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Abstract 

Background 

Premature birth is associated with ventricular remodeling, early heart failure, and altered 

left ventricular (LV) response to physiological stress.  

Using computational cardiac magnetic resonance (CMR) imaging we aimed to quantify 

preterm ventricular remodeling in the neonatal period, and explore contributory clinical 

factors. 

  

Methods 

73 CMR scans (34 preterm infants, 10 term controls) were performed to assess in-utero 

development and preterm ex-utero growth. 

End-diastolic computational atlases were created for both cardiac ventricles; t statistics, 

linear regression modeling and principal component analysis (PCA) were used to 

describe the impact of prematurity and perinatal factors on ventricular volumetrics, 

ventricular geometry, myocardial mass and wall thickness. 

Results 

All preterm neonates demonstrated greater weight-indexed LV mass and higher weight-

indexed end-diastolic volume at term-corrected age (P<0.05 for all preterm gestations). 

Independent associations of increased term-corrected age LV myocardial wall thickness 

were (false discovery rate <0.05): degree of prematurity, antenatal glucocorticoid 

administration, requirement for > 48 hours’ postnatal respiratory support. 

PCA of LV geometry showed statistical differences between all preterm infants at term-

corrected age and term controls.  

Conclusions 
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Computational CMR demonstrates significant LV remodeling occurs soon after preterm 

delivery and is associated with definable clinical situations. This suggests that neonatal 

interventions could reduce long-term cardiac dysfunction.  
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Body text 

 

Introduction 

Globally there are more than 15 million preterm births (prior to 37 weeks’ gestation) per 

year. Advances in obstetric care and neonatal practice are improving survival rates and 

leading to an ever-increasing cohort of adults born prematurely.(1,2) 

Premature birth is associated with hypertension, myocardial infarction, adult heart failure 

and potentially early death from cardiac causes.(3,4,5,6)
 
Recent studies have identified 

early impacts of prematurity on cardiac development and function including altered early 

myocardial development, heart failure in childhood and altered left ventricular response 

to physiological stress.(7,8,9)  

The phenotype of pathological cardiac development following premature birth was 

defined in young adults by the application of MRI-based cardiac atlases; this phenotype 

included altered human ventricular geometry, increased indexed myocardial mass and 

associations with reduced  biventricular function.(10,11,12) Whilst both cardiac 

ventricles are affected, studies in young adults suggest a greater functional impact on the 

ex-preterm right ventricle (RV) compared to the left ventricle (LV).(11) More recent 

echocardiographic studies have shown increased indexed LV and RV mass at 3 months in 

premature neonates, though early changes in LV geometry were thought to be 

transient.(7)   

As many authors acknowledge, assumptions about ventricular geometry necessitate 

caution when interpreting echocardiographic-derived absolute mass measures and 

inferences on ventricular geometry, particularly for the RV.(7) However, optimized 

©    2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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neonatal CMR has demonstrated robust, validated in-vivo volumetric measurements of 

the preterm ventricles, and CMR atlasing is the proven gold-standard tool for generating 

robust cardiac geometries, though not previously tested for the neonatal 

population.(13,14,15)
 
  

This study adapted available neonatal CMR and adult computational atlasing techniques 

to confirm the hypothesis that preterm-associated ventricular remodeling originates in the 

neonatal period, demonstrate the phenotype of neonatal remodeling, and robustly explore 

associated clinical factors which could potentially offer future therapeutic targets.   
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Methods 

The study was approved by the North West London Research Ethics Committee 

(06/Q0406/137). All CMR scans were performed for research purposes only, written 

informed parental consent was obtained in all cases.  

Study Cohort 

Preterm infants (born < 37 weeks’ gestation) and healthy term controls (born between 37-

42 weeks gestational age (GA)) were recruited from the Neonatal Unit and postnatal 

wards of St Thomas’ Hospital, London, UK, between 2012 and 2015. Study exclusion 

criteria were: contraindications to CMR scanning, congenital heart disease (transitional 

conditions such as patent foramen ovale (PFO) and patent ductus arteriosus (PDA) were 

not excluded), parents in whom obtaining consent was deemed non-ethical, and neonates 

deemed too sick to tolerate a CMR study by their consultant neonatologist.   

34 preterm ‘baseline’ CMR scans representing a surrogate of in-utero growth were 

performed within the first 7 days, and 29 ‘term-corrected age’ scans were performed in 

preterm neonates at 37-42 weeks corrected gestational age (CGA) to allow description of 

ex-utero preterm cardiac development and facilitate direct comparison between preterm 

infants and 10 healthy term-born controls (scanned within 7 days of birth). Further patient 

demographics are shown in Table 1. 

The results of CMR scanning did not alter the neonates’ clinical care; decisions on 

clinical management including investigation and treatment for PDA, use of inotropic and 

respiratory support, and nutritional/feeding regimen were governed entirely by the 

clinical team responsible for the neonates’ care, who were blinded to the research 

findings.  

©    2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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Medical Data Collection  

Data on antenatal history and neonatal care was collected from in-patient medical notes 

and electronic patient records. Structured data collection targeted factors postulated to 

affect cardiac remodeling including patient gender, intrauterine growth restriction 

(IUGR), antenatal glucocorticoid administration, postnatal inotrope use, PDA (defined in 

this study as clinical concern of PDA with confirmation of PDA on echocardiography; 

PDA treatment was at the discretion of individual clinicians and recorded separately), and 

mode and duration of respiratory support. All stored data, including MR data, were coded 

with subject- and study-specific identifiers to ensure anonymity and blinded analysis. 

CMR imaging acquisition 

All scans were performed using a ‘feed and wrap’ free-breathing technique without 

sedation or anesthesia, as described previously by Merchant et al.(16)  

CMR data was acquired on a Philips 3.0-Tesla MR Achieva scanner (Best, Netherlands) 

using a specialized 8-channel pediatric body receive coil for neonates >2 kg, and an 8-

channel small extremity receive coil for neonates <2 kg. Neonatal CMR scanning and 

parameter optimization has been previously described by Price et al.(15) Steady-state 

free-precession (SSFP) cine sequences were acquired to localize cardiac anatomy, before 

acquisition of an optimized retrospectively-VCG-gated 2D SSFP 10-slice short axis cine 

stack. SSFP image acquisition parameters were: acquired in-plane resolution 1 × 1 mm; 

20 retrospectively gated phases per cardiac cycle, average temporal resolution 

22.2 milliseconds (range 17.6 – 33.3 milliseconds); slice thickness 4-mm; repetition time 

3.8 milliseconds; echo time 1.9 milliseconds; flip angle 35°; 4 signal averages. Varied 

negative inter-slice gap, enabled interpolation of slice thickness to below 4mm whilst 

©    2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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ensuring full coverage from apex to base of the both ventricles in all individuals. The 

post-processing steps further interpolated the slice thickness to achieve a reconstructed 

isotropic voxel resolution. No CMR-acceleration methods or respiratory gating 

techniques were used; acquisition time ranged between 4 and 6 minutes. Anonymized 

CMR data was stored on a protected digital archive for subsequent analysis. 

CMR data post-processing  

All post-processing was performed on end-diastolic (ED) CMR frames. Short-axis and 4-

chamber DICOM files were visualized and segmented using Segment v1.8 R1172 

software (segment.heiberg.se)(17) to quantify ventricular cavity volume, ensuring correct 

ED frame selection. 

Ventricular computational atlas creation 

Image segmentation 

The ED datasets were converted to NIfTI (Neuroimaging Informatics Technology 

Initiative) format. Segmentation was performed by a single researcher, with 9 months 

prior training, using ITK-SNAP dedicated image segmentation software 

(www.itksnap.org) which allows for semi-automatic segmentation using active contour 

methods and manual delineation.(18) While various software programs are available for 

cardiac segmentation, ITK-SNAP was chosen due to previous researcher experience of 

robust performance in segmenting neonatal CMR datasets and the availability of a seed-

based ‘Snake’ tool which allowed for region-growing, level-set segmentation. Ventricular 

myocardium and blood pools were labelled through manual tracing of the endo- and 

epicardial borders for each slice. The LV outflow tract was included in the ventricular 

©    2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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blood pool volume when representing < 50% of the LV blood volume on the slice, and 

the papillary muscles were excluded from the myocardial segmentation and included in 

the LVEDV to facilitate more robust subsequent image registration. RV segmentation 

followed similar principles and techniques to that of the LV, however segmentation of the 

RV included regions of the interventricular septum considered to be RV in developmental 

origin due to the smooth geometric continuity with the RV free wall mass. Image 

segmentation provided quantification of ventricular myocardial mass from volume ((end-

diastolic epicardial – endocardial volume) x 1.05) and EDV (endocardial volume) for 

both RV and LV for each subject; 1.05g/ml representing the predicted density of 

myocardial tissue. 

Image registration 

Image registration techniques were performed using Image Registration Toolkit software 

(IRTK, www.doc.ic.ac.uk/~dr/software/).(19,20,21) The segmented datasets were 

manually landmarked using LV and RV landmarks including the myocardial apex, and 

septal mid-point, RV insertion points and center of the blood pool at mid-ventricular and 

basal levels. Landmarks were chosen based on apparent reliability and repeatability of 

assessment in the context of a known paucity of true anatomical landmarks identifiable 

on cine MR scanning. The registration and atlasing technique used had previously been 

optimized and validated for neonatal CMR data and followed the principles described by 

Frangi et al.(22) First, a point-based rigid registration of the anatomical landmarks is used 

to align the segmentations to a common coordinate system. A voxel-based multi-

resolution, free-form, non-rigid registration algorithm was used to warp individual 

segmentations to a pre-assigned template, the target segmentation. The chosen template 

©    2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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segmentation was the dataset with highest segmentation repeatability and robustness of 

landmarking. The non-rigid registration algorithm embedded labelled segmentations into 

a multi-nodal volumetric mesh through modeling the spatial deformation between images 

as an interpolated field governed by a set of B-spline basis functions. The deformation 

was progressively refined through multiple resolution stages by increasing the density of 

the B-spline modes.(16)  

Unbiased templates for each ventricle were created through a 2-step iteration; initial 

registration to an assigned, biased, target segmentation to warp all segmentations to a 

common coordinate space, with subsequent averaging forming unbiased LV and RV 

templates. Repetition of the registration process registered all segmentations to the 

unbiased templates, producing deformation field files detailing the size and shape 

difference of all patient segmentations relative to the unbiased template. Individual 

warped segmentations, produced through application of the deformation field files to the 

unbiased templates, were resampled using shape-based interpolation and the application 

of a marching cubes algorithm created individual surface meshes facilitating visualization 

and statistical analysis. 

Neonatal ventricular atlas construction 

Patients were grouped into cohorts by gestational age at birth. Concatenation of 

deformation fields within a cohort created atlases representative of that population. 5 

preterm cohorts were created that spanned the viable preterm gestational age range: 

neonates born <26 weeks, 26-29 weeks, 29-32 weeks, 32-35 weeks and 35-37 weeks. 

Each cohort had 2 sets of atlases created, at baseline and at term-corrected age. An atlas 

was also produced for the healthy term control cohort. Dice similarity coefficients were 

©    2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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used to analyze how robustly cohort atlases represented all individual constitutive 

patients.(23) Myocardial and ventricular blood pool surface meshes were composed of 

27797 and 14099 mesh points respectively for the LV, and 28986 and 14798 mesh points 

for the RV. Each mesh point identified spatial location, with the myocardial surface mesh 

points providing additional data on local wall thickness.  

Statistical analysis 

Statistical analysis was performed using SPSS version 22 and MATLAB R2015a 

(Mathworks, Natick, MA). Comparison of continuous variables within patient groups 

was conducted with a 2-sided, independent samples Student’s t-test where data was 

normally distributed; categorical variables were compared with a χ
2
 test.  

Myocardial mass and end-diastolic volume (EDV) data were indexed for patient weight 

at the time of scan.  

Standardization of the number of nodes and alignment of myocardial meshes allowed 

calculation of mean wall thickness at every nodal point. Generated P-values were 

corrected for multiple comparisons by adjusting for false discovery rate (FDR). 

Assessment of perinatal factors associated with altered wall thickness was performed by 

regression analysis using the principles of generalized linear modeling with an 

ANCOVA.(24) Principal component analysis (PCA) was performed to identify the key 

modes of shape variation in preterm hearts at term-corrected age – the parametric space 

was reduced from >14,000 modes of variation to the principal 10 which accounted for 

approximately 95% of the shape variation seen for each ventricle. Throughout the 

reported results values of P < 0.05 (after correction for multiple comparisons) were 

considered significant. 
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Results 

Study population characteristics 

Baseline demographics, clinical parameters and scan timings for the preterm, preterm at 

term and term control cohorts are shown in Table 1. 

Elevated weight-corrected ventricular mass and end-diastolic volume in preterm 

cohorts 

Postnatal baseline assessment (scans performed within 7 days of life) in all cohorts born 

>29 weeks GA demonstrated higher weight-indexed values for RVEDV than for 

LVEDV, but reduced weight-indexed RV mass (RVm) compared with LV mass (LVm) 

for equivalent GA (Table 2). 

All preterm cohorts scanned at term-corrected age demonstrated greater mean indexed 

values (P < 0.05) for LVm and LVEDV than healthy term controls; calculated ex-utero 

weight-indexed growth percentages showed increases between 14.0 and 32.0% for both 

in LVm and LVEDV contrasting with reduction in weight-indexed in-utero percentage 

values of similar magnitude. (Table 2 & Figure 1). Infants born at <29 weeks 

demonstrated 64% greater weight-indexed LVm at term-corrected age than the term 

control cohort (1.64 ± 0.04 vs 0.99 ± 0.17 g/kg, P < 0.0001). 

Whilst a trend towards greater mean indexed RVm and RVEDV was noted for preterm-

born infants at term-corrected age compared with the term-born control cohort, the only 

preterm cohort in which a statistically-significant difference was noted was the cohort 

born between 29-32 weeks GA. (Table 2, Figure 1). 

Values for LV and RV myocardial mass and EDV indexed for body surface area (BSA) 

correlated closely with the respective weight-indexed values for preterm cohorts scanned 
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at term corrected age. However, there was a significant discrepancy between the weight 

and BSA indexed values for preterm cohorts at baseline; this is likely due to the 

challenges in obtaining accurate BSA values for sick preterm infants. (Supplemental 

Tables S1-S2 (online)). Weight-indexed values were used to draw conclusions on cardiac 

development due to the improved accuracy of assessment in the neonatal population. 

Computational neonatal ventricular atlas creation and analysis  

9 cohort atlases of similarly matched GA were created for each ventricle, displaying 

shape and computed myocardial wall thickness values (Figures 2 & 3). Dice similarity 

metrics demonstrated the generated atlas for each cohort to be unbiased towards 

individual constituent scans; comparison of atlases with individual scans from other 

cohorts demonstrated the specificity of an atlas to their GA cohort (Supplemental Tables 

S3-S6 (online)).  

LV shape analysis 

Baseline scans were conducted within the first 7 days in an attempt to limit the impact of 

early postnatal pathophysiological remodeling. Significant changes in postnatal 

ventricular volumes may occur over the first few days.  However, visual analysis of the 

consistency of LV geometry and LV wall thickness observed in the postnatal baseline 

atlases, despite images having been taken at a range of 3-7 postnatal days, suggests 

relatively uniform third trimester in-utero development and early postnatal adaptation. 

This correlates with the quantified increases in absolute LVm and LVEDV (Table 2 & 

Figure 2).  

PCA performed on all LV models created from term-age equivalent scans showed 2 

leading modes accounting for 57% of the population’s LV geometric shape variation 

©    2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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(mode 1 = 35%, mode 2 = 22%). Mode 1 altered LV tapering towards the apex of the 

ventricle, mode 2 affected LV cavity diameter between the septum and lateral free wall 

(Figure 4). A clear distinction in shape was seen between all the preterm infants scanned 

at term-corrected age and the healthy term controls; preterm hearts demonstrating a more 

globular LV shape with more spherical blood pool (Figure 4, mode 1 P < 0.0001; mode 2 

P = 0.003). 

 

RV shape analysis 

Visual analysis and growth percentage comparison of RV cohort atlases constructed from 

postnatal baseline CMR scans again suggested consistent in-utero ventricular growth and 

early postnatal volumetric adaptation, with RV shape preservation from 29 weeks’ 

gestation (Table 2 & Figure 3). The preterm RVs scanned at term-corrected age displayed 

very similar size and shape characteristics to term controls (Figure 3). PCA performed on 

all RV models created from term-equivalent scans again showed 2 modes of variation 

accounting for approximately 60% of the population’s RV geometric variation (mode 1 = 

47.5%, mode 2 = 13%). Mode 1 altered RV base-apex length, mode 2 affected the RV 

blood pool shape, particularly septal wall curvature – termed ‘globularity’ for the purpose 

of graphical demonstration (Figure 4). No statistically-significant differences in RV 

shape were observed between preterm infants scanned at term-corrected age and the 

healthy term controls, however, graphical representation demonstrated clustering of 

preterm RV geometry towards greater ventricular base-apex length and more pronounced 

septal curvature (Figure 4). 
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LV regional wall thickness analysis 

Assessment of different cohorts with paired t-tests generated FDR-corrected P-value 

maps showing myocardial regions with statistically significant differences in wall 

thickness. Surrogates of in-utero growth (comparison of preterm ventricles at baseline 

versus healthy term-born controls) show consistent significant increases in weight-

indexed wall thickness in the LV septal region throughout the third trimester (Figure 5).  

Myocardial wall thickness values in other regions increased at a lower rate, not reaching 

statistical significance. Ex-utero myocardial development through the third trimester 

(comparison of the preterm ventricles at baseline and term-corrected age) displayed 

contrasting and more diffuse patterns of statistically significant LV wall thickness 

growth. (Figure 5) 

Postnatal myocardial remodeling was assessed by comparing wall thickness in preterm 

cohorts at term-corrected age with healthy term controls. Neonates born < 29 weeks had 

large areas of statistically-significant point-registered LV myocardial thickening, 

encompassing greater than 50% of the LV and including the septal and free ventricular 

walls. As preterm GA at birth increased the total area of altered LV myocardial thickness 

decreased. (Figure 5). 

RV regional wall thickness analysis 

Analysis of in-utero RV growth, ex-utero RV myocardial development, and postnatal RV 

remodeling did not demonstrate any regions of myocardium with statistically-significant 

wall thickness change after correction for FDR.  
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Perinatal factors affecting wall thickness remodeling 

Generalized linear modeling on all term-age ventricular models, with statistical 

parametric mapping of the ventricles allowed independent assessment of multiple clinical 

covariates.(18) The results were processed to show regions of statistically significant 

increases in myocardial wall thickness affected by each covariate and demonstrated on 

standardized myocardial meshes. All quoted P-values are post FDR correction. 

The degree of prematurity was strongly associated with changes in wall thickness over 

the whole LV (P < 1 x 10
-5 

for all nodes). Clear independent associations were also 

observed for requirement for respiratory support >48 hours and the administration of 

antenatal glucocorticoids – the majority of the LV was affected (P < 0.05) with sparing 

only at the ventricular apex. Very little association was seen between LV wall thickness 

and PDA, IUGR or gender (Figure 6). 

RV analysis revealed no perinatal factors associated with wall thickness change after 

correction for FDR.  
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Discussion 

Computational atlasing of neonatal cardiac MRI data demonstrates that premature birth 

causes definable changes to LVm and wall thickness, EDV and geometry in the neonatal 

period, which were quantifiably greater for birth at earlier gestation (Figures 1 & 6).  

Impact of prematurity on LVm, wall thickness and EDV 

The extent of the observed change in preterm neonatal LVm broadly correlates with 

recent echocardiographic data in the first 3 months of life but is greater than the 

approximate 20% increase in biventricular mass quantified by computational cardiac 

CMR atlasing studies in young adults.(7,10)
 
Our results show premature infants born at 

<29 weeks demonstrate a 64% greater indexed-LVm at term-corrected age than healthy 

term-born controls. Whilst previous research has indicated that cardiac growth tracks 

from early postnatal life into childhood, and from childhood to adult life, we believe 

future longitudinal studies are required to demonstrate if, and when, the large increase in 

indexed LVm regresses to that observed in studies at young adulthood.(25,26)
 
Increased 

LVm is an independent risk factor for cardiovascular morbidity and mortality; if the 

increases in observed LVm do persist into adulthood, this degree of increased LVm 

would likely lead to significantly elevated risk of clinical cardiovascular events later in 

life.(6,27) 

Our preterm cohort demonstrated significant increases in LVEDV compared to term-born 

controls, whereas young adults born prematurely display decreased LV chamber 

volumes. Increased neonatal LVEDV might be expected due to physiological adaptation 

to increased postnatal pulmonary venous return, particularly in the presence of a patent 

ductus arteriosus.  
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Increased LV wall thickness was independently associated with degree of prematurity, 

antenatal glucocorticoid exposure and respiratory support requirement for >48 hours. 

Association between steroid administration and cardiac hypertrophy in the newborn 

period is well-described, though in most cases the effect is felt to be transient.(28,29,30) 

However, exposure to antenatal glucocorticoids impacts key regulators of cardiac 

function and maturation of the developing myocardium such that longer term 

programming may be effected.(31) 

Respiratory support may be only casually associated with LV remodeling, since infants 

with circulatory compromise generally require respiratory support. However, respiratory 

support also impacts lung volume, intrathoracic pressure, venous return and coronary 

artery flow, and the mechanics of myocardial contraction; all of which could contribute to 

remodeling.(32)  

Impact of prematurity on LV shape 

Principal component analysis showed preterm neonates to have more globular hearts with 

more spherical shape. Mann et al. comment that increased LV sphericity is one of the 

first observations of pathophysiological significance in LV remodeling.(33) The 

mechanisms leading to the development of this spherical shape in preterm hearts are 

likely to be similar to those seen in adult cardiomyopathies.(34) The change from ellipse 

to more spherical LV shape increases meridional wall stress and so creates a further 

energetic burden for the immature myocardium.(33) The long-term prognostic 

significance of neonatal LV shape change is unclear, though in adult patients greater LV 

sphericity is associated with heart failure, reduced exercise tolerance and an increased 

incidence of mitral regurgitation.(35,36) Any increased neonatal LV sphericity that 
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compromised future valvular integrity would lead to greater LV preload and a potential 

cycle of adverse LV remodeling.  

 

Pathophysiology underlying neonatal LV remodeling 

Overall, very little is definitively known about pathophysiology of LV remodeling in 

human preterm cohorts. It has been hypothesized that remodeling occurs secondary to 

changes in ventricular workload resulting from differences in preload, intracardiac flow 

pattern and afterload. Shunting of blood through a PDA is a common cause for increased 

preload in preterm infants and has previously been associated with increased LVm in the 

neonatal period.(13) However, our study did not detect a significant association between 

PDA and remodeling of either ventricle; we did not systematically assess preterm 

patterns of disrupted intracardiac flow which result in reduced kinetic energy 

maintenance, and may necessitate greater preload to maintain sufficient cardiac 

function.(37) Our findings may have been affected by the low number of neonates with 

PDA in the study and association of PDA with co-variates of earlier gestational age, 

receipt of antenatal glucocorticoids and need for prolonged respiratory support, making 

identification as an independent risk modifier more challenging. Study of a larger cohort 

is required before drawing definitive conclusions on the effect of PDA on ventricular 

remodeling. 

The functional and histological immaturity of the preterm myocardium leaves it 

vulnerable to increases in afterload in the neonatal period, including cord-clamping and 

medical therapies such as inotropes and vasopressors.(38,39) The consequence of a 
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sustained high afterload on immature myocardium may be early adaptive myocardial 

hypertrophy, with the later corollary being persistence of hypertrophic remodeling. 

Preterm lamb models show 5- to 7-fold increases in neonatal interstitial collagen 

deposition, and evidence of myocardial fibrosis.(40) Myocardial growth and compliance 

is dependent upon optimal cellular and extracellular matrix composition, and similar 

findings in humans would alter the mechanical scaffold of the heart and likely restrict 

normal LV cavity growth. 

Hyperoxia may be a further trigger for preterm cardiac remodeling. In small animal 

models transient exposure to hyperoxia produces long term cardiac remodeling and 

vulnerability to early cardiac failure.(41) These changes appear to be mediated by 

alterations in renin-angiotensin activity. Preterm infants are exposed to relative hyperoxia 

(50-70mmHg) compared to the fetal environment (30-40mmHg) and hyperoxia may be 

compounded by supplemental oxygen therapy for respiratory disease. Preterm neonates 

exhibit prolonged alterations in renin-angiotensin activity with higher levels of 

angiotensin II in infants with respiratory disease.(42) 

 

Remodeling of the preterm RV 

Surrogates for in-utero ventricular blood pool volumetrics from >29 weeks GA 

demonstrated consistently greater indexed-RVEDV values when compared to the LV, in 

keeping with perceived fetal right ventricular dominance.(43) Changes in RV growth in 

the neonatal period were significantly reduced compared with the LV, with non-

significant increases in indexed RVm and RVEDV for most gestational age cohorts at 

term-corrected age. This again contrasts with Lewandowski et al. who showed a greater 
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increase in RVm than LVm in young adults.(11) However, the dominant fetal RV shows 

a relative regression in healthy term newborns as pulmonary vascular resistance falls and 

the RV no longer contributes to systemic perfusion. During this process the RV loses 

around 40% of its bodyweight-indexed mass. We compared our preterm infants to a 

cohort of term newborns yet to undergo the physiologic reduction in RVm. Therefore, a 

weight-indexed RVm increase of 22% in infants born <29 weeks may actually 

demonstrate a significant failure of RVm regression rather than an absence of significant 

growth increase. Our study suggests increased preterm-related indexed RVEDV in the 

neonatal period, compared to the decrease seen in young adults. Again whether the 

change we have observed in the neonatal period will persist through childhood is 

currently unknown. 

Study limitations  

This study provides only single-center insight into neonatal cardiac remodeling and 

though computational atlasing facilitates statistically powerful information from 

comparatively few scans, the number of studied infants was relatively small. Different 

patient populations and neonatal care practices may produce different patterns of 

remodeling.  

A notable limitation was that comparative measures of normal development were only 

taken from a term control group scanned within 7 days of birth. As neonates undergo 

significant circulatory transition and cardiac adaptation after birth it would have been 

useful to assess and document normal development of healthy term neonatal ventricles 

with repeat scanning and computational atlasing at 4-6 weeks of postnatal age. Whilst 

there is literature suggesting what these outcomes may be, there would be value in using 
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the same assessment technique in an older term cohort to complete the understanding of 

what constitutes normal development as opposed to pathological early remodeling. 

Our technique for left ventricular segmentation differs from that of the SCMR consensus 

status due to difficulties visualizing the aortic valve and robustly planning short axis 

stacks along the basal plane of the atrioventricular valve.(44) However the repeatability 

metrics for the technique allied to our close correlation of DSC values, for LV cohorts 

particularly, lends support to the use of our technique for these datasets and the 

applicability of remodeling results for all analyzed preterm infants.  
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Conclusions 

Cardiac remodeling associated with premature birth occurs in the neonatal period and 

leads to alterations in left ventricular mass, volume and shape. The degree of 

hypertrophic and geometric remodeling in the most prematurely-born infants 

demonstrated in this study is significant and, if sustained, may explain the increased 

cardiovascular morbidity and mortality observed in young adults.  

Further research is required to understand the pathophysiology, but with increasing 

evidence suggesting early ventricular remodeling occurs, and preterm infants suffer long-

term health impacts, the neonatal period may provide a potential diagnostic and future 

therapeutic window. 
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Figure legends 

 

Figure 1 – Graphs showing ventricular volumetrics for preterm cohorts indexed for 

weight; P-values compare preterm cohorts with term controls. Boxplots represent median 

and interquartile ranges for each cohort 

 

Figure 2 – Graphic showing left ventricular myocardial atlases for the different 

gestational age cohorts at baseline and at term-corrected age. Point myocardial wall 

thickness in millimetres demonstrated by colour 

 

Figure 3 – Graphic showing right ventricular myocardial atlases for the different 

gestational age cohorts at baseline and at term-corrected age. Point myocardial wall 

thickness in millimetres demonstrated by colour 

 

Figure 4 – Principal component analysis (PCA) defined main 2 modes of shape variation 

in neonatal left and right ventricles at term corrected age. Red ellipse encompasses at 

term controls for the left ventricle (top graph), and most term controls for the right 

ventricle (lower graph); blue shapes encompass all preterm-born left ventricles at term-

corrected age (top graph), and the majority of preterm-born right ventricular geometries 

(lower graph) 

 

Figure 5 – Graphic contrasting in-utero and ex-utero left ventricular myocardial wall 

thickness change to up term-corrected age; non-significant change (FDR > 0.05) depicted 
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by yellow colour, all other colours indicate significant differences (FDR < 0.05) between 

cohorts at term-corrected age 

 

Figure 6 – Fetal and neonatal factors associated with alterations in left ventricular 

myocardial wall thickness in preterms at term-corrected age compared to term controls; 

areas of increased myocardial wall thickness meeting statistical-significance at FDR < 

0.05 shown by non-yellow colours on ventricular models 

 

 

 

 

Tables 
Table 1 - Patient characteristics of neonates contributing to the CMR computational 

atlases 

Variable Preterm subjects at 
baseline 

Preterm subjects at 
term corrected age 

Term controls 

Number of 
subjects 

         

GA birth      (        
  )   

     (       
  )    

     (       
  ) 

Corrected GA scan      (       
  )  
  

     (       
  )    

     (       
  ) 

Day of scan     (   )         (       )        (    )  

Weight at scan 
(kg) 

     (         )         (         )      (         ) 

BSA at scan (m2)      (         )         (         )      (         ) 

    

Gender (M:F ratio)                   

IUGR           

Antenatal 
glucocorticoids 
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Diagnosed PDA            

Respiratory 
support > 
48hours 

            

Values given represent either absolute values or mean values with ranges in parentheses. 

  denotes preterm cohort parameters with difference of P<0.05 from the ‘Term control’ 

cohort 

  denotes parameters in the ‘Preterm subject at baseline’ cohort with difference of P<0.05 

from the ‘Preterm subjects at term corrected age’ cohort 

 

 

 

 

 

 

Table 2 – Weight-indexed ventricular mass, end-diastolic volume, and growth 

values for the different preterm cohorts 

Cohort 
LV mass  
(g/kg) 

LV end-diastolic 
volume 

(mls/kg) 

Growth vs Term 
control cohort (%) 

RV mass  
(g/kg) 

RV end-diastolic 
volume  

(mls/kg) 

Growth vs Term 
control cohort (%) 

 Baseline (<7d)  LVm LVEDV Baseline (<7d)  RVm RVEDV 

<29 weeks 1.41 2.81 -29.8 -17.4 1.63 2.36 -41.1 18.2 
29 – 32 weeks 1.16 2.72 -14.7 -14.7 1.01 3.07 -5.0 -9.1 
32 – 35 weeks 1.13 2.86 -12.4 -18.9 0.99 3.10 -3.0 -10.0 
35 – 37 weeks 1.09 2.78 -9.2 -16.5 1.00 3.04 -4.0 -8.2 

         
 Term corrected  LVm LVEDV Term corrected  RVm RVEDV 

<29 weeks 1.64 3.49 16.3 24.2 1.18 3.27 -27.6 38.6 
29 – 32 weeks 1.52 3.59 31.0 32.0 1.11 3.41 9.9 11.1 
32 – 35 weeks 1.35 3.36 19.5 17.5 1.04 3.12 5.1 0.6 
35 – 37 weeks 1.25 3.17 14.7 14.0 0.92 2.94 8.0 -3.3 

Term controls 0.99 2.32 -                   - 0.96 2.79 - - 

Mean values for weight-indexed measurements 
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