1.3) 100.0 (0.4) 96.3 (1.6)
FPR of M (SD) 9.9 (3.8) 4.7 (2.7) 99.3 (0.8) 92.8 (2.5) 99.2 (0.9) 92.1 (2.9)
PPV of P (SD) 31.3 (6.1) 37.5 (8) 5.7 (0.2) 5.8 (0.3) 5.7 (0.1) 5.8 (0.3)
PPV of M (SD) 28.1 (8.4) 36.5 (15.4) 4 (0.1) 4 (0.5) 4 (0.2) 4.1 (0.4)
Mice-Elasticnet
SEN of P (SD) 85.8 (5.8) 67.2 (6.3) 99 (2.4) 99.1 (2.4) 98.7 (2.7) 98.5 (2.9)
SEN of M (SD) 82.6 (13) 52.2 (12.1) 100 (0) 99.8 (2) 100 (0) 99.7 (2.3)
FPR of P (SD) 12.8 (3.9) 7 (2.4) 100 (0) 100.0 (0.3) 100 (0) 100.0 (0.9)
FPR of M (SD) 9.5 (3.9) 3.8 (2.5) 100 (0.1) 99.7 (0.6) 100 (0.1) 99.4 (1.6)
PPV of P (SD) 32.2 (7.1) 41.3 (8.4) 6 (0.1) 6 (0.1) 5.9 (0.2) 6 (0.2)
PPV of M (SD) 29.4 (9.9) 42.4 (18.4) 4 (0) 4 (0.1) 4 (0) 4 (0.1)
MissForest-Lasso
SEN of P (SD) 86 (5.8) 68.7 (6) 62 (6.5) 62.4 (6.9) 60.5 (6.3) 62.1 (7.1)
SEN of M (SD) 82.8 (13.5) 53.3 (13.5) 43.3 (9.7) 43.7 (12.9) 40.9 (8.6) 40.8 (13.7)
FPR of P (SD) 13.2 (3.7) 8.3 (2.8) 7 (2.9) 8.6 (2.3) 7.3 (3) 8.5 (2.3)
FPR of M (SD) 9.9 (3.8) 4.7 (2.7) 4.6 (2.9) 4.9 (2.3) 4.5 (2.6) 5.2 (2.4)
PPV of P (SD) 31.3 (6.1) 37.5 (8) 40.3 (10.1) 34 (6.8) 38.6 (10.1) 34.2 (6.9)
PPV of M (SD) 28.1 (8.4) 36.5 (15.4) 34.2 (17.5) 30.5 (14.1) 33.6 (18.3) 27.6 (13.1)
MissForest-Elasticnet
SEN of P (SD) 85.8 (5.8) 67.2 (6.3) 53.3 (7) 57.1 (8.5) 50.6 (7.5) 57.6 (7.3)
SEN of M (SD) 82.6 (13) 52.2 (12.1) 41.9 (9) 48.3 (12.9) 39.2 (9.8) 44.3 (13.3)
FPR of P (SD) 12.8 (3.9) 7 (2.4) 2.5 (1.5) 5.7 (2.4) 2.6 (1.7) 5.7 (1.7)
FPR of M (SD) 9.5 (3.9) 3.8 (2.5) 1.3 (1.4) 2.8 (2.1) 1.2 (1.4) 3.1 (2.1)
PPV of P (SD) 32.2 (7.1) 41.3 (8.4) 66.2 (15.1) 43.3 (9.4) 64.2 (15.4) 42.7 (8.9)
PPV of M (SD) 29.4 (9.9) 42.4 (18.4) 66.3 (24.5) 49.8 (23.7) 68.7 (27.4) 44.2 (22.8)



A
.4.

S
E

LE
C

TIO
N

O
F

M
O

D
E

R
ATO

R
S

332

Table A.19: Comparison of average sensitivity (SEN), false positive rate (FPR) and positive predictive value (PPV) of selection for the predictors (P) and
for the moderators (M) for the 15% tolerance models in the simulation study. Average SEN, FPR and PPV are given in percentages with corresponding
SD.

Selection of predictors and moderators in the 15% tolerance models

Scenario 3 Scenario 4: complete outcome Scenario 5: incomplete outcome (20%) Scenario 6: interactions in imputation model

Data Complete MCAR MAR MCAR MAR MCAR MAR

20-covariate N=250 N=1000 N=250 N=1000 N=250 N=1000 N=250 N=1000 N=250 N=1000 N=250 N=1000 N=250 N=1000

Mice-Lasso
SEN of P (SD) 84.2 (6) 91.9 (3.2) 86.3 (6.9) 89.3 (3.3) 86.8 (5.6) 89.4 (3.3) 87.5 (6.4) 89.6 (3.6) 88.9 (6.1) 90.4 (3.5) 88.7 (5.8) 89.9 (3.4) 88.1 (6.5) 89.5 (3.4)
SEN of M (SD) 91.8 (13.0) 99.5 (3.5) 94.2 (11.7) 99.8 (2.0) 95.2 (10.3) 100 (0) 93.5 (11.4) 99.3 (4.3) 95.3 (10.0) 99.92 (1.4) 96.4 (9.2) 99.8 (2.5) 96.1 (10.0) 99.8 (2.5)
FPR of P (SD) 5.9 (4.6) 0.0 (3.2) 20.2 (9.2) 10.8 (5.2) 19.7 (8.8) 12 (5.2) 30.2 (11.5) 13.9 (5.4) 31 (11.6) 17.6 (5.2) 30.9 (17.2) 10.7 (5.6) 24.5 (10.9) 10.9 (5.5)
FPR of M (SD) 7.0 (6.1) 4.0 (4.9) 18.2 (10.2) 10.6 (7.1) 18.4 (9.8) 12.2 (7.2) 26.4 (12.2) 13.7 (7.5) 27.9 (11.6) 19.7 (7.6) 30.3 (17.1) 11.1 (7.3) 24.5 (11.5) 11.7 (7.0)
PPV of P (SD) 90.4 (6.7) 100 (5) 74 (8.9) 84.3 (6.5) 74.4 (8.2) 82.8 (6.3) 65.6 (8.2) 80.6 (6.2) 65.4 (8.3) 76.7 (5.2) 66.5 (11.1) 84.6 (7.1) 70.4 (8.9) 84.3 (6.9)
PPV of M (SD) 80.1 (15) 88.7 (12.7) 61.2 (14.9) 74.2 (14) 60.9 (13.7) 71.1 (13.5) 51.5 (13.3) 68.3 (13.3) 49.9 (11.5) 59.1 (9.9) 49.8 (14) 73.2 (14.3) 53.7 (12.5) 71.9 (13.6)
Mice-Elasticnet
SEN of P (SD) 41.9 (27.4) 20.3 (5.2) 84.3 (13.6) 32.8 (21.1) 84.8 (15.9) 36.7 (23.2) 87 (11.4) 42.5 (26.1) 89.6 (11.9) 57.4 (27.3)
SEN of M (SD) 48.2 (34.6) 24.5 (13.2) 92.3 (15.0) 42.3 (24.8) 92.5 (15.8) 47.5 (26.6) 93.0 (15.2) 47.9 (31.4) 94.7 (14.8) 66.2 (33.2)
FPR of P (SD) 5.1 (8.9) 0.1 (0.7) 34 (18.9) 2.4 (5.4) 35 (19.3) 3.2 (6.5) 43.2 (20) 4.4 (7.2) 47.6 (21) 9.4 (10.3)
PPV of M (SD) 6.3 (9.7) 0.2 (1.1) 34.0 (18.4) 3.1 (6.5) 35.6 (18.8) 4.2 (7.8) 41.3 (18.9) 5.4 (7.7) 45.4 (19.6) 11.5 (11.2)
PPV of P (SD) 90.6 (11.5) 99.3 (4) 64.4 (13) 94.9 (8.8) 64 (13.1) 93.6 (9.5) 58.7 (12.1) 91.6 (10.2) 57 (11.8) 85.1 (11.5)
PPV of M (SD) 78.1 (21.6) 98.2 (10) 46.6 (15.1) 89.2 (17.4) 45.7 (14.7) 86.9 (18.1) 41 (12.7) 80.8 (19.6) 38.6 (12.3) 68.5 (19.2)
MissForest-Lasso
SEN of P (SD) 84.2 (6) 91.9 (3.2) 71.8 (10.8) 86.1 (3.6) 73.5 (9.9) 86.4 (3.1) 62 (12.3) 83.8 (4.6) 67.9 (11.8) 85.6 (3.1)
SEN of M (SD) 91.8 (13.0) 99.5 (3.5) 77.7 (18.0) 96.4 (9.5) 80.2 (18.1) 97.4 (7.6) 66.1 (20.9) 93.3 (12.5) 79.2 (15.2) 98.3 (6.7)
FPR of P (SD) 5.9 (4.6) 0 (3.2) 5.4 (4.3) 2.7 (3) 6 (4.6) 3.5 (3.7) 4.8 (4.4) 3.4 (3.3) 6.7 (5) 5.3 (4)
FPR of M (SD) 7.0 (6.1) 4.0 (4.9) 5.8 (5.4) 3.5 (4.3) 6.0 (5.8) 4.1 (4.9) 5 (5.4) 3.9 (4.5) 7.1 (6.3) 6.5 (5.3)
PPV of P (SD) 90.4 (6.7) 100 (5) 89.9 (7.2) 95.5 (4.9) 89.1 (7.6) 94.3 (5.7) 89.9 (8.4) 94.3 (5.4) 87.2 (8.4) 91.3 (6.1)
PPV of M (SD) 80.1 (15) 88.7 (12.7) 81.1 (16.3) 89.7 (12.1) 81 (17) 88.2 (13) 81.2 (18.8) 88.4 (12.7) 77.6 (17.6) 82.1 (13)

100-covariate (N=500) ρ = 0.2 ρ = 0.8 ρ = 0.2 ρ = 0.8 ρ = 0.2 ρ = 0.8

Mice-Lasso
SEN of P (SD) 63.2 (8.2) 51 (6.7) 83.7 (6.5) 77.1 (5.2) 83.6 (7) 76.8 (6.3)
SEN of M (SD) 52.6 (14.1) 55.9 (8.6) 73.3 (17.8) 58.1 (11.2) 74.3 (17.3) 58.1 (12.8)
FPR of P (SD) 0.8 (0.5) 1.2 (0.7) 83.2 (6.8) 47.1 (9.1) 82.7 (6.7) 39.3 (9.2)
FPR of M (SD) 0.2 (0.4) 0.1 (0.3) 70.5 (9.7) 30.1 (9) 69.7 (9.4) 24.5 (8.5)
PPV of P (SD) 92.8 (8.8) 82.9 (13.4) 6.1 (0.6) 9.9 (1.8) 6.1 (0.6) 11.7 (2.4)
PPV of M (SD) 94 (12.6) 96 (10.6) 4.2 (1.1) 8.2 (3.1) 4.3 (1) 10 (4)
Mice-Elasticnet
SEN of P (SD) 36 (8) 31.3 (6.4) 92.8 (4.7) 87.2 (5.5) 92.1 (4.8) 86.9 (5.8)
SEN of M (SD) 37 (10.2) 28.8 (11) 95.4 (9.5) 81.4 (14.1) 94.3 (10.8) 81.7 (14.2)
FPR of P (SD) 0.4 (0) 0.5 (0.2) 96.6 (5.4) 79.9 (10.9) 95.9 (5.6) 73.2 (12.6)
FPR of M (SD) 0 (0) 0 (0.1) 93.4 (8.2) 68.5 (14.5) 92.4 (8.3) 60.8 (15.6)
PPV of P (SD) 100 (0.7) 97.9 (6) 5.8 (0.4) 6.7 (0.9) 5.8 (0.4) 7.3 (1.3)
PPV of M (SD) NA NA 4.1 (0.4) 5 (1.4) 4.1 (0.5) 5.7 (2.1)
MissForest-Lasso
SEN of P (SD) 63.2 (8.2) 51 (6.7) 36.2 (7) 38.1 (7.3) 31.8 (8) 37.4 (7.7)
SEN of M (SD) 52.6 (14.1) 55.9 (8.6) 28.6 (15.1) 44.3 (14.2) 22.5 (15) 40.2 (14.1)
FPR of P (SD) 0.8 (0.5) 1.2 (0.7) 0.6 (0.3) 1.9 (1) 0.6 (0.3) 1.8 (0.9)
FPR of M (SD) 0.2 (0.4) 0.1 (0.3) 0.1 (0.3) 0.4 (0.7) 0.1 (0.3) 0.5 (0.8)
PPV of P (SD) 92.8 (8.8) 82.9 (13.4) 94.5 (9) 66.6 (16.7) 93.6 (10.5) 67.5 (16.7)
PPV of M (SD) 94 (12.6) 96 (10.6) 93.3 (17) 87.7 (19.1) 93.4 (19.3) 85.5 (21.6)
MissForest-Elasticnet
SEN of P (SD) 36 (8) 31.3 (6.4) 0.1 (0.8) 13.4 (12.3) 0.2 (2) 10.8 (9.7)
SEN of M (SD) 37 (10.2) 28.8 (11) 0 (0) 8.7 (15.2) 0.3 (2.8) 5.7 (11.6)
FPR of P (SD) 0.4 (0) 0.5 (0.2) 0.4 (0) 1.6 (2.9) 0.4 (0) 0.8 (0.8)
FPR of M (SD) 0 (0) 0 (0.1) 0 (0) 0.2 (0.9) 0 (0) 0 (0.1)
PPV of P (SD) 100 (0.7) 97.9 (6) NA NA NA NA
PPV of M (SD) NA NA NA 89.4 (22.5) 88.9 (19.2) 98.5 (8.7)



Appendix B

R code

B.1 Musoro et al 2014 code error

Loading the caret package:

l i b r a r y ( ca re t )

Loading the dataset (simulated dataset with 250 observations and 21 variables: 10 noise and 10 true predictors,
and the outcome variable simulated as for Musoro et al. 2014)

Data<− read . csv ( " S imula t ions / CompleteData / normalSim .250_20. complete . 1 . csv " , sep=" ; " ,
dec=" , " , s t r i ngsAsFac to rs= TRUE) [ ,−1]

Fitting the Lasso with bootstrap tuning:

lassoGr id<−expand . grid ( alpha = 1 , lambda= 10^seq (0 .1 ,−1.8 , length =40))
modelMatr ix <− model . matrix ( as . formula ( paste ( colnames ( Data ) [ dim ( Data ) [ 2 ] ] , "~ . " ,

sep=" " ) ) , data . frame ( Data ) )
Outcome <− Data [ , dim ( Data ) [ 2 ] ]
set . seed ( 2 )
( F i t . Caret <− t r a i n ( modelMatr ix [ ,−1] ,Outcome , method=" glmnet " , tuneGrid= lassoGrid ,

family=" gaussian " ,
t r C o n t r o l = t r a i n C o n t r o l ( number=100 , method=" boot " , se lec t i onFunc t i on =" best " ) ) )

So the best tuning parameter is saved in ‘bestTune$lambda’, in ‘finalModel$lambdaOpt’ and in ‘results$lambda’:

F i t . Caret$bestTune$ lambda
## [ 1 ] 0.05443741
F i t . Caret$ f i na lMode l $ lambdaOpt
## [ 1 ] 0.05443741
F i t . Caret$ r e s u l t s $ lambda [ best ( F i t . Caret$ r e su l t s , "RMSE" , maximize=FALSE ) ]
## [ 1 ] 0.05443741

B.1.1 Wrong commands for best and tolerance model coefficients (Musoro et
al 2014)

1. The first wrong code line is the one computing the coefficients for the best λ model:

coef ( F i t . Caret$ f i na lMode l ) [ , best ( F i t . Caret$ r e s u l t s [ nrow ( F i t . Caret$ r e s u l t s ) : 1 , ] ,
"RMSE" , maximize=FALSE ) ]

## ( I n t e r c e p t ) V1 V2 V3 V4 V5
## 1.8243041 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
## V6 V7 V8 V9 V10 V11
## −0.7747893 0.8138004 −1.5656112 0.7144349 0.6548666 0.0000000
## V12 V13 V14 V15 V16 V17

333
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## 0.0000000 0.1453461 0.0000000 0.0000000 0.2892636 −0.5617533
## V18 V19 V20
## −0.5704481 1.5068930 0.7923402

The ‘best’ function has the correct argument, i.e. ‘Fit.Caret$results’, and it selects the row of the best λ in
the matrix ‘Fit.Caret$results’. However this command is wrong because the row of the best λ in the matrix
‘Fit.Caret$results’ is then extract as column from ‘Fit.Caret$finalModel’ that is a completely different object,
for example, ‘Fit.Caret$results’ has 40 rows and ‘Fit.Caret$finalModel’ has 69 rows.

2. Similarly, the following command is wrong for the tolerance model (with MSE within 3% of the minimum)
coefficients:

coef ( F i t . Caret$ f i na lMode l ) [ , t o le rance ( F i t . Caret$ r e s u l t s [ nrow ( F i t . Caret$ r e s u l t s ) :
1 , ] , met r i c= "RMSE" , maximize=FALSE, t o l =3 ) ]

## ( I n t e r c e p t ) V1 V2 V3 V4 V5
## 2.42927035 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
## V6 V7 V8 V9 V10 V11
## −0.30714608 0.37892981 −1.10390962 0.08959322 0.00000000 0.00000000
## V12 V13 V14 V15 V16 V17
## 0.00000000 0.00000000 0.00000000 0.00000000 0.11480705 −0.36930415
## V18 V19 V20
## −0.30683700 1.37039583 0.61817961

Compare the best λ and the λ to which the coefficients of the first wrong command (1) correspond to:

F i t . Caret$bestTune$ lambda
## [ 1 ] 0.05443741
F i t . Caret$ f i na lMode l $ lambda [ best ( F i t . Caret$ r e s u l t s [ nrow ( F i t . Caret$ r e s u l t s ) : 1 , ] , "RMSE" ,

maximize=FALSE ) ]
## [ 1 ] 0.1665014

B.1.2 Correct commands for best and tolerance model coefficients
1. The following command correctly selects the best λ model coefficients:

coef ( F i t . Caret$ f ina lMode l , s= F i t . Caret$bestTune$ lambda )
## 21 x 1 sparse Mat r i x o f c lass " dgCMatrix "
## 1
## ( I n t e r c e p t ) 1.51417057
## V1 0.10929752
## V2 0.10691587
## V3 .
## V4 0.04622961
## V5 −0.04722650
## V6 −0.91077606
## V7 0.99546539
## V8 −1.87870078
## V9 0.94710545
## V10 0.96779451
## V11 −0.00972630
## V12 −0.07203485
## V13 0.24297913
## V14 −0.02727955
## V15 0.07863696
## V16 0.36672550
## V17 −0.66139761
## V18 −0.68156684
## V19 1.54822298
## V20 0.88933726

2. For the 3% tolerance model coefficients, we first find the λ closest to the 3% tolerance λ in ‘Fit.Caret$results’
as ‘caret’ does not return the exact λ with the ‘tolerance’ function (see below). Therefore, we need to find λ
such that
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( t o l . tune<−F i t . Caret$ r e s u l t s $ lambda [ ( F i t . Caret$ r e s u l t s $RMSE−
min ( F i t . Caret$ r e s u l t s $RMSE) ) ∗100 / min ( F i t . Caret$ r e s u l t s $RMSE)>=
3 ] [ F i t . Caret$ r e s u l t s $ lambda [ ( F i t . Caret$ r e s u l t s $RMSE−
min ( F i t . Caret$ r e s u l t s $RMSE) ) ∗100 / min ( F i t . Caret$ r e s u l t s $RMSE) >=3]==
min ( F i t . Caret$ r e s u l t s $ lambda [ ( F i t . Caret$ r e s u l t s $RMSE−
min ( F i t . Caret$ r e s u l t s $RMSE) ) ∗100 / min ( F i t . Caret$ r e s u l t s $RMSE) > = 3 ] ) ] )
## [ 1 ] 0.1869799

Then we find the correspondent tolerance coefficients:

coef ( F i t . Caret$ f i na lMode l ) [ , F i t . Caret$ f i na lMode l $ lambda==
F i t . Caret$ f i na lMode l $ lambda [ abs ( F i t . Caret$ f i na lMode l $

lambda− t o l . tune )==min ( abs ( F i t . Caret$ f i na lMode l $lambda− t o l . tune ) ) ] ]
## ( I n t e r c e p t ) V1 V2 V3 V4 V5
## 1.8649046 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
## V6 V7 V8 V9 V10 V11
## −0.7467256 0.7862884 −1.5351462 0.6746960 0.6098690 0.0000000
## V12 V13 V14 V15 V16 V17
## 0.0000000 0.1305558 0.0000000 0.0000000 0.2784649 −0.5490214
## V18 V19 V20
## −0.5540582 1.4982586 0.7807537

Compare the closest to tolerance lambda (3%) ‘tol.tune’ and the λ which the coefficients of the second wrong
command (see Subsection B.1.1 above) correspond to:

t o l . tune
## [ 1 ] 0.1869799
F i t . Caret$ f i na lMode l $ lambda [ to le rance ( F i t . Caret$ r e s u l t s [ nrow ( F i t . Caret$ r e s u l t s ) :

1 , ] , "RMSE" , maximize=FALSE, t o l =3 ) ]
## [ 1 ] 0.4221418

Also, notice that the ‘tolerance’ function does not select the most parsimonious model if applied to ‘Fit.Caret$results’:

F i t . Caret$ r e s u l t s $ lambda [ to le rance ( F i t . Caret$ r e su l t s , met r i c= "RMSE" , maximize=FALSE,
t o l =3 ) ]

## [ 1 ] 0.01584893

The returned tolerance lambda is even smaller than the best lambda, thus the correspondent model will not be more
parsimonious than the best model.

B.2 MissForest-Lasso R function

# FUNCTIONS NEEDED: _________________________________________________________________

### 1 s t FUNCTION: __________________________________________________________________
### A f u n c t i o n to compute apparent performance ################################
MSE. alpha . beta <− function ( coef , data . imputed ,Num. imputed ) {
Alpha . apparent <− rep (NA,Num. imputed ) ; Beta . apparent <− rep (NA,Num. imputed )
MSE. apparent <− rep (NA,Num. imputed )

i =1
while ( i <= Num. imputed ) {
Outcome . data <− data . imputed [ [ i ] ] [ , dim ( data . imputed [ [ i ] ] ) [ 2 ] ]
modelMatr ix . data <− model . Mat r i x ( as . formula ( paste ( colnames ( data . imputed [ [ i ] ] ) [
dim ( data . imputed [ [ i ] ] ) [ 2 ] ] , "~.% i n%" ,colnames ( data . imputed [ [
i ] ] ) [ 1 ] , " + . " , sep=" " ) ) , data . imputed [ [ i ] ] )
X . data<−modelMatr ix . data [ ,−1]
Pred ic ted . data <− as . matrix ( coef [ 1 ] + X . data%∗%coef [−1])
MSE. apparent [ i ] <− mean ( ( Outcome . data−Pred ic ted . data ) ^ 2 )
lm . coef <− lm ( Outcome . data ~ Pred ic ted . data ) $coef
Alpha . apparent [ i ] <− lm . coef [ 1 ]
Beta . apparent [ i ] <− lm . coef [ 2 ]
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i<− i +1
}
out . o p t i . best . t o l <− l i s t (MSE. apparent , Alpha . apparent , Beta . apparent )
out . o p t i . best . t o l
}

### 2nd FUNCTION: _________________________________________________________________
### MissForest−Lasso #############################################################

MissForest<− function (Num. imputed ,Num. boot=NULL, method ,Num. cv=NULL, repeats=NULL,
Data .NA, Grid , percent . t o l , cores_2_use , p a r a l l e l i z e , seed ) {

###− Peforming missForest

data . imputed <− vector ( " l i s t " ,Num. imputed )
Imput<− vector ( " l i s t " ,Num. imputed )

j =1
while ( j <= Num. imputed ) {

c l <− makeCluster ( cores_2_use )
c l u s t e r E x p o r t ( c l , c ( " Data .NA" , " p a r a l l e l i z e " , " cores_2_use " , " seed " , " Imput " ) ,
env i r =environment ( ) )
clusterSetRNGStream ( c l , seed )
c lus terEva lQ ( c l , l i b r a r y ( missForest ) )
Imput [ [ j ] ] <−
parLapply ( c l = c l , X = 1: cores_2_use , fun = function ( no ) {
missForest ( Data .NA, maxi ter = 10 , n t ree = 100 , va r iab lew ise = TRUE,
verbose = TRUE,
replace = TRUE,
p a r a l l e l i z e = p a r a l l e l i z e )
} )
s topC lus te r ( c l )
data . imputed [ [ j ] ] = Imput [ [ j ] ] [ [ 1 ] ] $ximp
j<− j +1
}

###− F i t glmnet using care t .

modelMatrixData<−model . Mat r i x ( as . formula ( paste ( colnames ( Data .NA) [ dim ( Data .NA) [ 2
] ] , "~.% i n%" , colnames ( Data .NA) [ 1 ] , " + . " , sep=" " ) ) , Data .NA)
coef . best<−coef . t o l .1SE<−coef . t o l<−coef . t o l .15<− matrix (NA,Num. imputed ,
dim ( modelMatrixData ) [ 2 ] )
lambda<− matrix (NA,Num. imputed , 4 )

i =1
while ( i <= Num. imputed ) {

modelMatr ix<−model . Mat r i x ( as . formula ( paste ( colnames ( data . imputed [ [ i ] ] ) [
dim ( data . imputed [ [ i ] ] ) [ 2 ] ] , "~.% i n%" , colnames ( data . imputed [ [ i
] ] ) [ 1 ] , " + . " , sep=" " ) ) , data . imputed [ [ i ] ] )
Outcome <− data . imputed [ [ i ] ] [ , dim ( data . imputed [ [ i ] ] ) [ 2 ] ]

options ( warn=−1)

c l =makeCluster ( cores_2_use ) ; r e g i s t e r D o P a r a l l e l ( c l )
i f ( method==" repeatedcv " )
{ set . seed ( seed )
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F i t . Caret <− t r a i n ( modelMatr ix [ ,−1] ,Outcome , method=" glmnet " , tuneGrid=Grid ,
family=" gaussian " , t r C o n t r o l = t r a i n C o n t r o l ( number=Num. cv ,
method=method , repeats=repeats , se lec t i onFunc t i on =" best " ) )
} else i f ( method==" boot " )
{ set . seed ( seed )
F i t . Caret <− t r a i n ( modelMatr ix [ ,−1] ,Outcome , method=" glmnet " , tuneGrid=Grid ,
family=" gaussian " , t r C o n t r o l = t r a i n C o n t r o l ( number=Num. boot ,
method=method , se lec t i onFunc t i on =" best " ) )
}
s topC lus te r ( c l )
options ( warn=0)

#− Tuning parameters

lambda [ i , 1 ] <− F i t . Caret$ f i na lMode l $ lambdaOpt
lambda [ i , 2 ] <− max( F i t . Caret$ r e s u l t s $ lambda [ F i t . Caret$ r e s u l t s $RMSE<=
F i t . Caret$ r e s u l t s [ row .names ( F i t . Caret$bestTune ) , ] $RMSE +
( F i t . Caret$ r e s u l t s [ row .names ( F i t . Caret$bestTune ) , ] $RMSESD) /
sqrt (Num. boot ) ] )
lambda [ i , 3 ] <− max( F i t . Caret$ r e s u l t s $ lambda [ ( F i t . Caret$ r e s u l t s $RMSE−
min ( F i t . Caret$ r e s u l t s $RMSE) ) ∗100 / min ( F i t . Caret$ r e s u l t s $RMSE)<=
percent . t o l ] )
lambda [ i , 4 ] <− max( F i t . Caret$ r e s u l t s $ lambda [ ( F i t . Caret$ r e s u l t s $RMSE−
min ( F i t . Caret$ r e s u l t s $RMSE) ) ∗100 / min ( F i t . Caret$ r e s u l t s $RMSE
) <=15])

#− Model c o e f f i c i e n t s −#
coef . best [ i , ] <− as . matrix ( coef ( F i t . Caret$ f i na lMode l , s=
F i t . Caret$bestTune$ lambda ) )
coef . t o l .1SE[ i , ] <− as . matrix ( coef ( F i t . Caret$ f i na lMode l , s=
max( F i t . Caret$ r e s u l t s $ lambda [ F i t . Caret$ r e s u l t s $RMSE<=
F i t . Caret$ r e s u l t s [ row .names ( F i t . Caret$bestTune ) , ] $RMSE +
( F i t . Caret$ r e s u l t s [ row .names ( F i t . Caret$bestTune ) , ] $RMSESD) /
sqrt (Num. boot ) ] ) ) )
coef . t o l [ i , ] <−as . matrix ( coef ( F i t . Caret$ f i na lMode l , s=max( F i t . Caret$ r e s u l t s $
lambda [ ( F i t . Caret$ r e s u l t s $RMSE−min ( F i t . Caret$ r e s u l t s $RMSE) ) ∗
100 / min ( F i t . Caret$ r e s u l t s $RMSE)<= percent . t o l ] ) ) )
coef . t o l . 1 5 [ i , ] <−as . matrix ( coef ( F i t . Caret$ f i na lMode l , s=max( F i t . Caret$ r e s u l t s $
lambda [ ( F i t . Caret$ r e s u l t s $RMSE−min ( F i t . Caret$ r e s u l t s $RMSE) ) ∗
100 / min ( F i t . Caret$ r e s u l t s $RMSE) <=15 ] ) ) )
i<− i +1
}

Av . coef . best <−apply ( coef . best , 2 ,mean )
Av . coef . t o l .1SE <−apply ( coef . t o l .1SE,2 ,mean )
Av . coef . t o l <−apply ( coef . t o l , 2 ,mean)
Av . coef . t o l .15 <−apply ( coef . t o l .15 ,2 ,mean)
i f (Num. imputed ==1){
Av . lambda <− lambda
} else {
Av . lambda <− apply ( lambda ,2 ,mean ) }
names ( Av . lambda )<−c ( "Av . best " , "Av . t o l .1SE" , "Av . t o l " , "Av . t o l .15% " )

#−− Calcu la te MSE and c a l i b r a t i o n slope ( beta)−− #

Model . best = MSE. alpha . beta ( coef=Av . coef . best , data . imputed=data . imputed ,
Num. imputed=Num. imputed )
Model . t o l .1SE= MSE. alpha . beta ( coef=Av . coef . t o l .1SE, data . imputed=data . imputed ,
Num. imputed=Num. imputed )
Model . t o l = MSE. alpha . beta ( coef=Av . coef . t o l , data . imputed=data . imputed ,
Num. imputed=Num. imputed )
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Model . t o l .15= MSE. alpha . beta ( coef=Av . coef . t o l .15 , data . imputed=data . imputed ,
Num. imputed=Num. imputed )

Av .MSE. apparent . best <− mean( Model . best [ [ 1 ] ] )
Av .MSE. apparent . t o l .1SE <− mean( Model . t o l .1SE [ [ 1 ] ] )
Av .MSE. apparent . t o l <− mean( Model . t o l [ [ 1 ] ] )
Av .MSE. apparent . t o l .15 <− mean( Model . t o l . 1 5 [ [ 1 ] ] )
Av . Alpha . apparent . best <− mean( Model . best [ [ 2 ] ] )
Av . Alpha . apparent . t o l .1SE <− mean( Model . t o l .1SE [ [ 2 ] ] )
Av . Alpha . apparent . t o l <− mean( Model . t o l [ [ 2 ] ] )
Av . Alpha . apparent . t o l .15 <− mean( Model . t o l . 1 5 [ [ 2 ] ] )
Av . Beta . apparent . best <− mean( Model . best [ [ 3 ] ] )
Av . Beta . apparent . t o l .1SE <− mean( Model . t o l .1SE [ [ 3 ] ] )
Av . Beta . apparent . t o l <− mean( Model . t o l [ [ 3 ] ] )
Av . Beta . apparent . t o l .15 <− mean( Model . t o l . 1 5 [ [ 3 ] ] )

Av . coef <−cbind ( Av . coef . best=Av . coef . best , Av . coef . t o l .1SE=Av . coef . t o l .1SE,
Av . coef . t o l =Av . coef . t o l , Av . coef . t o l .15=Av . coef . t o l . 15 )
row .names ( Av . coef ) <−at t r ibutes ( coef ( F i t . Caret$ f i na lMode l ) ) $Dimnames [ [ 1 ] ]

Averages<−matrix ( c ( Av .MSE. apparent . best , Av .MSE. apparent . t o l .1SE,
Av .MSE. apparent . t o l , Av .MSE. apparent . t o l .15 ,
Av . Beta . apparent . best , Av . Beta . apparent . t o l .1SE,
Av . Beta . apparent . t o l , Av . Beta . apparent . t o l .15 ,
Av . Alpha . apparent . best , Av . Alpha . apparent . t o l .1SE,
Av . Alpha . apparent . t o l , Av . Alpha . apparent . t o l . 15 ) ,3 ,4 ,
byrow=TRUE)
row .names ( Averages )<−c ( "Av . Apparent .MSE" , "Av . Apparent . Beta " , "Av . Apparent . Alpha " )
colnames ( Averages )<−c ( "Av . best " , "Av . t o l .1SE" , "Av . t o l " , "Av . t o l .15% " )

out . temp <− l i s t ( Averages=Averages , Av . lambda=Av . lambda , Av . coef=Av . coef ,
m iss fo res t=Imput [ [ 1 ] ] )
out . temp
}

B.3 Harrell bootstrap validation for MissForest-Lasso

#FUNCTIONS NEEDED: _______________________________________________________________

### 1 s t FUNCTION: ________________________________________________________________
### A f u n c t i o n to create the boots t rap data sets ################################
Create . boo ts t rap . data . MissForest <− f u n c t i o n ( k ,Num. imputed , Data .NA,
cores_2_use , p a r a l l e l i z e , seeds ) {
#− Sampling the incomplete data
data . imputed . Boot <− vec to r ( " l i s t " ,Num. imputed )
set . seed ( seeds [ k ] )
Boot . row <− sample ( nrow ( Data .NA) , rep lace=TRUE)

#− Peformimg missForest
Imput<− vec to r ( " l i s t " ,Num. imputed )
h=1
whi le ( h <= Num. imputed ) {
c l <− makeCluster ( cores_2_use )
c l u s t e r E x p o r t ( c l , c ( " Data .NA" , " p a r a l l e l i z e " , " cores_2_use " , " seeds " , " k " ,
" Imput " ) , env i r =environment ( ) )
clusterSetRNGStream ( c l , seeds [ k ] )
c lus terEva lQ ( c l , l i b r a r y ( missForest ) )
Imput [ [ h ] ] <−
parLapply ( c l = c l , X = 1: cores_2_use , fun = f u n c t i o n ( no ) {
missForest ( Data .NA, maxi ter = 10 , n t ree = 100 , va r iab lew ise = FALSE,
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verbose = TRUE,
rep lace = TRUE,
p a r a l l e l i z e = p a r a l l e l i z e )
} )
s topC lus te r ( c l )
data . imputed . Boot [ [ h ] ] = Imput [ [ h ] ] [ [ 1 ] ] $ximp
h<−h+1
}
out<−data . imputed . Boot
out
}

### 2nd FUNCTION: __________________________________________________
### A f u n c t i o n to compute optimism ################################
optimism . alpha . beta . boot <− f u n c t i o n ( coef , data . imputed . Boot , data . imputed ,
Num. imputed ) {
Alpha . boot <− rep (NA,Num. imputed ) ; Beta . boot <− rep (NA,Num. imputed )
Alpha . data <− rep (NA,Num. imputed ) ; Beta . data <− rep (NA,Num. imputed )
MSE. data <− rep (NA,Num. imputed ) ; MSE. boot <− rep (NA,Num. imputed )
Optimism <− rep (NA,Num. imputed ) ;
Alpha . optimism <− rep (NA,Num. imputed ) ; Beta . optimism<−rep (NA,Num. imputed )

i =1
whi le ( i <= Num. imputed ) {
Outcome . boot <− data . imputed . Boot [ [ i ] ] [ , dim ( data . imputed . Boot [ [ i ] ] ) [ 2 ] ]
Outcome . data <− data . imputed [ [ i ] ] [ , dim ( data . imputed [ [ i ] ] ) [ 2 ] ]
modelMatr ix . boot <− model . Mat r i x ( as . formula ( paste ( colnames ( data . imputed . Boot [ [ i
] ] ) [ dim ( data . imputed . Boot [ [ i ] ] ) [ 2 ] ] , " ~ . % i n %",
colnames ( data . imputed . Boot [ [ i ] ] ) [ 1 ] , " + . " , sep = " " ) ) ,
data . imputed . Boot [ [ i ] ] )
X . boot<− modelMatr ix . boot [ ,−1]
modelMatr ix . data <− model . Mat r i x ( as . formula ( paste ( colnames ( data . imputed [ [ i
] ] ) [ dim ( data . imputed [ [ i ] ] ) [ 2 ] ] , " ~ . % i n %",
colnames ( data . imputed [ [ i ] ] ) [ 1 ] , " + . " , sep = " " ) ) ,
data . imputed [ [ i ] ] )
X . data<−modelMatr ix . data [ ,−1]
Pred ic ted . data <− as . mat r i x ( coef [ 1 ] + X. data%∗%coef [−1])
Pred ic ted . boot <− as . mat r i x ( coef [ 1 ] + X. boot%∗%coef [−1])
MSE. boot [ i ] <− mean ( ( Outcome . boot−Pred ic ted . boot ) ^ 2 )
MSE. data [ i ] <− mean ( ( Outcome . data−Pred ic ted . data ) ^ 2 )
Optimism [ i ] <− MSE. boot [ i ]−MSE. data [ i ]
lm . coef . data <− lm ( Outcome . data ~ Pred ic ted . data ) $coef
lm . coef . boot<− lm ( Outcome . boot ~ Pred ic ted . boot ) $coef
Alpha . data [ i ] <− lm . coef . data [ 1 ]
Beta . data [ i ] <− lm . coef . data [ 2 ]
Alpha . boot [ i ] <− lm . coef . boot [ 1 ]
Beta . boot [ i ] <− lm . coef . boot [ 2 ]
Alpha . optimism [ i ] <− Alpha . boot [ i ]−Alpha . data [ i ]
Beta . optimism [ i ] <− Beta . boot [ i ]−Beta . data [ i ]

i <− i +1
}
out . o p t i . best . t o l <− l i s t (MSE. boot ,MSE. data , Optimism , Alpha . optimism ,
Beta . optimism )
out . o p t i . best . t o l
}

### 3rd FUNCTION_______________________________________________________________
# HARREL BOOTSTRAP VALIDATION ###################################################
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MissForest . Boot<− f u n c t i o n (Num. imputed ,Num. boot=NULL, method ,Num. cv=NULL,
repeats=NULL, Data .NA, Grid , percent . t o l , cores_2_use , p a r a l l e l i z e ,
missingData , seed ) {

###− Peformimg missForest
set . seed ( seed )
seeds<−sample (1:10000000 ,100)
data . imputed <− vec to r ( " l i s t " ,Num. imputed )

Imput<− vec to r ( " l i s t " ,Num. imputed )
j =1
whi le ( j <= Num. imputed ) {
c l <− makeCluster ( cores_2_use )
c l u s t e r E x p o r t ( c l , c ( " Data .NA" , " p a r a l l e l i z e " , " cores_2_use " , " seed " , " Imput " ) ,
env i r =environment ( ) )
clusterSetRNGStream ( c l , seed )
c lus terEva lQ ( c l , l i b r a r y ( missForest ) )
Imput [ [ j ] ] <−
parLapply ( c l = c l , X = 1: cores_2_use , fun = f u n c t i o n ( no ) {
missForest ( Data .NA, maxi ter = 10 , n t ree = 100 , va r iab lew ise = FALSE,
verbose = TRUE,
rep lace = TRUE,
p a r a l l e l i z e = p a r a l l e l i z e )
} )
s topC lus te r ( c l )
data . imputed [ [ j ] ] = Imput [ [ j ] ] [ [ 1 ] ] $ximp

j <− j +1
}

###− F i t glmnet ( over the boots t rap data sets ) using ca re t .
A l l .MSE. boot . best <− A l l .MSE. data . best <− rep (NA,Num. boot )
A l l .MSE. boot . tol1SE <− A l l .MSE. data . tol1SE <− rep (NA,Num. boot )
A l l .MSE. boot . to le rance <− A l l .MSE. data . to le rance <− rep (NA,Num. boot )
A l l .MSE. boot . t o l 15 <− A l l .MSE. data . t o l 15 <− rep (NA,Num. boot )
A l l . Optimism . best <− A l l . Optimism . tol1SE <− A l l . Optimism . to lerance <−
A l l . Optimism . t o l 15 <− rep (NA,Num. boot )
A l l . Beta . best . opt <− A l l . Beta . tol1SE . opt <− A l l . Alpha . best . opt <−
A l l . Alpha . tol1SE . opt<− rep (NA,Num. boot )
A l l . Beta . to le rance . opt<− A l l . Alpha . to le rance . opt<− A l l . Beta . t o l 15 . opt <−
A l l . Alpha . t o l 15 . opt <− rep (NA,Num. boot )

modelMatrixData<−model . Mat r i x ( as . formula ( paste ( colnames ( Data .NA) [ dim ( Data .NA) [ 2
] ] , " ~ . % i n %",colnames ( Data .NA) [ 1 ] , " + . " , sep = " " ) ) , model . frame (
Data .NA) )

F i t . ca re t . best <− mat r i x (NA,Num. imputed , dim ( modelMatr ixData ) [ 2 ] )
F i t . ca re t . tol1SE<− mat r i x (NA,Num. imputed , dim ( modelMatr ixData ) [ 2 ] )
F i t . ca re t . to le rance <− mat r i x (NA,Num. imputed , dim ( modelMatr ixData ) [ 2 ] )
F i t . ca re t . t o l 15 <− mat r i x (NA,Num. imputed , dim ( modelMatr ixData ) [ 2 ] )

k=1
whi le ( k <= Num. boot ) {
out <− Create . boo ts t rap . data . Mice . Forest .Mus( k=k , Data .NA=Data .NA,
Num. imputed=Num. imputed , cores_2_use = cores_2_use , p a r a l l e l i z e =
p a r a l l e l i z e , seeds=seeds )
data . imputed . Boot<− out

i =1
wh i le ( i <= Num. imputed ) {
modelMatrix<−model . Mat r i x ( as . formula ( paste ( colnames ( data . imputed . Boot [ [ i ] ] ) [
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dim ( data . imputed . Boot [ [ i ] ] ) [ 2 ] ] , " ~ . % i n %",
colnames ( data . imputed . Boot [ [ i ] ] ) [ 1 ] , " + . " , sep = " " ) ) ,
data . imputed . Boot [ [ i ] ] )
Outcome . boot<− data . imputed . Boot [ [ i ] ] [ , dim ( data . imputed . Boot [ [ i ] ] ) [ 2 ] ]
#### modi f ied

opt ions ( warn=−1)
c l =makeCluster ( cores_2_use ) ; r e g i s t e r D o P a r a l l e l ( c l )
i f ( method==" repeatedcv " )
{ se t . seed ( seeds [ k ] )
F i t . Caret <− t r a i n ( modelMatr ix [ ,−1] ,Outcome . boot , method=" glmnet " ,
tuneGrid=Grid , f a m i l y =" gaussian " ,
t r C o n t r o l = t r a i n C o n t r o l ( number=Num. cv , method=method ,
repeats=repeats , se lec t i onFunc t i on =" best " ) )
} e lse i f ( method==" boot " )
{ se t . seed ( seeds [ k ] )
F i t . Caret <− t r a i n ( modelMatr ix [ ,−1] ,Outcome . boot , method=" glmnet " ,
tuneGrid=Grid , f a m i l y =" gaussian " ,
t r C o n t r o l = t r a i n C o n t r o l ( number=Num. boot ,
method=method , se lec t i onFunc t i on =" best " ) )
}
s topC lus te r ( c l )
op t ions ( warn=0)

#− Model c o e f f i c i e n t s −#

F i t . ca re t . best [ i , ] <− as . mat r i x ( coef ( F i t . Caret$ f ina lModel , s=
F i t . Caret$bestTune$lambda ) )
F i t . ca re t . tol1SE [ i , ] <− as . mat r i x ( coef ( F i t . Caret$ f ina lModel , s=
max( F i t . Caret$resul ts$lambda [ F i t . Care t$ resu l t s$
RMSE<= F i t . Ca re t$ resu l t s [ row . names( F i t . Caret$bestTune
) , ]$RMSE +( F i t . Ca re t$ resu l t s [ row . names ( F i t . Caret$
bestTune ) , ]$RMSESD) / s q r t (Num. boot ) ] ) ) )

F i t . ca re t . t o le rance [ i , ] <− as . mat r i x ( coef ( F i t . Caret$ f ina lModel , s=
max( F i t . Caret$resul ts$lambda [ ( F i t . Care t$ resu l t s$
RMSE−min ( F i t . Caret$results$RMSE ) )∗100 /
min ( F i t . Caret$results$RMSE)<= percent . t o l ] ) ) )
F i t . ca re t . t o l 15 [ i ,] <− as . mat r i x ( coef ( F i t . Caret$ f ina lModel , s=max( F i t . Caret$
resul ts$ lambda [ ( F i t . Caret$results$RMSE−min ( F i t . Caret$
results$RMSE ) )∗100 / min ( F i t . Caret$results$RMSE ) <=15 ] ) ) )
i <− i +1
}

coef . best <− apply ( F i t . ca re t . best , 2 ,mean)
coef . tol1SE <− apply ( F i t . ca re t . tol1SE ,2 ,mean)
coef . to le rance <− apply ( F i t . ca re t . to le rance ,2 ,mean)
coef . t o l 15 <− apply ( F i t . ca re t . to l15 ,2 ,mean)

#−− Calcu la te optimism and c a l i b r a t i o n slope ( beta)−− #

Model . best = optimism . alpha . beta . deb .mus( coef=coef . best , data . imputed . Boot=
data . imputed . Boot , data . imputed=data . imputed ,Num. imputed=
Num. imputed )
Model . t o l .1SE = optimism . alpha . beta . deb .mus( coef=coef . tol1SE ,
data . imputed . Boot=data . imputed . Boot , data . imputed=data . imputed ,
Num. imputed=Num. imputed )
Model . t o l = optimism . alpha . beta . deb .mus( coef=coef . to le rance , data . imputed . Boot=
data . imputed . Boot , data . imputed=data . imputed ,Num. imputed=Num. imputed )
Model . t o l .15 = optimism . alpha . beta . deb .mus( coef=coef . to l15 , data . imputed . Boot=
data . imputed . Boot , data . imputed=data . imputed ,Num. imputed=Num. imputed )
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A l l .MSE. boot . best [ k ] <− mean( Model . best [ [ 1 ] ] )
A l l .MSE. data . best [ k ] <− mean( Model . best [ [ 2 ] ] )
A l l .MSE. boot . tol1SE [ k ] <− mean( Model . t o l .1SE [ [ 1 ] ] ) # t r a i n i n g
A l l .MSE. data . tol1SE [ k ] <− mean( Model . t o l .1SE [ [ 2 ] ] ) # t e s t
A l l .MSE. boot . to le rance [ k]<− mean( Model . t o l [ [ 1 ] ] ) # t r a i n i n g
A l l .MSE. data . to le rance [ k]<− mean( Model . t o l [ [ 2 ] ] ) # t e s t
A l l .MSE. boot . t o l 15 [ k ] <− mean( Model . t o l . 1 5 [ [ 1 ] ] ) # t r a i n i n g
A l l .MSE. data . t o l 15 [ k ] <− mean( Model . t o l . 1 5 [ [ 2 ] ] ) # t e s t

A l l . Optimism . best [ k ] <− mean( Model . best [ [ 3 ] ] )
A l l . Alpha . best . opt [ k ] <− mean( Model . best [ [ 4 ] ] )
A l l . Beta . best . opt [ k ] <− mean( Model . best [ [ 5 ] ] )
A l l . Optimism . tol1SE [ k ] <− mean( Model . t o l .1SE [ [ 3 ] ] )
A l l . Alpha . tol1SE . opt [ k ] <− mean( Model . t o l .1SE [ [ 4 ] ] )
A l l . Beta . tol1SE . opt [ k ] <− mean( Model . t o l .1SE [ [ 5 ] ] )
A l l . Optimism . to le rance [ k]<− mean( Model . t o l [ [ 3 ] ] )
A l l . Alpha . to le rance . opt [ k]<− mean( Model . t o l [ [ 4 ] ] )
A l l . Beta . to le rance . opt [ k ] <− mean( Model . t o l [ [ 5 ] ] )
A l l . Optimism . t o l 15 [ k ] <− mean( Model . t o l . 1 5 [ [ 3 ] ] )
A l l . Alpha . t o l 15 . opt [ k ] <− mean( Model . t o l . 1 5 [ [ 4 ] ] )
A l l . Beta . t o l 15 . opt [ k ] <− mean( Model . t o l . 1 5 [ [ 5 ] ] )

k<−k+1
}
## Ca lcua l te MSE, optimism and model averaged regress ion c o e f f i c e n t s
Av .MSE. boot . best <− mean( A l l .MSE. boot . best ) # t r a i n i n g
Av .MSE. data . best <− mean( A l l .MSE. data . best ) # t e s t
Av .MSE. boot . tol1SE <− mean( A l l .MSE. boot . tol1SE ) # t r a i n i n g
Av .MSE. data . tol1SE <− mean( A l l .MSE. data . tol1SE ) # t e s t
Av .MSE. boot . to le rance <− mean( A l l .MSE. boot . to le rance ) # t r a i n i n g
Av .MSE. data . to le rance <− mean( A l l .MSE. data . to le rance ) # t e s t
Av .MSE. boot . t o l 15 <− mean( A l l .MSE. boot . t o l 15 ) # t r a i n i n g
Av .MSE. data . t o l 15 <− mean( A l l .MSE. data . t o l 15 ) # t e s t
Av . Optimism . best <− mean( A l l . Optimism . best )
Av . Optimism . tol1SE <− mean( A l l . Optimism . tol1SE )
Av . Optimism . to le rance <− mean( A l l . Optimism . to le rance )
Av . Optimism . to l 15 <− mean( A l l . Optimism . t o l 15 )
Av . Beta . best . opt <− mean( A l l . Beta . best . opt )
Av . Alpha . best . opt <− mean( A l l . Alpha . best . opt )
Av . Beta . tol1SE . opt <− mean( A l l . Beta . tol1SE . opt )
Av . Alpha . tol1SE . opt <− mean( A l l . Alpha . tol1SE . opt )
Av . Beta . to le rance . opt <− mean( A l l . Beta . to le rance . opt )
Av . Alpha . to le rance . opt<− mean( A l l . Alpha . to le rance . opt )
Av . Beta . t o l 15 . opt <− mean( A l l . Beta . t o l 15 . opt )
Av . Alpha . t o l 15 . opt <− mean( A l l . Alpha . t o l 15 . opt )

Averages<−mat r i x ( c ( Av .MSE. boot . best , Av .MSE. boot . tol1SE , Av .MSE. boot . to le rance ,
Av .MSE. boot . to l15 ,
Av .MSE. data . best ,
Av .MSE. data . tol1SE , Av .MSE. data . to le rance , Av .MSE. data . to l15 ,
Av . Optimism . best , Av . Optimism . tol1SE , Av . Optimism . to lerance ,
Av . Optimism . to l15 ,
Av . Beta . best . opt , Av . Beta . tol1SE . opt , Av . Beta . to le rance . opt ,
Av . Beta . t o l 15 . opt ,
Av . Alpha . best . opt , Av . Alpha . tol1SE . opt ,
Av . Alpha . to le rance . opt , Av . Alpha . t o l 15 . opt ) , 5 ,4 , byrow=TRUE)
colnames ( Averages)<−c ( " Av . best " , " Av . t o l .1SE" , " Av . t o l " , " Av . t o l .15%")
# }
row . names( Averages)<−c ( " Av . T ra in ing .MSE" , " Av . Test .MSE" , " Av . Optimism " ,
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"Av . Beta . optimism " , " Av . Alpha . optimism " )

out . temp <− l i s t ( Averages=Averages )
out . temp
}



344
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Appendix C

Database of cognitive training and
remediation studies

C.1 Study information variables

Database of Cognitive Training and Remediation Studies - Study Information 
 
field  1 =  Study ID number (assigned by NIMH)     (Study_ID)  

4155 = WYKES1 (n=35) 
5693 = BELL (n=77) 
6632 = KEEFE (n=53) 
7926 = KESHAVAN (n=58) 
8134 = WYKES3 (n=40) 
9212 = WYKES2 (n=85) 
9479 = SILVERSTEIN (n=83) 

 
field  2 =  PI last name        (PI_Last_Name) 
 
SECTION 1: General study information 
 

Note:  The following 4 fields refer to the primary paper in which the results of the study are reported; If the results 
are reported in multiple papers, generally information about the initial report of results is included here. 

 
field  3 =  First author of paper (Last name)     (Paper_1stAuthor) 
field  4 =  Title of paper        (Paper_Title) 
field  5 =  Journal name        (Paper_Journal) 
field  6 =  Publication date (year)      (Paper_Pubyear) 
 
SECTION 2: Summary of subject and study characteristics 
 
Note: Data for the variables in this section are computed from the subject-level data for each study. 
 
field  7 =  Number of subjects in Cognitive Remediation condition   (N_CR_Group) 
field  8 =  Number of subjects in Comparison condition    (N_Comp_Group) 
field  9 =  Percentage of participants who are male    (Percent_Male) 
field  10 =  Mean age of participants (years)     (Mean_Age) 
field  11 =  Percentage of participants who are not White   (Percent_Not_White) 
 
Note:  Values for the following variables are obtained via the Study Information form completed by the PI.  
 
field  12 =  Data collection start date (year)     (Study_Start_Date) 
field  13 =  Data collection end date (year)     (Study_End_Date) 
field  14 =  Location of data collection; Country 1    (Study_Country1) 
field  15 =  Location of data collection; Country 2    (Study_Country2) 
field  16 =  Location of data collection; Country 3    (Study_Country3) 

 
10 = Canada  60 = Netherlands 
20 = France  70 = Spain 
30 = Germany  80 = United States 
40 = Italy  90 = United Kingdom 
50 = Mexico    
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Database of Cognitive Training and Remediation Studies - Study Information 
 
SECTION 3: Intervention and comparison condition characteristics 

Note: Both experimental conditions may include CR but "CR condition" is defined (per the study information form) as being 
the most elaborated intervention 
 
Codes for following variables: 

1=Yes 
0=No 

 
field  17 =  Attention shaping intervention used in CR condition?   (Int_CR_Attn) 
field  18 =  Attention shaping intervention used in comparison condition?  (Int_Con_Attn) 
field  19 =  Cognitive Enhancement Tx used in CR condition?    (Int_CR_CET) 
field  20 =  Cognitive Enhancement Tx used in comparison condition?   (Int_Con_CET) 
field  21 =  Cognitive Remediation Therapy used in CR condition?   (Int_CR_CRT) 
field  22 =  Cognitive Remediation Therapy used in comparison condition?  (Int_Con_CRT) 
field  23 =  Integrated Psychological Therapy used in CR condition?  (Int_CR_IPT) 
field  24 =  Integrated Psychological Therapy used in comparison condition?  (Int_Con_IPT) 
field  25 =  Neuropsychological Educational Approach to Rehabilitation used  

in CR condition?        (Int_CR_NEAR) 
field  26 =  Neuropsychological Educational Approach to Rehabilitation used  

in comparison condition?       (Int_Con_NEAR) 
field  27 =  Neurocognitive Enhancement Therapy used in CR condition?   (Int_CR_NET) 
field  28 =  Neurocognitive Enhancement Therapy used in comparison condition?  (Int_Con_NET) 
 
Text field: 
 
field  29 =  Name of other CR approach used      (OtherCRname) 
 
Codes for following variables: 

1=Yes 
0=No 

 
field  30 =  Other CR approach used in CR condition?     (Int_CR_Other) 
field  31 =  Other CR approach used in comparison condition?    (Int_Con_Other) 
field  32 =  Non-remediation computer tasks/games used in CR condition?  (Int_CR_Games) 
field  33 =  Non-remediation computer tasks/games used in comparison condition? (Int_Con_Games) 
field  34 =  Cognitive-Behavioral therapy used in CR condition?    (Int_CR_CBT) 
field  35 =  Cognitive-Behavioral therapy used in comparison condition?  (Int_Con_CBT) 
 
Text field: 
 
field  36 =  Name of cognition-enhancing medication     (Cog_Med_Name) 
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Database of Cognitive Training and Remediation Studies - Study Information 
 
Codes for following variables: 

1=Yes 
0=No 

 
field  37 =  Putative cognition-enhancing medication used in CR condition?  (Int_CR_Med) 
field  38 =  Putative cognition-enhancing medication used in comparison condition? (Int_Con_Med) 
field  39 =  Social skills training used in CR condition?     (Int_CR_SST) 
field  40 =  Social skills training used in comparison condition?    (Int_Con_SST) 
field  41 =  Supported employment used in CR condition?    (Int_CR_SuppEmp) 
field  42 =  Supported employment used in comparison condition?   (Int_Con_SuppEmp) 
field  43 =  Other voc rehabilitation used in CR condition?    (Int_CR_Voc) 
field  44 =  Other voc rehabilitation used in comparison condition?   (Int_Con_Voc) 
field  45 =  General psychosocial rehabilitation used in CR condition?   (Int_CR_Rehab) 
field  46 =  General psychosocial rehabilitation used in comparison condition? (Int_Con_Rehab) 
 
Text field: 
 
field  47 =  Name of first other intervention used in CR or Comparison condition (Other_intervention1) 
 
Codes for following variables: 

1=Yes 
0=No 

 
field  48 =  Other intervention used in CR condition?     (Int_CR_Other1) 
field  49 =  Other intervention used in comparison condition?    (Int_Con_Other1) 
 
Text field: 
 
field  50 =  Name of second other intervention used in CR or Comparison condition (Other_intervention2) 
 
Codes for following variables: 

1=Yes 
0=No 

 
field  51 =  Second other intervention used in CR condition?    (Int_CR_Other2) 
field  52 =  Second other intervention used in comparison condition?   (Int_Con_Other2) 
field  53 =  Patients in CR condition get psych meds/med management?   (Int_CR_MedMgt) 
field  54 =  Patients in Comparison condition get psych meds/med management?  (Int_Con_MedMgt) 
 
Text field: 
 
field  55 =  Description of additional experimental condition, if more than  

2 study groups        (Other_condition) 
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Database of Cognitive Training and Remediation Studies - Study Information 
 
SECTION 4: Techniques used in cognitive remediation intervention 

Codes for following variables: 
1=Most central to the intervention 
2=Second most central 
3=Third most central 
4=Fourth most central 

 
field  56 =  Rank order of Drill and Practice technique     (Techn_DandP) 
field  57 =  Rank order of Strategy training technique     (Techn_Strategy) 
field  58 =  Rank order of metacognitive training technique    (Techn_MetaCog) 
field  59 =  Rank order of errorless learning technique     (Techn_Errorless) 
field  60 =  Rank order of social praise technique     (Techn_Social_Praise) 
field  61 =  Rank order of tangible rewards technique     (Techn_Rewards) 
field  62 =  Rank order of rehearsal technique      (Techn_Rehearsal) 
field  63 =  Rank order of habit training technique     (Techn_Habit) 
field  64 =  Rank order of compensatory techniques     (Techn_Compensatory) 
field  65 =  Rank order of group processing technique     (Techn_Group) 
field  66 =  Rank order of in vivo practice techniques     (Techn_InVivo) 
field  67 =  Rank order of other technique      (Techn_Other) 
 
Text field: 
 
field  68 =  Description of other CR technique      (Describe_OtherTechn) 
 
SECTION 5: Treatment targets 
 
Codes for following variables: 

1=Primary target of CR intervention 
2=Secondary target 
3=Tertiary target 
4=Fourth priority target 

 
field  69 =  Rank order of general cognition among  targets of CR intervention  (Target_Cognition) 
field  70 =  Rank order of skill acquisition among  targets of CR intervention  (Target_SkillAcq) 
field  71 =  Rank order of work functioning among  targets of CR intervention  (Target_Work) 
field  72 =  Rank order of attention among  targets of CR intervention   (Target_Attention) 
field  73 =  Rank order of verbal memory among  targets of CR intervention  (Target_VerbalMem) 
field  74 =  Rank order of social cognition among  targets of CR intervention  (Target_SocialCog) 
field  75 =  Rank order of social skills among  targets of CR intervention   (Target_SocialSkills) 
field  76 =  Rank order of other target among  targets of CR intervention   (Target_Other) 
 
Text field: 
 
field  77 =  Description of other target of CR intervention    (Describe_Other_Target) 
 
Codes for following variable: 
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Database of Cognitive Training and Remediation Studies - Study Information 
 

1=Primary target of CR intervention 
2=Secondary target 
3=Tertiary target 
4=Fourth priority target 

 
field  78 =  Rank order of additional other target among targets of CR intervention  (Target_Other2) 
 
Text field: 
 
field  79 =  Description of additional other target of CR intervention  (Describe_Other2_Target) 
field  80 =  Comments about study conditions and CR intervention  (Comments_Conditions_CR) 
 
SECTION 6: Cognitive remediation delivery methods 
 
Codes for following variables: 

1=Yes 
0=No 

 
field  81 =  CR computerized?     (Delivery_Computerized) 
field  82 =  CR delivered via paper and pencil?     (Delivery_PaperPencil) 
field  83 =  CR delivered via mix of computerized and paper/pencil?  (Delivery_Mixed) 
field  84 =  Other method of delivering CR used?   (Delivery_Other) 
 
Text field: 
 
field  85 =  Description of other method of delivering CR   (Describe_Delivery_Other) 
 
SECTION 7: Cognitive remediation delivery format 
 
Codes for following variables: 

1=Yes 
0=No 

 
field  86 =  CR sessions delivered one-on-one?      (Format_One) 
field  87 =  CR sessions delivered in group format?     (Format_Group) 
field  88 =  CR sessions delivered in a mix of individual and group sessions?  (Format_Mix) 
field  89 =  CR sessions delivered in another format?     (Format_Other) 
 
Text field: 
 
field  90 =  Description of other format in which CR was delivered   (Describe_Format_Other) 
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Database of Cognitive Training and Remediation Studies - Study Information 
 
SECTION 8: Cognitive remediation delivery setting 
 
Codes for following variables: 

1=Yes 
0=No 

 
field  91 =  CR delivered in an outpatient psychiatry/ mental health clinic?  (Setting_Outpt) 
field  92 =  CR delivered in a day treatment center?     (Setting_DayTx) 
field  93 =  CR delivered on an inpatient unit?      (Setting_Inpt) 
field  94 =  CR delivered in home setting?      (Setting_Home) 
field  95 =  CR delivered in other setting?      (Setting_Other) 
 
Text field: 
 
field  96 =  Description of other setting where CR delivered    (Describe_Setting_Other) 
 
Codes for following variables: 

1=Yes 
0=No 

 
field  97 =  Did CR sessions take place in > 1 setting per subject?    (Multi_Setting) 
field  98 =  Did CR sessions take place in different settings for different subjects?  (Multi_Site) 
 
SECTION 9: Other treatment features 
 
Entered responses for the following variables: 
 
field  99 =  Typical duration of CR session      (Session_Duration) 
field  100 =  Target # of CR sessions per week      (Session_Freq) 
field  101 =  Target duration of CR intervention (in weeks)    (CR_Duration) 
 
Codes for following variable: 

1=Yes 
0=No 

 
field  102 =  Duration and frequency of control condition similar to CR?   (Con_Freq_Dur) 
 
Text field: 
 
field  103 =  If frequency and duration of control sessions different than CR, describe (Con_FreqDur_Desc) 
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Database of Cognitive Training and Remediation Studies - Study Information 
 
Codes for following variables: 

1=Yes 
0=No 

 
field  104 =  Did doctoral-level clinicians administer CR?     (Clinicians_Doctoral) 
field  105 =  Did masters-level clinicians administer CR?     (Clinicians_Masters) 
field  106 =  Did trainers w/out graduate training administer CR?    (Clinicians_NoGrad) 
field  107 =  Were CR trainers research staff?      (Research_Staff) 
field  108 =  Were CR trainers clinical staff?      (Clinical_Staff) 
field  109 =  Subject paid for CR and assessment sessions?    (Pay_All) 
 
Entered response for the following variable: 
 
field  110 =  Amount paid for each CR/Con session (dollars)   (Pay_Session) 
 
Codes for following variables: 

1=Yes 
0=No 

 
field  111 =  Subjects paid for assessments only?      (Pay_AssessOnly) 
field  112 =  Subjects compensated non-monetarily for CR/Control sessions?   (Pay_Nonmon) 
field  113 =  Subjects in CR compensated for sessions but control subjects not compensated? (Pay_CR_only) 
 
Text field: 
 
field  114 =  Comments about delivery of CR/Con intervention    (Comments_tx_delivery) 
 
SECTION 10: Defining “completion”  
 
Text field: 
 
field  115 =  Criteria for identifying participants as "completers"    (Completers_Criteria) 
 
Codes for following variables: 

1=Yes 
0=No 

 
field  116 =  Are data from all participants who were randomized into  

the study included in database?      (All_participants) 
field  117 =  Are data only from "completers" included in database?   (Completers_Only) 
field  118 =  Other data are included in database     (Completers_Other) 
 
Text field: 
 
field  119 =  Comment about which subjects included in database  (Completers_Other_Comment) 

 
SECTION 11: Randomization, blinding and adherence 
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Database of Cognitive Training and Remediation Studies - Study Information 
 
 
Codes for following variables: 

1=Yes 
0=No 

 
field  120 =  Randomization (or minimization allocation) procedure used?   (Randomization_Used) 
field  121 =  Was randomization carried out independently from the study team?  (Randomization_Indep) 
field  122 =  Study staff who were not CR therapists did assessments?   (Assessors_StaffNonTx) 
field  123 =  Study staff who were CR therapists did assessments?   (Assessors_StaffTx) 
field  124 =  Non-study staff did assessments?     (Assessors_Nonstaff) 
field  125 =  Were assessors blind/masked to participant’s treatment group assignment? (Assessors_Blind) 
field  126 =  Was assessors’ blinding verified?     (Assessors_Blindchecked) 
field  127 =  Was a treatment manual or protocol used?    (Tx_Manualized) 
field  128 =  Was adherence to treatment protocol and quality of treatment  

delivery assessed on an ongoing basis?     (Adherence_Checked) 
 
Text field: 
 
field  129 =  Comments about randomization, blinding, assessors and adherence/quality assessment 

(Randomization_Comments) 
 
SECTION 12: Eligibility criteria 
 
Note:  These data are obtained from the list of inclusion/exclusion criteria provided by PIs; there is no standard reporting 

form and not all studies will include all of these criteria  
 
Entered responses for the following variables: 

 
field  130 =  Minimum age for eligibility (in years)    (Elig_Min_age) 
field  131 =  Maximum age for eligibility (in years)    (Elig_Max_age)  
 
 Codes for following variables: 

1=Yes 
0=No 
 

field  132 =  Patients with diagnosis of schizophrenia eligible?   (Elig_Dx_Schiz) 
field  133 =  Patients with diagnosis of schizoaffective disorder eligible?  (Elig_Dx_Schizoaffective) 

 
Codes for following variable: 
1 = Schizophreniform 
2 = Bipolar disorder 
 

field  134 =  If patients with diagnoses other than schizophrenia or schizoaffective were eligible for study, which other 
diagnoses were included?    (Elig_DX_Other) 

 
Text fields: 
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Database of Cognitive Training and Remediation Studies - Study Information 
 
field  135 =  If med stability is an inclusion criterion, what is the criterion?   (Elig_MedStability) 
field  136 =  If medication type is an exclusionary criterion, what types of  

medications were prohibited?      (Elig_MedType) 
field  137 =  If symptom severity an eligibility criterion, what is the criteria?  (Elig_Sx) 
field  138 =  If English proficiency is an inclusion criterion, how was  

proficiency defined?       (Elig_English) 
field  139 =  If IQ is an inclusion criterion, what was cutoff?    (Elig_IQ) 
field  140 =  If cognitive impairment is an inclusion criterion, what is the criterion?  (Elig_Cog_Impair) 
field  141 =  If social functioning impairment was an inclusion criterion,  

what was the criterion?       (Elig_SocialFx) 
field  142 =  If mental retardation, pervasive developmental disorder, and/or  

neurological disorders were exclusionary, what was criterion?  (Elig_Neuro) 
field  143 =  If substance use disorder is an exclusionary criterion,  

what was the criterion?       (Elig_SUD) 
 
Codes for following variables: 

1=Yes 
0=No 

 
field  144 =  Prior cognitive remediation an exclusionary criterion?   (Elig_PriorCR) 

 
Text fields: 

 
field  145 =  Other inclusion/exclusion criterion 1     (Elig_Other1) 
field  146 =  Other inclusion/exclusion criterion 2     (Elig_Other2) 
field  147 =  Other inclusion/exclusion criterion 3     (Elig_Other3) 
field  148 =  Other inclusion/exclusion criterion 4     (Elig_Other4) 
 
SECTION 13: Summary of study assessment schedule 
 
Note: PIs were asked to complete these items on the Study Information form only if they did not provide a detailed schedule 
of assessments. 
 
Entered responses for the following variables: 
 
field  149 =  Interval between baseline and 1st midpoint assessment (in weeks)   (Mid_Point1) 
field  150 =  Interval between 1st mid-point and 2nd midpoint assessment (in weeks)  (Mid_Point2) 
field  151 =  Interval between baseline and end-of-treatment assessment (in weeks)  (Post_Treatment) 
field  152 =  Interval between post-treatment and 1st follow-up assessment (in weeks)  (Followup_1) 
field  153 =  Interval between 1st follow-up assessment and 2nd follow-up assessment (in weeks) (Followup_2) 
field  154 =  Interval between 2nd follow-up and 3rd follow-up assessment (in weeks)  (Followup_3) 
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Database of Cognitive Training and Remediation Studies - Study Information 
 
Codes for following variables: 

1=Yes 
0=No 

 
field  155 =  Cognitive measures done at baseline assessment?    (Cog_Baseline) 
field  156 =  Cognitive measures done at 1st midpoint assessment?   (Cog_Midpoint1) 
field  157 =  Cognitive measures done at 2nd midpoint assessment?   (Cog_Midpoint2) 
field  158 =  Cognitive measures done at post-treatment assessment?   (Cog_PostTx) 
field  159 =  Cognitive measures done at 1st follow-up assessment?   (Cog_Followup1) 
field  160 =  Cognitive measures done at 2nd follow-up assessment?   (Cog_Followup2) 
field  161 =  Cognitive measures done at 3rd follow-up assessment?   (Cog_Followup3) 
field  162 =  Symptom measures done at baseline assessment?    (Sx_Baseline) 
field  163 =  Symptom measures done at 1st midpoint assessment?   (Sx_Midpoint1) 
field  164 =  Symptom measures done at 2nd midpoint assessment?   (Sx_Midpoint2) 
field  165 =  Symptom measures done at post- treatment assessment?   (Sx_PostTx) 
field  166 =  Symptom measures done at 1st follow-up assessment?   (Sx_Followup1) 
field  167 =  Symptom measures done at 2nd follow-up assessment?   (Sx_Followup2) 
field  168 =  Symptom measures done at 3rd follow-up assessment?  (Sx_Followup3) 
field  169 =  Functioning measures done at baseline assessment?    (Fx_Baseline) 
field  170 =  Functioning measures done at 1st midpoint assessment?   (Fx_Midpoint1) 
field  171 =  Functioning measures done at 2nd midpoint assessment?   (Fx_Midpoint2) 
field  172 =  Functioning measures done at post- treatment assessment?   (Fx_PostTx) 
field  173 =  Functioning measures done at 1st follow-up assessment?   (Fx_Followup1) 
field  174 =  Functioning measures done at 2nd follow-up assessment?   (Fx_Followup2) 
field  175 =  Functioning measures done at 3rd follow-up assessment?   (Fx_Followup3) 
 
Text field: 
 
field  176 =  Description of other measure      (Other_Measure) 
 
Codes for following variables: 

1=Yes 
0=No 

 
field  177 =  Other measures done at baseline assessment?    (Other_Baseline) 
field  178 =  Other measures done at 1st midpoint assessment?    (Other_Midpoint1) 
field  179 =  Other measures done at 2nd midpoint assessment?    (Other_Midpoint2) 
field  180 =  Other measures done at post- treatment assessment?   (Other_PostTx) 
field  181 =  Other measures done at 1st follow-up assessment?    (Other_Followup1) 
field  182 =  Other measures done at 2nd follow-up assessment?    (Other_Followup2) 
field  183 =  Other measures done at 3rd follow-up assessment?    (Other_Followup3) 
 
Text field: 
 
field  184 =  Description of other2 measure      (Other_Measure2) 
 
Codes for following variables: 
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1=Yes 
0=No 

 
field  185 =  Other2 measures done at baseline assessment?    (Other2_Baseline) 
field  186 =  Other2 measures done at 1st midpoint assessment?    (Other2_Midpoint1) 
field  187 =  Other2 measures done at 2nd midpoint assessment?    (Other2_Midpoint2) 
field  188 =  Other2 measures done at post- treatment assessment?   (Other2_PostTx) 
field  189 =  Other2 measures done at 1st follow-up assessment?    (Other2_Followup1) 
field  190 =  Other2 measures done at 2nd follow-up assessment?   (Other2_Followup2) 
field  191 =  Other2 measures done at 3rd follow-up assessment?   (Other2_Followup3) 
 
Text field: 
 
field  192 =  Comments re: schedule of assessments     (Comments_Schedule) 
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C.2 Cognitive variables

Database of Cognitive Training and Remediation Studies–Cognitive Data (COG) 
 
field  1 =  Study ID number (assigned by NIMH)     (Study_ID)  

4155 = WYKES1 (n=35) 
5693 = BELL (n=77) 
6632 = KEEFE (n=53) 
7926 = KESHAVAN (n=58) 
8134 = WYKES3 (n=40) 
9212 = WYKES2 (n=85) 
9479 = SILVERSTEIN (n=83) 

 
field  2 =  Participant ID number (assigned by NIMH)    (Participant_ID) 

 
field  3 =  Study condition to which participant was assigned  (Study_Condition) 

1 = Cognitive remediation 
2 = Comparison condition 
3 = Other 
 

field  4 =  Assessment time point      (Time_point) 
5                     = Screening 
10                   = Baseline 

 21, 22, 23, … = Mid-point 1, 2, 3, … 
30                   = End-of-treatment 

 41, 42, 43, … = Follow-up1, 2, 3, … 
 

field  5 =  Days since baseline       (Days_Baseline) 
 
NOTE: The Days_Baseline variable is calculated using assessment dates when they were provided and calculated from 
target dates according to the schedule of assessment time points for the study when visits dates were not provided.  
 

field  6 =  Norms used for tests included in the MCCB    (Norms_MCCB) 
 1 = Original norms provided by test publisher 
 2 = MCCB norms 

  3 = Other  
 

NOTE: Tests included in the MATRICS Consensus Cognitive Battery (MCCB) are marked with an asterisk. 
 

field  7 =  Ammons Quick Test Full Scale IQ       (AmmQT_IQ) 
 

field  8 =  Brief Assessment of Cognition in Schizophrenia: Symbol-Coding subtest* (# correct; raw score) (BACS_SC_Raw) 
field  9 =  Brief Assessment of Cognition in Schizophrenia: Symbol-Coding subtest* (# correct; T-score)  (BACS_SC_Tscore) 
field  10 =  Brief Assessment of Cognition in Schizophrenia: Digit Sequencing Task (number of correct responses; 0 to 28) 

(BACS_DigitSeq_NumCorrect) 
field  11 =  Brief Assessment of Cognition in Schizophrenia: Tower of London Task (number of correct responses; 0 to 22) 

(BACS_Tower_NumCorrect) 
 

field  12 =  Brief Visuospatial Memory Test – Revised* (3-trial total recall; raw score)   (BVMTR_Raw) 
field  13 =  Brief Visuospatial Memory Test – Revised* (3-trial total recall; T-score)   (BVMTR_Tscore) 
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field  14 =  Category fluency: Animal naming* (# animals named in 60 s; raw score)   (CATFLU_Raw) 
field  15 =  Category fluency: Animal naming* (# animals named in 60 s; T-score)   (CATFLU_Tscore) 

 
field  16 =  Continuous Performance Test – Identical Pairs* (Mean d’ across 2-, 3-, and 4-digit conditions; raw score)  (CPT_IP_Raw) 
field  17 =  Continuous Performance Test – Identical Pairs* (Mean d’ across 2-, 3-, and 4-digit conditions T score)  (CPT_IP_Tscore) 

 
field  18 =  California Verbal Learning Test: Total Recall      (CVLT_Total_Recall) 
field  19 =  California Verbal Learning Test: Short-term Free Recall     (CVLT_Short_Freerecall) 
field  20 =  California Verbal Learning Test: Long-term Free Recall      (CVLT_Long_Freerecall) 

 
field  21 =  Verbal fluency (FAS): Total number of correct responses     (FAS_N_Responses) 
field  22 =  Verbal fluency (FAS): Age- and education-adjusted score     (FAS_Adj_Score) 

 
field  23 =  Hopkins Verbal Learning Test – Revised* (Total # words recalled over 3 trials; raw score) (HVLTR_Raw) 
field  24 =  Hopkins Verbal Learning Test – Revised* (Total # words recalled over 3 trials; T-score)(HVLTR_Tscore) 

 
field  25 =  Letter-Number Span* (# of correct trials; raw score)     (LNS_Raw) 
field  26 =  Letter-Number Span* (# of correct trials; T-score)     (LNS_Tscore) 

 
field  27 =  MATRICS Speed of Processing domain* (T-Score)      (MCCB_Speed_Tscore) 
field  28 =  MATRICS Attention/Vigilance domain* (T-Score)      (MCCB_AttnVig_Tscore) 
field  29 =  MATRICS Working Memory domain* (T-Score)      (MCCB_WorkMem_Tscore) 
field  30 =  MATRICS Verbal Learning domain* (T-Score)      (MCCB_VerbLearn_Tscore) 
field  31 =  MATRICS Visual Learning domain* (T-Score)      (MCCB_VisLearn_Tscore) 
field  32 =  MATRICS Reasoning and Problem Solving domain* (T-Score)    (MCCB_ReasProb_Tscore) 
field  33 =  MATRICS Social Cognition domain* (T-Score)      (MCCB_SocCog_Tscore) 
field  34 =  MATRICS Overall Composite* (T-Score)        (MCCB_Overall_Tscore) 

 
field  35 =  Mayer-Salovey-Caruso Emotional Intelligence Test: Managing Emotions subtest* (raw score) (MSCEIT_MEmo_Raw) 
field  36 =  Mayer-Salovey-Caruso Emotional Intelligence Test: Managing Emotions subtest* (T score) (MSCEIT_MEmo_Tscore) 

 
field  37 =  Modified six elements task: Number of tasks attempted     (MSET_Attempted) 
field  38 =  Modified six elements task: Number of rules broken      (MSET_Rules) 
field  39 =  Modified six elements task: Total score: no. of tasks attempted minus no. of rule breaks  (MSET_Total) 

 
field  40 =  Neuropsychological Assessment Battery: Mazes subtest* (Total; raw score)   (NAB_Mazes_Raw) 
field  41 =  Neuropsychological Assessment Battery: Mazes subtest* (Total; T-score)   (NAB_Mazes_Tscore) 

 
field  42 =  National Adult Reading Test : Predicted full-scale IQ      (NART_FSIQEST) 
field  43 =  National Adult Reading Test : Predicted performance IQ      (NART_PIQEST) 
field  44 =  National Adult Reading Test : Predicted verbal IQ      (NART_VIQEST) 

 
field  45 =  Tower of London - DX: Total move score (range: 0 to 189)     (TOLDX_Move) 
field  46 =  Tower of London - DX: Ratio of initiation to Execution time (range: 0 to 1)   (TOLDX_InitExec) 
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Database of Cognitive Training and Remediation Studies–Cognitive Data (COG) 
 
field  47 =  Trailmaking test part A* (Paper & pencil): Time to completion (Seconds)   (TMTA_Raw) 
field  48 =  Trailmaking test part A* (Paper & pencil): Time to completion (T-score)   (TMTA_Tscore) 
field  49 =  Trailmaking test Part A (Paper & pencil): Number of errors     (TMTA_Errors)  
field  50 =  Trailmaking test Part B (Paper & pencil): Time to completion (Seconds)    (TMTB_Raw) 
field  51 =  Trailmaking test Part B (Paper & pencil): Time to completion (T-score)   (TMTB_Tscore) 
field  52 =  Trailmaking test Part B (Paper & pencil): Number of errors     (TMTB_Errors) 
field  53 =  Trailmaking test Condition 1/letters (Computerized): Trial 1, Time to completion (Seconds) (TMTA_Comp_Raw) 
field  54 =  Trailmaking test Condition 2/letters+numbers (Computerized): Trial 1, Time to completion (Seconds) 

(TMTB_Comp_Raw) 
 
field  55 =  Version of Wechsler Adult Intelligence Scale used      (WAIS_Version) 

1 = WAIS-III 
2 = WAIS-IV 
3 = WAIS-R 
4 = Wechsler Abbreviated Scale of Intelligence 
 

field  56 =  Wechsler Adult Intelligence Scale Picture Arrangement: Raw score    (WAIS_PictArr_Raw) 
field  57 =  Wechsler Adult Intelligence Scale Picture Arrangement: Scaled score    (WAIS_PictArr_Scaled) 
field  58 =  Wechsler Adult Intelligence Scale Digit-Symbol Substitution: Raw score   (WAIS_DigSym_Raw) 
field  59 =  Wechsler Adult Intelligence Scale Digit-Symbol Substitution: Scaled score    (WAIS_DigSym_Scaled) 
field  60 =  Wechsler Adult Intelligence Scale Digit Span: Raw score      (WAIS_DigSpan_Raw) 
field  61 =  Wechsler Adult Intelligence Scale Digit Span: Scaled score      (WAIS_DigSpan_Scaled) 
field  62 =  Wechsler Adult Intelligence Scale Picture Completion: Raw score    (WAIS_PictComp_Raw) 
field  63 =  Wechsler Adult Intelligence Scale Picture Completion: Scaled score    (WAIS_PictComp_Scaled) 
field  64 =  Wechsler Adult Intelligence Scale Vocabulary: Raw score      (WAIS_Vocab _Raw) 
field  65 =  Wechsler Adult Intelligence Scale Vocabulary: Scaled score     (WAIS_Vocab _Scaled) 
field  66 =  Wechsler Adult Intelligence Scale: Verbal IQ (scaled)    (WAIS_VerbalIQ) 
field  67 =  Wechsler Adult Intelligence Scale: Performance IQ (scaled)     (WAIS_PerfIQ) 
field  68 =  Wechsler Adult Intelligence Scale: Full-scale IQ      (WAIS_FSIQ) 

 
field  69 =  Wisconsin Card Scoring Test: Administration method     (WCST_method) 

1 = Cards 
2 = Computer 
 

field  70 =  Wisconsin Card Sorting Test: Percent Conceptual Responses (0 to 100)   (WCST_Percent_Conceptual) 
field  71 =  Wisconsin Card Sorting Test: Percent Conceptual Reponses (Scaled)  (WCST_Percent_Conceptual_Scaled)  
field  72 =  Wisconsin Card Sorting Test: Categories Achieved (0 to 6)     (WCST_Categories) 
field  73 =  Wisconsin Card Sorting Test: Non-Perseverative Errors (0 to 128)    (WCST_NonPersev_Errors) 
field  74 =  Wisconsin Card Sorting Test: Perseverative Errors (0 to 128)    (WCST_Persev_Errors) 

 
field  75 =  Wechsler Memory Scale –III: Spatial Span subtest* (Sum of scores on backwards and forwards conditions; raw score) 

(WMS_SS_Raw) 
field  76 =  Wechsler Memory Scale –III: Spatial Span subtest* (Sum of scores on backwards and forwards conditions T-score) 

(WMS_SS_Tscore) 
 

field  77 =  Wide-Range Achievement Test: Word Reading Total      (WRAT_Reading_Total) 
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C.3 Demographics

Database of Cognitive Training and Remediation– Demographics (DEMO) 
 
field  1 =  Study ID number (assigned by NIMH)    (Study_ID)  

4155 = WYKES1 (n=35) 
5693 = BELL (n=77) 
6632 = KEEFE (n=53) 
7926 = KESHAVAN (n=58) 
8134 = WYKES3 (n=40) 
9212 = WYKES2 (n=85) 
9479 = SILVERSTEIN (n=83) 

 
field  2 =  Participant ID number (assigned by NIMH)    (Participant_ID) 
 
field  3 =  Study condition to which participant was assigned   (Study_condition) 

1 = Cognitive Remediation condition 
2 = Comparison condition 
3 = Other 
 

field  4 =  Method for calculating days since baseline    (Day_Cat) 
1 = calculated from visit dates when provided in data 
2 = calculated from target dates when visit dates not provided 
3 = missing visit 

 
field  5 =  Age at study baseline assessment     (Pt_Baseline_Age) 
 
field  6 =  Gender        (Pt_Gender) 

1 = Female  
2 = Male 
3 = Unspecified 
4 = Unknown/Missing 

 
field  7 =  Ethnicity:  Hispanic or Latino origin     (Pt_Hispanic) 

1 = Yes 
2 = No 
3 = Unknown/Missing 
 

field  8 =  Racial category          (Pt_Race) 
1 = American Indian or Alaskan Native 
2 = Asian 
3 = Black or African American 
4 = Native Hawaiian or other Pacific Islander 
5 = White 
6 = Multi-racial 
7 = Not Reported or Declined to Specify 
8 = Other 

 
field  9 =  Original Study Text: Race        (Pt_Race_orig) 
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Codes for Marital Status variables:   
 1 = Married  
 2 = Domestic partnership 
 3 = Separated 
 4 = Divorced 
 5 = Widowed 
 6 = Never married 
 7 = Unknown/Missing 
 8 = Unable to determine category; see original study variable text 
 
field  10 =  Participant’s marital status     (Pt_Marital) 
field  11 =  Mother’s marital status     (Mother_Marital) 
field  12 =  Father’s marital status     (Father_Marital) 
 
field  13 =  Original Study Text: Participant’s marital status   (Pt_Marital_orig) 
field  14 =  Original Study Text: Mother’s marital status   (Mother_Marital_orig) 
field  15 =  Original Study Text: Father’s marital status   (Father_Marital_orig) 
 
field  16 =  Participant’s years of education (0 to …)   (Pt_Edu_Years) 
field  17 =  Mother’s years of education (0 to …)   (Mother_Edu_Years) 
field  18 =  Father’s years of education (0 to …)    (Father_Edu_Years) 
 
Codes for Highest Educational Level CATEGORY Completed variables: 
 0 = Never attended or Kindergarten only 

1-11 = Grades 1=11 
 12 = High school, No diploma 
 13 = GED or equivalent 
 14 = High school graduate 
 15 = Completed 12 years of school (but unable to determine if code 12, 13, or 14) 
 16 = Some college, no degree 
 17 = Associate degree: occupational/technical/vocational program 
 18 = Associate degree: academic program (includes non-US post high school/pre college levels) 
 19 = Associate degree (but unable to determine if code 16 or 17)  

20 = Bachelor degree (e.g., BA, AB, BS, BBA) 
21 = Completed 16 years of school (but unable to determine if code 16-20) 

 22 = Master’s degree (e.g., MA, MS, MEng, MEd, MBA) 
23 = Professional school degree (e.g., MD, DDS, DVM, JD) 
24 = Doctoral degree (e.g., PhD, EdD) 
25 = Post Master degree (but unable to determine if code 20 or 21)  
26 = Unknown/Missing 
27 = Unable to determine category from original variable provided 

 
field  19 =  Participant’s highest educational level category completed  (Pt_Edu_Cat) 
field  20 =  Mother’s highest educational level category completed  (Mother_Edu_Cat) 
field  21 =  Father’s highest educational level category completed  (Father_Edu_Cat) 
 
field  22 =  Original Study Text: Participant’s highest educational level category completed  (Pt_Edu_Cat_orig) 
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Database of Cognitive Training and Remediation– Demographics (DEMO) 
 
field  23 =  Original Study Text: Mother’s highest educational level category completed  (Mother_Edu_Cat_orig) 
field  24 =  Original Study Text: Father’s highest educational level category completed  (Father_Edu_Cat_orig) 
 
field  25 =  Primary Psychiatric Diagnosis Diagnostic System    (DSM_ICD_code) 

1 =  Diagnostic and Statistical Manual of Mental Disorders (2000-2012) DSM-IV-TR  
2 =  Diagnostic and Statistical Manual of Mental Disorders (2013-current) DSM-5 
3 =  International Classification of Diseases (1990-current) ICD-10 
4 =  International Classification of Diseases (under development) ICD-11 

 
Codes for Primary Psychiatric Diagnosis and Additional Psychiatric Diagnosis variables: 

1 =  Schizophrenia, Unspecified type 
2 =  Schizophrenia, Disorganized type 
3 =  Schizophrenia, Paranoid type  
4 =  Schizophrenia, Residual type  
5 =  Schizophrenia, Undifferentiated type  
6 =  Schizophreniform disorder  
7 =  Schizoaffective disorder  
8 =  Dysthymia/Persistent Depressive Disorder  
9 =  Major Depressive Disorder  
10 =  Bipolar Disorder  
11 =  Anxiety disorder (GAD, panic disorder, agoraphobia, specific phobia, social phobia, OCD, PTSD) 
12 =  Cluster A Personality disorder (Paranoid, Schizoid, Schizotypal) 
13 =  Cluster B or C Personality disorder 
14 =  Current  alcohol or drug abuse or dependence Past alcohol or drug abuse or dependence 
15 =  Other diagnosis 
98 =  None (Additional psychiatric diagnoses assessed but not present)  
99 = Additional psychiatric diagnoses not reported for study 

 
field  26 =  Primary psychiatric diagnosis     (Primary_Dx) 
field  27 =  Additional psychiatric diagnosis     (Other_Dx1) 
field  28 =  Additional psychiatric diagnosis 2     (Other_Dx2) 
 
Psychiatric Illness History 
field  29 =  Age of onset of psychiatric symptoms (years)  (Age_1st_Sx) 
field  30 =  Age of first treatment for psychiatric symptoms   (Age_1st_TxContact) 
field  31 =  Age at first psychiatric hospitalization (years)  (Age_1st_hosp)  
field  32 =  Total number of psychiatric hospitalizations   (Psych_Hosp_Total) 
field  33 =  Number of psychiatric hospitalizations in last year  (Psych_Hosp_Year) 
 
field  34 =  Number of sessions completed     (Num_Sessions) 
field  35 =  Percentage of sessions completed     (Percent_Sessions)  
 
field  36 =  Study completion status      (Completer_Status) 

Note: Investigators’ definition of study completion can be found in the Study information database 
 1 = Completer 
 2 = Randomized but did not complete any sessions 
 3 = Non-Completer 

 DSM-IV DSM-5 ICD-10 
SZ, Unspecified type 295.XX 

295.9 

F20.9 
SZ, Disorganized type 295.1 F20.1 
SZ, Paranoid type 295.3 F20.0 
SZ, Residual type 295.6 F20.5 
SZ, Undifferentiated type 295.9 F20.3 
Schizophreniform disorder  295.4  295.4 F20.81 
Schizoaffective disorder  295.7  295.7 F25.XX 
Dysthymia / Persistent 
Depressive Disorder  300.4 300.4 F34.1 

Major Depressive Disorder 296.XX  296.XX F32, F33 
Bipolar Disorder  296.XX 296.XX F31 
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C.4 Medications

Cognitive Remediation Data Integration – Medication (MED) 
 
field  1 =  Study ID number (assigned by NIMH)    (Study_ID) 

4155 = WYKES1 (n=35) 
5693 = BELL (n=77) 
6632 = KEEFE (n=53) 
7926 = KESHAVAN (n=58) 
8134 = WYKES3 (n=40) 
9212 = WYKES2 (n=85) 
9479 = SILVERSTEIN (n=83) 

 
field  2 =  Participant ID number (assigned by NIMH)    (Participant_ID) 

 
field  3 =  Study condition to which participant was assigned   (Study_condition) 

1 = Cognitive remediation 
2 = Comparison condition 
3 = Other  

 
field  4 =  Assessment Time Point      (Time_point) 

5                     = Screening 
10                   = Baseline 
21, 22, 23, … = Mid-point 1, 2, 3, … 
30                   = End-of-treatment 
41, 42, 43, … = Follow-up1, 2, 3, … 

 
field  5 =  Days since baseline      (Days_baseline) 
 

NOTE: The Days_Baseline variable is calculated using assessment dates when they were provided and calculated from 
target dates according to the schedule of assessment time points for the study when visits dates were not provided.  

 
Codes used for psychotropic medications in this database (MED_CODE1 thru MED_CODE5): 

1 = aripiprazole 
2 = asenapine 
3 = chlorpromazine 
4 = clozapine 
5 = fluphenazine 
6 = fluphenazine inj 
7 = haloperidol 
8 = haloperidol inj 
9 = iloperidone 
10 = olanzapine 
11 = paliperidone 
12 = perphenazine 
13 = prochlorperazine 
14 = promethazine 
15 = quetiapine 
16 = risperidone 
17 = risperidone inj 
18 = thiothixene 
19 = trifluoperazine 
20 = ziprasidone   
21 = amitriptyline 
22 = bupropion 

23 = citalopram 
24 = desvenlafaxine 
25 = doxepin 
26 = duloxetine 
27 = escitalopram oxalate 
28 = fluoxetine 
29 = fluvoxamine 
30 = mirtazapine 
31 = nortriptyline 
32 = paroxetine 
33 = sertraline 
34 = trazodone 
35 = venlafaxine   
36 = alprazolam 
37 = buspirone 
38 = clonazepam 
39 = clorazepate 
40 = diazepam 
41 = eszopiclone 
42 = lorazepam 
43 = melatonin 
44 = oxazepam 

45 = phenobarbital 
46 = ramelteon 
47 = temazepam 
48 = zaleplon 
49 = zolpidem 
50 = zolpidem tartrate 
51 = carbamazepine 
52 = divalproex 
53 = gabapentin 
54 = lamotrigine 
55 = levetiracetam 
56 = lithium 
57 = oxcarbazepine 
58 = phenytoin 
59 = topiramate 
60 = valproic acid 
61 = zonisamide 
62 = amphetamine 
63 = amphetamine/dextroamphetamine 
64 = atomoxetine 
65 = clonidine 
66 = dextroamphetamine 

67 = modafinil    
68 = benztropine mesylate 
69 = amantadine 
70 = dicyclomine 
71 = trihexyphenidyl 
72 = Propranolol 
73 = Unspecified typical antipsychotic 
74 = Unspecified atypical antipsychotic 
75 = Dose is for all antipsychotic 

medications combined in total 
chlorpromazine equivalents 

76 = amisulpiride 
77 = sulpiride 
78 = droperidol 
79 = pipothiazine depot 
80 = Flupenthixol depot 
81 = zuclopenthixol 
82 = zuclopenthixol depot 
83 = loxapine 
84 = Both (unspecified) typical and 

(unspecified) atypical meds 
85 = None 
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Cognitive Remediation Data Integration – Medication (MED) 
 
Please note that DOSE should be provided regardless of route and FREQ should be provided only for DEPOT (injectable). 

field  6 =  Psychotropic Medication (Med1) (from list)   (MED_CODE1) 
field  7 =  DEPOT or ORAL MED: Med1 Route     (ROUTE1) 
field  8 =                          ORAL MED: Med1 dose, MG per day    (DOSE_ORAL_MG1) 
field  9 =  DEPOT (injectable) MED: Med1 dose, CC    (DOSE_INJ_CC1) 
field  10 =  DEPOT (injectable) MED: Med1 frequency    (FREQ_INJ_WK1) 

 
field  11 =  Psychotropic Medication (Med2) (from list)    (MED_CODE2) 
field  12 =  DEPOT or ORAL MED: Med2 Route     (ROUTE2) 
field  13 =                          ORAL MED: Med2 dose, MG per day  (DOSE_ORAL_MG2) 
field  14 =  DEPOT (injectable) MED: Med2 dose, CC    (DOSE_INJ_CC2) 
field  15 =  DEPOT (injectable) MED: Med2 frequency    (FREQ_INJ_WK2) 

 
field  16 =  Psychotropic Medication (Med3) (from list)    (MED_CODE3) 
field  17 =  DEPOT or ORAL MED: Med3 Route     (ROUTE3) 
field  18 =                          ORAL MED: Med3 dose, MG per day   (DOSE_ORAL_MG3) 
field  19 =  DEPOT (injectable) MED: Med3 dose, CC    (DOSE_INJ_CC3) 
field  20 =  DEPOT (injectable) MED: Med3 frequency    (FREQ_INJ_WK3) 

 
field  21 =  Psychotropic Medication (Med4) (from list)   (MED_CODE4) 
field  22 =  DEPOT or ORAL MED: Med4 Route     (ROUTE4) 
field  23 =                          ORAL MED: Med4 dose, MG per day   (DOSE_ORAL_MG4) 
field  24 =  DEPOT (injectable) MED: Med4 dose, CC    (DOSE_INJ_CC4) 
field  25 =  DEPOT (injectable) MED: Med4 frequency    (FREQ_INJ_WK4) 

 
field  26 =  Psychotropic Medication (Med5) (from list)   (MED_CODE5) 
field  27 =  DEPOT or ORAL MED: Med5 Route     (ROUTE5) 
field  28 =                          ORAL MED: Med5 dose, MG per day  (DOSE_ORAL_MG5) 
field  29 =  DEPOT (injectable) MED: Med5 dose, CC    (DOSE_INJ_CC5) 
field  30 =  DEPOT (injectable) MED: Med5 frequency    (FREQ_INJ_WK5) 
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C.5 Quality of life, self-esteem and functioning measures

Database of Cognitive Training and Remediation Studies                                     
Quality of Life, Self-Esteem and Functioning Measures (QOL FX) 

 
field  1 =  Study ID number (assigned by NIMH)     (Study_ID)  

4155 = WYKES1 (n=35) 
5693 = BELL (n=77) 
6632 = KEEFE (n=53) 
7926 = KESHAVAN (n=58) 
8134 = WYKES3 (n=40) 
9212 = WYKES2 (n=85) 
9479 = SILVERSTEIN (n=83) 
 

field  2 =  Participant ID number (assigned by NIMH)    (Participant_ID) 
 
field  3 =  Study condition to which participant was assigned   (Study_condition) 

1 = Cognitive Remediation condition 
2 = Comparison condition 
3 = Other 

 
field  4 =  Assessment time point     (Time_point) 

   5 = Screening 
10 = Baseline 

 21 = 1st Mid-point, 22 = 2nd mid-point, …, 
 30 = End-of-Treatment 
 41 = 1st follow-up, 42 = 2nd follow-up, … 
  

field  5 =  Days since baseline       (Days_baseline) 
 

NOTE: The Days_Baseline variable is calculated using assessment dates when they were provided and 
calculated from target dates according to the schedule of assessment time points for the study when 
visits dates were not provided.  

 
Rosenberg Self-esteem Scale: The RSE is a 10-item self-report measure of global self-esteem.  The items are scored 
on a 0-3 scale, but the items that comprise the Confidence factor are worded in a positive direction and the items 
that comprise the Deprecation factor are worded in a negative direction. The total score is the sum of all of the 
items, with items in the Deprecation factor reverse scored. Total Scores between 15 and 25 are generally 
considered to be within normal range; Total Scores below 15 suggest low self-esteem. Data from studies that used 
rating codes other than 0-3 (e.g., 1-4) have been converted to 0-3 to result in comparable subscale and total scores 
across studies for these variables.   

field  6 =  Rosenberg Self-esteem scale: Self-Confirmation factor (items 1, 3, 4, 7, 10; scored 0-3; range 0-15)  
(RSE_Confirmation)  

field  7 =  Rosenberg Self-esteem scale: Self-Deprecation factor (items 2, 5, 6, 8, 9; scored 0-3; range 0-15)   
(RSE_Deprecation) 

field  8 =  Rosenberg Self-esteem scale: Self-Esteem Total score (items 1-10 scored 0-3; range 0-30)  (RSE_Total) 
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Quality of Life, Self-Esteem and Functioning Measures (QOL FX) 

 
Rosenberg Self-esteem Scale (alternative scoring): For investigators who used an ALTERNATIVE 1-5 scale (1 = 
strongly agree, 2 = agree, 3 = neither agree nor disagree, 4 = disagree, 5 = strongly disagree), rather than the 0-3 
scale in the above variables, the original coding is preserved in these variables.  
 
field  9 =  Rosenberg Self-esteem scale: Self-Confirmation factor (items 1, 3, 4, 7, 10; scored 1-5; range 5-25) 

(RSE_Confirmation_5)  
field  10 =  Rosenberg Self-esteem scale: Self-Deprecation factor (items 2, 5, 6, 8, 9; scored 1-5; range 5-25)   

(RSE_Deprecation_5) 
field  11 =  Rosenberg Self-esteem scale: Self-Esteem Total score (items 1-10; scored 1-5; range 10-50)          

(RSE_Total_5) 
 
Heinrichs-Carpenter Quality of Life Scale: The HCQOL is a 21-item semi-structured interview conducted by a 
trained clinician to rate quality of life based on patient self-report and professional judgment. Individual items are 
scored on a 0-6 scale (0 =poor quality of life and 6 =high quality of life) and summed to create factor scores. Data 
from studies that used other than 0-6 have been converted to 0-6 to result in comparable subscale and total scores 
across studies. Low Factor Scores suggest a low quality of life.   
 
field  12 =  Heinrichs-Carpenter Quality of Life Scale: Interpersonal relations factor (items 1-8 scored 0-6; range 

0-48) (HCQOL_Interpersonal_Factor) 
field  13 =  Heinrichs-Carpenter Quality of Life Scale: Instrumental role factor (items 9-12 scored 0-6; range 0-24) 

(HCQOL_Role_Factor) 
field  14 =  Heinrichs-Carpenter Quality of Life Scale: Intrapsychic foundations factor (items 13-17, 20, 21 scored 

0-6; range 0-42) (HCQOL_Intrapsychic_Factor) 
field  15 =  Heinrichs-Carpenter Quality of Life Scale: Common objects and activities factor (items 18-19 scored 0-

6; range 0-12)  (HCQOL_ObjActivities_Factor) 
 
Lehman Quality of Life Interview: The LQLI is a structured interview conducted by a trained non-clinical 
interviewer to elicit patient ratings of their own quality of life. Although other information is collected with this 
instrument, the ratings included in DoCTRS are the ratings (or the mean of the ratings) for one (or more) items 
completed at the end of each section which are scored on a 1-7 scale (1 = terrible, 2 = unhappy, 3 = mostly 
dissatisfied, 4 = mixed, 5 = mostly satisfied, 6 = pleased, 7 = delighted). The number of items for each section is 
different in the full version and the brief version, but scores from either version are used for these variables. Data 
from studies that used anchors other than 1-7 have been converted to 1-7 to result in subscale and total scores 
that are comparable across studies.  

 
field  16 =  Lehman Quality of Life Interview: General life satisfaction (range: 1-7)  (LQOL_Life_Satisfaction) 
field  17 =  Lehman Quality of Life Interview: Living situation (range: 1-7)   (LQOL_Living_Sit) 
field  18 =  Lehman Quality of Life Interview: Daily activities (range: 1-7)   (LQOL_Daily_Activ) 
field  19 =  Lehman Quality of Life Interview: Family relations (range: 1-7)   (LQOL_Family_Relations) 
field  20 =  Lehman Quality of Life Interview: Social relations (range: 1-7)   (LQOL_Social_Relations) 
field  21 =  Lehman Quality of Life Interview: Finances (range: 1-7)    (LQOL_Finance) 
field  22 =  Lehman Quality of Life Interview: Work/school (range: 1-7)   (LQOL_Work_School) 
field  23 =  Lehman Quality of Life Interview: Legal and safety (range: 1-7)   (LQOL_LegalSafety) 
field  24 =  Lehman Quality of Life Interview: Health (range: 1-7)    (LQOL_Health) 
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Work Behavior Inventory: The WBI is a 36-item performance assessment instrument. WBI ratings are based on a 
15-minute behavioral observation of the worker and a brief interview with the worker's immediate supervisor. 
Each of the six subscales is comprised of seven items individually assessed on a 5-point continuum (1 = consistently 
inferior performance and 5 = consistently superior performance) and there is a one-item general work behavior 
rating (scored using the same 1-5 continuum). Thus, the six individual WBI subscales range from 7 to 35. The 
summation of the six subscales scores gives the Total score (range: 35 – 245). Data from studies that used anchor 
coding other than 1-5 have been converted to 1-5 to result in subscale and total scores that are comparable across 
studies. 

 
field  25 =  Work Behavior Inventory: Social skills scale (items A1-A7; range 7-35)   (WBI_Social) 
field  26 =  Work Behavior Inventory: Cooperativeness scale (items B1-B7; range 7-35)   (WBI_Cooperate) 
field  27 =  Work Behavior Inventory: Work habits (items C1-C7; range 7-35)    (WBI_Habits) 
field  28 =  Work Behavior Inventory: Work Quality (items D1-D7; range 7-35)   (WBI_Quality) 
field  29 =  Work Behavior Inventory: Personal presentation (items E1-E7; range 7-35)              (WBI_Presentation) 
field  30 =  Work Behavior Inventory: General rating of work behavior (range 1-5)   (WBI_General) 
field  31 =  Work Behavior Inventory: Total score (items A1-E7; range 35-245)   (WBI_Total) 
 
Social Adjustment Scale II: The SAS-II is a 42- to 54-item scale (depending upon work role questions) that is 
completed during a 1-hour semi-structured interview. Some items are scored on a 0-4 scale and others are scored 
on a 0-5 scale, with higher scores indicating worse adjustment. The factor scores included in DoCTRS are derived 
from the Schooler et al (1976) factor analysis and consist of the means of the items for each factor. Note: Item 
numbers provided below assume that item 1 (Work Role: Time lost) is numbered 1 and so on, rather than starting 
numbering at 19 as it is in some versions of the scale. Data from studies that used other than 0-4/0-5 have been 
converted to 0-4/0-5 to result in comparable subscale and total scores across studies.  
 
field  32 =  SAS-II Interpersonal anguish factor (items 4, 5, 22, 23, 24, 25, 27, 28, 29, 38, 44, 45; range 0-4)   

(SASII_Anguish) 
field  33 =  SAS-II Sexual relations factor (items 15, 16, 21, 39, 40, 41; range 0-5)      (SASII_SexRel) 
field  34 =  SAS-II Primary Relationships factor (items 10, 11, 12, 14; range 0-4 )      (SASII_Primary) 
field  35 =  SAS-II Social leisure factor (items 30, 31, 32, 34, 35, 36, 37; range 0-4)      (SASII_SocLei) 
field  36 =  SAS-II Work affinity  factor (items 6, 7; range 0-4)       (SASII_WrkAff) 
field  37 =  SAS-II Self-care factor (items 26, 42, 43; range 0-4)        (SASII_SelfCare 
 
Social Behaviour Scale: The SBS is a 21-item scale. The anchors/descriptors vary by item but, across items, higher 
ratings indicate more severe behavioral disruption. The range of ratings varies across items. 

 
field  38 =  Social Behaviour Scale: Acting out bizarre ideas (range 0-2)  (SBS_ActOut) 
field  39 =  Social Behaviour Scale: Ability to make appropriate social contacts (range 0-4)      (SBS_SocialCon) 
field  40 =  Social Behaviour Scale: Attention-seeking behavior (range 0-4)  (SBS_AttnSeek) 
field  41 =  Social Behaviour Scale: Coherence of conversation (range 0-4)  (SBS_Coherence) 
field  42 =  Social Behaviour Scale: Concentration (range 0-2)   (SBS_Concentration) 
field  43 =  Social Behaviour Scale: Depression (range 0-3)    (SBS_Depression) 
field  44 =  Social Behaviour Scale: Hostility/friendliness (range 0-3)   (SBS_HostilityFriendliness) 
field  45 =  Social Behaviour Scale: Personal appearance and hygiene (range 0-4) (SBS_AppearanceHygiene) 
field  46 =  Social Behaviour Scale: Taking initiative (range 0-4)   (SBS_Initiative) 
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field  47 =  Social Behaviour Scale: Laughing and talking to self (range 0-4)  (SBS_Laughing) 
field  48 =  Social Behaviour Scale: Socially unacceptable manners or habits (range 0-4) (SBS_MannersHabits) 
field  49 =  Social Behaviour Scale: Oddity/Inappropriateness of conversation (range 0-4) 

(SBS_Inapp_Conversation) 
field  50 =  Social Behaviour Scale: Other behaviors that impede progress (range 0-4) (SBS_Other_Behaviors) 
field  51 =  Social Behaviour Scale: Overactivity and restlessness (range 0-4)  (SBS_Overactivity) 
field  52 =  Social Behaviour Scale: Panic attacks and phobias (range 0-4)  (SBS_PanicPhobias) 
field  53 =  Social Behaviour Scale: Posturing and mannerisms (range 0-4)  (SBS_Posturing) 
field  54 =  Social Behaviour Scale: Inappropriate sexual behavior (range 0-4)  (SBS_Inapp_Sexual) 
field  55 =  Social Behaviour Scale: Slowness (range 0-4)    (SBS_Slowness) 
field  56 =  Social Behaviour Scale: Suicidal ideas and self-harm (range 0-4)  (SBS_Suicidal) 
field  57 =  Social Behaviour Scale: Underactivity (range 0-4)    (SBS_Underactivity) 
field  58 =  Social Behaviour Scale: Violent, threatening or destructive behavior (range 0-3) (SBS_Violent) 
field  59 =  Social Behaviour Scale: total score Q1-21    (SBS_Total) 
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Scoring Conventions for Factors and Total Scores 

In order to standardize scoring conventions across studies, Factors and Total score for all forms were 
computed according to the following rules: 

Factor Score MEANS: 

Factor MEANS were computed by summing the appropriate items for that Factor and then 
dividing by the number of items. To accommodate missing data, the denominator was adjusted 
to include only those items that were non-missing. That is, the Factor Score is computed as the 
mean of those items present. If less than 80% of the items were present for a factor, that Factor 
Score Mean was not computed. 

Factor Score TOTALS: 

Factor TOTALS were computed by multiplying the Factor Mean (computed according to the rules 
described above) by the number of items appropriate for that Factor. Thus, the Factor Score Total 
is “pro-rated” to account for missing data. Note, if less than 80% of the items were present for a 
factor, that Factor Score Total was not computed. 

Total Score MEANS: 

Total Score MEANS were computed by summing all items in the scale and then dividing by the 
number of items. To accommodate missing data, the denominator was adjusted to include only 
those items that were non-missing. That is, the total score is computed as the mean of those 
items present.  If less than 80% of the items were present or if any factor was missing, the Total 
Score Mean was not computed. 

Total Score TOTALS: 

Total Score TOTALS were computed by multiplying the Total Score Mean (computed according to 
the rules described above) by the number of items in the scale. Thus, the Total Score Total is “pro-
rated” to account for missing data.  Note, if less than 80% of the items were present or if any 
factor was missing, the Total Score Total was not computed. 

If data from individual items were not provided, any Factor and/or Total scores were not re-computed. 
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C.6 Symptom data

Database of Cognitive Training and Remediation Studies – Symptom data (SXS) 
 
field  1 =  Study ID number (assigned by NIMH)     (Study_ID)  

4155 = WYKES1 (n=35) 
5693 = BELL (n=77) 
6632 = KEEFE (n=53) 
7926 = KESHAVAN (n=58) 
8134 = WYKES3 (n=40) 
9212 = WYKES2 (n=85) 
9479 = SILVERSTEIN (n=83) 

 
field  2 =  Participant ID number (assigned by NIMH)    (Participant_ID) 
 
field  3 =  Study condition to which participant was assigned   (Study_condition) 

1 = Cognitive Remediation condition 
2 = Comparison condition 
3 = Other 

 
field  4 =  Assessment time point      (Time_point) 

5                     = Screening 
10         = Baseline 

 21, 22, 23, … = Mid-point 1, 2, 3, … 
30                   = End-of-treatment 

 41, 42, 43, … = Follow-up1, 2, 3, … 
 

field  5 =  Days since baseline       (Days_baseline) 
 

NOTE: The Days_Baseline variable is calculated using assessment dates when they were provided and calculated from 
target dates according to the schedule of assessment time points for the study when visits dates were not provided.  

 
Notes regarding calculation of total and factor scores and missing data conventions:  
 
In order to insure accuracy and consistency, total scores and factor scores on the PANSS and BPRS were (re-)computed by DoCTRS. 
However, if item-level data were not provided, the investigator-provided total scores and factors scores were retained. 
 
Conventions used for handling missing data in computing factor and total scores for the PANSS and BPRS: Within a factor, data from 
80% of the items must be present in order to calculate the score for that factor. If a factor has data missing for some items but at 
least 80% of the items are present, the mean of the available scores within the factor was used to replace the missing item(s) 
value(s). The replaced value(s) are used to calculate factor scores and total scores.   
 
Total scores were calculated only for subjects for whom (1) ratings were available on at least 80% of the items in the full scale and 
(2) all factors were able to be scored.  Therefore, if any individual factor could not be scored due to less than 80% of the items in that 
factor being present, then the overall summary score would not be calculated.  If the overall summary score could be calculated 
based on above rules, any missing scores were assigned the value that they were assigned within their own factor. 
 
Positive and Negative Syndrome Scale (PANSS) 
 
The PANSS (Kay SR, Fiszbein A, Opler LA: The Positive and Negative Syndrome Scale (PANSS) for schizophrenia. Schizophrenia 
Bulletin 13:261-276, 1987a) is a 30-item rating scale that is specifically developed to assess individuals with schizophrenia.  
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Codes for the 30 PANSS Items (P1-P7, N1-N7, G1-G16): 

1 = Absent 
2 = Minimal 
3 = Mild 
4 = Moderate 
5 = Moderate-severe 
6 = Severe 
7 = Extreme 

 
field  6 =  PANSS item P1 Delusions     (PANSS_delu) 
field  7 =  PANSS item P2 Conceptual Disorganization  (PANSS_conc) 
field  8 =  PANSS item P3 Hallucinatory behavior   (PANSS_hall) 
field  9 =  PANSS item P4 Excitement    (PANSS_exci) 
field  10 =  PANSS item P5 Grandiosity    (PANSS_gran) 
field  11 =  PANSS item P6 Suspiciousness     (PANSS_susp) 
field  12 =  PANSS item P7 Hostility    (PANSS_host) 
field  13 =  PANSS item N1 Blunted Affect    (PANSS_blun) 
field  14 =  PANSS item N2 Emotional Withdrawal   (PANSS_emot) 
field  15 =  PANSS item N3 Poor Rapport    (PANSS_rapp) 
field  16 =  PANSS item N4 Passive/Apathetic Social Withdrawal (PANSS_apath) 
field  17 =  PANSS item N5 Difficulty in Abstract Thinking  (PANSS_abst) 
field  18 =  PANSS item N6 Lack of Spontaneity   (PANSS_spont) 
field  19 =  PANSS item N7 Stereotyped Thinking   (PANSS_ster) 
field  20 =  PANSS item G1 Somatic Concern   (PANSS_somc) 
field  21 =  PANSS item G2 Anxiety     (PANSS_anxi) 
field  22 =  PANSS item G3 Guilt Feelings     (PANSS_guil) 
field  23 =  PANSS item G4 Tension    (PANSS_tens) 
field  24 =  PANSS item G5 Mannerisms and Posturing  (PANSS_mann) 
field  25 =  PANSS item G6 Depression     (PANSS_depr) 
field  26 =  PANSS item G7 Motor Retardation   (PANSS_motr) 
field  27 =  PANSS item G8 Uncooperativeness    (PANSS_unco) 
field  28 =  PANSS item G9 Unusual Thought Content  (PANSS_unus) 
field  29 =  PANSS item G10 Disorientation    (PANSS_diso) 
field  30 =  PANSS item G11 Poor Attention    (PANSS_attn) 
field  31 =  PANSS item G12 Lack of Judgment and Insight  (PANSS_judg) 
field  32 =  PANSS item G13 Disturbance of Volition   (PANSS_voli) 
field  33 =  PANSS item G14 Poor Impulse control   (PANSS_impu) 
field  34 =  PANSS item G15 Preoccupation    (PANSS_preo) 
field  35 =  PANSS item G16 Active Social Avoidance   (PANSS_soca) 

PANSS summary scores:  

field  36 =  PANSS Total (Sum of all 30 items; Range: 30-210)  (PANSS_total) 
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field  37 =  PANSS Positive Score (Sum of items P1-P7; Range: 7-49) (PANSS_posit) 
field  38 =  PANSS Negative Score (Sum of items N1-N7; Range: 7-49) (PANSS_nega) 
field  39 =  PANSS General Score (Sum of items G1-G16; Range: 16-112)(PANSS_genr) 

 
PANSS factor scores:  
The reference for these factor scores is: Lindenmayer J-P, Bernstein-Hyman R, and Grochowski S: A new five factor model of 
schizophrenia. Psychiatric Quarterly 65:299-322, 1994.  
 
There are alternative factor solutions that users may calculate from the item-level data in the database (See Wallwork et al.: 
Searching for a consensus five-factor model of the Positive and Negative Syndrome Scale for schizophrenia. Schizophrenia Research 
137: 246-250, 2012). 
 
field  40 =  PANSS Negative Factor (N1+N2+N3+N4+N6+G16; range 6-42) (PANNS_neg_factor) 
field  41 =  PANSS Excitement Factor (P4+P7+G4+G14; range 4-28)   (PANNS_excite_factor) 
field  42 =  PANSS Cognitive Factor (P2+N5+G5+G10+G11; range 5-35)  (PANNS_cog_factor) 
field  43 =  PANSS Positive Factor (P1+P5+P6+G9; range 4-28)  (PANNS_pos_factor) 
field  44 =  PANSS Depression component (G1+G2+G3+G6+G15, range 5-35)  (PANNS_dep_factor)  
 
Brief Psychiatric Rating Scale (BPRS) 
The BPRS (Overall, JE and Gorham, DR, The Brief Psychiatric Rating Scale, Psychol Rep, 10:799-812, 1962) measures psychotic 
symptoms and was first published in 1962. The scale provides evaluation of treatment response in both clinical drug trials and 
routine clinical settings. The standard version of the BPRS contains 18 items and the expanded versions contain up to 24 items.  
 
Note: The original 18 BPRS items are indicated by asterisk (*). 
 
Codes for the 24 BPRS Items: 

1 = Not present 
2 = Very mild 
3 = Mild 
4 = Moderate 
5 = Moderately severe 
6 = Severe 
7 = Extremely severe 

 
field  45 =  BPRS item 1 Somatic concern *   (BPRS_somc) 
field  46 =  BPRS item 2 Anxiety *    (BPRS_anxi) 
field  47 =  BPRS item 3 Depressive Mood *   (BPRS_depr) 
field  48 =  BPRS item 4 Guilt Feelings*    (BPRS_guil) 
field  49 =  BPRS item 5 Hostility *     (BPRS_host) 
field  50 =  BPRS item 6  Suspiciousness *    (BPRS_susp) 
field  51 =  BPRS item 7  Unusual thought content  *  (BPRS_unus) 
field  52 =  BPRS item 8 Grandiosity *    (BPRS_gran) 
field  53 =  BPRS item 9  Hallucinatory Behavior *    (BPRS_hall) 
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field  54 =  BPRS item  10  Disorientation *    (BPRS_diso) 
field  55 =  BPRS item  11  Conceptual disorganization * (BPRS_conc) 
field  56 =  BPRS item  12  Excitement *    (BPRS_exci) 
field  57 =  BPRS item  13  Motor retardation *   (BPRS_motr) 
field  58 =  BPRS item  14  Blunted affect *    (BPRS_blun) 
field  59 =  BPRS item  15  Tension *    (BPRS_tens) 
field  60 =  BPRS item  16  Mannerisms and posturing *  (BPRS_mann) 
field  61 =  BPRS item  17  Uncooperativeness *   (BPRS_unco) 
field  62 =  BPRS item  18  Emotional withdrawal *    (BPRS_emot) 
field  63 =  BPRS item  19  Suicidality     (BPRS_suic) 
field  64 =  BPRS item  20  Self neglect     (BPRS_self) 
field  65 =  BPRS item  21  Bizarre behavior    (BPRS_bizb) 
field  66 =  BPRS item  22  Elated mood concern    (BPRS_elat) 
field  67 =  BPRS item  23  Motor hyperactivity    (BPRS_mohy) 
field  68 =  BPRS item  24  Distractibility     (BPRS_distr) 

BPRS Summary Scores  

BPRS 18-Item Total score          (BPRS_total) 

The reference for the following factor solution is: Overall et al. Major psychiatric disorders: A four-dimensional model. Archives of 
General Psychiatry 16: 146-151, 1967.  

This factor solution has good empirical support, however there are alternative factor solutions that users may calculate from the 
data items provided in the database; See Shafer A. Meta-analysis of the Brief Psychiatric Rating Scale factor structure, Psychological 
Assessment 17: 324-335, 2005. 

field  69 =  BPRS Factor score: Anxiety and depression (Sum of items 2, 3 & 4; range 3-21)   (BPRS_anx_factor) 
field  70 =  BPRS  Factor score: Hostility and suspiciousness (Sum of items 5, 6 & 17; range 3-21)  (BPRS_host_factor) 
field  71 =  BPRS  Factor score: Thought disturbance (Sum of items 7, 9 & 11; range 3-21)  (BPRS_thought_factor) 
field  72 =  BPRS  Factor score: Withdrawal and retardation (Sum of items 13, 14 & 18; range 3-21)  (BPRS_withd_factor) 
 
Scale for the Assessment of Negative Symptoms (SANS) 
References:  
Andreasen, NC, Scale for the Assessment of Negative Symptoms: SANS, Iowa, the University of Iowa, 1981.  
Andreasen, NC, Negative symptoms in schizophrenia: definition and reliability, Arch Gen Psychiatry 39:784-788, 1982. 
 
This 25-item scale measures the following 5 domains: Affective flattening, alogia, avolition/apathy, anhedonia/asociality, and 
attention. There are individual items within each domain followed by the rater’s global assessment of the domain (in bold below). 
 
Scale for the Assessment of Positive Symptoms (SAPS) 
Reference: Andreasen, NC, Scale for the assessment of positive symptoms: SAPS, Iowa City, IA, University of Iowa, 1984. 
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This 34-item scale measures the following 4 domains: Hallucinations, Delusions, Bizarre behavior, and Positive/formal thought 
disorder. There are individual items for each domain followed by the rater’s global assessment of the domain. 
 
Note: The SANS and the SAPS are listed together in the documentation because when used in studies of schizophrenia, they are 
often used together. 
 
Codes for the SANS and SAPS Items: 

0 = Not at all 
1 = Questionable 
2 = Mild 
3 = Moderate 
4 = Marked 
5 = Severe 

 
field  73 =  SANS item 1 Unchanging facial expression   (SANS1_express) 
field  74 =  SANS item 2 Decreased spontaneous movements   (SANS2_movement) 
field  75 =  SANS item 3 Paucity of expressive gestures   (SANS3_gestures) 
field  76 =  SANS item 4 Poor eye contact     (SANS4_eye) 
field  77 =  SANS item 5 Affective non-responsivity    (SANS5_respons) 
field  78 =  SANS item 6 Lack of vocal inflections    (SANS6_vocal) 
field  79 =  SANS item 7 Global rating of affective flattening   (SANS7_global_flattening) 
field  80 =  SANS item 8 Inappropriate affect    (SANS8_inapprop) 
field  81 =  SANS item 9 Poverty of speech    (SANS9_povspeech) 
field  82 =  SANS item 10 Poverty of content    (SANS10_povcontent) 
field  83 =  SANS item 11 Blocking      (SANS11_blocking) 
field  84 =  SANS item 12 Increased latency of response   (SANS12_latency) 
field  85 =  SANS item 13 Global rating of alogia    (SANS13_global_alogia) 
field  86 =  SANS item 14 Grooming and Hygiene    (SANS14_hygiene) 
field  87 =  SANS item 15 Impersistence at work or school   (SANS15_impersist) 
field  88 =  SANS item 16 Physical anergia     (SANS16_anergia) 
field  89 =  SANS item 17 Global rating of avolition-apathy   (SANS17_global_avolition) 
field  90 =  SANS item 18 Recreational interests and activities  (SANS18_recreate) 
field  91 =  SANS item 19 Sexual interest and activity   (SANS19_sexual) 
field  92 =  SANS item 20 Ability to feel intimacy and closeness  (SANS20_intimacy) 
field  93 =  SANS item 21 Relationships with friends and peers  (SANS21_friends) 
field  94 =  SANS item 22 Global rating of anhedonia-asociality  (SANS22_global_asociality) 
field  95 =  SANS item 23 Social inattentiveness    (SANS23_socinattention) 
field  96 =  SANS item 24 Inattentiveness during mental status testing  (SANS24_statinattention) 
field  97 =  SANS item 25 Global rating of attention    (SANS25_global_attention) 
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field  98 =  SAPS item 1 Auditory hallucinations    (SAPS1_auditory) 
field  99 =  SAPS item 2 Voices commenting    (SAPS2_comment) 
field  100 =  SAPS item 3 Voices conversing     (SAPS3_converse) 
field  101 =  SAPS item 4 Somatic or tactile hallucinations   (SAPS4_somatic) 
field  102 =  SAPS item 5 Olfactory hallucinations    (SAPS5_olfactory) 
field  103 =  SAPS item 6 Visual hallucinations    (SAPS6_visual) 
field  104 =  SAPS item 7 Global rating of severity of hallucinations  (SAPS7_global_hall) 
field  105 =  SAPS item 8 Persecutory delusions    (SAPS8_persec) 
field  106 =  SAPS item 9 Delusions of jealousy    (SAPS9_jealous) 
field  107 =  SAPS item 10 Delusions of sin or guilt    (SAPS10_guilt) 
field  108 =  SAPS item 11 Grandiose delusions    (SAPS11_grand) 
field  109 =  SAPS item 12 Religious delusions    (SAPS12_religious) 
field  110 =  SAPS item 13 Somatic delusion     (SAPS13_somaticdel) 
field  111 =  SAPS item 14 Delusions of references    (SAPS14_reference) 
field  112 =  SAPS item 15 Delusions of being controlled   (SAPS15_control) 
field  113 =  SAPS item 16 Delusions of mind reading    (SAPS16_mind) 
field  114 =  SAPS item 17 Delusions of thought broadcasting   (SAPS17_broadcast) 
field  115 =  SAPS item 18 Delusions of thought insertion   (SAPS18_insertion) 
field  116 =  SAPS item 19 Delusions of thought withdrawal   (SAPS19_withdrawal) 
field  117 =  SAPS item 20 Global rating of severity of delusions  (SAPS20_global_del) 
field  118 =  SAPS item 21 Clothing and appearance    (SAPS21_appearance) 
field  119 =  SAPS item 22 Social and sexual behavior    (SAPS22_social) 
field  120 =  SAPS item 23 Aggressive and agitated behavior   (SAPS23_aggress) 
field  121 =  SAPS item 24 Repetitive or stereotyped behavior   (SAPS24_repetitive) 
field  122 =  SAPS item 25 Global rating of severity of bizarre behavior  (SAPS25_global_biz) 
field  123 =  SAPS item 26 Derailment     (SAPS26_derailment) 
field  124 =  SAPS item 27 Tangentiality    (SAPS27_tangent) 
field  125 =  SAPS item 28 Incoherence     (SAPS28_incoherence) 
field  126 =  SAPS item 29 Illogicality     (SAPS29_illogicality) 
field  127 =  SAPS item 30 Circumstantiality     (SAPS30_circumstan) 
field  128 =  SAPS item 31 Pressured speech     (SAPS31_pressured) 
field  129 =  SAPS item 32 Distractible speech    (SAPS32_distract) 
field  130 =  SAPS item 33 Clanging      (SAPS33_clanging) 
field  131 =  SAPS item 34 Global rating of positive formal thought disorder  (SAPS34_global_thought) 
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Appendix D

Prediction models results

D.1 Plot of the correlation matrix of the potential predictors used
to develop the prediction models

Figure D.1: Plot of the correlation matrix of the potential predictors: Correlations were computed
using pairwise complete observations. Because of the percentage of missing data they might
underestimate the true correlations. Positive correlations are displayed in blue and negative
correlations in red colour. Colour intensity and the size of the circle are proportional to the
correlation coefficients.
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D.2 Results for the precision medicine Models 2a and 2b with
WCST PE as outcome

Figure D.2: Model 2b predictions versus observed outcome values for the best λ model, the
one SE, the 3% and the 15% tolerance models. Apparent calibration lines are shown.
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Covariate Model 3

Uncalibrated coef. Re-calibrated coef.

Intercept 1.5069 1.7386
Education category, primary or less vs ‘other’ -0.0584 -0.0689

log(TMTA) -0.2640 -0.3063
log(TMTB) -0.1820 -0.2116
Cognition 0.4973 0.5728

Errorless learning technique rank order, No central vs ‘other’ 0.0257 0.0283
Session duration, 90 vs 60 minutes 0.0056 0.0050

Verbal memory target rank order, No priority target vs ‘other’ 0.0001∗ -0.0014
CR sessions delivered one-on-one, yes vs no -0.0001* -0.0014

Target follow-up, 24 weeks vs ‘other’ -0.0398 -0.0474
CATFLU 0.0014 0.0002

LNS 0.0357 0.0398

Table D.2: Final (3% tolerance) Model 3 uncalibrated and re-calibrated coefficients (coef.). The
word ‘other’ was used to indicate the union of a categorical variable levels for which the dummy
was not selected. The colon ‘:’ indicates an interaction. The star sign * means that the esti-
mates were less than |10−4| in absolute value: 0<0.0001*<0.0001 and -0.0001<-0.0001*<0.

Covariate Model 2a Model 2b

Uncalibrated coef. Re-calibrated coef. Uncalibrated coef. Re-calibrated coef.

Intercept 15.2644 10.9927 17.0385 13.7781
AQT for IQ -0.0272 -10.5195 -0.0415 -9.8796

PANSS abstract thinking (N5) 0.0686 -10.3847 0.1454 -9.6207
Target duration of CRT (weeks) -0.0098 -9.8358

Target follow-up, 24 weeks vs ‘other’ 1.3634 -8.5631 2.3948 -6.5052
WCST PE 0.4282 -9.8788 0.4018 -9.2657

Table D.1: Final (3% tolerance) Model 2a and 2b uncalibrated and re-calibrated coefficients
(coef.). The word ‘other’ was used to indicate the union of a categorical variable levels for which
the dummy was not selected. The colon ‘:’ indicates an interaction.

D.3 Prognostic Models 3, 4a and 4b: results

Covariate Model 4a Model 4b

Uncalibrated coef. Re-calibrated coef. Uncalibrated coef. Re-calibrated coef.

Intercept 11.7729 6.3394 15.9155 12.3397
Education category, primary or less vs ‘other’ 1.4586 1.4586 1.8128 -7.0249

AQT for IQ -0.0357 -9.5632
PANSS abstract thinking (N5) 0.2038 -9.7328 0.0418 -9.4568

PANSS Negative Score 0.0519 -9.4429
Target duration of CRT (weeks) -0.0153 -9.5352

Target follow-up, 24 weeks vs ‘other’ 1.6994 -7.9896 2.3903 -6.2320
WCST PE 0.4358 -9.4105 0.3982 -8.9674

Table D.3: Final (3% tolerance) Model 4a and 4b uncalibrated and re-calibrated coefficients
(coef.). The word ‘other’ was used to indicate the union of a categorical variable levels for which
the dummy was not selected. The colon ‘:’ indicates an interaction.
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