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Abstract 

Background. Mesenchymal stromal cells (MSCs) enhance islet function both in vitro and in 

vivo, at least in part by secreting ligands which activate islet G-Protein Coupled Receptors 

(GPCRs). We assess whether pre-treatment with a defined “cocktail” of MSC-secreted GPCR 

ligands enhances islet functional survival in vitro and improves the outcomes of islet 

transplantation in an experimental model of diabetes. Methods. Isolated islets were cultured 

for 48h with ANXA1, or SDF-1, or C3a, alone or in combination. Glucose stimulated insulin 

secretion (GSIS) and cytokine-induced apoptosis were measured immediately after the 48h 

culture period, and at 24h or 72h following removal of the ligands from the culture media.   

Islets were syngeneically transplanted underneath the kidney capsule of streptozotocin-induced 

diabetic C57BL/6 mice and blood glucose levels monitored for 28 days. Results. Preculturing 

islets with a cocktail of ANXA1/SDF-1/C3a potentiated GSIS and protected islet cells from 

cytokine-induced apoptosis in vitro. These effects were maintained for up to 72h after the 

removal of the factors from the culture medium, suggesting a sustained protection of islet graft 

functional survival during the immediate post-transplantation period.  Islets pre-treated with 

the cocktail of MSC secretory factors were more effective in reducing blood glucose in diabetic 

mice, consistent with their improved functional survival in vivo. Discussion.  Preculturing islets 

with a cocktail of MSC secretory products offers a well-defined, cell-free approach to improve 

clinical islet transplantation outcomes while avoiding many of the safety, regulatory and 

logistical hurdles of incorporating MSCs into transplantation protocols. 
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Mesenchymal stromal cell secretory factors induce sustained improvements in islet 

function pre- and post-transplantation  

 

Chloe L Rackham, Stefan Amisten, Shanta J Persaud, Aileen J F King and Peter M 

Jones 

Introduction 

Islet transplantation as a therapy for Type 1 Diabetes (T1D) is restricted by the limited 

availability of donor islets, loss of functional islets during pre-transplantation culture in vitro 

[1, 2] and further extensive loss during the immediate post-transplantation period when islet 

function and survival is compromised by the hypoxic, inflammatory host environment [3-5]. 

In experimental models a pre-transplant culture in vitro with mesenchymal stromal cells 

(MSCs) enhances β-cell secretory function in vitro [6-10], which correlates with superior graft 

function in vivo [6, 7]. The direct beneficial effects of MSCs on islet function can be attributed, 

at least in part, to paracrine effects of MSC-derived soluble mediators [11] and to MSC-

generated extracellular matrix (ECM) [12], whilst MSC effects on the host niche may improve 

the survival of islet grafts by suppressing adverse immune responses [13-17] and enhancing 

revascularisation [18-20]. Identifying MSC secretory factors which improve islet function and 

transplantation outcomes raises the possibility of harnessing the therapeutic benefits of MSCs 

in a “cell-free” strategy [11, 21], thus avoiding the logistical, safety and regulatory concerns of 

including MSCs in clinical islet transplantation protocols.   

G-protein coupled receptors (GPCRs) are the target for around 30% of known pharmaceutical 

therapeutics, and we have previously used a quantitative mRNA screening approach to identify 

over 250 different GPCRs expressed by islet cells [22] offering considerable scope for 

manipulating islet function.  We have recently applied a similar approach to  identify a panel 

of mouse and human MSC secretory products that are ligands for islet G-protein-coupled 
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receptors (GPCRs), and so have the potential to influence islet functional survival [11].   We 

have now screened these mouse [11] and human [12] MSC “secretomes” based on (i) high 

expression levels in MSC populations known to enhance islet functional survival; (ii) 

expression of their cognate receptors in mouse and human islets [22]; (iii) published evidence 

of their ability to influence islet functional survival [23-27]. These screens identified collagen-

3A1 (COL3A1); annexin A1 (ANXA1); stromal cell-derived factor-1 (SDF-1)/chemokine (C-

X-C motif) ligand (CXCL) 12; and complement component C3 as the most highly expressed 

islet GPCR ligands in mouse and human MSC populations.  The main function of COL3A is 

likely as a component of ECM, and we have recently reported that decellularized, MSC-derived 

ECM has beneficial effects on mouse and human islet function [12]. Similarly, we have 

previously reported beneficial effects of ANXA1 on mouse [11] and human [12] islet function, 

with ECM acting as a reservoir for ANXA1 [12]. In the current study we have therefore focused 

on the potential of SDF-1 and C3a to influence islet functional survival in the context of a pre-

implantation cocktail therapy. We suggest that this MSC-based, non-cellular approach will 

enable simple and defined modifications to transplantation protocols to improve the efficiency 

of clinical islet transplantation.  

 

Methods 

Islet isolation and culture   

Islets were isolated by collagenase digestion (1mg/ml; type XI; Sigma-Aldrich, Poole, UK) 

followed by density gradient separation (Histopaque-1077; Sigma-Aldrich). Briefly, 2-3ml of 

cold (4oC) collagenase solution (1mg/ml) was injected into the pancreas via the common bile 

duct following clamping at the ampulla of vater. The distended pancreas was removed and 

incubated in a water bath at 37°C for 10min.  After washing with MEM supplemented with 

10% newborn calf serum ,100U/ml penicillin and 0.1mg/ml streptomycin the pancreatic tissue 
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was vortexed and passed through a sieve to discard contaminating exocrine tissue. A 

purification gradient was generated by adding Histopaque® to the pancreatic tissue. The 

pancreatic tissue in histopaque was vortexed briefly and 10ml of MEM plus supplements added 

before centrifugation at 1900 x g, 10°C for 24min. Islets were removed from the interphase of 

the histopaque and MEM and washed three times in RPMI-1640 medium. Islets were hand-

picked into groups of 100 for preculture in RPMI supplemented with 10% Foetal Bovine Serum 

(FBS) and 100U/ml penicillin plus 0.1mg/ml streptomycin either alone, with recombinant 

human ANXA1-alone, recombinant mouse SDF-1-alone, recombinant mouse C3a-alone, or 

with combinations of these factors (R & D Systems, Abingdon, UK). Human ANXA1 has 88% 

sequence homology with mouse and rat ANXA1 [28] and we have demonstrated previously 

that human recombinant ANXA1 has similar functional effects on both human and mouse islets 

[11, 12].  

C3a and SDF-1 ELISA 

To confirm the expression of C3a and SDF-1 protein in MSC lysates and to determine whether 

C3a and SDF-1 are released into the MSC culture media (DMEM supplemented with 10% 

Foetal Bovine Serum (FBS) and 100U/ml penicillin + 0.1mg/ml streptomycin), MSCs were 

seeded into Nunclon™ 35mm petri dishes, to mimic the experimental set-up utilised for our 

direct contact islet-MSC co-culture system [6, 7]. After 2 days, MSCs from each petri dish 

were trypsinised and resuspended in ice-cold PBS supplemented with cOmplete ULTRA mini 

protease inhibitors (Roche Diagnostics, Burgess Hill, UK), then sonicated. The MSC-

conditioned media (CM) from each Petri dish was also collected and concentrated x24 using 

3,000NMWL Amicon® Ultra 2ml centrifugal filters (Merck Millipore, Middlesex, UK). 

Control samples were MSC culture media alone, which was concentrated x24. C3a and SDF-

1 were measured in MSC lysates and CM using ELISAs (Cloud-Clone Corp, Houston, USA 

and R&D Life Sciences, Abingdon, UK). 
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Islet secretory function in vitro 

Insulin secretion in vitro was assessed using static incubations of isolated islets. Islets were 

pre-incubated for 2h in RPMI containing 2mmol/L glucose. Groups of three islets were 

transferred into 1.5ml Eppendorf tubes and incubated at 37°C in a bicarbonate-buffered 

physiological salt solution containing 2mmol/L CaCl2 and 0.5mg/ml BSA [29] and either  2 or 

20mmol/L glucose. After 1h, samples of the incubation medium were taken and stored at -20°C 

until assayed for insulin content using in-house RIA [30, 31]. 

Islet Apoptosis in vitro 

To assess caspase 3/7 activity, luciferase activity dependent on caspase 3/7 – mediated 

generation of luciferase substrate was measured, according to the manufacturer’s instructions 

(Promega, Southampton, UK). Islets were precultured alone or with recombinant factors as 

described for individual experiments. For the final 20h of the culture period, half of the islets 

in each culture dish were exposed to mixed cytokines (50U/ml IL-1β, 1000U/ml IFN-γ and 

1000U/ml TNF-α (PeproTech, London, UK) and half of the islets served as controls without 

cytokines. All islets were incubated in serum-free media for this final 20h.  Islets were picked 

into groups of 5 islets/well and Caspase-Glo 3/7 reagent was added. After 1 hr, light emission 

was detected using a Turner Biosystems Veritas microplate luminometer (Promega). 

Experimental animals 

Male CD1 mice (Charles River, Margate, Kent) aged 8-12 weeks were used as islet donors for 

in vitro investigations. Male C57Bl/6 mice (Envigo, Huntingdon, UK) aged 8-12 weeks were 

used as donors and recipients for syngeneic islet transplantations. Mice were made diabetic by 

intraperitoneal streptozotocin (STZ) injection (180mg/kg; Sigma-Aldrich) one week prior to 

transplantation and those with a non-fasting blood glucose concentration of ≥20mmol/l for 
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more than three consecutive days were used as recipients. Blood glucose concentrations were 

determined using a blood glucose meter and strips (Accu-Chek; Roche, Burgess Hill, UK) with 

blood obtained from a pin prick to the tail. Where blood glucose levels exceeded the upper 

limit of the Accu-Chek meter, a stat strip express meter and strips was used (upper limit 

50mmol/L). All animal procedures were approved by our institution’s Ethics Committee and 

carried out under license, in accordance with the UK Home Office Animals (Scientific 

Procedures) Act 1986.  

Renal subcapsular islet transplantation 

Mice were transplanted with 150 islets, precultured either alone, with 5nmol/L recombinant 

ANXA1-alone, or with a cocktail of 5nmol/L ANXA1, 10nmol/L SDF-1 and 10nmol/L C3a, 

for 2 days prior to transplantation. Mice were anaesthetised with 1–5% isoflurane and 95% 

oxygen (1l/min). Carprofen (Caprieve, 4mg/k.g; Norbrook, UK) was administered 

subcutaneously prior to the surgical procedure. A lumbar incision was made, the kidney 

exposed and an incision made in the capsule. Islets that had been centrifuged into pellets in 

PE50 polyethylene tubing (Becton Dickinson, Sparks, MD, USA) were placed underneath the 

kidney capsule using a Hamilton syringe (Fisher, Pittsburg, PA, USA). Bupivacaine (Marcaine 

0.5% solution, 2mg/kg, Aspen Medical, UK) was administered subcutaneously at the 

transplantation site for post-operative analgesia. Body weight and blood glucose concentrations 

of recipient mice were monitored every day for the first week post-transplantation and every 3 

to 4 days thereafter. At the end of the 28-day monitoring period the graft-bearing kidney and 

STZ-pancreas were removed for analysis of insulin content. 

Statistical analysis 

Statistical analysis used Student’s t test or ANOVA, as appropriate. Two-way repeated-

measurement ANOVA was used with Bonferroni’s post hoc test to analyse repeated 
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measurements in the same animal at different time points. A p value of p < 0.05 was considered 

significant. All data are expressed as means ± SEM. 

Results 

Effects of SDF-1 and C3a on islet function in vitro   

Mouse adipose MSCs contained and secreted substantial amounts of both SDF-1 and C3a 

confirming that the high level of their mRNAs previously reported [11] is translated into 

secreted proteins. MSC extracts contained 7.7±1.8ng SDF-1 per 200,000 cells (n=6), and 

analysis of MSC-conditioned media showed that approximately 20% of this SDF-1 was 

released into the medium over 48h (1.7ng±0.1ng/well, n=6). MSC extracts contained 

14.1±2.3pg C3a per 200,000 cells (n=5), and over 60% of this was released into the medium 

over 48h (12.0±0.9pg/well (n=5)). Control samples of MSC culture media-alone 

(supplemented with 10% FBS and 100U/ml penicillin plus 0.1mg/ml streptomycin) contained 

comparatively low amounts of SDF-1 and C3a immunoreactivity (<0.1% of MSC- conditioned 

media).  

 

We have previously reported the expression of the GPCRs for SDF-1 and C3a on both mouse 

and human islets, these being CXCR4/CXCR7 and C3aR, respectively [27, 32]. To determine 

whether exogenous SDF-1 or C3a influence islet functional survival we measured cytokine-

induced apoptosis and glucose-stimulated insulin secretion (GSIS) in islets that had been 

precultured for 48h with nmol/L concentrations of recombinant proteins. Initial experiments 

assessed the effects of SDF-1 and C3a alone over a range of concentrations to determine which 

were effective in our in vitro screens of islet insulin secretory function and cytokine-induced 

apoptosis. The optimal concentrations were standardised for subsequent experiments 

investigating dual and triple combinations of SDF-1 and/or C3a with previously investigated 
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ANXA1. Preculturing islets for 48h with SDF-1 protected them from inflammatory cytokines 

in a dose-dependent manner, with a statistically significant effect observed at 10nmol/L SDF-

1 (Figure 1A). The protective effect of this concentration of SDF-1 was reproducible between 

different islet preparations and increasing the concentration to 20nmol/L conferred no further 

protection (Figure 1B).  Preculturing islets with SDF-1 for 48h had no influence on GSIS 

(Figure 1C), in contrast to the stimulatory effects of preculture with ANXA-1, which were 

consistently observed (Figure 1D [11]). Preculture with a dual combination of ANXA1 and 

SDF-1 did not further potentiate GSIS over effects seen with ANXA1-alone (Figure 1D). Thus, 

SDF-1 preculture protected islets from cytokine-induced apoptosis but did not influence GSIS. 

 

In contrast, preculturing islets for 48h with 10nmol/L C3a potentiated GSIS, with no further 

potentiation observed at 100nmol/L C3a (Figure 2A).  Concentrations of C3a lower than 

10nmol/L had no reproducible effect on GSIS (data not shown).  Figure 2B shows that 

preculture with 10nmol/L C3a was equally effective as preculture with ANXA1 at enhancing 

GSIS [11]. However, the effects of C3a and ANXA1 on GSIS were not additive, (Figure 2C).  

Similarly, in separate experiments, we observed no significant additive effects on GSIS of islet 

preculture with a cocktail of ANXA1/C3a/SDF-1 (islets precultured alone, 2.6±0.3ng/islet/h; 

ANXA1, 3.2±0.5ng/islet/h; ANXA1/C3a, 2.9±0.4ng/islet/h; ANXA1/C3a/SDF-1, 

3.4±0.2ng/islet/h, n=10, p > 0.05). Preculturing islets for 48h with C3a-alone had a similar 

protective influence on cytokine-induced apoptosis to that observed with ANXA1-alone 

(Figure 2D) or SDF-1-alone (Figure 1A, B), but the anti-apoptotic effects of C3a and ANXA1 

were not additive (Figure 2D). Thus, C3a preculture had similar effects to ANXA1 to enhance 

GSIS and to protect islets from cytokine-induced apoptosis but there was no additive influence 

to enhance the functional survival of islets at a time point reflecting that at which islets would 

typically be transplanted, immediately after the preculture period.  
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Sustained improvement in islet function following preculture with ANXA1, SDF-1 and/or 

C3a 

Having demonstrated that 48h preculture with ANXA1, SDF-1 and/or C3a exerted effects on 

islets which are likely to be beneficial during the immediate post-transplantation period, we 

next assessed whether the beneficial effects persisted after removal of the islet-GPCR ligands 

from the culture medium for 24-72h, since in the transplantation setting these MSC-

biotherapeutics would be present during the in vitro preculture period, but absent post-

transplantation in vivo. 

We examined the effects on GSIS and apoptosis of a 48h preculture with ANXA1, SDF-1 and 

C3a, alone or in combination, at 24h and 72h after their removal from the culture medium, to 

determine whether the beneficial effects would persist throughout a time period reflecting the 

immediate post-transplantation period (Figure 3). Preculture with ANXA1+SDF1 had 

beneficial effects on GSIS which persisted for 24h after removal of the ligands from the 

medium (Figure 3A), but this was not maintained to 72h (Figure 3B).  ANXA1+C3a preculture 

did not have sustained effects on GSIS at 24h (Figure 3A) or 72h (Figure 3B) after their 

removal from the medium. Preculturing islets with a cocktail of ANXA1+SDF-1+C3a had no 

additional effects to that of dual ANXA1+SDF-1 preculture at 24h (Figure 3A), but by 72h 

after removal of the MSC-biotherapeutics, only the cocktail of all three islet-GPCR ligands 

(ANXA1+SDF-1+C3a) caused a persistent potentiation of GSIS (Figure 3B).  Figure 3 (C, D) 

shows the sustained effects of preculture with ANXA1, SDF-1 and/or C3a on the apoptotic 

responses of islets to inflammatory cytokines. When assessed 24h after removal of the ligands 

from the medium (Figure 3C), apoptosis was reduced in islets precultured with ANXA1-alone, 

or ANXA1 in any combination with the other ligands. C3a-alone also caused a reduction in 

apoptosis but this did not reach statistical significance (Figure 3C).  However, by 72h after 

removal of the ligands, only the cocktail of ANXA1+SDF-1+C3a preculture induced a 
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sustained and significant reduction of apoptosis when the islets were exposed to inflammatory 

cytokines (Figure 3D). Thus, preculture of islets with a cocktail of MSC secretory factors 

influences islet insulin secretory and apoptotic responses for up to 72h after their exposure.  

Effects of preculture on in vivo function of transplanted islets  

Preculturing islets for 48h with a cocktail of ANXA1, SDF-1 and C3a immediately prior to 

their transplantation into severely hyperglycaemic mice had modest effects on their ability to 

regulate blood glucose in vivo, as shown in Figure 4. Thus, the average blood glucose 

concentrations of mice transplanted with ANXA1/SDF-1/C3a precultured islets were 

consistently lower than those of mice transplanted with islets precultured alone (Figure 4A), 

with a significant decrease in AUC (Figure 4B). We have previously reported a modest effect 

of preculture with ANXA1-alone on islet graft function [11] and we observed a similar effect 

in the current study, where mice receiving islets precultured with ANXA1-alone had lower 

blood glucose than mice transplanted with islets precultured alone at all time points, although 

this did not achieve statistical significance (Figure 4A). Notably, the average blood glucose 

concentrations of mice transplanted with ANXA1+SDF-1+C3a precultured islets were 

consistently lower than those of mice transplanted with ANXA1-alone precultured islets 

(Figure 4A, B). In terms of reversing hyperglycaemia (i.e. non-fasting blood glucose 

concentrations ≤ 11.1 mmol/L for at least two consecutive readings), by the end of the 28-day 

study this was achieved in 2/8 mice transplanted with ANXA1+SDF-1+C3a precultured islets, 

1/9 mice transplanted with ANXA1-alone precultured islets, and 0/7 of mice transplanted with 

islets precultured alone. 

At the end of the 28-day study there was considerable variation in the graft insulin content, 

ranging from 1.0-2.2μg, 0.7-6.9μg and 0.9-5.7μg in mice transplanted with control islets, 

ANXA1-pre-treated islets, and ANXA1/SDF-1/C3a-pre-treated islets, respectively. The mean 
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insulin content was approximately 30% higher in grafts consisting of ANXA1-alone 

precultured islets and 50% higher in grafts consisting of ANXA1/SDF-1/C3a precultured islets, 

compared to those consisting of islets precultured alone, although this was not statistically 

significant (1.51+0.17μg/graft vs. 1.98+0.63μg/graft vs. 2.27+0.77μg/graft, islet-alone vs. 

ANXA1-alone vs. ANXA1/SDF-1/C3a precultured islets, respectively). The insulin content of 

the pancreas in all STZ-treated mice was approximately ten times lower than that of the 

subcapsular islet grafts. There was no difference in the STZ-pancreas insulin content for mice 

transplanted with islets precultured alone, with ANXA1-alone, or with the cocktail of MSC-

derived biotherapeutics (0.22±0.02μg vs. 0.21±0.03μg vs. 0.21±0.03μg, p > 0.05 n=8, One-

Way ANOVA with Dunnet’s post hoc test). 

Discussion 

Recent experimental studies have demonstrated the beneficial effects that MSCs exert directly 

on islet function and on the outcomes of islet transplantation [6-9], but these observations have 

yet to translate into improvements in human islet function for clinical islet transplantation in 

T1D. One reason for this is that currently human islets are almost exclusively implanted via 

the hepatic portal vein [33], which does not facilitate co-engraftment of islets and MSCs 

because their different sizes influence where they will lodge in the circulation. Thus, after 

intraportal delivery the islets (100-200µm diameter) lodge in the hepatic microvessels, while 

the much smaller MSCs will most likely pass through the microvessels to lodge in capillary 

beds of the  liver  or other organs [34].  An alternative strategy to co-transplanting islets and 

MSCs is a pre-transplantation co-culture period in vitro, and studies in rodent models have 

reported enhanced islet function [8, 9] which correlates with improved transplantation 

outcomes [6, 7]. However, there are also impediments to applying these observations to clinical 

islet transplantation protocols. For example, scaling up co-culture systems to accommodate the 

large numbers of human islets and MSCs required for clinical transplantation is technically 
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challenging. In addition, the inherent heterogeneity in different MSC populations [35] presents 

problems in standardisation. However, the recent demonstration that some of the beneficial 

effects of MSCs on islet function are mediated through MSC secretory products [11, 12] offers 

the potential of using these molecules in defined protocols to improve islet functional survival, 

thus avoiding the logistical, safety and regulatory problems of including MSCs in clinical islet 

transplantation protocols.  The current study therefore focused on defining a cocktail of MSC-

derived secretory molecules with the potential to improve the functional survival of islet grafts. 

We have previously reported that the most highly expressed of these molecules, Annexin A1 

(ANXA1), mimicked the beneficial effects of MSC preculture on β-cell insulin secretory 

function in vitro, but had only modest effects on the capacity of an islet graft to regulate blood 

glucose in hyperglycaemic mice, suggesting that additional MSC secretory products factors are 

needed to fully mimic the beneficial effect of MSCs in vivo [11]. In the present study we have 

therefore investigated the effects of other MSC-secreted islet GPCR ligands, alone or in 

combination with ANXA1, on the function and survival of islets during an in vitro preculture 

period, and on subsequent transplantation outcomes.   

SDF-1 is a peptide chemokine initially identified in bone marrow stromal cells, but now known 

to be expressed in stromal tissues of many organs [36], including the microvascular 

endothelium of pancreatic islets [25]. We here demonstrate that MSC populations which have 

beneficial effects on islet functional survival synthesise and secrete substantial amounts of 

SDF-1. Our observation that pre-incubation with SDF-1 protected isolated islets from 

subsequent cytokine-induced apoptosis is consistent with previous studies demonstrating that 

SDF-1 has an important role in cell survival responses. SDF-1 is upregulated in stromal tissues 

and β-cells in response to injury [24] suggesting an endogenous pro-survival function within 

islets. Similarly, exogenous SDF-1 reduced apoptosis in the INS-1 β-cell line [37], while 

experimental overexpression of SDF-1 in β-cells protected them from STZ- and thapsigargin-
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induced apoptosis [24]. However, exposure to SDF-1 in our pre-treatment protocol had no 

detectable effect on GSIS, in direct contrast to the beneficial effects of ANXA1 on GSIS in this 

study, and in our previous studies [11]. These observations suggest that SDF-1 and ANXA1 

influence β-cell functional survival via distinct mechanisms, and thus validate the inclusion of 

both molecules in an islet pre-treatment regimen. 

C3, a key protein in the complement system, is converted by proteolytic cleavage to 

biologically active products, including C3a. The adipokine adipsin (complement factor D) 

improves islet β-cell function by increasing the conversion of circulating C3 into C3a, which 

has acute effects to increase islet oxygen consumption rate [26], and is a potent stimulator of 

insulin secretion in mouse [26] and human islets [27]. We here demonstrate that MSCs secrete 

C3a into the culture media, and that preculture with exogenous C3a has persistent effects on 

islet function, consistent with C3a being a soluble mediator through which MSCs influence 

islet function.  The effects of C3a pre-treatment on islet functional survival were similar to 

those of ANXA1, both enhancing GSIS and reducing cytokine-induced apoptosis, and the 

effects of C3a and ANXA1 were not additive on either functional end-point. The lack of 

additive effects may suggest similar mechanism(s) through which both molecules influence 

islet cell function, or it may be a consequence of the endpoints for assessing islet function in 

vitro. Thus, preculture with either molecule essentially suppressed cytokine-induced apoptosis, 

such that additive effects would not be readily detected in this in vitro model. Similarly, if 

preculture with either molecule maintains optimal GSIS at the 48h time-point immediately 

following the preculture period, it is unlikely that additive effects would be detected. 

Nonetheless, the demonstrable effects of C3a preculture on islet secretory function and survival 

validate its inclusion in an islet pre-treatment regimen. 

It is perhaps not surprising that exposure to biologically active molecules secreted by MSCs 

influenced the ability of islet β-cells to maintain insulin secretion and resist inflammatory 
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cytokines, since the molecules were selected on the basis of their receptors being expressed by 

islet cells [22]. However, these effects were consistently observed in the subsequent absence 

of the exogenous molecules of interest after the pre-incubation period, and the current study 

has also demonstrated that some of these potentially beneficial effects persisted for at least 72h 

after the pre-incubation period. Thus, pre-treatment of isolated islets with ANXA1-alone, or in 

combination with SDF-1 was effective for up 24h after exposure, although only the cocktail of 

all three molecules endowed persistent beneficial effects on GSIS and apoptosis up to 72h after 

withdrawal of the ligands.  These in vitro observations therefore suggest that a 48h pre-

incubation with the cocktail of molecules can confer on islets improved GSIS and resistance to 

inflammatory cytokines over the immediate post-transplantation period when they are most at 

risk of functional failure. In accordance with this, our in vivo studies demonstrated that islets 

precultured with the cocktail of ANXA1, SDF-1 and C3a were more effective than untreated 

islets or those precultured with ANXA1-alone at reducing hyperglycaemia in STZ-treated graft 

recipients. The lower blood glucose levels observed in recipients of cocktail-treated islets most 

likely reflects a combination of their enhanced GSIS and their resistance to inflammatory 

stresses in the host transplantation niche, as indicated by the maintained graft insulin content 

at 28-days post-transplantation in cocktail-treated islets. These observations are important 

because a large proportion of a clinical islet graft (50-80%) is functionally compromised in the 

immediate (24-72h) post-transplantation period [4], most likely because of deleterious 

responses of transplanted islet cells to an inflammatory and hypoxic host environment [3-5]. 

Strategies which limit the post-transplantation loss of islets are therefore likely to improve the 

outcome of individual grafts, and also enable the limited pool of donor islets to treat more 

people with T1DM  by avoiding the current clinical practice of administering multiple grafts 

to achieve normoglycemia [38].  The current study focused on ligands for islet cell GPCRs but 

MSCs also secrete a range of ligands which act through non-GPCRs, raising the real possibility 
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that extending our screening to all β-cell surface receptors may further enhance the efficacy of 

this therapeutic approach to islet transplantation. 

In summary, we have identified a cocktail of MSC secretory products which has the potential 

to maintain functional β-cell mass during the in vitro pre-culture period and to support islet 

functional survival after transplantation. We suggest that pre-treatment with this cocktail of 

ANXA1, SDF-1 and C3a offers a well-defined, cell-free approach [21] to improve clinical islet 

transplantation outcomes while avoiding many of the safety, regulatory and logistical hurdles 

of incorporating MSCs into transplantation protocols.  
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Figure Legends 
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Figure 1: In vitro function of islets precultured with exogenous Stromal Cell Derived 

Factor-1. A. Dose-dependent protection from cytokine-induced apoptosis following 48h 

preculture with SDF-1 and the subsequent presence of SDF-1 during the final 20h cytokine 

incubation. 8-12 replicates of 5 islets per well in each culture group assayed, *p < 0.01 vs. 

islets precultured alone in the presence of cytokines for the final 20h of the 3-day culture period 

B. Dose-dependent protection from cytokine-induced apoptosis following preculture with 

SDF-1, as in (A); an effect that plateaus at 10nmol/L SDF-1. C, D. Insulin release at 2mmol/L 

and 20mmol/L glucose of 30 replicates of 3 mouse islets per Eppendorf tube; (C) precultured 

either alone, with 10nmol/L SDF-1, or with 20nmol/L SDF-1 for 48h followed by subsequent 

GSIS assays in the absence of exogenous SDF-1 and; (D) precultured either alone, with 

5nmol/L ANXA1-alone, with 10nmol/L SDF-1-alone, or with a dual combination of 5nmol/L 

ANXA1 and 10nmol/L SDF-1, for 48h followed by subsequent GSIS assays in the absence of 

exogenous ANXA1 and/or SDF-1 *p < 0.01 vs. islets precultured alone at the same glucose 

concentration. The p values (A-D) were calculated using two-way ANOVA Bonferonni’s post 

hoc test. Data were consistent between three separate islet preparations. 

Figure 2: In vitro function of islets precultured with exogenous complement component 

C3a A, B. Insulin release at 2mmol/L and 20mmol/L glucose of 10-20 replicates of 3 mouse 

islets per Eppendorf tube; (A) precultured either alone, with 10nmol/L C3a-alone or with 

100nmol/L C3a-alone, for 48h followed by subsequent GSIS assays in the absence of 

exogenous C3a; (B) precultured either alone, with 5nmol/L ANXA1-alone or with 10nmol/L 

C3a-alone for 48h followed by subsequent GSIS assays in the absence of exogenous C3a or 

ANXA1; (C) precultured either alone, with 5nmol/L ANXA1-alone or with a dual combination 

of 5nmol/L ANXA1 and 10nmol/L C3a for 48h followed by subsequent GSIS assays in the 

absence of exogenous C3a and/or ANXA1, p < 0.05 vs. islets precultured alone at the same 

glucose concentration. D. Protection from cytokine-induced apoptosis following a 48h 
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preculture with 5nmol/L ANXA1-alone, 10nmol/L C3a-alone or a dual combination of 

5nmol/L ANXA1 and 10nmol/L C3a, and the subsequent presence of specified MSC-

biotherapeutics during the final 20h cytokine incubation. 8-12 replicates of 5 islets per well in 

each culture group assayed, *p < 0.05 vs. islets precultured alone in the presence of cytokines 

for the final 20h of the 3-day culture period. The p values (A-D) were calculated using two-

way ANOVA Bonferonni’s post hoc test. 

Figure 3: Preculturing islets with a cocktail of MSC secretory factors ensures sustained 

improvements to islet insulin secretory function and protection from cytokine-induced 

apoptosis. A, B: Insulin release at 2mmol/L and 20mmol/L glucose of 30 replicates of 3 mouse 

islets per Eppendorf tube, precultured alone, with 5nmol/L ANXA1-alone, with 5nmol/L 

ANXA1 and 10nmol/L SDF-1, with 5nmol/L ANXA1 and 10nmol/L C3a, or with a cocktail 

of 5nmol/L ANXA1, 10nmol/L SDF-1 and 10nmol/L C3a, for 48h, before removal of the 

MSC-derived biotherapeutics for 1 day (A) or 3 days (B), * p < 0.05 and ** p < 0.01 vs. islets 

cultured alone at the same glucose concentration. C, D: Protection of islets from cytokine-

induced apoptosis after preculture with MSC-derived biotherapeutics either alone, in dual 

combination, or a cocktail of all three factors (as of legend) for 48h, before removal of the 

MSC-derived biotherapeutics for 1 day (C) or 3 days (D), 8-12 replicates of 5 islets per well 

were assayed, * p < 0.05 and ** p < 0.01 vs. islets cultured alone with cytokines, + p < 0.05 

vs. islets cultured alone without cytokines. The p values (A-D) were calculated using two-way 

ANOVA with Bonferroni post hoc test.  

Figure 4: In vivo function of islets precultured alone, with ANXA1-alone, or with a 

cocktail of MSC secretory factors. A. Average blood glucose concentrations of STZ-diabetic 

mice transplanted with 150 islets precultured for 48h either alone, with ANXA1-alone, or with 

a cocktail of ANXA1/SDF-1/C3a, *p < 0.05 vs. mice transplanted with islets precultured alone 

(repeated-measurements ANOVA with Bonferroni post hoc test, n=7-9). B. Area under the 
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curve (AUC) of STZ-diabetic mice transplanted with 150 islets precultured for 48h either 

alone, with ANXA1-alone, or with a cocktail of ANXA1/SDF-1/C3a, *p < 0.05 vs. mice 

transplanted with islets precultured alone (One-way ANOVA with Dunn’s post hoc test, n=7-

9). 


