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ABSTRACT 

 

Attention Deficit Hyperactivity Disorder (ADHD) is associated with poor self-control, 

underpinned by inferior fronto-striatal deficits. We showed previously that 18 ADHD 

adolescents over 11 runs of 8.5 minutes of real-time functional magnetic resonance 

neurofeedback of the right inferior frontal cortex (rIFC) progressively increased activation in 

2 regions of the rIFC which was associated with clinical symptom improvement. In this 

study, we used functional connectivity analyses to investigate whether fMRI-Neurofeedback 

of rIFC resulted in dynamic functional connectivity changes in underlying neural networks. 

Whole-brain seed-based functional connectivity analyses were conducted using the two 

clusters showing progressively increased activation in rIFC as seed regions to test for changes 

in functional connectivity before and after 11 fMRI-Neurofeedback runs. Furthermore, we 

tested whether the resulting functional connectivity changes were associated with clinical 

symptom improvements and whether they were specific to fMRI-Neurofeedback of rIFC 

when compared to a control group who had to self-regulate another region.  

rIFC showed increased positive functional connectivity after relative to before fMRI-

Neurofeedback with dorsal caudate and anterior cingulate and increased negative functional 

connectivity with regions of the default mode network (DMN) such as posterior cingulate and 

precuneus. Furthermore, the functional connectivity changes were correlated with clinical 

improvements and the functional connectivity and correlation findings were specific to the 

rIFC-Neurofeedback group. 

The findings show for the first time that fMRI-Neurofeedback of a typically dysfunctional 

frontal region in ADHD adolescents leads to strengthening within fronto-cingulo-striatal 
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networks and to weakening of functional connectivity with posterior DMN regions and that 

this may be underlying clinical improvement. 

Key words: ADHD, functional connectivity, fMRI-Neurofeedback, Default mode network 

(DMN); cognitive control network; Inferior frontal cortex. 

 

1 INTRODUCTION 

Attention Deficit Hyperactivity Disorder (ADHD) is a highly prevalent (around 7% 

prevalence worldwide) and male-predominant (4:1) childhood disorder of age-inappropriate 

problems with inattention, impulsiveness, and hyperactivity, that persists into adulthood in 

most cases (Thomas et al., 2015). Psychostimulant medication, the gold-standard treatment 

for ADHD, is associated with significant symptom improvements in about 70% of patients 

(Stevens et al., 2013). While superior to behavioural treatments after 14 months, longer-term 

efficacy of medication has not been demonstrated (Cunill et al., 2016; Molina et al., 2009) 

which may be related to evidence for dopaminergic brain adaptation to psychostimulant 

medication (Fusar-Poli et al., 2012; Wang et al., 2013). Other limitations include adverse 

effects, restricted use for certain comorbid conditions, potential for abuse and diversion, 

unknown longer-term brain effects, and limited compliance in adolescence. Therefore, non-

pharmacological treatments such as diets, behavioural or cognitive training are preferred, but 

have shown limited efficacy (Sonuga-Barke et al., 2013). 

Brain-based therapies such as real time fMRI-neurofeedback (fMRI-Neurofeedback) 

can target the key underlying neurofunctional deficits in ADHD and are therefore promising 

(Rubia, 2018a). fMRI-Neurofeedback is based on operant conditioning and teaches 

participants to self-regulate blood-oxygen level-dependent (BOLD) response in specific brain 
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regions based on real-time feedback of their brain activation which can be gamified in an 

attractive and engaging way for children.  

The advantages of fMRI-Neurofeedback are no known side effects and potential 

longer-term neuroplastic effects. Electrophysiological neurofeedback (EEG-Neurofeedback) 

in ADHD, which targets abnormal EEG biomarkers, has in fact shown longer-term effects of 

up to 2 years (Gevensleben et al., 2010; van Doren et al., 2018, Strehl et al., 2006). However, 

recent meta-analyses and reviews of randomized controlled trials of EEG-Neurofeedback of 

“probably” blinded raters show only trend-level improvements (Holtmann et al., 2014; 

Thibault and Raz, 2017). Neurofeedback using fMRI has several advantages over EEG-

Neurofeedback. Due to its superior spatial resolution it can target key neurofunctional 

biomarkers established over the last 2 decades of fMRI research, such as the inferior frontal 

cortex or the basal ganglia, which cannot directly be reached with EEG-Neurofeedback 

(Rubia, 2018a). Although more costly per session, self-regulation is typically achieved much 

faster than with EEG-Neurofeedback, where in ADHD typically 30-40 hourly runs of 50 min 

are used (Arns et al., 2009). Healthy adults can self-regulate specific brain activity in 4 runs 

of 8 minutes within one fMRI session (Lawrence et al., 2014; Rota et al., 2009) and in our 

fMRI-Neurofeedback study we showed that ADHD adolescents can learn to enhance specific 

brain activity on average in 8 runs of 8.5 minutes (Alegria et al., 2017), which is a 

substantially faster self-regulation than that achieved with EEG-Neurofeedback. Last, a key 

advantage of fMRI-Neurofeedback over EEG-Neurofeedback is that it allows the 

investigation of the effects of self-regulation of a specific region on entire brain networks by 

using functional connectivity analyses (Emmert et al., 2016; Thibault et al., 2015; Thibault et 

al., 2016; Thibault et al., 2017). 

Despite very promising effects of fMRI-Neurofeedback in other disorders (Thibault et 

al., 2017), only two studies have tested fMRI-Neurofeedback in ADHD. A pilot study in 7 
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adults with ADHD tested fMRI-Neurofeedback of the dorsal anterior cingulate cortex over 4 

hourly MRI sessions while performing a mental calculation task expected to increase dorsal 

anterior cingulate cortex activation, compared to 6 ADHD adults who did not receive fMRI-

Neurofeedback. The study found that although both groups showed similar dorsal anterior 

cingulate cortex activation increases during training and transfer runs, ADHD symptoms 

were not improved in either group. However, the active, but not the control group, showed 

performance improvements in sustained attention and working memory (Zilverstand et al., 

2017). The second study, from our lab, tested fMRI-Neurofeedback in 31 ADHD adolescents 

in a randomised controlled trial where the active target group (N = 18) had to learn to 

upregulate the rIFC, while the control group (N = 13) had to upregulate a control region, the 

left parahippocampal gyrus (lPHG) in 11 runs of 8.5 min of fMRI-Neurofeedback over 4 

hourly scans over 2 weeks using a rocket movie as feedback (Alegria et al., 2017). The fMRI 

data showed significantly enhanced linear activation increase in two regions of the rIFC 

across all 11 sessions in the rIFC-Neurofeedback relative to the control group and enhanced 

linear activation increase in 3 regions of the lPHG in the control relative to the rIFC-

Neurofeedback group. Only the rIFC-Neurofeedback group, however, showed significant 

transfer effects (increased activation in the target region when no feedback was provided 

which is considered a proxy for transfer of learned self-regulation to daily-life), which 

furthermore were significantly associated with a reduction of clinical ADHD symptoms. 

Although both groups improved significantly in the clinical ADHD severity measure, only in 

the rIFC-Neurofeedback group they were correlated with the brain changes, thus 

demonstrating brain-behaviour associations, arguing against a mere placebo effect. Effect 

sizes were medium (0.6) at post-assessment for both groups, but large in the rIFC-

Neurofeedback group (almost 1) at 11 months follow-up with a 26% reduction in ADHD 

symptoms relative to only trend-level significant medium effect size changes of 16% 
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symptom reduction in the control group, suggesting longer-term and potentially delayed 

consolidation effects of fMRI-Neurofeedback of rIFC in the active group (Alegria et al., 

2017). In addition, only the rIFC-Neurofeedback group showed trend-level improved 

sustained attention performance and increased inhibitory brain activation during a stop task 

relative to the control group. Although we cannot rule out placebo effects, the rIFC-

Neurofeedback treatment had several advantages over the control treatment, such as stronger 

brain-behaviour correlations, exclusive transfer effects, exclusive cognitive improvements, 

stronger longer-term effects, and exclusive brain activation benefits in the fMRI stop task 

relative to the control group.  

As mentioned above, a main advantage of fMRI-Neurofeedback is the possibility to 

investigate the effects of Neurofeedback of a specific brain region on the activation of the 

entire brain and on dynamic functional neural networks.  

In the secondary analysis we report here, we were particularly interested in exploring 

the mechanism of action of self-regulation of rIFC with fMRI-Neurofeedback in ADHD on 

underlying dynamic neural networks. For this purpose, we conducted seed-based whole 

brain functional connectivity analyses on the data from the rIFC-Neurofeedback group (who 

had to enhance activity in rIFC). We aimed to test whether rIFC self-regulation is associated 

with increased or decreased functional connectivity with other regions of the brain. Several 

fMRI-Neurofeedback studies have shown that the training of self-regulation of specific 

frontal regions leads to the co-activation and increased functional connectivity with other 

interconnected regions (Hui et al., 2014; Papoutsi et al., 2018; Rota et al., 2009; Sarkheil et 

al., 2015; Sepulveda et al., 2016; Zhang et al., 2015a); for review see (Thibault et al., 2017). 

Given that the rIFC is a cognitive control hub region mediating functions compromised in 

ADHD, such as cognitive control and attention (Hugdahl et al., 2015; Kim, 2014; Radua et 

al., 2014) and is part of the cognitive control network (Arnsten and Rubia, 2012; Beckmann 
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et al., 2005; Damoiseaux and Greicius, 2009; He et al., 2009; Moussa et al., 2012; Sripada et 

al., 2014b), we hypothesised that self-upregulation of the rIFC in ADHD patients would be 

associated with enhanced functional connectivity of the rIFC with other areas that form part 

of the cognitive control network, such as the dorsal anterior cingulate cortex, the pre-

supplementary motor area and the basal ganglia (Arnsten and Rubia, 2012; Guo et al., 2018; 

He et al., 2009, Niendam et al., 2012). 

Furthermore, based on consistent evidence that the activation of task-positive regions, 

in particular cognitive control hub regions such as the rIFC, is associated with the 

deactivation and hence anti-correlated with activation in DMN regions (Broyd et al., 2009; 

Fox et al., 2005; Raichle, 2015; Raichle et al., 2001; Sripada et al., 2014a), we hypothesised 

that rIFC upregulation through fMRI-Neurofeedback would be associated with increased 

deactivation and hence decreased functional connectivity with regions of the DMN such as 

ventromedial frontal cortex, posterior cingulate, precuneus and inferior temporo-parietal 

regions (Broyd et al., 2009; Fox et al., 2005; Raichle, 2015; Raichle et al., 2001; Sripada et 

al., 2014a). Meta-analyses of fMRI studies of cognitive control have shown that ADHD is 

associated most consistently with poor activation in cognitive control regions such as the 

rIFC, basal ganglia, anterior cingulate cortex and the supplementary motor area (Hart et al., 

2013; Norman et al., 2016) as well as with poor deactivation of DMN regions such as the 

ventral anterior cingulate cortex and posterior cingulate and precuneus during cognitive tasks 

(Rubia 2018a,b; Christakou et al., 2013; Fassbender et al., 2009; Hart et al., 2012, 2013; 

Salavert et al., 2015), which were furthermore significantly anti-correlated with poor fronto-

striatal activation (Christakou et al., 2013). A connectomic study of a large multi-site resting 

state dataset (ADHD200) in 7 to 21 year olds, furthermore found an age by ADHD severity 

interaction in 133 ADHD patients relative to 288 healthy controls, suggesting that ADHD 

patients have a maturational lag in the connectivity within the ventral attention network, the 
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fronto-parietal cognitive control network, and the DMN, as well as in the anti-correlation 

between these task-positive networks and the DMN (Sripada et al., 2014a). Functional 

connectivity deficits furthermore have been found in several other neural networks in relation 

to ADHD such as motor, saliency, cerebellar and reward-based networks (Castellanos & 

Aoki, 2018, O’Halloran et al., 2016, Rosenberg et al., 2016). It has been argued, therefore, 

that ADHD patients have less control over their interoceptive attention orientation and mind-

wandering, which intrudes more into their already weak exteroceptive attention and cognitive 

control processes, likely causing enhanced inattention and impulsiveness. This immature 

pattern of poor activation of task-relevant networks and of decreased deactivation of the 

DMN is furthermore likely underlying the poor performance in ADHD patients on attention-

demanding higher-level cognitive control tasks (Rubia, 2018a;b; Rubia et al., 2014a). 

As a consequence, we hypothesised that the training of the progressive upregulation 

of the right IFC in ADHD adolescents with fMRI-Neurofeedback would result in both 

positive and negative functional connectivity changes with task-positive and task-negative 

networks, respectively. Specifically, we hypothesised that 1) fMRI-Neurofeedback of rIFC 

would lead to enhanced functional connectivity after relative to before Neurofeedback 

training between rIFC and other areas of the cognitive control network that are typically 

underactivated in ADHD  such as the dorsal caudate, the dorsal anterior cingulate cortex and 

the pre-supplementary motor area (Hart et al., 2013; Norman et al., 2016, Niendam et al., 

2012); and 2) that rIFC upregulation would be associated with decreased functional 

connectivity between the rIFC and areas of the DMN such as posterior cingulate, precuneus, 

inferior temporo-parietal regions and ventromedial prefrontal cortex.  

Furthermore, we hypothesised that the increased positive functional connectivity post-

treatment between the rIFC and striatal and anterior cingulate cortex/supplementary motor 

area regions, and the reduced functional connectivity between the rIFC and areas of the DMN 
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would be associated with a reduction in ADHD symptoms and be specific to the fMRI-

Neurofeedback group that had to enhance the rIFC relative to the control group that had to 

self-upregulate the lPHG.  

 

2 MATERIAL AND METHODS 

The experimental design has been previously described in (Alegria et al., 2017). The 

original study was a randomized controlled trial testing the efficacy of fMRI-Neurofeedback 

of rIFC in 18 ADHD adolescents compared to a group of 13 ADHD adolescents who had to 

enhance another control region, the left parahippocampal gyrus.  

In the current study, we were particularly interested in the effects of rIFC self-

regulation training in ADHD on functional connectivity with other brain networks. For this 

purpose, the rIFC-Neurofeedback group is the main focus of the study. However, to assess 

specificity of the functional connectivity findings in the rIFC-Neurofeedback group, 

functional connectivity changes in the control group are also reported in the text and 

supplement. 

 

2.1 Participants 

Eighteen right-handed (Oldfield, 1971) boys (12-17 years old; mean (SD) = 14 (2)) 

were recruited from South London clinics. They all met the clinical DSM-5 criteria for the 

diagnosis of ADHD, combined hyperactive/impulsive and inattentive (N=16) or inattentive 

(N=2) subtypes, as assessed by an experienced child psychiatrist and confirmed with the 

Schedule of Affective Disorders and Schizophrenia for School-Age Children-Present and 

Lifetime version (K-SADS-PL) (Kaufman et al., 1996). They also scored above clinical 
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ADHD threshold on the Conners’ Parent Rating Scale (CPRS-R), a parent rated index of 

ADHD severity (Conners et al., 1998). The Social Communication Questionnaire (Rutter et 

al., 2003) screened for autism spectrum disorders. Two boys met/exceeded the cut-off score 

of 15, but a possible autism spectrum condition was ruled out by clinical interview. General 

functioning and symptom severity were assessed with the Children’s Global Assessment 

Scale (Shaffer et al., 1983).  

13 control ADHD patients (mean age (SD) = 14 (2)) were recruited and assessed in 

the same way, meeting DSM-5 criteria for the diagnosis of ADHD, combined 

hyperactive/impulsive and inattentive (N=11) or inattentive (N=2) subtypes. 

Exclusion criteria for all were IQ<80 (Wechsler, 1999) alcohol or substance abuse, 

neurological or comorbid psychiatric disorders, except for disruptive behaviour disorder, and 

MRI contraindications. Fifteen boys of the rIFC-Neurofeedback group and 9 control boys of 

the lPHG-Neurofeedback group received stable psychostimulant administration throughout 

the fMRI-Neurofeedback period. Baseline testing started at least seven days after titration 

(rIFC-Neurofeedback group: methylphenidate: N=13, dexamphetamine: N=2; control group: 

methylphenidate N = 9). Three patients in the rIFC-Neurofeedback and control groups each 

ceased taking medication for at least seven days before baseline testing and one control boy 

was stimulant-naïve. The study was approved by the local ethics committee and conducted in 

accordance with the Declaration of Helsinki (Research Ethics Committee reference number: 

12/LO/0708). Written informed assent/consent was obtained from each participant/legal 

guardian. Participants received £20 for each of the 1-1.5hr fMRI-Neurofeedback scan visit, 

and up to £10 for best performance during the session, as well as £20 for the post-training 

neuropsychological assessment, in total up to £150. They were also reimbursed for travel 

expenses (for further details see (Alegria et al., 2017)). 
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2.2 fMRI Neurofeedback Protocol 

Boys were offered 14 fMRI-Neurofeedback runs (8.5min each) in four 1-1.5hr scan 

visits over 2 weeks. All data were motion corrected in real-time. The head coil used is 

relatively close fitting, and head motion was therefore inherently relatively difficult. In 

addition, chin straps and head pads were used to further minimise movement. This together 

with the motion correction built into both the real-time processing software 

(AFNI(http://afni.nimh.nih.gov/afni/about/)) and our offline processing package XBAM 

(http://www.brainmap.co.uk/xbam.htm) was sufficient to deal with potential motion 

problems. Each fMRI-Neurofeedback run consisted of seven rest (30s) and six activation 

(50s) blocks, starting with a rest block showing an underwater dolphin image, while 

activation blocks showed a video-clip of a rocket. Boys were asked to move the rocket 

towards space by any means they found helpful. Instructions were minimal (i.e., “you can try 

to concentrate on the rocket” or “try any other method that works for you”) as this has been 

shown to be more effective than explicit instructions (Sulzer et al., 2013) and instruction-free 

approaches are common in EEG-Neurofeedback for ADHD children (Gevensleben et al., 

2014; Strehl et al., 2006). They received continuous feedback (every repetition time (TR), 

i.e., 2 s), about their brain activation in their target region of interest (ROI) via the rocket 

video-clip, with the direction and distance travelled in space proportional to their BOLD 

response. To enhance motivation, a score (0-10), reflecting the percentage of distance 

travelled through space during each run, appeared on the screen (e.g., 6 for 60%) and a 

monetary incentive (e.g., £6 for 6/60%) corresponding to the best performance in the session 

was given after the scan. Between runs (a few minutes’ break), researchers briefly 

acknowledged participants’ efforts in not moving their head, reminded them to keep doing so, 

and congratulated them for the score they obtained. 
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Between visits, boys had to practice daily brain self-regulation using a cue card 

depicting the video-clip rocket. After the last fMRI-Neurofeedback run, a 5-minute fMRI 

transfer run was conducted. This was identical to the Neurofeedback training runs, using the 

same stimuli, but without the feedback (the rocket did not move), consisting of four rest and 

three activation blocks. Transfer runs measure retention of learning and are considered a 

proximal measure of successful transfer of training strategies to everyday life (Drechsler et 

al., 2007) (see (Alegria et al., 2017)). 

 

2.3 Clinical outcome measures 

The primary outcome measure was the ADHD Rating Scale (ADHD-RS-IV), a 

standard tool to assess ADHD symptoms according to DSM-5 and to monitor treatment 

effects (Dupaul et al., 1998) , and the secondary outcome measure was the CPRS-R ADHD 

index (Conners et al., 1998), both rated by parents. ADHD-related difficulties and functional 

impairments were assessed with the Weekly Parent Ratings of Evening and Morning 

Behavior-Revised scale (Wehmeier et al., 2009) and the Columbia Impairment Scale-Parent 

version (Bird et al., 1993), respectively.  

 

2.4 fMRI-Neurofeedback Data Acquisition and Processing 

Gradient-echo echo planar MR imaging and structural data were acquired on a 3T 

General Electric MR750 MRI scanner with a 12-channel head coil at the Centre for 

Neuroimaging Sciences, King’s College London. The body coil was used for radiofrequency 

transmission. A T1-weighted structural scan (TR (repetition time)/TE (echo time) = 

7.312/3.016 ms, flip angle = 11 degrees, 196 x 1.2 mm slices, matrix size 256 x 256, 27 cm 

FOV, voxel size = 1.05 x 1.05 x 1.2 mm3), used as structural localizer, was collected at the 
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beginning of each scanning session. fMRI-Neurofeedback scans were collected using an T2*-

weighted gradient echo, echo-planar image sequence (TR/TE = 2000/30 ms, flip angle = 75°, 

40 x 3 mm slices with a 0.3 mm slice gap, matrix size 64 x 64, 21.1 cm FOV, voxel size = 3.3 

x 3.3 x 3.3 mm3). A whole-brain higher resolution gradient echo, echo-planar image scan for 

standard space normalization of individual activation maps was also acquired in the 

intercommissural plane with TR/TE = 3.000/30 ms, flip angle = 90°, 43 slices, slice thickness 

= 3.0 mm with a 0.3 mm slice gap, matrix size 128 x 128, 21.1 cm FOV, voxel size = 1.65 x 

1.65 x 3.3 mm3. 

A custom fMRI-Neurofeedback interface system (Bodurka and Bandettini, 2008) and 

the AFNI software (Cox, 1996) were used for real-time transfer and analysis of the fMRI 

data. The fMRI-Neurofeedback interface system ran on the scanner hardware to access the 

fMRI scans as they were reconstructed. The images were then transferred to an external 

Linux workstation where they were pre-processed using AFNI, a software with built-in real-

time capacities. The effects of head motion were corrected for in real-time by the AFNI 

software, displaying running graphs of the motion parameters on the screen. We used the 

CA_N27_ML/TT_N template to define the target ROIs (rIFC) in AFNI structurally for each 

adolescent before each fMRI-Neurofeedback session. The ROI included the pars triangularis 

(14,138 voxels in the Talairach space of the template and 385 voxels when mapped to fMRI 

space) and the pars orbitalis (11,484 voxels in the Talairach space of the template and 308 

voxels when mapped to fMRI space). A customized AFNI script automatically created a 

native-space image mask of the rIFC and the white matter (used as reference region, to cancel 

out non-specific global brain effects) based on the T1-weighted structural image and a two-

volume echo-planar image localizer image matched to the fMRI sequence for the geometric 

distortion inherent in echo-planar image acquisitions (and also used as realignment target). 
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The image mask of the pre-selected ROIs was applied to the pre-processed fMRI images to 

extract in real-time the mean BOLD signal from each ROI. For each newly acquired brain 

volume, AFNI calculated a new set of values for each ROI, which were fed to a locally 

written program that generated a dynamic visual feedback display by means of the moving 

rocket. The threshold required for the rocket to move up was continuously updated based on 

past performance ((rIFC-white matter)-(rIFCPrevious-white matterPrevious)), where rIFCPrevious 

and white matterPrevious are the average activation of rIFC and white matter in the previous 

rest block. Participants were informed/reminded of the Neurofeedback delay (~6s), caused by 

hemodynamic delay and data processing time, before each fMRI-Neurofeedback run. 

 

2.5 Data Analyses 

2.5.1 Clinical Data 

Some parents did not fill in all questionnaires. Missing data (<5%) were assumed to 

be completely at random. Multiple (i.e., 20) imputations were used for missing pre- and post-

treatment data. The individual estimates from the multiply-imputed datasets were then used 

to calculate a combined estimate by applying Rubin’s Rules (Little and Rubin, 2002). 

Repeated-measures mixed ANOVAs tested pre- and post-fMRI-Neurofeedback effects on 

clinical measures. Effect size (Cohen’s d) was calculated as the difference between the means 

(pre-post) divided by the corresponding pooled standard deviation. Two-tailed Pearson 

correlation analyses tested correlations between fMRI-Neurofeedback induced connectivity 

changes (i.e., post-treatment functional connectivity – pre-treatment functional connectivity) 

and primary and secondary clinical outcome changes (i.e., post-treatment – pre-treatment 

clinical measures). 
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2.5.2 fMRI-Neurofeedback Data 

All 18 participants of the rIFC-Neurofeedback group (and 13 control boys) were 

included in the fMRI-Neurofeedback functional connectivity data analyses. Due to the 

relative novelty of installing fMRI-Neurofeedback on one of our new 3T scanners, several 

technical problems occurred (e.g., scanner database delays, mask creation issues, network 

problems between the various components of the Neurofeedback pipeline (e.g., no data 

transfer from the scanner to the processing server, or ROI information was not transferred to 

the paradigm presentation software), resulting in lack of feedback for the participants, all of 

which caused loss of fMRI-Neurofeedback runs. Therefore, the average number of fMRI-

Neurofeedback runs for both groups was 11, with only 30% of participants, 4 participants in 

the rIFC-Neurofeedback group and 6 participants in the lPHG-Neurofeedback control group, 

completing all 14 runs. There was no group difference in number of runs completed (F (df = 

1,29) = 2, p = 0.4). Therefore, only runs completed by at least about 70% of the participants 

were included, which resulted in only the first 11 (or less) fMRI-Neurofeedback runs being 

analysed (i.e., runs 1-11, with the lowest number of runs being 6). 

Data were analysed using the non-parametric XBAM software package (Brammer et 

al., 1997). XBAM's non-parametric approach overcomes many of the issues associated with 

parametric software packages (e.g., poor control of FWE-corrected false positive cluster-wise 

inference rates) (Bullmore et al., 1999b; Eklund et al., 2016). 

 

2.5.2.1 MRI-Neurofeedback Preprocessing 

fMRI data were first processed to minimize motion related artefacts (Bullmore et al., 

1999a). A 3D volume consisting of the average intensity at each voxel over the whole 

experiment was calculated and used as a template. The 3D image volume at each time point 
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was then realigned to this template by computing the combination of rotations (around the x, 

y, and z axes) and translations (in x, y, and z) that maximized the correlation between the 

image intensities of the volume in question and the template (rigid body registration). After 

realignment, data were then smoothed using a Gaussian filter at 7.8 mm FWHM (full-width 

half-maximum) to improve the signal-to-noise ratio of the images.  

 

2.5.2.2. Head motion 

For each participant, the absolute and relative mean displacement were calculated by 

backwards differences to the first volume (absolute mean) or the previous volume (relative 

mean). Two-sample t-tests were performed to test for potential group differences in motion 

parameters. Furthermore, to test for the impact of motion on the functional connectivity 

results, we conducted Pearson correlation analyses between the absolute and relative mean 

displacement values and the significant functional connectivity changes in each group.   

 

2.5.2.3. Statistical Analyses of functional connectivity changes with the seed regions 

The previous study showed progressively increased activation with the number of 

fMRI-Neurofeedback runs in the rIFC-Neurofeedback group within two clusters of the rIFC: 

in Brodmann area 45 (peak Talairach coordinates (x;y;z;);43;33;16; p<0.005; 47 voxels) and 

in Brodmann area 44 (peak Talairach coordinates (x;y;z), 36;14;29; p<0.005; 75 voxels) 

(Alegria et al., 2017)(Fig. 1).  

There were no differences between groups in the activation at baseline for Brodmann 

area 44 (t (df = 29) = -.3, p = .113) or Brodmann area 45 (t (df = 29) = -1.7; p = .78). 
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 Separate functional connectivity analyses were performed using these 2 clusters in 

Brodmann area 44 and Brodmann area 45 as seed regions. For each seed region, we extracted 

the average time series over the whole ROI for each subject in native space (reversing 

Talairach mapping). The average time series for each subject were then used as a model for a 

whole-brain correlation analysis producing functional connectivity maps. Functional 

connectivity maps for each subject were then transformed to standard space using a two-step 

procedure: first by rigid body transformation of the correlation data into a high-resolution 

echo-planar image of the same subject, and then by affine transformation onto a Talairach 

template (Talairach and Tournoux, 1988). Group connectivity maps were computed by 

determining the median correlation coefficient (across subjects) at each voxel. A median-

based statistic was used across subjects in order to give more robustness against outlier 

effects. 

Next, to examine whether there would be a positive or negative change in functional 

connectivity in the last relative to the first fMRI-Neurofeedback run with the two seed 

regions of rIFC, separate repeated-measures ANOVAs were conducted to test for functional 

connectivity differences with the seed regions (Brodmann area 44 and Brodmann area 45) 

between the last (11th or earlier) and first fMRI-Neurofeedback run. For this purpose, 

randomization-based tests for voxel- and cluster-wise differences were used as described in 

detail elsewhere (Bullmore et al., 2001; Bullmore et al., 1999b). For each of the analyses of 

positive or negative changes for each seed region, a voxel-level p < 0.05 was applied and a 

corresponding cluster-level statistical threshold was computed in order to obtain less than 1 

false positive cluster per map for each analysis. Note that this resulted in different cluster-p-

values in the different analyses of positive and negative functional connectivity changes with 

different seed regions. 
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In more detail, we used the cluster-level statistical analysis described by Bullmore et 

al (1999) that was shown by extensive validation to give good type I error control at the 

cluster level. After setting the initial, voxel-level threshold to 0.05 to give maximum 

sensitivity and avoid type II errors, a second, cluster level threshold was computed for the 

resulting 3D voxel clusters using a data-driven based approach so that the final expected 

number of type I error clusters was less than one per whole brain. The necessary combination 

of voxel and cluster level thresholds is not assumed from theory but rather determined by 

direct permutation for each data set. In the current study an expected cluster-level type I error 

rate of < 1 per brain was achieved by first applying a voxel-level threshold of 0.05 followed 

by thresholding the 3D clusters at various cluster-level thresholds computed from the datasets 

being considered. Readers unfamiliar with this method should be clear that a cluster level 

threshold of 0.05 (which resulted in less than 1 error cluster for the positive functional 

connectivity with the dorsal anterior cingulate cortex/caudate for example), which would be 

lenient in the context of the whole brain, was NOT applied to whole brain but rather to 3D 

clusters built from data previously thresholded at a voxel-wise level of 0.05.  

 

2.5.2.4. Correlation analyses between functional connectivity changes and clinical 

and performance changes 

Exploratory Pearson correlation analyses were conducted between functional 

connectivity change measures and the changes in clinical measures to test whether functional 

connectivity changes were associated with the clinical improvements observed in the rIFC-

Neurofeedback group in the clinical ADHD symptom measures. For this purpose, we 

extracted for each subject the average correlation coefficient for each cluster that showed a 

positive or negative functional connectivity change with Brodmann area 44 or Brodmann area 
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45. Then the difference between functional connectivity post-Neurofeedback relative to 

before Neurofeedback in each cluster was correlated using two-tailed Pearson correlation 

analyses with the clinical changes (clinical measures post-Neurofeedback – clinical measures 

pre-Neurofeedback) in 2 key primary (ADHD-RS inattention, ADHD-RS 

hyperactivity/impulsiveness scores) and secondary clinical outcome measures (CPRS-R 

inattention, CPRS-R hyperactive/impulsive scores. 

 The primary and secondary change measures were correlated with each other with 

the exception of the changes in CPRS-R inattention score and ADHD-RS inattention score 

(r=0.130; p=0.485), the changes in CPRS-R inattention score and ADHD-RS 

hyperactivity/impulsiveness score (r=0.025; p=0.894), and the changes in CPRS-R 

hyperactivity/impulsivity score and ADHD-RS inattention score (r=0.187; p=0.313). Thus, 

the changes between the CRPS-R subscales (inattention and hyperactivity/impulsivity) were 

positively correlated (r=0.415; p=0.020) as were the changes between the ADHD-RS 

inattention and hyperactivity/impulsiveness subscales (r=0.574; p=0.001). The changes in the 

CRPS-R hyperactivity/impulsivity scores were positively correlated with the changes in the 

ADHD-RS hyperactivity/impulsiveness scores (r=0.437; p=0.014).  

 

3 RESULTS 

 

3.1 Pre-post Comparisons of Outcome Measures 

The comparison between pre- and post-fMRI-Neurofeedback showed a significant 

decrease in both groups in the ADHD symptoms in all primary (ADHD-RS total scale, 

ADHD-RS Inattention subscale) and secondary outcome measures (CPRS-R ADHD-Index), 

with only a trend-wise significant reduction in ADHD-RS hyperactivity/impulsivity subscale 
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in the rIFC-Neurofeedback group and a trend-wise improvement in the CPRS-R 

hyperactivity/impulsivity subscale in the control (lPHG-Neurofeedback) group.  

Table 1 shows the clinical improvements in both groups in the primary and secondary 

outcome measures, the ADHD-RS and CPRS-R, respectively (for other measures see 

(Alegria et al., 2017)). 

3.2 Functional Connectivity Results 

3.2.1. Head motion 

For the rIFC-Neurofeedback group, the absolute mean displacement was 1.16 (SD = 0.78), 

and the relative mean displacement was 0.218 (SD = 0.19); for the lPHG-Neurofeedback 

(control) group the absolute mean displacement was 0.88 (SD = 0.57), and the relative mean 

displacement was 0.14 (SD = 0.15). T-test showed no significant group differences for 

absolute or relative mean displacements (absolute mean displacement: t(df=29)=1.076, 

p=0.291; relative mean displacement: t(df =29)=1.190, p=0.244).  

There were no significant correlations in either group between the changes in functional 

connectivity and the absolute or relative mean displacements (for statistical details see 

supplementary Table S1).  

 

3.2.2. Positive and negative functional connectivity changes using the clusters in Brodmann 

area 45 and Brodmann area 44 as seed region 

3.2.2.1. Brodmann area 45 as seed region 

For the ANOVA of positive functional connectivity changes between the last relative 

to the first fMRI-Neurofeedback run with Brodmann area 45, less than one false positive 

cluster was observed with voxel-wise p < 0.05 and cluster p < 0.02. Increased functional 
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connectivity was observed between rIFC and a cluster in right caudate/anterior cingulate 

cortex. For the ANOVA of decreased functional connectivity with Brodmann area 45 for the 

last relative to the first fMRI-Neurofeedback run, less than one error cluster was observed 

with voxel-wise p < 0.05 and cluster p < 0.002.   

Decreased functional connectivity was found between rIFC and 4 posterior clusters 

comprising left parahippocampal gyrus/hippocampus/thalamus/putamen/insula; left lingual 

gyrus; bilateral posterior cingulate cortex/precuneus/calcarine gyrus; and thalamus, ventral 

basal ganglia and insula (Fig. 2 and Table 2A). 

To test whether the functional connectivity changes which we observed with the seed 

regions in Brodmann area 44 and Brodmann area 45 in the rIFC-Neurofeedback group, were 

specific to the rIFC-Neurofeedback group, we tested whether these functional connectivity 

changes were significantly different between groups using a repeated measures ANOVA. For 

this purpose, we extracted for the lPHG-Neurofeedback control group all the correlation 

coefficients for the first and last run in all clusters that showed changes in functional 

connectivity with Brodmann area 44 and Brodmann area 45 in the active group. Then we 

conducted repeated measures ANOVAs to compare the changes in functional connectivity 

between the last and first run between groups (with run as within-group repeated measure and 

group as between-group measure). 

Significant group differences were observed for the cluster in the anterior 

cingulate/caudate that showed a positive connectivity change with Brodmann area 45 (F (df = 

1, 29) = 4; p < 0.05). From the 4 clusters that showed negative functional connectivity 

changes with Brodmann area 45, significant group effects were only observed in the cluster 

in posterior cingulate/precuneus that showed significant decrease in functional connectivity in 

the rIFC-Neurofeedback group compared to the control group with neurofeedback (F (df = 1, 
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29) = 8, p < 0.007). The clusters in lingual gyrus (F(df = 1,29) = 3, p < 0.08) and in bilateral 

thalamus/ventral basal ganglia (F(df = 1,29) = 3, p < 0.09) only showed a trend-level 

difference of being decreased in the rIFC-Neurofeedback group relative to controls, while the 

cluster in left parahippocampal gyrus and hippocampus was not significantly different 

between groups (F (df = 1,29) = 3, p < 0.113).  

3.2.2.2. Brodmann area 44 as seed region 

For the ANOVA of positive functional connectivity changes between the last relative 

to the first fMRI-Neurofeedback run in Brodmann area 44, less than one false positive cluster 

was observed with voxel-wise p < 0.05 and cluster p < 0.05. This revealed increased 

functional connectivity with the right anterior cingulate cortex. For the ANOVA of negative 

functional connectivity changes between the last relative to the first fMRI-Neurofeedback run 

in Brodmann area 44, less than one error cluster was observed with voxel-wise p < 0.05 and 

cluster p < 0.001. Decreased functional connectivity was observed in a large cluster 

comprising the bilateral precuneus/posterior cingulate cortex/hippocampus/parahippocampal 

gyrus/thalamus/lingual gyrus (Fig. 3 and Table 2B). 

Significant group differences were observed for both the cluster in the anterior 

cingulate (F (df = 1,29) = 4; p < 0.05), that showed significant increase in functional 

connectivity in the rIFC-Neurofeedback group compared to the control group, and the cluster 

in posterior cingulate cortex/precuneus that showed significant decrease in functional 

connectivity in the rIFC-Neurofeedback group compared to the lPHG-Neurofeedback control 

group (F (df = 1,29) = 12; p < 0.001).  

The positive functional connectivity changes we observed in the rIFC-Neurofeedback 

group between Brodmann area 44 and Brodmann area 45 and the anterior cingulate and 

dorsal caudate/anterior cingulate, respectively, and the negative functional connectivity 
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changes between 44 and Brodmann area 45 and the posterior cingulate/precuneus were hence 

specific to the rIFC-Neurofeedback group as they were significantly different from the 

functional connectivity changes in these regions in the control group. 

 

3.3. Correlations between positive and negative functional connectivity changes between 

the two seed clusters in rIFC and resulting clusters, and clinical outcome changes 

To test whether the resulting clusters that showed positive and negative functional 

connectivity changes with the two seed regions of rIFC were correlated with behavioural 

improvements, average correlation coefficients were extracted for each subject in regions 

where changes in functional connectivity with the rIFC were found. Exploratory two-tailed 

Pearson correlation analyses were then performed with changes in primary and secondary 

clinical outcome measures post-prefMRI-Neurofeedback (see Table 3). Increased positive 

functional connectivity between the rIFC (Brodmann area 45) and dorsal caudate/anterior 

cingulate cortex was significantly negatively correlated with reduced CPRS-R Inattentive 

score (r=-0.5, p=0.032), suggesting that improved functional connectivity between IFC and 

dorsal caudate/anterior cingulate cortex was associated with reduced CPRS-R inattention 

symptom scores (Fig 4). Decreased functional connectivity between rIFC (Brodmann area 

45) and PHG and between rIFC and lingual gyrus showed positive correlations with reduced 

ADHD-RS hyperactivity/impulsiveness scores (PHG: r=0.6, p=0.019; lingual gyrus: r=0.6, 

p=0.009). Decreased functional connectivity between the rIFC (Brodmann area 45) and 

posterior cingulate cortex/precuneus was negatively correlated with reduced CPRS-R 

inattentive scores (r=-5, p=0.042). (Fig. 4) 

Increased negative functional connectivity between the rIFC (Brodmann area 44) and 

posterior cingulate cortex/precuneus were positively correlated with the reduction in the 
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hyperactive/impulsive scores in both the ADHD-RS and the CPRS-R (ADHD-RS 

hyperactivity/impulsiveness score (r=0.5, p=0.025); CPRS-R hyperactive/impulsive score: 

r=0.6, p=0.016) (Fig. 5). (see also Table 3). 

To test for specificity of these associations, we also tested for correlations between the 

functional connectivity with these clusters and clinical symptom measures in the control 

group. None of the functional connectivity changes in any of the above mentioned clusters 

showed significant correlations with the clinical measures (ADHD-RS and CPRS) in the 

control group with the exception of the functional connectivity changes between Brodmann 

area 45 and the anterior cingulate/caudate that was positively correlated with the CPRS 

inattention subscore (r = .6, p < 0.02) (while negatively in the rIFC-neurofeedback group) and 

between Brodmann area 45 and Brodmann area 44 and the respective posterior 

cingulate/precuneus clusters that were negatively correlated with changes in the CPRS 

inattention scores (for Brodmann area 44; r = -.6, p < 0.04; for Brodmann area 45: r = -.6, p < 

0.023). Direct group comparisons of the correlations showed that the difference in 

correlations between the change in functional connectivity between Brodmann area 45 and 

anterior cingulate/caudate and the change in CPRS inattention scores was highly significant 

as it was negative in the rIFC-Neurofeedback group (associated with symptom improvement) 

and positive in the lPHG-Neurofeedback control group (associated with symptom 

deterioration) (z = -3, p < 0.001). The group difference in correlation between the change in 

functional connectivity between Brodmann area 44 and the posterior cingulate/precuneus and 

the change in CPRS-R hyperactive/impulsive score was also significant (controls r = .001; p 

= .9) (z = 1.7; p < 0.045). Further significant were the group differences in correlation 

between the changes in ADHD-RS hyperactivity/impulsive scores and the functional 

connectivity changes between Brodmann area 45 and the parahippocampal gyrus (z = 2.7, p < 

0.003) which in controls were associated with worse clinical changes (controls r = -0.4, p= 
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.9); and the functional connectivity changes between Brodmann area 45 and lingual gyrus (z 

= 2.6, p < 0.005) which were also associated with worse clinical outcomes in controls 

(controls: r = -.35, p =.24); while both were associated with better clinical changes in the 

rIFC-Neurofeedback group.   

 

3.4. Functional connectivity changes in the lPHG-Neurofeedback control group 

We also tested for functional connectivity changes for the last > first run in the control 

group who showed 3 regions to be progressively more activated across the 11 fMRI-

Neurofeedback runs relative to the rIFC-Neurofeedback group in areas of the lPHG, in 

Brodmann area 36, Brodmann area 35 and Brodmann area 30, using the same methods as 

described above (see Fig. S2, supplementary material). 

For Brodmann area 36, there was no change in positive functional connectivity, but an 

increase in negative functional connectivity (ANOVA, voxel p< 0.05, cluster p < 0.004,) 

between the last > first run with the cerebellum which extended into the parahippocampal 

gyrus and brain stem (see Fig. S2A, Table S2A in supplementary material). 

For Brodmann area 35, there was also no positive functional connectivity change, but 

an increase in negative functional connectivity (ANOVA, voxel-wise p< 0.05, cluster-wise p 

< 0.009) for last > first run with right anterior cingulate gyrus (see Fig. S2B, Table S2B in 

supplementary material).  

For Brodmann area 30, there was no negative functional connectivity change, but an 

increase in positive functional connectivity (ANOVA, voxel-wise p < 0.05, cluster p < 0.01) 

for last > first run with precuneus/paracentral gyrus extending into the superior parietal lobe 

and the supplementary motor area (see Fig. S2C, Table S2C in supplementary material). 
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None of the functional connectivity changes overlapped with any of the functional 

connectivity changes in the rIFC-Neurofeedback group. If anything, the increase in negative 

functional connectivity between Brodmann area 35 and dorsal anterior cingulate for last > 

first run was in the opposite direction to the increase of positive functional connectivity 

between rIFC (Brodmann area  45) and dorsal anterior cingulate in the rIFC-Neurofeedback 

group and the increase in positive functional connectivity between Brodmann area 30 and the 

posterior cingulate/precuneus for last > first run is in the opposite direction to the decrease in 

functional connectivity between rIFC (Brodmann area s 45 and 44) and posterior cingulate 

cortex in the rIFC-Neurofeedback group. 

We also tested for correlations between the functional connectivity changes and the clinical 

symptom changes in the ADHD-RS and the CPRS-R. No significant correlations were 

observed (see supplementary Table S3). 

 

4. DISCUSSION 

 

4.1. Summary of the main findings 

In this study we tested whether upregulation of a specific frontal region, i.e. rIFC, 

with fMRI-Neurofeedback in ADHD adolescents is associated with changes in functional 

connectivity between rIFC and other brain regions using seed-based whole brain functional 

connectivity analyses. We found that rIFC upregulation after 11 runs of 8.5 min of fMRI-

Neurofeedback was associated with increased functional connectivity with anterior cingulate 

and dorsal caudate and with decreased functional connectivity with posterior regions of the 

DMN including posterior cingulate, precuneus, parahippocampal and lingual gyri. 

Furthermore, both the positive functional connectivity changes with anterior cingulate and 
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dorsal caudate and the negative functional connectivity changes with areas of the DMN were 

significantly associated with ADHD symptom improvements after to relative before the 

fMRI-Neurofeedback training.  In addition, the findings were specific to the rIFC-

Neurofeedback group as most of the functional connectivity changes and most correlation 

associations with symptom changes significantly different when compared to the lPHG-

Neurofeedback control group who did not show these changes nor correlations of these 

changes with clinical symptom improvements. The study shows for the first time, that the 

upregulation of a specific frontal region in ADHD adolescents with fMRI-Neurofeedback is 

associated with underlying neural network changes that are linked with clinical 

improvements and that these are specific to the frontal upregulation. 

 

4.2. Increased functional connectivity between rIFC and dorsal anterior cingulate 

cortex and caudate 

 The increased functional connectivity of rIFC with areas of the cognitive control 

network, comprising rIFC, anterior cingulate cortex and the dorsal caudate (Guo et al., 2018; 

He et al., 2009, Niendam et al., 2012) was hypothesised. rIFC is a key cognitive control hub 

region that has been associated with inhibitory control, sustained attention, visual-spatial 

working memory, cognitive switching and even time estimation (de la Vega et al., 2017; 

Hugdahl et al., 2015; Niendam et al., 2012; Radua et al., 2014), all of which are functions 

found to be consistently impaired in ADHD (Noreika et al., 2013; Rubia et al., 2014a; 

Willcutt et al., 2005). rIFC forms part of the cognitive control network that mediates motor 

and cognitive inhibition, cognitive switching and working memory, and that includes the 

dorsolateral prefrontal cortex, the dorsal anterior cingulate cortex, the supplementary motor 

area, the dorsal caudate, anterior insula and inferior parietal regions (Cole and Schneider, 
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2007; de la Vega et al., 2017; Dixon et al., 2018; Guo et al., 2018; Kim et al., 2012; Hugdahl 

et al., 2015, Niendam et al., 2012). rIFC is also closely connected and typically coactivated 

with dorsal caudate and anterior cingulate cortex for “cognitive control” in the Neurosynth 

fMRI database (www.neurosynth.org) (Yarkoni et al., 2011). This IFC-cingulo-striatal 

cognitive control network has been found to be consistently underactivated in ADHD patients 

in several fMRI meta-analyses of cognitive control (Cortese et al., 2012; Hart et al., 2012, 

2013; Lei et al., 2015; McCarthy et al., 2014; Norman et al., 2016). The finding of increased 

functional connectivity of rIFC with the dorsal caudate and the anterior cingulate cortex after 

upregulation training of rIFC in ADHD adolescents hence suggests that fMRI-Neurofeedback 

of rIFC has not only resulted in increased strength of activation in this specific frontal region, 

but also in increased strength of functional connectivity within a rIFC-striato-cingulate 

cognitive control network.  Furthermore, we found that the strengthened neural network 

connectivity between rIFC and striato-cingulate cognitive control regions was associated with 

improved ADHD inattention symptoms and that most of the connectivity changes and the 

association with attention symptom improvement were specific to the rIFC-Neurofeedback 

group. The findings have important implications for the fMRI-Neurofeedback neurotherapy 

field as they suggest that patients with neural network difficulties may benefit from 

neurofeedback of one dominant (i.e., usually frontal) part of the network which in turn will 

lead to co-activation of entire networks connected to the target region. It suggests that in 

addition to targeting deficient networks with functional connectivity-based neurofeedback 

(see McDonald et al., 2017, Yamashita et al., 2017), it is possible to indirectly enhance neural 

networks by targeting the fronto-dominant part of this network.  

Several fMRI-Neurofeedback studies observed changes in functional connectivity 

associated with fMRI-Neurofeedback training of a frontal brain region with other cortical and 

subcortical regions in healthy adults and other clinical groups. Thus, in healthy adults, rIFC 
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upregulation led to increased functional connectivity with several other prefrontal regions 

(Rota et al., 2011), supplementary motor area upregulation training increased functional 

connectivity with middle, superior and anterior cingulate cortex regions (Sepulveda et al., 

2016), left lateral prefrontal upregulation led to increased functional connectivity with right 

prefrontal and posterior cingulate regions (Sarkheil et al., 2015) and increased self-regulation 

of the left dorsolateral prefrontal cortex was associated with increased functional connectivity 

with striato-thalamic, inferior parietal and cerebellar regions (Zhang et al., 2015a; Zhang et 

al., 2015b). Inversely, self-regulation of subcortical regions has been shown to increase 

functional connectivity with cortical regions in healthy subjects and in other clinical groups. 

For example, self-regulation of the insula or the amygdala in the context of aversive stimuli 

was associated with increased functional connectivity with medial and lateral frontal regions 

in healthy subjects (Paret et al., 2016b; Veit et al., 2012), in patients with schizophrenia (Ruiz 

et al., 2013b) and with bipolar disorder (Paret et al., 2016a) and with inferior frontal cortex, 

temporal regions and precuneus in patients with depression, which was furthermore 

associated with improved clinical symptoms (Young et al., 2018).  

Some fMRI-Neurofeedback studies in healthy controls or in other disorders 

furthermore observed changes in intrinsic functional connectivity in resting state fMRI scans 

before and after fMRI-Neurofeedback training, beyond the timeframe of the fMRI-

Neurofeedback training, a day or even a week later. For example, in Huntington’s disease, 

fronto-striatal functional connectivity was increased after fMRI-Neurofeedback of the 

supplementary motor area (Papoutsi et al., 2018). In people with subclinical anxiety, self-

regulation of the bilateral orbitofrontal cortex led to increased functional connectivity with 

dorsolateral prefrontal regions of cognitive control but to reduced functional connectivity 

with limbic regions including amygdala, hippocampus, thalamus and insula; these persisted 

several days after the training and were furthermore associated with improved anxiety 
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symptoms (Scheinost et al., 2013). Other studies observed that upregulation of the amygdala 

with fMRI-Neurofeedback in major depression was associated with increased functional 

connectivity in several temporal and frontal regions, including inferior frontal and dorsal 

anterior cingulate cortex areas (Young et al., 2018; Yuan et al., 2014), while amygdala 

downregulation with fMRI-Neurofeedback was associated with increased functional 

connectivity of the amygdala with ventromedial, anterior cingulate and dorsolateral prefrontal 

regions in post-traumatic stress disorder (Nicholson et al., 2017), borderline personality 

disorder (Paret et al., 2016a) or healthy adults (Zotev et al., 2013). 

In conclusion, there is consistent evidence that the self-regulation training of an 

isolated brain region leads to a strengthening of functional connectivity with other brain 

regions that form part of the networks associated with the target brain region.  The findings of 

this study expand the existing literature by showing for the first time increased fronto-striato-

cingulate functional connectivity after rIFC upregulation in a pediatric ADHD population, 

which was furthermore associated with improved attention symptoms. The specificity of the 

functional connectivity change in this fronto-striato-cingulate network and of its association 

with inattention symptom improvement relative to the control group further strengthens the 

finding by showing that it is specific to the upregulation training of rIFC.  

 

4.3. Negative functional connectivity of rIFC with areas of the DMN 

To our knowledge, this is the first study to show that the upregulation of a frontal 

region not only leads to increased functional connectivity with related regions of the same 

network, but also to reduced functional connectivity with regions of the DMN and that this is 

furthermore associated with an improvement in clinical ADHD symptoms. The negative 

functional connectivity changes between rIFC and posterior areas of the DMN in ADHD are 
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hence particularly interesting. The DMN has been associated with task-irrelevant thinking 

and with mind-wandering (Christoff et al., 2016; Fox et al., 2005; Raichle, 2015; Raichle et 

al., 2001). The DMN is progressively more deactivated during progressively more 

challenging tasks in healthy adults and children and this has been associated with a necessary 

reduction of mind-wandering during task performance (Christoff et al., 2016; Sato et al., 

2014) as also shown in a parametric association between DMN activity and mind-wandering 

(Mason et al., 2007). Abnormal deactivation of the DMN has been associated with increased 

attentional lapses in both children and adults (Phillips et al., 2015; Sato et al., 2014). The 

DMN has been a direct target of fMRI-Neurofeedback in healthy subjects who have been 

shown to be able to self-regulate the DMN network after the training (McDonald et al., 

2017). 

rIFC activation increases in ADHD adolescents after relative to before fMRI-

Neurofeedback in both Brodmann area  45 and Brodmann area  44 were associated with 

decreased activation in clusters that included typical posterior DMN regions such as posterior 

cingulate, precuneus, parahippocampal and lingual gyri (Christoff et al., 2016; Fox et al., 

2005; Raichle, 2015; Raichle et al., 2001); however, only the changes in the key DMN 

regions of posterior cingulate and precuneus were specific to the rIFC-Neurofeedback group 

when compared to the lPHG-Neurofeedback control group. 

Interestingly, the posterior cingulate cortex clusters also extended to posterior 

thalamus and a more ventral striatal region relative to the dorsal striatal region that was 

increased in functional connectivity. Although not considered classical DMN regions, 

posterior thalamus and striatum form part of the DMN in the automatic fMRI meta-analyses 

generated in the neurosynth database under the search term: “default network” 

(www.neurosynth.org) (Yarkoni et al., 2011). Furthermore, children and adolescents have an 

immature DMN, and a recent meta-analysis of the DMN in children includes the thalamus, 
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striatum and posterior insula (Mak et al., 2017) . The findings hence suggest that upregulation 

of rIFC with fMRI-Neurofeedback may elicit downregulation of the DMN that is typically 

anti-correlated with task-positive rIFC networks in children and adults (Cole et al., 2014; Fox 

et al., 2005; Mason et al., 2007; Raichle, 2015; Raichle et al., 2001; Sripada et al., 2014a). 

This hypothesis of a strengthening of task-positive cognitive control networks and a 

weakening of the association between rIFC and the DMN after self-upregulation training of 

rIFC in ADHD is furthermore backed up by the dissociated correlation findings. They 

showed that both the positive functional connectivity changes with dorsal caudate/anterior 

cingulate cortex as well as the negative functional connectivity changes with posterior 

regions of the DMN were associated with clinical ADHD symptom improvements. Thus, 

inattention symptom scores in the CPRS were negatively correlated with the positive 

functional connectivity changes in rIFC-striato-cingulate networks and inattention scores on 

the CPRS as well as hyperactivity/impulsiveness scores in the ADHD-RS and the CPRS were 

positively correlated with the negative functional connectivity changes of rIFC with posterior 

DMN regions (FIGs 4,5). This suggests that both the functional connectivity strengthening in 

the rIFC-striato-cingulate network as well as the weakening of functional connectivity 

between rIFC and posterior DMN regions were associated with improvements in ADHD 

symptoms. Furthermore, the functional connectivity changes between Brodmann area 44 and 

Brodmann area 45 and regions of the DMN in posterior cingulate and precuneus and their 

associations with symptom improvements were specific to the rIFC-Neurofeedback group. 

To our knowledge, only one fMRI–Neurofeedback study has directly targeted the DMN by 

teaching down-regulation of the posterior cingulate cortex, which resulted in downregulation 

of other functionally interconnected DMN regions such as medial prefrontal cortex and 

anterior cingulate cortex (Zhang et al., 2015a). 
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An alternative explanation for decreased functional connectivity with striato-thalamic 

regions could be that neurofeedback allows subjects to develop greater conscious control over 

activity in their rIFC by reducing the influence of cortico-striato-thalamocortical loops on the 

region. rIFC is closely interconnected with striato-thalamic regions forming fronto-striato-

thalamic networks of top-down control (Alexander and Crutcher, 1990; Arnsten and Rubia, 

2012). A downregulation of striato-thalamic regions could hence suggest a neurofeedback-

induced shift within the network toward enhanced rIFC activation in detriment to striato-

thalamic components of the network. In line with this theory, similar effects of 

downregulation of more ventral striatal and right thalamic regions were observed in resting 

state fMRI data after fMRI-Neurofeedback of the supplementary motor area in healthy adults 

(Hampson et al., 2011). 

The specificity of the findings of increased rIFC-striato-cingulate functional 

connectivity and decreased functional connectivity of rIFC with posterior DMN regions and 

their correlations with symptom improvements is interesting, in particular in view that most 

findings were in the opposite direction in the control group, were fMRI-Neurofeedback 

induced lPHG activation increase was associated with reduced functional connectivity with 

anterior cingulate cortex and with increased functional connectivity with areas of the DMN 

such as precuneus. 

It is interesting to note, however, that the lPHG-Neurofeedback control group also 

improved in ADHD symptoms despite not showing the functional connectivity changes 

observed in the rIFC-Neurofeedback group and which were associated with symptom 

improvements in the rIFC-Neurofeedback but not the control group. 

One potential explanation could be that the lPHG is more difficult to self-regulate 

than rIFC, maybe due to the fact that rIFC is a self-control region (Rae et al., 2014; Rubia et 
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al., 2003). There is in fact evidence that higher-order association regions are easier to self-

regulate than lower-level primary function regions (Harmelech et al., 2015). If the lPHG-

Neurofeedback training was more challenging than the rIFG-Neurofeedback training, and 

demanded superior self-regulation skills, then the superior self-regulation effort and skill 

learning of the control group could potentially explain the comparable clinical improvements 

of both groups, despite lPHG not being a key deficit region for ADHD.  

Although we trained the upregulation of the parahippocampal gyrus, that is associated 

with visual-spatial processing and episodic memory (Aminoff et al., 2013), we cannot 

exclude that the training may have affected nearby hippocampal regions. There is evidence 

that the interconnection of anterior hippocampal systems with frontal regions facilitates the 

incorporation of relevant prior experiences into executive function and hence play an 

important role in executive functions (Murty et al., 2015), which are typically associated with 

ADHD and poor self-control (Rubia, 2018). The hippocampus also plays a critical role in 

integrating sensory information during learning and consolidation of memories 

(Cohen, 2015) and may hence play an important role in neurofeedback learning. 

Furthermore, the control group showed increased functional connectivity between 

parahippocampal region Brodmann area 30 and posterior parietal attention regions which are 

typically closely interconnected to parahippocampal gyrus and important for visual-spatial 

attention functions (Aminoff et al., 2013). Problems with attention functions underpinned by 

parietal abnormalities are highly relevant to ADHD (Hart et al., 2012; 2013, Rubia, 2018) and 

the positive functional connectivity with parietal attention regions could hence also be related 

to clinical improvements in inattention.  

It is possible that the lack of correlations between connectivity changes and behaviour 

were particularly underpowered in the smaller group. A placebo effect is also possible. We 

argue, however, that a placebo effect in the active group is unlikely given the fact that the 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
36 

 

connectivity changes with rIFC - which was the target of the neurofeedback treatment- 

correlated with the positive behavioural changes. While the placebo effect has also been 

associated with connectivity-behaviour associations, the regional location typically involves 

other regions such as ventromedial prefrontal cortex, insula, and limbic areas (Geuter et al., 

2017). However, we cannot exclude potential placebo effects via non-tested brain 

mechanisms. 

 

4.4. Key abnormalities in ADHD in the cognitive control and DMN networks  

The findings that fMRI-Neurofeedback of rIFC in ADHD led to increased functional 

connectivity in fronto-striatal networks and decreased functional connectivity with posterior 

DMN regions and that this is associated with improvement in clinical ADHD symptoms are 

particularly interesting because poor activation of fronto-striatal systems and poor 

deactivation of the DMN are key functional deficits in ADHD and are associated with poor 

executive function performance (Rubia et al., 2014a, Rubia 2018a,b). ADHD patients have 

consistent abnormalities in the deactivation of the DMN during cognitive tasks, as shown in 

fMRI meta-analyses (Cortese et al., 2012; Hart et al., 2012, 2013; Lei et al., 2015), and in 

individual fMRI studies of parametric task design where more difficult task conditions, 

unlike in healthy control boys, did not elicit increased deactivation of the DMN in ADHD 

patients nor did they increase fronto-striatal task-positive activation (Christakou et al., 2013; 

Fassbender et al., 2009; Salavert et al., 2015). Furthermore, the poor deactivation of DMN 

regions has been shown to be inversely associated with decreased fronto-striatal activation 

during attention and inhibition tasks and to be associated with worse task performance 

(Christakou et al., 2013; Liddle et al., 2011; van Rooij et al., 2015). This has also been 

observed in a large connectomic multi-site resting state analysis (ADHD200) where 133 
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ADHD children, relative to 288 healthy controls, had poorer FUNCTIONAL 

CONNECTIVITY within ventral and dorsal attention networks and poorer anti-correlation 

between task-positive networks and the DMN which was associated with a delay in 

functional maturation based on age by ADHD interaction findings (Sripada et al., 2014a). 

This evidence of poor deactivation of the DMN during cognitive task performance based on 

fMRI studies is in line with behavioural studies showing abnormally increased mind-

wandering in ADHD patients as shown in self-ratings on mind-wandering scales (Biederman 

et al., 2017; Mowlem et al., 2016; Seli et al., 2015). 

 

4.5. Similarities of fMRI-Neurofeedback effects on neural networks to stimulant effects 

on cognitive control and DMN networks 

The effects of fMRI-Neurofeedback of rIFC on fronto-striatal and DMN regions 

interestingly resembles stimulant effects on neurofunctional deficit regions and networks in 

ADHD. Thus, a meta-analysis of fMRI studies of the most consistent single dose stimulant 

effects showed an increase of activation in rIFC, anterior cingulate cortex and striatal regions 

and a decrease in activation of dorsomedial frontal parts of the DMN (Rubia et al., 2014b). In 

individual studies, stimulants have also been shown to increase the deactivation of posterior 

DMN regions such as posterior cingulate cortex and precuneus (Cubillo et al., 2013). Longer-

term stimulant administration is also associated with the upregulation of fronto-striatal 

regions during tasks of cognitive control (Hart et al., 2013; McCarthy et al., 2014; Norman et 

al., 2016). Furthermore, resting state and task-based functional connectivity studies show that 

stimulants most prominently enhance the strength of fronto-striatal neural networks and 

improve the anticorrelation between task-positive networks and the DMN (Cary et al., 2017; 

Querne et al., 2015; Rubia et al., 2009; Silk et al., 2017; Wong and Stevens, 2012). Similar 
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upregulation effects on rIFC and other fronto-striatal areas and downregulation effects on 

posterior DMN regions and networks have also been observed with Atomoxetine (Bush et al., 

2013; Cubillo et al., 2013; Cubillo et al., 2014; Lin and Gau, 2015; Schulz et al., 2012). Thus, 

the effects of fMRI-Neurofeedback-induced upregulation of rIFC in ADHD appear to have 

similar upregulation effects on fronto-cingulo-striatal cognitive control networks and similar 

downregulation effects on the DMN as stimulant and non-stimulant medication. The findings 

are promising as fMRI-Neurofeedback has the advantage of no side effects (Alegria et al., 

2017; Thibault et al., 2017) and of potentially longer-lasting neuroplastic effects, as clinical 

improvements in the rIFC-Neurofeedback group were even more pronounced at 11 months 

follow-up than at post-training assessment with an effect size of almost 1 (Alegria et al., 

2017), which is similar to the effect size of stimulant medication (Stevens et al., 2013). 

 

5. LIMITATIONS 

A strength of the study is that it is one of the few randomised controlled trials of 

fMRI-Neurofeedback that have been preregistered and the first in a pediatric clinical group. 

A limitation of the analysis is the small sample size. Also, the group difference analyses of 

the connectivity changes with rIFG and the correlation analyses were exploratory and hence 

multiple testing corrections were not applied. Future studies will have to replicate the 

findings in larger powered randomized controlled trials. Furthermore, we investigated 

functional connectivity changes that increased or decreased with neurofeedback on average 

across individuals. It cannot be ruled out that there were also functional connectivity changes 

in direct relation to symptom changes within individuals. 

 

6. CONCLUSIONS 
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In conclusion, the findings of this study show that fMRI-Neurofeedback training of 

the upregulation of an isolated rIFC region that is a key cognitive control hub region and that 

is consistently dysfunctional in ADHD, has wider dynamic connectivity effects in the 

disorder. It leads to an upregulation of a fronto-striato-cingulate neural network of cognitive 

control and to a decrease in functional connectivity between rIFC and posterior DMN 

regions, which furthermore, were associated with and may be underlying the improvements 

in clinical ADHD symptoms. The findings are particularly relevant to ADHD as the reduced 

activation of the cognitive control systems and the poor deactivation of the DMN are key to 

the neurofunctional pathology of ADHD and are also underlying the mechanisms of action of 

stimulant medication (Rubia, 2018a, b; Rubia et al., 2014a). The findings hence show that 

fMRI-Neurofeedback of a key frontal dysfunction region in ADHD may be a promising 

neurotherapy to improve key neurofunctional network deficits in ADHD (Rubia, 2018a; 

Rubia et al., 2014a). 
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TABLES 

 
 

Table 1. Behavior ratings before and after real-time fMRI Neurofeedback training for the rIFC-

neurofeedback and lPHG-neurofeedback control ADHD groups. The primary and secondary outcome 

measures that were used for correlation analyses are printed in bold. ES d=effect size (Cohen’s d); SD: 

Standard deviation.  

  
Pre-fMRI- 

neurofeedback 

Post fMRI- 

neurofeedback 
Pre-Post 

  Mean (SD) Mean (SD) F  p   
ES 

d 

rIFC-neurofeedback group (N=18)  F(1,17) 

ADHD-Rating Scale   

    ADHD-RS total score 36.72 (9.43) 30.15 (11.63) 6.00 0.025b 0.62 

    ADHD-RS inattention 19.83 (4.46) 15.94 (6.78) 6.38 0.022 0.68 

    ADHD-RS hyperactivity/impulsivity 16.89 (5.71) 14.21 (6.15) 3.82 0.067b 0.45 

Conner’s Parent Rating Scale (T-score) 
 

    ADHD index 13.61 (4.80) 10.67 (5.79) 5.29 0.034c 0.55 

    Global index  84.06 (6.81) 76.42 (12.16) 8.91 0.008 0.78 

    Inattention 81.72 (7.20) 74.30 (9.19) 8.45 0.010 0.90 

    Hyperactivity/impulsivity 85.06 (9.56) 78.83 (14.42) 9.15 0.008 0.51 

lPHG-neurofeedback control group (N=13)     F(1,12)  

ADHD-Rating Scale      

    ADHD-RS total score 37.77 (11.39) 29.30 (10.95) 49.42 <0.001 0.76 

    ADHD-RS inattention 20.92 (4.59) 16.04 (6.28) 30.47 <0.001 0.89 

    ADHD-RS hyperactivity/impulsivity 16.85 (7.48) 13.26 (6.14) 16.35 0.002 0.52 

Conner’s Parent Rating Scale (T-score)      

    ADHD index 16.46 (2.88) 11.90 (5.20) 18.63 0.001 1.08 

    Global index  87.31 (6.10) 80.64 (13.12) 6.30 0.027 0.65 

    Inattention 84.92 (5.81) 76.61 (10.89) 7.18 0.020 0.95 

    Hyperactivity/impulsivity 85.92 (9.28) 81.05 (13.04) 3.61 0.082 0.43 
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Brain regions Brodmann area  
Peak Talairach 

coordinates (x;y;z) 
Cluster size 

(voxels) 
Cluster 
p-value 

A. Seed region Brodmann area 45 
    

Increased connectivity 
    

R dorsal caudate/anterior cingulate cortex* 24/32 22; 15; 20 30      0.02 

Decreased connectivity 
    

L parahippocampal gyrus/hippocampus/thalamus/ 
putamen/ insula 

27/30/36  -18.; -30; -3 75 0.012 

L lingual gyrus 18  -18; -56; 3 25 0.015 

BL PCC/precuneus/calcarine gyrus* 30/29/23/31/17/18/19 4; -45; 7 192 0.008 

BL thalamus/ventral caudate/putamen/L insula/R 
pallidum  

0; 0; 10 286 0.009 

     B. Seed region Brodmann area 44 
    

Increased connectivity 
    

R dorsal anterior cingulate cortex* 24 18; -15; 33 21 0.041 

Decreased connectivity 
    

BL PCC/precuneus/hippocampus/ 
parahippocampal gyrus/thalamus/calcarine/lingual 
gyrus* 

27/30/29/26/27/17/27/18 7; -41; 7 224 0.0006 

Table 2. Changes in positive and negative functional connectivity with the two seed regions of rIFC. 

*Areas in bold are regions where the connectivity changes were significantly different to the control group. However, these were not corrected 
for multiple testing. 

 BL: bilateral, L: left, R: right 
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ADHD-RS 
Hyperactive/Impulse 

CPRS-R 
Inattentive 

CPRS-R 
Hyperactive/Impulsive 

  
r p r p r p 

B
ro

dm
an

n 
ar

ea
 

   
   

   
   

   
 4

5 

Increased 
connectivity Dorsal caudate/ACC 0.085 0.738 -0.506* 0.032* -0.256 0.305 

Decreased 
connectivity 

PhG 0.546* 0.019* -0.238 0.341 0.311 0.209 
Lingual gyrus 0.597**  0.009** -0.237 0.344 0.387 0.113 

PCC/Precuneus 0.422 0.081 -0.484* 0.042* 0.339 0.169 
Thalamus/Basal 

ganglia 
0.325 0.188 -0.183 0.468 0.205 0.415 

B
ro

dm
an

n 
ar

ea
 4

4 

Increased 
connectivity ACC -0.150 0.553 0.158 0.532 0.236 0.346 

Decreased 
connectivity PCC/Precuneus .527* 0.025* 0.100 0.694 .560* 0.016* 

*: p<0.05; **:p<0.01 

Table 3. Correlations between clinical changes in the ADHD-RS and the CPRS-R and the significant functional connectivity changes in 
the rIFC-Neurofeedback group. 

r = Pearson correlation coefficient; p = probability value. ACC = anterior cingulate cortex; PCC = posterior cingulate cortex; PHG = 
parahippocampal gyrus. 

Grey shaded regions are regions where the correlation between functional connectivity changes and behavioural changes were significant 
relative to the control group. 

Note that p values were not adjusted for multiple testing. 
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FIGURE LEGEND 

Figure 1.  

 

Figure 1. Progressively increased activation in right inferior frontal cortex across 11 

fMRI neurofeedback runs in 18 ADHD adolescents relative to a control group (N = 13) 

who were trained to increase activation in left parahippocampal gyrus. A. 3D image 

showing progressively increased rIFC activation. B. 2D axial slices showing progressively 

increased activation in two regions of right inferior frontal cortex (Brodmann area 45 and 

Brodmann area 44) (adapted from (Alegria et al., 2017)). 
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Figure 2. Results of the functional connectivity analysis using the cluster in Brodmann 

area 45 as seed region. A. Axial slices of positive (red) and negative (blue) changes in 

functional connectivity with the cluster in Brodmann area 45 as seed region. B. Average 

correlation coefficient values for the 4 regions (PHG = parahippocampal gyrus; LG = lingual 

gyrus; PCC/precuneus = posterior cingulate gyrus; Thal/BG = thalamus/basal ganglia) that 

showed a decrease in functional connectivity for the last > first run are shown for the first and 

the last run. (C.) Average correlation coefficients of the dorsal caudate/anterior cingulate 

cluster that showed a positive functional connectivity change is shown for the first and last 

run.  
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Figure 3. Results of the functional connectivity analysis using the cluster in Brodmann 

area 44 as seed region. A. Axial slices of positive (red) and negative (blue) changes in 

functional connectivity with the cluster in Brodmann area 44 as seed region. B. Average 

correlation coefficient values for the cluster in posterior cingulate/precuneus that showed a 

decrease in functional connectivity with Brodmann 44 for the last > first run are shown for 

the first and the last run. C. Average correlation coefficients of the dorsal anterior cingulate 

cortex cluster that showed a positive functional connectivity change with Brodmann area 44 

is shown for the first and last run.  
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Figure 4. Correlations between functional connectivity changes with Brodmann area 45 

and changes in outcome measures for Last > First run. A. Correlations between positive 

and negative functional connectivity changes between the seed cluster in rIFC Brodmann area 

45 and the 4 resulting clusters (PHG = parahippocampal gyrus; LG = lingual gyrus; 

PCC/precuneus = posterior cingulate gyrus; Thal/BG = thalamus/basal ganglia) and clinical 

outcome changes. B. Clinical outcome measures for the first and last run. C. Correlation 

coefficients for the functional connectivity of the 4 clusters with the seed region in Brodmann 
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area 45 for the first and the last fMRI-NF runs. Note that correlations were not adjusted for 

multiple testing. 

 

Figure 5. Correlations between functional connectivity changes with Brodmann area 44 

and changes in outcome measures for Last > First run. A. Correlations between positive 

and negative functional connectivity changes between the seed cluster in rIFC Brodmann area 

44 and the cluster in posterior cingulate cortex (PCC)/precuneus, and clinical outcome 

changes. B. Clinical outcome measures for the first and last run. C. Correlation coefficients 

for the functional connectivity of PCC/precuneus with the seed region in Brodmann area 44 

for the first and the last fMRI-NF runs. Note that correlations were not adjusted for multiple 

testing. 

 

 

 


