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ABSTRACT 20 
 

Study hypothesis:  

We sought to investigate the association between echocardiographic optimisation and 

ventricular activation time in cardiac resynchronization therapy (CRT) patients, obtained 

through the use of electrocardiographic mapping (ECM). We hypothesised that 25 

echocardiographic optimisation of the pacing delay between the atrial and ventricular leads 

- atrio-ventricular delay (AVD) and the delay between ventricular leads - inter-ventricular 

pacing interval (VVD) would correlate with reductions in ventricular activation time.   

Background: Optimisation of AVD and VVD may improve CRT patient outcome. Optimal 

delays are currently set based on echocardiographic indices; however, acute studies have 30 

found that reductions in bulk ventricular activation time correlate with improvements in 

acute haemodynamic performance.  

Materials and methods: Twenty-one patients with established CRT criteria were recruited. 

After implantation, patients underwent echo-guided optimisation of the AVD and VVD. 

During this procedure, the participants also underwent non-invasive ECM. ECM maps were 35 

constructed for each AVD and VVD. ECM maps were analysed offline. Total ventricular 

activation time (TVaT) and a ventricular activation time index (VaT10-90) were calculated to 

identify the optimal AVD and VVD timings that gave the minimal TVaT and VaT10-90 values. 

We correlated cardiac output with these electrical timings. 

Results: Echocardiographic programming optimisation was not associated with the greatest 40 

reductions in biventricular activation time (VaT10-90 and TVaT). Instead, bulk activation times 

were reduced by a further 20% when optimised with ECM. A significant inverse correlation 

was identified between reductions in bulk ventricular activation time and improvements in 



3 
 

LVOT VTI (p<0.001), suggesting that improved ventricular hemodynamics are a sequelae of 

more rapid ventricular activation. 45 

Conclusions:  

EAM guided programming optimisation may achieve superior fusion of activation wave 

fronts leading to improvements in CRT response. 

 

4351693 Manuscript and RN - NCT01831518 50 

 

Introduction 

Cardiac Resynchronisation Therapy (CRT) is recommended for patients with systolic heart 

failure, prolonged QRS duration, and left bundle branch block (Cleland et al. 2001; Yancy et 

al. 2017). Despite the fact that CRT has been available for more than 20 years, up to 30% of 55 

patients fail to respond to this therapy (Auricchio and Prinzen 2011). Left ventricular (LV) 

pacing alone has been proposed as an alternative to biventricular pacing, allowing for 

simpler systems that avoid the complication of right ventricular pacing (Thibault et al. 2011). 

However, some features of cardiac remodelling respond better to biventricular pacing 

compared with LV pacing, suggesting that optimisation of biventricular pacing should be 60 

pursued in CRT (Faghfourian et al. 2017; Skaf et al. 2017). One approach designed to 

improve CRT response is optimisation of the pacing delay between the atrial and ventricular 

leads (atrio-ventricular delay or AVD) and the delay between the ventricular leads (inter-

ventricular pacing interval or VVD) for each individual patient (Brabham and Gold, 2013). 

While there are multiple strategies for AVD and VVD optimisation, there is no clear “gold 65 

standard” and existing guidelines do not provide recommendations (Brabham and Gold 
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2013a). As a consequence, different protocols are used that either consider 

echocardiographic parameters or use electrograms to determine the optimal device timings 

(Raphael et al. 2013).  

CRT aims to eliminate the dyssynchrony, which results from bundle branch block activation, 70 

by reducing the left ventricular activation time (LVaT) and restoring the mechano-energetic 

efficiency of the heart. Rapid LV activation is preferred and is associated with improvements 

in functional class and symptoms (Van Gelder and Bracke 2015; Duckett et al. 2011). Sohal 

et al. (2015) reported a difference in LVaT between responders and non-responders to CRT; 

with responders exhibiting greater activation homogeneity, measured using the delay 75 

between the 10th and 90th percentiles of LVaT (LVaT10-90 Index). The cumulative rate of LV 

activation appears critical, a finding consistent with previous modelling studies (Niederer et 

al. 2012; Sohal et al. 2015).  

CRT programming aims to resynchronise the electrical activity to ensure the optimal fusion 

of all activation wave fronts: intrinsic right ventricular depolarisation, RV paced activation, 80 

and LV depolarisation (Vatasescu et al. 2009). Patients with partial fusion of their intrinsic 

depolarisation with LV pacing have been found to have greater LV reverse remodelling and 

haemodynamic response (Van Gelder et al. 2005). Furthermore, the use of 

electrocardiographic indices to optimise AVD to achieve optimal activation wave front 

fusion is associated with significant improvements in acute haemodynamic response (AHR) 85 

(Engels et al. 2017). Another development capable of improving AHR is Multipolar Pacing 

(MPP), where stimulation is delivered from multiple poles along the LV lead, allowing the 

avoidance of pacing in and around scar. This technique has been associated with 

improvements in CRT response (Sardu, Barbieri, et al. 2017). 
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The close relationship between activation wave fusion and AHR suggests that the use of 90 

electrical indices for CRT optimisation would be beneficial. The recent availability of non-

invasive electrocardiographic mapping (ECM)  means detailed, patient specific biventricular 

activation can now be calculated non-invasively (Ramanathan et al. 2017; Ploux et al. 2013). 

 

Hypothesis and study aim 95 

We sought to investigate the association between echocardiographic optimisation and 

ventricular activation time, obtained through the use of ECM. We hypothesised that 

echocardiographic optimisation of AVD and VVD would correlate with reductions ventricular 

activation time.   

 100 

Materials and Methods 

We undertook a prospective study recruiting consecutive heart failure (HF) patients 

indicated for CRT-Pacemaker (CRT-P) or CRT-Defibrillator (CRT-D) at St Thomas’ Hospital, 

London. The study conformed to the principles outlined in the Declaration of Helsinki on 

research in human subjects. All patients gave written informed consent to participate in the 105 

study, which was approved by the Research Ethics Committee (ClinicalTrials.gov Identifier: 

NCT01831518). We aimed to recruit 20 patients within 18 months, the first patient was 

recruited in September 2014 and the last patient in November 2015. In total, 21 patients 

were selected on the basis of fulfilling the criteria for CRT implantation: NYHA Class II-IV; 

echocardiographic Left Ventricular Ejection Fraction (LVEF) < 35%, QRS duration > 120 ms 110 

(independently of the QRS morphology) and optimal medical therapy (OMT) for heart 

failure. The aetiology of heart failure was classified as ischemic if there was substantial 
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coronary artery disease or history of myocardial infarction or revascularisation, and as non-

ischaemic if none of these were present. Intraventricular conduction disturbances were 

defined according to AHA/ACCF/HRS Recommendations for the Standardisation and 115 

Interpretation of the Electrocardiogram (Surawicz et al. 2009). 12-lead ECGs were acquired 

with a GE Mac 5000 ECG system (General Electric-Vingmed, Milwaukee, WI) using standard 

American Heart Association (AHA)-recommended filter settings at a sweep rate of 25 mm/s 

and a gain of 10 mm/mV. Echocardiography was performed using an IE33 or EPIC model 

scanner (Philips Healthcare, Best, The Netherlands).  120 

 

CRT implantation 

Implantation was performed via the cephalic, axillary or subclavian veins. The RV lead was 

implanted at the RV apex or high septum at the discretion of the implanting physician, and 

the right atrial lead was placed at the right atrial appendage. The LV lead was preferentially 125 

placed in the lateral or postero-lateral vein tributary of the coronary sinus. In case of 

technical difficulties, unacceptable pacing thresholds or phrenic nerve stimulation, an 

alternative location was chosen in the antero-lateral, posterior, or anterior regions.   

 

Echocardiographic optimisation  130 

Echocardiographic optimisation of the AVD and VVD was performed the day after 

implantation, with the exception of patients with atrial fibrillation who had only their VVD 

but not their AVD echocardiographically optimised. Varying AV intervals were progressively 

applied (from 60 ms to 200 ms in 20 ms increments) and the echocardiographic optimal AVD 

was calculated using an iterative method based on the maximal separation of E and A waves 135 

recorded by Pulsed-wave Doppler of diastolic mitral inflow and the maximal mitral velocity-



7 
 

time integral (VTI), as previously described (Brabham and Gold 2013b; Gorcsan et al. 2008). 

The AVD with distinct E- and A-waves, yielding the maximal atrial contribution to ventricular 

filling and minimal mitral regurgitation, was considered the optimal AVD. VVD optimisation 

was performed following AVD optimisation, starting with simultaneous RV and LV pacing. 140 

Varying VVD was applied by progressively increasing LV pre-excitation in increments of 15, 

20, 30, and 40 ms, and then increasing RV pre-excitation in increments of 20 and 40 ms. The 

optimal VVD was defined as the delay producing the maximal LVOT VTI, which represents 

the maximal LV stroke volume (a reproducible measure of global LV function that has 

proven to be useful for improving the response to CRT) (Houthuizen, Bracke, and Van Gelder 145 

2011). The effects of each applied AVD and VVD setting on mitral and LVOT VTI were 

assessed after 10 consecutive beats in order to minimise the effects of beat-to-beat 

variability in optimisation measures, which have been shown to be substantial and 

potentially limiting in research settings (Sohaib et al. 2013). It should be noted that the 

LVOT VTI method was preferred to other haemodynamic outcome measures (e.g. 150 

dp/dtmax) as this is a feasible, non-invasive, reproducible and direct measure of global LV 

function, comparable to other measures (Thomas et al. 2009). 

 

Electrocardiographic mapping 

During AVD and VVD optimisation, patients underwent ECM using a CardioInsight ECSYNC 155 

system (CardioInsight Technologies Inc., Cleveland, OH, USA) to non-invasively record 

biventricular epicardial ventricular electrograms and construct 3D isochrone and 

isopotential activation maps. The key component of the ECM system is a vest embedded 

with 252 electrodes that is fitted to the patient’s torso. ECM maps were constructed on a 

beat-by-beat basis for the different AVD and VVD tested. After optimisation and acquisition 160 
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of vest electrograms under each configuration, the participants, with the vest still in 

position, underwent a thoracic computed tomographic (CT) scan to determine the precise 

anatomic relation between the cardiac geometry and the torso electrodes, which was used 

to reconstruct approximately 1500 unipolar electrograms on the epicardial surface of the 

heart. Based on each data set obtained with the ECSYNC, an activation map of both 165 

ventricles was generated offline by animating the activation waveform on the patient-

specific CT-derived epicardial surface. Ventricular activation times were calculated from the 

onset of the QRS to the maximal negative slope of each electrogram, and combined for the 

construction of 3D epicardial isochrone maps. The propagation of depolarisation was 

evident from the 3D epicardial isochrone maps. (Figure 1) Subsequently, extraction of 170 

specific raw data from epicardial maps obtained at baseline and in each AVD and VVD 

assessed permitted the calculation of total ventricular activation time (TVaT) and ventricular 

activation time10-90 index (VaT10-90) with custom-developed MATLAB code (MathWorks, 

Natick, MA, USA) as previously described by Pereira et al. (Pereira et al. 2018). TVaT is a 

measure of the total time required for both ventricles to activate and VaT10-90 is the time 175 

delay between the 10th and 90th percentiles of activation. 

 

Statistical analysis 

Statistical analyses were performed using PASW Statistics 21 (SPSS Inc., Chicago, IL). 

Changes in ventricular activation times were compared using the Mann–Whitney U test, 180 

ANOVA and the Kruskal–Wallis Test. Post hoc comparisons were performed using Tukey’s 

HSD. Correlations were assessed by the Pearson correlation test. P values less than 0.05 

were deemed statistically significant.  
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Results and Discussion 185 

The characteristics of the 21 patients are shown in Table 1. The mean age was 69±12 years. 

Patients were predominantly male, and most had an ischemic aetiology (62%). The mean 

LVEF was 27±10% and the mean QRS duration was 162±21 ms. Fifteen patients (71%) had 

QRS >150 ms and 15 (71%) had left bundle branch block. Baseline values are shown in Table 

2. 190 

 

AV optimisation and electrical timing 

The effects of varying AVD on ventricular activation time is shown in Table 3. There was no 

significant difference in TVaT (p=0.98) or VaT10-90 index (p=0.701) between the different AVD 

values tested across the cohort, suggesting that no single AVD was optimal for electrically 195 

synchronizing all patients. The shortest VaT10-90 index was seen with AVD 100 ms (62 ± 20 

ms) and longer VaT10-90 index values were observed with longer AVDs, especially with AVD 

200 ms (VaT10-90 index 81 ±21 ms). In contrast, the shortest AVD tested (AVD 60 ms) gave 

the longest TVaT (147 ± 26).  The optimal AVD found with echocardiographic optimisation 

did not correspond to the shortest ventricular times observed. The average VaT10-90 and 200 

TVaT values were 21% and 20% lower, respectively, than the optimal AVD found through 

the iterative method, see Figure 2.  Whilst these findings failed to achieve statistical 

significance (p = 0.368), this is in part explained by the potential for large variability in beat-

to-beat and test-retest measurement of LVOT VTI (Sohaib et al. 2013). 

 205 

Echocardiographic CRT optimisation consistently failed to achieve the greatest reduction in 

ventricular activation, see Figure 3. Two groups of patients were identified; those with clear 
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optimal value that well-distinguished within the evaluated AVD’s range (60%), and those in 

which AVD settings had very limited effect on TVaT or VaT10-90 index (40%) (Figure 4). 

 210 

VVD optimisation and electrical timings 

The effects of each applied VVD on ventricular activation times and LVOT VTI are shown in 

Table 4. LVOT VTI values were higher when LV was programmed to be paced before RV, by 

either 15 ms or 30 ms (LV15 and LV30), and were associated with the shortest values for the 

VaT10-90 index. LV15 appeared to offer the highest LVOT VTI and the shortest VaT10-90 index 215 

and TVaT. No single VVD achieved significant reductions in ventricular activation time when 

plotted for each patient (Figure 5). A negative correlation between LVOT VTI and VaT10-90 

index (r= -0.31; p<0.001), and between LVOT VTI and TVaT (r= -0.44; p<0.001) (Figure 6) was 

observed.  

 220 

 

Findings and comparison with previous studies 

We assessed if the optimal parameters obtained through echocardiographic CRT 

optimisation rendered similar AVD and VVD timings as assessed by ECM. The main findings 

of this study were as follows: 225 

1) Echocardiographic programming optimisation was not associated with the greatest 

reductions in biventricular activation time (VaT10-90 and TVaT). Instead, bulk 

activation times were reduced by a further 20% when optimised with ECM. 

2) A significant inverse correlation was identified between reductions in bulk 

ventricular activation time and improvements in LVOT VTI (p<0.001), suggesting that 230 
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improved ventricular hemodynamics are a sequelae of more rapid ventricular 

activation. 

 

In keeping with previous studies, we identified that echocardiographic optimisation and 

ECM optimisation were patient-specific. However, ventricular activation was consistently 235 

more rapid when optimised via ECM than when echocardiographic optimisation was 

performed. These findings appear to suggest that programming changes which improve 

mitral inflow and left ventricular filling do not necessarily achieve a reduction in total 

ventricular activation time raising the question as to whether AVD should be set to achieve 

optimal filling, optimal electrical synchrony or potentially a combination of the two.  240 

 

LVOT VTI is widely accepted as an echocardiographic parameter positively correlated with 

both stroke volume and cardiac output (Kamdar et al. 2010). Previous work has highlighted 

the haemodynamic benefits of minimising ventricular activation time (Vatasescu et al. 

(Vatasescu et al. 2009). Our finding of a significant inverse correlation between increasing 245 

LVOT VTI and decreases in ventricular activation time, measuring using non-invasive ECM, 

suggests a future role for electrical optimisation using this approach, when looking to 

maximise cardiac output. 

 

Clinical relevance 250 

Our findings suggest that when looking to optimise CRT programming, a strategy of aiming 

to minimise ventricular activation is associated with significant improvements in LVOT VTI. 

In addition, this approach is associated with a greater degree of electrical resynchronisation 
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than is typically achieved using echo guided programming optimisation.  Our results also 

indicate that optimal electrical resynchronisation is associated with the best cardiac output.  255 

 

 

Limitations 

The main limitation of our study is the relatively small cohort of patients included at a single 

centre. Risk factors and multifactorial diseases affect clinical response to CRT (Sardu, 260 

Santamaria, et al. 2017; Sardu, Marfella, and Santulli 2014) and these have not been 

characterised within our cohort. Long term response to CRT is a critical outcome measure 

when evaluating this population; however, this study was designed to assess acute changes 

in ventricular performance following programming optimisation.  

 265 

Whilst improvements in AHR, measured using Dp/Dtmax,have previously been correlated 

with enhanced long term response (Duckett et al. 2011) this measurement technique relies 

upon the use of invasive haemodynamic data which did not form part of this study protocol.  

As such, our findings would need to be corroborated in a larger, randomised analysis before 

altering practice. A further limitation was the fact that this study did not address the posi-270 

tion of the implanted LV lead used to provide LV stimulation.  

 

No significant difference was observed in TVaT and VaT10-90 activation times amongst both 

echocardiographically and electrically optimised patients. One explanation could be the 

degree of scar or fibrosis present in our cohort. Since these patients did not have late 275 

enhancement CMR, the level of scarring and myocardial fibrosis is unknown. Additionally, 

the sensitivity of ECM, which measures epicardial activation times, to identify small, 
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potentially intramural, late activating regions may be much less than invasive electro-

anatomical mapping studies. Finally, it is not possible to analyse septal depolarisation as this 

is not observed during epicardial mapping.  280 

The study only considered a single acute measure, either ECM or echocardiogram to 

optimise device timings. Novel blood biomarkers are potential diagnostic and prognostic 

markers in an acute heart failure setting (Ky et al. 2011; Lellouche et al. 2007; Sardu, 

Paolisso, et al. 2018).  Extending our study beyond electrical and mechanical measures of 

cardiac function to include blood biomarkers (Skali et al. 2016; Sardu, Marfella, et al. 2018; 285 

Gruson et al. 2014; Pascual-Figal and Januzzi 2015; Anand et al. 2014; Petretta et al. 2007) 

may further improve device setting optimisation. However, how best to integrate real time 

feedback from ECM and echocardiogram markers with the inherent delay in blood 

biomarker readings will need to be addressed.  

 290 

 

 

Conclusions 

Echocardiographic programming optimisation does not result in the fastest possible 

biventricular activation. Instead, activation was consistently more rapid when optimised via 295 

ECM than with echocardiographic optimisation. ECM guided programming optimisation may 

achieve superior fusion of activation wave fronts leading to improvements in CRT response. 

Data Availability 

The data used to support the findings of this study are included within the article. 

 300 
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