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Abstract

Ageing is a complex process and is the strongest risk factor for many diseases. To elucidate
processes underlying biological ageing, many studies have investigated the associations of
individual metabolites or genes with age and age-related phenotypes. While these studies
improved our understanding of the pathogenic mechanisms for many diseases, they have their
limitations. Analysing phenotypes separately in classical association studies typically neglects
relationships and interactions between and across different phenotypes (e.g. comorbidities),
genes (e.g. pleiotropy), and metabolites (e.g. through shared biochemical pathways). The aim
of this thesis was to better understand age-related phenotypes and their interdependencies
through exploring shared underlying processes. To this end, I first identified biomarkers of
ageing and age-related diseases, focusing on chronic kidney disease, using metabolomics and
glycomics technologies. I identified several metabolites associated with leukocyte telomere
length, a common marker of biological ageing. Then I investigated the associations of molecular
phenotypes with renal disease. Analysing metabolomic profiles associated with renal function
in diabetic and non-diabetic cohorts illustrated similarities between the different aetiologies
of kidney disease, such as the lack of renal conversion of amino acids, but also differences,
particularly of lipid and energy metabolism. Subsequent analyses identified changes of Immun-
oglobin G glycosylation as a novel inflammatory pathway involved in renal disease. Then, I
assessed the potential of the faecal metabolome as a functional readout of the gut microbial
community to investigate its association with biological ageing. While faecal metabolites were
only moderately associated with age and renal function, they showed great potential as novel
profiling method for studying the microbiome, particularly with respect to obesity. Next, I
integrated metabolomics data from plasma, urine, and saliva to model cross-fluid metabolism
individually for kidney disease patients and healthy controls. By comparing both models, I
identified metabolic key processes impaired in kidney disease. Finally, I integrated metabolomic
and glycomic biomarkers of ageing with other omics markers as well as extensive phenotypic
data to investigate their multivariate interdependencies, underlying the comorbidities of age-
related diseases. This comprehensive integration of age-related phenotypes highlighted several
molecular mechanisms that potentially cause the joint occurrence of diseases with age. Con-
sidering the complex aetiologies of different diseases and their dependencies will be needed
to facilitate personalised healthcare. In conclusion, I have shown the future potential of sys-
tems and network biology approaches for understanding disease mechanisms and precision
medicine.
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T. D., Lauc, G. and Menni, C. (2016). ‘Glycosylation Profile of IgG in Moderate Kidney
Dysfunction.’ Journal of the American Society of Nephrology : JASN 27.3, pp. 933–41

• Zierer, J., Pallister, T., Tsai, P.-C., Krumsiek, J., Bell, J. T., Lauc, G., Spector, T. D., Menni,
C. and Kastenmüller, G. (2016b). ‘Exploring the molecular basis of age-related disease
comorbidities using a multi-omics graphical model’. Scientific Reports 6.1, p. 37646

• Menni, C., Zierer, J., Valdes, A. M. and Spector, T. D. (2017a). ‘Mixing omics: combining
genetics and metabolomics to study rheumatic diseases.’ Nature reviews. Rheumatology
13.3, pp. 174–181
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CHAPTER 1

Introduction

Here I give an overview on ageing and ageing-related diseases, focusing on chronic
kidney disease. I then review high-throughput ‘omics’ technologies and how they
have contributed to ageing research. Finally, I introduce the concepts of systems
biology and graphs and how these can be used to investigate mechanisms of
age-related diseases.

Parts of this chapter have been published as review article in Aging Cell (Zierer
et al., 2015), which is attached in appendix G.1.

In contrast to Mendelian diseases, complex traits arise from the combined interplay of multiple
genetic variants and environmental factors. All these variants usually have only small effect
sizes and often affect several diseases simultaneously (Goh et al., 2007), which is referred to as
pleiotropy. Due to pleiotropy and shared environmental risk factors comorbidities of diseases
are a common phenomenon. Ageing is one of the most important risk factors for many diseases
and thus promotes the occurrence of comorbidities.

The life expectancy in the UK increased by 5.3 years for men and 4.7 years for women over
the last two decades and is predicted to further increase in the next twenty years (Office for
National Statistics, 2014; Oeppen et al., 2002). With increasing life expectancy, age-related
diseases are expected to also increase dramatically. One example is chronic kidney disease
(CKD), which is the irreversible decline of renal function. In the USA, the prevalence of CKD
has increased by 42 % between 1991 and 2004 (Coresh et al., 2007). Accordingly, the number of
deaths attributed to CKD increased by 82 % between 1990 and 2010, CKD now being the 28th

leading cause of death in the world (Lozano et al., 2012).

The increased prevalence of CKD has a major impact on public health care costs. For instance,
the National Health Service (NHS) of England almost tripled its expenses on CKD patients from
£566 million in 2002 to £1.4 billion in 2010, which by then constituted 1.3 % of its annual budget
(Kerr et al., 2012). More importantly, health care for patients suffering from comorbidities of
CKD, additional diseases caused by the impairment of renal function, was almost twice as
expensive as for patients suffering from CKD only (Smith, 2004). The additional incidence of
≈7000 strokes and ≈12,000 myocardial infarctions (MIs) due to CKD led to additional costs
of about £175 million in England alone (Kerr et al., 2012). Therefore, finding ways to facilitate
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healthy ageing and prevent disease onset and disease comorbidities is a major challenge of our
time.

The development of high-throughput technologies facilitated the systematic investigation of the
underlying biochemical pathways of complex traits. In contrast to traditional biochemistry, such
techniques facilitate the unbiased analysis of disease pathways. Genome-wide association stud-
ies (GWASs) identified many genetic variants, mainly single nucleotide polymorphisms (SNPs),
influencing age-related traits such as CKD (Köttgen et al., 2010; Okada et al., 2012) and telomere
length (Codd et al., 2013). Besides genomics it is now possible to measure thousands of markers
from various biological layers. Hundreds of ageing associations were found by analysing these
new ‘omics’ datasets, such as epigenomics (Bell et al., 2012), transcriptomics (Glass et al., 2013),
metabolomics (Menni et al., 2013b; Yu et al., 2012) and glycomics (Kristic et al., 2014), improving
our understanding of ageing and its effect on disease susceptibility.

However, the different ‘omics’ layers are highly correlated within and between each other.
For example, metabolite levels correlate with each other because they are linked by chemical
reactions (Krumsiek et al., 2011), which are usually catalysed by proteins. Common genetic
variation that affects the efficacy or abundance of these proteins has been shown to strongly
influence circulating metabolite levels (Shin et al., 2014). The resulting increase or decrease in
metabolite levels can cause one or possibly multiple diseases, which then occur together due to
their shared underlying cause.

Considering all these dependencies is crucial to obtaining a mechanistic understanding of
complex phenotypes. While association studies are very successful in identifying the relevant
components of a process, systems biology aims to analyse their interactions and multivari-
ate interdependencies (Barabási et al., 2004; Ideker et al., 2001). The increased availability
of large ‘omics’ datasets has facilitated the propagation of integrative systems biology ap-
proaches.

The rest of this chapter is divided into three sections: First, I will outline the hallmarks of
ageing and CKD, which will serve as an example for age-related diseases in this thesis. Then, I
will review the most commonly used ‘omics’ technologies and discuss their impact on ageing
research. Finally, I will describe the principles of systems biology, again focusing on their
application in the field of ageing.

1.1 Ageing

Ageing is often described as the progressive accumulation of changes with time. In biological
systems, these changes lead to a loss of physiological aptitude and fertility, an increased
susceptibility to disease, and ultimately to death (Harman, 1988; Kirkwood et al., 2000; Vijg et al.,
2005; López-Otín et al., 2013; Harman, 2001). Despite considerable effort and the development
of many theories, the underlying processes of ageing are still largely unknown (Rattan, 2006;
Kirkwood et al., 2000; Weinert et al., 2003).
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1.1.1 Theories of ageing

More than 300 theories exist that attempt to explain why and how ageing occurs (Viña et al.,
2007). Most of these focus on a single cause of ageing. However, ageing is a multi-factorial
process and likely a combination of theories is true (Weinert et al., 2003).

Many theories consider ageing a consequence of evolution. Ageing – and ultimately death –
can thereby be considered a programmed feature of evolution to maintain the fitness of the
entire population by removing the elderly. On the other hand, ageing can be a consequence of
the lack of evolutionary pressure after replication (Longo et al., 2005). Also, evolution might
favour mutations that increase health in younger age, even if they are deleterious in later age
(Kirkwood et al., 2000).

Multiple mechanisms were proposed on how ageing takes place. The wear and tear theory of
ageing suggests that ageing is a consequence of the deterioration of cells due to their metabolic
activity. The free radical theory of ageing proposes that the accumulation of reactive oxygen
species (ROS) is the cause of increased stress, slowly causing damages the DNA and other parts
of the cell (Harman, 1956). Several extensions of this theory consider the mitochondria as main
source of ROS, due to malfunction of the respiratory chain, as well as the main target of ROS, as
mitochondrial DNA is not as well protected and easily repaired as nuclear DNA (Bratic et al.,
2013). The theory of ‘inflammageing’ suggests that increasing chronic low-grade inflammation,
as commonly observed in elderly, might be a shared root cause of age-related diseases, hence
causing their joint occurrence (Franceschi et al., 2014).

Other potential causes of ageing are the accumulation of somatic mutations due to errors in
DNA replication (Freitas et al., 2011) and the decreasing accuracy of gene expression (Weinert
et al., 2003). These changes could lead to decreased RNA, DNA, and cell turnover, which in
turn decreases the ability of the body to react to environmental stress and repair injuries. A
special case of a DNA damage theory of ageing is the telomere theory of ageing. Telomeres
form the end of each chromatid and, due to the inability of the DNA polymerase to replicate
the 3’ end of the template strand telomeres, shorten with every cell cycle. Thus, telomeres have
been proposed as a cause of ageing (see section 1.1.2.1 for details). The shortening of telomeres
is one reason for chromosome instability, which is another common feature of ageing (Blasco,
2007).

A myriad of studies provides evidence for the shortening of telomeres with age (Harley et al.,
1990), the involvement of ROS in ageing (Beckman et al., 1998), changes of gene expression
(section 1.2.3), and many other theories of ageing. However, differentiating between causes
and consequences of ageing remains a major challenge. Many of the proposed mechanisms
might even be cause and consequence simultaneously, thus mutually reinforcing each other
in a vicious circle. For instance, increased abundance of ROS causes (mitochondrial) DNA
damage, which causes weakening of anti-oxidant mechanisms and damage to the respiratory
chain, which causes further increase of ROS (De Grey, 2005).
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1.1.2 Biological ageing

Due to the increased interest in healthy ageing, many studies investigated the physiological
changes that occur with age and how these make us more susceptible to disease. However,
chronological age, which is the time since birth, was shown to be a bad predictor for health and
fitness (McClintock et al., 2016). Thus, researchers came up with the concept of biological age,
which takes into account an individual’s actual physical and mental health, aiming to capture
personal differences in the process of ageing. While chronological age is easy to measure,
there is no consistent measure of biological age. Instead, different proxies are used to quantify
differences in biological age.

One way to measure biological ageing is to assess an individual’s physiological capacities. Vari-
ous tests measuring – amongst others – grip strength, lung function and power are available for
epidemiological studies. To assess physical and psychological aptitude more comprehensively,
frailty indices (section 1.1.2.2) combine multiple such measures with information on several
diseases as well as biochemical measures. Another measure of biological ageing is telomere
length, which is thought to be one cause of ageing (see section 1.1.1). By studying centenarians,
researchers investigate successful, i.e. slow, ageing while avoiding to explicitly define biological
age.

All these proxies of biological ageing were used in various studies to research potential causes
and consequences of ageing. However, the ultimate goal of most ageing research is to prevent
or cure disease to facilitate healthy ageing. Consequently, many studies focus on individual
diseases rather than these more abstract measures of ageing. In the following, I will outline
some of the above-mentioned ways to quantify biological ageing in greater detail. I will, then,
give an overview on CKD, which is used in this thesis exemplarily for age-related diseases
(section 1.1.3).

1.1.2.1 Telomere length

Leukocyte telomere length (LTL) is a measure of biological age, that is based on the theory of
telomere shortening (Mather et al., 2011; Harley et al., 1992). Telomeres are repetitive DNA
sequences that are located at the end of each chromatid. Together with proteins that specifically
bind to telomeres, such as telomeric repeat binding factor 1 (TRF1) and telomeric repeat binding
factor 2 (TRF2), they form large nucleoprotein complexes at the ends of the chromosomes.
These so-called t-loops (De Lange, 2005) protect the DNA from degradation and end-to-end
fusion (Figure 1.1).

During DNA-replication, the DNA polymerase binds to RNA primers that are synthesised on
the template strand by the primase and elongates the new DNA strand from the 5’ to the 3’ end,
which corresponds to the 3’ to 5’ direction of the template strand. As the primer has nowhere
to bind upstream of the 3’ end of the template, the very end of the chromosome cannot be
replicated. Thus, the newly synthesised DNA strand will be missing some nucleotides at its very
5’ end and thus, telomeres shorten with every cell cycle (Levy et al., 1992; Allsopp et al., 1995a).
The continuous shortening of telomeres will continue throughout ageing until the telomeres
become too short to further protect chromosomes. Cells that reach this so-called Hayflick limit
(Olovnikov, 1996) stop dividing and switch to a phase of senescence (Allsopp et al., 1995b).
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Figure 1.1 The structure of telomeres. Telomeres are the repetitive DNA sequences that make
up the last ≈10 kbp of each chromatid. Together with several DNA-binding proteins they
form the t-loop to protect the ends of the chromosomes from deterioration and end-to-end
fusion. (Reproduced with permission from Calado et al. (2009), Copyright Massachusetts
Medical Society)

While this process affects all cells equally, the enzyme telomerase elongates telomeres in germ
lines to prevent their ageing. However, this enzyme is inactive in somatic cells (Collins et al.,
2002). The shortening of telomeres has been proposed as ‘mitotic clock’, limiting the replicative
life span of cells and causing cell senescence (Harley et al., 1992).

LTL has been used as proxy for biological age in a multitude of ageing studies and has been
found to be strongly associated with chronological age (Valdes et al., 2005). Additionally, it
was found to be significantly associated with several age-related diseases, including CKD
(Harst et al., 2008; Raschenberger et al., 2015), Alzheimer’s disease (AD) (Panossian, 2003;
Thomas et al., 2008), cardiovascular disease (Fitzpatrick et al., 2007; Brouilette et al., 2003),
osteoarthritis (Zhai et al., 2006; Harbo et al., 2012) and cancer (Shay et al., 2011; Artandi et al.,
2009), independently of chronological age. LTL was also shown to predict mortality (Cawthon
et al., 2003; Kimura et al., 2008) and longevity (Vera et al., 2012).

Telomere length is, thus, a powerful biomarker of ageing, which combines the theoretical
understanding of its relationship with ageing with the empirical evidence that relates LTL with
diseases. Many studies aimed to further explore the mechanisms that cause telomere shortening
and subsequent health deficits. For instance, GWASs have successfully identified a number
of genes associated with LTL (Codd et al., 2010; Codd et al., 2013), including TRF1 and TRF2.
However, combined they only account for 1.2 % of the observed variance and it is still poorly
understood how the shortening of telomeres affects an individual’s health. In chapter 4 I will
further explore such potential mechanisms using metabolic profiling.
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1.1.2.2 Frailty

The concept of frailty aims to describe the inability of a person to live an independent and
active life. It includes power and muscle mass as well as the dependency on others, particularly
hospital care (Rockwood et al., 1994). While there is no strict definition of frailty, a common
concept to quantify frailty are frailty indices, such as the Rockwood frailty index (Mitnitski et al.,
2001; Rockwood, 2005). These indices count the proportion of health deficits an individual
is suffering from. To this end, usually many clinical and sub-clinical tests are combined,
including symptoms, such as sleeping problems, clinical chemistry measures, such as elevated
creatinine levels, and diseases, such as type 2 diabetes (T2D) (Mitnitski et al., 2001). Therefore,
frailty indices are very general markers of health and studies on frailty aim to investigate
the underlying causes that lead to healthy ageing rather than identify biomarkers of specific
diseases.

1.1.2.3 Longevity

Longevity, living an exceptionally long life, has been a topic of interest for most of human
history. It was found to be about 20 % heritable, though estimates vary considerably between
studies (Murabito et al., 2012). Centenarians tend to either escape age-related diseases, such
as dementia and cancer, or survive them, such as cardiovascular diseases (Arnold et al., 2010).
Consequently, centenarians are examples of successful, healthy ageing and have been stud-
ied for several decades to explore causes of the delayed biological ageing (Willcox et al.,
2010).

The first genetic study on longevity compared centenarians with younger controls and identified
the only gene that has since been consistently linked with longevity: the apolipoprotein E
(ApoE) gene (Schächter et al., 1994; Deelen et al., 2011). A later study achieved to distinguish
centenarians from younger controls with an 89 % sensitivity and specificity using a multivariate
genetic model incorporating 281 SNPs, indicating that longevity is a complex trait (Sebastiani
et al., 2012). Studying the metabolism of centenarians revealed that they are in some aspects
more like young individuals than to the elderly (Collino et al., 2013). In particular, markers of
lipid peroxidation, i.e. oxidative stress, were low in centenarians and young individuals, but
high in the elderly.

While centenarians are very useful to study longevity, there is a natural limit in sample size,
which for instance prevents larger GWASs. Also, lifestyle factors, which differ between age
groups, might affect the results of centenarian studies.

1.1.3 Chronic kidney disease

Chronic kidney disease (CKD) is a common disease in the Western world (Table 1.1). As ageing
is the most important risk factor for renal disease, the prevalence of CKD is increasing due
to the ageing populations of developed countries (Tonelli et al., 2014; Prakash et al., 2009).
Besides age, obesity, diabetes and hypertension are major risk factors for developing CKD (Hsu
et al., 2006; Lea et al., 2002). Thus, the global obesity epidemic causes further increase of the
prevalence of CKD. Patients suffering from CKD do not only become dependent on dialysis
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or renal transplant once they progress to end-stage renal disease (ESRD), but are also much
more likely to experience cardiovascular events, such as MI (Sarnak et al., 2003). This led to the
loss of 928,000 lives and 14,754,000 disability-adjusted life years worldwide in 2004 (Ayodele
et al., 2010). There is no cure for CKD, hence early diagnosis and prevention are essential. In
this section I will first give an overview over the physiology of the kidneys and then outline the
hallmarks of CKD.

The kidneys are two organs located in the back of the abdominal cavity left and right of the
spine, which are mainly responsible for the filtration of blood. About 20 % of the blood leaving
the heart is pumped through the kidneys where it is filtered and waste products are excreted as
urine (Boron et al., 2012). To this end each kidney consists of about 1,000,000 nephrons, which
in turn consist of the glomerulus and the tubule (Figure 1.2). Due to the high blood pressure
in the glomerulus, which is the first part of each nephron, water and solved compounds are
filtered through a semi-permeable membrane and absorbed by the Bowman’s capsule. From
the capsule the filtrate is transported through the tubule, where some solutes are reabsorbed
in the blood and others are further excreted. Finally, the filtrate is transported to the urinary
bladder while the filtered blood leaves the kidneys through the renal vein. The amount of fluid
that is filtered by the glomeruli per time is referred to as glomerular filtration rate (GFR) (Boron
et al., 2012).

As an individual ages, the kidneys become less efficient in filtrating blood, which results in the
accumulation of toxins in the blood as well as unintended excretion of proteins in the urine
– proteinuria. This decrease of renal filtration is referred to as chronic kidney disease (CKD).
CKD is a diverse disease that arises due to a complex interplay of genetics and environmental

Figure 1.2 Schematic structure of a kidney. The kidney is a bean-shaped organ that is supplied
with blood via the renal artery. Each kidney consists of about 1 million nephrons (depicted
on the right side), which filter the blood in the round glomerulus and along the tubulus.
Filtered blood leaves the kidneys through the renal vein, while the filtrate is excreted
through the ureter to the bladder. (adapted with permission from Wellcome Images, https:
//wellcomeimages.org)

renal artery

renal vein

ureter

glomerulusBowman’s capsule

tubulus

loop of Henle
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causes. It can manifest a range of symptoms, ranging from mild, non-symptomatic renal
damage to complete renal failure and eventually death (Levey et al., 2012). It is thus divided
into several stages based on the GFR, where GFR>90 mL/min/1.73m2 corresponds to stage 5
(renal healthy) and GFR<15 mL/min/1.73m2 to stage 1 (end-stage renal disease, ESRD) (c.f.
Table 1.1). Other definitions also consider the excretion of protein – usually albumin – in the
urine to define stages of CKD (Coresh et al., 2007).

Timely diagnosis of renal damage remains difficult. Precise measurement of the GFR requires
intravenous administration of inulin, which is rarely done in clinical practice or research
(Perrone et al., 1992). Instead, the GFR is most commonly estimated based on the concentration
of creatinine in serum (Perrone et al., 1992; Levey et al., 2012). Creatinine is produced by the
muscles, secreted into the blood and then filtered by the kidneys where it is excreted unchanged
in urine. Creatinine provides the advantage of straight-forward, fast and minimally-invasive
measurements by routine blood test. However, creatinine is an insensitive marker and its
concentration might start to increase only when about half of the renal capacity is already lost
(Stevens et al., 2009), thus hampering early diagnosis (Thomas et al., 2009). Also, creatinine
concentrations vary according to age, gender, race. All these factors must be considered to
calculate the estimated glomerular filtration rate (eGFR) from creatinine (see section 3.2.3 for
details).

To improve the diagnosis and treatment of CKD, many studies investigated physiological
changes that are associated with renal function and showed that CKD is heritable with her-
itability estimates ranging between 0.33 and 0.41 (Langefeld et al., 2004; Bochud et al., 2005).
Large-scale GWASs investigated the genetic architecture of renal function in cohorts of up
to 175,000 individuals and found more than 100 genetic loci associated with renal function
(Köttgen et al., 2010; Pattaro et al., 2012; Pattaro et al., 2016) (Figure 1.3). However, effect
sizes of these loci are small and even all of them combined explain only 3.2 % of the observed
phenotypic variance (Pattaro et al., 2016). Besides genetics, renal function is strongly affected
by environmental factors, including obesity and smoking (Prakash et al., 2009). Decline of
renal function is also accompanied by drastic changes in the metabolism, some of which
could potentially be used as alternative markers for renal function in the future (Sekula et al.,

Table 1.1 Chronic kidney disease. CKD is commonly divided into five grades according to the
capabilities of the kidneys to filter the blood, which is quantified by the glomerular filtration
rate (GFR). Prevalence of different stages of CKD are based on the NHANES survey published
by Coresh et al. (2007).

GFR
(mL/min/1.73m2) CKD stage Prevalence

>90 healthy 40.7 %

89 to 60 2 mildly reduced renal function 51.2 %

59 to 30 3 moderately reduced renal function 7.7 %

15 to 29 4 severely reduced renal function 0.4 %

<15 5 end-stage renal disease
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Figure 1.3 Genetic regulation of kidney function. Chronic kidney disease (CKD) and more
generally renal function is strongly influenced by genetics. Here I summarise the results of 21
genome-wide association studies (GWASs) on different aspects of renal function, listed in the
GWAS Catalogue (Welter et al., 2014, version 1.0.1). They identified a total of 131 SNPs
in 119 unique genes. Genome-wide significant associations (p < 5× 10−8) were retrieved
for four renal traits: CKD (keywords: ‘chronic kidney disease’), IgA nephropathy (‘IgA
glomerulonephritis’ or ‘kidney disease’), diabetic nephropathy (‘diabetic’ and ‘nephropathy’)
and concentration of creatinine in serum (‘serum creatinine’). SNPs are coloured according
to the associated trait.
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2016). However, the causal direction of most of these associations remains elusive, and many
of them might be consequences of the incomplete filtration of blood rather than causes of
CKD.

1.2 ‘Omics’

Since the first sequencing of the human genome in 2001 (Lander et al., 2001), an increasing
number of high-throughput technologies has become available. These aim to provide holistic
measurements of the entire variation of the genome, transcriptome, metabolome and others.
Such ‘omics’ technologies provide valuable tools to studying ageing and related diseases
on the molecular level. Numerous association studies identified epigenetic mutations, gene
expression levels, metabolite concentrations, etc. correlated with chronological and biological
age (Table 1.2) (Valdes et al., 2013). In the following, I will describe the most commonly used
‘omics’ technologies – genomics, epigenomics, transcriptomics, proteomics, metabolomics and
microbiomics – focusing on their application in ageing research. Methodological details of the
technologies used in this thesis will be outlined in chapter 3.

1.2.1 Genomics

Genomics was the first omics field for which high-throughput measurements became available
due to the development chips for genotyping. Current chips can measure up to 5 million
SNPs (Ha et al., 2014). Today, next-generation sequencing technology is slowly replacing
the chip technology as the cost of sequencing has dropped below $0.1 per million base pairs
(bps) (Liu et al., 2012). Thus, gene variation is nowadays often available at single nucleotide
resolution.

While ageing (or rather longevity) itself was found to be only about 20 % heritable (Murabito
et al., 2012), many age-related diseases such as AD have high heritability >70 % (Gatz et al.,
2006) and others like osteoarthritis (Ishimori et al., 2010) or cataract have a heritability of 50 %
(Hammond et al., 2001). The GenAge database contains about 300 genes which are thought to be
related to ageing based on homology with model organisms such as nematodes or mice (Tacutu
et al., 2013). Sebastiani et al. (2012) developed a model containing 281 SNPs to distinguish
between centenarians and younger controls in a cohort of 1715 people. However, the only
age-related gene that has been reliably replicated is ApoE. Common genetic variants at this
locus have been associated with accelerated ageing and cognitive decline (Johnson, 2006; Davies
et al., 2014), possibly because it increases the risk for coronary artery disease, stroke and AD
(Smith, 2002).

1.2.2 Epigenomics

Epigenomics describes the study of heritable changes of the genome that are not caused by
mutations of the DNA sequence. The most commonly studied epigenetic mechanism is DNA
methylation, which is known to often but not always silence gene expression. In contrast



T
ab

le
1.

2
A

ge
in

g
st

ud
ie

s.
N

um
er

ou
s

‘o
m

ic
s’

st
ud

ie
s

ha
ve

be
en

co
nd

uc
te

d
to

in
ve

st
ig

at
e

m
ol

ec
ul

ar
ch

an
ge

s
as

so
ci

at
ed

w
ith

ag
ei

ng
(s

ee
se

ct
io

n
1.

2)
.

T
hi

s
ta

bl
e

pr
ov

id
es

an
ov

er
vi

ew
ov

er
st

ud
ie

s
ac

ro
ss

‘o
m

ic
s’

fie
ld

s.

P
la

tf
or

m
V
ar

ia
bl

es
Sa

m
pl

es
M

ai
n

fin
di

ng
R
ef

.

E
pi

ge
ne

ti
cs

Ill
um

in
a

27
K

26
,6

90
17

2
49

0,
pr

ed
om

in
an

tl
y

hy
pe

r-
m

et
hy

la
te

d,
D

M
R
s

as
so

ci
at

ed
w

it
h

ch
ro

no
lo

gi
ca

la
ge

an
d

on
e

D
M

R
,
in

th
e

T
B

X
20

ge
ne

al
so

as
so

ci
at

ed
w

it
h

ag
e-

re
la

te
d

ph
en

ot
yp

es
B

el
le

t
al

.
(2

01
2)

Ill
um

in
a

27
K

an
d

45
0K

21
,3

69
80

00
fr
om

82
da

ta
se

ts
ag

e-
re

la
te

d
m

et
hy

la
ti
on

ch
an

ge
s

ar
e

st
ab

le
ac

ro
ss

va
rio

us
ti
ss

ue
s

an
d

ev
en

sp
ec

ie
s;

ti
ss

ue
ag

ei
ng

ca
n

be
m

ea
su

re
d

us
in

g
35

3
C
pG

si
te

s
H

or
va

th
(2

01
3)

Ill
um

in
a

27
K

10
2

25
6

fr
om

fo
ur

da
ta

se
ts

on
ly

th
re

e
C
pG

si
te

s
ar

e
su

ffi
ci

en
t

to
re

lia
bl

y
pr

ed
ic

t
ag

e
W

ei
dn

er
et

al
.
(2

01
4)

T
ra

ns
cr

ip
to

m
ic

A
ff
ym

et
ri
x

H
G

-
U

95
A
v2

12
,0

00
30

46
3

di
ff
er

en
ti
al

ly
ex

pr
es

se
d

ge
ne

s
in

br
ai

n
ti
ss

ue
Lu

et
al

.
(2

00
4)

A
ff
ym

et
ri
x

H
g-

U
13

3p
lu

s
2.

0
47

,0
00

58
th

ou
sa

nd
of

ge
ne

s
in

fo
ur

br
ai

n
re

gi
on

s
di

ff
er

en
ti
al

ly
ex

pr
es

se
d

w
it
h

ag
e;

th
es

e
ov

er
la

p
be

tw
ee

n
di

ff
er

en
t

br
ai

n
re

gi
on

s
B

er
ch

to
ld

et
al

.
(2

00
8)

Ill
um

in
a

H
um

an
H

T
-1

2
V

3
B

ea
d-

C
hi

ps
48

,8
04

85
6

16
72

ge
ne

s
in

sk
in

,
18

8
in

ad
ip

os
e

ti
ss

ue
,
an

d
2

in
LC

L
co

rr
el

at
e

w
it
h

ag
e;

ge
ne

s
la

rg
el

y
di

ffe
re

nt
be

tw
ee

n
ti
ss

ue
s

G
la

ss
et

al
.
(2

01
3)

P
ro

te
om

ic
s

tw
o-

di
m

en
si
on

al
di

ff
er

en
ce

ge
le

l
27

00
18

hi
gh

er
ab

un
da

nc
e

of
pr

ot
ei

ns
in

vo
lv

ed
in

ae
ro

bi
c

m
et

ab
ol

is
m

an
d

a
lo

w
er

ab
un

da
nc

e
of

pr
ot

ei
ns

in
vo

lv
ed

in
an

ae
ro

bi
c

m
et

ab
ol

is
m

in
el

de
rly

G
el

fi
et

al
.
(2

00
6)

SO
M

A
Lo

gi
c

11
29

87
9

11
ci

rc
ul

at
in

g
pr

ot
ei

ns
as

so
ci

at
ed

w
it
h

ch
ro

no
lo

gi
ca

la
ge

an
d

ag
e-

re
la

te
d

ph
en

ot
yp

es
(M

en
ni

et
al

.,
20

15
)

G
ly

co
m

ic
s

U
P
LC

77
51

17
fr
om

fo
ur

co
ho

rt
s

gl
yc

os
yl

at
io

n
of

Ig
G

st
ro

ng
ly

as
so

ci
at

ed
w

it
h

ch
ro

no
lo

gi
ca

la
ge

K
ris

ti
c

et
al

.
(2

01
4)

M
et

ab
ol

om
ic

s
un

ta
rg

et
ed

G
C
-M

S
>

30
0

26
9

W
id

es
pr

ea
d

m
et

ab
ol

ic
ch

an
ge

s
w

it
h

ag
e;

e.
g.

lip
id

m
et

ab
ol

it
es

,
su

ch
as

lo
ng

ch
ai

n
fa

tt
y

ac
id

s
an

d
ca

rn
it
in

es
,

lo
w
er

co
nc

en
tr

at
ed

in
yo

un
ge

r
in

di
vi

du
al

s
La

w
to

n
et

al
.
(2

00
8)

ta
rg

et
ed

M
S

pl
at

-
fo

rm
(B

io
cr

at
es

)
13

1
28

86
st

ro
ng

an
d

re
pr

od
uc

ib
le

m
et

ab
ol

ic
ch

an
ge

s
in

di
ca

ti
ng

in
co

m
pl

et
e

m
it
oc

ho
nd

ria
lf

at
ty

ac
id

ox
id

at
io

n
Y
u

et
al

.
(2

01
2)

un
ta

rg
et

ed
M

S
pl

at
-

fo
rm

(M
et

ab
ol

on
)

26
0

60
55

22
m

et
ab

ol
it
es

in
de

pe
nd

en
tl
y

as
so

ci
at

ed
w

it
h

ag
e

an
d

ag
e-

re
la

te
d

ph
en

ot
yp

es
ex

pl
ai

n
69

%
of

th
e

va
ria

nc
e

M
en

ni
et

al
.
(2

01
3a

)

M
ic

ro
bi

om
ic

s
16

S
se

qu
en

ci
ng

>
40

,0
00

17
0

m
ic

ro
bi

om
e

re
la

ti
ve

ly
st

ab
le

th
ro

ug
ho

ut
lif

e
bu

t
ch

an
ge

s
dr

as
ti
ca

lly
in

la
te

lif
e

C
la

es
so

n
et

al
.
(2

01
1)

H
um

an
In

te
st

in
al

T
ra

ct
C
hi

p
12

9
84

si
gn

ifi
ca

nt
ch

an
ge

s
in

m
ic

ro
bi

om
e

co
m

po
si
ti
on

of
ce

nt
en

ar
ia

ns
,
pa

rt
ic

ul
ar

ly
de

cr
ea

se
of

al
ph

a
di

ve
rs

ity
B

ia
gi

et
al

.
(2

01
0)



Chapter 1 Introduction 29

to the genome, which is the same in all cells, the epigenome is an important factor of cell
differentiation leading to profound epigenetic differences across different cell types (Meissner,
2010).

The most often used methylation chip, the Infinium HumanMethylation450 BeadChip (Illumina,
San Diego, CA, USA), measures over 450,000 methylation sites and covers 99 % of all RefSeq
genes (Dedeurwaerder et al., 2011). However, it covers less than 10 % of variable regions
(Ziller et al., 2013). The more recent Infinium MethylationEPIC BeadChip captures up to
850,000 methylation sites, but has not yet been used in ageing studies. Sequencing based
methods, particularly bisulfite sequencing, facilitate the analysis of DNA methylation on a
genome-wide level, but few large datasets are available due to its high cost (Ziller et al.,
2014).

The epigenome is influenced by environmental and lifestyle factors (Alegría-Torres et al., 2011;
Breitling et al., 2011) and is associated with many complex diseases such as neurodegenerative
disorders (Portela et al., 2010) and cancer (Ehrlich, 2002; Horvath, 2013). In contrast to genomics,
nearly 500 differentially methylated regions were found to be associated with chronological age
and age-related phenotypes such as lung function, cholesterol levels and maternal longevity
(Bell et al., 2012). A recent study by Weidner et al. (2014) showed that methylation patterns
of just three sites are sufficient to reliably predict chronological age, thus suggesting that
many of the previously identified methylation sites are not independently associated with
age. Variations of methylation patterns are consistent across several tissues and cell types
(Horvath, 2013) and together form a global pattern of hypomethylation in repetitive sequences,
hypermethylation in promoter regions, and higher inter-cell variability (Cevenini et al., 2008;
Bacalini et al., 2014).

There is also growing evidence for an epigenetic contribution to CKD (Reddy et al., 2015),
which might even explain parts of its heritable component (Reddy et al., 2011). However,
correlations between DNA methylation and eGFR are moderate (Wing et al., 2014; Smyth
et al., 2014). Nonetheless, epigenomics is a promising tool in ageing research and its impact
is expected to increase further with the availability of the larger EPIC chip and sequencing
datasets.

1.2.3 Transcriptomics

Genes are transcribed into RNA molecules. The entirety of RNA transcripts is referred to as
transcriptome. It can be divided in coding RNAs, which are further translated into proteins, and
non-coding RNAs, which perform various functions, such as the regulation of gene expression
(Eddy, 2001).

Similar to genetic and epigenetic variation, transcript abundances can be measured either by
chips or sequencing methods. Gene expression was shown to dramatically change with age. A
pioneer study comparing post-mortem human frontal cortex tissue samples of 30 individuals
of different ages yielded 463 differentially expressed genes (Lu et al., 2004). Despite the small
sample size, results could be replicated in subsequent experiments. Four years later, Berchtold
et al. (2008) identified several thousand age-related changes of gene expression in four different
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brain tissues. Later studies by different groups identified profound changes of the transcrip-
tome with age in further tissues, such as skin, adipose tissue (N=865) (Glass et al., 2013) and the
kidneys (N=134) (Rodwell et al., 2004). Interestingly, most of these changes did not overlap in
different tissues. A meta-analysis across different species and tissues revealed only 73 genes con-
sistently associated with age (Magalhães et al., 2009), suggesting that most observed age-related
changes in the transcriptome are either species and tissue specific or false positive discoveries
(Valdes et al., 2013). In the meta-analysis genes related to immune response and lysosome ten-
ded to be over-expressed, while genes related to mitochondria and oxidative phosphorylation
were under-expressed in the elderly (Magalhães et al., 2009).

1.2.4 Proteomics

Proteins are translated from coding RNA transcripts. Due to alternative splicing and post-
translational protein modifications, the number of proteins is estimated to be two orders of
magnitudes higher than the number of genes. However, current proteomic techniques based
on immunoassays, protein arrays or mass spectrometry (MS) can measure only a small fraction
of the proteome (up to 1000 proteins in a sample). The most comprehensive description of the
human proteome across various tissues to date consists of 18,097 proteins (19,376 isoforms) col-
lected from ten thousands of MS experiments (Wilhelm et al., 2014). Due to these technicalities,
‘proteomics’ studies in ageing research has so far been focusing on smaller sets of proteins and
small sample sizes.

In an early study of protein abundance in the vastus lateralis muscle, Gelfi et al. (2006) observed
higher abundance of several proteins involved in aerobic metabolism and a lower abundance
of proteins involved in anaerobic metabolism in the elderly. Besides this, six transport proteins
were consistently under-expressed in older individuals. However, only 12 samples were
analysed in this study without replication. A recent study by our group analysed over 1000
proteins in 200 plasma samples using the SOMAscan assay (Menni et al., 2015). 11 proteins
were found to strongly associate with chronological age as well as age-related phenotypes,
such as lung function and blood pressure, and the results were replicated in an independent
cohort. Even though comprehensive proteomics studies are still missing, proteins are likely to
be associated with several age-related diseases, as for instance cardiovascular disease (Mehra
et al., 2005) and AD (Swardfager et al., 2010) are consistently associated with elevated levels of
pro-inflammatory cytokines.

Several studies investigated the involvement of various proteins in CKD (Arthur et al., 2010;
Mischak et al., 2015). However, due to the lack of high-throughput technologies in proteomics
most of these investigated very limited number of proteins and/or based their assumptions
on small sample sizes. Nevertheless, proteins are promising biomarkers of renal function.
For instance, the presence of albumin in urine – albuminuria – is a common clinical marker
for renal function. However, like creatinine it lacks sensitivity and specificity (Mischak et al.,
2015). Another commonly used marker of CKD is cystatin C (Hojs et al., 2006), which predicts
incident ESRD and all-cause mortality (Menon et al., 2007). There are several other, less well
described proteins that have been associated with renal function, such as the phospholipase A2
(PLA2) receptor (Beck et al., 2009). While these studies and many others provide insights in the
pathology of CKD and suggest new tools for diagnosis, a holistic proteomics analysis of renal
function is yet to be conducted.
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1.2.5 Post-translational modifications - glycomics

Post-translational modifications are important elements of proteins, which can alter their
biochemical properties such as protein structure, binding preferences, and enzyme activity.
There are many different modifications ranging from the addition of small molecules (e.g.
acetylation or phosphorylation), to the addition of larger molecules like lipid or sugar chains
(e.g. palmitoylation, glycosylation), and addition of whole proteins (e.g. ubiquitination). The
most common modification is glycosylation. The attached oligosaccharides – glycans – are
thought to mainly serve as structural elements of proteins or specific binding sites for other
glycans or proteins (Varki et al., 2009). However, glycans are highly diverse and many of them
are not yet characterized or annotated. Thus, glycans might have many additional functions.
For example, glycans in the gut act as food for microbes (Koropatkin et al., 2012), which could
have immune functions that are important in ageing.

Recent development enable the high-throughput measurement of glycans of either a single
protein or all proteins simultaneously (Pucic et al., 2011; Royle et al., 2008) (see section 3.3.2 for
details). The application of this technology on epidemiological cohorts revealed that glycan
structures are stable for one individual over time (Gornik et al., 2009) but very diverse within a
population (Pucic et al., 2011; Knezević et al., 2009). Differences in glycomes were found to be
related with various cancers (Adamczyk et al., 2012; Fuster et al., 2005).

Immunoglobin G (IgG) is a particularly well-suited model for glycomics as its has well defined
glycosylation sites and many studies investigated the effects of IgG glycosylation in great
detail (Gornik et al., 2012). N-glycans attached to the conserved Asn297 in the Fc part of IgG
are important modulators of the function of IgG (Jang et al., 2015), changing for instance its
inflammatory potential. Recently Kristic et al. (2014) showed that IgG glycans are strongly
associated with age: A linear combination of three glycans explained 58 % of the observed
variance of chronological age in a study of four independent populations with 5117 participants
in total. Using the same platform, I found glycosylation of IgG associated with renal function.
The results of this study are presented in chapter 5.

1.2.6 Metabolomics

Metabolomics investigates the low-molecular-weight molecules in a biological system. The
measured molecules are often referred to as metabolites since many of them act as educts,
products, and intermediates of the cellular metabolism. Currently, the Human Metabolome
Database (Wishart et al., 2013) contains more than 40,000 distinct metabolites from different
tissues.

Like proteomics, to date, there is no analytical method available to determine and quantify
all these metabolites in a single experiment. Current platforms, using either chromatography
coupled with MS or nuclear magnetic resonance (NMR) spectroscopy, can measure up to
roughly a thousand unique metabolites in untargeted settings and a smaller number using pre-
defined targeted approaches. The restriction of the targeted approach comes with the advant-
ages of higher sensitivity, absolute instead of relative quantification, and straight-forward com-
pound identification (Menni et al., 2017b) (see section 3.3.1 for details).
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In 2008, the first metabolome-wide association study (MWAS) on age analysed the plasma
metabolome of 269 individuals using an untargeted approach. The authors found 100 out of
300 compounds significantly correlated with chronological age (Lawton et al., 2008). More
recently, larger cohorts were employed to study the association of circulating metabolites and
age using both targeted and untargeted metabolomics platforms. Yu et al. (2012) analysed
131 targeted metabolites in 2162 individuals from the Cooperative Health Research in the
Region of Augsburg (KORA) cohort, while Menni et al. (2013b) analysed 280 untargeted
metabolites in 6055 twins from the TwinsUK cohort. Both studies identified about half of
the analysed metabolites to be associated with chronological age. Many of those metabolites
were also found to significantly correlate with age-related phenotypes such as lung function,
bone mineral density (BMD) and cholesterol levels (Menni et al., 2013b), AD (N=93) (Orešič
et al., 2011), cancer (Teicher et al., 2012) and T2D (N=100) (Suhre et al., 2010; Menni et al.,
2013a).

MWASs were also conducted to identify metabolic changes that accompany CKD and found, as
expected, a large proportion of metabolites correlated with eGFR (Sekula et al., 2016; Mäkinen
et al., 2012). In this thesis, I investigate these metabolic alterations in more depth, focusing on
differences between diabetic and non-diabetic nephropathy (chapter 6) and cross-fluid changes
(chapter 8).

1.2.7 Microbiomics

The human microbiome describes the complete set of microbial species (and their genomes)
hosted by the human body. The largest microbial community resides in the gut, where microbial
cells and their genes outnumber human cells (10:1) and genes (100:1) (Peterson et al., 2009;
Zhu et al., 2010; Sender et al., 2016). More than 10,000 different species with millions of
protein coding genes were identified by the Human Microbiome Project (Turnbaugh et al., 2007;
Peterson et al., 2009; Biagi et al., 2012) and more than 1000 of these microbes have so far been
fully sequenced.

Currently, microbiome studies use predominantly sequencing of the variable regions of the 16S
gene to quantify the microbial community. 16S sequencing has several advantages, first and
foremost that it provides sufficient information in a small sequence, enabling cheap profiling
of the microbiome (Janda et al., 2007; Cook et al., 2003). Its main disadvantage is the lack
of annotation for most microbes, partially due to the lack of whole genomes, and its lack of
resolution when it comes to species and strain level differences. Metagenomics sequencing
approaches aim to overcome this problem by sequencing all microbial DNA. However, it
remains a very expensive method and metagenomics datasets consist of a complex mixture of
thousands of microbial genomes, making data analysis challenging. In this thesis, I show that
faecal metabolic profiles largely represent the microbial flora and might therefore be used as a
novel method to profile gut microbial communities in future studies (for details see chapter
7).

Although twin studies have found a modest genetic influence on some phyla, most of the
variation is environmental (Goodrich et al., 2014; Goodrich et al., 2016). The composition of the
microbe flora varies a lot across individuals (Zhu et al., 2010; Turnbaugh et al., 2007) and even
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between different parts of the body (Kong, 2011). It has a huge influence on many biological
processes such as immune response, metabolism, and disease (Zhu et al., 2010; Grice et al., 2012).
While the microbiome seems to be relatively stable during adulthood, it changes significantly in
later life (Claesson et al., 2011; Biagi et al., 2010). Biagi et al. (2010) observed drastic changes in
the gut microbiome of centenarians, namely a general loss of diversity and increased abundance
of bacilli and proteobacteria. The latter were reported to promote inflammation under certain
conditions (Round et al., 2009). Similar findings were revealed in other elderly populations, in
studies that also considered the dietary and residential situation of elderly patients (Claesson
et al., 2012). More recently, the gut microbiome was also found to be associated with frailty
(Jackson et al., 2016a).

There is also some preliminary evidence that the gut microbiome associates with renal function
(Barrios et al., 2015; Vaziri et al., 2013; Ramezani et al., 2014), however, these findings should be
systematically confirmed in future studies.

1.2.8 Phenomics

Simultaneously with omics data, the dimension of clinical and lifestyle traits, particularly
clinically used intermediate traits, keeps increasing. Epidemiological studies collect thousands
of phenotypes beyond omics data types ranging from anthropometric measures to health and
lifestyle questionnaires (Moayyeri et al., 2013). Collecting high-dimensional clinical data is
crucial to unveiling pleiotropy of genes and interactions among clinical phenotypes such as
comorbidities (Houle et al., 2010). Driven by high-throughput technologies, statistical and
bioinformatics methods for analysing high dimensional data are becoming available. These
facilitate the investigation of many clinical phenotypes in parallel, thus defining the new field
of phenomics (Houle et al., 2010).

Phenomics is particularly important for ageing research, as dozens of clinical phenotypes, such
as CKD, obesity and blood pressure (Mungreiphy et al., 2011), as well as lifestyle parameters,
such as nutrition, smoking and physical activity, are strongly associated with age and amongst
each other. Composite measures such as frailty indices combine several of those clinical traits to
form a more homogenous phenotype – frailty – from its diverse appearance, which can be con-
sidered as a measure for biological age (Mitnitski et al., 2013) (see section 1.1.2.2). However, only
multi-variate analyses integrating multiple phenotypes can help to unveil interdependencies
among them, such as disease comorbidities (see chapter 9).

1.3 Systems biology

Most of the studies summarised above concentrated on the association of age or age-related
diseases with one type of omics data, analysing each of its compounds separately. How-
ever, there are strong interdependencies within and between the different omics data (Figure
1.4) and correlations can be observed between practically all levels of biological organisa-
tion.
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Figure 1.4 Interdependencies of ‘omics’ layers. Interdependencies can be observed within and
between almost all omics data sets. Solid lines indicate biological processes which cause
dependencies, while dashed lines represent observed associations. (Picture adapted from
Zierer et al. (2015))
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Following the central dogma of molecular biology, genomics, transcriptomics and proteom-
ics are correlated ‘by definition’. Furthermore, metabolite concentrations are influenced by
genetic variants (Shin et al., 2014; Long et al., 2017a) and epigenetic factors (Petersen et al.,
2014) mediated by changes in gene expression or enzyme activity. Methylation levels do not
only influence the gene expression (Jaenisch et al., 2003), but are also correlated with genetic
variants (Bell et al., 2012) and environmental factors (Breitling et al., 2011). My group has
recently demonstrated that even the microbe composition is partly under host genetic influence
(Goodrich et al., 2014).

Correlations, however, do not only occur between but also within each type of data. For
instance, in genomics linkage disequilibrium, which is the correlated occurrence of SNPs, is
a ubiquitous phenomenon. Transcription factors often co-regulate the expression of multiple
genes (Allocco et al., 2004), and methylation patterns of neighbouring CpG sites were reported
to be correlated (Bell et al., 2012). Metabolites are linked by a network of biochemical reactions,
causing strong correlations between them (Krumsiek et al., 2011). Even phenotypes often
cluster: Comorbidities were shown to affect many diseases, possibly due to shared underlying
mechanisms (Goh et al., 2007).

These biological correlations can confound association studies. Consequently, studies regularly
identify a plethora of compounds significantly associated with a phenotype of interest. How-
ever, the biologically interesting, causal associations are often obscured by this abundance of
results. For instance, 153 metabolites were found to be associated with age, but subsequent
analyses showed that only 22 of them are independently associated with age (Menni et al.,
2013b). Similarly, 21 of 24 measured IgG glycans were correlated with age but only 3 glycans
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were associated independently, together explaining 58 % of the variance (Kristic et al., 2014).
Analogous results were found for epigenetic data (Weidner et al., 2014).

In contrast to the reductionist approaches, which analyse each component of a high-dimensional
dataset separately, systems biology thus aims to analyse ideally all components of a biological
process simultaneously, taking their interactions and their intrinsic hierarchical structure into
account (Barabási et al., 2004; Ideker et al., 2001). By explicitly analysing interdependencies, sys-
tems biology addresses the problem of spurious correlations and aims to identify the underlying
causal network, rather than separate components (Cassman, 2005).

While deducing causality from observational data and even more the holistic modelling of
a single eukaryote cell remain far-fetched goals, the field of systems biology is advancing
and a multitude of methods is readily available to facilitate integrative data analysis. In the
following, I will introduce key concepts of systems biology and their application in ageing
research. Methodological details of the methods of interest are further described in section
3.4.

1.3.1 Introduction to graphs

The defining feature of systems biology is the analysis of dependency structures amongst
many variables simultaneously. Graphs – or networks – provide the theoretical framework
to modelling these interdependencies. A graph G(V, E) is a set of nodes – or vertices V –
that represent compounds or actors in the model. Nodes are connected by a set of edges E
that describe their dependencies. Both nodes and edges can have different manifestations,
which change the meaning and the interpretation of the network and its properties (Figure
1.5). For instance, metabolites interact in chemical reactions, forming a network in which nodes
describe the metabolic compounds and edges indicate chemical reactions. In contrast, a gene-
regulatory network (GRN) consists of nodes that represent genes and edges that represent the
regulation of one gene by another, thus modelling gene expression. Protein-protein interaction
(PPI) networks model physical interactions of proteins, such as the formation of dimers or
larger protein complexes. Each node and edge can have properties that further describe their
behaviour in the model. An edge might have a weight, which for instance indicates the
strength of the regulation or a reaction rate, thus forming a weighted network. Edges also
might have a direction, indicating causality of the relationship, forming a directed network.

Graphs offer the advantage of accessible visualisation of complex relationships, though their
main benefit is the amount of theoretical research addressing the analysis of graphs, providing
many methods for analysing graph topology. One common problem is, however, the identifica-
tion of modules, i.e. densely connected subgraphs. In biological networks, modules correspond
to functional units, such as the glycolysis pathway in the metabolic network. Different modules
are usually sparsely connected with each other and together form a hierarchical structure in
which the distribution of node degrees – the number of edges per node – follows a power-law
(Barabási et al., 2004). Hence, most nodes have only few connections while few nodes have
many connections. These highly connected nodes are called hubs (Albert et al., 2000; Jeong et al.,
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Figure 1.5 Graphs. This is an exemplary graph with two groups of nodes: (1) nodes A – D, and
(2) nodes X – Z. For illustration proposes edges in the first module are undirected, while
edges in the second module are directed (indicated by arrows). Nodes represent entities in
the system while edges represent their relationships. These might have properties that are
included in the model, such as weights (indicated by width of the connection).
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C D
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2001). Hubs can be thought as the main driving factors in a network, that have the potential to
quickly affect large portions of the system (see Figure 3.11 for details).

In the following I will discuss common approaches to integrative data analysis using graphs
with a particular focus on their application in ageing research.

1.3.2 Analysis of pre-defined graphs

A popular approach to put the results of an association study in a systems biology context
is projecting the variables of interest – such as age-related genes, proteins, or metabolites –
onto reference networks. The neighbourhood of these target variables and their topological
properties can then be assessed using experimentally pre-defined PPIs, GRNs, or metabolic
networks. Instead of interpreting individual entities separately, a priori knowledge about gene
interactions or metabolic reactions and their grouping according to functions and localization
can be used to identify functional network modules that show significant changes in the
condition of interest.

Several databases offer collections of experimentally identified interactions that can be used
as pre-defined reference networks for enrichment and topology analyses after mapping single
entities of interest. In case of PPIs the Human Protein Reference Database provides more
than 40,000 (Keshava Prasad et al., 2009), the Database of Interacting Proteins more than
7000 (Xenarios et al., 2002), and the Munich Information centre for Protein Sequences (MIPS)
mammalian protein-protein database roughly 1000 hand-curated interactions of human proteins
(Pagel et al., 2005). The STRING database combines PPIs from various sources, ranging
from experimentally confirmed interactions to text-mining approaches (Franceschini et al.,
2013). It currently contains more than 184 million interactions for more than 2000 organisms.
Experimentally derived GRNs are provided by the ChIPBase (Yang et al., 2013), which contains
six million transcription factor binding sites from >300 experiments. Metabolic reactions are
amongst others provided by Kyoto Encyclopaedia of Genes and Genomes (KEGG) (Kanehisa
et al., 2012), BioCyc (Caspi et al., 2014) and Recon (Thiele et al., 2013).
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1.3.2.1 Pathway enrichment analysis

Enrichment analysis is a convenient way to incorporate existing knowledge from biological refer-
ence networks without directly analysing the graph topology. Thereby, pre-defined (functional)
modules within the reference networks are used to test over-representation of the interesting
genes, proteins, or metabolites in these groups. Pathway enrichment follows the idea that
certain pre-defined sets of variables, for example genes that are known to be co-regulated or
metabolites that are produced by the same biochemical pathways, should be jointly affected
by the condition of interest. Consequently, pathway analysis tries to first, identify patterns
within the set of results of an association study and second, identify novel pathways of interest,
even if a study is underpowered for identifying significant associations of the phenotype with
individual variables.

In ageing research, enrichment analysis unveiled an over-expression of genes involved in
immune response, lysosome and glycoproteins and an under-expression of mitochondrial and
oxidative phosphorylation-related genes in old people compared to young (Magalhães et al.,
2009). In human brain tissue, oxidative stress, DNA repair, and inflammation-related genes
were shown to be enriched in the set of differentially expressed genes between young and old
individuals (Lu et al., 2004).

1.3.2.2 Topological analysis

To avoid pre-defined modules, which do not consider condition-specific interactions, and to
enable a more detailed network analysis, the variables of interest can also be mapped directly
onto the known PPIs, GRNs, or metabolic networks. Instead of investigating enrichment of
the individual variables in pre-defined modules as described before, modules can be identified
dynamically based on the measured data. Moreover, additional topological properties of the
nodes of interest can be assessed.

Studying human PPI networks revealed that genes which were associated with ageing by
homology have higher node degrees and a higher betweenness centrality compared to other
genes (Bell et al., 2009). Furthermore, age-related genes were not spread throughout the
interactome, but cluster in few, tightly connected modules. Those modules were enriched
in DNA damage repair and stress response genes (Kriete et al., 2011). Using a modified PPI
network, Wang et al. (2009) showed a connection of the genetic causes of ageing and disease.
These results indicate that ageing does not occur due to random errors but is an organized
process. Another PPI based approach to data integration was developed by West et al. (2013).
They incorporated epigenomic data by assigning DNA methylation sites to each protein in the
graph and then identifying modules of differentially methylated genes/proteins in the resulting
network. By doing so they avoided pre-defined gene sets as used by enrichment analyses. They
found three differentially methylated modules, which were replicated across several tissues.
Two of them contained mainly transcription regulating genes, while the third one contained
genes related to stem cell differentiation.
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1.3.2.3 Integration with data

A drawback of experimentally derived PPI or GRN is that such methods detect up to 50 %
false positives while many true interactions are missed (Marbach et al., 2012; Huang et al.,
2009). Even more importantly, those reference networks completely ignore the tempero-spacial
properties of the interactions. This restricts results to already observed, possibly inactive
interactions.

One method to overcome the static nature of PPI networks are Negative-Positive (NP) networks
(Xia et al., 2006). These integrate the pre-defined PPI network with transcriptomics data by
restricting it to edges between (anti-) correlated proteins/genes. Thereby only those interactions
(i.e. edges) that are active under the observed condition are analysed further. Application of
this method to the previously mentioned dataset of brain gene expression identified two anti-
correlated modules containing cell proliferation and cell differentiation related proteins (Xue
et al., 2007). Two other modules consisting of protein processing and immunity-related genes,
respectively, were found to be correlated with the cell proliferation module. A more recent study
went one step further and restricted a PPI network to highly expressed genes in different stages
of ageing for each sample separately, thus generating a set of dynamic binding networks instead
of a single network. Even though the global properties of all those graphs were very similar,
the centrality of several genes correlated with age (Faisal et al., 2014).

1.3.3 Graph inference

Despite their successful applications, all approaches presented so far still rely on pre-defined,
static networks. These are often noisy, specific to particular tissues, or based on model organ-
isms. To overcome these limitations, inferring networks directly from the measured data is the
next step.

1.3.3.1 Weighted gene co-expression network analysis

The most straight-forward method to analyse the interdependencies of many variables is a
correlation network (CN), where nodes are variables and edges represent significant correlations
between them. The weighted gene co-expression network analysis (WGCNA) algorithm
(Zhang et al., 2005a) does exactly this, using genes as nodes and defining edges based on
the observed correlations of gene expression values. In contrast to normal CNs it does not
rely on a strict correlation cut-off to differentiate between ‘significant’ and ‘non-significant’
edges, but instead uses all edges weighted by the strength of their correlation. While the
method was initially created for transcriptomics data, it can be easily applied to other omics
datasets.

Conducting WGCNA from the previously mentioned gene expression dataset of 30 human
frontal cortex samples at different ages and comparing it with another graph derived from an
AD transcriptomics study, revealed a significant overlap between healthy ageing and AD (Miller
et al., 2008). This suggested a shared molecular basis for both processes, namely synapses-,
transport- and transcriptional regulation-related genes.
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1.3.3.2 Graphical models

However, when analysing biological datasets CNs suffer from large numbers of spurious
correlations due to indirect dependencies between variables (Figure 1.6). For instance, one study
found that more than half of all pairwise correlations between 151 metabolites were statistically
significant at an alpha level of 1 %, even after conservative correction for multiple testing, in a
cohort of >1000 individuals (Krumsiek et al., 2011). Graphical models (GMs) – also known as
conditional independence graphs (CIGs) – were proposed to overcome this problem and infer
biological meaningful networks in the analysis of metabolomics (Krumsiek et al., 2011; Steuer,
2006) as well as other ‘omics’ data (Fuente et al., 2004; Yuan et al., 2011).

GMs are probabilistic models in which an edge between two variables illustrates their condi-
tional dependence, given all other variables in the model. Implicitly, the absence of an edge
represents the conditional independence of the according variables. GMs are well-established
in case of binary or multivariate Gaussian distributed data. Ising Models are one instance
of GMs for binary data and several algorithms to infer binary graphical models are publicly
available, e.g. as R packages (Guo et al., 2010; Ravikumar et al., 2010; Wainwright et al., 2006;
Höfling et al., 2009).

Gaussian graphical models (GGMs) are the most common implementation of CIGs for mul-
tivariate Gaussian-distributed data. Edges in a GGM are defined based on partial correlations,
i.e. pairwise correlations of variables after adjustment for all other variables in the model. The
(weighted) adjacency matrix of a GGM is called precision matrix and can be calculated as the
inverse of the covariance matrix of the generating dataset. The absence of an edge is then
defined by a partial correlation of 0, i.e. conditional independence of the variables. However,
biological data is inherently noisy and empirical partial correlations are rarely exactly zero.
More importantly, empirical covariances are often bad estimators of the real covariances when
analysing many variables based on few samples (n << p) and also the covariance matrix is
not invertible in these scenarios (Schäfer et al., 2005). Several algorithms were developed to
circumvent these problems and infer stable GGMs (Meinshausen et al., 2006; Yuan et al., 2007;
Friedman et al., 2008; D’Aspremont et al., 2006; Mazumder et al., 2012). Many of them, such as
the well-established graphical lasso (Friedman et al., 2008; Mazumder et al., 2012), use regular-
ization to address the n << p problem and avoid over-fitting of graphs. This allows researchers
to concentrate on fewer high-confidence interactions (see section 3.4.7).

While GGMs have been used to reconstruct biological networks from metabolomics (Krumsiek
et al., 2011) and transcriptomics (Yuan et al., 2011) data, they have not been widely applied in
ageing research, yet. One of the few existing studies compared metabolic networks, inferred
by GGMs, and demonstrated differences in lipoprotein metabolism between healthy controls
and patients with impaired fasting glucose (Valcárcel et al., 2011). These changes often proceed
diagnosis and might help to generate hypotheses on the metabolic dysregulation that causes
diabetes.

While GMs are well-established for both Gaussian-distributed and binary data, inference
of GMs from mixed data, incorporating continuous and categorical variables, is much less
common. Shin et al. (2014) addressed this problem of integrating metabolomics and genetic
data by first constructing a GGM from metabolite concentrations and then adding SNPs as
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Figure 1.6 Spurious correlations. This figure exemplifies the problem of spurious correlations in
the analysis of biological data using three random variables, X, Y and Z. X was randomly
drawn from a normal distribution, while Y and Z are derived from their respective predecessor
by adding normal-distributed, random noise (a). The variables could for instance represent
metabolites in a metabolic pathway or genes in a GRN. The correlation X with Y (b) and
Y with Z (c), respectively, are causal, whereas the correlation of X with Z (d) is spurious
and completely mediated by Y. Normal zero-order correlations, such as Pearson correlation
coefficients, cannot detect mediation and, thus, lead to spurious results. In contrast, higher-
order correlations consider potential confounding factors and can thus detect such mediation.
The higher-order (partial) correlation of X and Z, given Y, is ρxz|y = 0.02 (p > 0.5), while
the partial correlations ρxy|z and ρyz|x remain significant.

(a) Exemplary Reaction System
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nodes and connecting them with associated metabolites. The resulting network illustrates the
genetic control of the metabolism in an intuitive way. However, it is no longer a GM, and
edges do not indicate conditional dependence. Recent developments facilitate the integration
of different types of data while maintaining the favourable properties of GGMs, namely mixed
graphical models (MGMs) (Lee et al., 2015; Fellinghauer et al., 2013; Chen et al., 2015; Tur et al.,
2012). In this thesis, I present the first application of this approach to a multi-omics dataset,
analysing comorbidities of age-related diseases (chapter 9).

GGMs as well as MGMs are undirected models and can therefore not be used to infer causal
direction. In epidemiological research Mendelian randomization is an increasingly common
approach to infer causality from observational data (Brion et al., 2014). It takes advantage of the
invariability of gene variants to separate the study population in groups, thus mimicking a ran-
domized controlled trial. Thereby the directionality of an association between two phenotypes
can be assessed. Mendelian randomization can be used to further investigate edges of interest,
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which might have been identified by graphical models before. However, this approach relies
on stable associations with genetic variants and assumes – amongst others – independence
of all potential confounding factors. Thus, causal inference from observational data remains
challenging.

1.3.3.3 Bayesian networks

Another approach that aims to infer causality from observational data are Bayesian Networks
(BNs). Like GMs, BNs are probabilistic models in which edges represent the conditional
independence between variables. However, BN are directed acyclic graphs (DAGs) thus
distinguishing between an influence of X on Y and the influence of Y on X. In return the
acyclicity of the causal graph is an assumption, which might not hold true for biological
networks.

The application of BNs on high-throughput transcriptomics data demonstrated the potential of
this method to extract meaningful associations from data without prior knowledge (Friedman
et al., 2000). Recent developments enable the inference of BNs using genetic variation as
instrumental variables, as in Mendelian randomization, in a genome-wide manner to infer
directionality of entire network models (Yazdani et al., 2016).

1.3.4 Model biological systems

The ultimate goal of systems biology is not only the qualitative exploration of an organism,
but the quantitative modelling of the organism, facilitating in silico experiments, hypotheses
generation and predictions. Currently, system biological modelling is used only in the field of
microorganisms. For instance, Karr et al. (2012) created a model of a mycoplasma genitalium
cell, which simulates the cell cycle and predicts metabolite concentrations. However, the model
is far from perfect (Freddolino et al., 2012) and too primitive to be adapted to more complex
organisms. Nevertheless, some models were developed to investigate ageing phenotypes in
very small, well-defined subsystems. McAuley et al. (2009) created a systems biology mark-
up language model to investigate the influence of increased cortisol levels on hippocampus
activity, which is important in AD. Such models require extensive knowledge about the involved
variables and their interactions, which makes their application to complex phenotypes infeasible
at the current state of research.

1.4 Conclusion

Due to the increasing age of populations, healthy ageing is a major challenge. The devel-
opment of high-throughput technologies and growing availability of large ‘omics’ datasets
facilitated a multitude of studies investigating the effects of ageing on a molecular level. With
the increasing dimensionality and sample sizes of biological datasets, associations studies
identified a plethora of compounds associated with ageing and age-related diseases. While
these associations do expand our knowledge on diseases, they are often limited by the lack of
causal inference.
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Systems biology provides tools to analyse high-dimensional datasets integratively, aiming to
investigating multi-variate relations between biological compounds. Thereby, multivariate
statistics exclude spuriously correlations and the combination of data from various sources
permit for stronger hypotheses. Innovative methods, for instance to infer and analyse biolo-
gical graphs, can help to add structure to the results of an association study, thus facilitating
mechanistic insights into disease processes.



CHAPTER 2

Hypothesis, aims, and outline

2.1 Hypothesis

Systems biology approaches can help to gain greater understanding of the causal mechanisms
of complex phenotypes, such as biological ageing and related diseases.

2.2 Aims

This hypothesis will be explored through the following aims:

1. Identify associations of ageing and ageing-related diseases, particularly CKD, with mo-
lecular, intermediate phenotypes such as glycomics and metabolomics

2. Integrate metabolomics and genetics data with measurements of the gut microbiome to
identify microbial metabolites affecting CKD

3. Use systems biology approaches to analyse multi-tissue omics data, particularly meta-
bolomics, to analyse tissue-dependent effects of ageing, and gain insights in the pathology
of chronic kidney disease, as example of a highly age-dependent disease

4. Integrate multiple phenotypes with multiple omics data to gain insights in their potentially
shared molecular (patho-) mechanisms
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2.3 Outline

In this thesis, I aimed to identify metabolic patterns that underlie biological ageing and age-
related diseases. First, I analysed metabolites associated with telomere length to identify
mechanisms of biological ageing (chapter 4). To further explore the aetiology of CKD, I
analysed the relationship of renal function with glycosylation of IgG and lipid metabolism
in chapters 5 and 6, respectively. The next step was to analyse the faecal metabolome as a
functional marker of the gut microbiome in order to investigate its association with ageing
and CKD (chapter 7). In chapter 8, I inferred metabolic networks, integrating metabolomics
measurements from plasma, urine and saliva, to identify metabolic processes that differ in renal
disease patients compared to the general population. Lastly, in chapter 9, I integrated data
from four different omics technologies with phenomics data to investigate comorbidities and
underlying (shared) molecular mechanisms of age-related diseases including CKD. Finally, in
chapter 10, I summarise the results and implications and discuss its limitations and potential
for subsequent studies.



CHAPTER 3

Material and methods

Data from several independent cohorts, measured by different technologies and analysed using
various statistical methods were used for each of the chapters of this thesis. In the following, I
will describe methods that were used repeatedly throughout the thesis.

3.1 Study populations

In each chapter, different subsets of the available study populations were used, according to
data availability. An overview over the cohorts used in each chapter is given in Table 3.1.

3.1.1 TwinsUK

The TwinsUK cohort is a national register of 13,000 adult twins recruited as volunteers without
selecting for any particular disease or trait (Moayyeri et al., 2013). Study participants, thus,
represent the general British population in terms of lifestyle characteristics such as smoking and
nutrition. The study participants are roughly equal numbers of MZ and DZ, predominantly
female (82.4 %) same-gender twins. On average, they are 59.5 years old (Table 3.2 and Figure
3.1a) and have a BMI of 26.0 kg/m2 (Figure 3.1b). TwinsUK is one of the best characterised
cohorts in the world with many phenotypes and cutting edge molecular phenotypes available.
Hence, TwinsUK is very well-suited for this project.

Through different projects, including the Healthy Ageing Twin Study (Moayyeri et al., 2013)
a multitude of age-related phenotypes were collected over a period of more than 20 years.
Recruitment is still ongoing and twins are regularly invited to St. Thomas’ Hospital, London,
UK, for examinations where various clinical tests are performed. Biological samples, including
blood, urine, faeces and skin biopsies, are collected during visits. Moreover, questionnaires
are regularly sent to all participants and each twin answers on average 1.2 questionnaires per
year.

Collected phenotypes include for instance anthropometric measures, such as weight, height
and waist and hip circumferences (section 3.2.1). Moreover, many clinical phenotypes were
collected: blood pressure was repeatedly measured during hospital visits, lung function was
assessed using standard spirometry (see section 3.2.6), and grip strength was assessed using a
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Table 3.2 Population characteristics of the TwinsUK cohort. Shown are the population char-
acteristics of the entire TwinsUK cohort. Phenotypes as well as ‘omics’ measurements were
measured for different subsets of the population at different points in time. Thus, population
characteristics differ from study to study.

N 13392

MZ pairs 3665 (54.7 %)

DZ pairs 3031 (45.3 %)

MZ/DZ 1.2

Females 11,041 (82.4 %)

Age, years 59.5 (±16.2)

BMI, kg/m2 26.0 (±5.0)

hydraulic hand dynamometer. Blood samples were additionally collected to measure standard
clinical biochemistry, such as blood glucose levels, blood cholesterol levels, creatinine levels
in serum, which is a marker of renal function (section 3.2.3), and concentrations of gamma-
glutamyltransferase (GGT) and alanine aminotransferase (ALT), which are markers for liver
function (section 3.2.5). Moreover, dual-energy X-ray absorptiometry (DXA) scans were per-
formed for 5100 individuals to determine body composition variables such as fat and bone
mass (section 3.2.2).

Additionally, several cutting edge molecular phenotypes were also collected: 5654 individuals
were genotyped using DNA chips and whole genome sequences were obtained for 1959 twins at
an average coverage of 30× (Long et al., 2017a). Transcriptomics data was measured using the
Illumina Human HT-12 V3 Bead chip (Illumina Inc., San Diego, USA) from blood, skin and fat
biopsies of 856 twins (Grundberg et al., 2012). Epigenetics measurements were performed using
the HumanMethylation450K BeadChip (Illumina Inc., San Diego, USA) from the same samples
(Grundberg et al., 2013). Metabolic profiling of blood samples was conducted on several
platforms for different fluids (see section 3.3.1 for details). More recently, the gut microbiome
was profiled for 2766 twins using 16S sequencing (section 3.3.3) and meta-genomics sequencing
was performed for an additional 250 twins (Xie et al., 2016).

This deeply phenotyped resource with multi-omics available allows us to put results of associ-
ation studies, including GWASs, in a broader context and compare associations of molecular
phenotypes with different diseases. More importantly, it enables the combination of multiple
omics datasets, including phenomics data, to assess interdependencies between the different
omics layers and investigate their role in disease comorbidities. Also, the twin structure of the
data enables the estimation the proportion of variance of phenotypes that can be attributed
to genetics, by comparing MZ and DZ twins (see section 3.4.1). Thus, TwinsUK was used as
discovery cohort for most of the studies in this thesis.

All study participants provided written informed consent. The study has been approved by the
local St. Thomas’ Hospital Research Ethics Committee and was carried out in accordance with
the approved guidelines.
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3.1.2 KORA

To replicate findings, I additionally analysed data from the Cooperative Health Research in the
Region of Augsburg (KORA) cohort. The KORA study was established in 1996 as expansion of
the MONitoring trends and determinants in CArdiovascular disease (MONICA) project and
more than 18,000 participants were recruited since then in different batches (Holle et al., 2005;
Wichmann et al., 2005). In 1999, 4261 individuals were newly recruited for the most recent
KORA cohort, KORA S4, independently of previous participants. 3080 of these S4 participants
(72.3 %) were recalled between 2006 and 2008 (Holle et al., 2005) for the KORA F4 study and
2279 were recalled a second time in 2014 for the KORA FF4 study.

The aim of KORA is to investigate genetic and environmental factors that influence chronic
diseases to inform policy and the general public about potential risk factors, with a main focus
on cardiovascular diseases, the development of diabetes mellitus, and other metabolic diseases
(Holle et al., 2005).

Baseline participants were randomly selected from the city of Augsburg, Germany, and two
adjacent counties, thus, representing a mixed urban and rural population whose demographic
and socio-economic characteristics roughly reflect those of the average central European popu-
lation.

All participants were invited to the KORA Study Centre, Augsburg, Germany, where they
underwent a standardised interview and a comprehensive medical examination. Similarly
to TwinsUK, extensive information on environmental factors, such as smoking and nutrition,
and clinical phenotypes, such as renal function and lung function, were collected in each of
the KORA cohorts and their follow-ups. Additionally, blood sampling was conducted by
the KORA study staff and various ‘omics’ measurements were performed. Genetic variation
was measured for all 3080 individuals of the KORA S4 study using several different arrays
(Affymetrix, Illumina, Metabochip, Immunochip, Exomechip). Metabolic profiling of blood
samples was conducted using various platforms as well, including the platforms provided by
Metabolon Inc. (Durham, NC, USA), and Brainshake Ltd. (Vantaa, Finland) (see section 3.3.1
for details).

All study methods were approved by the ethics committee of the Bavarian Chamber of
Physicians, Munich, Germany and written informed consent was provided by all parti-
cipants.

3.1.2.1 GenoDiabMar

GenoDiabMar includes 700 adult T2D patients, who were recruited in the Hospital del Mar
(Litoral-Mar area, Barcelona, Spain) between 2012 and 2015, to investigate microvascular com-
plications of diabetes. All study participants are older than 45 years, have been diagnosed with
T2D at least 10 years prior to recruitment, and are under anti-diabetic drug treatment. The aim of
the study is to research microvascular complications of diabetes. Renal ultrasound, fundoscopy,
and measurements of proteinuria were performed for all participants.
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3.1.3 SHIP and GANI_MED

The Greifswald Approach to Individualized Medicine (GANI_MED) study consists of several
disease cohorts including cardiovascular disease (CVD), T2D and CKD patients. I analysed
CKD patients from the GANI_MED renal cohort. Patients were recruited in the Kuratorium für
Dialyse und Nierentransplantation (Centre for dialysis and renal transplants) and the Department
of Internal Medicine at the University of Greifswald. About half of the patients were receiving
dialysis at the time of recruitment.

The Study of Health in Pomerania (SHIP) study was – amongst others – designed to be a
control cohort for the GANI_MED studies. It is a population cohort based at the University of
Greifswald in north-east Germany and was started specifically to research complex diseases
and their comorbidities. Study participants were randomly selected from the region of West
Pomerania, Germany, stratifying for age, sex, and the place of residence.

All study methods were approved by the ethics committee of the medical faculty of the
University of Greifswald and informed written consent was obtained from study parti-
cipants.

3.1.4 YoungFinns

I additionally analysed data from 2046 individuals from the YoungFinns cohort. The ‘Car-
diovascular Risk in Young Finns’ study was started as a pilot in 1978 and the first baseline,
incorporating 3596 children aged 3 to 18 years was recruited in 1980. After that follow-ups were
conducted approximately every three years (Raitakari et al., 2008).

3.2 Phenotypic measures

Both TwinsUK and KORA are very well phenotyped cohorts with a large variety of measures
available. In the following, I will outline phenotypes that are central to this thesis.

3.2.1 Anthropometry

Anthropometric measures were taken by trained study staff during the participant’s visits. Body
height and weight as well as hip and waist circumferences were recorded. BMI was calculated as
mass in kg over the square of the height in m and is expressed as kg/m2.

3.2.2 Body composition

Additionally to classical anthropometric measures, body composition was analysed in depth
using dual-energy X-ray absorptiometry (DXA) fan-beam technology (Hologic QDR, Hologic,
Inc., Waltham, MA, USA). Participants were asked to wear a gown only, remove all jewellery,
and were then placed on the DXA machine in a standardised way. Following the manufacturer’s
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guidelines recalibration of the machine using a spine phantom was performed daily and
additional calibration with a step phantom was done on a weekly basis. DXA scans were
analysed using QDR System Software (version 12.6).

DXA scans were used to quantify bone mineral content (BMC) and bone mineral density (BMD)
at different body sites. Additionally, the distribution of fat and lean tissues was computed
from the scans (Salamone et al., 2000; Haarbo et al., 1991), including visceral fat mass (Kaul
et al., 2012). Due to its particular importance, e.g. as risk factor for the metabolic syndrome
(Carr et al., 2004) and mortality (Kuk et al., 2006), visceral fat measurements were additionally
validated by comparing DXA-based measurements with computed tomography (CT)-based
measurements, which are considered the gold-standard. In a comparison of 63 participants
of the TwinsUK cohort both measures correlated 83 %, proving DXA is a cost-effective way to
quantify visceral fat (Menni et al., 2016).

Regions-of-interest were defined manually following the manufacturer’s guidelines by the
same operator. For quantification of visceral fat, the lower horizontal margins were placed
above the pelvis, just over the iliac crest. The upper horizontal margins were placed at
the half of the distance between the acromions and the iliac crest and the vertical margins
were adjusted at the external borders of the body to include all the soft tissue (Menni et al.,
2016).

3.2.3 Renal function

Renal function was assessed using the estimated glomerular filtration rate (eGFR), which was
calculated from serum creatinine levels (Scr) using the Chronic Kidney Disease Epidemiology
Collaboration (CKD-EPI) equation (Levey et al., 2009). Creatinine accumulation indicates
decline of filtration in the kidney, however expected levels of creatinine in serum differ between
sexes, ethnicities and most importantly age. All these factors are considered in the CKD-EPI
equation (equation 3.1), which provides a comparable estimate of the glomerular filtration
rate

if black:

eGFR =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

166×
(︁

Scr
0.7

)︁−0.329
× 0.993age if ♀∧ Scr ≤ 0.7 mg/dL

166×
(︁

Scr
0.7

)︁−1.209
× 0.993age if ♀∧ Scr > 0.7 mg/dL

163×
(︁

Scr
0.9

)︁−0.411
× 0.993age if ♂∧ Scr ≤ 0.9 mg/dL

163×
(︁

Scr
0.9

)︁−1.209
× 0.993age if ♂∧ Scr > 0.9 mg/dL

(3.1)
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other ethnicities:

eGFR =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

144×
(︁

Scr
0.7

)︁−0.329
× 0.993age if ♀∧ Scr ≤ 0.7 mg/dL

144×
(︁

Scr
0.7

)︁−1.209
× 0.993age if ♀∧ Scr > 0.7 mg/dL

141×
(︁

Scr
0.9

)︁−0.411
× 0.993age if ♂∧ Scr ≤ 0.9 mg/dL

141×
(︁

Scr
0.9

)︁−1.209
× 0.993age if ♂∧ Scr > 0.9 mg/dL

In contrast to the previously used Modification of Diet in Renal Disease (MDRD) equation
(Levey et al., 1999), the CKD-EPI equation uses two different slopes for the relationship
between eGFR and serum creatinine depending on the creatinine concentration and the gender.
The second slope was introduced to avoid the underestimation of high eGFR values by the
MDRD formula. The CKD-EPI equation is, thus, more suitable to estimate renal function,
particularly in the general population with predominantly good renal function (Murata et al.,
2011).

Creatinine concentration was measured from serum samples with an enzymatic assay using the
Roche modular system (Hoffman-La Roche, Basel, Switzerland) in the pathology department
of St. Thomas’ Hospital. Creatinine is enzymatically converted to creatine by creatininase, then
further to sarcosine by creatinase, which is further degraded to glycine, formaldehyde and
hydrogen peroxide by sarcosine oxidase. Peroxidase then catalyses the reaction of the latter to
form a green dye and colour intensity, which is directly proportional to creatinine concentration,
is photometrically measured.

3.2.4 Leukocyte telomere length

. LTL was measured by quantitative polymerase chain reaction (qPCR) and expressed as ratio
of telomere repeat length (T) to a copy number of a single copy gene (S) (Codd et al., 2010;
Codd et al., 2013; Cawthon, 2002). QPCR was performed using 25 µL reactions on a CAS-1200
liquid handling system (Qiagen, United Kingdom) and analysed on a Rotorgene-Q Real Time
Thermal Cycler (Qiagen, United Kingdom) for both telomeres (T) and 36B4 as single-copy gene
(S). Additionally, a calibrator sample and a no template control were analysed along with the
samples. DNA was quantified relative to the calibrator sample to standardise results across
plates and telomere length was measured as relative concentration of T over S. Coefficients
of variations were estimated at 1.9 % (T), 1.6 % (S), and 2.9 % (T/S ratio), respectively, from
duplicate samples (Codd et al., 2010).

3.2.5 Liver function

Circulating levels of the enzymes gamma-glutamyltransferase (GGT) (Whitfield, 2001) and
alanine aminotransferase (ALT) were used as markers for liver function. Both are predominantly
expressed in liver and their increased abundance in blood are general markers of liver function,
which also is highly age-dependent (Kim et al., 2015).
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GGT concentration was measured enzymatically and enzyme concentration was determined
photometrically using a Kodak Ektachem dry chemistry analyser (Johnson and Johnson Vitros
Ektachem machine).

In vivo, ALT catalyses the reversible reaction of α-ketoglutarate and alanine to glutamate and
pyruvate (Karmen et al., 1955). The same reaction is used for enzymatic measurements of ALT
concentration in vitro. The created pyruvate is reduced to lactate by lactate dehydrogenase,
which leads to oxidation of reduced nicotinamide adenine dinucleotide (NADH) to its oxid-
ised form (NAD+). Increasing concentration of NAD+ can be measured photometrically as
decreased absorbance at 340 nm. Measurements were performed using a Kodak Ektachem dry
chemistry analyser (Johnson and Johnson Vitros Ektachem machine).

3.2.6 Spirometry

Lung function was assessed by standard spirometry (Miller et al., 2005) using a Vitalograph
Spirometer (Vitalograph, Buckingham, United Kingdom). Heavy cloths, such as coats, are
removed prior to the test. Participants sit on a stationary chair and are asked to take a deep
breath to fill their lungs before they breath out as fast as they can. Two measures were recorded
to quantify lung function: The forced vital capacity (FVC) is the maximal amount of air that can
be exhaled after a maximal inspiration. The forced expiratory volume in one second (FEV1) is
the maximal amount of air that can be forcefully exhaled in the first second. Both are measured
in litres of air at body temperature.

3.3 ‘Omics’ datasets

In the following, I will describe the experimental details of the metabolomics (section 3.3.1),
glycomics (section 3.3.2), microbiome (section 3.3.3) and whole genome sequencing (section
3.3.4) datasets that were analysed in this thesis.

3.3.1 Metabolomics

The metabolome describes the collection of all low-molecular-weight molecules – metabolites –
in a sample, and metabolomics describes the study thereof (see section 1.2.6). Currently there is
no single technique than can measure all circulating metabolites, indeed the number of unique
metabolite that is unknown. The available methods fall in two general categories: targeted
and untargeted metabolomics. While targeted metabolomics measures a pre-defined, usually
limited set of metabolites, untargeted metabolomics aims to measure all metabolites in a sample.
Untargeted metabolomics is hypothesis-free, thus facilitating the discovery of unknown and
unexpected metabolic features. However, untargeted platforms are usually less sensitive than
targeted platforms and do not support absolute quantification of compounds (Menni et al.,
2017b) (Figure 3.2).
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Figure 3.1 Population characteristics of the TwinsUK cohort. Histograms show the distributions
of (a) age and (b) BMI at the time of writing this thesis. Dashed lines indicate the mean
values.
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Figure 3.2 Targeted and untargeted metabolomics. Metabolomics approaches can be broadly
classified in targeted and untargeted techniques. Targeted platforms aim to measure absolute
concentrations of a usually limited set of pre-defined compounds. In contrast, untargeted
platforms aim to measure ideally all metabolites in a sample, which comes for the cost of
complex compound identification and relative instead of absolute measurements. (Picture
previously published in Menni et al. (2017b))
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There are two major analytical approaches to metabolomics: nuclear magnetic resonance (NMR)
spectroscopy and mass spectrometry (MS). NMR exploits the fact that nuclei that are exposed
to a magnetic impulse will absorb a portion of the energy and resonate at a specific frequency.
The energy emitted due to this resonance can be detected. Depending on the applied magnetic
field different nuclei will absorb the radiation energy. In the field of metabolomics usually 1H
nuclei are analysed. Each nucleus within a molecule will absorb – and thus emit – specific
amounts of energy with respect to its local environment (which is referred to as shielding). The
emitted energy can be compared to a standard and is expressed as chemical shift in parts per
million (ppm). Consequently, each molecule creates a characteristic pattern of chemical shifts,
depending on the configuration of its 1H nuclei (Figure 3.4). Applying NMR spectroscopy to a
biological sample results in a pattern of chemical shifts, from which separate molecules can
be identified using bioinformatics methods (Vehtari et al., 2007). NMR measurements do not
require elaborate extractions (Markley et al., 2017) and are, thus, very stable (Dumas et al., 2006).
However, they lack sensitivity (Markley et al., 2017) and can detect only a small fraction of the
human metabolome.

In contrast to NMR-based methods, MS-based methods vary greatly with respect to their
exact implementation (Moco et al., 2007). In general, molecules within the sample are ionized,
the ions are then sorted according to their mass-to-charge ratio, and finally detected. For
each of these steps there exists a multitude of different approaches. Also, MS-based methods
rely on extraction of the metabolites from their sample matrices and are usually separated
by chromatography prior to injection in the spectrometer. Both steps significantly affect the
result of the experiment, for instance by allowing only certain classes of metabolites (e.g. polar
or unpolar) to be detected. This additional effort comes with higher sensitivity compared to
NMR spectroscopy and allows for detection of diverse sets of metabolites, particularly when
combining different approaches (Menni et al., 2017b).

For both analytical approaches, identification of metabolites from the spectra is one of the
most challenging steps and one of the major constraints in metabolomics research (Moco et
al., 2007). In this thesis, I used two different metabolomics datasets from two commercial
providers using different platforms: An untargeted, semi-quantitative, MS-based platform
provided by Metabolon Inc. (Durham, NC, USA) and a targeted, quantitative, NMR-based
platform provided by Brainshake Ltd. (Vantaa, Finland). Both platforms have been extensively
used in research, as they provide identified metabolites rather than the raw, spectral data,
thus facilitating straight-forward interpretation of results. In the following, I will describe the
analytical procedures of both platforms.

3.3.1.1 Mass-spectrometry (Metabolon)

I analysed multiple datasets that were measured by Metabolon on two different versions of
their untargeted platform, which I will refer to as V3 and V4. Both have been extensively used
and the experimental protocols have been previously described, e.g. by Shin et al. (2014) and
Long et al. (2017a).
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Metabolites were extracted by precipitation with methanol under vigorous shaking and sub-
sequent centrifugation. The resulting extract was split in different fractions and analysed on
several MS injections. One additional aliquot per sample was kept as backup. For the V3
platform the fractions were analysed in three different injections:

1. Ultra-performance liquid chromatography (UPLC) coupled with a tandem mass spectro-
metry (MS/MS) on a Thermo Fisher LTQ mass spectrometer (Thermo Fisher, Waltham,
MA, USA), using electrospray ionization and a linear ion-trap mass analyser, monitoring
for positive ions in acidic extracts

2. The same UPLC-MS/MS platform but instead monitoring for negative ions in basic
extracts

3. Gas chromatography (GC)-MS on a Thermo Finnigan Trace DSQ MS (Thermo Finnigan,
San Jose, CA, USA) operated at unit mass resolving power with electron impact ionization
and a 50 to 750 atomic mass unit scan range

In contrast, the V4 platform uses four MS/MS injections on a Thermo Scientific Q-Exactive high
resolution/accurate MS interfaced with a heated electrospray ionization source and Orbitrap
mass analyser operated at 35,000 mass resolution. Three of the aliquots are separated using
UPLC and the fourth one using hydrophilic interaction chromatography (HILIC) prior to MS
analysis.

1. UPLC under acidic positive ion conditions, chromatographically optimized for hydro-
philic compounds: The extract was gradient eluted from a Waters Acquity UPLC BEH
C18 column using water and methanol, containing 0.05 % perfluoropentanoic acid (PFPA)
and 0.1 % formic acid (FA).

2. UPLC under acidic positive ion conditions, chromatographically optimized for hydro-
phobic compounds: The extract was gradient eluted from the same C18 column using
methanol, acetonitrile (ACN), water, 0.05 % PFPA and 0.01 % FA and was operated at an
overall higher organic content.

3. UPLC under basic negative ion optimized conditions using a separate dedicated C18
column: Basic extracts were gradient eluted from the column again using methanol and
water with 6.5 mM ammonium bicarbonate at pH 8.

4. Negative ionization following elution from a HILIC column: Waters UPLC BEH Amide
column using a gradient consisting of water and ACN with 10 mM ammonium formate
at a pH of 10.8.

For both versions of the platform metabolites were then identified by comparing the measured
features, including retention time and mass-to-charge ratio, against Metabolon’s in-house
database (Evans et al., 2009; Dehaven et al., 2010). Recurrent features that did not match
known metabolites were added as unknown metabolic features, which have the potential to be
identified later. Metabolite abundances were measured as area-under-the-curve. These raw
area counts were scaled by the run-day median of each metabolite to account for variation
resulting from instrument inter-day tuning differences.
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Three types of controls were analysed in concert with the experimental samples: (i) standard
samples generated from a pool of human plasma, which has been extensively characterized by
Metabolon, were used as technical replicates; (ii) extracted water samples that served as process
blanks; and (iii) a cocktail of standards spiked into every analysed sample that enabled instru-
ment performance monitoring. Experimental samples and controls were randomized across the
platform run. Instrument variability of the V4 platform was estimated at 5 % from 31 standards.
Technical replicates of pooled samples were used to estimate the overall process variability
for all metabolites that were detected in at least 90 % of the samples. On average the relative
standard deviation (RSD) of these 832 metabolites was 12 % (Table D.1).

Metabolic profiling of fasting blood samples was conducted for 6055 individuals from the
TwinsUK cohort using the V3 platform. 5003 of them were fasting plasma samples and 1052
were blood serum samples. The V4 platform was used to profile serum samples of 2069 twins
at three different time points. 1971 of the individuals examined using the V4 platform were
already examined on the V3 platform. However, the newer V4 platform detects around twice
the number of metabolites as the V3 platform, including about 400 additional metabolites with
known chemical identity from various chemical pathways (Figure 3.3). Additionally, the V4
platform was used to profile 786 stool samples.

3.3.1.2 NMR-metabolomics (Brainshake)

In contrast to the semi-quantitative measurements provided by Metabolon, Brainshake uses
a targeted NMR-platform to provide quantitative measurements of a pre-defined panel of
metabolites (Soininen et al., 2015). Like other NMR platforms, the Brainshake platform is less
elaborate then MS based metabolomics. Brainshake Ltd. was renamed to Nightingale Health
Ltd. during the writing of this thesis.

Figure 3.3 Metabolic pathways covered by Metabolon platforms. While the version V3 of
Metabolon’s untargeted metabolomics platform detected 280 metabolites with known chemical
identity and 176 unknowns in blood samples, version V4 detected 687 known and 214 unknown
metabolites. In stool samples the same platform measures 1117 different metabolites, 850 of
them with known identity.
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Samples were thawed overnight at 4 ◦C. 100 µL of each sample were mixed with 100 µL of
sodium phosphate buffer and subsequently transferred to SampleJet NMR tubes (Bruker,
Billerica, MA, USA) using a PerkinElmer JANUS handler (Waltham, MA, USA). Samples were
analysed on a Bruker AVANCE III (Bruker, Billerica, MA, USA) 500 MHz NMR spectrometer for
5 min. Two control samples, one plasma sample and one mixture of two low-molecular weight
metabolites, were added to each 96 well plate for quality control.

While each NMR spectrum typically consists of several thousand peaks, many of them are
redundant and represent the same metabolite. Brainshake uses its proprietary software to
derive absolute metabolite concentrations from NMR spectra, independently of external stand-
ards (Vehtari et al., 2007). The Bayesian model accounts for correlations among adjacent
peaks by summarising them through kernel functions (Figure 3.4). Each metabolite is then
calculated as a linear combination of the kernels combined with the overall mean of the spec-
trum.

This allows for absolute quantification of a pre-defined set of 144 metabolites, including 98
lipoproteins from 14 lipoprotein subclasses, 9 amino acids and 8 energy related metabolites
(Figure 3.5). Moreover, it provides measures of average particle sizes for VLDL, LDL and
HDL particles and a semi-quantitative measure of albumin concentration. In addition to these
148 metabolite measures, Brainshake provides 77 metabolite ratios that often represent the
fatty acid metabolism better than absolute concentrations (Wurtz et al., 2017; Petersen et al.,
2012). These 228 metabolic traits contain most of the metabolites that can be reliably quantified
by NMR spectroscopy (Soininen et al., 2015) The platform allows detection of metabolites at
concentrations of at least ≈10 µmol/L, depending on the molecular identity. Measurement
accuracy of the platform has been shown to be comparable to clinical assays (Wurtz et al., 2017;
Vehtari et al., 2007).

3.3.2 Glycosylation of Immunoglobin G

Glycans are sugar chains that are post-translationally attached to proteins, thus altering their
structure and function (section 1.2.5). IgG is a very well-studied glycoprotein in which even
subtle changes of the glycans attached to the Fc part can alter its effect between pro- and
anti-inflammatory (Gornik et al., 2012). IgG glycans were measured for 4624 twins by Genos
Glycoscience Laboratories (Zagreb, Croatia) as previously described (Royle et al., 2008; Kristic
et al., 2014).

IgG was isolated using protein G monolithic plates. IgG samples were denatured and glycans
were released by incubating samples overnight at 37 ◦C with 10 µL of 4 % Igepal-CA630 and
1.3 mU of PNGase F in 10 µL 5× phosphate-buffered saline. The released N-glycans were la-
belled using 25 µL of a freshly prepared labelling mixture of 2-aminobenzamide (2AB) dissolved
in a mixture of dimethyl sulfoxide and glacial acetic. An additional 25 µL of reducing agent
solution (107.0 mg/mL 2-picoline borane in dimethyl sulfoxide) were added before samples
were shaken for 10 min and then incubated for 2 h at 65 ◦C. 100 µL of each sample were then
mixed with 400 µL ACN and free label and reducing agent were removed from the samples
using HILIC-solid-phase extraction. Samples were loaded to pre-washed 0.5 µm GHP filter
plate, which were then washed seven times using 200 µL ACN/water. Glycans were eluted
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Figure 3.4 Exemplary NMR spectrum. In 1H nuclear magnetic resonance (NMR) spectroscopy
samples are exposed to strong magnetic fields to excite protons. These emit resonance
energy depending on their local environment. Thus, each molecule produces a characteristic
pattern of chemical shifts, which are quantified in parts per million (ppm) (illustrated here in
black). Brainshake’s proprietary software summarised adjacent peaks using kernels, which are
then used to calculate metabolite concentrations. (Picture reproduced with permission from
Vehtari et al. (2007))

two times with 100 µL of water. Fluorescence-labelled N-glycans were separated on a Waters
ethylene bridged hybrid glycan chromatography column, using a linear gradient of 75 % to
62 % ACN at a flow rate of 0.4 mL/min a 25-minute analytical run at a temperature of 60 ◦C.
The system was calibrated using an external standard of hydrolysed and 2AB-labelled glucose
oligomers from which the retention times for the individual glycans were converted to glucose
units.

Peak integration was performed using an automated pipeline and each chromatogram was
manually corrected to assure consistent intervals across samples. The chromatograms were all
separated in the same manner into 24 peaks, each of which represents certain glycan structures
(Pucic et al., 2011) (Figure 3.7). Additionally, 53 derived traits were calculated as described
previously (Pucic et al., 2011) (Table 3.3). These derived traits were defined based on prior
knowledge to summarise particular glycosylation features within subgroups of the glycans.
They were shown to be more closely related to enzymatic activities and underlying genetic
polymorphisms (Lauc et al., 2010).
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Figure 3.5 NMR metabolomics provided by Brainshake Ltd.. Brainshake uses NMR spectro-
scopy to quantify absolute concentrations of 144 metabolites and (filled bullets) along with
80 metabolite ratios (open bullets). (Picture reproduced with permission from Soininen et al.
(2015))
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Figure 3.6 The structure of Immunoglobin G. Structure of immunoglobin G (IgG) with heavy
chains in green and light chains in blue. A Fc-bound glycans is represented in yellow (picture
created from the PDB structure 1HZH (Saphire, 2001) using Jmol).

Glycan

Figure 3.7 Immunoglobin G glycan chromatogram. Example chromatogram of immunoglobin
G (IgG) glycan measurement (published before in Lauc et al. (2013)).
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Table 3.3 IgG glycan traits. The table lists all IgG glycan traits that were analysed in this thesis.
Traits in (a) are directly measured as area under the curve from the chromatograms (Figure
3.7). All traits in the subsequent tables were derived from the original 24 measures and
summarise certain features of glycosylation.

(a) Total Glycans

ID Trait Description Formula

IGP1 GP1 The percentage of FA1 glycan in total IgG glycans

IGP2 GP2 The percentage of A2 glycan in total IgG glycans

IGP3 GP4 The percentage of FA2 glycan in total IgG glycans

IGP4 GP5 The percentage of M5 glycan in total IgG glycans

IGP5 GP6 The percentage of FA2B glycan in total IgG glycans

IGP6 GP7 The percentage of A2G1 glycan in total IgG glycans

IGP7 GP8 The percentage of FA2[6]G1 glycan in total IgG glycans

IGP8 GP9 The percentage of FA2[3]G1 glycan in total IgG glycans

IGP9 GP10 The percentage of FA2[6]BG1 glycan in total IgG glycans

IGP10 GP11 The percentage of FA2[3]BG1 glycan in total IgG glycans

IGP11 GP12 The percentage of A2G2 glycan in total IgG glycans

IGP12 GP13 The percentage of A2BG2 glycan in total IgG glycans

IGP13 GP14 The percentage of FA2G2 glycan in total IgG glycans

IGP14 GP15 The percentage of FA2BG2 glycan in total IgG glycans

IGP15 GP16 The percentage of FA2G1S1 glycan in total IgG glycans

IGP16 GP17 The percentage of A2G2S1 glycan in total IgG glycans

IGP17 GP18 The percentage of FA2G2S1 glycan in total IgG glycans

IGP18 GP19 The percentage of FA2BG2S1 glycan in total IgG glycans

IGP19 GP20 Structure not determined

IGP20 GP21 The percentage of A2G2S2 glycan in total IgG glycans

IGP21 GP22 The percentage of A2BG2S2 glycan in total IgG glycans

IGP22 GP23 The percentage of FA2G2S2 glycan in total IgG glycans

IGP23 GP24 The percentage of FA2BG2S2 glycan in total IgG glycans

(b) Total Glycans - Derived Traits

ID Trait Description Formula

IGP24 FGS / (FG + FGS) The percentage of sialylation of fucosylated galactosylated structures without bisecting GlcNAc
in total IgG glycans

(GP16 + GP18 + GP23)/(GP16 +
GP18 + GP23 + GP8 + GP9 + GP14)

IGP25 FBGS / (FBG +
FBGS)

The percentage of sialylation of fucosylated galactosylated structures with bisecting GlcNAc in
total IgG glycans

(GP19 + GP24)/(GP19 + GP24 +
GP10 + GP11 + GP15) ∗ 100

IGP26 FGS / (F + FG +
FGS)

The percentage of sialylation of all fucosylated structures without bisecting GlcNAc in total IgG
glycans

(GP16 + GP18 + GP23)/(GP16 +
GP18 + GP23 + GP4 + GP8 + GP9 +
GP14)

IGP27 FBGS / (FB + FBG +
FBGS)

The percentage of sialylation of all fucosylated structures with bisecting GlcNAc in total IgG
glycans

(GP19 + GP24)/(GP19 + GP24 +
GP6 + GP10 + GP11 + GP15) ∗ 100

IGP28 FG1S1 / (FG1 +
FG1S1)

The percentage of monosialylation of fucosylated monogalactosylated structures without
bisecting GlcNAc in total IgG glycans GP16/(GP16 + GP8 + GP9) ∗ 100

IGP29 FG2S1 / (FG2 +
FG2S1 + FG2S2)

The percentage of monosialylation of fucosylated digalactosylated structures without bisecting
GlcNAc in total IgG glycans GP18/(GP18 + GP14 + GP23) ∗ 100

IGP30 FG2S2 / (FG2 +
FG2S1 + FG2S2)

The percentage of disialylation of fucosylated digalactosylated structures without bisecting
GlcNAc in total IgG glycans GP23/(GP23 + GP14 + GP18) ∗ 100

IGP31 FBG2S1 / (FBG2 +
FBG2S1 + FBG2S2)

The percentage of monosialylation of fucosylated digalactosylated structures with bisecting
GlcNAc in total IgG glycans GP19/(GP19 + GP15 + GP24) ∗ 100

IGP32 FBG2S2 / (FBG2 +
FBG2S1 + FBG2S2)

The percentage of disialylation of fucosylated digalactosylated structures with bisecting GlcNAc
in total IgG glycans GP24/(GP24 + GP15 + GP19) ∗ 100

IGP33 FtotalS1 / FtotalS2
Ratio of all fucosylated monosialylated and disialylated structures (+/- bisecting GlcNAc) in
total IgG glycans

(GP16 + GP18 + GP19)/(GP23 +
GP24)

IGP34 FS1 / FS2 Ratio of fucosylated monosialylated and disialylated structures (without bisecting GlcNAc) in
total IgG glycans (GP16 + GP18)/GP23

IGP35 FBS1 / FBS2 Ratio of fucosylated monosialylated and disialylated structures (with bisecting GlcNAc) in total
IgG glycans GP19/GP24

IGP36 FBStotal / FStotal Ratio of all fucosylated sialylated structures with and without bisecting GlcNAc in total IgG
glycans

(GP19 + GP24)/(GP16 + GP18 +
GP23)

IGP37 FBS1 / FS1 Ratio of fucosylated monosialylated structures with and without bisecting GlcNAc in total IgG
glycans GP19/(GP16 + GP18)

IGP38 FBS1 / (FS1+FBS1) The incidence of bisecting GlcNAc in all fucosylated monosialylated structures in total IgG
glycans in total IgG glycans GP19/(GP16 + GP18 + GP19)

IGP39 FBS2 / FS2 Ratio of fucosylated disialylated structures with and without bisecting GlcNAc in total IgG
glycans GP24/GP23

IGP40 FBS2 / (FS2+FBS2) The incidence of bisecting GlcNAc in all fucosylated disialylated structures in total IgG glycans GP24/(GP23 + GP24)
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(c) Neutral Glycans

ID Trait Description Formula

IGP41 GP1n The percentage of FA1 glycan in total neutral IgG glycans (GPn) GP1/GPn · 100

IGP42 GP2n The percentage of A2 glycan in total neutral IgG glycans (GPn) GP2/GPn · 100

IGP43 GP4n The percentage of FA2 glycan in total neutral IgG glycans (GPn) GP4/GPn · 100

IGP44 GP5n The percentage of M5 glycan in total neutral IgG glycans (GPn) GP5/GPn · 100

IGP45 GP6n The percentage of FA2B glycan in total neutral IgG glycans (GPn) GP6/GPn · 100

IGP46 GP7n The percentage of A2G1 glycan in total neutral IgG glycans (GPn) GP7/GPn · 100

IGP47 GP8n The percentage of FA2[6]G1 glycan in total neutral IgG glycans (GPn) GP8/GPn · 100

IGP48 GP9n The percentage of FA2[3]G1 glycan in total neutral IgG glycans (GPn) GP9/GPn · 100

IGP49 GP10n The percentage of FA2[6]BG1 glycan in total neutral IgG glycans (GPn) GP10/GPn · 100

IGP50 GP11n The percentage of FA2[3]BG1 glycan in total neutral IgG glycans (GPn) GP11/GPn · 100

IGP51 GP12n The percentage of A2G2 glycan in total neutral IgG glycans (GPn) GP12/GPn · 100

IGP52 GP13n The percentage of A2BG2 glycan in total neutral IgG glycans (GPn) GP13/GPn · 100

IGP53 GP14n The percentage of FA2G2 glycan in total neutral IgG glycans (GPn) GP14/GPn · 100

IGP54 GP15n The percentage of FA2BG2 glycan in total neutral IgG glycans (GPn) GP15/GPn · 100

(d) Neutral Glycans - Derived Traits

ID Trait Description Formula

IGP55 G0n The percentage of agalactosylated structures in total neutral IgG glycans (GP1n : GP4n + GP6n)

IGP56 G1n The percentage of monogalactosylated structures in total neutral IgG glycans (GP7n : GP11n)

IGP57 G2n The percentage of digalactosylated structures in total neutral IgG glycans (GP12n : GP15n)

IGP58 Fn total The percentage of all fucosylated structures (+/- bisecting GlcNAc) in total neutral IgG glycans
(GP1n + GP4n + GP6n + GP8n +
GP9n + GP10n + GP11n + GP14n +
GP15n)

IGP59 FG0n total / G0n The percentage of fucosylation of agalactosylated structures in total neutral IgG glycans (GP1n + GP4n + GP6n)/G0n ∗ 100

IGP60 FG1n total / G1n The percentage of fucosylation of monogalactosylated structures in total neutral IgG glycans (GP8n + GP9n + GP10n +
GP11n)/G1n ∗ 100

IGP61 FG2n total / G2n The percentage of fucosylation of digalactosylated structures in total neutral IgG glycans (GP14n + GP15n)/G2n ∗ 100

IGP62 Fn The percentage of fucosylated structures (without bisecting GlcNAc) in total neutral IgG glycans (GP1n + GP4n + GP8n + GP9n +
GP14n)

IGP63 FG0n / G0n The percentage of fucosylation of agalactosylated structures (without bisecting GlcNAc) in total
neutral IgG glycans (GP1n + GP4n)/G0n ∗ 100

IGP64 FG1n / G1n The percentage of fucosylation of monogalactosylated structures (without bisecting GlcNAc) in
total neutral IgG glycans (GP8n + GP9n)/G1n ∗ 100

IGP65 FG2n / G2n The percentage of fucosylation of digalactosylated structures (without bisecting GlcNAc) in total
neutral IgG glycans GP14n/G2n ∗ 100

IGP66 FBn The percentage of fucosylated structures (with bisecting GlcNAc) in total neutral IgG glycans (GP6n + GP10n + GP11n + GP15n)

IGP67 FBG0n / G0n The percentage of fucosylation of agalactosylated structures (with bisecting GlcNAc) in total
neutral IgG glycans GP6n/G0n ∗ 100

IGP68 FBG1n / G1n The percentage of fucosylation of monogalactosylated structures (with bisecting GlcNAc) in
total neutral IgG glycans (GP10n + GP11n)/G1n ∗ 100

IGP69 FBG2n / G2n The percentage of fucosylation of digalactosylated structures (with bisecting GlcNAc) in total
neutral IgG glycans GP15n/G2n · 100

IGP70 FBn / Fn Ratio of fucosylated structures with and without bisecting GlcNAc in total neutral IgG glycans FBn/Fn · 100

IGP71 FBn / Fn total The incidence of bisecting GlcNAc in all fucosylated structures in total neutral IgG glycans FBn/Fn total · 100

IGP72 Fn / (Bn + FBn)
Ratio of fucosylated non-bisecting GlcNAc structures and all structures with bisecting GlcNAc in
total neutral IgG glycans Fn/(GP13n + FBn)

IGP73 Bn / (Fn + FBn) Ratio of structures with bisecting GlcNAc and all fucosylated structures (+/- bisecting GlcNAc)
in total neutral IgG glycans GP13n/(Fn + FBn) ∗ 1000

IGP74 FBG2n / FG2n
Ratio of fucosylated digalactosylated structures with and without bisecting GlcNAc in total
neutral IgG glycans GP15n/GP14n

IGP75 FBG2n / (FG2n +
FBG2n)

The incidence of bisecting GlcNAc in all fucosylated digalactosylated structures in total neutral
IgG glycans GP15n/(GP14n + GP15n) ∗ 100

IGP76 FG2n / (BG2n +
FBG2n)

Ratio of fucosylated digalactosylated non-bisecting GlcNAc structures and all digalactosylated
structures with bisecting GlcNAc in total neutral IgG glycans GP14n/(GP13n + GP15n)

IGP77 BG2n / (FG2n +
FBG2n)

Ratio of digalactosylated structures with bisecting GlcNAc and all fucosylated digalactosylated
structures (+/- bisecting GlcNAc) in tital neutral IgG glycans GP13n/(GP14n + GP15n) ∗ 1000
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Figure 3.8 Reproducibility of IgG glycan measurements. Immunoglobin G (IgG) glycan meas-
urements are shown for 141 technical replicates of a pooled sample. The average of all
samples as well as the minima and maxima, respectively, are shown in red.
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The glycan traits were global normalised to account for a multiplicative error. To this end a
reference sample was estimated as median sample for each glycan. For each of the measured
sample the average deviance from this reference was calculated as median of the fold-changes
of each of the 24 measured glycan traits over the reference trait. This average deviance was
the used as sample-specific scaling factor for each of the glycan traits. All measurements
were corrected for batch effects using the ComBat function implemented in the R-package sva

(Johnson et al., 2007). Reproducibility of the glycan measurements as well as the validity of
this normalisation was assessed using 141 technical replicates across 30 plates from a pooled
sample (Figure 3.8). The average RSD of the normalised glycan measurements was estimated
at 0.8 % (ranging between 0.3 % to 1.9 %).

3.3.3 Microbial sequencing

Faecal samples were collected to assess the gut microbial composition. Sample collection
kits were sent out to participants prior to visits. Participants were asked to keep samples
refrigerated in ice packs until arrival at the hospital, where samples were frozen at −80 ◦C
(mostly within 24 hours from collection). About 15 % of the study population sent samples by
post.

Frozen samples were shipped to Cornell University, where microbial sequencing was per-
formed in the Cornell Biotechnology Resource Center Genomics Facility as previously described
(Goodrich et al., 2014; Goodrich et al., 2016; Jackson et al., 2016b). DNA was isolated from
the samples using the PowerSoil kit (MO BIO Laboratories, Carlsbad, CA, USA). 515F and
806R primers were used to amplify the V4 region of bacterial 16S ribosomal RNA (rRNA) gene
by polymerase chain reaction (PCR) (Caporaso et al., 2011). Sample specific barcodes were
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added to reads to enable for multiplexed sequencing. The barcoded, pooled samples were
sequenced on an Illumina MiSeq machine (Illumina, Inc., San Diego, CA, USA), generating
250 bp paired-end reads. Samples were merged and filtered for a minimum overlap of 200 nt
using fastq join within QIIME (Caporaso et al., 2010). Then, joined reads where demultiplexed
and barcodes were removed, again using QIIME. Reads were subsequently filtered to remove
chimeric sequences produced during PCR using USEARCH (Edgar et al., 2011). Samples with less
than 10,000 reads were excluded from further analyses; the remaining samples were on average
sequenced at a depth of 81,388. All reads that passed QC were grouped to operational taxo-
nomical units (OTUs) using the Sumaclust algorithm, implemented in QIIME. De novo OTUs
were shown to cluster reads more accurately at 97 % sequence identity (Westcott et al., 2015),
and Sumaclust was the among the best performing greedy clustering algorithms in previous
comparisons using the TwinsUK data (Jackson et al., 2016b). To assign taxonomy representative
sequences of OTUs were aligned against the Greengenes 13_8 database (DeSantis et al., 2006)
with a similarity threshold of 97 % using UCLUST (Edgar, 2010).

The de novo clustering across all 3384 samples within the TwinsUK cohort produced ≈300,000
OTUs after singleton removal. However, most of these OTUs were found in very few samples
(table density 0.002). 581 OTUs were present in at least 25 % of the samples were included in
further analyses (table density 0.547). OTUs counts were converted to relative abundances by
dividing read counts over the total number of reads per sample. A pseudo count of 10−6 was
added prior to log transformation to account for zero counts. The relative abundances were
then adjusted for the technical covariates sequencing run, sequencing depth, individual who
extracted the DNA, individual who loaded the DNA and sample collection method by fitting
linear models with OTU abundances as dependent variable. Residuals of these models were
used for further analyses. Additionally, OTUs were collapsed and each taxonomical level and
taxonomic abundances were normalised in the same way.

Microbial communities are often described using diversity measures, which describe the within-
sample diversity (alpha diversity) and the between-sample diversity (beta-diversity). Diversities
were calculated from the complete OTU table and each sample was rarefied to a depth of 10,000
reads 50 times to account for sequencing depth. Diversity metrics were calculated for each
sample in each table and the mean across all tables taken as the final measure. Alpha diversity
was calculated as Shannon diversity H′, which takes into account frequency and evenness of
different species found in a sample (equation 3.2).

H′ = −
R∑︁

i=1

pi ln pi (3.2)

where pi is the frequency of the i-th (of R) species. Beta diversity was quantified using the
unweighted UniFrac algorithm (Lozupone et al., 2005). It assesses co-abundances of species
between samples while taking into account the phylogenetic similarity of species.

3.3.4 Whole genome sequencing

Whole genome sequencing was conducted for 2053 individuals from the TwinsUK cohort by
HLI Inc. (San Diego, CA, USA) (Long et al., 2017a).
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DNA was extracted using the Chemagic DNA Blood400 kit (PerkinElmer chemagen, Baesweiler,
Germany), eluted in 50 µL elution buffer and stored at 4 ◦C. DNA libraries were prepared using
TruSeq Nano DNA HT kit (Illumina Inc., San Diego, CA, USA) following the manufacturer’s
recommendations, and normalised to 2–3.5 nM. Samples were pooled in groups of six and
sequenced on an Illumina HiSeqX sequencer (Illumina Inc., San Diego, USA), producing 150 bp
pair-end reads at a coverage of 30×.

Reads were aligned to the human genome (build hg38) and variant calling was conducted
using ISIS Analysis Software (v. 2.5.26.13; Illumina) (Raczy et al., 2013). Missing variants
were assumed to be homozygous for the reference allele (Telenti et al., 2016). The ratio of
heterozygous to homozygous variants was calculated from all ‘PASS’ single nucleotide variants
(SNVs), and genomes with a ratio higher than 2.5 were excluded. 1960 individuals of European
descent and consistent self-reported and genetic zygosity were kept for further analysis. VFC
files of those individuals including all autosomal variants were then merged into a single
binary file using bcftools (Li, 2011), whereby multi-allelic variants are split into multiple
bi-allelic variants and indels are left normalized. High confidence regions of the genome
were defined for the entire cohort. These had to have at least 90 % ‘PASS’ calls in three sets,
each of them consisting of 100 randomly selected genomes. Variants within these regions
with a minor allele frequency (MAF) of at least 0.1 % were converted to plink files for further
analysis.

3.4 Statistical analysis

Several statistical methods were used repeatedly throughout this thesis. Here I will in-
troduce these methods, while more specific methods will be described in the respective
chapters.

3.4.1 Heritability

A commonly asked question, particularly when dealing with novel measurements, is how
much of the observed phenotypic variance can be attributed to genetics. The proportion of
this genetically caused variance over the total variance is referred to as heritability. There are
different methods to estimate the heritability of a trait, many of which take advantage of family
structure and particularly twins. Twin modelling utilises the fact that MZ twins are genetically
identical and DZ twins share only half of their genetic variation, while both are exposed to
the same – or at least very similar – environmental conditions (Figure 3.9). Consequently, the
correlation between MZ twins (rMZ) can be attributed to the heritable component of the trait
A and the shared environmental component of the trait C, while the correlation between DZ
twins (rDZ) is caused by half of the heritable component and the environmental component.
The remaining variance is caused by the unique environment of each individual E, which is
not shared between twins (Rijsdijk et al., 2002). The correlations between twins are calculated
as
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rMZ= A + C + 2×Corr( A, C)

rDZ = 1
2 A + C + 2×Corr( 1

2 A, C)

Assuming that the correlation of genetic and environmental influences Corr(A, C) is minimal,
one can estimate the heritable component A and the common environmental component C
from the observed correlations between MZ and DZ twins using Falconer’s formula (Falconer,
1960; Rijsdijk et al., 2002)

A = 2× (rMZ − rDZ)

C = 2× rMZ − rDZ

E = 1− A− C

Structural equation modelling (SEM) provides a more sophisticated solution for estimating the
heritability from twins data. SEM is a very general framework that facilitates the analysis of
the correlation structure between variables as well as potential latent factors underlying them
(Livote, 2009). In this case, SEM improves the estimation of heritability over Falconer’s method
by correcting for confounding factors and providing confidence intervals for the point estimates
of heritability and common environmental influences (Neale et al., 1997; Martin et al., 1977). By
using SEM assumptions about the relationships of A, C and E components between twins must
be explicitly formulated (as depicted in Figure 3.9). Model parameters are then estimated by
optimizing the log-likelihood of the predicted covariance structure compared to the observed
covariance. One major advantage of SEM is that it can be used to fit the same model while
omitting some of the variance components. This can be used to assess the improvement of the
fit by incorporating a genetic component in the model. Models can be compared based on their
log-likelihood, or information criteria that additionally incorporate model complexity, such
as the Akaike information criterion (AIC) or the Bayesian information criterion (BIC). SEM
can also be used to estimate heritability for categorical trait using the liability threshold model.
It assumes that each category reflects an imprecise measurement of the underlying normal
distribution (Rijsdijk et al., 2002).

The increased availability of large genotyped cohorts facilitated the development of methods
to estimate heritability from genotyping data directly (Speed et al., 2012; Yang et al., 2011).
However, in contrast to family-based methods they only estimate the effect of genetic variation
that is measured (or at least tagged by) the genotyping data. This usually excludes rare variants
and structural variation. Also, these methods require much larger sample sizes than twin
modelling (at least several thousand).

In this thesis, I estimated heritabilities using SEM implemented in the R package mets. I fitted
four different models modelling different variance components: the full ACE model and AE,
CE and E models. I selected the best fitting model based on the AIC. If not stated otherwise, all
heritability estimates were adjusted for age and gender.
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Figure 3.9 Twin modelling. Twin modelling exploits the fact that monozygotic (MZ) twins share
(almost) 100 % and dizygotic (DZ) twins share 50 % of their genetic variation (A), but in
both cases siblings are exposed to the same common environmental factors (C), in utero and
when growing up. Additionally, there are unique environmental factors that are different for
every individual (E). Comparing MZ and DZ twins allows to differentiate these three variance
components for various phenotypes.

E C A A C E

MZ Twin 1 MZ Twin 2

1
1

E C A A C E

DZ Twin 1 DZ Twin 2

1⁄2
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3.4.2 Univariate analysis

In most epidemiological studies researchers aim to identify biomarkers for an outcome of
interest with many individual variables, such as SNPs or metabolites. These hypothesis-free
approaches are referred to as genome-wide association studies (GWASs) and metabolome-wide
association studies (MWASs), respectively.

In this thesis, I used regression models to test for bivariate dependencies. Regression models
facilitate adjustment for confounding factors and can be applied to a wide range of variables,
including Gaussian distributed, dichotomous, and categorical. In general, regression models
aim to approximate one variable, the outcome or dependent variable y, by a linear combination
of independent variables x1, . . . , xn. To this end, the independent variables are weighted by
regression coefficients β1, . . . , βn and the weightings are fitted to maximise the likelihood of the
model by minimising the random error term ε.

y = β0 + β1 · x1 + . . . + βn · xn + ε (3.3)

This concept is further extended by random effect models, which assume that independent
variables affect the outcome depending on a group structure of samples, such as different
populations, study centres or families. These ‘structuring’ variables are thought of as random
observations drawn from a larger entirety, such as a set of families drawn from all families
or a set of study centres drawn from all (theoretical) study centres. These effects are, thus,
called random effects and the according models random effect models. Regression models
incorporating both random and non-random, i.e. fixed, effects are called mixed effects mod-
els.

For this thesis, association studies, including MWASs, were conducted by calculating regres-
sion models as implemented in the R-packages stats and lme4 (R Core Team, 2016; Bates
et al., 2015). Models were usually adjusted for age, gender and BMI. When analysing data
from the TwinsUK cohort a random intercept was added per family to account for the twin
structure.
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3.4.2.1 Multiple testing

Significance of associations is assessed using p-values, which express the probability that the
observed association occurs due to random chance. Usually findings with a p-value of 5 %
are further considered, i.e. a 5 % chance of false positive discoveries is accepted. However,
when conducting association studies using high-dimensional data, not one but many – often
thousands of – hypotheses are tested simultaneously. Accepting an error rate of 5 % within
this group (or family) of thousands of statistical tests leads to an inflation of false discoveries.
Thus, association studies presented in this thesis were corrected for multiple testing using
the Bonferroni method. The p-values were multiplied by the number of tests that were per-
formed within this family of tests, thus controlling the family-wise error rate (FWER). The
FWER is the probability of observing at least one false positive discovery within this family of
tests.

3.4.2.2 Meta-analyses

Association studies are often conducted in several different cohorts to achieve larger sample
sizes and validate results independently of potential study effects. Meta-analyses are used
to combine effect estimators and p-values across studies. Thereby results from individual
studies are weighted by the accuracy of their effect estimator. Various weighting methods are
available, for instance the inverse variance method, which weights each study by the inverse of
the variance of the respective effect estimator (Borenstein et al., 2010).

In general, there are two different concepts to meta-analysis: Fixed-effects meta-analysis
assumes that the true effect estimator is the same for all studies and aims to identify this single
true effect. In contrast, random-effects models assume variation of the effect estimators between
studies and aims to estimate their average (Borenstein et al., 2010). Due to heterogeneity of
individual study populations, with respect to age, geographic location and genetic make-up,
random-effects meta-analysis might be closer to the truth in many cases, however the random
effects are harder to estimate and results were shown to be inaccurate, particular in settings
with a limited number of studies (Guolo et al., 2015).

As a maximum of three cohorts were meta-analysed and all populations used in this thesis
are European with similar demographics (Table 3.1), I used inverse variance fixed-effects
meta-analysis throughout this thesis, as implemented in the R package meta (version 4.3).

3.4.2.3 Genome-wide association studies

GWASs are used to analyse genetic influences on traits of interest, such as metabolite levels, in
a hypothesis-free manner. Prior to analysis, SNPs were tested for Hardy-Weinberg equilibrium
using unrelated individuals, which were randomly drawn from the study population, with the
Plink software suite (version v1.90b3.38). SNPs with P < 10−6 were considered to deviate
significantly from Hardy-Weinberg equilibrium and were, thus, excluded from further analysis.
GWASs were conducted by fitting linear mixed models using GEMMA (version 0.94.1) (Zhou
et al., 2012), adjusting for age and gender as fixed effects. Additionally, sample kinship was
calculated from genotyping data using the GEMMA software suite and sample relatedness was
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added to the model as a random effect. The score test implemented in GEMMA was used to
calculate p-values for all associations. A multiple testing-corrected significance threshold was
calculated by dividing the genome-wise significance threshold of 5×10−8 by the number of
analysed phenotypes.

3.4.3 Pathway enrichment

Pathway enrichment considers the structure of biological data by analysing groups of related
metabolites or genes. Therefore, it can be used to identify patterns in the results of an association
study. Moreover, it can be used to identify affected pathways, even though its components
might not be associated with the trait individually (see section 1.3.2.1).

There are several methods available to test for over-representation of certain pathways. As
a start one can divide the variables in two groups ‘significant’ and ‘non-significant’ depend-
ing on their association with the phenotype and then test for enrichment of certain groups
(pathways) amongst the significant variables by comparing the observed numbers with
expected values drawn from a hyper-geometric distribution. Even though this is a valid
method for pathway enrichment, it requires separation of variables in two groups and there-
fore ignores the ordering amongst them and associations below the (arbitrary) significance
threshold.

To overcome this problem Subramanian et al. (2005) introduced the gene set enrichment analysis
(GSEA) algorithm, a non-parametric approach which uses the ranking of variables according
to their association with the phenotype of interest to calculate an enrichment score. The
significance of the enrichment score is then assessed by estimating empirical p-values from
random permutations of the data. This approach was the first to overcome the limitation
of an arbitrarily chosen threshold. Kim et al. (2005) further improved the method by devel-
oping the parametric analysis of gene set enrichment (PAGE) algorithm using a parametric
statistic, which fully takes into account the strength of the correlation of each variable with the
outcome.

All pathway enrichments in this thesis were performed using the PAGE algorithm implemented
in the R-package piano (Väremo et al., 2013). Enrichment tests are performed for each given
pathway while taking into account the sign of the associations. Statistical significance of all
enrichment analyses were assessed using empirical p-values estimated from a background dis-
tribution of 10,000 random permutations of the variable labels, and multiple testing correction
was used to correct for the number of tested pathways.

3.4.4 Multi-variable regression (LASSO)

Another way to consider interdependencies of multiple predictors, e.g. metabolites, are multi-
variable regression models. These are useful to assess the correlations of a phenotype with
multiple different metabolites independently of each other. Using a panel of predictors can
help to increase the predictive performance compared to single biomarkers, if the different
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variables contain complementary information. However, such models are prone to over-
fitting, particularly in high-dimensional settings with more variables than observations. Also,
they tend to consist of many predictors, most of which have very small influence on the
prediction.

To address both problems Tibshirani (1994) introduced a modified regression method, the least
absolute shrinkage and selection operator (LASSO). The LASSO penalises the sum of regres-
sion coefficients, and therefore only adds variables to the model that increase the predictive
performance. It thus, implicitly performs a variable selection by setting regression coefficients
of variables that do not considerably increase predictive performance to β j = 0, i.e. removing
them from the model. Mathematically speaking, instead of minimising the predictive error of
the model

N∑︁
i=1

⎛⎝yi −
∑︁

j

β jxij

⎞⎠2

(3.4)

with the outcome variable y and the independent variables xj, weighted by the regression
coefficients β j, it adds a penalty term and minimises

N∑︁
i=1

⎛⎝yi −
∑︁

j

β jxij

⎞⎠2

+ λ
∑︁

j

|β j| (3.5)

The tuning parameter λ determines the strength of the regularisation. λ can vary from λ = 0,
which resembles a normal regression, to λ = ∞, which will lead to an empty prediction model.
In practice a series of λ-values is tested and their predictive performance is evaluated using a
cross-validation (see below) and the λ that minimises the predictive error or an information
criterion is chosen for the final model. Here, I used the R-package glmnet to fit LASSO models.
The function cv.glmnet was used to estimate the optimal regularisation parameter λ using
cross-validation.

The main advantage of LASSO over other machine learning approaches is that variables that
contribute to the model can be immediately identified by their non-zero regression coefficient.
In contrast, most other machine learning methods, such as support vector machines (SVMs),
differentiate classes of observations (such as cases and controls) by defining hyper-variables,
that consist of linear (or even non-linear using kernels) combinations of the original variables.
Other approaches, such as random forests, do not even use a single classifier but an ensemble
of multiple classifiers, each of which uses different sets of variables. Finally, neuronal networks
are almost complete black boxes. While these machine learning approaches are immensely
useful if the purpose is only the optimal classification, biological interpretation of the results is
challenging in case of SVMs and random forests and virtually impossible for neuronal networks.
Similarly, most dimensionality reduction methods usually define meta-variables based on
(linear) combinations of the original variables, which reduces correlation between variables as
well as the burden of multiple testing. However, interpretation of these abstract combinations of
many biological entities is hardly possible. As I was aiming to gain knowledge about biological
processes underlying ageing, I did not use such methods to reduce dimensionality or train
classifiers.
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3.4.5 Imputation

A disadvantage of multivariate methods, such as the LASSO but also other multivariate
methods described below, is that they rely on full data matrices. As most real-world datasets
are not complete, amongst others due to incomplete questionnaires, limits of detections or
failed measurements, imputation of missing values is required to use these methods, which
introduces further complexity.

Here, I imputed missing values using the R package mice (Buuren et al., 2011). I used the norm

method, which calculates Bayesian linear regression models, predicting each variable based on
all other variables. Missing values are then imputed as the sum of the prediction based on the
regression models and a random error term depending on the residual error of the models. For
categorical variables, logistic regression models are used. Mice imputation, thus, preserves the
multivariate covariance structure of variables.

3.4.6 Assessing predictive performance

If the aim of a study is to predict a phenotype or disease of interest, the predictive performance
must assessed to rate the usability of the predictive model. Depending on the required outcome
different measures are commonly used.

3.4.6.1 Binary outcomes

In case of binary outcomes one can count the number of true positives (TPs) – the number of
correctly predicted cases, true negatives (TNs) – the number of correctly predicted controls,
false positives (FPs) – the number controls that were incorrectly predicted as cases, and false
negatives (FNs) – the number of cases that were incorrectly predicted as controls (Figure
3.10).

From these one can calculate the sensitivity (or true positive rate (TPR)) as TP/(TP + FN),
which measures the performance of the method in detecting cases, and the specificity (or true
negative rate (TNR)) as TN/(TN + FP), which measures its performance in detecting controls.
In many cases, algorithms do not predict the binary outcome, but a continuous measure that
represents the confidence of the classification as case. Consequently, one has to choose one
cut-off to classify samples in predicted cases and controls. For each of these cut-offs one can
count the number of true and false predictions and calculate TPR and false positive rate (TPR)
from these. The receiver operating characteristic (ROC) curve summarises this spectrum of
predictions by plotting TPR and TPR of each possible threshold against each other. The area
under the curve (AUC) gives an overall measure of predictive performance, where a value
of 1 indicates a perfect prediction and a value of 0.5 corresponds to random guessing (Figure
3.10).
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Figure 3.10 Assessment of statistical predictions. (a) When assessing the performance of a
predictor to predict a binary outcome, one can initially count the number of true – true
positive (TP) and true negative (TN) – and false – false positive (FP) and false negative
(FN) predictions. Ratios of these counts over the total number of positive and negative
observations are called true positive rate (TPR) and true negative rate (TNR), respectively.
Ratios of the counts over the total number of positive and negative predictions are called
positive predictive value (PPV) and negative predictive value (NPV), respectively. (b) When
predicting a binary outcome with a continuous predictor, one can calculate these measures
for all possible cut-off points and summarise the results in a receiver operating characteristic
(ROC) curve, where each point corresponds to the true positive rate (TPR) and true negative
rate (TNR) of one cut-off. The area under this curve (AUC) can be calculated by integration
and provides an overall measure of prediction performance.
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3.4.6.2 Continuous outcomes

If the predicted variable is continuous one can calculate the total prediction error – the residual
sum of squares (RSS) – as

RSS =
∑︁

i

(yi − ŷi)
2 =

∑︁
i

e2
i ,

for n samples, where yi and ŷi are the observed and predicted values of the variable y for
sample i, respectively. Averaging the total error gives the mean squared error (MSE), which is
commonly used for fitting LASSO models. However, the MSE is on the scale of the predicted
variable and can, thus, not easily be compared across studies. The coefficient of determination
R2 normalises the RSS

R2 = 1− RSS
TSS

to express the predictive performance as proportion of variance explained by the predictor. The
total sum of squares (TSS) is defined as follows, equal to the sample variance

TSS =
∑︁

i

(yi − ȳ)2
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3.4.6.3 Cross-Validation

A common problem of statistical prediction is over-fitting of data. Over-fitting occurs when the
prediction algorithm learns structures in the data that cannot be generalised. Consequently,
the predictive performance will be over-estimated in the original dataset, but poor for other
datasets. For an unbiased assessment of its performance, a predictor has to be tested in an
independent dataset, that was not used for training. If no external validation sets are available,
one can split the dataset in two to train the algorithm on the first and test its performance on
the second split. A cross-validation uses the same principle and repeats it iteratively until each
sample was once used for the testing. Usually 10 iterations, or folds, each of them using 90 %
of the data for training and the remaining 10 % for testing, are performed. A special case of
cross-validation is the leave-one-out (LOO) validation, where in each fold a single sample is left
out for testing and all other samples are used for training.

Using the left-out dataset for testing, one can compute the same statistics as described above.
Summary statistics can then be derived as mean from all folds. When the RSS is calculated
in a cross-validation scenario it is called predicted residual sum of squares (PRESS). The
corresponding R2 value is referred to as P2.

3.4.7 Graphical models

To model multivariate dependencies in high-dimensional datasets, I used GMs (Lauritzen et al.,
1989). These model conditional dependencies between variables, thus overcoming the problem
of spurious correlations (see section 1.3.3.2 for details).

One of the most famous approaches for inference of sparse graphical models is the graphical
LASSO (Friedman et al., 2008; Mazumder et al., 2012). Like the LASSO, it penalises the sum
of partial correlations, thus enforcing sparse graphical models and avoiding over-fitting of
the data. Just as for the LASSO selecting a regularisation parameter (in this context often
referred to as ρ) is challenging. It can be chosen based on information criteria, such as the
AIC or BIC, however these tend to produce very dense graphs. Alternatively, one can use
different cross-validation or bootstrapping procedures, which produce sparser graphs, but are
computationally expensive for large datasets (Liu et al., 2010).

Instead of enforcing sparseness by regularisation, the GeneNet algorithm (Schäfer et al., 2005)
utilises a different regularisation approach to estimate the covariance matrix as good as possible
in high-dimensional settings. This approach allows us to determine the amount of regularisation
required analytically and does therefore not rely on elaborate optimisation procedures (Ledoit
et al., 2003). To avoid dense networks due to very small non-zero entries in the precision
matrix, a false discovery rate (FDR) is estimated for every edge, i.e. every partial correlation, by
estimating a background distribution from the entirety of all partial correlations. Edges of the
model can then be selected by applying a significance threshold.

For this thesis, I calculated GGMs using the GeneNet approach due to its computational effic-
acy, straight-forward choice of the regularisation parameter, and its proven applicability to
metabolomics data (Krumsiek et al., 2011; Valcárcel et al., 2011). I used the estimate.lambda

function of the R-package corpcor to calculate the regularisation parameter λ, the function
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pcor.shrink to estimate shrinkage partial correlations, and fdrtool to estimate a FDR for each
partial correlation (Schäfer et al., 2005). Shrinkage partial correlations with FDR<5 % were
considered significant and used as edges of the model.

3.4.8 Mixed Graphical Models

While GMs are well-defined and often used in the context of multivariate Gaussian-distributed
data, their application on less well-distributed data lacks behind. Some recent developments
facilitate the inference of GMs from not Gaussian-distributed datasets and more interestingly
mixed datasets, comprising both continuous and categorical variables. In chapter 9, I present
the first application of a mixed graphical model approach to a large dataset of omics-markers
combined with clinical phenotypes.

To this end, I used the graphical random forest (GRaFo) method (Fellinghauer et al., 2013)
with the complementary pairs stability selection (CPSS) modification (Shah et al., 2013) to infer
mixed graphical models (MGMs). For each variable, all the remaining variables are ranked
according to their conditional dependence, which I quantified as the random forest variable
importance. Consequently, two ranks are calculated for each pair of variables x1 and x2: one
based on the variable importance of x2 for the prediction of x1, and the other based on the
importance of x1 for the prediction of x2. The maximum (i.e. worse) of these two ranks is then
used as rank of the pair.

This procedure is repeated for 100 random subsets of the data, each of them containing the half
of all samples, and their respective complementary sets containing the other half of the samples.
This results in 100 pairs of lists, each of them ranking all possible edges (i.e. pairs of variables)
according to their conditional dependencies. Each of these lists can be considered permutations
of the underlying graphical model, where the highest-ranking pairs of variables are connected
by edges.

To combine these permutations in one stable MGM CPSS (Shah et al., 2013) is used, which
also controls the FWER of edges, thus facilitating an informed decision on a cut-off for edge
inclusion. To this end, an edge is included in one complementary pair if it was amongst
the top-scoring edges in both complementary sets and edges included in at least 80 % of all
complementary pairs are included in the final model. One can calculate the number of edges
to include in each of the subsamples to ensure FWER <5 % in the final network by using the
formula 3.6 proposed by Fellinghauer et al. (2013)

E|ŜCPSS
n,τ ∩ N| ≤ 1

2τ − 1
q2

p
, (3.6)

where E|ŜCPSS
n,τ ∩ N| is the expected number of false positive edges, τ is the proportion of

subsamples in which an edge has to be top-ranking to be included in the final model, q is the
number of edges, and q the number of selected edges per subsample.

I implemented this method in R using the randomForest package for the assessment of condi-
tional dependencies and the plyr and Rmpi packages for parallelisation to facilitate the inference
of large models.
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To summarise, conditional dependencies between variables are estimated using the random
forest variable importance. Permutation samples are used to obtain a stable ranking of
edges and CPSS is used to include edges that pass a FWER of 5 % in the final graphical
model.

3.4.9 Graph analysis

The whole field of graph theory, a specialisation of maths, is devoted to the analysis of graphs.
Hence, various measures were proposed to describe the topology of networks and topological
features of nodes, trying to identify highly connected, central nodes. These are thought to be
key players in the system, connecting several modules and controlling network fluxes. They
were shown to be of particular importance for many diseases and survival of the organism
(Barabási et al., 2004; Joy et al., 2005; Yu et al., 2007).

3.4.9.1 Topological properties of nodes

The most straight-forward measure of node centrality is the degree, which is the number of
edges that connect a node with the rest of the model. In a directed graph one can distinguish
the in-degree, the number if incoming edges, and the out-degree, the number of outgoing
edges. The degree provides a basic measure of node connectivity. The (local) clustering
coefficient measures how densely the neighbourhood of a node is connected. It is defined as
the proportion of edges between the neighbours of a node that are present in the network.
The global clustering coefficient summarises this property for the overall network and can
be calculated as the number of connected triangles over the number of paths of length 2. In
contrast to the clustering coefficient, the betweenness centrality describes the importance of
a node for the connection of all other pairs of nodes. It is defined as the number of shortest
paths between all pairs of nodes, that contain the node of interest (Barabási et al., 2004) (Figure
3.11). All these measures can be generalised to weighted networks in which edges are not
only present or absent but present edges are weighted by their importance (Langfelder et al.,
2008).

3.4.9.2 Modules

Real-world networks often consist of densely connected modules, or clusters, that represent
functional units within the network (Fortunato, 2010). Several methods have been developed to
identify modules of nodes, which are jointly affected by the condition of interest. Two publicly
available examples are the Cytoscape plugin jActiveModules (Ideker et al., 2002) and the R

package BioNet (Beisser et al., 2010). In this thesis, all graphs were analysed using the R-package
igraph (Csardi et al., 2006). Module (or cluster) identification was conducted using the function
cluster_optimal, which identifies the partition of the graph into modules that maximises the
graph modularity. Thereby the modularity Q is defined as

Q =
1

2m
·
∑︁

i,j

(︂
Aij −

ki · k j

2m
· I(ci, cj)

)︂
(3.7)
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where m is the number of edges in the graph and i and j nodes with degrees ki and k j, and
cluster assignments ci and cj, respectively (Clauset et al., 2004). I(ci, cj) is an indicator function
that returns 1 if i and j are in the same cluster and 0 otherwise. A is the adjacency matrix and
Aij the edge-weight of the edge connecting i and j, where Aij = 0 indicates absence of the edge.
Thus, maximising Q will identify clusters with the maximal number of within-cluster edges
compared to the number of expected within-cluster edges if modules were defined by random
(Clauset et al., 2004).

3.4.9.3 Small-world networks

In most biological networks, average path lengths between nodes are usually short despite
their high modularity. Such networks are referred to as small word networks. The small word
index of a network quantifies this property by comparing its clustering coefficient and average
shortest path lengths with a Erdős-Rényi random graph (Humphries et al., 2008). It is defined
as

Sg =
Cg/Crand

Lg/Lrand
, (3.8)

where Cg and Crand are the global clustering coefficients of the graph g and a random graph,
respectively. Lg and Lrand are their respective average shortest paths lengths between all pairs
of nodes. A network with Sg > 1 is considered a small-world network.

Figure 3.11 Topological properties of nodes in graphs. (a) Exemplary, an excerpt of the
human disease network (HDN) (Goh et al., 2007) is shown. Nodes represent diseases that
are connected if they are associated with the same gene. Parkinson’s disease connects
three isolated disease clusters (as indicated by colours), thus having a low clustering
coefficient (0 %) and high betweenness centrality (72 %). (b) The close neighbourhood of
the ApoD protein in a PPI network from STRING DB (Franceschini et al., 2013) using only
experimentally confirmed interactions, is used as a second example. ApoD connects two
clusters and is, despite the low degree (2) and clustering coefficient (0 %), a central node,
as indicated by the betweenness centrality of 53 %. In contrast, LEPR is central within the
blue cluster and has a high degree of 7, and clustering coefficient of 14 %. (Picture adopted
from Zierer et al. (2015))
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CHAPTER 4

Metabolic markers of leukocyte telomere length

In this chapter, I used leukocyte telomere length as marker of biological ageing
and associated it with circulating metabolite levels. By doing so I identified five
metabolites associated with telomere length and additionally with ageing-related
phenotypes.

This chapter has been published in Aging (Zierer et al., 2016a). The published
version is attached in appendix G.2.

Telomeres are repetitive DNA sequences that are located at the end of the chromosomes to
protect them from degradation and end-to-end-fusion (see section 1.1.2.1). In somatic cells
telomeres shorten with every cell cycle due to the incomplete replication of the 3’ end of
the template strand and were thus proposed as a potential cause of cell senescence (Har-
ley et al., 1992) and biomarkers of ageing (Mather et al., 2011). Consequently, leukocyte
telomere length (LTL) has been associated with chronological age as well as a multitude of
age-related diseases (section 1.1.2.1), however it is still unclear how telomere shortening affects
health.

In this chapter, I aimed to investigate metabolic changes that co-occur with the shortening
of telomeres to identify potential pathways of biological ageing. I then further analysed
the identified metabolites with respect to age-related phenotypes as well as changes of gene
expression and DNA methylation.

4.1 Methods

Study subjects were twins enrolled in the TwinsUK registry, a national register of adult twins
recruited as volunteers without selecting for any particular disease or trait (see section 3.1.1). In
this study, I analysed data of 3511 female twins who had complete data for LTL and metabolo-
mics profiling.

I replicated significant associations in 904 females of the KORA F4 cohort (see section 3.1.2)
with measures of LTL and blood metabolic profiles available.
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4.1.1 Leukocyte telomere length

LTL was measured as a relative measure of telomere repeat length over a single copy gene as
described in section 3.2.4. Relative LTL was on average 3.72 in TwinsUK and 1.85 in KORA
(Figure 4.1). Measurements were inverse normalised in both cohorts.

4.1.2 Metabolomics measurements

Metabolomics data for both cohorts was measured using the V3 platform of Metabolon Inc.,
as described in section 3.3.1.1. In this study, I analysed 280 metabolites with known chemical
identity (Table A.1).

4.1.3 Ageing phenotypes

Several age-related phenotypes were additionally analysed to further explore the association of
the observed metabolic changes with health. Renal function was quantified as eGFR (see section
3.2.3 for details). Liver function was assessed by measuring serum GGT and ALT concentrations
(section 3.2.5); both measures were inverse normalized prior to analysis. Lung function was
measured as FEV1 as described in section 3.2.6. Furthermore, diastolic and systolic blood pres-
sure (DBP and SBP), BMI (section 3.2.1) and serum high density lipoprotein (HDL) cholesterol
levels were measured during clinical visits of the study participants.

Figure 4.1 Telomere length in TwinsUK and KORA. Relative measures of leukocyte telomere
length (LTL) were analysed from (a) 3511 individuals from TwinsUK and (b) 904 individuals
from KORA. Histograms show the distribution of LTL in the respective populations, dashed
lines indicate the mean values.
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4.1.4 Gene expression

RNA abundance was measured in lymphoblastoid cell lines (LCLs) of 778 female individuals
from the TwinsUK cohort using the Illumina Human HT-12 V3 BeadChip (Illumina, San Diego,
CA, USA) as part of the Multiple Tissue Human Expression Resource (MuTHER) project as
previously described (Grundberg et al., 2012). I selected 30 probes from the GGT and PLA2
genes. Probes were adjusted for batch effects by linear models and residuals were inverse
normalized prior to analysis.

4.1.5 DNA methylation

DNA was extracted from whole blood, bisulfite converted and subsequently analysed using
the Infinium 450K kit (Illumina, San Diego, CA, USA) as previously described (Tsai et al., 2015).
The beta mixture quantile dilation (BMIQ) method was performed to correct for technical
variation (Teschendorff et al., 2013). Measurements were inverse normalized and then adjusted
for batch effects, family structure and cell counts (PlasmaBlast, CD8+CD28-CD45RA-T cells,
naive CD8 T cells, CD4+ T cells, Natural Killer cells, monocytes, and granulocytes) using linear
models.

4.1.6 Statistical analysis

Correlations between metabolite levels and LTL were calculated using linear mixed models,
correcting for age, BMI, and family relatedness as random intercept (as described in section
3.4.2). Result were corrected for 280 tested metabolites using the Bonferroni correction (p<
1.8×10−4) (section 3.4.2.1).

I replicated five Bonferroni-significant metabolites in the KORA F4 cohort (section 3.1.2). The
data was consistently normalized and analysed in both cohorts and results were meta-analysed
using inverse variance fixed effect meta-analysis (see section 3.4.2.2). I estimated the power
of the replication cohort using the R package pwr (version 1.1), which implements power
estimation according to Cohen (1988).

To identify non-redundant associations of the metabolites with LTL, I fitted a multivariate
LASSO model (Tibshirani, 1994) incorporating all metabolites passing the Bonferroni cut-off
together with age and BMI (see section 3.4.4). The predictive performance of the model was
then compared to a baseline-model, containing age and BMI only, by calculating the PRESS and
P2 statistics using a LOO cross-validation (details in section 3.4.6).

Subsequently, I aimed to further explore the relationship of the identified metabolic profile
with biological ageing. To this end, I used linear mixed models to test for association of the
previously identified metabolites with ageing-related phenotypes. All models were adjusted for
age, BMI and family relatedness as described before. The lung function parameter FEV1 was
additionally adjusted for height, as suggested in the literature. I replicated the associations with
lung function parameters in KORA, adjusting for the same covariates.
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4.2 Results

I analysed the associations of 280 fasting blood metabolites with LTL in 3511 women from the
TwinsUK cohort (Table A.1) and replicated the findings in the KORA cohort. The demographic
characteristics of the study populations are presented in Table 4.1.

Five metabolites were significantly negatively associated with LTL after adjustment for
potential confounding factors and correction for multiple testing (Table 4.2): the two lip-
ids 1-stearoylglycerophosphoinositol (β[95 %CI] =−0.07 [−0.10 : −0.04] change in metabol-
ite z-score per change in LTL z-score, p= 1.6×10−5) and 1-palmitoylglycerophosphoinosi-
tol (β[95 %CI] =−0.08 [−0.12 : −0.04], p= 1.6×10−5), the two gamma-glutamylamino acids
gamma-glutamyltyrosine (β[95 %CI] =−0.08 [−0.11 :−0.05], p= 2.5×10−6) and gamma-glu-
tamylphenylalanine (β[95 %CI] =−0.07 [−0.10 : −0.04], p= 1.7×10−5), and the xenobiotic
4-vinylphenol sulfate (β[95 %CI] =−0.07 [−0.10 :−0.03], p= 1.4×10−4). All five metabolites
showed the same effects with similar effect sizes in 904 female individuals from the KORA
F4 cohort, though they did not reach significance level. All metabolites remained Bonferroni-
significant (p< 1.8×10−4) after meta-analysis (Figure A.1).

Table 4.1 Population characteristics. To identify metabolic markers of leukocyte telomere length,
I analysed 3511 female twins as discovery and 904 females from the KORA cohort as replication
cohorts. Population characteristics are shown here.

TwinsUK KORA

N 3511 904

MZ:DZ:Singletons 1654:1360:497 0:0:904

Age, years 53.6 ±13.6 60.5 ±8.8

LTL 3.72±0.67 1.85±0.31

BMI, kg/m2 26.21±5.14 27.87±5.25

FEV1, L 2.60±0.61 2.79±0.50

HDL, mmol/L 1.71±0.48

DBP, mmHg 78.01±10.68

SBP, mmHg 126.71±18.20

ALT, IU/L 27.63±17.07

GGT, U/L 28.36±25.44

eGFR, mL/min/1.73m2 83.78±17.07

smoking(non:former:current) 1905:1134:447
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4.2.1 Independent associations with LTL

I fitted three multivariate LASSO models predicting LTL to assess the independence of these
associations: The first model using age and BMI only, the second model using the five identified
metabolites only, and the third using combining both. The model based on metabolites alone
could not achieve the performance of the model based on age and BMI, however, combining
them significantly improved the prediction in the combined model (Figure 4.2). All five
metabolites were selected in the optimal LASSO model (β 6= 0), suggesting non-redundant
associations with LTL. The coefficient of determination, a measure of goodness of fit, of the
final model was estimated at 14.5% in a LOO validation.

4.2.2 Ageing phenotypes

Moreover, I found the five metabolites strongly associated with several age-related phenotypes,
independently of chronological age (Table 4.3): Both lysolipids correlated with increased SBP
(1-stearoylglycerophosphoinositol: β[95 %CI] = 1.09 [0.56 :1.61], p= 5.3×10−5 and 1-palmitoyl-
glycerophosphoinositol: β[95 %CI] = 1.10 [0.52 :1.67], p= 1.7×10−4). Additionally, 1-palmitoyl-
glycerophosphoinositol was associated with the serum concentration of GGT, a marker of liver
function (β[95 %CI] = 0.08 [0.03 :0.12], p= 1.0×10−3).

The two gamma-glutamylamino acids were strongly associated with eGFR, a marker of
renal function (gamma-glutamyltyrosine: β[95 %CI] =−1.65 [−2.19 : −1.11], p= 1.6×10−9

and gamma-glutamylphenylalanine: β[95 %CI] =−2.24 [−2.74 : −1.73], p= 3.1×10−18), as
well as both markers of liver function, GGT and ALT (GGT: β[95 %CI] = 0.14 [0.10 : 0.19], p
= 5.4×10−11 and β[95 %CI] = 0.15 [0.10 : 0.19], p= 3.2×10−12, respectively; ALT: β[95 %CI]
= 0.11 [0.06 : 0.16], p= 1.7×10−5 and β[95 %CI] = 0.10 [0.05 : 0.14], p= 5.8×10−5, respectively).
Gamma-glutamylphenylalanine was additionally associated with lung function, measured as
FEV1 (β[95 %CI] =−0.03 [−0.05 :−0.02], p= 4.5×10−6), and HDL cholesterol levels (β[95 %CI]
=−0.03 [−0.05 : −0.02], p= 1.1×10−5). Moreover, the xenobiotic 4-vinylphenol sulfate was
strongly associated with tobacco smoking (β[95 %CI] = 0.24 [0.22 : 0.26], p= 2.3×10−102) and
also with FEV1 (β[95 %CI] =−0.02 [−0.04 :−0.01], p= 1.4×10−3).

4.2.3 Expression of enzymes PLA2 and GGT

To further investigate mechanisms of biological ageing, I analysed the association of the five
significant metabolites with gene expression levels of the related enzymes GGT and PLA2, in a
subset of 753 individuals with transcriptomics data available. I found gamma-glutamyltyrosine
positively associated with expression of gamma-glutamyltransferase 1 (GGT1) and gamma-
glutamyltransferase-like 3 (GGTL3) (probes ILMN_2274240: β[95 %CI] = 0.09 [0.02 : 0.15], p
= 1.0×10−2 and ILMN_1786186: β[95 %CI] = 0.07 [0.00 : 0.14], p= 4.0×10−2). Additionally, I
found the expression of phospholipase A2 group XV (PLA2G15) positively associated with
1-stearoylglycerophosphoinositol (probe ILMN_1756910: β[95 %CI] = 0.09 [0.01 : 0.16], p=
2.0×10−2 and probe ILMN_1798955: β[95 %CI] = 0.08 [0.00 : 0.15], p= 5.0×10−2) as well as
1-palmitoylglycerophosphoinositol (probe ILMN_1756910: β[95 %CI] = 0.08 [0.00 : 0.16], p=
5.0×10−2).
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Figure 4.2 Prediction of leukocyte telomere length. (a) Three models were fitted to predict
leukocyte telomere length (LTL): (1) using age and BMI as predictors (blue), (2) using five
metabolites as predictors (red) and (3) using both combined as predictors (green). Their
performance was measured as mean squared error (MSE) using cross-validation. (b) In the
third model, all five metabolites contributed individually to the predictive performance.
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4.2.4 Smoking-related DNA de-methylation

The metabolite 4-vinylphenol sulfate is known to be associated with several DNA methylation
probes, possibly driven by tobacco smoking (Petersen et al., 2014; Zeilinger et al., 2013). I
found one of these probes, cg19572487, being significantly associated with LTL (β[95 %CI]
= 0.10 [0.04 : 0.17], p= 9.0×10−3), smoking (β[95 %CI] =−0.51 [−0.63 :−0.39], p= 9.0×10−16)
and 4-vinylphenol sulfate levels (β[95 %CI] =−0.05 [−0.09 : −0.02], p= 1.0×10−3) in our
data. The probe is located on chromosome 17 in the retinoic acid receptor alpha (RARA)
gene.

4.2.5 Integration of results

Combining those results, all five metabolites were consistently associated with accelerated
biological ageing, i.e. shorter telomeres, higher blood pressure and poorer lung, liver and
kidney functions. The metabolites were additionally correlated with the expression of related
enzymes (Figure 4.3).

Figure 4.3 Metabolic signature of telomere length. Leukocyte telomere length (LTL) was
significantly associated with five metabolites. Additionally, pairwise significant associations of
these metabolites with several ageing-related phenotypes (round nodes) are shown: estimated
glomerular filtration rate (eGFR), alanine aminotransferase (ALT), gamma-glutamyltransferase
(GGT), high density lipoprotein (HDL) cholesterol, forced expiratory volume in one second
(FEV1), systolic blood pressure (SBP) and smoking. Diamond-shaped nodes represent the
expression levels of gamma-glutamyltransferase (GGT) and phospholipase A2 (PLA2). Blue
edges indicate significant negative associations, while red edges indicate positive associations.
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Table 4.3 Associations of telomere length and metabolites with age-related phenotypes.
The table shows significant associations of leukocyte telomere length and associated metabolites
with various ageing phenotypes

Phenotype β [95%CI ] p-value

SBP 1.10[ 0.52: 1.67] 1.8×10−41-palmitoylglycerophospho-
inositol

GGT 0.08[ 0.03: 0.12] 1.0×10−3

1-stearoylglycerophospho-
inositol

SBP 1.09[ 0.56: 1.61] 5.3×10−5

smoking 0.24[ 0.22: 0.26] 1.4×10−101
4-vinylphenol sulfate

FEV1 −0.02[−0.04:−0.01] 1.4×10−4

eGFR −2.24[−2.74:−1.73] 3.1×10−18

GGT 0.15[ 0.10: 0.19] 3.2×10−12

FEV1 −0.03[−0.05:−0.02] 4.5×10−6

HDL −0.03[−0.05:−0.02] 1.1×10−5

gamma-glutamylphenyl-
alanine

ALT 0.10[ 0.05: 0.14] 5.8×10−5

GGT 0.14[ 0.10: 0.19] 5.4×10−11

eGFR −1.65[−2.19:−1.11] 1.6×10−9gamma-glutamyltyrosine

ALT 0.11[ 0.06: 0.16] 1.7×10−5

HDL 0.04[ 0.02: 0.06] 2.5×10−6

eGFR 1.42[ 0.82: 2.01] 2.8×10−6

smoking −0.06[−0.08:−0.03] 3.2×10−5
LTL

FEV1 0.03[ 0.01: 0.05] 8.9×10−4
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4.3 Discussion

In the largest study of this kind, I searched for molecular markers and mechanisms involved
in LTL regulation using a metabolomics approach. I identified five novel blood metabolites,
namely gamma-glutamyltyrosine, gamma-glutamylphenylalanine, 1-stearoylglycerophospho-
inositol, 1-palmitoylglycerophosphoinositol and 4-vinylphenol sulfate, independently asso-
ciated with LTL with high statistical significance. These metabolites belong to three differ-
ent classes: lysolipids, gamma-glutamylamino acids and xenobiotics, which I will discuss
here.

4.3.1 Lysolipids

Lysolipids are produced from glycerophospholipids by the enzyme PLA2, which releases one
of the fatty acids from the glycerol backbone (Figure 4.4) (Dennis, 1994). Glycerophospholipids
were previously found to be positively correlated with LTL (Zhao et al., 2014), while in this
study circulating levels of the lysolipids 1-stearoylglycerophosphoinositol and 1-palmitoyl-
glycerophosphoinositol were significantly associated with shortening of LTL. This suggests
an increased activity of PLA2 in advanced biological ageing. This hypothesis is further con-
firmed by the positive association of the two lysolipids with PLA2 gene expression in our
study.

PLA2 activity affects, amongst others, the composition and physiology of cell membranes by
catalysing the hydrolysis of membrane lipids (Farooqui et al., 2007; Cantin et al., 1992). The
integrity of cell membranes and their ability to resist oxidative stress have been shown to be
key aspects of biological ageing (Hulbert, 2003). For instance, studies comparing centenarians
with younger controls identified alterations of cell membrane composition (Rabini et al., 2002)
and particularly depletion of the lysolipid stearoylphosphatidylcholine (Collino et al., 2013) as
possible causes for longevity.

Figure 4.4 Phospholipase A. Glycerophospholipids are lipid structures that consist of a glycerol
backbone (dark blue) and a phosphate group (light blue). They usually bind two fatty acids
chains R1 and R2 and a polar head group at R3. The enzyme phospholipase A2 (PLA2)
catalyses the first step of their degradation by releasing the R2 fatty acid from the backbone.
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Another regulator of membrane fluidity is the saturation of fatty acids. Both stearic acid and
palmitic acid are saturated fatty acids that are known to decrease membrane fluidity, which in
turn has been associated with increased susceptibility to disease (Kamada et al., 1983; Aozaki,
1989; Mecocci et al., 1996). In contrast, higher levels of polyunsaturated fatty acid-containing
phospholipids were observed in centenarians compared to the elderly (Caprari et al., 1999),
suggesting their involvement in retarded biological ageing.

These alterations of membrane composition with biological ageing provide a possible explana-
tion for previously reported association of LTL with e.g. AD (Panossian, 2003).

4.3.2 Gamma-glutamylamino acids

I found two gamma-glutamylamino acids, gamma-glutamyltyrosine and gamma-glutamyl-
phenylalanine, significantly associated with LTL. These are produced by the degradation of
glutathione (GSH) and its conjugates catalysed by the enzyme GGT. Gene expression as well
as protein abundance of GGT in blood were correlated with both gamma-glutamylamino
acids.

The metabolism of gamma-glutamylamino acids by GGT is part of the GSH-cycle and mainly
serves the regeneration of the intracellular GSH pool by breaking down extra-cellular GSH
conjugates and make its components available for reimport into the cell (Zhang et al., 2005b;
Wu et al., 2004; Maher, 2005). GSH is crucial for detoxification of ROS as well as other toxic
compounds (Wu et al., 2004; Zhang et al., 2005b; Maher, 2005). Thus, increased GGT activity
was proposed as a marker of increased oxidative stress (Pandur et al., 2007; Zhang et al.,
2005b). The serum concentration of GGT also is a commonly used clinical marker of liver
function (Whitfield, 2001). While the liver produces most of the GSH (Wu et al., 2004), it is
most active in kidneys, which absorb GSH for detoxification (Whitfield, 2001; Wu et al., 2004).
Accordingly, I found kidney function, measured as eGFR, being highly correlated with both,
LTL and gamma-glutamylamino acids.

Summarising, gamma-glutamylamino acids indicate an involvement of increased oxidative
stress and worsened kidney and liver function in biological ageing. This highlights the import-
ance of oxidative stress in biological ageing (c.f. section 1.1.1).

4.3.3 4-Vinylphenol sulfate

4-vinylphenol sulfate was previously found to be a marker of tobacco smoking (Manini et al.,
2003), which I replicated in this study. Moreover, I found both 4-vinylphenol sulfate and LTL to
be correlated with cotinine a metabolite of nicotine and well-established marker for tobacco
smoking. Accordingly, higher levels of 4-vinylphenol sulfate were associated with worsened
lung function.
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Analysis of DNA methylation data from the TwinsUK cohort confirmed the previously
published associations of 4-vinylphenol sulfate with the methylation of the RARA gene
(Petersen et al., 2014), which I found also associated with LTL and smoking. RARA is
a transcription factor that was shown to regulate differentiation and apoptosis (Hu et al.,
2014).

My results indicate how smoking might accelerate biological ageing, mediated by changes in
metabolism and DNA methylation. Smoking was previously shown to have a profound effect
on the GSH metabolism of the lung (Rahman et al., 1999), suggesting increased oxidative stress
as a possible link between smoking, metabolism and LTL.

4.4 Conclusion

While I identified five novel markers of LTL, the study has some limitations. First, I analysed
data of females only and some of the identified metabolites are known to differ between genders
(Krumsiek et al., 2015). In a small pilot of 372 men from the TwinsUK cohort I observed con-
cordant correlations of LTL with the gamma-glutamylamino acids and 4-vinylphenol sulfate.
In contrast, neither of the two lysolipids were correlated with LTL in men, suggesting gender-
specific changes of fatty acid metabolism with biological ageing. Second, associations did not
reach statistical significance in the replication cohort. This can be attributed to smaller sample
size, which only allows for 50 % power to detect the observed correlations at nominal signi-
ficance. However, despite the lack of power, the much higher age, the different geographical
location, and genetic background of the replication cohort, all five metabolites showed the
same direction in the replication cohort and remained Bonferroni-significant after meta-analysis.
Thirdly, integration of the results using multivariate methods, such as GGMs, would permit
stronger hypothesis. However, measures of LTL, metabolite levels, gene expression, and clinical
phenotyped were available for varying subsets of the TwinsUK cohort with only a small subset
of individuals having complete measured for all of them. Thus, multivariate methods that rely
on full data-matrices could not be used. Lastly, this association study cannot prove causality.
There might be unknown confounding factors, such as age-related diseases. Consequently, the
identified metabolites might be markers for ageing rather than causally linked with telomere
length. Also, I cannot infer causal direction of the observed correlations.

Nonetheless, this study suggests two mechanisms of biological ageing: First, I observed
changes in lipid metabolism, possibly related to membrane composition, strongly associated
with LTL and biological ageing. Secondly, I confirmed the involvement of oxidative stress
and detoxification of ROS in biological ageing, highlighting the importance of renal health for
healthy ageing.



CHAPTER 5

Glycosylation profile of IgG in moderate kidney dysfunction

Here, I analysed the association between renal function and glycosylation of
immunoglobin G (IgG). My results highlight the potential involvement of IgG-
mediated inflammation in kidney dysfunction.

This work has been done in close cooperation with Clara Barrios, who wrote the
original manuscript, while I performed the statistical analyses. The results of this
study have been published in Journal of the American Society of Nephrology
(Barrios, Zierer et al., 2016). The published version is attached in appendix G.3.

Renal function declines irreversibly with age, eventually leading to CKD (see section 1.1.3).
Despite a heritability of about 35 %, to date common genetic variation accounts only for 3.2 %
of the observed variance (Pattaro et al., 2016), suggesting epigenetic or post-transcriptional
mechanism in the development of CKD. One feature of CKD is chronic inflammation, which is
associated with faster progression of CKD (Tonelli et al., 2005) and increased risk of comorbidit-
ies (Silverstein, 2009).

IgG is a glycoprotein that is part of the immune system, defending the organism against
pathogens. Thus, it has a strong inflammatory potential and was shown to be involved in a
number of inflammatory diseases, such as arthritis (Parekh et al., 1985; Tomana et al., 1988;
Lauc et al., 2013). A main modulator of the inflammatory potential of IgG are attached sugar
chains – glycans (Novokmet et al., 2014) (see section 1.2.5).

Animal models highlighted the potential role of IgG glycosylation in the pathophysiological
mechanism involved in renal damage. Indeed, studies have shown that modulation of anti-
neutrophil cytoplasmic autoantibodies (ANCA) IgG glycosylation reduces its pathogenicity
in a mouse model of ANCA-associated glomerulonephritis (Timmeren et al., 2010). Also, IgG
Fcγ-receptor deficiency was found to be protective against diabetic nephropathy in mice (Lopez-
Parra et al., 2012). Human studies suggest that aberrant glycosylation of the immunoglobin A
(IgA) is implicated in the deposit and formation of the immunocomplex IgA-IgG in patients
with IgA-Nephropathy (Novak et al., 2005; Novak et al., 2012).

However, despite this evidence for an involvement of IgG-mediated inflammation in kidney
disease, possibly due to glycosylation, no studies have investigated this relationship in humans,
yet. The aim of this study was to analyse the involvement of IgG glycosylation in renal disease
by analysing data from the TwinsUK cohort.
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5.1 Methods

I analysed data from 3274 individuals from the TwinsUK cohort with data on IgG glycosylation
and renal function available. This included 31 pairs of MZ twins discordant for renal function,
defined as difference in eGFR >15 mL/min/1.73m2. These were excluded from the discovery
cohort and used as independent replication (Table 5.1).

IgG glycosylation was analysed using UPLC by Genos Glycoscience Laboratories (Zagreb,
Croatia), measuring the abundance of 24 glycan structures (see section 3.3.2). Additionally, I
analysed 52 derived glycan traits that summarise global features of the IgG glycome (Table 3.3).
Renal function was measured as eGFR, calculated from the concentration of creatinine in serum
using the CKD-EPI equation (section 3.2.3).

To assess the association of IgG glycosylation with renal function I used linear mixed models
(section 3.4.2) to regress eGFR against each of the 76 glycan traits, adjusting for age, sex, BMI,
and family relatedness by a family-wise random intercept. Additional adjustment for diabetes
and hypertension did not change the results. I used the Bonferroni-correction to account for
multiple testing (see section 3.4.2.1). Results were then replicated in 31 independent pairs of
twins and results were meta-analysed using inverse-variance fixed-effects meta-analysis (see
section 3.4.2.2).

Lastly, I used a multivariate LASSO regression, combining four Bonferroni-significant glycans to
evaluate the potential of glycosylation markers to predict CKD, defined as eGFR <60 mL/min
1.73m2 (see section 3.4.4). The predictive performance of this model was assessed using the
ROC statistics evaluated in a ten-fold cross-validation (see section 3.4.6) and compared with the
prediction based on age, sex, and BMI only.

Table 5.1 Glycomics marker of renal function: Population characteristics. To identify immun-
oglobin G (IgG) glycomics markers of renal function, I analysed 3212 individuals from the
TwinsUK cohort and replicated the findings in an independent set of 62 monozygotic (MZ)
twins discordant for renal function.

Discovery Population MZ Discordant Twins

Sample size, n 3212 62

MZ:DZ:singletons 506:1772:934 62:0:0

Age, years 52.67 ±14.15 55.45 ±12.2

Female, n (%) 3050 (94.9 %) 60 (96.7 %)

BMI, kg/m2 25.95 ±4.65 25.64 ±5.65

Creatinine,mg/ml 0.83 ±0.15 0.75 ±0.10

eGFR, mL/min/1.73m2 84.15 ±17.02 88.52 ±9.91

CKD (eGFR≤60), n 294 (9.2 %) 1 (1.6 %)

Type II diabetes, n 72 (2.2 %) 4 (6.4 %)

Hypertension, n 705 (21.9 %) 18 (29.0 %)



Chapter 5 Glycosylation profile of IgG in moderate kidney dysfunction 91

5.2 Results

Levels of 76 IgG glycosylation markers – 24 directly measured (Figure 3.7) and 52 derived
traits (Table 3.3) – were obtained for 3274 individuals from the TwinsUK population, aged
between 18 and 97. To validate findings, results were replicated in a group of 31 pairs of
MZ twins discordant for renal function, who were excluded from the discovery cohort. The
demographic characteristics of the discovery population and the replication set are presented
in Table 5.1.

Linear mixed regression models were used to identify 13 glycan traits significantly associ-
ated with eGFR, independently of age, sex, BMI, and family relatedness, in the discovery
cohort (p< 6.5×10−4 = 0.05/76 glycan traits); five of them positively associated with eGFR
and eight negatively (Table B.1). All 13 glycan traits showed that same direction of effect in
an independent set of 62 MZ discordant twins and remained Bonferroni-significant after the
meta-analysis (Table 5.2, Figure 5.1). Additionally adjusting the models for menopause did
not change the results, suggesting that the observed associations were independent of sexual
hormones.

The 14 glycans that were significantly associated with eGFR fell into three glycosylation cat-
egories: galactosylation, sialylation and the level of bisecting N-acetylglucosamine (GlcNAc) in
the IgG glycome. Firstly, glycans with galactose on both antennae, FA2G2 (GP14: β[95 %CI]
= 1.46 [0.85 : 2.06], p= 2.0×10−6), and the derived trait G2n (β[95 %CI] = 1.22 [0.63 : 1.81], p=
5.5×10−5), representing the percentage of digalactosylated structures in neutral IgG glycans, in-
creased in parallel with renal function. On the contrary, I found the agalactosylated glycans A2
(GP2: β[95 %CI] =−0.95 [−1.45 : −0.44], p= 2.5×10−4; and GP2n: β[95 %CI] =−0.95 [−1.45
:−0.45], p= 2.2×10−4) and FA2B (GP6: β[95 %CI] =−1.14 [−1.70 :−0.58], p= 6.8×10−5) neg-
atively associated with eGFR. The same negative correlation was observed for the derived
trait G0n (β[95 %CI] =−1.16 [−1.75 :−0.57], p= 1.2×10−4), which combines all agalactosylated
structures, indicating a consistent increase in galactosylated and decrease in agalactosylated
glycans with eGFR. Secondly, the major sialylated glycan, FA2G2S1 (GP18: β[95 %CI] = 1.44
[0.87 :2.02], p= 9.5×10−7), and the percentage of sialylated glycans without bisecting GlcNAc,
measured by the ratio FGS / (F + FG + FGS) (β[95 %CI] = 1.00 [0.46 : 1.53], p= 2.9×10−4),
were both associated with increased eGFR. Thirdly, the amount of bisecting GlcNAc in sia-
lylated IgG glycans (FBStotal / FStotal: β[95 %CI] =−1.04 [−1.55 :−0.52], p= 9.5×10−5; FBS1
/ FS1: β[95 %CI] =−1.10 [−1.62 : −0.58], p= 3.4×10−5; and FBS1 / (FS1+FBS1): β[95 %CI]
=−1.08 [−1.59 : −0.56], p= 4.5×10−5) and in digalactosylated neutral IgG glycans (FG2n /
(BG2n + FBG2n): β[95 %CI] = 0.91 [0.39 : 1.43], p= 5.5×10−4) were negatively associated with
eGFR.

To assess the relevance of these findings for populations with more severe renal damage,
associations were validated in eight twins suffering from CKD stages 4 or 5 (average eGFR
24.7 mL/min/1.73m2, ranging from 8.0 to 27.3 mL/min/1.73m2), by comparing them to their
renal-healthy co-twins (eGFR>30 mL/min/1.73m2). Despite the lack of statistical power the
glycosylation pattern were analogous to those previously observed in the general population
(Figure 5.3).
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Figure 5.1 IgG glycosylation markers associated with renal function. (a) Four directly meas-
ured glycans and (b) nine derived glycan traits were significantly associated with renal
function in the discovery cohort. Green points indicate individuals with impaired renal
function (eGFR<60 mL/min/1.73m2), blue points renal-healthy individuals.
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Figure 5.2 Using IgG glycans to predict CKD. Three models were fitted to predict CKD (defined
as eGFR<60 mL/min/1.73m2): The baseline model using age, sex, and BMI as predictors
(red), the glycan model using IgG glycosylation traits (green), and the combined model
using both (blue). ROC curves were calculated for each of these models using a 10-fold
cross-validation.
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Then, to determine whether the observed changes of glycosylation were specific to IgG or
more generally affected multiple circulating proteins, glycosylation profiles of the whole
plasma proteome were measured in the same way as the IgG glycosylation. In a subset
of 426 individuals none of the whole plasma glycans was significantly associated with eGFR,
suggesting that the observed effects are IgG-specific (Table B.2). However, this analysis was
under-powered and future studies should investigate the role of global changes in glycosyla-
tion.

Finally, I assessed the potential of IgG glycosylation to improve the prediction of CKD (defined
as eGFR<60 mL/min/1.73m2) beyond the performance achieved with age, sex and BMI. The
predictive ability was assessed using a ROC statistic. The baseline model had an AUC of 0.87
(95 %CI = [0.85 : 0.89]), the model based on the four Bonferroni-significant directly measured
glycans had an AUC of 0.81 (95 %CI = [0.78 : 0.84]), and the combined model achieved an
AUC of 0.88 (95 %CI = [0.86 : 0.90]) (Figure 5.2).
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Figure 5.3 IgG glycosylation in twins discordant for CKD. To assess the transferability of the
observed associations from healthy renal function to chronic kidney disease (CKD), associations
were confirmed in 8 pairs of twins, one of each twin suffering from severe CKD (stages 4 and
5, eGFR<30 mL/min/1.73m2).
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5.3 Discussion

This is the first study to investigate the potential role of IgG glycosylation in kidney function.
13 IgG glycan traits were significantly associated with eGFR in the discovery population and
were validated in an independent subset of MZ twins discordant for renal function. Moreover,
the same pattern was observed in a small, independent sample with severe renal dysfunction.
These glycans fall into three glycosylation features, galactosylation, sialylation, and bisecting
GlcNAc.

5.3.1 Galactosylation of IgG

In this study, decrease of renal function was associated with a consistent pattern of decreased
abundance of galactosylated and increased abundance of agalactosylated IgG. Decreased IgG
galactosylation has been found to be associated with chronological and biological ageing
(Kristic et al., 2014), as well as several autoimmune and inflammatory diseases (Gornik et
al., 2008), including rheumatoid arthritis (Parekh et al., 1985) (c.f. section 1.2.5). Thus, the
decrease in galactosylation is not a disease-specific but a rather general feature of biological
ageing and the associated immunosuppressive and anti-inflammatory potential of circulating
IgG.

The lack of terminal galactose activates the complement cascade and increases the inflammat-
ory potential of IgG, whereas the addition of galactose decreases its inflammatory potential
(Baumann et al., 2001; Malhotra et al., 1995). Hence, the IgG galactosylation pattern observed
in this study supports theory that complement activation/dysregulation is crucial in renal
damage (Cook, 2013). While it is not possible to determine if galactosylation of IgG is a
cause or consequence of biological ageing from this study, there is some evidence that it pre-
cedes the onset of some diseases, such as rheumatoid arthritis (Rombouts et al., 2015; Ercan
et al., 2010). If this holds for CKD, changes in IgG galactosylation might explain a portion
of its heritable component, given the high heritability of galactosylated glycans (Menni et al.,
2013c).

5.3.2 Sialylation

The major sialylated glycan FA2G2S1 (GP18) and the ratio FGS / (F + FG + FGS), which
represents the percentage of sialylated structures without bisecting GlcNAc, appeared to be
renal-protective.

The addition of sialic acid to IgG glycans is known to strongly influence its physiologic role,
turning it into an anti-inflammatory agent (Anthony et al., 2010; Kaneko et al., 2006). Approx-
imately 50 % of IgG glycans are not sialylated and are hence pro-inflammatory (Huffman et al.,
2014). These are, amongst others, thought to be responsible for the immunosuppressive activity
of intravenously administered IgG (Anthony et al., 2008).

The amount of sialylation of IgG was previously found to be strongly negatively associated
with chronological age (Kristic et al., 2014). The increasing inflammatory potential of IgG due
to the loss of sialylation might lead to chronic low-grade inflammation, which has been named
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a hallmark of ageing (Franceschi et al., 2014) and was shown to be a risk factor for developing
CKD. Changes of IgG sialylation might thus provide an explanation for the continuous decline
of renal function with age. However, the causal direction of these associations has to be
addressed in future studies. Also, IgG sialylation, like galactosylation, is not a renal-specific
marker and has been observed in other diseases, for instance systemic lupus erythematous
(SLE) (Vučkovïc et al., 2015).

5.3.3 Bisecting N-Acetylglucosamine

In this study the eGFR was lower in individuals with bisecting GlcNAc in sialylated and core
fucosylated glycans. Accordingly, the proportion of neutral digalactosylated glycans without
bisecting GlcNAc (FG2n / (BG2n + FBG2n)) was positively associated with eGFR, indicating a
deleterious effect of bisecting GlcNAc.

The addition of bisecting GlcNAc was shown to prevent core fucosylation of glycans (Ferrara
et al., 2006a), which modulates the antibody-dependent cell-mediated cytotoxicity (ADCC)
(Ferrara et al., 2006b). On average, 95 % of the IgG is core fucosylated in a healthy population
(Pucic et al., 2011), thus preventing ADCC. Non-fucosylated bisecting glycans, however, bind
with much higher affinity to the FciγRIIIa and hence initiate antibody-dependent cellular
cytotoxicity more efficiently (Masuda et al., 2007; Ferrara et al., 2006b).

Studies using animal models have reported that modifications in the Fcγ receptor can diminish
renal damage in autoimmune ANCA-related glomerulonephritis and diabetic nephropathy
(Timmeren et al., 2010; Lopez-Parra et al., 2012). However, it remains elusive how modulation
of ADCC might affect non-autoimmune decline of renal function.

5.3.4 Genetics of kidney disease

Notably, glycan traits associated with lower eGFR have on average a high heritability (Table
5.2). For instance, agalactosylated IgG glycans that were found to be associated with lower
eGFR have a high heritability, ranging from 0.72 to 0.75, whereas the galactosylated glycans
GP14 and GP2n have a low heritability of 0.36 and 0.41, respectively (Menni et al., 2013c).

Several genetic loci influencing IgG glycosylation (Lauc et al., 2013) as well as renal function
(Figure 1.3) were previously identified. Interestingly, the gene ST6 beta-galactoside alpha-2,6-
sialyltransferase 1 (ST6GAL1) is associated with both IgA nephropathy (SNP rs7634389, p=
7.0×10−10) (Li et al., 2015) and glycosylation of IgG (SNP rs11710456, p= 6.0×10−75, R2 = 0.46)
(Lauc et al., 2013), particularly the amount of sialylation. ST6GAL1 is a glycosyltransferase
that catalyses the sialylation of proteins. Consequently, differential glycosylation of IgG could
explain some of the heritability of CKD and mediate the effect of genetic loci on disease
development.
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5.3.5 Aiding diagnosis of CKD

Although the identified glycans do not predict incident CKD more accurately than clinical para-
meters, their inclusion in the model slightly improves the predictive performance. However,
creatinine is a rather insensitive marker of CKD, particularly of early stages (see section 1.1.3).
Thus, identification of biomarkers of early decline of renal function based on creatinine is diffi-
cult. Future studies, using more comprehensive renal assessment as well as longitudinal data,
might help to assess the predictive power of IgG glycans more reliably.

5.4 Conclusion

This study identified novel markers of renal function, providing new evidence for the im-
portance of inflammatory IgG in the decline of renal function. To minimise false positive
discoveries a stringent multiple-testing correction was used and findings were replicated
in an independent set of MZ discordant twins. As identical twins share 100 % of their ge-
netic variation and are matched perfectly for age, gender, and social class, they facilitated
the validation of the association between IgG and renal function independently of genetic
influences.

The study has some limitations. First, there is a female predominance in the study sample (95 %
of the study population is female). Secondly, the study participants were recruited as volunteers
and consequently have for instance a low prevalence of diabetes. Thus, associations might
not be directly transferable to diabetic populations. Also, they are all twins and results might
differ for singletons. Thirdly, I analysed cross-sectional data only. Longitudinal studies and
particularly prospective analyses will have to confirm these initial results, not to speak of causal
relationships, which cannot be addressed with the available data. Finally, the experimental
procedure cannot distinguish Fc from Fab glycans, however, the observed correlations are likely
to be driven by the much more abundant Fc glycans. To further support this hypothesis, I ana-
lysed a pilot dataset of 96 age-matched individuals from the extremes of the eGFR-distribution,
for whom Fc glycans were additionally analysed using nano-liquid chromatography MS/MS
(Huffman et al., 2014). Effect directions were consistent for all those glycans except one (Table
B.3), suggesting that the observed associations of renal function with IgG glycosylation indeed
mainly represent changes in Fc glycans.

These findings highlight the promising role of glycomics in renal studies. While this is only an
initial finding, future studies on clinical and longitudinal dataset need to assess the potential use
of IgG glycosylation for timely diagnosis and treatment of CKD. Cohorts with more detailed
information on renal function, including proteinuria, and different types of CKD, such as
autoimmune CKD, will help to differentiate CKD-specific glycosylation patterns from more
general changes due to biological ageing.



CHAPTER 6

Metabolic markers of renal disease in type 2 diabetics

compared to non-diabetics

The aim of this chapter was to identify metabolic markers of renal function in four
cohorts, including 926 type 2 diabetes patients and 4838 non-diabetics. While
previous studies investigated associations of metabolites with renal function in
either diabetic or non-diabetic cohorts, no study has yet addressed the differences
between the two. Also, the targeted NMR platform used here can – in contrast
to previously used MS-based platforms – distinguish lipid subclasses at a high
resolution.

Chronic kidney disease (CKD) is a major public health problem that affects more than 10 % of
the Western populations and more than 30 % of the elderly (O’Callaghan et al., 2011) (see section
1.1.3). Diabetes is one of the strongest risk factors for developing kidney disease (Jha et al.,
2013) and the leading cause of ESRD, accounting for roughly half of the patients progressing
to renal failure (United States Renal Data System, 2016). Due to the continuous increase in
the prevalence of T2D (Seidell, 2000; World Health Organization, 2016), because of the global
obesity epidemic, the prevalence of diabetic nephropathy is increasing accordingly. Despite
the efforts in improving diabetes management, the rate of ESRD among diabetics has been
reduced to a much lesser extent than other complications of diabetes (Gregg et al., 2014). This is
partly because the commonly used clinical biomarkers of renal function, namely creatinine and
albuminuria, are insensitive and unspecific (see section 1.1.3). Thus, it is crucial to identify better
biomarkers to facilitate early diagnosis and treatment of renal disease.

In recent years, several studies investigated metabolic profiles associated with renal function
(Zhang et al., 2015; Barrios et al., 2016) in the general population (Sekula et al., 2016) and in
type 1 diabetes patients (Mäkinen et al., 2013; Mäkinen et al., 2012) to identify biomarkers
predicting disease progression (Mäkinen et al., 2012) as well as complications of renal disease
and increased mortality (Mäkinen et al., 2013). While some studies investigated metabolic
markers of (type 2) diabetic kidney disease, these studies were mostly based on very small
samples sizes and lacked external replication (Darshi et al., 2016).

Here, I investigated metabolic signatures of renal damage in the largest study of its kind,
combining four European cohorts, to identify differences between metabolic profiles associated
with diabetic and non-diabetic nephropathy. Using a targeted NMR-based platform facilitates
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the in-depth analysis of lipoprotein composition, which might be related to the increased risk
of cardiovascular events in CKD patients (Shen et al., 2016; Kon et al., 2015). Additionally,
longitudinal changes of metabolite levels and renal function and associations with other mi-
crovascular complications of diabetes were analysed to gain insights in potential mechanisms
of the cross-sectional associations.

6.1 Methods

6.1.1 Study populations

Markers of diabetic nephropathy were analysed in the GenoDiabMar cohort, while the Twin-
sUK, KORA, and YoungFinns studies represented the general population. Diabetics from the
TwinsUK and KORA cohorts were analysed separately and used as replication sets for the
GenoDiabMar cohort.

6.1.1.1 GenoDiabMar

Here, I analysed 655 diabetic individuals of the GenoDiabMar cohort (section 3.1.2.1) with NMR
metabolomics data, measured by Brainshake Ltd., available. Follow-up measurements of clin-
ical and analytical data were available for a subset of 326 individuals.

6.1.1.2 TwinsUK

1279 individuals of the TwinsUK cohort (section 3.1.1) with NMR metabolomics data and
enzymatic measurements of creatinine were included. The study sample included 111 T2D
individuals, which were analysed separately. Also, longitudinal measures of creatinine and
NMR metabolomics were available for 740 individuals, 363 of them examined at three visits,
with an average follow-up time of (11.8±4.7) years.

6.1.1.3 KORA

For the present analysis, 1784 participants of the KORA study (section 3.1.2) with NMR meta-
bolomics and clinical creatinine measurements available were included. 160 individuals, who
have been diagnosed with T2D, were analysed separately. Follow-up measurements of clinical
creatinine were available for available for a subset of 1185 individuals, 7 years after the baseline
visit.

6.1.1.4 YoungFinns

Lastly, I analysed data from the 21, 27, and 30 years follow-ups of the YoungFinns cohort
(section 3.1.4). Longitudinal measurements of creatinine and NMR metabolomics at all three
time points were available for 1770 of the 2046 individuals.
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6.1.2 Metabolomic profiling

Metabolomics data was measured for all cohorts by Brainshake Ltd. using 1H NMR spec-
troscopy, as described in section 3.3.1.2. The platform quantifies absolute concentrations of
144 metabolites, including 98 lipoproteins from 14 lipoprotein subclasses and 9 amino acids.
Moreover, it provides measures of average particle sizes for very low density lipoprotein
(VLDL), low density lipoprotein (LDL), intermediate density lipoprotein (IDL), and HDL
particles as well as a semi-quantitative measure of albumin concentration. Additionally, 80
ratios of metabolites describing the composition of lipoprotein particles were analysed, totalling
to 227 metabolic traits (Table C.3).

All metabolic phenotypes were log-transformed. To account for zero values a pseudo-count
of 1 was added to all measurements prior to transformation. Outliers, differing more than
6 standard deviations (SDs) from the population mean, were excluded. Prior to analysis
all measurements were scaled to mean zero and SD of 1 to facilitate comparisons across
cohorts.

6.1.3 Phenotypes

For all cohorts, renal function was measured as eGFR from enzymatic measurements of serum
creatinine (see section 3.2.3). Age, gender, and BMI, calculated as mass in kg over the square
of height in meters (section 3.2.1), were additionally collected as confounding factors. Ana-
lyses were stratified by type 2 diabetes status. All participants of the GenoDiabMar cohort
were diagnosed with T2D by a doctor and receive treatment. In TwinsUK and KORA 111
and 160 participants, respectively, reported to be diabetic and were, thus, analysed separ-
ately.

I additionally analysed albuminuria and diabetic retinopathy, another microvascular complica-
tion of diabetes, in the GenoDiabMar cohort.

6.1.4 Statistical analysis

6.1.4.1 Cross-sectional analysis

First, I assessed the associations between metabolic profiles and renal function in each cohort
by fitting linear regression models for all metabolic traits with eGFR as outcome, adjusting
for age, gender, and BMI (section 3.4.2). Regression models were additionally adjusted for
family structure by adding a family-wise random intercept in the TwinsUK cohort. As only
aggregate data was available for some of the cohorts, each cohort was analysed separately
and results were meta-analysed separately for T2D patients and non-diabetic cohorts using
inverse variance fixed effect meta-analysis implemented in the R package meta (section 3.4.2.2).
Only metabolites with consistent effect directions in all cohorts were further considered (Figure
6.1).
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Figure 6.1 Flowchart illustrating the identification of metabolic markers of diabetic and
non-diabetic renal disease.

GenoDiabMar
(n = 655)

TwinsUK (T2D)
(n = 111)

KORA (T2D)
(n = 160)

Type 2 Diabetics
(n = 910)

TwinsUK
(n = 1168)

KORA
(n = 1624)

YoungFinns
(n = 2046)

Non-Diabetics
(n = 4838)

Linear Regressions eGFR against 227 metabolic traits

Fixed-Effects inverse variance meta-analysis

59 metabolites significant (p< 1.0×10−3) &
consistent in all cohorts

109 metabolites significant (p< 1.0×10−3) &
consistent in all cohorts

compare results between T2D and non-T2D

T2D only
(p>5% for all healthy)

30 metabolites

non-T2D only
(p>5% for all T2D)

29 metabolites

T2D + non-T2D
same direction
26 metabolites

T2D + non-T2D
different direction

4 metabolites

Table 6.1 Metabolic markers of renal function: population characteristics. I analysed four
different cohorts. GenoDiabMar consists of type 2 diabetes (T2D) patients only, and YoungFinns
has no T2D patients. TwinsUK and KORA were stratified by diabetes status and analysed
separately, resulting in three diabetic and three non-diabetic groups. Population averages and
standard deviations are given for all continuous phenotypes. Grades of chronic kidney disease
(CKD) were defined according to KDIGO (Levey et al., 2005) recommendations (c.f. Table
1.1)

Diabetics Non - Diabetics

GenoDiab Mar
TwinsUK
(diabetics)

Kora
(diabetics)

TwinsUK
(non T2D)

Kora
(non T2D) Young Finns

N 655 111 160 1168 1624 2046

Zygosity
(MZ/DZ/Single) 30/4/77 466/546/156

Age, years 69.70 (±9.32) 68.64 (±8.38) 66.74 (±7.44) 64.83 (±7.91) 60.30 (±8.83) 41.88 (±5.00)

Gender (female) 256 (39.1%) 105 (94.6%) 71 (44.4%) 1118 (95.7%) 845 (52.0%) 1115 (54.5%)

BMI, kg/m2 30.32 (±5.05) 29.33 (±5.55) 31.48 (±5.53) 26.05 (±4.61) 27.82 (±4.58) 26.54 (±5.05)

eGFR,
mL/min/1.73m2

58.64
(±28.83)

75.80
(±17.64)

76.59
(±18.15)

79.87
(±14.53)

87.80
(±15.38)

94.75
(±12.53)

CKD,
renal healthy /
grades 2-5

116/213/
202/72/52

20/76/
12/3/0

39/95/
24/1/1

322/726/
118/2/0

795/752/
73/2/2

1339/699/
7/1/0
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As the lipid subclasses are very highly correlated, I estimated the number of effective independ-
ent variables Meff for each cohort using the eigenvalues of the correlation matrix (Li et al., 2005),
as

Meff =
M∑︁

i=1

f (|λi|)

f (x) = I(x ≥ 1) + (x− bxc)

where λi is the i-th of M eigenvectors and I(x) is the indicator functions returning 1 if x is
true. The highest estimate for the number of independent variables was 49.5 (GenoDiabMar
cohort). Thus, all analysed were adjusted for 50 independent tests using Bonferroni correction
(p < 1.0×10−3= 0.05/50).

6.1.4.2 Longitudinal analysis

Longitudinal follow-ups for both enzymatic measures of creatinine and NMR metabolomics
were available for TwinsUK and YoungFinns cohorts. I calculated the longitudinal trajectories
of eGFR and each of the metabolites over time by fitting linear mixed models, regressing each of
these variables against the linear time since baseline as per-individual random effect using the
lmer function implemented in the R package lme4 (version 1.1) (Bates et al., 2015). The estimates
of per-individual random slopes of these models were used as estimates of the longitudinal
trajectories. Then, I regressed the trajectory of eGFR against each of the metabolite trajectories
to analyse longitudinally correlations.

A follow-up for clinical creatinine was available for subsets of 326 individuals from the Gen-
oDiabMar cohort and 1185 individuals from the KORA cohort. I evaluated the potential of
metabolite levels as diagnostic tool by predicting the eGFR at follow-up using metabolite levels
at baseline, correcting for baseline eGFR.

6.2 Results

Associations of circulating metabolites were analysed in 5764 individuals from four independent
European cohorts, including 926 T2D patients. The demographic characteristics of all cohorts
are presented in Table 6.1. The same targeted NMR platform was used in all cohorts to quantify
227 metabolic traits. Analyses were stratified by diabetes status for the TwinsUK and KORA
cohorts, while the GenoDiabMar had T2D patients and the YoungFinns study non-diabetic
controls, only. Results from all cohorts were meta-analysed for diabetic and non-diabetics
separately (Figure 6.1).
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6.2.1 Common markers of renal function

Generally, associations were largely concordant between diabetics and non-diabetics groups
(Figure 6.2). 26 of metabolites showed consistent association with eGFR in diabetics and
non-diabetics (Table 6.3a).

The strongest associations with eGFR were observed for phenylalanine (β[95 %CI] =−7.92
[−9.27 : −6.57], p= 1.2×10−30 for T2D; β[95 %CI] =−1.69 [−2.07 : −1.32], p= 1.1×10−18

for non-T2D), glycine (β[95 %CI] =−8.37 [−9.73 : −7.02], p= 7.3×10−34 for T2D; β[95 %CI]
=−1.29 [−1.66 : −0.92], p= 6.3×10−12 for non-T2D), and citrate (β[95 %CI] =−3.34 [−4.78
:−1.90], p= 5.7×10−6 for T2D; β[95 %CI] =−1.82 [−2.18 :−1.47], p= 7.1×10−24 for non-T2D).
Citrate also was significantly correlated with longitudinal change of eGFR (p= 1.5×10−6) in
TwinsUK, however did not predict eGFR at follow-up in KORA (Table C.2).

Generally, HDL subclasses (e.g. the concentration of medium HDL particles: β[95 %CI] = 3.33
[1.89 : 4.76], p= 5.4×10−6 for T2D; β[95 %CI] = 0.76 [0.40 : 1.12], p= 3.3×10−5 for non-T2D)
and cholesterol esters (e.g. cholesterol esters to total lipids ratio in IDL: β[95 %CI] = 5.45
[4.10 : 6.79], p= 2.1×10−15 for T2D; β[95 %CI] = 0.67 [0.32 : 1.03], p= 1.7×10−4 for nonT2D)
were positively associated with eGFR. Both were also associated with decreased albuminuria
(β[95 %CI] =−0.43 [−0.68 :−0.16], p= 9.4×10−4; and β[95 %CI] =−0.69 [−0.94 :−0.43], p=
1.6×10−7) as well as decreased risk of diabetic retinopathy (OR[95 %CI] = 0.76 [0.62 :0.93], p=
6.8×10−3; and OR[95 %CI] = 0.64 [0.53 :0.78], p= 6.6×10−6) in the GenoDiabMar cohort (Table
C.1).

In contrast, triglycerides were consistently associated with worse renal function in diabet-
ics and non-diabetics (e.g. triglycerides to total lipids ratio in large LDL: β[95 %CI] =−5.70
[−7.04 : −4.36], p= 9.1×10−17 for T2D; β[95 %CI] =−0.96 [−1.32 : −0.61], p= 7.7×10−8 for
non-T2D), as well as increased albuminuria (β[95 %CI] = 0.68 [0.42 : 0.94], p= 5.0×10−7) and
increased risk for diabetic retinopathy (OR[95 %CI] = 1.36 [1.13 : 1.63], p= 9.1×10−4) (Table
C.1).

Table 6.2 Metabolites differently associated with eGFR in diabetics and non-diabetics. Four
metabolites were significantly associated with estimated glomerular filtration rate (eGFR) in
opposite directions in diabetics and non-diabetics, though not consistently across cohorts.

T2D non-diabetics
Metabolite

N signs β [ 95 %CI ] p-value N signs β [ 95 %CI ] p-value

Alanine 914 ++− 3.32[ 1.92: 4.72] 3.5×10−6 4715 −−− −1.39[−1.75:−1.03] 2.4×10−14

Valine 914 ++− 4.48[ 3.08: 5.88] 3.5×10−10 4708 −−− −0.88[−1.27:−0.48] 1.4×10−5

Albumin 926 +−− 2.55[ 1.16: 3.93] 3.1×10−4 4816 −−− −0.70[−1.06:−0.35] 9.4×10−5

Pyruvate 908 +++ 3.37[ 1.93: 4.82] 4.7×10−6 4704 +−− −0.70[−1.06:−0.34] 1.3×10−4
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Figure 6.2 Comparison of metabolite associations with renal function between type 2 dia-
betics and non-diabetics. I compared associations of metabolites with eGFR between
diabetics and non-diabetic cohorts. Here, I show effect sizes from both meta-analyses, col-
oured according to significance level in diabetics (blue), non-diabetics (green) and both (cyan).
Non-significant associations are shown in grey. Details are shown in Table 6.3.
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6.2.2 Markers or renal function in diabetics

In the three T2D cohorts, 59 metabolites were significantly and consistently associated with
eGFR after meta-analysis and adjusting for multiple testing using Bonferroni correction. 30
of these metabolites were associated with eGFR only in diabetics with no evidence of an
association in non-diabetics (p> 0.05) (Table 6.3b). 22 of those were concentration of dif-
ferent LDL subclasses, particularly cholesterol and cholesterol esters, and 6 were IDL sub-
classes that followed a positive association with eGFR in diabetics. Also, esterified cholesterol
(β[95 %CI] = 4.35 [2.96 : 5.74], p= 9.3×10−10), total cholesterol (β[95 %CI] = 3.86 [2.29 : 5.07], p
= 2.0×10−7), total cholesterol in IDL (β[95 %CI] = 3.90 [2.53 : 5.36], p= 2.1×10−8), and total
cholesterol in LDL (β[95 %CI] = 3.84 [2.48 : 5.20], p= 3.4×10−8) were all positively associated
with eGFR. However, neither of those showed significant correlations with albuminuria or
diabetic retinopathy.

6.2.3 Markers or renal function in non-diabetics

In the three non-diabetic cohorts 109 metabolites were associated with eGFR (Table C.3) after
meta-analysis and adjustment for multiple testing. 29 of these were associated with renal
function only in non-diabetics, showing no evidence of correlation in any of the diabetic cohorts
(p> 0.05) (Table 6.3c). Particularly total cholesterol (6), cholesterol esters (5) and free cholesterol
(4) levels in VLDL particles of different sizes were consistently negatively associated with eGFR
in diabetics, but not non-diabetics.

In contrast, Phospholipids to total lipids ratio in very large HDL were positively associated
with eGFR cross-sectionally (β[95 %CI] = 1.06 [0.65 : 1.47], p= 4.8×10−7) and longitudinally
(β[95 %CI] = 0.04 [0.02 :0.06], p= 6.7×10−6) in TwinsUK. Also, the ratio predicted longitudinal
change of eGFR independently of baseline eGFR in KORA (β[95 %CI] = 0.04 [0.01 : 0.07], p=
3.7×10−3).

6.2.4 Metabolites differently associated with eGFR

Finally, four metabolites were associated with eGFR in opposite directions in diabetic and
non-diabetic cohorts (Table 6.2): The amino acids alanine (β[95 %CI] = 3.32 [1.92 : 4.72], p=
3.5×10−6 in T2D and β[95 %CI] =−1.39 [−1.75 :−1.03], p= 2.4×10−14 in non-T2D) and valine
(β[95 %CI] = 4.48 [3.08 : 5.88], p= 3.5×10−10 in T2D and β[95 %CI] =−0.88 [−1.27 : −0.48], p
= 1.4×10−5 in non-T2D), pyruvate (β[95 %CI] = 3.37 [1.93 : 4.82], p= 4.7×10−6 in T2D and
β[95 %CI] =−0.70 [−1.06 :−0.34], p= 1.3×10−4 in non-T2D), and albumin (β[95 %CI] = 2.55
[1.16 : 3.93], p= 3.1×10−4 in T2D and β[95 %CI] =−0.70 [−1.06 :−0.35], p= 9.4×10−5 in non-
T2D). All of those were negatively associated with eGFR in the non-diabetics but positively in
the diabetics, though not consistently across cohorts. Albumin also predicted the longitudinal
change of eGFR (β[95 %CI] = 0.35 [0.12 : 0.58] p= 3.4×10−3) (Table C.2) in the GenoDiabMar
cohort.
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Figure 6.3 Metabolites associated with eGFR in diabetic and non-diabetic cohorts. 227
metabolites were associated with the estimated glomerular filtration rate (eGFR) three cohorts
of type 2 diabetics and three cohorts of non-diabetics. Fixed effects inverse meta-analysis was
used to combine results for both groups. Associations with p< 1.0×10−3 were considered
significant. For detailed list of results and full metabolites names see Table C.3.
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6.3 Discussion

In the largest study of its kind, including 926 T2D diabetics and 4838 non-diabetics from
four independent European cohorts, I identified 142 metabolites significantly associated with
renal function: 59 in diabetics, 109 in non-diabetics, with an overlap of 26 metabolites. While
associations were largely concordant (R2 = 0.60, Figure 6.2), there were some notable exceptions.
For instance, the amino acids glycine and phenylalanine as well as the energy metabolites
citrate and glycerol were all negatively associated with eGFR in diabetics and non-diabetics,
while lipidomics profiles were rather different between the groups.

6.3.1 Renal production of amino acids

Phenylalanine is an essential, aromatic amino acid, which serves as precursor for tyrosine in the
liver and kidneys (Møller et al., 2000) as well as dopamine-related neurotransmitters (Fernstrom
et al., 2007). Phenylalanine has been previously associated with insulin resistance and increased
risk for diabetes (Rhee et al., 2011; Wang et al., 2011b; Floegel et al., 2013). Moreover, reduced
rates of the conversion of phenylalanine to tyrosine were found in renal disease (Young et al.,
1973; Boirie et al., 2004), leading to decreased circulating levels of tyrosine and increased levels
of phenylalanine in CKD patients. While previous studies found the negative association of
eGFR with tyrosine stronger than its positive associations with phenylalanine (Kopple, 2007),
I found tyrosine levels significantly decreased only in diabetic patients with advanced renal
disease. In contrast, increased concentration of phenylalanine was observed in both diabetics
and non-diabetics, regardless of disease progression in this study. This increase was specific to
renal damage, and showed little association with retinopathy.

Interestingly, phenylalanine has been shown to predict cardiovascular events in a multi-centre
European study (Wurtz et al., 2015), however, the causal relationship remains elusive. As
phenylalanine was not significantly associated with longitudinal change of eGFR, it might
be either a consequence of renal damage or a more general marker for biological ageing not
specific to renal function.

Similarly, glycine is converted to serine in the kidneys (Pitts et al., 1970; Tizianello et al., 1980).
Impairment of renal function leads to decreased conversion of glycine and thus, accumulation
of glycine in blood, which I observed consistently in both diabetic and non-diabetic cohorts. In
contrast to phenylalanine, glycine also significantly correlated with albuminuria and diabetic
retinopathy, but did not predict longitudinal change of renal function.

6.3.2 Energy-related metabolites

Alanine is a major precursor of hepatic and renal gluconeogenesis and glycolysis via deam-
ination to pyruvate, catalysed by ALT in the liver as part of the Cahill cycle. Similarly, the
Cori cycle transports lactate produced in the muscle to the liver, where it is also converted
to glucose via pyruvate (Berg et al., 2002). Together with glycerol, which also was negatively
associated with eGFR only in non-diabetics, and glutamine they compose the substrates of
90 % of the human gluconeogenesis. This indicates accumulation of metabolic end products of
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energy metabolism in muscle and decreased gluconeogenesis with advancing kidney disease on
non-diabetics. While these processes were traditionally thought to take place mainly in the liver,
the kidneys play a major role in glucose metabolism, both releasing and consuming glucose
(Schoolwerth et al., 1988). Previous studies demonstrated that metabolic acidosis induced by
CKD leads to increased abundance of circulating alanine, glutamine, and glutamate, possibly
due to abnormal nitrogen utilization and accelerated net protein breakdown. Moreover, insens-
itivity to epinephrine observed in uraemia affects the increases of alanine and glutamine (May
et al., 1987; Garber, 1978).

In contrast to the observed associations in non-diabetic individuals, glucose metabolism is
already heavily disturbed in diabetics with an increased rate of gluconeogenesis (Magnusson
et al., 1992). Consequently, the decline of renal function does not have a major impact on
gluconeogenesis in diabetics.

6.3.3 Lipoprotein composition

One of the largest difference in metabolic associations with renal function between diabetics and
non-diabetics were the negative associations of several VLDL subclasses with eGFR observed
only in non-diabetics and the positive associations of IDL and LDL subclasses with eGFR
observed only in diabetics.

Dyslipidaemia is a commonly observed in renal disease (Tsimihodimos et al., 2008) and particu-
larly LDL cholesterol is a very well-established risk factor for complications of CKD, including
cardiovascular diseases (Rahilly-Tierney et al., 2009) and increased mortality (Lewington et al.,
2007). While this is in line with my findings in the non-diabetic cohorts, it is opposite of what I
observed in the diabetics. Also, absolute levels of total cholesterol and LDL cholesterol levels
were higher in the general population than in the diabetic GenoDiabMar cohort (Figure C.1a),
despite the much higher BMI and lower renal function (Table 6.1). This is very likely an effect
of lipid-lowering medication, in particular statins, taken by diabetics. The unexpected positive
associations of LDL subclasses might be due to stronger medication in patients with worse
general health, leading to lower LDL levels associated with lower eGFR.

Interestingly, in contrast to LDL, triglyceride ratios were negatively associated with renal
function consistently between diabetics and non-diabetics. Also, triglyceride to total lipid
ratios were higher in the GenoDiabMar cohort than in the non-diabetic TwinsUK population
(Figure C.1b). While triglyceride levels also respond to statin treatment, this is a secondary
effect that follows the decrease of LDL and total cholesterol (Stein et al., 1998). Accordingly, the
triglyceride to total lipid ratio is not affected by statins (Würtz et al., 2016). This indicates that
reduction of absolute levels of triglycerides might not be as relevant as reducing their relative
abundance compared to the overall lipid composition.
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6.3.4 Phospholipids in HDL

The ratio of phospholipids to total lipids very large HDL was associated with eGFR, longitudinal
change of eGFR, and predicted future eGFR in non-diabetics, however, did not show any
association with eGFR in diabetics.

Phospholipids in HDL were found to enhance the cholesterol efflux capacity of HDL (Fournier
et al., 1997; Agarwala et al., 2015). Cholesterol efflux is part of the reverse transport of cholesterol
to the liver, which is thought to be the cause of the beneficial effect of HDL cholesterol (Tall,
1998). While this appears to be the case in the non-diabetic cohorts, cholesterol efflux is
impaired in diabetics (Apro et al., 2016; Zhou et al., 2008). As phospholipids in HDL are not
affected by statin treatment (Würtz et al., 2016), this is likely a difference of HDL metabolism
between diabetics and non-diabetics, rather than a treatment effect. My results confirm previous
findings on the regulation of cholesterol efflux and their differences in diabetics and non-
diabetics.

6.4 Conclusion

I analysed associations of 227 metabolic traits with renal function in 5764 individuals from four
European cohorts, including 926 type 2 diabetics. I identified 109 metabolites correlated with
eGFR in non-diabetics and 59 metabolites in diabetics, 26 of which overlapped between the
groups.

I found renal conversion of the amino acids phenylalanine and glycine equally impaired in
diabetics and non-diabetics. Also, higher triglyceride content was consistently associated with
worse and higher HDL levels with better renal function.

In contrast, the amount of phospholipids in HDL was renoprotective in non-diabetics but
not in diabetics, potentially due to their effect on cholesterol efflux. More importantly, de-
cline of renal function heavily affected energy metabolism, particularly gluconeogenesis, in
non-diabetics, while it had no effect on the already defective glucose metabolism of diabet-
ics.

I want to note some limitations of this study. The GenoDiabMar cohort is a cohort of diabetic
patients, recruited in a hospital, and thus quite different from the other cohorts, which have been
recruited from the general population. Most importantly, renal function is on average much
worse than in the general population cohorts and all the participants receive various treatments.
Thus, some of the observed differences between diabetic and non-diabetic cohorts might not be
due to the diabetes status alone but other factors, such as medication. While trying to counteract
this effect by replicating the results in two independent cohorts of diabetics, power of the KORA
and TwinsUK cohorts was rather limited. Also, treatment of diabetics particularly with statins
has a big impact on lipid profiles, which might explain the unexpected associations of LDL.
Hence, future analyses should consider the different treatments when analysing metabolic
associations with renal function in disease cohorts. Finally, while there were many metabolites
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associated cross-sectionally with eGFR very few showed a predictive potential, indicating that
metabolic changes might be consequences rather than causes of kidney disease. However, this
might be due to the limited precision of creatinine.

In summary, I found widespread metabolic changes associated with decline of renal function.
While changes of lipid composition, particularly triglycerides and HDL cholesterol, were largely
similar between diabetics and non-diabetics, changes of energy metabolism were markedly
different. Most of the observed changes are likely consequences of CKD, which might cause
complications of renal disease, such as cardiovascular events.



CHAPTER 7

The faecal metabolome as a functional readout of the gut

microbiome

In this chapter, I analysed the faecal metabolome, assessing its potential as novel
profiling method for the gut microbiome and a potential marker of biological
ageing. I calculated its heritability, conducted a GWAS, and finally associated it
with the gut microbial community to quantify host and gut microbial influences.
I then used the faecal metabolome to investigate associations of microbial
metabolism with age, obesity, and renal function.

There is growing awareness that the gut microbiome has a beneficial role in maintaining
homeostasis of host metabolism (O’Hara et al., 2006) and that disruption of this intricate
system is implicated in human health. The overall microbial composition as well as individual
microbial species have been associated with a range of diseases such as obesity (Ley et al., 2006;
Turnbaugh et al., 2009; Beaumont et al., 2016), insulin resistance (Pedersen et al., 2016), and
inflammatory bowel disease (IBD) (Kostic et al., 2014). While the microbiome was shown to
be relatively stable during most of adulthood (Turnbaugh et al., 2009; Costello et al., 2009),
it strongly associates with frailty (Jackson et al., 2016a) and changes dramatically in late life
(Claesson et al., 2012), suggesting an involvement in the ageing process, possible due to its
influence on inflammatory processes (Ouwehand et al., 2008).

Metabolomics and the gut microbiome are strongly related, with microbes producing many of
the body’s chemicals, hormones, and vitamins (Clarke et al., 2014). Research has shown that
the gut microbiome has an effect on circulating levels of several metabolites. For example, in-
creased microbial production of branched-chain amino acids (BCAAs) together with decreased
microbial uptake was shown to increase serum levels of BCAAs, potentially causing insulin
resistance (Pedersen et al., 2016). There is also some evidence that microbial metabolites, such
as p-cresol sulfate and indoxyl sulfate, are involved in the decline of renal function (Ramezani
et al., 2014; Barrios et al., 2015).

However, to date most microbiome studies rely on sequencing rather than metabolomics
data. Despite the advances of next generation sequencing platforms, which facilitate profil-
ing of complex microbial communities using 16S sequencing or metagenomics (Jovel, 2016),
annotation is sparse at the species level and virtually absent at the strain level. Moreover,
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the microbiome only codes microbial possibilities rather than their actual activity and can,
for instance, not differentiate between alive and dead microbes (Cangelosi et al., 2014), nor
determine the transcriptional activity of the genes within each bacterial genome (Frias-Lopez
et al., 2008).

Faecal metabolomics, on the other hand, reports specifically on the metabolic interplay between
the host, diet, and the gut microbiota (Marcobal et al., 2013). A comparison of conventional
and germ-free mice demonstrated the strong impact of the microbiome on intestinal meta-
bolite profiles (Matsumoto et al., 2012). Later studies confirmed strong dependencies of the
microbiome with gut metabolite concentrations in humans (McHardy et al., 2013). Thus, faecal
metabolomics might provide a functional readout of the gut microbiome that complements
sequencing-based methods. Claesson et al. (2012), for instance, identified marked changes in
the gut microbiome of long-term residential care patients and then used metabolomics meas-
urements from a subset of the patients to identify significant changes of faecal lipid metabolism.
While the faecal metabolome has been shown to add valuable information to sequencing data
in small case-control studies (Choo et al., 2015; De Preter et al., 2015; Antharam et al., 2016) and
model organisms (Ng Hublin et al., 2013), to date there is no systematic or large-scale analysis
of the faecal metabolome in the general population.

The aim of this study is to provide, for the first time, a comprehensive description and assess-
ment of the potential utility of the faecal metabolome in a large population-based setting. To
this end, I analysed faecal metabolomics measurements from 786 individuals and (i) their asso-
ciations with ageing, obesity, and renal function (ii) host genetic influences and (iii) multivariate
dependencies with the gut microbiome.

7.1 Methods

7.1.1 Study population

Study participants were 786 predominantly female (93 %) twins from the TwinsUK cohort
with faecal metabolomic profiles available. 739 of them additionally had whole genome
sequencing data available and 644 of the faecal samples were also profiled using 16S sequencing.
Measurements of visceral fat were available for 652 and measurements of renal function for 613
individuals (Figure 7.1).

7.1.2 Data collection

Faecal samples were collected from study participants and stored at −80 ◦C. 16S sequencing of
faecal samples was conducted by Cornell University as described in section 3.3.3. Metabolo-
mic profiling of faecal samples was conducted by Metabolon, using the version V4 of their
untargeted platform as described in section 3.3.1.
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Table 7.1 Population characteristics. Figure 7.1 Study population.

Faecal samples from 786 individuals of the TwinsUK cohort were profiled by Metabolon Inc. Whole
genome sequencing (WGS), 16S sequencing and measurements of visceral fat and renal function
were available for subsets of the study population.

TwinsUK

Sample size, n 786

MZ:DZ:singletons 296:310:180

Age, years 65.2 ±7.6

Female, n (%) 734 (95.4%)

BMI, kg/m2 26.1 ±4.7 0
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Figure 7.2 The frequency of faecal metabolites in TwinsUK. 1116 metabolites were detected
in 786 faecal samples. (a) 570 of those were detected in at least 80 % of all samples and
345 were detected in less than 80 % but more than 20 % of all samples. The first were
analysed continuously, while I dichotomized the latter in present/absent. 210 metabolites that
were present in less than 20 % of the samples were excluded from further analysis. (b) 469
metabolites where observed in both faecal and blood samples of the same individuals, while
647 metabolites were only measured in faeces. 499 of these 647 faeces-specific metabolites
were observed in at least 20 % of the samples.
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A total of 1116 different metabolites were measured in the 786 faecal samples, of which 210
were observed in less than 20 % of the samples and were therefore excluded from further
analyses, due to the limited power in subsequent analyses (Figure 7.2). 345 metabolites were
observed in more than 20 % but less than 80 % of the samples and were analysed qualitatively
as dichotomous trait (observed in a sample vs. not observed). The remaining 570 metabolites,
which were observed in at least 80 % of all samples, were scaled by run-day medians, log-
transformed and scaled to uniform mean 0 and SD 1 and analysed quantitatively, as described
before (see section 3.3.1).

To analyse the effect of sample storage time on faecal metabolite profiles, I regressed each
metabolite against the time (i) in the fridge before samples arrived in our biobank, and (ii)
in the freezer before being further analysed. After correction for multiple testing (FDR<5 %)
I found significant storage effects on 7 metabolites (Figure D.1). Consequently, I corrected
all further analyses for both storage time in the fridge and freezer, to avoid spurious res-
ults.

7.1.3 Statistical analysis

7.1.3.1 Associations with phenotypes

To investigate the dependency of the faecal metabolome on chronological age, I first regressed
each metabolite against age, correcting for sex, storage times, and family structure as random
intercept (section 3.4.2). Then, I calculated linear and logistic regression models, respectively,
to assess the relationship of the faecal metabolome with obesity, measured as BMI (section
3.2.1) and visceral fat mass (section 3.2.2), adjusting for age, sex, storage time, and family as
random intercept. Lastly, I regressed faecal metabolites against the eGFR, calculated from serum
creatinine (section 3.2.3), to assess their association with renal function. Pathway enrichment
tests were performed as described before using piano (see section 3.4.3).

The faecal metabolome is expected to be influenced by dietary changes (Ríos-Covián et al.,
2016; Russell et al., 2011), which also are influence the microbiome composition, as well
has host phenotypes. Thus, diet is a potential cause of the observed associations between
faecal metabolites and microbes, as well as faecal metabolites and host phenotypes. There
is also a potential interaction effect between the abundance of nutritional compounds and
gut microbes on the presence of faecal metabolites. These complex dependencies between
nutrition, faecal metabolites, and microbes were not subject of this analysis and should be
addressed in future studies with comprehensive data on nutrition available, ideally 24-hour
dietary recalls.

7.1.3.2 Host genetic influences

I used ACE models to estimate the heritability and common environment components of 915
faecal metabolites. Liability threshold models were used for dichotomous metabolic traits
(section 3.4.1).
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Genetic variation was measured using whole genome sequencing (see section 3.3.4). I excluded
127,778 SNPs with Hardy-Weinberg p< 1.0×10−6, calculated from 420 unrelated individuals,
leaving 8,222,692 biallelic SNPs with minor allele frequency higher than 1 % for further analysis
(see section 3.4.2.3). To test for associations of the 428 heritable faecal metabolites with SNPs, I
fitted linear mixed models correcting for age, sex, storage time, and the sample kinship using
GEMMA (Zhou et al., 2012). I used Bonferroni-correction to account for multiple testing, adjusting
for 428 tested metabolites (p < 1.2×10−10= 5.0×10−8/428).

Additionally, I tested for genetic associations with 31,226 pairwise metabolite ratios of faecal
metabolites with known chemical identity and a heritable variance component. I used the
p-gain statistic to assess independence of the individual metabolites (Petersen et al., 2012).
The p-gain is defined as the minimal p-value of the associations of either of the individual
metabolites divided by the p-value of the metabolite ratio. A high p-gain statistic indicates
that the ratio carries additional information compared to individual metabolites. I considered
metabolite ratios with p< 1.6×10−12 (= 5.0×10−8/31,226 metabolite ratios) and p-gain>

3.1×105 (= 10× 31,226 metabolite ratios) significant.

7.1.3.3 Associations of the faecal metabolome with the gut microbiome

To assess associations of the faecal metabolome with the gut microbiome composition, I first
regressed metabolite concentrations against the Shannon alpha diversity (section 3.3.3), adjust-
ing for age, sex, BMI, storage time and family structure using 644 individuals with both faecal
metabolomics and 16S sequencing data available.

In the second step, I estimated the proportions of variance explained by the microbiome for
each metabolite. To this end, I scaled UniFrac beta-diversity distances (see section 3.3.3) to [0; 1]
and converted them to a similarity matrix by subtracting each entry from 1. I then calculated
restricted maximum likelihood (REML) models, regressing each metabolite level against the
microbial similarity, adjusting for age, sex, BMI, storage times and technical covariates (sequen-
cing run, sequencing depth, individual who extracted the DNA, individual who loaded the
DNA and sample collection method) using the R package regress. The proportion of variance
explained by microbial similarity and its standard error were calculated from the variance
components using the R package gap and p-values were calculated from the ratio of the estimate
over its standard error. This technique is commonly used to estimate the heritability from
genetic kinship matrices (Yang et al., 2011; Speed et al., 2012), however, is much less common in
microbiome research.

Next, I aimed to identify individual microbial OTUs and higher taxonomical units that are
associated with faecal metabolite levels. To this end, I regressed 581 inverse normalised OTUs
against all 915 metabolites, adjusting for age, sex, BMI, sample storage times, family structure
and the alpha diversity. I further calculated associations of higher taxonomical units, ranging
from genus to phylum level. Benjamini-Hochberg correction was applied to correct each of
these analyses for multiple testing.
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Lastly, to assess multivariate dependencies between the faecal metabolome and the microbiome,
I inferred a GGM combining 423 metabolites with known chemical identity that were observed
in at least 80 % of the samples with 241 OTUs that were assigned complete taxonomy at least to
the genus level (see section 3.4.7).

7.2 Results

The faecal samples of 786 predominantly female participants of the TwinsUK cohort, aged
65.2 (±7.6), with an average BMI of 26.1 (±4.7) (Table 7.1) were analysed by the metabolomics
provider Metabolon Inc. using an untargeted MS platform. A total of 1116 metabolites, 849 of
them with known chemical identity were measured.

Among the detected metabolites, 570 were found in at least 80 % of the samples, while 345
were detected in at least 20 % but in less than 80 % of all samples (Figure 7.2). The latter were
analysed as dichotomous traits (present/absent in a sample) and metabolites measured in less
than 20 % of the samples were discarded from further analysis. 647 faecal metabolites (499
of them present in at least 20 % of samples) were not detected in blood samples of the same
individuals that were profiled on the same platform (Figure 7.2b).

7.2.1 Faecal metabolite associations with phenotypes

I tested 915 faecal metabolites for association with adult age and did not find significant
associations after correcting for multiple testing (FDR adjusting for 3660 tests = 915 metabolites
× 4 phenotypes). While faecal metabolites were not linearly associated with adult age, I
found differences between the oldest decile (>75 years) and the youngest decile (<56 years) of
the study population (Figure 7.3). A multivariate partial least squares discriminant analysis
(PLSDA) incorporating all 570 common metabolites could distinguish the two extremes (AUC=
71 %, p= 6.8×10−6, Figure 7.3b). This separation was partly driven by phytanate (β[95 %CI]
=−0.68 [−0.97 :−0.39], p= 5.7×10−6), the only metabolite that I found significantly different
between the age groups using regression models (Figure 7.3a).

BMI was found to be associated with eight metabolites at a FDR of 5 %: five faecal lipids, in-
cluding arachidonate (β[95 %CI] = 0.13 [0.07 :0.19], p= 1.1×10−5), the haemoglobin metabolite
bilirubin (β[95 %CI] = 0.13 [0.06 : 0.19], p= 8.9×10−5) and two unknown metabolites (Table
D.1).

Moreover, I found one faecal amino acid significantly associated with eGFR after corrections for
multiple testing: 1-methylguanidine (β[95 %CI] =−2.12 [−3.06 :−1.19], p= 8.6×10−6).

Lastly, I looked for associations with visceral fat mass, a measure of abdominal obesity, and
found a total of 102 statistically significant associations (FDR<5 %), 13 of them significant
also after adjusting for stringent Bonferroni correction (again adjusting for 915 × 4 tests)
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Figure 7.3 Faecal metabolites differ between the young and the elderly. While I found the
faecal metabolome stable during adulthood, the oldest decile (>75 years) and the youngest
decile (<56 years) of the study population were significantly different. (a) I first investigated
the age effect for all metabolites individually and found one metabolite, phytanate, significantly
different between the age groups. (b) I then fitted a multivariate PLSDA model to distinguish
the older from the younger group. The AUC was estimated at 0.71 (p= 6.8×10−6) in a
10-fold cross-validation setting.

(a) qq-plot of associations of metabolites
and age deciles
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(Table D.1). Visceral fat associated metabolites were significantly enriched for N-acetyl-amino
acids (43 metabolites, enrichment p-value <2.0×10−4). Moreover, I found 14 fatty acids, in-
cluding arachidonate (β[95 %CI] = 5.07 [2.55 :7.59], p= 8.2×10−5, 8 nucleotides, 6 sugars and
6 vitamins associated with visceral fat. Notably, faecal concentrations of four B-vitamins
– nicotinate (β[95 %CI] = 7.38 [4.91 : 9.86], p= 5.1×10−9 and pantothenate (β[95 %CI] = 6.12
[3.60 :8.64], p= 1.9×10−6), riboflavin (β[95 %CI] = 4.61 [2.16 :7.07], p= 2.3×10−4) and pyridox-
amine (β[95 %CI] = 3.84 [1.40 : 6.28], p= 2.1×10−3 – were positively associated with visceral
fat.

7.2.2 Host genetic influence on the faecal metabolome

Heritability estimates were computed using SEM (see section 3.4.1). For 428 metabolites, the
best fitting model contained a heritable variance component (A), which accounted on average
for 17.9 % (±9.7 %) of the metabolite variation. I found the abundance of long-chain fatty acids,
such as 1-palmitoyl-2-arachidonoyl-GPC (H2 = 60.7% [43.4 : 78.0]) and stearoylcarnitine (H2

= 54.3% [36.4 :72.3]), amongst the most heritable metabolites. For 279 metabolites, including the
coffee-metabolite 5-acetylamino-6-amino-3-methyluracil (C = 30.3% [20.0 :40.6]), the best fitting
model was the CE model, with an average common environment component (C) of 14.8 %
(±8.1 %). For the remaining 208 metabolites, the best fitting model was the E model, indicating
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Figure 7.4 Variance components of the faecal metabolome. I estimated heritability (red) and
the effect of common environment (blue) using ACE models from 148 pairs of MZ twins and
155 pairs of DZ twins. Additionally, I estimated the proportion of variance explained by the
gut microbiome (green) using mixed models incorporating the microbial beta-diversity for 644
individuals with 16S sequencing data available. The heat-map panels show associations of
faecal metabolites with microbial alpha diversity (n = 644, red), visceral fat mass (n = 647,
blue) and BMI (n = 786, green), where darker colours indicate stronger associations and grey
indicates non-significant associations (FDR corrected). Results for metabolites observed in
less than 80% of the samples are presented in Figure D.2.
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Figure 7.5 Manhattan plot of faecal metabolites. (a) I found three metabolites significantly
associated with genetic loci. The horizontal line indicates the Bonferroni cut-off of 1.2×10−10.
Significant loci are coloured in orange. (b) Additionally, two metabolite ratios passed Bonfer-
roni correction (p< 1.6×10−12): 1,3-dimethylurate / 5-acetylamino-6-amino-3-methyluracil
(p= 6.2×10−21) and 3-phenylpropionate (hydrocinnamate) / benzoate (p= 1.5×10−15).
However, only the first one passed filtering by p-gain (p-gain> 8.9×105) and thus was
considerably stronger than the association of each individual metabolite.
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that the entire variation of the metabolite is due to individual differences such as the microbiome
or diet (Table D.1, Figures 7.4 and D.2). I found a significantly stronger environmental effect on
lipids than other metabolites (enrichment p< 2.0×10−4).

To investigate the influence of host genetics on the faecal metabolome, I conducted GWASs
for the 428 metabolites with a heritable variance component (Figure 7.5a). Three metabol-
ites were significantly associated with genetic loci after correcting for multiple testing (p
< 1.2×10−10= 5.0×10−8/428 tested metabolites) (Table 7.2). These include the amino acid
3-phenylpropionate (rs58539483, p= 2.3×10−11, Figure D.4a) and the two lipids eicosapentae-
noate (rs149572251, p= 4.7×10−11, Figure D.4b) and 3-hydroxyhexanoate (rs62311177, p=
8.6×10−12, Figure D.4c).

I also tested for genetic associations of metabolite ratios (Figure 7.5b), which were shown to be
often better proxies for chemical reactions than single metabolites (Petersen et al., 2012). After
correcting for 31,226 tested ratios (p< 1.6×10−12), I found the ratio of 5-acetylamino-6-amino-3-
methyluracil over 1,3-dimethylurate associated with a locus on chromosome 8 (p= 5.2×10−20,
p-gain= 1.8×109, Figure D.4d). Regional association plots and qq-plots of these associations
are shown in Figures D.3 and D.5, respectively.

7.2.3 Microbial association with the faecal metabolome

As the faecal metabolome appeared to be moderately influenced by host genetics, I hypothes-
ised that it reflects to a large extent metabolic processes of the gut microbiome. I regressed
metabolite levels against microbial diversity, quantified by the Shannon index, and found
that more than the half of the metabolites (575 metabolites) across all pathways were signi-
ficantly association with diversity (FDR<5 %), 347 of them passing a conservative Bonferroni
correction.

I then estimated the proportion of variance explained by microbiome composition for each
metabolite, using the UniFrac beta-diversity metric, a measure of overall phylogenetic dis-
similarity between individuals’ microbiota (Lozupone et al., 2005). I found that gut microbial
composition explained a significant proportion of the observed variance of 710 metabolites, on
average 67.7 % (±18.8 %), ranging from 22.1 % for 1-linolenoylglycerol up to 100 % for several
N-acetyl-amino acids (Table D.1). Amongst others, the microbiome explained a significant

Table 7.2 Genetic loci associated with faecal metabolites.

Metabolite h2 SNP Position Gene beta p p-gain

1,3-dimethylurate /
5-acetylamino-
6-amino-3-
methyluracil

39.8 rs35246381 8:18415025 NAT2 −0.17[−0.21:−0.14] 6.2×10−21 7.5×109

3-hydroxyhexanoate 22.3 rs62311177 4:92962004 GRID2 0.41[ 0.30: 0.52] 3.0×10−12

3-phenylpropionate 24.3 rs58539483 11:28830501 RP11-
115J23.1

−1.31[−1.68:−0.94] 3.9×10−11

eicosapentaenoate 16.0 rs149572251 20:34322936 ITCH 1.45[ 1.04: 1.86] 3.5×10−11
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proportion of the variance of all the 8 BMI-related, and 101 of the visceral fat-related metabol-
ites. Xenobiotics, including the B-vitamins nicotinate and pantothenate, showed the strongest
associations with microbial composition (enrichment p< 1.0×10−4).

To explore the associations of the faecal metabolome with gut microbes at a finer taxonomic res-
olution, I regressed each metabolite against the 581 most abundant OTUs, adjusting for potential
confounding factors including Shannon diversity. I found 42,645 significant associations of 907
different metabolites with 579 different OTUs after adjusting for multiple testing (FDR, cor-
recting for 531,615 tests = 915 metabolites× 581 OTUs). Moreover, I calculated associations of
faecal metabolites with collapsed taxonomical levels, ranging from genus to phylum level (Fig-
ure 7.6). 264 metabolites only associated with microbes at the OTU level, while the remaining
metabolites were also associated with broader taxonomic groupings.

Lastly, to investigate the connectivity of the faecal metabolome with microbes, I inferred a GGM
combining 423 common metabolites with known chemical identity and 241 OTUs with complete
taxonomy assignment to at least genus level. The resulting model consisted of 2460 independent
associations, 1000 of them amongst metabolites, 921 amongst microbes, and 539 connecting
metabolites and microbes. Even though the network is much sparser than a correlation network
(1.1 % of all edges in the network compared to 37.9 % in correlation network), all but 13 variables
form one connected component. I detected 19 clusters in the largest component, 10 of which
contained both microbes and faecal metabolites and 9 consisted of metabolites only. Xenobiotics
had higher node degrees (enrichment p< 3.0×10−4) and were more densely connected with
OTUs (p< 2.4×10−3). However, the most connected metabolite was carboxyethyl-GABA, a
neurotransmitter that is produced by microbes (Cryan et al., 2012). The most densely connected
OTUs in the network were assigned to the Clostridiales order.

7.3 Discussion

This is the first comprehensive description of the faecal metabolome. I analysed over 1000 meta-
bolites from the faecal samples of 786 individuals from the TwinsUK cohort. I show that the
faecal metabolome is stable during adulthood, influenced by host genetics, and strongly associ-
ated with the gut microbial community. Indeed, it provides a functional readout of microbial
metabolism and constitutes a unique opportunity to study mechanisms of microbial interaction
with host phenotypes. As an example, I found strong associations of specific faecal metabolites
with abdominal obesity that provide functional information backing up previous strong but
crude associations of the microbiome on obesity (Turnbaugh et al., 2009).

7.3.1 Faecal metabolites are stable during ageing

While the faecal metabolome was stable during adulthood, I found the oldest decile of the
study population significantly different from younger individuals, suggesting that the faecal
metabolome changes late in life. This is in line with previous findings on the effects of
age on the gut microbiome (O’Toole et al., 2010; Claesson et al., 2011; Yatsunenko et al.,
2012).
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Figure 7.6 Associations of faecal metabolites with gut microbes. Associations of faecal
metabolites and the gut microbiome are represented as Manhattan plot, where the x-axis
indicates different microbes (instead of chromosomal positions) and each panel represents
a different taxonomical level. The y-axis indicates the p-values of the associations with
faecal metabolites, which are coloured by pathway. Grey dots represent microbe-metabolite
associations below the Bonferroni cut-off (adjusting for 915 metabolites × 581 operational
taxonomical units (OTUs), 382 genera, 194 families, 137 orders, 72 classes, and 34 phyla,
respectively).
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Figure 7.7 Integrating faecal metabolites and microbes. I integrated 423 faecal metabolite
levels and 241 operational taxonomical units (OTUs) using a Gaussian graphical model
(GGM) to explore their multivariate dependencies. These 664 variables were connected by
2460 edges. While for instance amino acids were strongly interconnected with microbes,
peptides and nucleotides appeared to be more peripheral. (a) With 23 edges, 15 of them
with microbes, carboxyethyl-GABA was the most densely connected node in the graph. (b)
The Oscillospira OTU that showed the strongest association with visceral fat was directly
connected with the neurotransmitter serotonin in the GGM. (c) Two Christensenella OTUs
were included in the network. Both were independently associated with several amino acids,
which might explain their association with visceral fat.
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The only metabolite that was significantly different in the elderly was phytanate, which cannot
be produced by humans and is thought to origin mainly from dietary intake of meat and dairy
(Brink et al., 2006). Changes of phytanate levels in faeces could thus reflect dietary changes in
the elderly. Phytanate is an activator of proliferator-activated receptor α (PPAR-α), which is
involved in lipid control (Zomer et al., 2000). Due to its role in regulation of lipid metabolism
(Schoonjans et al., 1996), PPAR-α is involved in several metabolic disorders, including athero-
sclerosis, and generally ageing (Pineda Torra et al., 1999), for instance due to response to oxidat-
ive stress (Poynter et al., 1998). Thus, decreased levels of phytanate in the elderly might lead to
changes in lipid metabolism and increased susceptibility to disease.

7.3.2 The faecal metabolome is influenced by host genetics

My results show that the faecal metabolome is influenced by host genetics with 428 metabolites
exhibiting a heritable component, explaining on average 17.9 % (±9.7 %) of the total variance,
ranging up to 60.7 %.

The host genetic influences on faecal metabolites are possibly mediated by heritable microbes.
For instance, the metabolite 3-phenylpropionate is produced by several Clostridium species
(Moss et al., 1970), which were previously shown to be heritable (Goodrich et al., 2014). Mi-
crobial production of 3-phenylpropionate might explain its heritable variance component in
this data (24.3 %) as well as its genome-wide significant association with the SNP rs58539483 in
the lincRNA RP11-115J23.1, a gene that has been previously found to be associated with waist
circumference (Fox et al., 2007).

On the other hand, host genetic influences might reflect efficacy of metabolic processes along
with degradation and excretion of nutrients. For instance, the metabolite ratio of 5-acetylamino-
6-amino-3-methyluracil and 1,3-dimethylurate, two metabolites of caffeine (Weimann et al.,
2005), was strongly associated with the SNP rs35246381 close to the N-acetyltransferase 2
(NAT2) gene. The same locus has been previously reported to be associated with other caffeine
metabolites (1-methylxanthine, 4-acetamidobutanoate and 1-methylurate) in blood (Shin et al.,
2014) and urine (Raffler et al., 2015). The NAT2 gene codes for a N-acetyltransferase, which
catalyses the degradation of caffeine metabolites (Nyéki et al., 2003). Hence, this association
likely reflects the degradation of caffeine.

7.3.3 The faecal metabolome reflects microbial composition

While faecal metabolites are moderately influenced by host genetics, they are strongly and
widely associated with the gut microbiome, which explains a major proportion of the variance
for most of the observed metabolites. Almost all observed OTUs and broader taxonomic
groupings were significantly associated with one or more faecal metabolites. These associations
reflect (i) microbial production of metabolites, such as different B vitamins (Magnúsdóttir et al.,
2015), (ii) adaption of microbe composition to degradation products of the host metabolism,
such as bilirubin, a metabolite of haemoglobin, which is metabolised by gut microbes (Becker
et al., 2011), or (iii) microbial adaption to nutritional habits, such fructose intake (Payne et al.,
2012).
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While some of the metabolites were associated with the overall composition and diversity of
the microbial community, such as the B vitamins nicotinate and pantothenate or the long-chain
fatty acid arachidonate, others were more specific to certain OTUs and genera, such as tyramine,
a biogenic amine that is produced by the Enterococcus genus (De Palencia et al., 2011). This
demonstrates the potential of the faecal metabolome to provide functional annotation at high
resolution.

7.3.4 Faecal metabolites associate with obesity

I used the faecal metabolome to investigate potential mechanisms of microbiome-related obesity.
Visceral fat mass is a measure of abdominal obesity, which was previously shown to be an
independent risk factor for common complications of obesity, including CVD (Després, 2007;
Fox et al., 2007).

Early studies found Firmicutes to be overall detrimental and Bacteroidetes overall beneficial for
obesity (Ley et al., 2006). However, these associations were disputed in a recent meta-analysis
including 10 studies (Sze et al., 2016). Moreover, Oscillospira abundance has been associated
with lower visceral fat mass (Beaumont et al., 2016), and with reduced weight gain within
germ-free mice receiving human faecal transplants supplemented with Christensenella minute
(Goodrich et al., 2014). Additionally, some Ruminococcus OTUs were shown to be negatively
association with visceral fat mass (Beaumont et al., 2016). Therefore, it is likely that members
of the Firmicutes phylum have diverse functions, some of which might be protective against
obesity.

Here, I found the associations of OTUs with visceral fat consistent with their metabolic profile.
I identified 102 metabolites associated with visceral fat, including 43 amino acids. In the same
data set – which is a subset of the data used by Beaumont et al. (2016) – 35 microbial OTUs were
associated with visceral fat at a FDR of 5 %. 32 of these OTUs were associated with at least one of
the visceral fat-associated amino acids. While microbial associations were not consistent within
phyla, particularly not within the Firmicutes, all OTUs associated with increased visceral fat
were strongly associated with increased abundance of amino acids and vice versa (Figure 7.8).
While microbes of one taxonomical group, such as phyla but also finer groups, clearly can have
very different effects on human health, I found similar associations with obesity of microbes
with similar metabolic profiles. This demonstrates the potential of faecal metabolomics to
complement sequencing based profiling methods.

7.3.5 Faecal metabolites associated with renal function

In patients with renal failure a considerable amount of creatinine is thought to be excreted in
the gut (Jones et al., 1974), where it is further catabolised by gut microbes. 1-methylguanidine,
which I found negatively correlated with renal function, is one of the microbial products of creat-
inine (Eyk et al., 1968). Thus, the observed increase in faecal concentration of 1-methylguanidine
with decline of renal function is most likely a consequence of insufficient renal excretion of
creatinine. However, 1-methylguanidine was also found to be toxic and, for instance, increases
mortality in rats (Yokozawa et al., 1989). Consequently, the decrease of renal function, the
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Figure 7.8 Association of faecal amino acids with visceral fat. 43 faecal amino acids significantly
positively associated with visceral fat. Several microbes have been previously identified to be
associated with obesity and visceral fat. Here, I found 35 microbial operational taxonomical
units (OTUs) associated with visceral fat at a FDR of 5 %, 7 positively (orange) and 28
negatively (green). 32 of these OTUs were also associated with at least one of the visceral
fat-associated amino acids. Red tiles indicate positive associations of microbes and metabolites
(β > 0) and blue ones negative associations (β < 0); grey tiles indicate non-significant
associations (FDR>5 %). Clearly, microbes that are positively associated with visceral fat are
also positively associated with the abundance of amino acids and vice versa, indicating that
their metabolic activity is more closely related to human health than their taxonomy.
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accumulation of 1-methylguanidine, and gut dysbiosis might mutually enforce each other
(Ramezani et al., 2016). However, here we analysed a small set of relatively renal-healthy
individuals and more in-depth studies are needed to fully elucidate these complex relation-
ships.

7.4 Conclusion

Here, I analysed metabolomics measurements from faecal samples to investigate their potential
use as biomarkers of ageing. While ageing and renal function appear to be only moderately
associated with faecal metabolites, I found obesity strongly associated with many metabolites.
These associations indicate that increased abundance of amino acids in the gut, which are
potentially produced by microbes, might mediate the association of abdominal obesity and
changes of microbial composition.

I show that the faecal metabolome, while moderately influenced by host genetics, largely
reflects the microbial community and thus indeed provides a functional readout of micro-
bial metabolism. As metabolites are the main means of communication between the host
and (gut) microbiome, the faecal metabolome can be used as an intermediate phenotype that
promotes microbial effects on the host. This might facilitate future studies to overcome the
limitations of sequencing based methods, most importantly the lack of functional annota-
tion.

However, I analysed observational data only and cannot conclude causality for any of the
observed correlations. Also, due to the novelty of faecal metabolomics, the study lacks in-
dependent replication and the stability of the observed associations across populations and
time has yet to be addressed. Moreover, I focused on the relationship of faecal metabolites
with host and microbial genetics, however, future studies should investigate the influence
of environmental factors, most importantly diet. Lastly, there are limitations regarding the
collection of faecal samples, which are stored by participants until they arrive in the study
centre. This storage has a considerable effect on the microbes (Choo et al., 2015) and on the
metabolome.

Summarising, faecal metabolomics appears to be a useful tool to complement future microbiome
studies with functional annotation and hence promote knowledge on mechanisms of host-
microbe interactions and their impact on human health.



CHAPTER 8

Differential multi-fluid networks identify processes involved

in end-stage renal disease

The aim of this chapter was to identify metabolic processes that are affected by
end-stage renal disease (ESRD). To obtain a more holistic image of the metabolic
processes associated with ESRD, I modelled metabolic networks spanning three
fluids – plasma, urine, and saliva – using Gaussian graphical models (GGMs). Dif-
ferences of these cross-fluid metabolic networks between cases and controls were
investigated using permutation testing. This yielded three metabolic pathways
that are disrupted in ESRD patients, independently of other metabolic changes.

Previous studies demonstrated the tremendous impact of renal function on the metabolism in
various fluids (Barrios et al., 2016). In chapter 6, I investigated the association of circulating
metabolites with renal function and found strong associations of eGFR with lipid composi-
tion, amino acids, and energy metabolism. Also, Sekula et al. (2016) identified more than 50
circulating metabolites, measured on the Metabolon platform, associated with renal function
in the KORA and TwinsUK cohorts. While these were the largest studies investigating the
healthy spectrum of renal disease, several smaller studies investigating changes of circulating
metabolites in (end stage) renal disease patients found – amongst others – altered abundance of
amino acids, uremic solutes and acylcarnitines (Sun et al., 2012; Niewczas et al., 2014; Toyohara
et al., 2010).

With urine being the output of renal filtration and also being one of the most accessible bio-fluids,
several studies aimed to identify urinary biomarkers of renal function. NMR spectroscopy
helped to identify several candidate biomarkers, including citrate and threonine (Posada-Ayala
et al., 2014), which were later replicated by an independent study (Pallet et al., 2014). Another
study found decreased excretion of citrulline and asymmetric dimethylarginine (ADMA) in
CKD patients (Duranton et al., 2014).

As patients with ESRD might not have urine, saliva is a possible alternative, which is as
accessible as urine. Also, metabolic changes in urine might reflect other physiological changes
than the decline of renal function, for instance of the genitourinary system (Issaq et al., 2008;
Kind et al., 2016). Hence, several studies investigated salivary changes in kidney disease
patients and found marked differences in concentrations of creatinine and urea (Lasisi et
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al., 2016), electrolytes (Tomás et al., 2008) and phosphorus (Savica et al., 2008), however, no
comprehensive analysis of the association between the salivary metabolome and renal function
has been conducted, yet.

However, studies so far have largely been focusing on a single fluid, analysing the bivariate
associations of individual metabolite levels with renal function, thus ignoring the interde-
pendencies of metabolites across fluids, which are connected through metabolic reactions and
transport processes (see section 1.3). As outlined in section 1.3.3.2, GGMs have been shown to
infer cross-fluid metabolic processes from observational data (Krumsiek et al., 2011; Do et al.,
2015). Rather than analysing changes of individual metabolites, GGMs facilitate the analysis
of metabolic reactions and modules, and thus to investigate the driving factors behind the
metabolic disturbances that are commonly observed in ESRD. Analysing differences of such
metabolic networks between conditions can help to formulate hypothesis about the disease
processes (Valcárcel et al., 2011).

Here, I aimed to identify metabolic differences in plasma, urine and saliva samples of 72
advanced CKD patients from the GANI_MED cohort compared to 906 controls from the
SHIP cohort, representing the general population. To identify metabolic processes that poten-
tially account for the substantial metabolic shift, I used GGMs to model cross-fluid metabolic
pathways in cases and controls and identified differences thereof by permutation testing as
suggested before (Valcárcel et al., 2011). This is the first metabolic analysis of CKD com-
bining three different fluids as well as the first application of differential networks in renal
research.

8.1 Methods

8.1.1 Study populations

In this chapter, I analysed data from the SHIP (Völzke et al., 2011) and GANI_MED (Grabe
et al., 2014) cohorts.

72 CKD patients from the GANI_MED renal cohort (section 3.1.3) with metabolomics data
available were used as cases, and 906 individuals from the SHIP (section 3.1.3) study served as
controls.

8.1.2 Metabolomics measurements and normalisation

Metabolon’s untargeted V3 platform (section 3.3.1) was used to profile plasma, urine, and saliva
samples from all 978 individuals. Cases were randomised across run-days. 662 metabolites
were detected in plasma, 619 in urine and 383 in saliva (Figure 8.1a); 299, 419 and 164 of these
were detected in at least 80 % of the study population (Figure 8.1b). Measurements were scaled
by run-day medians as described before, however, run-day medians were calculated using the
control individuals from the SHIP cohort only to avoid bias due to the sometimes dramatically
different metabolite levels in cases.
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Figure 8.1 Metabolites detected in plasma, urine and saliva. (a) Metabolites were measured
using an untargeted mass spectrometry (MS) platform in plasma, urine and saliva. (b) More
than the half of the metabolites were detected in more than 80 % of the samples.
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Metabolite concentrations in urine and saliva strongly depend on the dilution with water, which
reduces the total amount of metabolites. To correct for the dilution effect, many studies scale
measurements relative to the concentration of creatinine (Vogl et al., 2016), however this is
problematic when analysing renal function. Thus, I used probabilistic quotient normalisation to
account for dilution (Dieterle et al., 2006) in urine and saliva samples. To this end, I estimated
a reference sample as median of all metabolites that were detected in all samples. Then, I
calculated the deviation from this reference for each sample as median of all metabolite fold-
changes. This deviance from the reference was used as dilution factor and all metabolite levels
of the respective sample were scaled by it. As for the run-day normalisation, the reference
sample was calculated from controls only, individually for urine and saliva measurements. All
metabolite concentrations were subsequently log-transformed and scaled to mean 0 and a SD
1.

As network inference relies on full data matrices, I excluded metabolites with more than 20 %
missing values in the combined dataset of cases and controls. The remaining missing values
were imputed using the R package mice (see section 3.4.5). Case and control groups differed
with respect to age, sex, and BMI (Table 8.1). Hence, I adjusted for these factors by fitting linear
models for each metabolite. Residuals of these models, scaled to mean 0 and SD of 1, were used
for further analyses.
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8.1.3 Statistical analysis

I started with calculating logistic regression models (see section 3.4.2) for each of the 882
metabolites using the residuals adjusted for age, sex, and BMI, to identify metabolites differing
between cases and controls. Results were adjusted for multiple testing using Bonferroni
correction for 882 tests (see section 3.4.2.1). To identify pathways that were jointly affected by the
disease, I tested for pathway enrichment as described in section 3.4.3.

Individually for cases and controls, I inferred GGMs to model cross-fluid metabolic processes
using the GeneNet algorithm (Schäfer et al., 2005) as described in section 3.4.7. I normalised
each metabolite to mean 0 and standard deviation 1 individually for cases and controls prior to
network inference, to avoid misleading correlations of metabolites in the subsequent permuta-
tion testing. For each edge the FDR was estimated and edges passing the FDR-threshold of 5 %
were included in the respective GGMs.

To test for significant differences between the networks of cases and controls, I used a permuta-
tion based approach. To this end, I combined the datasets for cases and controls and permuted
the class labels (case/control) 10,000,000 times. In each permutation, I divided the dataset in
two sets (of 906 and 72 samples, respectively), inferred a GGMs for both, and calculated the dif-
ferences of the resulting shrinkage partial correlations. Consequently, background distributions
of shrinkage partial correlation differences were obtained for each edge. These were used to
calculate empirical two-sided p-values, assessing the significance of the differences of shrinkage
partial correlations between the case and the control networks.

Empirical p-values were then adjusted for multiple comparisons. To reduce the burden of
multiple testing (there are 388,521 = 882 × (882 − 1)/2 potential edges in the network), I
only tested edges for significant differential (shrinkage partial) correlations of edges that were
included in either (or both) of the networks for cases and controls. Consequently, the empirical
p-values for edge differences were adjusted for 5937 tests using Bonferroni correction (p <
8.4×10−6= 0.05/5937).

I used the control GGM as reference graph to compute a layout for visualisation, as it is meant
to represent the healthy metabolic network. Measures of graph topology and node centrality
were calculated for both networks as described in section 3.4.9.

Table 8.1 Population characteristics.

SHIP (controls) GANI_MED (cases)

N 906 72

Age, years 49.94±13.64 64.40±15.38

Gender (female) 512 (56.5 %) 22 (30.6 %)

BMI, kg/m2 27.35±4.50 30.17±6.79

Dialysis 0 44 (61.1 %)
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8.2 Results

I analysed metabolomics data from plasma, urine, and saliva from 72 CKD patients from the
GANI_MED cohort, by comparing them with 906 individuals from the SHIP cohort, which
represent the general population (Table 8.1). The metabolic profiles of CKD patients were
immensely different from the general population. Principal component analysis (PCA) shows
that the disease accounts for a major proportion of the observed variance in each of the three
fluids, independently of age, sex and BMI (Figure E.2).

8.2.1 Univariate differences between cases and controls

603 metabolites (68 %) were significantly different between CKD cases and controls after Bon-
ferroni correction for multiple testing (p< 5.7×10−5 = 0.05/882 metabolites). 212 of these were
measured in plasma, 295 in urine, and 96 in saliva (Figure 8.2, Table E.1). Amino acids (enrich-
ment p= 1.2×10−3) and nucleotides (p= 1.0×10−3) were significantly enriched in plasma of
CKD patients, while nucleotides were significantly depleted in urine (p< 1.0×10−4) of cases
compared to controls. In contrast, lipids were depleted in both plasma (p< 1.0×10−4) and
urine (p= 1.0×10−4) of renal disease patients. Particularly lysolipids were found at lower
concentrations in patients’ blood (p< 1.0×10−4).

Seven metabolites were significantly different between the CKD patients and controls across
all three fluids: four amino acids – N-acetylphenylalanine, acisoga, 3-methyl-2-oxovalerate,
alpha-hydroxyisovalerate – the lipid azelate, citrate and the vitamin pantothenate (Figure
E.3). Moreover, 74 metabolites were associated with CKD status in two fluids: 18 of them
in plasma and saliva, 5 in saliva and urine, and the remaining 51 metabolites in plasma and
urine.

Figure 8.2 Metabolites differing between CKD cases and controls. I found 603 of the
882 analysed metabolites significantly different between cases and controls after stringent
correction for multiple testing (Bonferroni). Additionally, 126 metabolites were significantly
different at a FDR of 5%.
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8.2.2 Multi-fluid graphical models

In the next step, I aimed to further investigate the pathways affected by kidney disease and
to identify the driving factors underlying these profound metabolic differences. To this end,
I inferred a GGM from the controls as a model of the healthy metabolic network. 4404 edges
passed the significance threshold of FDR <5 %, 972 of them between different fluids (Table
8.2). The distribution of node degrees approximated the power law (Figure 8.3), thus forming
a scale-free network. Shrinkage partial correlations favour sparse networks while excluding
spurious (mediated) correlations. Thus, the GGM was much sparser than a CN based on
ordinary correlations, which consisted of 90,982 (24.4 % of all edges) significant edges. 46 %
of the tuples (117) and triplets (35) (Figure 8.1b) of the same metabolite measured in different
fluids were connected in the final GGM.

The metabolic model of cases only contained 2509 edges. Despite the much fewer edges
compared to the controls GGM, the distribution of node degrees still followed the power law.
However, while in the controls network all 882 metabolites were connected with each other in
one large component, 52 individual metabolites and two pairs of metabolites were separated
from the remaining 826 metabolites, which formed the largest component in the case graph.
Both graphs showed small world properties, with high degrees of clustering but small shortest
path lengths (Table 8.3).

8.2.3 Network differences

Finally, I tested for significant differences between the graphs for cases and controls by pooling
the datasets, permuting class labels, and estimating background distributions of differential
shrinkage partial correlations. 86 edges were significantly different between the two GGMs
after adjustment for multiple testing using Bonferroni correction (p < 8.4×10−6= 0.05/5937
tested edges) (Table 8.4 and Figure 8.4).

Three of these differential edges link the same metabolite between different fluids: 7-methyl-
xanthine in plasma and urine (cases GGM: p= 1.2×10−13, controls GGM: p= 3.3×10−3, differ-
ence: p< 1.0×10−7), caffeine in plasma and saliva (cases GGM: p= 1.3×10−10, controls GGM:
p= 5.6×10−8, difference: p= 2.0×10−7), and cortisol in plasma and urine (cases GGM: p=
1.3×10−1, controls GGM: p= 2.2×10−16, difference: p= 4.0×10−7). Additionally, 27 differen-
tial edges were cross-fluid, including some closely related metabolites such as pregn steroid
monosulfate in plasma with pregnen-diol disulfate in urine (cases GGM: p= 7.7×10−1, controls
GGM: p= 1.9×10−5, difference: p< 1.0×10−7).

The remaining 55 differential edges connected metabolites within the same fluid, 13 of them
in plasma, 23 in urine, and 19 in saliva (Table 8.2c). 2, 9, and 12, respectively, of those connect
metabolites of the same general group.



Chapter 8 Differential multi-fluid networks identify processes involved in end-stage renal disease 138

Table 8.2 Cross-fluid edges. (a) The Gaussian graphical model (GGM) for the SHIP cohort
(controls) consisted of 4404 edges connecting the 882 metabolites. 936 of these edges were
between fluids. (b) Due to the much smaller sample size the network for cases consisted of
2509 edges. (c) 86 edges were significantly different between the models.
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Figure 8.3 Network properties. Gaussian graphical models (GGMs) were inferred individually for
cases (red) and controls (yellow). (a) The degree distribution shows the cumulative proportion
of nodes with a certain number of edges connected to them. The total number of edges,
and consequently the average degree, is lower in the cases network due to the much smaller
number of samples. (b) The betweenness centrality of a node indicates the percentage of
pairwise shortest paths that contain this node.
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Table 8.3 Properties of the multi-fluid GGMs. Topological features were calculated for both
networks, inferred from data of cases and controls. The network for cases has less edges and
consequently a lower average node degree and longer path lengths, due to the much smaller
number of cases. However, in relation to the high degree of local and global clustering both
graphs have short shortest path length and hence are small-world networks.

Controls Cases

# Edges 4404 2509

Average Degree 10.0 (±3.9) 5.7 (±3.4)

Global Clustering 10.9% 21.9%

Local Clustering 18.4 (±18.9) % 28.1 (±26.9) %

Average Betweenness 0.282 (±0.255) % 0.362 (±0.522) %

Average shortest paths 3.5 (±0.85) 4.6 (±1.4)

Small worldness 14.8 38.7



Table 8.4 Differential edges. 86 edges were significantly different in the metabolic network of chronic kidney disease (CKD) cases compared to controls. For each edge the
shrinkage partial correlations, p-values, and edge-betweenness (B) from the graphs of controls and cases, respectively, are shown. Empirical p-values were computed from
10,000,000 random samples to assess the significance of the differences between the networks.

Node 1 Node 2 Controls Cases

Fluid Metabolite Fluid Metabolite p-cor p-value B p-cor p-value B
differential p

plasma androsterone sulfate plasma S-methylcysteine 0.01 7.8×10−1 0.04 2.3×10−7 0.12% <1.0×10−7

plasma EDTA plasma X - 17628 0.18 2.2×10−16 0.04% 0.05 6.1×10−10 0.01% <1.0×10−7

plasma pregn steroid monosulfate urine pregnen-diol disulfate 0.08 1.9×10−5 0.01% 0.00 7.7×10−1 <1.0×10−7

plasma urea plasma X - 11727 0.31 2.2×10−16 0.03% −0.01 4.6×10−1 <1.0×10−7

plasma 7-methylxanthine urine 7-methylxanthine 0.06 3.3×10−3 0.06 1.2×10−13 0.04% <1.0×10−7

saliva leucine saliva isoleucine 0.23 2.2×10−16 0.02% 0.08 2.2×10−16 0.05% <1.0×10−7

saliva leucine saliva tyrosine 0.14 5.7×10−14 0.03% −0.01 5.2×10−1 <1.0×10−7

saliva phenylalanine saliva isoleucine 0.12 2.0×10−10 0.01% 0.06 2.6×10−13 0.05% <1.0×10−7

saliva trans-urocanate urine X - 12695 0.01 7.8×10−1 −0.05 1.3×10−11 0.18% <1.0×10−7

saliva isoleucine saliva valine 0.20 2.2×10−16 0.03% 0.08 2.2×10−16 0.04% <1.0×10−7

saliva X - 11854 saliva X - 13671 −0.02 3.2×10−1 0.03 8.5×10−5 0.07% <1.0×10−7

saliva X - 11854 saliva X - 14081 0.27 2.2×10−16 0.00% 0.08 2.2×10−16 0.02% <1.0×10−7

saliva X - 12776 urine tigloylglycine 0.01 7.3×10−1 −0.03 1.4×10−4 0.24% <1.0×10−7

saliva X - 14081 saliva X - 16612 0.17 2.2×10−16 0.03% 0.07 2.2×10−16 0.05% <1.0×10−7

saliva X - 14196 saliva N-acetylserine 0.07 2.3×10−4 0.11% −0.02 2.9×10−3 <1.0×10−7

saliva X - 14196 saliva X - 19496 0.01 7.8×10−1 0.03 9.9×10−6 0.17% <1.0×10−7

saliva X - 19807 urine 3,7-dimethylurate 0.01 6.9×10−1 0.03 7.4×10−5 0.25% <1.0×10−7

urine X - 12329 urine X - 17185 0.12 3.9×10−10 0.06% 0.00 9.3×10−1 <1.0×10−7

plasma caffeine saliva caffeine 0.10 5.6×10−8 0.13% 0.05 1.3×10−10 0.13% 2.0×10−7

plasma EDTA plasma X - 17629 0.11 4.2×10−9 0.06% 0.05 1.8×10−9 0.02% 2.0×10−7

plasma X - 12798 urine 3-hydroxyphenylacetate −0.04 2.3×10−2 0.04 1.2×10−7 0.18% 2.0×10−7

saliva leucine saliva valine 0.20 2.2×10−16 0.03% 0.07 2.2×10−16 0.06% 2.0×10−7

saliva caproate (6:0) saliva valerate 0.34 2.2×10−16 0.05% 0.09 2.2×10−16 0.04% 2.0×10−7

saliva X - 13671 saliva X - 14081 0.02 4.2×10−1 0.03 1.5×10−5 0.07% 2.0×10−7

urine cortisone urine alpha-CEHC glucuronide −0.03 1.1×10−1 0.03 2.2×10−4 0.19% 2.0×10−7
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plasma paraxanthine urine 1-methylxanthine 0.10 2.8×10−8 0.04% 0.01 2.0×10−1 2.0×10−7

urine glutamine urine 4-vinylphenol sulfate −0.02 4.1×10−1 −0.04 8.5×10−7 0.27% 2.0×10−7

urine 7-methylxanthine urine 1-methylurate 0.16 2.2×10−16 0.03% 0.02 2.9×10−2 2.0×10−7

plasma cortisol urine cortisol 0.16 2.2×10−16 0.03% −0.01 1.3×10−1 4.0×10−7

plasma 1-palmitoylglycerophosphoinositol urine theobromine −0.02 2.7×10−1 0.03 2.4×10−5 0.20% 4.0×10−7

saliva X - 19807 urine 3-methyluracil −0.01 6.0×10−1 −0.03 1.1×10−4 0.22% 4.0×10−7

urine cinnamoylglycine urine X - 17313 0.03 7.9×10−2 −0.03 1.6×10−5 0.28% 4.0×10−7

urine cis-aconitate urine X - 17736 0.02 4.2×10−1 −0.03 3.6×10−5 0.30% 6.0×10−7

urine X - 12123 urine X - 17736 0.02 2.2×10−1 −0.03 1.9×10−5 0.31% 6.0×10−7

saliva adenine saliva trans-urocanate −0.02 2.5×10−1 0.05 1.2×10−9 0.12% 1.0×10−6

saliva trans-urocanate urine X - 18943 −0.04 2.2×10−2 0.04 2.9×10−6 0.11% 1.0×10−6

plasma EDTA plasma HWESASLLR −0.02 3.2×10−1 −0.04 4.5×10−7 0.04% 1.0×10−6

urine cortisone urine X - 15636 0.02 3.8×10−1 −0.04 1.7×10−8 0.22% 1.0×10−6

plasma glutamine urine 3-hydroxyphenylacetate −0.02 3.7×10−1 0.04 1.1×10−7 0.26% 1.2×10−6

plasma pelargonate (9:0) urine 3-carboxy-4-methyl-5-propyl-2-
furanpropanoate (CMPF) −0.04 4.5×10−2 0.04 1.2×10−6 0.44% 1.2×10−6

saliva histidine urine X - 12844 −0.02 3.1×10−1 0.03 3.7×10−5 0.35% 1.2×10−6

urine X - 12258 urine X - 17313 0.01 6.7×10−1 0.03 2.2×10−4 0.08% 1.4×10−6

urine X - 13462 urine X - 16394 0.20 2.2×10−16 0.09% 0.07 2.2×10−16 0.11% 1.4×10−6

plasma EDTA plasma lactate 0.03 1.1×10−1 −0.03 1.1×10−5 0.19% 1.6×10−6

saliva vanillin saliva X - 19489 0.12 1.0×10−10 0.03% 0.05 2.8×10−9 0.01% 1.6×10−6

urine cis-aconitate urine X - 14951 −0.05 1.2×10−2 0.05 1.8×10−10 0.20% 1.6×10−6

plasma p-cresol sulfate plasma 4-methylcatechol sulfate 0.11 5.6×10−9 0.17% 0.06 6.7×10−13 0.04% 1.8×10−6

plasma DSGEGDFXAEGGGVR plasma X - 17629 0.04 2.0×10−2 −0.03 1.5×10−5 0.03% 2.0×10−6

urine X - 17320 urine S-(3-hydroxypropyl)mercapturic acid
(HPMA) 0.08 1.2×10−5 0.10% −0.01 2.6×10−1 2.0×10−6

saliva X - 11854 saliva X - 16612 0.16 2.2×10−16 0.03% 0.07 2.2×10−16 0.03% 2.0×10−6

urine p-cresol sulfate urine 4-methylcatechol sulfate 0.07 1.2×10−4 0.26% 0.06 2.3×10−12 0.08% 2.2×10−6

plasma creatine plasma pyroglutamine −0.20 2.2×10−16 0.05% 0.01 3.0×10−1 2.4×10−6

plasma pyroglutamine urine X - 12339 −0.04 1.8×10−2 0.03 3.1×10−4 0.10% 2.6×10−6

urine glutamine urine tyrosine 0.00 9.7×10−1 0.04 4.6×10−6 0.04% 2.6×10−6

plasma HWESASXX urine cyclo(gly-pro) 0.00 9.6×10−1 −0.04 7.5×10−7 0.14% 2.8×10−6

plasma cortisol urine X - 17339 −0.08 2.9×10−5 0.07% 0.03 1.3×10−4 0.10% 3.0×10−6
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saliva X - 12776 urine cortisone −0.02 2.0×10−1 −0.04 6.8×10−6 0.25% 3.2×10−6

saliva citrulline saliva 2-hydroxyglutarate 0.04 5.2×10−2 0.03 1.5×10−4 0.07% 3.2×10−6

urine xanthine urine X - 12026 0.11 4.9×10−9 0.04% −0.01 2.6×10−1 3.4×10−6

saliva X - 12776 saliva docosadioate −0.02 2.9×10−1 0.03 9.1×10−5 0.25% 3.6×10−6

plasma pregn steroid monosulfate urine 21-hydroxypregnenolone disulfate 0.08 1.0×10−5 0.02% 0.01 5.1×10−1 3.8×10−6

urine 1,7-dimethylurate urine X - 18838 0.01 4.6×10−1 0.03 5.2×10−5 0.29% 3.8×10−6

plasma Isobar: glucose, fructose, mannose,
galactose, allose, altrose, etc. plasma X - 11727 0.37 2.2×10−16 0.04% 0.09 2.2×10−16 0.07% 4.0×10−6

plasma Isobar: glucose, fructose, mannose,
galactose, allose, altrose, etc. plasma X - 12776 −0.04 5.7×10−2 −0.06 5.6×10−13 0.26% 4.2×10−6

plasma X - 11529 saliva p-cresol sulfate −0.04 2.6×10−2 0.04 6.2×10−7 0.09% 4.4×10−6

urine X - 12216 urine X - 12687 0.17 2.2×10−16 0.07% 0.06 2.6×10−14 0.15% 4.4×10−6

plasma HWESASXX saliva X - 19852 −0.01 5.3×10−1 −0.04 2.8×10−6 0.12% 4.6×10−6

urine 3-methylglutarate urine alpha-CEHC sulfate 0.01 6.4×10−1 0.05 4.3×10−9 0.06% 4.8×10−6

urine phenylcarnitine urine O-sulfo-L-tyrosine −0.01 6.2×10−1 −0.04 2.8×10−6 0.24% 5.0×10−6

saliva X - 12803 saliva 4-hydroxybutyrate (GHB) 0.06 1.2×10−3 0.04 1.2×10−7 0.35% 5.2×10−6

saliva dexpanthenol urine X - 12680 0.05 1.6×10−2 −0.04 1.7×10−8 0.36% 5.2×10−6

plasma N-methyl proline saliva valerate −0.01 7.4×10−1 0.04 7.7×10−6 0.16% 5.4×10−6

plasma theobromine saliva 3-phenylpropionate (hydrocinnamate) 0.00 8.9×10−1 −0.03 2.4×10−4 0.24% 5.6×10−6

saliva lysine urine gentisate −0.03 9.8×10−2 0.03 2.3×10−5 0.15% 5.8×10−6

plasma pelargonate (9:0) urine X - 12846 0.01 7.1×10−1 −0.03 1.5×10−5 0.29% 6.0×10−6

saliva isoleucine saliva X - 15605 0.01 5.7×10−1 −0.04 5.1×10−6 0.10% 6.2×10−6

plasma nicotinamide urine X - 16947 −0.03 1.3×10−1 −0.06 3.6×10−15 0.31% 6.4×10−6

urine 4-hydroxyhippurate urine X - 20588 0.01 7.8×10−1 0.03 2.2×10−4 0.22% 6.4×10−6

saliva valerate urine hypoxanthine 0.01 7.0×10−1 0.03 2.8×10−4 0.12% 6.8×10−6

urine cis-aconitate urine alpha-hydroxyisovalerate 0.00 8.4×10−1 0.04 7.6×10−7 0.26% 7.2×10−6

urine X - 12687 urine stachydrine −0.02 3.9×10−1 −0.03 2.9×10−4 0.13% 7.4×10−6

plasma azelate (nonanedioate) plasma 1-methyl-2-piperidinecarboxylic acid 0.01 6.9×10−1 0.04 1.9×10−6 0.13% 8.0×10−6

plasma pregn steroid monosulfate plasma andro steroid monosulfate 2 −0.02 2.6×10−1 0.04 4.7×10−7 0.04% 8.0×10−6

plasma N-delta-acetylornithine urine 3,7-dimethylurate −0.00 8.9×10−1 −0.03 1.4×10−4 0.18% 8.0×10−6

urine X - 16563 urine X - 17739 0.02 3.5×10−1 −0.03 1.8×10−5 0.83% 8.0×10−6

plasma S-methylcysteine urine S-(3-hydroxypropyl)mercapturic acid
(HPMA) 0.15 1.3×10−15 0.06% −0.02 3.3×10−2 8.2×10−6
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Figure 8.4 Differential metabolic multi-fluid network. Using permutation testing, I identified 86
edges that differ significantly between the metabolic models of cases and controls. These fall
into three categories: edges that only are present in the control network (13 edges, yellow),
edges that only are present in the case network (55 edges, red) and edges that are present in
both networks but with different strengths (18 edges, black).
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8.3 Discussion

I analysed the associations of advanced kidney disease with 882 metabolites across three fluids
in a cohort of 978 individuals. This is the first comprehensive analysis combining metabolic
changes across three fluids and the first multi-variate analysis of metabolic processes associated
with renal function. This includes the first holistic study on salivary metabolite changes with
respect to renal function and it extends earlier analyses of plasma and urine metabolomes by
combining results across fluids in an integrated statistical approach.

Metabolic differences between CKD patients and controls were widespread across fluids and
pathways. Sekula et al. (2016) previously analysed the association of renal function with
blood metabolites in the TwinsUK and KORA studies and found 54 metabolites significantly
associated with eGFR after meta-analysis. 42 of those were included in my analysis and 36
of them were significantly associated with CKD. While the associations were largely similar
between these two studies (Figure E.1), there were several exceptions. Interestingly, urea and
urate are associated with renal function in the general population and O-sulfo-L-tyrosine even
predicted incident CKD (Sekula et al., 2016) but neither of them differed between cases and
controls here. This might be due to successful filtration of those metabolites by dialysis or
successful renal replacement therapies. In contrast, 74 plasma metabolites were significantly
associated with CKD only here, including 1,5-Anhydroglucitol (1,5-AG) and hypoxanthine.
1,5-AG is a marker of glycaemic control (Yamanouchi et al., 1994) and – more interestingly – a
marker for tubular reabsorption (Saito et al., 1996), which is impaired in advanced stages of
CKD, as analysed here.

While these associations are of potential interest, the majority of analysed metabolites differed
between cases and controls and the univariate tests do not provide the means to identify the
underlying metabolic processes that lead to these widespread changes. In contrast, GGMs infer
models of the metabolism, rather than considering changes of individual metabolite levels.
The resulting models are sparse with only 2.8 % and 1.6 % of edges being included in controls
and case networks, respectively. Differential network analysis revealed 86 edges of interest
that differ significantly between the networks. It is striking how sparse the metabolic GGMs
and particularly the differential network are, with only 0.022 % of all edges (1.4 % of the tested
edges) being significantly different. This indicates that the underlying, independent metabolic
disruptions are rather small compared to the overall effect on the metabolism. Most differential
edges fell into three categories: (i) salivary amino acids, (ii) steroid hormones, and (iii) xanthine
metabolites, which I will discuss in the following.

8.3.1 Salivary branched-chain amino acids

I found salivary BCAA metabolism among the most affected pathways (Figure 8.4c). Leucine
and isoleucine in saliva are the nodes with most differential edges (4 each), followed by salivary
leucine (3) and valine (2).

BCAA metabolism has been long known to be affected by renal function (c.f. chapter 6),
partially due to the paramount importance of renal reabsorption and excretion of amino acids
(Tizianello et al., 1983; Verrey et al., 2009). Also, nutritional supplementation with BCAAs has
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been suggested to improve appetite (Cano et al., 2006) and the outcome (Bolasco et al., 2011)
in dialysis patients. Accordingly, valine and leucine (but not isoleucine) were significantly
depleted in plasma of patients (p= 1.2×10−12 and p= 1.4×10−7, respectively). However, on
the one hand their concentration in saliva did not significantly differ between the groups (p
> 0.03, p> 0.19), and on the other hand there were no differential edges in the GGM between
amino acids in blood. Thus, neither nutritional supplements, which would increase amino
acid concentration in saliva, nor decreased salivary excretion due decreased levels in blood are
plausible causes for the observed differential correlations.

One potential cause of the observed changes in salivary BCAA metabolism are changes of the
oral microbiome composition. Evidence suggests that the oral microbiome of CKD patients
differs from healthy individuals (Araújo et al., 2015). With microbes producing and metabol-
ising many amino acids and particularly BCAAs (Takahashi, 2015), these changes could explain
the observed changes in salivary amino acid metabolism. Also, I found a differential edge
linking the salivary short chain fatty acids (SCFAs) caproate and valerate (p= 2.0×10−7), which
are also common microbial metabolites. This illustrates the potential of my approach to high-
light disruptions of metabolic process, independently of changes of metabolite concentrations.
However, without microbial sequencing data available, these changes have to be confirmed by
future studies. Nevertheless, my findings might support future studies on the comorbidity of
renal disease and periodontal disease (Ariyamuthu et al., 2013).

8.3.2 Steroid metabolism

I found several links of the steroid metabolism significantly different between cases and con-
trols. For instance, the connection of cortisol in plasma and urine (p= 4.0×10−7) was observed
in controls only (Figure 8.4b). Similarly, pregn steroid monosulfate in plasma was connec-
ted with pregnen-diol disulfate and 21-hydroxypregnenolone disulfate in urine, respectively,
only in controls. In contrast, the edge between pregn steroid monosulfate and andro ster-
oid monosulfate was only present in the network of cases but not the control graph (p=
8.0×10−6, Figure 8.4a). Cortisone and cortisol also showed differential edges with several
unknown metabolites, including X-15636, X-17339 and X-12776, which might be identified in
the future.

Glucocorticoids, such as cortisol, as well as sex hormones, such as androsterone, are produced
by the suprarenal glands (Arlt et al., 2005). Glucocorticoids generally have a catabolic effect
on the metabolism (Lorraine et al., 2003), mainly leading to increased availability of energy
substrates, e.g. by increasing hepatic glucose (Lecocq et al., 1964) and fatty acid (Peckett et al.,
2011) output. They also increase urinary flow and glomerular filtration (Lorraine et al., 2003)
in the kidneys. However, corticosteroids have multiple and diverse effects. For instance, they
act on the hydro-electrolyte equilibrium, affecting the reabsorption of sodium and water in
the tubular lumen (Hunter et al., 2014) and play an important role as immunomodulators and
anti-inflammatory agents (Coutinho et al., 2011). Hence, changes of steroid metabolism have the
potential to cause the severe metabolic anomalies of ESRD. Downstream changes, for instance
in electrolyte concentrations, are a potential cause for comorbidities of renal disease, such as
hypertension (Krakoff, 1988) and cardiovascular disease (Walker, 2007).
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However, the observed changes in steroid hormone metabolism could also result from drugs
given to patients. Anabolic steroids have been shown to facilitate weight gain and increase
muscle mass and power in dialysis patients (Johansen et al., 1999) and improve overall survival
(Boero et al., 2000). Also, steroids are used for immune suppression, for instance for IgA
nephropathy (Lv et al., 2012), and steroid treatment might be continued despite dialysis (Altieri
et al., 2002).

8.3.3 Xanthine metabolism

Lastly, I found significant changes of the xanthine metabolism. The link between plasma
and urine 7-methylxanthine was stronger for cases than controls (p< 1.0×10−7). In contrast,
the links between plasma paraxanthine and urine 1-methylxanthine (p= 2.0×10−7) as well
as between urinary 7-methylxanthine and 1-methylurate (p= 2.0×10−7) were significantly
stronger in controls. Also, the link between caffeine in plasma and saliva was significantly
different between the groups (p= 2.0×10−7).

Methylxanthines are caffeine metabolites (Callahan et al., 1982), which are produced by several
cytochrome P450 (CYP) enzymes, particularly CYP1A2, and NAT2 (Figure 8.5) (Thorn et
al., 2012). Differential GGM edges between plasma and urine concentrations of xanthines
suggest changes in these degradation processes, leading to altered catabolism and excretion
of methylxanthines in CKD patients. While the metabolism of coffee does not seem to be the
most important effect of renal disease in the first place, there are several interesting aspects to
it:

Figure 8.5 Caffeine Metabolism. Caffeine is almost completely metabolised, predominantly by
demethylation to paraxanthine or theobromine. The end products are excreted through the
kidneys in urine. Squares indicate metabolites and ellipses represent genes/proteins. (Picture
reproduced with permission of PharmGKB and Stanford University).
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First, altered caffeine metabolism is a marker for generally impaired metabolism of drugs. De-
cline of kidney function clearly leads to impaired renal detoxification of drugs and xenobiotics,
thus altering their bioavailability and effect on the organism (Doogue et al., 2011; Dreisbach et
al., 2008). Moreover, CKD also affects hepatic clearance of drugs, most notably the CYP metabol-
ism (Leblond et al., 2000; Dreisbach et al., 2008), by reducing enzyme expression levels (Leblond
et al., 2001). This might cause the changes in coffee metabolism observed in this study. However,
caffeine likely is just a marker of these molecular changes that is easy to detect due to its high
prevalence. Other, less common and lower abundant drugs might be affected in the same way,
though are harder to detect on a broad metabolomics platform.

Secondly, there is ample evidence for a detrimental effect of methylxanthines on renal function.
Xanthines can increase urine flow in a dose-dependent manner (Osswald et al., 2011) and
increase excretion of electrolytes, lithium (Shirley et al., 2002), and cyclic adenosine mono-
phosphate (cAMP) (Coulson et al., 1989). This is probably a consequence of the inhibitory
effect of methylxanthines on the adenosine receptor, which causes a reduction in renal reab-
sorption (Rieg et al., 2005). Inhibition of adenosine receptors is also thought to be the cause
for methylxanthine-induced increase of renin (Balakrishnan et al., 1993), and consequently
the activation of the renin-angiotensin-aldosterone system, which in turn increases hyperten-
sion and sodium reabsorption (Choi et al., 1993; Ohnishi et al., 1986). While this is only a
superficial and incomplete list of the effects of methylxanthines (which have been thoroughly
reviewed before, e.g. by Osswald et al. (2011)), it illustrates that changes of xanthine metabolism
are actually more than a mere consequence of CKD. Xanthines also are uremic toxins that
have the potential to cause the widespread metabolic shift as well as comorbidities of renal
function.

8.4 Conclusion

My results support previous studies that observed the enormous metabolic changes observed
in CKD patients across different fluids. Univariate testing identified significant differences
of 621 of the 882 analysed metabolite levels. However, metabolites interact and disrupting
one metabolic process will change the kinetics of adjacent reactions in the metabolic network,
which will in turn disrupt their adjacent processes and so on. Univariate tests help to identify
the complete set of affected metabolites, however they fail to identify the underlying disrup-
tion.

In contrast, differential metabolic network analysis takes into account the hierarchical structure
of the metabolic network. Hence, GGMs can identify metabolic anomalies that are independent
of all other metabolites and potentially account for the widespread changes. Here, differential
metabolic network analysis emphasised three pathways that differ between cases and controls:
branched chain amino acid metabolism in saliva, steroid hormone metabolism and excretion
in urine, and xanthine metabolism. Particularly the two latter have the potential to cause
widespread metabolic changes.
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Despite the promising results, this study has several limitations. First, a relatively small number
of cases was available for analysis. More importantly, the patients are rather diverse with half of
them receiving dialysis and all of them receiving various treatments. Thus, I cannot differentiate
disease effects from treatment effects. Also, causality cannot be inferred from the results, as data
is observational only and cannot distinguish causes and consequences of the disease. Finally,
results presented here should be considered preliminary and further analyses, for example
comparing different treatment groups, particularly dialysis and steroid treatments, and genetic
predisposition, are yet to be conducted. Also, I excluded 782 metabolites due to their high
proportion of missing values, though 208 of them are significantly different between cases and
controls (Figure E.4). Analysing accumulation of rare metabolites in CKD patients might shed
light on mechanisms causing comorbidities of renal disease. However, many (75.5 %) of these
rare metabolites are unknown and difficult to interpret.

Nevertheless, this approach demonstrates the potential of systems biology to integrate data
across fluids, facilitating conclusions on inter-fluid transport processes, and to highlight the
relevant pathways, that can subsequently be followed up in subsequent experiments. As such
follow-up studies are very much limited by the effort required to perform in vitro experiments,
mouse experiments, or randomised trials, reducing the number of ‘interesting’ targets is crucial.
Here, I identified three pathways that are significantly altered in CKD patients. Particularly
steroid and xanthine metabolism are – based on prior knowledge – potential driving factors for
metabolic disruptions as well as development of comorbidities and, thus, promising targets for
further experiments and potential drug targets.



CHAPTER 9

Exploring the molecular basis of age-related disease

comorbidities using a multi-omics graphical model

Ageing has widespread effects on the organism, thus increasing susceptibility
to diseases. Here, I analysed the underlying molecular changes and how they
mediate disease comorbidities by integrating ageing markers from four different
‘omics’ datasets with extensive phenotypic data. I inferred a graphical model to
investigate the multi-variate dependencies of molecular and clinical phenotypes.

Part of this work has been published in Scientific Reports (Zierer et al., 2016b),
the published version is attached in appendix G.4.

Ageing is a multi-factorial process that affects organisms at multiple levels. In previous chapters,
I investigated metabolic and glycomic profiles associated with biological ageing and specifically
CKD. However, these molecular changes do not occur separately but they influence each other,
as both ageing and CKD are multi-factorial processes that affect the entire organism at multiple
levels. Taking into account the complex interplay between the different levels is necessary to
unveil the causal structure of multi-factorial processes.

Various concepts have been proposed to integrate data from different omics technologies, thus
shaping the newly emerging fields of systems biology, systems genetics (Civelek et al., 2014),
and systems medicine (Gustafsson et al., 2014). Thereby, networks have been shown to be
particularly useful to assess complex interactions in a dataset and to illustrate multivariate de-
pendencies (see section 1.3.1). Graphical models (GMs) facilitate the inference of networks from
measured data and investigate multivariate dependencies of the included variables. Although
the direction of these associations and hence causality can in most cases not be determined by
these models, the resulting network of direct associations between variables can be considered
as the undirected skeleton of their underlying causal structure.

In this chapter, I investigated the molecular basis of age-related diseases, aiming to identify
molecular mediators that lead to disease comorbidities. To this end, I used an integrated
mixed graphical model (MGM) approach to combine ageing markers from four different high-
throughput omics datasets on the same individuals, namely epigenomics, transcriptomics,
glycomics, and metabolomics, together with extensive phenotypic data. The resulting network
of direct associations that are independent of all other variables within the model is expected
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to provide valuable insights into the direct molecular interdependencies between various age-
related phenotypes, despite the lack of causal inference. To the best of my knowledge, this is
the first study using graphical models to combine data from multiple molecular omics and
phenomics datasets.

9.1 Methods

9.1.1 Study Population

For this study, I analysed data of 510 female participants of the TwinsUK cohort (section 3.1.1)
– 62 MZ twin pairs, 116 DZ twin pairs and 154 singletons – aged between 34 and 84 (mean
59.0±9.4) with measurements for epigenomics, transcriptomics, glycomics, and metabolomics
as well as extensive clinical information available (Figure 9.1).

9.1.2 Data Acquisition and Processing

I combined four different high-throughput ‘omics’ datasets: epigenomics, transcriptomics, gly-
comics and metabolomics. Network inference is not feasible for the combined dataset of several
hundred measured metabolites, thousands of RNA transcripts and hundreds of thousands of
CpG sites, particularly given the limited number of samples. Therefore, I used a knowledge-
driven approach to reduce the number of variables from each dataset. To this end, I selected
only variables that were previously reported to be strongly and independently associated with
chronological age as described in the following (and listed in Table F.1).

Figure 9.1 ‘Omics’ datasets in the TwinsUK cohort. Several high-throughput omics datasets
are available for the TwinsUK cohort (section 3.1.1 for details), however all of them were
measured in different subsets of the full cohort. I selected 568 individuals with four different
‘omics’ measurements available. 510 of them, with comprehensive data on various phenotypes
available, were used to infer the Age-MGM.
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9.1.2.1 Epigenomics

DNA methylation levels were measured in adipose tissue samples using the Infinium Human-
Methylation450 BeadChip (Illumina Inc., San Diego, CA) as previously described (Grundberg
et al., 2013). Data was corrected for technical variation using the BMIQ method and corrected
for batch effects and bisulfite conversion levels using linear mixed effect models.

Weidner et al. (2014) showed that only three ageing-related differentially methylated regions
(aDMRs) are enough to predict the chronological age with high precision. Those three sites,
namely cg02228185 (in aspartoacylase (ASPA)), cg25809905 (in integrin subunit alpha 2b
(ITGA2B)), and cg17861230 (in phosphodiesterase 4C (PDE4C)), were selected for further
analyses.

9.1.2.2 Transcriptomics

RNA abundance was measured in abdominal fat samples using the Illumina Human HT-12
V3 Bead chip (Illumina Inc., San Diego, CA) as part of the MuTHER project as previously
described (Grundberg et al., 2012). The probe intensities were adjusted for batch effects using
linear models prior to analysis.

A previous study found 188 genes (199 probes) significantly associated with chronological age
(Glass et al., 2013). I performed stepwise regression to select expression probes independently
associated with age. This procedure left 24 probes from 24 different genes (Table F.1) for further
analysis.

9.1.2.3 Glycomics

IgG glycosylation was measured by Genos Glycoscience and normalised as described in section
3.3.2.

It has been shown that a linear combination of only three IgG glycan structures – GP6, GP14,
and GP15 – explains 58 % of the variance in age (Kristic et al., 2014) and furthermore correlates
with several age-related associated phenotypes. These three structures were selected for my
network analysis.

9.1.2.4 Metabolomics

For this project, I used metabolomics measurements from the V3 version of Metabolon’s
untargeted platform as described in section 3.3.1.

About half of all known circulating blood metabolites were reported to be associated with
chronological age in several large population studies (see section 1.2.6). I selected 22 of these
metabolites, which were found to be independently associated with age and together explain
59 % of the variance of chronological age (Menni et al., 2013b).
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9.1.2.5 Clinical Phenotypes

A total of 92 phenotypes were combined with the previously described omics data (Table
F.2). Besides chronological age, I included anthropometric measures, such as height, weight,
and BMI (see section 3.2.1). Additionally, 13 body composition variables, measured by DXA
scans (see section 3.2.2), were used to comprehensively assess body composition. The eGFR,
calculated from serum creatinine levels, was used as measure of renal function (section 3.2.3);
circulating levels of GGT and ALT were used as markers of liver function (section 3.2.5). Lung
function was measured as FEV1 and FVC (see section 3.2.6).

Moreover, I included data from various questionnaires assessing disease states, such as arthritis,
asthma, and chronic pain. Questionnaires were also used to collect lifestyle parameters, such as
smoking and physical activity. Information on food intake was collected using an established
food frequency questionnaire (FFQ) (Bingham et al., 2001). Item frequencies were merged into
54 food groups and transformed into orthogonal patterns using PCA (Teucher et al., 2007). In
the ageing model, I used the first five principal components, which correspond to five different
dietary patterns (Supplementary Table F.3).

9.1.2.6 Data Pre-processing.

I excluded samples with more than 20 % missing values and subsequently excluded variables
with more than 20 % missing values, leaving 510 individuals in the final dataset. The remaining
missing values in both omics variables and clinical phenotypes were imputed using the mice
package (Buuren et al., 2011) (see section 3.4.5). All continuous variables were inverse normal-
ized and categorical variables were dichotomized. To account for family relatedness, I included
the unique family identifier as additional variable during the network inference and removed
the according node from the network prior to analysis.

Figure 9.2 Age-MGM variable selection and inference process. The flowchart illustrates the
selection of variables from the four different omics datasets and the inference process.



Chapter 9 Exploring the molecular basis of age-related disease comorbidities 152

9.1.3 Network Inference

The mixed graphical model (MGM) was inferred using the graphical random forest (GRaFo)
method (Fellinghauer et al., 2013) with the complementary pairs stability selection (CPSS)
modification (Shah et al., 2013) as described in section 3.4.8.

As effect estimators of random forest, and partial effects in MGMs in general, are non-linear and
context-dependent, there is no estimator for the sign of an edge in my model. I, thus, inferred
the signs from regression models, regressing each variable against all others, for visualization
purposes.

9.1.4 Network Analysis

I analysed the resulting MGM as undirected, unweighted network. Several measures, including
node degree, clustering coefficient, and betweenness centrality, were calculated to describe
topological features of the network as whole and individual nodes, as described in section 3.4.9.
All analyses were performed in R using the igraph package.

9.1.5 Network Stability

To test the robustness of the model I investigated the dependence of the network topology on
the inference process.

9.1.5.1 Edge inclusion cut-off

Firstly, I assessed the robustness of node centrality and module assignments when varying
the cut-off for edge inclusion. To this end, I defined different models by including edges that
were contained in 20 %, 40 %, 60 %, 80 %, and 100 % of the subsamples, respectively, where 80 %
corresponds to the original model. Additionally, I analysed a weighted network (Zhang et al.,
2005a) including all edges that were observed in at least one sample.

As a measure of stability of node centrality, I calculated the correlation of node degrees and
clustering coefficients between the original model and the model in the networks for different
edge cut-offs (Figure F.3).

To assess the stability of module assignments, I calculated the adjusted RAND index (Rand,
1971; Hubert et al., 1985) as a measure of similarity between the seven network modules of the
original Age-MGM with modules identified from the networks that were inferred based on
different edge cut-offs. The RAND index quantifies the similarity of module assignments by
counting the agreements between two different module assignments and adjusting it for the
number of agreements that are expected by chance. An adjusted RAND index of 1.0 indicates
identity between the module assignments of two networks while values close to 0.0 indicate
dissimilarity of the assigned modules. In addition, I compared the adjusted RAND indices of
the networks for the different edge cut-offs with the background distribution of 1000 randomly
sampled module assignments (Figure F.3c).
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9.1.5.2 Variable selection

Secondly, I investigated the stability of the network and particularly the module assignments
depending on the pre-selection of omics variables prior to the model inference. To assess
the influence of this selection step on the final results, I inferred a second model from the
same dataset but including all metabolomics variables with known chemical identity, thus,
completely dispensing variable selection for the metabolomics data.

To compare module assignments for the large network with the assignments for the original Age-
MGM, I restricted the large network to the nodes of the Age-MGM. Edges in this network rep-
resent conditional dependence, given all other variable in the Age-MGM and given the 196 ad-
ditional metabolites. Module assignments were then compared using the adjusted RAND index.
A detailed comparison module memberships is presented in Table F.4.

9.1.5.3 Stability across datasets

Finally, I assessed the stability of the Age-MGM with respect to the generating dataset by
comparing it with two models inferred from two disjoint datasets containing either the first or
the second twin of each family, respectively. Singletons were distributed randomly across both
datasets (Figure F.4).

9.2 Results

I inferred a MGM using observational data from a cohort of 510 women, aged between 34 and
84, integrating selected age-associated markers from four different ‘omics’ datasets with 92
clinically assessed phenotypes (Figure 9.2).

The final model consisted of 145 nodes and 316 undirected edges connecting them (Figure 9.3).
Thus, it was much sparser (316 edges instead of 1900) than a regular correlation graph based
on significant pairwise correlations of variables from the same dataset (Figure F.1). Most of
the nodes (96) formed one large connected component, which I refer to as Age-MGM. There
were two smaller components of 8 and 4 nodes of variables related to pain and memory
function, respectively, two isolated pairs of nodes and 33 unconnected nodes. The degree,
betweenness, and clustering coefficients of all nodes in the network are presented in Tables F.1
and F.2.

9.2.1 Topological properties of Age-MGM

The large connected component Age-MGM contains 96 variables including age, along with
variables from all four ‘omics’ datasets, and 286 edges connecting them. It has an average node
degree of 6.0, an average local clustering coefficient of 46.6 %, and an average shortest path
length of 3.2.
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Corresponding to the high local clustering and the short average path lengths in the model,
its small-world index is 6.1, indicating a marked small-world-ness. Removing age from the
network does not reduce the small-world-ness of the network. In comparison, the correlation
graph, restricted to the same vertices as in the Age-MGM (Figure F.1), has a just slightly higher
clustering coefficient of 57.0 % despite the much higher average node degree of 31.2, which
results in a small world-index of only 1.7.

As expected, age is the most densely connected node with a degree of 27 (Figure 9.4a).
It has a low clustering coefficient (8.0 %) but high betweenness centrality (47.5 %), indic-
ating that age connects different clusters, while its neighbours tend to be unconnected.
With an average shortest path length of 2.1 age is also the most central node in the Age-
MGM.

9.2.2 Modularity of the Age-MGM

There are more edges between variables originating from the same ‘omics’ dataset than edges
connecting them. Particularly transcriptomics and metabolomics variables form dense clusters
with 37 and 34 edges within them, respectively. In contrast, only 7 edges connect transcrip-
tomics and metabolomics variables with variables from other omics sets. Similarly, the body
composition variables measured by DXA are densely connected by 45 edges amongst them
(Figure F.2).

To analyse the graph structure in an unbiased way, independently of the different experimental
methods, I used a modularity-based algorithm for cluster detection (see section 3.4.9). This
approach yielded seven modules (Figure 9.3).

The first cluster (EXPRESSION) contains all but three gene expression markers. It is con-
nected with neighbouring clusters mainly via expression levels of oxytocin/neurophysin I
prepropeptide (OXT), which has 6 edges outside of its cluster (Figure 9.4b), and sushi, von
Willebrand factor type A, EGF and pentraxin domain containing 1 (SVEP1), which has the
highest betweenness centrality (10.5 %) within the cluster. The second cluster (LUNG) contains
age and several of its direct neighbours from different ‘omics’ layers. The lung function para-
meters FEV1 and FVC were the most densely connected phenotypes in the cluster (degrees 8
and 7, respectively). Both were embedded in a tight cluster with local clustering coefficients of
35.7 % and 47.6 %, respectively (Figure 9.4c). Age is also connected to another small cluster of
arthritis-related variables (ARTHRITIS). The body composition variables fall in two different
clusters, one of them containing bone-related variables (BONE) and the other fat and lean
mass-related variables (FAT). While the BONE cluster is densely connected with the LUNG
cluster, all connections between the FAT cluster and the LUNG cluster, which contains age,
were mediated, mainly via the EXPRESSION cluster. The next cluster (LIVER) contains the
liver markers ALT and GGT along with cholesterol and triglyceride levels and several amino
acids. It also contains the gene expression marker of the RNA binding motif protein 20 (RBM20)
gene, which mediates the connection of the cluster with age and the LUNG cluster. The last
cluster (KIDNEY) contains mainly metabolite levels, but also markers of nutrition and the eGFR.
With 9 edges, C-glycosyltryptophan is central within the metabolite cluster. However, the
eGFR (degree 7) is the main connection of the metabolomics cluster with age as well as IgG
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Figure 9.3 Ageing graphical model. Each node in the graph represents one age-related variable.
Omics markers were selected according to literature from epigenomics (purple), transcriptomics
(brown), glycomics (red), and metabolomics (orange) datasets and combined with DXA
measurements (green) and other clinical phenotypes (yellow). Edges between nodes were
inferred using a mixed graphical model approach, and thus indicate the conditional dependence
between variables; the colour represents positive (red) and negative (blue) correlation. An
unbiased cluster detection algorithm was used to identify densely connected modules within
the network, indicated by grey borders.
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glycosylation markers. The only connections of the KIDNEY cluster with other clusters, other
than with age, were edges between the metabolite eicosapentaenoic acid (EPA) with triglyceride
levels and urate with the FAT and LIVER clusters

9.2.3 Robustness of the Age-MGM

To assess the robustness of the model, I inferred additional networks based on different cut-offs
for edge inclusion. Comparing these networks with the Age-MGM, I found node centrality
as well as module assignments very stable against variation of the inference process (Figure
F.3). Also, the modules of the original Age-MGM remained stable even when including all
available metabolomics variables with known chemical identity, i.e. more than doubling the
number of variables in the model (Table F.4). The resulting graph consisted of 341 nodes (145
of them from the original model and 196 newly added metabolites) connected by 1152 edges.
707 of these edges were amongst the new metabolites, 174 connected one new metabolite
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Figure 9.4 Ageing network modules. Each panel shows one sub-graph of the Age-MGM (Fig-
ure 9.3). (a) The direct neighbourhood of chronological age. (b) The hormone oxyto-
cin/neurophysin I prepropeptide (OXT) mediates association of fat mass variables with age as
well as the immunoglobin G (IgG) glycosylation marker glycan peak 14 (GP14). (c) The direct
neighbourhood of the lung function measures forced expiratory volume in one second (FEV1)
and forced vital capacity (FVC) contains three ‘omics’ markers: dehydroepiandrosterone
sulfate (DHEA-S), phosphodiesterase 4C (PDE4C) and the GP14, which represents the
proportion of FA2G2 glycan in total IgG glycans.
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with one original variable and 271 edges were amongst original variables, of which 253 were
also in the original model. The 63 edges that were missing in the large network compared
to the original Age-MGM were, on average, contained in 58 % of the subsamples of the large
network, suggesting that they were excluded due to the limited power. The added metabolites
were predominantly peripheral in the Age-MGM, with 160 of the 174 edges connecting new
metabolites with original variables linking them with metabolites and the remaining 14 with
either blood lipid measures or renal function.

To investigate the reproducibility of the Age-MGM in different datasets, I calculated two separ-
ate models from disjoint datasets incorporating only the first and second twin of each family,
respectively. The two resulting models reproduced 93.5 % of all edges, with only 21 edges being
unique to the original model (Figure F.4). These 21 unique edges were on average included in
78 % of the subsamples of two individual twin models, and thus, just missed the edge-inclusion
cut-off of 80 %, potentially due to lower power in the smaller datasets.
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9.3 Discussion

In this chapter, I inferred a robust graphical multi-omics model of age-related diseases by
integrating disease phenotypes with molecular markers from four ‘omics’ layers based on data
of 510 women from the TwinsUK cohort. This enabled conclusions on molecular changes that
mediate disease comorbidities.

Despite the sparsity of the model, which omits mediated associations, most variables formed
one connected component, the Age-MGM, consisting of seven modules. Each of these modules
represents a different aspect of ageing, such as metabolic ageing linked to decline of renal
function (KIDNEY cluster), the change of fat and lean mass (FAT cluster) – along with the closely
related changes of gene expression in adipose tissue (EXPRESSION cluster) – and the decrease
of BMD and bone mineral content (BMC) (BONE cluster) (Figure 9.3).

The Age-MGM models multivariate dependencies of age-related diseases that potentially
underlie the commonly observed comorbidities. Edges in this model represent conditional
dependence between two variables, while the absence of an edge implies their conditional
independence given all other variables in the model. Specifically, this means that previously
observed age-associations of the variables, which are not directly linked to age in this model,
occur due to the mediation by other factors. This differentiation between mediated and direct
associations permits conclusions on underlying mechanisms even though the causal directions
cannot be inferred.

9.3.1 Decline of renal function links age with metabolic shift

The blood metabolome was shown to be strongly influenced by age in several studies (section
1.2.6). In the Age-MGM, most of the age-associated metabolites (13) formed one large cluster
with only four of them being directly linked to age, while the remaining nine metabolites were
only indirectly associated with age. For six of these nine metabolites, the shortest path to age
was mediated by the eGFR, a measure of renal function. Even though the model is undirected,
age was the only non-modifiable variable in the model. I, thus, hypothesize that with increasing
age renal function declines leading to the major shift in the ageing blood metabolome, which
possibly causes further diseases.

9.3.2 Urate mediates association of renal function with body composition

Urate mediated the connection of the KIDNEY cluster with FAT and LIVER clusters. Hyper-
uricemia has been previously reported to be associated with obesity, particularly increased
visceral fat mass (Takahashi et al., 1997) and increased triglyceride levels (Giacomello et al.,
1997), which I find directly linked in the Age-MGM. Indeed, there is evidence that urate actually
contributes to the development of obesity and diabetes, rather than being just a consequence:
Elevated serum levels of urate were found to predict obesity (Masuo et al., 2003) and diabetes
(Nakanishi et al., 2003). Moreover, by knocking out the uric acid transporter solute carrier
family 2, facilitated glucose transporter member 9 (SLC2A9) in mice, DeBosch et al. (2014) and
colleagues found that hyperuricemia causes several phenotypes of the metabolic syndrome,
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including obesity, dyslipidaemia and hypertension. Administering a compensating treatment
attenuated some but not all the observed symptoms.

Hyperuricemia is also a known comorbidity of renal disease, however the causal direction of this
association is controversial (Johnson et al., 2013). Moreover, renal disease and hyperuricemia
were also shown to affect the gut microbiome composition (Vaziri et al., 2013), which is known
to be strongly associated with obesity and other symptoms of the metabolic syndrome (Parekh
et al., 2015) (see chapter 7). Thus, the microbiome is a potential hidden mediating factor of the
association between hyperuricemia and obesity.

Even though its mode of action remains elusive, my model suggests urate to be a key
factor for the comorbidity of renal disease with symptoms of the metabolic syndrome and
obesity.

9.3.3 Lung function as a central ageing process

Lung function is a central process in the Age-MGM. Both lung function measures FEV1 and
FVC are directly connected with age and are, besides age, the most densely connected nodes in
their cluster. They are connected with three different ‘omics’ markers (Figure 9.4c): First, the
metabolite dehydroepiandrosterone sulfate (DHEA-S) is one of the most abundant hormones
in humans that is well known to decrease with age (Orentreich et al., 1992) and even has been
suggested as an anti-ageing drug (Baulieu et al., 2000). Moreover, DHEA-S has been found
to prevent and even revert pulmonary hypertension in rats (Bonnet et al., 2003), suggesting a
causal effect of DHEA-S on lung function.

Second, the methylation probe cg17861230 lies in the PDE4C gene, an enzyme that catalyses
the hydrolysis of cAMP. Expression levels of PDE4C were previously found to be associated
with lung function (Tang et al., 2006). PDE4 is a target for drugs against chronic obstructive
pulmonary disease (COPD) and one PDE4 inhibitor, Roflumilast, has already been approved by
the EMA for treatment of COPD (Calverley et al., 2009). This highlights the potential of my
model to emphasise causal links, by removing spurious correlations.

Third, the IgG glycosylation marker GP14, which represents the percentage of FA2G2 glycan in
total IgG glycans, is connected to lung function in the Age-MGM. GP14 is a glycan structure
with terminal galactose, which is known to change the inflammatory state of IgG (Karsten
et al., 2012). While defects of general protein glycosylation (Nihlén et al., 2001) as well as an
involvement of IgG (O’Keeffe et al., 1991) in COPD have been previously reported, glycosylation
of IgG has so far not been associated with lung function.

My model identifies two known causes of lung disease, the hormone DHEA-S and the gene
PDE4. It moreover suggests a contribution of IgG mediated inflammation in the age-related
decline of lung function. As IgG glycosylation is also related with kidney function in the
Age-MGM as well as in previous studies (see chapter 5), this provides a potential explanation
for the comorbidity of lung disease and renal disease.
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9.3.4 Hormone expression directly associated with body composition

It is commonly known that BMI as well as waist and hip circumferences and body fat mass
change with age. Nonetheless, I found neither of them directly linked to age in the Age-MGM.
Instead, all associations between age and the FAT cluster are mediated. One of these mediation
paths leads via urate and renal function (as discussed above). A second path leads via the
EXPRESSION cluster and, particularly, the expression of OXT (Figure 9.4b), which accordingly
mediates 6.0 % of all shortest paths in the model. OXT is also directly linked to HDL cholesterol
levels.

While adipose tissue was traditionally considered as storage tissue, it receives increasing
attention as endocrine organ (Hauner, 2004), which amongst others produces OXT. OXT is a
hormone with a broad spectrum of functions, ranging from reproductive functions and control
of social behaviour (Bartz et al., 2011) to energy metabolism (Chaves et al., 2013). One common
explanation for the influence of OXT on obesity is its effect on food intake (Lawson et al., 2015),
though there also is a diet-independent effect of OXT on the lipid metabolism (Deblon et al.,
2011). Thus, OXT was suggested as drug against obesity and T2D development and has been
successfully tested in a first pilot trial (Zhang et al., 2013).

My results indicate that the age-related change of body composition can partially be attributed to
alterations of gene expression in adipose tissue and particularly to a change in OXT expression,
independently of food intake. OXT might also drive common comorbidities of obesity by
causing dyslipidaemia, which in turn increases the risk of cardiovascular diseases (Arca et al.,
2007).

9.3.5 IgG glycosylation as new mechanism of obesity-associated inflammation

Obesity is known to be associated with chronic low-grade inflammation and activation of
immune function (Fogarty et al., 2008), which is thought to be an important mediator between
obesity and its common complications, such as T2D (Esser et al., 2014).

In my model the expression of OXT mediates the association of android and visceral fat mass
with inflammatory IgG glycosylation. The influence of OXT on IgG might be mediated by
interleukin-6 (IL6), which was found to be down-regulated by OXT in vitro (Szeto et al., 2008)
and thus causes decreased IgG production in B-cells (Maeda et al., 2010). My model confirms
an effect of increased fat mass on IgG, mediated by OXT, in vivo. Moreover, it provides
evidence that OXT also affects IgG glycosylation in addition to its expression, thus altering
its inflammatory potential. I hypothesize that this is a new mechanism of obesity-induced
inflammation that appears to be independent from previously identified pathways that are
mediated by leptin or adiponectin (Tilg et al., 2006). Both are co-expressed with OXT in this
data (Pearson correlation R = 0.2, p= 8.1×10−9 and R = −0.29, p= 6.1×10−17 respectively),
but not associated with any of the IgG glycosylation markers.

I also found IgG-mediated inflammation directly linked with renal function (see below), con-
firming my previous findings (chapter 5). In this study, IgG glycosylation mediated part
of the association of renal function with age as well as its comorbidities, such as decline of
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lung function. This supports the theory of ‘inflammageing’, which proposes chronic low-
grade inflammation as mechanism that drives disease onset during ageing (Dall’Olio et al.,
2013).

9.3.6 IgG-mediated inflammation associated with renal function

GP14GP6

age

eGFR
I find the eGFR directly linked to the IgG glycosylation traits GP6
and GP14, which aligns with my previous findings, presented in
chapter 5. Here, the IgG glycans partially mediated the association
of renal function with age and might thus be a cause of the age-
related decline of renal filtration.

9.3.7 RBM20 as mediator of dyslipidaemia with advancing age

RBM20
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triglycerides The expression of RBM20 mediates the association between trigly-
ceride levels and age in the Age-MGM. Mutations of the RBM20
gene have been found to cause cardiomyopathy (Li et al., 2010).
My model indicates that this association might be due to dyslipid-
aemia, which is a hallmark of cardiovascular diseases.

9.3.8 SEL1L2 associated with IgG glycosylation
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SEL1L2 is directly connected to age and it is the only gene expres-
sion marker directly linked to both glycosylation markers GP6
and GP14, which represent the proportion of FA2B and FA2G2
glycans in IgG glycans, respectively. Its function remains elusive,
but its paralog, SEL1L, is essential for the degradation of misfol-
ded proteins in the endoplasmic reticulum (Sun et al., 2014) and
particularly glycoproteins (Mueller et al., 2008). This possibly
underlies the previously reported association between SEL1L and
inflammatory bowel disease, particularly Crohn’s disease (Sun
et al., 2016), which also is associated with glycosylation of IgG
(Theodoratou et al., 2014).
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9.3.9 Association of low meat diet and renal function mediated by CMPF
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I found the metabolite 3-carboxy-4-methyl-5-propyl-2-
furanpropionic acid (CMPF) mediating the association between
a low meat diet and renal function. Consistently with this
finding, levels of CMPF were reported to increase by fish intake
(Hanhineva et al., 2015). It was also shown to be increased in
patients suffering from CKD (Niwa, 1996), possibly causing
renal function decline (Deguchi et al., 2002). Thus, lower levels
of CMPF might explain the beneficial effect of dietary protein
restriction on the progress of CKD (Fouque et al., 2001).

9.3.10 Adaption of cell membrane to alcohol intake
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EPB42, the only transcriptomics marker in the LUNG cluster, is
a transmembrane protein that has been associated with sphero-
cytosis and osmotic fragility (Bouhassira et al., 1992). In the Age-
MGM it was directly connected to high alcohol intake, mediating
its association with age. Consumption of alcohol is known to affect
cell membranes and might cause adaption of the cell membranes
upon long-term exposure (Hoek et al., 1988). Altered expression
of EPB42 might be one of these adaptions.

9.3.11 NCAM2 affects body composition

NCAM2 android fat
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The gene expression of NCAM2 is the only ‘omics’ variable in
the FAT cluster. My model suggests that previous associations of
mutations in the NCAM2 gene and waist circumference (Wang
et al., 2011a) might be due to a change in its expression level. A
recent study found that the knock-out of a homologue gene in
mice leads to a reduction of food intake and body weight (Tu et al.,
2013), which is possibly related to its effect on olfaction (Cremer
et al., 1994). However, the association of NCAM2 expression and
body fat distribution appears to be independent of diet in the
Age-MGM.
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9.4 Conclusion

This is, to my knowledge, the first study combining data from four ‘omics’ technologies and
clinical phenotypes using an integrated statistical approach. Despite the relatively small sample
size, my model confirmed causal mechanisms of disease, which have been previously found
in highly specific experiments and clinical trials, using observational data from a generally
healthy cohort only. This illustrates the potential of this approach for future studies. Moreover,
I uncovered several new potential mechanisms that might contribute to disease comorbidities.
By integrating multiple ‘omics’ datasets, I found the hormone oxytocin as a central mediator
that connects inflammation and obesity and, thus, supports the theory of inflammageing. Also,
I found urate as key factor connecting body composition and renal function, as well as several
phenotypes of the metabolic syndrome.

However, I want to note some limitations of this study. Due to the limited availability of
large multi-omics datasets and comprehensive collections of clinical phenotypes, this study is
restricted by its relatively small sample size of 510 individuals and, more importantly, I was
not able to get access to comparable data from an independent cohort to replicate my findings.
For the time being, I could only demonstrate the stability of my results by inferring separate
models from two disjoint sets of the same dataset that include only one twin of each twin pair,
respectively. Also, all of the participants were female. As a consequence, the model and the
conclusions drawn from it might be only partly transferable to the entire population. However,
more and larger multi-omics dataset will be available in near future, for instance from the UK
Biobank or the US Precision Medicine Initiative, which will facilitate subsequent studies using
this multi-omics integration approach.

The limited number of samples also made prior selection of variables indispensable. This
selection can be expected to influences the topology and modularity of the final network model.
However, in this study, doubling the number of ‘omics’ variables by renouncing prior selection
of metabolites did result in a model with very similar topology and module assignments. Again,
upcoming larger datasets will help to overcome this limitation by reducing the dimensionality
of the data without relying on prior knowledge.

Finally, my approach can detect mediation by variables included in the model and thereby
enables differentiation between direct and indirect effects, it does, however, not infer causality.
Thus, based on the Age-MGM, I only hypothesize about causal directions. Mendelian random-
ization might enable inference of causal direction using SNPs as instrumental variables. Much
larger sample sizes are needed than available for this study, though. Ideally, potentially causal
edges in this model should be further investigated in dedicated functional studies or random-
ized clinical trials to establish causality and infer causal direction.

Nonetheless, this study highlights the importance and the feasibility of data integration across
‘omics’ layers including phenomics while considering multivariate dependencies. In the future
this will help to focus on few, interesting associations, which can then be individually tested in
model organisms and clinical trials. Eventually this will speed up drug discovery by excluding
irrelevant pathways and potential drug targets early in the development and thus limiting the
set of potential targets and reducing costs of drug discovery.



CHAPTER 10

Conclusion and future directions

Here, I summarise my findings and discuss how the individual chapters relate
to each other. Then, I discuss some limitations I encountered and give future
directions.

In this thesis, I analysed molecular changes associated with biological ageing and particularly
kidney disease. Using systems biology methods, I identified several pathways associated with
age-related diseases and their comorbidities. I started by carrying out association studies of cir-
culating metabolites and IgG glycans with telomere length and renal function. Next, I assessed
the potential use of faecal metabolites to investigate the relationship of the gut microbiome with
ageing and renal function. Then, I analysed metabolic multi-fluid processes in CKD patients,
before I finally integrated various age-related phenotypes with age-related ‘omics’ markers to
elucidate how molecular changes might mediate age-related comorbidities. In this final chapter,
I will first summarise the findings of these analyses, and then discuss their relevance and inter-
relationships as well as limitations and problems that I encountered.

10.1 Summary of findings

In chapter 4, I looked for association of circulating metabolites with telomere length, a known
marker of biological ageing. I identified an involvement of lipid metabolism, particularly PLA2
activity, and oxidative stress, indicated by changes of GGT metabolism, in ageing. GGT is part
of the GSH cycle, which is a major pathway of detoxification of ROS.

In chapters 5, 6, and 7, I analysed changes in metabolism and IgG glycosylation patterns
associated with kidney disease, an age-related disease. In chapter 5, I looked for associations
of renal function and changes of the inflammatory potential of IgG, which is modulated by
glycosylation. IgG glycans are highly related with chronological age (Kristic et al., 2014) as well
as several inflammatory diseases (Vučkovïc et al., 2015; Gornik et al., 2008). This first study of
IgG glycosylation and renal function identified alterations of the IgG glycome composition,
namely the decrease of galactosylation and sialylation and increase of bisecting GlcNAc, as
new inflammatory mechanisms involved in CKD.
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Subsequently, in chapter 6, I compared metabolomic profiles (mainly lipoprotein composition)
associated with renal function in diabetics and non-diabetics. My results suggested several
molecular similarities between both conditions, namely impairment of amino acid metabolism,
increased proportions of triglycerides, and decreased abundance of HDL cholesterol with
decreasing renal function. In contrast, associations of IDL, LDL, and VLDL with renal function
were very different between diabetes patients and non-diabetics, possibly due to statin treatment
of diabetic individuals. More interestingly, energy metabolism and particularly gluconeogenesis
precursors were significantly negatively associated with renal function in non-diabetics, but
were not associated with renal function in diabetes cases.

In chapter 7, I used metabolomics measurements from faeces as a functional readout of the gut
microbiome to explore its associations with renal function and age. While the faecal metabolome
was heritable and highly associated with the gut microbial community, it was only moderately
associated with age and renal function. As previous studies reported changes of the microbiome
in late age and with frailty, the lack of significant associations in my analysis might be due
to the study population being too young and healthy or due to a lack of power. In contrast,
the faecal metabolome was strongly correlated with obesity and visceral fat mass. These latter
studies were particularly novel.

In chapter 8, I aimed to further investigate metabolic processes of renal disease, which I and
others had observed before, by modelling metabolic networks for renal disease patients and
controls. Integrating three different fluids – plasma, urine, and saliva – facilitated the investiga-
tion of transport and excretion processes. This analysis highlighted steroid metabolism and
xanthine catabolism as central processes in kidney disease. Also, differences in the metabolism
of salivary amino acids between renal disease patients and healthy controls suggested a shift of
the oral microbiome in the disease, possibly related to the comorbidity of renal and periodontal
disease.

Finally, in chapter 9, I investigated how age-related changes on the molecular level relate
to each other and how these changes mediate comorbidities of age-related diseases. To this
end, I integrated a selection of age-related ‘omics’ markers with a broad collection of clinical
phenotypes. My results highlight several potential mechanisms that might cause such comor-
bidities, for instance renal function mediating associations of most circulating metabolites with
chronological age.

While I focused on a particular aspect of biological ageing using different technologies and
analysis methods in each chapter, these studies and their results are highly interrelated. In the
following, I first highlight kidney-specific results that I obtained across my studies (section
10.1.1). In a second section (section 10.1.2) I review my results more generally with respect to
biological ageing.
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10.1.1 Kidney disease

Kidney disease is a common disease, which is increasingly prevalent due to population ageing
and the global obesity epidemic, which are the main risk factors of CKD. As general markers
are very insensitive, better understanding the pathomechanisms of diabetic and non-diabetic
nephropathies is essential to personalise healthcare.

I found lipid profiles strongly associated with renal function in non-diabetic individuals, but not
in type 2 diabetes patients. While the commonly used total LDL levels did not show a significant
correlation with the eGFR, several of its subclasses did. Similarly, HDL subclasses showed
much stronger associations with renal function than total HDL, particularly the proportion of
phospholipids in HDL, which also predicted longitudinal change of eGFR. In contrast, changes
of amino acid levels were correlated with renal function consistently between diabetic and non-
diabetic individuals. Despite the very different platforms used in chapters 6 and 8, concordant
changes were observed in both cohorts. Additionally, differential network analysis highlighted
the catabolism of xanthines and steroid metabolism. Interestingly, the metabolites that were
most strongly correlated with renal function cross-sectionally were neither the most predictive
for longitudinal change of renal function in chapter 6, nor the most affected metabolic processes
in chapter 8. Combining metabolomics measures with other ageing markers in chapter 9
suggested that the decline of renal function mediates most of the metabolic changes that occur
with advancing age.

Looking at IgG glycosylation opened a new perspective on kidney disease compared to its
better-established relationship with metabolism. While the immune system and inflammatory
processes are known to be involved in the development of CKD (Imig et al., 2013), no study
had investigated IgG glycosylation, which modulates its inflammatory potential, before. The
association study highlighted several glycosylation features – decreased galactosylation and
sialylation, and increased bisecting GlcNAc – that were significantly associated with decreased
eGFR. Changes of the immune system and the metabolism are known to be related, for instance
due to the increase energy demand in active lymphocytes (Fox et al., 2005). Moreover, the
increased availability of mannose was shown to increase the mannose content in IgG glycans
(Slade et al., 2016). Though, in my network analysis, most associations of metabolite levels
and IgG glycans were mediated by renal function, suggesting that renal disease is associ-
ated with both metabolites and glycans independently. Interestingly, this did not apply to a
group of steroid hormones, including DHEA-S, which is one of the strongest predictors of
age.

DHEA-S was directly associated with IgG but only indirectly with renal function, suggesting
an association of steroid metabolism and IgG glycosylation independently of renal function.
Steroid metabolism also appeared to be one of the key factors of metabolic disruption in
kidney disease in chapter 8. Future studies on the relationship of IgG glycosylation, steroid
metabolism, and renal disease might enable the full elucidation of the causal directions of
these associations. To further assess their potential as clinical markers of renal disease and
more generally unhealthy ageing, longitudinal analyses will be needed. Also, analysis of IgG
glycosylation patterns in a clinical cohort with advanced renal disease will be necessary to
confirm the associations that I observed here in the general population and to investigate their
associations with complications of renal failure.
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10.1.2 Biological ageing

I identified metabolic markers of oxidative stress and lipid metabolism associated with biolo-
gical ageing, measured as telomere length. These are in line with established theories on the
cause of biological ageing. Integrating age-related clinical and molecular phenotypes high-
lighted mechanisms on how such molecular changes potentially cause disease comorbidities.
For instance, most age-related changes of the metabolism were mediated by the decline of
renal function. These metabolic changes, such as hyperuricemia, mediated the comorbidity
of renal disease and changes of body composition, particularly abdominal obesity. In con-
trast, changes of steroid levels were indirectly associated with renal function, mediated by
age.

My network approach also demonstrated strong interdependencies between common age-
related diseases independently of age itself. For instance, the expression of the hormone
oxytocin mediated the association of body composition with inflammatory IgG. Taking this
complex comorbidity structure into account is essential to identify biomarkers that are specific
to one disease. For instance, IgG glycosylation was directly connected to several disease
markers, including renal function, lung function, and arthritis and, while considered a general,
useful marker of ageing, is likely not specific enough to be used as clinical biomarker for either
of these individual diseases. Moreover, with the growing interest in personalised medicine
it becomes increasingly important to consider the molecular changes and comorbidities of
diseases more holistically rather than relying on a single biomarker regardless of a patient’s
medical history.

10.2 Limitations

While my results highlighted several interesting aspects of biological ageing and age-related
comorbidities, there are several problems that I encountered during my work on this thesis. In
the following, I will discuss such general problems and limitations.

10.2.1 Systems biology

While systems biology is meant to improve more conventional association studies by offering
greater insights in the mechanisms of a phenotype, it comes with its own inherent prob-
lems.

The biggest of these problems – in my opinion – is the necessity for complete data matrices.
Particularly in a cohort like TwinsUK, which evolved over time, each piece of data is available
for different subsets of the participants and measured at different points in time. Combining
multiple of such datasets inevitably leads to smaller and smaller datasets, thus not providing
sufficient power. This was the reason for choosing a correlation network rather than a more
integrative approach to combine the associations of telomere length in chapter 4, and it was
also the reason for the relatively small sample size underlying the combined ageing network in
chapter 9. Larger studies that are designed to collect multi-omics data, such as the UK Biobank,
will eventually solve this problem. However, even then it will probably not be trivial to obtain
all the phenotypes of interest.
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Another problem of systems biology, and particularly large networks, is their sometimes
overwhelming complexity. While association studies are usually rather straight-forward to
conduct – fitting regression models, replicating, and then discussing the strongest associations –
there are a multitude of choices to be made in each step of a systems biology project, each having
a major impact on the final result and making standardisation difficult.

Starting from network inference, when using penalised approaches, such as the very common
graphical LASSO, the regularisation parameter has to be selected. There are several strategies
for choosing the optimal regularisation parameter, for instance by optimisation of the AIC
or the BIC, cross-validation, or stability-based approaches. Graphs inferred with the same
algorithm – the graphical LASSO – but different regularisation parameters can vary by orders of
magnitude, thus changing the structure and interpretation of networks. The GeneNet algorithm
is a great alternative, avoiding costly permutation procedures and controlling false positive
discoveries.

Another problem of network biology is the visualisation of results. While the network layout
does not have a direct effect on network topology measures, it is a major determinant of
how we perceive a network, thus changing the intuitive understanding. Again, there are a
variety of algorithms to compute the ‘optimal’ layout and each of them produces dramatically
different pictures for the same graph. Increasing availability of three-dimensional visualisation
techniques, such as 3D screens, 3D printing, and eventually holograms, will facilitate more
accessible visualisation of large networks.

Finally, it is very hard to replicate networks across different cohorts. The first problem is – again
– the limited availability of data, which is particularly the case for multi-omics and phenomics
networks. However, the more complex issue is the comparison of two networks. For an
unweighted network one can just count the overlap of edges between two networks. However,
all networks have some continuous statistic underlying the binary absence or presence of an
edge. Comparing these underlying statistics, such as shrinkage partial correlations, is not
straight-forward as they depend on the amount of regularisation, which in turn depends on
sample size and the correlation structure within the data. One could use a differential network
approach as described in chapter 8 to identify significantly different edges and conclude
concordance between cohorts for all other edges. However, this would require sharing large
amounts of raw data between cohorts, which is often not feasible. In the meantime, splitting
the available data and use subsets for validation, as I did in chapter 9, is a pragmatic way to
demonstrate the stability of the findings, at least within one cohort.

Apart from these technical limitations all systems biology approaches are oversimplifications of
the real system, often ignoring cell compartmentalisation, cell types, inter-cell communication,
tissues, organs, etc. Inferring an actual holistic model of a cell, not to speak of complex disease
processes, are far-fetched goals. Thus, all systems biology projects need to be reductionist to
some extent.

Despite these limitations, I demonstrated the feasibility of integrative network approaches in
this thesis. With time and increasing application of systems biology methods, best practices
will evolve and further simplify the choice of the ‘right’ algorithms, thus facilitating integration
of larger datasets. Also, growing datasets as well as increasing computational power will help
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to overcome several of the limitations, such as the lack of replication datasets, and facilitate
permutation based approached to quantify the stability of large networks. While this will
facilitate future studies, I think that some of the complexity of systems biology arises from its
aim to fully understand biological processes, which are inherently complex. This increased
complexity and the problems it brings should be acknowledged and be considered the price for
the stronger conclusions.

10.2.2 Causality

The main aim of systems biology is understanding disease mechanisms, which implies caus-
ality of the associations. The lack of causal inference is one of the limitations of this work.
However, this limitation is shared by most epidemiological research that exclusively relies on
observational data. Thus, based on my findings, I could only draw hypothesis on underlying
mechanisms. However, I believe that systems biology does help to create stronger hypotheses,
by utilising data from multiple sources and considering more potential confounding factors.
The identification of direct, independent associations and more complex correlation structures
allows us to draw hypotheses on the underlying mechanisms, even though causality itself has
to be further investigated in subsequent experiments.

Furthermore, in some cases there might not even be a single causal direction. For instance,
metabolic reactions are often equilibrium reactions, which work both ways. Moreover, even
if a metabolic reaction is irreversible, accumulation of the product might change the reaction
kinetics, which will lead to slower reaction rates and potentially also accumulation of the educt.
Consequently, even though there is a true causal direction from educt to product, the increased
concentration of the product can be considered the cause of the increased concentration of the
educt under some circumstances. Thus, causal direction depends on the given conditions, and
might change for instance in disease states.

10.2.3 Translation to clinical application

While causality cannot be proven in many cases, it is not strictly required for some applications.
For instance, a biomarker does not necessarily have to be causal for a disease. In contrast, a good
biomarker should be directly connected to the disease to allow for the specificity needed in clin-
ical settings. For instance, accumulation of creatinine is not a cause but a consequence of kidney
disease, it is, however, directly related to renal function. Similarly, the concentration of albumin
in urine itself is not harmful, but a mere marker of renal damage.

Nevertheless, biomarker discovery is challenging even without the need for causality. While
IgG glycosylation was strongly associated with eGFR, it did not classify CKD patients more
accurately than a rather primitive model based on age, sex, and BMI in chapter 5. This limitation
is not specific to this thesis. For example, Sekula et al. (2016) found several metabolites very
strongly correlated with eGFR (p< 1.0×10−100), however, did not improve the classification of
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CKD cases over an equally primitive model. Defining kidney disease based on creatinine meas-
ures is probably the biggest limitation for the discovery of new biomarkers, as – by definition –
no biomarker can classify cases and controls more accurately than creatinine. Also, training
predictive models based on this inaccurate gold-standard might lead to underperformance of
new, possibly superior biomarkers.

More important than classification performance is often the ability to predict longitudinal
change, which facilitates decisions on intervention strategies. However, the compounds that are
most strongly associated with a disease cross-sectionally are not necessarily the best longitudinal
predictors. For instance, creatinine is used to classify renal disease patients but is not able
to differentiate between fast and slow disease progression. In contrast, the proportion of
phospholipids in HDL predicted longitudinal change of eGFR in chapter 6, even though it was
only moderately correlated cross-sectionally.

While identification of reliable biomarkers is an important issue, for instance to improve
management of renal disease, it is not the primary aim of network-based approaches. While
these multivariate approaches and the resulting hypotheses on mechanisms of disease are less
straight-forward to implement in clinics, they are equally important. For instance, in chapter 8,
I identified xanthine metabolism among the processes most affected by renal disease. As many
drugs are metabolised by this pathway, renal function should be carefully considered prior to
drug treatment, even for independent diseases. Also, in chapter 9 I identified urate as potential
mediator between renal disease and obesity and oxytocin as potential mediator of age-related
obesity. Knowing these mediating factors facilitates targeted treatment and might help to avoid
such comorbidities in the future. However, additional studies on clinical samples must further
clarify these pathways before they can be exploited in clinical care.

10.3 Other confounding factors

Even if a biomarker candidate performs well in disease classification and prediction, it cannot
be directly translated into clinical application. Most of the analyses in this thesis were based on
the generally healthy population and findings are not always transferable to more diseased
individuals. For instance, the amount of phospholipids in HDL only predicted change in eGFR
in non-diabetics but not in diabetics. Similarly, other biomarkers or disease processes might
differ between age groups, genders, ethnicities, or even between twin pairs and singletons.
Replication of results across independent cohorts facilitates the identification for instance
of ethnicity-specific markers, and helped here to identify differences between diabetic and
non-diabetic individuals. However, further replication of my results in cohorts with a more
diverse genetic background is needed to confirm the transferability of my results. Also, disease
processes might differ considerably in children or the elderly as well as patients in clinical
settings, who might receive various treatments and have multiple interrelated diseases. Con-
sequently, generalisation of my finding to these population groups needs to be examined in
future studies.
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10.4 Future directions and lessons learnt

My network analysis indicated independent associations of metabolites and IgG glycans with
renal function. Hence, combining both in future analyses might improve the classification
of CKD patients. Similarly, the MS and NMR platforms that were used for metabolomics
measurements mostly detect different metabolites. Future studies should investigate if they
capture complementary information on renal disease. Using a graphical model approach to
combine all three datasets with renal function could identify independent associations and
might unveil new disease processes.

Moreover, upcoming larger datasets will address several of the aforementioned limitations.
Using a knowledge-driven prior selection of ‘omics’ variables allowed me to infer a multi-omics
model in chapter 9, however, I possibly missed mechanisms of less age-related compounds.
Larger datasets will facilitate a more systematic selection of variables or dispensing with prior
selection altogether. As several very large projects – the American precision medicine initiative,
the British UK Biobank, and the German national cohort – extensively profile large cohorts of up
to 500,000 people, replication of such integrative studies will become more feasible. Moreover,
these large studies with genotyping data available will facilitate Mendelian randomisation
studies, which could help to understand causal mechanisms underlying the cross-sectional
associations.

However, the increasing amount of data comes with its own challenges. For instance, visual-
isation is problematic for graphs with some hundred nodes, but will be extremely difficult for
several thousand nodes. Also, the choice of regularisation parameters in approaches such as
the graphical LASSO often relies on computationally expensive permutation-based procedures.
Particularly differential models, which would require nested permutations, are computationally
demanding. Developing novel methods and computationally efficient solutions to these prob-
lems as well as allowing for parallel implementation will be crucial. Thus, pioneering studies,
integrating high-dimensional data from multiple sources or analysing network differences, not
only help to identify important disease mechanisms, but also reveal the limitations of current
systems biology methods and set the ground for future studies.

Epidemiological research can, regardless of sample size, only provide candidate biomarkers
and generate hypotheses on mechanisms of disease. Wet-lab experiments will have to confirm
mechanisms proposed by dry-lab studies to enable translation of the results into clinical
practice. With ever-growing data dimensionality, increasing the number of both variables and
samples, association studies will find more significant correlations than wet-labs will ever
be able to further investigate. By uncovering the compounds most closely related to a trait,
systems biology has the potential to triage the compounds that are most promising for further
experiments.

In conclusion, I identified putative mechanisms of ageing and age-related disease comorbidities
using systems biology methods. These highlight the potential of this field to uncover disease pro-
cesses and assist the new science of personalised or precision medicine.
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APPENDIX A

Metabolic markers of telomere length

Table A.1 Associations of circulating metabolites with telomere length in TwinsUK cohort.
Associations of 280 circulating metabolites with leukocyte telomere length (LTL) were
analysed. Metabolites are sorted by the strength of their association with LTL. Metabolites
passing Bonferroni correction are indicated by ??, nominally significant associations by ?.

Metabolite Pathway β [ 95 %CI ] p-value

1-stearoylglycerophosphoinositol Lipid −0.09[−0.13:−0.05] 1.4×10−6??

gamma-glutamyltyrosine Peptide −0.09[−0.12:−0.05] 3.4×10−6??

gamma-glutamylphenylalanine Peptide −0.08[−0.12:−0.04] 2.7×10−5??

1-palmitoylglycerophosphoinositol Lipid −0.08[−0.13:−0.04] 7.4×10−5??

4-vinylphenol sulfate Xenobiotics −0.08[−0.12:−0.04] 7.4×10−5??

1-arachidonoylglycerophosphoethanolamine Lipid −0.07[−0.11:−0.03] 2.4×10−4?

1-arachidonoylglycerophosphoinositol Lipid −0.07[−0.11:−0.03] 2.8×10−4?

1-oleoylglycerophosphoethanolamine Lipid −0.07[−0.10:−0.03] 7.6×10−4?

uridine Nucleotide 0.06[ 0.03: 0.10] 1.1×10−3?

caprylate (8:0) Lipid −0.06[−0.10:−0.02] 1.4×10−3?

erythritol Xenobiotics −0.06[−0.09:−0.02] 1.5×10−3?

arabinose Carbohydrate −0.07[−0.11:−0.02] 1.8×10−3?

ornithine Amino acid −0.06[−0.10:−0.02] 2.1×10−3?

heptanoate (7:0) Lipid −0.06[−0.09:−0.02] 3.3×10−3

pyroglutamine Amino acid −0.05[−0.09:−0.02] 3.5×10−3

tyrosine Amino acid −0.05[−0.09:−0.02] 5.3×10−3

laurylcarnitine Lipid −0.07[−0.11:−0.02] 6.7×10−3

proline Amino acid −0.05[−0.09:−0.01] 7.6×10−3

malate Energy −0.05[−0.09:−0.01] 7.7×10−3

caproate (6:0) Lipid −0.05[−0.09:−0.01] 7.7×10−3

kynurenine Amino acid −0.05[−0.08:−0.01] 1.0×10−2

pseudouridine Nucleotide −0.05[−0.08:−0.01] 1.3×10−2

1-palmitoylglycerophosphoethanolamine Lipid −0.05[−0.08:−0.01] 1.3×10−2

arachidonate (20:4n6) Lipid −0.05[−0.09:−0.01] 1.3×10−2

3-dehydrocarnitine Lipid −0.05[−0.08:−0.01] 1.4×10−2

C-glycosyltryptophan Amino acid −0.04[−0.08:−0.01] 1.4×10−2

1,3,7-trimethylurate Xenobiotics −0.06[−0.11:−0.01] 1.4×10−2

4-methyl-2-oxopentanoate Amino acid 0.05[ 0.01: 0.08] 1.6×10−2

bilirubin (E,E) Cofactors and vitamins 0.05[ 0.01: 0.08] 1.6×10−2

p-acetamidophenylglucuronide Xenobiotics −0.09[−0.17:−0.02] 1.6×10−2

glycerol Lipid −0.05[−0.08:−0.01] 1.7×10−2

1-eicosatrienoylglycerophosphocholine Lipid −0.05[−0.08:−0.01] 1.7×10−2

lactate Carbohydrate −0.05[−0.08:−0.01] 1.8×10−2

thromboxane B2 Lipid −0.04[−0.08:−0.01] 2.3×10−2

1-palmitoylglycerol (1-monopalmitin) Lipid −0.04[−0.08:−0.01] 2.3×10−2

butyrylcarnitine Lipid −0.04[−0.08:−0.01] 2.4×10−2

2-hydroxyglutarate Lipid −0.05[−0.10:−0.01] 2.4×10−2

homocitrulline Amino acid −0.06[−0.12:−0.01] 2.7×10−2

phenylalanine Amino acid −0.04[−0.08:−0.00] 2.7×10−2

alpha-hydroxyisovalerate Amino acid −0.04[−0.08:−0.00] 3.0×10−2

CMPF Lipid 0.04[ 0.00: 0.07] 3.2×10−2

aspartate Amino acid −0.04[−0.08:−0.00] 3.2×10−2

theophylline Xenobiotics −0.04[−0.08:−0.00] 3.4×10−2

biliverdin Cofactors and vitamins 0.04[ 0.00: 0.08] 3.5×10−2

cholesterol Lipid −0.04[−0.07:−0.00] 3.6×10−2

oleoylcarnitine Lipid 0.04[ 0.00: 0.08] 3.8×10−2

pelargonate (9:0) Lipid −0.04[−0.07:−0.00] 4.0×10−2

paraxanthine Xenobiotics −0.04[−0.08:−0.00] 4.1×10−2

continued on next page . . .
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3-(cystein-S-yl)acetaminophen Xenobiotics −0.09[−0.18:−0.00] 4.2×10−2

urate Nucleotide −0.04[−0.07:−0.00] 4.2×10−2

carnitine Lipid −0.04[−0.08:−0.00] 4.3×10−2

1-linoleoylglycerophosphoethanolamine Lipid −0.04[−0.08:−0.00] 4.4×10−2

1-stearoylglycerophosphoethanolamine Lipid −0.04[−0.08:−0.00] 4.5×10−2

adrenate (22:4n6) Lipid −0.04[−0.08:−0.00] 4.5×10−2

gamma-glutamylvaline Peptide −0.04[−0.07:−0.00] 4.8×10−2

threonate Cofactors and vitamins 0.04[ 0.00: 0.08] 5.0×10−2

tetradecanedioate Lipid −0.04[−0.08: 0.00] 5.1×10−2

hyodeoxycholate Lipid −0.04[−0.08: 0.00] 5.1×10−2

2-hydroxystearate Lipid −0.04[−0.07: 0.00] 5.2×10−2

ibuprofen Xenobiotics −0.07[−0.13: 0.00] 5.2×10−2

2-methoxyacetaminophen sulfate Xenobiotics −0.08[−0.17: 0.00] 5.2×10−2

2-hydroxypalmitate Lipid −0.04[−0.07: 0.00] 5.2×10−2

hexadecanedioate Lipid −0.04[−0.08: 0.00] 5.4×10−2

gamma-glutamylthreonine Peptide −0.06[−0.11: 0.00] 5.5×10−2

alanine Amino acid −0.04[−0.07: 0.00] 5.7×10−2

dihomo-linolenate (20:3n3 or n6) Lipid −0.04[−0.07: 0.00] 5.9×10−2

undecanoate (11:0) Lipid −0.04[−0.07: 0.00] 6.0×10−2

glutamate Amino acid −0.03[−0.07: 0.00] 6.1×10−2

glycerate Carbohydrate 0.03[−0.00: 0.07] 7.3×10−2

ADpSGEGDFXAEGGGVR Peptide 0.06[−0.01: 0.12] 7.4×10−2

naproxen Xenobiotics −0.33[−0.68: 0.02] 8.2×10−2

saccharin Xenobiotics −0.06[−0.12: 0.01] 8.3×10−2

aspartylphenylalanine Peptide −0.05[−0.12: 0.01] 8.3×10−2

beta-hydroxyisovalerate Amino acid −0.03[−0.07: 0.00] 8.5×10−2

propionylcarnitine Lipid −0.03[−0.07: 0.00] 8.6×10−2

7-Hoca Lipid −0.03[−0.07: 0.00] 8.7×10−2

cyclo(leu-pro) Peptide −0.04[−0.09: 0.01] 8.7×10−2

estrone 3-sulfate Lipid −0.09[−0.18: 0.01] 8.9×10−2

benzoate Xenobiotics −0.03[−0.07: 0.01] 9.3×10−2

1-methylxanthine Xenobiotics −0.04[−0.08: 0.01] 9.3×10−2

N-acetylalanine Amino acid −0.03[−0.07: 0.01] 9.6×10−2

pyridoxate Cofactors and vitamins 0.03[−0.01: 0.07] 9.7×10−2

4-acetamidobutanoate Amino acid −0.03[−0.07: 0.01] 9.8×10−2

gamma-glutamylleucine Peptide −0.03[−0.07: 0.01] 1.0×10−1

4-androsten-3beta,17beta-diol disulfate 1 Lipid −0.03[−0.07: 0.01] 1.1×10−1

1-arachidonoylglycerophosphocholine Lipid −0.03[−0.07: 0.01] 1.1×10−1

1-palmitoylplasmenylethanolamine Lipid −0.03[−0.08: 0.01] 1.1×10−1

2-hydroxyisobutyrate Amino acid 0.03[−0.01: 0.07] 1.1×10−1

quinate Xenobiotics −0.03[−0.08: 0.01] 1.1×10−1

caffeine Xenobiotics −0.03[−0.07: 0.01] 1.1×10−1

3-methyl-2-oxovalerate Amino acid 0.03[−0.01: 0.07] 1.2×10−1

4-acetamidophenol Xenobiotics −0.08[−0.18: 0.02] 1.2×10−1

N2,N2-dimethylguanosine Nucleotide −0.03[−0.07: 0.01] 1.3×10−1

cholate Lipid 0.03[−0.01: 0.08] 1.4×10−1

succinylcarnitine Energy −0.03[−0.07: 0.01] 1.4×10−1

stachydrine Xenobiotics 0.03[−0.01: 0.07] 1.4×10−1

citrate Energy 0.03[−0.01: 0.06] 1.4×10−1

1-palmitoleoylglycerophosphocholine Lipid −0.03[−0.07: 0.01] 1.4×10−1

gamma-glutamylisoleucine Peptide −0.03[−0.07: 0.01] 1.5×10−1

phenyllactate Amino acid −0.03[−0.07: 0.01] 1.5×10−1

hydroxyisovaleroyl carnitine Amino acid −0.03[−0.08: 0.01] 1.5×10−1

isoleucine Amino acid −0.03[−0.06: 0.01] 1.6×10−1

palmitate (16:0) Lipid −0.03[−0.07: 0.01] 1.6×10−1

1,7-dimethylurate Xenobiotics −0.03[−0.07: 0.01] 1.6×10−1

creatinine Amino acid −0.03[−0.06: 0.01] 1.6×10−1

3-(3-hydroxyphenyl)propionate Amino acid 0.07[−0.03: 0.16] 1.6×10−1

4-hydroxyhippurate Xenobiotics −0.03[−0.08: 0.01] 1.6×10−1

N-acetylornithine Amino acid −0.03[−0.07: 0.01] 1.8×10−1

N-(2-furoyl)glycine Xenobiotics −0.10[−0.25: 0.05] 1.9×10−1

palmitoylcarnitine Lipid 0.02[−0.01: 0.06] 2.0×10−1

1-heptadecanoylglycerophosphocholine Lipid 0.03[−0.01: 0.06] 2.1×10−1

histidine Amino acid 0.02[−0.01: 0.06] 2.1×10−1

4-ethylphenylsulfate Xenobiotics −0.03[−0.07: 0.02] 2.1×10−1

3-methyl-2-oxobutyrate Amino acid 0.02[−0.01: 0.06] 2.1×10−1

phenol sulfate Amino acid −0.02[−0.06: 0.01] 2.1×10−1

1,5-anhydroglucitol (1,5-AG) Carbohydrate −0.02[−0.06: 0.01] 2.1×10−1

alpha-tocopherol Cofactors and vitamins 0.02[−0.01: 0.06] 2.2×10−1

2-hydroxyacetaminophen sulfate Xenobiotics −0.04[−0.12: 0.03] 2.2×10−1

mannose Carbohydrate −0.02[−0.06: 0.01] 2.3×10−1

glycochenodeoxycholate Lipid −0.02[−0.06: 0.02] 2.4×10−1

piperine Xenobiotics 0.02[−0.02: 0.06] 2.4×10−1

deoxycholate Lipid −0.03[−0.08: 0.02] 2.4×10−1

nonadecanoate (19:0) Lipid 0.02[−0.01: 0.06] 2.4×10−1

hippurate Xenobiotics 0.02[−0.02: 0.06] 2.4×10−1

3-indoxyl sulfate Amino acid −0.02[−0.06: 0.02] 2.5×10−1

bilirubin (Z,Z) Cofactors and vitamins 0.02[−0.02: 0.06] 2.6×10−1

myristate (14:0) Lipid −0.02[−0.06: 0.02] 2.6×10−1
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hexanoylcarnitine Lipid −0.02[−0.06: 0.02] 2.6×10−1

2-tetradecenoyl carnitine Lipid −0.02[−0.06: 0.02] 2.6×10−1

myo-inositol Lipid −0.02[−0.06: 0.02] 2.7×10−1

palmitoyl sphingomyelin Lipid −0.02[−0.06: 0.02] 2.7×10−1

palmitoleate (16:1n7) Lipid −0.02[−0.06: 0.02] 2.7×10−1

ursodeoxycholate Lipid −0.02[−0.07: 0.02] 2.8×10−1

homostachydrine Xenobiotics −0.04[−0.11: 0.03] 2.8×10−1

glycoursodeoxycholate Lipid −0.02[−0.07: 0.02] 2.8×10−1

lathosterol Lipid −0.02[−0.06: 0.02] 2.8×10−1

laurate (12:0) Lipid −0.02[−0.06: 0.02] 2.9×10−1

3-phenylpropionate (hydrocinnamate) Amino acid 0.02[−0.02: 0.06] 2.9×10−1

glutaroyl carnitine Amino acid −0.02[−0.06: 0.02] 2.9×10−1

DHA (22:6n3) Lipid 0.02[−0.02: 0.06] 2.9×10−1

bradykinin, des-arg(9) Peptide 0.03[−0.02: 0.08] 3.0×10−1

7-methylxanthine Xenobiotics 0.02[−0.02: 0.07] 3.0×10−1

erythrose Carbohydrate 0.02[−0.02: 0.06] 3.1×10−1

epiandrosterone sulfate Lipid −0.02[−0.05: 0.02] 3.1×10−1

1-stearoylglycerol (1-monostearin) Lipid −0.02[−0.06: 0.02] 3.1×10−1

10-heptadecenoate (17:1n7) Lipid −0.02[−0.06: 0.02] 3.2×10−1

glucose Carbohydrate −0.02[−0.06: 0.02] 3.4×10−1

myristoleate (14:1n5) Lipid −0.02[−0.06: 0.02] 3.4×10−1

10-undecenoate (11:1n1) Lipid 0.02[−0.02: 0.06] 3.4×10−1

threonine Amino acid −0.02[−0.06: 0.02] 3.4×10−1

taurochenodeoxycholate Lipid −0.02[−0.06: 0.02] 3.5×10−1

salicyluric glucuronide Xenobiotics −0.06[−0.19: 0.07] 3.5×10−1

5alpha-androstan-3beta,17beta-diol disulfate Lipid −0.02[−0.06: 0.02] 3.5×10−1

1-methylurate Xenobiotics −0.02[−0.06: 0.02] 3.6×10−1

dodecanedioate Lipid −0.02[−0.06: 0.02] 3.6×10−1

GPC Lipid −0.02[−0.06: 0.02] 3.6×10−1

tryptophan Amino acid 0.02[−0.02: 0.06] 3.6×10−1

1-oleoylglycerol (1-monoolein) Lipid −0.02[−0.07: 0.02] 3.6×10−1

catechol sulfate Xenobiotics −0.02[−0.06: 0.02] 3.6×10−1

mannitol Carbohydrate −0.02[−0.06: 0.02] 3.7×10−1

pantothenate Cofactors and vitamins 0.02[−0.02: 0.06] 3.7×10−1

gamma-tocopherol Cofactors and vitamins −0.02[−0.06: 0.02] 3.8×10−1

asparagine Amino acid 0.02[−0.02: 0.05] 3.8×10−1

1-stearoylglycerophosphocholine Lipid 0.02[−0.02: 0.05] 3.8×10−1

lysine Amino acid −0.02[−0.05: 0.02] 3.8×10−1

stearoylcarnitine Lipid 0.02[−0.02: 0.05] 3.9×10−1

2-stearoylglycerophosphocholine Lipid 0.02[−0.02: 0.05] 3.9×10−1

2-methylbutyroylcarnitine Amino acid −0.02[−0.05: 0.02] 4.0×10−1

1,6-anhydroglucose Carbohydrate −0.02[−0.07: 0.03] 4.1×10−1

glycocholate Lipid 0.02[−0.02: 0.06] 4.1×10−1

leucine Amino acid −0.02[−0.05: 0.02] 4.1×10−1

15-methylpalmitate (isobar with 2-methylpalmitate) Lipid −0.02[−0.06: 0.03] 4.1×10−1

acetylphosphate Energy −0.01[−0.05: 0.02] 4.3×10−1

5alpha-pregnan-3beta,20alpha-diol disulfate Lipid 0.02[−0.03: 0.06] 4.4×10−1

cysteine Amino acid −0.01[−0.05: 0.02] 4.4×10−1

phenylacetate Amino acid 0.02[−0.03: 0.06] 4.5×10−1

n-Butyl Oleate Lipid 0.02[−0.03: 0.07] 4.6×10−1

cis-4-decenoyl carnitine Lipid −0.02[−0.06: 0.03] 4.6×10−1

creatine Amino acid 0.01[−0.02: 0.05] 4.7×10−1

3-(4-hydroxyphenyl)lactate Amino acid −0.01[−0.05: 0.02] 4.7×10−1

3-methylhistidine Amino acid −0.01[−0.06: 0.03] 4.8×10−1

7-methylguanine Nucleotide −0.02[−0.06: 0.03] 4.9×10−1

citrulline Amino acid −0.01[−0.05: 0.02] 4.9×10−1

DHEA-S Lipid −0.01[−0.04: 0.02] 5.0×10−1

pentadecanoate (15:0) Lipid −0.01[−0.05: 0.03] 5.1×10−1

5-dodecenoate (12:1n7) Lipid −0.01[−0.05: 0.03] 5.1×10−1

4-androsten-3beta,17beta-diol disulfate 2 Lipid −0.01[−0.05: 0.03] 5.2×10−1

arginine Amino acid 0.01[−0.03: 0.05] 5.2×10−1

linoleate (18:2n6) Lipid −0.01[−0.05: 0.03] 5.3×10−1

octanoylcarnitine Lipid −0.01[−0.05: 0.03] 5.3×10−1

atenolol Xenobiotics −0.06[−0.25: 0.13] 5.4×10−1

phenylalanylphenylalanine Peptide 0.02[−0.04: 0.08] 5.4×10−1

tryptophan betaine Amino acid 0.01[−0.03: 0.05] 5.4×10−1

androsterone sulfate Lipid −0.01[−0.05: 0.02] 5.4×10−1

N-acetylthreonine Amino acid −0.01[−0.05: 0.03] 5.5×10−1

2-hydroxyhippurate (salicylurate) Xenobiotics 0.02[−0.04: 0.08] 5.7×10−1

glycerol 2-phosphate Xenobiotics 0.01[−0.03: 0.05] 5.9×10−1

dihomo-linoleate (20:2n6) Lipid −0.01[−0.05: 0.03] 5.9×10−1

valine Amino acid −0.01[−0.05: 0.03] 5.9×10−1

carbamazepine Xenobiotics 0.12[−0.31: 0.55] 6.0×10−1

3-hydroxybutyrate (BHBA) Lipid 0.01[−0.03: 0.05] 6.0×10−1

N1-methyladenosine Nucleotide −0.01[−0.05: 0.03] 6.2×10−1

betaine Amino acid 0.01[−0.03: 0.05] 6.2×10−1

decanoylcarnitine Lipid 0.01[−0.03: 0.05] 6.2×10−1

N-acetylglycine Amino acid 0.01[−0.03: 0.05] 6.3×10−1

isovalerate Lipid −0.01[−0.05: 0.03] 6.3×10−1
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allantoin Nucleotide −0.01[−0.05: 0.03] 6.4×10−1

chiro-inositol Lipid 0.02[−0.05: 0.08] 6.4×10−1

salicylate Xenobiotics −0.01[−0.08: 0.05] 6.5×10−1

glycine Amino acid 0.01[−0.03: 0.05] 6.5×10−1

serine Amino acid 0.01[−0.03: 0.05] 6.6×10−1

dimethylarginine (SDMA + ADMA) Amino acid 0.01[−0.03: 0.05] 6.8×10−1

hypoxanthine Nucleotide −0.01[−0.05: 0.03] 6.9×10−1

theobromine Xenobiotics −0.01[−0.05: 0.03] 6.9×10−1

erythronate Carbohydrate 0.01[−0.03: 0.05] 6.9×10−1

taurocholate Lipid 0.01[−0.04: 0.06] 6.9×10−1

alpha-ketoglutarate Energy 0.01[−0.03: 0.05] 7.1×10−1

stearidonate (18:4n3) Lipid −0.01[−0.04: 0.03] 7.1×10−1

2-palmitoylglycerophosphocholine Lipid −0.01[−0.04: 0.03] 7.3×10−1

eicosenoate (20:1n9 or 11) Lipid 0.01[−0.03: 0.04] 7.4×10−1

pyruvate Carbohydrate 0.01[−0.03: 0.04] 7.5×10−1

valerate Lipid −0.01[−0.06: 0.04] 7.6×10−1

fructose Carbohydrate 0.01[−0.03: 0.04] 7.6×10−1

EPA Lipid 0.01[−0.03: 0.04] 7.6×10−1

stearate (18:0) Lipid −0.01[−0.04: 0.03] 7.6×10−1

linolenate [alpha or gamma; (18:3n3 or 6)] Lipid −0.01[−0.04: 0.03] 7.7×10−1

octadecanedioate Lipid 0.01[−0.03: 0.04] 7.7×10−1

urea Amino acid −0.01[−0.04: 0.03] 7.7×10−1

indoleacetate Amino acid 0.01[−0.03: 0.04] 7.8×10−1

cortisone Lipid −0.01[−0.04: 0.03] 7.8×10−1

levulinate (4-oxovalerate) Amino acid 0.01[−0.03: 0.04] 7.8×10−1

oleate (18:1n9) Lipid −0.01[−0.04: 0.03] 7.8×10−1

margarate (17:0) Lipid −0.01[−0.04: 0.03] 7.8×10−1

1-oleoylglycerophosphocholine Lipid 0.01[−0.03: 0.04] 7.9×10−1

taurolithocholate 3-sulfate Lipid −0.00[−0.05: 0.04] 8.1×10−1

leucylleucine Peptide −0.01[−0.06: 0.05] 8.2×10−1

ADSGEGDFXAEGGGVR Peptide 0.01[−0.04: 0.05] 8.2×10−1

3-methoxytyrosine Amino acid −0.00[−0.05: 0.04] 8.3×10−1

2-hydroxybutyrate (AHB) Amino acid 0.00[−0.03: 0.04] 8.3×10−1

methionine Amino acid 0.00[−0.03: 0.04] 8.3×10−1

pipecolate Amino acid −0.00[−0.04: 0.03] 8.3×10−1

2-oleoylglycerophosphocholine Lipid 0.00[−0.03: 0.04] 8.4×10−1

1-linoleoylglycerophosphocholine Lipid 0.00[−0.03: 0.04] 8.4×10−1

scyllo-inositol Lipid 0.00[−0.04: 0.05] 8.4×10−1

glutamine Amino acid −0.00[−0.04: 0.03] 8.4×10−1

indolelactate Amino acid −0.00[−0.04: 0.03] 8.5×10−1

heme Cofactors and vitamins 0.00[−0.04: 0.05] 8.6×10−1

2-aminobutyrate Amino acid 0.00[−0.03: 0.04] 8.6×10−1

10-nonadecenoate (19:1n9) Lipid −0.00[−0.04: 0.03] 8.8×10−1

1-myristoylglycerophosphocholine Lipid −0.00[−0.04: 0.03] 8.8×10−1

thymol sulfate Xenobiotics −0.00[−0.06: 0.05] 8.8×10−1

pro-hydroxy-pro Peptide 0.00[−0.04: 0.04] 8.8×10−1

trans-4-hydroxyproline Amino acid 0.00[−0.04: 0.04] 8.9×10−1

cortisol Lipid 0.00[−0.04: 0.04] 8.9×10−1

5-oxoproline Amino acid 0.00[−0.04: 0.04] 8.9×10−1

threitol Carbohydrate −0.00[−0.04: 0.03] 8.9×10−1

G3P Lipid 0.00[−0.03: 0.04] 9.0×10−1

serotonin Amino acid −0.00[−0.05: 0.04] 9.0×10−1

acetylcarnitine Lipid −0.00[−0.04: 0.04] 9.0×10−1

isobutyrylcarnitine Amino acid 0.00[−0.04: 0.04] 9.0×10−1

HWESASXX Peptide −0.00[−0.04: 0.03] 9.1×10−1

bilirubin (E,Z or Z,E) Cofactors and vitamins 0.00[−0.04: 0.05] 9.1×10−1

metoprolol acid metabolite Xenobiotics −0.01[−0.19: 0.18] 9.2×10−1

1-docosahexaenoylglycerophosphocholine Lipid 0.00[−0.04: 0.04] 9.4×10−1

ergothioneine Xenobiotics −0.00[−0.05: 0.05] 9.4×10−1

p-cresol sulfate Amino acid 0.00[−0.04: 0.04] 9.4×10−1

indolepropionate Amino acid 0.00[−0.04: 0.04] 9.4×10−1

choline Lipid 0.00[−0.04: 0.04] 9.4×10−1

isovalerylcarnitine Amino acid −0.00[−0.04: 0.04] 9.5×10−1

2-linoleoylglycerophosphocholine Lipid −0.00[−0.04: 0.04] 9.5×10−1

docosapentaenoate (n3 DPA; 22:5n3) Lipid 0.00[−0.04: 0.04] 9.5×10−1

1-eicosadienoylglycerophosphocholine Lipid 0.00[−0.04: 0.04] 9.5×10−1

1-palmitoylglycerophosphocholine Lipid −0.00[−0.04: 0.04] 9.5×10−1

phosphate Energy −0.00[−0.04: 0.04] 9.5×10−1

phenylacetylglutamine Amino acid 0.00[−0.04: 0.04] 9.6×10−1

3-methylxanthine Xenobiotics 0.00[−0.04: 0.05] 9.6×10−1

DSGEGDFXAEGGGVR Peptide −0.00[−0.05: 0.05] 9.6×10−1

xanthine Nucleotide −0.00[−0.04: 0.04] 9.8×10−1

gamma-glutamylglutamine Peptide −0.00[−0.04: 0.04] 10.0×10−1
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Figure A.1 Meta-analysis of metabolites associated with telomere length. Five metabolites
were significantly correlated with leukocyte telomere length (LTL) in the TwinsUK cohort and
subsequently replicated in the KORA cohort. Results from both cohorts were meta-analysed
using fixed-effects meta-analysis.
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APPENDIX B

Glycosylation profile of IgG in moderate kidney dysfunction

Table B.1 Associations of IgG glycan traits with renal function. 76 glycan traits (as described
in Table 3.3) were tested for association with renal function in 3212 individuals of the
discovery cohort. Bonferroni-significant associations are indicated by ???, FDR-significant
associations by ?? and nominally significant associations by ?.

ID Glycan Trait β [ 95 %CI ] p-value

GP18 GP18 1.48[ 0.89: 2.07] 8.6×10−7???

GP14 GP14 1.46[ 0.85: 2.07] 2.9×10−6???

IGP45 GP6n −1.39[−1.98:−0.80] 3.6×10−6???

IGP53 GP14n 1.29[ 0.68: 1.90] 3.1×10−5???

IGP37 FBS1 / FS1 −1.12[−1.65:−0.59] 3.5×10−5???

IGP38 FBS1 / (FS1+FBS1) −1.10[−1.63:−0.57] 4.6×10−5???

IGP36 FBStotal / FStotal −1.07[−1.60:−0.54] 8.2×10−5???

IGP57 G2n 1.20[ 0.60: 1.80] 8.8×10−5???

GP6 GP6 −1.14[−1.71:−0.57] 8.9×10−5???

IGP55 G0n −1.16[−1.76:−0.56] 1.5×10−4???

IGP26 FGS / (F + FG + FGS) 1.01[ 0.46: 1.56] 3.0×10−4???

IGP42 GP2n −0.91[−1.42:−0.40] 5.0×10−4???

GP2 GP2 −0.90[−1.42:−0.38] 6.3×10−4???

IGP77 BG2n / (FG2n + FBG2n) −0.93[−1.46:−0.39] 6.6×10−4???

IGP76 FG2n / (BG2n + FBG2n) 0.91[ 0.38: 1.44] 7.3×10−4??

IGP39 FBS2 / FS2 −0.90[−1.42:−0.37] 8.5×10−4??

IGP40 FBS2 / (FS2+FBS2) −0.91[−1.44:−0.37] 8.5×10−4??

IGP75 FBG2n / (FG2n + FBG2n) −0.89[−1.42:−0.37] 8.5×10−4??

IGP74 FBG2n / FG2n −0.89[−1.41:−0.36] 9.0×10−4??

IGP69 FBG2n / G2n −0.85[−1.37:−0.33] 1.4×10−3??

IGP43 GP4n −0.90[−1.47:−0.33] 2.0×10−3??

IGP24 FGS / (FG + FGS) 0.76[ 0.25: 1.27] 3.4×10−3??

IGP65 FG2n / G2n 0.73[ 0.23: 1.24] 4.4×10−3??

GP23 GP23 0.69[ 0.19: 1.18] 6.6×10−3??

IGP71 FBn / Fn total −0.69[−1.19:−0.18] 7.8×10−3??

IGP66 FBn −0.68[−1.19:−0.17] 8.5×10−3??

IGP70 FBn / Fn −0.67[−1.17:−0.16] 9.4×10−3??

GP15 GP15 0.70[ 0.17: 1.23] 9.5×10−3??

IGP72 Fn / (Bn + FBn) 0.65[ 0.15: 1.16] 1.1×10−2??

IGP31 FBG2S1 / (FBG2 + FBG2S1 + FBG2S2) −0.63[−1.12:−0.13] 1.3×10−2??

IGP62 Fn 0.58[ 0.09: 1.07] 2.2×10−2?

GP7 GP7 −0.53[−1.00:−0.06] 2.8×10−2?

IGP46 GP7n −0.52[−0.99:−0.05] 2.9×10−2?

GP4 GP4 −0.60[−1.14:−0.06] 2.9×10−2?

IGP60 FG1n total / G1n 0.53[ 0.05: 1.00] 2.9×10−2?

GP16 GP16 0.51[ 0.03: 0.99] 3.7×10−2?

IGP47 GP8n 0.53[ 0.02: 1.04] 4.0×10−2?

IGP59 FG0n total / G0n 0.51[ 0.02: 1.00] 4.0×10−2?

IGP50 GP11n −0.50[−0.99:−0.01] 4.7×10−2?

IGP33 FtotalS1 / FtotalS2 0.49[ 0.00: 0.98] 4.8×10−2?

IGP54 GP15n 0.51[−0.01: 1.03] 5.5×10−2

GP8 GP8 0.46[−0.02: 0.93] 5.9×10−2

IGP61 FG2n total / G2n 0.44[−0.04: 0.92] 7.5×10−2

IGP67 FBG0n / G0n −0.42[−0.90: 0.05] 7.9×10−2

IGP63 FG0n / G0n 0.36[−0.11: 0.83] 1.3×10−1

GP11 GP11 −0.38[−0.88: 0.11] 1.3×10−1

IGP64 FG1n / G1n 0.36[−0.12: 0.85] 1.4×10−1

IGP68 FBG1n / G1n −0.36[−0.85: 0.12] 1.4×10−1

IGP56 G1n 0.36[−0.12: 0.84] 1.4×10−1

GP13 GP13 0.33[−0.16: 0.82] 1.9×10−1

continued on next page . . .
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IGP41 GP1n −0.32[−0.81: 0.16] 1.9×10−1

IGP58 Fn total 0.31[−0.16: 0.77] 1.9×10−1

IGP35 FBS1 / FBS2 −0.30[−0.78: 0.17] 2.1×10−1

IGP30 FG2S2 / (FG2 + FG2S1 + FG2S2) −0.27[−0.75: 0.21] 2.7×10−1

IGP44 GP5n −0.26[−0.75: 0.22] 2.9×10−1

GP1 GP1 −0.26[−0.74: 0.22] 2.9×10−1

IGP29 FG2S1 / (FG2 + FG2S1 + FG2S2) 0.26[−0.24: 0.76] 3.1×10−1

IGP27 FBGS / (FB + FBG + FBGS) 0.24[−0.23: 0.72] 3.2×10−1

GP5 GP5 −0.24[−0.73: 0.25] 3.3×10−1

GP2021 GP20 + GP21 0.14[−0.14: 0.42] 3.4×10−1

IGP49 GP10n −0.21[−0.68: 0.26] 3.8×10−1

IGP28 FG1S1 / (FG1 + FG1S1) 0.20[−0.28: 0.67] 4.2×10−1

IGP52 GP13n 0.20[−0.29: 0.69] 4.2×10−1

GP12 GP12 0.18[−0.30: 0.66] 4.6×10−1

IGP73 Bn / (Fn + FBn) 0.18[−0.31: 0.66] 4.7×10−1

IGP34 FS1 / FS2 0.17[−0.30: 0.64] 4.7×10−1

GP22 GP22 0.13[−0.32: 0.58] 5.7×10−1

GP10 GP10 −0.13[−0.60: 0.34] 5.9×10−1

IGP51 GP12n 0.13[−0.35: 0.61] 5.9×10−1

GP19 GP19 −0.11[−0.57: 0.35] 6.4×10−1

IGP32 FBG2S2 / (FBG2 + FBG2S1 + FBG2S2) −0.11[−0.59: 0.37] 6.6×10−1

GP17 GP17 −0.09[−0.55: 0.37] 7.1×10−1

GP24 GP24 0.08[−0.38: 0.53] 7.4×10−1

GP9 GP9 0.07[−0.39: 0.53] 7.7×10−1

IGP25 FBGS / (FBG + FBGS) −0.04[−0.51: 0.42] 8.5×10−1

IGP48 GP9n −0.02[−0.48: 0.45] 9.5×10−1

Table B.2 Associations of whole plasma glycan traits with renal function. To test whether
observed associations of glycosylation and renal function are specific to IgG or reflect a more
global pattern of protein glycosylation, I correlated whole plasma glycans with eGFR. None
of the associations passed multiple-testing correction, nominally significant associations are
indicated by ?.

ID Main Glycan β [ 95 %CI ] p-value

gly2 M5, FA2B −1.91[−3.42:−0.40] 1.3×10−2?

gly1 FA2 −1.44[−2.88:−0.00] 4.9×10−2?

gly42 A4F1G4S4 0.89[−0.27: 2.06] 1.3×10−1

gly34 FA3G3S3 0.88[−0.33: 2.09] 1.5×10−1

gly41 A4G4S4 0.84[−0.31: 2.00] 1.5×10−1

gly6 FA2[6]BG1 −0.96[−2.32: 0.40] 1.7×10−1

gly30 A3G3S3 0.76[−0.53: 2.04] 2.5×10−1

gly16 A2BG2S1 −0.71[−2.00: 0.58] 2.8×10−1

gly40 A4G4S4 0.64[−0.55: 1.84] 2.9×10−1

gly4 FA2[6]G1 −0.74[−2.11: 0.63] 2.9×10−1

gly39 A4G4S4 0.63[−0.61: 1.87] 3.2×10−1

gly13 FA2[3]G1S1 0.60[−0.58: 1.77] 3.2×10−1

gly35 A3F1G3S3 0.67[−0.66: 2.00] 3.2×10−1

gly33 A3G3S3 0.58[−0.62: 1.78] 3.5×10−1

gly10.11 FA2G2 0.76[−0.92: 2.43] 3.8×10−1

gly36 A4G4S3 0.55[−0.71: 1.81] 3.9×10−1

gly3 A2[6]BG1 −0.53[−1.82: 0.77] 4.3×10−1

gly19 FA2BG2S1 −0.53[−1.84: 0.78] 4.3×10−1

gly9 A2BG2 −0.49[−1.70: 0.72] 4.3×10−1

gly14 FA2[3]G1S1 −0.49[−1.78: 0.81] 4.6×10−1

gly7 M6 −0.44[−1.61: 0.73] 4.6×10−1

gly38 A4F1G3S3 0.42[−0.89: 1.73] 5.3×10−1

gly37 A4G4S3 0.40[−0.90: 1.69] 5.5×10−1

gly18 FA2G2S1 0.44[−1.07: 1.94] 5.7×10−1

gly26 FA2BG2S2 −0.36[−1.70: 0.99] 6.0×10−1

gly24 A2BG2S2 0.28[−0.99: 1.55] 6.7×10−1

gly5 FA2[3]G1 −0.29[−1.64: 1.05] 6.7×10−1

gly25 FA2G2S2 −0.26[−1.62: 1.11] 7.1×10−1

gly29 A3G3S2 0.23[−1.13: 1.59] 7.4×10−1

gly31.32 A3G3S3, FA3G3S3 0.20[−1.01: 1.40] 7.5×10−1

gly17 M5A1G1S1 −0.19[−1.52: 1.14] 7.8×10−1

gly27.28 A3G3S2, A3BG3S2 0.16[−1.07: 1.40] 7.9×10−1

gly22 M9 −0.16[−1.48: 1.16] 8.1×10−1

gly23 A2G2S2 −0.10[−1.38: 1.17] 8.7×10−1

gly12 FA2BG2 −0.07[−1.46: 1.32] 9.2×10−1

gly8 A2G2 0.06[−1.27: 1.39] 9.3×10−1

gly20.21 A2G2S2 −0.04[−1.30: 1.21] 9.5×10−1

gly15 A2G2S1 0.02[−1.12: 1.16] 9.7×10−1
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Table B.3 Comparison of renal-associated IgG glycosylation profiles between UPLC and
MS/MS measurements. The associations of renal function with immunoglobin G (IgG)
glycosylation were compared between glycans measured by ultra-performance liquid chro-
matography (UPLC) and glycans measured by tandem mass spectrometry (MS/MS) to
confirm Fγ glycosylation as driving force of the observed associations in a subset of 96
age-matched individuals.

UPLC glycans MS/MS glycans
Glycan β [ 95 %CI ] Glycan β [ 95 %CI ]

GP18 1.48[ 0.89: 2.07] IgG1 G2FS1 3.27[ −2.28: 8.82]
GP14 1.46[ 0.85: 2.07] IgG1 G2F 6.23[ −0.59: 13.04]
GP6n −1.39[−1.98:−0.80] IgG1 G0FNn −1.46[ −6.98: 4.07]
GP14n 1.29[ 0.68: 1.90] IgG1 G2Fn 5.20[ −1.39: 11.79]
FBS1 / FS1 −1.12[−1.65:−0.59] IgG1 FBS1/FS −4.55[ −9.49: 0.40]
FBS1 / (FS1+FBS1) −1.10[−1.63:−0.57] IgG1 FBS1/(FS1+FBS1) −5.34[−10.45: −0.23]
G2n 1.20[ 0.60: 1.80] IgG1 G2n 3.44[ −3.04: 9.92]
GP6 −1.14[−1.71:−0.57] IgG1 G0FN −1.15[ −6.73: 4.43]
G0n −1.16[−1.76:−0.56] IgG1 G0n −0.71[ −6.81: 5.38]
FGS / (F + FG + FGS) 1.01[ 0.46: 1.56] IgG1 FGS1/(F+FG+FGS1) −0.23[ −5.38: 4.91]
GP2n −0.91[−1.42:−0.40] IgG1 G0n −2.27[ −8.33: 3.80]
GP2 −0.90[−1.43:−0.38] IgG1 G0 −1.88[ −7.97: 4.21]



APPENDIX C

Metabolic markers of renal disease in type 2 diabetics

compared to non-diabetics

Figure C.1 Absolute concentrations of cholesterol. (a) The absolute concentrations of total
cholesterol in serum, as well as cholesterol in IDL, LDL, and HDL were all higher in non-
diabetic participants of TwinsUK than in diabetic participants of GenoDiabMar. This is most
probably due to treatment of dyslipidaemia in diabetics. (b) In contrast, the proportion of
triglycerides in various cholesterol subclasses was consistently higher in the GenoDiabMar
cohort.
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Table C.1 Associations of NMR metabolites with microvascular diseases in the GenoDiab-
Mar cohort. Metabolites significantly associated with estimated glomerular filtration rate
(eGFR) were tested for association with the concentration of albumin in urine (albuminuria),
and diabetic retinopathy.

eGFR Albuminuria Diabetic Retinopathy
Metabolite β [ 95 %CI ] p-value β [ 95 %CI ] p-value OR [ 95 %CI ] p-value

XXL-VLDL-C 0.10[ -1.98: 2.17] 9.3×10-1 0.04[-0.20: 0.28] 7.4×10-1 0.88[0.73:1.07] 2.1×10-1

XXL-VLDL-CE -0.41[ -2.48: 1.67] 7.0×10-1 0.05[-0.20: 0.29] 7.2×10-1 0.94[0.78:1.14] 5.4×10-1

XL-VLDL-C 0.22[ -1.85: 2.30] 8.3×10-1 0.13[-0.12: 0.37] 3.1×10-1 0.91[0.75:1.11] 3.6×10-1

XL-VLDL-CE -0.36[ -2.43: 1.71] 7.4×10-1 0.15[-0.09: 0.40] 2.2×10-1 0.95[0.78:1.15] 5.8×10-1

L-VLDL-L 0.06[ -2.02: 2.14] 9.5×10-1 0.15[-0.09: 0.40] 2.2×10-1 0.91[0.75:1.11] 3.5×10-1

L-VLDL-PL -0.14[ -2.22: 1.94] 8.9×10-1 0.18[-0.07: 0.42] 1.6×10-1 0.93[0.76:1.12] 4.3×10-1

L-VLDL-C -0.48[ -2.55: 1.60] 6.5×10-1 0.17[-0.08: 0.42] 1.8×10-1 0.94[0.78:1.14] 5.6×10-1

L-VLDL-CE -0.92[ -3.00: 1.15] 3.8×10-1 0.19[-0.06: 0.44] 1.3×10-1 0.98[0.81:1.19] 8.6×10-1

L-VLDL-FC -0.08[ -2.16: 1.99] 9.4×10-1 0.15[-0.09: 0.40] 2.3×10-1 0.91[0.75:1.11] 3.5×10-1

L-VLDL-TG 0.07[ -2.01: 2.15] 9.5×10-1 0.16[-0.09: 0.40] 2.1×10-1 0.90[0.75:1.10] 3.1×10-1

M-VLDL-P -0.96[ -3.03: 1.11] 3.6×10-1 0.20[-0.05: 0.45] 1.2×10-1 0.95[0.78:1.15] 6.0×10-1

M-VLDL-L -0.50[ -2.57: 1.57] 6.3×10-1 0.17[-0.08: 0.43] 1.7×10-1 0.94[0.78:1.14] 5.2×10-1

M-VLDL-PL -0.75[ -2.82: 1.32] 4.8×10-1 0.20[-0.05: 0.46] 1.2×10-1 0.95[0.79:1.15] 6.0×10-1

M-VLDL-C -0.77[ -2.84: 1.30] 4.6×10-1 0.16[-0.09: 0.41] 2.2×10-1 0.98[0.81:1.19] 8.5×10-1

M-VLDL-CE -0.55[ -2.62: 1.52] 6.0×10-1 0.10[-0.15: 0.35] 4.3×10-1 1.01[0.83:1.21] 9.5×10-1

M-VLDL-FC -1.07[ -3.14: 1.00] 3.1×10-1 0.22[-0.03: 0.47] 8.8×10-2 0.97[0.80:1.17] 7.2×10-1

M-VLDL-TG -0.66[ -2.73: 1.41] 5.3×10-1 0.19[-0.06: 0.44] 1.4×10-1 0.93[0.77:1.12] 4.4×10-1

S-VLDL-P -1.92[ -3.97: 0.14] 6.8×10-2 0.31[ 0.04: 0.57] 2.3×10-2 1.01[0.84:1.22] 8.8×10-1

S-VLDL-L -1.44[ -3.50: 0.62] 1.7×10-1 0.29[ 0.03: 0.55] 3.1×10-2 1.00[0.83:1.20] 9.8×10-1

S-VLDL-PL -1.78[ -3.84: 0.28] 9.1×10-2 0.32[ 0.06: 0.59] 1.8×10-2 1.02[0.84:1.23] 8.7×10-1

S-VLDL-C -0.89[ -2.95: 1.17] 4.0×10-1 0.15[-0.11: 0.40] 2.5×10-1 1.05[0.87:1.27] 5.9×10-1

S-VLDL-CE -0.18[ -2.25: 1.88] 8.6×10-1 0.04[-0.21: 0.28] 7.7×10-1 1.06[0.88:1.28] 5.4×10-1

S-VLDL-FC -1.97[ -4.03: 0.09] 6.1×10-2 0.32[ 0.06: 0.58] 1.6×10-2 1.05[0.87:1.26] 6.4×10-1

S-VLDL-TG -1.99[ -4.04: 0.07] 5.9×10-2 0.35[ 0.09: 0.61] 8.8×10-3 0.98[0.81:1.18] 8.2×10-1

XS-VLDL-P 0.21[ -1.86: 2.28] 8.4×10-1 0.18[-0.08: 0.44] 1.8×10-1 1.05[0.87:1.27] 5.9×10-1

XS-VLDL-L 0.79[ -1.28: 2.86] 4.6×10-1 0.14[-0.12: 0.40] 2.9×10-1 1.03[0.85:1.24] 7.9×10-1

XS-VLDL-PL 1.60[ -0.46: 3.66] 1.3×10-1 0.09[-0.16: 0.35] 4.8×10-1 1.06[0.87:1.28] 5.7×10-1

XS-VLDL-C 2.40[ 0.33: 4.46] 2.3×10-2 -0.07[-0.32: 0.19] 6.2×10-1 0.98[0.81:1.18] 8.4×10-1

XS-VLDL-FC 0.05[ -2.01: 2.12] 9.6×10-1 0.11[-0.15: 0.37] 4.0×10-1 1.11[0.92:1.34] 2.8×10-1

XS-VLDL-TG -3.13[ -5.18: -1.09] 2.8×10-3 0.50[ 0.23: 0.76] 2.4×10-4 1.10[0.92:1.33] 3.0×10-1

IDL-P 5.25[ 3.22: 7.28] 5.2×10-7 -0.10[-0.35: 0.16] 4.6×10-1 0.91[0.76:1.10] 3.5×10-1

IDL-L 5.70[ 3.68: 7.72] 4.5×10-8 -0.14[-0.39: 0.12] 3.0×10-1 0.90[0.74:1.08] 2.6×10-1

IDL-PL 5.35[ 3.33: 7.38] 2.8×10-7 -0.12[-0.38: 0.13] 3.4×10-1 0.94[0.78:1.13] 5.0×10-1

IDL-C 6.55[ 4.55: 8.55] 2.8×10-10 -0.23[-0.49: 0.02] 7.1×10-2 0.88[0.73:1.06] 1.8×10-1

IDL-CE 6.90[ 4.90: 8.89] 2.9×10-11 -0.25[-0.51: 0.00] 5.3×10-2 0.85[0.70:1.03] 9.7×10-2

IDL-FC 5.14[ 3.11: 7.17] 8.5×10-7 -0.17[-0.42: 0.08] 1.8×10-1 0.98[0.82:1.19] 8.7×10-1

IDL-TG -3.23[ -5.29: -1.17] 2.2×10-3 0.54[ 0.28: 0.80] 5.3×10-5 1.21[1.01:1.45] 4.2×10-2

L-LDL-P 5.21[ 3.19: 7.24] 5.9×10-7 -0.08[-0.33: 0.17] 5.2×10-1 0.94[0.78:1.13] 4.9×10-1

L-LDL-L 5.92[ 3.91: 7.93] 1.2×10-8 -0.12[-0.38: 0.14] 3.6×10-1 0.90[0.74:1.08] 2.5×10-1

L-LDL-PL 6.48[ 4.47: 8.48] 4.4×10-10 -0.17[-0.42: 0.09] 2.0×10-1 0.87[0.72:1.05] 1.5×10-1

L-LDL-C 6.33[ 4.33: 8.33] 9.9×10-10 -0.18[-0.43: 0.08] 1.8×10-1 0.89[0.73:1.07] 2.1×10-1

L-LDL-CE 6.15[ 4.14: 8.15] 3.0×10-9 -0.17[-0.42: 0.09] 2.0×10-1 0.89[0.73:1.07] 2.1×10-1

L-LDL-FC 6.34[ 4.34: 8.34] 9.2×10-10 -0.19[-0.44: 0.07] 1.5×10-1 0.92[0.76:1.10] 3.6×10-1

L-LDL-TG -1.96[ -4.03: 0.12] 6.5×10-2 0.47[ 0.21: 0.72] 3.7×10-4 1.19[0.99:1.42] 6.5×10-2

M-LDL-L 5.55[ 3.54: 7.56] 9.3×10-8 -0.06[-0.32: 0.19] 6.3×10-1 0.91[0.75:1.09] 3.1×10-1

M-LDL-PL 6.74[ 4.74: 8.74] 8.3×10-11 -0.09[-0.35: 0.18] 5.1×10-1 0.82[0.68:0.99] 4.2×10-2

M-LDL-C 5.56[ 3.55: 7.57] 8.4×10-8 -0.11[-0.36: 0.14] 3.9×10-1 0.92[0.76:1.11] 3.9×10-1

M-LDL-CE 5.00[ 2.98: 7.02] 1.5×10-6 -0.11[-0.36: 0.14] 4.0×10-1 0.95[0.79:1.15] 6.1×10-1

M-LDL-FC 7.09[ 5.11: 9.08] 6.3×10-12 -0.12[-0.38: 0.15] 4.0×10-1 0.84[0.70:1.01] 6.6×10-2

M-LDL-TG -1.62[ -3.69: 0.46] 1.3×10-1 0.48[ 0.22: 0.75] 3.4×10-4 1.18[0.99:1.42] 7.1×10-2

S-LDL-L 5.73[ 3.72: 7.75] 3.6×10-8 -0.08[-0.34: 0.18] 5.7×10-1 0.90[0.75:1.08] 2.7×10-1

S-LDL-PL 7.12[ 5.12: 9.12] 7.5×10-12 -0.11[-0.39: 0.16] 4.2×10-1 0.81[0.67:0.97] 2.2×10-2

S-LDL-C 5.59[ 3.58: 7.60] 7.3×10-8 -0.12[-0.37: 0.14] 3.7×10-1 0.93[0.77:1.12] 4.2×10-1

S-LDL-CE 5.09[ 3.07: 7.11] 1.0×10-6 -0.12[-0.37: 0.13] 3.7×10-1 0.96[0.79:1.16] 6.6×10-1

S-LDL-FC 6.77[ 4.78: 8.76] 6.1×10-11 -0.11[-0.37: 0.16] 4.3×10-1 0.84[0.70:1.01] 5.8×10-2

S-LDL-TG -1.16[ -3.24: 0.91] 2.7×10-1 0.41[ 0.14: 0.67] 2.8×10-3 1.12[0.93:1.35] 2.2×10-1

XL-HDL-P 2.80[ 0.69: 4.91] 9.6×10-3 -0.25[-0.51: 0.01] 6.0×10-2 1.13[0.93:1.37] 2.0×10-1

XL-HDL-L 3.44[ 1.33: 5.54] 1.4×10-3 -0.26[-0.53:-0.00] 4.8×10-2 1.11[0.91:1.34] 3.1×10-1

XL-HDL-PL 2.05[ -0.07: 4.18] 5.9×10-2 -0.26[-0.52: 0.00] 5.1×10-2 1.18[0.97:1.43] 9.0×10-2

XL-HDL-C 4.18[ 2.10: 6.26] 9.0×10-5 -0.25[-0.51: 0.00] 5.4×10-2 1.04[0.86:1.26] 6.8×10-1

XL-HDL-CE 4.22[ 2.15: 6.30] 7.4×10-5 -0.23[-0.49: 0.02] 7.5×10-2 1.04[0.86:1.26] 6.9×10-1

XL-HDL-FC 3.60[ 1.50: 5.70] 8.3×10-4 -0.28[-0.53:-0.03] 2.7×10-2 1.06[0.87:1.28] 5.9×10-1

L-HDL-P 1.65[ -0.49: 3.79] 1.3×10-1 -0.32[-0.57:-0.06] 1.6×10-2 1.14[0.94:1.38] 1.8×10-1

L-HDL-L 2.21[ 0.08: 4.34] 4.3×10-2 -0.34[-0.59:-0.08] 1.1×10-2 1.11[0.91:1.35] 2.9×10-1

L-HDL-PL 2.53[ 0.40: 4.66] 2.0×10-2 -0.36[-0.62:-0.11] 5.5×10-3 1.08[0.89:1.31] 4.2×10-1

L-HDL-C 1.93[ -0.19: 4.05] 7.5×10-2 -0.30[-0.56:-0.05] 2.1×10-2 1.13[0.93:1.37] 2.2×10-1

L-HDL-CE 1.99[ -0.13: 4.12] 6.6×10-2 -0.30[-0.56:-0.05] 2.0×10-2 1.12[0.92:1.35] 2.6×10-1

L-HDL-FC 1.25[ -0.87: 3.37] 2.5×10-1 -0.27[-0.53:-0.02] 3.5×10-2 1.18[0.98:1.43] 8.4×10-2

M-HDL-P 5.37[ 3.28: 7.46] 6.3×10-7 -0.43[-0.68:-0.18] 9.4×10-4 0.76[0.62:0.93] 6.8×10-3

M-HDL-L 5.42[ 3.34: 7.50] 4.4×10-7 -0.45[-0.70:-0.20] 5.4×10-4 0.75[0.62:0.92] 4.9×10-3

continued on next page . . .
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M-HDL-PL 5.09[ 2.99: 7.19] 2.4×10-6 -0.39[-0.64:-0.13] 2.8×10-3 0.77[0.63:0.94] 1.2×10-2

M-HDL-C 5.92[ 3.86: 7.98] 2.5×10-8 -0.51[-0.76:-0.26] 8.6×10-5 0.74[0.61:0.90] 2.7×10-3

M-HDL-CE 5.96[ 3.90: 8.01] 2.0×10-8 -0.51[-0.76:-0.26] 6.8×10-5 0.74[0.61:0.89] 2.0×10-3

M-HDL-FC 5.59[ 3.51: 7.66] 1.8×10-7 -0.45[-0.71:-0.20] 5.1×10-4 0.78[0.64:0.95] 1.5×10-2

S-HDL-TG -3.73[ -5.78: -1.67] 4.0×10-4 0.46[ 0.22: 0.70] 2.2×10-4 1.06[0.88:1.28] 5.3×10-1

Serum-C 6.36[ 4.33: 8.39] 1.4×10-9 -0.24[-0.50: 0.02] 7.3×10-2 0.87[0.72:1.05] 1.5×10-1

VLDL-C 0.57[ -1.50: 2.64] 5.9×10-1 0.07[-0.18: 0.33] 5.7×10-1 0.95[0.79:1.14] 5.7×10-1

Remnant-C 3.44[ 1.38: 5.49] 1.1×10-3 -0.07[-0.32: 0.19] 6.1×10-1 0.88[0.73:1.06] 1.8×10-1

LDL-C 6.72[ 4.73: 8.70] 7.5×10-11 -0.17[-0.44: 0.10] 2.2×10-1 0.85[0.71:1.02] 7.8×10-2

HDL-C 5.29[ 3.21: 7.38] 8.0×10-7 -0.44[-0.70:-0.19] 8.0×10-4 0.90[0.74:1.09] 2.7×10-1

HDL2-C 5.71[ 3.64: 7.78] 8.9×10-8 -0.47[-0.74:-0.20] 6.2×10-4 0.90[0.75:1.09] 3.0×10-1

EstC 7.35[ 5.35: 9.34] 1.5×10-12 -0.29[-0.55:-0.02] 3.4×10-2 0.82[0.68:0.99] 3.7×10-2

Serum-TG -1.10[ -3.18: 0.98] 3.0×10-1 0.25[ 0.01: 0.50] 4.6×10-2 0.99[0.82:1.19] 9.1×10-1

VLDL-TG -0.11[ -2.18: 1.97] 9.2×10-1 0.18[-0.07: 0.43] 1.6×10-1 0.93[0.77:1.12] 4.4×10-1

LDL-TG -2.34[ -4.42: -0.25] 2.9×10-2 0.46[ 0.21: 0.71] 3.2×10-4 1.23[1.01:1.48] 3.7×10-2

HDL-TG -3.66[ -5.78: -1.55] 7.2×10-4 0.16[-0.09: 0.41] 2.1×10-1 1.18[0.97:1.43] 9.4×10-2

TG/PG -2.70[ -4.75: -0.64] 1.0×10-2 0.33[ 0.08: 0.57] 1.0×10-2 0.95[0.79:1.14] 5.8×10-1

ApoA1 5.69[ 3.58: 7.79] 1.6×10-7 -0.42[-0.67:-0.16] 1.4×10-3 0.87[0.72:1.06] 1.8×10-1

ApoB/ApoA1 0.56[ -1.48: 2.61] 5.9×10-1 0.20[-0.05: 0.45] 1.2×10-1 0.97[0.80:1.17] 7.3×10-1

MUFA -0.76[ -2.84: 1.32] 4.8×10-1 0.14[-0.11: 0.40] 2.6×10-1 0.98[0.81:1.19] 8.6×10-1

Lac -0.30[ -2.37: 1.77] 7.8×10-1 -0.23[-0.51: 0.04] 9.4×10-2 1.04[0.86:1.25] 7.1×10-1

Pyr 4.82[ 2.76: 6.88] 5.5×10-6 -0.35[-0.60:-0.09] 8.5×10-3 0.84[0.70:1.02] 7.3×10-2

Cit -4.97[ -7.01: -2.93] 2.2×10-6 -0.12[-0.37: 0.14] 3.6×10-1 1.14[0.95:1.38] 1.6×10-1

Glol -11.03[-13.96: -8.10] 1.7×10-12 0.00[-0.43: 0.43] 1.0×10+0 1.32[0.99:1.77] 6.1×10-2

Ala 7.14[ 5.11: 9.17] 1.2×10-11 -0.10[-0.36: 0.16] 4.5×10-1 0.83[0.68:1.00] 5.1×10-2

Gly -12.25[-14.10:-10.41] 1.4×10-34 0.64[ 0.36: 0.92] 8.5×10-6 1.76[1.44:2.16] 4.3×10-8

Ile 2.20[ 0.13: 4.27] 3.7×10-2 0.03[-0.22: 0.28] 8.1×10-1 0.83[0.69:1.00] 5.3×10-2

Leu 5.37[ 3.34: 7.41] 3.0×10-7 -0.02[-0.28: 0.25] 9.1×10-1 0.76[0.63:0.91] 3.5×10-3

Val 8.79[ 6.83: 10.75] 1.2×10-17 -0.15[-0.44: 0.14] 3.0×10-1 0.74[0.62:0.89] 1.6×10-3

Phe -11.70[-13.54: -9.86] 4.4×10-32 0.44[ 0.18: 0.71] 1.3×10-3 1.32[1.08:1.60] 5.3×10-3

Alb 6.57[ 4.55: 8.58] 3.3×10-10 -0.67[-0.95:-0.40] 2.5×10-6 0.69[0.57:0.84] 1.4×10-4

Gp -3.63[ -5.72: -1.53] 7.4×10-4 0.15[-0.10: 0.41] 2.4×10-1 0.88[0.73:1.07] 2.1×10-1

XXL-VLDL-C-% -5.33[ -7.59: -3.07] 4.9×10-6 0.12[-0.14: 0.39] 3.7×10-1 1.21[0.97:1.50] 9.1×10-2

XXL-VLDL-FC-% -1.17[ -3.45: 1.11] 3.2×10-1 0.06[-0.21: 0.32] 6.7×10-1 1.02[0.81:1.28] 8.7×10-1

XXL-VLDL-TG-% 3.82[ 1.56: 6.08] 1.0×10-3 -0.21[-0.53: 0.10] 1.9×10-1 0.98[0.80:1.22] 8.8×10-1

M-VLDL-FC-% -0.64[ -2.74: 1.46] 5.5×10-1 0.34[ 0.08: 0.59] 1.1×10-2 0.98[0.81:1.17] 7.9×10-1

XS-VLDL-PL-% 4.40[ 2.37: 6.42] 2.4×10-5 -0.14[-0.39: 0.12] 3.0×10-1 1.06[0.88:1.27] 5.5×10-1

XS-VLDL-C-% 5.30[ 3.28: 7.31] 3.3×10-7 -0.64[-0.88:-0.39] 4.3×10-7 0.83[0.69:0.99] 4.4×10-2

XS-VLDL-CE-% 6.15[ 4.16: 8.15] 2.5×10-9 -0.70[-0.95:-0.46] 4.0×10-8 0.76[0.63:0.91] 2.8×10-3

XS-VLDL-TG-% -5.83[ -7.83: -3.83] 1.7×10-8 0.54[ 0.30: 0.79] 1.9×10-5 1.11[0.92:1.34] 2.7×10-1

IDL-PL-% -2.10[ -4.19: -0.02] 4.8×10-2 0.01[-0.24: 0.26] 9.5×10-1 1.12[0.93:1.35] 2.4×10-1

IDL-C-% 8.96[ 7.04: 10.89] 9.1×10-19 -0.66[-0.93:-0.39] 2.3×10-6 0.75[0.63:0.89] 1.4×10-3

IDL-CE-% 9.23[ 7.31: 11.15] 7.6×10-20 -0.69[-0.94:-0.43] 1.6×10-7 0.64[0.53:0.78] 6.6×10-6

IDL-TG-% -9.26[-11.18: -7.34] 6.2×10-20 0.74[ 0.48: 0.99] 3.4×10-8 1.32[1.10:1.59] 2.8×10-3

L-LDL-C-% 7.73[ 5.77: 9.69] 4.0×10-14 -0.50[-0.80:-0.21] 8.5×10-4 0.84[0.71:1.00] 5.6×10-2

L-LDL-CE-% 7.11[ 5.14: 9.09] 4.2×10-12 -0.42[-0.72:-0.12] 6.8×10-3 0.84[0.70:0.99] 4.1×10-2

L-LDL-FC-% 1.54[ -0.54: 3.62] 1.5×10-1 -0.27[-0.53:-0.01] 4.4×10-2 1.02[0.84:1.24] 8.4×10-1

L-LDL-TG-% -9.26[-11.19: -7.33] 8.9×10-20 0.68[ 0.42: 0.94] 5.0×10-7 1.36[1.13:1.63] 9.1×10-4

M-LDL-C-% 5.09[ 3.09: 7.10] 8.0×10-7 -0.29[-0.56:-0.02] 3.6×10-2 0.95[0.79:1.14] 5.7×10-1

M-LDL-CE-% 3.49[ 1.48: 5.51] 7.2×10-4 -0.21[-0.46: 0.05] 1.1×10-1 0.97[0.81:1.17] 7.6×10-1

M-LDL-TG-% -8.87[-10.81: -6.93] 3.7×10-18 0.64[ 0.38: 0.90] 2.2×10-6 1.36[1.13:1.64] 1.3×10-3

S-LDL-C-% 5.18[ 3.17: 7.18] 5.5×10-7 -0.22[-0.49: 0.05] 1.1×10-1 0.94[0.78:1.13] 5.1×10-1

S-LDL-CE-% 3.44[ 1.42: 5.46] 9.0×10-4 -0.17[-0.43: 0.08] 1.8×10-1 1.01[0.84:1.21] 9.5×10-1

S-LDL-TG-% -8.13[-10.10: -6.17] 2.5×10-15 0.57[ 0.30: 0.83] 2.8×10-5 1.29[1.07:1.56] 7.0×10-3

XL-HDL-PL-% -2.14[ -4.31: 0.03] 5.3×10-2 -0.09[-0.34: 0.16] 4.8×10-1 1.27[1.01:1.60] 4.2×10-2

XL-HDL-C-% 3.19[ 1.05: 5.34] 3.6×10-3 0.05[-0.21: 0.32] 7.0×10-1 0.81[0.66:0.99] 3.7×10-2

XL-HDL-CE-% 2.30[ 0.13: 4.46] 3.8×10-2 0.14[-0.12: 0.41] 2.9×10-1 0.82[0.67:1.01] 6.4×10-2

XL-HDL-TG-% -0.39[ -2.53: 1.74] 7.2×10-1 0.15[-0.10: 0.39] 2.4×10-1 0.93[0.77:1.14] 5.1×10-1

L-HDL-PL-% 0.84[ -1.26: 2.94] 4.3×10-1 0.03[-0.24: 0.31] 8.2×10-1 0.78[0.64:0.95] 1.6×10-2

L-HDL-C-% 2.81[ 0.74: 4.87] 7.9×10-3 -0.19[-0.46: 0.09] 1.9×10-1 1.04[0.86:1.26] 6.9×10-1

L-HDL-CE-% 2.92[ 0.87: 4.98] 5.4×10-3 -0.14[-0.42: 0.13] 3.1×10-1 0.98[0.81:1.18] 8.0×10-1

L-HDL-FC-% 2.69[ 0.62: 4.77] 1.1×10-2 -0.25[-0.53: 0.03] 7.7×10-2 1.14[0.93:1.40] 1.9×10-1

L-HDL-TG-% -6.58[ -8.60: -4.56] 3.6×10-10 0.23[-0.02: 0.48] 6.9×10-2 1.32[1.09:1.60] 4.5×10-3

M-HDL-PL-% -5.05[ -7.08: -3.02] 1.3×10-6 0.63[ 0.37: 0.88] 2.0×10-6 1.36[1.14:1.63] 7.9×10-4

M-HDL-C-% 5.44[ 3.41: 7.47] 2.0×10-7 -0.62[-0.87:-0.36] 3.0×10-6 0.74[0.62:0.88] 1.0×10-3

M-HDL-CE-% 4.90[ 2.85: 6.94] 3.3×10-6 -0.58[-0.83:-0.32] 1.0×10-5 0.74[0.61:0.88] 9.1×10-4

M-HDL-FC-% 5.84[ 3.80: 7.87] 2.8×10-8 -0.49[-0.77:-0.22] 4.0×10-4 0.82[0.68:0.98] 3.2×10-2

M-HDL-TG-% -4.75[ -6.80: -2.71] 6.2×10-6 0.44[ 0.18: 0.70] 1.0×10-3 1.19[0.99:1.44] 6.3×10-2

S-HDL-TG-% -5.59[ -7.61: -3.57] 8.6×10-8 0.51[ 0.26: 0.75] 5.1×10-5 1.22[1.02:1.47] 3.4×10-2

MUFA/FA -5.72[ -7.73: -3.70] 4.0×10-8 0.48[ 0.23: 0.73] 2.2×10-4 1.17[0.97:1.42] 1.1×10-1

SFA/FA 4.57[ 2.55: 6.59] 1.1×10-5 -0.25[-0.50:-0.00] 4.7×10-2 0.77[0.63:0.93] 7.7×10-3

HDL-D 2.02[ -0.12: 4.15] 6.4×10-2 -0.38[-0.64:-0.12] 4.5×10-3 1.11[0.92:1.35] 2.7×10-1
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Table C.2 Longitudinal associations of metabolites with eGFR. Longitudinal follow-ups of
estimated glomerular filtration rate (eGFR) and NMR metabolite measurements were
available for TwinsUK and YoungFinns. I regressed longitudinal trajectories of renal function
against the trajectories of metabolite levels. In contrast, only eGFR follow ups were available
for KORA and GenoDiabMar. For these cohorts, I predicted the longitudinal change of
eGFR based on baseline metabolite concentrations, correcting for baseline eGFR.

TwinsUK YoungFinns GenoDiabMar KORA
Metabolite

β [ 95 %CI ] p-value β [ 95 %CI ] p-value β [ 95 %CI ] p-value β [ 95 %CI ] p-value

Cit -0.04[-0.06:-0.02] 1.5×10-6 0.22[-0.01:0.45] 6.3×10-2 0.01[-0.02: 0.04] 7.0×10-1

XL-HDL-PL 0.04[ 0.02: 0.05] 1.3×10-5 0.00[-0.01: 0.01] 4.7×10-1 0.08[-0.16:0.31] 5.4×10-1 0.02[-0.01: 0.05] 2.2×10-1

XL-HDL-L 0.04[ 0.02: 0.05] 2.2×10-5 0.01[-0.00: 0.02] 2.1×10-1 0.06[-0.17:0.29] 6.1×10-1 0.02[-0.02: 0.05] 3.2×10-1

HDL2-C 0.04[ 0.02: 0.05] 4.2×10-5 -0.00[-0.01: 0.01] 6.1×10-1 0.12[-0.12:0.36] 3.4×10-1 0.02[-0.01: 0.05] 2.5×10-1

XL-HDL-P 0.03[ 0.02: 0.05] 6.9×10-5 0.01[-0.00: 0.02] 1.8×10-1 0.07[-0.16:0.31] 5.3×10-1 0.01[-0.02: 0.05] 3.8×10-1

L-HDL-L 0.03[ 0.02: 0.05] 9.0×10-5 0.01[-0.00: 0.02] 2.9×10-1 0.15[-0.09:0.39] 2.2×10-1 0.01[-0.02: 0.05] 3.9×10-1

L-HDL-C 0.03[ 0.02: 0.05] 9.9×10-5 0.01[-0.00: 0.01] 3.2×10-1 0.14[-0.09:0.38] 2.4×10-1 0.01[-0.02: 0.05] 4.0×10-1

L-HDL-CE 0.03[ 0.02: 0.05] 9.9×10-5 0.01[-0.00: 0.01] 3.2×10-1 0.14[-0.09:0.38] 2.3×10-1 0.01[-0.02: 0.04] 4.3×10-1

L-HDL-PL 0.03[ 0.02: 0.05] 1.0×10-4 0.00[-0.01: 0.01] 4.8×10-1 0.16[-0.08:0.40] 2.0×10-1 0.01[-0.02: 0.05] 3.6×10-1

HDL-C 0.03[ 0.02: 0.05] 1.1×10-4 -0.00[-0.01: 0.01] 6.4×10-1 0.11[-0.13:0.35] 3.8×10-1 0.01[-0.02: 0.04] 4.2×10-1

XL-HDL-C 0.03[ 0.02: 0.05] 1.2×10-4 0.01[-0.00: 0.02] 2.7×10-1 0.05[-0.18:0.28] 6.5×10-1 0.01[-0.02: 0.04] 5.6×10-1

XL-HDL-FC 0.03[ 0.02: 0.05] 1.3×10-4 0.00[-0.01: 0.01] 4.2×10-1 0.07[-0.17:0.30] 5.8×10-1

L-HDL-P 0.03[ 0.02: 0.05] 1.6×10-4 0.00[-0.01: 0.01] 4.5×10-1 0.16[-0.08:0.40] 2.0×10-1 0.01[-0.02: 0.05] 4.0×10-1

XL-HDL-CE 0.03[ 0.02: 0.05] 1.9×10-4 0.01[-0.00: 0.02] 2.6×10-1 0.05[-0.18:0.28] 6.5×10-1 0.01[-0.02: 0.04] 7.4×10-1

HDL-D 0.03[ 0.01: 0.05] 2.0×10-4 0.01[-0.00: 0.02] 8.7×10-2 0.13[-0.11:0.36] 2.9×10-1 0.02[-0.01: 0.05] 2.2×10-1

L-HDL-FC 0.03[ 0.02: 0.05] 2.2×10-4 0.00[-0.01: 0.01] 4.6×10-1 0.14[-0.10:0.37] 2.5×10-1 0.01[-0.02: 0.05] 3.6×10-1

L-HDL-C-% 0.03[ 0.01: 0.05] 4.9×10-4 0.01[-0.00: 0.02] 2.3×10-1 0.08[-0.13:0.29] 4.6×10-1 0.02[-0.01: 0.05] 2.8×10-1

M-HDL-CE-% 0.03[ 0.01: 0.04] 1.4×10-3 -0.00[-0.01: 0.01] 3.4×10-1 0.12[-0.11:0.34] 3.1×10-1 0.01[-0.02: 0.04] 4.2×10-1

L-HDL-PL-% -0.03[-0.04:-0.01] 1.8×10-3 -0.01[-0.02: 0.00] 1.1×10-1 -0.07[-0.29:0.15] 5.2×10-1 -0.01[-0.04: 0.02] 6.0×10-1

ApoA1 0.03[ 0.01: 0.05] 2.1×10-3 0.07[-0.17:0.31] 5.4×10-1 0.02[-0.01: 0.05] 1.7×10-1

S-HDL-TG-% -0.03[-0.04:-0.01] 2.6×10-3 0.01[-0.00: 0.02] 1.0×10-1 -0.12[-0.35:0.11] 3.0×10-1 -0.01[-0.04: 0.02] 6.3×10-1

Glol -0.02[-0.04:-0.01] 2.7×10-3 -0.01[-0.02:-0.00] 5.2×10-3 0.18[-0.18:0.54] 3.2×10-1 -0.01[-0.04: 0.03] 6.5×10-1

S-HDL-TG -0.02[-0.04:-0.01] 3.6×10-3 0.01[-0.00: 0.02] 1.3×10-1 -0.13[-0.35:0.08] 2.3×10-1 -0.01[-0.04: 0.02] 3.9×10-1

ApoB/ApoA1 -0.02[-0.04:-0.01] 4.6×10-3 -0.00[-0.01: 0.01] 8.0×10-1 -0.15[-0.37:0.08] 2.0×10-1 -0.01[-0.04: 0.02] 5.6×10-1

M-HDL-TG-% -0.02[-0.04:-0.01] 5.9×10-3 0.01[-0.00: 0.02] 2.2×10-1 -0.13[-0.35:0.09] 2.4×10-1 -0.00[-0.03: 0.03] 9.3×10-1

M-HDL-CE 0.02[ 0.01: 0.04] 7.1×10-3 0.00[-0.01: 0.01] 6.5×10-1 0.12[-0.13:0.36] 3.5×10-1 0.02[-0.01: 0.05] 1.5×10-1

M-HDL-C 0.02[ 0.01: 0.04] 7.7×10-3 0.00[-0.01: 0.01] 6.8×10-1 0.12[-0.13:0.36] 3.4×10-1 0.02[-0.01: 0.05] 1.6×10-1

XL-HDL-TG-% -0.02[-0.04:-0.01] 7.9×10-3 0.01[-0.00: 0.02] 9.2×10-2 -0.02[-0.26:0.22] 8.9×10-1 -0.01[-0.04: 0.02] 4.0×10-1

TG/PG -0.02[-0.04:-0.01] 9.8×10-3 0.00[-0.01: 0.01] 8.4×10-1 -0.14[-0.37:0.09] 2.3×10-1 -0.02[-0.05: 0.01] 2.1×10-1

S-VLDL-P -0.02[-0.04:-0.00] 1.1×10-2 -0.00[-0.01: 0.01] 5.6×10-1 -0.12[-0.35:0.10] 2.9×10-1 -0.01[-0.04: 0.02] 4.0×10-1

S-VLDL-TG -0.02[-0.04:-0.00] 1.1×10-2 -0.00[-0.01: 0.01] 6.2×10-1 -0.12[-0.34:0.11] 3.2×10-1 -0.02[-0.05: 0.01] 2.5×10-1

S-VLDL-L -0.02[-0.04:-0.00] 1.2×10-2 -0.01[-0.02: 0.00] 2.1×10-1 -0.14[-0.36:0.09] 2.4×10-1 -0.01[-0.04: 0.02] 4.2×10-1

S-VLDL-PL -0.02[-0.04:-0.00] 1.3×10-2 -0.01[-0.02: 0.00] 2.3×10-1 -0.14[-0.36:0.08] 2.2×10-1 -0.01[-0.04: 0.02] 5.3×10-1

M-VLDL-PL -0.02[-0.04:-0.00] 1.4×10-2 -0.00[-0.01: 0.01] 7.4×10-1 -0.10[-0.33:0.12] 3.6×10-1 -0.01[-0.04: 0.02] 3.8×10-1

XS-VLDL-TG -0.02[-0.04:-0.00] 1.4×10-2 -0.00[-0.01: 0.01] 9.7×10-1 -0.13[-0.37:0.10] 2.6×10-1 -0.01[-0.04: 0.02] 4.4×10-1

M-HDL-FC 0.02[ 0.00: 0.04] 1.4×10-2 0.12[-0.12:0.36] 3.3×10-1 0.02[-0.01: 0.05] 1.9×10-1

M-VLDL-P -0.02[-0.04:-0.00] 1.5×10-2 -0.00[-0.01: 0.01] 6.0×10-1 -0.10[-0.32:0.13] 3.9×10-1 -0.01[-0.04: 0.01] 3.2×10-1

S-VLDL-FC -0.02[-0.04:-0.00] 1.5×10-2 -0.01[-0.02: 0.00] 1.9×10-1 -0.13[-0.36:0.10] 2.6×10-1 -0.01[-0.04: 0.02] 3.8×10-1

M-VLDL-TG -0.02[-0.04:-0.00] 1.7×10-2 0.00[-0.01: 0.01] 7.5×10-1 -0.10[-0.32:0.13] 4.0×10-1 -0.02[-0.05: 0.01] 2.0×10-1

M-VLDL-L -0.02[-0.04:-0.00] 1.7×10-2 -0.00[-0.01: 0.01] 9.2×10-1 -0.10[-0.33:0.12] 3.7×10-1 -0.01[-0.04: 0.01] 3.4×10-1

M-VLDL-FC -0.02[-0.04:-0.00] 1.9×10-2 -0.00[-0.01: 0.01] 8.1×10-1 -0.10[-0.32:0.13] 3.9×10-1 -0.02[-0.05: 0.01] 2.7×10-1

M-HDL-L 0.02[ 0.00: 0.04] 1.9×10-2 0.10[-0.15:0.35] 4.3×10-1 0.03[-0.00: 0.05] 6.4×10-2

XS-VLDL-C-% 0.02[ 0.00: 0.04] 2.0×10-2 0.00[-0.01: 0.01] 8.5×10-1 0.03[-0.18:0.24] 7.7×10-1 0.01[-0.02: 0.04] 4.9×10-1

L-LDL-FC-% 0.02[ 0.00: 0.04] 2.4×10-2 -0.00[-0.01: 0.01] 5.0×10-1 0.15[-0.08:0.39] 1.9×10-1 0.00[-0.03: 0.03] 7.9×10-1

M-HDL-PL 0.02[ 0.00: 0.04] 2.4×10-2 0.09[-0.16:0.34] 4.7×10-1 0.02[-0.01: 0.05] 1.9×10-1

M-VLDL-C -0.02[-0.04:-0.00] 2.5×10-2 -0.00[-0.01: 0.01] 7.7×10-1 -0.10[-0.32:0.12] 3.8×10-1 -0.01[-0.04: 0.02] 5.4×10-1

L-VLDL-PL -0.02[-0.03:-0.00] 2.6×10-2 0.00[-0.01: 0.01] 9.9×10-1 -0.10[-0.33:0.12] 3.7×10-1 -0.00[-0.03: 0.03] 9.4×10-1

M-HDL-P 0.02[ 0.00: 0.04] 2.6×10-2 0.10[-0.15:0.35] 4.3×10-1 0.02[-0.01: 0.05] 1.3×10-1

L-VLDL-C -0.02[-0.03:-0.00] 2.7×10-2 0.00[-0.01: 0.01] 5.1×10-1 -0.10[-0.32:0.12] 3.7×10-1 -0.00[-0.03: 0.03] 8.9×10-1

L-VLDL-TG -0.02[-0.03:-0.00] 3.3×10-2 0.00[-0.01: 0.01] 5.6×10-1 -0.10[-0.32:0.13] 4.0×10-1 0.00[-0.03: 0.03] 8.2×10-1

L-VLDL-L -0.02[-0.03:-0.00] 3.3×10-2 0.00[-0.01: 0.01] 4.3×10-1 -0.10[-0.32:0.13] 3.9×10-1 -0.00[-0.03: 0.03] 9.9×10-1

S-VLDL-C -0.02[-0.03:-0.00] 3.4×10-2 -0.01[-0.02:-0.00] 1.5×10-2 -0.12[-0.35:0.10] 2.9×10-1 -0.01[-0.04: 0.02] 5.8×10-1

MUFA/FA -0.02[-0.03:-0.00] 4.0×10-2 -0.01[-0.02: 0.00] 2.7×10-1 -0.15[-0.38:0.08] 2.0×10-1 -0.02[-0.04: 0.01] 2.9×10-1

XS-VLDL-CE-% 0.02[ 0.00: 0.03] 4.2×10-2 0.00[-0.01: 0.01] 3.9×10-1 0.03[-0.17:0.24] 7.5×10-1 0.02[-0.01: 0.05] 1.7×10-1

M-VLDL-CE -0.02[-0.03:-0.00] 4.4×10-2 -0.00[-0.01: 0.01] 7.7×10-1 -0.10[-0.31:0.12] 3.9×10-1 -0.00[-0.03: 0.02] 7.9×10-1

VLDL-TG -0.02[-0.03:-0.00] 4.5×10-2 0.00[-0.01: 0.01] 7.6×10-1 -0.13[-0.35:0.09] 2.5×10-1 -0.02[-0.05: 0.01] 2.8×10-1

Serum-TG -0.02[-0.03: 0.00] 5.5×10-2 0.00[-0.01: 0.01] 8.4×10-1 -0.12[-0.34:0.10] 2.9×10-1 -0.01[-0.04: 0.02] 4.5×10-1

XS-VLDL-PL-% 0.02[-0.00: 0.03] 5.7×10-2 0.00[-0.01: 0.01] 6.3×10-1 0.05[-0.17:0.28] 6.4×10-1 0.00[-0.02: 0.03] 7.6×10-1

IDL-TG -0.02[-0.03: 0.00] 5.7×10-2 -0.12[-0.36:0.11] 3.1×10-1 -0.02[-0.04: 0.01] 2.8×10-1

VLDL-C -0.02[-0.03: 0.00] 5.8×10-2 -0.01[-0.02: 0.00] 2.9×10-1 -0.16[-0.38:0.06] 1.5×10-1 -0.00[-0.03: 0.02] 8.1×10-1

S-VLDL-CE -0.02[-0.03: 0.00] 7.6×10-2 -0.01[-0.02:-0.00] 1.1×10-2 -0.10[-0.32:0.12] 3.7×10-1 -0.00[-0.03: 0.02] 7.7×10-1

L-VLDL-FC -0.01[-0.03: 0.00] 8.4×10-2 0.00[-0.01: 0.01] 8.3×10-1 -0.10[-0.32:0.13] 4.1×10-1 -0.00[-0.03: 0.03] 9.7×10-1

Gp -0.01[-0.03: 0.00] 8.5×10-2 -0.11[-0.34:0.11] 3.3×10-1 -0.01[-0.04: 0.02] 4.6×10-1

XS-VLDL-TG-% -0.01[-0.03: 0.00] 8.9×10-2 0.00[-0.01: 0.01] 9.3×10-1 -0.02[-0.24:0.21] 8.8×10-1 -0.02[-0.05: 0.01] 1.7×10-1

M-LDL-TG -0.01[-0.03: 0.00] 9.3×10-2 -0.13[-0.35:0.09] 2.5×10-1 -0.01[-0.04: 0.02] 3.7×10-1

MUFA -0.01[-0.03: 0.00] 1.2×10-1 -0.00[-0.01: 0.01] 4.8×10-1 -0.15[-0.38:0.08] 1.9×10-1 -0.00[-0.03: 0.02] 7.5×10-1

IDL-TG-% -0.01[-0.03: 0.00] 1.3×10-1 -0.05[-0.29:0.19] 6.6×10-1 -0.02[-0.05: 0.01] 1.3×10-1
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XXL-VLDL-C-% -0.01[-0.03: 0.00] 1.6×10-1 -0.01[-0.02: 0.00] 6.5×10-2 0.07[-0.19:0.34] 5.9×10-1 -0.02[-0.05: 0.01] 1.1×10-1

L-LDL-TG -0.01[-0.03: 0.01] 1.7×10-1 -0.00[-0.01: 0.01] 3.8×10-1 -0.10[-0.32:0.13] 4.0×10-1 -0.01[-0.04: 0.02] 5.3×10-1

XS-VLDL-P -0.01[-0.03: 0.01] 1.7×10-1 -0.01[-0.02: 0.00] 1.9×10-1 -0.12[-0.35:0.11] 3.0×10-1 0.00[-0.03: 0.03] 9.9×10-1

M-LDL-TG-% -0.01[-0.03: 0.01] 1.9×10-1 -0.05[-0.29:0.20] 7.2×10-1 -0.01[-0.04: 0.02] 5.0×10-1

LDL-TG -0.01[-0.03: 0.01] 2.0×10-1 -0.11[-0.33:0.11] 3.3×10-1 -0.01[-0.04: 0.02] 4.7×10-1

XS-VLDL-L -0.01[-0.03: 0.01] 2.3×10-1 -0.01[-0.02: 0.00] 2.0×10-1 -0.13[-0.36:0.10] 2.8×10-1 -0.00[-0.03: 0.03] 9.8×10-1

XXL-VLDL-TG-% 0.01[-0.01: 0.03] 2.3×10-1 0.01[ 0.00: 0.02] 3.2×10-2 -0.01[-0.27:0.26] 9.5×10-1 0.02[-0.00: 0.05] 8.7×10-2

S-LDL-TG -0.01[-0.03: 0.01] 2.5×10-1 -0.13[-0.36:0.09] 2.5×10-1 -0.01[-0.04: 0.02] 4.0×10-1

L-LDL-TG-% -0.01[-0.03: 0.01] 2.9×10-1 -0.02[-0.26:0.22] 8.5×10-1 -0.01[-0.04: 0.02] 4.4×10-1

S-LDL-TG-% -0.01[-0.03: 0.01] 3.0×10-1 -0.01[-0.02: 0.00] 1.7×10-1 -0.08[-0.33:0.17] 5.4×10-1 -0.01[-0.04: 0.02] 4.0×10-1

Remnant-C -0.01[-0.03: 0.01] 3.1×10-1 -0.01[-0.02: 0.00] 1.6×10-1 -0.13[-0.36:0.10] 2.7×10-1 0.00[-0.02: 0.03] 8.2×10-1

S-LDL-C-% 0.01[-0.01: 0.02] 3.5×10-1 -0.07[-0.30:0.17] 5.7×10-1 -0.02[-0.04: 0.01] 2.6×10-1

IDL-PL-% 0.01[-0.01: 0.02] 3.5×10-1 0.16[-0.07:0.38] 1.7×10-1 0.00[-0.03: 0.03] 9.2×10-1

L-LDL-CE-% 0.01[-0.01: 0.03] 3.6×10-1 -0.10[-0.32:0.11] 3.5×10-1 0.00[-0.02: 0.03] 7.4×10-1

XS-VLDL-FC -0.01[-0.02: 0.01] 3.7×10-1 -0.01[-0.02: 0.00] 6.1×10-2 -0.11[-0.34:0.12] 3.6×10-1 -0.01[-0.04: 0.02] 5.5×10-1

Serum-C 0.01[-0.01: 0.03] 3.8×10-1 -0.01[-0.02: 0.00] 9.0×10-2 -0.04[-0.27:0.19] 7.2×10-1 0.01[-0.02: 0.03] 6.2×10-1

M-VLDL-FC-% -0.01[-0.02: 0.01] 3.8×10-1 -0.01[-0.02: 0.00] 7.9×10-2 -0.05[-0.26:0.16] 6.4×10-1 -0.02[-0.05: 0.01] 1.5×10-1

S-LDL-CE-% 0.01[-0.01: 0.02] 4.2×10-1 -0.07[-0.29:0.15] 5.1×10-1 -0.01[-0.04: 0.01] 3.5×10-1

Alb 0.01[-0.01: 0.02] 4.2×10-1 0.35[ 0.12:0.58] 3.4×10-3 0.01[-0.01: 0.04] 4.0×10-1

L-LDL-C-% 0.01[-0.01: 0.02] 4.3×10-1 -0.07[-0.30:0.15] 5.2×10-1 -0.00[-0.03: 0.02] 8.5×10-1

EstC 0.01[-0.01: 0.02] 4.4×10-1 -0.01[-0.02: 0.00] 7.4×10-2 -0.03[-0.26:0.21] 8.3×10-1 0.01[-0.02: 0.04] 5.2×10-1

M-LDL-PL -0.01[-0.02: 0.01] 4.5×10-1 -0.01[-0.02: 0.00] 3.0×10-1 -0.08[-0.31:0.15] 4.9×10-1 0.00[-0.02: 0.03] 8.8×10-1

XS-VLDL-PL -0.01[-0.02: 0.01] 4.7×10-1 -0.01[-0.02: 0.00] 2.2×10-1 -0.10[-0.33:0.13] 3.9×10-1 0.00[-0.02: 0.03] 8.4×10-1

IDL-C-% 0.01[-0.01: 0.02] 4.7×10-1 -0.03[-0.26:0.21] 8.2×10-1 0.02[-0.01: 0.05] 1.8×10-1

HDL-TG -0.01[-0.02: 0.01] 4.8×10-1 0.00[-0.01: 0.01] 5.1×10-1 -0.09[-0.32:0.14] 4.6×10-1 0.00[-0.02: 0.03] 7.7×10-1

XS-VLDL-C -0.01[-0.02: 0.01] 5.2×10-1 -0.10[-0.33:0.12] 3.7×10-1 0.00[-0.02: 0.03] 7.5×10-1

M-LDL-C-% 0.00[-0.01: 0.02] 5.6×10-1 -0.05[-0.27:0.17] 6.7×10-1 -0.02[-0.04: 0.01] 2.4×10-1

IDL-CE-% 0.00[-0.01: 0.02] 6.0×10-1 -0.04[-0.26:0.18] 7.3×10-1 0.03[ 0.00: 0.05] 4.9×10-2

M-LDL-L -0.00[-0.02: 0.01] 6.6×10-1 -0.00[-0.01: 0.01] 3.4×10-1 -0.07[-0.30:0.15] 5.3×10-1 -0.00[-0.03: 0.02] 7.7×10-1

IDL-FC 0.00[-0.01: 0.02] 6.8×10-1 -0.01[-0.02: 0.00] 2.5×10-1 -0.01[-0.25:0.22] 9.1×10-1 0.00[-0.02: 0.03] 7.6×10-1

XXL-VLDL-FC-% 0.00[-0.01: 0.02] 7.0×10-1 0.00[-0.01: 0.01] 4.6×10-1 -0.19[-0.46:0.08] 1.8×10-1 -0.01[-0.04: 0.01] 3.3×10-1

M-LDL-FC -0.00[-0.02: 0.01] 7.1×10-1 -0.01[-0.02: 0.00] 3.0×10-1 -0.06[-0.29:0.17] 6.2×10-1 -0.00[-0.03: 0.02] 8.9×10-1

S-LDL-PL 0.00[-0.01: 0.02] 7.4×10-1 -0.00[-0.01: 0.01] 5.1×10-1 -0.07[-0.30:0.16] 5.6×10-1 0.00[-0.02: 0.03] 8.3×10-1

L-LDL-FC 0.00[-0.01: 0.02] 7.6×10-1 -0.00[-0.01: 0.00] 3.3×10-1 -0.01[-0.25:0.22] 9.2×10-1 0.00[-0.02: 0.03] 8.6×10-1

L-LDL-P -0.00[-0.02: 0.02] 8.2×10-1 -0.00[-0.01: 0.01] 5.0×10-1 -0.04[-0.27:0.19] 7.4×10-1 0.00[-0.02: 0.03] 7.6×10-1

S-LDL-FC 0.00[-0.02: 0.02] 8.3×10-1 -0.01[-0.02: 0.00] 1.9×10-1 -0.05[-0.28:0.18] 6.7×10-1 -0.00[-0.03: 0.02] 7.2×10-1

M-LDL-C -0.00[-0.02: 0.02] 8.4×10-1 -0.01[-0.02: 0.00] 2.3×10-1 -0.05[-0.28:0.18] 6.7×10-1 -0.00[-0.03: 0.02] 8.2×10-1

IDL-C 0.00[-0.02: 0.02] 8.5×10-1 -0.01[-0.02: 0.00] 1.1×10-1 -0.03[-0.27:0.20] 7.8×10-1 0.01[-0.02: 0.03] 6.2×10-1

M-LDL-CE -0.00[-0.02: 0.02] 8.7×10-1 -0.01[-0.02: 0.00] 2.2×10-1 -0.04[-0.27:0.18] 7.1×10-1 -0.00[-0.03: 0.02] 8.4×10-1

LDL-C 0.00[-0.02: 0.02] 9.0×10-1 -0.01[-0.02: 0.00] 2.5×10-1 -0.09[-0.32:0.14] 4.5×10-1 -0.00[-0.03: 0.02] 8.5×10-1

M-LDL-CE-% -0.00[-0.02: 0.02] 9.1×10-1 -0.04[-0.26:0.17] 7.0×10-1 -0.01[-0.04: 0.02] 4.8×10-1

L-LDL-CE -0.00[-0.02: 0.02] 9.3×10-1 -0.01[-0.02: 0.00] 2.4×10-1 -0.05[-0.28:0.18] 6.9×10-1 0.00[-0.02: 0.03] 8.6×10-1

IDL-P -0.00[-0.02: 0.02] 9.3×10-1 -0.01[-0.02: 0.00] 2.6×10-1 -0.07[-0.30:0.15] 5.3×10-1 0.00[-0.02: 0.03] 8.1×10-1

S-LDL-L 0.00[-0.02: 0.02] 9.5×10-1 -0.01[-0.02: 0.00] 2.6×10-1 -0.06[-0.29:0.16] 5.9×10-1 -0.00[-0.03: 0.02] 8.1×10-1

IDL-L 0.00[-0.02: 0.02] 9.6×10-1 -0.01[-0.02: 0.00] 2.3×10-1 -0.07[-0.30:0.16] 5.6×10-1 0.00[-0.02: 0.03] 7.9×10-1

S-LDL-CE -0.00[-0.02: 0.02] 9.6×10-1 -0.01[-0.02: 0.00] 1.3×10-1 -0.03[-0.26:0.19] 7.7×10-1 -0.00[-0.03: 0.02] 8.9×10-1

L-LDL-L -0.00[-0.02: 0.02] 9.6×10-1 -0.00[-0.01: 0.01] 3.4×10-1 -0.05[-0.28:0.18] 6.6×10-1 0.00[-0.03: 0.03] 9.5×10-1

L-LDL-C 0.00[-0.02: 0.02] 9.6×10-1 -0.01[-0.02: 0.00] 2.5×10-1 -0.04[-0.27:0.19] 7.1×10-1 0.00[-0.02: 0.03] 9.0×10-1

IDL-CE 0.00[-0.02: 0.02] 9.7×10-1 -0.01[-0.02: 0.00] 7.9×10-2 -0.04[-0.27:0.20] 7.6×10-1 0.01[-0.02: 0.04] 5.1×10-1

IDL-PL -0.00[-0.02: 0.02] 9.8×10-1 -0.01[-0.02: 0.00] 3.0×10-1 -0.03[-0.26:0.20] 7.9×10-1 0.00[-0.02: 0.03] 7.3×10-1

S-LDL-C 0.00[-0.02: 0.02] 9.8×10-1 -0.01[-0.02: 0.00] 1.4×10-1 -0.04[-0.27:0.19] 7.3×10-1 -0.00[-0.03: 0.02] 8.3×10-1

L-LDL-PL -0.00[-0.02: 0.02] 9.8×10-1 -0.01[-0.02: 0.00] 1.9×10-1 -0.03[-0.27:0.20] 8.0×10-1 0.01[-0.02: 0.03] 6.6×10-1

M-HDL-FC-% 0.15[-0.09:0.40] 2.3×10-1 0.01[-0.02: 0.04] 3.5×10-1

M-HDL-C-% 0.14[-0.09:0.36] 2.4×10-1 0.01[-0.02: 0.04] 4.6×10-1

XL-HDL-PL-% 0.14[-0.10:0.39] 2.6×10-1 0.04[ 0.01: 0.07] 3.7×10-3

Val 0.12[-0.11:0.36] 3.1×10-1 0.00[-0.03: 0.03] 9.1×10-1

Ala 0.12[-0.11:0.35] 3.2×10-1 0.00[-0.03: 0.03] 9.1×10-1

L-VLDL-CE -0.11[-0.33:0.11] 3.4×10-1 -0.00[-0.03: 0.03] 8.8×10-1

L-HDL-FC-% 0.10[-0.11:0.30] 3.6×10-1 0.02[-0.01: 0.05] 1.9×10-1

XL-HDL-C-% -0.11[-0.36:0.14] 3.8×10-1 -0.04[-0.07:-0.01] 1.1×10-2

XL-VLDL-CE -0.10[-0.32:0.12] 3.8×10-1 -0.01[-0.03: 0.02] 7.2×10-1

XL-VLDL-C -0.10[-0.32:0.13] 3.9×10-1 -0.00[-0.03: 0.02] 7.8×10-1

Phe -0.11[-0.36:0.14] 4.0×10-1 -0.02[-0.05: 0.01] 2.4×10-1

M-HDL-PL-% -0.10[-0.33:0.14] 4.2×10-1 -0.03[-0.05: 0.00] 6.8×10-2

L-HDL-CE-% 0.06[-0.15:0.27] 5.5×10-1 0.01[-0.02: 0.04] 4.6×10-1

XL-HDL-CE-% -0.07[-0.32:0.18] 6.0×10-1 -0.05[-0.07:-0.02] 2.1×10-3

Leu 0.05[-0.19:0.28] 7.0×10-1 -0.01[-0.04: 0.03] 7.4×10-1

SFA/FA 0.04[-0.17:0.25] 7.1×10-1 0.01[-0.02: 0.03] 5.9×10-1

XXL-VLDL-C -0.04[-0.27:0.19] 7.5×10-1 -0.00[-0.03: 0.03] 9.8×10-1

Pyr -0.03[-0.25:0.19] 7.9×10-1 0.01[-0.01: 0.04] 3.3×10-1

L-HDL-TG-% -0.02[-0.24:0.21] 8.8×10-1 -0.01[-0.04: 0.01] 3.7×10-1

XXL-VLDL-CE -0.01[-0.24:0.21] 9.2×10-1 0.00[-0.03: 0.03] 9.1×10-1

Ile 0.01[-0.21:0.24] 9.2×10-1 -0.00[-0.04: 0.03] 8.9×10-1

Gly 0.01[-0.24:0.25] 9.6×10-1 -0.04[-0.07:-0.01] 2.1×10-2

Lac -0.00[-0.21:0.21] 9.9×10-1 0.01[-0.02: 0.04] 6.5×10-1



Table C.3 Associations of NMR metabolite with renal function. I regressed 227 metabolic traits against the estimated glomerular filtration rate (eGFR) in three cohorts of type 2
diabetics and three cohorts of non-diabetics. Fixed effect inverse meta-analysis was used to combine results for both groups.

Diabetics Non-Diabetics
ID Metabolite GDM TwinsUK KORA Meta TwinsUK KORA YoungFinns Meta

β [ 95 %CI ] p β [ 95 %CI ] p β [ 95 %CI ] p β [ 95 %CI ] p β [ 95 %CI ] p β [ 95 %CI ] p β [ 95 %CI ] p β [ 95 %CI ] p

XXL-VLDL-P Concentration of chylomicrons and extremely large VLDL particles 1.74[ -0.33: 3.82] 1.0×10-1 1.57[-1.27: 4.40] 2.8×10-1 -1.53[-4.14: 1.09] 2.5×10-1 0.75[-0.66: 2.16] 3.0×10-1 -0.84[-1.59:-0.09] 2.9×10-2 -0.49[-1.12: 0.14] 1.3×10-1 -0.02[-0.59: 0.56] 9.5×10-1 -0.38[-0.75:-0.01] 4.5×10-2

XXL-VLDL-L Total lipids in chylomicrons and extremely large VLDL 1.69[ -0.39: 3.76] 1.1×10-1 1.55[-1.28: 4.39] 2.8×10-1 -1.59[-4.20: 1.03] 2.4×10-1 0.70[-0.71: 2.11] 3.3×10-1 -0.85[-1.60:-0.10] 2.7×10-2 -0.50[-1.13: 0.13] 1.2×10-1 -0.05[-0.62: 0.53] 8.7×10-1 -0.40[-0.77:-0.03] 3.5×10-2

XXL-VLDL-PL Phospholipids in chylomicrons and extremely large VLDL 1.50[ -0.57: 3.58] 1.6×10-1 1.46[-1.38: 4.31] 3.1×10-1 -1.69[-4.29: 0.92] 2.1×10-1 0.56[-0.85: 1.97] 4.4×10-1 -0.49[-1.24: 0.26] 2.0×10-1 -0.54[-1.17: 0.09] 9.3×10-2 -0.06[-0.63: 0.51] 8.5×10-1 -0.33[-0.69: 0.04] 8.3×10-2

XXL-VLDL-C Total cholesterol in chylomicrons and extremely large VLDL 0.10[ -1.98: 2.17] 9.3×10-1 1.21[-1.59: 4.00] 4.0×10-1 -1.93[-4.54: 0.67] 1.5×10-1 -0.21[-1.62: 1.19] 7.7×10-1 -1.09[-1.84:-0.35] 4.1×10-3 -0.74[-1.36:-0.11] 2.1×10-2 -0.32[-0.89: 0.25] 2.7×10-1 -0.65[-1.02:-0.28] 5.2×10-4

XXL-VLDL-CE Cholesterol esters in chylomicrons and extremely large VLDL -0.41[ -2.48: 1.67] 7.0×10-1 1.28[-1.47: 4.02] 3.6×10-1 -1.83[-4.43: 0.77] 1.7×10-1 -0.38[-1.78: 1.02] 5.9×10-1 -1.05[-1.80:-0.31] 5.5×10-3 -0.67[-1.29:-0.05] 3.5×10-2 -0.42[-0.99: 0.14] 1.4×10-1 -0.66[-1.02:-0.29] 3.9×10-4

XXL-VLDL-FC Free cholesterol in chylomicrons and extremely large VLDL 0.90[ -1.18: 2.98] 4.0×10-1 1.03[-1.82: 3.87] 4.8×10-1 -2.00[-4.60: 0.61] 1.3×10-1 0.08[-1.33: 1.49] 9.1×10-1 -0.63[-1.38: 0.12] 1.0×10-1 -0.59[-1.22: 0.04] 6.9×10-2 -0.10[-0.67: 0.48] 7.4×10-1 -0.39[-0.76:-0.02] 3.7×10-2

XXL-VLDL-TG Triglycerides in chylomicrons and extremely large VLDL 2.00[ -0.07: 4.08] 5.9×10-2 1.62[-1.22: 4.46] 2.6×10-1 -1.45[-4.07: 1.17] 2.8×10-1 0.90[-0.51: 2.32] 2.1×10-1 -0.77[-1.52:-0.02] 4.5×10-2 -0.46[-1.09: 0.17] 1.5×10-1 0.03[-0.55: 0.60] 9.3×10-1 -0.33[-0.70: 0.04] 7.7×10-2

XL-VLDL-P Concentration of very large VLDL particles 0.59[ -1.49: 2.67] 5.8×10-1 1.37[-1.49: 4.23] 3.5×10-1 -2.01[-4.61: 0.59] 1.3×10-1 0.01[-1.40: 1.43] 9.8×10-1 -0.75[-1.51: 0.01] 5.2×10-2 -0.68[-1.31:-0.04] 3.7×10-2 -0.20[-0.78: 0.38] 4.9×10-1 -0.50[-0.87:-0.13] 8.7×10-3

XL-VLDL-L Total lipids in very large VLDL 0.68[ -1.40: 2.76] 5.2×10-1 1.38[-1.48: 4.24] 3.4×10-1 -2.07[-4.67: 0.53] 1.2×10-1 0.04[-1.37: 1.45] 9.6×10-1 -0.77[-1.52:-0.01] 4.7×10-2 -0.72[-1.36:-0.08] 2.7×10-2 -0.24[-0.83: 0.34] 4.2×10-1 -0.54[-0.91:-0.16] 5.1×10-3

XL-VLDL-PL Phospholipids in very large VLDL 0.88[ -1.19: 2.96] 4.0×10-1 1.27[-1.57: 4.11] 3.8×10-1 -1.93[-4.53: 0.67] 1.5×10-1 0.15[-1.26: 1.56] 8.3×10-1 -0.72[-1.47: 0.03] 6.2×10-2 -0.67[-1.30:-0.03] 3.9×10-2 -0.16[-0.74: 0.42] 6.0×10-1 -0.47[-0.84:-0.10] 1.3×10-2

XL-VLDL-C Total cholesterol in very large VLDL 0.22[ -1.85: 2.30] 8.3×10-1 0.96[-1.86: 3.78] 5.0×10-1 -2.13[-4.73: 0.47] 1.1×10-1 -0.28[-1.69: 1.12] 6.9×10-1 -1.23[-1.98:-0.48] 1.3×10-3 -0.81[-1.44:-0.17] 1.3×10-2 -0.33[-0.91: 0.24] 2.6×10-1 -0.71[-1.08:-0.34] 1.5×10-4

XL-VLDL-CE Cholesterol esters in very large VLDL -0.36[ -2.43: 1.71] 7.4×10-1 0.91[-1.90: 3.73] 5.2×10-1 -2.23[-4.83: 0.37] 9.5×10-2 -0.59[-1.99: 0.82] 4.1×10-1 -1.29[-2.04:-0.54] 7.3×10-4 -0.86[-1.49:-0.23] 7.6×10-3 -0.36[-0.93: 0.21] 2.2×10-1 -0.76[-1.13:-0.39] 5.8×10-5

XL-VLDL-FC Free cholesterol in very large VLDL 0.89[ -1.18: 2.97] 4.0×10-1 0.98[-1.85: 3.81] 5.0×10-1 -1.98[-4.59: 0.62] 1.4×10-1 0.07[-1.33: 1.48] 9.2×10-1 -0.73[-1.48: 0.01] 5.4×10-2 -0.69[-1.32:-0.06] 3.3×10-2 -0.25[-0.83: 0.33] 3.9×10-1 -0.52[-0.89:-0.15] 6.0×10-3

XL-VLDL-TG Triglycerides in very large VLDL 0.69[ -1.39: 2.77] 5.1×10-1 1.49[-1.38: 4.36] 3.1×10-1 -2.03[-4.63: 0.57] 1.3×10-1 0.08[-1.33: 1.49] 9.1×10-1 -0.73[-1.49: 0.03] 6.0×10-2 -0.72[-1.36:-0.08] 2.7×10-2 -0.19[-0.78: 0.39] 5.2×10-1 -0.51[-0.88:-0.13] 8.3×10-3

L-VLDL-P Concentration of large VLDL particles -0.25[ -2.32: 1.83] 8.2×10-1 1.94[-0.98: 4.85] 1.9×10-1 -2.16[-4.76: 0.44] 1.0×10-1 -0.30[-1.72: 1.12] 6.8×10-1 -0.75[-1.52: 0.02] 5.6×10-2 -0.75[-1.39:-0.11] 2.1×10-2 -0.34[-0.92: 0.24] 2.5×10-1 -0.58[-0.96:-0.20] 2.5×10-3

L-VLDL-L Total lipids in large VLDL 0.06[ -2.02: 2.14] 9.5×10-1 2.08[-0.84: 5.00] 1.6×10-1 -2.46[-5.04: 0.11] 6.3×10-2 -0.22[-1.64: 1.19] 7.6×10-1 -1.03[-1.80:-0.25] 9.2×10-3 -0.94[-1.58:-0.29] 4.5×10-3 -0.28[-0.88: 0.31] 3.5×10-1 -0.69[-1.07:-0.31] 3.7×10-4

L-VLDL-PL Phospholipids in large VLDL -0.14[ -2.22: 1.94] 8.9×10-1 1.99[-0.91: 4.89] 1.8×10-1 -2.21[-4.81: 0.39] 9.7×10-2 -0.25[-1.67: 1.17] 7.3×10-1 -1.10[-1.87:-0.33] 4.9×10-3 -0.85[-1.49:-0.20] 9.9×10-3 -0.40[-0.99: 0.18] 1.8×10-1 -0.72[-1.10:-0.35] 1.7×10-4

L-VLDL-C Total cholesterol in large VLDL -0.48[ -2.55: 1.60] 6.5×10-1 1.80[-1.07: 4.68] 2.2×10-1 -2.42[-5.01: 0.18] 7.0×10-2 -0.50[-1.92: 0.91] 4.8×10-1 -1.12[-1.89:-0.36] 4.0×10-3 -0.94[-1.58:-0.30] 4.0×10-3 -0.42[-1.00: 0.17] 1.6×10-1 -0.77[-1.14:-0.39] 6.1×10-5

L-VLDL-CE Cholesterol esters in large VLDL -0.92[ -3.00: 1.15] 3.8×10-1 1.87[-1.00: 4.73] 2.0×10-1 -2.44[-5.04: 0.16] 6.7×10-2 -0.70[-2.11: 0.71] 3.3×10-1 -1.08[-1.85:-0.31] 5.7×10-3 -0.97[-1.60:-0.33] 2.8×10-3 -0.40[-0.98: 0.18] 1.8×10-1 -0.76[-1.13:-0.38] 7.1×10-5

L-VLDL-FC Free cholesterol in large VLDL -0.08[ -2.16: 1.99] 9.4×10-1 1.62[-1.26: 4.51] 2.7×10-1 -2.31[-4.91: 0.28] 8.2×10-2 -0.34[-1.75: 1.08] 6.4×10-1 -0.78[-1.54:-0.03] 4.3×10-2 -0.83[-1.47:-0.19] 1.1×10-2 -0.41[-0.99: 0.17] 1.7×10-1 -0.64[-1.02:-0.27] 7.2×10-4

L-VLDL-TG Triglycerides in large VLDL 0.07[ -2.01: 2.15] 9.5×10-1 2.05[-0.88: 4.99] 1.7×10-1 -2.19[-4.79: 0.41] 1.0×10-1 -0.14[-1.56: 1.28] 8.5×10-1 -1.02[-1.80:-0.25] 9.5×10-3 -0.88[-1.53:-0.24] 7.6×10-3 -0.25[-0.84: 0.35] 4.2×10-1 -0.65[-1.03:-0.27] 7.6×10-4

M-VLDL-P Concentration of medium VLDL particles -0.96[ -3.03: 1.11] 3.6×10-1 2.23[-0.69: 5.16] 1.3×10-1 -2.69[-5.26:-0.11] 4.2×10-2 -0.74[-2.15: 0.68] 3.1×10-1 -1.15[-1.92:-0.38] 3.3×10-3 -1.25[-1.90:-0.60] 1.7×10-4 -0.52[-1.11: 0.07] 8.2×10-2 -0.92[-1.30:-0.54] 1.8×10-6

M-VLDL-L Total lipids in medium VLDL -0.50[ -2.57: 1.57] 6.3×10-1 2.49[-0.44: 5.42] 9.6×10-2 -2.68[-5.26:-0.11] 4.3×10-2 -0.47[-1.88: 0.95] 5.2×10-1 -1.05[-1.82:-0.28] 7.3×10-3 -1.25[-1.90:-0.60] 1.8×10-4 -0.55[-1.16: 0.05] 7.2×10-2 -0.92[-1.30:-0.54] 2.6×10-6

M-VLDL-PL Phospholipids in medium VLDL -0.75[ -2.82: 1.32] 4.8×10-1 2.34[-0.56: 5.23] 1.1×10-1 -2.72[-5.28:-0.15] 3.9×10-2 -0.62[-2.02: 0.79] 3.9×10-1 -1.14[-1.90:-0.37] 3.6×10-3 -1.25[-1.90:-0.60] 1.6×10-4 -0.55[-1.14: 0.04] 7.0×10-2 -0.93[-1.31:-0.55] 1.4×10-6

M-VLDL-C Total cholesterol in medium VLDL -0.77[ -2.84: 1.30] 4.6×10-1 2.49[-0.32: 5.29] 8.2×10-2 -2.56[-5.12:-0.00] 5.1×10-2 -0.50[-1.89: 0.90] 4.8×10-1 -0.98[-1.73:-0.23] 1.1×10-2 -1.13[-1.76:-0.49] 5.3×10-4 -0.60[-1.18:-0.01] 4.5×10-2 -0.87[-1.25:-0.50] 4.4×10-6

M-VLDL-CE Cholesterol esters in medium VLDL -0.55[ -2.62: 1.52] 6.0×10-1 2.46[-0.28: 5.19] 7.8×10-2 -2.33[-4.88: 0.22] 7.5×10-2 -0.30[-1.69: 1.08] 6.7×10-1 -0.82[-1.57:-0.08] 2.9×10-2 -0.92[-1.55:-0.30] 3.8×10-3 -0.52[-1.09: 0.06] 7.7×10-2 -0.73[-1.10:-0.37] 9.0×10-5

M-VLDL-FC Free cholesterol in medium VLDL -1.07[ -3.14: 1.00] 3.1×10-1 2.22[-0.67: 5.11] 1.3×10-1 -2.78[-5.35:-0.21] 3.5×10-2 -0.80[-2.21: 0.60] 2.6×10-1 -1.15[-1.91:-0.38] 3.2×10-3 -1.34[-1.99:-0.69] 5.2×10-5 -0.55[-1.14: 0.04] 6.6×10-2 -0.97[-1.34:-0.59] 5.3×10-7

M-VLDL-TG Triglycerides in medium VLDL -0.66[ -2.73: 1.41] 5.3×10-1 2.23[-0.76: 5.22] 1.4×10-1 -2.76[-5.34:-0.18] 3.8×10-2 -0.64[-2.06: 0.78] 3.8×10-1 -1.11[-1.89:-0.34] 5.0×10-3 -1.29[-1.94:-0.63] 1.2×10-4 -0.42[-1.02: 0.19] 1.8×10-1 -0.89[-1.27:-0.50] 6.3×10-6

S-VLDL-P Concentration of small VLDL particles -1.92[ -3.97: 0.14] 6.8×10-2 2.43[-0.41: 5.28] 9.4×10-2 -3.00[-5.58:-0.42] 2.4×10-2 -1.18[-2.58: 0.22] 9.8×10-2 -1.16[-1.92:-0.39] 3.0×10-3 -1.54[-2.18:-0.89] 3.2×10-6 -0.98[-1.57:-0.38] 1.3×10-3 -1.22[-1.59:-0.84] 3.5×10-10

S-VLDL-L Total lipids in small VLDL -1.44[ -3.50: 0.62] 1.7×10-1 2.43[-0.40: 5.27] 9.2×10-2 -2.98[-5.56:-0.40] 2.5×10-2 -0.95[-2.35: 0.45] 1.8×10-1 -1.09[-1.85:-0.33] 5.1×10-3 -1.53[-2.17:-0.89] 3.3×10-6 -1.14[-1.74:-0.53] 2.2×10-4 -1.26[-1.64:-0.88] 8.0×10-11

S-VLDL-PL Phospholipids in small VLDL -1.78[ -3.84: 0.28] 9.1×10-2 2.39[-0.45: 5.22] 9.9×10-2 -3.00[-5.58:-0.41] 2.4×10-2 -1.12[-2.52: 0.28] 1.2×10-1 -1.10[-1.86:-0.33] 5.0×10-3 -1.52[-2.16:-0.88] 3.3×10-6 -1.20[-1.79:-0.60] 8.0×10-5 -1.29[-1.66:-0.91] 2.6×10-11

S-VLDL-C Total cholesterol in small VLDL -0.89[ -2.95: 1.17] 4.0×10-1 2.43[-0.26: 5.12] 7.6×10-2 -2.59[-5.17:-0.01] 5.1×10-2 -0.50[-1.88: 0.88] 4.8×10-1 -0.81[-1.55:-0.07] 3.2×10-2 -1.37[-2.00:-0.75] 1.8×10-5 -1.36[-1.95:-0.77] 5.9×10-6 -1.23[-1.60:-0.86] 8.8×10-11

S-VLDL-CE Cholesterol esters in small VLDL -0.18[ -2.25: 1.88] 8.6×10-1 2.29[-0.37: 4.94] 9.2×10-2 -2.10[-4.67: 0.48] 1.1×10-1 -0.07[-1.44: 1.31] 9.2×10-1 -0.62[-1.35: 0.11] 9.5×10-2 -1.19[-1.81:-0.57] 1.6×10-4 -1.33[-1.91:-0.75] 7.0×10-6 -1.11[-1.47:-0.74] 3.2×10-9

S-VLDL-FC Free cholesterol in small VLDL -1.97[ -4.03: 0.09] 6.1×10-2 2.47[-0.32: 5.25] 8.2×10-2 -3.05[-5.63:-0.47] 2.2×10-2 -1.17[-2.56: 0.22] 1.0×10-1 -1.09[-1.85:-0.34] 4.4×10-3 -1.56[-2.19:-0.92] 1.7×10-6 -1.24[-1.82:-0.65] 4.1×10-5 -1.31[-1.69:-0.94] 6.6×10-12

S-VLDL-TG Triglycerides in small VLDL -1.99[ -4.04: 0.07] 5.9×10-2 2.12[-0.84: 5.08] 1.6×10-1 -3.12[-5.70:-0.54] 1.9×10-2 -1.39[-2.80: 0.02] 5.4×10-2 -1.26[-2.04:-0.49] 1.4×10-3 -1.57[-2.22:-0.91] 2.8×10-6 -0.85[-1.45:-0.25] 5.4×10-3 -1.20[-1.58:-0.81] 9.4×10-10

XS-VLDL-P Concentration of very small VLDL particles 0.21[ -1.86: 2.28] 8.4×10-1 2.45[-0.15: 5.04] 6.5×10-2 -2.11[-4.69: 0.47] 1.1×10-1 0.18[-1.19: 1.55] 8.0×10-1 -0.55[-1.28: 0.18] 1.4×10-1 -1.28[-1.89:-0.68] 3.4×10-5 -1.03[-1.58:-0.47] 2.9×10-4 -1.00[-1.36:-0.64] 3.8×10-8

XS-VLDL-L Total lipids in very small VLDL 0.79[ -1.28: 2.86] 4.6×10-1 2.27[-0.32: 4.86] 8.6×10-2 -1.76[-4.34: 0.82] 1.8×10-1 0.48[-0.89: 1.85] 4.9×10-1 -0.49[-1.22: 0.24] 1.9×10-1 -1.20[-1.80:-0.59] 1.1×10-4 -1.03[-1.58:-0.47] 2.9×10-4 -0.96[-1.31:-0.60] 1.4×10-7

XS-VLDL-PL Phospholipids in very small VLDL 1.60[ -0.46: 3.66] 1.3×10-1 2.36[-0.24: 4.97] 7.5×10-2 -0.86[-3.47: 1.75] 5.2×10-1 1.13[-0.24: 2.51] 1.1×10-1 -0.20[-0.93: 0.53] 5.9×10-1 -0.85[-1.45:-0.25] 5.8×10-3 -0.81[-1.35:-0.27] 3.2×10-3 -0.68[-1.04:-0.33] 1.4×10-4

XS-VLDL-C Total cholesterol in very small VLDL 2.40[ 0.33: 4.46] 2.3×10-2 1.90[-0.70: 4.50] 1.5×10-1 -0.41[-2.97: 2.16] 7.6×10-1 1.46[ 0.10: 2.83] 3.6×10-2 -0.30[-1.03: 0.43] 4.2×10-1 -0.84[-1.44:-0.24] 5.9×10-3 -0.86[-1.40:-0.33] 1.6×10-3 -0.73[-1.08:-0.38] 4.8×10-5

XS-VLDL-CE Cholesterol esters in very small VLDL 3.38[ 1.32: 5.43] 1.4×10-3 1.91[-0.71: 4.52] 1.5×10-1 0.17[-2.40: 2.74] 9.0×10-1 2.07[ 0.70: 3.43] 3.1×10-3 -0.22[-0.95: 0.51] 5.5×10-1 -0.68[-1.28:-0.07] 2.8×10-2 -0.67[-1.20:-0.14] 1.4×10-2 -0.57[-0.92:-0.22] 1.5×10-3

XS-VLDL-FC Free cholesterol in very small VLDL 0.05[ -2.01: 2.12] 9.6×10-1 1.88[-0.69: 4.46] 1.5×10-1 -1.58[-4.15: 0.99] 2.3×10-1 0.11[-1.26: 1.47] 8.8×10-1 -0.47[-1.20: 0.26] 2.1×10-1 -1.13[-1.73:-0.53] 2.2×10-4 -1.18[-1.72:-0.64] 2.0×10-5 -1.00[-1.35:-0.65] 2.6×10-8

XS-VLDL-TG Triglycerides in very small VLDL -3.13[ -5.18: -1.09] 2.8×10-3 2.46[-0.33: 5.26] 8.4×10-2 -3.52[-6.08:-0.96] 7.9×10-3 -1.87[-3.25:-0.48] 8.5×10-3 -1.20[-1.95:-0.44] 1.9×10-3 -1.72[-2.35:-1.10] 8.0×10-8 -1.08[-1.65:-0.50] 2.6×10-4 -1.33[-1.70:-0.96] 1.8×10-12

IDL-P Concentration of IDL particles 5.25[ 3.22: 7.28] 5.2×10-7 2.38[-0.25: 5.00] 7.6×10-2 0.13[-2.47: 2.74] 9.2×10-1 3.06[ 1.70: 4.43] 1.1×10-5 -0.04[-0.78: 0.70] 9.1×10-1 -0.25[-0.86: 0.35] 4.1×10-1 -0.45[-0.98: 0.08] 9.6×10-2 -0.29[-0.64: 0.06] 1.0×10-1

IDL-L Total lipids in IDL 5.70[ 3.68: 7.72] 4.5×10-8 2.33[-0.30: 4.97] 8.2×10-2 0.35[-2.25: 2.95] 7.9×10-1 3.33[ 1.96: 4.69] 1.8×10-6 0.01[-0.73: 0.75] 9.8×10-1 -0.18[-0.78: 0.43] 5.7×10-1 -0.43[-0.96: 0.10] 1.1×10-1 -0.25[-0.60: 0.10] 1.7×10-1

IDL-PL Phospholipids in IDL 5.35[ 3.33: 7.38] 2.8×10-7 2.48[-0.18: 5.14] 6.8×10-2 0.58[-2.03: 3.18] 6.6×10-1 3.27[ 1.90: 4.64] 2.8×10-6 0.09[-0.65: 0.82] 8.2×10-1 -0.15[-0.75: 0.46] 6.3×10-1 -0.36[-0.89: 0.17] 1.8×10-1 -0.19[-0.54: 0.16] 2.9×10-1

IDL-C Total cholesterol in IDL 6.55[ 4.55: 8.55] 2.8×10-10 2.37[-0.30: 5.03] 8.2×10-2 0.90[-1.69: 3.49] 5.0×10-1 3.90[ 2.53: 5.26] 2.1×10-8 0.14[-0.60: 0.88] 7.1×10-1 -0.01[-0.62: 0.59] 9.6×10-1 -0.37[-0.90: 0.16] 1.7×10-1 -0.14[-0.49: 0.21] 4.4×10-1

IDL-CE Cholesterol esters in IDL 6.90[ 4.90: 8.89] 2.9×10-11 2.40[-0.26: 5.07] 7.7×10-2 0.88[-1.71: 3.46] 5.1×10-1 4.07[ 2.71: 5.42] 4.6×10-9 0.10[-0.64: 0.84] 7.9×10-1 -0.03[-0.63: 0.58] 9.3×10-1 -0.36[-0.89: 0.18] 1.9×10-1 -0.14[-0.49: 0.21] 4.3×10-1

IDL-FC Free cholesterol in IDL 5.14[ 3.11: 7.17] 8.5×10-7 2.31[-0.38: 5.00] 9.2×10-2 0.80[-1.81: 3.42] 5.5×10-1 3.20[ 1.82: 4.58] 5.2×10-6 0.23[-0.52: 0.97] 5.5×10-1 0.01[-0.60: 0.61] 9.8×10-1 -0.39[-0.92: 0.13] 1.4×10-1 -0.12[-0.47: 0.23] 4.9×10-1

IDL-TG Triglycerides in IDL -3.23[ -5.29: -1.17] 2.2×10-3 2.48[-0.17: 5.13] 6.7×10-2 -2.35[-4.95: 0.25] 7.8×10-2 -1.44[-2.81:-0.06] 4.1×10-2 -0.89[-1.63:-0.15] 1.9×10-2 -1.58[-2.19:-0.97] 4.2×10-7 -0.86[-1.40:-0.32] 2.0×10-3 -1.11[-1.47:-0.76] 9.0×10-10

L-LDL-P Concentration of large LDL particles 5.21[ 3.19: 7.24] 5.9×10-7 2.56[-0.10: 5.21] 5.9×10-2 0.15[-2.46: 2.76] 9.1×10-1 3.11[ 1.74: 4.48] 8.7×10-6 -0.00[-0.74: 0.74] 1.0×10+0 -0.12[-0.72: 0.48] 7.0×10-1 -0.34[-0.88: 0.20] 2.2×10-1 -0.19[-0.54: 0.17] 3.0×10-1

L-LDL-L Total lipids in large LDL 5.92[ 3.91: 7.93] 1.2×10-8 2.50[-0.15: 5.14] 6.4×10-2 0.53[-2.06: 3.13] 6.9×10-1 3.53[ 2.17: 4.89] 3.8×10-7 0.01[-0.73: 0.75] 9.8×10-1 -0.03[-0.63: 0.57] 9.3×10-1 -0.32[-0.85: 0.22] 2.5×10-1 -0.14[-0.50: 0.21] 4.2×10-1
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L-LDL-PL Phospholipids in large LDL 6.48[ 4.47: 8.48] 4.4×10-10 2.53[-0.13: 5.19] 6.2×10-2 0.65[-1.95: 3.25] 6.3×10-1 3.84[ 2.47: 5.20] 3.4×10-8 0.08[-0.66: 0.82] 8.4×10-1 0.04[-0.56: 0.64] 9.0×10-1 -0.30[-0.84: 0.23] 2.7×10-1 -0.10[-0.45: 0.25] 5.8×10-1

L-LDL-C Total cholesterol in large LDL 6.33[ 4.33: 8.33] 9.9×10-10 2.45[-0.20: 5.10] 7.0×10-2 0.69[-1.91: 3.28] 6.1×10-1 3.76[ 2.40: 5.12] 6.1×10-8 0.07[-0.67: 0.81] 8.5×10-1 0.07[-0.53: 0.67] 8.3×10-1 -0.28[-0.81: 0.26] 3.1×10-1 -0.08[-0.43: 0.27] 6.5×10-1

L-LDL-CE Cholesterol esters in large LDL 6.15[ 4.14: 8.15] 3.0×10-9 2.47[-0.18: 5.12] 6.8×10-2 0.51[-2.09: 3.10] 7.0×10-1 3.63[ 2.26: 4.99] 1.8×10-7 0.03[-0.70: 0.77] 9.3×10-1 0.02[-0.58: 0.62] 9.6×10-1 -0.29[-0.82: 0.25] 3.0×10-1 -0.11[-0.46: 0.24] 5.4×10-1

L-LDL-FC Free cholesterol in large LDL 6.34[ 4.34: 8.34] 9.2×10-10 2.40[-0.29: 5.08] 8.0×10-2 1.01[-1.60: 3.62] 4.5×10-1 3.86[ 2.49: 5.22] 3.1×10-8 0.18[-0.56: 0.93] 6.3×10-1 0.19[-0.41: 0.80] 5.3×10-1 -0.26[-0.78: 0.27] 3.4×10-1 -0.01[-0.36: 0.34] 9.6×10-1

L-LDL-TG Triglycerides in large LDL -1.96[ -4.03: 0.12] 6.5×10-2 2.61[-0.02: 5.24] 5.1×10-2 -1.87[-4.49: 0.75] 1.6×10-1 -0.67[-2.05: 0.72] 3.5×10-1 -0.67[-1.41: 0.07] 7.4×10-2 -1.31[-1.92:-0.71] 2.3×10-5 -0.58[-1.12:-0.05] 3.3×10-2 -0.85[-1.20:-0.50] 2.3×10-6

M-LDL-P Concentration of medium LDL particles 4.92[ 2.89: 6.94] 2.4×10-6 2.56[-0.08: 5.21] 5.7×10-2 -0.17[-2.78: 2.44] 9.0×10-1 2.89[ 1.52: 4.26] 3.5×10-5 -0.08[-0.82: 0.65] 8.2×10-1 -0.10[-0.70: 0.50] 7.4×10-1 -0.35[-0.90: 0.19] 2.0×10-1 -0.20[-0.56: 0.15] 2.6×10-1

M-LDL-L Total lipids in medium LDL 5.55[ 3.54: 7.56] 9.3×10-8 2.51[-0.12: 5.15] 6.2×10-2 0.16[-2.45: 2.76] 9.1×10-1 3.26[ 1.90: 4.62] 2.8×10-6 -0.09[-0.83: 0.64] 8.0×10-1 -0.01[-0.61: 0.59] 9.8×10-1 -0.34[-0.89: 0.20] 2.2×10-1 -0.17[-0.52: 0.18] 3.5×10-1

M-LDL-PL Phospholipids in medium LDL 6.74[ 4.74: 8.74] 8.3×10-11 2.52[-0.11: 5.15] 6.1×10-2 0.26[-2.33: 2.86] 8.4×10-1 3.84[ 2.49: 5.20] 2.8×10-8 -0.13[-0.87: 0.60] 7.2×10-1 0.12[-0.49: 0.72] 7.1×10-1 -0.28[-0.82: 0.27] 3.2×10-1 -0.11[-0.46: 0.25] 5.6×10-1

M-LDL-C Total cholesterol in medium LDL 5.56[ 3.55: 7.57] 8.4×10-8 2.46[-0.19: 5.10] 6.9×10-2 0.24[-2.36: 2.85] 8.5×10-1 3.28[ 1.91: 4.64] 2.5×10-6 -0.01[-0.75: 0.73] 9.8×10-1 0.03[-0.57: 0.63] 9.1×10-1 -0.33[-0.87: 0.21] 2.3×10-1 -0.13[-0.48: 0.22] 4.7×10-1

M-LDL-CE Cholesterol esters in medium LDL 5.00[ 2.98: 7.02] 1.5×10-6 2.45[-0.20: 5.09] 7.0×10-2 0.14[-2.47: 2.75] 9.2×10-1 2.98[ 1.62: 4.35] 1.9×10-5 0.01[-0.73: 0.75] 9.8×10-1 -0.04[-0.64: 0.56] 9.0×10-1 -0.35[-0.89: 0.20] 2.1×10-1 -0.16[-0.51: 0.20] 3.8×10-1

M-LDL-FC Free cholesterol in medium LDL 7.09[ 5.11: 9.08] 6.3×10-12 2.33[-0.31: 4.97] 8.3×10-2 0.41[-2.18: 3.01] 7.5×10-1 4.03[ 2.67: 5.38] 5.6×10-9 -0.06[-0.80: 0.67] 8.6×10-1 0.28[-0.32: 0.88] 3.6×10-1 -0.26[-0.79: 0.28] 3.5×10-1 -0.03[-0.38: 0.32] 8.8×10-1

M-LDL-TG Triglycerides in medium LDL -1.62[ -3.69: 0.46] 1.3×10-1 2.58[-0.07: 5.22] 5.6×10-2 -1.88[-4.52: 0.75] 1.6×10-1 -0.54[-1.92: 0.85] 4.5×10-1 -0.68[-1.42: 0.06] 7.0×10-2 -1.16[-1.76:-0.55] 1.9×10-4 -0.53[-1.06: 0.01] 5.4×10-2 -0.78[-1.13:-0.42] 1.6×10-5

S-LDL-P Concentration of small LDL particles 5.24[ 3.22: 7.27] 5.0×10-7 2.51[-0.14: 5.15] 6.3×10-2 -0.13[-2.74: 2.48] 9.2×10-1 3.03[ 1.66: 4.40] 1.4×10-5 0.10[-0.64: 0.84] 7.9×10-1 0.03[-0.57: 0.64] 9.1×10-1 -0.32[-0.86: 0.23] 2.5×10-1 -0.10[-0.45: 0.26] 5.9×10-1

S-LDL-L Total lipids in small LDL 5.73[ 3.72: 7.75] 3.6×10-8 2.45[-0.19: 5.09] 6.9×10-2 0.14[-2.47: 2.74] 9.2×10-1 3.32[ 1.96: 4.69] 1.8×10-6 0.13[-0.61: 0.86] 7.4×10-1 0.12[-0.48: 0.72] 6.9×10-1 -0.32[-0.86: 0.22] 2.5×10-1 -0.07[-0.42: 0.29] 7.2×10-1

S-LDL-PL Phospholipids in small LDL 7.12[ 5.12: 9.12] 7.5×10-12 2.22[-0.42: 4.85] 1.0×10-1 0.07[-2.53: 2.66] 9.6×10-1 3.89[ 2.53: 5.25] 2.0×10-8 0.30[-0.44: 1.03] 4.3×10-1 0.38[-0.22: 0.98] 2.2×10-1 -0.12[-0.66: 0.43] 6.8×10-1 0.15[-0.20: 0.51] 4.0×10-1

S-LDL-C Total cholesterol in small LDL 5.59[ 3.58: 7.60] 7.3×10-8 2.43[-0.22: 5.08] 7.2×10-2 0.39[-2.22: 3.01] 7.7×10-1 3.33[ 1.96: 4.70] 1.8×10-6 0.10[-0.64: 0.84] 8.0×10-1 0.15[-0.45: 0.75] 6.3×10-1 -0.33[-0.87: 0.21] 2.3×10-1 -0.07[-0.42: 0.28] 7.0×10-1

S-LDL-CE Cholesterol esters in small LDL 5.09[ 3.07: 7.11] 1.0×10-6 2.48[-0.17: 5.13] 6.7×10-2 0.40[-2.22: 3.02] 7.6×10-1 3.11[ 1.74: 4.48] 8.5×10-6 0.08[-0.66: 0.82] 8.3×10-1 0.09[-0.51: 0.69] 7.7×10-1 -0.33[-0.87: 0.21] 2.3×10-1 -0.09[-0.45: 0.26] 6.1×10-1

S-LDL-FC Free cholesterol in small LDL 6.77[ 4.78: 8.76] 6.1×10-11 2.07[-0.58: 4.71] 1.3×10-1 0.15[-2.45: 2.75] 9.1×10-1 3.72[ 2.36: 5.08] 7.7×10-8 0.15[-0.59: 0.89] 7.0×10-1 0.34[-0.26: 0.94] 2.7×10-1 -0.32[-0.86: 0.22] 2.5×10-1 0.01[-0.34: 0.37] 9.4×10-1

S-LDL-TG Triglycerides in small LDL -1.16[ -3.24: 0.91] 2.7×10-1 2.68[-0.02: 5.37] 5.1×10-2 -2.32[-4.92: 0.28] 8.2×10-2 -0.47[-1.86: 0.92] 5.1×10-1 -0.31[-1.04: 0.42] 4.1×10-1 -1.07[-1.68:-0.46] 6.4×10-4 -0.57[-1.12:-0.02] 4.1×10-2 -0.68[-1.04:-0.32] 1.9×10-4

XL-HDL-P Concentration of very large HDL particles 2.80[ 0.69: 4.91] 9.6×10-3 1.15[-1.88: 4.18] 4.6×10-1 3.47[ 0.80: 6.14] 1.2×10-2 2.62[ 1.17: 4.07] 4.1×10-4 1.30[ 0.46: 2.14] 2.4×10-3 1.88[ 1.19: 2.56] 8.8×10-8 0.58[-0.05: 1.22] 7.3×10-2 1.21[ 0.80: 1.62] 5.9×10-9

XL-HDL-L Total lipids in very large HDL 3.44[ 1.33: 5.54] 1.4×10-3 1.24[-1.75: 4.23] 4.2×10-1 3.60[ 0.93: 6.27] 9.1×10-3 2.97[ 1.52: 4.42] 5.7×10-5 1.42[ 0.58: 2.26] 9.4×10-4 1.91[ 1.23: 2.60] 5.6×10-8 0.65[ 0.02: 1.29] 4.5×10-2 1.28[ 0.87: 1.69] 8.4×10-10

XL-HDL-PL Phospholipids in very large HDL 2.05[ -0.07: 4.18] 5.9×10-2 1.20[-1.85: 4.26] 4.4×10-1 3.69[ 1.04: 6.34] 7.1×10-3 2.35[ 0.90: 3.81] 1.6×10-3 1.56[ 0.71: 2.40] 3.1×10-4 1.97[ 1.27: 2.67] 4.2×10-8 0.69[ 0.03: 1.35] 4.0×10-2 1.36[ 0.94: 1.77] 2.0×10-10

XL-HDL-C Total cholesterol in very large HDL 4.18[ 2.10: 6.26] 9.0×10-5 1.12[-1.84: 4.07] 4.6×10-1 3.20[ 0.53: 5.86] 2.0×10-2 3.18[ 1.74: 4.61] 1.4×10-5 1.21[ 0.38: 2.04] 4.2×10-3 1.82[ 1.16: 2.49] 9.6×10-8 0.53[-0.08: 1.14] 8.7×10-2 1.14[ 0.74: 1.53] 1.6×10-8

XL-HDL-CE Cholesterol esters in very large HDL 4.22[ 2.15: 6.30] 7.4×10-5 1.11[-1.83: 4.05] 4.6×10-1 3.03[ 0.38: 5.68] 2.6×10-2 3.14[ 1.71: 4.57] 1.6×10-5 1.17[ 0.35: 1.99] 5.3×10-3 1.70[ 1.04: 2.36] 4.6×10-7 0.44[-0.16: 1.04] 1.5×10-1 1.05[ 0.66: 1.44] 1.4×10-7

XL-HDL-FC Free cholesterol in very large HDL 3.60[ 1.50: 5.70] 8.3×10-4 1.06[-1.96: 4.07] 4.9×10-1 2.77[ 1.04: 4.49] 1.6×10-3 1.21[ 0.36: 2.05] 5.0×10-3 0.70[ 0.08: 1.32] 2.8×10-2 0.88[ 0.38: 1.38] 5.8×10-4

XL-HDL-TG Triglycerides in very large HDL 2.78[ 0.69: 4.87] 9.3×10-3 1.55[-1.19: 4.30] 2.7×10-1 -0.71[-3.31: 1.88] 5.9×10-1 1.44[ 0.04: 2.84] 4.3×10-2 -0.22[-1.01: 0.57] 5.9×10-1 -0.35[-0.95: 0.25] 2.5×10-1 -0.19[-0.72: 0.35] 4.9×10-1 -0.25[-0.61: 0.10] 1.7×10-1

L-HDL-P Concentration of large HDL particles 1.65[ -0.49: 3.79] 1.3×10-1 0.03[-3.36: 3.43] 9.8×10-1 2.62[-0.06: 5.31] 5.8×10-2 1.64[ 0.14: 3.14] 3.2×10-2 1.28[ 0.44: 2.11] 2.8×10-3 1.75[ 1.05: 2.45] 1.1×10-6 0.35[-0.30: 0.99] 2.9×10-1 1.06[ 0.65: 1.47] 4.8×10-7

L-HDL-L Total lipids in large HDL 2.21[ 0.08: 4.34] 4.3×10-2 0.35[-3.10: 3.80] 8.4×10-1 2.64[-0.04: 5.31] 5.5×10-2 1.99[ 0.49: 3.49] 9.3×10-3 1.43[ 0.59: 2.27] 9.0×10-4 1.81[ 1.11: 2.51] 4.8×10-7 0.39[-0.26: 1.04] 2.4×10-1 1.14[ 0.72: 1.55] 7.5×10-8

L-HDL-PL Phospholipids in large HDL 2.53[ 0.40: 4.66] 2.0×10-2 0.41[-3.00: 3.82] 8.1×10-1 2.62[-0.05: 5.30] 5.6×10-2 2.15[ 0.65: 3.65] 4.9×10-3 1.47[ 0.63: 2.30] 5.8×10-4 1.75[ 1.05: 2.44] 9.9×10-7 0.37[-0.27: 1.01] 2.5×10-1 1.11[ 0.70: 1.52] 1.1×10-7

L-HDL-C Total cholesterol in large HDL 1.93[ -0.19: 4.05] 7.5×10-2 -0.16[-3.56: 3.24] 9.3×10-1 2.84[ 0.17: 5.50] 3.9×10-2 1.81[ 0.32: 3.30] 1.8×10-2 1.34[ 0.50: 2.18] 1.8×10-3 1.90[ 1.20: 2.61] 1.3×10-7 0.50[-0.16: 1.16] 1.4×10-1 1.20[ 0.79: 1.62] 1.6×10-8

L-HDL-CE Cholesterol esters in large HDL 1.99[ -0.13: 4.12] 6.6×10-2 -0.20[-3.60: 3.20] 9.1×10-1 2.83[ 0.16: 5.50] 3.9×10-2 1.83[ 0.34: 3.33] 1.6×10-2 1.33[ 0.49: 2.17] 1.9×10-3 1.89[ 1.19: 2.59] 1.5×10-7 0.51[-0.15: 1.17] 1.3×10-1 1.20[ 0.78: 1.62] 1.8×10-8

L-HDL-FC Free cholesterol in large HDL 1.25[ -0.87: 3.37] 2.5×10-1 -0.31[-3.65: 3.04] 8.6×10-1 2.72[ 0.05: 5.39] 4.8×10-2 1.40[-0.09: 2.89] 6.6×10-2 1.24[ 0.40: 2.09] 3.9×10-3 1.88[ 1.17: 2.58] 2.1×10-7 0.44[-0.22: 1.10] 1.9×10-1 1.14[ 0.72: 1.56] 8.8×10-8

L-HDL-TG Triglycerides in large HDL -3.64[ -5.79: -1.49] 9.7×10-4 1.76[-1.46: 4.97] 2.8×10-1 -0.04[-2.71: 2.63] 9.8×10-1 -1.37[-2.86: 0.11] 7.0×10-2 0.19[-0.62: 1.01] 6.4×10-1 0.05[-0.60: 0.70] 8.8×10-1 -0.71[-1.30:-0.13] 1.6×10-2 -0.25[-0.63: 0.13] 2.0×10-1

M-HDL-P Concentration of medium HDL particles 5.37[ 3.28: 7.46] 6.3×10-7 0.46[-2.56: 3.48] 7.7×10-1 2.30[-0.31: 4.90] 8.6×10-2 3.33[ 1.89: 4.76] 5.4×10-6 1.12[ 0.37: 1.87] 3.5×10-3 1.11[ 0.48: 1.74] 5.8×10-4 0.33[-0.21: 0.86] 2.3×10-1 0.76[ 0.40: 1.12] 3.3×10-5

M-HDL-L Total lipids in medium HDL 5.42[ 3.34: 7.50] 4.4×10-7 0.52[-2.51: 3.54] 7.4×10-1 2.07[-0.61: 4.75] 1.3×10-1 3.33[ 1.88: 4.77] 6.3×10-6 1.17[ 0.42: 1.93] 2.3×10-3 1.17[ 0.54: 1.81] 2.9×10-4 0.38[-0.16: 0.92] 1.7×10-1 0.82[ 0.46: 1.18] 8.8×10-6

M-HDL-PL Phospholipids in medium HDL 5.09[ 2.99: 7.19] 2.4×10-6 0.81[-2.24: 3.87] 6.0×10-1 2.16[-0.44: 4.77] 1.1×10-1 3.24[ 1.80: 4.68] 1.0×10-5 1.13[ 0.37: 1.88] 3.3×10-3 1.16[ 0.52: 1.79] 3.6×10-4 0.32[-0.22: 0.86] 2.4×10-1 0.78[ 0.42: 1.14] 2.4×10-5

M-HDL-C Total cholesterol in medium HDL 5.92[ 3.86: 7.98] 2.5×10-8 -0.06[-3.06: 2.93] 9.7×10-1 2.53[-0.07: 5.13] 5.9×10-2 3.56[ 2.14: 4.98] 8.7×10-7 1.25[ 0.50: 2.01] 1.1×10-3 1.33[ 0.70: 1.97] 4.3×10-5 0.43[-0.11: 0.97] 1.2×10-1 0.91[ 0.55: 1.27] 8.2×10-7

M-HDL-CE Cholesterol esters in medium HDL 5.96[ 3.90: 8.01] 2.0×10-8 -0.22[-3.20: 2.75] 8.8×10-1 2.58[-0.02: 5.17] 5.3×10-2 3.55[ 2.14: 4.97] 8.8×10-7 1.25[ 0.50: 2.00] 1.1×10-3 1.36[ 0.72: 1.99] 3.0×10-5 0.48[-0.07: 1.02] 8.6×10-2 0.94[ 0.58: 1.30] 3.4×10-7

M-HDL-FC Free cholesterol in medium HDL 5.59[ 3.51: 7.66] 1.8×10-7 0.42[-2.62: 3.47] 7.9×10-1 2.34[-0.29: 4.96] 8.3×10-2 3.47[ 2.03: 4.90] 2.2×10-6 1.19[ 0.43: 1.95] 2.2×10-3 1.15[ 0.51: 1.80] 4.6×10-4 0.24[-0.30: 0.78] 3.8×10-1 0.75[ 0.39: 1.11] 5.3×10-5

M-HDL-TG Triglycerides in medium HDL -1.46[ -3.58: 0.65] 1.8×10-1 2.76[-0.05: 5.57] 5.4×10-2 -1.01[-3.62: 1.61] 4.5×10-1 -0.25[-1.67: 1.17] 7.3×10-1 -0.34[-1.11: 0.43] 3.9×10-1 -0.83[-1.45:-0.22] 8.2×10-3 -0.43[-0.98: 0.12] 1.2×10-1 -0.55[-0.91:-0.19] 2.9×10-3

S-HDL-P Concentration of small HDL particles 3.68[ 1.61: 5.75] 5.3×10-4 0.70[-2.14: 3.54] 6.3×10-1 -1.15[-3.77: 1.47] 3.9×10-1 1.54[ 0.13: 2.96] 3.2×10-2 0.21[-0.56: 0.98] 5.9×10-1 0.08[-0.52: 0.69] 7.9×10-1 -0.14[-0.68: 0.39] 6.0×10-1 0.01[-0.34: 0.37] 9.5×10-1

S-HDL-L Total lipids in small HDL 3.83[ 1.77: 5.90] 3.0×10-4 0.60[-2.24: 3.43] 6.8×10-1 -1.24[-3.86: 1.38] 3.5×10-1 1.57[ 0.16: 2.98] 2.9×10-2 0.23[-0.54: 0.99] 5.6×10-1 0.13[-0.48: 0.73] 6.8×10-1 -0.15[-0.68: 0.38] 5.8×10-1 0.03[-0.33: 0.38] 8.8×10-1

S-HDL-PL Phospholipids in small HDL 4.27[ 2.19: 6.34] 6.1×10-5 -0.16[-3.02: 2.70] 9.1×10-1 -0.25[-2.85: 2.34] 8.5×10-1 1.86[ 0.45: 3.27] 9.7×10-3 0.40[-0.35: 1.16] 3.0×10-1 0.27[-0.33: 0.87] 3.8×10-1 0.24[-0.28: 0.77] 3.7×10-1 0.29[-0.06: 0.64] 1.1×10-1

S-HDL-C Total cholesterol in small HDL 3.82[ 1.78: 5.87] 2.6×10-4 1.09[-1.68: 3.85] 4.4×10-1 -1.20[-3.89: 1.49] 3.8×10-1 1.76[ 0.36: 3.16] 1.4×10-2 0.20[-0.55: 0.94] 6.1×10-1 0.25[-0.36: 0.85] 4.2×10-1 -0.45[-0.98: 0.08] 9.4×10-2 -0.07[-0.42: 0.28] 6.8×10-1

S-HDL-CE Cholesterol esters in small HDL 3.32[ 1.28: 5.36] 1.5×10-3 1.41[-1.33: 4.16] 3.1×10-1 0.32[-2.32: 2.96] 8.1×10-1 2.00[ 0.61: 3.39] 4.9×10-3 0.24[-0.50: 0.98] 5.3×10-1 0.24[-0.36: 0.85] 4.3×10-1 -0.41[-0.94: 0.11] 1.2×10-1 -0.05[-0.40: 0.30] 7.9×10-1

S-HDL-FC Free cholesterol in small HDL 3.45[ 1.38: 5.51] 1.1×10-3 -0.48[-3.34: 2.37] 7.4×10-1 -1.51[-4.10: 1.08] 2.6×10-1 1.04[-0.37: 2.44] 1.5×10-1 -0.02[-0.76: 0.72] 9.5×10-1 0.22[-0.38: 0.82] 4.8×10-1 -0.27[-0.79: 0.26] 3.2×10-1 -0.05[-0.40: 0.30] 7.7×10-1

S-HDL-TG Triglycerides in small HDL -3.73[ -5.78: -1.67] 4.0×10-4 1.88[-1.06: 4.83] 2.1×10-1 -2.06[-4.65: 0.54] 1.2×10-1 -1.94[-3.35:-0.53] 7.0×10-3 -1.38[-2.17:-0.59] 6.3×10-4 -1.37[-2.01:-0.72] 3.7×10-5 -0.64[-1.21:-0.06] 3.0×10-2 -1.06[-1.43:-0.68] 4.3×10-8

Serum-C Serum total cholesterol 6.36[ 4.33: 8.39] 1.4×10-9 2.29[-0.41: 4.99] 9.6×10-2 0.40[-2.28: 3.07] 7.7×10-1 3.68[ 2.29: 5.07] 2.0×10-7 0.29[-0.47: 1.06] 4.5×10-1 0.39[-0.22: 0.99] 2.1×10-1 -0.36[-0.89: 0.16] 1.8×10-1 0.03[-0.32: 0.38] 8.7×10-1

VLDL-C Total cholesterol in VLDL 0.57[ -1.50: 2.64] 5.9×10-1 2.44[-0.28: 5.15] 7.9×10-2 -2.50[-5.04: 0.05] 5.6×10-2 0.15[-1.24: 1.53] 8.3×10-1 -0.75[-1.49:-0.02] 4.5×10-2 -1.20[-1.82:-0.57] 1.9×10-4 -0.99[-1.59:-0.39] 1.3×10-3 -1.00[-1.37:-0.63] 1.5×10-7

Remnant-C Remnant cholesterol (non-HDL, non-LDL -cholesterol) 3.44[ 1.38: 5.49] 1.1×10-3 2.44[-0.20: 5.07] 7.0×10-2 -1.67[-4.23: 0.88] 2.0×10-1 1.70[ 0.34: 3.07] 1.5×10-2 -0.42[-1.15: 0.31] 2.6×10-1 -0.73[-1.34:-0.12] 1.9×10-2 -0.74[-1.31:-0.17] 1.1×10-2 -0.66[-1.02:-0.30] 3.4×10-4

LDL-C Total cholesterol in LDL 6.72[ 4.73: 8.70] 7.5×10-11 1.91[-0.73: 4.55] 1.6×10-1 0.66[-1.99: 3.31] 6.3×10-1 3.84[ 2.48: 5.20] 3.4×10-8 0.09[-0.64: 0.83] 8.1×10-1 0.22[-0.38: 0.82] 4.8×10-1 -0.28[-0.81: 0.26] 3.1×10-1 -0.02[-0.37: 0.33] 9.0×10-1

HDL-C Total cholesterol in HDL 5.29[ 3.21: 7.38] 8.0×10-7 0.83[-2.37: 4.03] 6.1×10-1 2.91[ 0.25: 5.57] 3.4×10-2 3.65[ 2.19: 5.11] 9.6×10-7 1.56[ 0.73: 2.38] 2.1×10-4 2.01[ 1.32: 2.70] 1.3×10-8 0.33[-0.28: 0.94] 2.9×10-1 1.18[ 0.78: 1.58] 6.6×10-9

HDL2-C Total cholesterol in HDL2 5.71[ 3.64: 7.78] 8.9×10-8 1.04[-2.15: 4.24] 5.2×10-1 3.38[ 0.72: 6.05] 1.4×10-2 4.05[ 2.59: 5.50] 4.9×10-8 1.70[ 0.88: 2.52] 5.1×10-5 2.11[ 1.41: 2.80] 3.0×10-9 0.46[-0.15: 1.08] 1.4×10-1 1.32[ 0.91: 1.72] 1.5×10-10

HDL3-C Total cholesterol in HDL3 2.37[ 0.28: 4.47] 2.7×10-2 1.17[-1.85: 4.18] 4.5×10-1 -0.85[-3.58: 1.89] 5.5×10-1 1.18[-0.28: 2.64] 1.1×10-1 0.63[-0.16: 1.42] 1.2×10-1 0.83[ 0.17: 1.48] 1.3×10-2 -0.45[-0.98: 0.08] 9.8×10-2 0.18[-0.19: 0.55] 3.3×10-1

EstC Esterified cholesterol 7.35[ 5.35: 9.34] 1.5×10-12 2.43[-0.37: 5.23] 8.9×10-2 0.63[-2.06: 3.33] 6.5×10-1 4.35[ 2.96: 5.74] 9.3×10-10 0.34[-0.42: 1.10] 3.8×10-1 0.44[-0.17: 1.05] 1.6×10-1 -0.37[-0.89: 0.16] 1.7×10-1 0.05[-0.30: 0.41] 7.6×10-1

FreeC Free cholesterol 3.04[ 0.97: 5.10] 4.1×10-3 2.25[-0.57: 5.06] 1.2×10-1 -0.45[-3.16: 2.25] 7.4×10-1 1.88[ 0.46: 3.29] 9.5×10-3 0.10[-0.67: 0.86] 8.1×10-1 0.01[-0.60: 0.62] 9.8×10-1 -0.33[-0.86: 0.20] 2.2×10-1 -0.12[-0.48: 0.23] 4.9×10-1

Serum-TG Serum total triglycerides -1.10[ -3.18: 0.98] 3.0×10-1 2.83[-0.04: 5.70] 5.3×10-2 -2.79[-5.36:-0.23] 3.4×10-2 -0.67[-2.07: 0.74] 3.5×10-1 -0.95[-1.72:-0.19] 1.4×10-2 -1.43[-2.08:-0.78] 1.7×10-5 -0.76[-1.36:-0.16] 1.3×10-2 -1.04[-1.42:-0.66] 8.9×10-8
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VLDL-TG Triglycerides in VLDL -0.11[ -2.18: 1.97] 9.2×10-1 2.61[-0.38: 5.61] 8.7×10-2 -2.71[-5.29:-0.13] 4.1×10-2 -0.29[-1.71: 1.14] 6.9×10-1 -0.89[-1.68:-0.11] 2.5×10-2 -1.38[-2.04:-0.72] 4.0×10-5 -0.70[-1.31:-0.08] 2.6×10-2 -0.99[-1.37:-0.60] 6.8×10-7

LDL-TG Triglycerides in LDL -2.34[ -4.42: -0.25] 2.9×10-2 2.66[ 0.03: 5.28] 4.7×10-2 -2.53[-5.16: 0.09] 6.1×10-2 -1.00[-2.38: 0.39] 1.6×10-1 -0.62[-1.36: 0.12] 1.0×10-1 -1.18[-1.79:-0.57] 1.6×10-4 -0.69[-1.24:-0.15] 1.2×10-2 -0.84[-1.20:-0.49] 3.5×10-6

HDL-TG Triglycerides in HDL -3.66[ -5.78: -1.55] 7.2×10-4 2.84[ 0.06: 5.61] 4.5×10-2 -2.85[-5.41:-0.29] 3.1×10-2 -1.75[-3.15:-0.34] 1.5×10-2 -0.51[-1.25: 0.24] 1.8×10-1 -1.06[-1.67:-0.45] 6.4×10-4 -0.68[-1.21:-0.15] 1.3×10-2 -0.77[-1.12:-0.42] 2.0×10-5

TotPG Total phosphoglycerides 2.49[ 0.37: 4.61] 2.2×10-2 2.04[-0.84: 4.92] 1.7×10-1 -0.58[-3.29: 2.13] 6.8×10-1 1.50[ 0.06: 2.95] 4.1×10-2 0.28[-0.50: 1.06] 4.8×10-1 0.33[-0.29: 0.96] 3.0×10-1 -0.20[-0.73: 0.32] 4.5×10-1 0.07[-0.28: 0.43] 6.8×10-1

TG/PG Ratio of triglycerides to phosphoglycerides -2.70[ -4.75: -0.64] 1.0×10-2 1.45[-1.67: 4.57] 3.6×10-1 -3.28[-5.89:-0.67] 1.5×10-2 -2.00[-3.43:-0.57] 6.3×10-3 -1.27[-2.06:-0.47] 1.7×10-3 -2.17[-2.85:-1.48] 5.7×10-10 -0.62[-1.22:-0.01] 4.5×10-2 -1.29[-1.69:-0.90] 1.1×10-10

PC Phosphatidylcholine and other cholines 2.32[ 0.20: 4.44] 3.3×10-2 1.89[-1.03: 4.82] 2.0×10-1 -0.34[-3.10: 2.42] 8.1×10-1 1.47[ 0.01: 2.93] 4.8×10-2 0.27[-0.51: 1.05] 5.0×10-1 0.58[-0.05: 1.22] 7.1×10-2 -0.20[-0.73: 0.33] 4.6×10-1 0.15[-0.21: 0.51] 4.0×10-1

SM Sphingomyelins 2.61[ 0.55: 4.68] 1.3×10-2 1.99[-0.88: 4.86] 1.8×10-1 0.50[-2.28: 3.29] 7.2×10-1 1.90[ 0.46: 3.33] 9.7×10-3 0.21[-0.56: 0.99] 5.9×10-1 0.65[ 0.01: 1.30] 4.7×10-2 -0.19[-0.72: 0.34] 4.9×10-1 0.17[-0.20: 0.53] 3.7×10-1

TotCho Total cholines 1.51[ -0.61: 3.62] 1.6×10-1 2.06[-0.81: 4.94] 1.6×10-1 0.15[-2.64: 2.93] 9.2×10-1 1.28[-0.17: 2.73] 8.5×10-2 0.33[-0.45: 1.11] 4.1×10-1 0.70[ 0.07: 1.34] 3.1×10-2 -0.13[-0.66: 0.40] 6.3×10-1 0.24[-0.13: 0.60] 2.0×10-1

ApoA1 Apolipoprotein A-I 5.69[ 3.58: 7.79] 1.6×10-7 1.25[-1.83: 4.32] 4.3×10-1 1.90[-0.92: 4.72] 1.9×10-1 3.62[ 2.14: 5.10] 1.6×10-6 1.11[ 0.29: 1.93] 7.8×10-3 1.69[ 1.02: 2.36] 8.5×10-7 0.05[-0.51: 0.61] 8.6×10-1 0.81[ 0.43: 1.19] 3.1×10-5

ApoB Apolipoprotein B 3.25[ 1.21: 5.29] 1.9×10-3 2.81[ 0.17: 5.45] 3.7×10-2 -1.68[-4.24: 0.88] 2.0×10-1 1.73[ 0.37: 3.10] 1.3×10-2 -0.41[-1.14: 0.33] 2.8×10-1 -0.64[-1.25:-0.02] 4.2×10-2 -0.63[-1.21:-0.05] 3.3×10-2 -0.58[-0.94:-0.21] 1.9×10-3

ApoB/ApoA1 Ratio of apolipoprotein B to apolipoprotein A-I 0.56[ -1.48: 2.61] 5.9×10-1 2.76[-0.06: 5.59] 5.5×10-2 -2.26[-4.83: 0.31] 8.7×10-2 0.27[-1.12: 1.66] 7.0×10-1 -0.95[-1.69:-0.20] 1.3×10-2 -1.40[-2.05:-0.75] 2.8×10-5 -0.69[-1.32:-0.07] 3.0×10-2 -1.01[-1.40:-0.62] 3.0×10-7

TotFA Total fatty acids 1.59[ -0.51: 3.69] 1.4×10-1 2.73[-0.05: 5.50] 5.4×10-2 -2.26[-4.90: 0.38] 9.5×10-2 0.78[-0.63: 2.20] 2.8×10-1 -0.31[-1.06: 0.44] 4.2×10-1 -0.59[-1.19: 0.02] 5.9×10-2 -0.32[-0.86: 0.23] 2.6×10-1 -0.41[-0.76:-0.05] 2.5×10-2

UnSat Estimated degree of unsaturation -1.96[ -4.02: 0.09] 6.1×10-2 -0.74[-3.73: 2.26] 6.3×10-1 0.82[-1.82: 3.46] 5.5×10-1 -0.88[-2.30: 0.55] 2.3×10-1 1.83[ 1.08: 2.59] 1.9×10-6 0.60[-0.02: 1.23] 5.9×10-2 -0.55[-1.08:-0.01] 4.4×10-2 0.36[ 0.00: 0.72] 4.7×10-2

DHA 22:6, docosahexaenoic acid -0.08[ -2.14: 1.98] 9.4×10-1 2.53[-0.49: 5.54] 1.0×10-1 -1.78[-4.36: 0.80] 1.8×10-1 -0.02[-1.44: 1.40] 9.8×10-1 1.42[ 0.66: 2.17] 2.4×10-4 -0.32[-0.93: 0.28] 3.0×10-1 -0.51[-1.03: 0.02] 6.1×10-2 -0.03[-0.38: 0.33] 8.9×10-1

LA 18:2, linoleic acid 2.53[ 0.44: 4.62] 1.8×10-2 2.87[ 0.16: 5.57] 3.8×10-2 -0.96[-3.69: 1.77] 4.9×10-1 1.69[ 0.27: 3.10] 1.9×10-2 -0.49[-1.23: 0.26] 2.0×10-1 0.11[-0.50: 0.73] 7.2×10-1 -0.50[-1.03: 0.03] 6.4×10-2 -0.29[-0.65: 0.06] 1.0×10-1

FAw3 Omega-3 fatty acids 1.60[ -0.48: 3.68] 1.3×10-1 3.01[ 0.10: 5.91] 4.2×10-2 -1.75[-4.34: 0.84] 1.9×10-1 0.93[-0.49: 2.35] 2.0×10-1 1.11[ 0.36: 1.86] 3.7×10-3 -0.33[-0.94: 0.28] 2.9×10-1 -0.62[-1.14:-0.09] 2.3×10-2 -0.14[-0.49: 0.21] 4.4×10-1

FAw6 Omega-6 fatty acids 2.76[ 0.67: 4.85] 1.0×10-2 2.75[ 0.00: 5.50] 5.0×10-2 -0.93[-3.69: 1.82] 5.1×10-1 1.77[ 0.35: 3.20] 1.5×10-2 -0.12[-0.88: 0.63] 7.5×10-1 0.18[-0.43: 0.80] 5.6×10-1 -0.42[-0.95: 0.10] 1.2×10-1 -0.16[-0.51: 0.20] 3.8×10-1

PUFA Polyunsaturated fatty acids 2.62[ 0.53: 4.72] 1.4×10-2 2.85[ 0.08: 5.62] 4.4×10-2 -1.25[-3.99: 1.49] 3.7×10-1 1.64[ 0.21: 3.06] 2.5×10-2 0.10[-0.65: 0.86] 7.9×10-1 0.10[-0.51: 0.71] 7.4×10-1 -0.45[-0.98: 0.07] 9.2×10-2 -0.15[-0.50: 0.21] 4.2×10-1

MUFA Monounsaturated fatty acids; 16:1, 18:1 -0.76[ -2.84: 1.32] 4.8×10-1 2.51[-0.29: 5.31] 7.9×10-2 -2.96[-5.55:-0.36] 2.7×10-2 -0.58[-1.98: 0.82] 4.2×10-1 -0.78[-1.53:-0.03] 4.2×10-2 -1.24[-1.86:-0.62] 8.4×10-5 -0.46[-1.02: 0.10] 1.1×10-1 -0.81[-1.17:-0.44] 1.4×10-5

SFA Saturated fatty acids 2.65[ 0.55: 4.74] 1.3×10-2 2.49[-0.28: 5.26] 7.8×10-2 -1.63[-4.27: 1.01] 2.3×10-1 1.38[-0.03: 2.80] 5.5×10-2 -0.26[-1.01: 0.49] 5.0×10-1 -0.41[-1.01: 0.20] 1.9×10-1 -0.01[-0.55: 0.54] 9.9×10-1 -0.20[-0.56: 0.16] 2.7×10-1

Glc Glucose 5.16[ 3.15: 7.17] 6.4×10-7 1.27[-1.59: 4.13] 3.8×10-1 -2.85[-5.55:-0.16] 4.0×10-2 2.05[ 0.64: 3.45] 4.2×10-3 0.08[-0.67: 0.83] 8.4×10-1 -0.51[-1.20: 0.18] 1.5×10-1 -0.48[-1.03: 0.08] 9.4×10-2 -0.35[-0.72: 0.03] 6.9×10-2

Lac Lactate -0.30[ -2.37: 1.77] 7.8×10-1 2.33[-0.54: 5.20] 1.1×10-1 -0.10[-2.83: 2.63] 9.4×10-1 0.41[-1.02: 1.84] 5.7×10-1 -0.22[-0.98: 0.54] 5.7×10-1 -1.80[-2.43:-1.16] 3.9×10-8 -0.37[-0.91: 0.16] 1.7×10-1 -0.79[-1.15:-0.43] 1.6×10-5

Pyr Pyruvate 4.82[ 2.76: 6.88] 5.5×10-6 2.83[-0.13: 5.80] 6.1×10-2 1.22[-1.55: 4.00] 3.9×10-1 3.37[ 1.93: 4.82] 4.7×10-6 0.27[-0.48: 1.03] 4.8×10-1 -1.73[-2.36:-1.10] 9.4×10-8 -0.45[-0.98: 0.09] 1.0×10-1 -0.70[-1.06:-0.34] 1.3×10-4

Cit Citrate -4.97[ -7.01: -2.93] 2.2×10-6 -2.62[-5.47: 0.23] 7.1×10-2 -0.74[-3.66: 2.18] 6.2×10-1 -3.34[-4.78:-1.90] 5.7×10-6 -2.43[-3.16:-1.69] 1.1×10-10 -1.87[-2.51:-1.22] 1.7×10-8 -1.50[-2.01:-0.98] 1.9×10-8 -1.82[-2.18:-1.47] 7.1×10-24

Glol Glycerol -11.03[-13.96: -8.10] 1.7×10-12 -1.53[-4.70: 1.64] 3.4×10-1 -3.09[-6.36: 0.17] 6.6×10-2 -5.57[-7.37:-3.77] 1.2×10-9 -1.31[-2.10:-0.53] 1.0×10-3 -2.42[-3.14:-1.71] 3.9×10-11 -1.46[-2.20:-0.72] 1.1×10-4 -1.77[-2.19:-1.34] 7.5×10-16

Ala Alanine 7.14[ 5.11: 9.17] 1.2×10-11 2.07[-0.73: 4.87] 1.5×10-1 -2.28[-4.97: 0.42] 1.0×10-1 3.32[ 1.92: 4.72] 3.5×10-6 -1.18[-1.92:-0.43] 2.0×10-3 -1.92[-2.54:-1.29] 2.4×10-9 -1.11[-1.65:-0.58] 4.6×10-5 -1.39[-1.75:-1.03] 2.4×10-14

Gln Glutamine -7.87[-12.31: -3.43] 7.2×10-4 0.32[-2.77: 3.41] 8.4×10-1 -1.41[-4.17: 1.36] 3.2×10-1 -1.92[-3.79:-0.05] 4.4×10-2 -0.16[-0.95: 0.62] 6.8×10-1 0.53[-0.11: 1.16] 1.0×10-1 -0.61[-1.17:-0.06] 3.1×10-2 -0.13[-0.50: 0.24] 5.0×10-1

Gly Glycine -12.25[-14.10:-10.41] 1.4×10-34 -2.04[-4.91: 0.83] 1.6×10-1 -5.53[-8.30:-2.77] 1.4×10-4 -8.37[-9.73:-7.02] 7.3×10-34 -1.27[-2.02:-0.52] 9.6×10-4 -1.49[-2.18:-0.81] 1.9×10-5 -1.18[-1.72:-0.64] 1.9×10-5 -1.29[-1.66:-0.92] 6.3×10-12

His Histidine 1.24[ -0.82: 3.30] 2.4×10-1 2.18[-0.66: 5.03] 1.3×10-1 0.74[-2.02: 3.50] 6.0×10-1 1.35[-0.08: 2.77] 6.5×10-2 0.20[-0.55: 0.94] 6.1×10-1 -0.31[-0.93: 0.31] 3.3×10-1 -0.98[-1.50:-0.46] 2.3×10-4 -0.51[-0.86:-0.15] 5.0×10-3

Ile Isoleucine 2.20[ 0.13: 4.27] 3.7×10-2 0.90[-2.10: 3.90] 5.6×10-1 -3.11[-5.86:-0.36] 2.8×10-2 0.43[-1.02: 1.88] 5.6×10-1 -1.37[-2.15:-0.59] 5.4×10-4 -2.01[-2.74:-1.27] 9.9×10-8 -1.44[-2.08:-0.80] 1.1×10-5 -1.60[-2.01:-1.19] 2.2×10-14

Leu Leucine 5.37[ 3.34: 7.41] 3.0×10-7 0.81[-2.17: 3.78] 6.0×10-1 -2.95[-5.71:-0.18] 3.9×10-2 2.07[ 0.63: 3.51] 4.7×10-3 -1.17[-1.95:-0.40] 3.1×10-3 -1.34[-2.09:-0.59] 4.5×10-4 -1.45[-2.09:-0.80] 1.1×10-5 -1.34[-1.75:-0.92] 2.2×10-10

Val Valine 8.79[ 6.83: 10.75] 1.2×10-17 1.13[-1.81: 4.08] 4.5×10-1 -1.03[-3.76: 1.70] 4.6×10-1 4.48[ 3.08: 5.88] 3.5×10-10 -0.87[-1.63:-0.11] 2.5×10-2 -0.65[-1.37: 0.07] 7.6×10-2 -1.04[-1.64:-0.44] 7.4×10-4 -0.88[-1.27:-0.48] 1.4×10-5

Phe Phenylalanine -11.70[-13.54: -9.86] 4.4×10-32 -1.58[-4.51: 1.36] 2.9×10-1 -5.17[-7.86:-2.47] 2.5×10-4 -7.92[-9.27:-6.57] 1.2×10-30 -2.04[-2.80:-1.28] 1.4×10-7 -2.11[-2.77:-1.45] 5.5×10-10 -1.18[-1.76:-0.61] 5.1×10-5 -1.69[-2.07:-1.32] 1.1×10-18

Tyr Tyrosine 5.72[ 3.70: 7.75] 4.4×10-8 -0.16[-2.98: 2.67] 9.1×10-1 2.11[-0.60: 4.83] 1.3×10-1 3.29[ 1.89: 4.70] 4.5×10-6 -0.16[-0.91: 0.59] 6.8×10-1 0.15[-0.52: 0.81] 6.7×10-1 -0.47[-1.04: 0.10] 1.0×10-1 -0.20[-0.57: 0.18] 3.0×10-1

Ace Acetate 0.71[ -1.38: 2.79] 5.1×10-1 0.35[-2.37: 3.07] 8.0×10-1 -0.22[-2.99: 2.55] 8.8×10-1 0.36[-1.06: 1.79] 6.2×10-1 0.28[-0.43: 1.00] 4.4×10-1 0.52[-0.11: 1.14] 1.1×10-1 -0.33[-0.85: 0.19] 2.2×10-1 0.08[-0.27: 0.43] 6.5×10-1

AcAce Acetoacetate 1.48[ -0.59: 3.54] 1.6×10-1 0.16[-2.65: 2.98] 9.1×10-1 -1.42[-4.18: 1.35] 3.2×10-1 0.37[-1.06: 1.80] 6.1×10-1 0.90[ 0.15: 1.64] 1.8×10-2 0.03[-0.60: 0.66] 9.2×10-1 -0.30[-0.82: 0.22] 2.6×10-1 0.07[-0.28: 0.43] 6.8×10-1

bOHBut 3-hydroxybutyrate -0.45[ -2.54: 1.64] 6.7×10-1 0.06[-2.80: 2.92] 9.7×10-1 0.10[-2.70: 2.90] 9.5×10-1 -0.17[-1.62: 1.27] 8.1×10-1 0.40[-0.33: 1.14] 2.9×10-1 0.17[-0.46: 0.81] 5.9×10-1 -0.04[-0.74: 0.66] 9.1×10-1 0.17[-0.23: 0.57] 4.0×10-1

Alb Albumin 6.57[ 4.55: 8.58] 3.3×10-10 -0.01[-2.88: 2.85] 9.9×10-1 -1.86[-4.41: 0.70] 1.6×10-1 2.55[ 1.16: 3.93] 3.1×10-4 -0.16[-0.94: 0.61] 6.8×10-1 -0.59[-1.20: 0.02] 5.8×10-2 -1.03[-1.55:-0.51] 1.1×10-4 -0.70[-1.06:-0.35] 9.4×10-5

Gp Glycoprotein acetyls, mainly a1-acid glycoprotein -3.63[ -5.72: -1.53] 7.4×10-4 0.37[-2.66: 3.41] 8.1×10-1 -3.88[-6.58:-1.19] 5.4×10-3 -2.79[-4.24:-1.33] 1.7×10-4 -0.93[-1.72:-0.14] 2.1×10-2 -1.82[-2.49:-1.15] 9.7×10-8 -0.48[-1.06: 0.09] 1.0×10-1 -1.03[-1.41:-0.65] 1.3×10-7

XXL-VLDL-PL-% Phospholipids to total lipds ratio in chylomicrons and extremely large
VLDL

1.23[ -1.08: 3.54] 3.0×10-1 1.91[-1.57: 5.38] 2.8×10-1 -2.40[-5.03: 0.23] 7.6×10-2 0.10[-1.45: 1.65] 9.0×10-1 0.29[-0.56: 1.14] 5.0×10-1 -0.58[-1.20: 0.03] 6.4×10-2 -0.44[-1.01: 0.14] 1.4×10-1 -0.35[-0.72: 0.03] 7.0×10-2

XXL-VLDL-C-% Total cholesterol to total lipids ratio in chylomicrons and extremely large
VLDL

-5.33[ -7.59: -3.07] 4.9×10-6 -0.01[-3.33: 3.31] 9.9×10-1 -1.76[-4.42: 0.90] 2.0×10-1 -3.02[-4.55:-1.49] 1.1×10-4 -0.92[-1.77:-0.08] 3.2×10-2 -1.14[-1.75:-0.53] 2.5×10-4 -0.68[-1.26:-0.11] 1.9×10-2 -0.90[-1.28:-0.53] 2.2×10-6

XXL-VLDL-CE-% Cholesterol esters to total lipids ratio in chylomicrons and extremely large
VLDL

-3.75[ -6.02: -1.48] 1.3×10-3 -0.74[-4.08: 2.59] 6.6×10-1 -1.19[-3.87: 1.50] 3.9×10-1 -2.27[-3.81:-0.73] 3.9×10-3 -0.82[-1.66: 0.02] 5.6×10-2 -0.42[-1.03: 0.19] 1.8×10-1 -0.48[-1.05: 0.09] 1.0×10-1 -0.52[-0.90:-0.15] 6.0×10-3

XXL-VLDL-FC-% Free cholesterol to total lipids ratio in chylomicrons and extremely large
VLDL

-1.17[ -3.45: 1.11] 3.2×10-1 0.15[-3.34: 3.64] 9.3×10-1 -3.49[-6.10:-0.87] 1.0×10-2 -1.71[-3.26:-0.17] 2.9×10-2 -0.41[-1.28: 0.46] 3.5×10-1 -1.70[-2.32:-1.07] 1.3×10-7 -0.30[-0.88: 0.28] 3.1×10-1 -0.84[-1.22:-0.46] 1.6×10-5

XXL-VLDL-TG-% Triglycerides to total lipids ratio in chylomicrons and extremely large
VLDL

3.82[ 1.56: 6.08] 1.0×10-3 -0.93[-4.38: 2.51] 5.9×10-1 2.77[ 0.13: 5.41] 4.2×10-2 2.52[ 0.98: 4.05] 1.3×10-3 0.99[ 0.14: 1.85] 2.3×10-2 1.33[ 0.72: 1.94] 2.1×10-5 0.97[ 0.40: 1.54] 9.1×10-4 1.11[ 0.73: 1.48] 6.6×10-9

XL-VLDL-PL-% Phospholipids to total lipds ratio in very large VLDL 2.71[ 0.39: 5.03] 2.2×10-2 -0.84[-4.11: 2.42] 6.1×10-1 1.44[-1.34: 4.22] 3.1×10-1 1.49[-0.07: 3.06] 6.1×10-2 -0.12[-1.03: 0.80] 8.0×10-1 1.05[ 0.41: 1.69] 1.4×10-3 0.30[-0.29: 0.90] 3.2×10-1 0.51[ 0.11: 0.90] 1.2×10-2

XL-VLDL-C-% Total cholesterol to total lipids ratio in very large VLDL -2.68[ -5.04: -0.32] 2.7×10-2 -0.95[-4.10: 2.20] 5.6×10-1 -0.04[-2.68: 2.60] 9.8×10-1 -1.37[-2.91: 0.16] 8.0×10-2 -0.51[-1.41: 0.40] 2.7×10-1 0.17[-0.46: 0.80] 6.0×10-1 -0.27[-0.87: 0.32] 3.7×10-1 -0.15[-0.54: 0.24] 4.6×10-1

XL-VLDL-CE-% Cholesterol esters to total lipids ratio in very large VLDL -4.57[ -6.92: -2.22] 1.6×10-4 -0.59[-3.79: 2.61] 7.2×10-1 -1.39[-4.03: 1.24] 3.0×10-1 -2.57[-4.11:-1.03] 1.1×10-3 -0.72[-1.64: 0.19] 1.2×10-1 -0.26[-0.88: 0.36] 4.1×10-1 -0.44[-1.05: 0.17] 1.5×10-1 -0.42[-0.81:-0.03] 3.5×10-2

XL-VLDL-FC-% Free cholesterol to total lipids ratio in very large VLDL 0.52[ -1.80: 2.84] 6.6×10-1 -1.69[-4.95: 1.58] 3.1×10-1 1.43[-1.30: 4.16] 3.1×10-1 0.32[-1.24: 1.87] 6.9×10-1 -0.25[-1.15: 0.65] 5.9×10-1 0.93[ 0.28: 1.59] 5.3×10-3 -0.03[-0.62: 0.57] 9.3×10-1 0.28[-0.11: 0.68] 1.6×10-1

XL-VLDL-TG-% Triglycerides to total lipids ratio in very large VLDL 1.06[ -1.29: 3.41] 3.8×10-1 0.24[-3.17: 3.65] 8.9×10-1 -1.54[-4.21: 1.13] 2.6×10-1 -0.01[-1.58: 1.56] 9.9×10-1 0.36[-0.56: 1.27] 4.5×10-1 -0.61[-1.25: 0.04] 6.5×10-2 0.08[-0.51: 0.68] 7.8×10-1 -0.13[-0.52: 0.27] 5.3×10-1

L-VLDL-PL-% Phospholipids to total lipds ratio in large VLDL -0.10[ -2.29: 2.08] 9.3×10-1 1.21[-1.91: 4.33] 4.5×10-1 1.46[-1.28: 4.20] 3.0×10-1 0.67[-0.83: 2.17] 3.8×10-1 -0.44[-1.31: 0.43] 3.2×10-1 0.48[-0.14: 1.10] 1.3×10-1 -0.10[-0.68: 0.47] 7.2×10-1 0.05[-0.33: 0.43] 8.0×10-1

L-VLDL-C-% Total cholesterol to total lipids ratio in large VLDL -1.15[ -3.34: 1.04] 3.0×10-1 1.03[-2.09: 4.15] 5.2×10-1 -0.05[-2.70: 2.60] 9.7×10-1 -0.31[-1.80: 1.17] 6.8×10-1 -0.53[-1.39: 0.33] 2.3×10-1 0.15[-0.46: 0.77] 6.2×10-1 -0.32[-0.89: 0.24] 2.6×10-1 -0.19[-0.56: 0.19] 3.3×10-1

L-VLDL-CE-% Cholesterol esters to total lipids ratio in large VLDL -3.48[ -5.65: -1.31] 1.8×10-3 0.41[-2.78: 3.60] 8.0×10-1 0.30[-2.33: 2.93] 8.2×10-1 -1.44[-2.92: 0.04] 5.7×10-2 -0.22[-1.08: 0.65] 6.3×10-1 0.46[-0.16: 1.09] 1.5×10-1 -0.19[-0.76: 0.37] 5.0×10-1 0.04[-0.34: 0.41] 8.4×10-1

L-VLDL-FC-% Free cholesterol to total lipids ratio in large VLDL 1.26[ -0.91: 3.42] 2.6×10-1 1.11[-2.10: 4.32] 5.0×10-1 -2.26[-4.87: 0.35] 9.2×10-2 0.10[-1.38: 1.58] 9.0×10-1 -0.69[-1.53: 0.16] 1.1×10-1 -0.78[-1.39:-0.17] 1.2×10-2 -0.44[-1.02: 0.14] 1.4×10-1 -0.62[-1.00:-0.24] 1.3×10-3

L-VLDL-TG-% Triglycerides to total lipids ratio in large VLDL 2.24[ 0.06: 4.43] 4.5×10-2 -1.25[-4.35: 1.86] 4.3×10-1 -1.05[-3.70: 1.60] 4.4×10-1 0.42[-1.07: 1.90] 5.8×10-1 0.44[-0.42: 1.30] 3.2×10-1 -0.25[-0.87: 0.37] 4.3×10-1 0.34[-0.22: 0.90] 2.3×10-1 0.15[-0.23: 0.52] 4.5×10-1

M-VLDL-PL-% Phospholipids to total lipds ratio in medium VLDL 0.19[ -1.88: 2.25] 8.6×10-1 -1.92[-4.90: 1.05] 2.0×10-1 1.77[-0.89: 4.44] 1.9×10-1 0.15[-1.28: 1.59] 8.3×10-1 -0.21[-0.97: 0.55] 5.8×10-1 0.87[ 0.23: 1.52] 7.9×10-3 -0.11[-0.68: 0.47] 7.2×10-1 0.20[-0.18: 0.57] 3.0×10-1
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M-VLDL-C-% Total cholesterol to total lipids ratio in medium VLDL -0.82[ -2.91: 1.27] 4.4×10-1 1.28[-1.57: 4.14] 3.8×10-1 1.50[-1.12: 4.12] 2.6×10-1 0.38[-1.04: 1.80] 6.0×10-1 -0.17[-0.92: 0.57] 6.5×10-1 0.91[ 0.26: 1.56] 6.4×10-3 0.01[-0.56: 0.57] 9.8×10-1 0.25[-0.12: 0.62] 1.8×10-1

M-VLDL-CE-% Cholesterol esters to total lipids ratio in medium VLDL -0.03[ -2.11: 2.05] 9.8×10-1 0.69[-2.21: 3.58] 6.4×10-1 1.74[-0.87: 4.35] 1.9×10-1 0.66[-0.75: 2.08] 3.6×10-1 0.28[-0.46: 1.03] 4.5×10-1 1.14[ 0.49: 1.80] 6.3×10-4 0.24[-0.33: 0.82] 4.1×10-1 0.55[ 0.17: 0.92] 4.1×10-3

M-VLDL-FC-% Free cholesterol to total lipids ratio in medium VLDL -0.64[ -2.74: 1.46] 5.5×10-1 2.10[-0.70: 4.91] 1.4×10-1 -2.51[-5.08: 0.06] 5.7×10-2 -0.51[-1.92: 0.90] 4.8×10-1 -0.58[-1.32: 0.16] 1.2×10-1 -1.52[-2.13:-0.91] 1.1×10-6 -0.96[-1.50:-0.42] 5.2×10-4 -1.06[-1.41:-0.71] 4.6×10-9

M-VLDL-TG-% Triglycerides to total lipids ratio in medium VLDL 1.07[ -1.01: 3.15] 3.1×10-1 -1.25[-4.16: 1.66] 4.0×10-1 -2.15[-4.78: 0.48] 1.1×10-1 -0.43[-1.85: 0.99] 5.5×10-1 0.08[-0.68: 0.85] 8.3×10-1 -0.87[-1.52:-0.23] 8.3×10-3 -0.05[-0.61: 0.52] 8.7×10-1 -0.29[-0.66: 0.08] 1.3×10-1

S-VLDL-PL-% Phospholipids to total lipds ratio in small VLDL 0.53[ -1.52: 2.58] 6.1×10-1 -2.30[-5.14: 0.54] 1.1×10-1 2.10[-0.46: 4.67] 1.1×10-1 0.31[-1.08: 1.71] 6.6×10-1 0.71[-0.02: 1.44] 5.8×10-2 0.87[ 0.23: 1.50] 7.4×10-3 -0.05[-0.61: 0.51] 8.7×10-1 0.44[ 0.08: 0.81] 1.8×10-2

S-VLDL-C-% Total cholesterol to total lipids ratio in small VLDL 1.21[ -0.86: 3.27] 2.5×10-1 0.23[-2.54: 3.01] 8.7×10-1 2.03[-0.55: 4.61] 1.2×10-1 1.20[-0.19: 2.59] 9.1×10-2 0.17[-0.57: 0.92] 6.5×10-1 0.85[ 0.21: 1.49] 9.7×10-3 0.04[-0.51: 0.59] 8.8×10-1 0.33[-0.03: 0.70] 7.2×10-2

S-VLDL-CE-% Cholesterol esters to total lipids ratio in small VLDL 1.57[ -0.49: 3.62] 1.4×10-1 0.54[-2.20: 3.28] 7.0×10-1 1.96[-0.60: 4.53] 1.4×10-1 1.42[ 0.04: 2.80] 4.4×10-2 0.20[-0.53: 0.93] 5.9×10-1 0.87[ 0.24: 1.50] 7.0×10-3 0.16[-0.38: 0.71] 5.6×10-1 0.40[ 0.04: 0.76] 2.9×10-2

S-VLDL-FC-% Free cholesterol to total lipids ratio in small VLDL -1.87[ -3.95: 0.21] 7.9×10-2 0.60[-2.33: 3.52] 6.9×10-1 0.54[-2.09: 3.17] 6.9×10-1 -0.58[-2.00: 0.85] 4.3×10-1 -0.12[-0.89: 0.66] 7.7×10-1 -0.04[-0.69: 0.61] 9.1×10-1 -0.90[-1.44:-0.37] 9.5×10-4 -0.46[-0.82:-0.09] 1.4×10-2

S-VLDL-TG-% Triglycerides to total lipids ratio in small VLDL -1.12[ -3.19: 0.94] 2.9×10-1 -0.55[-3.44: 2.34] 7.1×10-1 -2.67[-5.27:-0.08] 4.5×10-2 -1.44[-2.85:-0.03] 4.5×10-2 -0.46[-1.23: 0.31] 2.4×10-1 -1.14[-1.79:-0.50] 5.6×10-4 -0.10[-0.66: 0.46] 7.3×10-1 -0.52[-0.90:-0.15] 5.6×10-3

XS-VLDL-PL-% Phospholipids to total lipds ratio in very small VLDL 4.40[ 2.37: 6.42] 2.4×10-5 1.25[-1.58: 4.09] 3.9×10-1 2.19[-0.42: 4.81] 1.0×10-1 3.01[ 1.61: 4.40] 2.3×10-5 1.33[ 0.55: 2.12] 8.5×10-4 0.96[ 0.34: 1.59] 2.5×10-3 0.73[ 0.18: 1.28] 9.3×10-3 0.94[ 0.58: 1.31] 4.3×10-7

XS-VLDL-C-% Total cholesterol to total lipids ratio in very small VLDL 5.30[ 3.28: 7.31] 3.3×10-7 -0.27[-3.15: 2.61] 8.6×10-1 2.07[-0.56: 4.70] 1.2×10-1 3.08[ 1.68: 4.47] 1.6×10-5 0.69[-0.07: 1.45] 7.6×10-2 0.93[ 0.30: 1.55] 3.6×10-3 0.51[-0.03: 1.06] 6.6×10-2 0.69[ 0.33: 1.05] 1.7×10-4

XS-VLDL-CE-% Cholesterol esters to total lipids ratio in very small VLDL 6.15[ 4.16: 8.15] 2.5×10-9 0.01[-2.90: 2.91] 1.0×10+0 2.38[-0.21: 4.98] 7.4×10-2 3.67[ 2.28: 5.06] 2.3×10-7 0.71[-0.04: 1.45] 6.2×10-2 0.91[ 0.30: 1.52] 3.7×10-3 0.67[ 0.12: 1.21] 1.7×10-2 0.76[ 0.40: 1.12] 3.1×10-5

XS-VLDL-FC-% Free cholesterol to total lipids ratio in very small VLDL -1.61[ -3.68: 0.45] 1.3×10-1 -0.79[-3.53: 1.95] 5.7×10-1 -0.68[-3.33: 1.97] 6.2×10-1 -1.14[-2.54: 0.26] 1.1×10-1 0.02[-0.77: 0.81] 9.6×10-1 0.03[-0.61: 0.66] 9.4×10-1 -0.85[-1.38:-0.31] 1.9×10-3 -0.38[-0.74:-0.02] 4.0×10-2

XS-VLDL-TG-% Triglycerides to total lipids ratio in very small VLDL -5.83[ -7.83: -3.83] 1.7×10-8 -0.03[-2.91: 2.85] 9.8×10-1 -3.04[-5.62:-0.46] 2.2×10-2 -3.68[-5.07:-2.30] 1.9×10-7 -0.94[-1.72:-0.16] 1.9×10-2 -1.50[-2.14:-0.85] 5.2×10-6 -0.76[-1.32:-0.20] 7.9×10-3 -1.05[-1.42:-0.68] 3.3×10-8

IDL-PL-% Phospholipids to total lipds ratio in IDL -2.10[ -4.19: -0.02] 4.8×10-2 -2.16[-4.82: 0.50] 1.1×10-1 1.48[-1.14: 4.10] 2.7×10-1 -1.11[-2.50: 0.28] 1.2×10-1 0.59[-0.15: 1.32] 1.2×10-1 0.68[ 0.06: 1.30] 3.1×10-2 0.91[ 0.34: 1.48] 1.7×10-3 0.75[ 0.39: 1.12] 5.0×10-5

IDL-C-% Total cholesterol to total lipids ratio in IDL 8.96[ 7.04: 10.89] 9.1×10-19 1.23[-1.52: 3.98] 3.8×10-1 2.78[ 0.21: 5.35] 3.6×10-2 5.43[ 4.08: 6.77] 2.6×10-15 0.46[-0.29: 1.21] 2.3×10-1 1.56[ 0.96: 2.17] 4.9×10-7 0.46[-0.06: 0.99] 8.5×10-2 0.83[ 0.48: 1.18] 3.6×10-6

IDL-CE-% Cholesterol esters to total lipids ratio in IDL 9.23[ 7.31: 11.15] 7.6×10-20 1.60[-1.16: 4.36] 2.6×10-1 1.97[-0.61: 4.55] 1.4×10-1 5.45[ 4.10: 6.79] 2.1×10-15 0.40[-0.34: 1.13] 2.9×10-1 1.18[ 0.58: 1.78] 1.3×10-4 0.43[-0.11: 0.96] 1.2×10-1 0.67[ 0.32: 1.03] 1.7×10-4

IDL-FC-% Free cholesterol to total lipids ratio in IDL 3.12[ 1.08: 5.16] 2.8×10-3 1.08[-1.84: 4.00] 4.7×10-1 1.76[-0.90: 4.43] 2.0×10-1 2.26[ 0.84: 3.67] 1.8×10-3 0.70[-0.11: 1.50] 8.9×10-2 0.70[ 0.05: 1.34] 3.4×10-2 0.20[-0.35: 0.76] 4.8×10-1 0.48[ 0.10: 0.85] 1.2×10-2

IDL-TG-% Triglycerides to total lipids ratio in IDL -9.26[-11.18: -7.34] 6.2×10-20 -1.31[-4.10: 1.48] 3.6×10-1 -3.16[-5.76:-0.55] 1.9×10-2 -5.75[-7.10:-4.40] 8.2×10-17 -0.89[-1.66:-0.13] 2.2×10-2 -1.84[-2.46:-1.22] 6.6×10-9 -0.77[-1.30:-0.24] 4.7×10-3 -1.15[-1.51:-0.80] 2.4×10-10

L-LDL-PL-% Phospholipids to total lipds ratio in large LDL -3.58[ -5.61: -1.55] 5.9×10-4 -1.52[-4.18: 1.13] 2.6×10-1 0.66[-1.98: 3.30] 6.2×10-1 -1.87[-3.25:-0.50] 7.7×10-3 0.15[-0.58: 0.89] 6.8×10-1 0.34[-0.26: 0.94] 2.7×10-1 0.37[-0.16: 0.91] 1.7×10-1 0.31[-0.04: 0.66] 8.2×10-2

L-LDL-C-% Total cholesterol to total lipids ratio in large LDL 7.73[ 5.77: 9.69] 4.0×10-14 1.95[-0.76: 4.65] 1.6×10-1 2.23[-0.35: 4.80] 9.2×10-2 4.78[ 3.42: 6.13] 4.3×10-12 0.13[-0.60: 0.86] 7.3×10-1 0.97[ 0.37: 1.58] 1.6×10-3 0.33[-0.20: 0.86] 2.2×10-1 0.50[ 0.15: 0.85] 4.8×10-3

L-LDL-CE-% Cholesterol esters to total lipids ratio in large LDL 7.11[ 5.14: 9.09] 4.2×10-12 2.19[-0.51: 4.89] 1.1×10-1 0.98[-1.60: 3.57] 4.6×10-1 4.18[ 2.83: 5.54] 1.5×10-9 0.15[-0.58: 0.88] 6.8×10-1 0.49[-0.12: 1.09] 1.1×10-1 0.14[-0.42: 0.69] 6.2×10-1 0.26[-0.09: 0.62] 1.5×10-1

L-LDL-FC-% Free cholesterol to total lipids ratio in large LDL 1.54[ -0.54: 3.62] 1.5×10-1 -1.74[-4.54: 1.05] 2.2×10-1 2.53[-0.08: 5.14] 5.9×10-2 1.00[-0.41: 2.40] 1.6×10-1 0.79[ 0.04: 1.55] 3.9×10-2 0.89[ 0.25: 1.52] 6.4×10-3 0.38[-0.21: 0.97] 2.1×10-1 0.66[ 0.28: 1.04] 5.8×10-4

L-LDL-TG-% Triglycerides to total lipids ratio in large LDL -9.26[-11.19: -7.33] 8.9×10-20 -1.62[-4.34: 1.10] 2.4×10-1 -3.01[-5.59:-0.43] 2.3×10-2 -5.70[-7.04:-4.36] 9.1×10-17 -0.69[-1.44: 0.06] 7.3×10-2 -1.58[-2.19:-0.98] 3.6×10-7 -0.63[-1.16:-0.11] 1.9×10-2 -0.96[-1.32:-0.61] 7.7×10-8

M-LDL-PL-% Phospholipids to total lipds ratio in medium LDL -1.69[ -3.73: 0.35] 1.1×10-1 -2.07[-4.76: 0.63] 1.3×10-1 0.07[-2.60: 2.74] 9.6×10-1 -1.31[-2.70: 0.08] 6.4×10-2 -0.11[-0.85: 0.64] 7.7×10-1 0.22[-0.38: 0.83] 4.7×10-1 0.46[-0.07: 0.98] 8.8×10-2 0.25[-0.10: 0.60] 1.5×10-1

M-LDL-C-% Total cholesterol to total lipids ratio in medium LDL 5.09[ 3.09: 7.10] 8.0×10-7 2.74[-0.08: 5.56] 5.7×10-2 1.50[-1.13: 4.13] 2.7×10-1 3.53[ 2.14: 4.91] 6.3×10-7 -0.09[-0.82: 0.65] 8.2×10-1 0.48[-0.12: 1.08] 1.2×10-1 0.05[-0.48: 0.58] 8.6×10-1 0.16[-0.19: 0.51] 3.6×10-1

M-LDL-CE-% Cholesterol esters to total lipids ratio in medium LDL 3.49[ 1.48: 5.51] 7.2×10-4 3.09[ 0.28: 5.91] 3.1×10-2 1.08[-1.56: 3.72] 4.3×10-1 2.72[ 1.33: 4.12] 1.3×10-4 -0.08[-0.81: 0.65] 8.3×10-1 0.22[-0.38: 0.82] 4.8×10-1 -0.13[-0.66: 0.40] 6.3×10-1 -0.00[-0.35: 0.35] 1.0×10+0

M-LDL-FC-% Free cholesterol to total lipids ratio in medium LDL -0.77[ -2.82: 1.28] 4.6×10-1 -2.61[-5.30: 0.07] 5.6×10-2 0.65[-2.02: 3.32] 6.4×10-1 -0.88[-2.27: 0.51] 2.2×10-1 0.05[-0.69: 0.79] 8.9×10-1 0.75[ 0.14: 1.36] 1.6×10-2 0.63[ 0.07: 1.19] 2.7×10-2 0.53[ 0.18: 0.89] 3.5×10-3

M-LDL-TG-% Triglycerides to total lipids ratio in medium LDL -8.87[-10.81: -6.93] 3.7×10-18 -1.36[-4.15: 1.43] 3.4×10-1 -2.85[-5.43:-0.26] 3.2×10-2 -5.43[-6.79:-4.08] 4.1×10-15 -0.57[-1.32: 0.18] 1.4×10-1 -1.42[-2.03:-0.82] 4.5×10-6 -0.43[-0.96: 0.10] 1.1×10-1 -0.80[-1.15:-0.44] 9.3×10-6

S-LDL-PL-% Phospholipids to total lipds ratio in small LDL -1.82[ -3.86: 0.22] 8.1×10-2 -2.62[-5.27: 0.03] 5.3×10-2 -0.45[-3.11: 2.22] 7.4×10-1 -1.67[-3.05:-0.29] 1.8×10-2 0.22[-0.51: 0.95] 5.5×10-1 0.33[-0.27: 0.93] 2.8×10-1 0.66[ 0.13: 1.19] 1.5×10-2 0.45[ 0.10: 0.80] 1.2×10-2

S-LDL-C-% Total cholesterol to total lipids ratio in small LDL 5.18[ 3.17: 7.18] 5.5×10-7 2.80[-0.01: 5.61] 5.0×10-2 1.44[-1.20: 4.07] 2.9×10-1 3.56[ 2.17: 4.95] 4.9×10-7 0.06[-0.67: 0.79] 8.8×10-1 0.45[-0.16: 1.05] 1.5×10-1 -0.14[-0.67: 0.38] 5.9×10-1 0.10[-0.25: 0.45] 5.8×10-1

S-LDL-CE-% Cholesterol esters to total lipids ratio in small LDL 3.44[ 1.42: 5.46] 9.0×10-4 3.27[ 0.48: 6.06] 2.2×10-2 1.37[-1.28: 4.02] 3.1×10-1 2.83[ 1.43: 4.22] 6.9×10-5 -0.06[-0.79: 0.66] 8.7×10-1 0.26[-0.34: 0.87] 3.9×10-1 -0.22[-0.74: 0.31] 4.1×10-1 -0.02[-0.37: 0.33] 9.0×10-1

S-LDL-FC-% Free cholesterol to total lipids ratio in small LDL -1.28[ -3.33: 0.78] 2.2×10-1 -3.31[-5.96:-0.65] 1.5×10-2 -0.04[-2.74: 2.65] 9.7×10-1 -1.50[-2.90:-0.11] 3.4×10-2 0.02[-0.71: 0.75] 9.5×10-1 0.50[-0.11: 1.11] 1.1×10-1 0.40[-0.16: 0.95] 1.6×10-1 0.34[-0.02: 0.70] 6.1×10-2

S-LDL-TG-% Triglycerides to total lipids ratio in small LDL -8.13[-10.10: -6.17] 2.5×10-15 -0.78[-3.62: 2.06] 5.9×10-1 -3.06[-5.66:-0.46] 2.2×10-2 -5.00[-6.37:-3.63] 8.9×10-13 -0.51[-1.27: 0.24] 1.8×10-1 -1.67[-2.28:-1.05] 1.5×10-7 -0.58[-1.11:-0.04] 3.4×10-2 -0.92[-1.28:-0.57] 3.7×10-7

XL-HDL-PL-% Phospholipids to total lipds ratio in very large HDL -2.14[ -4.31: 0.03] 5.3×10-2 0.07[-2.77: 2.90] 9.6×10-1 2.44[-0.14: 5.02] 6.5×10-2 -0.16[-1.60: 1.27] 8.2×10-1 0.93[ 0.20: 1.65] 1.2×10-2 1.06[ 0.41: 1.70] 1.3×10-3 0.23[-0.35: 0.81] 4.3×10-1 0.69[ 0.32: 1.06] 2.8×10-4

XL-HDL-C-% Total cholesterol to total lipids ratio in very large HDL 3.19[ 1.05: 5.34] 3.6×10-3 -1.71[-4.70: 1.29] 2.7×10-1 -1.87[-4.44: 0.70] 1.6×10-1 0.46[-0.98: 1.91] 5.3×10-1 -0.80[-1.52:-0.08] 3.0×10-2 -0.80[-1.44:-0.15] 1.5×10-2 -0.56[-1.12: 0.00] 5.0×10-2 -0.70[-1.06:-0.33] 1.8×10-4

XL-HDL-CE-% Cholesterol esters to total lipids ratio in very large HDL 2.30[ 0.13: 4.46] 3.8×10-2 -2.03[-5.05: 0.99] 1.9×10-1 -1.72[-4.29: 0.86] 1.9×10-1 0.02[-1.44: 1.47] 9.8×10-1 -0.82[-1.55:-0.08] 2.9×10-2 -1.07[-1.72:-0.42] 1.2×10-3 -0.54[-1.10: 0.02] 6.1×10-2 -0.78[-1.15:-0.41] 3.3×10-5

XL-HDL-FC-% Free cholesterol to total lipids ratio in very large HDL 3.07[ 0.93: 5.21] 5.0×10-3 -0.30[-3.19: 2.58] 8.4×10-1 -0.47[-3.08: 2.15] 7.3×10-1 1.17[-0.27: 2.60] 1.1×10-1 0.34[-0.42: 1.10] 3.8×10-1 0.74[ 0.13: 1.35] 1.8×10-2 0.25[-0.28: 0.77] 3.5×10-1 0.43[ 0.08: 0.78] 1.6×10-2

XL-HDL-TG-% Triglycerides to total lipids ratio in very large HDL -0.39[ -2.53: 1.74] 7.2×10-1 -0.36[-3.19: 2.47] 8.0×10-1 -3.06[-5.58:-0.53] 1.9×10-2 -1.22[-2.63: 0.19] 9.1×10-2 -1.60[-2.31:-0.88] 1.2×10-5 -1.56[-2.20:-0.92] 1.7×10-6 -0.56[-1.12: 0.00] 5.2×10-2 -1.15[-1.51:-0.79] 5.2×10-10

L-HDL-PL-% Phospholipids to total lipds ratio in large HDL 0.84[ -1.26: 2.94] 4.3×10-1 1.53[-1.48: 4.55] 3.2×10-1 -1.49[-4.32: 1.34] 3.0×10-1 0.37[-1.10: 1.85] 6.2×10-1 -0.49[-1.32: 0.34] 2.5×10-1 -1.41[-2.09:-0.74] 4.6×10-5 -0.46[-1.11: 0.18] 1.6×10-1 -0.81[-1.22:-0.40] 9.4×10-5

L-HDL-C-% Total cholesterol to total lipids ratio in large HDL 2.81[ 0.74: 4.87] 7.9×10-3 -1.47[-4.45: 1.50] 3.3×10-1 3.12[ 0.35: 5.89] 2.9×10-2 1.88[ 0.44: 3.33] 1.1×10-2 1.08[ 0.29: 1.88] 7.7×10-3 1.74[ 1.08: 2.41] 2.8×10-7 0.72[ 0.10: 1.35] 2.3×10-2 1.17[ 0.78: 1.57] 5.7×10-9

L-HDL-CE-% Cholesterol esters to total lipids ratio in large HDL 2.92[ 0.87: 4.98] 5.4×10-3 -2.18[-5.09: 0.72] 1.4×10-1 3.29[ 0.55: 6.03] 2.0×10-2 1.79[ 0.36: 3.22] 1.4×10-2 0.81[ 0.03: 1.59] 4.1×10-2 1.77[ 1.13: 2.42] 9.0×10-8 0.82[ 0.21: 1.43] 8.8×10-3 1.15[ 0.77: 1.54] 4.4×10-9

L-HDL-FC-% Free cholesterol to total lipids ratio in large HDL 2.69[ 0.62: 4.77] 1.1×10-2 0.41[-2.52: 3.34] 7.8×10-1 0.97[-1.86: 3.80] 5.0×10-1 1.68[ 0.22: 3.13] 2.4×10-2 1.47[ 0.66: 2.29] 3.7×10-4 1.26[ 0.59: 1.93] 2.3×10-4 0.64[ 0.04: 1.25] 3.8×10-2 1.05[ 0.66: 1.44] 1.6×10-7

L-HDL-TG-% Triglycerides to total lipids ratio in large HDL -6.58[ -8.60: -4.56] 3.6×10-10 -0.13[-3.09: 2.82] 9.3×10-1 -3.24[-5.97:-0.51] 2.2×10-2 -4.17[-5.60:-2.75] 9.5×10-9 -1.19[-1.92:-0.45] 1.6×10-3 -1.71[-2.33:-1.09] 7.1×10-8 -1.14[-1.68:-0.60] 3.7×10-5 -1.34[-1.70:-0.98] 1.7×10-13

M-HDL-PL-% Phospholipids to total lipds ratio in medium HDL -5.05[ -7.08: -3.02] 1.3×10-6 1.15[-1.60: 3.90] 4.1×10-1 -2.48[-5.06: 0.10] 6.2×10-2 -2.75[-4.13:-1.38] 9.1×10-5 -0.84[-1.58:-0.11] 2.5×10-2 -1.11[-1.72:-0.50] 3.6×10-4 -0.26[-0.79: 0.27] 3.3×10-1 -0.68[-1.03:-0.33] 1.6×10-4

M-HDL-C-% Total cholesterol to total lipids ratio in medium HDL 5.44[ 3.41: 7.47] 2.0×10-7 -1.29[-4.14: 1.57] 3.8×10-1 3.45[ 0.84: 6.07] 1.1×10-2 3.26[ 1.86: 4.66] 4.9×10-6 1.30[ 0.56: 2.04] 6.1×10-4 1.36[ 0.73: 1.98] 2.2×10-5 0.57[ 0.01: 1.12] 4.5×10-2 1.01[ 0.64: 1.37] 5.2×10-8

M-HDL-CE-% Cholesterol esters to total lipids ratio in medium HDL 4.90[ 2.85: 6.94] 3.3×10-6 -2.08[-4.84: 0.67] 1.4×10-1 3.43[ 0.84: 6.03] 1.1×10-2 2.70[ 1.32: 4.09] 1.3×10-4 1.11[ 0.38: 1.84] 3.0×10-3 1.53[ 0.91: 2.15] 1.3×10-6 0.66[ 0.12: 1.21] 1.7×10-2 1.06[ 0.70: 1.42] 5.8×10-9

M-HDL-FC-% Free cholesterol to total lipids ratio in medium HDL 5.84[ 3.80: 7.87] 2.8×10-8 1.52[-1.55: 4.60] 3.3×10-1 1.08[-1.63: 3.79] 4.4×10-1 3.55[ 2.11: 4.99] 1.3×10-6 1.34[ 0.55: 2.12] 8.3×10-4 0.81[ 0.17: 1.46] 1.4×10-2 -0.10[-0.66: 0.46] 7.2×10-1 0.52[ 0.15: 0.90] 5.6×10-3

M-HDL-TG-% Triglycerides to total lipids ratio in medium HDL -4.75[ -6.80: -2.71] 6.2×10-6 1.86[-1.08: 4.80] 2.2×10-1 -2.42[-5.09: 0.24] 7.7×10-2 -2.55[-3.97:-1.13] 4.3×10-4 -0.96[-1.74:-0.18] 1.6×10-2 -1.55[-2.19:-0.90] 2.8×10-6 -0.68[-1.26:-0.11] 2.1×10-2 -1.04[-1.42:-0.66] 5.9×10-8

S-HDL-PL-% Phospholipids to total lipds ratio in small HDL 1.25[ -0.81: 3.30] 2.4×10-1 -1.88[-4.60: 0.85] 1.8×10-1 1.37[-1.33: 4.07] 3.2×10-1 0.45[-0.95: 1.85] 5.3×10-1 0.57[-0.16: 1.30] 1.3×10-1 0.31[-0.30: 0.91] 3.2×10-1 0.75[ 0.22: 1.29] 5.7×10-3 0.56[ 0.21: 0.91] 1.7×10-3

S-HDL-C-% Total cholesterol to total lipids ratio in small HDL 1.30[ -0.76: 3.37] 2.2×10-1 1.38[-1.39: 4.15] 3.3×10-1 -0.45[-3.17: 2.27] 7.5×10-1 0.85[-0.57: 2.26] 2.4×10-1 -0.33[-1.06: 0.41] 3.8×10-1 0.38[-0.23: 0.99] 2.2×10-1 -0.39[-0.92: 0.13] 1.4×10-1 -0.12[-0.47: 0.23] 4.9×10-1

S-HDL-CE-% Cholesterol esters to total lipids ratio in small HDL 1.03[ -1.03: 3.09] 3.3×10-1 1.68[-1.10: 4.45] 2.4×10-1 -0.26[-2.98: 2.46] 8.5×10-1 0.85[-0.56: 2.26] 2.4×10-1 -0.26[-0.99: 0.46] 4.8×10-1 0.36[-0.25: 0.97] 2.5×10-1 -0.34[-0.86: 0.18] 2.0×10-1 -0.09[-0.44: 0.25] 6.0×10-1

S-HDL-FC-% Free cholesterol to total lipids ratio in small HDL 0.93[ -1.12: 2.98] 3.7×10-1 -2.29[-5.13: 0.55] 1.1×10-1 -1.37[-4.02: 1.28] 3.1×10-1 -0.51[-1.92: 0.90] 4.8×10-1 -0.36[-1.09: 0.37] 3.3×10-1 0.24[-0.37: 0.85] 4.5×10-1 -0.48[-1.02: 0.07] 8.7×10-2 -0.21[-0.56: 0.15] 2.5×10-1

S-HDL-TG-% Triglycerides to total lipids ratio in small HDL -5.59[ -7.61: -3.57] 8.6×10-8 1.65[-1.26: 4.55] 2.7×10-1 -2.18[-4.83: 0.48] 1.1×10-1 -2.93[-4.34:-1.52] 4.5×10-5 -1.34[-2.12:-0.57] 6.6×10-4 -1.73[-2.38:-1.08] 2.4×10-7 -0.80[-1.38:-0.23] 6.3×10-3 -1.24[-1.62:-0.86] 1.2×10-10

DHA/FA Ratio of 22:6 docosahexaenoic acid to total fatty acids -1.31[ -3.36: 0.73] 2.1×10-1 1.18[-1.99: 4.35] 4.7×10-1 -0.54[-3.12: 2.04] 6.8×10-1 -0.57[-2.00: 0.86] 4.3×10-1 2.01[ 1.26: 2.76] 1.5×10-7 -0.01[-0.62: 0.59] 9.6×10-1 -0.27[-0.80: 0.25] 3.0×10-1 0.31[-0.04: 0.66] 8.2×10-2

LA/FA Ratio of 18:2 linoleic acid to total fatty acids 2.09[ 0.04: 4.15] 4.7×10-2 1.15[-1.64: 3.93] 4.2×10-1 1.68[-0.94: 4.29] 2.1×10-1 1.74[ 0.34: 3.13] 1.5×10-2 -0.13[-0.90: 0.64] 7.4×10-1 1.11[ 0.49: 1.73] 4.6×10-4 -0.24[-0.79: 0.31] 3.9×10-1 0.24[-0.12: 0.61] 1.9×10-1

FAw3/FA Ratio of omega-3 fatty acids to total fatty acids 0.56[ -1.48: 2.60] 5.9×10-1 1.95[-1.08: 4.98] 2.1×10-1 -0.16[-2.76: 2.43] 9.0×10-1 0.65[-0.77: 2.07] 3.7×10-1 1.91[ 1.16: 2.66] 6.0×10-7 0.07[-0.54: 0.67] 8.2×10-1 -0.50[-1.02: 0.02] 5.9×10-2 0.21[-0.14: 0.56] 2.3×10-1
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FAw6/FA Ratio of omega-6 fatty acids to total fatty acids 2.66[ 0.61: 4.71] 1.1×10-2 -0.06[-2.93: 2.80] 9.6×10-1 2.11[-0.52: 4.74] 1.2×10-1 1.84[ 0.44: 3.25] 1.0×10-2 0.52[-0.25: 1.28] 1.9×10-1 1.23[ 0.60: 1.86] 1.5×10-4 -0.19[-0.74: 0.37] 5.1×10-1 0.45[ 0.08: 0.82] 1.6×10-2

PUFA/FA Ratio of polyunsaturated fatty acids to total fatty acids 2.64[ 0.59: 4.70] 1.2×10-2 0.54[-2.36: 3.43] 7.2×10-1 1.94[-0.69: 4.57] 1.5×10-1 1.94[ 0.53: 3.35] 7.2×10-3 1.15[ 0.37: 1.92] 3.8×10-3 1.21[ 0.59: 1.84] 1.5×10-4 -0.33[-0.88: 0.22] 2.4×10-1 0.52[ 0.16: 0.89] 5.1×10-3

MUFA/FA Ratio of monounsaturated fatty acids to total fatty acids -5.72[ -7.73: -3.70] 4.0×10-8 0.11[-2.86: 3.07] 9.4×10-1 -3.30[-5.95:-0.64] 1.6×10-2 -3.71[-5.12:-2.30] 2.6×10-7 -1.40[-2.19:-0.60] 5.8×10-4 -1.83[-2.46:-1.19] 2.3×10-8 -0.66[-1.24:-0.08] 2.5×10-2 -1.23[-1.61:-0.86] 1.4×10-10

SFA/FA Ratio of saturated fatty acids to total fatty acids 4.57[ 2.55: 6.59] 1.1×10-5 -0.89[-3.66: 1.88] 5.3×10-1 1.43[-1.22: 4.08] 2.9×10-1 2.33[ 0.93: 3.72] 1.0×10-3 0.16[-0.57: 0.88] 6.7×10-1 0.52[-0.09: 1.12] 9.6×10-2 1.05[ 0.53: 1.57] 7.2×10-5 0.67[ 0.33: 1.02] 1.4×10-4

VLDL-D Mean diameter for VLDL particles 0.72[ -1.35: 2.79] 5.0×10-1 1.91[-1.18: 4.99] 2.3×10-1 -2.06[-4.64: 0.52] 1.2×10-1 0.12[-1.31: 1.55] 8.7×10-1 -0.83[-1.63:-0.03] 4.3×10-2 -0.84[-1.49:-0.18] 1.3×10-2 -0.15[-0.75: 0.44] 6.1×10-1 -0.55[-0.93:-0.16] 5.6×10-3

LDL-D Mean diameter for LDL particles -2.58[ -4.66: -0.50] 1.5×10-2 -2.66[-5.44: 0.11] 6.0×10-2 0.36[-2.31: 3.02] 7.9×10-1 -1.78[-3.19:-0.37] 1.4×10-2 0.00[-0.73: 0.73] 9.9×10-1 -0.94[-1.54:-0.34] 2.2×10-3 -0.13[-0.68: 0.42] 6.4×10-1 -0.38[-0.73:-0.03] 3.5×10-2

HDL-D Mean diameter for HDL particles 2.02[ -0.12: 4.15] 6.4×10-2 0.82[-2.47: 4.11] 6.2×10-1 3.67[ 1.03: 6.31] 7.2×10-3 2.29[ 0.81: 3.78] 2.4×10-3 1.38[ 0.52: 2.24] 1.6×10-3 1.90[ 1.20: 2.61] 1.2×10-7 0.56[-0.10: 1.23] 9.7×10-2 1.24[ 0.82: 1.66] 7.5×10-9



APPENDIX D

The faecal metabolome as a functional readout of the gut

microbiome

Figure D.1 The effect of storage time on faecal metabolites. To assess the effect of storage (a)
in the participants’ fridge before being stored in our biobank and (b) in the freezer at −80 ◦C
before being analysed, I calculated regression models of faecal metabolites against both
storage times. Here I present qq-plots where the dashed lines indicate Bonferroni cut-off.
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Figure D.2 Variance components of the faecal metabolome. I estimated heritability (red) and
the effect of common environment (blue) using ACE models from 148 pairs of MZ twins and
155 pairs of DZ twins. Additionally, I estimated the proportion of variance explained by the
gut microbiome (green) using mixed models incorporating the microbial beta-diversity for 644
individuals with 16S sequencing data available. The heat-map panels show associations of
faecal metabolites with microbial alpha diversity (n = 644, red), visceral fat mass (n = 647,
blue) and BMI (n = 786, green), where darker colours indicate stronger associations and
grey indicates non-significant associations (FDR corrected). This plot illustrates results for
345 metabolites observed in less than 80 % but more than 20 % of the samples. Results for
more common metabolites are shown in Figure 7.4
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Figure D.3 Faecal metabolic traits associated with host genetics. Each panel shows the qq-
plot for one of the three metabolites ((a), (b), (c)) and the metabolite ratio ((d)) with
genome-wide significant associations.
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Figure D.4 Genetic loci associated with faecal metabolic traits. I found three faecal metabolites
and one metabolite ratio significantly associated with genetic loci. Each panel shows one
associations of a metabolic trait with the lead SNP. 3-hydroxyhexanoate was found in less
than 80 % of all samples and was, thus, analysed as dichotomous trait. The other metabolites
are observed in at least 80 % of the samples and were analysed continuously.
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Figure D.5 Regional association plot of faecal metabolites. Regional association plots were
created for all significant associations of genetic loci with faecal metabolites using the web
tool SNIPA (Arnold et al., 2015). Colours indicate the strength of linkage disequilibrium
(LD) with the sentinel SNP. The chromosomal positions are based on GRC37 and Ensembl
v82 was used for gene annotations.
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(b) Eicosapentaenoate
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(c) 3-hydroxyhexanoate
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(d) 1,3-dimethylurate / 5-acetylamino-6-amino-3-methyluracil
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Table D.1 Variance components and phenotype associations of the faecal metabolome. In total, 915 faecal metabolites were analysed. Here, I show the proportion of samples in
which the metabolite was observed (n) and its RSD for all metabolites present in at least 90 % of quality control samples. I partitioned the variance of each faecal metabolite in
heritable (A), common environment (C) and unique environment (E) using structural equation modelling. Additionally, the variance explained by the microbial composition (M) was
estimated using UniFrac beta diversities. This might overlap with variance components from the ACE models. To investigate associations with phenotypes – age, BMI, visceral fat
mass and eGFR – I calculated linear regression models for metabolites present in more than 80 % of the samples and logistic regression models for metabolites present in less than
80 % but more than 20 % of samples.

Variance Components Age BMI Visceral Fat eGFRMetabolite N RSD
A C E M β [ 95 %CI ] p β [ 95 %CI ] p β [ 95 %CI ] p β [ 95 %CI ] p

X - 17162 95.3 9.4 0.24[0.10:0.38] 0.00[0.00:0.00] 0.76[0.62:0.90] 0.85[0.55:1.15] -0.10[-0.18:-0.03] 7.3×10-3 0.14[ 0.08: 0.21] 1.2×10-5 4.19[ 1.57: 6.82] 1.8×10-3 0.17[-0.84: 1.17] 7.4×10-1

X - 21410 45.8 16.0 0.12[0.00:0.34] 0.00[0.00:0.00] 0.88[0.66:1.10] 0.65[0.32:0.97] -0.20[ 0.01:-0.35] 9.2×10-3 0.12[ 0.00: 0.24] 4.2×10-2 8.40[ 3.54:13.26] 7.0×10-4 -0.94[-2.83: 0.96] 3.3×10-1

X - 11429 93.0 5.9 0.00[0.00:0.00] 0.19[0.07:0.31] 0.81[0.69:0.93] 0.85[0.55:1.16] -0.10[-0.18:-0.02] 1.2×10-2 0.04[-0.02: 0.11] 2.2×10-1 5.19[ 2.60: 7.79] 8.9×10-5 0.22[-0.75: 1.20] 6.6×10-1

X - 21470 33.6 12.6 0.00[0.00:0.00] 0.14[0.00:0.33] 0.86[0.67:1.04] 0.83[0.54:1.13] -0.20[ 0.02:-0.36] 1.8×10-2 0.12[-0.01: 0.24] 7.8×10-2 9.41[ 4.22:14.61] 3.9×10-4 -0.19[-2.24: 1.85] 8.5×10-1

glycerophosphoglycerol 93.4 20.6 0.29[0.15:0.44] 0.00[0.00:0.00] 0.71[0.56:0.85] 1.00[0.72:1.27] -0.09[-0.17:-0.01] 2.1×10-2 -0.02[-0.09: 0.04] 5.0×10-1 4.47[ 1.87: 7.08] 7.6×10-4 0.77[-0.21: 1.76] 1.2×10-1

glutamate, gamma-methyl ester 94.4 16.3 0.11[0.00:0.25] 0.00[0.00:0.00] 0.89[0.75:1.04] 1.00[0.76:1.24] -0.09[-0.16:-0.01] 2.3×10-2 0.00[-0.06: 0.07] 9.1×10-1 4.30[ 1.77: 6.84] 8.9×10-4 1.10[ 0.08: 2.12] 3.5×10-2

glycylvaline 100.0 8.7 0.23[0.09:0.36] 0.00[0.00:0.00] 0.77[0.64:0.91] 0.96[0.69:1.23] -0.09[-0.16:-0.01] 2.5×10-2 0.04[-0.02: 0.10] 2.3×10-1 4.95[ 2.41: 7.50] 1.4×10-4 0.68[-0.30: 1.65] 1.7×10-1

mevalonate 87.8 17.6 0.19[0.04:0.33] 0.00[0.00:0.00] 0.81[0.67:0.96] 0.81[0.49:1.14] -0.09[-0.16:-0.01] 3.5×10-2 0.06[-0.01: 0.12] 9.6×10-2 4.37[ 1.70: 7.04] 1.4×10-3 0.73[-0.31: 1.76] 1.7×10-1

N-propionylalanine 49.2 31.5 0.00[0.00:0.00] 0.00[0.00:0.00] 1.00[1.00:1.00] 0.72[0.41:1.03] -0.15[ 0.04:-0.29] 4.1×10-2 0.08[-0.04: 0.20] 1.7×10-1 8.45[ 3.69:13.20] 5.0×10-4 -0.95[-2.80: 0.90] 3.1×10-1

linoleoyl-arachidonoyl-glycerol (18:2/20:4)* 98.3 9.8 0.00[0.00:0.00] 0.00[0.00:0.00] 1.00[1.00:1.00] 0.83[0.54:1.13] -0.07[-0.15:-0.00] 5.0×10-2 0.11[ 0.05: 0.17] 2.7×10-4 4.52[ 2.10: 6.93] 2.4×10-4 0.57[-0.37: 1.50] 2.3×10-1

3-ketosphinganine 87.3 19.2 0.28[0.12:0.43] 0.00[0.00:0.00] 0.72[0.57:0.88] 0.75[0.41:1.10] -0.08[-0.16: 0.00] 5.0×10-2 0.14[ 0.07: 0.20] 5.0×10-5 2.22[-0.44: 4.88] 1.0×10-1 -0.65[-1.71: 0.41] 2.3×10-1

beta-alanine 95.4 45.8 0.00[0.00:0.00] 0.00[0.00:0.00] 1.00[1.00:1.00] 1.00[0.74:1.26] -0.07[-0.14: 0.01] 7.0×10-2 0.02[-0.04: 0.08] 5.0×10-1 4.29[ 1.88: 6.71] 5.0×10-4 0.30[-0.65: 1.26] 5.3×10-1

octadecanedioate 87.4 9.4 0.33[0.19:0.48] 0.00[0.00:0.00] 0.67[0.52:0.81] 0.73[0.39:1.07] 0.08[-0.01: 0.16] 7.1×10-2 -0.01[-0.08: 0.06] 7.3×10-1 -5.10[-7.71: -2.48] 1.3×10-4 -0.10[-1.12: 0.93] 8.5×10-1

4-androsten-3beta,17beta-diol monosulfate (1) 24.6 11.1 0.00[0.00:0.00] 0.16[0.00:0.36] 0.84[0.64:1.04] 0.93[0.66:1.20] -0.17[ 0.07:-0.35] 7.3×10-2 0.16[ 0.02: 0.30] 2.2×10-2 11.72[ 6.00:17.43] 5.8×10-5 -1.04[-3.27: 1.19] 3.6×10-1

X - 21283 41.9 — 0.28[0.05:0.50] 0.00[0.00:0.00] 0.72[0.50:0.95] 0.75[0.44:1.05] -0.14[ 0.08:-0.30] 8.1×10-2 0.08[-0.04: 0.20] 2.0×10-1 9.71[ 4.67:14.76] 1.6×10-4 -0.10[-2.05: 1.84] 9.2×10-1

X - 23637 91.2 31.9 0.15[0.00:0.31] 0.00[0.00:0.00] 0.85[0.69:1.01] 0.51[0.15:0.86] -0.07[-0.14: 0.01] 8.8×10-2 0.01[-0.06: 0.07] 8.2×10-1 5.04[ 2.42: 7.67] 1.7×10-4 0.77[-0.23: 1.76] 1.3×10-1

N6,N6,N6-trimethyllysine 97.3 11.3 0.00[0.00:0.00] 0.12[0.01:0.24] 0.88[0.76:0.99] 1.00[0.74:1.26] -0.06[-0.13: 0.01] 1.1×10-1 0.04[-0.03: 0.10] 2.5×10-1 6.08[ 3.62: 8.55] 1.3×10-6 0.10[-0.86: 1.06] 8.4×10-1

X - 23652 99.0 6.5 0.00[0.00:0.00] 0.00[0.00:0.00] 1.00[1.00:1.00] 0.84[0.55:1.13] -0.06[-0.13: 0.01] 1.2×10-1 0.13[ 0.08: 0.19] 7.1×10-6 0.61[-1.95: 3.16] 6.4×10-1 -0.47[-1.42: 0.48] 3.3×10-1

3’-CMP 26.7 — 0.00[0.00:0.00] 0.02[0.00:0.23] 0.98[0.77:1.19] 0.26[0.00:0.58] -0.13[ 0.12:-0.29] 1.2×10-1 0.05[-0.08: 0.19] 4.4×10-1 9.45[ 3.93:14.96] 7.9×10-4 0.77[-1.34: 2.88] 4.8×10-1

thioproline 98.7 10.5 0.00[0.00:0.00] 0.00[0.00:0.00] 1.00[1.00:1.00] 0.68[0.36:1.00] -0.06[-0.13: 0.02] 1.2×10-1 0.10[ 0.04: 0.16] 1.4×10-3 4.86[ 2.37: 7.36] 1.3×10-4 -0.17[-1.15: 0.80] 7.3×10-1

1-methylguanidine 100.0 6.7 0.15[0.01:0.29] 0.00[0.00:0.00] 0.85[0.71:0.99] 0.68[0.37:1.00] 0.06[-0.02: 0.13] 1.3×10-1 0.09[ 0.03: 0.15] 3.6×10-3 -1.10[-3.67: 1.46] 4.0×10-1 -2.12[-3.06:-1.19] 8.6×10-6

X - 24678 99.7 14.8 0.28[0.15:0.41] 0.00[0.00:0.00] 0.72[0.59:0.85] 1.00[0.75:1.25] -0.06[-0.13: 0.02] 1.3×10-1 0.03[-0.03: 0.10] 2.9×10-1 7.16[ 4.68: 9.64] 1.6×10-8 -0.54[-1.50: 0.42] 2.7×10-1

gamma-glutamyl-epsilon-lysine 99.0 8.2 0.00[0.00:0.00] 0.11[0.00:0.22] 0.89[0.78:1.00] 1.00[0.75:1.25] -0.05[-0.13: 0.02] 1.5×10-1 0.04[-0.02: 0.10] 1.7×10-1 4.53[ 2.03: 7.04] 3.9×10-4 0.56[-0.39: 1.51] 2.5×10-1

X - 23747 98.7 5.2 0.24[0.09:0.38] 0.00[0.00:0.00] 0.76[0.62:0.91] 1.00[0.76:1.24] -0.05[-0.13: 0.02] 1.5×10-1 0.05[-0.02: 0.11] 1.5×10-1 5.52[ 3.06: 7.99] 1.1×10-5 0.45[-0.49: 1.39] 3.5×10-1

N-acetylarginine 100.0 4.4 0.00[0.00:0.00] 0.17[0.06:0.28] 0.83[0.72:0.94] 1.00[0.79:1.21] -0.05[-0.13: 0.02] 1.5×10-1 -0.02[-0.08: 0.05] 6.0×10-1 4.28[ 1.82: 6.74] 6.5×10-4 -0.01[-0.96: 0.94] 9.9×10-1

histidine 100.0 7.7 0.24[0.11:0.37] 0.00[0.00:0.00] 0.76[0.63:0.89] 0.96[0.69:1.23] -0.05[-0.13: 0.02] 1.7×10-1 0.07[ 0.01: 0.13] 3.3×10-2 4.46[ 1.89: 7.02] 6.6×10-4 0.23[-0.74: 1.21] 6.4×10-1

nicotinate 99.7 8.3 0.28[0.15:0.42] 0.00[0.00:0.00] 0.72[0.58:0.85] 1.00[0.79:1.21] -0.05[-0.13: 0.02] 1.7×10-1 0.04[-0.02: 0.11] 1.8×10-1 7.38[ 4.91: 9.86] 5.1×10-9 0.62[-0.32: 1.57] 2.0×10-1

6-hydroxynicotinate 98.0 8.5 0.00[0.00:0.00] 0.00[0.00:0.00] 1.00[1.00:1.00] 0.93[0.66:1.21] -0.05[-0.12: 0.02] 1.9×10-1 0.05[-0.01: 0.11] 1.1×10-1 4.15[ 1.73: 6.57] 7.9×10-4 0.41[-0.53: 1.35] 3.9×10-1

gamma-glutamyl-alpha-lysine 99.5 8.7 0.24[0.10:0.37] 0.00[0.00:0.00] 0.76[0.63:0.90] 1.00[0.74:1.26] -0.05[-0.12: 0.02] 1.9×10-1 0.01[-0.05: 0.07] 7.2×10-1 5.27[ 2.79: 7.74] 3.0×10-5 1.07[ 0.11: 2.02] 2.9×10-2

indoleacetate 99.7 6.9 0.17[0.02:0.31] 0.00[0.00:0.00] 0.83[0.69:0.98] 0.71[0.40:1.02] 0.05[-0.03: 0.12] 2.0×10-1 0.02[-0.04: 0.09] 4.4×10-1 4.17[ 1.73: 6.61] 8.2×10-4 0.55[-0.38: 1.47] 2.5×10-1

mannose 96.2 22.2 0.00[0.00:0.00] 0.00[0.00:0.00] 1.00[1.00:1.00] 0.74[0.42:1.05] -0.05[-0.12: 0.03] 2.1×10-1 -0.04[-0.10: 0.02] 1.5×10-1 4.97[ 2.57: 7.38] 5.0×10-5 0.49[-0.44: 1.43] 3.0×10-1

X - 24686 99.6 11.3 0.27[0.14:0.41] 0.00[0.00:0.00] 0.73[0.59:0.86] 1.00[0.75:1.25] -0.05[-0.12: 0.03] 2.3×10-1 0.05[-0.02: 0.11] 1.5×10-1 5.56[ 3.07: 8.05] 1.2×10-5 -0.36[-1.31: 0.59] 4.6×10-1

X - 24246 61.3 7.9 0.00[0.00:0.00] 0.25[0.08:0.43] 0.75[0.57:0.92] 0.67[0.36:0.99] -0.10[ 0.23:-0.26] 2.3×10-1 0.14[ 0.01: 0.26] 3.6×10-2 10.80[ 5.72:15.88] 3.1×10-5 0.19[-1.76: 2.14] 8.5×10-1

pantothenate 100.0 6.5 0.32[0.19:0.45] 0.00[0.00:0.00] 0.68[0.55:0.81] 1.00[0.79:1.21] -0.05[-0.12: 0.03] 2.4×10-1 0.06[-0.00: 0.12] 5.7×10-2 6.12[ 3.60: 8.64] 1.9×10-6 0.67[-0.30: 1.64] 1.8×10-1

N-acetylhistidine 100.0 4.7 0.19[0.05:0.33] 0.00[0.00:0.00] 0.81[0.67:0.95] 0.91[0.63:1.19] -0.04[-0.12: 0.03] 2.5×10-1 0.03[-0.03: 0.09] 3.4×10-1 6.56[ 4.05: 9.08] 3.0×10-7 0.35[-0.61: 1.31] 4.8×10-1

N-propionylmethionine 97.1 9.0 0.00[0.00:0.00] 0.14[0.03:0.26] 0.86[0.74:0.97] 0.87[0.57:1.16] 0.04[-0.03: 0.12] 2.5×10-1 0.04[-0.02: 0.10] 2.4×10-1 5.42[ 2.89: 7.95] 2.7×10-5 -0.27[-1.21: 0.68] 5.8×10-1

N-acetylmethionine 100.0 6.3 0.00[0.00:0.00] 0.14[0.03:0.25] 0.86[0.75:0.97] 1.00[0.75:1.25] 0.04[-0.03: 0.12] 2.6×10-1 0.06[-0.00: 0.12] 6.5×10-2 5.10[ 2.58: 7.62] 7.2×10-5 0.09[-0.88: 1.06] 8.6×10-1

eicosapentaenoate (EPA; 20:5n3) 94.7 13.6 0.16[0.01:0.31] 0.00[0.00:0.00] 0.84[0.69:0.99] 0.67[0.33:1.01] 0.04[-0.03: 0.12] 2.6×10-1 0.07[ 0.01: 0.13] 3.2×10-2 4.32[ 1.69: 6.95] 1.3×10-3 0.22[-0.78: 1.23] 6.7×10-1

glutamate 100.0 4.9 0.23[0.09:0.36] 0.00[0.00:0.00] 0.77[0.64:0.91] 1.00[0.75:1.25] -0.04[-0.12: 0.03] 2.7×10-1 0.05[-0.01: 0.11] 1.0×10-1 7.35[ 4.85: 9.85] 8.3×10-9 0.57[-0.41: 1.55] 2.5×10-1

sedoheptulose 99.7 5.8 0.18[0.04:0.32] 0.00[0.00:0.00] 0.82[0.68:0.96] 0.97[0.71:1.24] -0.04[-0.11: 0.03] 2.8×10-1 0.02[-0.05: 0.08] 6.0×10-1 6.44[ 3.99: 8.89] 2.6×10-7 0.47[-0.49: 1.43] 3.4×10-1

X - 23115 62.5 35.7 0.00[0.00:0.00] 0.29[0.11:0.47] 0.71[0.53:0.89] 0.37[0.04:0.71] -0.09[ 0.29:-0.26] 2.9×10-1 0.16[ 0.03: 0.29] 1.7×10-2 11.37[ 6.11:16.63] 2.3×10-5 -0.95[-2.98: 1.07] 3.6×10-1

stearoyl ethanolamide 100.0 13.4 0.13[0.00:0.27] 0.00[0.00:0.00] 0.87[0.73:1.01] 0.74[0.43:1.04] -0.04[-0.11: 0.03] 2.9×10-1 0.06[ 0.00: 0.12] 4.5×10-2 5.05[ 2.64: 7.46] 4.1×10-5 -0.72[-1.69: 0.25] 1.4×10-1

N-delta-acetylornithine* 100.0 5.1 0.10[0.00:0.24] 0.00[0.00:0.00] 0.90[0.76:1.03] 0.98[0.71:1.24] -0.04[-0.11: 0.03] 3.0×10-1 -0.03[-0.09: 0.03] 2.9×10-1 3.97[ 1.55: 6.38] 1.3×10-3 0.55[-0.41: 1.50] 2.6×10-1

galacturonate 100.0 5.8 0.32[0.19:0.46] 0.00[0.00:0.00] 0.68[0.54:0.81] 1.00[0.76:1.24] -0.04[-0.12: 0.04] 3.0×10-1 0.03[-0.03: 0.09] 3.7×10-1 4.75[ 2.26: 7.24] 1.8×10-4 0.68[-0.28: 1.64] 1.7×10-1
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glucose 99.6 5.5 0.25[0.11:0.39] 0.00[0.00:0.00] 0.75[0.61:0.89] 1.00[0.74:1.26] -0.04[-0.11: 0.04] 3.1×10-1 0.01[-0.05: 0.08] 6.7×10-1 4.88[ 2.37: 7.39] 1.4×10-4 -0.07[-1.03: 0.89] 8.9×10-1

bilirubin (Z,Z) 91.2 17.4 0.22[0.08:0.36] 0.00[0.00:0.00] 0.78[0.64:0.92] 0.77[0.44:1.10] -0.04[-0.12: 0.04] 3.2×10-1 0.13[ 0.06: 0.19] 8.9×10-5 3.36[ 0.72: 6.00] 1.2×10-2 -0.50[-1.48: 0.48] 3.2×10-1

D-urobilin 94.3 19.4 0.20[0.06:0.34] 0.00[0.00:0.00] 0.80[0.66:0.94] 0.81[0.50:1.12] -0.04[-0.11: 0.04] 3.2×10-1 0.10[ 0.04: 0.16] 1.8×10-3 4.43[ 1.76: 7.11] 1.1×10-3 0.07[-0.90: 1.04] 8.9×10-1

N2-acetyllysine 100.0 3.5 0.00[0.00:0.00] 0.12[0.01:0.23] 0.88[0.77:0.99] 1.00[0.75:1.25] -0.04[-0.11: 0.04] 3.3×10-1 0.03[-0.03: 0.09] 3.9×10-1 5.11[ 2.59: 7.64] 7.3×10-5 0.36[-0.61: 1.33] 4.6×10-1

uridine 100.0 9.6 0.23[0.09:0.37] 0.00[0.00:0.00] 0.77[0.63:0.91] 0.99[0.73:1.25] -0.04[-0.11: 0.04] 3.4×10-1 0.01[-0.05: 0.07] 7.2×10-1 4.38[ 1.87: 6.88] 6.2×10-4 0.20[-0.77: 1.16] 6.9×10-1

gamma-glutamylphenylalanine 97.8 5.8 0.00[0.00:0.00] 0.22[0.11:0.33] 0.78[0.67:0.89] 0.78[0.48:1.09] 0.04[-0.04: 0.11] 3.6×10-1 0.01[-0.05: 0.07] 7.3×10-1 4.64[ 2.10: 7.18] 3.4×10-4 0.45[-0.53: 1.43] 3.7×10-1

nicotinate ribonucleoside 99.5 8.3 0.00[0.00:0.00] 0.09[0.00:0.20] 0.91[0.80:1.02] 0.87[0.58:1.16] -0.03[-0.11: 0.04] 3.9×10-1 -0.03[-0.09: 0.04] 4.1×10-1 4.17[ 1.70: 6.63] 9.3×10-4 0.93[-0.02: 1.89] 5.6×10-2

glycerate 100.0 16.1 0.26[0.12:0.40] 0.00[0.00:0.00] 0.74[0.60:0.88] 1.00[0.75:1.25] -0.03[-0.11: 0.04] 4.1×10-1 0.03[-0.03: 0.09] 3.6×10-1 5.11[ 2.59: 7.63] 7.2×10-5 1.05[ 0.11: 2.00] 2.9×10-2

stearoylcarnitine 49.4 — 0.54[0.36:0.72] 0.00[0.00:0.00] 0.46[0.28:0.64] 0.61[0.29:0.94] -0.07[ 0.43:-0.25] 4.3×10-1 0.27[ 0.14: 0.40] 2.7×10-5 6.80[ 1.63:11.97] 1.0×10-2 -0.00[-2.00: 1.99] 1.0×10+0

lysine 100.0 5.6 0.18[0.04:0.32] 0.00[0.00:0.00] 0.82[0.68:0.96] 1.00[0.75:1.25] -0.03[-0.10: 0.04] 4.3×10-1 0.02[-0.04: 0.08] 4.6×10-1 4.98[ 2.50: 7.46] 8.3×10-5 0.36[-0.59: 1.30] 4.6×10-1

fructose 99.5 6.8 0.00[0.00:0.00] 0.00[0.00:0.00] 1.00[1.00:1.00] 0.68[0.36:1.00] -0.03[-0.10: 0.04] 4.3×10-1 -0.02[-0.08: 0.04] 4.6×10-1 4.79[ 2.34: 7.25] 1.3×10-4 0.19[-0.77: 1.15] 7.0×10-1

formiminoglutamate 98.2 4.7 0.14[0.00:0.28] 0.00[0.00:0.00] 0.86[0.72:1.01] 0.49[0.16:0.83] 0.03[-0.04: 0.10] 4.3×10-1 0.03[-0.03: 0.09] 3.7×10-1 4.27[ 1.76: 6.78] 8.7×10-4 -0.16[-1.12: 0.79] 7.4×10-1

X - 24220 99.9 5.4 0.00[0.00:0.00] 0.14[0.03:0.25] 0.86[0.75:0.97] 0.85[0.56:1.14] -0.03[-0.10: 0.04] 4.4×10-1 0.03[-0.03: 0.09] 3.3×10-1 4.58[ 2.11: 7.05] 2.8×10-4 0.14[-0.82: 1.11] 7.7×10-1

N-methylalanine 97.7 13.5 0.00[0.00:0.00] 0.00[0.00:0.00] 1.00[1.00:1.00] 0.70[0.38:1.02] -0.03[-0.10: 0.04] 4.4×10-1 0.09[ 0.03: 0.15] 2.3×10-3 4.05[ 1.64: 6.47] 9.8×10-4 0.03[-0.89: 0.96] 9.4×10-1

N-acetylglutamine 99.1 12.6 0.18[0.05:0.31] 0.00[0.00:0.00] 0.82[0.69:0.95] 0.68[0.36:1.00] -0.03[-0.10: 0.05] 4.4×10-1 0.05[-0.01: 0.11] 9.7×10-2 5.54[ 2.99: 8.10] 2.2×10-5 0.09[-0.90: 1.09] 8.5×10-1

methionine 100.0 7.0 0.13[0.00:0.27] 0.00[0.00:0.00] 0.87[0.73:1.01] 1.00[0.75:1.25] -0.03[-0.10: 0.04] 4.5×10-1 0.06[ 0.00: 0.12] 5.0×10-2 5.57[ 3.09: 8.05] 1.1×10-5 0.19[-0.79: 1.16] 7.1×10-1

sphingosine 100.0 10.1 0.13[0.00:0.27] 0.00[0.00:0.00] 0.87[0.73:1.01] 0.89[0.61:1.17] -0.03[-0.10: 0.05] 4.6×10-1 0.09[ 0.03: 0.15] 2.1×10-3 4.11[ 1.69: 6.53] 8.9×10-4 0.05[-0.90: 1.01] 9.1×10-1

cystathionine 31.7 — 0.20[0.00:0.44] 0.00[0.00:0.00] 0.80[0.56:1.03] 0.77[0.47:1.08] -0.06[ 0.47:-0.22] 4.7×10-1 -0.01[-0.14: 0.12] 8.5×10-1 8.62[ 3.42:13.82] 1.2×10-3 -1.19[-3.20: 0.81] 2.4×10-1

N-alpha-acetylornithine 99.9 4.2 0.00[0.00:0.00] 0.00[0.00:0.00] 1.00[1.00:1.00] 0.65[0.33:0.98] -0.03[-0.10: 0.05] 4.8×10-1 0.02[-0.04: 0.08] 5.1×10-1 4.00[ 1.56: 6.43] 1.3×10-3 0.01[-0.94: 0.96] 9.8×10-1

aspartate 100.0 10.5 0.22[0.08:0.35] 0.00[0.00:0.00] 0.78[0.65:0.92] 0.76[0.45:1.06] -0.03[-0.10: 0.05] 4.9×10-1 0.10[ 0.04: 0.16] 2.0×10-3 5.20[ 2.69: 7.72] 4.9×10-5 0.68[-0.32: 1.67] 1.8×10-1

riboflavin (Vitamin B2) 100.0 7.6 0.13[0.00:0.27] 0.00[0.00:0.00] 0.87[0.73:1.01] 1.00[0.77:1.23] -0.03[-0.10: 0.05] 4.9×10-1 0.02[-0.04: 0.08] 4.8×10-1 4.61[ 2.16: 7.07] 2.3×10-4 0.62[-0.32: 1.57] 2.0×10-1

proline 100.0 5.4 0.00[0.00:0.00] 0.09[0.00:0.20] 0.91[0.80:1.02] 0.67[0.35:0.99] 0.03[-0.05: 0.10] 4.9×10-1 0.03[-0.03: 0.09] 3.9×10-1 4.92[ 2.38: 7.46] 1.5×10-4 0.24[-0.74: 1.21] 6.3×10-1

dihydroferulic acid 97.3 7.3 0.00[0.00:0.00] 0.00[0.00:0.00] 1.00[1.00:1.00] 0.77[0.46:1.08] -0.03[-0.10: 0.05] 4.9×10-1 0.03[-0.03: 0.09] 3.7×10-1 4.28[ 1.83: 6.73] 6.2×10-4 0.32[-0.63: 1.28] 5.0×10-1

N-acetylalanine 100.0 9.0 0.00[0.00:0.00] 0.00[0.00:0.00] 1.00[1.00:1.00] 0.89[0.61:1.18] -0.03[-0.10: 0.05] 4.9×10-1 0.03[-0.03: 0.09] 2.7×10-1 5.45[ 2.92: 7.98] 2.4×10-5 -0.29[-1.23: 0.64] 5.4×10-1

malate 100.0 10.3 0.21[0.07:0.34] 0.00[0.00:0.00] 0.79[0.66:0.93] 0.82[0.52:1.11] -0.03[-0.10: 0.05] 4.9×10-1 0.05[-0.01: 0.11] 1.0×10-1 4.74[ 2.23: 7.24] 2.1×10-4 -0.16[-1.12: 0.80] 7.5×10-1

threonine 100.0 7.8 0.13[0.00:0.27] 0.00[0.00:0.00] 0.87[0.73:1.01] 0.87[0.58:1.15] -0.02[-0.10: 0.05] 5.0×10-1 0.02[-0.04: 0.08] 4.6×10-1 5.12[ 2.67: 7.57] 4.2×10-5 0.06[-0.89: 1.02] 8.9×10-1

2-hydroxyglutarate 100.0 7.1 0.13[0.00:0.27] 0.00[0.00:0.00] 0.87[0.73:1.01] 0.47[0.14:0.81] -0.02[-0.10: 0.05] 5.1×10-1 0.03[-0.03: 0.09] 4.0×10-1 4.39[ 1.87: 6.92] 6.5×10-4 0.88[-0.07: 1.84] 7.0×10-2

N-formylmethionine 99.1 7.4 0.20[0.07:0.34] 0.00[0.00:0.00] 0.80[0.66:0.93] 1.00[0.75:1.25] -0.03[-0.10: 0.05] 5.1×10-1 0.03[-0.03: 0.09] 3.8×10-1 4.81[ 2.31: 7.31] 1.7×10-4 0.24[-0.73: 1.21] 6.3×10-1

palmitoyl ethanolamide 100.0 8.6 0.19[0.06:0.33] 0.00[0.00:0.00] 0.81[0.67:0.94] 0.92[0.65:1.20] -0.02[-0.10: 0.05] 5.1×10-1 0.07[ 0.01: 0.13] 2.2×10-2 4.26[ 1.82: 6.70] 6.3×10-4 -0.23[-1.20: 0.73] 6.4×10-1

1-methyladenine 99.9 6.5 0.11[0.00:0.25] 0.00[0.00:0.00] 0.89[0.75:1.03] 1.00[0.78:1.22] -0.02[-0.10: 0.05] 5.3×10-1 0.05[-0.01: 0.11] 1.3×10-1 4.72[ 2.28: 7.16] 1.5×10-4 0.49[-0.46: 1.44] 3.1×10-1

ornithine 100.0 5.6 0.22[0.08:0.36] 0.00[0.00:0.00] 0.78[0.64:0.92] 0.76[0.45:1.06] -0.02[-0.10: 0.05] 5.4×10-1 0.05[-0.01: 0.11] 1.1×10-1 5.07[ 2.59: 7.55] 6.0×10-5 -0.16[-1.13: 0.81] 7.4×10-1

xylose 91.2 12.3 0.13[0.00:0.30] 0.00[0.00:0.00] 0.87[0.70:1.03] 0.84[0.52:1.15] -0.02[-0.10: 0.05] 5.5×10-1 0.05[-0.01: 0.11] 1.3×10-1 4.61[ 2.12: 7.09] 2.8×10-4 0.39[-0.55: 1.34] 4.1×10-1

glutamine 100.0 7.6 0.17[0.03:0.31] 0.00[0.00:0.00] 0.83[0.69:0.97] 0.90[0.62:1.18] -0.02[-0.10: 0.05] 5.6×10-1 0.04[-0.02: 0.10] 1.9×10-1 4.21[ 1.68: 6.74] 1.1×10-3 0.56[-0.43: 1.54] 2.7×10-1

3-(4-hydroxyphenyl)lactate 100.0 5.7 0.00[0.00:0.00] 0.11[0.00:0.22] 0.89[0.78:1.01] 0.60[0.28:0.93] -0.02[-0.09: 0.05] 5.7×10-1 0.06[-0.00: 0.12] 5.5×10-2 4.59[ 2.16: 7.03] 2.2×10-4 0.14[-0.80: 1.08] 7.8×10-1

N6-acetyllysine 99.2 12.0 0.00[0.00:0.00] 0.13[0.02:0.25] 0.87[0.75:0.98] 0.97[0.71:1.24] -0.02[-0.09: 0.05] 6.0×10-1 0.03[-0.03: 0.09] 2.9×10-1 5.99[ 3.41: 8.56] 5.1×10-6 0.80[-0.16: 1.77] 1.0×10-1

glycine 100.0 6.0 0.00[0.00:0.00] 0.00[0.00:0.00] 1.00[1.00:1.00] 0.80[0.51:1.10] 0.02[-0.06: 0.09] 6.5×10-1 0.05[-0.01: 0.11] 7.4×10-2 5.40[ 2.87: 7.93] 2.8×10-5 0.23[-0.74: 1.20] 6.4×10-1

pseudouridine 100.0 5.5 0.15[0.01:0.29] 0.00[0.00:0.00] 0.85[0.71:0.99] 1.00[0.74:1.26] -0.02[-0.09: 0.06] 6.6×10-1 0.00[-0.06: 0.06] 9.8×10-1 5.21[ 2.76: 7.65] 3.1×10-5 0.19[-0.73: 1.11] 6.8×10-1

xanthine 100.0 4.0 0.00[0.00:0.00] 0.00[0.00:0.00] 1.00[1.00:1.00] 0.96[0.69:1.23] -0.02[-0.09: 0.06] 6.8×10-1 0.03[-0.03: 0.09] 3.4×10-1 4.07[ 1.66: 6.49] 9.3×10-4 0.25[-0.69: 1.19] 6.0×10-1

X - 11612 87.9 7.0 0.17[0.01:0.32] 0.00[0.00:0.00] 0.83[0.68:0.99] 0.78[0.44:1.11] -0.01[-0.09: 0.06] 7.0×10-1 -0.00[-0.07: 0.06] 9.5×10-1 5.24[ 2.59: 7.89] 1.1×10-4 -0.08[-1.09: 0.94] 8.8×10-1

5-oxoproline 99.9 4.4 0.13[0.00:0.28] 0.00[0.00:0.00] 0.87[0.72:1.01] 0.81[0.52:1.11] 0.01[-0.06: 0.09] 7.2×10-1 0.01[-0.05: 0.07] 8.4×10-1 4.75[ 2.32: 7.18] 1.2×10-4 0.55[-0.42: 1.53] 2.6×10-1

X - 24766 97.8 8.1 0.16[0.02:0.29] 0.00[0.00:0.00] 0.84[0.71:0.98] 0.79[0.49:1.10] -0.01[-0.09: 0.06] 7.3×10-1 0.05[-0.01: 0.11] 1.3×10-1 5.45[ 2.95: 7.95] 1.9×10-5 -0.35[-1.31: 0.61] 4.7×10-1

alpha-ketoglutarate 99.4 29.1 0.28[0.14:0.41] 0.00[0.00:0.00] 0.72[0.59:0.86] 0.88[0.60:1.17] -0.01[-0.09: 0.06] 7.4×10-1 0.02[-0.04: 0.08] 5.4×10-1 4.19[ 1.64: 6.73] 1.3×10-3 0.95[-0.01: 1.91] 5.2×10-2

propionylglycine 91.1 15.0 0.00[0.00:0.00] 0.00[0.00:0.00] 1.00[1.00:1.00] 0.40[0.05:0.76] 0.01[-0.06: 0.09] 7.5×10-1 0.07[ 0.01: 0.13] 3.2×10-2 4.79[ 2.15: 7.43] 3.7×10-4 0.58[-0.42: 1.57] 2.5×10-1

serine 100.0 6.4 0.19[0.06:0.33] 0.00[0.00:0.00] 0.81[0.67:0.94] 0.94[0.67:1.21] -0.01[-0.09: 0.06] 7.7×10-1 0.05[-0.01: 0.12] 7.9×10-2 4.65[ 2.12: 7.18] 3.2×10-4 0.28[-0.70: 1.27] 5.7×10-1

phenyllactate (PLA) 99.7 6.7 0.00[0.00:0.00] 0.15[0.04:0.26] 0.85[0.74:0.96] 0.57[0.24:0.90] -0.01[-0.09: 0.06] 7.8×10-1 0.05[-0.01: 0.12] 8.6×10-2 4.66[ 2.18: 7.15] 2.4×10-4 0.14[-0.80: 1.09] 7.7×10-1

gamma-glutamylalanine 99.1 5.3 0.24[0.11:0.36] 0.00[0.00:0.00] 0.76[0.64:0.89] 0.86[0.57:1.15] 0.01[-0.07: 0.09] 7.8×10-1 -0.04[-0.10: 0.03] 2.6×10-1 4.57[ 2.02: 7.11] 4.4×10-4 0.96[ 0.02: 1.91] 4.5×10-2

N-acetylaspartate (NAA) 100.0 19.1 0.00[0.00:0.00] 0.15[0.04:0.26] 0.85[0.74:0.96] 0.79[0.49:1.09] 0.01[-0.06: 0.08] 7.8×10-1 -0.01[-0.07: 0.06] 8.6×10-1 4.55[ 2.11: 6.99] 2.6×10-4 0.72[-0.22: 1.67] 1.3×10-1

dihomo-linolenate (20:3n3 or n6) 98.7 25.0 0.23[0.09:0.37] 0.00[0.00:0.00] 0.77[0.63:0.91] 0.77[0.46:1.07] -0.01[-0.08: 0.06] 7.8×10-1 0.11[ 0.04: 0.17] 8.8×10-4 4.47[ 1.92: 7.01] 5.8×10-4 -0.11[-1.07: 0.85] 8.2×10-1

N-palmitoyl-sphinganine (d18:0/16:0) 100.0 9.8 0.00[0.00:0.00] 0.00[0.00:0.00] 1.00[1.00:1.00] 0.83[0.54:1.12] -0.01[-0.08: 0.06] 8.0×10-1 0.12[ 0.06: 0.18] 8.7×10-5 2.37[-0.05: 4.79] 5.5×10-2 -0.76[-1.70: 0.18] 1.1×10-1

tryptophan 100.0 6.0 0.14[0.00:0.28] 0.00[0.00:0.00] 0.86[0.72:1.00] 1.00[0.75:1.25] -0.01[-0.08: 0.06] 8.0×10-1 0.05[-0.01: 0.11] 1.1×10-1 5.53[ 3.04: 8.03] 1.4×10-5 0.21[-0.77: 1.20] 6.7×10-1

homocitrulline 99.9 4.8 0.00[0.00:0.00] 0.00[0.00:0.00] 1.00[1.00:1.00] 1.00[0.78:1.22] -0.01[-0.08: 0.06] 8.1×10-1 0.03[-0.03: 0.09] 2.9×10-1 5.30[ 2.86: 7.73] 2.0×10-5 -0.25[-1.21: 0.71] 6.1×10-1

docosapentaenoate (n3 DPA; 22:5n3) 97.1 27.6 0.25[0.12:0.39] 0.00[0.00:0.00] 0.75[0.61:0.88] 0.91[0.63:1.19] 0.01[-0.07: 0.08] 8.1×10-1 0.11[ 0.05: 0.17] 5.3×10-4 5.34[ 2.77: 7.91] 4.8×10-5 -0.09[-1.08: 0.89] 8.5×10-1

alanine 100.0 11.1 0.00[0.00:0.00] 0.00[0.00:0.00] 1.00[1.00:1.00] 0.91[0.63:1.18] 0.01[-0.06: 0.08] 8.3×10-1 0.04[-0.02: 0.10] 2.1×10-1 5.10[ 2.57: 7.63] 7.9×10-5 0.44[-0.51: 1.39] 3.7×10-1

13-HODE + 9-HODE 96.1 27.3 0.00[0.00:0.00] 0.10[0.00:0.22] 0.90[0.78:1.01] 0.42[0.08:0.76] -0.01[-0.08: 0.07] 8.4×10-1 -0.13[-0.19:-0.06] 5.8×10-5 -0.56[-3.12: 2.01] 6.7×10-1 0.43[-0.58: 1.44] 4.0×10-1

valine 100.0 7.3 0.00[0.00:0.00] 0.00[0.00:0.00] 1.00[1.00:1.00] 0.84[0.55:1.13] 0.01[-0.07: 0.08] 8.4×10-1 0.03[-0.03: 0.09] 2.6×10-1 4.87[ 2.34: 7.40] 1.6×10-4 0.37[-0.59: 1.33] 4.5×10-1

5-methyluridine (ribothymidine) 97.2 5.8 0.15[0.00:0.30] 0.00[0.00:0.00] 0.85[0.70:1.00] 0.95[0.67:1.23] -0.01[-0.08: 0.07] 8.7×10-1 0.04[-0.03: 0.10] 2.5×10-1 4.02[ 1.56: 6.48] 1.4×10-3 0.25[-0.67: 1.18] 5.9×10-1
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2-hydroxybutyrate/2-hydroxyisobutyrate 99.0 8.5 0.00[0.00:0.00] 0.14[0.03:0.26] 0.86[0.74:0.97] 0.82[0.52:1.12] 0.01[-0.07: 0.08] 8.9×10-1 0.06[-0.01: 0.12] 7.5×10-2 4.75[ 2.23: 7.27] 2.2×10-4 0.22[-0.75: 1.20] 6.5×10-1

gamma-glutamylmethionine 98.0 8.3 0.00[0.00:0.00] 0.20[0.08:0.31] 0.80[0.69:0.92] 0.91[0.63:1.19] 0.01[-0.07: 0.08] 9.0×10-1 0.03[-0.03: 0.09] 2.9×10-1 4.84[ 2.32: 7.37] 1.7×10-4 0.28[-0.69: 1.25] 5.7×10-1

N-acetylasparagine 99.7 10.8 0.00[0.00:0.00] 0.09[0.00:0.20] 0.91[0.80:1.02] 0.50[0.17:0.83] 0.00[-0.07: 0.08] 9.1×10-1 0.06[-0.00: 0.12] 5.1×10-2 5.71[ 3.17: 8.26] 1.1×10-5 -0.09[-1.07: 0.89] 8.5×10-1

choline 100.0 4.6 0.00[0.00:0.00] 0.16[0.05:0.27] 0.84[0.73:0.95] 0.68[0.36:0.99] -0.00[-0.08: 0.07] 9.2×10-1 0.01[-0.05: 0.07] 7.1×10-1 4.43[ 1.96: 6.91] 4.5×10-4 0.65[-0.31: 1.61] 1.8×10-1

leucine 100.0 6.0 0.12[0.00:0.26] 0.00[0.00:0.00] 0.88[0.74:1.02] 0.92[0.64:1.20] 0.00[-0.07: 0.08] 9.2×10-1 0.04[-0.02: 0.10] 2.5×10-1 4.57[ 2.04: 7.09] 3.9×10-4 0.23[-0.74: 1.21] 6.4×10-1

phenylalanine 100.0 5.3 0.17[0.03:0.31] 0.00[0.00:0.00] 0.83[0.69:0.97] 0.98[0.71:1.24] 0.00[-0.07: 0.08] 9.2×10-1 0.04[-0.02: 0.10] 2.0×10-1 5.37[ 2.85: 7.89] 3.0×10-5 0.06[-0.92: 1.04] 9.0×10-1

uracil 100.0 5.2 0.15[0.00:0.29] 0.00[0.00:0.00] 0.85[0.71:1.00] 1.00[0.75:1.25] -0.00[-0.08: 0.07] 9.3×10-1 0.03[-0.03: 0.09] 3.1×10-1 5.02[ 2.56: 7.49] 6.4×10-5 0.33[-0.61: 1.28] 4.9×10-1

N-acetyltyrosine 99.9 6.4 0.00[0.00:0.00] 0.16[0.05:0.28] 0.84[0.72:0.95] 0.79[0.49:1.09] 0.00[-0.07: 0.08] 9.4×10-1 0.04[-0.02: 0.10] 2.3×10-1 4.45[ 1.87: 7.02] 7.2×10-4 -0.26[-1.25: 0.73] 6.1×10-1

arachidonate (20:4n6) 99.4 18.3 0.13[0.00:0.26] 0.00[0.00:0.00] 0.87[0.74:1.01] 0.77[0.47:1.08] -0.00[-0.07: 0.07] 9.6×10-1 0.13[ 0.07: 0.19] 1.1×10-5 5.07[ 2.55: 7.59] 8.2×10-5 -0.33[-1.28: 0.63] 5.0×10-1

tyrosine 100.0 6.8 0.00[0.00:0.00] 0.00[0.00:0.00] 1.00[1.00:1.00] 0.92[0.65:1.20] -0.00[-0.07: 0.07] 9.9×10-1 0.06[-0.00: 0.12] 6.1×10-2 4.64[ 2.15: 7.12] 2.6×10-4 0.00[-0.98: 0.98] 1.0×10+0



APPENDIX E

Differential multi-fluid networks identify processes involved

in end-stage renal disease

Table E.1 Metabolites included in the differential model. I included 882 metabolites – 229
measured in plasma, 419 in urine, and 164 in saliva – in the model. Here I list the results of
univariate logistic regression models comparing metabolite abundances between cases and
controls (odds ratios and p-values), the node degree (D), betweenness (B), and clustering
coefficients (C) from the graphs of controls and cases, respectively. Lastly, the number of
differential edges connected to the node is shown.

Association Controls Cases Dif
Metabolite OR p-value D B C D B C D

urine N2-methylguanosine 0.2[ 0.1: 0.2] 5.9×10−32 8 0.0% 10.7% 1 0.0% — 0

saliva undecanedioate 6.9[ 4.9: 9.6] 2.4×10−29 6 0.0% 6.7% 11 0.0% 47.3% 0

urine sucrose 6.0[ 4.4: 8.2] 2.8×10−29 4 0.0% 16.7% 5 0.0% 0.0% 0

saliva X - 15689 8.8[ 6.0: 12.9] 8.6×10−29 6 0.0% 20.0% 5 0.0% 30.0% 0

saliva X - 15675 6.4[ 4.6: 8.9] 1.2×10−28 8 0.0% 25.0% 12 0.0% 16.7% 0

urine X - 12748 0.2[ 0.1: 0.2] 1.2×10−28 9 0.0% 8.3% 0 0.0% — 0

urine X - 12715 8.7[ 6.0: 12.8] 1.3×10−28 4 0.0% 33.3% 0 0.0% — 0

urine tetrahydrocortisone 0.2[ 0.1: 0.2] 3.3×10−28 6 0.0% 40.0% 6 0.0% 20.0% 0

plasma 4-hydroxyhippurate 7.3[ 5.1: 10.4] 3.8×10−28 11 0.0% 3.6% 2 0.0% 100.0% 0

urine X - 17337 0.2[ 0.1: 0.2] 4.9×10−28 12 0.0% 25.8% 5 0.0% 70.0% 0

plasma pyridoxate 6.2[ 4.5: 8.5] 5.8×10−28 10 0.0% 6.7% 2 0.0% 100.0% 0

saliva catechol sulfate 9.6[ 6.4: 14.4] 6.0×10−28 9 0.0% 19.4% 4 0.0% 0.0% 0

plasma X - 19133 0.1[ 0.1: 0.2] 8.7×10−28 11 0.0% 16.4% 7 0.0% 14.3% 0

saliva azelate (nonanedioate) 7.2[ 5.0: 10.3] 1.2×10−27 7 0.0% 4.8% 9 0.0% 55.6% 0

urine N-acetylphenylalanine 13.9[ 8.7: 22.3] 1.3×10−27 4 0.0% 50.0% 1 0.0% — 0

urine X - 13249 6.6[ 4.7: 9.3] 1.7×10−27 8 0.0% 7.1% 4 0.0% 0.0% 0

saliva X - 18808 7.0[ 5.0: 10.0] 1.8×10−27 11 0.0% 1.8% 4 0.0% 50.0% 0

urine X - 17340 0.1[ 0.1: 0.2] 3.2×10−27 10 0.0% 17.8% 6 0.0% 60.0% 0

urine X - 17341 0.2[ 0.2: 0.3] 3.4×10−27 13 0.0% 19.2% 9 0.0% 44.4% 0

plasma trigonelline (N’-methylnicotinate) 7.6[ 5.3: 11.0] 3.5×10−27 8 0.0% 10.7% 1 0.0% — 0

saliva X - 13007 8.4[ 5.7: 12.4] 3.9×10−27 6 0.0% 26.7% 9 0.0% 30.6% 0

plasma X - 12846 7.2[ 5.0: 10.3] 4.0×10−27 8 0.0% 3.6% 0 0.0% — 0

saliva p-cresol sulfate 5.7[ 4.2: 7.8] 4.5×10−27 11 0.0% 1.8% 5 0.0% 20.0% 1

urine 2-oxo-1-pyrrolidinepropionate 4.3[ 3.3: 5.6] 5.1×10−27 7 0.0% 4.8% 3 0.0% 100.0% 0

plasma 1,5-anhydroglucitol (1,5-AG) 0.1[ 0.1: 0.2] 5.4×10−27 11 0.0% 1.8% 3 0.0% 33.3% 0

plasma N1-Methyl-2-pyridone-5-carboxamide 14.4[ 8.8: 23.3] 5.9×10−27 5 0.0% 30.0% 5 0.0% 50.0% 0

urine X - 12831 13.9[ 8.6: 22.5] 6.0×10−27 6 0.0% 26.7% 3 0.0% 0.0% 0

saliva phenol sulfate 7.8[ 5.4: 11.4] 9.2×10−27 13 0.0% 9.0% 6 0.0% 46.7% 0

urine X - 17324 0.1[ 0.1: 0.1] 1.1×10−26 11 0.0% 5.5% 0 0.0% — 0

plasma X - 11593 8.5[ 5.7: 12.5] 1.1×10−26 7 0.0% 4.8% 1 0.0% — 0

plasma hypoxanthine 6.8[ 4.8: 9.7] 1.2×10−26 18 0.0% 6.5% 3 0.0% 0.0% 0

urine X - 12199 12.1[ 7.7: 19.1] 1.3×10−26 12 0.0% 3.0% 1 0.0% — 0

saliva X - 16626 13.5[ 8.3: 21.7] 1.6×10−26 6 0.0% 20.0% 5 0.0% 50.0% 0

saliva aspartate 0.2[ 0.2: 0.3] 1.6×10−26 9 0.0% 19.4% 9 0.0% 33.3% 0

urine X - 12834 5.7[ 4.1: 7.9] 1.7×10−26 11 0.0% 10.9% 1 0.0% — 0

urine X - 10445 0.1[ 0.1: 0.2] 1.8×10−26 10 0.0% 0.0% 4 0.0% 0.0% 0

urine X - 13844 16.8[ 10.0: 28.2] 1.9×10−26 7 0.0% 19.0% 2 0.0% 100.0% 0

urine 4-acetamidobutanoate 11.6[ 7.4: 18.2] 2.4×10−26 9 0.0% 2.8% 1 0.0% — 0

urine X - 20180 6.5[ 4.6: 9.1] 3.2×10−26 11 0.0% 3.6% 3 0.0% 0.0% 0

urine 5-oxoproline 6.0[ 4.3: 8.4] 3.7×10−26 16 0.0% 2.5% 2 0.0% 100.0% 0

plasma catechol sulfate 8.9[ 5.9: 13.4] 3.8×10−26 6 0.0% 13.3% 2 0.0% 0.0% 0
continued on next page . . .
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urine homovanillate sulfate 7.5[ 5.1: 10.8] 4.1×10−26 14 0.0% 2.2% 1 0.0% — 0

urine X - 12379 7.1[ 4.9: 10.2] 4.4×10−26 11 0.0% 14.5% 1 0.0% — 0

urine N6-acetyllysine 0.1[ 0.0: 0.1] 4.7×10−26 12 0.0% 4.5% 1 0.0% — 0

plasma X - 11793 0.1[ 0.1: 0.2] 5.2×10−26 6 0.0% 20.0% 4 0.0% 16.7% 0

plasma X - 12095 9.5[ 6.3: 14.5] 5.5×10−26 5 0.0% 30.0% 6 0.0% 46.7% 0

urine X - 13684 0.1[ 0.1: 0.2] 5.8×10−26 13 0.0% 3.8% 2 0.0% 100.0% 0

urine X - 12814 14.3[ 8.7: 23.5] 5.9×10−26 7 0.0% 9.5% 1 0.0% — 0

plasma X - 16397 14.8[ 8.9: 24.4] 6.2×10−26 15 0.0% 1.0% 0 0.0% — 0

urine X - 12231 0.2[ 0.2: 0.3] 7.1×10−26 6 0.0% 86.7% 6 0.0% 66.7% 0

plasma X - 11442 0.1[ 0.1: 0.2] 7.4×10−26 8 0.0% 67.9% 8 0.0% 60.7% 0

plasma kynurenine 8.5[ 5.7: 12.7] 7.6×10−26 11 0.0% 10.9% 0 0.0% — 0

saliva X - 18554 6.2[ 4.4: 8.6] 7.9×10−26 7 0.0% 4.8% 10 0.0% 35.6% 0

urine 2-isopropylmalate 3.8[ 2.9: 4.8] 8.3×10−26 6 0.0% 6.7% 4 0.0% 33.3% 0

urine X - 11485 0.1[ 0.1: 0.2] 8.4×10−26 10 0.0% 31.1% 7 0.0% 61.9% 0

plasma gamma-glutamylvaline 9.2[ 6.1: 13.9] 8.6×10−26 10 0.0% 24.4% 5 0.0% 50.0% 0

plasma succinylcarnitine 10.1[ 6.6: 15.6] 9.1×10−26 14 0.0% 1.1% 0 0.0% — 0

urine X - 12844 0.2[ 0.1: 0.3] 9.5×10−26 7 0.0% 28.6% 10 0.0% 44.4% 1

plasma p-cresol sulfate 12.8[ 7.9: 20.6] 1.2×10−25 4 0.0% 16.7% 6 0.0% 46.7% 1

urine X - 14445 7.9[ 5.3: 11.6] 1.5×10−25 13 0.0% 9.0% 2 0.0% 0.0% 0

plasma indolelactate 7.0[ 4.9: 10.1] 1.5×10−25 11 0.0% 10.9% 3 0.0% 0.0% 0

plasma hippurate 6.5[ 4.5: 9.2] 1.6×10−25 9 0.0% 27.8% 1 0.0% — 0

plasma 3-methylglutarylcarnitine (C6) 18.5[ 10.7: 32.0] 1.6×10−25 11 0.0% 16.4% 1 0.0% — 0

urine 4-androsten-3beta,17beta-diol disulfate (2) 0.1[ 0.1: 0.2] 1.7×10−25 10 0.0% 35.6% 6 0.0% 33.3% 0

saliva N1-Methyl-2-pyridone-5-carboxamide 17.2[ 10.1: 29.3] 1.7×10−25 10 0.0% 13.3% 8 0.0% 17.9% 0

urine X - 12848 0.2[ 0.1: 0.2] 1.8×10−25 7 0.0% 52.4% 5 0.0% 90.0% 0

plasma X - 16934 0.2[ 0.1: 0.2] 2.1×10−25 6 0.0% 80.0% 7 0.0% 76.2% 0

plasma glutarylcarnitine (C5) 10.8[ 6.9: 17.0] 2.1×10−25 2 0.0% 0.0% 1 0.0% — 0

urine X - 12733 4.9[ 3.6: 6.6] 2.3×10−25 8 0.0% 17.9% 2 0.0% 0.0% 0

urine 5beta-pregnan-3alpha,21-diol-11,20-dione 21-glucosiduronate 0.1[ 0.0: 0.1] 2.3×10−25 9 0.0% 33.3% 5 0.0% 10.0% 0

plasma X - 19141 10.4[ 6.7: 16.3] 2.6×10−25 12 0.0% 3.0% 0 0.0% — 0

plasma X - 11378 0.1[ 0.1: 0.1] 2.8×10−25 7 0.0% 14.3% 11 0.0% 12.7% 0

plasma 3-hydroxyhippurate 7.1[ 4.9: 10.2] 3.7×10−25 14 0.0% 5.5% 1 0.0% — 0

urine dihydrobiopterin 0.2[ 0.2: 0.3] 3.8×10−25 15 0.0% 3.8% 0 0.0% — 0

plasma X - 12206 7.9[ 5.3: 11.7] 3.9×10−25 16 0.0% 4.2% 5 0.0% 10.0% 0

urine uracil 0.2[ 0.1: 0.3] 4.0×10−25 8 0.0% 3.6% 1 0.0% — 0

plasma X - 17357 7.8[ 5.3: 11.6] 4.5×10−25 8 0.0% 14.3% 2 0.0% 0.0% 0

saliva X - 16271 4.9[ 3.7: 6.7] 4.6×10−25 13 0.0% 2.6% 9 0.0% 38.9% 0

saliva X - 13671 7.0[ 4.9: 10.2] 4.6×10−25 6 0.0% 46.7% 8 0.0% 35.7% 2

plasma gamma-glutamylphenylalanine 9.7[ 6.3: 15.0] 4.9×10−25 7 0.0% 52.4% 5 0.0% 30.0% 0

urine X - 12714 5.0[ 3.7: 6.8] 5.0×10−25 9 0.0% 5.6% 5 0.0% 10.0% 0

urine 4-hydroxyhippurate 4.2[ 3.2: 5.6] 5.0×10−25 5 0.0% 20.0% 8 0.0% 17.9% 1

plasma X - 12101 12.4[ 7.7: 20.0] 5.5×10−25 14 0.0% 0.0% 2 0.0% 100.0% 0

plasma phosphate 16.9[ 9.9: 28.9] 5.8×10−25 12 0.0% 7.6% 4 0.0% 16.7% 0

plasma 10-undecenoate (11:1n1) 0.2[ 0.1: 0.3] 5.8×10−25 12 0.0% 12.1% 0 0.0% — 0

urine X - 17327 6.1[ 4.3: 8.6] 6.5×10−25 9 0.0% 30.6% 4 0.0% 33.3% 0

urine hypoxanthine 0.1[ 0.0: 0.1] 6.6×10−25 18 0.0% 7.8% 9 0.0% 22.2% 1

saliva acisoga 8.5[ 5.7: 12.8] 7.3×10−25 13 0.0% 14.1% 10 0.0% 8.9% 0

plasma X - 17359 9.1[ 6.0: 13.9] 7.5×10−25 11 0.0% 3.6% 0 0.0% — 0

urine 3-sialyllactose 12.3[ 7.6: 19.9] 7.7×10−25 13 0.0% 3.8% 6 0.0% 6.7% 0

plasma tryptophan 0.1[ 0.1: 0.2] 8.6×10−25 14 0.0% 6.6% 1 0.0% — 0

urine N-acetyltyrosine 4.9[ 3.6: 6.7] 1.1×10−24 11 0.0% 9.1% 7 0.0% 4.8% 0

urine C-glycosyltryptophan 16.7[ 9.7: 28.5] 1.2×10−24 16 0.0% 3.3% 3 0.0% 0.0% 0

saliva X - 18111 24.9[ 13.5: 46.0] 1.3×10−24 6 0.0% 53.3% 5 0.0% 30.0% 0

urine X - 12906 7.2[ 4.9: 10.5] 1.4×10−24 13 0.0% 0.0% 1 0.0% — 0

plasma biliverdin 0.2[ 0.1: 0.2] 1.4×10−24 8 0.0% 60.7% 6 0.0% 66.7% 0

plasma 3-indoxyl sulfate 9.7[ 6.3: 14.9] 1.5×10−24 8 0.0% 21.4% 1 0.0% — 0

urine X - 20574 6.5[ 4.6: 9.3] 1.5×10−24 7 0.0% 28.6% 2 0.0% 0.0% 0

plasma glycerophosphorylcholine (GPC) 0.1[ 0.0: 0.1] 1.5×10−24 17 0.0% 7.4% 9 0.0% 5.6% 0

urine adenosine 3’,5’-cyclic monophosphate (cAMP) 0.1[ 0.1: 0.2] 1.5×10−24 13 0.0% 5.1% 1 0.0% — 0

urine X - 20571 7.2[ 4.9: 10.6] 1.7×10−24 11 0.0% 0.0% 6 0.0% 6.7% 0

plasma 2-methylbutyrylcarnitine (C5) 7.4[ 5.0: 10.9] 1.7×10−24 8 0.0% 7.1% 6 0.0% 66.7% 0

plasma choline 6.1[ 4.3: 8.6] 1.9×10−24 14 0.0% 2.2% 1 0.0% — 0

urine X - 11452 0.2[ 0.2: 0.3] 1.9×10−24 7 0.0% 76.2% 6 0.0% 80.0% 0

plasma N-formylmethionine 7.2[ 4.9: 10.5] 2.1×10−24 18 0.0% 2.6% 1 0.0% — 0

urine X - 11945 12.3[ 7.6: 19.9] 2.3×10−24 8 0.0% 21.4% 1 0.0% — 0

plasma X - 11315 0.1[ 0.1: 0.2] 2.3×10−24 8 0.0% 0.0% 0 0.0% — 0

plasma N-acetylphenylalanine 9.9[ 6.4: 15.4] 2.5×10−24 16 0.0% 0.8% 1 0.0% — 0

plasma urea 26.9[ 14.3: 50.7] 2.8×10−24 10 0.0% 8.9% 0 0.0% — 1

plasma isobutyrylcarnitine 6.9[ 4.7: 10.0] 3.1×10−24 13 0.0% 6.4% 6 0.0% 53.3% 0

urine N1-methyladenosine 0.2[ 0.1: 0.2] 3.9×10−24 9 0.0% 13.9% 0 0.0% — 0

plasma 4-methyl-2-oxopentanoate 0.1[ 0.1: 0.2] 4.0×10−24 6 0.0% 40.0% 2 0.0% 100.0% 0

urine X - 12794 21.1[ 11.7: 38.0] 4.1×10−24 19 0.0% 1.2% 1 0.0% — 0

urine beta-hydroxyisovalerate 0.1[ 0.0: 0.1] 4.8×10−24 9 0.0% 5.6% 2 0.0% 0.0% 0

plasma 3-methyl-2-oxobutyrate 0.2[ 0.1: 0.3] 5.1×10−24 10 0.0% 11.1% 3 0.0% 33.3% 0

saliva threonine 0.2[ 0.2: 0.3] 5.2×10−24 17 0.0% 9.6% 12 0.0% 21.2% 0

plasma X - 11441 0.2[ 0.1: 0.3] 6.7×10−24 6 0.0% 60.0% 8 0.0% 60.7% 0

urine imidazole lactate 0.1[ 0.1: 0.2] 7.6×10−24 15 0.0% 6.7% 5 0.0% 10.0% 0

plasma cortisone 0.2[ 0.1: 0.3] 7.7×10−24 9 0.0% 5.6% 15 0.0% 0.0% 0

plasma gamma-glutamylisoleucine 27.9[ 14.6: 53.3] 7.9×10−24 9 0.0% 19.4% 2 0.0% 100.0% 0
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urine orotidine 3.0[ 2.4: 3.7] 1.1×10−23 15 0.0% 13.3% 11 0.0% 30.9% 0

plasma tiglyl carnitine 7.4[ 5.0: 11.0] 1.2×10−23 9 0.0% 2.8% 6 0.0% 33.3% 0

plasma N-acetyl-beta-alanine 3.8[ 2.9: 4.9] 1.7×10−23 9 0.0% 8.3% 5 0.0% 20.0% 0

urine N1-methylguanosine 0.1[ 0.1: 0.2] 2.1×10−23 18 0.0% 5.2% 0 0.0% — 0

plasma N-acetylalanine 24.8[ 13.2: 46.7] 2.2×10−23 9 0.0% 2.8% 0 0.0% — 0

urine X - 12739 4.2[ 3.1: 5.5] 2.7×10−23 8 0.0% 35.7% 3 0.0% 66.7% 0

urine X - 12329 3.6[ 2.8: 4.6] 3.0×10−23 7 0.0% 38.1% 5 0.0% 30.0% 1

saliva X - 19555 31.4[ 15.9: 62.1] 3.3×10−23 8 0.0% 10.7% 2 0.0% 100.0% 0

urine X - 17717 4.0[ 3.0: 5.2] 3.3×10−23 8 0.0% 28.6% 5 0.0% 50.0% 0

saliva X - 14904 3.9[ 3.0: 5.1] 3.4×10−23 7 0.0% 9.5% 4 0.0% 33.3% 0

plasma phenol sulfate 3.8[ 2.9: 4.9] 3.5×10−23 5 0.0% 40.0% 5 0.0% 70.0% 0

urine X - 20586 6.5[ 4.5: 9.4] 4.1×10−23 9 0.0% 11.1% 0 0.0% — 0

urine X - 12690 6.9[ 4.7: 10.2] 4.3×10−23 12 0.0% 10.6% 2 0.0% 0.0% 0

plasma O-sulfo-L-tyrosine 21.8[ 11.8: 40.2] 5.3×10−23 4 0.0% 33.3% 0 0.0% — 0

urine X - 13726 4.6[ 3.4: 6.2] 5.3×10−23 3 0.0% 66.7% 4 0.0% 100.0% 0

plasma X - 11880 0.2[ 0.1: 0.2] 5.5×10−23 4 0.0% 50.0% 5 0.0% 60.0% 0

urine X - 19779 4.6[ 3.4: 6.3] 5.6×10−23 12 0.0% 4.5% 6 0.0% 26.7% 0

plasma X - 11444 5.2[ 3.7: 7.2] 5.7×10−23 10 0.0% 24.4% 3 0.0% 33.3% 0

saliva X - 18113 25.5[ 13.4: 48.6] 5.9×10−23 6 0.0% 40.0% 5 0.0% 40.0% 0

plasma 2-hydroxystearate 0.2[ 0.2: 0.3] 6.1×10−23 2 0.0% 0.0% 1 0.0% — 0

plasma X - 11372 0.1[ 0.1: 0.2] 7.4×10−23 4 0.0% 50.0% 6 0.0% 53.3% 0

plasma dihomo-linolenate (20:3n3 or n6) 0.2[ 0.2: 0.3] 7.5×10−23 10 0.0% 22.2% 4 0.0% 50.0% 0

urine X - 17323 0.2[ 0.2: 0.3] 7.6×10−23 15 0.0% 4.8% 0 0.0% — 0

urine N-(2-furoyl)glycine 3.4[ 2.7: 4.4] 7.8×10−23 9 0.0% 27.8% 2 0.0% 0.0% 0

urine X - 12704 6.4[ 4.4: 9.2] 9.7×10−23 6 0.0% 40.0% 4 0.0% 83.3% 0

urine 1-methylimidazoleacetate 4.0[ 3.0: 5.2] 1.1×10−22 14 0.0% 4.4% 3 0.0% 0.0% 0

urine ferulic acid 4-sulfate 4.4[ 3.3: 6.0] 1.1×10−22 8 0.0% 14.3% 8 0.0% 3.6% 0

saliva glutamine 0.2[ 0.2: 0.3] 1.2×10−22 12 0.0% 15.2% 10 0.0% 28.9% 0

saliva 8-hydroxyoctanoate 3.8[ 2.9: 4.9] 1.3×10−22 8 0.0% 14.3% 10 0.0% 46.7% 0

urine neopterin 4.9[ 3.5: 6.7] 1.5×10−22 13 0.0% 3.8% 4 0.0% 0.0% 0

plasma arachidonate (20:4n6) 0.2[ 0.2: 0.3] 1.5×10−22 12 0.0% 31.8% 4 0.0% 33.3% 0

urine X - 13836 5.2[ 3.7: 7.3] 1.5×10−22 6 0.0% 6.7% 1 0.0% — 0

saliva X - 18672 0.2[ 0.2: 0.3] 1.9×10−22 13 0.0% 7.7% 16 0.0% 5.8% 0

plasma X - 11564 27.7[ 14.2: 54.1] 1.9×10−22 12 0.0% 6.1% 0 0.0% — 0

urine X - 15363 4.7[ 3.4: 6.4] 2.4×10−22 10 0.0% 6.7% 2 0.0% 100.0% 0

plasma 1-methyl-2-piperidinecarboxylic acid 33.7[ 16.6: 68.4] 2.5×10−22 5 0.0% 40.0% 7 0.0% 4.8% 1

urine 2-methylbutyrylcarnitine (C5) 0.3[ 0.2: 0.4] 3.8×10−22 10 0.0% 22.2% 3 0.0% 33.3% 0

urine X - 17683 3.7[ 2.8: 4.8] 5.5×10−22 15 0.0% 1.9% 1 0.0% — 0

urine gamma-glutamylvaline 0.2[ 0.2: 0.3] 5.5×10−22 7 0.0% 47.6% 6 0.0% 66.7% 0

urine X - 20598 4.9[ 3.6: 6.8] 5.7×10−22 5 0.0% 30.0% 3 0.0% 33.3% 0

urine 3-methylcytidine 0.1[ 0.1: 0.1] 6.6×10−22 11 0.0% 7.3% 0 0.0% — 0

urine citrate 0.3[ 0.2: 0.3] 8.4×10−22 18 0.0% 4.6% 3 0.0% 33.3% 0

urine tiglyl carnitine 0.2[ 0.2: 0.3] 8.7×10−22 6 0.0% 0.0% 1 0.0% — 0

plasma pro-hydroxy-pro 31.3[ 15.5: 63.5] 1.1×10−21 10 0.0% 13.3% 3 0.0% 66.7% 0

urine N6-carbamoylthreonyladenosine 4.7[ 3.4: 6.5] 1.3×10−21 6 0.0% 40.0% 3 0.0% 0.0% 0

saliva X - 20849 38.2[ 18.1: 81.0] 1.6×10−21 5 0.0% 50.0% 4 0.0% 33.3% 0

urine X - 12113 4.0[ 3.0: 5.3] 2.2×10−21 16 0.0% 10.8% 4 0.0% 0.0% 0

plasma N-acetylthreonine 29.9[ 14.8: 60.3] 2.5×10−21 9 0.0% 2.8% 0 0.0% — 0

urine X - 18367 3.2[ 2.5: 4.0] 3.6×10−21 7 0.0% 47.6% 6 0.0% 60.0% 0

urine X - 17335 0.0[ 0.0: 0.1] 3.9×10−21 10 0.0% 13.3% 0 0.0% — 0

plasma eicosapentaenoate (EPA; 20:5n3) 0.2[ 0.2: 0.3] 3.9×10−21 13 0.0% 17.9% 5 0.0% 60.0% 0

urine androsterone sulfate 0.2[ 0.2: 0.3] 4.0×10−21 8 0.0% 35.7% 8 0.0% 28.6% 0

plasma carnitine 0.2[ 0.1: 0.3] 4.1×10−21 14 0.0% 4.4% 1 0.0% — 0

saliva arginine 0.3[ 0.2: 0.4] 4.8×10−21 15 0.0% 9.5% 5 0.0% 20.0% 0

urine X - 20590 4.8[ 3.5: 6.7] 5.6×10−21 16 0.0% 5.8% 4 0.0% 0.0% 0

plasma 5-oxoproline 4.2[ 3.1: 5.6] 5.7×10−21 13 0.0% 5.1% 1 0.0% — 0

urine X - 13709 4.4[ 3.2: 6.0] 6.5×10−21 7 0.0% 19.0% 3 0.0% 33.3% 0

plasma 2-stearoylglycerophosphocholine 0.3[ 0.2: 0.3] 7.5×10−21 4 0.0% 16.7% 7 0.0% 19.0% 0

urine 3-hydroxy-2-ethylpropionate 0.3[ 0.2: 0.4] 7.6×10−21 10 0.0% 6.7% 2 0.0% 0.0% 0

plasma phenylacetylglutamine 40.1[ 18.5: 87.0] 9.8×10−21 7 0.0% 19.0% 0 0.0% — 0

urine X - 15503 4.6[ 3.3: 6.4] 1.1×10−20 6 0.0% 13.3% 0 0.0% — 0

urine 7-methylguanine 0.2[ 0.2: 0.3] 1.1×10−20 14 0.0% 11.0% 0 0.0% — 0

urine X - 15812 3.7[ 2.8: 4.8] 1.1×10−20 12 0.0% 0.0% 2 0.0% 0.0% 0

urine hydroquinone sulfate 4.1[ 3.1: 5.6] 1.2×10−20 11 0.0% 10.9% 7 0.0% 42.9% 0

saliva X - 19703 41.5[ 18.9: 90.9] 1.3×10−20 9 0.0% 13.9% 3 0.0% 33.3% 0

urine N-acetylarginine 0.2[ 0.2: 0.3] 1.4×10−20 14 0.0% 17.6% 4 0.0% 33.3% 0

plasma pantothenate 4.0[ 3.0: 5.4] 1.6×10−20 12 0.0% 4.5% 7 0.0% 23.8% 0

plasma X - 11308 0.2[ 0.2: 0.3] 1.8×10−20 8 0.0% 10.7% 5 0.0% 60.0% 0

plasma deoxycarnitine 4.0[ 3.0: 5.4] 2.3×10−20 10 0.0% 2.2% 4 0.0% 0.0% 0

urine pyroglutamylvaline 4.1[ 3.1: 5.6] 2.6×10−20 11 0.0% 7.3% 5 0.0% 10.0% 0

urine glycocholenate sulfate 0.2[ 0.2: 0.3] 2.7×10−20 11 0.0% 7.3% 3 0.0% 33.3% 0

plasma 2-hydroxypalmitate 0.3[ 0.2: 0.3] 3.2×10−20 7 0.0% 4.8% 2 0.0% 0.0% 0

plasma X - 12096 32.8[ 15.6: 68.9] 3.7×10−20 14 0.0% 8.8% 0 0.0% — 0

plasma docosahexaenoate (DHA; 22:6n3) 0.2[ 0.2: 0.3] 3.8×10−20 10 0.0% 28.9% 6 0.0% 40.0% 0

plasma 1-dihomo-linoleoylglycerophosphocholine (20:2n6) 0.3[ 0.2: 0.3] 4.6×10−20 5 0.0% 10.0% 5 0.0% 80.0% 0

plasma X - 11530 0.3[ 0.2: 0.4] 5.7×10−20 14 0.0% 22.0% 7 0.0% 47.6% 0

plasma isovalerate 0.3[ 0.2: 0.4] 5.8×10−20 10 0.0% 8.9% 3 0.0% 33.3% 0

urine X - 17320 2.7[ 2.2: 3.4] 5.9×10−20 7 0.0% 33.3% 1 0.0% — 1

urine tryptophan 0.2[ 0.2: 0.3] 6.3×10−20 7 0.0% 23.8% 6 0.0% 26.7% 0
continued on next page . . .



Appendix E Differential multi-fluid networks identify processes involved in end-stage renal disease 223

plasma 3-methyl-2-oxovalerate 0.3[ 0.2: 0.3] 9.8×10−20 6 0.0% 33.3% 3 0.0% 33.3% 0

urine X - 12742 4.3[ 3.1: 5.9] 1.0×10−19 12 0.0% 24.2% 3 0.0% 66.7% 0

urine X - 17346 3.1[ 2.4: 4.0] 1.1×10−19 10 0.0% 0.0% 0 0.0% — 0

plasma dehydroisoandrosterone sulfate (DHEA-S) 0.2[ 0.2: 0.3] 1.1×10−19 12 0.0% 34.8% 9 0.0% 41.7% 0

urine N-acetylneuraminate 4.0[ 3.0: 5.5] 1.2×10−19 6 0.0% 6.7% 2 0.0% 0.0% 0

urine X - 17339 0.3[ 0.2: 0.4] 1.3×10−19 14 0.0% 12.1% 7 0.0% 81.0% 1

plasma N4-acetylcytidine 47.2[ 20.4:109.0] 2.0×10−19 9 0.0% 0.0% 1 0.0% — 0

plasma 4-acetamidobutanoate 44.9[ 19.6:102.8] 2.2×10−19 7 0.0% 4.8% 0 0.0% — 0

saliva alpha-hydroxyisovalerate 3.3[ 2.5: 4.2] 2.3×10−19 15 0.0% 7.6% 3 0.0% 0.0% 0

urine X - 19910 3.4[ 2.6: 4.5] 2.4×10−19 11 0.0% 3.6% 1 0.0% — 0

plasma X - 15461 3.6[ 2.7: 4.7] 2.6×10−19 18 0.0% 0.7% 5 0.0% 20.0% 0

urine glycylproline 0.2[ 0.2: 0.3] 2.8×10−19 6 0.0% 20.0% 9 0.0% 0.0% 0

urine 21-hydroxypregnenolone disulfate 0.2[ 0.1: 0.3] 3.3×10−19 9 0.0% 25.0% 4 0.0% 33.3% 1

plasma pseudouridine 43.5[ 19.1: 99.5] 3.4×10−19 6 0.0% 20.0% 0 0.0% — 0

plasma 3-methylhistidine 3.6[ 2.7: 4.8] 3.5×10−19 6 0.0% 20.0% 7 0.0% 14.3% 0

urine acisoga 0.3[ 0.2: 0.4] 3.8×10−19 9 0.0% 5.6% 4 0.0% 50.0% 0

urine X - 12411 3.6[ 2.7: 4.8] 3.9×10−19 11 0.0% 3.6% 4 0.0% 0.0% 0

urine dimethylarginine (SDMA + ADMA) 0.1[ 0.1: 0.2] 4.1×10−19 14 0.0% 8.8% 9 0.0% 13.9% 0

urine X - 16947 2.8[ 2.2: 3.5] 6.7×10−19 17 0.0% 0.7% 7 0.0% 9.5% 1

plasma betaine 0.3[ 0.2: 0.4] 7.2×10−19 14 0.0% 3.3% 0 0.0% — 0

urine X - 12680 3.3[ 2.6: 4.3] 7.9×10−19 8 0.0% 7.1% 9 0.0% 13.9% 1

urine X - 13837 3.9[ 2.9: 5.2] 7.9×10−19 8 0.0% 42.9% 5 0.0% 20.0% 0

urine N-acetylisoleucine 0.3[ 0.2: 0.4] 8.2×10−19 12 0.0% 6.1% 8 0.0% 7.1% 0

plasma X - 11429 46.8[ 20.0:109.8] 9.0×10−19 5 0.0% 30.0% 0 0.0% — 0

urine X - 13698 0.3[ 0.2: 0.3] 9.2×10−19 10 0.0% 35.6% 7 0.0% 28.6% 0

urine X - 11261 0.4[ 0.3: 0.4] 1.1×10−18 10 0.0% 28.9% 3 0.0% 66.7% 0

plasma 2-palmitoylglycerophosphocholine 0.3[ 0.2: 0.4] 1.1×10−18 7 0.0% 47.6% 9 0.0% 50.0% 0

urine X - 12565 3.0[ 2.4: 3.9] 1.2×10−18 13 0.0% 7.7% 2 0.0% 0.0% 0

plasma 1-myristoylglycerophosphocholine (14:0) 0.3[ 0.2: 0.4] 1.6×10−18 8 0.0% 50.0% 7 0.0% 66.7% 0

urine X - 17693 3.4[ 2.6: 4.4] 1.6×10−18 12 0.0% 21.2% 1 0.0% — 0

plasma citrulline 3.9[ 2.9: 5.3] 1.7×10−18 13 0.0% 5.1% 0 0.0% — 0

plasma 1-eicosatrienoylglycerophosphocholine (20:3) 0.3[ 0.2: 0.4] 1.8×10−18 9 0.0% 25.0% 9 0.0% 47.2% 0

saliva X - 13537 3.6[ 2.7: 4.8] 1.8×10−18 5 0.0% 50.0% 6 0.0% 53.3% 0

urine 3-methyladipate 4.2[ 3.1: 5.8] 1.8×10−18 9 0.0% 0.0% 4 0.0% 16.7% 0

urine N4-acetylcytidine 0.3[ 0.3: 0.4] 2.0×10−18 14 0.0% 6.6% 1 0.0% — 0

saliva adenine 0.3[ 0.3: 0.4] 2.0×10−18 19 0.0% 2.9% 9 0.0% 8.3% 1

plasma tyrosine 0.3[ 0.2: 0.4] 2.1×10−18 10 0.0% 13.3% 4 0.0% 16.7% 0

urine X - 11440 0.3[ 0.2: 0.4] 2.1×10−18 5 0.0% 40.0% 4 0.0% 33.3% 0

urine tyrosine 0.3[ 0.2: 0.4] 2.4×10−18 5 0.0% 30.0% 8 0.0% 46.4% 1

plasma X - 12844 3.6[ 2.7: 4.8] 2.9×10−18 6 0.0% 26.7% 4 0.0% 33.3% 0

plasma X - 16580 40.3[ 17.6: 92.6] 3.0×10−18 15 0.0% 1.9% 0 0.0% — 0

urine andro steroid monosulfate 2 0.3[ 0.2: 0.4] 4.0×10−18 8 0.0% 53.6% 2 0.0% 0.0% 0

plasma creatine 0.3[ 0.2: 0.4] 4.1×10−18 14 0.0% 9.9% 11 0.0% 1.8% 1

urine X - 12760 3.9[ 2.9: 5.3] 4.3×10−18 13 0.0% 9.0% 2 0.0% 100.0% 0

urine kynurenate 4.0[ 2.9: 5.5] 4.9×10−18 14 0.0% 7.7% 11 0.0% 5.5% 0

urine isobutyrylcarnitine 0.3[ 0.3: 0.4] 5.9×10−18 8 0.0% 17.9% 1 0.0% — 0

urine 5-hydroxyindoleacetate 3.5[ 2.6: 4.7] 6.4×10−18 14 0.0% 1.1% 0 0.0% — 0

urine X - 20578 3.7[ 2.7: 5.0] 6.5×10−18 9 0.0% 33.3% 4 0.0% 50.0% 0

urine etiocholanolone glucuronide 0.3[ 0.2: 0.4] 7.0×10−18 18 0.0% 9.8% 8 0.0% 14.3% 0

saliva 13-HODE + 9-HODE 3.3[ 2.5: 4.3] 7.4×10−18 6 0.0% 53.3% 9 0.0% 33.3% 0

urine gamma-glutamylisoleucine 0.3[ 0.2: 0.4] 8.6×10−18 10 0.0% 17.8% 4 0.0% 100.0% 0

plasma 1-palmitoleoylglycerophosphocholine (16:1) 0.3[ 0.2: 0.4] 8.8×10−18 9 0.0% 36.1% 9 0.0% 63.9% 0

saliva succinate 3.1[ 2.4: 4.0] 1.1×10−17 18 0.0% 5.2% 10 0.0% 13.3% 0

saliva glutamate 0.3[ 0.2: 0.4] 1.1×10−17 15 0.0% 8.6% 11 0.0% 25.5% 0

urine pregnen-diol disulfate 0.2[ 0.2: 0.3] 1.1×10−17 8 0.0% 46.4% 5 0.0% 50.0% 1

urine 4-hydroxyphenylpyruvate 3.3[ 2.5: 4.4] 1.2×10−17 15 0.0% 5.7% 5 0.0% 10.0% 0

plasma acisoga 3.4[ 2.6: 4.5] 1.2×10−17 4 0.0% 33.3% 9 0.0% 13.9% 0

urine X - 01911 0.3[ 0.3: 0.4] 1.3×10−17 12 0.0% 33.3% 7 0.0% 42.9% 0

plasma X - 18929 0.3[ 0.2: 0.4] 1.8×10−17 13 0.0% 25.6% 6 0.0% 93.3% 0

plasma 1-margaroylglycerophosphocholine (17:0) 0.3[ 0.2: 0.4] 2.0×10−17 5 0.0% 20.0% 7 0.0% 33.3% 0

saliva creatinine 2.6[ 2.1: 3.2] 2.8×10−17 16 0.0% 9.2% 0 0.0% — 0

urine adenosine 0.3[ 0.2: 0.4] 3.0×10−17 15 0.0% 5.7% 11 0.0% 7.3% 0

plasma 4-methylcatechol sulfate 3.3[ 2.5: 4.3] 3.1×10−17 3 0.0% 33.3% 6 0.0% 46.7% 1

urine N-acetyl-3-methylhistidine 3.1[ 2.4: 4.1] 3.3×10−17 6 0.0% 33.3% 6 0.0% 33.3% 0

plasma N2,N2-dimethylguanosine 55.4[ 21.8:141.1] 3.6×10−17 15 0.0% 2.9% 0 0.0% — 0

plasma X - 16946 0.3[ 0.2: 0.4] 4.6×10−17 10 0.0% 35.6% 6 0.0% 93.3% 0

urine X - 17705 0.3[ 0.2: 0.4] 4.9×10−17 11 0.0% 1.8% 7 0.0% 0.0% 0

urine X - 12410 3.6[ 2.7: 4.9] 7.3×10−17 15 0.0% 1.0% 10 0.0% 8.9% 0

urine lactate 2.6[ 2.1: 3.3] 8.0×10−17 11 0.0% 1.8% 0 0.0% — 0

urine andro steroid monosulfate (1) 0.3[ 0.2: 0.4] 1.3×10−16 8 0.0% 21.4% 4 0.0% 16.7% 0

urine X - 12096 3.7[ 2.7: 5.1] 1.3×10−16 6 0.0% 33.3% 3 0.0% 33.3% 0

plasma 1-palmitoylglycerophosphocholine (16:0) 0.4[ 0.3: 0.5] 1.5×10−16 5 0.0% 50.0% 13 0.0% 42.3% 0

plasma N-delta-acetylornithine 3.2[ 2.4: 4.2] 1.5×10−16 6 0.0% 6.7% 6 0.0% 0.0% 1

plasma citrate 0.3[ 0.2: 0.4] 1.7×10−16 10 0.0% 0.0% 2 0.0% 0.0% 0

urine azelate (nonanedioate) 2.6[ 2.1: 3.3] 1.7×10−16 13 0.0% 6.4% 4 0.0% 0.0% 0

urine X - 12234 2.5[ 2.0: 3.2] 1.7×10−16 6 0.0% 80.0% 7 0.0% 66.7% 0

urine N-acetylasparagine 0.2[ 0.2: 0.3] 1.7×10−16 9 0.0% 38.9% 4 0.0% 50.0% 0

plasma stearate (18:0) 0.4[ 0.3: 0.5] 1.8×10−16 6 0.0% 20.0% 9 0.0% 33.3% 0

urine X - 12101 2.5[ 2.0: 3.1] 2.2×10−16 10 0.0% 15.6% 7 0.0% 9.5% 0
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urine 1-methylxanthine 0.4[ 0.3: 0.5] 2.2×10−16 12 0.0% 27.3% 2 0.0% 0.0% 1

plasma docosapentaenoate (n3 DPA; 22:5n3) 0.3[ 0.3: 0.4] 2.5×10−16 8 0.0% 35.7% 6 0.0% 40.0% 0

urine X - 17357 0.4[ 0.3: 0.5] 3.1×10−16 6 0.0% 33.3% 10 0.0% 46.7% 0

urine N-acetylhistidine 0.3[ 0.2: 0.4] 3.2×10−16 13 0.0% 14.1% 7 0.0% 4.8% 0

urine glycolithocholate sulfate 0.3[ 0.3: 0.4] 3.4×10−16 11 0.0% 5.5% 4 0.0% 33.3% 0

urine X - 12407 3.9[ 2.8: 5.4] 4.1×10−16 12 0.0% 6.1% 6 0.0% 0.0% 0

plasma 1-oleoylglycerophosphocholine (18:1) 0.4[ 0.3: 0.5] 4.4×10−16 6 0.0% 20.0% 12 0.0% 50.0% 0

urine X - 18345 2.6[ 2.0: 3.2] 5.7×10−16 5 0.0% 80.0% 6 0.0% 80.0% 0

plasma uridine 0.4[ 0.3: 0.5] 7.0×10−16 15 0.0% 1.0% 3 0.0% 33.3% 0

plasma 1-arachidonoylglycerophosphocholine (20:4n6) 0.3[ 0.3: 0.4] 7.0×10−16 11 0.0% 41.8% 8 0.0% 32.1% 0

plasma N6-carbamoylthreonyladenosine 109.1[ 34.9:341.2] 7.2×10−16 8 0.0% 3.6% 0 0.0% — 0

urine X - 12093 0.3[ 0.2: 0.4] 8.1×10−16 11 0.0% 18.2% 9 0.0% 25.0% 0

plasma 17-methylstearate 0.4[ 0.3: 0.5] 9.0×10−16 4 0.0% 33.3% 6 0.0% 26.7% 0

urine urate 0.4[ 0.3: 0.5] 9.1×10−16 10 0.0% 11.1% 1 0.0% — 0

saliva urea 4.3[ 3.0: 6.1] 9.5×10−16 9 0.0% 13.9% 4 0.0% 66.7% 0

plasma X - 11795 0.3[ 0.2: 0.4] 9.7×10−16 11 0.0% 0.0% 2 0.0% 0.0% 0

saliva 4-methyl-2-oxopentanoate 0.4[ 0.3: 0.5] 1.1×10−15 6 0.0% 20.0% 4 0.0% 16.7% 0

plasma 1-oleoylplasmenylethanolamine 0.4[ 0.3: 0.5] 1.1×10−15 15 0.0% 1.9% 12 0.0% 0.0% 0

urine X - 12267 2.8[ 2.2: 3.7] 1.2×10−15 14 0.0% 12.1% 3 0.0% 0.0% 0

plasma X - 09789 3.0[ 2.3: 4.0] 1.3×10−15 18 0.0% 3.9% 1 0.0% — 0

saliva X - 21365 3.0[ 2.3: 3.9] 1.4×10−15 16 0.0% 12.5% 11 0.0% 5.5% 0

urine X - 15863 2.7[ 2.1: 3.4] 1.8×10−15 11 0.0% 10.9% 0 0.0% — 0

plasma X - 16394 99.6[ 32.1:309.6] 1.8×10−15 13 0.0% 3.8% 2 0.0% 100.0% 0

plasma 1-stearoylglycerophosphocholine (18:0) 0.3[ 0.3: 0.5] 1.8×10−15 5 0.0% 20.0% 7 0.0% 47.6% 0

saliva citrate 0.3[ 0.3: 0.4] 2.3×10−15 9 0.0% 13.9% 10 0.0% 11.1% 0

urine phenylacetylglutamine 3.6[ 2.6: 5.0] 2.5×10−15 3 0.0% 100.0% 3 0.0% 33.3% 0

urine X - 12124 0.3[ 0.2: 0.4] 3.0×10−15 13 0.0% 25.6% 3 0.0% 100.0% 0

plasma creatinine 121.6[ 36.8:401.4] 3.3×10−15 14 0.0% 1.1% 0 0.0% — 0

urine N2,N5-diacetylornithine 0.3[ 0.3: 0.5] 3.3×10−15 7 0.0% 4.8% 5 0.0% 10.0% 0

urine 4-androsten-3beta,17beta-diol disulfate (1) 0.2[ 0.2: 0.3] 3.5×10−15 11 0.0% 25.5% 7 0.0% 38.1% 0

plasma 3-methoxytyrosine 3.8[ 2.7: 5.3] 3.6×10−15 12 0.0% 1.5% 7 0.0% 19.0% 0

urine pyridoxate 2.3[ 1.9: 2.9] 3.7×10−15 14 0.0% 4.4% 3 0.0% 66.7% 0

urine pyroglutamine 0.3[ 0.3: 0.4] 3.9×10−15 8 0.0% 14.3% 1 0.0% — 0

plasma 1-eicosapentaenoylglycerophosphocholine (20:5n3) 0.3[ 0.3: 0.4] 3.9×10−15 12 0.0% 24.2% 6 0.0% 33.3% 0

urine X - 12014 3.3[ 2.5: 4.5] 4.1×10−15 10 0.0% 11.1% 5 0.0% 10.0% 0

saliva X - 19841 0.4[ 0.3: 0.5] 5.0×10−15 7 0.0% 14.3% 9 0.0% 41.7% 0

plasma pregn steroid monosulfate 0.3[ 0.2: 0.4] 6.6×10−15 8 0.0% 50.0% 6 0.0% 80.0% 3

urine X - 12738 2.5[ 2.0: 3.1] 7.6×10−15 9 0.0% 25.0% 5 0.0% 30.0% 0

urine X - 12846 0.4[ 0.3: 0.5] 8.2×10−15 11 0.0% 10.9% 4 0.0% 50.0% 1

urine X - 12339 0.3[ 0.3: 0.4] 8.7×10−15 18 0.0% 2.6% 6 0.0% 0.0% 1

plasma X - 11381 0.4[ 0.3: 0.5] 1.2×10−14 16 0.0% 5.8% 4 0.0% 0.0% 0

plasma N1-methyladenosine 2.8[ 2.1: 3.6] 1.2×10−14 15 0.0% 4.8% 5 0.0% 10.0% 0

urine kynurenine 2.7[ 2.1: 3.5] 1.3×10−14 12 0.0% 7.6% 1 0.0% — 0

plasma bilirubin (E,E) 0.4[ 0.3: 0.5] 1.4×10−14 8 0.0% 7.1% 1 0.0% — 0

plasma stachydrine 3.2[ 2.4: 4.4] 1.5×10−14 4 0.0% 83.3% 7 0.0% 28.6% 0

plasma X - 02249 3.2[ 2.4: 4.3] 1.7×10−14 7 0.0% 9.5% 1 0.0% — 0

plasma isovalerylcarnitine 0.3[ 0.3: 0.4] 1.8×10−14 16 0.0% 2.5% 7 0.0% 38.1% 0

plasma Isobar: glucose, fructose, mannose, galactose, allose, altrose, etc. 2.9[ 2.2: 3.7] 1.8×10−14 11 0.0% 1.8% 13 0.0% 7.7% 2

urine X - 16581 2.8[ 2.2: 3.7] 2.0×10−14 15 0.0% 8.6% 10 0.0% 2.2% 0

urine X - 11334 2.4[ 1.9: 2.9] 2.2×10−14 11 0.0% 5.5% 2 0.0% 0.0% 0

urine pantothenate 0.4[ 0.3: 0.5] 2.2×10−14 8 0.0% 17.9% 7 0.0% 9.5% 0

urine X - 20634 2.8[ 2.1: 3.6] 2.3×10−14 10 0.0% 4.4% 3 0.0% 33.3% 0

urine X - 13722 2.7[ 2.1: 3.5] 2.4×10−14 8 0.0% 28.6% 5 0.0% 40.0% 0

urine 3-methylglutaconate 2.3[ 1.9: 2.9] 2.4×10−14 3 0.0% 66.7% 7 0.0% 0.0% 0

urine X - 18342 2.7[ 2.1: 3.5] 2.8×10−14 16 0.0% 5.0% 12 0.0% 15.2% 0

urine 5-hydroxyhexanoate 0.3[ 0.3: 0.4] 2.8×10−14 8 0.0% 3.6% 3 0.0% 33.3% 0

plasma 2-myristoylglycerophosphocholine 0.4[ 0.3: 0.5] 4.8×10−14 7 0.0% 38.1% 6 0.0% 53.3% 0

saliva 10-hydroxydecanoic acid 2.6[ 2.0: 3.3] 5.6×10−14 6 0.0% 20.0% 10 0.0% 51.1% 0

urine xanthine 0.4[ 0.3: 0.5] 6.2×10−14 9 0.0% 30.6% 7 0.0% 61.9% 1

plasma 4-vinylphenol sulfate 2.6[ 2.0: 3.3] 6.4×10−14 12 0.0% 10.6% 1 0.0% — 0

urine X - 11444 0.4[ 0.3: 0.5] 6.5×10−14 10 0.0% 35.6% 11 0.0% 34.5% 0

plasma X - 11787 0.4[ 0.3: 0.5] 6.6×10−14 8 0.0% 0.0% 3 0.0% 33.3% 0

urine gentisate 0.4[ 0.3: 0.5] 6.9×10−14 7 0.0% 14.3% 3 0.0% 0.0% 1

plasma 7-alpha-hydroxy-3-oxo-4-cholestenoate (7-Hoca) 0.4[ 0.3: 0.5] 8.3×10−14 12 0.0% 4.5% 4 0.0% 0.0% 0

plasma 5-dodecenoate (12:1n7) 0.4[ 0.3: 0.5] 9.0×10−14 4 0.0% 66.7% 2 0.0% 100.0% 0

plasma 3-(4-hydroxyphenyl)lactate 3.0[ 2.3: 4.0] 9.0×10−14 15 0.0% 4.8% 1 0.0% — 0

urine X - 20588 2.9[ 2.2: 3.9] 9.6×10−14 4 0.0% 50.0% 4 0.0% 16.7% 1

plasma X - 12100 196.1[ 48.8:788.6] 1.0×10−13 10 0.0% 4.4% 0 0.0% — 0

plasma 1-linolenoylglycerophosphocholine (18:3n3) 0.3[ 0.3: 0.5] 1.1×10−13 13 0.0% 20.5% 10 0.0% 44.4% 0

plasma linoleate (18:2n6) 0.4[ 0.3: 0.5] 1.2×10−13 9 0.0% 13.9% 4 0.0% 50.0% 0

plasma 1-linoleoylglycerophosphocholine (18:2n6) 0.4[ 0.3: 0.5] 1.2×10−13 11 0.0% 40.0% 11 0.0% 49.1% 0

urine 7-methylxanthine 0.4[ 0.3: 0.5] 1.4×10−13 7 0.0% 61.9% 7 0.0% 47.6% 2

urine X - 10593 2.8[ 2.1: 3.7] 1.5×10−13 15 0.0% 1.0% 4 0.0% 16.7% 0

plasma 1-pentadecanoylglycerophosphocholine (15:0) 0.4[ 0.3: 0.5] 2.4×10−13 11 0.0% 14.5% 6 0.0% 60.0% 0

urine X - 11521 0.4[ 0.3: 0.5] 2.7×10−13 8 0.0% 42.9% 6 0.0% 53.3% 0

saliva stachydrine 2.6[ 2.0: 3.4] 3.2×10−13 14 0.0% 11.0% 5 0.0% 60.0% 0

urine X - 12686 2.9[ 2.2: 3.8] 3.3×10−13 7 0.0% 14.3% 3 0.0% 0.0% 0

saliva vanillin 2.7[ 2.0: 3.5] 3.6×10−13 4 0.0% 33.3% 5 0.0% 80.0% 1

plasma 2-ethylhexanoate (isobar with 2-propylpentanoate) 2.1[ 1.7: 2.5] 5.2×10−13 19 0.0% 2.3% 9 0.0% 19.4% 0
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urine homovanillate (HVA) 0.3[ 0.2: 0.4] 7.6×10−13 10 0.0% 4.4% 9 0.0% 13.9% 0

urine X - 12026 3.5[ 2.5: 5.0] 8.1×10−13 14 0.0% 13.2% 1 0.0% — 1

saliva X - 11508 2.5[ 1.9: 3.2] 8.7×10−13 15 0.0% 4.8% 12 0.0% 15.2% 0

plasma X - 11727 3.0[ 2.2: 4.1] 9.1×10−13 8 0.0% 14.3% 6 0.0% 20.0% 2

urine X - 12511 0.3[ 0.3: 0.5] 9.4×10−13 9 0.0% 13.9% 7 0.0% 0.0% 0

plasma 1-docosahexaenoylglycerophosphocholine (22:6n3) 0.4[ 0.3: 0.5] 1.1×10−12 13 0.0% 24.4% 2 0.0% 100.0% 0

plasma valine 0.4[ 0.3: 0.5] 1.2×10−12 12 0.0% 9.1% 5 0.0% 40.0% 0

urine isovalerylcarnitine 0.4[ 0.3: 0.5] 1.2×10−12 9 0.0% 38.9% 4 0.0% 66.7% 0

urine succinylcarnitine 0.4[ 0.3: 0.5] 1.2×10−12 14 0.0% 2.2% 9 0.0% 2.8% 0

saliva X - 19847 0.5[ 0.4: 0.6] 1.8×10−12 6 0.0% 53.3% 9 0.0% 41.7% 0

plasma 10-nonadecenoate (19:1n9) 0.4[ 0.3: 0.5] 1.9×10−12 7 0.0% 38.1% 3 0.0% 66.7% 0

plasma dihomo-linoleate (20:2n6) 0.4[ 0.3: 0.5] 2.0×10−12 8 0.0% 35.7% 7 0.0% 33.3% 0

saliva X - 19846 0.5[ 0.4: 0.6] 2.0×10−12 8 0.0% 17.9% 6 0.0% 73.3% 0

urine X - 12306 0.4[ 0.3: 0.5] 2.1×10−12 17 0.0% 5.9% 7 0.0% 0.0% 0

plasma myristoleate (14:1n5) 0.4[ 0.3: 0.5] 2.1×10−12 7 0.0% 52.4% 4 0.0% 33.3% 0

urine X - 12112 0.4[ 0.4: 0.6] 2.6×10−12 10 0.0% 13.3% 3 0.0% 33.3% 0

saliva nicotinate ribonucleoside 0.4[ 0.3: 0.5] 3.0×10−12 9 0.0% 0.0% 4 0.0% 0.0% 0

plasma 7-methylxanthine 2.5[ 1.9: 3.2] 3.1×10−12 9 0.0% 2.8% 11 0.0% 16.4% 1

urine phosphate 3.0[ 2.2: 4.0] 3.4×10−12 10 0.0% 13.3% 1 0.0% — 0

urine X - 14318 2.1[ 1.7: 2.6] 3.7×10−12 6 0.0% 80.0% 6 0.0% 73.3% 0

urine X - 12100 2.4[ 1.9: 3.0] 3.9×10−12 9 0.0% 8.3% 2 0.0% 0.0% 0

urine X - 14838 2.5[ 1.9: 3.2] 4.0×10−12 4 0.0% 83.3% 5 0.0% 40.0% 0

urine X - 12170 2.4[ 1.9: 3.0] 4.0×10−12 6 0.0% 6.7% 3 0.0% 33.3% 0

plasma 10-heptadecenoate (17:1n7) 0.4[ 0.3: 0.5] 4.3×10−12 7 0.0% 52.4% 3 0.0% 33.3% 0

plasma X - 12798 0.4[ 0.3: 0.6] 4.6×10−12 15 0.0% 4.8% 11 0.0% 7.3% 1

urine cortisone 0.4[ 0.3: 0.5] 4.8×10−12 8 0.0% 25.0% 10 0.0% 2.2% 3

saliva 3-phenylpropionate (hydrocinnamate) 0.4[ 0.3: 0.5] 5.0×10−12 12 0.0% 10.6% 8 0.0% 3.6% 1

plasma 2-aminoheptanoate 2.6[ 2.0: 3.5] 5.9×10−12 8 0.0% 0.0% 3 0.0% 0.0% 0

urine X - 17692 2.4[ 1.9: 3.0] 6.6×10−12 13 0.0% 7.7% 7 0.0% 4.8% 0

urine X - 14352 2.1[ 1.7: 2.5] 7.0×10−12 6 0.0% 60.0% 7 0.0% 57.1% 0

saliva X - 12237 2.5[ 1.9: 3.3] 7.1×10−12 7 0.0% 19.0% 5 0.0% 60.0% 0

saliva pantothenate 2.3[ 1.8: 2.9] 8.1×10−12 11 0.0% 1.8% 7 0.0% 4.8% 0

plasma palmitoleate (16:1n7) 0.4[ 0.3: 0.5] 8.2×10−12 8 0.0% 28.6% 4 0.0% 16.7% 0

urine epiandrosterone sulfate 0.4[ 0.3: 0.5] 8.4×10−12 9 0.0% 36.1% 7 0.0% 23.8% 0

plasma gamma-glutamylleucine 2.8[ 2.1: 3.7] 9.5×10−12 9 0.0% 33.3% 7 0.0% 33.3% 0

urine 3-[3-(sulfooxy)phenyl]propanoic acid 2.7[ 2.0: 3.6] 1.2×10−11 10 0.0% 17.8% 4 0.0% 83.3% 0

urine N-acetylglutamine 0.3[ 0.3: 0.5] 1.2×10−11 11 0.0% 41.8% 6 0.0% 33.3% 0

plasma X - 12104 483.1[ 80.8:2888.5] 1.3×10−11 9 0.0% 5.6% 1 0.0% — 0

saliva X - 19869 0.4[ 0.3: 0.6] 1.7×10−11 6 0.0% 26.7% 10 0.0% 31.1% 0

saliva imidazole propionate 2.5[ 1.9: 3.3] 1.9×10−11 11 0.0% 9.1% 10 0.0% 13.3% 0

saliva X - 19489 2.4[ 1.9: 3.1] 2.1×10−11 7 0.0% 14.3% 8 0.0% 60.7% 1

plasma C-glycosyltryptophan 420.2[ 70.9:2490.3] 2.9×10−11 8 0.0% 10.7% 0 0.0% — 0

urine 2-methylbutyrylglycine 2.3[ 1.8: 2.9] 2.9×10−11 9 0.0% 16.7% 8 0.0% 32.1% 0

urine histidine 0.4[ 0.3: 0.5] 3.2×10−11 11 0.0% 9.1% 3 0.0% 33.3% 0

urine octanoylcarnitine 0.4[ 0.3: 0.5] 3.2×10−11 8 0.0% 35.7% 7 0.0% 38.1% 0

saliva X - 12259 2.3[ 1.8: 2.9] 3.4×10−11 8 0.0% 14.3% 4 0.0% 33.3% 0

urine dehydroisoandrosterone sulfate (DHEA-S) 0.4[ 0.3: 0.5] 3.4×10−11 11 0.0% 47.3% 6 0.0% 60.0% 0

plasma 2-palmitoleoylglycerophosphocholine 0.4[ 0.3: 0.6] 3.6×10−11 11 0.0% 20.0% 7 0.0% 71.4% 0

urine X - 16394 2.4[ 1.9: 3.1] 4.0×10−11 10 0.0% 4.4% 6 0.0% 13.3% 1

urine 3-methylglutarate 2.2[ 1.7: 2.7] 4.7×10−11 9 0.0% 13.9% 5 0.0% 10.0% 1

saliva X - 15605 0.5[ 0.4: 0.6] 4.8×10−11 19 0.0% 4.7% 8 0.0% 10.7% 1

plasma histidine 0.4[ 0.3: 0.6] 5.0×10−11 17 0.0% 5.1% 7 0.0% 4.8% 0

plasma oleate (18:1n9) 0.5[ 0.4: 0.6] 6.5×10−11 8 0.0% 32.1% 7 0.0% 38.1% 0

saliva X - 19852 0.5[ 0.4: 0.6] 7.5×10−11 6 0.0% 53.3% 7 0.0% 52.4% 1

urine N-carbamoylsarcosine 2.5[ 1.9: 3.3] 7.8×10−11 15 0.0% 1.9% 1 0.0% — 0

plasma margarate (17:0) 0.4[ 0.3: 0.6] 8.9×10−11 7 0.0% 42.9% 2 0.0% 100.0% 0

urine X - 12122 2.3[ 1.8: 3.0] 9.4×10−11 14 0.0% 6.6% 2 0.0% 100.0% 0

urine X - 20643 0.5[ 0.4: 0.6] 9.7×10−11 14 0.0% 17.6% 9 0.0% 41.7% 0

urine X - 16087 0.4[ 0.3: 0.6] 10.0×10−11 7 0.0% 23.8% 1 0.0% — 0

urine X - 16975 0.4[ 0.3: 0.6] 1.0×10−10 6 0.0% 60.0% 2 0.0% 0.0% 0

plasma glycocholate 2.1[ 1.7: 2.6] 1.1×10−10 17 0.0% 7.4% 10 0.0% 13.3% 0

urine X - 17438 0.4[ 0.3: 0.5] 1.3×10−10 13 0.0% 9.0% 6 0.0% 13.3% 0

saliva citrulline 0.4[ 0.3: 0.6] 1.4×10−10 11 0.0% 14.5% 10 0.0% 28.9% 1

saliva proline 0.4[ 0.3: 0.6] 1.4×10−10 16 0.0% 7.5% 10 0.0% 17.8% 0

urine X - 11687 2.1[ 1.7: 2.7] 1.5×10−10 12 0.0% 1.5% 2 0.0% 100.0% 0

plasma 1-oleoylglycerol (1-monoolein) 2.1[ 1.7: 2.7] 1.6×10−10 11 0.0% 7.3% 2 0.0% 100.0% 0

plasma 2-linoleoylglycerophosphocholine 0.4[ 0.3: 0.5] 1.8×10−10 11 0.0% 30.9% 6 0.0% 80.0% 0

urine gamma-CEHC glucuronide 2.3[ 1.8: 3.0] 2.0×10−10 7 0.0% 4.8% 4 0.0% 33.3% 0

urine adipate 2.0[ 1.6: 2.6] 2.0×10−10 15 0.0% 6.7% 6 0.0% 6.7% 0

plasma 1-docosapentaenoylglycerophosphocholine (22:5n3) 0.5[ 0.4: 0.6] 2.0×10−10 13 0.0% 20.5% 4 0.0% 33.3% 0

urine X - 12824 2.4[ 1.8: 3.1] 2.1×10−10 9 0.0% 5.6% 7 0.0% 23.8% 0

saliva X - 19572 0.4[ 0.3: 0.5] 2.1×10−10 6 0.0% 13.3% 5 0.0% 20.0% 0

plasma 2-oleoylglycerophosphocholine 0.4[ 0.3: 0.6] 2.4×10−10 7 0.0% 42.9% 13 0.0% 44.9% 0

urine alpha-CEHC glucuronide 2.1[ 1.7: 2.7] 2.5×10−10 3 0.0% 66.7% 11 0.0% 7.3% 1

saliva glycerophosphorylcholine (GPC) 2.3[ 1.8: 2.9] 2.7×10−10 12 0.0% 7.6% 5 0.0% 10.0% 0

urine N2,N2-dimethylguanosine 2.3[ 1.8: 3.1] 2.8×10−10 7 0.0% 23.8% 5 0.0% 60.0% 0

urine X - 18965 0.5[ 0.4: 0.6] 3.7×10−10 8 0.0% 3.6% 1 0.0% — 0

saliva X - 12128 2.3[ 1.8: 3.0] 3.7×10−10 9 0.0% 19.4% 4 0.0% 50.0% 0

urine phenylcarnitine 0.4[ 0.3: 0.6] 4.2×10−10 16 0.0% 5.0% 6 0.0% 6.7% 1
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urine theobromine 0.5[ 0.4: 0.6] 4.8×10−10 7 0.0% 57.1% 7 0.0% 38.1% 1

saliva N6-acetyllysine 2.1[ 1.6: 2.6] 4.8×10−10 12 0.0% 10.6% 3 0.0% 0.0% 0

saliva N-delta-acetylornithine 2.1[ 1.7: 2.7] 5.2×10−10 10 0.0% 8.9% 6 0.0% 0.0% 0

plasma 3-carboxy-4-methyl-5-propyl-2-furanpropanoate (CMPF) 3.3[ 2.2: 4.7] 6.1×10−10 7 0.0% 19.0% 4 0.0% 33.3% 0

urine X - 20620 2.2[ 1.7: 2.8] 6.8×10−10 10 0.0% 4.4% 7 0.0% 4.8% 0

plasma lysine 0.5[ 0.4: 0.6] 7.0×10−10 12 0.0% 4.5% 9 0.0% 5.6% 0

saliva X - 14952 0.4[ 0.3: 0.6] 7.2×10−10 9 0.0% 8.3% 7 0.0% 4.8% 0

plasma 3-dehydrocarnitine 2.3[ 1.7: 2.9] 7.3×10−10 19 0.0% 6.4% 5 0.0% 10.0% 0

urine 5-acetylamino-6-formylamino-3-methyluracil 0.5[ 0.4: 0.6] 7.3×10−10 13 0.0% 14.1% 9 0.0% 22.2% 0

plasma palmitate (16:0) 0.5[ 0.4: 0.6] 7.9×10−10 6 0.0% 33.3% 4 0.0% 50.0% 0

urine X - 18886 2.1[ 1.6: 2.6] 8.0×10−10 11 0.0% 0.0% 7 0.0% 0.0% 0

urine paraxanthine 0.5[ 0.4: 0.6] 8.2×10−10 9 0.0% 41.7% 8 0.0% 64.3% 0

urine X - 12358 2.4[ 1.8: 3.3] 8.6×10−10 6 0.0% 60.0% 5 0.0% 40.0% 0

urine X - 12837 0.5[ 0.4: 0.6] 1.0×10−9 2 0.0% 0.0% 5 0.0% 20.0% 0

plasma 1-eicosenoylglycerophosphocholine (20:1n9) 0.5[ 0.4: 0.6] 1.2×10−9 11 0.0% 3.6% 4 0.0% 50.0% 0

urine X - 17308 2.3[ 1.7: 3.0] 1.5×10−9 7 0.0% 33.3% 4 0.0% 0.0% 0

urine X - 12258 0.5[ 0.4: 0.6] 1.5×10−9 7 0.0% 23.8% 4 0.0% 33.3% 1

urine tigloylglycine 2.1[ 1.7: 2.7] 1.6×10−9 10 0.0% 22.2% 6 0.0% 40.0% 1

urine tyramine 0.4[ 0.3: 0.6] 2.1×10−9 16 0.0% 0.8% 2 0.0% 0.0% 0

plasma 21-hydroxypregnenolone disulfate 2.3[ 1.7: 3.0] 2.3×10−9 11 0.0% 21.8% 9 0.0% 66.7% 0

saliva X - 13230 0.5[ 0.4: 0.7] 2.3×10−9 9 0.0% 19.4% 7 0.0% 19.0% 0

plasma proline 2.1[ 1.7: 2.7] 2.4×10−9 15 0.0% 4.8% 6 0.0% 13.3% 0

urine indolelactate 2.2[ 1.7: 2.9] 3.0×10−9 12 0.0% 7.6% 3 0.0% 0.0% 0

plasma 15-methylpalmitate (isobar with 2-methylpalmitate) 0.5[ 0.4: 0.6] 4.1×10−9 9 0.0% 27.8% 3 0.0% 33.3% 0

plasma adrenate (22:4n6) 0.5[ 0.4: 0.6] 4.2×10−9 7 0.0% 33.3% 3 0.0% 66.7% 0

urine X - 18557 2.0[ 1.6: 2.6] 4.4×10−9 15 0.0% 5.7% 2 0.0% 0.0% 0

urine X - 12116 2.2[ 1.7: 2.9] 4.5×10−9 19 0.0% 3.5% 13 0.0% 5.1% 0

urine N-acetylvaline 0.4[ 0.3: 0.6] 4.9×10−9 15 0.0% 1.9% 5 0.0% 30.0% 0

urine X - 16774 2.2[ 1.7: 2.9] 6.8×10−9 17 0.0% 5.1% 8 0.0% 14.3% 0

saliva 3-methyl-2-oxovalerate 0.5[ 0.4: 0.6] 7.6×10−9 5 0.0% 20.0% 6 0.0% 6.7% 0

urine X - 12860 0.5[ 0.4: 0.6] 7.8×10−9 9 0.0% 22.2% 0 0.0% — 0

saliva betaine 2.0[ 1.6: 2.6] 8.4×10−9 16 0.0% 6.7% 4 0.0% 33.3% 0

urine N-acetylleucine 2.0[ 1.6: 2.6] 9.5×10−9 5 0.0% 0.0% 4 0.0% 16.7% 0

urine X - 17695 1.9[ 1.5: 2.3] 1.2×10−8 10 0.0% 4.4% 0 0.0% — 0

urine X - 12745 0.5[ 0.4: 0.7] 1.2×10−8 10 0.0% 13.3% 2 0.0% 0.0% 0

plasma linolenate [alpha or gamma; (18:3n3 or 6)] 0.5[ 0.4: 0.6] 1.3×10−8 7 0.0% 23.8% 4 0.0% 33.3% 0

saliva levulinate (4-oxovalerate) 2.0[ 1.6: 2.6] 1.5×10−8 7 0.0% 19.0% 6 0.0% 26.7% 0

plasma X - 13435 2.2[ 1.7: 2.9] 1.5×10−8 9 0.0% 11.1% 7 0.0% 42.9% 0

urine 3-hydroxysebacate 2.0[ 1.6: 2.5] 1.8×10−8 15 0.0% 6.7% 6 0.0% 13.3% 0

urine pro-hydroxy-pro 0.5[ 0.4: 0.6] 2.1×10−8 7 0.0% 19.0% 6 0.0% 20.0% 0

plasma caprylate (8:0) 1.8[ 1.4: 2.1] 2.3×10−8 11 0.0% 0.0% 2 0.0% 0.0% 0

urine X - 12718 2.2[ 1.7: 3.0] 2.5×10−8 10 0.0% 11.1% 5 0.0% 20.0% 0

plasma X - 11529 1.9[ 1.5: 2.4] 2.6×10−8 12 0.0% 16.7% 7 0.0% 9.5% 1

plasma nonadecanoate (19:0) 0.5[ 0.4: 0.6] 2.7×10−8 9 0.0% 16.7% 7 0.0% 42.9% 0

urine gamma-glutamylthreonine 0.5[ 0.4: 0.6] 2.8×10−8 9 0.0% 27.8% 9 0.0% 33.3% 0

urine X - 12636 2.2[ 1.7: 2.9] 2.9×10−8 5 0.0% 40.0% 5 0.0% 50.0% 0

urine acetylcarnitine 0.5[ 0.4: 0.7] 3.0×10−8 6 0.0% 86.7% 6 0.0% 60.0% 0

plasma X - 11440 2.1[ 1.6: 2.8] 3.1×10−8 5 0.0% 30.0% 9 0.0% 41.7% 0

saliva Isobar: glucose, fructose, mannose, galactose, allose, altrose, etc. 1.7[ 1.4: 2.1] 3.1×10−8 6 0.0% 26.7% 7 0.0% 38.1% 0

urine X - 12740 0.5[ 0.4: 0.7] 3.1×10−8 9 0.0% 2.8% 8 0.0% 3.6% 0

urine X - 17736 0.5[ 0.4: 0.6] 5.0×10−8 15 0.0% 0.0% 10 0.0% 15.6% 2

urine X - 13452 2.0[ 1.6: 2.6] 6.4×10−8 13 0.0% 6.4% 10 0.0% 4.4% 0

urine hippurate 2.1[ 1.6: 2.8] 7.8×10−8 7 0.0% 42.9% 5 0.0% 40.0% 0

urine X - 15678 2.0[ 1.6: 2.6] 7.8×10−8 8 0.0% 3.6% 1 0.0% — 0

plasma eicosenoate (20:1n9 or 11) 0.5[ 0.4: 0.7] 8.4×10−8 6 0.0% 33.3% 7 0.0% 38.1% 0

plasma 1-palmitoylglycerophosphate 0.5[ 0.4: 0.7] 8.9×10−8 22 0.0% 3.5% 6 0.0% 0.0% 0

plasma gamma-glutamylmethionine 0.5[ 0.4: 0.7] 9.2×10−8 13 0.0% 2.6% 4 0.0% 0.0% 0

urine X - 12123 1.8[ 1.4: 2.2] 9.8×10−8 5 0.0% 30.0% 5 0.0% 0.0% 1

saliva prolylglycine 0.5[ 0.4: 0.7] 1.1×10−7 10 0.0% 4.4% 10 0.0% 8.9% 0

urine cis-aconitate 0.5[ 0.4: 0.7] 1.1×10−7 10 0.0% 2.2% 12 0.0% 6.1% 3

saliva X - 19496 1.9[ 1.5: 2.4] 1.3×10−7 15 0.0% 9.5% 10 0.0% 57.8% 1

urine N-acetylputrescine 1.9[ 1.5: 2.4] 1.3×10−7 8 0.0% 7.1% 5 0.0% 0.0% 0

plasma leucine 0.5[ 0.4: 0.6] 1.4×10−7 7 0.0% 14.3% 5 0.0% 50.0% 0

urine X - 16674 1.9[ 1.5: 2.4] 1.5×10−7 10 0.0% 8.9% 6 0.0% 13.3% 0

plasma homostachydrine 1.9[ 1.5: 2.5] 1.5×10−7 7 0.0% 4.8% 7 0.0% 4.8% 0

plasma X - 11470 1.9[ 1.5: 2.5] 1.5×10−7 12 0.0% 15.2% 1 0.0% — 0

plasma hydroxybutyrylcarnitine 1.9[ 1.5: 2.3] 1.5×10−7 9 0.0% 11.1% 5 0.0% 60.0% 0

urine homostachydrine 0.5[ 0.4: 0.7] 1.6×10−7 8 0.0% 10.7% 4 0.0% 0.0% 0

plasma trans-4-hydroxyproline 1.9[ 1.5: 2.4] 1.6×10−7 14 0.0% 2.2% 10 0.0% 6.7% 0

urine 1,3,7-trimethylurate 2.1[ 1.6: 2.7] 1.8×10−7 6 0.0% 66.7% 8 0.0% 71.4% 0

urine X - 17353 1.9[ 1.5: 2.4] 2.0×10−7 10 0.0% 2.2% 6 0.0% 6.7% 0

urine isocitrate 0.5[ 0.4: 0.6] 2.0×10−7 7 0.0% 14.3% 6 0.0% 0.0% 0

saliva phosphoethanolamine 1.9[ 1.5: 2.4] 2.1×10−7 10 0.0% 20.0% 8 0.0% 25.0% 0

urine alpha-hydroxyisovalerate 0.5[ 0.4: 0.7] 2.1×10−7 13 0.0% 6.4% 4 0.0% 33.3% 1

plasma beta-hydroxyisovalerate 2.0[ 1.5: 2.6] 2.3×10−7 8 0.0% 10.7% 2 0.0% 0.0% 0

saliva 12-HETE 2.0[ 1.5: 2.5] 2.3×10−7 11 0.0% 5.5% 7 0.0% 19.0% 0

urine N-acetyl-beta-alanine 0.5[ 0.4: 0.7] 2.3×10−7 11 0.0% 7.3% 5 0.0% 10.0% 0

urine X - 11357 1.9[ 1.5: 2.4] 2.4×10−7 10 0.0% 13.3% 8 0.0% 14.3% 0

urine X - 18256 2.0[ 1.5: 2.5] 2.6×10−7 8 0.0% 35.7% 4 0.0% 50.0% 0
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saliva X - 19845 0.6[ 0.5: 0.7] 2.8×10−7 13 0.0% 14.1% 9 0.0% 25.0% 0

saliva 4-hydroxybutyrate (GHB) 1.9[ 1.5: 2.4] 3.0×10−7 7 0.0% 42.9% 9 0.0% 30.6% 1

urine X - 12822 0.5[ 0.4: 0.7] 3.2×10−7 9 0.0% 2.8% 0 0.0% — 0

plasma xanthine 1.9[ 1.5: 2.4] 3.8×10−7 12 0.0% 9.1% 7 0.0% 52.4% 0

urine X - 19807 0.6[ 0.5: 0.7] 4.1×10−7 9 0.0% 13.9% 3 0.0% 0.0% 0

urine X - 12212 0.5[ 0.4: 0.7] 4.6×10−7 9 0.0% 8.3% 8 0.0% 0.0% 0

plasma 1-palmitoylglycerophosphoinositol 0.5[ 0.4: 0.7] 4.6×10−7 14 0.0% 5.5% 5 0.0% 0.0% 1

urine X - 17612 0.6[ 0.4: 0.7] 5.4×10−7 9 0.0% 2.8% 5 0.0% 10.0% 0

saliva cytidine 0.6[ 0.4: 0.7] 5.5×10−7 15 0.0% 9.5% 8 0.0% 10.7% 0

plasma 5alpha-pregnan-3beta,20alpha-diol disulfate 1.7[ 1.4: 2.2] 6.1×10−7 9 0.0% 11.1% 9 0.0% 30.6% 0

saliva lactate 1.9[ 1.5: 2.4] 6.4×10−7 12 0.0% 22.7% 9 0.0% 38.9% 0

plasma X - 12544 0.5[ 0.4: 0.6] 6.4×10−7 14 0.0% 0.0% 14 0.0% 2.2% 0

plasma glutamine 0.6[ 0.4: 0.7] 6.5×10−7 15 0.0% 5.7% 6 0.0% 6.7% 1

saliva mevalonate 1.9[ 1.5: 2.5] 7.0×10−7 6 0.0% 40.0% 0 0.0% — 0

urine trigonelline (N’-methylnicotinate) 2.0[ 1.5: 2.7] 7.1×10−7 4 0.0% 33.3% 6 0.0% 33.3% 0

urine caffeine 2.0[ 1.5: 2.6] 7.2×10−7 6 0.0% 46.7% 10 0.0% 57.8% 0

urine X - 12127 0.5[ 0.4: 0.7] 7.9×10−7 16 0.0% 1.7% 2 0.0% 0.0% 0

urine X - 18935 2.0[ 1.5: 2.6] 8.8×10−7 4 0.0% 66.7% 4 0.0% 66.7% 0

saliva X - 11476 1.8[ 1.4: 2.3] 9.6×10−7 9 0.0% 2.8% 9 0.0% 41.7% 0

urine X - 17343 1.9[ 1.5: 2.5] 9.8×10−7 12 0.0% 12.1% 7 0.0% 19.0% 0

plasma piperine 0.6[ 0.4: 0.7] 10.0×10−7 7 0.0% 33.3% 8 0.0% 50.0% 0

urine N-acetylcarnosine 0.5[ 0.4: 0.6] 1.2×10−6 11 0.0% 1.8% 5 0.0% 0.0% 0

saliva choline phosphate 2.3[ 1.6: 3.1] 1.2×10−6 11 0.0% 10.9% 11 0.0% 9.1% 0

plasma 1-oleoylglycerophosphoinositol 0.6[ 0.4: 0.7] 1.3×10−6 9 0.0% 8.3% 7 0.0% 4.8% 0

plasma 3-hydroxydecanoate 0.6[ 0.4: 0.7] 1.4×10−6 7 0.0% 0.0% 2 0.0% 0.0% 0

urine X - 18927 1.8[ 1.4: 2.2] 1.4×10−6 20 0.0% 2.6% 4 0.0% 16.7% 0

urine X - 12816 0.6[ 0.5: 0.7] 1.4×10−6 1 0.0% — 4 0.0% 16.7% 0

saliva maltotetraose 1.8[ 1.4: 2.3] 1.4×10−6 7 0.0% 19.0% 7 0.0% 14.3% 0

saliva butyrylcarnitine 1.8[ 1.4: 2.3] 1.5×10−6 11 0.0% 21.8% 7 0.0% 14.3% 0

saliva N-acetylphenylalanine 1.7[ 1.4: 2.2] 1.5×10−6 16 0.0% 6.7% 16 0.0% 5.8% 0

plasma azelate (nonanedioate) 1.9[ 1.5: 2.4] 1.6×10−6 14 0.0% 8.8% 7 0.0% 4.8% 1

saliva X - 12803 1.8[ 1.4: 2.3] 1.6×10−6 9 0.0% 0.0% 9 0.0% 16.7% 1

urine N-acetyl-aspartyl-glutamate (NAAG) 0.5[ 0.4: 0.7] 1.7×10−6 10 0.0% 6.7% 9 0.0% 5.6% 0

urine X - 18943 1.9[ 1.5: 2.5] 1.9×10−6 17 0.0% 2.2% 3 0.0% 0.0% 1

saliva threonylphenylalanine 0.6[ 0.5: 0.7] 2.0×10−6 6 0.0% 20.0% 5 0.0% 20.0% 0

urine X - 12637 1.9[ 1.5: 2.5] 2.0×10−6 6 0.0% 26.7% 5 0.0% 50.0% 0

saliva fucose 0.6[ 0.5: 0.7] 2.1×10−6 5 0.0% 20.0% 8 0.0% 7.1% 0

urine 3-hydroxyhippurate 2.0[ 1.5: 2.6] 2.2×10−6 5 0.0% 80.0% 6 0.0% 46.7% 0

urine 4-guanidinobutanoate 0.5[ 0.4: 0.7] 2.3×10−6 14 0.0% 4.4% 5 0.0% 20.0% 0

plasma indoleacetate 1.7[ 1.3: 2.1] 2.4×10−6 10 0.0% 17.8% 8 0.0% 21.4% 0

plasma myristate (14:0) 0.6[ 0.4: 0.7] 2.5×10−6 8 0.0% 42.9% 4 0.0% 33.3% 0

saliva creatine 0.5[ 0.4: 0.7] 3.3×10−6 17 0.0% 4.4% 8 0.0% 3.6% 0

plasma X - 17629 0.3[ 0.1: 0.5] 3.5×10−6 3 0.0% 33.3% 8 0.0% 35.7% 2

plasma taurolithocholate 3-sulfate 1.8[ 1.4: 2.3] 3.5×10−6 10 0.0% 15.6% 10 0.0% 2.2% 0

urine X - 18603 1.8[ 1.4: 2.4] 3.6×10−6 8 0.0% 28.6% 6 0.0% 20.0% 0

plasma 2-aminobutyrate 0.6[ 0.4: 0.7] 3.7×10−6 13 0.0% 2.6% 7 0.0% 0.0% 0

urine X - 16580 1.8[ 1.4: 2.3] 3.7×10−6 9 0.0% 5.6% 1 0.0% — 0

plasma phenylalanine 1.8[ 1.4: 2.3] 4.2×10−6 15 0.0% 5.7% 6 0.0% 13.3% 0

urine pivaloylcarnitine 1.5[ 1.3: 1.8] 4.2×10−6 8 0.0% 0.0% 9 0.0% 2.8% 0

saliva caprylate (8:0) 1.8[ 1.4: 2.4] 4.9×10−6 5 0.0% 50.0% 5 0.0% 60.0% 0

plasma docosadienoate (22:2n6) 0.6[ 0.5: 0.7] 6.4×10−6 9 0.0% 8.3% 5 0.0% 70.0% 0

urine guanine 0.6[ 0.4: 0.7] 6.9×10−6 11 0.0% 9.1% 4 0.0% 0.0% 0

plasma alpha-hydroxyisovalerate 0.5[ 0.4: 0.7] 7.3×10−6 14 0.0% 6.6% 3 0.0% 0.0% 0

urine phenylalanine 0.6[ 0.5: 0.7] 7.8×10−6 9 0.0% 13.9% 7 0.0% 71.4% 0

urine X - 12126 1.9[ 1.4: 2.6] 8.3×10−6 7 0.0% 19.0% 4 0.0% 66.7% 0

urine X - 17366 1.7[ 1.3: 2.1] 9.0×10−6 9 0.0% 5.6% 7 0.0% 4.8% 0

saliva 1,5-anhydroglucitol (1,5-AG) 0.6[ 0.5: 0.7] 9.5×10−6 6 0.0% 6.7% 5 0.0% 20.0% 0

urine leucine 1.7[ 1.3: 2.1] 9.8×10−6 7 0.0% 38.1% 6 0.0% 86.7% 0

urine 7-methylurate 1.9[ 1.4: 2.6] 9.9×10−6 4 0.0% 16.7% 4 0.0% 0.0% 0

urine X - 17361 0.6[ 0.4: 0.7] 1.1×10−5 8 0.0% 7.1% 15 0.0% 4.8% 0

saliva trans-urocanate 0.6[ 0.4: 0.7] 1.2×10−5 9 0.0% 11.1% 9 0.0% 8.3% 3

saliva 2,3-dihydroxyisovalerate 1.6[ 1.3: 2.0] 1.2×10−5 7 0.0% 9.5% 3 0.0% 33.3% 0

plasma cis-4-decenoyl carnitine 1.8[ 1.4: 2.3] 1.3×10−5 7 0.0% 23.8% 7 0.0% 47.6% 0

urine isobutyrylglycine 1.8[ 1.4: 2.3] 1.3×10−5 8 0.0% 28.6% 4 0.0% 100.0% 0

urine 2-hydroxyhippurate (salicylurate) 1.6[ 1.3: 1.9] 1.4×10−5 20 0.0% 3.7% 4 0.0% 0.0% 0

saliva N-acetylneuraminate 0.6[ 0.5: 0.7] 1.4×10−5 9 0.0% 5.6% 5 0.0% 10.0% 0

urine 3-hydroxyphenylacetate 0.6[ 0.5: 0.7] 1.4×10−5 11 0.0% 7.3% 13 0.0% 6.4% 2

plasma methionine 0.6[ 0.5: 0.7] 1.5×10−5 14 0.0% 7.7% 6 0.0% 20.0% 0

saliva glutarate (pentanedioate) 1.7[ 1.3: 2.1] 1.5×10−5 8 0.0% 17.9% 7 0.0% 33.3% 0

urine carnitine 0.6[ 0.5: 0.7] 1.6×10−5 9 0.0% 38.9% 5 0.0% 80.0% 0

urine X - 11835 1.7[ 1.3: 2.2] 1.6×10−5 8 0.0% 0.0% 8 0.0% 0.0% 0

urine xanthosine 0.6[ 0.5: 0.8] 1.7×10−5 11 0.0% 18.2% 9 0.0% 41.7% 0

plasma androsterone sulfate 0.6[ 0.5: 0.8] 1.8×10−5 8 0.0% 50.0% 6 0.0% 33.3% 1

urine N-acetylthreonine 0.6[ 0.5: 0.8] 1.8×10−5 15 0.0% 11.4% 0 0.0% — 0

urine 3-methylxanthine 0.6[ 0.5: 0.8] 1.9×10−5 7 0.0% 47.6% 6 0.0% 66.7% 0

plasma X - 11491 1.7[ 1.3: 2.3] 2.2×10−5 14 0.0% 12.1% 10 0.0% 2.2% 0

urine X - 12832 0.6[ 0.5: 0.8] 2.3×10−5 11 0.0% 30.9% 7 0.0% 28.6% 0

urine X - 17354 0.6[ 0.5: 0.8] 2.6×10−5 10 0.0% 6.7% 5 0.0% 0.0% 0

saliva 4-hydroxyphenylpyruvate 0.6[ 0.5: 0.8] 2.6×10−5 13 0.0% 1.3% 15 0.0% 7.6% 0
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plasma X - 17628 0.3[ 0.2: 0.5] 2.8×10−5 5 0.0% 10.0% 6 0.0% 60.0% 1

saliva pipecolate 1.6[ 1.3: 2.1] 2.8×10−5 14 0.0% 4.4% 7 0.0% 14.3% 0

plasma cyclo(leu-pro) 1.6[ 1.3: 2.1] 3.1×10−5 7 0.0% 14.3% 7 0.0% 42.9% 0

plasma X - 18921 0.6[ 0.5: 0.8] 3.1×10−5 11 0.0% 12.7% 6 0.0% 13.3% 0

urine 3-methyl-2-oxovalerate 0.6[ 0.5: 0.8] 3.6×10−5 11 0.0% 10.9% 2 0.0% 0.0% 0

saliva X - 19848 0.6[ 0.5: 0.8] 3.8×10−5 12 0.0% 10.6% 6 0.0% 40.0% 0

saliva sucrose 1.5[ 1.2: 1.8] 4.0×10−5 8 0.0% 10.7% 8 0.0% 39.3% 0

plasma alanine 0.6[ 0.5: 0.8] 4.3×10−5 14 0.0% 6.6% 8 0.0% 10.7% 0

urine X - 17739 1.6[ 1.3: 2.0] 5.3×10−5 15 0.0% 6.7% 20 0.0% 2.6% 1

saliva lysine 0.6[ 0.5: 0.8] 5.9×10−5 8 0.0% 10.7% 14 0.0% 16.5% 1

plasma lactate 1.6[ 1.3: 2.0] 6.7×10−5 12 0.0% 4.5% 9 0.0% 8.3% 1

saliva X - 18330 0.6[ 0.5: 0.8] 7.4×10−5 15 0.0% 4.8% 5 0.0% 0.0% 0

plasma propionylcarnitine 0.6[ 0.5: 0.8] 7.5×10−5 15 0.0% 7.6% 4 0.0% 100.0% 0

saliva choline 1.8[ 1.3: 2.3] 7.7×10−5 12 0.0% 3.0% 10 0.0% 6.7% 0

saliva X - 15907 0.6[ 0.5: 0.8] 7.9×10−5 15 0.0% 7.6% 13 0.0% 14.1% 0

saliva gamma-glutamylleucine 0.6[ 0.5: 0.8] 8.9×10−5 18 0.0% 6.5% 10 0.0% 4.4% 0

urine X - 12111 1.6[ 1.3: 2.1] 9.8×10−5 13 0.0% 12.8% 8 0.0% 21.4% 0

urine X - 20575 1.6[ 1.3: 2.0] 1.0×10−4 13 0.0% 3.8% 6 0.0% 20.0% 0

urine glutarylcarnitine (C5) 0.6[ 0.5: 0.8] 1.1×10−4 6 0.0% 6.7% 6 0.0% 0.0% 0

saliva carnitine 0.6[ 0.5: 0.8] 1.2×10−4 18 0.0% 8.5% 6 0.0% 13.3% 0

saliva caprate (10:0) 1.7[ 1.3: 2.2] 1.4×10−4 6 0.0% 13.3% 10 0.0% 26.7% 0

plasma 1-palmitoylglycerol (1-monopalmitin) 1.5[ 1.2: 1.9] 1.4×10−4 4 0.0% 16.7% 5 0.0% 20.0% 0

saliva caproate (6:0) 1.7[ 1.3: 2.1] 1.5×10−4 6 0.0% 33.3% 7 0.0% 38.1% 1

plasma pregnen-diol disulfate 1.7[ 1.3: 2.3] 1.6×10−4 10 0.0% 33.3% 9 0.0% 55.6% 0

saliva urate 0.7[ 0.5: 0.8] 1.7×10−4 10 0.0% 22.2% 10 0.0% 17.8% 0

plasma X - 16206 1.6[ 1.2: 2.0] 1.7×10−4 9 0.0% 19.4% 11 0.0% 10.9% 0

plasma 1-oleoylglycerophosphoethanolamine 1.6[ 1.2: 2.0] 1.8×10−4 6 0.0% 6.7% 9 0.0% 38.9% 0

saliva X - 19836 0.6[ 0.5: 0.8] 1.8×10−4 6 0.0% 20.0% 3 0.0% 0.0% 0

plasma 1-arachidonoylglycerophosphoinositol 0.6[ 0.5: 0.8] 1.9×10−4 9 0.0% 8.3% 5 0.0% 0.0% 0

saliva caffeine 1.6[ 1.2: 2.0] 2.3×10−4 7 0.0% 19.0% 6 0.0% 13.3% 1

plasma phenylalanyltryptophan 1.6[ 1.2: 2.0] 2.3×10−4 14 0.0% 1.1% 3 0.0% 33.3% 0

urine succinate 1.5[ 1.2: 1.8] 2.3×10−4 15 0.0% 7.6% 6 0.0% 13.3% 0

urine X - 16397 0.6[ 0.5: 0.8] 2.7×10−4 11 0.0% 3.6% 1 0.0% — 0

plasma laurate (12:0) 0.6[ 0.5: 0.8] 2.8×10−4 9 0.0% 22.2% 4 0.0% 33.3% 0

urine 4-hydroxyphenylacetate 1.5[ 1.2: 1.8] 2.8×10−4 6 0.0% 13.3% 8 0.0% 3.6% 0

urine N2-acetyllysine 0.6[ 0.5: 0.8] 2.9×10−4 11 0.0% 38.2% 9 0.0% 25.0% 0

urine isoleucine 1.5[ 1.2: 1.9] 3.1×10−4 6 0.0% 46.7% 7 0.0% 61.9% 0

plasma EDTA 0.3[ 0.1: 0.5] 3.3×10−4 6 0.0% 6.7% 6 0.0% 46.7% 4

plasma X - 11469 0.7[ 0.5: 0.8] 3.3×10−4 2 0.0% 100.0% 5 0.0% 40.0% 0

saliva isoleucylglycine 0.6[ 0.5: 0.8] 3.3×10−4 8 0.0% 21.4% 12 0.0% 6.1% 0

urine phenylglyoxylic acid 1.5[ 1.2: 1.8] 4.4×10−4 13 0.0% 1.3% 12 0.0% 4.5% 0

saliva propionylcarnitine 1.6[ 1.2: 2.0] 4.6×10−4 5 0.0% 70.0% 3 0.0% 66.7% 0

plasma X - 02269 0.7[ 0.5: 0.8] 4.6×10−4 4 0.0% 50.0% 6 0.0% 26.7% 0

plasma X - 16938 1.6[ 1.2: 2.0] 5.3×10−4 17 0.0% 5.1% 15 0.0% 1.0% 0

urine L-urobilin 0.7[ 0.5: 0.8] 6.6×10−4 18 0.0% 2.6% 11 0.0% 1.8% 0

urine X - 20502 1.5[ 1.2: 1.9] 6.8×10−4 12 0.0% 6.1% 2 0.0% 0.0% 0

urine X - 14302 1.5[ 1.2: 1.9] 8.0×10−4 11 0.0% 10.9% 3 0.0% 0.0% 0

urine 4-vinylphenol sulfate 0.6[ 0.5: 0.8] 8.2×10−4 9 0.0% 11.1% 8 0.0% 3.6% 1

urine X - 13462 1.5[ 1.2: 1.9] 8.8×10−4 18 0.0% 2.6% 7 0.0% 14.3% 1

urine 3-indoxyl sulfate 1.6[ 1.2: 2.2] 9.4×10−4 6 0.0% 33.3% 7 0.0% 19.0% 0

plasma pregnenolone sulfate 0.6[ 0.4: 0.8] 1.1×10−3 12 0.0% 22.7% 6 0.0% 80.0% 0

saliva tyrosine 0.7[ 0.5: 0.9] 1.1×10−3 8 0.0% 17.9% 7 0.0% 23.8% 1

urine N-methylpipecolate 1.5[ 1.2: 1.9] 1.1×10−3 3 0.0% 100.0% 8 0.0% 7.1% 0

urine X - 14951 1.5[ 1.2: 1.9] 1.2×10−3 15 0.0% 3.8% 13 0.0% 6.4% 1

urine N-acetylglutamate 1.5[ 1.2: 1.9] 1.2×10−3 12 0.0% 7.6% 5 0.0% 10.0% 0

urine gamma-glutamyltyrosine 1.5[ 1.2: 1.9] 1.2×10−3 9 0.0% 30.6% 5 0.0% 80.0% 0

urine 3-methylcrotonylglycine 1.4[ 1.2: 1.8] 1.4×10−3 9 0.0% 19.4% 6 0.0% 53.3% 0

urine theophylline 0.7[ 0.6: 0.9] 1.4×10−3 8 0.0% 46.4% 8 0.0% 46.4% 0

urine X - 12386 1.5[ 1.2: 1.9] 1.5×10−3 11 0.0% 38.2% 13 0.0% 19.2% 0

urine X - 12689 1.5[ 1.2: 2.0] 1.6×10−3 14 0.0% 3.3% 5 0.0% 0.0% 0

plasma S-methylcysteine 0.6[ 0.5: 0.8] 1.6×10−3 12 0.0% 3.0% 9 0.0% 2.8% 2

urine cortisol 0.7[ 0.5: 0.9] 1.6×10−3 9 0.0% 25.0% 8 0.0% 10.7% 1

plasma stearoylcarnitine 0.7[ 0.5: 0.9] 1.7×10−3 7 0.0% 14.3% 3 0.0% 33.3% 0

plasma HWESASXX 0.6[ 0.5: 0.8] 1.8×10−3 5 0.0% 0.0% 11 0.0% 7.3% 2

saliva 5-oxoproline 1.4[ 1.1: 1.8] 1.9×10−3 20 0.0% 3.7% 13 0.0% 7.7% 0

urine 4-acetylphenol sulfate 1.5[ 1.2: 1.9] 1.9×10−3 13 0.0% 6.4% 5 0.0% 20.0% 0

urine X - 12225 0.7[ 0.6: 0.9] 1.9×10−3 19 0.0% 4.7% 4 0.0% 0.0% 0

saliva phenyllactate (PLA) 1.5[ 1.1: 1.9] 2.1×10−3 8 0.0% 25.0% 4 0.0% 0.0% 0

urine X - 16563 0.7[ 0.5: 0.9] 2.2×10−3 7 0.0% 0.0% 8 0.0% 7.1% 1

plasma cortisol 0.7[ 0.5: 0.9] 2.2×10−3 11 0.0% 14.5% 9 0.0% 27.8% 2

plasma 4-androsten-3beta,17beta-diol disulfate (2) 1.5[ 1.2: 2.0] 2.4×10−3 11 0.0% 23.6% 8 0.0% 64.3% 0

urine 4-methylcatechol sulfate 0.7[ 0.6: 0.9] 2.5×10−3 3 0.0% 66.7% 7 0.0% 28.6% 1

urine N-acetyl-1-methylhistidine 1.5[ 1.1: 1.9] 2.9×10−3 13 0.0% 5.1% 4 0.0% 66.7% 0

urine 3-hydroxyanthranilate 1.4[ 1.1: 1.9] 3.3×10−3 11 0.0% 1.8% 16 0.0% 4.2% 0

plasma X - 11438 1.5[ 1.1: 1.9] 3.4×10−3 10 0.0% 4.4% 0 0.0% — 0

urine 4-methyl-2-oxopentanoate 1.4[ 1.1: 1.8] 3.5×10−3 15 0.0% 2.9% 6 0.0% 6.7% 0

saliva X - 12944 1.4[ 1.1: 1.8] 3.9×10−3 17 0.0% 6.6% 7 0.0% 33.3% 0

urine 3,7-dimethylurate 1.5[ 1.1: 1.9] 3.9×10−3 9 0.0% 38.9% 10 0.0% 17.8% 2

saliva histidine 0.7[ 0.6: 0.9] 4.0×10−3 10 0.0% 11.1% 7 0.0% 14.3% 1
continued on next page . . .



Appendix E Differential multi-fluid networks identify processes involved in end-stage renal disease 229

plasma glycoursodeoxycholate 1.4[ 1.1: 1.8] 4.3×10−3 9 0.0% 2.8% 14 0.0% 3.3% 0

plasma glycolithocholate sulfate 1.4[ 1.1: 1.9] 4.6×10−3 7 0.0% 19.0% 10 0.0% 8.9% 0

urine 2-oxindole-3-acetate 1.4[ 1.1: 1.8] 4.8×10−3 12 0.0% 3.0% 11 0.0% 7.3% 0

saliva X - 14081 0.7[ 0.6: 0.9] 5.0×10−3 5 0.0% 80.0% 7 0.0% 47.6% 3

plasma tryptophan betaine 0.7[ 0.6: 0.9] 5.1×10−3 12 0.0% 6.1% 15 0.0% 5.7% 0

urine picolinate 1.4[ 1.1: 1.8] 5.2×10−3 14 0.0% 2.2% 5 0.0% 0.0% 0

urine gamma-glutamylphenylalanine 0.7[ 0.6: 0.9] 5.3×10−3 5 0.0% 60.0% 6 0.0% 73.3% 0

saliva Lewis X trisaccharide 0.7[ 0.6: 0.9] 6.0×10−3 11 0.0% 9.1% 15 0.0% 1.9% 0

saliva X - 11854 0.7[ 0.6: 0.9] 6.1×10−3 5 0.0% 80.0% 7 0.0% 52.4% 3

urine 5-hydroxymethyl-2-furoic acid 1.4[ 1.1: 1.8] 6.1×10−3 11 0.0% 14.5% 3 0.0% 0.0% 0

saliva nicotinate 0.7[ 0.6: 0.9] 6.4×10−3 12 0.0% 1.5% 10 0.0% 15.6% 0

saliva gamma-glutamylmethionine 0.7[ 0.6: 0.9] 6.5×10−3 10 0.0% 13.3% 11 0.0% 1.8% 0

plasma HWESASLLR 0.7[ 0.5: 0.9] 6.6×10−3 4 0.0% 0.0% 5 0.0% 40.0% 1

plasma caffeine 1.4[ 1.1: 1.8] 6.8×10−3 9 0.0% 19.4% 7 0.0% 47.6% 1

urine X - 13866 0.7[ 0.6: 0.9] 6.8×10−3 22 0.0% 3.5% 5 0.0% 0.0% 0

plasma caproate (6:0) 1.4[ 1.1: 1.7] 7.0×10−3 10 0.0% 4.4% 4 0.0% 0.0% 0

saliva pelargonate (9:0) 1.4[ 1.1: 1.8] 7.9×10−3 7 0.0% 19.0% 6 0.0% 53.3% 0

urine X - 15472 0.7[ 0.6: 0.9] 8.6×10−3 11 0.0% 3.6% 3 0.0% 0.0% 0

saliva pyruvate 1.4[ 1.1: 1.8] 8.8×10−3 9 0.0% 13.9% 10 0.0% 31.1% 0

saliva docosadioate 1.4[ 1.1: 1.8] 9.6×10−3 16 0.0% 7.5% 11 0.0% 10.9% 1

urine ascorbate (Vitamin C) 0.7[ 0.5: 0.9] 9.9×10−3 12 0.0% 0.0% 5 0.0% 10.0% 0

plasma 2-arachidonoylglycerophosphoethanolamine 1.4[ 1.1: 1.7] 1.1×10−2 13 0.0% 3.8% 6 0.0% 80.0% 0

saliva phenylacetate 0.7[ 0.6: 0.9] 1.1×10−2 8 0.0% 25.0% 4 0.0% 50.0% 0

urine gamma-glutamylleucine 0.7[ 0.6: 0.9] 1.2×10−2 5 0.0% 90.0% 7 0.0% 47.6% 0

urine isovalerylglycine 1.4[ 1.1: 1.7] 1.2×10−2 9 0.0% 16.7% 7 0.0% 38.1% 0

urine hexanoylglycine 0.7[ 0.6: 0.9] 1.3×10−2 8 0.0% 14.3% 7 0.0% 14.3% 0

urine X - 17313 1.4[ 1.1: 1.8] 1.4×10−2 5 0.0% 80.0% 10 0.0% 17.8% 2

urine 1,3-dimethylurate 1.4[ 1.1: 1.9] 1.4×10−2 8 0.0% 46.4% 10 0.0% 35.6% 0

plasma 2-piperidinone 1.3[ 1.1: 1.7] 1.5×10−2 2 0.0% 100.0% 3 0.0% 33.3% 0

urine 3-methyluracil 0.7[ 0.6: 0.9] 1.5×10−2 3 0.0% 66.7% 3 0.0% 0.0% 1

urine 1,7-dimethylurate 1.5[ 1.1: 2.0] 1.6×10−2 11 0.0% 40.0% 8 0.0% 50.0% 1

urine pyroglutamylglutamine 1.3[ 1.1: 1.7] 1.7×10−2 17 0.0% 5.9% 5 0.0% 10.0% 0

saliva phosphate 1.3[ 1.1: 1.7] 1.9×10−2 17 0.0% 12.5% 11 0.0% 21.8% 0

plasma DSGEGDFXAEGGGVR 1.3[ 1.0: 1.6] 2.0×10−2 14 0.0% 5.5% 4 0.0% 66.7% 1

urine 1-methylurate 1.4[ 1.1: 1.8] 2.0×10−2 9 0.0% 41.7% 8 0.0% 32.1% 1

saliva N-acetylleucine 1.3[ 1.0: 1.7] 2.0×10−2 11 0.0% 5.5% 6 0.0% 13.3% 0

saliva uridine 0.8[ 0.6: 1.0] 2.0×10−2 11 0.0% 12.7% 8 0.0% 3.6% 0

urine carnosine 0.7[ 0.6: 1.0] 2.0×10−2 12 0.0% 1.5% 2 0.0% 0.0% 0

plasma 2-aminooctanoate 0.7[ 0.6: 1.0] 2.2×10−2 8 0.0% 7.1% 8 0.0% 10.7% 0

urine X - 18554 0.7[ 0.6: 1.0] 2.2×10−2 19 0.0% 2.9% 11 0.0% 5.5% 0

urine X - 20617 0.7[ 0.6: 1.0] 2.3×10−2 19 0.0% 3.5% 6 0.0% 6.7% 0

plasma 1-stearoylglycerophosphoethanolamine 0.8[ 0.6: 1.0] 2.5×10−2 8 0.0% 17.9% 6 0.0% 46.7% 0

plasma X - 01911 1.3[ 1.0: 1.7] 2.7×10−2 4 0.0% 50.0% 6 0.0% 20.0% 0

urine 3-methyl catechol sulfate (1) 1.3[ 1.0: 1.7] 2.8×10−2 6 0.0% 13.3% 7 0.0% 19.0% 0

saliva isoleucine 0.8[ 0.6: 1.0] 2.8×10−2 6 0.0% 40.0% 8 0.0% 35.7% 4

urine X - 16564 1.3[ 1.0: 1.7] 2.9×10−2 5 0.0% 70.0% 6 0.0% 40.0% 0

plasma N-methyl proline 1.3[ 1.0: 1.7] 3.0×10−2 4 0.0% 50.0% 14 0.0% 9.9% 1

urine X - 17305 0.8[ 0.6: 1.0] 3.0×10−2 6 0.0% 13.3% 1 0.0% — 0

urine X - 12128 1.3[ 1.0: 1.7] 3.1×10−2 11 0.0% 10.9% 4 0.0% 0.0% 0

urine 2-methylmalonyl carnitine 0.8[ 0.6: 1.0] 3.1×10−2 12 0.0% 3.0% 5 0.0% 10.0% 0

saliva acetylcarnitine 1.3[ 1.0: 1.7] 3.3×10−2 10 0.0% 24.4% 12 0.0% 13.6% 0

urine X - 12812 0.8[ 0.6: 1.0] 3.3×10−2 14 0.0% 2.2% 8 0.0% 3.6% 0

urine X - 17325 1.3[ 1.0: 1.7] 3.7×10−2 5 0.0% 70.0% 6 0.0% 40.0% 0

saliva X - 14473 1.3[ 1.0: 1.7] 3.9×10−2 7 0.0% 9.5% 3 0.0% 0.0% 0

urine 2,3-dihydroxyisovalerate 1.3[ 1.0: 1.6] 4.0×10−2 17 0.0% 2.9% 6 0.0% 13.3% 0

plasma pipecolate 1.2[ 1.0: 1.5] 4.1×10−2 15 0.0% 4.8% 3 0.0% 0.0% 0

urine indoleacetate 0.8[ 0.6: 1.0] 4.3×10−2 13 0.0% 14.1% 7 0.0% 28.6% 0

urine X - 12283 0.8[ 0.6: 1.0] 4.7×10−2 7 0.0% 14.3% 2 0.0% 0.0% 0

urine X - 17686 1.3[ 1.0: 1.6] 4.9×10−2 10 0.0% 24.4% 10 0.0% 8.9% 0

saliva valerate 1.3[ 1.0: 1.6] 5.3×10−2 4 0.0% 50.0% 13 0.0% 14.1% 3

plasma 1-linoleoylglycerophosphoethanolamine 1.3[ 1.0: 1.6] 5.5×10−2 14 0.0% 26.4% 6 0.0% 86.7% 0

saliva leucine 0.8[ 0.6: 1.0] 5.7×10−2 6 0.0% 33.3% 10 0.0% 20.0% 3

urine S-(3-hydroxypropyl)mercapturic acid (HPMA) 1.2[ 1.0: 1.6] 5.9×10−2 12 0.0% 3.0% 0 0.0% — 2

urine homocitrulline 1.3[ 1.0: 1.6] 6.0×10−2 9 0.0% 8.3% 1 0.0% — 0

plasma theophylline 1.3[ 1.0: 1.6] 6.2×10−2 5 0.0% 30.0% 9 0.0% 50.0% 0

saliva lauryl sulfate 0.8[ 0.6: 1.0] 6.2×10−2 19 0.0% 3.5% 6 0.0% 0.0% 0

saliva X - 19843 0.8[ 0.6: 1.0] 6.8×10−2 15 0.0% 7.6% 6 0.0% 13.3% 0

plasma pyroglutamine 1.3[ 1.0: 1.8] 6.9×10−2 12 0.0% 9.1% 2 0.0% 0.0% 2

plasma laurylcarnitine 1.3[ 1.0: 1.6] 6.9×10−2 8 0.0% 17.9% 4 0.0% 100.0% 0

saliva 3-(4-hydroxyphenyl)lactate 1.3[ 1.0: 1.6] 7.0×10−2 11 0.0% 14.5% 5 0.0% 10.0% 0

plasma 3-hydroxyisobutyrate 1.2[ 1.0: 1.6] 7.2×10−2 4 0.0% 50.0% 3 0.0% 100.0% 0

urine imidazole propionate 1.2[ 1.0: 1.5] 7.4×10−2 16 0.0% 4.2% 8 0.0% 3.6% 0

plasma epiandrosterone sulfate 0.8[ 0.6: 1.0] 7.4×10−2 8 0.0% 53.6% 7 0.0% 23.8% 0

plasma theobromine 0.8[ 0.6: 1.0] 7.5×10−2 8 0.0% 46.4% 9 0.0% 27.8% 1

saliva dexpanthenol 0.8[ 0.6: 1.0] 7.5×10−2 16 0.0% 0.8% 16 0.0% 3.3% 1

saliva 3-methyl-2-oxobutyrate 1.2[ 1.0: 1.6] 7.5×10−2 9 0.0% 5.6% 5 0.0% 10.0% 0

urine X - 16570 1.3[ 1.0: 1.6] 7.8×10−2 9 0.0% 30.6% 7 0.0% 28.6% 0

urine X - 18838 1.3[ 1.0: 1.7] 7.8×10−2 15 0.0% 5.7% 10 0.0% 2.2% 1

plasma caprate (10:0) 1.2[ 1.0: 1.5] 8.1×10−2 8 0.0% 17.9% 3 0.0% 0.0% 0
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urine X - 02249 0.8[ 0.6: 1.0] 8.8×10−2 9 0.0% 19.4% 6 0.0% 6.7% 0

plasma glutamate 1.2[ 1.0: 1.6] 9.0×10−2 27 0.0% 6.3% 8 0.0% 17.9% 0

plasma 1-arachidonoylglycerophosphoethanolamine 1.2[ 1.0: 1.5] 9.1×10−2 12 0.0% 27.3% 7 0.0% 76.2% 0

plasma X - 11521 1.2[ 1.0: 1.6] 1.0×10−1 14 0.0% 18.7% 6 0.0% 20.0% 0

urine X - 16940 0.8[ 0.6: 1.0] 1.0×10−1 4 0.0% 33.3% 1 0.0% — 0

saliva 4-hydroxyphenylacetate 1.2[ 1.0: 1.5] 1.0×10−1 11 0.0% 12.7% 11 0.0% 9.1% 0

saliva X - 16612 0.8[ 0.7: 1.0] 1.0×10−1 5 0.0% 60.0% 10 0.0% 22.2% 2

saliva alpha-hydroxyisocaproate 1.2[ 1.0: 1.5] 1.0×10−1 16 0.0% 6.7% 7 0.0% 4.8% 0

urine 4-ethylphenylsulfate 0.8[ 0.6: 1.0] 1.1×10−1 18 0.0% 3.3% 10 0.0% 6.7% 0

urine inosine 0.8[ 0.6: 1.0] 1.1×10−1 9 0.0% 8.3% 7 0.0% 0.0% 0

urine 6-oxopiperidine-2-carboxylic acid 0.8[ 0.6: 1.0] 1.2×10−1 8 0.0% 3.6% 10 0.0% 2.2% 0

saliva spermidine 0.8[ 0.7: 1.0] 1.2×10−1 11 0.0% 3.6% 11 0.0% 10.9% 0

plasma decanoylcarnitine 1.2[ 0.9: 1.6] 1.2×10−1 5 0.0% 60.0% 5 0.0% 80.0% 0

saliva X - 13205 0.8[ 0.7: 1.1] 1.3×10−1 5 0.0% 80.0% 5 0.0% 90.0% 0

plasma octanoylcarnitine 1.2[ 0.9: 1.5] 1.3×10−1 5 0.0% 40.0% 6 0.0% 66.7% 0

urine X - 12687 1.2[ 0.9: 1.6] 1.3×10−1 10 0.0% 17.8% 8 0.0% 14.3% 2

urine 11-ketoetiocholanolone glucuronide 0.8[ 0.7: 1.1] 1.3×10−1 11 0.0% 7.3% 2 0.0% 100.0% 0

plasma acetylcarnitine 1.2[ 0.9: 1.6] 1.3×10−1 8 0.0% 21.4% 9 0.0% 30.6% 0

plasma heme 1.2[ 0.9: 1.5] 1.4×10−1 14 0.0% 13.2% 5 0.0% 0.0% 0

saliva X - 18140 0.8[ 0.7: 1.1] 1.4×10−1 6 0.0% 26.7% 5 0.0% 60.0% 0

plasma 5alpha-androstan-3beta,17beta-diol disulfate 1.2[ 0.9: 1.7] 1.5×10−1 8 0.0% 42.9% 6 0.0% 53.3% 0

urine X - 12261 1.2[ 0.9: 1.5] 1.6×10−1 3 0.0% 66.7% 10 0.0% 15.6% 0

plasma andro steroid monosulfate 2 1.2[ 0.9: 1.5] 1.6×10−1 10 0.0% 26.7% 9 0.0% 41.7% 1

saliva X - 19867 0.8[ 0.7: 1.1] 1.8×10−1 11 0.0% 3.6% 4 0.0% 0.0% 0

plasma pelargonate (9:0) 1.2[ 0.9: 1.5] 1.8×10−1 5 0.0% 0.0% 9 0.0% 0.0% 2

plasma indolepropionate 0.8[ 0.7: 1.1] 1.8×10−1 8 0.0% 7.1% 2 0.0% 0.0% 0

urine X - 20567 0.9[ 0.7: 1.1] 1.8×10−1 16 0.0% 5.0% 8 0.0% 10.7% 0

plasma butyrylcarnitine 0.8[ 0.6: 1.1] 1.9×10−1 12 0.0% 3.0% 8 0.0% 35.7% 0

urine 4-hydroxybenzoate 1.2[ 0.9: 1.5] 1.9×10−1 10 0.0% 4.4% 7 0.0% 4.8% 0

plasma X - 16044 0.9[ 0.7: 1.1] 1.9×10−1 6 0.0% 13.3% 9 0.0% 5.6% 0

saliva valine 0.8[ 0.7: 1.1] 1.9×10−1 7 0.0% 9.5% 8 0.0% 32.1% 2

saliva X - 18983 0.9[ 0.7: 1.1] 2.1×10−1 6 0.0% 40.0% 8 0.0% 21.4% 0

urine X - 11843 1.2[ 0.9: 1.5] 2.1×10−1 2 0.0% 100.0% 7 0.0% 33.3% 0

plasma 1-palmitoylglycerophosphoethanolamine 1.2[ 0.9: 1.5] 2.3×10−1 10 0.0% 15.6% 9 0.0% 25.0% 0

saliva X - 19807 0.9[ 0.7: 1.1] 2.3×10−1 6 0.0% 20.0% 12 0.0% 6.1% 2

plasma 2-hydroxydecanoate 0.9[ 0.7: 1.1] 2.4×10−1 8 0.0% 3.6% 8 0.0% 3.6% 0

plasma 2-linoleoylglycerophosphoethanolamine 1.2[ 0.9: 1.5] 2.5×10−1 17 0.0% 8.1% 7 0.0% 76.2% 0

urine X - 12828 1.1[ 0.9: 1.4] 2.6×10−1 9 0.0% 2.8% 4 0.0% 0.0% 0

urine X - 12695 1.2[ 0.9: 1.5] 2.6×10−1 9 0.0% 2.8% 8 0.0% 3.6% 1

plasma X - 11478 0.9[ 0.7: 1.1] 2.7×10−1 12 0.0% 16.7% 5 0.0% 20.0% 0

saliva guanosine 1.1[ 0.9: 1.5] 2.7×10−1 11 0.0% 5.5% 6 0.0% 20.0% 0

urine 3-methoxytyrosine 1.1[ 0.9: 1.4] 2.8×10−1 13 0.0% 3.8% 9 0.0% 11.1% 0

plasma hexanoylcarnitine 1.1[ 0.9: 1.5] 3.0×10−1 9 0.0% 19.4% 6 0.0% 46.7% 0

plasma 3-hydroxybutyrate (BHBA) 1.1[ 0.9: 1.4] 3.1×10−1 5 0.0% 40.0% 3 0.0% 100.0% 0

saliva cortisone 0.9[ 0.7: 1.1] 3.1×10−1 10 0.0% 2.2% 6 0.0% 26.7% 0

saliva putrescine 1.1[ 0.9: 1.5] 3.3×10−1 9 0.0% 2.8% 5 0.0% 10.0% 0

plasma X - 14588 1.1[ 0.9: 1.4] 3.4×10−1 5 0.0% 30.0% 4 0.0% 66.7% 0

urine X - 12097 1.1[ 0.9: 1.4] 3.4×10−1 5 0.0% 50.0% 3 0.0% 33.3% 0

saliva 2-hydroxyglutarate 0.9[ 0.7: 1.1] 3.5×10−1 15 0.0% 5.7% 11 0.0% 7.3% 1

urine hexanoylcarnitine 0.9[ 0.7: 1.1] 3.5×10−1 8 0.0% 0.0% 3 0.0% 0.0% 0

plasma 4-androsten-3beta,17beta-diol disulfate (1) 1.1[ 0.9: 1.5] 3.6×10−1 6 0.0% 46.7% 6 0.0% 73.3% 0

plasma pyruvate 1.1[ 0.9: 1.4] 3.6×10−1 9 0.0% 19.4% 8 0.0% 3.6% 0

plasma urate 1.1[ 0.9: 1.5] 3.6×10−1 12 0.0% 3.0% 3 0.0% 0.0% 0

urine p-cresol sulfate 1.1[ 0.9: 1.5] 3.7×10−1 6 0.0% 6.7% 8 0.0% 32.1% 1

urine cinnamoylglycine 0.9[ 0.7: 1.1] 3.7×10−1 10 0.0% 13.3% 9 0.0% 5.6% 1

plasma X - 15668 0.9[ 0.7: 1.1] 3.7×10−1 6 0.0% 6.7% 9 0.0% 5.6% 0

saliva 5-aminovalerate 0.9[ 0.7: 1.1] 3.7×10−1 12 0.0% 13.6% 6 0.0% 6.7% 0

urine X - 12216 1.1[ 0.9: 1.4] 3.9×10−1 7 0.0% 23.8% 9 0.0% 25.0% 1

urine N-acetylaspartate (NAA) 0.9[ 0.7: 1.2] 4.0×10−1 8 0.0% 14.3% 6 0.0% 6.7% 0

urine X - 17688 0.9[ 0.7: 1.2] 4.1×10−1 9 0.0% 22.2% 9 0.0% 19.4% 0

saliva X - 19870 0.9[ 0.7: 1.1] 4.2×10−1 11 0.0% 16.4% 11 0.0% 18.2% 0

saliva cis, cis-muconic acid 1.1[ 0.9: 1.4] 4.2×10−1 6 0.0% 33.3% 5 0.0% 30.0% 0

plasma X - 11538 1.1[ 0.9: 1.4] 4.2×10−1 18 0.0% 2.6% 1 0.0% — 0

urine riboflavin (Vitamin B2) 1.1[ 0.9: 1.4] 4.3×10−1 13 0.0% 5.1% 8 0.0% 14.3% 0

urine stachydrine 1.1[ 0.9: 1.4] 4.4×10−1 7 0.0% 38.1% 6 0.0% 40.0% 1

urine X - 12095 0.9[ 0.7: 1.2] 4.5×10−1 4 0.0% 66.7% 4 0.0% 66.7% 0

saliva guanine 0.9[ 0.7: 1.2] 4.6×10−1 8 0.0% 14.3% 4 0.0% 16.7% 0

plasma 1-eicosatrienoylglycerophosphoethanolamine 0.9[ 0.7: 1.2] 4.8×10−1 16 0.0% 6.7% 8 0.0% 39.3% 0

urine N1-Methyl-2-pyridone-5-carboxamide 1.1[ 0.9: 1.4] 4.9×10−1 5 0.0% 40.0% 4 0.0% 50.0% 0

saliva N-acetylserine 1.1[ 0.9: 1.4] 4.9×10−1 12 0.0% 4.5% 5 0.0% 10.0% 1

urine alpha-CEHC sulfate 0.9[ 0.7: 1.2] 5.2×10−1 6 0.0% 20.0% 5 0.0% 20.0% 1

plasma paraxanthine 0.9[ 0.7: 1.2] 5.3×10−1 8 0.0% 35.7% 10 0.0% 44.4% 1

urine glutamine 0.9[ 0.7: 1.2] 5.5×10−1 6 0.0% 13.3% 8 0.0% 42.9% 2

urine methionine 0.9[ 0.7: 1.2] 5.5×10−1 11 0.0% 16.4% 5 0.0% 90.0% 0

urine X - 17185 1.1[ 0.8: 1.4] 5.6×10−1 11 0.0% 10.9% 6 0.0% 0.0% 1

urine 2-piperidinone 0.9[ 0.7: 1.2] 5.6×10−1 3 0.0% 66.7% 5 0.0% 20.0% 0

urine valine 0.9[ 0.7: 1.2] 5.7×10−1 11 0.0% 16.4% 5 0.0% 90.0% 0

urine indoleacetylglutamine 1.1[ 0.8: 1.4] 5.7×10−1 15 0.0% 5.7% 8 0.0% 14.3% 0

plasma X - 19808 1.1[ 0.8: 1.4] 5.7×10−1 5 0.0% 50.0% 4 0.0% 50.0% 0
continued on next page . . .
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urine catechol sulfate 0.9[ 0.7: 1.2] 5.9×10−1 3 0.0% 33.3% 9 0.0% 2.8% 0

urine X - 14082 1.1[ 0.8: 1.4] 6.1×10−1 8 0.0% 7.1% 7 0.0% 9.5% 0

plasma X - 16071 1.1[ 0.8: 1.4] 6.2×10−1 14 0.0% 4.4% 3 0.0% 0.0% 0

saliva theobromine 0.9[ 0.7: 1.2] 6.2×10−1 12 0.0% 10.6% 7 0.0% 14.3% 0

plasma X - 12776 0.9[ 0.7: 1.2] 6.4×10−1 12 0.0% 9.1% 12 0.0% 4.5% 1

saliva inosine 0.9[ 0.7: 1.2] 6.4×10−1 9 0.0% 11.1% 5 0.0% 40.0% 0

plasma 13-HODE + 9-HODE 0.9[ 0.7: 1.2] 6.5×10−1 14 0.0% 3.3% 2 0.0% 100.0% 0

urine X - 11593 0.9[ 0.7: 1.2] 6.5×10−1 12 0.0% 4.5% 6 0.0% 6.7% 0

urine X - 12335 0.9[ 0.7: 1.2] 6.5×10−1 7 0.0% 19.0% 5 0.0% 60.0% 0

plasma 1-docosahexaenoylglycerophosphoethanolamine 1.1[ 0.8: 1.4] 6.6×10−1 9 0.0% 38.9% 8 0.0% 35.7% 0

urine X - 12193 0.9[ 0.7: 1.2] 6.8×10−1 8 0.0% 7.1% 0 0.0% — 0

plasma palmitoylcarnitine 0.9[ 0.7: 1.2] 6.9×10−1 4 0.0% 66.7% 2 0.0% 100.0% 0

saliva 3-(4-hydroxyphenyl)propionate 1.0[ 0.7: 1.2] 7.0×10−1 11 0.0% 14.5% 8 0.0% 21.4% 0

urine X - 12753 1.0[ 0.8: 1.3] 7.1×10−1 17 0.0% 4.4% 13 0.0% 5.1% 0

plasma nicotinamide 1.0[ 0.8: 1.3] 7.3×10−1 21 0.0% 3.8% 12 0.0% 3.0% 1

saliva X - 12776 1.0[ 0.8: 1.3] 7.4×10−1 8 0.0% 17.9% 8 0.0% 0.0% 3

urine creatine 1.0[ 0.8: 1.4] 7.4×10−1 15 0.0% 5.7% 3 0.0% 0.0% 0

urine X - 18241 1.0[ 0.7: 1.2] 7.4×10−1 19 0.0% 0.0% 9 0.0% 8.3% 0

urine 3-aminoisobutyrate 1.0[ 0.8: 1.2] 7.5×10−1 11 0.0% 9.1% 7 0.0% 9.5% 0

plasma X - 14473 1.0[ 0.8: 1.3] 7.5×10−1 7 0.0% 9.5% 4 0.0% 33.3% 0

plasma arachidate (20:0) 1.0[ 0.8: 1.2] 7.6×10−1 15 0.0% 3.8% 7 0.0% 14.3% 0

urine 1,5-anhydroglucitol (1,5-AG) 1.0[ 0.8: 1.2] 7.6×10−1 18 0.0% 3.9% 3 0.0% 0.0% 0

saliva phenylalanine 1.0[ 0.8: 1.3] 7.6×10−1 6 0.0% 33.3% 5 0.0% 40.0% 1

saliva N-acetylaspartate (NAA) 1.0[ 0.8: 1.2] 7.9×10−1 10 0.0% 6.7% 8 0.0% 25.0% 0

urine 2-aminophenol sulfate 1.0[ 0.8: 1.3] 7.9×10−1 8 0.0% 25.0% 6 0.0% 13.3% 0

saliva X - 19839 1.0[ 0.8: 1.3] 7.9×10−1 15 0.0% 6.7% 7 0.0% 19.0% 0

urine urea 1.0[ 0.8: 1.3] 8.0×10−1 9 0.0% 2.8% 0 0.0% — 0

urine O-sulfo-L-tyrosine 1.0[ 0.8: 1.3] 8.0×10−1 6 0.0% 6.7% 9 0.0% 0.0% 1

plasma X - 11299 1.0[ 0.8: 1.3] 8.2×10−1 13 0.0% 0.0% 12 0.0% 3.0% 0

urine X - 19808 1.0[ 0.8: 1.2] 8.2×10−1 5 0.0% 10.0% 2 0.0% 0.0% 0

plasma oleoylcarnitine 1.0[ 0.8: 1.3] 8.2×10−1 5 0.0% 40.0% 2 0.0% 100.0% 0

urine phenol sulfate 1.0[ 0.8: 1.3] 8.3×10−1 5 0.0% 30.0% 6 0.0% 40.0% 0

plasma X - 19807 1.0[ 0.8: 1.2] 8.3×10−1 6 0.0% 46.7% 4 0.0% 66.7% 0

plasma gamma-glutamyltyrosine 1.0[ 0.7: 1.3] 8.3×10−1 10 0.0% 20.0% 7 0.0% 19.0% 0

plasma isoleucine 1.0[ 0.8: 1.4] 8.3×10−1 8 0.0% 10.7% 6 0.0% 26.7% 0

plasma arginine 1.0[ 0.8: 1.2] 8.3×10−1 19 0.0% 3.5% 6 0.0% 6.7% 0

plasma cholate 1.0[ 0.8: 1.2] 8.4×10−1 10 0.0% 13.3% 8 0.0% 3.6% 0

urine X - 12211 1.0[ 0.8: 1.3] 8.5×10−1 10 0.0% 31.1% 2 0.0% 0.0% 0

urine 3-carboxy-4-methyl-5-propyl-2-furanpropanoate (CMPF) 1.0[ 0.8: 1.3] 8.5×10−1 15 0.0% 4.8% 13 0.0% 5.1% 1

saliva X - 14196 1.0[ 0.8: 1.2] 8.6×10−1 12 0.0% 9.1% 10 0.0% 22.2% 2

urine X - 12830 1.0[ 0.8: 1.3] 8.7×10−1 11 0.0% 1.8% 10 0.0% 4.4% 0

plasma glycocholenate sulfate 1.0[ 0.8: 1.3] 8.8×10−1 11 0.0% 10.9% 12 0.0% 9.1% 0

urine cyclo(gly-pro) 1.0[ 0.8: 1.3] 8.8×10−1 13 0.0% 3.8% 5 0.0% 10.0% 1

urine X - 15636 1.0[ 0.8: 1.3] 8.8×10−1 10 0.0% 2.2% 6 0.0% 0.0% 1

urine 3-ureidopropionate 1.0[ 0.8: 1.3] 9.0×10−1 10 0.0% 4.4% 8 0.0% 3.6% 0

urine 3-methylhistidine 1.0[ 0.8: 1.3] 9.1×10−1 4 0.0% 83.3% 4 0.0% 50.0% 0

plasma adenosine 5’-monophosphate (AMP) 1.0[ 0.8: 1.3] 9.3×10−1 20 0.0% 6.8% 17 0.0% 3.7% 0

urine pseudouridine 1.0[ 0.8: 1.3] 9.6×10−1 11 0.0% 3.6% 5 0.0% 0.0% 0

urine X - 12104 1.0[ 0.8: 1.3] 9.6×10−1 12 0.0% 9.1% 1 0.0% — 0

saliva paraxanthine 1.0[ 0.8: 1.3] 9.8×10−1 8 0.0% 10.7% 7 0.0% 42.9% 0

urine X - 18486 1.0[ 0.8: 1.3] 9.9×10−1 11 0.0% 1.8% 5 0.0% 0.0% 0
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Figure E.1 Comparison of renal function associations with previous studies. Here I compare
the observed univariate associations of metabolites with renal disease with the results of the
study by Sekula et al. (2016). 277 blood metabolites overlapped between the studies. For
each of them the p-values are shown here.
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Figure E.2 Principal components of metabolomics measurements. I conducted principal
component analysis (PCA) for each of the three fluids after correction for confounding factors
and imputation of missing values. Cases are coloured in red, controls in yellow. In each of the
fluids, the disease status explains a major portion of variance in the metabolomics profiles.
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Figure E.3 Metabolites associated with CKD across fluids. Seven metabolites were signific-
antly different between renal disease patients and controls in all three fluids. While associations
were consistent across fluids for four metabolites (first row), directions differed between fluids
for the remaining three (second row).
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Figure E.4 Rare metabolites differing between CKD cases and controls. I analysed 882
metabolites present in more than 80 % of the samples in my main analysis, as network
inference relies on full data matrices. However, 782 additional metabolites were detected
in the study population, but excluded due to high proportion of missing values. 635 of
those were observed in at least 10 samples. Logistic regression models identify 208 of those
significantly different between cases and controls.
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APPENDIX F

Exploring the molecular basis of age-related disease

comorbidities using a multi-omics graphical model

Table F.1 Omics variables included in the Age-MGM. I included 53 variables from four different
‘omics’ datasets in the Age-MGM. Degree and clustering coefficients (Clust.) were calculated
from the entire model, while the betweenness centrality (Betw.) was calculated for the giant
component of the Age-MGM only.

Label Description Degree Clust. Betw.
cg17861230 PDE4C (chr19, 18343901) 5 40.0% 1.6%
cg02228185 ASPA (chr17, 3379567) 2 0.0% 0.7%
cg25809905 ITGA2B (chr17, 42467728) 0 — —
GP6 The percentage of FA2B glycan in total IgG glycans 7 38.1% 1.8%
GP14 The percentage of FA2G2 glycan in total IgG glycans 7 47.6% 1.8%
GP15 The percentage of FA2BG2 glycan in total IgG glycans 3 100.0% 0.0%
C-glycosyltryptophan Amino Acid 9 25.0% 3.9%
citrate Energy 7 47.6% 0.4%
DHEA-S Lipid 7 28.6% 5.0%
EPA Lipid 6 40.0% 5.8%
CMPF Lipid 6 33.3% 4.2%
10-heptadecenoate Lipid 6 66.7% 0.2%
urate Nucleotide 5 40.0% 4.2%
dihomo-linoleate Lipid 5 80.0% 0.0%
erythritol Xenobiotics 5 40.0% 1.0%
glutamate Amino Acid 5 10.0% 8.3%
myristoleate Lipid 5 80.0% 1.0%
octanoylcarnitine Lipid 5 80.0% 0.0%
threitol Carbohydrate 4 33.3% 3.7%
creatinine Amino Acid 3 66.7% 0.3%
phosphate Energy 3 33.3% 0.1%
androstendiol-2S Lipid 3 33.3% 1.2%
androstendiol-S Lipid 3 66.7% 1.4%
citrulline Amino Acid 2 0.0% 0.0%
serine Amino Acid 2 0.0% 0.2%
palmitoyl sphingomyelin Lipid 2 0.0% 0.2%
aspartate Amino Acid 1 — 0.0%
creatine Amino Acid 0 — —
1,7-dimethylurate Xenobiotics 0 — —
ILMN 2062620 NMT2 (chr10, 15187951:15188000) 13 17.9% 6.1%
ILMN 1735124 OXT (chr20, 3001023:3001072) 9 33.3% 6.0%
ILMN 2112638 SVEP1 (chr9, 112168560:112168609) 9 27.8% 10.5%
ILMN 1750018 SEL1L2 (chr20, 13778194:13778243) 8 28.6% 4.5%
ILMN 1684391 PLOD1 (chr1, 11958106:11958155) 7 38.1% 0.3%
ILMN 1708107 DPT (chr1, 166931502:166931551) 7 33.3% 2.6%
ILMN 2065690 GRAMD3 (chr5, 125857223:125857272) 6 53.3% 0.2%
ILMN 1678403 TMEM178 (chr2, 39797960:39798009) 5 60.0% 0.5%
ILMN 1790350 TPRG1 (chr3, 190523591:190523640) 5 20.0% 3.3%
ILMN 1664679 CADM2 (chr3, 86200275:86200324) 4 33.3% 1.0%
ILMN 1727309 FAM82A2 (chr15, 38815707:38815756) 4 16.7% 0.2%
ILMN 1732410 SLC16A9 (chr10, 61080824:61080873) 4 33.3% 2.4%
ILMN 1782069 TRAK1 (chr3, 42228905:42228954) 4 50.0% 0.2%
ILMN 1803686 ADA (chr20, 42681856:42681905) 4 33.3% 2.9%
ILMN 2344283 FMO3 (chr1, 169353283:169353332) 4 50.0% 0.3%
ILMN 1749962 NCAM2 (chr21, 21832517:21832566) 3 100.0% 0.0%
ILMN 1689431 APCDD1L (chr20, 56467867:56467916) 2 100.0% 0.0%
ILMN 1749540 RBM20 (chr10, 112588928:112588977) 2 0.0% 1.5%
ILMN 1814397 EPB42 (chr15, 41276902:41276951) 2 0.0% 2.1%
ILMN 2297864 MTMR14 (chr3, 9714444:9714493) 2 100.0% 0.0%
ILMN 1793543 C1orf51 (chr1, 148525842:148525891) 1 — 0.0%
ILMN 1657087 ZNF533 (chr2, 180015130:180015179) 0 — —
ILMN 1727833 KIF19 (chr17, 69858798:69858847) 0 — —
ILMN 1794552 GAP43 (chr3, 116922460:116922509) 0 — —
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Table F.2 Phenotypes included in the Age-MGM. Additional to the ‘omics’ markers, 92 phen-
otypes were included in the Age-MGM. The table indicates the population average and
standard deviation for all continuous variables and the prevalence for all dichotomous pheno-
types. Degree, clustering coefficients (Clust.) were calculated from the entire model, where
betweenness centrality (Betw.) was calculated from the giant component Age-MGM only

Node Average Degree Clust. Betw.
ALAT (alanine amino transferase) 28.6± 12.6 1 — 0.0%
FEV1 (forced expiratory volumne in 1 second)) 2.5± 0.6 8 0.4% 0.0%
FVC (forced vital capacity) 3.2± 0.6 7 0.5% 0.0%
GGT (gamma-glutamyltransferase) 25.7± 21.6 2 0.0% 0.0%
activity (home) 330 (71.1%) 1 — —
activity (leisure) 293 (63.1%) 1 — —
activity (work) 296 (63.8%) 1 — 0.0%
age 59.0± 9.4 27 0.1% 0.5%
albumin 44.2± 3.6 2 0.0% 0.0%
android fat mass 2284.4± 1022.1 21 0.4% 0.1%
android gynoid ratio 1.0± 0.2 15 0.4% 0.0%
android lean mass 3076.1± 550.4 13 0.7% 0.0%
ankle swelling 24 ( 5.3%) 0 — —
antidepressants 71 (17.3%) 1 — —
anxiety stress disorder 68 (14.7%) 0 — —
arthritis 183 (39.3%) 4 0.3% 0.0%
arthritis (other) 57 (13.0%) 2 1.0% 0.0%
asthma 69 (13.5%) 1 — 0.0%
bilirubin 9.0± 4.4 0 — —
birthweight 2381.6± 545.0 1 — 0.0%
BMI 26.6± 4.9 18 0.4% 0.1%
low back pain 47 (11.5%) 0 — —
cancer 62 (12.2%) 0 — —
chest pain 99 (19.4%) 0 — —
HDL cholesterol 1.8± 0.5 5 0.4% 0.0%
high cholesterol 138 (27.1%) 0 — —
total cholesterol 5.6± 1.1 4 0.3% 0.0%
chronic bronchitis 31 ( 7.0%) 0 — —
chronic widespread pain 102 (24.9%) 2 0.0% 0.0%
DBP (diastolic blood pressure) 79.3± 9.8 2 1.0% 0.0%
depression 50 (10.8%) 1 — —
dizziness 24 ( 4.7%) 0 — —
eGFR (estimated glomerular filtration rate) 81.8± 15.0 7 0.3% 0.0%
father overweight 49 (10.8%) 2 1.0% 0.0%
glucose 4.9± 0.5 0 — —
grip strength 26.9± 6.2 6 0.5% 0.0%
gynoid fat mass 4712.2± 1392.6 12 0.8% 0.0%
gynoid lean mass 6195.9± 934.7 14 0.6% 0.0%
hearing 177 (38.0%) 0 — —
heart murmur 25 ( 5.4%) 0 — —
height 161.4± 5.8 12 0.4% 0.0%
hip 101.5± 9.8 12 0.7% 0.0%
hip BMC (hip bone mineral content) 32.3± 8.6 10 0.6% 0.0%
hip BMD (hip bone mineral density) 0.9± 0.2 7 0.4% 0.1%
hypertension 120 (23.5%) 2 1.0% 0.0%
irregular heartbeats 25 ( 5.4%) 0 — —
learn gadgets 142 (28.6%) 0 — —
loss of vision/speech 31 ( 6.7%) 0 — —
memory (clothes) 30 ( 6.0%) 0 — —
memory (keys) 191 (38.5%) 0 — —
memory (loss) 168 (36.3%) 2 1.0% —
memory (medication) 54 (10.9%) 0 — —
memory (month) 59 (11.9%) 0 — —
memory (rate) 325 (65.7%) 2 1.0% —
memory (worry) 170 (34.3%) 3 0.3% —
memory (worsen) 135 (27.2%) 1 — —
migraine 79 (17.1%) 0 — —
mother overweight 79 (17.4%) 0 — —
nutrition (total energy) 1893.7± 575.1 0 — —
nutrition (fruit and vegetable) 0.7± 2.1 3 1.0% 0.0%
nutrition (high alcohol) 0.1± 1.4 1 — 0.0%
nutrition (traditional english) 0.3± 1.5 1 — 0.0%
nutrition (dieting) 0.3± 1.3 1 — 0.0%
nutrition (low meat) −0.2± 1.3 2 0.0% 0.0%
osteoarthritis 115 (24.0%) 4 0.3% 0.1%
pain (any) 89 (19.6%) 7 0.8% —
pain (back) 51 (11.2%) 7 0.8% —
pain (hand) 47 (10.4%) 6 0.9% —
pain (hip) 43 ( 9.5%) 6 0.9% —
pain (knee) 54 (11.9%) 7 0.8% —
pain (neck) 32 ( 7.0%) 6 0.9% —
pain (other) 22 ( 4.8%) 5 1.0% —
painkillers 53 (12.9%) 1 — 0.0%
palpitations 37 ( 8.1%) 0 — —
rheumatoid arthritis 25 ( 4.9%) 1 — 0.0%
SBP (systolic blood pressure) 131.2± 17.7 4 0.3% 0.0%
smoking 52 (10.2%) 0 — —
total spine BMC (spine bone mineral content) 59.0± 12.7 7 0.6% 0.0%
total spine BMD (spine bone mineral density) 1.0± 0.2 4 0.8% 0.0%
stiffness 24 ( 5.3%) 4 1.0% —
thyroid underactive 40 ( 7.8%) 0 — —
telomere length 3.6± 0.6 0 — —
total fat mass 6997.3± 2298.1 13 0.8% 0.0%
total lean mass 9272.5± 1436.6 14 0.6% 0.0%

continued on next page . . .
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total protein 70.0± 4.4 1 — 0.0%
triglycerides 0.0± 0.2 8 0.4% 0.0%
varicose veins 98 (19.2%) 0 — —
visceral fat mass 1242.4± 566.8 18 0.4% 0.0%
visceral lean mass 1785.7± 288.3 12 0.8% 0.0%
waist 80.1± 10.4 11 0.7% 0.0%
waist/hip 0.8± 0.1 7 0.9% 0.0%
weight 69.4± 13.7 16 0.6% 0.0%

Table F.3 Principal component-derived dietary patterns. Food frequency questionnaire (FFQ)
items were grouped in 53 food grouped and common patterns were extracted using PCA. The
first five components with the proportion of variance explained are listed here.

Diet pattern Variance
explained

High intakes1 Low intakes2

Fruit and vegetable 8.2% Fruit, allium and cruciferous vegetables Fried potatoes
High alcohol 3.9% Beer, wine and allium vegetables High fibre breakfast cereals and fruit
Traditional English 3.6% Fried fish and potatoes, meats, savoury pies and cruciferous vegetables
Dieting 3.3% Low-fat dairy products, low-sugar soda Butter and sweet baked products
Low meat 3.2% Baked beans, pizza and soy foods Meat, other fish and seafood, and poultry

1 Food frequency questionnaire items with factor loadings ≥0.20
2 Food frequency questionnaire items with factor loadings ≤0.20
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Figure F.1 Pairwise correlations in the Age-MGM. Pairwise associations between variables were
assessed using linear and logistic regression models, respectively. Edges in this graph represent
associations with false discovery rate (FDR)<5 %, edge colours represent the sign of the beta
(blue for negative betas, red for positive). Nodes were positioned and coloured accordingly to
the Age-MGM (Figure 9.3).
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Figure F.2 Connections within and between groups of variables of the Age-MGM. Variables
from the Age-MGM (Figure 9.3) were grouped according to the dataset they originate from.
Node labels indicate the number of variables in each group, while edge labels indicate the
total number of edges between groups
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Figure F.3 Stability of Age-MGM with respect to edge cut-off. To assess the dependence of
my results on the cut-off for edge inclusion, I compared measures of node centrality and cluster
assignments for networks inferred with varying edge inclusion cut-offs (ranging from 20 %
to 100 %) as well as a weighted network. (a) Node degrees and (b) clustering coefficients
correlate well between the different networks despite their very different sizes (e.g. 969 edges
in network with cut-off 20 % compared to 185 edges when using cut-off 100 %). (c) The
adjusted RAND index was used to assess similarity of module assignments between networks
(where a RAND index of 1.0 indicates identical module assignments and low values indicate
disparate modules). It is above 0.4 for all edge inclusion cut-offs, much higher than 1000
randomly sampled module assignments (empirical p-value <1.0×10−3), thus illustrating the
stability of the overall network structure against various choices for edge cut-offs.
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Figure F.4 Stability of the Age-MGM across datasets. stability of the Age-MGM, I additionally
inferred two separate models, twin 1 and twin 2, from two disjoint subsets of the data, each
of them containing one member of each twin pair. (a) Illustration of the Age-MGM showing
only edges that are exclusive to the model based on the combined dataset (green), the twin
1 (orange) or the twin 2 (purple) models, respectively. The network is very stable between
the datasets, with only 21 edges being unique to the original model. (b) The 21 edges that
are unique to the full Age-MGM are on average selected in 78 % of the subsamples of the
twin 1 and twin 2 models, which demonstrates that they were excluded because they just
missed the edge-inclusion cut-off of 80%, possibly due to a lack of power

(a) Age-MGM with edges exclusive to twin 1 and twin 2 models
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Table F.4 Stability of the Age-MGM against variable selection procedure. To assess the
influence variable selection prior to network inference on my results I inferred a second model
from the same dataset but without pre-selecting metabolomics variables, thus more than
doubling the number of nodes. I then restricted this much larger network to the nodes of the
Age-MGM. While the underlying larger model is very different from the original one in terms
of size, sparsity and included variables, the network modules were stable across both networks
(adjusted RAND index 0.57). Detailed module memberships are listed for this network and
the original age- mgm. Variables in italics have degree 0 in the large network and consequently
not part of any cluster.

Module Members in Age-MGM Members in Large-MGM

EXPRESSION

CADM2, TMEM178, PLOD1, APCDD1L,
DPT, FAM82A2, SLC16A9, OXT, SEL1L2,
TRAK1, TPRG1, C1orf51, ADA, NMT2,
GRAMD3, SVEP1, MTMR14, FMO3

CADM2, TMEM178, PLOD1, APCDD1L,
FAM82A2, TRAK1, ADA, NMT2, GRAMD3,
SVEP1, MTMR14, FMO3, SLC16A9, TPRG1,
C1orf51

LUNG

FEV1, FVC, GP14, GP15, GP6, EPB42,
androstendiol-S, DHEA-S,androstendiol-2S,
activity (work), age, albumin, asthma, ASPA,
PDE4C, DBP,hypertension, nutrition (high
alcohol), SBP, total protein

FEV1, FVC, GP14, GP15, GP6, OXT,
RBM20, SEL1L2, EPB42, androstendiol-S,
DHEA-S, activity (work), age, ASPA, PDE4C,
DBP, hypertension, SBP

ARTHRITIS
arthritis, arthritis (other), chronic widespread
pain, osteoarthritis, painkillers, rheumatoid
arthritis

arthritis, arthritis (other), chronic widespread
pain, osteoarthritis, rheumatoid arthritis

BONE birthweight, grip strength, height, hip BMC,
hip BMD, total spine BMC, total spine BMD

DPT, NCAM2, android fat mass, android
gynoid ratio, android lean mass, BMI, gynoid
fat mass, hip, total fat mass, total lean mass,
visceral fat mass, visceral lean mass, waist,
waist/hip, weight

FAT

NCAM2, android fat mass, android gynoid
ratio, android lean mass, BMI,father
overweight, gynoid fat mass, gynoid lean mass,
hip, nutrition(traditional English), total fat
mass, total lean mass, visceral fat
mass,visceral lean mass, waist, waist/hip,
weight

DPT, NCAM2, android fat mass, android
gynoid ratio, android lean mass,BMI, gynoid
fat mass, hip, total fat mass, total lean mass,
visceral fat mass,visceral lean mass, waist,
waist/hip, weight

LIVER
ALAT, GGT, RBM20, phosphate, aspartate,
serine, glutamate, palmitoyl sphingomyelin,
HDL cholesterol, cholesterol total, triglycerides

ALAT, GGT, phosphate, aspartate, serine,
glutamate, androstendiol-2S, palmitoyl
sphingomyelin, HDL cholesterol, cholesterol
total, triglycerides

KIDNEY

creatinine, citrate, urate, citrulline,
dihomo-linoleate, EPA,erythritol, CMPF,
myristoleate, C-glycosyltryptophan,
octanoylcarnitine,10-heptadecenoate, threitol,
eGFR, nutrition (fruit and vegetable),
nutrition(dieting), nutrition (low meat)

creatinine, urate, erythritol,
C-glycosyltryptophan, threitol, eGFR
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Summary

Age is the strongest risk factor for many diseases including

neurodegenerative disorders, coronary heart disease, type 2 dia-

betes and cancer. Due to increasing life expectancy and low birth

rates, the incidence of age-related diseases is increasing in indus-

trialized countries. Therefore, understanding the relationship

between diseases and aging and facilitating healthy aging are

major goals in medical research. In the last decades, the dimension

of biological data has drastically increased with high-throughput

technologies nowmeasuring thousands of (epi) genetic, expression

and metabolic variables. The most common and so far successful

approach to the analysis of these data is the so-called reductionist

approach. It consists of separately testing each variable for associ-

ation with the phenotype of interest such as age or age-related

disease. However, a large portion of the observed phenotypic

variance remains unexplained and a comprehensive understanding

of most complex phenotypes is lacking. Systems biology aims to

integratedata fromdifferent experiments togainanunderstanding

of the system as awhole rather than focusing on individual factors.

It thusallowsdeeper insights into themechanismsof complex traits,

which are caused by the joint influence of several, interacting

changes in the biological system. In this review, we look at the

current progress of applying omics technologies to identify

biomarkers of aging. We then survey existing systems biology

approaches that allow for an integration of different types of data

and highlight the need for further developments in this area to

improve epidemiologic investigations.

Key words: data integration; graphical models; high-

throughput data; omics; systems biology.

Introduction

Aging is often described as the progressive accumulation of changes

with time leading to a loss of physiological aptitude and fertility, an

increased susceptibility to disease and ultimately to death (Harman,

1988, 2001; Kirkwood & Austad, 2000; Vijg & Suh, 2005; L�opez-Ot�ın

et al., 2013). Despite considerable effort and the development of many

theories, the underlying process is still largely unknown (Kirkwood &

Austad, 2000; Weinert & Timiras, 2003; Rattan, 2006).

Researchers distinguish between chronological and biological age.

Chronological age is defined as the absolute time that an individual lives.

In contrast, biological age is a broader concept that takes the individual

physical and mental health into account, thus capturing individual

differences of the aging process. Most aging studies search for

associations of chronological age with clinical and molecular phenotypes

(Warming et al., 2002). However, several studies used phenotypes, such

as lung function, grip strength or bone mineral density, as proxies to

investigate molecular changes in biological aging (Jackson et al., 2003;

Bell et al., 2012; Levine, 2013). Researchers also investigated reasons of

retarded biological aging and longevity by comparing centenarians with

younger controls (Biagi et al., 2012; Sebastiani et al., 2012).

The life expectancy in the UK increased by 5.3 years for men and 4.7

for women over the last two decades and is predicted to further increase

in the next twenty years (Oeppen & Vaupel, 2002; Office for National

Statistics 2014). With increasing life expectancy, age-related diseases are

expected to rise dramatically (700 000 people suffered from dementia in

2000, 800 000 in 2012 and approximately 1 million people will be

affected by dementia in 2021 (Alzheimer’s Society 2014)) with major

impacts on healthcare costs. Thus, a better understanding of aging and

its influence on disease is a long term public health goal and a hot topic

of current medical research.

Omics technologies provide valuable tools to study aging on the

molecular level. Reductionist data analyses, testing the measured

variables separately for association with age, have been extensively

applied. Such studies successfully identified hundreds of epigenetic

mutations, gene expression levels, metabolite concentrations to be

linked with chronological and/or biological age (see below for details).

Even though these results improved our understanding of aging as a

complex phenotype, the mechanisms underlying these associations and

the impact of interactions between different biological entities remain

elusive in most cases. In contrast to reductionist approaches, systems

biology aims to analyse all components of a biological process

simultaneously taking into account their interactions and their intrinsic

hierarchical structure (Ideker et al., 2001; Barabási & Oltvai, 2004). With

more and more high-throughput data becoming available, systems

biology has led to many new methods and their successful application on

age and age-related phenotypes (as outlined below).

In this review, we will briefly summarize the current progress in

‘omics’ technologies and their application in aging research. We will

then highlight some problems of the reductionist approach and discuss

how these may be overcome using systems biology. We present a

selection of statistical methods used in systems biology along with their

current and possible future applications in the field of aging research to

move from biomarkers of aging to a more holistic understanding of the

aging process.
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Omics and aging

New technologies allow the measurement of ‘omics’ data and numerous

association studies have been conducted. Valdes et al. (2013) thor-

oughly reviewed the application of these technologies to identify

molecular markers of aging from each omics level. Therefore, the

following section will only briefly highlight some key results and

concentrate on recent findings.

Genomics

Genomics was the first omics field for which high-throughput measure-

ments became available. Current chips are able to measure up to 5

million single nucleotide polymorphisms (SNPs) (Ha et al., 2014). Today,

next-generation sequencing technology is slowly replacing the chip

technology as the cost of sequencing has dropped below $0.10 per

million bp (Liu et al., 2012). Thus, gene variation is nowadays often

available at single nucleotide resolution.

While aging (or rather longevity) itself was found to be only about

20% heritable (Murabito et al., 2012), many age-related diseases are

highly heritable. For instance, Alzheimer’s disease (AD) shows a

heritability above 70% (Gatz et al., 2006) and osteoarthritis (Ishimori

et al., 2010) or cataract show 50% heritability (Hammond et al., 2001).

The GenAge database contains about 300 human candidate genes

for aging based on homology with model organisms (Tacutu et al.,

2013). Sebastiani et al. (2012) recently published a refined model

consisting of 281 SNPs to distinguish between centenarians and younger

controls in a cohort of 1715 people. One of these SNPs is located in

ApoE, which is so far the only gene that has been reliably associated with

longevity at genomewide significance level (Deelen et al., 2011; Nebel

et al., 2011). Common genetic variants at this locus have been

associated with accelerated aging and cognitive decline (Johnson,

2006; Davies et al., 2014), possibly by increasing the risk for coronary

artery disease, stroke and AD (Smith, 2002). Even though some studies

provided evidence that mutations of FOXO transcription factors are

related to longevity (Willcox et al., 2008; Flachsbart et al., 2009), as

well, GWASs failed to replicate this at the level of genomewide

significance.

Epigenomics

Epigenomics describes the study of heritable changes in the genome that

are not caused by DNA sequence mutations (Lodish, 2013). The most

common epigenetic mechanism is DNA methylation, which is known to

often silence gene expression. In contrast to the genome, which is the

same in all cells, the epigenome is an important factor of cell

differentiation leading to profound epigenetic differences across differ-

ent cell types (Meissner, 2010). The current methylation chip by Illumina

measures over 485 000 methylation sites and covers 99% of all RefSeq

genes (Illumnia 2011). However, it covers less than 10% of variable

regions (Ziller et al., 2013).

The epigenome is influenced by environmental and lifestyle factors

(Nakajima et al., 2010; Alegr�ıa-Torres et al., 2011; Breitling et al., 2011)

and is associated with many complex diseases such as neurodegener-

ative disorders (reviewed by Portela & Esteller, 2010) and cancer (Ehrlich,

2002; Horvath, 2013). Nearly 500 differentially methylated regions were

found to be associated with chronological age and age-related pheno-

types such as lung function, cholesterol levels and maternal longevity

(Bell et al., 2012). A recent study by Weidner et al. (2014) showed that

methylation patterns of just three sites are sufficient to predict

chronological age. Thus, many of the previously identified methylation

sites might not be independently associated with age. Interestingly,

variation in methylation with age is consistent across several tissues and

cell types (Horvath, 2013). Together, they form a global pattern of

hypomethylation in repetitive sequences, hypermethylation in promoter

regions and higher intercell variability (Cevenini et al., 2008; Bacalini

et al., 2014). Besides DNA methylation, other epigenetic changes, such

as histone methylation and acetylation, have been found to be

associated with longevity in model organisms (Dang et al., 2009; Greer

et al., 2010). Investigating these modifications in humans could shed

light on so far unknown mechanisms of aging.

Transcriptomics

Genes are transcribed into RNA molecules, which are further processed

in a tightly controlled process. The entirety of the RNA transcripts is

referred to as transcriptome. It can be divided in coding RNAs, which are

further translated in proteins, and noncoding RNAs, which perform

various functions, such as regulation of gene expression (Eddy, 2001).

Transcript abundances can be measured by either chips or sequencing

methods.

Similar to the epigenome, gene expression was shown to dramatically

change with age. A pioneer study comparing postmortem human frontal

cortex tissue samples between 30 individuals of different ages yielded

463 differentially expressed genes (Lu et al., 2004). Despite the small

sample size, results were replicated in subsequent experiments. Four

years later, Berchtold et al. (2008) identified several thousand age-

related changes in gene expression in four different brain tissues. Later

studies by different groups identified profound changes in the tran-

scriptome with age in further tissues, such as skin, adipose tissue

(N = 865) (Glass et al., 2013) and kidney (N = 134) (Rodwell et al.,

2004). Most of these changes did not overlap in different tissues. A

meta-analysis across different species and tissues revealed only 73 genes

consistently associated with age (de Magalh~aes et al., 2009). This

suggests that most observed age-related changes in the transcriptome

are either species and tissue specific or false-positive discoveries

(reviewed by Valdes et al., 2013). In their meta-analysis, genes related

to immune response and lysosome tended to be overexpressed, while

genes related to mitochondria and oxidative phosphorylation were

underexpressed in elderly (de Magalh~aes et al., 2009).

Proteomics

Proteins are translated from coding transcripts. Due to alternative

splicing and post-translational protein modifications, the number of

proteins is estimated to be two orders of magnitudes higher than the

number of genes (Ginsburg & Haga, 2006). However, current proteomic

techniques based on immunoassays, protein arrays or mass spectrometry

can measure only a small fraction of the proteome (up to 1000 proteins

in a sample). The most comprehensive description of the human

proteome across various tissues to date consists of 18 097 proteins

(19 376 isoforms) collected from ten thousand mass spectrometry

experiments (Wilhelm et al., 2014).

Due to these technicalities, ‘proteomics’ studies in aging research so

far focused on smaller sets of proteins and small sample sizes. In an early

study of protein abundance in the vastus lateralis muscle, Gelfi et al.

(2006) observed higher abundance of several proteins involved in

aerobic metabolism and a lower abundance of proteins involved in

anaerobic metabolism in the elderly. Besides this, six transport proteins

were consistently underexpressed in older individuals. However, only 12
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samples were analysed in this study without replication. A recent study

by our group analysed over 1000 proteins in 200 plasma samples using

the SOMAscan assay (Menni et al., 2015). Eleven proteins were found to

strongly associate with chronological age as well as age-related

phenotypes such as lung function and blood pressure. The results were

replicated in an independent cohort.

Even though comprehensive proteomics studies are still missing,

proteins are likely to be associated with several age-related diseases. For

instance, cardiovascular disease (Mehra et al., 2005) and AD (Swardfa-

ger et al., 2010) are consistently associated with elevated levels of pro-

inflammatory cytokines.

Post-translational modifications – glycomics

Post-translational modifications are important elements of proteins,

which can alter their biochemical properties such as protein structure,

binding preferences and enzyme activity. There are many different

modifications ranging from addition of small molecules (e.g. acetylation

or phosphorylation), over addition of larger molecules such as lipids or

sugar chains (e.g. palmitoylation, glycosylation), to the addition of whole

proteins (e.g. ubiquitination).

The most common modification is glycosylation, which attaches sugar

chains to proteins. The attached oligosaccharides – glycans – are

supposed to mainly serve as structural elements of proteins or specific

binding sites for other glycans or proteins (Varki et al., 2009). However,

glycans are highly diverse and many of them are not yet characterized or

annotated. Thus, glycans might have many additional functions. For

example, glycans in the gut act as food for microbes (Koropatkin et al.,

2012), which could be implicated in immune functions that are

important in aging. Recent development allows the high-throughput

measurement of glycans of either a single protein or all proteins

simultaneously (Royle et al., 2008; Pucić et al., 2011).

The application of this technology on epidemiological cohorts

revealed that glycan structures are stable for one individual over time

(Gornik et al., 2009) but very diverse within a population (Knezević

et al., 2009; Pucić et al., 2011). Differences in glycomes were found to

be related with various cancers (Fuster & Esko, 2005; Adamczyk et al.,

2012). Recently, Kristic et al. (2013) showed that IgG glycans are

strongly associated with age: a linear combination of three glycans

explained 58% of the observed variance of chronological age (Kristic

et al., 2013) in a study of four independent populations with 5117

participants in total.

Metabolomics

Metabolomics investigates the low-molecular-weight molecules in a

biological system. The measured molecules are often referred to as

metabolites as many of them act as educts, products and intermediates

of the cellular metabolism. Currently, the Human Metabolome

Database (Wishart et al., 2013) contains more than 40 000 distinct

metabolites from different tissues. Similar to proteomics, to date, there

is no analytical method available to determine and quantify all

metabolites in a single experiment. Current platforms, using either

chromatography coupled with mass spectrometry or nuclear magnetic

resonance, can measure roughly a thousand metabolites in untargeted

settings and a smaller number using predefined targeted approaches.

The restriction of the targeted approach comes with the advantages of

higher sensitivity, absolute instead of relative quantification and

straight-forward compound identification (Patti et al., 2012; Tzoulaki

et al., 2014).

In 2008, the first metabolome-wide association study on age analysed

the plasma metabolome of 269 individuals using an untargeted

approach. The authors found 100 of 300 compounds to correlate with

chronological age (Lawton et al., 2008). More recently, larger cohorts

were employed to study the association of metabolites and age using

both targeted and untargeted metabolomics platforms. Yu et al. (2012)

analysed 131 targeted metabolites in 2162 individuals from the KORA

study, while we analysed 280 untargeted metabolites in 6055 twins

from the TwinsUK cohort (Menni et al., 2013b). Both studies identified

half of the analysed metabolites to be associated with chronological age.

Many of the those metabolites were also found to significantly correlate

with age-related phenotypes such as lung function, bone mineral density

and cholesterol levels (Menni et al., 2013b), AD (N = 93) (Ore�si�c et al.,

2011), cancer (reviewed by Teicher et al., 2012) and type 2 diabetes

(N = 100) (Suhre et al., 2010; Menni et al., 2013a). One of those

metabolites is C-glycosyltryptophan, a potential degradation product of

glycosylated proteins.

Microbiomics

The human microbiome describes the complete set of microbial species

(and their genomes) hosted by the human body. The largest microbial

community resides in the gut, where microbial cells and their genes

outnumber human cells (10:1) and genes (100:1) (Peterson et al., 2009;

Zhu et al., 2010; The Human Microbiome Project 2014a). More than 10

000 different species with millions of protein-coding genes were

identified by the Human Microbiome Project (Turnbaugh et al., 2007;

Peterson et al., 2009; Biagi et al., 2012) and >1000 of these microbes

have so far been fully sequenced (The Human Microbiome Project

2014b). Although twin studies have found a modest genetic influence

on some phyla, most of the variation is environmental (Goodrich et al.,

2014).

The composition of the microbe flora varies a lot across individuals

(Turnbaugh et al., 2007; Zhu et al., 2010) and even between different

parts of the body (Kong, 2011). It has a huge influence on many

biological processes such as immune response, metabolism and disease

(Zhu et al., 2010; Grice & Segre, 2012). While the microbiome seems to

be relatively stable during adulthood, it changes significantly in later life

(Guigoz et al., 2008; Biagi et al., 2010; Claesson et al., 2011). Biagi

et al. (2010) observed drastic changes in the gut microbiome of

centenarians compared with young adults as well as elderly, namely a

general loss of diversity and increased abundance of bacilli and

proteobacteria. The latter were reported to promote inflammation

under certain conditions (Round & Mazmanian, 2009). Similar findings

were revealed in other elderly populations, which also considered the

dietary and residential situation of elderly patients (Claesson et al.,

2012).

Phenomics

Simultaneously with omics data, the dimension of clinical and lifestyle

traits, particularly clinically used intermediate traits, keeps increasing.

Epidemiological studies collected thousands of clinically relevant pheno-

types beyond omics data types. These range from anthropometric

measures to health and lifestyle questionnaires (Moayyeri et al., 2013).

Collecting high-dimensional clinical data is important to unveil pleiotropy

of genes and interactions amongst clinical phenotypes such as comor-

bidities (Houle et al., 2010). Driven by omics technologies, statistical and

bioinformatic methods to analyse high-dimensional data are becoming

available. These facilitate the investigation of numerous clinical
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phenotypes in parallel, thus defining the new field of phenomics (Houle

et al., 2010).

Phenomics is especially important for aging research. Dozens of

clinical phenotypes, such as Parkinson’s (Reeve et al., 2014), AD

(McAuley et al., 2009), body mass index, blood pressure (Mungreiphy

et al., 2011) and bone mineral density (Warming et al., 2002), as well as

lifestyle parameters, such as nutrition (Wieser et al., 2011), smoking and

physical activity, are strongly related to age (Harman, 1988; Wang et al.,

2009). Composite measures such as the Rockwood frailty index

(Rockwood & Mitnitski, 2007) combine several of those clinical traits

to form a more homogenous phenotype – frailty – from its diverse

appearance. Such frailty measures can be considered as measures for

biological age (Mitnitski et al., 2013). Many of these (and other) clinical

phenotypes correlate or even depend on each other (McAuley et al.,

2009; Baylis et al., 2014). Only extensive collection of data and their

joint analysis will help to unveil these dependencies and find causal

relationships.

From omics to systems biology

Most of the studies summarized above concentrated on the bivariate

associations of age (or age-related diseases) with one type of omics data.

However, there are strong interdependencies within and between the

different omics data (see Fig. 1).

Correlations can be observed practically between all levels of biological

organization. Following the central dogma of molecular biology,

genomics, transcriptomics and proteomics are correlated ‘by definition’.

Furthermore, metabolite concentrations are influenced by genetic

variants (Shin et al., 2014) and epigenetic factors (Petersen et al., 2014)

mediated through changes in gene expression or enzyme activity.

Methylation levels do not only influence the gene expression (Jaenisch &

Bird, 2003), but are also correlated with gene variants (Bell et al., 2012)

and environmental factors (Breitling et al., 2011). Our group has recently

demonstrated that even the microbe composition is partly under host

genetic influence (Goodrich et al., 2014). Similarly, all levels of omics data

are influenced by genetics as well as by environment and aging.

Correlations, however, do not only occur between but also within each

type of data. For instance, in genomics linkage disequilibrium, the

correlated occurrence of SNPs is a ubiquitous phenomenon. Transcription

factors often coregulate the expression of multiple genes (Allocco et al.,

2004), andmethylation patterns of neighbouring CpG siteswere reported

to be correlated (Bell et al., 2012). Metabolites are linked by a network of

biochemical reactions, causing strong correlations between them (Krum-

siek et al., 2011). Even phenotypes often cluster. Comorbidities, the over

proportional co-occurrence of diseases, were shown to affect many

diseases possibly through shared underlying mechanisms (Goh et al.,

2007).

These biological correlations can confound the associations and this is

a major issue of current research. For instance, 153 metabolites were

found by our group to be associated with age, but subsequent analyses

showed that only 22 of them are associated with age independently

(Menni et al., 2013b). Similarly, 21 of 24 measured IgG glycans were

correlated with age, but only 3 of them explain 58% of the variance

(Kristic et al., 2013). The same was found for epigenetic data (Weidner

et al., 2014). Huge lists of associations with aging are being unveiled

using all kinds of data, but the biologically interesting, causal associa-

tions are often obscured by this wealth of results. Approaches taking

simultaneously information from all omics levels into account are needed

to reconstruct the processes involved in aging on a systems level (Valdes

et al., 2013).

Even though high-throughput technologies are advancing and more

and more data are becoming available, integration of omics remains a

challenging problem. Besides the restricted availability of multi-omics

data sets for the same samples, technical limitations hamper the

integration process. While genomics and transcriptomics are able to

measure the entire set of variants, other omics (e.g. proteomics and

metabolomics) measure only a small fraction of all entities. Many high-

throughput technologies suffer from considerable technical variation

and strong batch effects. Stringent quality control and thorough data

normalization are crucial when analysing this type of data. Furthermore,

the complexity of the organism has to be taken into account. While the

genome is more or less stable, all other levels of omics change between

cell types and over time. Many samples, such as whole blood, contain a

mixture of different cell types with potentially different epigenomes,

transcriptomes (Houseman et al., 2012; Jaffe & Irizarry, 2014). Finally,

different organs and cells influence each other. The blood metabolome,

for instance, is heavily influenced by processes occurring in the liver or in

other organs, and multitissue samples are needed to fully understand

these. This in turn is not always feasible in an epidemiological setting as

collection of tissues often involves invasive procedures. Nevertheless,

data integration is an important and active field of research. A first step

of data integration is the integration and joint interpretation of separate

results. The Digital Ageing Atlas (Craig et al., 2014) summarizes more

than 4000 age-related changes across different technologies to facilitate

systems-level analyses of aging.

Introduction to systems biology

The aim of systems biology is to understand the system and its functions

as a whole rather than as separate components (Cassman, 2005), with

the final objective to mathematically model biological systems and

simulate their outcomes. As a first step, the complex interactions and

dependencies between these components must be formally described to

enable systematic analysis and simulation of the biological system of

interest. A technique widely used in systems biology is to translate

biological interactions into mathematically well-defined networks

(graphs). For instance, metabolites interact in chemical reactions, thus

forming a network in which nodes describe the metabolic compounds
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Fig. 1 Interdependencies of omics data: The figure illustrates dependencies which

can be observed within almost any omics data set. Solid lines indicate biological

processes which cause dependencies, while dashed lines represent observed

associations.
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and edges indicate chemical reactions. Similarly, transcription factors

bind DNA to control gene expression, forming the gene regulatory

network (GRN) and interacting proteins build a protein–protein interac-

tion network (PPI) (cf. Fig. 2B). These networks interact, making data

integration an important aspect of systems biology. One example for a

phenotypic network was created by Goh et al. (2007) using diseases as

nodes and connecting diseases with shared genetic risk factor by edges

(cf. Fig. 2A). By doing so, they showed that many disorders share a set of

underlying genetic risk variants and that similar diseases are caused by

similar genes.

Graphs can be explored using a variety of established algorithms. One

common task is the identification of modules, that is subgraphs in which

nodes share certain properties. In biological networks, modules corre-

spond to functional units, such as the glycolysis pathway in the

metabolic network. The modules are usually interconnected and

together form a hierarchical structure in which the distribution of node

degrees – the number of edges per node – follows the power law

(Barabási & Oltvai, 2004). Hence, most nodes have only few connections

and few nodes have many connections. These highly connected nodes

are called hubs (Albert et al., 2000; Jeong et al., 2001). Several other

measures exist to describe the topology of networks and topological

features of nodes. For example, the clustering coefficient measures how

densely the neighbourhood of a node is connected and thus highlights

nodes which are central within a cluster (e.g. LEPR in Fig. 2A). Another

measure is the betweenness centrality, which measures the proportion

of pairwise shortest paths containing a node. It thus quantifies the

importance of a node for connecting other nodes from different

modules (e.g. Parkinson’s disease in Fig. 2A and APOD in Fig. 2B). The

highly connected, central nodes are thought to be key players in the

system, connecting several modules and controlling network fluxes. They

were shown to be of particular importance for many diseases and

survival of the organism (Barabási & Oltvai, 2004; Joy et al., 2005; Yu

et al., 2007).

Many software packages for graph analysis and visualization are

publicly available. For instance, the R package igraph (Csardi & Nepusz,

2006) or the standalone program Cytoscape (Shannon et al., 2003) can

be used to analyse and visualize graphs. Cytoscape also provides easy

integration of biological databases such as Gene Ontology (Ashburner

et al., 2000), Reactome (Croft et al., 2014), the Kyoto Encyclopaedia of

Genes and Genomes (KEGG) (Kanehisa & Goto, 2000) or BioGRID

(Chatr-Aryamontri et al., 2013) by third-party apps. Several methods

were developed to identify modules of nodes which are jointly affected

by the condition of interest. Two publicly available examples are the

Cytoscape plugin jActiveModules (Ideker et al., 2002) and the R package

BioNet (Beisser et al., 2010).

Here, we present a selection of current methods to construct and

analyse biological networks as an approach to systems biology and their

impact on aging research.

Enrichment and network topology analysis in predefined

networks

A popular approach to put the results of an association study in a

systems biology context is projecting the variables of interest – such as

age-related genes, proteins or metabolites – onto known biological

(reference) networks. The neighbourhood of these target variables and

their topological properties can then be assessed using the experimen-

tally predefined PPI, GRN or metabolic networks. Instead of interpreting

individual entities separately, a priori knowledge about their interactions

and common functions can be used to identify modules that are jointly

affected by the condition of interest.

Several databases offer a collection of experimentally identified

interactions that can be used as predefined reference networks for

enrichment and topology. In case of PPI, the Human Protein Reference

Database provides more than 40 000 PPIs (Keshava Prasad et al., 2009),

the Database of Interacting Proteins more than 7000 interactions

(Xenarios et al., 2002) and the MIPS mammalian protein–protein

database roughly 1000 hand-curated interactions of human proteins

(Pagel et al., 2005). GRN are provided by the ChIPBase (Yang et al.,

2013), which contains six million transcription factor binding sites from

>300 experiments. Metabolic reactions are amongst others provided by

KEGG.

Enrichment analysis is a convenient way to incorporate existing

knowledge from biological reference networks without analysing graph

topology directly. Therefore, predefined (functional) modules within the

reference networks are used to test overrepresentation of associated

genes, proteins or metabolites in these groups. When investigating

genes, researchers usually use Gene Ontology to group genes based on

biological processes, molecular functions or subcellular localization. For

metabolites, the KEGG and Reactome databases provide curated

information about biochemical pathways. The R packages GSEABase,

GAGE (Luo et al., 2009) and the webservice MSEA (Xia & Wishart, 2010)
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Fig. 2 Topological Properties of Biological Networks (A) is an excerpt from the

human disease network (Goh et al., 2007). Nodes represent diseases; these are

connected if they are associated with the same gene. Parkinson’s disease connects

three isolated disease clusters (colours), thus having a low clustering coefficient

(0%) and high betweenness (72%). (B) is the close neighbourhood of the ApoD

protein in a PPI network from STRING DB (Franceschini et al., 2013) using only

experimentally confirmed interactions. ApoD connects two clusters and is, despite

the low degree (2) and clustering coefficient (0%), a central node (betweenness

centrality: 53%). In contrast, LEPR is central within the blue cluster (degree: 7,

clustering: 14%).
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are just some of many available implementations and variations in the

original gene set enrichment analysis (Subramanian et al., 2005)

algorithm.

In aging research, enrichment analysis unveiled an overexpression of

genes involved in immune response, lysosome and glycoproteins and an

underexpression of mitochondrial- and oxidative phosphorylation-related

genes in old people compared with young (de Magalh~aes et al., 2009).

In human brain tissue, oxidative stress/DNA repair and inflammation-

related genes were shown to be enriched in the set of differentially

expressed genes between young and old individuals (Lu et al., 2004).

Enrichment analysis facilitates the identification of pathways that are

important for the aging process. It thus helps to make sense out of the

individual associations and find biological interpretations for the

observed molecular changes.

To become independent of predefined module annotation and to

enable more detailed network analysis, the variables of interest can also

be mapped directly on the known PPI, GRN or metabolism networks.

Modules can then be identified dynamically based on the measured

data. Moreover, additional topological properties of the variables of

interest can be assessed.

Studying human PPI networks revealed that genes that are associated

with aging by homology have higher node degrees and higher

betweenness centrality compared with other genes (Bell et al., 2009).

Furthermore, aging-related genes are not spread throughout the

interactome, but cluster in few tightly connected modules. These

modules were enriched in DNA damage repair and stress response genes

(Kriete et al., 2011). The high connectivity of aging genes was used by

Tacutu et al. (2012) to select neighbours of longevity-related genes in a

PPI network as longevity-gene candidates. Subsequent experiments in

C. elegans revealed 30 new longevity-associated genes, proving the

potential of network biology for candidate gene selection. Using a

modified PPI network, Wang et al. (2009) showed a tight connection of

the genetic causes of aging and disease. These results indicate that aging

does not occur due to random errors but is an organized process.

Another PPI-based approach to data integration was developed by West

et al. (2013). They incorporated epigenomic data by assigning DNA

methylation sites to each protein in the graph and then identifying

modules of differentially methylated genes/proteins in the resulting

network. By doing so, they avoided predefined gene sets as used by

enrichment analysis. The analysis revealed three differentially methylated

modules, which were replicated across several tissues. Two of them

contained mainly transcription regulating genes, while the third one

contained genes related to stem cell differentiation.

A drawback of experimentally derived PPI or GRN is that such

methods detect up to 50% false positives while many true interactions

are missed (Huang & Bader, 2009; Marbach et al., 2012). Even more

importantly, those reference networks completely ignore the tempo-

spatial properties of the interactions. This restricts results to already

observed, possibly inactive interactions. One method to overcome the

static nature of PPI networks are Negative–Positive (NP) networks (Xia

et al., 2006). These integrate the PPI network with transcriptomics data

by restricting it to edges between (anti-)correlated proteins/genes.

Therefore, only those interactions (=edges) that are active under the

observed condition are further analysed. Xue et al. (2007) applied this

method to the previously mentioned data set of brain gene expression

and unveiled two anticorrelated modules containing cell proliferation-

and cell differentiation-related proteins. Two other modules consisting of

protein processing and immunity-related genes, respectively, were found

to be slightly correlated with the cell proliferation module. A recent study

went one step further and restricted a PPI network to highly expressed

genes in different stages of aging for each sample separately, thus

generating a set of dynamic binding networks instead of a single

network. Even though the global properties of all those graphs were very

similar, the centrality of several genes correlated with age (Faisal &

Milenkovi�c, 2014).

Incorporating biological networks to analyse aging-related changes

showed the tight connection of aging and disease on a molecular level.

Furthermore, it has been shown that aging affects central genes, which

are important for the network integrity (Bell et al., 2009). While

network-based enrichment and analysis using PPI networks is common

for genetic and transcriptomics data, it has not been applied to aging

studies using metabolomics data. This could be a promising approach to

systematically identify metabolic pathways jointly affected by the aging

process.

Analysis of data-derived networks

Despite their successful applications, all approaches presented so far

rely on predefined, static networks. To overcome the limitations of

such networks, inferring networks directly from the measured data is

the next step.

Weighted gene co-expression network analysis

The weighted gene co-expression network analysis (WGCNA) (Zhang &

Horvath, 2005) infers gene–gene interaction networks directly from

transcriptomics data. Miller et al. (2008) applied this method to the

previously mentioned gene expression data set of 30 human frontal

cortex samples at different ages and then compared the results with a

network derived from an AD transcriptomics study. It revealed significant

overlap between healthy aging and AD, suggesting that there might be a

shared molecular basis for both processes. Three AD network modules

overlapped with aging network modules, containing mostly synapses-,

transport- and transcriptional regulation-related genes.

Gaussian graphical models

Despite the successful application of WGCNA on transcriptomics data,

Krumsiek et al. (2011) showed that ordinary correlations are not suitable

to analyse metabolomics data from large cohort studies. They analysed

metabolite concentrations of >1000 samples and found that more than

half of all pairs of 151 metabolites correlated significantly, even when

using a restrictive Bonferroni correction at an alpha level of 0.01. This is

largely due to indirect associations, which cannot be distinguished from

direct associations by the Pearson correlation coefficient. Graphical

models (GMs), also known as conditional independence graphs, were

proposed to overcome this problem and infer biological meaningful

networks from metabolomics (Steuer, 2006; Krumsiek et al., 2011) as

well as other omics data (de la Fuente et al., 2004; Yuan et al., 2011;

Mangin et al., 2012). GMs are probabilistic models where an edge

between two variables illustrates their conditional dependence given all

other variables in the model. Implicitly, the absence of an edge

represents the conditional independence of the according variables.

Several algorithms to infer GMs from purely binary data are publicly

available as R packages (Wainwright et al., 2006; Höfling & Tibshirani,

2009; Guo et al., 2010; Ravikumar et al., 2010). Their counterparts for

purely continuous data are Gaussian graphical models (GGMs), which

use partial correlations to infer graphs. A partial correlation of two

variables X and Y conditioned on a set of variables Z quantifies the

portion of the correlation between X and Y which cannot be attributed

to Z. Several algorithms exist to infer GGMs (d’Aspremont et al., 2006;

Meinshausen & Bühlmann, 2006; Yuan & Lin, 2007; Friedman et al.,
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2008; Mazumder & Hastie, 2012). Several of them, such as the well-

established graphical lasso (Friedman et al., 2008; Mazumder & Hastie,

2012), use regularization to further reduce the number of edges in the

graph. This allows researchers to concentrate on fewer high-confidence

interactions.

Gaussian graphical models can reconstruct biological pathways from

metabolomics and transcriptomics data, but have not yet been applied in

aging research. However, their application could help reduce the

‘overabundance’ of results to fewer, meaningful associations. The major

drawback of GMs is that they can only be used for pure Gaussian or pure

binary data. Shin et al. (2014) overcame this problem by first construct-

ing a GGM from metabolite concentrations and then adding gene

variants as nodes and connecting them with associated metabolites. The

resulting network illustrates the genetic control of the metabolism in an

intuitive way. However, it is no longer a GM, and edges do not indicate

conditional independence any more.

Mixed graphical models

Recent developments allow the integration of different types of data

while maintaining the favourable properties of GGMs, namely mixed

graphical models (MGMs) (Tur & Castelo, 2012; Chen et al., 2013;

Fellinghauer et al., 2013; Lee & Hastie, 2015). Fellinghauer et al. (2013)

proposed a very flexible algorithm based on stability selection (Mein-

shausen & Bühlmann, 2010). It makes use of established methods such

as random forests or regression models to rank interactions between

variables of different types. Thus, it can handle many different data types

such as disease states, metabolite levels and gene variants. Due to the

usage of stability selection, it has an intrinsic error control. MGMs

provide a powerful tool for multivariate analyses of high-dimensional

data, but have not been applied in biological research, yet. Their

application could shed light on the complex relationship between aging

and disease.

Gaussian graphical models as well as MGMs are undirected models.

Therefore, neither of them can be used to infer causal direction. In

epidemiological research, Mendelian randomization is a common

approach to infer causality from observational data. It takes advantage

of the invariability of gene variants to separate the study population in

groups, thus mimicking a randomized controlled trial (for further details,

see Brion et al., 2014). Mendelian randomization can be used to further

investigate edges of interest that were previously identified by GMs.

However, it relies on stable associations with genetic variants and

assumes that this genetic variant is not related to any other potential

confounding factor. Due to these restrictions, it is not suitable to infer

large-scale networks.

Bayesian networks

Another approach that allows inferring causality from observational data

under certain assumptions is based on Bayesian networks (BNs). Similar to

GGMs, BNs are probabilistic models in which edges represent the

conditional independence between variables. However, BNs are DAGs,

thus distinguishing between an influence of X on Y and the influence of Y

on X. In return, the acyclicity of the causal graph is an assumption which

might not hold true for biological networks. The application of BNs on

high-throughput transcriptomics data by Friedman et al. (2000) demon-

strated the potential of this method to extract biological meaningful

associations without prior knowledge. Several different methods are

available to estimate the structure of BNs from binary, continuous and

even mixed data such as the R packages bnlearn (Scutari, 2010) (Table 1).

The methods presented here are just a selection of the available

methods for graph inference. Several other methods such as Boolean

networks (Shmulevich et al., 2002) or differential equation systems

(Chen et al., 1999; Lorenz et al., 2009) are commonly used for

modelling biological networks.

The development of new techniques facilitates graph inference from

high-dimensional data, and the presented studies illustrate their useful-

ness in biological research. However, most graph inference methods rely

on large sample sizes and usually more samples than variables are

needed. When analysing omics data, particularly genomics or transcrip-

tomics, this is often not feasible and it is referred to as the n�p problem.

Another common problem is overfitting of models due to the high

number of parameters. Some techniques such as regularization have

been proposed to relax these constraints and reduce overfitting.

Nevertheless, stringent cross-validation and replication in independent

cohorts should be employed to avoid spurious results. Finally, many high-

throughput methods suffer from considerable technical variation and

strong batch effects. Researchers should carefully normalize all mea-

Table 1 Overview over system biology methods and their application in aging

Method Prerequisites Applies to Availability Application

Enrichment Analysis Module definition (e.g. gene sets from Gene

Ontology)

Genomics

Transcriptomics

Proteomics

Metabolomics

Several R packages (e.g.

GSEABase, GAGE, MSEA),

online tools DAVID or Enrichr

Lu et al. (2004), de Magalh~aes

et al. (2009)

Network Mapping Predefined network, such as protein–protein

interaction (PPI) networks, gene regulatory

network (GRN) or metabolic network

Any omics data R package igraph, Cytoscape

with various plugins

Wang et al. (2009), Bell et al.

(2009), West et al. (2013), Faisal

& Milenkovi�c (2014)

NP Networks PPI Network Transcriptomics – Xue et al. (2007)

Weighted Gene Co-

Expression Network

Analysis (WGCNA)

– Transcriptomics (and

possibly other

continuous data)

R package WGCNA Miller et al. (2008)

Gaussian graphical

models (GGMs)

– Any multivariate

Gaussian

distributed data

Several R packages (e.g. ggm or

glasso)

Applied to metabolomics data by

Krumsiek et al. (2011)

Mixed graphical

models (MGMs)

– Binary, continuous

and mixed data

–

Bayesian Networks – Binary, continuous

and mixed data

Several R packages (e.g.

bnlearn, gRain, abn, deal)

Applied to transcriptomics data

by Friedman et al. (2000)
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surements according to current standards before integrating different

data sets.

Model biological systems

The ultimate goal of systems biology is not only the qualitative

exploration, but the quantitative modelling of the organism, facilitating

in silico experiments, hypotheses generation and predictions.

The first – and so far only - attempt to model a whole organism was

conducted by Karr et al. (2012). They created a model of a mycoplasma

genitalium cell simulating cell cycle and predicting metabolite concentra-

tions. However, the model is far from perfect (Freddolino & Tavazoie,

2012) and too primitive to be adapted to more complex organisms.

Currently, modelling eukaryotic cells or even whole organisms is not

feasible. Also, processes like aging are too complex to be entirely

modelled. However, some effort has been undertaken to create network

representations of smaller subsystems as well as certain aspects of the

aging process. For instance, Gillespie et al. (2004) simulated aging of yeast

based on the accumulation of extrachromosomal ribosomal DNA circles.

Also, Oda & Kitano (2006) summarized results from several hundred

studies to create amodel of the Toll-like receptor (TLR) signalling network.

The same group also created a similar model for epidermal growth factor

receptor signalling (Oda et al., 2005). Both studies revealed a bowtie-like

global structure with one important key regulator. However, both

networks are only qualitative descriptions without kinetic parameters.

Thus, they cannot be used for computer simulations.

Other groups concentrated on even smaller subsystems to facilitate

quantitative modelling. One study investigated the influence of increased

cortisol levels on hippocampus activity (McAuley et al., 2009). A

quantitative model was created to simulate the decline in hippocampal

output with age and the acceleration of this process due to acute and

chronic increases in cortisol levels. Simulations using ordinary differential

equations suggested that chronic increase in cortisol levels leads to faster

decline in hippocampal output than acute bursts, but could be treated

more efficiently. Sozou & Kirkwood (2001) modelled cell senescence

based on telomere shortening and oxidative stress. The same group also

described the influence of chaperones and accumulation of misfolded

proteins on aging (Proctor et al., 2005). Other groups investigated

various further aspects of the aging process, such as mitochondrial

fusion and fission events and accumulation of defective mitochondria

(Kowald et al., 2005; Figge et al., 2012), incomplete replication of

epigenetic information (Przybilla et al., 2014) and age-related alterations

in the lipid metabolism (McAuley & Mooney, 2015). Adjusting the

kinetics of such models to correspond to experimental observations

allows to come up with plausible hypotheses about the causes of aging.

In contrast to earlier presented networks, which inferred large-scale

networks from data (top-down approach), these approaches model

small subsystems in high details based on expert a priori knowledge

(bottom-up approach). Such bottom-up models allow mechanistic

insights into the processes of aging that cannot be generated by

individual association studies. Moreover, they facilitate the development

of new hypothesis and testing the plausibility of current hypothesis.

Conclusions and challenges

The major recent advances of omics technologies are now enabling the

simultaneous measurement of millions of biochemical entities. Associ-

ation studies have revealed many associations of omics data with aging

and age-related diseases. After decades of reductionist studies, network

analysis and integrated omics data analysis have begun to target the

aging process at a systems level. As a result, some studies take into

account also the interaction effects between variables. However, given

the complexity of aging, new methods are needed to further unveil the

multiple interactions.

Systems biology already provides such methods, but their application

on real biological problems lags behind. For example, GGMs have been

adapted to mixed data types and could readily be applied in aging

research. Also, several studies developed models of processes that

contribute to aging. These provide detailed knowledge about important

components of the aging process and their interactions. Building on

these results, future studies should aim to integrate these different parts

to gain a more systems-level understanding of aging.

However, in many cases, the available data limit the possibilities.

Problems such as incomplete data, asynchronous experiments, strong

batch effects and insufficient sample sizes have to be dealt with. Another

issue is the limited availability of multi-omics data sets, which compli-

cates replication of results in this field. A variety of different methods,

protocols and platforms further hampers reproducible results. As

replication of results is crucial to prevent spurious results and validation,

methods like splitting the available data into discovery and replication

sets should be considered more often.

Despite these obstacles, there are several large population studies in

existence with multi-omics data available which could be explored using

systems biology approaches. For instance, the GTEx project aims to

collect gene expression and methylation data from multitissue samples

(The Gtex Consortium 2013). Simultaneously, the development of new

methods should help to analyse real, partially incomplete data sets and

facilitate analysis of multitissue and multi-organ data, thus enabling the

investigation of real systems-level effects. Addressing these problems

and developing integrated models of aging should improve our

understanding of the aging process, thus allowing the development of

strategies to improve health in old age.
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Knezević A, Polasek O, Gornik O, Rudan I, Campbell H, Hayward C, Wright A,

Kolcic I, O’Donoghue N, Bones J, Rudd PM, Lauc G (2009) Variability, heritability

and environmental determinants of human plasma N-glycome. J. Proteome Res.

8, 694–701.
Kong HH (2011) Skin microbiome: genomics-based insights into the diversity and

role of skin microbes. Trends Mol. Med. 17, 320–328.

Koropatkin NM, Cameron EA, Martens EC (2012) How glycan metabolism shapes

the human gut microbiota. Nat. Rev. Microbiol. 10, 323–335.
Kowald A, Jendrach M, Pohl S, Bereiter-Hahn J, Hammerstein P (2005) On the

relevance of mitochondrial fusions for the accumulation of mitochondrial

deletion mutants: a modelling study. Aging Cell 4, 273–283.
Kriete A, Lechner M, Clearfield D, Bohmann D (2011) Computational systems

biology of aging. Wiley Interdiscip. Rev. Syst. Biol. Med. 3, 414–428.
Kristic J, Vuckovic F, Menni C, Klaric L, Keser T, Beceheli I, Pucic-Bakovic M,

Novokmet M, Mangino M, Thaqi K, Rudan P, Novokmet N, Sarac J, Missoni S,

Kolcic I, Polasek O, Rudan I, Campbell H, Hayward C, Aulchenko Y, Valdes A,

Wilson JF, Gornik O, Primorac D, Zoldos V, Spector T, Lauc G (2013) Glycans are

a novel biomarker of chronological and biological ages. J. Gerontol. A Biol. Sci.

Med. Sci., 69, 1–11.
Krumsiek J, Suhre K, Illig T, Adamski J, Theis FJ (2011) Gaussian graphical modeling

reconstructs pathway reactions from high-throughput metabolomics data. BMC

Syst. Biol. 5, 21.
Lawton KA, Berger A, Mitchell M, Milgram KE, Evans AM, Guo L, Hanson RW,

Kalhan SC, Ryals JA, Milburn MV (2008) Analysis of the adult human plasma

metabolome. Pharmacogenomics 9, 383–397.
Lee JD, Hastie TJ (2015) Learning the structure of mixed graphical models. J.

Comput. Graph. Stat. 24, 230–253.
Levine ME (2013) Modeling the rate of senescence: can estimated biological age

predict mortality more accurately than chronological age? J. Gerontol. A Biol.

Sci. Med. Sci. 68, 667–674.
Liu L, Li Y, Li S, Hu N, He Y, Pong R, Lin D, Lu L, Law M (2012) Comparison of next-

generation sequencing systems. J. Biomed. Biotechnol. 2012, 1–11.
Lodish HF (2013) Molecular Cell Biology, 7th edn. New York: W.H. Freeman and

Co.

L�opez-Ot�ın C, Blasco MA, Partridge L, Serrano M, Kroemer G (2013) The hallmarks

of aging. Cell 153, 1194–1217.
Lorenz DR, Cantor CR, Collins JJ (2009) A network biology approach to aging in

yeast. Proc. Natl Acad. Sci. U. S. A. 106, 1145–1150.
Lu T, Pan Y, Kao S, Li C, Kohane I, Chan J, Yankner BA (2004) Gene regulation and

DNA damage in the ageing human brain. Nature 429, 883–891.
Luo W, Friedman MS, Shedden K, Hankenson KD, Woolf PJ (2009) GAGE:

generally applicable gene set enrichment for pathway analysis. BMC Bioinfor-

matics 10, 161.
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Abstract: Leukocyte telomere length (LTL) is considered one of the most predictive markers of biological aging. The aim of
this study was to identify novel pathways regulating LTL using a metabolomics approach. To this end, we tested associations
between 280 blood metabolites and LTL  in 3511 females from TwinsUK and replicated our results  in the KORA cohort. We
furthermore tested significant metabolites for associations with several aging‐related phenotypes, gene expression markers
and  epigenetic markers  to  investigate  potential  underlying  pathways.  Five metabolites  were  associated  with  LTL:  Two
lysolipids, 1‐stearoylglycerophosphoinositol (P=1.6×10‐5) and 1‐palmitoylglycerophosphoinositol (P=1.6×10‐5), were found to
be  negatively  associated  with  LTL  and  positively  associated  with  phospholipase  A2  expression  levels  suggesting  an
involvement of fatty acid metabolism and particularly membrane  composition  in  biological  aging.  Moreover,  two  gamma‐  
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INTRODUCTION 
 
Telomeres are repetitive DNA sequences located at the 
end of each chromatid. Several proteins, such as the 
telomere repeat-binding factor (TRF) 1 and 2, bind 
specifically to this area forming large nucleoprotein 
complexes, the t-loops [1]. These structures protect the 
DNA from degradation and end-to-end fusion. 
Telomeres shorten with each cell cycle, due to the 
inability of the DNA polymerase to replicate the end of 
the lagging strand. Thus, the shortening of telomeres 
has been proposed as a “mitotic clock” which limits the 
replicative life span of cells and causes cell senescence 
[2]. In fact, leucocyte telomere length (LTL) has been 
associated not only with chronological age [3] but also 
many aging-related diseases, such as Alzheimer’s 
Disease (AD) [4,5], cardiovascular disease [6,7] and 
cancer [8,9]. Furthermore, LTL was found to predict 
mortality [10,11] and longevity [12]. Thus, it was 
suggested as potential biomarker of biological aging [13].  
 
Genome-wide association studies have until now 
identified ten genes associated with LTL [14,15,16,17]. 
Most of these genes physically interact with telomeres; 
however, how the shortening of telomeres affects an 
individual’s health is still not fully understood.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
Recent developments in the field of metabolomics allow 
for the high-throughput measurement of an extensive 
set of low-molecular-weight molecules (metabolites) 
[18]. Changes in metabolite concentrations reflect 
physiological functions and can indicate early stages of 
diseases [19]. Recently, a study on LTL revealed strong 
associations with blood biomarkers in a cohort of 
American Indians [20]. However, the study was small 
(n=423) and lacked independent replication. 
 
In this study, we assess to which extent metabolic 
profiles are correlated with LTL in a large population 
study (n=3511, females only) from the UK using a non-
targeted metabolomics platform. We replicate our results 
in an independent cohort from Germany (n=904). 
Furthermore, we examine the relationship of the LTL-
associated metabolites with aging-related phenotypes as 
well as gene expression and methylation markers in order 
to gain insights in the mechanisms of biological aging. 
 
RESULTS 
 
The demographic characteristics of the study 
populations are presented in Table 1. We analyzed the 
associations between 280 fasting blood metabolites and 
LTL in 3511 women from the TwinsUK cohort (see 
supplemental Table 1). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1. Population Characteristics 

TwinsUK KORA 
N 3511 904 
Age (yrs) 53.6 ± 13.6 60.5 ± 8.8 
MZ:DZ:Singletons* 1654:1360:497 0:0:904 
TL 3.72 ± 0.67 1.85 ± 0.31 
BMI (kg/m2) 26.21 ± 5.14 27.87 ± 5.25 
FEV1 (l) 2.60 ± 0.61 2.79 ± 0.50 
HDL (mmol/L) 1.71 ± 0.48 
DBP (mm Hg) 78.01 ± 10.68 
SBP (mm Hg) 126.71 ± 18.20 
ALAT (IU/L) 27.63 ± 17.07 
GGT (U/L) 28.36 ± 25.44 
eGFR (mL/min/1.73m2) 83.78 ± 17.07 
smoking (non:ex:current) 1905:1134:447 
*MZ=monozygotic, DZ=dizygotic 

glutamyl amino acids, gamma‐glutamyltyrosine (P=2.5×10‐6) and gamma‐glutamylphenylalanine (P=1.7×10‐5), were negatively 
correlated with LTL. Both are products of the glutathione cycle and markers for increased oxidative stress. Metabolites were
also correlated with functional measures of aging, i.e. higher blood pressure and HDL cholesterol levels and poorer lung, liver
and kidney function. Our results suggest an  involvement of altered fatty acid metabolism and  increased oxidative stress  in
human biological aging, reflected by LTL and age‐related phenotypes of vital organ systems. 
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Figure 1. Telomere  length, metabolite and phenotype  interrelationships. Nodes represent variables where rectangles represent
metabolites, circles represent phenotypes, pentagons represent expression levels and hexagons represent DNA methylation levels.
Links between nodes represent significant correlations (red negative, blue positive). Thicker edges indicate stronger correlations. 

Table 2. Metabolites significantly associated with LTL. 

  TwinsUK KORA Meta 

Metabolite PW beta [95%CI] p beta [95%CI] beta [95%CI] p 
gamma-
glutamyltyrosine Peptide -0.09 [-0.12:-0.05] 3.41×10-6 -0.05 [-0.12:0.02] -0.08 [-0.11:-0.05] 2.51×10-6

1-stearoylglycero-
phosphoinositol Lipid -0.09 [-0.13:-0.05] 1.36×10-6 -0.00 [-0.07:0.07] -0.07 [-0.10:-0.04] 1.60×10-5

1-palmitoylglycero-
phosphoinositol Lipid -0.08 [-0.13:-0.04] 7.36×10-5 -0.07 [-0.14:0.01] -0.08 [-0.12:-0.04] 1.64×10-5

gamma-glutamyl-
phenylalanine Peptide -0.08 [-0.12:-0.04] 2.72×10-5 -0.04 [-0.11:0.02] -0.07 [-0.10:-0.04] 1.68×10-5

4-vinylphenol 
sulfate Xenobiotic -0.08 [-0.12:-0.04] 7.41×10-5 -0.03 [-0.10:0.05] -0.07 [-0.10:-0.03] 1.41×10-4
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We found two lipids (1-stearoylglycerophosphoinositol: 
Beta [95%CI] =-0.07 [-0.10:-0.04] change in metabolite 
z-score per change in LTL z-score, P=1.6×10-5 and 1-
palmitoylglycerophosphoinositol: Beta [95%CI] =-0.08 
[-0.12:-0.04], P=1.6×10-5), two gamma-glutamyl-amino 
acids (gamma-glutamyltyrosine: Beta [95%CI] =-0.08 [-
0.11:-0.05], P=2.5×10-6 and gamma-glutamylphenyl-
alanine: Beta [95%CI] =-0.07 [-0.10:-0.04], P=1.7×10-

5), and one xenobiotic (4-vinylphenol sulfate: Beta 
[95%CI] =-0.07 [-0.10:-0.03], P=1.4×10-4) to be 
negatively associated with LTL after adjustment for 
potential confounding factors and after correcting the 
results for multiple testing (Table 2, Supplemental 
Figure 1). All five metabolites showed the same effects 
with similar effect sizes in 904 female individuals from 
the KORA F4 study, even though they did not reach 
significance level. All metabolites remained Bonferroni-
significant (P<1.8×10-4) after meta-analysis. 
 
Three multivariate Lasso models were fitted to predict 
LTL: The first using clinical variables only (age, BMI), 
the second using the five identified metabolites only, and 
the third using both clinical variables and metabolites. 
The model based on metabolites alone could not  achieve  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

the performance of the model based on clinical variables 
alone, however, combining clinical variables with 
metabolites significantly improved the prediction in the 
combined model (Figure 2). In the combined model, 1-
stearoylglycerophosphoinisitol was the strongest 
predictor followed by the 4-vinylphenol sulfate. All five 
metabolites were selected in the optimal Lasso model 
(beta < 0), suggesting non-redundant associations with 
LTL. The coefficient of determination, a measure of 
goodness of fit, of the final model was estimated at 
14.5% in a leave-one-out validation. 
 
Moreover, we found all five metabolites to be strongly 
associated with several aging-related phenotypes 
independently of chronological age (Table 3): Both 
lysolipids correlated with increased systolic blood 
pressure (1-stearoylglycerophosphoinositol: Beta=1.09 
[0.56:1.61], P=5.3×10-5 and 1-palmitoylglycero-
phosphoinositol: Beta=1.10 [0.52:1.67], P=1.7×10-4). 
Additionally, 1-palmitoyl-glycerophosphoinositol was 
found to be associated with the serum concentration of 
gamma-glutamyl transpeptidase (GGT), a measure of 
liver function (Beta=0.08 [0.03:0.12], P=1.0×10-3). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. LTL prediction performance. The figure shows the prediction performance (mean square error on Y
axis) of three different Lasso models, based on metabolites only (red), clinical variables only (blue) and metabolites
with clinical variables combined (green), dependent on the amount of regularization (lambda on x axis). 
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The two gamma-glutamyl amino acids were strongly 
associated with the estimated glomerular filtration rate 
(eGFR), a marker for renal function (gamma-
glutamyltyrosine: Beta=-1.65 [-2.19:-1.11], P=1.6×10-9 
and gamma-glutamylphenylalanine: Beta=-2.24 [-2.74:-
1.73], P=3.1×10-18), and two markers of liver function, 
namely GGT and alanine amino transaminase (ALAT) 
(GGT: Beta=0.14 [0.10:0.19], P=5.4×10-11 and 
Beta=0.15 [0.10:0.19], P=3.2×10-12 respectively; 
ALAT: Beta=0.11 [0.06:0.16], P=1.7×10-5 and 
Beta=0.10 [0.05:0.14], P=5.8×10-5 respectively). 
Gamma-glutamylphenylalanine was additionally 
associated with lung function, measured as forced 
expiratory volume in one second (FEV1, Beta=-0.03 [-
0.05:-0.02], P=4.5×10-6), and HDL cholesterol levels 
(Beta=-0.03 [-0.05:-0.02], P=1.1×10-5). 
 
Moreover, the xenobiotic 4-vinylphenol sulfate was 
strongly associated with tobacco smoking (Beta=0.24 
[0.22:0.26], P=2.3×10-102) and also weakly with FEV1 
(Beta=-0.02 [-0.04:-0.01], P=1.4×10-3).  
 
Thus, all five metabolites were consistently associated 
with accelerated biological aging, i.e. shorter telomeres, 
higher blood pressure and higher HDL  cholesterol  levels 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
and poorer lung, liver and kidney function (Table 3 and 
Figure 1).  
 
To further investigate mechanisms of biological aging, 
we analyzed the association of the five significant 
metabolites with gene expression levels of related 
enzymes, namely GGT and phospholipase A2 (PLA2), 
in a subset of 753 individuals with RNA chip data from 
available LCL probes available. We found gamma-
glutamyltyrosine was positively associated with GGT1 
and GGTL3 gene expressions (probes ILMN_2274240: 
Beta=0.09 [0.02:0.15], P=0.01 and ILMN_1786186: 
Beta=0.07 [0.00:0.14], P=0.04). Also, 1-
stearoylglycerophosphoinositol was positively 
associated with expression of the PLA2 gene PLA2G15 
(probe ILMN_1756910: Beta=0.09 [0.01:0.16], P=0.02 
and probe ILMN_1798955: Beta=0.08 [0.00:0.15], 
P=0.05) as well as 1-palmitoylglycerophosphoinositol 
(probe ILMN_1756910: Beta=0.08 [0.00:0.16], 
P=0.05). 
 
The metabolite 4-vinylphenol sulfate is known to be 
associated with several DNA methylation probes, 
possibly driven by tobacco smoking [21,22]. We found 
one of these probes, cg19572487, being significantly 

Table 3. Phenotypes associated with LTL and associated metabolites. 

  phenotype beta [95%CI] p 

telomere length 

HDL cholesterol 0.04 [0.02:0.06] 2.50×10-6 
eGFR 1.42 [0.82:2.01] 2.79×10-6 
smoking -0.06 [-0.08:-0.03] 3.17×10-5 
FEV1 0.03 [0.01:0.05] 8.85×10-4 

1-palmitoylglycerophosphoinositol 
SBP 1.10 [0.52:1.67] 1.76×10-4 
GGT 0.08 [0.03:0.12] 1.04×10-3 

1-stearoylglycerophosphoinositol SBP 1.09 [0.56:1.61] 5.34×10-5 

4-vinylphenol sulfate 
smoking 0.24 [0.22:0.26] 2.32×10-102 
FEV1 -0.02 [-0.04:-0.01] 1.40×10-3 

gamma-glutamylphenylalanine 

eGFR -2.24 [-2.74:-1.73] 3.14×10-18 
GGT 0.15 [0.10:0.19] 3.21×10-12 
FEV1 -0.03 [-0.05:-0.02] 4.48×10-6 
HDL cholesterol -0.03 [-0.05:-0.02] 1.15×10-5 
ALAT 0.10 [0.05:0.14] 5.76×10-5 

gamma-glutamyltyrosine 

GGT 0.14 [0.10:0.19] 5.41×10-11 

eGFR -1.65 [-2.19:-1.11] 1.58×10-9 

ALAT 0.11 [0.06:0.16] 1.67×10-5 
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associated with LTL (Beta= 0.10 [0.04:0.17], P=9×10-

3), smoking (Beta=-0.51 [-0.63:-0.39], P=9×10-16) and 
4-vinylphenol sulfate levels (Beta=-0.05 [-0.09:-0.02], 
P=1×10-3) in our data. The probe is located on 
chromosome 17 in the retinoic acid receptor, alpha 
(RARA) gene.  
 
DISCUSSION 
 
In the largest study of this kind, we searched for 
molecular markers and mechanisms involved in LTL 
regulation using a metabolomics approach. We 
identified five novel blood metabolites, namely gamma-
glutamyltyrosine, gamma-glutamylphenylalanine, 1-
stearoylglycerophosphoinositol, 1-palmitoylglycero-
phosphoinositol and 4-vinylphenol sulfate, 
independently associated with LTL with high statistical 
significance. These metabolites belong to three different 
classes: lysolipids, gamma-glutamyl amino acids and 
xenobiotics, which will be discussed in the following. 
 
Lysolipids 
 
Lysolipids are produced from glycerophospholipids by 
the enzyme phospholipase A2 (PLA2), which releases 
one of the fatty acids from the glycerol backbone [23]. 
Glycerophospholipids were previously found to be 
positively correlated with LTL [20] while in our study, 
circulating levels of the lysolipids 1-stearoylglycero-
phosphoinositol and 1-palmitoylglycerophosphoinositol 
were significantly associated with shortening of LTL. 
This suggests an increased activity of PLA2 in 
advanced biological aging. This hypothesis is further 
confirmed by the positive association of the two 
lysolipids with PLA2 gene expression levels in LCLs in 
our study. PLA2 activity, amongst others, affects the 
composition and physiology of cell membranes by 
catalyzing the hydrolysis of membrane lipids [24,25]. 
The integrity of cell membranes and their ability to 
resist oxidative stress have been shown to be key 
aspects of biological aging [26]. Studies comparing 
centenarians with younger controls identified alterations 
of cell membrane composition [27] and particularly 
depletion of the lysolipid  stearoylphosphatidylcholine 
[28] as possible reasons for longevity. 
 
Another regulator of membrane fluidity is the saturation 
of fatty acids. Both stearic acid and palmitic acid are 
saturated fatty acids that are known to decrease 
membrane fluidity, which in turn was associated with 
increased susceptibility to disease [29,30,31]. In 
contrast higher levels of polyunsaturated fatty acid-
containing phospholipids were observed in centenarians 
compared to elderly [32], suggesting their involvement 
in retarded biological aging. These alterations of 

membrane composition with biological aging provide a 
possible explanation for previously reported association 
of LTL with e.g. AD [4]. 
 
Gamma-glutamyl amino acids 
 
We found two gamma-glutamyl amino acids, gamma-
glutamyltyrosine and gamma-glutamylphenylalanine, 
were negatively associated with LTL. These metabolites 
are components of the gamma-glutamyl cycle and are 
produced by the degradation of glutathione (GSH) and 
its conjugates catalyzed by the enzyme GGT. The main 
purpose of this reaction is regeneration of the 
intracellular GSH pool, i.e. to break-down extra-cellular 
GSH conjugates to make its components available for 
reimport into the cell [33,34,35]. GSH is crucial for 
detoxification of reactive oxygen species (ROS) as well 
as other toxic compounds [33,34,35]. Thus, increased 
GGT activity was proposed as a marker for increased 
oxidative stress [33,36]. Gamma-glutamyltyrosine and 
gamma-glutamylphenylalanine were both highly 
correlated with the abundance of the GGT enzyme, as 
well as GGT1 and GGTL3 gene expression in this 
study. The serum concentration of GGT is a common 
clinical marker for liver function [37]. While the liver 
produces most of the GSH [34], in the body GGT is 
most active in kidneys, which absorb GSH for 
detoxification [34,37]. Accordingly, we also found 
kidney function, measured as eGFR, being highly 
correlated with both, LTL and gamma-glutamyl amino 
acids. In conclusion, the gamma-glutamyl amino acids 
indicate an involvement of increased oxidative stress 
and worsened liver and kidney function in biological 
aging. 
 
We also found gamma-glutamylphenylalanine being 
associated with worsened lung function in both cohorts. 
This might also be due to oxidative stress, which was 
previously associated with chronic lung disease [38].  
 
4-Vinylphenol sulfate 
 
4-vinylphenol sulfate is a xenobiotic that was reported 
to be strongly associated with tobacco smoking [39]. 
We observed the same correlation in our data. 
Moreover, we found both 4-vinylphenol sulfate as well 
as LTL to be strongly correlated with cotinine 
abundance, which is a well-established marker for 
tobacco smoking. Accordingly, higher levels of 4-
vinylphenol sulfate were associated with worsened lung 
function. Moreover, analysis of DNA methylation data 
from our cohort confirmed previously published 
associations of 4-vinylphenol sulfate with the 
methylation level of a CpG site in the RARA gene [21] 
and revealed an association of the same site with LTL 
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and smoking. RARA is a transcription factor that was 
shown to regulate differentiation and apoptosis [40]. 
However, despite the strong correlation between LTL 
and smoking, we did not find a significant difference in 
LTL between monozygotic twins, discordant for 
smoking. These associations show how smoking 
accelerates biological aging mediated by changes in 
metabolism as well as DNA methylation. Smoking was 
shown to have a profound effect on the GSH 
metabolism of the lung [38], suggesting increased 
oxidative stress as a possible link between smoking, 
metabolism and LTL. 
 
While we were able to identify five novel markers of 
LTL, our study has some limits. First, we analyzed data 
of females only and some of the identified metabolites 
are known to show gender-specific blood levels [41]. 
However, in a small pilot (n=372) from the TwinsUK 
cohort we observed concordant correlations between 
LTL and gamma-glutamyl amino acids as well as 4-
vinylphenol sulfate for men as for women. In contrast, 
we did not see an association between any of the 
lysolipids and LTL in men, suggesting gender-specific 
changes of fatty acid metabolism with aging. Second, 
we did not reach statistical significance in the 
replication cohort. This can be attributed to smaller 
sample size. The power to detect the observed effects at 
a significance level of 0.05 in 900 individuals is only 
around 50%. Nonetheless, despite the lack of power, the 
much higher age and the different geographical location 
and genetic background of the replication cohort, all of 
the five metabolites remain Bonferroni-significant after 
meta-analysis. 
 
Our results suggest two mechanisms of biological 
aging: On the one hand, changes in lipid metabolism 
and resulting changes of the cell membrane composition 
appear to be related to LTL and biological aging. On the 
other hand, we observed metabolites indicating 
increased oxidative stress due to alterations in the GSH 
metabolism, which has been previously related to LTL 
and aging phenotypes. One possible cause for increased 
oxidative stress is tobacco smoking, which might 
mediate the association of 4-vinylphenol sulfate with 
LTL. Moreover we found LTL and the related 
metabolites being associated with impairment of liver 
and kidney function. This highlights the importance of 
detoxification, particularly of reactive oxygen species, 
in biological aging. 
 
METHODS 
 
Discovery population. Study subjects were twins 
enrolled in the TwinsUK registry, a national register of 
adult twins recruited as volunteers without selecting for 

any particular disease or trait [42]. In this study we 
analyzed data from 3511 female twins who had who 
had complete data for LTL and metabolomics profiling. 
The study was approved by St. Thomas' Hospital 
Research Ethics Committee, and all twins provided 
informed written consent. 
 
Replication cohort. KORA F4 is a population cohort 
based in the region of Augsburg, Germany [43]. The 
replication set consisted of 904 female individuals with 
serum metabolite levels, measures of telomeres and 
measures of lung function [44] available. 
 
LTL measurement. A detailed description of LTL 
measurement in both TwinsUK and KORA was 
previously described in Codd et al. [15]. In brief, mean 
LTL of the samples was measured using a quantitative 
PCR–based technique [14,45] and expressed as a ratio of 
telomere repeat length (T) to a copy number of a single 
copy gene (S). A calibrator sample or a standard curve 
was used for to standardize T/S results across plates. 
LTLs measures were inverse normalized in both cohorts. 
 
Metabolomics measurement. Metabolomics data was 
measured by Metabolon Inc., Durham, USA as 
previously described [46]. Briefly, metabolite 
concentrations were measured in blood samples using 
an untargeted GC/MS and LC/MS platform. 
Measurements were scaled by run-day median and 
inverse normalized in both cohorts. 
 
Aging phenotypes. Lung function was measured as 
forced expiratory volume in one second (FEV1) in line 
with ATS/ERS recommendations [44,47]. Furthermore, 
diastolic and systolic blood pressure (DBP and SBP), 
body mass index (BMI) and serum HDL cholesterol 
levels were measured during clinical visits of the study 
participants. Renal function was measured by 
estimating glomerular filtration rate (eGFR) from serum 
creatinine levels using the CKD-EPI equation [48]. 
Liver function was assessed by measuring serum 
gamma-glutamyl transpeptidase (GGT) and alanine 
amino transaminase (ALAT) concentrations. Both 
measures were inverse normalized prior to analysis. 
 
Gene expression. RNA abundance was measured in 
LCLs of 778 female individuals from the TwinsUK 
cohort using the Illumina Human HT-12 V3 BeadChip as 
part of the MuTHER project as previously described 
[49]. We selected 30 probes from GGT and PLA2 genes. 
Probes were adjusted for batch effects by linear models 
and residuals were inverse normalized prior to analysis. 
 
DNA methylation. DNA was extracted from whole 
blood, bisulfite converted and subsequently analyzed 
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using the Infinium 450K kit as previously described [50]. 
The beta mixture quantile dilation (BMIQ) method was 
performed to correct for technical variation [51]. 
Measurements were inverse normalized and then 
adjusted for batch effects, family structure and cell counts 
(PlasmaBlast, CD8+CD28-CD45RA- T cells, naive CD8 
T cells, CD4+ T cells, Natural Killer cells, monocytes, 
and granulocytes) using linear models. 
 
Statistical analysis. All analyses were performed using 
R (version 3.1.2) using the lme4 (version 1.1) package. 
 
Correlations between metabolites and LTL were 
calculated using linear mixed models, correcting for age, 
BMI and family relatedness (as random intercept). A 
conservative multiple test-corrected threshold of 
P<1.8×10-4 was used to identify significant associations; 
this value represented P = 0.05 divided by the total 
number of tests performed (280 metabolites). We 
replicated the five Bonferroni-significant metabolites in 
the KORA F4 cohort. The data was consistently 
normalized in both cohorts. The results were meta-
analyzed using inverse variance fixed effect meta-analys-
is implemented in the R package meta (version 4.3). 
 
We estimated the power of the replication cohort using 
the R package pwr (version 1.1), which implements 
power estimation according to Cohen [52]. 
 
To identify redundant associations of the metabolites, 
we fitted a multivariate Lasso model [53] incorporating 
all Bonferroni significant metabolites together with age 
and BMI. The predictive performance of the model was 
then compared to a similar model containing age and 
BMI only. The model performance was assessed by 
calculating the predicted residual sum of squares 
(PRESS) and subsequent P2 statistics using a leave-one-
out cross validation. 
 
Subsequently, we aimed to further explore the 
relationship of LTL and the identified metabolites with 
biological aging. To this end, we used linear mixed 
models to test for association of the previously 
identified metabolites with previously described aging 
phenotypes. All models were adjusted for age, BMI and 
family relatedness. The lung function parameter FEV1 
was additionally adjusted for height, as suggested in the 
literature. We replicated the associations with lung 
function parameters in KORA, adjusting for the same 
covariates. 
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ABSTRACT
Glycans constitute themost abundant and diverse form of the post-translational modifications, and animal
studies have suggested the involvement of IgG glycosylation in mechanisms of renal damage. Here, we
explored the associations between IgG glycans and renal function in 3274 individuals from the TwinsUK
registry. We analyzed the correlation between renal function measured as eGFR and 76 N-glycan traits
using linear regressions adjusted for covariates and multiple testing in the larger population. We repli-
cated our results in 31 monozygotic twin pairs discordant for renal function. Results from both analyses
were then meta-analyzed. Fourteen glycan traits were associated with renal function in the discovery
sample (P,6.531024) and remained significant after validation. Those glycan traits belong to three main
glycosylation features: galactosylation, sialylation, and level of bisecting N-acetylglucosamine of the IgG
glycans. These results show the role of IgG glycosylation in kidney function and provide novel insight into
the pathophysiology of CKD and potential diagnostic and therapeutic targets.

J Am Soc Nephrol 27: ccc–ccc, 2015. doi: 10.1681/ASN.2015010109

Chronic kidney disease affects 13% of the adult
population in developed countries and it is associ-
ated with increased cardiovascular morbidity and
mortality.1,2 Though many genetic3–5 and environ-
mental factors (such as diabetes, hypertension and
ageing)6 are implicated in the development of kid-
ney damage, its physiopathology is still not fully
understood. Heritability estimates for CKD range
between 0.33 and 0.417,8 and despite the discovery
of several important genetic associations, these loci
collectively account for only 1.4% of the variation
in eGFR.5 This suggests that epigenetic or post-
transcriptional factors may be playing an important
role in renal damage.

Glycosylation is the most abundant and diverse
form of post-transcriptional modification and par-
ticipates in every physiologic process.9

Immunoglobulin G is an excellent glycoprotein
model as its glycosylation is well defined and many
important functional effects of alternative IgG

glycosylation have been described.10 N-glycans at-
tached to the conserved asparagine 297 in the Fc
part of IgG are important modulators of IgG effec-
tor functions.11 For example, glycosylation acts as a
switch between pro- and anti-inflammatory IgG
functionality. Malfunction of this system is associ-
ated with different inflammatory and autoimmune
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diseases such as SLE,12 rheumatoid arthritis, inflammatory
bowel diseases,13,14 cancer15,16 and AIDS.17 Furthermore, it
has been shown that inflammation pathways play a key role
in endothelial and kidney damage.18 ,19 Indeed, the activation
of inflammatory pathways and subsequent fibrosis are hallmark
of renal injury.20,21 Different IgG glycosylation profiles may pro-
vide an at-risk phenotype to the development of renal damage.

Animal models highlighted the potential role of IgG
glycosylation in the pathophysiologic mechanism involved
in renal damage. Indeed studies have shown thatmodulationof
ANCA IgG glycosylation reduces its pathogenicity in mouse
ANCA-associated GN.21 Also, IgG Fcg receptor deficiency
was found to be renoprotective in a mouse model of diabetic
nephropathy.20 Human studies suggest that aberrant glyco-
sylation of the IgA1 is implicated in the deposit and forma-
tion of the immunocomplex IgA–IgG in patients with IgA
nephropathy.22,23

However, no human studies investigated the role of the IgG
glycosylation profiles in the onset of CKD.

The aim of this study is to investigate the potential role of
IgGglycosylation inkidney function, by analyzing IgGglycome
composition in a large population-based cohort from the UK.
As glycans are associated with many factors including genes,24

we validate our significant results in an independent popula-
tion of identical twins discordant for renal diseases.

RESULTS

Levels of 76 IgG glycans (24 directly measured and 52 derived
traits) (Supplemental Figure 1) were obtained in 3274 indi-
viduals with different eGFR from the TwinsUK population
(age range: 18–87 years). The demographic characteristics of
the study populations are presented in Table 1. We identified
31 monozygotic (MZ) twin pairs discordant for the renal phe-
notype (difference in eGFR.15 mL/min per 1.73 m2).

We first ran the linear regressions in the discovery pop-
ulation adjusting for age, sex, bodymass index (BMI), diabetes,

hypertension, glycan analysis batch and family relatedness,
excluding theMZdiscordant twins.We controlled formultiple
testing using Bonferroni correction (P,6.531024; 0.05/76 gly-
can traits). This identified 14 glycans significantly associated
with eGFR; six glycans were positively associated with eGFR,
while eight were negatively associated (Table 2, Supplemental
Table 1). To ensure that sexual hormones did not affect our
results, we ran the same linear regression analysis including
menopause as a covariate and our results were unchanged.

We then assessed whether these associations with renal
function were robust by testing an independent group of MZ
twins discordant for renal disease. The regression coefficients
were in the same direction in both analyses (discordant identical
twins and the rest of the population). We then combined the
results using inverse-variance fixed effect meta-analysis. All 14
glycans remainedBonferroni significant (Table 2).Asdepicted in
Figure 1 andTable 2, the 14 significant glycan traits fell into three
particular glycosylation features: galactosylation, sialylation and
the level of bisecting N-acetylglucosamine (GlcNAc) of the IgG
glycans.

We observed a decrease in agalactosylated glycans: A2 (GP2
and GP2n) and FA2B (GP6 and GP6n) glycan structures and
derived trait G0n, which combines all agalactosylated struc-
tures. Conversely, glycan with galactose on both antennae,
FA2G2 (GP14 and GP14n), and the G2n derived trait, repre-
senting the percentage of digalactosylated structures in neutral
IgG glycans, increased in parallel with the eGFR. The same
pattern was observed in the MZ discordant pairs. As for sia-
lylation, the major sialylated glycan, FA2G2S1 (GP18) and the
percentage of sialylated structures without bisecting GlcNAc
(represented by the ratio FGS/[F+FG+FGS]) increased with
eGFR.

The level of bisecting GlcNAc in sialylated IgG glycans
represented by three ratios, FBStotal/FStotal, FBS1/FS1, and
FBS1/(FS1+FBS1), as well as in digalactosylated neutral gG
glycans (FG2n/[BG2n+FBG2n]) were found to be inversely as-
sociated with eGFR.

To reinforce our findings we searched for associations in an
independent population with more severe renal phenotype
(eGFR,30 mL/min per 1.73 m2). Eight twins, mean aged 65.0
(range 42.2–75.5 years) with CKD stage 4/5 (mean eGFR 24.7
[range 8.0–27.3]) were compared with their age-matched co-
twin with eGFR.30 ml/min per 1.73 m2. As depicted in Fig-
ure 2, IgG glycans profiles follow the same patterns as were
observed in the discovery population with the worsening of
the renal function.

To determine whether the findings were restricted to IgG or
to amore general change in glycosylation of multiple proteins,
we searched for association between total plasma glycome25,26

and eGFR in a subset 426 individuals (eGFR,mL/min/1.73m2:
78.95616.00). We found no difference in plasma glycosylation,
suggesting that the effects we see here are likely direct effects of
IgG glycosylation. However, the lack of associationmight also be
due to power issues and so further study on larger sample size is
needed to test this (Supplementary Table 2).

Table 1. General characteristics of the study population

Discovery
Population

MZ Discordant Twins

Sample size, n 3212 62
Age, years 52.67614.15 55.45612.2
MZ:DZ:singletons 506:1772:934 62:0:0
Female, n (%) 3050 (94.9) 60 (96.7)
BMI, kg/m2 25.9564.65 25.6465.65
Creatinine, mg/ml 0.8360.15 0.7560.10
eGFR, mL/min per 1.73 m2 84.15617.02 88.5269.91
CKD (eGFR#60), n (%) 294 (9.15) 1 (1.6)
Type II diabetes, n (%) 72 (2.2) 4 (6.4)
Hypertension, n (%) 705 (21.9) 18 (29.0)

CKD eGFR estimated using Chronic Kidney Disease Epidemiology Collab-
oration equation. Values for categorical variables are given as n (%); values for
continuous variable as mean (6SD). MZ:DZ, monozygotic:dizygotic.

2 Journal of the American Society of Nephrology J Am Soc Nephrol 27: ccc–ccc, 2015
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Finally, we assessed whether glycan profiles could improve
the prediction of the CKD status (as per Guidelines, CKD cases
have eGFR,60 mL/min per 1.73 m2) beyond that achieved
with age and sex. In the discriminative model only the four
main glycans (GP2, GP6, GP14, and GP18) were included.
The predictive ability for CKD status, as measured by the
area under the curve was 0.87 (95% confidence interval
[95% CI], 0.85 to 0.89) for clinical parameters alone, 0.81
(95% CI, 0.78 to 0.84) for glycans alone, and 0.88 (95% CI, 0.86
to 0.90) for themodel incorporating a combination of glycans and
clinical parameters (P=0.23) (Supplemental Figure 2).

DISCUSSION

This is the first study to investigate the potential role of IgG
glycosylation in kidney function. We identified 14 IgG glycan
traits with high statistical significance associated with eGFR
and validated them in an independent subset of MZ twins
discordant for renal disease. Moreover we see the same pattern
in a small independent sample with a more extreme renal
dysfunction.

The glycans identified fall into three principal glycan traits.

Galactosylation of IgG
Decreased IgG galactosylation has been found to be associated
with rheumatoid arthritis27 as well as with several autoim-
mune and inflammatory diseases16 and with chronologic and
biologic age.28 The decrease in galactosylation is not disease-
specific, but a general phenomenon that is associated with

decreased immunosuppressive and anti-inflammatory poten-
tial of circulating IgG. We observed a higher risk of CKD in
subjects with agalactosylated glycans (GP2, GP6, and G0n)
and lower in those with galactosylated IgG (GP14 and G2n).
Lack of terminal galactose activates complement cascade and
makes IgG pro-inflammatory, whereas the addition of galactose
decreases its inflammatory potential.29,30 Hence, the IgG galac-
tosylation pattern observed in our population supports the the-
ory that complement activation/dysregulation is crucial in renal
damage.31 It is not clear whether IgG galactosylation is a conse-
quence or an individual predisposition for a disease. The heri-
tability of galactosylated glycans was very high,24 indicating that
galactosylation could partly be genetically predetermined. This
hypothesis is further supported by the fact that in rheumatoid
arthritis, the decrease in IgG galactosylation was observed up to
several years before the onset of the disease.32–35

Sialylation
Further extension of IgG glycans by the addition of sialic acid
dramatically changes the physiologic role of IgG, converting it
from a proinflammatory into an anti-inflammatory agent.36,37

This relatively small fraction of sialylated IgG is believed to be
responsible for the immunosuppressive activity of intrave-
nously administered immunoglobulins.38 Approximately
50% of IgG glycans are not sialylated and are proinflamma-
tory.39 However, the terminal a2,6-sialylation of IgG glycans
decreases the ability of IgG to bind Fcg receptors (FcgRs),
which increases expression of inhibitory FcgRIIB and is
anti-inflammatory.40 Contrary to changes in galactosylation,
the significant changes in sialylation have not been associated

Figure 1. Correlation of IgG glycosylation and eGFR in the discovery and MZ discordant populations. (A) Directly measured glycan
structures. (B) Derived traits that measure sialylation, galactosylation, and bisecting GlcNAc.

4 Journal of the American Society of Nephrology J Am Soc Nephrol 27: ccc–ccc, 2015
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with other diseases. Recently, some of us found that major
sialylated glycans (GP16, GP18, and GP23) were significantly
decreased in patients with SLE (F. Vu�ckovi�c et al., submitted
for publication). In our population, the major sialylated gly-
can, FA2G2S1 (GP18), and the ratio FGS/(F+FG+FGS), which
represents the percentage of sialylated structures without bi-
secting GlcNAc in total IgG glycans, were decreased in patients
with CKD (green dots in Figure 1). These sialylated glycan
traits displayed a protective independent risk for CKD.

Bisecting N-Acetylglucosamine and Core Fucosylation
of IgG
Another feature is the role of core fucose in the modulation of
antibody-dependent cellular cytotoxicity.41 On average, 95% of
the IgG population is core fucosylated42; hence, most of the
immunoglobulins have a “safety switch”, which prevents them
from antibody-dependent cellular cytotoxicity. IgG-containing
glycans that lack core fucose have 100-fold higher affinity to the
FcgRIIIa and are thereforemuchmore efficient than fucosylated
glycoforms.43 We have observed a significant and independent
decreased risk of CKD when sialylated and core fucosylated gly-
cans did not have bisecting GlcNAc; and in contrast, lower eGFR
if those glycans contained bisecting GlcNAc (FBStotal/FStotal,
FBS1/FS1, and FBS1/[FS1+FBS1]). Also for neutral digalactosy-
lated glycans, when there is less of these glycans with bisecting
GlcNAc, the ratio FG2n/(BG2n+FBG2n) is higher and this is pos-
itively associated with eGFR. The presence of bisecting GlcNAc
was always associated with a higher risk of CKD.

It is not clear how the modulation of antibody-dependent
cellular cytotoxicity could affect the renal damage in the onset
of a nonautoimmune CKD. Studies in experimental animals
have reported that modifications in the Fcg receptor can di-
minish renal damage in a well known autoimmune disease,
ANCA-related GN, as well as in diabetic nephropathy.20,21 On
the other hand, renal fibrosis is the common pathway of many
kidney diseases and leads to progressive renal failure; natural
killer cells have been linked with this process in different organ
systems.11

Notably, glycan traits associated with lower eGFR have on
average a higher heritability (Table 2). For example, the aga-
lactosylated IgG glycans we found associated with lower eGFR,
have a high heritability, ranging from 0.72 to 0.75, whereas
galactosylated glycans GP14 and G2n derived trait have a low
heritability (0.36 and 0.41, respectively).24 The highly heritable
glycans associated with eGFR, have been previously associated
with different genes.12 However, there is as yet no overlap with
genes previously reported in CKD genome-wide association
studies.5 Our findings may indicate a new approach to deeper
understanding of the contribution of genetics in IgG glycosyla-
tion and kidney damage.

Although the identified glycans do not predict incident
CKD (defined as eGFR,60 mL/min per 1.73 m2) more accu-
rately than clinical parameter, their inclusion in the models
improves the incident CKD risk prediction. These glycansmay
be more sensitive to earlier stages of reduced renal function, as
the eGFR-defined onset of CKD occurs only after half of the

Figure 2. IgG glycan profiles in eight pairs of twins discordant for renal function. Comparisons between each pair of twins where one has
extreme renal phenotype (eGFR,30 mL/min per 1.73 m2) versus non-CKD. (A) Directly measured glycans structures. (B) Derived traits
that measure sialylation, galactosylation, and bisecting GlcNAc. Results are in line with those observed in the discovery population
(Figure 1).
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kidneys’ filtration ability has been lost. Longitudinal studies
could help to address this hypothesis.

Thepresent studyhas several strengths. First,we employed a
two-stage design (discovery and independent replication with
stringent P values), so minimizing the risk of false positive
findings. Second, we used identical twins discordant for renal
function in the validation analysis. Glycan levels may be influ-
enced by many factors including genetics, age and environ-
ment.12 As identical twins share 100% of their genetic
makeup, and are matched perfectly for age, gender, social
class, etc., we were able to validate the role of IgG on renal
function; isolating the nongenetic contribution. These data
help us to understand the complex interplay between genetic
and nongenetic influences that determine renal function.

We note some study limitations. First, there is a female
predominance in our study sample (95%of the individuals are,
for historical reasons, women). Second, our population being
volunteers is slightly healthier than average with a lower rate of
diabetes and results might not be generalizable to more severe
diabetes populations. Third, the cross-sectional nature of our
data does not allow us to draw conclusions as to whether the
glycans identified are causative of kidney function decline or
merely correlated with it. Finally, we cannot provide reliable
estimates as to what proportions of the identified glycans were
from Fc and from Fab, respectively.However, in a small pilot of
Fc-glycopeptides by nano-liquid chromatography tandem
mass spectrometry39 on 96 representative age-matched indi-
viduals from the extremes of the eGFR distribution, we find
the same direction of effect with renal function for all but one.
This suggests that our initial observations mostly come from
the Fc glycans (Supplemental Table 3).

Our results highlight the promising role of glycomics in
renal studies. Uncovering this relationship by extending the
researchwith clinical subsets and longitudinal datawould help
to identify further novel markers that would be potentially
useful to detect at-risk patients, in the early stages of CKD.
These results open new avenues to our understanding of renal
damage and encourage further studies in populations with
more severe CKD and proteinuria information, as well as
studies comparing patients with autoimmune CKD with
patients whose CKD is due to other etiologies. Moreover,
this would help to gain additional insights into the patho-
physiology of CKD and potential therapeutic targets.

CONCISE METHODS

Study Subjects
Study subjects were twins enrolled in the TwinsUK registry, a national

registerof adult twins. Twinswere recruited as volunteers by successive

media campaigns without selecting for particular diseases or traits.44

In this study we analyzed data from 3274 individuals with glycomics

and creatinine data available. The study was approved by St. Thomas’

Hospital Research Ethics Committee, and all twins provided in-

formed written consent.

Phenotype Definitions
Data relevant to the present study include BMI (body weight in

kilograms divided by the square of height in square meters), type II

diabetes (defined if fasting glucose $7 mmol/L or physician’s letter

confirming diagnosis) and hypertension. Renal parameters; eGFR

was calculated from standard creatinine using the Chronic Kidney

Disease Epidemiology Collaboration equation.45 CKD was defined as

an eGFR,60 ml/min per 1.73 m2 according to the current Kidney

Disease OutcomeQuality Initiative (K/DOQI) guidelines.46MZ pairs

were considered discordant for renal function if one twin had an

eGFR$90 and the other had eGFR#90 mL/min per 1.73 m2 and

the difference between their eGFR levels was.15 ml/min per 1.73 m2.

Analysis of IgG Glycans
Isolation of IgG from Human Plasma
The IgG was isolated using protein G monolithic plates (BIA

Separations, Ajdovš�cina, Slovenia) as described previously.42

Glycan Release and Labeling
Glycan release and labeling were performed essentially as previously

described.24,42 Briefly, dried IgGwas denaturedwith 2%SDS (wt/vol) and

N-glycans were released by digestionwith PNGase F (ProZyme,Hayward,

CA). After deglycosylation,N-glycans were labeled with 2-AB fluorescent

dye. Free label and reducing agent were removed from the samples using

hydrophilic interaction chromatography–solid-phase extraction.

Hydrophilic Interaction Chromatography-UPLC
Fluorescently labeled N-glycans were separated by hydrophilic in-

teraction chromatography on a Waters Acquity UPLC instrument

(Waters, Milford, MA) as described previously.42 Data processing

was performed using an automatic processing method with a tradi-

tional integration algorithm after which each chromatogram was

manually corrected to maintain the same intervals of integration for

all the samples. The chromatograms were all separated in the same

manner into 24 peaks and the amount of glycans in each peak was

expressed as a percentage of the total integrated area. In addition to 24

directly measured glycan structures, 52 derived traits were calculated.

These derived traits average particular glycosylation features (galacto-

sylation, fucosylation, bisecting GlcNAc, and sialylation) (Supplemental

Figure 1, Table 1).

Statistical Analysis
Statistical analysis was carried out using Stata version 12 and R

(version 3.1.2) and visualized using the ggplot2 package.

Glycans were globally normalized and log transformed using the

right-skewness of their distributions. To remove experimental biases,

all measurements were adjusted for batch and run-day effects using

ComBat (R-package sva). Derived glycan traits were calculated using

normalized and batch-corrected glycan measurements (exponential

of batch corrected measurements). All variables were centered and

scaled to have mean 0 and standard deviation 1. Outliers (more than

6SD from the mean) were excluded from the analysis.

Association analyses between eGFR and glycan traits were

performed using random intercept linear regressions adjusting for

age, sex, BMI, diabetes, hypertension, and family relatedness as

6 Journal of the American Society of Nephrology J Am Soc Nephrol 27: ccc–ccc, 2015
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random effect. We used a conservative Bonferroni correction to

account for multiple testing assuming 76 independent tests as

suggested by Pucic et al.,42 so giving a significant threshold of

(P,6.53104; 0.05/76). The Bonferroni-significant eGFR glycan as-

sociations were replicated in the previously excluded group of MZ

discordant twins using the same model. Paired t-tests were used to

evaluate the association with incident CKD in an independent subset

of twins where one co-twin had a significant decline in renal function.

To assess how glycans can improve the prediction of CKD

(eGFR,60 ml/min per 1.73 m2), three Least Absolute Shrinkage

and Selection Operator regression models were created (R package

glmnet): The first one using only clinical parameters; age, sex, type II

diabetes, and hypertension, to predict CKD, the second using the set

of original glycan traits, which were found to be Bonferroni signifi-

cant before (GP2, GP6, GP14, GP18), and the last one using both

glycans and clinical parameters. The quality of all three models was

assessed using a ten-fold cross-validation. The regularization parameter

l was trained separately for each fold using a nested cross-validation.

Receiver operating characteristic curves (and particularly the area under

the curves) were calculated for each fold and averages and confidence

intervals were reported.
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Exploring the molecular basis of 
age-related disease comorbidities 
using a multi-omics graphical 
model
Jonas Zierer1,2, Tess Pallister1, Pei-Chien Tsai1, Jan Krumsiek3,4, Jordana T. Bell1, 
Gordan Lauc1,5, Tim D Spector1, Cristina Menni1 & Gabi Kastenmüller1,2,4

Although association studies have unveiled numerous correlations of biochemical markers with age and 
age-related diseases, we still lack an understanding of their mutual dependencies. To find molecular 
pathways that underlie age-related diseases as well as their comorbidities, we integrated aging 
markers from four different high-throughput omics datasets, namely epigenomics, transcriptomics, 
glycomics and metabolomics, with a comprehensive set of disease phenotypes from 510 participants 
of the TwinsUK cohort. We used graphical random forests to assess conditional dependencies between 
omics markers and phenotypes while eliminating mediated associations. Applying this novel approach 
for multi-omics data integration yields a model consisting of seven modules that represent distinct 
aspects of aging. These modules are connected by hubs that potentially trigger comorbidities of 
age-related diseases. As an example, we identified urate as one of these key players mediating the 
comorbidity of renal disease with body composition and obesity. Body composition variables are in 
turn associated with inflammatory IgG markers, mediated by the expression of the hormone oxytocin. 
Thus, oxytocin potentially contributes to the development of chronic low-grade inflammation, which 
often accompanies obesity. Our multi-omics graphical model demonstrates the interconnectivity of 
age-related diseases and highlights molecular markers of the aging process that might drive disease 
comorbidities.

Aging is a multi-factorial process that affects the entire organism, thus causing decreased fitness, disease and 
eventually death. As the population of western countries is aging1, the prevalence of a variety of age-related dis-
eases, such as cardiovascular disease, cancer2 and chronic kidney disease (CKD)3 and many related diseases are 
increasing. Finding mechanisms that cause diseases with progressing age as well as better understanding disease 
comorbidity patterns is thus essential to counteract an explosion of health care costs. Epidemiological studies 
have already identified a broad spectrum of molecules associated with aging from various layers of biology acces-
sible through modern omics technologies4. These molecules include epigenetic markers5, RNA abundances6, 
protein abundances7, post-translational protein modifications – such as protein glycosylation8 – and metabo-
lite concentrations9. However, these studies analyzed omics datasets independently, thus neglecting the intrinsic 
interactions of biological entities within and across omics layers. Taking into account this complex interplay is 
necessary to unveil the causal structure of multi-factorial processes such as aging.

Various concepts have been proposed to integrate data from different molecular layers and (omics) technol-
ogies in systems biology and the newly emerging fields of systems genetics10 and systems medicine11. Thereby, 
networks have been shown to be particularly useful to assess complex interactions in a dataset and to illustrate 
multivariate dependencies12. As an example, using network approaches, it was demonstrated that co-occurring 
diseases are linked to mutations in the same gene13, in genes that interact with each other14, or in genes that are 
involved in the same metabolic pathway15, explaining observed patterns of comorbidity16.
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Due to the increasing availability of high-dimensional omics datasets, networks can now be inferred also 
directly from measured data facilitating the unbiased analysis of specific conditions of interest, independently 
of prior knowledge. For instance, gene co-expression networks were used to analyze the influence of anti-cancer 
drugs on gene expression17. Integration of such co-expression networks with other omics layers allowed for pri-
oritization of interesting, potentially causal, targets18. Even though these types of correlation-based networks led 
to a wide range of discoveries, they suffer from vast numbers of spurious correlations that inflate the number of 
edges and obscure the underlying mechanisms. Conditional independence graphs, such as graphical models19, 
were proposed as solution to overcome the problem of mediated associations20 by revealing the relevant direct 
associations between variables. Although the direction of the associations and, thus, causality cannot be deter-
mined by these models in most cases, the resulting network of direct associations between variables can be con-
sidered as the undirected skeleton of their underlying causal structure. While the proposed graphical models are 
well established for multi-variate Gaussian distributed data, the extension to mixed distributions, as commonly 
observed in phenomics data (e.g. gender, disease states), is substantially more complex21.

In this study, we aimed to investigate the molecular basis of age-related diseases and its influence on disease 
comorbidities. To this end, we used an integrated mixed graphical model (MGM) approach to combine aging 
markers from four different high-throughput omics datasets on the same individuals, namely epigenomics, tran-
scriptomics, glycomics and metabolomics, together with extensive phenotypic data. While we cannot infer actual 
causality using MGM, the resulting network of direct associations that are independent of all other variables 
within the model is expected to provide valuable insights into the direct molecular interdependencies between 
various age-related phenotypes. To the best of our knowledge, this is the first study that uses graphical models to 
combine data from multiple molecular omics and phenomics datasets.

Results
We inferred a mixed graphical model using observational data from a cohort of 510 women, aged between 
34 and 84, integrating selected age-associated markers from four different omics datasets (see Materials and 
Methods) with 92 clinically assessed phenotypes (Supplementary Fig. S1). The final model consists of 145 
nodes and 316 undirected edges connecting them (Fig. 1). Thus, it is much sparser (316 edges instead of 
1900) than a regular correlation graph based on significant pairwise correlations of variables from the same 
dataset (Supplementary Fig. S2). Most of the nodes (96) form one large connected component, which 
we refer to as age-mgm in the following. There are two smaller components of 8 and 4 nodes that contain  
variables related to pain and memory function, respectively, two isolated pairs of nodes and 33 unconnected 
nodes. The degree, betweenness and clustering coefficients of all nodes in the network are presented in 
Supplementary Tables S1 and S2.

Figure 1. Multi-Omics MGM of Age. Each node in the graph represents one age-related variable. Omics 
markers were selected according to literature from epigenomics (purple), transcriptomics (brown), glycomics 
(red) and metabolomics (orange) datasets and combined with DXA measurements (green) and other clinical 
phenotypes (yellow). Edges between nodes were inferred using a mixed graphical model approach, and thus 
indicate the conditional dependence between variables; the color represents positive (red) and negative (blue) 
correlation. An unbiased cluster detection algorithm was used to identify densely connected modules within the 
network, indicated by grey borders.
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Topological Properties of age-mgm. The large connected component age-mgm contains 96 variables 
including age, along with variables from all four omics datasets, and 286 edges connecting them. It has an average 
node degree of 6.0, an average local clustering coefficient of 46.6% and an average shortest path length of 3.2. 
Also, its small world index, as defined by Humphries and Gurney22, is 6.1 and so the age-mgm can be considered a 
small-world network with high local clustering and short path lengths. Removing age from the network does not 
reduce the small worldness of the network. In comparison, the correlation graph, restricted to the same vertices 
as in the age-mgm, has a just slightly higher clustering coefficient of 57.0% despite the much higher average node 
degree of 31.2, which results in a small world-index of only 1.7.

As expected, age is the most densely connected node with a degree of 27 (Fig. 2a). It has a low clustering coef-
ficient (8.0%) but high betweenness (47.5%) centrality. This indicates that age connects different clusters, while its 
neighbors tend to be unconnected. With an average shortest path length of 2.1 age is also the most central node 
in the age-mgm.

Modularity of the age-mgm. There are more edges between variables originating from the same omics 
dataset than edges connecting them. Particularly transcriptomics and metabolomics variables form dense 
clusters with 37 and 34 edges within them, respectively. In contrast, only 7 edges connect transcriptomics 
and metabolomics variables with variables from other omics sets. Similarly, the body composition variables 
measured by dual-energy X-ray absorptiometry (DXA) are densely connected with 45 edges between them 
(Supplementary Fig. S3).

In order to analyze the graph structure in an unbiased way we used a modularity-based algorithm for cluster detec-
tion. This approach yielded seven modules (Fig. 1). The first cluster (EXPRESSION) contains all but three gene expres-
sion markers. It is connected with neighboring clusters mainly via expression levels of OXT, which has 6 edges outside 
of its cluster (Fig. 2b), and SVEP1, which has the highest betweenness centrality (10.5%) within the cluster. The second 
cluster (LUNG) contains age and several of its direct neighbors from different omics layers. The lung function param-
eters forced expiratory volume in one second (FEV1) and forced vital capacity (FVC) are the most densely connected 
phenotypes in the cluster (degree 8 and 7 respectively). Both are embedded in a tight cluster with local clustering coef-
ficients of 35.7% and 47.6%, respectively (Fig. 2c). Age is also connected to another small cluster of arthritis-related 
variables (ARTHRITIS). The body composition variables fall in two different clusters, one of them containing bone 
density-related variables (BONE) and the other fat and lean mass-related variables (FAT). While the BONE cluster is 
densely connected with the LUNG cluster, all connections between the FAT cluster and the LUNG cluster, containing 
the age variable, are mediated, mainly via gene expression variables from adipose tissue. The next cluster (LIVER) con-
tains the liver markers alanine-aminotransferase (ALAT) and gamma-glutamyl transpeptidase (GGT) along with cho-
lesterol and triglyceride levels and several amino acids. It also contains the gene expression marker of the RBM20 gene 
that mediates the connection of the cluster with age and the LUNG cluster. The last cluster (KIDNEY) contains mainly 
metabolite levels, but also markers for nutrition and a measure of renal function, the estimated glomerular filtration rate 
(eGFR). With 9 edges, C-glycosyltryptophan is central within the metabolite cluster. However, the eGFR (degree 7)  
is the main connection of the metabolomics cluster with age as well as IgG glycosylation markers. The only connec-
tions of the renal cluster with other clusters, apart from the LUNG cluster via age, are edges between urate and the 
FAT and LIVER clusters.

Figure 2. Selected modules from the graphical model. Each panel shows one subgraph from the age-
mgm (Fig. 1). (a) The direct neighborhood of chronological age. (b) The hormone oxytocin (OXT) mediates 
association of fat mass variables with age as well as the IgG glycosylation marker GP14. (c) The direct 
neighborhood of the lung function measures forced expiratory volume in one second (FEV1) and forced vital 
capacity (FVC) contains three omics markers: dehydroepiandrosterone-sulfate (DHEA-S), phosphodiesterase 
4 C (PDE4C) and the glycan peak 14 (GP14).
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Robustness of the age-mgm. For estimating the robustness of our model, we inferred additional networks 
based on different cutoffs for edge inclusion and on changed selection of omics variables. Comparing these net-
works with our original model, we found node centrality as well as module assignments to be stable when varying 
the cutoff for edge inclusion (Supplementary Fig. S4). The modules identified in the original age-mgm remained 
stable even when including all available metabolomics variables with known chemical identity, i.e. when basing 
the inference procedure on 196 metabolites in addition to the 23 pre-selected ones (Supplementary Table S4).

To investigate the reproducibility of the inferred age-mgm for a different set of samples we determined two 
separate models from disjoint datasets incorporating the first and second twin of each family, respectively, and 
compared these models to the original network. The two resulting models reproduce 93.5% of all edges, with only 
21 edges being unique to the initial model (Supplementary Fig. S5A, Supplementary Dataset S1). Moreover, in the 
models of the two disjoint datasets these unique edges just missed the edge inclusion cutoff of 80% in most cases, 
which is most likely due to the reduced power in the smaller datasets (Supplementary Fig. S5B).

Discussion
In this study, we inferred a robust graphical multi-omics model of age-related diseases by integrating disease 
phenotypes with molecular markers from four omics layers based on data available for 510 women from the 
TwinsUK cohort. Despite the sparsity of our model, which omits mediated associations, most variables form one 
connected component (age-mgm) consisting of seven modules. Interestingly, each of these modules represents 
a different aspect of aging, such as metabolic aging linked to decline of renal function (KIDNEY cluster). Other 
aspects of aging include the change in body composition, which can be divided in the change of fat and lean tissue 
(FAT cluster), along with the closely related changes of gene expression in adipose tissue (EXPRESSION cluster), 
on the one hand, and the decrease of bone mineral density (BMD) and bone mineral content (BMC) on the other 
hand (BONE cluster) (Fig. 1).

Our model illustrates multivariate dependencies of age-related diseases that potentially explain comorbidity 
patterns. Edges in our model represent conditional dependence between two variables, while the absence of an 
edge implies their conditional independence given all other variables in the model. Specifically, this means that 
previously observed age-associations of the variables, which are not directly linked to age in our model, occur due 
to the mediation by other variables between them. This differentiation between mediated and direct associations 
allows us to draw conclusions on underlying mechanisms even though the causal directions cannot be inferred. 
In the following section we will discuss some key findings from our aging model in detail. Figure 3 summarizes 
additional hypotheses derived from the model, which we will not further discuss for the sake of brevity.

Lung Function is a Central Aging Process. Lung function appears to be a central aging phenotype in 
our age-mgm. Both lung function measures, FEV1 and FVC, are directly connected with age and are, besides age, 
the most densely connected nodes in the LUNG cluster, connected with three different omics markers (Fig. 2c): 
(i) The metabolite dehydroepiandrosterone sulfate (DHEA-S) is one of the most abundant hormones in humans 
and well known to decrease with age23 and was even suggested as an anti-aging drug24. Moreover, DHEA-S has 
been found to prevent and even revert pulmonary hypertension in rats25, suggesting a causal effect of DHEA-S 
on lung function. (ii) The methylation probe cg17861230 lies in the PDE4C gene, an enzyme that catalyzes the 
hydrolysation of cAMP. Expression levels of PDE4C were previously found to be associated with lung function26. 
PDE4 is a potential target for drugs against COPD and a PDE4 inhibitor, Roflumilast, has been approved by the 
EMA for treatment of COPD27. In this example, our graphical model approach indeed unveiled a known causal 
interaction of variables while removing less relevant mediated associations. (iii) Finally, the IgG glycosylation 
marker GP14 is connected to lung function in the age-mgm. GP14 is a glycan structure with terminal galactose, 
which is known to change the inflammatory state of IgG28. While defects of general protein glycosylation29 as 
well as an involvement of IgG30 in COPD have been previously reported, glycosylation of IgG has so far not been 
associated with lung function. Our model suggests a contribution of IgG mediated inflammation and might help 
to unveil mechanisms of lung disease in dedicated experiments. As IgG glycosylation is also related with kidney 
function in our age-mgm as well as in previous studies31, this might provide an explanation for the comorbidity 
of lung disease and renal disease.

Decline of Renal Function Links Age with Metabolic Shift. The blood metabolome was shown to be 
strongly influenced by age in several studies9. In the age-mgm most of the age-associated metabolites (13) form 
one large cluster with only four of them being directly linked to age, while the remaining nine metabolites are 
only indirectly associated with age. For six of these nine metabolites the shortest path to age is through eGFR, a 
measure of renal function. Even though our model is undirected, age is the only non-modifiable variable in our 
model. We thus hypothesize that with increasing age renal function declines leading to the major shift in the aging 
blood metabolome, which possibly causes further diseases.

Urate Mediates Association of Renal Function with Body Composition. Urate mediates the con-
nection of the KIDNEY cluster with FAT and LIVER clusters. Hyperuricemia has been previously reported to 
be associated with obesity, particularly increased visceral fat mass32, and increased triglyceride levels33, which 
appears to be a direct association according to our model. Indeed, there is evidence that urate actually contributes 
to the development of obesity and diabetes, rather than being just a consequence of obesity: Elevated serum levels 
of urate were found to predict, amongst others, obesity34 and diabetes35. By knocking out the uric acid transporter 
SLC2A9 in mice, DeBosch and colleagues found that hyperuricemia causes several phenotypes of the metabolic 
syndrome, including obesity, dyslipidemia and hypertension36. Administering a compensating treatment atten-
uated some but not all of the observed symptoms. Hyperuricemia is also a known comorbidity of renal disease, 
however the causal direction of this association is controversial37. Renal disease and uremia were also shown to 
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affect the gut microbiome composition38, which is known to be strongly associated with obesity and other symp-
toms of the metabolic syndrome39. Thus, the microbiome is possibly a hidden mediating factor, not included in 
our model, of the association between hyperuricemia and obesity. Even though its mode of action remains elu-
sive, urate appears to be a key factor for the comorbidity of renal disease and obesity.

Hormone Expression Directly Associates with Body Composition. It is commonly known that BMI 
as well as waist and hip circumferences and body fat mass change with age. Nonetheless, we found neither of them 
directly linked to age in our model. Instead, all associations between age and the fat cluster are mediated. One 
of the paths connecting the FAT cluster with age is channeled via urate and renal function (as discussed above). 
A second path leads via the EXPRESSION cluster and, particularly, the expression of oxytocin (OXT) (Fig. 2b), 
which accordingly mediates 6.0% of all shortest paths in the model. OXT is also directly linked to HDL choles-
terol levels. While adipose tissue was traditionally considered as storage tissue, it receives increasing attention as 
endocrine organ40 that amongst others produces OXT. OXT is a hormone with a broad spectrum of functions, 
ranging from reproductive functions and control of social behavior41 to energy metabolism42. One common 
explanation for the influence of OXT on obesity is its effect on food intake43, but there is also a diet-independent 
effect of OXT on the lipid metabolism in adipose tissue44. Thus, OXT was suggested as drug against obesity and 
type 2 diabetes development and has been successfully tested in a first pilot trial45. Our results indicate that the 
age-related change of body composition can, amongst others, be attributed to alterations of gene expression in 
adipose tissue and particularly to a change in OXT expression, independently of food intake. OXT might also 
drive common comorbidities of obesity by causing dyslipidemia, which in turn increases the risk of – amongst 
others – cardiovascular diseases46.

IgG Glycosylation as New Mechanism of Obesity-Associated Inflammation. Obesity is known 
to be associated with chronic low-grade inflammation and activation of immune function47, which is thought to 
be an important mediator between obesity and common comorbidities, such as type 2 diabetes48. In our model 
the expression of OXT mediates the association of android and visceral fat mass with inflammatory IgG glycosyl-
ation. The influence of oxytocin on IgG might be mediated by IL6, which was found to be less expressed due to 

Figure 3. Additional implications of the age-mgm. The figure summarizes selected conclusions drawn 
from our age-mgm that are not discussed in detail in the main text. Each panel shows a small excerpt from the 
network, restricted to relevant nodes and edges. Coloring is consistent with Fig. 1.
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OXT in vitro49 and thus causes decreased IgG production in B-cells50. Our study confirms an effect of increased fat 
mass on IgG, mediated by OXT, in vivo. Moreover, it provides evidence that OXT also affects IgG glycosylation in 
addition to its expression, thus altering its inflammatory potential. We hypothesize that this is a new mechanism 
of obesity-induced inflammation, which appears to be independent from previously identified pathways that are 
mediated by leptin or adiponectin51. Both of them are co-expressed with OXT in our data (Pearson correlation 
r =  0.2, p =  8.1*10−9 and r =  − 0.29, p =  6.1*10−17 respectively), but not associated with any of the IgG glycosyla-
tion markers.

We also found IgG-mediated inflammation being directly linked with renal function (Fig. 3), suggesting 
altered inflammatory potential of IgG as possible mechanism causing comorbidities of renal disease, obesity 
and related phenotypes of the metabolic syndrome. This supports the theory of “inflammaging”, which proposes 
chronic low-grade inflammation as mechanism that drives disease onset during aging52.

Limitations and Future Directions. Due to the limited availability of large multi-omics datasets and com-
prehensive collections of clinical phenotypes, our study is restricted by the relatively small sample size of 510 
individuals and, more importantly, we were not able to get access to comparable data from an independent cohort 
to replicate our results. Also, all of our participants are female. As a consequence, our model and the conclusions 
drawn from it might be only partly transferable to the entire population. However, more and larger multi-omics 
dataset will be available in near future, for instance from the UK Biobank or the US Precision Medicine Initiative, 
which will facilitate subsequent studies using our multi-omics integration approach. For the time being, we could 
only demonstrate the stability of our results by inferring separate models from two disjoint sets of our own dataset 
that include only one twin of each twin pair, respectively (Supplementary Fig. S5). The limited number of samples 
also made prior selection of variables indispensable. This selection can be expected to influences the topology 
and modularity of the final network model. However, in our study, doubling the number of omics variables 
by not pre-selecting metabolites from the metabolomics data did result in very similar topology and module 
assignments in the model (Supplementary Table S4). Also, upcoming larger datasets will allow to overcome this 
limitation by reducing the dimensionality of the data without relying on variable selection based on prior associa-
tion analyses. While stability selection controls the family-wise error rate (FWER) of edges in the step of network 
inference, stability selection cannot quantify the total uncertainty in the model and its downstream analyses. 
However, analyzing the sensitivity of our approach against variations in the inferred network model (e.g. through 
different threshold for the selection of edges) demonstrated the stability of our results (Supplementary Fig S4, S5 
and Table S4). Finally, our approach allows to detect mediation by variables included in the model and thereby 
enables differentiation between direct and indirect effects, it does, however, not allow to infer causality. Thus, 
based on our model, we only hypothesize about causal directions. Mendelian randomization might enable infer-
ence of causal direction using SNPs as instrumental variables. Much larger sample sizes are needed than available 
for this study, though. Ideally, potentially causal edges in our model should be further investigated in dedicated 
functional studies or randomized clinical trials to establish causality and infer causal direction.

Conclusion
This is, to our knowledge, the first study integrating data from four omics technologies and clinical phenotypes 
using an integrated statistical approach. Despite the relatively small sample size, our model confirms causal mech-
anisms of disease, which have been previously found using highly specific experiments and clinical trials, purely 
based on observational data from a generally healthy cohort. Moreover, we uncovered several new potential 
mechanisms that might contribute to disease comorbidities. We found, for instance, urate as key factor connect-
ing body composition and renal function, as well as several phenotypes of the metabolic syndrome. Moreover, by 
integrating multiple omics datasets, we find the hormone oxytocin as a central mediator that connects inflamma-
tion and obesity and, thus, supports the theory of inflammaging.

Our study highlights the importance and the feasibility of data integration across omics layers including phe-
nomics while considering multivariate dependencies. In the future this will help to focus on few, interesting asso-
ciations, which can then be specifically tested in model organisms and clinical trials. Eventually this will speed 
up drug discovery by excluding irrelevant pathways and potential drug targets early in the development and thus 
limiting the set of potential targets and reducing costs of drug discovery.

Materials and Methods
Study Population. We analyzed data from the TwinsUK cohort, a national register of 11,000 adult twins 
recruited as volunteers without selecting for any particular disease or trait. For this study we selected 510 female 
participants (62 monozygotic twin pairs, 116 dizygotic twin pairs and 154 singletons) aged between 34 and 84 
(mean 59.0 ±  9.4) with measurements for epigenomics, transcriptomics, glycomics and metabolomics available. 
The study has been approved by the local St. Thomas’ Hospital Research Ethics Committee and was carried out in 
accordance with the approved guidelines. All study participants provided written informed consent.

Data Acquisition and Processing. The phenotypic data was collected using questionnaires and anthro-
pometric measures during hospital visits. Additionally, four different high-throughput omics datasets were ana-
lyzed. With several hundred measured metabolites, thousands of RNA transcripts and particularly hundreds of 
thousands of CpG sites, network inference is not feasible. We used a knowledge-driven approach to reduce the 
number of variables from each dataset. To this end, we selected only variables which were previously reported 
to be strongly (and independently) associated with chronological age as described in the following (and listed in 
Supplementary Table S1).
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Epigenomics. DNA methylation levels were measured in adipose tissue samples using Infinium 
HumanMethylation450 BeadChip (Illumina Inc., San Diego, CA) as previously described53. Data was corrected 
for technical variation using the beta mixture quantile dilation (BMIQ) method and corrected for batch effects 
and bisulfite conversion levels using linear mixed effect models. Weidner and colleagues54 showed that only three 
aging related differentially methylated regions (aDMRs) are enough to predict the chronological age with high 
precision. Those three sites, namely cg02228185 (in ASPA), cg25809905 (in ITGA2B) and cg17861230 (PDE4C), 
were selected for further analyses.

Transcriptomics. RNA abundance was measured in abdominal fat samples using the Illumina Human HT-12 
V3 Bead chip as part of the MuTHER project as previously described55. The probe intensities were adjusted for 
batch effects using linear models prior to analysis. A previous study found 188 genes (199 probes) significantly 
associated with chronological56 age. We performed stepwise regression to select expression probes independently 
associated with age. This procedure left 24 probes from 24 different genes (see Supplementary Table S1 for full 
list) for further analysis.

Glycomics. For this study IgG glycans were measured in a high-throughput manner as described by Pucic and 
colleagues57. Briefly, IgG was first isolated from 90μ l plasma, the attached glycans were released, labelled with 
2-aminobenzamide and analyzed by UPLC. The according chromatograms were divided in 24 glycan peaks (GP), 
corresponding to 24 glycan structures. The data has been described in detail before58. Glycan peaks were global 
normalized, log transformed and corrected for batch effects using ComBat. It has been shown that a linear com-
bination of only three IgG glycan structures - GP6, GP14 and GP15 - explains 58% percent of the variance in age8 
and furthermore correlates with several aging associated phenotypes. These three structures were selected for our 
network analysis.

Metabolomics. An untargeted LC/MS and GC/MS platform was used to measure metabolite spectra from 
plasma and serum samples, respectively. Metabolites were subsequently identified by Metabolon Inc., Durham, 
USA, using their proprietary database9. Metabolite levels were scaled by the run-day median, imputed using the 
run-day minimum, inverse normalized and corrected for batch effects using linear mixed models with the batch 
as random intercept. About the half of all known circulating blood metabolites were reported to be associated 
with chronological age in several large population studies9. We selected 22 of these metabolites, which were 
shown to be independently associated with age and together explain 59% of the variance of chronological age9.

Clinical Phenotypes. A total of 92 phenotypes was combined with the previously described omics data 
(listed in Supplementary Table S2). Besides the chronological age, we included 13 body composition variables, 
measured by dual-energy X-ray absorptiometry (DXA), as previously described59. In addition to DXA meas-
urements we included common body composition measures, such as height, weight, waist and hip circumfer-
ences and body mass index (BMI). Lung function was assessed by measuring the forced expiratory volume in 
one second (FEV1) and the forced vital capacity (FVC) using standard spirometry60. Biochemical measures of 
gamma-glutamyltranserase (GGT) and alanine aminotransaminase (ALAT) were used to determine liver func-
tion. We furthermore used the CKD-EPI equation61 to estimate the glomerular filtration rate (eGFR) from serum 
creatinine as measure of renal function. Moreover, we included data from various questionnaires, assessing dis-
ease states, such as arthritis, asthma and chronic pain. Additionally, questionnaires were used to collect lifestyle 
parameters. Amongst others, we included data about physical activity and nutrition. Food intake data was col-
lected using an established food frequency questionnaire62. Item frequencies were merged into 54 food groups 
and transformed into orthogonal patterns using principal component analysis63. We used the first five principal 
components, which correspond to five different dietary patterns (Supplementary Table S3), in our model. A com-
plete list of phenotypes is shown in Supplementary Table S2.

Data Pre-Processing. We excluded samples with more than 20% missing values and subsequently excluded var-
iables with more than 20% missing values. Remaining missing values were imputed using the mice package64. 
All continuous variables were inverse normalized and categorical variables were dichotomized. To account for 
family relatedness, we included one variable indicating a unique identifier per family during network inference 
and removed the according node from the network prior to analysis.

Data Availability. The transcriptomics and epigenomics data are available at ArrayExpress (accession num-
ber E-TABM-1140 and E-MTAB-1866, respectively). All other TwinsUK omics data are publicly available upon 
request on the departmental website (http://www.twinsuk.ac.uk/data-access/accessmanagement/).

Network Inference. The mixed graphical model was inferred using the Graphical Random Forest (GRaFo) 
method21 with the complementary pairs stability selection (CPSS) modification65. Briefly, for each variable all 
remaining variables were ranked according to their conditional dependence assessed by the random forest var-
iable importance. Consequently, two ranks were calculated for each pair of variables x and y: one based on the 
variable importance of x for the prediction of y and the other based on the importance of y for the prediction of x. 
The maximum (i.e. worse) of these two ranks was used as rank of the pair and the best ranking pairs were added 
as edges of the graphical model. This procedure was repeated for 100 random subsets of the data, each containing 
the half of all samples, and their complementary set containing the other half of the samples. The resulting 200 
graphical models were combined using CPSS65 to control the family-wise error rate (FWER). Edges which were 
contained in more than 80% of all complementary pairs were included in the final model, thereby ensuring FWER 
< 0.05. As effect estimators from random forest, and partial effects in mixed models in general, are non-linear 
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and depend on other variables in the model, there is no estimator for the sign of an edge in our model. We, thus, 
inferred the signs from regression models, regressing each variable against all others, for visualization purposes.

Network Analysis. We analyzed the graphical model as undirected, unweighted network G = (V, E), consisting 
of a set of vertices V and a set of edges E.

Several measures were calculated to assess the centrality of nodes in the network. The degree of a node v 
is defined as the number of edges that contain this node, thus assessing its direct associations. The clustering 
coefficient is the proportion of edges within the neighborhood of v that are present in the network. It measures 
the centrality of v within its local neighborhood. In contrast, the betweenness centrality considers indirect asso-
ciations of v and assesses its importance for the network integrity. It is defined as the proportion of all shortest 
paths that contain v12. Real-world networks often consist of densely connected modules, so-called clusters or 
communities that represent functional units within the network66. We used an unbiased way to identify clusters 
within our model, independently from the type of a variable. To this end, we used the algorithm of Brandes and 
colleagues67. It optimizes the modularity score that increases with the number of intra-cluster edges and decreases 
with the number of inter-cluster edges. Despite the high local clustering, many biological networks are character-
ized by short average path lengths between nodes. These networks are referred to as small world networks. This 
concept was formalized by Humphries22, who introduced the small word index for networks, that assesses the 
small-world-ness of a network by comparing its clustering coefficient and average shortest path lengths with an 
Erdös-Rényi random graph.

Network Stability. To test the robustness of our model we investigated the dependence of the network topology 
on the inference process.

Firstly, we assessed robustness of node centrality as well as module assignments when varying the cutoff for 
edge inclusion. To this end, we defined different models by including edges that are contained in 20%, 40%, 60%, 
80% and 100% of the subsamples, respectively, where 80% corresponds to the original model. Additionally, we 
analyzed a weighted network68 including all edges that were observed in at least one subsample. As a measure of 
stability of node centrality, we determined the correlation of node degrees and clustering coefficients between the 
original model and the model in the networks for different edge cutoffs (Supplementary Fig. S4). To assess the 
stability of module assignments, we calculated the adjusted RAND index69 as a measure of similarity between the 
seven network modules of the original age-mgm with modules identified from the networks that were inferred 
based on different edge cutoffs. The RAND index assesses the similarity of module assignments by counting the 
agreements between two different module assignments and adjusting it for the number of agreements that are 
expected by chance. An adjusted RAND index of 1.0 indicates identity between the module assignments of two 
networks while values around 0.0 indicate dissimilarity of the assigned modules. In addition, we compared the 
adjusted RAND indices of the networks for the different edge cutoffs with the background distribution of 1000 
randomly sampled module assignments (Supplementary Fig. S4C).

Secondly, we investigated the stability of the network and, in particular, the module assignments depending 
on the pre-selection of omics variables prior to the model inference. To assess the influence of this selection step 
on our results we inferred a second model from the same dataset but this time including all metabolomics var-
iables with known chemical identity, thus, completely dispensing variable selection for the metabolomics data. 
The resulting graph consist of 341 nodes (145 of them from the original model and 196 newly added) connected 
by 1152 edges. 707 of these edges are amongst the new metabolites, 174 connect one new metabolite with one 
original variable and 271 edges are amongst original variables, of which 253 are also in the original model. The 
63 edges that are missing in the large network compared to the original model are, on average, contained in 58% 
of the subsamples of the large network, suggesting that they were excluded due to the limited power. We find the 
added metabolites predominantly peripheral to the age-mgm, with 160 of the 174 edges connecting new metab-
olites with original variables being amongst metabolites and the remaining 14 with either blood lipid measures 
or renal function. A graphml file of the large network can be found in the Supplementary Dataset S1. To compare 
module assignments for the large network with the assignments for the original age-mgm, we restricted the large 
network to the nodes of the age-mgm. Edges in this network represent conditional dependence, given all other 
variable in the age-mgm and additionally given the 196 added metabolites. We assigned modules using the spin-
glass algorithm implemented in the igraph package (as calculating the optimal modularity is computationally 
expensive for large networks). Module assignments are compared using adjusted RAND index and comparison 
of detailed module membership (Supplementary Table S4).

The stability of the model depending on the underlying sample sets was assessed by comparing our initial 
model with models inferred from two disjoint datasets containing either the first or the second twin of each fam-
ily, respectively. Singletons were distributed randomly across both datasets. The resulting models are provided in 
graphml format in Supplementary Dataset S1.

All data was analyzed using R (version 3.1.2) along with the randomForest (version 4.6), igraph70 (version 1.0.1) 
and ggplot271 packages. The final network model is available as graphml file in the Supplementary Dataset S1.
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