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Abstract 

 

Facioscapulohumeral muscular dystrophy (FSHD) is a prevalent, incurable myopathy, linked to 

epigenetic de-repression of D4Z4 repeats on chromosome 4q, leading to ectopic DUX4 expression. 

FSHD patient myoblasts have defective myogenic differentiation, forming smaller myotubes with 

reduced myosin content. However, molecular mechanisms driving such disrupted myogenesis in FSHD 

are poorly understood. We performed high-throughput morphological analysis describing FSHD and 

control myogenesis, revealing altered myogenic differentiation results in hypotrophic myotubes. 

Employing polynomial models and an empirical Bayes approach, we established eight critical time-

points during which human healthy and FSHD myogenesis differ. RNA-sequencing at these eight nodal 

time-points in triplicate, provided temporal depth for a multivariate regression analysis, allowing 

assessment of interaction between progression of differentiation and FSHD disease status. Importantly, 

the unique size and structure of our data permitted identification of many novel FSHD 

pathomechanisms undetectable by previous approaches. Selected for further analysis here, were 

pathways that control mitochondria: of interest considering known alterations in mitochondrial 

structure and function in FSHD muscle, and sensitivity of FSHD cells to oxidative stress. Notably, we 

identified suppression of mitochondrial biogenesis, in particular via PGC1, the co-factor and activator 

of ERR. PGC1 knock-down caused hypotrophic myotubes to form from healthy myoblasts. Known 

ERR agonists and safe food supplements Biochanin A, Genistein or Daidzein, each rescued the 

hypotrophic FSHD myotube phenotype. Together our work describes transcriptomic changes in high 

resolution that occur during myogenesis in FSHD ex-vivo, identifying suppression of the PGC1-

ERR axis leading to perturbed myogenic differentiation, which can effectively be rescued by readily-

available food supplements. 
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Introduction 

 

Facioscapulohumeral muscular dystrophy (FSHD) is a prevalent (12/100000 (1)) skeletal myopathy, 

for which there is currently no cure. The condition presents most notably as a descending skeletal 

muscle weakness and atrophy, beginning in facial muscles (such as the orbicularis oculi and orbicularis 

oris), and progressing to the biceps brachii and muscles of the shoulder girdle, before affecting specific 

lower limb muscles such as the tibialis anterior (2, 3). Interestingly, there is often a marked left-right 

asymmetry in the degree that muscles are affected. Curiously, muscles including the deltoids and 

quadriceps have less overt pathological damage until later in the disease process (2, 3). In addition to 

myopathy, FSHD is also associated with extra-muscular features including retinal telangiectasia and 

sensorineural hearing loss (4–6). FSHD is highly heterogeneous, with presentations varying 

dramatically between first degree relatives and even mono-zygotic twins (7, 8). Finally, there is a 

differential penetrance between males and females, with males typically presenting earlier in life (9). 

 

Genetically, FSHD is associated with loss of epigenetic repressive mechanisms including DNA 

methylation, histone modification and repressive chromatin proteins on an array of macrosatellite 

D4Z4 repeats in the subtelomere of chromosome 4q (3, 10). In 95% of cases (FSHD1 - MIM 158900), 

repeat-mediated epigenetic de-repression occurs due to contraction of this highly polymorphic region to 

between 1 and 10 D4Z4 repeats (11). In the majority of remaining cases (FSHD2 - MIM 158901), 

D4Z4 epigenetic de-repression is caused by mutation in the chromatin modifying gene SMCHD1, or in 

rare FSHD2 cases, by mutations in DNMT3B (12, 13). Each D4Z4 unit encodes an open reading frame 

for the double homeobox 4 (DUX4) retrogene. Thus, epigenetic de-repression allows transcription of 

DUX4 from the distal D4Z4 unit, which coupled with a permissive 4qA haplotype supplying a poly A 

signal, permits mis-expression of the homeodomain-containing DUX4 transcription factor (3, 11). 

DUX4 is normally expressed at the four-cell human embryo phase, where it activates a cleavage-stage 

transcriptional program (14, 15). However, when ectopically expressed in FSHD, DUX4 may drive 

pathology by direct induction of pro-apoptotic genes, coupled with interference of DUX4 with target 

gene activation of related transcription factors PAX3 and PAX7 (16, 17), which could affect satellite 

cell-derived myoblast function during any repair/regenerative response (18). 

 

Characterisation of FSHD patient-derived cells has revealed that FSHD myoblasts are sensitive to 

oxidative stress and differentiate into aberrant myotubes (16, 19). Indeed, amelioration of oxidative 

stress sensitivity in FSHD formed the basis of a recent clinical trial investigating the therapeutic 
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potential of a cocktail of nutritional supplement anti-oxidants (20, 21). This trial demonstrated an 

improvement in maximum voluntary contraction and endurance time limit of quadriceps, although 

showed no improvement in the 2 minute walk test (20). Such results motivate investigation of other 

supplements that can rapidly be translated to clinic. 

 

FSHD myotubes in vitro are reported to display two major phenotypes: described as being smaller than 

control myotubes with a thin, elongated morphology and labeled as an ‘atrophic’ phenotype, or 

myotubes of the same size as controls but displaying an unusual distribution of myonuclei and 

dysregulation of microtubule network, so categorized as having a ‘disorganised’ phenotype (19). Both 

phenotypes are currently assessed by manual inspection of immunolabelling and there is no 

quantitative methodology for determination of myotube size and morphology.  

 

Proteomic studies have shown that FSHD ‘atrophic’ myotubes suppress skeletal muscle myosin heavy 

chain (MyHC) isoforms, whilst the ‘disorganised’ phenotype shows dysregulation of microtubule 

network formation, but no aberration in myosin isoforms (22). Endogenous DUX4c is more abundant 

in disorganised FSHD myotubes, which can be rescued by silencing DUX4c, but not DUX4 (23). It can 

be argued that the ‘atrophic’ myotube phenotype may be the more important contributor to the muscle 

weakness observed in FSHD (22, 24). Therapies designed to ameliorate this phenotype could be 

considered likely to drive clinical improvement in patients. 

 

While the so called ‘atrophic’ phenotype can be induced by DUX4 (24), how this is achieved is 

unclear, and the already barely detectable levels of DUX4 in FSHD patient biopsies and 

primary/immortalised muscle cultures, mean that an anti-DUX4 therapy may be insufficient (25, 26). 

Moreover, it is important to note that whilst the term ‘atrophic’ has been used to describe the small 

myotubes derived from FSHD patient myoblasts, there has not been rigorous investigation as to 

whether they actually develop as a consequence of loss of volume from an initially larger myotube 

(atrophy), as opposed to reduced growth (hypotrophy) and failure to ever reach the size of control 

myotubes. This distinction is of importance when considering molecular pathogenesis and therapies. 

 

Understanding how to rescue perturbed myogenic differentiation and the small FSHD myotube 

phenotype requires a detailed understanding of the molecular changes that occur during FSHD 

myogenesis in adult: a highly complex and dynamic process involving coordinated expression of a vast 

number of genes (27). High frequency transcriptomic time course studies of healthy mouse and human 
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myogenesis have revealed the importance of mechanisms that would otherwise be overlooked using 

fewer timepoints (28, 29). However, such transcriptomic studies investigating FSHD myogenesis are 

limited, usually covering only the two time points of proliferation and terminal differentiation (30, 31). 

Though such studies identify important molecular mechanisms in FSHD, such as HIF1-mediated 

oxidative stress sensitivity (30), they are limited by lack of extensive temporal range. 

 

Here we present a dynamic analysis of FSHD and control myogenesis. By first developing a high-

throughput image analysis software, we defined a quantitative measure of the FSHD small myotube 

phenotype. From a panel of FSHD and control myoblast cell lines, three matched pairs for which the 

FSHD line was forming smaller myotubes were identified. We next characterised morphologically the 

most well controlled line by high-throughput imaging of myogenesis, generating 8640 images over 5 

days of differentiation in triplicate. Our imaging revealed perturbed myogenic differentiation resulting 

in small FSHD myotubes, which developed as a consequence of hypotrophy rather than atrophy. This 

FSHD cell line aligns and fuses more slowly than its control, allowing us to establish a set of 8 critical 

time points in the differentiation dynamics, at each of which we performed transcriptomic investigation 

using RNA-sequencing, generating a total of 90 samples.  

 

Multivariate regression analysis generated a comprehensive description of myogenesis in FSHD. Of 

many pathways perturbed, a clear failure was evident to activate key mediators of the mitochondrial 

biogenesis program during differentiation to generate hypotrophic FSHD myotubes. Most notably, 

oestrogen-related receptor  (ERR) and Peroxisome proliferator-activated receptor gamma 

coactivator 1- (PGC1), together with their target genes, were dynamically repressed during FSHD 

myogenesis.  

 

PGC1 is an essential co-factor for ERR, an orphan nuclear receptor which up-regulates a cascade of 

transcription, including its own expression, to drive multiple processes including mitochondrial 

biogenesis (32, 33). Our data indicates that suppression of PGC1 in FSHD dynamically precedes 

suppression of ERR and its target genes during differentiation into hypotrophic myotubes. Crucially, 

siRNA-mediated knock-down of PGC1 causes the hypotrophic myotube phenotype during 

differentiation of control, healthy myoblasts. Moreover, supplementation with Biochanin A, an 

isoflavone capable of increasing activity of ERR (34), can rescue the hypotrophic myotube phenotype 

induced by PGC1 knock-down. Finally, Biochanin A, as well as two similar isoflavones, Genistein 
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and Daidzein, can rescue myogenic differentiation in FSHD cell lines, resulting in augmented myotube 

size. 

 

 

Results 

 

Novel, high-throughput image analysis software identifies FSHD myoblast lines with a small 

myotube phenotype 

Myogenesis is often perturbed in FSHD, with myotube morphology variable between patient-derived 

differentiated myoblasts. Previous studies have categorized FSHD myotubes broadly into an ‘atrophic’ 

or ‘disorganised’ phenotype (19, 22). Here we focus on the small or ‘atrophic’ myotube phenotype, of 

likely relevance to FSHD pathology. We obtained six immortalised FSHD myoblast cell lines and 

matched controls and one primary FSHD line and matched control. Three of these FSHD cell lines: 54-

2, 54-12 and 54-A5, alongside matched control 54-6, were isolated from a biceps biopsy from a male 

mosaic FSHD patient  (26). These lines are isogenic with the exception of the D4Z4 repeat length, 

which has 3 repeats in the FSHD lines, but 11 units in the control (26). Three further FSHD cell lines 

isolated from biceps muscle biopsies were; 12Abic, 16Abic and 15Abic and sibling matched controls 

12Ubic, 16Ubic and 15Ubic (35). Primary lines were derived from a male FSHD patient (MD-FSHD) 

and a sex matched control (GE-CTRL). Cell lines are detailed in Table S1. 

 

These twelve cell lines were differentiated for 3 days in triplicate and immunolabelled for total MyHC 

using monoclonal antibody MF20. Images were processed using a novel image analysis software 

written using the EBImage package in R (36), to ascertain the MyHC+ve area per unit area (field) 

(Figure 1A, software provided as Supplementary File 1). The FSHD 54-12 cell line relative to control 

54-6, the FSHD 16Abic cell line relative to sibling control 16Ubic and the primary FSHD MD-FSHD 

cell line relative to control GE-CTRL clearly displayed a small myotube phenotype, defined as a 

reduced mean MyHC+ve area relative to matched control (Figure 1B and 1C). 54-12, 54-6, MD-

FSHD and GE-CTRL were derived from males whilst 16Abic and 16Ubic were derived from females; 

hence these cell lines also permit investigation of gender independent mechanisms of FSHD 

myogenesis. None of the FSHD cells lines analysed generated myotubes that were significantly bigger 

than their associated controls. 
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Dynamic morphometric analysis of FSHD myogenesis reveals a delay in myoblast alignment and 

fusion 

Myogenesis is a highly dynamic process involving sophisticated morphological changes culminating in 

cell alignment, fusion and myotube growth by both accretion of further nuclei and hypertrophy (37). 

The FSHD small myotube phenotype is currently defined by the appearance of thin terminally 

differentiated myotubes. However, it is unclear whether this is due to a defect in myotube growth, or 

whether other morphological processes are perturbed. 

 

To analyse morphological changes during FSHD small myotube formation compared to control 

myogenesis, we performed high density, time-lapse microscopy imaging in triplicate on the isogenic 

(bar D4Z4 unit length) control 54-6 and FSHD 54-12 cell clones over 5 days of differentiation. One 

10x phase contrast image was captured every 5 minutes over the process, generating a total of 8640 

images (Supplementary Video 1A and 1B). We next developed an image analysis software to 

quantify morphological characteristics of each image, in particular the mean eccentricity of the cells, 

which approximately corresponds to the elongation of cells (Figure 2A). This generated a time course 

quantification of morphological changes during myogenic differentiation and fusion into 

multinucleated myotubes, which was closely reproducible across triplicates.  

 

Control 54-6 and FSHD 54-12 followed a similar pattern of gross morphological changes, beginning 

with a rapid alignment phase (increasing eccentricity), followed by a cytoplasmic expansion during 

fusion, in which unfused cells were pushed off the plate, causing them to round up (decreasing 

eccentricity). Following this rapid phase of cytoplasmic expansion, the first visible myotubes appeared 

(increasing eccentricity, Figure 2B). Although the gross pattern of change was similar between FSHD 

and control lines, the rates at which they occurred were different. An empirical Bayes approach 

revealed significant differences occurred particularly during the early stages of myogenesis, before the 

second day of differentiation (Figure 2B). Alignment and cytoplasmic expansion phases both took 

longer and resulted in less extreme morphological changes in the FSHD line 54-12, as compared to the 

healthy line 54-6. Importantly, this imaging revealed that the small FSHD myotubes develop by failing 

to reach the area of control myotubes (hypotrophy) rather than losing area (atrophy). 

 

Dynamic transcriptomic analysis of FSHD myogenesis  

Having established dynamic morphological differences between FSHD hypotrophic and control 
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myogenesis, we next investigated the dynamic transcriptomic changes that may be driving the 

hypotrophic myotube FSHD phenotype. FSHD and control myoblasts fuse at different rates, with most 

clear morphological differences occurring before 48 hours. Therefore, selection of time points for 

transcriptomic analysis was made to ensure that we were not simply comparing time in differentiation, 

but also stage of differentiation, so that we were investigating time points where morphological defects 

in FSHD myoblasts are most pronounced.  

 

Fitting polynomial curves to the average eccentricity time courses for each cell line enabled 

identification of 3 robust turning points in eccentricity for each cell line, occurring within the first 48 

hours of myogenesis. Examination of images corresponding to these turning points identified them as 

myoblast alignment, fusion and myotube growth (Figure S1). Importantly, these events are 

characterised by clear morphological features, making them readily identifiable in subsequent 

experiments.  

 

FSHD 54-12 and control 54-6 myoblasts were plated in triplicate and induced to differentiate. Samples 

were harvested for RNA-sequencing at 8 time points corresponding to: 0 mins (confluent proliferating 

myoblasts), 440 mins (7.3 hours, control 54-6 alignment), 530 mins (8.8 hours, FSHD 54-12 

alignment), 1355 mins (22.6 hours, control 54-6 initiation of fusion), 1505 mins (25.1 hours, FSHD 54-

12 initiation of fusion), 1860 mins (31 hours, control 54-6 myotube formation), 2165 mins (36.1 hours, 

FSHD 54-12 myotube formation) and 5040 mins (3.5 days, myotube maturation). Images were 

obtained at 10x magnification at each time point prior to harvesting, to confirm morphology matched 

that expected from high-throughput image analysis (Figure S2). RNA-sequencing methodology and 

pre-processing are described in the Methods.  

 

Hallmarks of adult FSHD myogenesis include suppression of mitochondrial biogenesis genes 

regulated by ERR and PGC1 

To assess differential expression, we employed a multivariate regression approach that exploits the 

temporal depth of our RNA-seq data set. Expression Ei of the ith gene was modelled as a linear 

combination of FSHD status (cell type) and myogenic differentiation time. An interaction term was 

also included to investigate how FSHD status affected the relationship between gene expression and 

myogenic differentiation time: 
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𝐸 ൌ 𝑎𝐹𝑆𝐻𝐷௦௧௧௨௦  𝑏𝑇𝑖𝑚𝑒ௗ௧௧  𝑐ሺ𝐹𝑆𝐻𝐷௦௧௧௨௦: 𝑇𝑖𝑚𝑒ௗ௧௧ሻ 

 

Coefficient ai achieves positive values for genes whose expression is elevated in the FSHD 54-12 cell 

line relative to control 54-6, and negative values for genes that are repressed in FSHD 54-12 versus 

control 54.6. Coefficient bi similarly achieves positive values on genes that increase their expression 

during myogenic differentiation and negative values on those that decrease. The interaction term co-

efficient ci achieves positive values on genes with expression values which increase more during 

differentiation in FSHD 54-12 cells than control 54-6 cells, and negative values on genes with 

expression values that decrease more during differentiation in FSHD 54-12 cells than control 54-6 

cells.  

 

As an example, the expression patterns of the genes with the largest ai, bi and ci are shown (Figure 3A). 

The gene with the largest ai coefficient is CDKN2A, which encodes two proteins p16, an INK4 cyclin 

dependent kinase inhibitor and p14arf, an activator of p53. Upregulation of CDKN2A in the FSHD 54-

12 cells is consistent with reduced proliferation and increased apoptosis observed in FSHD myoblasts 

(19, 38). The gene with the largest bi coefficient is MYOM2 an M-protein expressed in fast skeletal 

muscle. The gene with the largest ci co-efficient is DOC2B, a double C2 domain-containing protein 

with a known role in insulin sensitivity in skeletal muscle. 

 

For each coefficient, we considered the 500 genes with the most significantly positive coefficient 

values and the 500 genes with the most significantly negative values and ran a Gene Set Enrichment 

Analysis (GSEA) (39) independently on each gene set.  

 

For coefficient ai, genes associated with positive values are up-regulated in the FSHD cell line. These 

were highly enriched for a number of stem cell gene sets, in line with our recent work demonstrating 

that DUX4 induces a less differentiated transcriptome (38) (Table S2). Genes negatively associated 

with the FSHD cell line were highly enriched for multiple components of the Polycomb Repression 

Complex 2 (PRC2) and H3K27me3 (Table S3), suggesting that this mode of epigenetic repression is 

lost in FSHD: consistent with a number of studies by ourselves and others suggesting epigenetic de-

repression in FSHD (40–43).   

 

For coefficient bi, genes associated with positive values are those that increase during differentiation 

regardless of cell type. As anticipated, these included many troponins, actins and myosins. The most 
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significantly enriched gene set for these genes identified by GSEA was the 

HALLMARK_MYOGENESIS gene set (p=3x10-51, Table S4): a gene set collated by the Broad 

Institute (39) containing genes known to be associated with skeletal muscle myogenesis. Its strong 

enrichment here confirms our dataset of myogenic differentiation shows concordance with other studies  

(39). Genes associated with negative values of bi (i.e. those suppressed in myogenesis) were 

significantly enriched for proliferation gene sets and genes involved in promoting oligodendrocyte 

differentiation (Table S5). 

 

For coefficient ci, genes associated with positive values are those that are induced specifically in FSHD 

differentiation (Table S6). These genes were highly enriched for targets of LEF1, a downstream 

component of canonical Wnt/-catenin signalling which we and others identified as aberrantly active in 

FSHD muscle (5, 43, 44). Transcriptional targets of MYOD1 were also significantly enriched, 

indicating inappropriate activation of MYOD1 during myogenesis in the FSHD cell line, in line with 

previous findings (16, 45). 

 

Importantly, genes associated with negative values of the interaction term co-efficient ci are those 

repressed specifically in FSHD differentiation (Table S7). Here we see a strong and consistent 

enrichment for ERR transcriptional target genes, as well as mitochondrial genes, oxidative 

phosphorylation, the TCA cycle and PGC1 target genes (Figure 3B).  

 

Suppression of mitochondrial biogenesis genes regulated by ERR and PGC1 is a general 

feature of FSHD myogenesis 

Of the many pathways that we found perturbed during myogenesis in FSHD (Tables S2-7), we decided 

to focus on the ERR/PGC1pathway, of interest considering the sensitivity of FSHD cells to 

oxidative stress and know mitochondrial dysfunction (21, 45, 46)Further examination revealed that in 

addition to insufficient activation of PGC1ERR target genes, there was also significant suppression 

of ERR transcripts (encoded by ESRRA) in differentiating FSHD 54-12 myoblasts, beginning from 

around 24 hours of differentiation (Figure 3C). PGC1 transcripts (encoded by PPARGC1A) were 

significantly suppressed at all time points of differentiation in the 54-12 FSHD myoblasts compared to 

54-6 controls (Figure 3D). 

 

To validate our findings from the FSHD 54-12 myogenesis, further RNA-sequencing was performed on 
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FSHD myoblast cell lines 16Abic, 12ABic, 54-2 and 54-A5, alongside matched control lines 16Ubic, 

12UBic and 54-A10, in triplicate at 0 mins (confluent proliferating myoblasts) and 5040 mins (3.5 

days, mature myotubes) of differentiation. Of the comprehensive description of FSHD myogenesis 

revealed by our analysis of the transcriptomics data, we were particularly interested in the 500 genes 

with the most significant negative associations with the interaction term co-efficient ci. In line with the 

derivation of these genes as those insufficiently activated during FSHD myogenesis, we found that 

while they showed similar levels in FSHD 16Abic and control 16Ubic confluent myoblasts, the level of 

these genes was significantly lower in mature FSHD 16Abic myotubes, as compared to control 16Ubic 

myotubes (p=0.003, Figure 3E). We next evaluated expression of ERR and PGC1 transcripts in 

FSHD 16Abic, 12Abic, 54-2 and 54-A5 cell lines or control 16Ubic, 12Ubic, 54-A10 cell lines at 

myoblast and myotube stage. Consistent with our findings in the 54-12 and 54-6 cell lines, PGC1 was 

suppressed in both combined FSHD myoblasts (p=0.0033, Figure 3F) and myotubes (p=6.8x10-6, 

Figure 3F) relative to combined controls, whilst ERR was only suppressed in combined FSHD 

myotubes (p=0.00031, Figure 3G). 

 

Knock-down of PGC1 recreates the hypotrophic FSHD myotube phenotype in control 

myoblasts  

Our dynamic transcriptomic analysis implicates suppression of PGC1 leading to insufficient 

activation of ERR as a critical molecular mechanism underlying perturbed differentiation and the 

FSHD hypotrophic phenotype. Given this model, we next investigated whether suppression of PGC1 

can drive formation of a hypotrophic myotube phenotype in control myoblasts. 

 

Control 54-6 myoblasts were plated in triplicate and co-transfected with either 4 independent siRNAs 

against PGC1, or scrambled control siRNAs. Effective siRNA-mediated knock-down of PGC1 was 

confirmed by RT-qPCR (Figure 4A). Transfected cells were then induced to differentiate for three 

days, before fixation and immunolabelling for MyHC (Figure 4B). Cells were then imaged and 

MyHC+ve area quantified using our image analysis software (Figure 4C).  

 

Control 54-6 myoblasts transfected with siRNA against PGC1 and then subjected to a differentiation 

protocol had a significantly lower mean MyHC+ve area and displayed a hypotrophic myotube 

phenotype on day 3 of differentiation, as compared to controls transfected with scrambled siRNA 

(Figure 4B and 4C). This demonstrates that suppression of PGC1as observed in FSHD myoblasts, 
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is sufficient to cause a hypotrophic phenotype in control, healthy myoblasts. 

 

ERR agonist Biochanin A rescues the hypotrophic myotube phenotype caused by knock-down 

of PGC1 in control myoblasts  

PGC1 is a critical co-factor of ERR, an orphan nuclear receptor that orchestrates a transcriptomic 

program regulating mitochondrial biogenesis and other processes. As we observe insufficient activation 

of ERR and its related mitochondrial biogenesis associated target genes in FSHD myoblasts during 

differentiation into hypotrophic myotubes, it is likely that PGC1 is driving the hypotrophic myotube 

phenotype through an insufficient activation of ERR. We thus postulated that activation of ERR in a 

PGC1-independent manner might rescue the hypotrophic myotube phenotype caused by PGC1 

knock-down. 

  

Biochanin A is an isoflavone found in Red Clover extract and soy that binds and activates ERR 

directly (34) and has an excellent safety profile in clinical trials (47, 48). Administration of 10 M 

Biochanin A to the differentiation medium was sufficient to rescue to control levels the hypotrophic 

myotube phenotype induced by PGC1 knock-down in control 54-6 myoblasts (Figure 4B and 4C). 

Interestingly, Biochanin A had no effect on mean MyHC+ve area in myoblasts transfected with control 

scrambled siRNA, indicating that the capacity of Biochanin A to counter the hypotrophic myotube 

phenotype is specific to suppression of the PGC1ERR axis (Figure 4B and 4C). 

 

Biochanin A, Daidzein or Genistein rescue the hypotrophic myotube phenotype in FSHD  

We next investigated whether Biochanin A can reduce the hypotrophic myotube phenotype in FSHD 

myoblasts, where PGC1 is endogenously suppressed (Figure 3). We plated FSHD myoblasts that 

give hypotrophic myotubes, namely FSHD 54-12, 16Abic and MD-FSHD myoblasts alongside control 

54-6, 16Ubic and GE-CTRL myoblasts (Figure 1) and induced differentiation with/without 10 M 

Biochanin A. After 3 days, cells were fixed and immunolabelled for MyHC, images were acquired and 

analysed for MyHC+ve area (Figure 5A). To first check that Biochanin A was targeting ERR, RNA 

was isolated from FSHD 54-12 myotubes and RT-qPCR performed, which confirmed a significant 

mean 2.3 fold up-regulation of ERR (which auto-activates) in Biochanin A-treated samples (Figure 

5B). Biochanin A significantly increased mean MyHC+ve area of myotubes in all three FSHD cell 

lines (Figure 5C and 5D). However, Biochanin A had no effect on average MyHC+ve area in control 

54-6, 16Ubic and GE-CTRL myotubes (Figure 5C and 5D).  
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Daidzein and Genistein are also isoflavones that have similarly been demonstrated to activate ERR in 

vitro, although to lower levels than Biochanin A (34). We differentiated FSHD 54-12, 16Abic and MD-

FSHD myoblasts alongside control 54-6, 16Ubic and GE-CTRL with/without 10 M Daidzein or 10 

M Genistein. After 3 days, myotubes were fixed and immunolabelled for MyHC, images were 

acquired and analysed for MyHC+ve area (Figure 6A). Consistent with observations obtained with 

Biochanin A, Daidzein or Genistein both increased mean MyHC+ve area in the FSHD cell lines 

(Figure 6B and 6C). However, Daidzein or Genistein also acted to increase mean MyHC+ve area in 

control 54-6 and 16Ubic lines, but not in the primary control GE-CTRL (Figure 6B and 6C). Thus 

ERR agonists Biochanin A, Daidzein or Genistein can rescue the perturbed myogenesis that leads to 

formation of FSHD hypotrophic myotubes (summarized in Figure 7).  

 
Discussion 
 

Here we coupled high-throughput time course imaging and transcriptomics, generating over 8640 

images and 90 RNA-seq samples of healthy and FSHD myogenesis, to provide the first dynamic 

analysis of FSHD differentiation and myotube formation. Of the many transcriptional changes 

identified in this comprehensive description of myogenesis in FSHD, we concentrated on the finding 

that suppression of PGC1 leads to a dynamic repression of ERR from day 1 of differentiation, 

driving FSHD hypotrophic myotube formation. PGC1 knock-down is sufficient to create a 

hypotrophic myotube phenotype in control myoblasts. Importantly, FSHD myogenesis and hypotrophic 

myotubes can be rescued by administration of an ERR agonists Biochanin A, Daidzein or Genistein 

(Figure 7). 

 

A general caveat of this study is that the degree of myotube maturation attainable ex vivo is limited, so 

we are focusing on myogenic differentiation and the early phases of myotube maturation, but such 

stages are relevant for understanding the repair/regeneration response in FSHD, and for designing 

regenerative therapies. Our examination and measurement of myogenesis indicates that the term 

‘atrophic’ used to describe FSHD myotubes with a thin morphology (17) is misleading, as the 

myotubes do not appear to lose volume. Rather, these FSHD myotubes never attain the volume of 

controls, so a better description is a ‘hypotrophic’ phenotype, as adopted here. While selecting for 

FSHD lines that give hypotrophic myotubes may bias our analysis, a general reduction in muscle fibre 

cross sectional area is characteristic of FSHD muscle biopsies. Many muscle fibres clearly show an 
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atrophic phenotype (49). However, it can be argued that a failure of regenerating muscle fibres to reach 

the size of mature muscle fibres may also contribute to such muscle fibre size variability, which we can 

model using hypotrophic myotubes. 

 

PGC1 is a critical component of the mitochondrial biogenesis pathway which it initiates via ERR 

activation in two ways; firstly, it induces expression of ERR and secondly, it directly interacts with 

ERR to increase its ability to activate transcription, which is minimal in the absence of PGC1. 

Myoblasts isolated from FSHD patients display an oxidative stress sensitivity phenotype, and a number 

of molecular mechanisms have been proposed to underlie this, including over-activation of HIF1 

signalling (30, 43), glutathione redox pathway dysregulation (16) and importantly, mitochondrial 

dysfunction (21). Mitochondria in FSHD display aberrant ultrastructure and distribution within the 

myofibre, as well as defects in cytochrome c oxidase activity and ATP synthesis via the OXPHOS 

pathway (21). Moreover, these mitochondrial deficits correlate with functional muscle impairment in 

FSHD (21). A molecular understanding of mitochondrial dysfunction in FSHD remains elusive. 

However, it is likely that the suppression of PGC1 that we report here, could play a crucial role.  

 

FSHD patients also display a decreased ratio of reduced (GSH) to oxidized glutathione (GSSG), 

leading to a sensitivity to oxidative stress (21). PGC1 knockout causes a decrease of GSH, resulting 

in a reduced reactive oxygen species (ROS) detoxification (51). PGC1 is also directly involved in 

defense against oxidative stress by the up-regulation of antioxidant enzymes such as MnSOD, and 

increased levels of PGC1 have been shown to reduce damage attributed to ROS (52, 53). FSHD and 

DUX4 expressing myoblasts produce higher levels of ROS than matched controls (46), and such ROS 

accumulation may be attributable to mitochondrial dysfunction. Suppression of PGC1 in FSHD may 

inhibit the anti-oxidant response to this elevated ROS. Crucially, a key target gene of PGC1 is 

MnSOD, which is the only anti-oxidant enzyme not found up-regulated in FSHD muscle (21). 

 

In addition to up-regulation of mitochondrial biogenesis and suppression of oxidative stress, the 

PGC1/ERR complex also acts to induce angiogenesis by up-regulating VEGF in a HIF-1 

independent manner (54). This latter mechanism has been linked to poor/aberrant vascularisation of 

skeletal muscle and the retina when PGC1 is suppressed (54, 55). As well as muscle atrophy in 

FSHD, there are well reported vascular defects including retinal telangiectasia (4, 5), and a reduction in 

skeletal muscle capillary density (56). Both these vascular abnormalities could be explained by a 
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suppression of PGC1 in FSHD.  

 

Moreover, PGC1 suppression also results in a low grade inflammation and an up-regulation in serum 

TNF and IL6 (57). FSHD skeletal muscle has increased T-cell infiltration (58) and patients display 

elevated serum TNF in a manner that negatively correlates with muscle function (21). Lastly, PGC1 

suppression has been previously implicated in muscle atrophy, both during sarcopenia and in muscle 

wasting in chronic disease, whilst up-regulation of PGC1 has been associated with resistance to 

muscle atrophy (59, 60). 

 

PGC1 can be induced by a number of mechanisms, including cold temperature and exercise, both of 

which are mediated by 2-adrenergic activity (61). It is of note that five clinical trials have investigated 

2 agonists (albutamol/salbutamol) in FSHD. Though these trials did not report significant 

improvements in primary outcome measures and treated groups experienced adrenergic side effects, 

three of the trials reported improvements in secondary measures including lean body mass and muscle 

volume (62–66). We have shown that suppression of PGC1 may drive muscle hypotrophy in FSHD, it 

is possible that the reported increases in muscle mass under 2-adrenergic stimulation may be driven by 

up-regulation of PGC1.  

 

A more recent clinical trial has investigated the role of antioxidant dietary supplements in FSHD 

including vitamin C, vitamin E, selenium and zinc, which were well tolerated with no associated side 

effects (20). The study reported modest improvements in maximal voluntary contraction of quadriceps 

but no improvement in 2 minute walk test. Selection of supplements however, was not targeted to any 

particular molecular mechanism, and one may anticipate stronger results if this were the case. Here we 

have shown that safe ERR agonists Biochanin A, Daidzein or Genistein can rescue the hypotrophic 

myotube phenotype when FSHD myoblasts differentiate. Given the molecular motivation of these 

molecules and their safety profiles, they may be considered alongside anti-oxidants in future FSHD 

clinical studies. 

 

In summary, we have comprehensively described the morphological and allied transcriptional changes 

that occur during myogenesis in FSHD. Of particular note, such dynamic analysis of high-throughput 

data revealed that PGC1 suppression leading to ERR repression in FSHD contributes to perturbed 

myogenic differentiation and hypotrophic myotube formation. Moreover, modulation of the PGC1 - 
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ERR pathway by nutritional supplements such as Biochanin A, Daidzein or Genistein may prove a 

rapidly translatable therapeutic approach for improving muscle condition and repair/regeneration in 

FSHD patients. 

 

Methods 

 

Cell culture and myogenic differentiation 

Three immortalised FSHD human myoblast cell lines 54-12, 54-A5, 54-2 (3 D4Z4 units) together with 

two control lines 54-6 and 54-A10 (13 D4Z4 repeats), all from the biceps of a mosaic FSHD1 patient  

(26), were kind gifts from Dr Vincent Mouly of the Center for research in Myology, Paris. Six 

immortalised human myoblast lines from the biceps of 3 FSHD1 patients, 12Abic, 15Abic and 16Abic 

and 3 sibling matched controls 12Ubic, 15Ubic and 16Ubic (33), were kind gifts from Professor 

Charles Emerson from the UMMS Wellstone centre for FSHD. We isolated primary myoblast cell line 

MD-FSHD from the quadriceps of a 27 year old FSHD1 patient with 7 D4Z4 repeats, while control 

GE-CTRL was isolated from the quadriceps of an unrelated 48 year old male. Briefly, fresh biopsies 

were digested with Liberase™ TM (Research Grade) and cells amplified to around 10 million, before 

being immunolabelled using Mouse Anti-Human CD56 (Clone B159 - BD bioscience, CA, USA), then 

sorted via FACS (ARIA III) and further cultured to P5 (Table S1).  

 

Human myoblasts were cultured in Skeletal Muscle Cell Growth Medium (Promocell via VWR 

International Ltd, Leicestershire, UK) supplemented with 20% foetal bovine serum (ThermoFisher 

Scientific, MA, USA), 50 g/ml Fetuin (bovine), 10 ng/ml Epidermal Growth Factor (recombinant 

human), 1 ng/ml Basic Fibroblast Growth Factor (recombinant human), 10 g/ml Insulin (recombinant 

human), 0.4 g/ml Dexamethasone and 50 g/ml Gentamycin, at 37oC under 5% CO2. To induce 

differentiation, myoblasts were washed with PBS and placed in DMEM Glutamax (ThermoFisher 

Scientific, MA, USA) supplemented with 1/1000 recombinant bovine insulin (Sigma-Aldrich, Dorset, 

UK) and 1/1000 Gentamycin (ThermoFisher Scientific, MA, USA) at 37oC under 5% CO2. 10 M 

Biochanin A (Cayman Chemical Company, MI, USA), Genistein (FluoroChem, Derbyshire, UK) or 

Daidzein (Cayman Chemical Company, MI, USA) were added to the differentiation medium as 

indicated. Biochanin A stock solution was dissolved in water, so control samples were not 

supplemented with any excipient. Daidzein or Genistein stock solution was dissolved in DMSO and an 

equivalent concentration of DMSO was added to controls. Primary human myoblasts were treated with 
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all drugs dissolved in DMSO, and an equivalent concentration of DMSO added to controls. 

 

RNA-sequencing 

RNA-sequencing was performed on high quality (RIN > 8.0) DNA free RNA in three batches, a larger 

batch contained 48 samples describing in triplicate the control 54-6 and FSHD 54-12 cell lines at 8 

time points during differentiation: 0 mins (confluent proliferating myoblasts) 440 mins (control 54-6 

alignment), 530 mins (FSHD 54-12 alignment), 1355 mins (control 54-6 initiation of fusion), 1505 

mins (FSHD 54-12 initiation of fusion), 1860 mins (control 54-6 myotube formation), 2165 mins 

(FSHD 54-12 myotube formation) and 5040 mins (myotube maturation). A second batch was 

performed for validation and consisted of 24 samples describing in triplicate the 16Abic, 12Abic, 

16Ubic and 12Ubic cell lines at two time points: 0 mins (confluent proliferating myoblasts) and 5040 

mins (myotube maturation). A third batch was similarly performed for validation and consisted of 18 

samples describing in triplicate the 54-2, 54-A5, and 54-A10 cell lines at the same two time points in 

differentiation of 0 mins and 5040 mins. For all batches, 312,000 cells were plated in 12 well plates and 

incubated for 48 hours at 37oC and 5% CO2. The 0 mins sample was then harvested with cells in 

proliferation medium, before switching sister cultures to differentiation medium and harvesting after 

5040 mins. 

 

RNA was isolated using miRNeasy kit including DNase digestion (Qiagen, Manchester, UK) from 

each cell line at each time point in triplicate. RNA quality/concentration were checked by LabChip 

Bioanalyzer and Nanodrop and RNA-seq libraries were prepared using the Agilent sureselect stranded 

RNAseq protocol, which allows polyA selection but was modified to work with ribodepletion. 

Libraries were sequenced on an Illumina HiSeq2500. Raw reads were trimmed using trim-galore, 

utilising cutadapt14 (v0.4.0) to remove the Illumina Sequencing Adapter (AGATCGGAAGAGC) at 

the 3' end. Additionally, 12 bases were also trimmed from the 5' end of the reads since they showed a 

biased distribution. Reads were mapped to the human transcriptome using the human genome sequence 

GRCh38 and v82 gene annotations downloaded from Ensembl. Mapping was performed using tophat 

15 (v2.1.0) and bowtie 16 (v1.1.0), enabling the fr-firststrand option of tophat to restrict mapping to the 

sense strand of the transcript. Reads were assigned to genes using the featureCounts program 17 

(v1.5.0), counting fragments and ignoring multi-mapping reads, and restricted to the sense strand. The 

resulting matrix of read counts was analysed using R. RNA-seq data are available from the GEO data 

base (https://www.ncbi.nlm.nih.gov/geo/), accession numbers GSE XXXXXXXX. 
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Transcriptomic analysis 

The three batches were internally controlled and hence analysed separately as independent data sets. 

Each set was normalised using the DESeq package in R. Principal component analysis (PCA) revealed 

tight clustering of triplicates within each batch. For both data sets, the dominant principal component 

(PC1) associated with myogenic differentiation time and ordered samples by progression of 

differentiation, regardless of cell type. The second principal component (PC2) associated with FSHD 

status. Hence the two dominant components of variability of our data associate directly with the 

variables of interest. 

 

For the larger dataset a multivariate regression approach was employed to analyse how gene expression 

varied with myogenic differentiation and cell type, an interaction term was also included to determine 

how gene expression dynamics over differentiation time was influenced by cell type. The regression 

model for each gene i was as follows: 

 

𝐸 ൌ 𝑎𝐹𝑆𝐻𝐷௦௧௧௨௦  𝑏𝑇𝑖𝑚𝑒ௗ௧௧  𝑐ሺ𝐹𝑆𝐻𝐷௦௧௧௨௦: 𝑇𝑖𝑚𝑒ௗ௧௧ሻ 

 

For each gene the model was fit and the significance of the positivity or negativity of each co-efficient 

was determined at the 5% level. The genes corresponding to the top 500 positive and negative co-

efficient values were selected for GSEA, which was performed using a Fisher’s Exact test against the 

gene sets described by the Molecular Signatures Database (39). 

 

For evaluation of the expression of 500 genes found most significantly dynamically repressed in 

FSHD, we obtained the average of these genes in each sample corresponding to 16Abic and 16Ubic 

myoblasts and myotubes and performed a t-test to compare mean expression across samples, 

significance was assessed at the 5% level. For the evaluation of the expression of PPARGC1A and 

ESRRA gene expression in the FSHD myoblasts (54-2, 54-A4, 16Abic and 12Abic) alongside matched 

controls (54-A10, 16Ubic and 12Ubic), the normalized expression levels were z-normalised within 

patient-control group and an unpaired Wilcoxon test was employed to compare FSHD cell line 

expression to control, with significance assessed at the 5% level. 

 

Immunolabelling 

For immunolabelling, immortalized myoblasts were plated at 25,000 cells/well in 96 well plates and 

cultured for 48 hours in proliferation medium, while primary myoblasts were cultured for 24 hours, 
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before being switched to differentiation medium for 3 days. Cells were then fixed with 4% 

paraformaldehyde/PBS for 15 mins, washed thrice with PBS, then permeabilised with 0.1% Triton/PBS 

for 10 mins, washed thrice again with PBS then blocked in 10% goat serum (v/v) (DakoCytomation, 

Glostrup, Denmark) for 30 min before being incubated on a rocker overnight at 4oC with primary 

antibody against MyHC (MF-20, DSHB, IA, USA) at 1/400 in PBS supplemented with 1% goat 

serum). Cells were then washed thrice with PBS before being incubated at room temperature for 30 

min with AlexFluor conjugated secondary antibodies (eBioscience, Hertfordshire, UK) diluted 1:400 in 

PBS supplemented with 1% goat serum, washed thrice again with PBS and incubated at room 

temperature for 10 mins in 1:1000 DAPI (4’,6-diamidino-2-phenylindole)/PBS. Samples were imaged 

on a Zeiss Axiovert 200 M microscope using a Zeiss AxioCam HRm and AxioVision software version 

4.4 (Zeiss). At least 3 fields were taken at 100x magnification for each well, resulting in quantification 

of over 500 cells per well. 

 

Time course imaging 

Immortalised myoblast cell lines control 54-6 and FSHD 54-12 were plated in triplicate at confluency 

at the centre of a 96 well plate (25,000 cells per well) and induced to differentiate with a high volume 

of differentiation medium (350l/well to prevent medium evaporation during the 5 days of imaging). 

All remaining empty wells in the 96 well plate were filled with DMEM Glutamax to provide humidity 

to the culture chamber. Immediately after addition of differentiation medium cells, plates were placed 

into a Solent Scientific chamber at 37oC and 5% CO2. Cells were imaged using an Eclipse Ti-E Live 

Cell Imaging System by taking a 100x magnification, phase contrast image every 5 minutes from each 

well over a total of 5 days; this generated 1440 images per well per cell line, per repeat, resulting in a 

total of 8640 images. 

 

Image Analysis 

To analyse the images generated we wrote a high throughput image analysis software in R, using the 

EBImage package (36) (software provided as Supplementary File 1). The software can autonomously 

process hundreds of high quality, large images in the order of minutes. When analysing 

immunolabeling, each image is first split into 3 channels. For determination MyHC+ve area the 

channel displaying MyHC was passed through a low pass filter and to remove noise and binarise the 

image and a size filter was applied to remove background labelling, the positive proportion of the 

image was then quantified as MyHC+ve area (Figure 1A). The mean MyHC+ve area from 3 images 

per well was then used to calculate the mean±SEM MyHC+ve area for the triplicate wells for each cell 
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line, and areas tested against control using an unpaired two-tailed t-test. 

 

Image analysis software to interrogate the myogenesis time-course imaging data adapted the 

immunolabeling software. Each image taken in the time course was passed through a low pass filter to 

reduce noise and binarise the image, high intensity regions were filtered on size and morphology to 

remove objects not considered likely to correspond to cells and finally holes were filled in. The regions 

of high intensity following this thresholding typically corresponded to single cells. The eccentricity of 

each cell identified in each image by this thresholding was measured and the average eccentricity of the 

field was obtained for each 5 minute time point. We thus obtained a time course of eccentricities in 

triplicate for each cell line. The triplicates showed a similar pattern of changes that were distinct for 

each cell line. Differential eccentricities between cell lines were assessed by an empirical Bayes 

approach and p-value histograms confirmed that differential eccentricities were detectable between cell 

lines. Non-linear regression was used to fit polynomial curves to the mean (over the triplicates) 

eccentricity time course, for each cell line, the turning points of the curves were determined to assess 

the most extremely eccentric and non-eccentric time points for each cell line separately (Figure 2A). 

 

RT-qPCR 

Cells were plated in triplicate at 312,000 cells per well in 12 well plates, cultured for 48 hours and then 

switched to differentiation medium (treated with Biochanin A or following PGC1 siRNA-mediated 

knock-down) for three days before cells were harvested. RNA was isolated using miRNeasy kit 

(Qiagen, Manchester, UK) and reverse-transcribed using the Reverse Transcription Kit with genomic 

DNA wipeout (Qiagen, Manchester, UK); RT-qPCR was performed on a Viia7 qPCR system (Life 

Technologies) with MESA Blue qPCR MasterMix Plus and ROX reference dye (Eurogentec Ltd, 

Hampshire, UK) using TBP expression as a control. 

Primers used were as follows:  

ESRRA forward: 5’-AAGACAGCAGCCCCAGTGAA-3’ 

ESRRA reverse: 5’-ACACCCAGCACCAGCACCT-3’ 

PPARGC1A forward: 5’-GTGAAATTGAGGAGTGCACAGTAAA-3’ 

PPARGC1A reverse: 5’-TCACAGGTATAACGGTAGGTAATGAAA-3’ 

TBP forward: 5’-CGGCTGTTTAACTTCGCTTC-3’  

TBP reverse: 5’-CACACGCCAAGAAACAGTGA-3’ 
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siRNA Knock-down 

Cells were plated in triplicate at 80,000 cells per well in 6 well plates and incubated for 24 hours before 

each well was transfected. PGC1 mixed or control scrambled siRNA (Qiagen, Manchester, UK - 

Catalogue number 1027416). Solutions containing 1.5 l of either 4 mixed siRNAs (10 M) against 

PGC1 or control siRNA (10 M) and 150 l OptiMem and 9 l RNAiMax with 150 l OptiMem, 

were incubated at room temperature for 5 mins before mixing, then incubated at room temperature for a 

further 20 mins. Cells were then incubated in the mixture diluted at 1/8 in proliferation medium for 24 

hours at 37oC and 5% CO2, before trypsinisation and replating at a density of 25,000 cells per well in 

96 well plates. Cells were cultured for 2 days before switching to differentiation medium for 3 days 

followed by fixation and immunolabelling. 

 

Acknowledgements 

CRSB was supported by a CoMPLEX-UCL PhD studentship, a Foulkes Foundation Fellowship and the 

FSH Society (FSHS-82016-03). MP was funded by the Muscular Dystrophy UK (RA3/3052/1) and an 

FSH Society Postdoctoral Fellowship (FSHS-82017-05). JP is in receipt of a Wellcome Trust PhD 

Studentship WT - 203949/Z/16/Z. NF was supported by the King’s Health Partners R&D Challenge 

Fund (R151006) and the Medical Research Council (MR/P023215/1). HH was funded by the British 

Heart Foundation (PG/13/1930059). SS was supported by the Royal Society, the EPSRC and the 

National Natural Science Foundation of China. We are thankful for support costs from the FSH Society 

Shack Family and Friends research grant (FSHS-82013-06), Association Française contre les 

Myopathies (17865) and the British Heart Foundation (SP/08/004). The Zammit laboratory was 

additionally supported by BIODESIGN (262948) from EU FP7. We are extremely grateful to Vincent 

Mouly, Silvère van der Maarel and Charles Emerson for sharing human cells lines. Library preparation 

and sequencing was conducted in the BRC Genomics Research Platform Laboratory at Guy's Hospital, 

London, UK. This research was supported by the National Institute for Health Research (NIHR) 

Biomedical Research Centre based at Guy's and St Thomas' NHS Foundation Trust and King's College 

London. The views expressed are those of the author(s) and not necessarily those of the NHS, the 

NIHR or the Department of Health. The authors acknowledge CytoMed, the IRCAN’s Flow Cytometry 

Facility. The materials of CytoMed was supported by le FEDER, Ministère de l’Enseignement 

Supérieur, Région Provence Alpes-Côte d’Azur, Conseil Départemental 06, ITMO Cancer Aviesan 

(plan cancer) and l’Inserm. Monoclonal antibody MF20 developed by D.A. Fischman was obtained 

from the Developmental Studies Hybridoma Bank, created by the NICHD of the NIH and maintained 

D
ow

nloaded from
 https://academ

ic.oup.com
/hm

g/advance-article-abstract/doi/10.1093/hm
g/ddy405/5194059 by King's C

ollege London user on 07 D
ecem

ber 2018



 22

at The University of Iowa, Department of Biology, Iowa City, IA 52242. 

Conflict of Interest Statement 

The authors declare no conflicts of interest  

 

References 

 

1. Deenen,J.C.W., Arnts,H., van der Maarel,S.M., Padberg,G.W., Verschuuren,J.J.G.M., Bakker,E., 

Weinreich,S.S., Verbeek,A.L.M. and van Engelen,B.G.M. (2014) Population-based incidence and 

prevalence of facioscapulohumeral dystrophy. Neurology, 83, 1056–1059. 

2. Orrell,R.W. (2011) Facioscapulohumeral dystrophy and scapuloperoneal syndromes. In Handbook of 

clinical neurology.Vol. 101, pp. 167–180. 

3. Tawil,R., van der Maarel,S.M. and Tapscott,S.J. (2014) Facioscapulohumeral dystrophy: the path to 

consensus on pathophysiology. Skelet. Muscle, 4, 12. 

4. Osborne,R.J., Welle,S., Venance,S.L., Thornton,C.A. and Tawil,R. (2007) Expression profile of 

FSHD supports a link between retinal vasculopathy and muscular dystrophy. Neurology, 68, 569–

577. 

5. Fitzsimons,R.B. (2011) Retinal vascular disease and the pathogenesis of facioscapulohumeral 

muscular dystrophy. A signalling message from Wnt? Neuromuscul. Disord., 21, 263–271. 

6. Lutz,K.L., Holte,L., Kliethermes,S.A., Stephan,C. and Mathews,K.D. (2013) Clinical and genetic 

features of hearing loss in facioscapulohumeral muscular dystrophy. Neurology, 81, 1374–1377. 

7. Sakellariou,P., Kekou,K., Fryssira,H., Sofocleous,C., Manta,P., Panousopoulou,A., Gounaris,K. and 

Kanavakis,E. (2012) Mutation spectrum and phenotypic manifestation in FSHD Greek patients. 

Neuromuscul. Disord., 22, 339–349. 

8. Tawil,R., Storvick,D., Feasby,T.E., Weiffenbach,B. and Griggs,R.C. (1993) Extreme variability of 

expression in monozygotic twins with FSH muscular dystrophy. Neurology, 43, 345–348. 

9. Tonini,M.M.O., Passos-Bueno,M.R., Cerqueira,A., Matioli,S.R., Pavanello,R. and Zatz,M. (2004) 

Asymptomatic carriers and gender differences in facioscapulohumeral muscular dystrophy 

(FSHD). Neuromuscul. Disord., 14, 33–38. 

10. Calandra,P., Cascino,I., Lemmers,R.J.L.F., Galluzzi,G., Teveroni,E., Monforte,M., Tasca,G., 

Ricci,E., Moretti,F., van der Maarel,S.M., et al. (2016) Allele-specific DNA hypomethylation 

characterises FSHD1 and FSHD2. J. Med. Genet., 53, 348–355. 

11. Lemmers,R.J.L.F., van der Vliet,P.J., Klooster,R., Sacconi,S., Camaño,P., Dauwerse,J.G., 

Snider,L., Straasheijm,K.R., van Ommen,G.J., Padberg,G.W., et al. (2010) A unifying genetic 

D
ow

nloaded from
 https://academ

ic.oup.com
/hm

g/advance-article-abstract/doi/10.1093/hm
g/ddy405/5194059 by King's C

ollege London user on 07 D
ecem

ber 2018



 23

model for facioscapulohumeral muscular dystrophy. Science, 329, 1650–1653. 

12. Lemmers,R.J.L.F., Tawil,R., Petek,L.M., Balog,J., Block,G.J., Santen,G.W.E., Amell,A.M., van 

der Vliet,P.J., Almomani,R., Straasheijm,K.R., et al. (2012) Digenic inheritance of an SMCHD1 

mutation and an FSHD-permissive D4Z4 allele causes facioscapulohumeral muscular dystrophy 

type 2. Nat. Genet., 44, 1370–1374. 

13. van den Boogaard,M.L., Lemmers,R.J.L.F., Balog,J., Wohlgemuth,M., Auranen,M., Mitsuhashi,S., 

van der Vliet,P.J., Straasheijm,K.R., van den Akker,R.F.P., Kriek,M., et al. (2016) Mutations in 

DNMT3B Modify Epigenetic Repression of the D4Z4 Repeat and the Penetrance of 

Facioscapulohumeral Dystrophy. Am. J. Hum. Genet., 98, 1020–1029. 

14. Hendrickson,P.G., Doráis,J.A., Grow,E.J., Whiddon,J.L., Lim,J.-W., Wike,C.L., Weaver,B.D., 

Pflueger,C., Emery,B.R., Wilcox,A.L., et al. (2017) Conserved roles of mouse DUX and human 

DUX4 in activating cleavage-stage genes and MERVL/HERVL retrotransposons. Nat. Genet., 49, 

925–934. 

15. Whiddon,J.L., Langford,A.T., Wong,C.-J., Zhong,J.W. and Tapscott,S.J. (2017) Conservation and 

innovation in the DUX4-family gene network. Nat. Genet., 49, 935–940. 

16. Bosnakovski,D., Xu,Z., Ji Gang,E., Galindo,C.L., Liu,M., Simsek,T., Garner,H.R., Agha-

Mohammadi,S., Tassin,A., Coppée,F., et al. (2008) An isogenetic myoblast expression screen 

identifies DUX4-mediated FSHD-associated molecular pathologies. EMBO J., 27, 2766–2779. 

17. Banerji,C.R.S., Panamarova,M., Hebaishi,H., White,R.B., Relaix,F., Severini,S. and Zammit,P.S. 

(2017) PAX7 target genes are globally repressed in facioscapulohumeral muscular dystrophy 

skeletal muscle. Nat. Commun., 8, 2152. 

18. Relaix,F. and Zammit,P.S. (2012) Satellite cells are essential for skeletal muscle regeneration: the 

cell on the edge returns centre stage. Development, 139, 2845–2856. 

19. Barro,M., Carnac,G., Flavier,S., Mercier,J., Vassetzky,Y. and Laoudj-Chenivesse,D. (2010) 

Myoblasts from affected and non-affected FSHD muscles exhibit morphological differentiation 

defects. J. Cell. Mol. Med., 14, 275–289. 

20. Passerieux,E., Hayot,M., Jaussent,A., Carnac,G., Gouzi,F., Pillard,F., Picot,M.-C., Böcker,K., 

Hugon,G., Pincemail,J., et al. (2015) Effects of vitamin C, vitamin E, zinc gluconate, and 

selenomethionine supplementation on muscle function and oxidative stress biomarkers in patients 

with facioscapulohumeral dystrophy: A double-blind randomized controlled clinical trial. Free 

Radic. Biol. Med., 81, 158–169. 

21. Turki,A., Hayot,M., Carnac,G., Pillard,F., Passerieux,E., Bommart,S., de Mauverger,E.R., 

Hugon,G., Pincemail,J., Pietri,S., et al. (2012) Functional muscle impairment in 

D
ow

nloaded from
 https://academ

ic.oup.com
/hm

g/advance-article-abstract/doi/10.1093/hm
g/ddy405/5194059 by King's C

ollege London user on 07 D
ecem

ber 2018



 24

facioscapulohumeral muscular dystrophy is correlated with oxidative stress and mitochondrial 

dysfunction. Free Radic. Biol. Med., 53, 1068–1079. 

22. Tassin,A., Leroy,B., Laoudj-Chenivesse,D., Wauters,A., Vanderplanck,C., Le Bihan,M.-C., 

Coppée,F., Wattiez,R. and Belayew,A. (2012) FSHD Myotubes with Different Phenotypes Exhibit 

Distinct Proteomes. PLoS One, 7, e51865. 

23. Vanderplanck,C., Tassin,A., Ansseau,E., Charron,S., Wauters,A., Lancelot,C., Vancutsem,K., 

Laoudj-Chenivesse,D., Belayew,A. and Coppée,F. (2018) Overexpression of the double 

homeodomain protein DUX4c interferes with myofibrillogenesis and induces clustering of 

myonuclei. Skelet. Muscle, 8, 2. 

24. Vanderplanck,C., Ansseau,E., Charron,S., Stricwant,N., Tassin,A., Laoudj-Chenivesse,D., 

Wilton,S.D., Coppée,F. and Belayew,A. (2011) The FSHD Atrophic Myotube Phenotype Is 

Caused by DUX4 Expression. PLoS One, 6, e26820. 

25. Snider,L., Geng,L.N., Lemmers,R.J.L.F., Kyba,M., Ware,C.B., Nelson,A.M., Tawil,R., 

Filippova,G.N., van der Maarel,S.M., Tapscott,S.J., et al. (2010) Facioscapulohumeral Dystrophy: 

Incomplete Suppression of a Retrotransposed Gene. PLoS Genet., 6, e1001181. 

26. Krom,Y.D., Dumonceaux,J., Mamchaoui,K., den Hamer,B., Mariot,V., Negroni,E., Geng,L.N., 

Martin,N., Tawil,R., Tapscott,S.J., et al. (2012) Generation of Isogenic D4Z4 Contracted and 

Noncontracted Immortal Muscle Cell Clones from a Mosaic Patient. Am. J. Pathol., 181, 1387–

1401. 

27. Almada,A.E. and Wagers,A.J. (2016) Molecular circuitry of stem cell fate in skeletal muscle 

regeneration, ageing and disease. Nat. Rev. Mol. Cell Biol., 17, 267–279. 

28. Tomczak,K.K., Marinescu,V.D., Ramoni,M.F., Sanoudou,D., Montanaro,F., Han,M., Kunkel,L.M., 

Kohane,I.S. and Beggs,A.H. (2003) Expression profiling and identification of novel genes 

involved in myogenic differentiation. FASEB J., 18, 403–405. 

29. Chen,J., Schlitzer,A., Chakarov,S., Ginhoux,F. and Poidinger,M. (2016) Mpath maps multi-

branching single-cell trajectories revealing progenitor cell progression during development. Nat. 

Commun., 7, 11988. 

30. Tsumagari,K., Chang,S.-C., Lacey,M., Baribault,C., Chittur,S. V, Sowden,J., Tawil,R., 

Crawford,G.E. and Ehrlich,M. (2011) Gene expression during normal and FSHD myogenesis. 

BMC Med. Genomics, 4, 67. 

31. Cheli,S., François,S., Bodega,B., Ferrari,F., Tenedini,E., Roncaglia,E., Ferrari,S., Ginelli,E. and 

Meneveri,R. (2011) Expression profiling of FSHD-1 and FSHD-2 cells during myogenic 

differentiation evidences common and distinctive gene dysregulation patterns. PLoS One, 6, 

D
ow

nloaded from
 https://academ

ic.oup.com
/hm

g/advance-article-abstract/doi/10.1093/hm
g/ddy405/5194059 by King's C

ollege London user on 07 D
ecem

ber 2018



 25

e20966. 

32. Finck,B.N. and Kelly,D.P. (2006) PGC-1 coactivators: inducible regulators of energy metabolism 

in health and disease. J. Clin. Invest., 116, 615–622. 

33. Stein,R.A., Chang,C.-Y., Kazmin,D.A., Way,J., Schroeder,T., Wergin,M., Dewhirst,M.W. and 

McDonnell,D.P. (2008) Estrogen-related receptor alpha is critical for the growth of estrogen 

receptor-negative breast cancer. Cancer Res., 68, 8805–8812. 

34. Suetsugi,M., Su,L., Karlsberg,K., Yuan,Y.-C. and Chen,S. (2003) Flavone and isoflavone 

phytoestrogens are agonists of estrogen-related receptors. Mol. Cancer Res., 1, 981–991. 

35. Homma,S., Chen,J.C.J., Rahimov,F., Beermann,M. Lou, Hanger,K., Bibat,G.M., Wagner,K.R., 

Kunkel,L.M., Emerson,C.P., Miller,J.B., et al. (2012) A unique library of myogenic cells from 

facioscapulohumeral muscular dystrophy subjects and unaffected relatives: family, disease and 

cell function. Eur. J. Hum. Genet., 20, 404–410. 

36. Pau,G., Fuchs,F., Sklyar,O., Boutros,M. and Huber,W. (2010) EBImage--an R package for image 

processing with applications to cellular phenotypes. Bioinformatics, 26, 979–81. 

37. White,R.B., Biérinx,A.-S., Gnocchi,V.F. and Zammit,P.S. (2010) Dynamics of muscle fibre growth 

during postnatal mouse development. BMC Dev. Biol., 10, 21. 

38. Knopp,P., Krom,Y.D., Banerji,C.R.S., Panamarova,M., Moyle,L.A., den Hamer,B., van der 

Maarel,S.M. and Zammit,P.S. (2016) DUX4 induces a transcriptome more characteristic of a less-

differentiated cell state and inhibits myogenesis. J. Cell Sci., 129, 3816–3831. 

39. Subramanian,A., Tamayo,P., Mootha,V.K., Mukherjee,S., Ebert,B.L., Gillette,M.A., Paulovich,A., 

Pomeroy,S.L., Golub,T.R., Lander,E.S., et al. (2005) Gene set enrichment analysis: a knowledge-

based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. U. S. A., 

102, 15545–15550. 

40. Balog,J., Thijssen,P.E., Shadle,S., Straasheijm,K.R., van der Vliet,P.J., Krom,Y.D., van den 

Boogaard,M.L., de Jong,A., F Lemmers,R.J.L., Tawil,R., et al. (2015) Increased DUX4 

expression during muscle differentiation correlates with decreased SMCHD1 protein levels at 

D4Z4. Epigenetics, 10, 1133–1142. 

41. Balog,J., Thijssen,P.E., de Greef,J.C., Shah,B., van Engelen,B.G.M., Yokomori,K., Tapscott,S.J., 

Tawil,R. and van der Maarel,S.M. (2012) Correlation analysis of clinical parameters with 

epigenetic modifications in the DUX4 promoter in FSHD. Epigenetics, 7, 579–584. 

42. Zeng,W., de Greef,J.C., Chen,Y.-Y., Chien,R., Kong,X., Gregson,H.C., Winokur,S.T., Pyle,A., 

Robertson,K.D., Schmiesing,J.A., et al. (2009) Specific loss of histone H3 lysine 9 trimethylation 

and HP1gamma/cohesin binding at D4Z4 repeats is associated with facioscapulohumeral 

D
ow

nloaded from
 https://academ

ic.oup.com
/hm

g/advance-article-abstract/doi/10.1093/hm
g/ddy405/5194059 by King's C

ollege London user on 07 D
ecem

ber 2018



 26

dystrophy (FSHD). PLoS Genet., 5, e1000559. 

43. Banerji,C.R.S., Knopp,P., Moyle,L.A., Severini,S., Orrell,R.W., Teschendorff,A.E. and 

Zammit,P.S. (2014) Beta-catenin is central to DUX4-driven network rewiring in 

facioscapulohumeral muscular dystrophy. J. R. Soc. Interface, 12, 20140797–20140797. 

44. Block,G.J., Narayanan,D., Amell,A.M., Petek,L.M., Davidson,K.C., Bird,T.D., Tawil,R., 

Moon,R.T. and Miller,D.G. (2013) Wnt/β-catenin signaling suppresses DUX4 expression and 

prevents apoptosis of FSHD muscle cells. Hum. Mol. Genet., 22, 4661–4672. 

45. Winokur,S.T., Chen,Y.-W., Masny,P.S., Martin,J.H., Ehmsen,J.T., Tapscott,S.J., van der 

Maarel,S.M., Hayashi,Y. and Flanigan,K.M. (2003) Expression profiling of FSHD muscle 

supports a defect in specific stages of myogenic differentiation. Hum. Mol. Genet., 12, 2895–2907. 

46. Dmitriev,P., Bou Saada,Y., Dib,C., Ansseau,E., Barat,A., Hamade,A., Dessen,P., Robert,T., 

Lazar,V., Louzada,R.A.N., et al. (2016) DUX4-induced constitutive DNA damage and oxidative 

stress contribute to aberrant differentiation of myoblasts from FSHD patients. Free Radic. Biol. 

Med., 99, 244–258. 

47. Powles,T.J., Howell,A., Evans,D.G., McCloskey,E. V, Ashley,S., Greenhalgh,R., Affen,J., 

Flook,L.A. and Tidy,A. (2008) Red clover isoflavones are safe and well tolerated in women with a 

family history of breast cancer. Menopause Int., 14, 6–12. 

48. Geller,S.E., Shulman,L.P., van Breemen,R.B., Banuvar,S., Zhou,Y., Epstein,G., Hedayat,S., 

Nikolic,D., Krause,E.C., Piersen,C.E., et al. (2009) Safety and efficacy of black cohosh and red 

clover for the management of vasomotor symptoms: a randomized controlled trial. Menopause, 

16, 1156–1166. 

49. Sacconi,S., Salviati,L. and Desnuelle,C. (2015) Facioscapulohumeral muscular dystrophy. Biochim. 

Biophys. Acta, 1852, 607–14. 

50. Schreiber,S.N., Emter,R., Hock,M.B., Knutti,D., Cardenas,J., Podvinec,M., Oakeley,E.J. and 

Kralli,A. (2004) The estrogen-related receptor   (ERR ) functions in PPAR  coactivator 1  (PGC-

1 )-induced mitochondrial biogenesis. Proc. Natl. Acad. Sci., 101, 6472–6477. 

51. Tam,I.S. and Giguère,V. (2016) There and back again: The journey of the estrogen-related 

receptors in the cancer realm. J. Steroid Biochem. Mol. Biol., 157, 13–19. 

52. Valle,I., Alvarezbarrientos,A., Arza,E., Lamas,S. and Monsalve,M. (2005) PGC-1α regulates the 

mitochondrial antioxidant defense system in vascular endothelial cells. Cardiovasc. Res., 66, 562–

573. 

53. Chen,S.-D., Yang,D.-I., Lin,T.-K., Shaw,F.-Z., Liou,C.-W. and Chuang,Y.-C. (2011) Roles of 

oxidative stress, apoptosis, PGC-1α and mitochondrial biogenesis in cerebral ischemia. Int. J. Mol. 

D
ow

nloaded from
 https://academ

ic.oup.com
/hm

g/advance-article-abstract/doi/10.1093/hm
g/ddy405/5194059 by King's C

ollege London user on 07 D
ecem

ber 2018



 27

Sci., 12, 7199–7215. 

54. Arany,Z., Foo,S.-Y., Ma,Y., Ruas,J.L., Bommi-Reddy,A., Girnun,G., Cooper,M., Laznik,D., 

Chinsomboon,J., Rangwala,S.M., et al. (2008) HIF-independent regulation of VEGF and 

angiogenesis by the transcriptional coactivator PGC-1α. Nature, 451, 1008–1012. 

55. Saint-Geniez,M., Jiang,A., Abend,S., Liu,L., Sweigard,H., Connor,K.M. and Arany,Z. (2013) PGC-

1α regulates normal and pathological angiogenesis in the retina. Am. J. Pathol., 182, 255–265. 

56. Statland,J.M., Odrzywolski,K.J., Shah,B., Henderson,D., Fricke,A.F., van der Maarel,S.M., 

Tapscott,S.J. and Tawil,R. (2015) Immunohistochemical Characterization of Facioscapulohumeral 

Muscular Dystrophy Muscle Biopsies. J. Neuromuscul. Dis., 2, 291–299. 

57. Olesen,J., Ringholm,S., Nielsen,M.M., Brandt,C.T., Pedersen,J.T., Halling,J.F., Goodyear,L.J. and 

Pilegaard,H. (2013) Role of PGC-1α in exercise training- and resveratrol-induced prevention of 

age-associated inflammation. Exp. Gerontol., 48, 1274–1284. 

58. Frisullo,G., Frusciante,R., Nociti,V., Tasca,G., Renna,R., Iorio,R., Patanella,A.K., Iannaccone,E., 

Marti,A., Rossi,M., et al. (2011) CD8+ T Cells in Facioscapulohumeral Muscular Dystrophy 

Patients with Inflammatory Features at Muscle MRI. J. Clin. Immunol., 31, 155–166. 

59. Rahnert,J.A., Zheng,B., Hudson,M.B., Woodworth-Hobbs,M.E. and Price,S.R. (2016) 

Glucocorticoids Alter CRTC-CREB Signaling in Muscle Cells: Impact on PGC-1α Expression 

and Atrophy Markers. PLoS One, 11. 

60. Chan,M.C. and Arany,Z. (2014) The many roles of PGC-1α in muscle — recent developments. 

Metabolism, 63, 441–451. 

61. Miura,S., Kawanaka,K., Kai,Y., Tamura,M., Goto,M., Shiuchi,T., Minokoshi,Y. and Ezaki,O. 

(2007) An Increase in Murine Skeletal Muscle Peroxisome Proliferator-Activated Receptor-γ 

Coactivator-1α (PGC-1α) mRNA in Response to Exercise Is Mediated by β-Adrenergic Receptor 

Activation. Endocrinology, 148, 3441–3448. 

62. Kissel,J.T., McDermott,M.P., Mendell,J.R., King,W.M., Pandya,S., Griggs,R.C., Tawil,R. and 

FSH-DY Group (2001) Randomized, double-blind, placebo-controlled trial of albuterol in 

facioscapulohumeral dystrophy. Neurology, 57, 1434–1440. 

63. Kissel,J.T., McDermott,M.P., Natarajan,R., Mendell,J.R., Pandya,S., King,W.M., Griggs,R.C. and 

Tawil,R. (1998) Pilot trial of albuterol in facioscapulohumeral muscular dystrophy. FSH-DY 

Group. Neurology, 50, 1402–1406. 

64. van der Kooi,E.L., Vogels,O.J.M., van Asseldonk,R.J.G.P., Lindeman,E., Hendriks,J.C.M., 

Wohlgemuth,M., van der Maarel,S.M. and Padberg,G.W. (2004) Strength training and albuterol in 

facioscapulohumeral muscular dystrophy. Neurology, 63, 702–708. 

D
ow

nloaded from
 https://academ

ic.oup.com
/hm

g/advance-article-abstract/doi/10.1093/hm
g/ddy405/5194059 by King's C

ollege London user on 07 D
ecem

ber 2018



 28

65. van der Kooi,E.L., Kalkman,J.S., Lindeman,E., Hendriks,J.C.M., van Engelen,B.G.M., 

Bleijenberg,G. and Padberg,G.W. (2007) Effects of training and albuterol on pain and fatigue in 

facioscapulohumeral muscular dystrophy. J. Neurol., 254, 931–940. 

66. Payan,C.A., Hogrel,J.Y., Hammouda,E.H., Lacomblez,L., Ollivier,G., Doppler,V., Eymard,B., 

Attarian,S., Pouget,J., Desnuelle,C., et al. (2009) Periodic salbutamol in facioscapulohumeral 

muscular dystrophy: a randomized controlled trial. Arch. Phys. Med. Rehabil., 90, 1094–1101. 

 

 

 

  

D
ow

nloaded from
 https://academ

ic.oup.com
/hm

g/advance-article-abstract/doi/10.1093/hm
g/ddy405/5194059 by King's C

ollege London user on 07 D
ecem

ber 2018



 29

Figure Legends 

 

Figure 1: Automated Image analysis demonstrates that FSHD 54-12, 16Abic and MD-FSHD cells 

form smaller myotubes  

(A) Schema showing how image analysis software performs an automated image preprocessing of an 

MyHC immunolabelled image counterstained with DAPI and quantifies the MyHC+ve area. 

(B) Six FSHD myoblast cell lines (54-2, 54-A5, 54-12, 16Abic, 15Abic and 12Abic) and matched 

controls (54-6, 16Ubic, 15Ubic and 12Ubic) were plated in triplicate at 25,000 cells per well of a 96 

well plate and induced to differentiate for 3 days. Primary FSHD cells MD-FSHD and controls GE-

CTRL were similarly analysed. Following culture, myotubes were fixed and immunolabelled for 

MyHC and counterstained with DAPI to identify nuclei (Magnification: x100).  

(C) At least 3 fields were imaged per well and mean MyHC+ve area was quantified from 3 wells/line 

using the automated image analysis software. FSHD 54-12, 16Abic and MD-FSHD demonstrated 

significantly reduced mean MyHC+ve area relative to matched controls 54-6, 16Ubic and GE-CTRL 

respectively. Data is mean±SEM (n=3 wells per line), where an asterisk denotes significant difference 

between the MyHC+ve area in FSHD lines to matched controls (p<0.05) using an unpaired two-tailed 

t-test.  
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Figure 2: High-throughput time course imaging reveals morphological differences between 

myogenesis in FSHD and control myoblasts  

(A) Schema showing how image analysis software processes and quantifies the eccentricity/elongation 

of cells in a phase contrast image of differentiating myoblasts. 

(B) FSHD 54-12 and matched control 54-6 myoblasts were plated in triplicate in 96 well plates and 

induced to differentiate over 5 days. Cells were imaged every 5 minutes over the differentiation process 

and the images processed by our software. Mean eccentricities for each cell line are plotted and a 

polynomial curve of best fit is shown. An empirical Bayes approach was employed to ascertain time 

points that showed significant differences in eccentricities between FSHD 54-6 and control 54-12 cell 

lines. Thin vertical lines show time points which reached significance at the 5% level, and are coloured 

yellow to red in order of significance. Thick vertical green lines correspond to time points selected for 

investigation by RNA-sequencing. After day 3.5 (last vertical green line) myotubes began contracting 

and detaching from the plates.  
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Figure 3: Transcriptomic analysis of FSHD myogenesis reveals suppression of PGC1 and ERR  

(A) A multivariate regression model was fit to the time course RNA-seq data describing the control 54-

6 and FSHD 54-12 myoblasts during myogenesis. Co-efficient ai attains positive values if gene i is up-

regulated in FSHD myoblasts vs controls, and negative values if down-regulated. Co-efficient bi attains 

positive values if gene i is up-regulated in during myogenesis, and negative values if down-regulated. 

Co-efficient ci attains positive values if gene i is up-regulated during FSHD myogenesis but not in 

control myogenesis, and negative values if down-regulated. As an example, time course expression 

plots are shown for the genes with the highest co-efficient values for co-efficient ai, bi and ci, where 

thick lines represent mean expression across triplicates and thin lines denote maximum and minimum 

expression values observed across triplicates. 

(B) Bar plot displays log10 enrichment p-values for the top 5 enriched gene sets among the 500 genes 

with the most negative ci co-efficient (i.e. those suppressed in FSHD myogenesis). We see clear 

enrichment for target genes of ERR and genes involved in mitochondrial processes.  

(C) Expression of ESRRA (ERR) in FSHD 54-12 and matched control 54-6 myoblasts from RNA-seq 

analysis. Significant repression in FSHD myogenesis begins from day 1 of differentiation. Thick lines 

represent mean expression across triplicates and thin lines denote maximum and minimum expression 

values observed across triplicates. 

(D) Expression of PPARGC1A (PGC1) in FSHD 54-12 and matched control 54-6 myoblasts from 

RNA-seq analysis. Significant repression in FSHD myoblasts occurs at all time points analysed. Thick 

lines represent mean expression across triplicates and thin lines denote maximum and minimum 

expression values observed across triplicates. 

(E) The 500 genes with the most negative ci co-efficient (i.e. those suppressed in FSHD myogenesis) 

identified in the data set of the FSHD 54-12 and control 54-6 myoblasts were tested on RNA-Seq data 

from FSHD 16Abic and control 16Ubic at time 0 - confluent myoblasts (myob) and time 5040 mins - 

mature myotubes (Myot). Box-plots demonstrate that the mean expression of these 500 genes with the 

most negative ci co-efficient was also significantly lower in 16Abic FSHD myotubes vs 16Ubic control 

myotubes. The box represents the interquartile range (IQR), with the median indicated by a line. 

Whiskers denote min (1.5*IQR, max (observed value)); values were tested using an unpaired two-

tailed t-test.  

(F) Expression of PPARGC1A (PGC1) is suppressed in RNA-Seq from FSHD 16Abic, 12Abic, 54-2 

and 54-A5 cell lines at both time 0 - confluent myoblasts and time 5040 mins -mature myotube stage, 

compared to control 16Ubic, 12Ubic, 54-A10 cell lines. The box represents the interquartile range 
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(IQR), with the median indicated by a line. Whiskers denote min (1.5*IQR, max (observed value)); 

values were z-normalised within FSHD-control groups and tested using an unpaired Wilcoxon test. 

(G) Expression of ESRRA (ERR) is suppressed only in RNA-Seq from FSHD 16Abic, 12Abic, 54-2 

and 54-A5 cell lines at the time 5040 mins -mature myotube stage compared to control 16Ubic, 

12Ubic, 54-A10 cell lines. The box represents the interquartile range (IQR), with the median indicated 

by a line. Whiskers denote min (1.5*IQR, max (observed value)); values were z-normalised within 

FSHD-control groups and tested using an unpaired Wilcoxon test. 
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Figure 4: siRNA-mediated knock-down of PGC1 is sufficient to cause the hypotrophic FSHD 

myotube phenotype, which can be rescued by the ERR agonist Biochanin A. 

(A) RT-qPCR demonstrates that 4 combined siRNAs against PGC1 successfully suppresses PGC1 

(PPARGC1A) in control 54-6 myoblasts. Data expressed as meanSEM where an asterisk denotes 

significant difference (p<0.05) using an unpaired two-tailed t-test. 

(B) Control 54-6 myoblasts were transfected with a mixture of 4 siRNAs against PGC1 or a 

scrambled siRNA control and induced to differentiate for 3 days. Control 54-6 myoblasts were also 

transfected with combined siRNAs against PGC1 or a scrambled siRNA control but also exposed to 

10 M Biochanin A during 3 days of differentiation. Myotubes were then immunolabelled for MyHC 

and all nuclei counterstained with DAPI (Magnification: x100). 

(C) PGC1 knock-down significantly reduced MyHC+ve area. However, this reduction could be 

rescued to control levels by administration of 10 M Biochanin A to the differentiation medium. Data 

expressed as meanSEM (n=3 wells per line) where an asterisk denotes significant difference between 

the MyHC+ve area in control siRNA/untreated versus treated conditions (p<0.05) using an unpaired 

two-tailed t-test. 
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Figure 5: ERR agonist Biochanin A rescues the FSHD hypotrophic myotube phenotype. 

(A) FSHD 54-12 and 16Abic myoblast lines and primary MD-FSHD alongside matched controls 54-6, 

16Ubic and GE-CTRL were induced to differentiate with/without 10 M Biochanin A for 3 days, fixed 

and immunolabelled for MyHC and nuclei counterstained with DAPI (Magnification: x100). 

(B) RT-qPCR demonstrates that 10 M Biochanin A significantly increases expression of ESRRA in 

FSHD 54-12 myotubes. Data expressed as meanSEM (n=3 wells per line) where an asterisk denotes 

significant difference (p<0.05) using an unpaired two-tailed t-test. 

(C and D) FSHD myoblast lines 54-12 and 16Abic and primary FSHD cells MD-FSHD alongside 

matched controls 54-6, 16Ubic and GE-CTRL were induced to differentiate with/without 10 M 

Biochanin A for 3 days, fixed, immunolabelled for MyHC and MyHC+ve area quantified. All 3 FSHD 

cell lines demonstrated increased MyHC+ve area with Biochanin A, whilst control myotubes were 

unaffected. Data expressed as meanSEM (n=3-5 wells per line), where an asterisk denotes significant 

difference between the MyHC+ve area in untreated versus Biochanin A treated myotubes (p<0.05) 

using an unpaired two-tailed t-test.  
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Figure 6: ERR agonists Daidzein or Genistein rescue the FSHD hypotrophic myotube 

phenotype. 

(A) FSHD myoblast lines 54-12 and 16Abic and primary FSHD cells MD-FSHD alongside matched 

controls 54-6, 16Ubic and GE-CTRL were induced to differentiate with/without 10 M Genistein or 10 

M Daidzein for 3 days, myotubes were then fixed, immunolabelled for MyHC and nuclei 

counterstained with DAPI (Magnification: x100).  

(B-C) Quantifying MyHC+ve area showed that Genistein or Daidzein increased MyHC+ area in 

myotubes of all FSHD cell lines, as well as in myotubes of the control 54-6 and 16Ubic lines, but not in 

primary control myotubes. Data expressed as meanSEM (n=3 wells per line) where an asterisk 

denotes significant difference from untreated (p<0.05) using an unpaired two-tailed t-test. 
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Figure 7: Suppression of PGC1/ERR expression in FSHD and rescue by ERR agonists  

Schematic summarising that PGC1/ERR suppression in FSHD drives an FSHD hypotrophic 

phenotype that can be rescued by ERR agonists Biochanin A, Daidzein or Genistein. Suppression of 

the ERR/PGC1 pathway in FSHD patients could also contribute to know features of FSHD 

pathology including oxidative stress sensitivity, aberrant vasculature and inflammation. 
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Supplementary Information Legends 

 

Supplementary File 1: Image analysis software 

R script for a shiny based user interface for the high-throughput image analysis software employed for 

processing and quantifying immunolabelling data. 

 

Supplementary Video 1: Videos of control 54-6 and FSHD 54-12 myoblasts differentiating over 5 

days. 

A) Representative video of control 54-6 myoblast differentiation 

B) Representative video of FSHD 54-12 myoblast differentiation 

 

Figure S1 - Images of control 54-6 and FSHD 54-12 myoblasts at the 8 time points selected for 

RNA-sequencing by consideration of eccentricity time-course of morphological changes. 

Images corresponding to each of the 8 time points selected from differentiating control 54-6 and FSHD 

54-12 myoblasts for transcriptomic analysis (Magnification: x100) are displayed alongside the time-

course of average eccentricity. 

 

Figure S2 – Images of control 54-6 and FSHD 54-12 myoblasts at time of harvesting for RNA-

sequencing 

Phase contrast images of control 54-6 and FSHD 54-12 myoblasts taken at time of harvesting the wells 

for RNA-sequencing, to confirm morphological staging matched that observed during the selection of 

the time points (Magnification: x100). 

 

Table S1: Description of cell lines analysed 

Cell line, FSHD status, Relationship to matched control cell line, Gender, Muscle Biopsied and 

Reference for the myoblast lines investigated. 

 

Table S2: GSEA results for genes up-regulated in FSHD 

GSEA results for the top 500 genes positively associated with the co-efficient ai in the multivariate 

analysis of the time-course RNA-seq data describing control 54-6 and FSHD 54-12 myoblast 

differentiation. These gene sets are up-regulated in FSHD. 

 

Table S3: GSEA results for genes down-regulated in FSHD 
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GSEA results for the top 500 genes negatively associated with the co-efficient ai in the multivariate 

analysis of the time-course RNA-seq data describing control 54-6 and FSHD 54-12 myoblast 

differentiation. These gene sets are down-regulated in FSHD. 

 

Table S4: GSEA results for genes up-regulated during myogenesis 

GSEA results for the top 500 genes positively associated with the co-efficient bi in the multivariate 

analysis of the time-course RNA-seq data describing control 54-6 and FSHD 54-12 myoblast 

differentiation. These gene sets are up-regulated during myogenesis. 

 

Table S5: GSEA results for genes down-regulated during myogenesis 

GSEA results for the top 500 genes negatively associated with the co-efficient bi in the multivariate 

analysis of the time-course RNA-seq data describing control 54-6 and FSHD 54-12 myoblast 

differentiation. These gene sets are down-regulated during myogenesis. 

 

Table S6: GSEA results for genes up-regulated during FSHD myogenesis 

GSEA results for the top 500 genes positively associated with the co-efficient ci in the multivariate 

analysis of the time-course RNA-seq data describing control 54-6 and FSHD 54-12 myoblast 

differentiation. These gene sets are up-regulated specifically during FSHD myogenesis. 

 

Table S7: GSEA results for genes down-regulated during FSHD myogenesis 

GSEA results for the top 500 genes negatively associated with the co-efficient ci in the multivariate 

analysis of the time-course RNA-seq data describing control 54-6 and FSHD 54-12 myoblast 

differentiation. These gene sets are down-regulated specifically during FSHD myogenesis. 
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Abbreviations 

FSHD - facioscapulohumeral muscular dystrophy 

DUX4 - double homeobox 4 

SMCHD1- structural maintenance of chromosomes flexible hinge domain containing 1 

DNMT3B - DNA methyltransferase 3 beta 

ERR - oestrogen-related receptor   

PGC1 - Peroxisome proliferator-activated receptor gamma coactivator 1- 

MyHC - myosin heavy chain 

DAPI - 4’ ,6-diamidino-2-phenylindole 

GSEA - Gene Set Enrichment Analysis  

PBS - phosphate buffered saline 

ROS - reactive oxygen species 
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