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Rigorous wave function embedding with dynamical fluctuations

Edoardo Fertitta and George H. Booth∗

Department of Physics, King’s College London, Strand, London, WC2R 2LS, U.K.
(Dated: December 7, 2018)

The dynamical fluctuations in approaches such as dynamical mean-field theory (DMFT) allow for
the self-consistent optimization of a local fragment, hybridized with a true correlated environment.
We show that these correlated environmental fluctuations can instead be efficiently captured in
a wave function perspective in a computationally cheap, frequency-independent, zero-temperature
approach. This allows for a systematically improvable, short-time wave function analogue to DMFT,
which entails a number of computational and numerical benefits. We demonstrate this approach to
solve the correlated dynamics of the paradigmatic Bethe lattice Hubbard model, as well as detailing
cluster extensions in the one-dimensional Hubbard chain where we clearly show the benefits of this
rapidly convergent description of correlated environmental fluctuations.

I. INTRODUCTION

Reliable computational probes of correlated quantum
systems are key to our understanding of competing
phases of matter and progress in materials science. De-
velopments in recent years have dramatically improved
the tools at our disposal, however, their ability has long
been stymied by the difficulty in reaching the thermo-
dynamic ’bulk’ limit of system size. It is in this regard
that recent ‘quantum cluster’ paradigms have come to
the fore1–4. These approaches rely on a mapping between
the bulk system and a simplified quantum model which
represents a fragment of the system (or ‘impurity’), and
its coupling to its surrounding environment. This sim-
plified locally correlated quantum problem can be solved
to high accuracy with a number of techniques before a
self-consistency is used to update the original system5–8.
These approaches have recently become key tools to de-
scribe lattice models9–11, materials science12,13, and even
quantum chemistry14–17. In this work, we present a step
forwards in quantum cluster approaches, with the devel-
opment of a technique which combines the advantages of
a number of existing methods, and interpolates between
the physics they capture. We demonstrate the ability to
encompass true dynamical correlation effects in challeng-
ing correlated lattice models, whilst crucially maintain-
ing a cheap, static mapping to a finite quantum impurity
problem.

The most widespread quantum cluster framework is
given by dynamical mean-field theory (DMFT), where
the coupling of the impurity to the rest of the system
is described by temporal quantum fluctuations3. This
framework is centred on a Green function description,
with a local self-energy describing the correlated physics
of the impurity. More recently, an alternative wave func-
tion approach was developed called density matrix em-
bedding theory (DMET). In this, the coupling to the
environment is described by the entanglement between
the impurity and the rest of the system, which can be
expressed exactly by the span of a set of physical de-
grees of freedom4,18. While clarifying differences in the
physics of these two approaches, we will develop an im-
proved quantum cluster method which combines many of
the strengths of both DMFT and DMET, and results in
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a computationally efficient, static method, which can be
systematically improved to include all of the physics aris-
ing from the self-consistent temporal fluctuations consid-
ered within the DMFT framework, and which are beyond
the standard DMET approach.

Before describing this new approach, it is helpful to fur-
ther consider the properties of DMFT and DMET from
which it is inspired. In DMFT, the central object is
the local Greens function of the impurity space, which
is coupled to its environment via a hybridization. This
is consequently modelled via a (formally infinite) Ander-
son impurity model. The self-consistency takes place via
a local self-energy over the impurity, which is updated
to match the correlated local Green function of the clus-
ter to the one from the lattice. By analogy, in DMET
the central object is the one-body reduced density matrix
(RDM), 〈ĉ†αĉβ〉, where {α, β} denote the nimp impurity
sites. This object is also the static limit Green function
as τ → 0+. By analogy to the local dynamic self-energy
in DMFT, DMET then attempts to match these via a
local one-body static potential, which can be considered
a high-frequency static limit of a self-energy. Because of
this, DMET has sometimes been (erroneously) considered
as a ‘static’ limit of DMFT, but this is not accurate and
stems from a fundamental limitation of DMET.

The DMET self-consistency involves finding a one-
particle (hermitian) potential spanning the impurity
space, denoted the ‘correlation potential’. This is de-
signed to match the impurity part of the lattice RDM
to the correlated RDM resulting from the solution of the
quantum cluster model. However, this is (in general) not
possible, since a correlated RDM is not non-interacting v-
representable, as pointed out by a number of researchers
before19,20. The self-consistency is therefore written as a
minimization of the difference between the subspace lat-
tice RDM and the correlated impurity RDM in a least-
squares sense14.

This correlation potential imposes that the lattice
model is always represented as a single Slater determi-
nant, which while important for the efficiency of the
method, ensures that no ‘true’ correlated (e.g. Mott)
physics is returned to the full lattice solution through the
self-consistency (as is done through the dynamical nature
of the self-energy in DMFT)21,22. The optimized lattice
solution can therefore only attempt to mimic the corre-
lated physics of the impurity cluster via static symmetry-
breaking, with all non-trivial dynamical character of the
cluster solution lost on return to the lattice. Physics be-
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yond symmetry-breaking is therefore inaccessible, whilst
in the single-site approximation no change in the lat-
tice description is possible at all. Furthermore, infinite-
dimensional lattices are no longer exact within DMET
(whilst exact in DMFT), as their correlated phase tran-
sitions are driven entirely by the dynamical nature of the
local physics3.

While these limitations mean that only in a loose sense
can DMET be described as a static approximation to
DMFT20, it does not mean that the results are necessar-
ily of worse quality. Indeed, DMET possesses a number of
computational advantages which have enabled it to reach
or surpass the accuracy of DMFT, achieving some of the
most accurate results available for the Hubbard model23,
and application in quantum chemistry14. This is due to
the relatively simple ground-state cluster problem which
results, and the highly efficient mapping from the lat-
tice. As the lattice state is constrained to be written as a
single Slater determinant, |φ〉, the entanglement between
the impurity and its environment can be exactly exposed
via a Schmidt decomposition as single-particle ‘bath’ de-
grees of freedom whose dimensionality is the same as that
of the impurity space18. This results in a unique projec-
tion from the lattice to a finite, compact quantum cluster
model which allows for a relatively efficient ground-state
solution compared to the requirement in DMFT for the
full correlated impurity Green function with a retarded
coupling or formally infinite bath.

This has enabled accurate and efficient, zero-
temperature, ground-state impurity solvers to be used,
which has allowed large impurity cells with high momen-
tum resolution to be considered8,11,24. This has even
allowed for long-range inhomogeneous phases such as
stripes to be found, which are traditionally hard in clus-
ter models24. Furthermore, the wave function description
has also allowed for traditionally inaccessible quantities to
be easily extracted. These large advantages have meant
that despite its limitations, it has nevertheless proved an
important tool for strongly correlated extended systems.

The approach proposed here extends the DMET
methodology to allow for a systematic improvement
in the resolution of the effective treatment of energy-
dependent (temporal) fluctuations in the lattice. This
results in a true correlated lattice through the self-
consistency, beyond an effective single determinant treat-
ment. This is achieved whilst remaining in an en-
tirely static and inexpensive formulation, requiring only
the ground-state solution of the resulting algebraically-
constructed finite cluster model at each step. This leads
to a method which can interpolate between the physics
of DMET and DMFT, without sacrificing the efficient
aspects of DMET which has enabled its success. We
demonstrate that even in the single-site approximation,
we can now describe correlation-driven quantum phase
transitions in the lattice without the need for symmetry-
breaking, and the ability to systematically converge to
exact infinite-dimensional results, as well as a treatment
of multiple impurity clusters.

II. METHOD

In order to surpass the limitation of DMET and intro-
duce a systematically improvable description of energy-
dependent fluctuations, the proposed approach relies on
the self-consistent matching of not just the single-particle
RDM, but the impurity hole and particle nth-order

energy-weighted density matrices, T̃
(n)
h and T̃

(n)
p respec-

tively, defined from the lattice solution as

T̃
(n)
h = PimpChole(h− e0)nC†holePimp (1)

T̃(n)
p = PimpCpart(h− e0)nC†partPimp (2)

where h is a single-particle lattice Hamiltonian with
ground state energy e0, Chole/part represent the occu-
pied (hole) and unoccupied (particle) eigenstates of h,
and Pimp is the projector onto the chosen impurity sites.
These mean-field quantities can be matched to their coun-
terparts from the correlated solution of the quantum clus-
ter model which can be computed as expectation values
of the correlated ground state many-body wavefunction
Ψ0

T
(n)
h,αβ = 〈Ψ0|c†α(Ĥclust − E0)ncβ |Ψ0〉 (3)

T
(n)
p,αβ = 〈Ψ0|cα(Ĥclust − E0)nc†β |Ψ0〉, (4)

where E0 is the correlated ground state energy of the
cluster model with Hamiltonian Ĥclust.

Despite being purely static quantities, these expecta-
tion values can be rigorously related to the character of
the dynamical single-particle spectral function of the sys-
tem, as they define the n-th order moments of the in-
dividual hole and particle distributions of the spectral
functions, with

T
(n)
h,αβ = − 1

π

∫ µ

−∞
=[Gαβ(ω + i0+)]ωndω (5)

T
(n)
p,αβ = − 1

π

∫ ∞
µ

=[Gαβ(ω + i0+)]ωndω, (6)

where G(ω) is the Green function, and µ is the chemical
potential. The zeroth (hole) moment is simply the RDM
(used for the DMET self-consistency) defining the inte-
grated weight of the hole distribution, while the higher
moments build in an increasingly well-resolved dynamical
character by defining the mean, variance, skew, bimodal
and beyond character of these individual particle and hole
distributions.

On the other hand, in imaginary-time they can also be
related to the Taylor expansion of the Green function for
short hole/particle propagation times, as

T
(n)
h =

dnG(τ)

dτn

∣∣∣∣
τ=0−

(7)

T(n)
p = (−1)(n+1) d

nG(τ)

dτn

∣∣∣∣
τ=0+

. (8)

These therefore describe the weights of the paths of in-
creasing length for holes or electrons which leave and re-
turn to the impurity space. This expansion is well-defined
for all n, and converges in the large-n limit to a unique de-
scription of the full dynamics of the single-particle propa-
gator. It should be pointed out that, while this is seen as
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FIG. 1. Overview of the embedding scheme for a 1D lattice
expanded with auxiliary orbitals. The exact projection into
the cluster space Pclust, results in a static, finite quantum
problem which contains the chosen two-site impurity cell, and
the bath space required to span the exact lattice dynamical
fluctuations in the particle and hole sectors up to a desired
order.

a short-time expansion of the Green functions, it is not
a high-energy expansion. This is because (in contrast to
the usual definition of the spectral moments) the particle
and hole moments are separately considered, rather than
their sum in the full central moment25,26. This allows
true low-energy (e.g. Mott) physics to be described on
the lattice at lower orders than constraining the central
moments of the spectrum.

Although a self-consistent matching of energy-weighted
density matrices between the lattice and cluster model
will allow for dynamical correlated effects to be returned
from the cluster to the lattice, a local static ‘correlation’
potential as optimized within DMET (vc) is insufficient to
rigorously match even the RDM (0th hole moment), and
this becomes increasingly true for higher moments19,20.
To overcome this, we supplement vc with a set of naux
auxiliary single-particle degrees of freedom, which couple
to the impurity space on the physical lattice, and to all
symmetry-equivalent ncells impurity cells. The auxiliary
hamiltonian can be written as

haux =

ncells−1∑
x=0

nimp∑
α

naux∑
k

ναk(ĉ†α+xĉk+x+h.c.)+εk ĉ
†
k+xĉk+x,

(9)
where ĉα+x denotes the annihilation operator on the
site α after translation by x impurity cells. These
auxiliary sites have energies (εk) and couplings (ναk)
to the physical impurity cell which are fit to opti-
mally mimic the correlation-driven dynamical fluctua-
tions in the lattice arising through the self-consistency
scheme. This expands the single-particle lattice hamilto-
nian, h→ h+ haux. Increasing naux only increases the
computational cost of the lattice diagonalizations and
does not affect cluster size or effort of the solver for the
resultant projected ‘cluster’ problem.

The use of an enlarged single-particle space to de-
scribe dynamical character due to a self-energy has been
used before, including non-equilibrium DMFT and exact-
diagonalization solvers where the hybridization is ex-
pressed via a non-interacting bath space27,28. In this way,
the effect of any dynamical self-energy (required to match
the lattice and cluster moments) can be expressed by in-
creasing the number of static auxiliary orbitals which cou-
ple to the physical lattice. This correlated lattice, and
the projection between the lattice and cluster model for
a two-site impurity cell is shown schematically in Fig. 1.

In a similar fashion to DMET, the construction of
Ĥclust is carried out by projecting the lattice Hamilto-

nian into the cluster space Pclust which is analytically
constructed by means of the Schmidt decomposition of
the enlarged lattice h. In this form, the entanglement
between the spaces given by the original wave function is
exposed as a linear fluctuation space which has the max-
imum number of dimensions as the smaller of the two
spaces. As discussed extensively in Refs. 14, 18, and 29,
significant simplifications emerge if the state to be decom-
posed can be written as a single-particle state, given by
the solution to a quadratic Hamiltonian, or the action of
any single-particle operator on that solution. However,
in contrast to DMET where the bath orbitals are con-
structed by Schmidt decomposing a single Slater deter-
minant, in order to ensure that the cluster spans the full

fluctuation space required to represent all desired T̃
(n)
h/p

from the lattice faithfully within the cluster model, it
is necessary to augment the bath space by decomposing
wave functions of the form

hmc(†)α |φ〉, (10)

where |φ〉 represents a single Slater determinant span-
ning the lattice (and auxiliary) sites, and α represents
an impurity site. The fluctuation space into the rest of
the lattice from these states define the bath orbitals which
are required to ensure that the particle and hole moments
are matched under the action of h by construction in both
the lattice and the cluster. Performing the Schmidt de-
composition gives a single degree of freedom for each α,
expressed in the lattice space orthogonal to the impurities
as

|bholeα,m〉 =
1√
Nhole
α,m

∑
t/∈imp

(∑
εi<µ

εmi CαiC
∗
ti

)
ĉ†t , (11)

for the bath orbitals of the hole moment, and

|bparticleα,m 〉 =
1√

Nparticle
α,m

∑
t/∈imp

(∑
εi>µ

εmi CαiC
∗
ti

)
ĉ†t , (12)

for the bath orbitals of the particle moment, where t
denotes degrees of freedom in the lattice orthogonal to
the impurity space, N values represent the normalization
constants of the resulting orbitals, and the {ε;C} pairs
represent the eigenvalues and vectors from the diagonal-
ization of the lattice hamiltonian (h) of the system, with
µ as the chemical potential of this hamiltonian.

It should be noted that the bath orbitals for differ-
ent α and m are not necessarily orthogonal, and so an
orthogonalization scheme and removal of linear depen-
dencies which necessarily arise is necessary. In order to
ensure that the cluster model spans the hole and parti-
cle moments up to order n, it is necessary to span all

wave functions of the type hd
n−1
2 ec

(†)
α |φ〉. This reduction

from the full set of n wave functions is due to a Wigner
‘2n + 1’ rule which ensures that we only need the wave
functions (and hence bath orbitals) correct up to order
n−1
2 to ensure the full lattice moments can be faithfully

represented in the cluster up to order n30.
The result is that the number of bath orbitals now

grows linearly with both the size of the impurity space
(as in DMET which this reduces to in the n = 0 limit)
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and the order through which the lattice dynamical ef-
fects are correct. This gives a strict upper bound of
nimp(2

⌈
n−1
2

⌉
+ 1) bath orbitals in the cluster. How-

ever, due to further ‘accidental’ linear dependencies in
the bath orbitals, in practice, the number of bath or-
bitals is frequently less than this upper bound. The bath
orbitals also can be seen to contribute either two or zero
electrons to the cluster depending on whether they are
derived from the particle or hole character state. One
immediate consequence of this decomposition is that the
bath space required to represent n = 1 is identical to
n = 0, and therefore no additional computational effort
is required in the solver to add the first moment dynam-
ical character in the lattice compared to normal DMET
where only the n = 0 dynamical effects are captured.

We describe the final algorithm for an example Hub-
bard lattice model consisting of hopping (Ĥt) and inter-

action (ĤU ) terms, as

H = Ĥt + ĤU , (13)

= −t
∑
〈i,j〉,σ

(ĉ†i,σ ĉj,σ + ĉ†j,σ ĉi,σ) + U

N∑
i=1

n̂i↑n̂i↓ (14)

where 〈i, j〉 represents summation over nearest-neighbor

lattice sites and n̂iσ = ĉ†iσ ĉiσ is the spin-density operator
for spin σ and site i. Once an impurity space of nimp sites
with corresponding impurity projector Pimp is selected,
and maximum moment order of n is chosen, the final
algorithm is as follows:

(i) The bath orbitals required to represent the T̃
(n)
h/p

hole/particle moments from a single-particle lattice

hamiltonian, h (initially taken to be Ĥt), are con-
structed as shown above. The set of these orbitals
augment the impurity degrees of freedom to form a
projector into the cluster space of impurity + bath
orbitals, Pclust.

(ii) A chemical potential (µbath) is used to ensure the
correct number of electrons in the impurity space
of the cluster, while the total number of electrons
in the cluster is given by the projection of |φ〉 into
the cluster, and will be an integer by construction.

(iii) The interacting cluster Hamiltonian is formed as

Ĥclust = PclusthPclust

+ Pimp(ĤU − vc − haux − µbathI)Pimp,

where haux and vc are initially set to zero. This
form ensures that the auxiliary sites representing
the effective local self-energy are removed from the
correlated impurity space.

(iv) An accurate solver (exact diagonalization in this
work31) is used to compute Ψ0, E0 and the corre-

lated expectation values T
(n)
h/p.

(v) The parameters defining vc and haux (energies ε
and couplings ν for the naux auxiliary sites) are op-
timized by minimizing the squared moment error
between the lattice and cluster moments as

C =

nimp∑
αβ

∑
z=p/h

n∑
n′=0

wn′(T̃
(n′)
z,αβ [vc, ε, ν]− T (n′)

z,αβ)2,

where wn′ are weighting parameters of the mo-
ments, to account for their growing absolute value,
which we take to be wn′ = 1

n′!

(vi) The updated vc and haux are replicated for all trans-
lationally equivalent impurity spaces in the lattice,
in the same fashion as the self-energy in DMFT or
vc in DMET. This enlarged lattice is then used as
the new lattice hamiltonian h, and we return to step
(ii) until convergence.

The numerical minimization of the cost function C
with respect to all mean-field physical and auxiliary de-
grees of freedom is performed using analytic gradients
with respect to all adjustable variables (given by vc, ναk
and εk). Additional consideration needs to be paid to the
choice of the global number of electrons in the modified
lattice augmented with the auxiliary sites, as this also
can change through the optimization. This discrete opti-
mization over electron number is changed to a continuous
optimization by working in a grand-canonical ensemble at
a very low but finite temperature for the computational
of the moments of the hole/particle states on this lattice
for this step. This small fictitious temperature mean that
powers of the Fermi-Dirac distribution are used in the cal-
culation of the lattice moments given by Eq. 1 and 2, and
the sum extended to all lattice eigenstates. This changes
the optimization of the total electron number to the op-
timization of an additional continuous variable given by
the chemical potential of these distributions. The lat-
tice moments are then reevaluated at zero temperature
in order to form the bath orbitals.

This approach also avoids any difficulties due to de-
generacies at the Fermi level of the lattice, which give
rise to divergent gradients in the optimization. This
approach to a small temperature in fitting is shared
with (formally zero-temperature) approaches in exact-
diagonalization DMFT, where despite solving the zero-
temperature correlated problem, the fitting of bath or-
bitals on the Matsubara axis necessarily introduces tem-
perature effects and smears occupation about the Fermi
level. In this work, this fitting temperature is set to
β = 150t, and has negligible effects of the solution found
at this low temperature, but ensures a fit of only con-
tinuous variables. Finally, the systems considered in this
work are all at particle-hole symmetric points, which we
exploit to reduce the number of independent parameters
required to fit the auxiliary space by a factor of two.

The method as described above (which we de-
note Energy-weighted Density Matrix Embedding The-
ory, EwDMET) allows for coarse-grained dynamical ef-
fects in the lattice to be self-consistently optimized, in
a systematically-improvable fashion. In DMET, the ex-
plicit correlated dynamical character of the impurity is
lost on return to the lattice picture, while in DMFT it
is returned via a self-energy. In this approach, we can
converge to the capture the entire dynamics (and hence
physics of DMFT) by increasing n and naux, which can
be considered as controlling the resolution of the dy-
namical character of G(ω) and Σ(ω) respectively in the
DMFT picture, all whilst retaining a fully static wave
function framework. The limit of n = naux = 0 returns
DMET exactly, while n → ∞, naux → ∞ returns the
zero-temperature physics of DMFT, and we can interpo-
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late between these two limits as desired.
However, this approach also interpolates between the

physics of another quantum cluster approach; the ‘two-
site DMFT’ proposed by Potthoff26. In this, a single bath
orbital is used to capture the self-consistent hybridization
of a single impurity by describing the zeroth-order hole
distribution, and the second central moment of the Green
function. This can be shown to be equivalent to optimiz-
ing up to the first hole and particle moments separately,
which is equivalent to that achieved (in a ‘static’ context)
for the EwDMET approach with nimp = 1 and n = 1.
This would then automatically give an explicit single bath
orbital, with a cluster problem of the same size as in the
approach of Potthoff in Ref. 26. This would capture the
same local physics of the system, while cast in an explicit
wave function formulation. In contrast, the EwDMET
method allows for systematic improvability by increasing
both the number of moments, and impurity cluster size,
whilst retaining the computationally efficient wave func-
tion formalism. As a final note, it is worth stressing that
the nimp →∞ will return exact results, in common with
both DMET and DMFT.

We now turn to numerical investigation of the benefits
of including this dynamical lattice character, with appli-
cations to the infinite- and 1-dimensional limits of the
Hubbard model.

III. INFINITE-DIMENSION BETHE HUBBARD
LATTICE

The infinite-dimensional Hubbard Bethe lattice has
been a cornerstone in the development of DMFT. This

FIG. 2. Single-particle spectral function of the physical lat-
tice for the half-filled Hubbard Bethe model with increasing
hole/particle moment self-consistency. The number of auxil-
iary sites which augment the (physical) lattice hamiltonian is
given by naux = n, which is sufficient to exactly match the
hole/particle moments (denoted by the blue/red color respec-
tively). Metal-to-Mott insulator behaviour as well as emergent
Kondo physics is seen in the lattice with increasing dynamical
resolution as the n increases, in keeping with DMFT results.
DMET (n = 0) is unable to change the character of the lattice
spectral function through the self-consistency.

FIG. 3. Double occupancy of the impurity site from the cor-
related cluster solution. Results are shown for different self-
consistent moment order n for the Hubbard Bethe lattice, with
a MIT observed at the discontinuity for n ≥ 2.

is because it was shown that despite a highly non-trivial
phase diagram including a finite U metal to Mott insu-
lator transition (MIT), single-impurity DMFT was ex-
act due to the local (yet highly dynamic) nature of the
self-energy32,33. This system is still extensively used and
debated34, and therefore represents an ideal test as to
whether this correlated behaviour can be captured in this
formally static approach, both in the cluster and lattice
descriptions of the system. These two descriptions will
not necessarily be identical at convergence, as the only
constraint is that their separate particle and hole mo-
ments up to a given order will be identical, assuming that
naux is sufficient to describe them. The non-interacting
lattice is defined by a semi-circular density of states,
which is fit to an initial lattice Hamiltonian, consisting
of 100 orbitals in a star geometry surrounding an single
central (impurity) site35. A Hubbard U term is then in-
cluded on all sites to define the interacting Hamiltonian
in which this impurity is self-consistently embedded. The
EwDMET procedure above was run for different values
of n and naux, and it was found that naux = n was suffi-
cient to exactly fit all n moments, with further auxiliary
orbitals redundant.

Fig. 2 shows the lattice density of states (DoS),
and demonstrates the improved lattice description as
the hole/particle moment self-consistency is increased,
thereby more finely resolving the effective correlation-
driven dynamical character. Self-consistency just on the
zeroth moments is equivalent to DMET (leftmost plots),
and simply constrains the integrated weight of the distri-
butions to be correct (number of electrons/holes). How-
ever, the lattice also shows no change with U , giving the
non-interacting semi-circular DoS at all values. This is
to be expected, since the zeroth hole moment defined
the occupancy of the correlated impurity, which is con-
strained to be half-filled. No further information is re-
turned from the correlated solution of the impurity prob-
lem to the lattice in this case, and so no correlation effects
can be found. Note that constraining this zeroth-order
hole moment automatically fulfils the zeroth-order parti-
cle moment, since these must sum to unity, and therefore
no further information is contained in the zeroth-particle
moment (this is not true for higher n values).
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The n = 1 results constrain the mean of the
hole/particle distributions (while requiring only the same
single bath orbital as n = 0 DMET in the cluster solu-
tion). This added self-consistency ensures that a Mott
gap opens in the lattice. This is achieved by adding
an auxiliary site per impurity at the Fermi level to sup-
press spectral weight on the physical lattice at this en-
ergy. n = 2 ensures additional matching of the vari-
ances of each of these distributions, and leaves a sharp
Kondo-like peak at the Fermi level. However, this only
disappears at infinite U . n = 3 introduces structure in
the Hubbard bands by enforcing the skew of each dis-
tribution. However, the full qualitative character of the
exact solution is found at n = 4, with structured Hub-
bard bands and a sharp Kondo peak which disappears
at finite U (around U/t = 6). This value compares well
with real-frequency DMFT and QMC results6,33,36 for
this correlation-driven metal-to-insulator transition. In-
creasing the moments further to n = 5 and 6 yields no
substantial changes from the qualitatively correct n = 4
depiction of the lattice density of states, indicating that
the broad trends of the model are converged at this point.

We can also consider the solution in the cluster, where
the transition point can be seen from the double occu-
pancy on the impurity site (Fig. 3). Here, the DMET
solution (n = 0) is quite incorrect in the large-U limit,
which is improved by the n = 1 constraints. However,
neither of these solutions exhibit a discontinuity denot-
ing a MIT, even though it is present in the lattice solu-
tion at n = 1. This is because the presence of a gap is
not explicitly self-consistently determined, but rather the
hole/particle spectral moments, which are indeed identi-
cal at convergence. A MIT is however found for n = 2−4,
given by the observed discontinuity in double occupancy
at this point.

FIG. 4. Lattice spectral gap of the paramagnetic 1D Hubbard
lattice with increasing hole/particle moment self-consistency
and nimp = 2, naux = 10. Fitting n ≥ 1 retrieves a qualita-
tive correct lattice gap in comparison to exact Bethe Ansatze
results. Inset: Auxiliary hamiltonian fit errors for different n
as naux increases at U = 8t.

IV. ONE-DIMENSIONAL HUBBARD CHAIN

The description of this opposing limit to the Bethe lat-
tice is far from exact in cluster methods. This is even the

FIG. 5. Double occupancy of the impurity from the cluster
solution for different self-consistent moment order n for the
paramagnetic 1D Hubbard model with nimp = 2 (where no
MIT should be observed), and including comparison to exact
DMRG. nimp = 4 DMET results are shown for comparison,
demonstrating the improvement due to increased impurity size
compared to improved dynamical resolution.

case for complete dynamical self-consistency in DMFT
(or n, naux → ∞ here) where for nimp = 1 a spurious
finite-U phase transition is observed37. However, these
results can be systematically improved with increasing
nimp, while comparison to exact DMRG38 (finite chains)
or Bethe Ansatze39 (infinite system) results will enable
us to benchmark the benefit of increasing dynamical self-
consistency. We move to a two-site, half-filled param-
agnetic impurity cluster, and consider the lattice spec-
tral gap (Fig. 4) and cluster double occupancy (Fig. 5).
These are substantially in error for the DMET (n = 0) de-
scription, while the inclusion of the dynamical effects can
substantially improve upon the native DMET without
the need for spin symmetry-breaking. The lattice spec-
tral gap (Fig. 4) was estimated by considering the gap
between eigenvalues about the chemical potential with
more than 10% of their weight on the physical (rather
than auxiliary) sites.

In contrast to the nimp = 1 Bethe lattice results, larger
numbers of auxiliary sites were required to converge the
moment fit error (see Fig. 4 inset), and results are shown
for spectral gap and double occupancy at naux = 10
where the fit error is negligibly small. Improving upon
the DMET results, self-consistency with n ≥ 1 is crucial
to obtain a realistic gap when compared to Bethe-Ansatz
results, where the spectral gap is dominated by the mean
values of the particle and hole spectra defining the Hub-
bard bands. Improvements for higher moments are not
significant for this property, with n = 2 even showing
some unphysical low-U phase transition behaviour which
disappears again for higher n37. The double occupancy
of the cluster solution also shows modest systematic im-
provements as the dynamical effects are increased, with
the large-U behaviour particularly erroneous in the n = 0
limit when compared to exact DMRG results. As the re-
sults converge with n, it is likely that further improve-
ments to the exact limit are only going to be possible
with increased impurity size and momentum resolution.
An indication of this is given by the improvement in the
n = 0, naux = 0 (DMET) results, as we increase the
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impurity size to four sites, as shown in Fig. 5. With
this, the error in the double occupancy is approximately
halved. However, despite this improvement, the error is
still larger than including the low-order dynamical effects
on the nimp = 2 impurity size. This is true even at n = 1,
where the correlated cluster problem is half the size of the
nimp=4 calculation, demonstrating the importance of in-
cluding this partial dynamical information.

V. CONCLUSION

We have presented a computationally efficient quantum
cluster method to systematically include effective finer
dynamical resolution within a ground-state wave func-
tion embedding approach. This exactly and algebraically
maps the full lattice with a given order of effective dy-
namical character to a finite cluster problem, whilst en-
suring that the self-consistency can be rigorously satisfied
back on the lattice via an optimized auxiliary space. In
this way, we allow for any desired interpolation between
the physics of DMET and DMFT, whilst remaining in an

efficient wave function picture and rigorously finite im-
purity+bath cluster model. At the cost of doubling the
dimensionality of this cluster problem to be solved, either
the impurity space can be doubled, or two orders more
lattice dynamical effects can be described. This allows
for a well-posed, low-cost framework, where any desired
trade-off in the resolution of momentum and dynamical
effects of the correlation can be chosen for the problem
at hand.
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T. M. Henderson, C. A. Jiménez-Hoyos, E. Kozik, X.-W.
Liu, A. J. Millis, N. V. Prokof’ev, M. Qin, G. E. Scuseria,
H. Shi, B. V. Svistunov, L. F. Tocchio, I. S. Tupitsyn, S. R.
White, S. Zhang, B.-X. Zheng, Z. Zhu, and E. Gull (Si-
mons Collaboration on the Many-Electron Problem), Phys.
Rev. X 5, 041041 (2015).

24 B.-X. Zheng, C.-M. Chung, P. Corboz, G. Ehlers, M.-P.
Qin, R. M. Noack, H. Shi, S. R. White, S. Zhang, and
G. K.-L. Chan, Science 358, 1155 (2017).

25 M. Potthoff, T. Herrmann, T. Wegner, and W. Nolting,
Phys. Status Solidi B 210, 199 (1999).

26 M. Potthoff, Phys. Rev. B 64, 165114 (2001).
27 K. Balzer and M. Eckstein, Phys. Rev. B 89, 035148 (2014).
28 A. Liebsch and H. Ishida, J. Phys.: Condens. Matter 24,

053201 (2012).
29 I. W. Bulik, G. E. Scuseria, and J. Dukelsky, Phys. Rev.

B 89, 035140 (2014).
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