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Abstract 

Metabolomics is an exciting area of research obtaining the chemical and metabolic signals from 

biosamples. Food consumption is strongly linked to metabolism making the metabolome an ideal 

phenotype for identifying biomarkers and helping refine and explore diet-disease associations. 

However, the metabolome is highly complex and influenced by many factors, such as age, disease, 

genetics and gut microbiota. Discordant monozygotic twins may provide a strong model for 

confirming association findings as they are matched for age, sex and the baseline genetic 

sequence.  

 

In this thesis, I explored the potential and applicability of the metabolome in nutritional research in 

two main areas: for identifying biomarkers of food exposure and further investigating the 

relationship of food intake with indicators of health. Firstly, I examined metabolomics profiles 

associated with self-reported food intakes and dietary patterns and confirmed these associations 

using the co-twin control method. I then identified top metabolite markers of food group intakes, and 

created and tested metabolite scores using multiple-methods. I searched for markers of gut 

microbiome diversity, an emerging indicator of health, by examining the association of alpha-

diversity with blood metabolomics profiles and the relationship with diet and the metabolic 

syndrome. In the final chapter, I created a dietary score predictive of visceral fat mass, a strong risk 

factor for cardio-metabolic disease, and examined the degree to which the relationship between diet 

and visceral fat mass is mediated by associated metabolites and microbiome taxa. Throughout 

each chapter I used discordant monozygotic twins to validate top results. Overall, my findings show 

that metabolomics is a highly versatile tool for advancing nutrition research from biomarker 

identification through to untangling the impact of dietary exposures on indicators of metabolic health 

and the gut microbiome.   
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Chapter 1 Introduction 

 
In this chapter I discuss twin studies that have examined the heritability of reported food and 

nutrient intakes and dietary patterns. I then introduce the usage of monozygotic (MZ) twins for 

recent nutriomics studies including specifically the metabolome and gut microbiome. Finally, I briefly 

introduce the usage of twins combined with nutriomic methods for the exploration of the effect of 

diet on metabolic disease.  

Part of this work has been published as a literature review in Nutrition Research Reviews (Pallister 

et al., 2014). 

 

Early nutrition studies on twins and multi-foetal pregnancies focused on the side effects of the 

pregnancy, achieving adequate maternal nutrition during gestation, and on the implications for the 

health of the growing foetuses (Brown and Carlson, 2000). The womb, however, is a solitary 

internal environment, where nutritional parameters can be measured with more ease. Once twins 

enter the world, where myriad of external environmental influences on different phenotypes can be 

assessed, twins provide us with the unique ability to accurately determine heritability of certain 

complex traits, such as dietary phenotypes. In this context, dietary phenotypes broadly refer to the 

observable and measurable foods, and their constituents, consumed by individuals or groups. 

Indeed, twin studies have proven that genetic makeup plays a significant role in dietary intakes 

(Rankinen and Bouchard, 2006). Moreover, twins have the advantage of limiting inter-individual 

variability as they are raised in a similar environment and have matched age, genes and sex (for 

monozygotic [MZ] pairs). They therefore represent a natural matched case-control experiment.  

Omics technologies allow for a systems approach to nutrition research, that encompasses 

the primary level of DNA sequence (genomics), gene expression (transcriptomics) and epigenome, 

to the intermediate phenotypes (proteome, metabolome, and microbiome), finally to clinical 

endpoints (Kussmann et al., 2006). Food constituents may influence each of these areas, but their 

effect is difficult to ascertain due to imprecise dietary assessment methods. Omics techniques may 

help ameliorate this issue through food intake biomarker discovery within the intermediate 

phenotypes, primarily the metabolome (Zivkovic and German, 2009). Once biomarkers of intake 
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have been validated, in conjunction with currently utilized intake and known biomarker measures, 

reliable associations between genomic and transcriptomic data can be made. This can allow for 

identification of groups at risk for poor dietary patterns, gene-diet interactions, and diet-disease 

associations, which combined could conjure an accurate depiction of a “healthy” phenotype 

(Kussmann et al., 2006), although this is limited by currently used methods of dietary assessment. 

Presently, epidemiological studies rely mainly on subjective reporting to obtain dietary 

information. These include prospective methods such as weighted and estimated food records, and 

retrospective methods, including 24-hour recalls and food frequency questionnaires (FFQs). Each 

of these methods carry their own strengths and weaknesses, which have been reviewed by Shim et 

al. (2014). Weighted records and estimated food records carry a higher participant burden, and use 

more time and costs, though they provide more accurate data as they do not rely on participant 

memory (i.e. recall bias). 24 hour recalls commonly require an interviewer (though computer-based 

methods are becoming more common-place), they are limited by possible recall bias and 

interviewer bias and are expensive and time-consuming. Both food records and 24 hour recalls 

require multiple days of evaluation to assess usual food intake. FFQs are the most commonly used 

dietary assessment method for population-based studies as they have a lower participant burden 

and resources and indicate habitual food consumption, though are limited to a set list of foods and 

have low accuracy due to recall bias. With these limitations in mind, identifying novel dietary 

biomarkers using multi-omics will be challenging and require confirmation and evaluation by dietary 

intervention studies.  

In this introduction, I first discuss the usage of twins for generating heritability estimates of 

food intake phenotypes, including energy and macronutrient intakes, dietary patterns and specific 

food group intakes. I then highlight the value of discordant MZ pairs, for furthering nutrition research 

through discovery and validation of biomarkers of intake and health status in conjunction with 

cutting-edge omics technologies, with metabolomics being the focal point.   
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1.1 Heritability of food intake phenotypes: The usage of twins 

for heritability estimates of intakes 

The classic twin design allows for a natural experiment that exploits the difference in genetic 

relatedness between MZ and dizygotic (DZ) twins to estimate the degree to which phenotypic 

variability, such as food or nutrient intake, is explained by genetic and environmental factors. 

Heritability is defined as the degree of total phenotypic variance due to genetic variation and is 

relevant only to groups or populations and not at the individual level (Visscher et al., 2008).  

1.1.1 Heritability of energy and macronutrient intakes  

Accurate assessments of the genetic influence on energy intakes is crucial as these provide a 

baseline assessment for which genes influence total food intakes (de Castro, 1993a) and therefore 

justify genotype-specific dietary intervention strategies. Furthermore, the degree to which 

macronutrient intakes are genetically determined may have significant implications for the role of 

elevated intakes of energy dense foods (i.e. those containing high concentrations of fat and refined 

carbohydrates) to the obesity epidemic (Guyenet and Schwartz, 2012). Therefore, multiple twin 

studies have evaluated these components through various dietary assessment methods (Figure 1-

1a; Appendix A Table 1).  

Studies of different size and quality have estimated heritability of different energy and 

macronutrient intakes to lie between 8% and 70% (Liu et al., 2013, Pimpin et al., 2013, de Castro, 

1993a, Heller et al., 1988, Wade et al., 1981, Hasselbalch et al., 2008, Aden et al., 1979, Hur et al., 

1998). Beginning from a young age, infant twins have showed that the genetic component provides 

a small, albeit significant, effect on energy and macronutrient intakes (8% to 12%) (Pimpin et al., 

2013
)
. As children age and they become less dependent on their parents, the genetic effect on 

energy and macronutrient intakes appears to intensify, as suggested by findings in 11-13 year-old 

US twins (31% to 48%) (Liu et al., 2013). This pattern is similar to other health-related phenotypes, 

including BMI (Dubois et al., 2012), which has been recently confirmed through a more complex 

longitudinal genome-wide complex trait analysis for determining DNA-based heritability (Llewellyn et 

al., 2014). Heritability of dietary energy and macronutrients in adults has been found to vary widely: 

for energy (32% to 65%), for fats (35% to 53%), carbohydrates (25% to 67%), and proteins (28% to 
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70%) (Hasselbalch et al., 2008, Hur et al., 1998, de Castro, 1993a, Wade et al., 1981). An 

extensive study of adult Danish twins showed inheritance of energy and energy-adjusted 

macronutrient intakes to range from 28% to 55% (Hasselbalch et al., 2008). Although, genetic 

effects on macronutrient intakes were more substantial in men (49% to 55%) than women (28% to 

36%), they were not different between macronutrients. In support of this, two other twin studies 

suggested the same genetic mechanisms governing energy intakes (Guyenet and Schwartz, 2012) 

influence macronutrient intakes (de Castro, 1993b, Faith et al., 1999).   

The lack of evidence to date for independent sets of genes influencing macronutrient intakes 

from those genes governing energy intakes has focussed attention on whether dietary energy 

density (kilocalories per gram of food) is genetically determined, with one study suggesting 

substantial genetic influence (de Castro, 2006), and another not (Hasselbalch et al., 2008). Despite 

this, in the latter Danish study, factors related to dietary energy density, including fibre, glycaemic 

index and the glycaemic load, were found to be significantly heritable both in women (49%, 36% 

and 33%, respectively) and men (41%, 30%, and 25%, respectively). The dependence of these 

phenotypes on the constituents of the whole diet suggests genetic effects on these phenotypes may 

be reflective of variable dietary patterns.   

1.1.2 Heritability of dietary patterns 

Dietary patterns are identified by two primary methods: empirically-derived or a priori (Hu, 2002). 

Empirically-derived dietary patterns employ statistical methods to identify natural groupings of 

intakes of food items (e.g., principal component analysis or cluster analysis (Hu, 2002)). A priori 

dietary patterns are generated based on adherence to diet parameters previously associated with 

health outcomes or physiological states, such as the Mediterranean diet score. A key advantage to 

using dietary patterns is the translatable results that encompass the degree to which genetics 

influence the global diet. 

Two twin studies on children using empirically-derived dietary patterns generated highly 

inconsistent heritability estimates despite reasonable sample size (Appendix A Table 2) (Breen et 

al., 2006, Faith et al., 2008). In a study of US 7 year olds (n=792) heritability estimates of food 

pattern intakes obtained by 24-hour recalls were stronger in boys than girls, ranging from 12% to 

79% and 20% to 56%, respectively (Faith et al., 2008). In another study of 4 to 5 (SD: 0.3) year-old 
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UK twin-pairs (n=214) heritability of food preference was measured through the use of a modified 

95-item “liking” food frequency questionnaire (FFQ) administered to parents (Breen et al., 2006). 

Heritability ranged from 20% (desserts) to 78% (meat and fish) on food liking-disliking groups. It is 

difficult to make valid comparisons between these two studies as the dietary assessment methods 

used measure different outcomes (i.e. intakes versus liking), although it has been found that 

exposures to foods generally encourages liking and intakes in children (Wardle et al., 2001). This 

suggests environmental influences may override genetic predispositions to food pattern intakes in 

children, which has implications for combating food neophobia, a highly heritable and perhaps 

evolutionarily important trait (Cooke et al., 2007).  

Contrary to studies in children, studies in adults have generated relatively stable heritability 

estimates for food pattern intakes across patterns and genders. “Healthy” dietary patterns, 

characterised by high intake of vegetables, fruits and whole grains and low intake of fatty foods of 

animal origin and simple carbohydrates, have heritability estimates ranging from 33% to 54%, while 

“unhealthy” patterns ranged from 33% to 50% (Appendix A Table 2) (van den Berg et al., 2013, 

Keskitalo et al., 2008, Teucher et al., 2007, Gunderson et al., 2006, van den Bree et al., 1999). 

Furthermore, a study which utilized a twins of mistaken zygosity approach (a useful method to 

control for potential equal environmental assumption bias (Scarr, 1968)) in US female twins 

(n=700), found additive genetic effects to account for 50% of the variability in healthy pattern 

intakes, while an unhealthy diet pattern was not significantly heritable (Gunderson et al., 2006). A 

healthy diet is more phenotypically similar to diets humans have consumed through millennia and 

evolved with, it is only very recently that high energy dense and processed foods have been readily 

available, as such it makes sense the variation in this diet may be more genetically influenced in 

some groups (Breslin, 2013). One study conducted on an older age group (≥ 50 years) determined 

additive genetic effects to account for 33% of the variability of consumption frequency for both 

healthy and unhealthy patterns (van den Bree et al., 1999). A pattern of increased dietary variety in 

modern societies may contribute to the obesity epidemic through ready availability of highly 

processed, calorific foods compared to healthier, natural choices such as fruits and vegetables 

(McCrory et al., 1999). In middle age to elderly twins from the “Virginia 30,000” twin study 

(N = 5,543) dietary variety seeking was up to 30% heritable, supporting the notion that our 

environment is an important driver of dietary variety (Scheibehenne et al., 2014).  
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Figure 1-1.  Estimated heritability of nutrients (a), food (b) and beverage (c) intakes from twin studies 
Intake heritabilities presented are significant findings from previous twin studies. Heritability histograms are color coded according to study. 
From clockwise, histograms are grouped according to age; the first line below the histogram denotes this: light grey, children; dark grey, 
adults. Within each age group, histograms were grouped according to accuracy of the dietary assessment method used, from most accurate 
(e.g. 2 day buffet style meal intervention) to least accurate (e.g. 67-item FFQ). The second line below the histograms indicates gender:  pink, 
female; blue, male; yellow, combined. Modified from Pallister et al.(Pallister et al., 2014) 
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1.1.3 Individual foods and food group heritabilities 

A number of recent studies have estimated the genetic effect of food and beverage intakes in 

humans (Figures 1-1b and 1-1c; Appendix A Tables 3 and 4) generating wide-ranging heritability 

estimates across food groups, particularly for children (Pimpin et al., 2013, Fildes et al., 2014). 

Findings from the UK Gemini cohort of infants and children aged 21 months to 3 years have shown 

age effects on heritability of food group intakes are evident even in the early years (Fildes et al., 

2014, Pimpin et al., 2013). Intakes for 21 month-old children were minimally heritable for food 

groups ranging from 9% (potatoes) to 17% (dairy). Whereas preference for food groups were highly 

heritable in 3 year-old children, ranging from 27% (dairy) to 54% (vegetables). It should be noted 

that heritability estimates in the older children were calculated from age- and sex-adjusted 

residuals, an approach which may have prevented inflation of shared environmental effects (McGue 

and Bouchard, 1984). The study on infants did not use this approach, perhaps resulting in an 

underestimation of the genetic effects on food group intakes.   

Recent studies in adults have also confirmed there is a genetic component to many food 

type intakes. Danish twins showed a large degree of variation in calculated heritabilities overall 

ranging from 17% (fish) to 68% (potato) in men, and 20% (whole grain cereal) to 61% (fish) in 

women (Hasselbalch et al., 2008). Similar results were seen in UK female twins where heritabilities 

ranged from 8% (refined grains) to 46% (garlic) (Teucher et al., 2007). Furthermore, the grouping of 

fruit and vegetable sources generated the highest heritability estimate in this cohort (49%). These 

authors proposed taste perception may be a key driver of the predicted genetic influence as foods 

characterised by strong tastes are the cornerstone of these groups. This observation extends to 

consistently substantial heritabilities for coffee as well as alcohol intakes, ranging from 29% to 73% 

and 28% to 82%, respectively (Hasselbalch et al., 2008, Teucher et al., 2007, Hur et al., 1998, de 

Castro, 1993b). Although, the pharmacological properties of both must be considered as alcohol 

dependence, as well as caffeine consumption-related traits, are both highly heritable (30% to 70%, 

and 36% to 58%, respectively) (Agrawal and Lynskey, 2008, Yang et al., 2010a) and may drive 

intakes up in a way independent of taste preference or a biological requirement for these items. 

Taste is the strongest determinant of food choices (Feeney et al., 2011), and a recent twin 

study showed multiple chemosensory facets of numerous food compounds to be highly heritable 
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and associated with particular gene variants (Knaapila et al., 2012). Future heritability studies of 

food intakes may shift the focus to food groupings characterized by specific tastes.   

1.1.4 Nutritional phenotype heritability conclusion 

In summary, twin studies have shown food and macronutrient intakes to be genetically determined. 

However, heritability estimates are often inconsistent between studies for multiple reasons. First, 

heritability is only specific to the population studied, which can vary greatly, due to the vast country 

specific food environments. Indeed, if a food is not readily available in a population there is no 

capacity for intakes to be genetically determined. Second, important evidence is available for 

familial and community influence on food intake (such as parenting styles, food exposures, 

socioeconomic status) which have an important place for battling current issues, such as childhood 

obesity (Berge, 2009) and food neophobia (Anzman-Frasca et al., 2012), and diabetes (Pollard et 

al., 2014). Finally, methods for determining heritability are not standardised, for instance the 

inclusion/exclusion of variables from the model (e.g. age, country), the segregation/aggregation of 

sexes, and the different methods for obtaining and analysing dietary data tend to be unique for each 

study. The same genetic mechanisms governing energy intakes are suspected to influence 

macronutrient intakes. However, recent studies have assessed the impact of gene variants 

encoding proteins related to the complex energy intake regulatory systems under central nervous 

system control (Guyenet and Schwartz, 2012) on preference for macronutrient types. These studies 

are few on twins (Hasselbalch et al., 2010, Bouchard-Mercier et al., 2012). Heritability estimates are 

more limited for macronutrient subtype intakes (e.g. the fatty acid profile (Hur et al., 1998, Heller et 

al., 1988)), different age groups or changing physiological states (e.g. pregnancy), and socially 

driven diets (e.g. veganism). Macronutrient profiles do not account entirely for food pattern 

preferences that may be more determined by genetic makeup. Variation in diet patterns of adults 

are to a relatively high degree attributable to genetics (van den Berg et al., 2013, Keskitalo et al., 

2008, Teucher et al., 2007, Gunderson et al., 2006, van den Bree et al., 1999). Furthermore, 

specific food type intakes that characterise a healthy diet pattern tend to be highly heritable in 

adults and in turn consist of foods that elicit distinctive taste responses (e.g. garlic, fruit and 

vegetables) (Teucher et al., 2007).  
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The substantial heritability of multiple dietary phenotypes supports the concept of 

personalised dietary recommendations, the generation of which has so far primarily relied on the 

exploration of an individual’s genetic makeup. However, on a molecular level, the search for 

genotypes predisposing individuals to particular dietary intakes is very much in its infancy. 

Nonetheless, the evidence generated by twin heritability studies can lead scientists to dietary 

phenotypes that are consistently highly heritable and demand further exploration through GWAS 

and candidate gene studies, following which twins can aid the determination of the heritable 

contribution of specific singly nucleotide polymorphisms (SNPs) to the dietary phenotype (as used 

previously for human height (Yang et al., 2010b)).   

A key issue which has long plagued nutrigenetic research arises from the inaccuracies of 

self-reported diet intake and food preference data and as a result, the hunt for dietary biomarkers, 

objective measures of dietary intakes and nutritional status, has been hastened. These may allow 

for more accurate heritability calculations for food and nutrient intakes as has recently been shown 

for salt intakes using urinary sodium excretion, an established, valid biomarker of salt intake (Kho et 

al., 2013), and could potentially be used in genetic association studies. However, the usage of 

biomarkers is not confined to genetic studies. It is becoming increasingly clear that for the 

establishment and refinement of personalised nutrition, in combination with genetic information, a 

whole organism, multi-systems approach must be undertaken, where the usage of biomarkers of 

food intakes and nutritional status will be essential. Nutrition research is now embarking on a 

nutriomics era, where emerging high-throughput omics technologies will substantially aid biomarker 

discovery and “healthy phenotype” definition. As will be explored next, twin studies are 

progressively taking steps to make a contribution in this way.   

1.2 The importance of twins for emerging nutriomic research 

This next section will explore emerging dietary studies on twins used in collaboration with high-

throughput omics to capture metabolism (metabolomics) and the gut microbiota (microbiome). 

Integrating these technologies to determine a “healthy” phenotype is the long-term goal of 

personalised nutrition (van Ommen and Stierum, 2002). A reoccurring issue with this type of 

analysis is the high degree of inter-individual variation, making associations often inconsistent 

(Kussmann et al., 2006). As such, the usage of identical twins discordant for dietary factors or 
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objective measures of nutrition status, matched entirely for age, sex, genetics and partially for early 

environmental influences, will provide an enhanced method of assessing diet and biological 

relationships.   

Obesity, the greatest and fastest growing health concern in the world at this time, is a highly 

genetic disorder, influenced by myriad complex factors (Despres et al., 1992). However, rare obese 

discordant identical twin pairs, provide a unique opportunity to disentangle lifestyle and 

environmental factors on the human system derangements induced by energy imbalance 

independently of genetics.  

1.2.1 Nutrimetabolomics 

Nutritional metabolomics involves the extensive chemical profiling of various tissues completed in a 

global manner through targeted and non-targeted methods used as a complement to diet- and 

health-related complex systems approaches. The metabolome gives unique information into the 

metabolic status of an individual by providing a snapshot of the metabolic processes undertaken in 

a bodily system, specific organ, tissue or cell, which cannot be identified through measuring gene 

expression or the proteome. Targeted methods measure a panel or group of chemically defined 

metabolites. Whereas non-targeted methods aim to detect all measureable chemicals in a sample 

and therefore have more coverage. Moreover, non-targeted metabolomics has the potential to 

detect previously unknown metabolites in a sample, increasing the possibility for identifying novel 

findings. Although, it may be difficult to draw conclusions from such findings. Targeted 

metabolomics has increased sensitivity over non-targeted methods measuring absolute 

concentrations as opposed to relative methods used for non-targeted methods. Moreover, targeted 

methods typically measure metabolites which are biologically well-defined (Patti et al., 2012).  

The two primary technologies used to analyse sample metabolomes are mass spectrometry 

(MS) and nuclear magnetic resonance (NMR) spectroscopy. NMR spectroscopy is a quantitative 

technique that determines information on the solution-state molecular structures in a sample 

through atom-based nuclear interactions (Marion, 2013). MS-based methods typically separate 

metabolites first in a sample using chromatography (examples include gas or liquid-based 

chromatography, and capillary electrophoresis), then metabolites are identified with a mass 

spectrometer (Feng et al., 2008). Although, some MS methods do not require the initial sample 
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separation step and metabolites can be quantified directly. Gas or liquid chromatography separate 

metabolites by time, providing detailed chemical information, though this may require complex 

chemical preparation that can destroy metabolites (Sellick et al., 2010). Moreover, often techniques 

(such as GC–MS and LC-MS) are combined as different techniques detect different types of 

metabolites.    

 Veenstra (2012) previously summarized the advantages and disadvantages of both 

methods. The key advantage of MS metabolomics is the sensitivity or the ability to measure very 

small analytes (within the femtomolar to attomolar range) with accuracy. Although the main 

disadvantage of MS is less precise quantification due to the MS signal intensity being influenced by 

the method of sample preparation (Veenstra, 2012), with complex sample preparation also being a 

disadvantage. Conversely, NMR spectroscopy is highly precise due to the peak area of a 

compound being proportional to the sample concentration of particular identified nuclei (such as 
1
H, 

13
C) (Veenstra, 2012). Moreover, NMR techniques require minimal sample preparation, are non-

destructive, and provide rapid results with high reproducibility at a low cost (Markley et al., 2016). 

The primary disadvantage of NMR-based methods is their lack of sensitivity (Veenstra, 2012), it is 

also non-discriminatory (Markley et al., 2016). 

Nutrition and the metabolome are intimately linked in that nutrients and non-nutrient food 

constituents supply metabolites, however these contributions make the dietary influence on the 

metabolome all the more difficult to ascertain (Gibney et al., 2005). Despite this, dietary pattern and 

food intakes generated through self-reported intake data have identified novel biomarkers within the 

metabolome (O'Sullivan et al., 2011, Altmaier et al., 2011, Guertin et al., 2014b, Zheng et al., 2014), 

validating this approach for use in epidemiological studies. However, the genetic influence on 

metabolite levels is wide-ranging (Suhre et al., 2011), therefore novel usage of the twin model 

provides an ideal method for determining the dietary impact on metabolites, through segregating 

the non-genetic component. One nutri-metabolomic study conducted on twins further confirmed 

self-reported intake associations with metabolites (Menni et al., 2013c). Female UK twins completed 

131-item FFQs that generated dietary constituents and intake patterns found to associate with 42 

metabolite levels in the larger twin population. Monozygotic twins discordant for dietary intakes were 

then identified and utilized to replicate results, confirming the utility of this method (Zivkovic and 

German, 2009).   
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Lipidomics, a branch of metabolomics, has been used to characterize environmental and 

lifestyle-induced changes to the global serum lipid profile in 14 healthy, young MZ obesity-

discordant twin pairs (Pietilainen et al., 2007). Levels of lysophosphatidylcholines, lipids associated 

with inflammation (Yang et al., 2005) and atherogenesis (Glass and Witztum, 2001) were found to 

be elevated in obese co-twins, with concommitant decreases in antioxidant (Wallner and Schmitz, 

2011) ether phospholipids. Moreover, despite the young ages of the obese co-twins (24 to 27 

years), these lipid profile changes were associated with insulin resistance.   

The metabolome is highly complex and inter-individual variation is high for a multitude of 

reasons (Zulyniak and Mutch, 2011), including age (Menni et al., 2013b), sex (Krumsiek et al., 

2015), genetics (Shin et al., 2014), ethnicity (Wikoff et al., 2013) and the gut microbiome (Wikoff et 

al., 2009), thus factoring solely nutritional intake into nutrimetabolomic studies is problematic and 

the relative importance of blood and urine levels is unclear. For example, previous analysis on the 

non-targeted metabolomics TwinsUK dataset showed 22 metabolites to account for 59% of the 

variance in age (Menni et al., 2013b). In another study conducted on the TwinsUK dataset the 

heritability of blood metabolite levels ranged from 10-81%, while only 30% of the blood metabolites 

were not significantly influenced by genetics (Shin et al., 2014). Finally, sex has shown to influence 

one-third of metabolites, while a network analysis showed certain metabolic pathways to be sex-

specific (Krumsiek et al., 2015). 

An area of increasing interest for its potential influence on metabolic processes is the gut 

microbiome. In rodents, the gut microbiota were found to account for 10% of the variability in the 

plasma metabolome (Wikoff et al., 2009). Although estimates for humans are unknown at this time, 

regional variation in human metabolomic profiles has been attributed in part to gut microbes 

(Nicholson et al., 2012). In turn, the gut microbiota carry out processes in the digestion and 

handling of nutrients, some of which are essential for optimal nutrition, prior to entering the host 

metabolome (Nicholson et al., 2012). Emerging methods for direct measurement of the intestinal 

metabolome will help to unravel the microbiome effects on host metabolome (Ursell et al., 2014). 

1.2.2 Microbiome 

The human gut microbiome is estimated to contain hundreds of bacterial species, with upwards of 

536,000 bacterial genes among them (Qin et al., 2010). For years, dietary constituents, such as 
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pre- and pro-biotics, have been consumed for their proposed health benefits postulated to be 

through modulation of the gut microbial population (Collins and Gibson, 1999). Population-based 

studies suggest dietary patterns appear to strongly drive gut microbiome composition. Differences 

have been observed between Americans and Malawians and Amerindians (Yatsunenko et al., 

2012), and consumers of meat- versus plant-based diets (Matijasic et al., 2013, Wu et al., 2011a), 

findings that are being confirmed by dietary intervention studies (David et al., 2014, O'Keefe et al., 

2015). Although the potential for the gut microbiota to drive eating behaviours has also been 

proposed through modifying cravings and inducing dysphoria (Alcock et al., 2014), for instance 

individuals showing a desire for chocolate have a distinctive urinary microbial metabolite profile than 

subjects who were chocolate indifferent, although they consumed identical diets (Rezzi et al., 

2007), studies in this area are limited. Twins discordant for obesity have shown significantly 

different gut microbial species composition (Tims et al., 2013). Lower BMI was associated with 

increased primary fibre degraders, while higher BMI subjects displayed an abundant network of 

butyrate producers, as such it was suggested that a shift in fermentation patterns near the end of 

the colon may be influencing energy homeostasis, although this study did not investigate the dietary 

impact on the microbial species population.   

An analysis on Finnish MZ twin pairs concordant (n=9) and discordant (n=11) for BMI 

revealed dietary energy intakes and constituents to be more influential on microbial populations 

than BMI group (Simoes et al., 2013). Specifically, stool bacterial counts were significantly 

influenced by intakes of energy, monounsaturated and n-3 and n-6 polyunsaturated fatty acids, and 

soluble fibre intakes. Furthermore, profiles of Bacteroides spp. were very similar in co-twins 

consuming the same amount of energy or saturated fats than twins discordant for intakes. These 

findings suggest that the obesity status per se is less influential on microbial species population and 

rather, it is the content of the diet (i.e. high energy and fat) mediating important changes, 

highlighting the essential need to incorporate dietary variables into obesity research. The role of 

host genetics on the microbiome composition is still unclear, though our group has recently shown 

that gut microbiome phenotypes ranged from 0% to 39% heritable (Goodrich et al., 2014a), further 

studies (which are ongoing) are needed to provide clarity.  

Recent findings suggest that the microbial species signature has the potential to promote and 

aggravate an obesity phenotype and may interact synergistically through diet-by-microbiota 
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interactions. In a unique study, transplantation of fecal samples from US female lean and obese co-

twins (3 DZ; 1 MZ) into germ-free mice revealed the obese compared to lean co-twin’s microbiota 

significantly increased adiposity and metabolic derangements in mice (Ridaura et al., 2013). When 

co-housed with lean mice, obese mice adiposity and metabolic effects were reduced, suspected to 

be a result of Bacteroidetes translocation from lean to obese mice. When fed a diet based on the 

lower tertile of saturated fats and upper tertile of fruits and vegetables of the US National Health 

and Nutrition Examination Survey (NHANES), obese mice adiposity was sustained, but relieved 

when co-housed with lean. Moreover, when compared to co-housing with normal chow, the 

healthier diet aided the success of lean to obese mice bacterial invasion. When supplied with an 

unhealthy diet containing the upper tertile of saturated fats with the lower tertile of fruits and 

vegetables from the NHANES survey, both lean and obese mice presented with significantly 

increased adiposity, mitigating transmissible effects. These results show the potentially causal role 

of the microbiome composition and potential for its manipulation. 

1.3 Applying omics to untangle the effects of diet on metabolic 

disease in twins 

Obesity elevates risk of cardiometabolic diseases such as the metabolic syndrome and CVD. The 

metabolic syndrome is a cluster of metabolic abnormalities characterised by at least three of the five 

symptoms: high blood pressure, an unfavourable lipid profile specifically elevated triglycerides and 

reduced high density lipoprotein cholesterol, elevated waist circumference, and elevated fasting 

blood glucose. One of the primary risk factors for cardiometabolic disease is elevated visceral fat 

mass (St-Pierre et al., 2002, Naukkarinen et al., 2014), which is metabolically active fat that covers 

the internal abdominal organs.  

In the previous sections I have discussed the independent applications of metabolomics 

and the microbiome to examining diet, primarily through studies on body weight discordant MZ 

twins. However the link between diet and metabolic outcomes such as the metabolic syndrome and 

related factors could potentially be further elucidated through collaborative applications of omics 

technologies. In one recent twin study (Bogl et al., 2016), using metabolomics in combination with 

waist circumference (an indicator of visceral fat mass) a strong genetic overlap between waist 
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circumference and a number of metabolites, most notably positive correlations between 

phenylalanine (rg = 0.40), glycoprotein (rg = 0.37), serum triglycerides (rg = 0.36) and BCAAs 

(rg = 0.30–0.40), and negative correlations between HDL particle diameter (rg = − 0.33) and HDL 

cholesterol (rg = − 0.30), supporting the usage of the MZ discordant twin model.  

A single study employed multi-omic methods to examine the time-dependent impact of a 

Big Mac challenge (Bondia-Pons et al., 2014) on 394 serum metabolites and faecal microbiota in 16 

MZ twin pairs discordant for BMI and 9 concordant non-obese MZ pairs (Bondia-Pons et al., 2014). 

Overall, intra-pair changes in metabolite levels were minimal following the Big Mac challenge. Intra-

pair differences at baseline for two branched chain amino acid (BCAAs) were found to converge 

after 120 minutes following the Big Mac challenge, with lower BCAAs in the high weight co-twin 

compared to the low weight co-twin at baseline. Secondary bile acids glycocholic acid and 

glycolithocholic acid were significantly different at 120 min following the Big Mac challenge, with 

higher levels in lean co-twins compared to higher weight co-twins. An examination into Bacteroides 

spp. diversity did not find significant differences between weight-discordant twins, though overall 

Bacteroides spp. diversity was positively associated with postprandial changes in sugar- and 

microbiota-derived organic acids. Links to other clinical indicators of metabolic health were also 

assessed, in particular postprandial changes in glycine-conjugated ursodeoxycholic acid were 

negatively associated with liver fat content as well as MI, a marker of insulin sensitivity. This study 

showed overall that within-pair similarity was the primary determinant of the metabolic response to a 

dietary challenge, highlighting the important role of genetics and early life factors in metabolism.  

 

1.4 Conclusion 

The interconnectedness between each omic presented here is evident. A systems biological 

approach that incorporates multiple omics methods for phenotype definition for use in nutriomic 

studies is much needed (Norheim et al., 2012). The principal central to this approach is that the 

whole organism will provide a more accurate view than the sum of its parts, or rather, the entire 

system has definitive characteristics which will not be replicated by simply adding the effects 

(MacLellan et al., 2012). However, a primary setback for amalgamating these methods is the 

inability to define what is “normal” due to the significant inter-individual variability underlying 
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metabolic processes (Kussmann et al., 2006). Furthermore, it has been suggested that many omics 

vary relatively little over time within individuals but significantly between individuals compounded by 

factors such as age, BMI and gender (Eady et al., 2005). To aid in discerning these effects, 

longitudinal phenotypic information from twin registries will be a critical resource for molecular 

dietary studies of the future (van Dongen et al., 2012). The studies presented here fall short of this 

view of an integrated technology-driven approach and focus rather on omics in isolation as this is 

where the current research stands. To move forward twin cohorts need to make a collaborative 

effort, collecting extensive dietary data in conjunction with multiple omics, undertaking complex 

statistical analyses, while contributing findings to international proposed databases such as the 

Nutritional Phenotype database (van Ommen et al., 2010).  

Identifying individuals susceptible to poor dietary habits and defining an (un)healthy 

phenotype are the overarching aims of nutrigenetic and nutrigenomic research. Twins have 

provided valuable evidence that many dietary intakes are influenced by genetics, validating further 

nutrigenetic research and future dietary counselling which targets this domain. Early studies of twins 

for nutriomic studies have primarily been for unhealthy phenotype definition and single omic, while 

being less inclusive of diet. However, future studies need to begin to incorporate dietary factors to 

fill a void in this research area. Although accurate dietary assessment methods are problematic 

(Tucker et al., 2013). As twins have shown, metabolites are significantly correlated with dietary 

constituents, and could in the future be used as surrogates, as well as other techniques (e.g. 

microbiome) (Lloyd et al., 2013, Vernocchi et al., 2012). Twin studies will remain an important and 

integral part of nutritional research now and in the future.   
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Chapter 2 Hypothesis, aims and tasks of the thesis 

2.1 Hypothesis 

Metabolites have the potential to act as useful surrogates of dietary intakes. Identification of 

metabolites in tissues that consistently associate with reported intakes through validation by the co-

twin control method can be used to better establish and explore diet-disease relationships. 

2.2 Aims 

i) To identify and characterise metabolite associates of self-reported intakes of foods and 

dietary patterns.  

ii) To create, validate and test the utility of food group metabolite scores as novel biomarkers 

of food group intakes.  

iii) To identify metabolite marker(s) of gut microbiome diversity that are modulated by food 

intake, identify the gut microbiome profile of those markers and their relationship to 

metabolic disease.  

iv) To create a visceral fat mass dietary risk score and characterise the score using a multi-

omic approach.   
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Chapter 3 Materials and methods 

 
In this chapter I provide an overview of the study population used, I briefly describe the food 

frequency questionnaire used to evaluate food intakes, the metabolomics and genotyping datasets 

and clinical measures used throughout the thesis. Moreover I introduce the statistical method for 

calculating heritability.  

 

3.1 Subjects and phenotypes 

3.1.1 Subjects 

Subjects included in all analyses were twins enrolled on the TwinsUK registry, a sample of 

extensively phenotyped, mainly female, adult MZ and DZ twins from the UK (Moayyeri et al., 2013, 

Spector and Williams, 2006). Healthy Caucasian twins were recruited nation-wide primarily through 

media campaigns. Twin zygosity was determined by a validated questionnaire or through multiplex 

DNA fingerprinting (PE Applied Biosystems, Foster City, CA). Ethical approval has been obtained 

from St. Thomas’ Hospital Research Ethics committee and all subjects have undergone informed 

consent. Specifically, my thesis included female and male twins, aged 18 to 80 years, who had 

completed at least one FFQ between 1994 and 2001 (Appendix B Document 1), in 2007, and in 

2014 and 2015 (Appendix B Document 2).  

3.1.2 Food frequency questionnaire 

Twins completed a 131-item FFQ that was developed and validated against pre-established nutrient 

biomarkers for the European Prospective Investigation into Diet and Cancer (EPIC) Norfolk 

(Appendix B Documents 1 and 2) (Bingham et al., 2001, Bingham et al., 1997). Processing of the 

FFQ, including subject exclusion and determination of nutrient intakes was completed by 

nutritionists from the University of East Anglia. Intake frequency of an average serving of listed 

foods was determined from a 9-point scale ranging from “Never or less than once/month” to “6+ per 

day”. The questionnaire was intended to capture average intakes in the past year. Nutrient intakes 

were determined via consultation with McCance and Widdowson's The Composition of Foods 6
th
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edition (McCance et al., 1991), this resource includes nutritional information (including fat, sodium, 

fibre, and carbohydrates, vitamins and minerals) for over 1,200 commonly consumed foods derived from 

the UK Nutrient Databank. 

3.1.2.1 Exclusion criteria 

Submitted FFQs were excluded if greater than 10 food items were left unanswered, or if the total 

energy intake estimate derived from FFQ as a ratio of the subject’s estimated basal metabolic rate 

(determined by the Harris-Benedict equation (Frankenfield et al., 1998)) was more than two 

standard deviations outside the mean of this ratio (< 0.52 or > 2.58). Overall, this included 828 twins 

(9.4%) and 284 twins (6.5%) who completed FFQs between 1994 and 2007 (n=8785) and between 

2014 and 2015 (n=4400), respectively. 

3.1.2.2 Residual energy adjustment 

Differences in reported intakes as a product of physiological requirements (due to differences in 

body size, physical activity, and metabolic efficiency) may mask true diet-outcome associations. To 

account for this, food and nutrient intakes were energy adjusted using the residual method prior to 

analysis (Willett and Stampfer, 1986), unless otherwise specified. This involved regressing each 

food item or nutrient on the estimated total kilocalorie intake. The residual was then added to a 

constant, in this case, predicted food or nutrient intake for the mean estimated total kilocalorie 

intake. 

3.1.3 Anthropometry 

Anthropometric measures including body height (metres) and weight (kilograms) were taken at 

clinical visits by a trained research assistant. Body mass index (BMI) was calculated as body weight 

in kilograms divided by the square of height in metres. 

3.1.4 Samples 

3.1.4.1 Blood samples 

Fasted blood samples were collected by a trained research nurse at the twin’s annual visit at St. 

Thomas’ Hospital. Twins were instructed to fast for 8 hours prior to their clinical visit. Visits occurred 

in the morning (9:00 or 10:00) or afternoon (13:00 or 14:00). Time of collection was not recorded 
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therefore diurnal variation may have influenced the results. Following collection samples were 

stored at -80°C until further processing. 

3.1.4.2 Faecal samples 

Faecal samples were collected by the twins at home. Following collection, samples were stored in 

the refrigerator for 2 days or less prior to their annual clinical visit at St. Thomas’ Hospital. Once the 

samples arrived with the clinical team they were stored at −80°C until further processing. 

3.1.5 Clinical measures 

3.1.5.1 Blood pressure 

Systolic and diastolic blood pressure (SBP and DBP, respectively) were carried out by an 

experienced nurse using the Marshall mb02 or the Omron Mx3 Digital Blood Pressure Monitors. An 

average of three readings (separated by one minute) was used for analysis.   

3.1.5.2 Blood lipid profiling and glucose 

Three devices (Cobas Fara; Roche Diagnostics, Lewes, UK; Kodak Ektachem dry chemistry 

analysers [Johnson and Johnson Vitros Ektachem machine, Beckman LX20 analysers, Roche 

P800 modular system]) were used to measure serum levels of total cholesterol, high density 

lipoprotein (HDL) cholesterol and triglycerides (TG) on fasted blood samples using enzymatic 

colorimetric assays. Using an enzymatic colorimetric slide assay fasting blood glucose was 

measured on an Ektachem 700 multichannel analyser (Johnson and Johnson Clinical Diagnostic 

Systems, Amersham, UK).  

3.1.6 Metabolomics 

3.1.6.1 Non-targeted metabolomics 

Metabolites were detected and quantified in fasted serum and plasma samples by the 

metabolomics platform Metabolon, Inc. (Durham, NC), which uses a non-targeted mass 

spectrometry based-approach as has been previously described (Menni et al., 2013b) and 

described in greater detail below. Metabolomics was completed cross-sectionally in three batches, 

one in serum and two in plasma. Quality control of the non-targeted metabolomics dataset was 

undertaken by Metabolon Inc. and Dr Cristina Menni. Raw data were median-normalised by dividing 



                                                                              36 

metabolite concentrations by the day median of that metabolite. As the metabolite concentrations 

were not normally distributed, all metabolites underwent a rank-based inverse normal 

transformation (INT). The rank-based INT method used back transformation of the sample quantile 

to estimate the expected normal scores (Beasley et al., 2009). Overall there were 456 metabolites, 

including 292 chemically identified (‘known’) and 164 for which the identity is currently unknown 

(‘unknown’). In 2016 non-targeted metabolomics profiling was also completed on blood samples at 

3 time points on 2069 twins, the same quality control procedures were undertaken, the details of 

this dataset are not included as only one metabolite was used for analysis in Chapter 6. 

3.1.6.1.1 Metabolon metabolomics detailed methods 

Methanol was added to samples for protein precipitation and isolation of a range of metabolites, 

samples were shaken vigorously for 2 minutes, centrifuged, and the resultant extract divided into 

four portions: one to be analysed by ultra-high performance liquid chromatography-tandem mass 

spectrometry (UPLC-MS/MS; positive mode), one to be analysed by UPLC-MS/MS (negative 

mode), one to be analysed by gas chromatography–mass spectrometry (GC-MS), and one sample 

saved in case of incident. Three different controls were used in conjunction with sample analysis, 

these included: human plasma samples that have been analysed considerably by Metabolon, Inc. 

for replication; water samples for process blanks; and multiple standard solutions spiked into all 

experimental samples to assess equipment performance. Randomisation of samples and controls 

was ensured across runs. 

 The UPLC-MS/MS platform used a Waters Acquity UPLC and a ThermoFisher LTQ mass 

spectrometer, the latter comprised of an electrospray ionization source and a linear ion-trap mass 

analyser. The instrument had scanning set at 99-1000 m/z and to fluctuate between MS and 

MS/MS. Positive and negative ions were identified in acidic and basic extracts, respectively by 

separate injections.  Columns (Waters UPLC BEH C18-2.1 × 100 mm, 1.7 μm) had sample extracts 

loaded and then gradient-eluted with water and 95% methanol with 0.1% formic acid or 6.5 mM 

ammonium bicarbonate for acidic and basic extracts, respectively. Following each injection, 

columns were washed.  

 Analysis of samples by GC-MS were first vacuum dried for 18 h minimum before 

derivitization using bistimethyl-silyl trifluoroacetamide under nitrogen. Following derivitization, 
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separation of samples occurred on a 5% phenyldimethyl silicone column. The column used helium 

as the carrier gas at a temperature rise from 60° to 340° C for a run time of 17 minutes. Sample 

analysis was conducted on a Thermo-Finnigan Trace DSQ MS set at unit mass resolving power 

with electron impact ionization and an atomic mass unit scan range from 50-750. 

 Software developed at Metabolon was used for metabolite identification, which compared 

ion features (retention time, molecular weight (m/z), preferred adducts, MS spectra, etc.) in the 

experimental samples to a reference library (Dehaven et al., 2010). Known metabolites were 

identified by comparison to a mass spectroscopy library containing >2,400 purified standards. 

Approximately 5,300 unknown, but commonly reoccurring biochemicals have been added to this 

library for identification in the experimental samples. Peaks were quantified by area under the curve 

and therefore use relative measures and hence have no units.  

 

3.1.6.2 Targeted metabolomics 

A targeted metabolomic assay using the Biocrates Absolute IDQTM-kit p150 (BIOCRATES Life 

Sciences, AG, Innsbruck, Austria) was conducted on serum samples (by Biocrates employees) from 

1030 twins who also had non-targeted metabolomics profiling from the same visit the details have 

been previously described (Illig et al., 2010, Römisch-Margl et al., 2012). In short, the flow injection 

analysis (FIA) tandem mass spectrometry (MS/MS) method quantifies 163 small molecule 

metabolites at once through multiple reaction monitoring. Metabolite quantification is completed by 

reference to the applicable internal standards. Concentrations of targeted metabolites are reported 

in μM. 

The Biocrates platform analyses acylcarnitines (Cx:y), hydroxylacylcarnitines [C(OH)x:y] and 

dicarboxylacylcarnitines (Cx:y-DC); amino acids; sphingomyelins (SMx:y) and sphingomyelin-

derivatives [SM(OH)x:y]; and glycerophospholipids (PC) in absolute metabolite values (mM). The 

metabolite concentrations were right-skewed and therefore log transformation was undertaken. 

There were 18 metabolites measured both by the Biocrates and Metabolon platforms, therefore for 

analyses including both platforms only 145 metabolites were considered from the Biocrates 

platform. Table 3-1 shows the Pearson’s correlation between metabolites measured on both 

platforms.  
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Table 3-1. Pearson's correlation between metabolites measured by the targeted and non-
targeted platforms (n=1030) 

Metabolite name Pearson correlation 
(P<0.001) 

Glutamine 0.3121 

Tryptophan 0.5094 

Histidine 0.3099 

Phenylalanine 0.4804 

Threonine 0.5537 

Tyrosine 0.6411 

Methionine 0.5298 

Ornithine 0.1522 

Valine 0.6377 

Proline 0.8113 

Acetylcarnitine 0.6423 

Serine 0.4613 

Hexanoylcarnitine 0.6972 

Glycine 0.6759 

Butyrylcarnitine 0.6375 

Propionylcarnitine 0.6719 

Octanoylcarnitine 0.7703 

Decanoylcarnitine 0.7743 

 

3.1.7 Genotyping 

Genotyping for TwinsUK samples has been outlined recently (Metrustry et al., 2014). Quality control 

of the genotyping data was undertaken by Dr Massimo Mangino. Multiple Illumina arrays were used 

for genotyping: Human-Hap300 (Richards et al., 2008), HumanHap610Q, 1M-Duo and 1.2M-Duo 

1M. First, normalized intensity data from each of the arrays were pooled independently (1M-Duo 

and 1.2M-Duo 1 M pooled together), then genotypes assigned for each dataset by the Illuminus 

calling algorithm (Teo et al., 2007). Had an individual’s expected genotype been called with lower 

than a posterior probability cutoff of 0.95, no calls were assigned. Pooling was validated by a visual 

inspection for observable batch effects of 100 random, shared SNPs. SNPs were excluded in a 

similar manner from each of the three datasets by visually inspecting intensity cluster plots of 

significant SNPs for no calling bias due to overdispersion, and/or false assignment of genotype. 

Samples and SNPs were further excluded for the reasons outlined in Table 3-2 (columns A and B, 

respectively). Each of the three datasets had alleles aligned to HapMap2 or HapMap3 forward 

strand alleles. A pair-wise comparison was then conducted between the three datasets that allowed 
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for additional sample and SNP exclusion for subsequent avoidance of false genotyping, as outlined 

in Table 3-2 (column C). Finally, the three datasets were merged, reserving data from the array that 

had typed the largest number of SNPs when two different arrays were used for one individual.  

 

Table 3-2. Exclusion criteria for samples, SNPs and following pair-wise comparison 
A. Samples  B. SNPs  C. Pair-wise comparison 

1. Sample call rate <98%  1. Hardy-Weinberg p-value 
<10

-6
 (determined in a sample 

of unrelated subjects) 

 1. Similarity at corresponding 
samples <1% 

2. Heterozygosity across all SNPs 
≥ 2 
SD from the sample mean 

 2. MAF <1% (determined in a 
sample of unrelated subjects) 

 2. Similarity at corresponding 
SNPs <1% 

3. Identification of non-European 
ancestry by comparison of the 
PCA with HapMap3 populations. 

 3. SNP call rate < 97% for 
SNPs with MAF ≥ 5%, 
or <99% for 1% ≤ MAF < 5% 

 3. All pair-wise dataset 
comparisons inspected for 
logistic regression by visual 
investigation of QQ plots 

4. Pair-wise IBD probabilities 
imply sample misidentification 

   4. Hardy-Weinberg p-value <10
-6

 
(determined in a sample of 
unrelated subjects) 

5. Misidentified MZ and DZ twins 
were amended in accordance 
with IBD probabilities 

   5. Pair-wise IBD probabilities 
imply sample misidentification 

Abbreviations: SNPs, single nucleotide polymorphisms; SD, standard deviation; PCA, Principal Components 
Analysis; IBD, identity-by-descendant; MZ, monozygotic; DZ, dizygotic; MAF, minor allele frequency; Quintile-
Quintile, QQ. 

 

3.2 Statistical analysis 

3.2.1 Heritability 

Heritabilities of dietary phenotypes were determined using linear structural equation modeling in Mx 

(Neale et al., 2003, Neale et al., 1992). The variance of the phenotype is decomposed into 3 

different effect components: A, additive genetic; C, common environmental; E, non-shared 

environmental. This is termed univariate ACE modelling. If MZ twins are significantly more alike in a 

trait than DZ twins, it is indicated that additive genetic effects are high. The common environmental 

component indicates the effect of the family environment on a trait. In the model the effect of the 

family is assumed to be equal in both MZ and DZ twin pairs (Kyvik, 2000). The effects that are 

unique to each individual and also the measurement error are captured by the non-shared 

environmental component. Heritability (h
2
) is the proportion of the variance in a trait due to genetic 

factors and is demonstrated by the equation, h
2
 = (A)/(A + C + E). Each of the four models: ACE, 

AE, CE, and E were tested and evaluated by the Akaike’s information criterion (AIC); the lowest AIC 
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indicated the best fitting model reflecting a good balance between goodness of fit and parsimony 

(Neale et al., 1992). Prior to modelling, the phenotypes were adjusted for age and sex using linear 

regression and the residuals used in the subsequent analysis.   
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Chapter 4 Metabolomic associations of self reported food group 

intakes and food patterns 

 
In this chapter I have undertaken a discovery approach, examining all metabolite associations with 

food intakes and dietary patterns in the TwinsUK population with the primary aim of identifying 

candidate food intake biomarkers. I applied the discordant MZ twin model as a novel method of 

replicating significant findings from the discovery analysis.  

Part of this work has been published in PLoS One (Pallister et al., 2016). 

 

4.1 Introduction 

For decades epidemiological studies have depended on self-reported accounts of food intake to 

evaluate dietary intakes. Using these approaches, however it is difficult to precisely capture food 

intakes and portion sizes and consequently the findings of diet-disease association studies have 

been called into question. Using objective biomarkers of food intake (such as essential fatty acids in 

blood to estimate fatty fish intake), there is potential to improve upon this issue, but not many 

biomarkers have so far been identified and have scarcely been utilized in epidemiological settings.  

 The high-throughput profiling of metabolites completed through targeted and non-targeted 

means in tissues and biological fluids used in collaboration with dietary studies is deemed 

nutritional metabolomics. Diet and the chemicals within our bodies (metabolites) are intimately 

linked, as the food we consume provides the basic chemical inputs which our bodies use to 

produce metabolic products downstream, in addition to the energy required to complete these 

mechanisms that are essential to life.  

 Recently, metabolomics studies using non-targeted approaches have identified novel 

biomarkers of food intake in large population settings. Among those, subjects from the Prostate, 

Lung, Colorectal, and Ovarian Cancer Screening Trial were used to identify 39 candidate dietary 

biomarkers for multiple food groups (Guertin et al., 2014b). In two separate studies of subjects from 

the African Americans in the Atherosclerosis Risk in Communities Study 39 metabolites were found 

to associate with alcohol intake (Zheng et al., 2014) and 48 to reported food intakes (Zheng et al., 
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2014). Studies that have applied targeted metabolomics methods have also been successful in 

identifying significant associations between self-reported dietary intake patterns and serum 

metabolites (O'Sullivan et al., 2011, Altmaier et al., 2011, Floegel et al., 2013b).  

A primary issue to be addressed is how candidate biomarkers of a healthy diet can be most 

effectively identified in collaboration with currently utilised methods of dietary assessment. 

Emerging research on dietary patterns is showing promising results within classic nutritional 

epidemiological studies (Hu, 2002). Empirically-derived dietary patterns are particularly relevant as 

they represent real trends in population reporting. Conversely, an advantage of using a priori over 

data-driven methods to detect metabolite biomarkers is that these patterns can be replicated in 

other populations. Due to its emerging importance for ameliorating derangements in metabolism 

associated with the metabolic syndrome (Kastorini et al., 2011), and the tendency of subjects in this 

group to underreport intakes (Kastorini et al., 2011), objective biomarkers of the Mediterranean diet 

would be particularly useful for clinicians and nutritionists. 

Genetic factors have a strong impact on metabolism and may influence up to 81% of the 

variation in blood levels (Shin et al., 2014). As shown by classic examples of gene mutations 

causing inborn errors of metabolism that need dietary adjustments (e.g. phenylketonuria, maple 

syrup urine disease), complicated interactions exist between genes, metabolism and diet. However, 

recent studies suggest variation at a multiple loci with less exaggerated independent effects on 

metabolism are likely primarily responsible for the interplay between diet and its link to complex 

diseases (Kettunen et al., 2012). The effect of lipid metabolism genes (e.g. hepatic lipase gene, 

cholesteryl ester transfer protein) on the variation in blood cholesterol levels has been shown to 

depend on dietary fat content in recent intervention studies (Qi et al., 2015, Xu et al., 2015), 

however effects were minimal. Using more than 400 blood metabolites in the TwinsUK and the 

Cooperative health research in the Region of Augsburg (KORA) datasets (Wichmann et al., 2005, 

Shin et al., 2014), 145 metabolic loci were shown to associate with blood metabolites. The identified 

loci from these studies may pinpoint areas where metabolism, diet and genetics interact.  

It may be challenging to replicate findings between populations due to the large inter-

individual variability in metabolite levels (Sampson et al., 2013), to factors such as age (Menni et al., 

2013b) and genetics (Shin et al., 2014). Identical (monozygotic, MZ) twins who are matched for 

age, sex and the baseline genetic sequence, may aid reproducibility issues by acting as “co-twin 
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controls”. The TwinsUK group has used this method previously in one dietary metabolomics study 

(Menni et al., 2013c), where FFQ-derived principal component dietary patterns were found to 

correlated with 42 metabolites in the greater twin population with top findings replicated in MZ twins 

discordant for the dietary patterns.  

 

Using blood samples profiled by both targeted and non-targeted metabolomic platforms, my aims 

for this chapter were to:  

i) To identify novel associations with blood metabolites with reported food intakes and dietary 

patterns. 

ii) To replicate these associations using MZ twins discordant for food intakes.  

iii) To identify potential genotypes influencing food intakes from SNPs previously shown to be 

associated with metabolite levels on the TwinsUK and KORA cohorts (Shin et al., 2014). 

iv) To provide the results of this analysis online through designing the DietMetab tool.
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4.2 Materials and methods 

I included 3559 female twins, who completed a 131-item validated FFQ between 1995 and 

2007, and had Metabolon metabolomics and BMI data available within and including (+/-) 5 

years of FFQ completion. I also analysed a subset of this sample who had Biocrates targeted 

metabolomics data (n=858).  

The characteristics of the study population can be found in Appendix C Table 1. 

4.2.1 Food items 

Previously, intake frequencies were adjusted for total energy intake using the residual method 

(Willett and Stampfer, 1986) and I summed these into 71 food groups based on nutrient content, 

taste and usage (Appendix C Table 2). 

4.2.2 Dietary patterns 

4.2.2.1 Principal components 

The principal components analysis (PCA) had been completed and the steps outlined 

previously (Teucher et al., 2007). The PCA was undertaken by nutritionists at the University of 

East Anglia. Briefly, the 131 food items were combined a priori into 54 groups based on nutrient 

content and culinary use. Intake frequencies of these groups were the sum of the servings per 

week for the original questionnaire items they were derived from. The residual energy adjusted 

food group intake frequencies (servings/week) were standardised to z scores and then used in 

the PCA. Bootstrapping is a resampling approach used to approximate properties of an 

estimator by evaluating those properties when sampling from an approximating distribution. It 

was used to test if family relatedness influenced the results. Briefly, the sampling distribution of 

the components was estimated in unrelated individuals. 10,000 bootstrap replications of the 

PCA were undertaken on subsamples containing one randomly selected twin. The full dataset 

PCA loadings were assessed against a 95% confidence interval determined from the 2.5% and 

97.5% percentiles of this distribution. It was determined that family relatedness had no 

significant effect. The top 20 components were examined on a scree plot (Appendix C Figure 

1), elbows were shown after components 1 and 5, however, components 2 to 5 were 

reasonable dietary patterns therefore the first 5 components were used. These 5 components, 

that explained 22% of the total variance, were denoted according to their top factor loadings 
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(Table 4-1) as follows: ‘Fruit and vegetable’; ‘High alcohol’; ‘Traditional English’; ‘Dieting’; and 

‘Low meat’. Consult Appendix C Table 3 for their complete factor loadings.  

 

Table 4-1. Principal component derived dietary patterns, with percentage of variance 
explained, and foods consumed in high and low intakes (Teucher et al., 2007) 

Diet 
pattern 

Variance 
explained High intakes

1
 Low intakes

2
 

Fruit & 
vegetable 

8.2% Fruit, allium and cruciferous 
vegetables  

Fried potatoes  

High 
alcohol 

3.9% Beer, wine and allium 
vegetables  

High fiber breakfast cereals and 
fruit  

Traditional 
English 

3.6% Fried fish and potatoes, meats, 
savoury pies and cruciferous 
vegetables  

 

Dieting 3.3% Low-fat dairy products, low-
sugar soda  

Butter and sweet baked products  

Low meat 3.2% Baked beans, pizza and soy 
foods  

Meat, other fish and seafood, and 
poultry  

1
Food frequency questionnaire items with factor loadings ≥0.20.  

2
Food frequency questionnaire items with factor loadings ≤-0.20.  

 

4.2.2.2 Mediterranean diet score 

I calculated Mediterranean diet adherence using the modified Mediterranean diet score (MDS) 

method, as outlined by Trichopoulou (Trichopoulou et al., 2005). Nine food/nutrient categories 

were included to generate a Mediterranean diet score (MDS) of 0 to 9 (“least” to “most” 

Mediterranean). The two nutrient intake categories included alcohol and fatty acid ratio 

(monounsaturated+polyunsaturated/saturated fatty acid intakes), both in grams per day and 

residual energy adjusted. Seven food group intakes were generated including: fruits (including 

nuts), vegetables, meats, fish, dairy, cereals, and legumes. To form groups, I first multiplied 

intake frequencies for assigned foods by the amount in grams per serving (Appendix C Table 

4) and then divided by 7 to determine intake of that food in grams per day (raw data are per 

week). Next, the amount in grams of these foods was added to make the final category total.  

Categories in grams were then adjusted using the residual method (consult Section 3.1.2.2).   

I then generated the scores. For all frequency categories as well as the fatty acid intake 

ratio, I determined median intakes of each category using all eligible twin data for FFQs 1 and 2 

combined. I assigned a score of 0 (no MDS) or 1 (MDS) for each category depending on 

whether the twin was above or below the median intake, specific to the category (refer to Table 

4-2). For alcohol intakes, a range was used for score assignment: twins between 5 and 25 g/d 

were assigned a score of 1, while those above or below this range were assigned a score of 0. 
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Finally, the MDS was then generated by summation of each category score to generate a score 

of 0 to 9.  

Table 4-2. Criteria for a score assignment of 1 on the Mediterranean diet 

Above median  Below median  Moderate 

Fruit & nuts  Meat  Alcohol: 5 – 25 grams/d 
Vegetables  Dairy   
Legumes     
Fish     
Cereals     
Unsaturated : saturated fatty acid     

 

4.2.3 Replication population 

One metabolite was particularly strongly associated with low fat milk intake in the TwinsUK 

sample, I therefore obtained data on milk intake from the Cooperative Health Research in the 

Region of Augsburg (KORA) study to replicate this association. The KORA study includes 

individuals from the region of Augsburg, Germany who are unrelated (Holle et al., 2005). As part 

of the fourth survey (S4) between 1999-2001 4261 persons aged 25-74 years were examined. 

For the replication analysis, 1593 individuals with serum metabolite levels of the top milk-

associated metabolite in the TwinsUK sample were used. Dietary intake in the KORA study was 

determined by a validated FFQ on the same day as blood sampling (Winkler and Doring, 1998) 

The questionnaire included 24 food items and asked subjects to recall their “average 

intake” out of the six frequency categories: almost daily, several times per week, about once a 

week, several times per month, once a month or less, never. For the replication analysis I used 

the item “milk intake including buttermilk”. Prior to analysis, I recoded the milk intake variable so 

interpretation of the result was easier therefore the least frequency (“never”) was coded as 1 

and the highest frequency (“almost daily”) was coded as 6, and I changed the rest of the 

categories as follows: once a month or less, 2; several times per month, 3; about once a week, 

4; and several times per week, 5.   

4.2.4 Statistical analysis 

Statistical analysis was carried out using Stata version 12. 

For each metabolite, I ran a random intercept linear regression analysis using each food group 

as the predictor in the discovery sample, excluding discordant MZ twin pairs (pairs ≥ 1 SD apart 

in intake by food group). I adjusted for age, metabolite batch effects, BMI and family 

relatedness:   Υ𝑖 = 𝛽0 + 𝛽𝑖Χ𝑖𝑗 + 𝛾𝑖𝑎𝑔𝑒𝑖𝑗 + 𝛿𝑖𝐵𝑀𝐼𝑖𝑗 + ζ𝑗 + 𝜀𝑖𝑗 
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where Yi is the metabolite and Xij is the food group intake of twin j from pair i, and ζj is the family-

specific error component that captures the unobserved heterogeneity or family characteristics.  

I used the Bonferroni correction to adjust for multiple testing which allowed a significant 

threshold of 1.08x10
-6

 (0.05/[77 diet phenotypes x 601 detected metabolites]). For associations 

that passed the significance threshold in the discovery sample, I repeated/replicated them using 

the same model in the MZ discordant twins sample. Associations were considered replicated in 

the MZ discordant sample if they (i) passed the 5% level of significance threshold and (ii) had 

the same effect direction as the discovery group (I used only this second criteria for the targeted 

platform). Lastly, using an inverse variance fixed effects meta-analysis I combined the results of 

both analyses, these are the results that I report here. To test if dietary patterns associated to a 

unique metabolomic signature not captured by investigating single food groups I repeated the 

analysis for each of the six diet patterns (five principal components and the MDS). The beta 

coefficients (β) I present for the significant associations represent the reported food amount in 

servings per week or dietary pattern score that corresponds to a 1 SD change in the metabolite 

level.  

4.2.5 Diet pattern association with metabolite mediated by reported food intake 

For each metabolite associated with both diet patterns and food group intakes first the 

proportion of the variance of metabolite was determined for each relevant diet pattern after 

taking into account all covariates (age, BMI, batch effects, family relatedness). This quantity is 

indicated as r
2
x. The proportion of the variance for the metabolite explained by the applicable 

diet pattern was then calculated after taking into account the same covariates as above but also 

including intakes of all associated foods (r
2
xy). The percentage of the diet pattern association 

mediated by the food group intake (r
2
y) was calculated as the proportion of the variance of 

metabolite that is due to the diet pattern association with the food intake, namely 1 – (r
2

xy/r
2

x).     

4.2.6 Genotype associations 

I have outlined the genotyping protocols that have been undertaken in the TwinsUK population 

in Section 3.1.7. A genome-wide association study (GWAS) was previously undertaken on the 

Metabolon metabolomics datasets conducted for TwinsUK and the Cooperative health research 

in the Region of Augsburg (KORA) cohorts (Wichmann et al., 2005, Shin et al., 2014). Based on 

the results of this study, I undertook diet-genotype associations on gene variants (56 SNPs) that 

were associated with blood levels of dietary-associated metabolites (48 metabolites). To identify 
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associations, I used additive genotype as a predictor of the appropriate energy-adjusted food 

group intake or dietary pattern, including age and family relatedness as covariates. I defined 

statistical significance using a Bonferroni correction of 2.94x10
-4

 (0.05/170 tests).   
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4.3 Results 

4.3.1 Food group-metabolite associations 

I found 178 significant associations with 39 food groups after meta-analysing the discovery and 

MZ discordant twin groups, consisting of 105 unique metabolites (Appendix C Tables 5, 6, and 

7). From these 105 unique metabolites, 73 have been identified (Figure 4-1) and 32 are 

unknown at this time. Those 73 identified metabolites belong to six biochemical groups: 38 

lipids, 16 amino acids, 14 xenobiotics, 3 carbohydrates, 1 cofactor/vitamin, and 1 peptide 

(Figure 4-2a and b). To my knowledge, 72 of the food associations with identified metabolites 

have not been previously identified in nutritional metabolomics using similar methods 

(Appendix C Table 7).  

 

Figure 4-1. Associations between food group intakes and known metabolites 
Associations between food group intakes and known blood metabolites are represented by the 
circular histogram plot. Associations are clustered according to general food groups, which are 
represented by the colored lines below the histogram bars. The histogram bars represent the –
log10 of the p-value result from the fixed effects meta-analysis and the color of the bars 
indicates the direction of association: green, positive; red, negative. 
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Figure 4-2 shows a stacked histogram of the number of associated metabolites representing each superpathway (a) and subpathway (b) 
by general food group intake. Pathways were determined by Metabolon based on Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathways. Superpathways are assigned by chemical classes corresponding to the top-level KEGG pathways. Subpathways are assigned 
by the metabolic role of the metabolite. 

Figure 4-2. Pathways represented by associated metabolites for general food groups  
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I found reported intakes of alcoholic beverages to be associated with the most 

metabolites, including 41 associations overall (38 wine,1 spirits/liquors) with 15 associations (of 

the known metabolites) I believe to be novel; the top association was between wine and scyllo-

inositol (meta-analysis result: Beta[SE]: 0.052[0.003]; P=1.47x10
-49

). Reported intakes of teas 

and coffee included 27 associations (8 novel of the known metabolites) overall including: 12 

coffee, 9 black tea, and 6 herbal tea. Notably, for both coffee and tea, 6 metabolites belonging 

to the xenobiotics pathway, i.e. metabolites foreign to the human body, were identified. These 

likely originated from gut bacterial metabolism of caffeine (e.g. catechol sulfate, 1-

methylxanthine). The top association was between coffee and the unknown metabolite X-14473 

(0.038[0.001]; P=6.12x10
-187

). There were 26 associations (4 novel) with reported seafood 

consumption, including: 15 oily fish and 11 with other seafood. A number of the metabolites 

associated with reported seafood consumption were essential fatty acid metabolites; the top 

association was between docosahexaenoate (DHA; 22:6n3) and oily fish (0.177[0.013]; 

P=2.09x10
-44

). I found 8 associations (5 novel) with meat products, specifically: 3 meat, 2 

poultry, 2 processed meat and 1 beef burgers. The associations were primarily with amino 

acids, the top association being a novel associations between meat and trans-4-hydroxyproline 

(0.075[0.009]; P=1.08x10
-17

). I found 14 metabolites (5 novel) were associated with reported 

dairy product intake, including: 9 butter, 3 cream and 2 low-fat milk. Primarily associations with 

dairy products included lipids, the top association was reported between low fat milk intake and 

the recently named metabolite trimethyl-N-aminovalerate (X-21365: 0.076[0.007]; P=9.36x10
-

27
). There were 10 associations (3 novel) with grain-rich foods, including: 5 high fibre breakfast 

cereals, 2 refined bread and grains, 2 porridge and 1 wholemeal bread and grains. The top 

association was between porridge and the unknown metabolite X-09789 (0.094[0.008]; 

P=4.96x10
-33

). There were 13 associations (4 novel) with reported fruit intakes consumption, 

including: 6 apple and pears, 3 citrus fruits, 1 bananas, 1 berries, 1 peaches and 1 fruit juices. 

The top association within the fruit category was between fruit juice and stachydrine 

(0.058[0.005]; P=3.26x10
-37

). I identified 16 associations (8 novel) with reported vegetable 

intakes, including: 6 green leafy, 5 avocado, 3 allium, 1 tomatoes and 1 mushrooms. The 

strongest association within the vegetables group was between reporeted mushroom 

consumption and ergothioneine (0.181 [0.019]; P=5.93x10
-22

). I found 17 associations (9 novel) 

with reported sweet and savoury discretionary food intakes, including: 5 sweet baked products, 

4 savory pies, 4 fried fish, 3 confectionary and jam, and 1 savoury snacks. Within the 
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discretionary foods group, the strongest association was between reported savoury snack 

intake and the unknown metabolite X-11372 (0.051[0.007]; P=3.88x10
-14

). Other notable 

associations included 2 metabolites with reported chocolate intake (1 novel; top association with 

theobromine: 0.024[0.003]; P=1.34x10
-11

), a novel association between reported soymilk intake 

and 4-ethylphenylsulfate (0.239[0.033]; P=6.05x10
-13

) and also an association between an 

unknown metabolite and reported intake of soyfoods (X-11381: -0.108[0.020]; P=5.80x10
-8

) and 

nuts (X-11315: 0.054[0.005]; P=3.75x10
-25

).  

A number of metabolites were associated to more than one food item, many of these 

are listed in Tables 4-3 and 4-4. Notably, the essential fatty acids eicosapentaenoate (EPA) and 

docosahexaenoate (DHA), their downstream metabolite 1-docosahexaenoylglycerophospho-

choline and 3-carboxy-4-methyl-5-propyl-2-furanpropanoate were all positively associated with 

oily fish and other fish/seafood intakes, and all but DHA with avocado. These multiple 

associations may be due to correlated food intakes, though each source may be contributing 

independently. Higher levels of EPA and DHA were also associated with lower intakes of sweet 

baked products. The metabolite 3-phenylpropionate was associated positively to intakes of 

apples/pears and negatively with fried fish and savoury pies. The latter associations may be due 

to systematic under reporting rather than biological in origin as is discussed later. A further 

example of this observation are the metabolites quinate, cyclo(leu-pro), 3-methyl catechol 

sulfate 1 and 3-hydroxypyridine sulfate, which were positively associated with coffee intake and 

negatively with tea intake. 

4.3.1.1 Milk association replication 

I replicated the association between the previously unknown metabolite trimethyl-N-

aminovalerate (X-21365) and milk intake in the KORA population (0.008[0.002]; P=6.88x10
-6

), 

establishing the quality of the data.  

4.3.2 Dietary pattern results 

4.3.2.1 Nutrient profile of the Mediterranean diet  

Energy-adjusted nutrient intakes are represented as percentages of the recommended intakes 

by tertile of the Mediterranean Diet Score (MDS) are presented in Figure 4-3 with significance 

level for trend. Nutrient profiles of the FFQ PCs have been described previously (Teucher et al., 

2007). There were significant trends for most nutrients from the bottom to top tertile of the MDS, 
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suggesting that individuals who scored higher on the MDS reported consuming more nutrient-

dense diets, high in fibre and lower in total, saturated fat and sucrose content. Despite the 

monounsaturated fat content being lower in those who scored in the top versus bottom tertile of 

the MDS, an important characteristic of the Mediterranean diet derived from olive oil intake, a 

logistic regression analysis of olive oil intake (yes or no) was strongly predicted by the MDS 

(OR= 1.15, SE= 0.02, P=1.19x10
-13

). 

4.3.2.2 Heritability of the MDS 

The best fitting model for MDS was the AE model, with heritability estimates of 0.41[95% CI = 

0.36; 0.46] and 0.59[0.54;0.64] respectively.  

4.3.2.1 Dietary pattern-metabolite associations 

I identified 108 significant dietary pattern-metabolite associations that passed the Bonferroni 

level of significance (P<1.08x10
-6

) in the discovery twin population and following meta-analysis 

(Appendix C Tables 8, 9). The MDS (Figure 4-4a) was associated with 18 metabolites (2 

amino acids, 5 lipids, 2 xenobiotics and 9 unknown metabolites). Of the known metabolites, 

MDS was most strongly associated with DHA (meta-analysis result: 0.097[0.009]; P=2.45x10
-

27
). The F&V diet pattern (Figure 4-4b) was associated with 33 metabolites (6 amino acids, 3 

carbohydrates, 1 cofactor/vitamin, 7 lipids, 1 peptides, 3 xenobiotics and 12 unnamed 

metabolites), a number of which were also associated with the MDS. A high F&V pattern was 

most strongly associated with glycerate (0.094[0.009]; P=1.97x10
-27

), a carbohydrate involved in 

glycolysis, gluconeogenesis, and pyruvate metabolism. The high alcohol pattern (Figure 4-4c) 

was associated with 23 metabolites (3 amino acids, 1 cofactor/vitamin, 4 lipids, 3 xenobiotics, 

and 12 unnamed metabolites). The strongest known metabolite association with a high alcohol 

diet pattern was with the amino acid involved in valine, leucine and isoleucine metabolism, α-

hydroxyisovalerate (0.158[0.013]; P=3.20x10
-35

). The traditional English diet pattern (Figure 4-

4d) was associated with 6 metabolites (2 amino acids, 1 xenobiotic, and 3 unnamed 

metabolites). A negative association was the strongest observed between the traditional English 

pattern and stachydrine (-0.094[0.012]; P=9.94x10
-16

), an amino acid involved in urea cycle and 

arginine, proline metabolism. The dieting pattern (Figure 4-4e) was associated with 5 

metabolites (2 xenobiotics, and 3 unnamed metabolites). Dieting was most strongly, negatively 

associated with quinate (-0.095[0.015]; P=1.40x10
-10

), a xenobiotic derived from benzoate 

metabolism. The low meat pattern (Figure 4-4f) was associated with 22 metabolites (7 amino 
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acids, 7 lipids, and 8 unnamed metabolites). Most prominent, was a strong negative association 

with the furan fatty acid 3-carboxy-4-methyl-5-propyl-2-furanpropanoate (CMPF) (-0.144[0.015] 

P=3.63x10
-21

).
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Figure 4-3.  Percentage of recommended intake of (a) macronutrients, (b) vitamins and (c) minerals and electrolytes by tertile of MDS   
 

 
 

 
Average intakes by tertile (1, black; 2, yellow; 3, red) were assessed for percentage of recommended intakes. P* is the significance value for the 
results of a linear regression using tertiles as predictors of the nutrient intakes (green, P<0.001; purple, P<0.05; red, not significant). 
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Figure 4-4. Significant diet phenotype and metabolite associations 

 

Associations are significant at the Bonferroni level: 1.08x10
-6

 for discovery and meta-analysis. Significance level for discordant twin replication set 
(P<0.05). Names are colour coded according to direction of association: red, positive; black, negative. 
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4.3.2.2 Metabolites uniquely associated with food intakes or dietary patterns and 

those associated to both 

Overall 126 metabolites (43 unknown) were associated to at least one dietary phenotype 

(Figure 4-5). Fifty-five metabolites were associated with single food intakes but not the dietary 

patterns (Figure 4-5a). This may suggest these metabolites are less important for dietary 

intakes of the whole population. Twenty-one metabolites were not associated to single foods 

(Figure 4-5b) but were associated with the dietary patterns. In this case the combined food 

intakes may have an effect on these metabolites not occurring by the food intake alone or the 

associations may originate from food intakes not explicitly measured by the FFQ or behaviours 

correlated to a dietary pattern. Fifty metabolites were associated to at least one pattern and one 

food (Figure 4-5c), there are likely the most important metabolites related to food intake in our 

dataset. 

4.3.2.3 Dietary pattern-metabolite associations mediated by food intakes 

To confirm if the 50 metabolites associated with dietary patterns and at least one food group 

were driven by the reported food intakes and not other factors, I analysed the degree to which 

the variance in dietary pattern-metabolite associations was mediated by the metabolites 

association with single food intakes. I found that between <0% and 100% of the variance in the 

association between the metabolites and the dietary pattern scores were mediated by the 

metabolites association with food intake (Tables 4-3 and 4-4). The MDS and fruit and vegetable 

diet pattern associations with essential fatty acid metabolites (eicosapentaenoate, 1-

docosahexaenoylglycerophosphocholine*, CMPF and docosahexaenoate) were strongly 

accounted for by food intakes (range: 86.2% to 99.7%). This was also the case for the low meat 

pattern association with pyroglutamine* which was strongly accounted for by meat intakes 

(93.2%), the dieting pattern with quinate which was accounted for by coffee and tea intakes 

(97.9%), the high alcohol pattern with 4-androsten-3beta, 17beta-diol disulfate 1*, 5alpha-

androstan-3beta,17beta-diol disulfate and scyllo-inositol accounted for by wine or spirit intake 

(98.3%, 92.4% and 99.5%, respectively). 

4.3.2.4 Gene-variants SNP associations 

A GWAS study was previously performed on the TwinsUK dataset to identify SNPs associated 

with blood metabolites levels from the Metabolon platform (Shin et al., 2014). Of these 126 
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dietary-associated metabolites, 48 contributed to 62 metabolite-SNP associations including 56 

unique SNPs in 39 genes (Appendix C Table 10). I undertook this analysis to identify potential 

SNPs which may be influencing dietary intakes. I did not find any SNP-diet associations with 

these variants at the Bonferroni level of statistical significance (P<2.94x10
-4

 = 0.05/170 tests). I 

found 19 SNP-diet associations at the nominal level (P<0.05; Appendix C Table 11). The fact 

that I did not identify any significant associations between diet and metabolite-related SNPs 

suggests that these SNPs do not have such a strong effect as to influence eating behaviour, 

although it could also be due to the limited power due to the low sample size or the lack of 

precision by FFQs.  
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Figure 4-5. Metabolites significantly associated with only reported intakes of foods (a) and dietary patters (b), and to both (c) 

   Associations are significant at the Bonferroni level: 1.08x10
-6

 for discovery and meta-analysis. Significance level for discordant twin replication set: 
non-targeted = P<0.05; targeted = same direction. 
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Table 4-3. List of known metabolites associated with food intakes and dietary patterns 
and the degree to which their association with each pattern is through reported food 
intake 

Metabolite 
No. 

foods  Foods associated 
R

2
 all 

foods 

Diet 
patterns 
associated 

R
2
 

pattern 
no foods 

(1)
 

R
2
 

pattern 
with 

foods 
(2)

 
% association 
through food 

eicosapentaenoate  6 ↑ Avocado, High fat salad 
dressing, Oily fish, Other 
fish/seafood, Wine 
↓ Sweet baked products 

0.08 ↑ MDS 0.026 0.001 95.1 

↑ F & V 0.047 0.004 90.9 

↓ Low Meat 0.025 0.004 86.1 

1-
docosahexaenoylgly
cerophospho-
choline* 

4 ↑ Avocado, Green leafy 
vegetables, Oily fish, Other 
fish/seafood 

0.04 ↑ F & V 0.023 0.002 93.2 

↑ MDS 0.022 0.003 86.2 

3-carboxy-4-methyl-
5-propyl-2-
furanpropanoate  

4 ↑ Avocado, Green leafy 
vegetables, Oily fish, Other 
fish/seafood 

0.10 ↑ F & V 0.029 0.000 99.7 

↑ MDS 0.028 0.001 97.5 

↓ Low Meat 0.036 0.015 59.2 

docosahexaenoate 
(DHA; 22:6n3) 

4 ↑ Oily fish, Other 
fish/seafood, Wine 
↓ Sweet baked products 

0.11 ↑ F & V 0.043 0.003 93.4 

↑ MDS 0.035 0.003 91.1 

↓ Low Meat 0.027 0.004 85.0 

3-phenylpropionate 
(hydrocinnamate) 

3 ↑ Apples/pears 
↓ Fried fish, Savoury pies 

0.03 ↑ F & V 0.027 0.006 76.8 

↓ 
Traditional 
English 

0.015 0.006 62.0 

glycerate 3 ↑ Citrus fruit, Tomatoes 
Confectionary/jam 

0.03 ↑ F & V 0.037 0.009 75.8 

pyroglutamine* 3 ↓ Meat, Other fish/seafood, 
Poultry 

0.04 ↑ Low Meat 0.022 0.002 93.2 

scyllo-inositol 3 ↑ Wine 
↓ Fried fish, Sweet baked 
products 
 

0.13 ↑ High 
Alcohol 

0.043 0.000 99.5 

↑ F & V 0.035 0.010 71.3 

↑ MDS 0.015 0.010 30.6 

4-androsten-
3beta,17beta-diol 
disulfate 1* 

2 ↑ Spirits/liquor, Wine 0.09 ↑ High 
Alcohol 

0.035 0.001 98.3 

creatine 2 ↑ Meat, Poultry 0.03 ↑ 
Traditional 
English 

0.014 0.001 89.9 

↓ Low Meat 0.015 0.002 87.9 

ergothioneine 2 ↑ Mushrooms 
↓ Savoury pies 

0.12 ↑ F & V 0.048 0.006 88.4 

↑ MDS 0.025 0.007 71.1 

↑ High 
Alcohol 

0.041 0.022 47.0 

indolepropionate 2 ↑ Apples/pears, Bananas 0.03 ↑ F & V 0.029 0.012 58.2 

↑ MDS 0.021 0.011 50.5 

pipecolate 2 ↑ Wine 
↓ Confectionary/jam, 

0.03 ↑ F & V 0.016 0.007 58.5 

quinate 2 ↑ Coffee 
↓ Black tea 

0.20 ↓ Dieting 0.014 0.000 97.9 

stachydrine 2 ↑ Citrus fruit, Fruit juice 0.11 ↓ 
Traditional 
English 

0.019 0.010 45.5 

1,5-anhydroglucitol 
(1,5-AG) 

1 ↓ Other fish/seafood 0.01 ↓ F & V 0.022 0.013 41.6 

10-undecenoate 
(11:1n1) 

1 ↑ Butter 0.02 ↑ High 
Alcohol 

0.011 0.006 42.5 

15-methylpalmitate 
(isobar with 2-
methylpalmitate) 

1 ↑ Butter 0.03 ↓ Low Meat 0.016 0.009 46.0 

2-aminobutyrate 1 ↑ Wine 0.02 ↑ High 
Alcohol 

0.017 0.003 83.1 

↓ Low Meat 0.018 0.008 57.4 

2-hydroxybutyrate 
(AHB) 

1 ↑ Wine 0.02 ↓ Low Meat 0.011 0.004 60.2 

4-ethylphenylsulfate 1 ↑ Soy/other milk 0.06 ↑ Dieting 0.015 0.003 81.0 

5alpha-androstan-
3beta,17beta-diol 
disulfate 

1 ↑ Wine 0.06 ↑ High 
Alcohol 

0.029 0.002 92.4 

alpha-
hydroxyisovalerate 

1 ↑ Wine 0.07 ↓ Low Meat 0.014 0.001 91.5 

↑ High 
Alcohol 

0.049 0.008 84.1 
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Table 4-3. List of known metabolites associated with food intakes and dietary patterns 
and the degree to which their association with each pattern is through reported food 
intake 

Metabolite 
No. 

foods  Foods associated 
R

2
 all 

foods 

Diet 
patterns 
associated 

R
2
 

pattern 
no foods 

(1)
 

R
2
 

pattern 
with 

foods 
(2)

 
% association 
through food 

catechol sulfate 1 ↑ Coffee 0.03 ↑ F & V 0.014 0.015 -3.5 

myo-inositol 1 ↑ Wine 0.02 ↑ F & V 0.012 0.008 34.7 

Octenoylcarnitine 1 ↑ White/brown bread & 
refined grains 

0.03 ↓ F & V 0.038 0.019 50.3 

Phosphatidylcholine 
diacyl C36:5 

1 ↑ Wine 0.05 ↓ Low Meat 0.062 0.033 46.6 

Phosphatidylcholine 
diacyl C38:6 

1 ↑ Oily fish 0.04 ↑ F & V 0.031 0.008 73.4 

↓ Low Meat 0.036 0.027 25.8 

piperine 1 ↑ Wine 0.03 ↑ High 
Alcohol 

0.031 0.009 71.2 

↑ MDS 0.011 0.009 16.5 

threitol 1 ↑ Apples/pears 0.03 ↑ F & V 0.016 0.005 71.2 

tryptophan betaine 1 ↑ Allium vegetables 0.03 ↑ F & V 0.026 0.007 74.6 

↑ High 
Alcohol 

0.028 0.011 62.0 

↑ MDS 0.024 0.010 57.3 

F & V, fruit and vegetable pattern; MDS, Mediterranean diet score 
(1) The proportion of the variance in the diet pattern explained by the metabolite after 

taking into account all covariates (age, BMI, batch effects and family relatedness). 
(2) The proportion of the variance in the diet pattern explained by the metabolite after 

taking into account all covariates as in (1) and adjusting for all foods associated to the 
metabolite. 
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Table 4-4. List of unknown metabolites associated with both food intakes and dietary 
patterns and the degree to which their association with each pattern is mediated by 
reported food intakes 

Metabolite RT Mass 
No. 

foods  Foods associated 
R

2
 all 

foods 

Diet 
patterns 
associated 

R
2
 

pattern 
no 

foods 
(1)

 

R
2
 

pattern 
with 

foods
 

(2)
 

% 
association 

through 
food 

X-11315 1.19 130.2 13 ↑ Apples/pears, Berries, 
Citrus fruit, Green leafy 
vegetables, High fibre 
breakfast cereals, Nuts, 
Oily fish, Peaches 
↓ Confectionary/jam, 
Fried fish, Savoury pies, 
Sweet baked products, 
White/brown bread & 
refined grains 

0.13 ↑ F & V 0.088 0.001 98.4 

  ↑ MDS 0.042 0.002 94.6 

  ↓ Traditional 
English 

0.019 0.004 79.3 

X-02269 1.55 255.1 6 ↑ Allium vegetables, 
Avocado, Green leafy 
vegetables, High fibre 
breakfast cereals, Oily 
fish, Other fish/seafood 

0.11 ↑ F & V 0.051 0.002 96.5 

  ↑ MDS 0.039 0.002 94.8 

  ↓ Low Meat 0.020 0.005 75.9 

X-09789 2.62 153.1 5 ↑ Apples/pears, High 
fibre breakfast cereals, 
Porridge, Wholemeal 
bread/grains 

0.09 ↑ F & V 0.016 0.001 98.2 

  ↓ High 

Alcohol 

0.026 0.004 90.1 

X-11372 NA NA 5 ↑ Fried fish, Savoury 
pies, Savoury snacks 
↓ Apples/pears, Green 
leafy vegetables 

0.08 ↓ F & V 0.046 0.004 91.6 

  ↑ Traditional 
English 

0.015 0.005 65.1 

  ↑ Low Meat 0.016 0.014 14.4 

X-11469 3.82 239.1 5 ↑ Avocado, Green leafy 
vegetables, High fibre 
breakfast cereals, Oily 
fish, Other fish/seafood 

0.11 ↓ Low Meat 0.021 0.001 97.2 

  ↑ F & V 0.056 0.002 95.7 

  ↑ MDS 0.040 0.002 94.8 

X-11381 1.11 186.2 2 ↑ Processed meats 
↓ Soy foods 

0.03 ↑ Traditional 
English 

0.011 0.003 76.6 

  ↓ MDS 0.017 0.011 36.4 

  ↓ High 
Alcohol 

0.012 0.013 -9.2 

X-11799 1.58 226.0 2 ↑ Wine 
↓ Sweet baked products 

0.06 ↑ High 
Alcohol 

0.030 0.001 96.0 

X-12816 NA NA 2 ↑ Coffee 
↓ Black tea 

0.15 ↑ High 
Alcohol 

0.015 0.002 85.8 

X-14374 NA NA 2 ↑ Coffee 
↓ Black tea 

0.09 ↓ Dieting 0.010 0.000 98.0 

X-14473 3.27 211.2 2 ↑ Coffee 
↓ Black tea 

0.28 ↓ Dieting 0.033 0.001 97.0 

X-01911 4.26 464.1 1 ↑ Wine 0.03 ↑ High 
Alcohol 

0.030 0.007 77.6 

X-02249 4.03 267.2 1 ↑ Butter 0.02 ↑ Dieting 0.013 0.004 71.8 

  ↓ Low Meat 0.019 0.011 40.0 

X-04495 NA NA 1 ↑ Wine 0.02 ↑ High 
Alcohol 

0.016 0.001 93.8 

X-10395 9.94 156.0 1 ↑ Wine 0.03 ↑ High 
Alcohol 

0.017 0.001 91.7 

X-11795 NA NA 1 ↑ Wine 0.06 ↑ High 
Alcohol 

0.043 0.007 83.4 

X-11858 NA NA 1 ↑ Allium vegetables 0.03 ↑ F & V 0.026 0.006 77.1 

X-12038 5.82 245.3 1 ↑ Wine 0.01 ↑ High 
Alcohol 

0.008 0.001 88.6 

X-12798 1.84 240.1 1 ↑ Low fat mik 0.02 ↓ High 
Alcohol 

0.020 0.008 59.4 

  ↓ MDS 0.016 0.008 48.8 

X-21365
(3)

 NA NA 1 ↑ Low fat mik 0.04 ↓ High 
Alcohol 

0.017 0.005 73.7 

  ↓ MDS 0.019 0.009 54.1 

RT, retention time; F & V, fruit and vegetable pattern; MDS, Mediterranean diet score; NA, not 
available 

(1) The proportion of the variance in the diet pattern explained by the metabolite after 
taking into account all covariates (age, BMI, batch effects and family relatedness). 

(2) The proportion of the variance in the diet pattern explained by the metabolite after 
taking into account all covariates as in (1) and adjusting for all foods associated to the 
metabolite. 

(3) Metabolite recently identified as trimethyl-N-aminovalerate.  
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4.4 Discussion 

Using one of the largest datasets of its kind, I identified and replicated using MZ discordant 

twins 73 novel associations between metabolites and specific food groups, providing further 

potential intake biomarkers for future research. Moreover, I found 108 significant metabolite 

associations with 5 different dietary patterns. Forty-eight metabolites contributed to 62 

metabolite-SNP associations in 56 unique SNPs that were identified from a previous 

metabolomics GWAS study (Shin et al., 2014), though I did not find these SNPs to be related to 

dietary intakes. 

4.4.1 Food items 

Alcohol consumption 

To my knowledge the associations between higher reported wine intake and increased 

branched-chain amino acids (BCAA; valine, leucine and isoleucine and their metabolites, 3-

methyl-2-oxobutyrate and 4-methyl-2-oxopentanoate) and medium-chain fatty acids (caprate 

and caprylate) are novel findings. BCAA, 3-methyl-2-oxobutyrate and 4-methyl-2-oxopentanoate 

have been found to be higher in twins with type 2 diabetes or impaired fasting glucose (3-

methyl-2-oxobutyrate being the strongest predictor) previously (Menni et al., 2013a) and 

associated with a higher BMI (Moore et al., 2014). Under impaired mitochondrial oxidation of 

lipids and glucose, levels of these BCAA catabolites increase, suggesting mitochondrial 

dysfunction. Insulin resistance has found to occur under binge drinking (Lindtner et al., 2013) 

though long-term effects are not known, these associations may highlight a novel pathway 

mediating this effect. 

I also confirmed a number of metabolite associations with reported alcohol intake from a 

previous metabolomics study (Zheng et al., 2014) including higher intakes of wine with 

increased alpha-hydroxyisovalerate, scyllo-inositol, a inositol metabolite, and steroids 

originating from dehydroepiandrosterone (DHEA; 5-alpha-androstan-3beta,17beta-diol disulfate, 

4-androsten-3beta,17beta-diol disulfate 1, 5-alpha-androstan-3beta,17beta-diol disulfate and 

epiandrosterone sulfate) (Zheng et al., 2014). Interestingly, a variant in the HAO2 gene 

(rs12141041) encoding long-chain L-2-hydroxy acid oxidase 2 associated to alpha-

hydroxyisovalerate. The HAO2 gene has been found to be related to blood pressure regulation 

in animal models (Barawkar et al., 2012). A variant in the SLC5A11 gene (rs4787294) is 

associated with scyllo-inositol. The SLC5A11 gene encodes a myo- and scyllo-inositol 
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transporting sodium-dependent glucose transporter. The SLC5A11 gene has been implicated in 

systemic lupus erythematosus (SLE) risk. Two SNPs the SULT2A1 (rs2547231 and rs296396) 

gene which is involved in the sulfation of a number of steroids and bile acids, were associated 

to 4-androsten-3beta,17beta-diol disulfate 1 and 5-alpha-androstan-3beta,17beta-diol disulfate 

levels. Ethanol feeding in rats has recently shown significantly increased expression of 

SULT2A1 in the intestines and liver (Maiti and Chen, 2015), suggesting this gene may be 

directly involved in modulating this association.  

 

Seafood consumption  

I identified novel associations between increased reported fish and seafood intakes with 

reduced pro-inflammatory lysolipids (1-arachidonoylglycerophosphoethanolamine, 1-

eicosatrienoylglycerophosphocholine, 1-linoleoylglycerophosphoethanolamine, 1-

oleoylglycerophosphoethanolamine), originating from essential fatty acid (EFA) metabolism. 

Lysolipids are involved in the formation of the cellular lipid bilayer, though contribute to 

inflammatory processes forming free lysophosphatidylcholines when cleaved by lipoprotein-

associated phospholipase A2. Lysophosphatidylcholines potentially aggravate inflammatory 

artherosclerotic plaques (Goncalves et al., 2012). I replicated previous associations between 

increased reported intakes of oily fish and other seafood with higher 3-carboxy-4-methyl-5-

propyl-2-furanpropanoate (CMPF), a furan fatty acid, and docosahexaenoate (DHA), an EFA 

(Guertin et al., 2014b, Zheng et al., 2014). Variants in FADS1 (rs174538, rs174556, rs968567 

and rs174535), a gene encoding a delta-5 desaturase enzyme, were associated with EFA 

lysolipids and DHA (Yang et al., 2015). Recently, a meta-analysis confirmed two of these 

variants in FADS1 (rs174538 and rs174548) modulated gene-dietary-derived EFA associations 

(Smith et al., 2015).  

 

Meat consumption  

I found reported meat consumption to be associated with amino acids primarily, including 

creatine, trans-4-hydroxyproline and pyroglutamine. In particular, I found increased red meat 

intake to be associated with higher trans-4-hydroxyproline, a component of collagen previously 

shown to increase in blood following gelatin feeding (Ohara et al., 2007). Another novel 

association I identified was between increased reported red meat and poultry intakes and higher 

creatine levels. Red meat has characteristically high amounts of creatine and lower blood levels 
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have been found in vegetarians (Delanghe et al., 1989). Lower blood creatine has been 

associated with increased insulin sensitivity (Gall et al., 2010) and in liver steatotic versus NASH 

patients (Kalhan et al., 2011), higher levels have been found in individuals with dilated 

cardiomyopathy (Alexander et al., 2011). A variant in carbamoyl-phosphate synthase 1 (CPS1; 

rs715) was found to associate with creatine. CPS1 is the first enzyme of the urea cycle, 

producing ammonia from urea. Expression of CPS1 is a candidate biomarker of NAFLD 

(Rodriguez-Suarez et al., 2012). Finally, higher intakes of seafood and meat correlated with 

lower levels of pyroglutamine, though little is known about this metabolite it is a cyclic derivative 

of glutamine, lower levels have previously been associated with chicken intake (Guertin et al., 

2014b). A variant in SLC6A13 (rs11613331), a gene that which encodes GAT2 a gamma-

aminobutyric acid and betaine transporter, was associated with pyroglutamine. Other SNPs in 

SLC6A13 have been related to renal function (Franceschini et al., 2014, Liu et al., 2011).  

 

Dairy consumption   

I identified novel associations between higher reported intakes of creams (double and clotted 

cream) with increased levels of lysoPhosphatidylcholine acyl C17:0 and C28:1 and 

hydroxysphingomyeline C14:1. A previous study on the EPIC-Potsdam cohort showed a diet 

pattern high in butter and high-fat dairy products and low margarine intake to be positively 

associated with lysoPhosphatidylcholine acyl C17:0 (Floegel et al., 2013b). Heptadecanoid acid 

(C17:0) has shown to be elevated following a dairy intervention trial, the lipid is formed by 

ruminal bacteria and therefore thought to be milk fat specific (Abdullah et al., 2015).  

 Reported butter consumption was uniquely associated with elevated levels of six lipids, 

including associations with increased butter intake and nonanoylcarnitine, an ester of carnitine 

with pelargonic acid (C9), 10-nonadecenoate (19:1n9), a monounsaturate of nonadecenoate 

(19:0), and myristate (14:0), a saturated fatty acid found most animal and vegetable fats. A 

variant in ACADL (rs3738934), a gene with important roles in lipid oxidation was associated with 

blood nonanoylcarnitine. Expression of ACADL has shown to be lower in mouse liver and 

adipocytes following high fat feeding, this effect also reduced overexpression of Il-15 (Sun and 

Liu, 2015). I also confirmed associations with butter intake and pentadecanoate (15:0), 10-

undecenoate (11:1n1) and 15-methylpalmitate from previous metabolomics studies (Guertin et 

al., 2014b, Zheng et al., 2014).   
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 Low fat milk intake was strongly associated with a recently identified metabolite 

trimethyl-N-aminovalerate (X-21365). I replicated this association between general milk intake 

and trimethyl-N-animovalerate in the KORA population. The origin of this novel association is 

complicated to decipher as literature is limited on trimethyl-N-aminovalerate. Trimethyl-N-

aminovalerate is potentially a methylated product of 5-aminovalerate, a product of lysine or 

proline degradation by gut bacteria Escherichia coli (Li et al., 2016) and Pseudomonas putida 

(Revelles et al., 2005). Moreover, both molecules are structurally similar to carnitine. Further 

research will be needed to unravel the mechanism of this association. 

 

Grain-rich product intake 

I found higher reported intakes of high fibre breakfast cereals to be associated uniquely with 

increased levels of pyridoxate, a vitamin B6 metabolite. Pyridoxate has many essential roles 

including being a coenzyme in the synthesis of amino acids, sphingolipids, neurotransmitters 

(serotonin, norepinephrine) and aminolevulinic acid. Higher pyridoxate in bloods has been 

associated with increased reported consumption of vitamins/supplements and other fruits 

(including plums, apricots, peaches, prunes, raisins, grapes and pineapple), as well as 

increased scores on the Healthy Eating Index (Guertin et al., 2014b). As it is common practice 

for breakfast cereals to be fortified with B vitamins this may have contributed to higher levels. I 

also found increased porridge intake to be associated with higher levels of 2-aminophenol 

sulphate. Previously, higher urinary output of 2-aminophenol sulphate was found in subjects fed 

whole grain rye bread versus refined wheat bread in a cross-over intervention study (Bondia-

Pons et al., 2013). 2-aminophenol sulfate is a benzoxazinoid metabolite. Whole grains contain 

higher levels of benzoxazinoids which are readily absorbed from these products (Jensen et al., 

2015). Higher reported intakes of refined grain products were associated with increased 

octenoylcarnitine. Octenoylcarnitine is an acylcarnitine formed from mitochondrial beta-

oxidation. A previous metabolomics study undertaken on 33 coeliac disease patients showed 

those following a long-term gluten free diet had reduced octenoylcarnitine (Bene et al., 2005).  

 

Fruit consumption 

Higher reported intakes of apples and pears were associated uniquely with a sugar alcohol, 

threitol, and two amino acids formed from gut bacterial metabolism of phenolic compounds: 

indolepropionate (also associated with bananas) (Smith and Macfarlane, 1996, Karbownik et al., 
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2001) and 3-phenylpropionate (Smith and Macfarlane, 1996). Apple proanthocyanidins have 

shown to be directly catabolized to 3-phenylpropionate when incubated with human gut bacteria 

(Ou et al., 2014). A previous study showed higher reported intakes of eggs and red meat in a 

US population to associated with lower indolepropionate in blood (Guertin et al., 2014b). Their 

finding may suggest these subjects had lower intakes of fruit-derived proanthocyanidins or 

higher consumption of animal proteins, which have been shown to rapidly alter the gut 

microbiome composition (David et al., 2014), and hence may indirectly influence bacterial 

metabolism of proanthocyanidins through altering the intestinal environment. Previously, 

increased indolepropionate has been associated with insulin sensitivity (Gall et al., 2010), and 

lower levels associated with reduced muscle mass in elderly subjects (Lustgarten et al., 2014). 

For 3-phenylpropionate (ACSM5, rs11647589) and indolepropionate (ACSM2A, rs1394678) 

SNPs within medium-chain acyl-CoA synthetase (MACS) genes were associated with levels. 

The ligation of medium-chain fatty acids with CoA is catalysed by MACS genes, though MACS 

also conjugate glycine with benzoic acid derivatices (Kasuya et al., 1996). Similar to 3-

phenylpropionate and indolepropionate, benzoic acid is produced by gut microbial degradation 

of apple and cranberry phenolic compounds (Ou et al., 2014), the genotypic association with 3-

phenylpropionate and indolepropionate may be due to their correlation to products of this 

process. An association with metabolic syndrome phenotypes and a variant in the ACSM2 gene 

have been found previously; though this this association may be due mainly to the role of 

ACSM2 in lipid metabolism (Lindner et al., 2006). I confirmed a previous association between 

reported intakes of fruit juice with stachydrine (also proline betaine) (Guertin et al., 2014b, 

Zheng et al., 2014), a component found in citrus fruits. 

 

Vegetable consumption 

Reported mushroom intake was associated with ergothioneine, a novel finding. Ergothioneine is 

a thiol compound found in higher quantities in specialty mushrooms such as oyster and king 

bolete (Ey et al., 2007). Ergothioneine has also shown to prevent lipid peroxidation in vivo 

(Deiana et al., 2004) and recent data suggest that ergothioneine may prevent vascular 

dysfunction (Li et al., 2014). I found higher reported intakes of green/leafy vegetables and 

avocado to associated with higher levels of metabolites that are strongly associated with 

seafood consumption including CMPF (3-carboxy-4-methyl-5-propyl-2-furanpropanoate) and 1-

docosahexaenoylglycerophosphocholine, this issue may have arisen due to highly correlated 
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intakes, a problem encountered previously (Guertin et al., 2014a, Zheng et al., 2014, Ling et al., 

2014). 

 

Tea and coffee 

I identified higher reported intakes of herbal tea were associated with lower levels of long-chain 

phosphatidylcholine acyl-alkyls derived from hepatic lipid metabolism (Wittenbecher et al., 

2015). A dietary pattern characterised by a high intake of red meat and fish and lower intakes of 

whole grain bread and tea was previously shown to correlate with reduced levels of 

phosphatidylcholine diacyl (including phosphatidylcholine diacyl C42:4) in the EPIC Potsdam 

cohort (Floegel et al., 2013b). Also in the EPIC Potsdam cohort, levels of these 

phosphatidylcholines have associated with diabetes risk (Floegel et al., 2013a), though little is 

known currently about the origin of these associations.  

I also confirmed associations between increased reported coffee intake and higher 

levels of metabolites derived from caffeine and coffee (Guertin et al., 2014a, Zheng et al., 

2014). Interestingly, I also found a number of metabolites derived from coffee were associated 

inversely with reported black tea intake. This pattern is suggestive that individuals who reported 

having a higher tea intake had habitually lower coffee consumption. I identified higher levels of 

O-methyl catechol sulfate to be associated with higher reported coffee intake, which was a 

novel finding. One of the strongest metabolites associated to coffee intake was 1-

methylxanthine. 1-methylxanthine is derived from caffeine metabolism and was previously 

associated to a variant in NAT2 (rs4921914) which encodes a liver enzyme that acetylates 

caffeine metabolites (Butler et al., 1992). A SNP in NAT2 has found to modulate an association 

with black tea consumption and risk of SLE (Kiyohara et al., 2014). 

 

Sweet & savoury discretionary food intakes 

Multiple associations were identified between foods where reduced consumption is promoted 

(‘discretionary’; such as sweet baked products, sweets and jams, crisps, fried potatoes and fish 

and savoury pies) that seem to not be biologically sound and are also novel. This could suggest 

that these associations are showing habitual reduced intakes of other foods (i.e. vegetables, 

fruit, fish and wine) with increased reported intakes of discretionary foods. For instance, 

increased reported consumption of sweet baked products (including cookies, cakes, pies and 

pastries) were associated with lower levels of essential fatty acids derived from fish, (DHA and 
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EPA) and scyllo-inositol (strongly correlated with wine intake). Also, I found higher intakes of 

fried fish and savoury pies to be associated to lower levels of 3-phenylpropionate derived from 

gut microbial catabolism of fruit proanthocyanidins (Ou et al., 2014). Reporting of these foods 

may have been influenced by self-reporting biases (Westerterp and Goris, 2002), a limitation of 

this dataset. 

 

Other notable associations 

I identified a novel association with increased soymilk consumption and higher levels of 4-

ethylphenylsulfate, despite intakes being low in the sample; a previous study of US subjects 

found higher 4-ethylphenylsulfate to be correlated with increased tofu consumption (Guertin et 

al., 2014b). 4-ethylphenylsulfate is formed under gut bacteria metabolism. Elevated levels of 4-

ethylphenylsulfate have been found to correlate with anxiety-like traits in rats. Increased levels 

of 4-ethylphenylsulfate in blood are thought to be due to higher gut permeability (Hsiao et al., 

2013). This association may be derived from the high saponin content of soybeans, which have 

shown to increase intestinal cell permeability in vitro (Johnson et al., 1986) though also in 

Atlantic salmon (Knudsen et al., 2008). 

I found a novel association between higher reported chocolate intake and increased 7-

methylxanthine, a methylated purine, and I also confirmed an association with theobromine, a 

bitter alkaloid and recognised marker of cocoa intake (Rodriguez et al., 2015). 7-methylxanthine 

is derived from methylxanthine metabolism, methylxanthines include caffeine, theophylline and 

theobromine (Suzuki and Takahashi, 1975). 

 

Notable unknown metabolite associations 

The chemical identity of 31 metabolites associated to food intakes are currently unknown, 

though these may become important food intake biomarkers in the future. In particular I found 

an association between increased reported fried food intake (fried fish and savoury snacks 

[including potato crisps]) and higher levels of the metabolite X-11372. I also identified another 

metabolite associated positively with red and processed meat consumption, metabolite X-

11381. Metabolite X-11381 was previously associated with a SNP in a gene encoding a 

carnitine efflux transporter SLC16A9 (rs12356193) (Suhre et al., 2011). Variants in SLC16A9 

have previously been associated with serum uric acid levels (Lee and Song, 2012) and risk of 

gout in renal overload (Nakayama et al., 2013). Another unknown metabolite, X-09789, was 
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associated positively with porridge intake. A variant in the SLC51A gene (also known as OST-

alpha; rs7642243) was found to be associated with X-09789. Interestingly, SLC51A encodes a 

component of the Ost-alpha/Ost-beta complex which functions in bile acid transport from 

intestinal enterocytes into portal blood (Ballatori et al., 2008). Oats are known to contain beta-

glucan, a soluble fibre found to reduce blood cholesterol levels (Charlton et al., 2012) by 

sequestering intestinal bile acids and effectively reducing the reabsorption of bile acids 

(Wolever et al., 2010). I also found the unknown metabolite X-11315 to be associated with 

reported consumption 13 foods (top association: apple and pears; negative associations with 

discretionary foods). Metabolite X-11315 was previously associated to a SNP in SLC6A20 

(rs4327428), which encodes a proline transporter, this suggests metabolite X-11315 is 

structurally like proline. Previous studies have identified polymorphisms in SLC6A20 to be 

associated with risk of Type 2 diabetes in white-European and Chinese populations (Ling et al., 

2014). 

 

4.4.2 Dietary patterns discussion 

Examining dietary patterns in conjunction with metabolomics, I identified a number of potential 

metabolite biomarkers of dietary intakes in the twin population and validated the results using 

the co-twin control method. The repetitive occurrence of a number of metabolites within 

opposing dietary patterns in this study (Table 4-5) further confirms the utility of metabolomics for 

the identification and exploration of diet and disease relationships. I also identified a number of 

metabolites unique to each diet pattern (Table 4-6). Many of the associations with dietary 

patterns were attributable to their association with food intakes, therefore I will not discuss these 

associations in detail. However, there were 11 known metabolites and 10 unknown metabolites 

identified by measuring dietary patterns that I did not find to associate with food intakes 

independently. The Traditional English and Dieting patterns did not appear to have a substantial 

metabolomic footprint and did not capture unique associations with metabolites, this may be 

due to underreporting.  

 

Fruit and vegetable pattern 

Twins scoring highly on the F&V pattern presented with an increase in metabolites relating to 

antioxidant potential, including hippurate which accumulates following increased consumption of 
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foods containing high phenolic compounds such as green and black teas (Van Dorsten et al., 

2006); threonate, a product of vitamin C metabolism; and the γ-glutamyl peptide, γ-

glutamylvaline and proline which both suggest reduced glutathione and collagen breakdown on 

this diet. Higher scores on the F&V diet pattern were also associated with increased 

phosphatidylcholine diacyl 38:6 and N-acetylornithine. N-acetylorthinine is an endogenously 

synthesized amino acid involved in urea metabolism. A genetic variant in N-acetyltransferase 8 

gene (NAT8) was found to contribute to N-acetylornithine levels which may play role in kidney 

function and CKD (Yu et al., 2014). Despite the MDS and F&V patterns characterised by similar 

foods the data-driven F&V score captured unique metabolite associations, suggesting that 

measuring a Mediterranean diet in a non-Mediterranean country such as the UK may be 

problematic, an issue which has been thoroughly discussed previously (Hoffman and Gerber, 

2013).  

 

Low meat dietary pattern 

Higher scores of the low meat dietary pattern were associated with lower levels of 

phosphatidylcholine acyl-alkyl 38:6 and higher levels of betaine and C-glycosyltryptophan. 

Betaine is an amino acid derived from choline. Choline is a nutrient that has an important role in 

methylation processes and reduction of homocysteine levels and subsequent risk of coronary 

heart disease (Zeisel and da Costa, 2009), the origin of this association requires further 

investigation. The low meat diet pattern was positively associated with C-glycoyltryptophan. 

Circulating levels of C-glycosyltryptophan have been associated with aging and age-related 

diseases in the TwinsUK population (Menni et al., 2013b), negatively associated with muscle 

mass in less mobile elderly subjects (Lustgarten et al., 2014), and a CpG site in the promoter of 

the WDR85 gene, which is required for protein synthesis (Menni et al., 2013b). This could 

suggest that individuals consuming a dietary pattern low in protein but high in starches and 

carbohydrates tend to be older or this type of dietary pattern may contribute to physical aging 

and reduced muscle mass.  

 

High alcohol dietary pattern 

A unique association was identified between the high alcohol diet and 4-vinylphenol sulphate, a 

product of benzoate metabolism and compound resulting from nut roasting (Walradt, 1971), and 

airborne styrene exposure and cigarette smoking (Manini et al., 2003), that has been previously 
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associated with nut consumption (Guertin et al., 2014b) and several CpG loci (Petersen et al., 

2014). The metabolic implications for this epigenetic association are unknown at this time, 

though it may suggest that individuals scoring highly on this pattern are more prone to cigarette 

smoking. Increased scores on the alcohol pattern were also associated with higher levels of 

gamma-tocopherol, Gamma-tocopherol is one form of vitamin E, a major dietary antioxidant. 

The relationship between alcohol intake and gamma-tocopherol is unclear, a previous study 

found higher intakes of vitamins and supplements, and scores on the US Healthy Eating Index 

were associated with lower serum γ-tocopherol (Guertin et al., 2014b).  
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Table 4-5. List of metabolites associated to multiple dietary patterns 

Super-pathway Sub-pathway Metabolite MDS F&V 
High  

alcohol 
Traditional  

English 
Low  
meat 

Amino acid Creatine metabolism 
 

Creatine    ↑ ↓ 

 Phenylalanine & tyrosine 
metabolism 

3-Phenylpropionate (hydrocinnamate)  ↑  ↓  

 Tryptophan metabolism Indolepropionate ↑ ↑  ↓  

 Valine, leucine and isoleucine 
metabolism 

α-Hydroxyisovalerate   ↑  ↓ 

Carbohydrate Glycolysis, gluconeogenesis, 
pyruvate metabolism 

1,5-Anhydroglucitol (1,5-AG)  ↓   ↑ 

  Glycerate ↑ ↑    

Lipid Essential fatty acid 
 

Docosahexaenoate (DHA; 22:6n3) ↑ ↑   ↓ 

  Eicosapentaenoate (EPA; 20:5n3) ↑ ↑   ↓ 

 Fatty acid, dicarboxylate 
 

3-Carboxy-4-methyl-5-propyl-2-furanpropanoate (CMPF) ↑ ↑   ↓ 

 Inositol metabolism  Scyllo-inositol ↑ ↑ ↑  ↓ 

 Lysolipid 1-Docosahexaenoylglycerophosphocholine ↑ ↑    

 Medium chain fatty acid 10-Undecenoate (11:1n1)   ↑  ↓ 

Xenobiotics Benzoate metabolism Catechol sulfate  ↑  ↓  
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Table 4-6. List of metabolites associated to specific dietary phenotype 

Dietary phenotype Super-pathway Sub-pathway Metabolite Direction of association 
Fruit & vegetable Amino acid Lysine metabolism Pipecolate ↑ 
 Carbohydrate Nucleotide sugars, pentose 

metabolism 

Threitol ↑ 

 Cofactors and vitamins Ascorbate and aldarate metabolism Threonate ↑ 
 Peptide gamma-glutamyl γ-Glutamylvaline ↓ 
 Xenobiotics Benzoate metabolism Hippurate ↑ 
High alcohol Amino acid Butanoate metabolism 2-Aminobutyrate ↑ 
 Lipid  Inositol metabolism Myo-inositol ↑ 
  Medium chain fatty acid Caprate (10:0) ↑ 
  Medium chain fatty acid 10-Undecenoate (11:1n1) ↑ 
 Xenobiotics Food component/Plant Piperine ↑ 
Traditional English Amino acid Urea cycle; arginine-, proline-, 

metabolism 

Stachydrine ↓ 

  Urea cycle; arginine-, proline-, 
metabolism 

Trans-4-hydroxyproline (Hydroxyproline) ↑ 

Dieting Xenobiotics Benzoate metabolism 4-Ethylphenylsulfate ↑ 
  Food component/Plant Quinate ↓ 
Low meat Amino acid Glutamate metabolism Pyroglutamine ↑ 
  Glycine, serine and threonine 

metabolism 

Betaine ↑ 

  Tryptophan metabolism C-Glycosyltryptophan ↑ 
  Cysteine, methionine, SAM, taurine 

metabolism 

2-Hydroxybutyrate (AHB) ↓ 
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Strengths and Limitations 

Although I replicated many associations from previous diet-metabolomics studies, there were 

multiple limitations to my study. The population I used was only female and as such my findings 

may not apply to men. Replicating my top associations in an independent population would 

have strengthened my findings, although I used the twin model for validation, allowing me to 

use controls matched for age, sex and the baseline genetic sequence. I did however, confirm 

associations from similar studies (Guertin et al., 2014b, Zheng et al., 2014) which suggests the 

data used in the study were of decent quality. Due to the cross-sectional nature of this study 

design, the study does not allow me to indicate cause and effect. As I used only FFQ data as 

my source for dietary information, the accuracy of the data can be called into question due to 

the consequences of self-reporting (Westerterp and Goris, 2002). Despite this issue, many of 

the associations I identified are biologically plausible. Moreover, food frequency data only 

provides categorical information and therefore the precise effect cannot be quantified, though 

this is an area where future dietary intervention studies can aid findings. I do recognize I may 

have experienced a small number of associations due to type 1 errors potentially as a result of 

correlated intake reporting, this issue may have been encountered for foods which lower intakes 

are generally discouraged, including sweet and savoury discretionary foods (sweets and jams, 

sweet baked products, fried fish and savoury pies). Using very stringent multiple-testing cut-offs 

I am hopeful many of these spurious associations were minimized, although this likely caused 

false negatives. Moreover, I did not have longitudinal data on metabolite levels, which in future 

studies could provide useful information on metabolite stability over time and may improve the 

strength of associations with food intakes. The true blood concentration of the metabolites is not 

measured by the Metabolon platform, therefore accurate quantification could not be determined 

for these metabolites. Furthermore, the current study only provides a snapshot of associations 

in one type of tissue, at only one time point and therefore provides limited insight into the origin 

and directionality of associations and virtually no insight into mechanisms. Having genotypic 

profiling completed on a large sample of TwinsUK with results also replicated in KORA, this 

allowed me to supplement my discussion, though future studies would need to untangle these 

potential genotype-metabolite-disease relationships and whether they are modulated by dietary 

factors. Strengths of this chapter include the large sample size and number of metabolites that 

were assessed and I was also able to use MZ discordant twins who are matched for age, sex 

and the baseline genetic sequence.   
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Conclusions 

By using one of the largest and comprehensive datasets of its kind, I identified 178 self-reported 

food intake associations (72 novel) with blood metabolites. I also identified 108 associations 

with 6 dietary patterns, confirming dietary patterns are associated with a unique metabolomic 

signature not captured by assessing food intakes independently. Future studies should aim to 

undertake dietary interventions trials to confirm our findings, adequately determine mechanisms 

for associations and quantify the effect of food intake on metabolite levels. The findings of my 

study can be viewed online using the DietMetab search tool 

(http://www.twinsuk.ac.uk/dietmetab-data/). 

 

 

http://www.twinsuk.ac.uk/dietmetab-data/
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Chapter 5 Creating metabolite scores based on reported food 

group intake and applying these to explore the impact of diet 

on the metabolic syndrome 

 
In this chapter I analyse 20 food groups for their association with metabolites from the non-

targeted (Metabolon) platform, I then use three methods to combine multiple metabolites 

associated with food group intakes and evaluate them in an independent testing dataset. 

Therefore the overall aim of this chapter is to assess combining metabolites as a means to 

strengthen the utility of food intake biomarkers. Finally, I use the top performing metabolite 

scores to evaluate their correlation with an example of a common disorder - metabolic 

syndrome risk.   

 

5.1 Introduction 

In the previous chapter I showed that reported food intakes are associated with a unique blood 

metabolomic fingerprint. In order to best categorise habitual food intake to improve disease risk 

prediction, the appropriate handling of identified biomarkers must first be evaluated.  

Used alone single biomarkers may be less precise as they can be influenced by a 

multitude of factors and non-specific to a particular disease state. For example, c-reactive 

protein is synthesised by the liver under inflammatory states and is therefore used as a general 

marker for inflammatory processes occurring in the body and not specific to one condition. 

Indeed it is one marker of the metabolic syndrome (Olza et al., 2015) and CVD risk (Berezin et 

al., 2015). Moreover, complex chronic diseases are characterised by clusters of symptoms that 

cannot be quantified by measuring a single biomarker. Biomarker risk scores have been 

evaluated and shown to improve accuracy over traditional methods for a multitude of conditions, 

such as CVD (Berezin et al., 2015, Richter et al., 2013, Hughes et al., 2012) and metabolic 

syndrome (Olza et al., 2015).  

Similarly, combining dietary information to create scores is currently performed, such as 

for creating dietary patterns a priori to measure adherence to dietary patterns associated with 

particular health outcomes or measuring diet quality, including the MDS (Trichopoulou et al., 

2003) and the Healthy Eating Index (Guenther et al., 2013). Scoring is assigned using cut-offs 



 

 
 

78 

points previously associated to health outcomes or diet quality. Diet quality is indicated by 

scoring reported food intakes by how closely they adhere to established dietary guidelines and 

also the variety of healthy food choices within core food groups. Dietary adherence scores have 

been tested for their correlation with traditional biomarkers of nutrient intake (e.g. n-3 fatty acids 

and carotenoids) (Golley et al., 2015). A study from EPIC-Norfolk created a panel of traditional 

biomarkers of fruit and vegetable intakes by summing plasma vitamin C, beta-carotene and 

lutein and found the panel to be strongly inversely associated with incident type II diabetes 

(Cooper et al., 2015). Moreover, a multi-food intake biomarker approach applying summation 

and PCA methods was used to evaluate adherence to a healthy Nordic diet dietary intervention 

in patients with MetS (Marklund et al., 2014), both methods performed similarly. With emerging 

nutritional metabolomics studies measuring multiple biomarkers simultaneously these traditional 

biomarkers may soon be replaced by more precise food intake scores.  

In one nutritional metabolomics study biomarkers of alcohol consumption in African 

Americans were identified and combined to create an alcohol risk score to evaluate the effects 

of alcohol consumption on levels of white blood cells and incident CVD (Zheng et al., 2014) . 

Specifically, the authors created three composite scores by summing quartile-ranked 

metabolites belonging to the same alcohol-related metabolic sub-pathways, including 2-

hydroxybutyrate and related BCAAs, lysophosphatidylcholines, and γ-glutamyl dipeptides. 

However, combining this information may have been more useful as independently these 

pathways are affected by different health conditions. In another study, a metabolomics 

approach was used to identify a panel of metabolites related to sugar-sweetened beverage 

(SSB) consumption, where a panel of 4 metabolites (formate, citrulline, taurine, and isocitrate) 

were found to be discriminate consumers and non-consumers (Gibbons et al., 2015). 

 

Combined biomarker scores representing long-term intakes of frequently consumed foods may 

greatly improve our understanding of the health impacts of diet. Therefore, my aims for this 

chapter were to:  

i) Identify potential biomarkers of intakes of 20 commonly consumed food groups.  

ii) Form food metabolite scores using multiple methods and test their utility. 

iii) Use the scores to predict the risk of developing the metabolic syndrome.   
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5.2 Materials and methods 

Figure 5-1 shows the pipeline of the chapter.  

Figure 5-1. Study pipeline of the chapter 

 

 

5.2.1 Food groups 

I created and analysed twenty food groups of similar taste and nutrient content (shown in Table 

5-1) derived from FFQ against blood metabolites.  

Table 5-1. List of food items included in food groups 

Food group FFQ items 

Vegetables 
 Broccoli, spring green, kale 

Brussel sprouts 
Cabbage 
Cauliflower 
Coleslaw 
Avocado 
Beetroot 
Marrow, courgettes 
Mushrooms 
Parsnips, turnips, swedes 
Sweetcorn 
Sweet peppers 
Watercress 
Carrots 
Tomatoes 
Garlic (clove) 
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Table 5-1. List of food items included in food groups 

Food group FFQ items 

Leeks 
Onions 

Green salad, lettuce, cucumber, celery 
Spinach 
Watercress 
Vegetable soups (bowl) 
Boiled, mashed, instant or one jacket potato 

Fruit 
 Strawberries, raspberries, other berries, kiwi fruit (one fruit or handful) 

Smoothies (cup) 
Pure fruit juice (100%) e.g. orange, apple juice (cup) 
Grapefruit (half) 
Oranges, satsumas, mandarins (1 fruit) 
Apples (1 fruit) 
Bananas (1fruit) 
Dried fruit, e.g. raisins, prunes (heaped tablespoon) 
Grapes (handful) 
Melon (1 slice) 
Peaches, plums, apricots (1 fruit) 
Pears (1 fruit) 
Tinned fruit (handful) 

Whole grains 
 High Fibre cereals e.g. Branflakes, All Bran, Fruit and Fibre 

Muesli 
Porridge, Readybreak, oats 
Brown rice 
Wholemeal & granary bread/rolls 
Wholemeal pasta 
Crispbread, e.g. Ryvita 

Refined grains 
 Breakfast cereal e.g.  Cornflakes, Rice Krispies 

Sugar topped cereals e.g. Frosties 
Naan, poppadoms, flour tortillas 
Brown bread/rolls 
White bread/rolls 
White or green pasta, e.g. spaghetti, macaroni, noodles 
White rice 

Nuts and legumes 
 Beansprouts 

Pulses e.g. lentils, beans, peas 
Green beans, broad beans, runner beans 
Peas 
Baked beans 
Salted nuts e.g. peanuts, cashews (handful) 
Unsalted nuts, e.g. brazil, walnuts (handful) 
Seeds e.g. Sunflower, pumpkin (tablespoon) 
Peanut butter (teaspoon) 
Meat substitutes e.g. tofu, soyameat, textured vegetable protein, vegeburger 

Seafood 
 Oily fish, fresh or canned, e.g. tuna, mackerel, kippers, salmon, sardines, herring 

Fish roe, taramasalata 
Shellfish, e.g. crab, prawns, mussels 
Other white fish, fresh or frozen, e.g. cod, plaice, sole, haddock, halibut 

White meat 
 Chicken or other poultry e.g. turkey 
Red meat and eggs 
 Beef: roast, steak, mince, stew or casserole 

Lamb: roast, chops or stew 
Pork: roast, chops or stew 
Beefburgers 
Bacon or gammon 
Corned Beef, Spam, luncheon meats 
Ham, cured meats & chorizo 
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Table 5-1. List of food items included in food groups 

Food group FFQ items 

Liver, liver pate, liver sausage 
Sausages 

Eggs as boiled, fried, scrambled, etc. (one) 
Fermented dairy 
 Low fat cheese e.g. reduced fat cheddar  (matchbox size) 

Cheese, e.g. cheddar, brie, edam  (matchbox size) 
Cottage cheese, low fat soft cheese  (2 tablespoons) 
Full fat or Greek yoghurt (small pot) 
Low fat yoghurt, fromage frais (small pot) 

Fried foods 
 Fish fingers, fish cakes & breaded fish 

Fried fish in batter, as in fish and chips 
Chips, retail, fried in vegetable oil 
Potato salad 
Old potatoes, roast in blended oil 
Savoury pies, e.g. meat pie, pork pie, pasties, steak & kidney pie, sausage rolls 
Cream crackers, savoury biscuits 
Crisps or other packet snacks, e.g. Wotsits (one packet) 
Pizza (one slice) 
Quiche (slice) 

Sweets and sweet baked products 
 Reduced fat biscuits e.g. Go Ahead, Highlights (one small packet or one small bar/biscuit) 

Sweet biscuits, chocolate, e.g. digestive (one) 
Sweet biscuits, plain, e.g. Nice, ginger (one) 
Buns, pastries e.g. scones, flapjacks, croissants, doughnuts, home baked 
Cakes e.g. fruit, sponge, home baked 
Cakes e.g. fruit, sponge, ready made 
Fruit pies, tarts, crumbles, home baked 
Fruit pies, tarts, crumbles, ready made 
Milk puddings e.g. rice, custard, trifle 
Sponge puddings, home baked 
Sponge puddings, ready made 
Dairy desserts (small pot) e.g. chocolate mousse, cream caramels 
Ice cream, choc ices 
Jam, marmalade, honey (teaspoon) 
Sugar added to tea, coffee, cereal (teaspoon) 
Sweets, toffees, mints (small packet) 

Chocolate 
 Dark chocolates, single or squares (one) 

White or milk chocolates, single or squares (one) 
Low fat hot chocolate (cup) 
Cocoa, hot chocolate (cup) 
Chocolate snack bars e.g. Mars, Crunchie (one) 

Butter and cream 
 Reduced fat butter (teaspoon) 

Butter (teaspoon) 
Double or clotted cream (tablespoon) 
Single or sour cream (tablespoon) 

Spreads and dressings 
 Low fat spread, e.g. Outline, Gold (teaspoon) 

Very low fat spread (teaspoon) e.g. Diet Flora 
Cholesterol lowering fat spreads e.g. Benecol (teaspoon) 
Olive oil spread (teaspoon) 
Block margarine, e.g. Stork, Krona (teaspoon) 
Other soft margarine, dairy spreads, e.g. Blue Band, Clover (teaspoon) 
Polyunsaturated margarine, e.g. Flora, sunflower (teaspoon) 
French dressing (tablespoon) 
Full fat salad cream, mayonnaise (tablespoon) 
Other salad dressing (tablespoon) 
Low calorie, low fat salad cream (tablespoon) 

Milk 
 Channel Islands milk 

Full cream milk 
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Table 5-1. List of food items included in food groups 

Food group FFQ items 

Dried milk 
Semi-skimmed milk 

Skimmed milk 
Soya and other milk 
 Goats' milk 
 Rice milk  
 Soya milk 
Soda 
 Fizzy soft drinks, e.g. Coca Cola, lemonade (cup) 

Low calorie or diet fizzy soft drinks (cup) 
Tea 
 Tea (cup) 

Green tea (cup) 
Coffee 
 Coffee, instant or ground (cup) 

Coffee, decaffeinated (cup) 
Alcohol 
 Beer, lager or cider (half pint) 

Port, sherry, vermouth, liqueurs (pub measure) 
Spirits, e.g. gin, brandy, whisky, vodka (pub measure) 
Red wine (small glass) 
White wine (small glass) 

 

5.2.2 Metabolomics dataset 

Fasted blood metabolites derived from the Metabolon dataset were used (Section 3.1.6.1). I 

included in the analysis 329 metabolites that were present in both serum and plasma and had 

no missing values in 75% of the sample.  

5.2.3 Training and validation datasets 

Female twins with Metabolon data available within and including 5 years of FFQ completion 

were included in the total sample (n=3559). A subset of 1156 twins had food preference data 

available, I therefore randomly assigned 1779 twins (keeping co-twins together) of this subset 

(50% of the whole sample) to the validation group, while the remaining 50% of the sample 

(n=1780) were assigned to the training group. Table 5-2 shows the characteristics of the 

training and validation datasets.  

 

Table 5-2. Characteristics of the training and validation groups 

 Training group 
 

Validation group 

 Discovery
1
 

 
MZ discordant 

 
 

Phenotype n Mean (SD) 
 

n Mean (SD) 
 

n Mean (SD) 

Age (years) 1780 56.9 (14.9) 
 

  

 
1779 54.4 (11.6) 

BMI (kg/m2) 1766 26.1 (4.8) 
 

  

 
1771 26.1 (4.9) 

Food groups (servings/week)
2
 

  

 

  

 

  
Vegetables 1652 32.1 (16.2) 

 
128 40.4 (24.1) 

 
1779 34.2 (15.5) 

Fruit  1588 20.3 (12.7) 
 

192 26.2 (16.9) 
 

1779 21.8 (12.5) 

Whole grains  1582 9.7 (8.6) 
 

198 14.4 (11.2) 
 

1779 10.3 (8.2) 
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Table 5-2. Characteristics of the training and validation groups 

 Training group 
 

Validation group 

 Discovery
1
 

 
MZ discordant 

 
 

Phenotype n Mean (SD) 
 

n Mean (SD) 
 

n Mean (SD) 

Refined grains 1588 10 (8.3) 
 

192 13.9 (11.2) 
 

1779 9.6 (8.2) 

Nuts and legumes 1598 6.5 (4.3) 
 

182 9.9 (6.1) 
 

1779 7.5 (5.3) 

Seafood 1590 2.1 (1.8) 
 

190 3.5 (2.7) 
 

1779 2.4 (1.9) 

White meat 1492 1.8 (1.3) 
 

288 2.2 (1.4) 
 

1779 2.0 (1.3) 

Red meat 1626 6.5 (3.7) 
 

154 8.5 (5.1) 
 

1779 6.7 (3.8) 

Fermented dairy 1618 5.5 (4.3) 
 

162 8.2 (7.2) 
 

1779 6.2 (4.8) 

Fried foods 1604 4.9 (3.6) 
 

176 7.3 (5.9) 
 

1779 4.5 (3.3) 

Sweets and sweet baked products 1618 17.4 (14.5) 
 

162 27.0 (22.6) 
 

1779 15.6 (14) 

Chocolate 1662 3.3 (5.0) 
 

118 7.8 (9.3) 
 

1779 4.0 (6.0) 

Butter and cream 1616 3.3 (5.7) 
 

164 8.6 (8.8) 
 

1779 4.1 (6.4) 

Spreads and dressings 1610 8.8 (8.5) 
 

170 14.9 (13.2) 
 

1779 8.6 (9.1) 

Milk 1592 3.7 (2.2) 
 

188 4.4 (3.1) 
 

1779 3.4 (2.2) 

Soya and other milk 1752 0.1 (0.6) 
 

28 2.0 (2.1) 
 

1779 0.2 (0.8) 

Soda 1672 2.3 (5.2) 
 

108 7.8 (8.3) 
 

1779 2.3 (5.5) 

Tea 1584 20.2 (13.8) 
 

196 19.7 (13.8) 
 

1779 19.0 (13.8) 

Coffee 1574 8.9 (10.8) 
 

206 15.9 (12.6) 
 

1779 8.9 (10.7) 

Alcohol 1682 4.9 (7.1) 
 

98 12.0 (11.7) 
 

1779 6.3 (7.8) 
1
Excluding twins discordant for food group intake.  

2
Variables are residual adjusted for energy intake.   

 

5.2.4 Classification of the metabolic syndrome 

During clinical visits undertaken on the twins estimates of waist circumference were determined 

by analysing DXA scans, fasted blood samples were taken and analysed to determine levels of 

total triglycerides (TG), high density lipoprotein (HDL)-cholesterol and glucose, and blood 

pressure (BP) was determined, consult Section 3.5.1 for details.  

I determined MetS status using the criteria outlined by the International Diabetes 

Federation and the American Heart Association/National Heart, Lung, and Blood Institute 

(Alberti et al., 2009). Twins who had at least three of any of the following factors were 

considered to have the metabolic syndrome: 

1. Increased waist circumference (WC): men ≥94 cm and women ≥80 cm, or BMI > 30 

kg/m
2
. 

2. Increased triglycerides (TG): >1·7 mmol/L, or treatment for abnormality 

3. Lower HDL-cholesterol: men <1·03 mmol/L in men and women <1·29 mmol/L, or 

treatment for abnormality 

4. High blood pressure: ≥130/85 mm Hg, or treatment for hypertension 

5. Raised fasting plasma glucose (FBG): FBG ≥ 5·6 mmol/L. Most individuals with type 2 

diabetes will have metabolic syndrome based on these criteria 
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I included 414 twins in the analysis who had metabolomics profiling and diet information 

and did not have MetS at this time. These twins also attended a clinical visit 5 years or more 

after metabolomics profiling where MetS status was confirmed.  

5.2.5 Statistical analysis 

Statistical analysis was carried out using Stata version 12.  

5.2.5.1 Discovery analysis in the training dataset 

For each metabolite, random intercept linear regression analysis was undertaken in the first 

sample (discovery sample) excluding MZ twin pairs discordant (MZ twins with measures one SD 

apart in food group intake) for each food group. Age, metabolite batch, BMI and family 

relatedness were included as covariates: 

Υ𝑖 = 𝛽0 + 𝛽𝑖Χ𝑖𝑗 + 𝛾𝑖𝑎𝑔𝑒𝑖𝑗 + 𝛿𝑖𝐵𝑀𝐼𝑖𝑗 +ζ𝑗 + 𝜀𝑖𝑗 

where Yi is the metabolite and Xij  the food group intake of twin j from pair i , ζj, is the family-

specific error component that captures the unobserved heterogeneity or family characteristics.  

I adjusted for multiple testing using Bonferroni correction thus giving a significant threshold of 

7.60x10
-6

 (0.05/(20 food groups x 329 eligible metabolites)). For each significant metabolite-

food group association from the discovery sample, I repeated the same linear regression 

analysis on the MZ discordant twin pair sample. The MZ discordant twin pairs were used to 

replicate the significant findings from the discovery group, associations in the same direction as 

the discovery group were considered replicated. Finally, we combined the results of both 

analyses using an inverse variance fixed effects meta-analysis that are the reported results. The 

beta coefficients (β) presented in the results of each linear regression analysis represent the 

amount of a food group consumed in servings per week that corresponds to a 1 SD change in 

the metabolite level.  

5.2.5.2 Data reduction 

Following identification of significant metabolites for each food I reduced the number of 

associations.  

Firstly, a number of metabolites were associated with multiple food groups, which may 

have been a result of correlations in intake reporting. I therefore conducted a backward 

stepwise linear regression using the 5% level of significance as the cut-off threshold for each 

metabolite (adjusted for covariates) using all food groups associated as predictors of the 
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metabolite accordingly. I considered associations to be significant if they passed the Bonferroni 

cut-off for multiple testing used for the discovery analysis (P<7.60x10
-6

).  

Secondly, a number of the food groups were associated with multiple potentially 

correlated metabolites. Although the hypothesis is that metabolite levels change with food 

intake, to determine which metabolites are correlated independently of one another with food 

intake I undertook a backwards stepwise linear regression (cut-off threshold: P<0.05), with food 

group intake as the dependent variable. I performed this on all the metabolite residuals 

identified following the discovery and first data reduction steps, to identify a potential panel of 

independent metabolites to use as food intake markers. 

5.2.5.3 Food-metabolite group generation  

Significant food group-metabolite associations were then converged into scores based on three 

different methods: 1) Similar to the method used by Zheng and colleagues (Zheng et al., 2014), 

I quartile ranked blood levels of significant metabolites and assigned the quartiles a score of 0 

to 3 according to the direction of the association (i.e. positive association: Q1=0, Q2=1, Q3=2, 

Q4=3; negative association: Q1=3, Q2=2, Q3=1, Q4=0) and summed these values; 2) Like the 

method used by Marklund and colleagues (Marklund et al., 2014), I created a continuous 

summed score by summing the relative levels of each significant metabolite. Negatively-

associated metabolites were multiplied by -1; 3) I created a weighted score by multiplying the 

relative levels by the beta-coefficients for each metabolite as a predictor of food intakes 

(standardized to have mean 0 and SD 1), adjusting for all other associated metabolites and 

summed the final scores. This method has been used by Dash and colleagues (Dash et al., 

2013) to examine the indicators of oxidative balance and incident, sporadic colorectal 

adenomas.  

5.2.5.4 ROC analysis by food intake 

To evaluate the utility of the food metabolite scores as potential markers of food intakes I 

conducted a binary classification test in the validation group. I classified twins in lower tertile of 

each food group as a negative outcome (0), and the top tertile of food group intake I considered 

a positive outcome (1). The ability of the metabolite scores to correctly classify twins consuming 

high intakes (sensitivity; true positive rate) and correctly classify twins consuming low intakes 

(specificity; true negative rate) of the model was predicted and the receiver operating 

characteristic curve (ROC) generated by plotting the true positive rate against the false positive 
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rate at multiple threshold settings. I tested whether any scoring method had a consistent 

advantage over another method by testing the difference in the area under the ROC curve 

(AUC).  The AUC may be interpreted as follows:  AUC>0.9 has high accuracy, AUC>0.7–0.9 

has moderate accuracy, AUC>0.5–0.7 has low accuracy, and AUC=0.5 is a chance result 

(Fischer et al., 2003).  

 

Confirmation of Associations by Food Preference 

I used an alternative form of getting diet information from subjects by asking them their food 

preferences. I adapted the food preference questionnaire developed in the US by Dr Valerie 

Duffy (Duffy et al., 2007) for use in the UK twin cohort (details in Appendix D Document 1). To 

do this, in collaboration with other scientists, items were changed to suit the UK diet and I 

transformed the questionnaire into an online format, this work has been published (Pallister et 

al., 2015). Modifications to the questionnaire involved changing the terms for some items (e.g. 

‘French fries’ to ‘chips’, ‘breakfast sausage’ to ‘sausage’, and ‘unflavoured oatmeal’ to 

‘porridge’) and some items were removed as they are infrequently consumed in the UK (e.g. 

‘bologna’, ‘canned noodle soup’, ‘chocolate milk’, and ‘blackened hot dog’). I compared their 

preferences for foods (ranked on a scale from -100 to +100) against those food groups as a way 

to further validate the metabolite scores. Table 5-3 shows the foods which ratings were 

averaged to form the group. I ran a linear regression with the metabolite score as the response 

variable (adjusted for batch effects, BMI and age) and twin food group liking as the predictor 

variable adjusting for family relatedness. Those associations passing the cut-off for multiple 

testing (Bonferroni P<3.33x10
-3

) were considered validated.  

 

Table 5-3. List of food preference items by food group 

Food group Preference item 

Vegetables 
  White potato 

 
Broccoli 

 
Fresh tomatoes 

 
Fresh coriander 

 
Garlic 

 
Sautéed mushrooms 

 
Asparagus 

 
Raw carrots 

 
Beetroot 

 
Spinach/ greens 

 
Aubergine 

 
Raw onion 

Fruit 

 
Grapefruit  

 
Banana 

 
Lemon 
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Table 5-3. List of food preference items by food group 

Food group Preference item 

 
Pear 

 
Melon 

 
Cherries 

 
Strawberries 

 
Pineapple 

 
Orange juice 

Whole grains 
 Wholemeal bread 

 
Porridge 

 
High fibre bar 

Refined grains 

 
Bagel/ rolls 

 
Pasta/ noodles 

 
Cornflakes 

 White rice 
Nuts and legumes 

 
Unsalted nuts 

 
Faux meat products 

 
Lentils/ beans 

Seafood 

 
Tuna or salmon 

 
Prawns and shellfish 

White meat 

 
Baked chicken 

Red meat 

 
Crispy bacon 

 
Sausage 

 
Pork chops 

 
Ham 

 
Chargrilled meat 

 
Eggs 

 
Beef steak 

Fermented dairy products 

 
Plain yoghurt 

 
Blue cheese 

 
Cheddar cheese 

Fried and fast foods 

 
Tortilla chips or crisps 

 
Chips 

 
Fried chicken 

 
Fried fish 

 
Pizza 

Sweets and sweet baked products 

 
Ice cream  

 
Cake icing 

 
Jam and jelly 

 
Biscuits, cakes or pastries 

 
Cheesecake 

Chocolate 

 
Dark chocolate 

Butter 

 
Butter or margarine 

Spreads and dressings 

 
Butter or margarine 

 
Mayonnaise 

 
Salad dressing 

 
Extra virgin olive oil  

Milk 

 
Skimmed milk 

 
Whole milk 

Soy milk 

 
Soy milk 

  



 

 
 

88 

Table 5-3. List of food preference items by food group 

Food group Preference item 

Soda 

 
Carbonated drinks & sweet drinks 

 
Diet carbonated soft drinks 

Tea 

 
Hot tea 

Coffee 

 
Black coffee 

 
Coffee or tea with sugar 

 
Sweet coffee drinks & whipped cream 

Alcohol 

 
Beer  

 
Red wine 

 
White wine 

 
Vokda, gin or scotch 

5.2.5.5 Usage of food metabolite scores to predict the metabolic syndrome 

To determine whether food metabolite scores were associated with risk of developing MetS, I 

used the food metabolite scores that performed the best (weighted scores if multiple 

metabolites and continuous variable for foods associated to single metabolites). I undertook a 

logistic regression in 414 twins using each food metabolite score (residual adjusted for age, BMI 

and batch at time of metabolomics) to predict future MetS status (0, no MetS [n=389]; 1, MetS 

[n=25]) adjusted for age, BMI and family relatedness. Statistical significance was defined as 

P<0.05. I performed the same logistic regression on reported food intake for metabolite scores 

significantly predictive of future MetS. I finally performed a logistic regression using each 

significant metabolite score as a predictor of each of the 5 clinical criteria for MetS.   
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5.3 Results 

In the following paragraphs I will first present those metabolite associations used to create the 

food metabolite scores from the training dataset, followed by the validation results.  

5.3.1 Overall associations with food group intakes  

A summary of the results for the discovery and data reduction analysis can be found in Table 5-

4. Following the meta-analysis of the discovery and discordant twin groups, 112 significant 

associations were identified in the training dataset (Figure 5-2; Appendix D Table 1). 

Significant associations were identified for all food groups except chocolate and refined grain 

intake. Thirty-nine metabolites were associated only with one food group (unique associations; 

Table 5-5), whereas 26 metabolites were associated with multiple foods (73 associations 

overall) potentially as a result of correlated intakes. Following a multivariate backward stepwise 

linear regression using each associated food group as a predictor of the latter 26 metabolites 

(Appendix D Table 2), 35 associations (including 24 metabolites) remained significant after 

Bonferroni correction (P<7.60x10
-6

). 
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Table 5-4. Results summary of the discovery analysis, the 1
st

 and 2
nd

 data reductions, 
and the final number of metabolites contributing to each food-metabolite score with R

2
 

Food group 

Total metabolites 
associated in 

discovery analysis
 (1)

 

No. metabolites 
removed after 

1
st

 data 
reduction 

(2)
 

No. metabolites 
removed after 

2
nd

 data 
reduction

 (3)
 

Final no. 
metabolites R

2 

Vegetables   3 2 0 1 0.0094 

Fruit 10 2 4 4 0.1195 

Whole grains   7 4 0 3 0.0508 

Nuts and 
legumes 

  2 1 0 1 0.0384 

Seafood 18 3 8 7 0.1535 

White meat   1 0 0 1 0.0291 

Red and 
processed 
meat, and 
eggs 

  4 1 0 3 0.0403 

Fermented 
dairy 

  1 1 0 0 - 

Fried foods   5 4 0 1 0.0668 

Sweets and 
sweet baked 
products 

12 8 0 4 0.0588 

Butter and 
cream  

  5 0 0 5 0.0754 

Spreads and 
dressings  

  3 0 1 2 0.0331 

Milk   5 2 0 3 0.0735 

Soy and other 
milks 

  1 1 0 0 - 

Soda   1 1 0 0 - 

Tea   7 2 0 5 0.2113 

Coffee 10 2 6 2 0.1963 

Alcohol 17 4 5 8 0.2493 

(1) Number of metabolites significantly associated to each food group in the discovery (Bonferroni; 

P<7.60x10
-6

) and the discordant MZ twin samples (P<0.05), and following fixed effects meta-

analysis of results from both groups (Bonferroni; P<7.60x10
-6

).  

(2) Metabolites with multiple associated foods were included in a backwards stepwise regression 

(cut-off threshold P<0.05), those associations not passing the significance threshold from the 

discovery analysis (P<7.60x10
-6

) were removed.  

(3) Food groups associated with multiple metabolites were included in a backwards stepwise 

regression, metabolites not passing the cut-off threshold of P<0.05 were removed.  
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Figure 5-2. Metabolites associated to food groups in the training dataset  

Figure 5-2 shows the metabolites significantly associated with intakes of each food group in the training 
dataset. Bars with a white centre represent the –log10 P-value from the discovery analysis. Solid bars 
indicate the –log10 P-value from the multivariate regression with the final metabolites included in the scores 
following data reduction. Green bars indicate a positive association and red bars indicate a negative 

association. Metabolites whose biochemical identity has not yet been identified are denoted by ‘X-’ 
followed by 5 digits. 
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Table 5-5. List of metabolites associated with a single food group following the discovery analysis 

Food group Metabolite Superpathway Subpathway 

Vegetables ↓ X-12063 Unknown   

Fruit ↑ stachydrine Xenobiotics Food component, Plant 

↑ threonate Cofactors and vitamins Ascorbate and aldarate metabolism 

↑ threitol  Carbohydrate Nucleotide sugars, pentose metabolism 

↓ proline Amino acid Urea cycle; arginine-, proline-, metabolism 

↑ hippurate Xenobiotics Benzoate metabolism 

Nuts and legumes ↑ tryptophan betaine Amino acid Tryptophan metabolism 

Seafood ↑ 3-carboxy-4-methyl-5-propyl-2-furanpropanoate (CMPF) Lipid Fatty acid, dicarboxylate 

↓ 1-arachidonoylglycerophosphoethanolamine* Lipid Lysolipid 

↓ 1-oleoylglycerophosphoethanolamine Lipid Lysolipid 

↓ 1-eicosatrienoylglycerophosphocholine* Lipid Lysolipid 

↓ 1-linoleoylglycerophosphoethanolamine* Lipid Lysolipid 

White meat ↑ 3-methylhistidine Amino acid Histidine metabolism 

Red, processed meat and eggs ↑ trans-4-hydroxyproline Amino acid Urea cycle; arginine-, proline-, metabolism 

↑ creatine Amino acid Creatine metabolism 

  ↑ C-glycosyltryptophan* Amino acid Tryptophan metabolism 

↓ piperine Xenobiotics Food component, Plant 

↑ X-12696 Unknown   

Butter and cream  ↑ nonanoylcarnitine* Lipid Carnitine metabolism 

↑ myristate (14:0) Lipid Long chain fatty acid 

↑ caprate (10:0) Lipid Medium chain fatty acid 

↑ X-02249 Unknown   

↑ X-10510 Unknown   

Spreads and dressings  ↑ X-11478 Unknown   

↑ X-11521 Unknown   

↑ X-11261 Unknown   
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Table 5-5. List of metabolites associated with a single food group following the discovery analysis 

Food group Metabolite Superpathway Subpathway 

Milk ↑ X-21365 (trimethyl-N-aminovalerate) Unknown   

Tea ↑ N-acetylornithine Amino acid Urea cycle; arginine-, proline-, metabolism 

Coffee ↑ catechol sulfate Xenobiotics Benzoate metabolism 

↑ paraxanthine Xenobiotics Xanthine metabolism 

↑ theophylline Xenobiotics Xanthine metabolism 

↑ X-05426 Unknown   

↑ X-12217 Unknown   

Alcohol ↑ 4-androsten-3beta,17beta-diol disulfate 1* Lipid Sterol, Steroid 

↑ 2-oleoylglycerophosphocholine* Lipid Lysolipid 

↑ X-10395 Unknown   

↑ X-11204 Unknown   

↓ X-11444 Unknown   

↓ X-11787 Unknown   
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5.3.2 Overall associations with food group intakes following data reduction 

Each food group was associated with more than one metabolite (73 associations overall) which 

were potentially correlated, therefore a backward stepwise linear regression was performed to 

remove these using a significance threshold of P<0.05. Table 5-4 summarises the results of this 

analysis, the detailed results can be found in Appendix D Table 3. For alcohol, seafood and 

coffee intakes, at least one metabolite was significant in the first model but in the opposite 

direction to the results of the fixed effects meta-analysis (Appendix D Table 3, metabolite name 

and result highlighted in red), therefore a second model was undertaken using only the 

significant metabolites that were in the same direction. The names and weightings 

(standardized betas) of the final metabolites used to produce the metabolite scores are 

highlighted in bold in Appendix D Table 3. The metabolites included in the final score are 

indicated by the solid bars in Figure 5-2 which represent the –log10 P-value from the 

multivariate regression including all final metabolites in the food score (the R
2 

for these 

regression models can be found in Table 5-4). 

 Complete results for each food group against each final metabolite score can be found 

in (Appendix D Table 4). The associations between the metabolite scores and food group 

intake were stronger than the top single metabolite association for all food groups in the training 

dataset. All top metabolites and score associations except for vegetables and spreads and 

dressings (continuous and weighted) passed the significance threshold for the discovery 

analysis (P<7.60x10
-6

) in the test group.  

5.3.3 ROC analysis of metabolite food scores in the test group 

Figure 5-3 shows the ROC curves for each of the metabolite scores ability to predict high and 

low consumers based on tertiles (intakes summarised in Appendix D Table 5). The results for 

the top metabolite and top performing metabolite score are presented in Table 5-6 (results for 

all scores can be found in Appendix D Table 6). Overall, all scores were above the line of no-

discrimination (AUC>0.5), indicating the metabolite scores performed better than a random 

guess at identifying low and high food group consumers. Metabolite scores for alcohol 

performed moderately (AUC>0.8) and metabolite scores for fruit, whole grains, seafood, fried 

foods, tea and coffee performed reasonably (AUC>0.7) at predicting high and low consumers. 

When comparing the combined metabolite scores against the top single metabolite from each 

score the weighted method performed significantly better (P<0.05) and the best for fruit, 
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seafood, red meat, sweet and sweet baked products, butter and cream and alcohol intakes. For 

the rest of the groups the scores did not significantly improve the prediction. For foods 

associated to only a single metabolite (fried foods, vegetables, nuts and legumes, and white 

meat), dividing the group into quartiles did not significantly change the predictive ability.  

5.3.4 Metabolite score associations with food preferences in the test group 

We previously showed that food preference patterns in our twin population are correlated to 

metabolite signatures in the blood, despite metabolomics profiles being measured seven years 

prior (Pallister et al., 2015). This finding suggests that food preference patterns are quite stable 

through time. Here I have used the food preference questionnaire to further validate the 

metabolite scores in the test group. All score associations passed the Bonferroni cut-off 

(P<3.33x10
-3

) except for spreads and dressings. The top results from this analysis can be found 

in Table 5-7. The full results are in Appendix D Table 7. For those foods only associated with 1 

metabolite, vegetables and white meat were not significantly associated with food liking, which 

supports our results from the ROC analysis. These results provide further evidence that food 

liking has a strong impact on food intakes.  

5.3.5 Metabolite scores results summary 

i) Summarising multiple metabolites into a score improved the strength of associations 

between food intakes and metabolite profiles. 

ii) Differences in the overall predictive performance of scoring methods were negligible for 

most food groups, though the weighted method generally performed the best.  

iii) Based on the results from the ROC analysis and associations with food preferences, 

scores for vegetable, white meat and spreads and dressings did not appear useful.   
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Figure 5-3. ROC curves for each diet metabolite score 

Each food group metabolite scoring method (quartiles, continuous and weighted) and the top associated 
metabolite were each fitted into a logistic regression model (adjusted for age, BMI, batch and family 
relatedness) to classify the top (1, positive outcome) and bottom (0, negative outcome) tertiles of food 
group intake. The equality of the receiver operating characteristic area (AUC) is shown for each scoring 
method and the top associated metabolite. 
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Figure 5-3. Continued…ROC curves for each diet metabolite score 

Each food group metabolite scoring method (quartiles, continuous and weighted) and the top associated 
metabolite were each fitted into a logistic regression model (adjusted for age, BMI, batch and family 
relatedness) to classify the top (1, positive outcome) and bottom (0, negative outcome) tertiles of food 
group intake. The equality of the receiver operating characteristic area (AUC) is shown for each scoring 
method and the top associated metabolite. 
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Table 5-6. Results of ROC analysis 
(1) 

            Versus top metabolite 

Food group Score Sensitivity Specificity Correctly classified AUC χ² P 

Vegetables 
(2)

 Top: X-12063 59.74% 55.47% 57.60% 0.6136 [0.5802, 0.6470]     

Fruit 
Top: X-11315  65.59% 60.34% 62.98% 0.6783 [0.6479, 0.7087]     

Weighted 66.84% 67.24% 67.04% 0.7411 [0.7131, 0.7690] 29.77 <0.0001 

Whole grains 
Top: X-09789  65.25% 67.07% 66.15% 0.7134 [0.6841, 0.7428]     

Weighted 67.63% 65.81% 66.72% 0.7224 [0.6934, 0.7514] 1.37 0.2425 

Nuts and legumes
 (2)

 Top: tryptophan betaine 64.25% 60.70% 62.47% 0.6723 [0.6366, 0.7080]     

Seafood 
Top: DHA 64.79% 67.46% 66.13% 0.7230 [0.6943, 0.7516]     
Weighted 69.57% 70.68% 70.13% 0.7547 [0.7274, 0.7821] 11.88 0.0006 

White meat
 (2)

 Top: 3-methylhistidine 77.78% 32.44% 56.86% 0.5733 [0.5371, 0.6096]     

Red meat 
Top: trans-4-hydroxyproline 58.94% 65.37% 62.16% 0.6697 [0.6390, 0.7003]     

Weighted 63.61% 65.53% 64.57% 0.6963 [0.6666, 0.7260] 9.36 0.0022 

Fried foods 
(2)

 Top: X-11372 65.30% 66.32% 65.81% 0.7322 [0.7038, 0.7606]     

Sweets and sweet baked products 
Top: C-glycosyltryptophan*  58.67% 56.51% 57.59% 0.6002 [0.5679, 0.6325]     

Weighted 60.10% 58.97% 59.54% 0.6254 [0.5937, 0.6571] 5.07 0.0243 

Butter and cream 
Top: nonanoylcarnitine* 71.88% 39.55% 56.84% 0.5889 [0.5529, 0.6249]     

Weighted 59.15% 59.90% 59.52% 0.6385 [0.6036, 0.6734] 11.39 0.0007 

Spreads and dressings 
Top: X-11261 59.08% 57.48% 58.28% 0.6199 [0.5880, 0.6518]     

Quartiles 60.27% 60.10% 60.19% 0.6374 [0.6059, 0.6689] 5.42 0.0199 

Milk 
Top: X-21365 [trimethyl-N-aminovalerate] 60.17% 60.65% 60.41% 0.6409 [0.6096, 0.6723]     

Continuous 60.68% 61.33% 61.00% 0.6355 [0.6040, 0.6669] 0.22 0.6402 

Tea 
Top: X-14473  59.28% 73.51% 67.04% 0.7384 [0.7078, 0.7691]     

Quartiles 61.63% 64.63% 63.13% 0.7121 [0.6803, 0.7439] 2.68 0.1016 

Coffee 
Top: X-14473 78.21% 65.38% 72.42% 0.7779 [0.7483, 0.8074]     

Quartiles 72.06% 76.36% 74.21% 0.7917 [0.7627, 0.8208] 3.08 0.079 

Alcohol 
Top: scyllo-inositol 75.75% 63.32% 70.02% 0.7531 [0.7230, 0.7832]     

Weighted 74.70% 76.40% 75.55% 0.8351 [0.8104, 0.8598] 38.99 <0.0001 

ROC, receiver operating characteristic; AUC area under the receiver operating characteristic curve 
(1) Each food group metabolite scoring method (quartiles, continuous and weighted) and the top associated metabolite were each fitted into a logistic regression 

model (adjusted for age, BMI, batch and family relatedness) to classify the top (1, positive outcome) and bottom (0, negative outcome) tertiles of food group 
intake. The equality of the receiver operating characteristic area (AUC) for each scoring method was tested against the ROC area for the top associated 
metabolite.  

(2) Only one metabolite marker 
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Table 5-7. Top and metabolite score associations with food preferences in the test group 
(1)

 
Food group Top metabolite Beta (SE) P Best scoring method Beta (SE) P 

Vegetables 
(2)

 X-12063 -0.062 (0.059) NS    
Fruit X-11315 0.203 (0.045) 7.40x10

-6
 Weighted 0.077 (0.017) 1.12x10

-5
 

Whole grains X-09789 0.287 (0.054) 1.37x10
-7

 Weighted 0.045 (0.012) 1.70x10
-4

 

Nuts and legumes 
(2)

 tryptophan betaine 0.271 (0.045) 3.04x10
-9

      

Seafood DHA 0.333 (0.035) 6.85x10
-20

 Weighted 0.173 (0.014) 1.51x10
-30

 

White meat 
(2)

 3-methylhistidine 0.083 (0.037) 2.45x10
-2

*    

Red meat trans-4-hydroxyproline 0.221 (0.046) 2.29x10
-6

 Weighted 0.081 (0.009) 7.71x10
-19

 

Fried foods 
(2)

 X-11372 0.344 (0.046) 2.69x10
-13

    

Sweets and sweet baked products C-glycosyltryptophan 0.004 (0.002) 1.09x10
-2

* Weighted 0.002 (0.000) 2.24x10
-7

 

Butter and creams nonanoylcarnitine 0.023 (0.033) 4.79x10
-1

* Weighted 0.022 (0.007) 2.61x10
-3

 

Spreads and dressings X-11261 0.105 (0.041) 1.15x10
-2

* Quartiles 0.207 (0.089) 2.06x10
-2

* 

Milk X-21365 [trimethyl-N-aminovalerate] 0.167 (0.041) 5.71x10
-5

 Continuous 0.352 (0.097) 3.15x10
-4

 

Tea X-14473 -0.217 (0.031) 7.83x10
-12

 Quartiles 0.624 (0.082) 8.88x10
-14

 

Coffee X-14473 0.241 (0.055) 1.36x10
-5

 Quartiles 0.689 (0.101) 1.98x10
-11

 

Alcohol scyllo-inositol 0.322 (0.042) 1.01x10
-13

 Weighted 0.197 (0.018) 4.08x10
-27

 

NS, not significant; *, not statistically significant (P<3.33x10
-3

) 

(1) The top metabolite associated with each food group and the best performing scoring method (if multiple metabolites associated) from the receiver operating 
characteristic curve analysis were using to predict preferences for food groups.  

(2) Only one metabolite was associated with the food group.  
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5.3.6 Metabolite score associations with future incidence of MetS  

Metabolite scores for butter and creams (OR[SE]: 0.602[0.119]; P=0.010), seafood 

(0.513[0.115]; P=2.85x10
-3

), and whole grains (0.325[0.095]; P=1.15x10
-4

) were associated with 

reduced odds of future MetS. Reported intakes for the same food groups were not significantly 

predictive of MetS, though effect directions were the same, which is suggestive that the 

metabolite scores were able to capture an effect more strongly than the questionnaires. Each 

significant metabolite score was predictive of at least one feature of MetS. Lower metabolite 

scores were predictive of reduced HDL-cholesterol for all food groups (Table 5-8). Lower 

metabolite scores for whole grains were mildly predictive of elevated triglycerides. There were 

no associations between metabolite scores and elevated WC, high blood pressure or impaired 

fasting plasma glucose.  

 

Table 5-8. Metabolite score predictions of criteria categories of the metabolic syndrome 

NS, not significant (P<0.05); MetS, metabolic syndrome; HDL, high density lipoprotein cholesterol 

A logistic regression (0, no risk; 1, risk) was performed in 414 twins using each food metabolite score 
(residual adjusted for age, BMI and batch at time of metabolomics) to predict the 5 clinical MetS criteria 
taken ≥ 5 years after metabolomics profiling.  

 

 

 

 

Criteria Butter and creams Seafood Whole grains 

 OR[SE] P OR[SE] P OR[SE] P 
Elevated 
triglycerides 

 NS  NS 0.639[0.123] 0.020 

Reduced HDL-
cholesterol 

0.347[0.125] 3.38x10
-3

 0.413[0.123] 3.05x10
-3

 0.367[0.099] 2.12x10
-4
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5.4 Discussion 

The primary aims of this chapter were to identify markers of long-term reported intakes of 

general food groups, to create biomarker scores using multiple methods and evaluate them, 

including testing them on the future development of MetS. Through the work I completed in this 

chapter I came to the following conclusions: i) summarising multiple metabolites into a score 

improved the strength of associations between food intakes and metabolite profiles; ii) 

differences in the overall predictive performance of scoring methods were negligible for most 

food groups, though the weighted method generally performed the best; iii) based on the results 

from the ROC analysis and associations with food preferences, I would not use scores for 

vegetable, white meat and spreads and dressings for further analysis. Nearly all of the 

metabolite associations identified and confirmed in discordant MZ twins have been identified in 

Chapter 4 as markers of reported intakes of more specific food items, I have therefore not 

highlighted these in the discussion. Moreover, I found that lower biomarker scores, though not 

reported intakes, associated to consumption of butter and creams, seafood and whole grain 

products associated to a higher risk of MetS later in life.   

Few epidemiological studies and no twin studies to date have examined reported food 

intakes against metabolomics profiles to create biomarker scores and evaluated them. One 

study of African Americans examined the impact of alcohol consumption related metabolite sub-

pathways on white blood cell levels and incident CVD (Zheng et al., 2014). In this chapter I used 

their method of summing quartile ranked metabolites to create a score, though this method did 

not perform the best overall and appears to lose some information. Moreover, while the authors 

created scores for different sub-pathways they did not acknowledge that these pathways are not 

specific to alcohol intake, such as 2-hydroxybutyrate and related branched chain amino acids 

which are markers of insulin resistance and type 2 diabetes (Menni et al., 2013a), and therefore 

may not truly connect alcohol consumption to CVD directly. I also used the summation score 

method that has previously been used to assess adherence to a healthy Nordic diet (Marklund 

et al., 2014). I found this method simple, though for most food groups did not perform better 

than the weighted method. I used the weighted method as it has been used to study markers of 

oxidative stress and their influence on incident, sporadic colorectal adenomas (Dash et al., 

2013), though they did not directly test the difference in accuracy between the equal weight 

versus weighting methods, the authors did find the methods to predict colorectal adenomas 
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similarly. An issue with equally weighting scores is that they may be less biologically meaningful 

than weighting. However, the weights used here may not be applicable to other populations. 

Although through splitting our group into a training and test set I found the weighting method still 

tended to perform better. Single metabolites did not perform well compared with combining 

metabolites into scores, supporting the use of biomarker scores for future study. 

All scores performed better than a random guess at identifying low and high food group 

consumers. Generally, scores including more metabolites performed better. Scores that 

performed with moderate accuracy (AUC>0.7) included those for alcohol, fruit, whole grains, 

seafood, fried foods, tea and coffee. Suggesting that these metabolites should be investigated 

more thoroughly. Previous metabolomics studies have identified strong associations with 

reported coffee, fruit, alcohol and seafood intakes (Guertin et al., 2014b, Guertin et al., 2015, 

Zheng et al., 2014), many of which I confirmed in this and the previous chapter. It is interesting, 

though encouraging, that the marker for fried food intake performed reasonably well as 

reporting of fried food intake may be more prone to underreporting. It is difficult to draw 

conclusions for metabolite scores that did not perform as well (AUC<0.7). However, the 

potential markers may simply not be good markers, though it also should be taken into account 

that ranking of the intakes for some foods may not be precise. To help resolve these issues 

controlled feeding studies should be undertaken, moreover applying different or new 

metabolomics platforms with more metabolites may yield markers with greater potential.  

An important issue with creating scores is that many of the metabolites associated to 

food intakes appear to lack specificity to a particular food. Moreover, in our study many 

metabolites were associated to multiple foods that may also be a result of correlations in 

reporting and dietary patterns. I attempted to ameliorate this issue by running a multivariate 

linear regression including all foods associated to each applicable metabolite and used the 

stringent significance threshold from the discovery analysis. However, by doing this I may have 

eliminated important markers. Moreover, future studies may find that working with correlations in 

intakes and identifying markers of healthy versus unhealthy dietary patterns (which tend to 

cluster together) may be more useful for public health research (and easier for translation) than 

examining single foods alone.  

 I found that lower biomarker scores (though not reported intakes) for butter and creams, 

seafood and whole grains associated to a higher risk of MetS later in life. However, only 25 

individuals subsequently developed MetS at a later time, therefore strong conclusions cannot be 



 

 
 

103 

drawn from this small sample size. It is interesting that metabolites associated to butter and 

cream intake were lower in individuals who later developed MetS, which seems conflicting. 

Moreover, higher scores on the butter and cream metabolite score were associated with higher 

levels of HDL-cholesterol. Although large population studies have supported these findings, a 

recent study on 15,105 Brazilian adults identified inverse associations between total dairy and 

high fat dairy consumption and later development of the MetS which appeared to be mediated 

by dairy saturated fat consumption (Drehmer et al., 2016). In a large population of adults from 2 

US cohorts (the Health Professionals Follow-Up Study: 51,529 men; the Nurses' Health Study: 

121,700 women), classic blood biomarkers of dairy fat consumption, trans palmitoleate, 

pentadecanoic and heptadecanoic acids were not associated with incidence of stroke (Yakoob 

et al., 2014). In another study of 659 adults from the triethnic multicenter Insulin Resistance 

Atherosclerosis Study, circulating pentadecanoic acid was inversely associated with incident 

type 2 diabetes, a clinical measure of insulin resistance and β-cell dysfunction (Santaren et al., 

2014). I also found that individuals with lower whole grain metabolite scores were more likely to 

develop MetS. All of the metabolites forming the whole grain score are unknown therefore not 

much information can be derived from them at this time. Though it has been found that whole 

grain consumption appears to have a protective effect on MetS (Sahyoun et al., 2006) and 

cardiometabolic traits (Giacco et al., 2010). Using a biomarker approach, increased plasma 

alkylresorcinols (AR) ratio C17:0/C21:0, a biomarker of whole grain rye intake, was associated 

with an improved blood lipid profile following the consumption of a healthy Nordic diet in 

subjects with MetS (which includes high intakes of rye bread) (Magnusdottir et al., 2014), 

however total AR which is more representative of total whole grain wheat and rye intake was 

not associated with an improved lipid profile. I identified a particularly strong association 

between having lower scores on the whole grain metabolite score and having lower HDL-

cholesterol, though a strong relationship between HDL-cholesterol and whole grain 

consumption has not been identified (Hollaender et al., 2015). Higher scores on the seafood 

biomarker score were also found to associate with a reduced MetS risk and higher HDL 

cholesterol. A systematic review of 7 studies found 4 studies (one follow-up, three cross-

sectional) to suggest increased fish intake is protective of MetS (Torris et al., 2014). The long 

chain omega-3 fatty acids found in fatty fish, and also included in the biomarker score I used, 

are thought to be protective through improving vascular function and reducing inflammatory 

processes (Tousoulis et al., 2014). Supporting this, a recently published prospective study of 
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4356 American young adults found that increasing reported intakes of non-fried fish and dietary 

long-chain omega-3 fatty acids were associated inversely with MetS at 25 years follow-up (Kim 

et al., 2016). Biomarker studies are scarce on the relationship between blood long-chain 

omega-3 PUFAs and MetS risk. One study of chronic kidney disease patients found a pattern of 

high n-3 PUFAs in serum were not consistently associated with MetS (Huang et al., 2014). In 

another study serum DHA was associated with reduced cardiometabolic risk (Song et al., 2014).   

 There are a number of limitations and factors that must be considered. The Metabolon 

method does not determine the true blood concentration of the metabolites therefore I could not 

identify accurate cut-off points for what constitutes high and low intakes or risk levels. For 

chocolate, refined grains, fermented dairy, soy and other milk, and soda intakes no metabolite 

biomarkers were identified or did not pass data reduction and could not be studied further. By 

evaluating the metabolite scores against FFQ data I likely did not capture the true discriminatory 

ability of the scores due to the nature of dietary self-reporting. Through using these methods I 

was able to compare the utility of different scoring methods. Future feeding studies will be better 

equipped to assess biomarker utilization more accurately. The classification of foods was done 

a priori based on foods derived from similar sources (e.g. plants, animals, processing), which 

confer similar health benefits (e.g. whole grain versus refined grain), food usage and cooking. I 

may have chosen foods to be in a group that are not well correlated to intakes of the rest of the 

foods, therefore one food may be more strongly related to a metabolite, whereas another food 

included in the group has no relationship. Future work should aim to unravel the precise 

mechanism for these associations in order to discern which foods contribute to the same 

metabolite associations. Only women were used for this study, therefore the results may not be 

applicable to men. Many markers are unidentified at this time therefore I could not confirm they 

may be biologically related to food intakes, however I used stringent cut-offs, discordant MZ 

twins and data reduction methods to identify the best metabolite markers possible in our 

population. Importantly, the metabolite scores were tested in a group independent from the 

discovery group.  
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Chapter 6 Metabolomic associates of microbial diversity, their 

modulation by diet and relationship to the metabolic syndrome 

 
In this chapter I analysed gut microbiome Shannon diversity (Shannon) for its association with 

blood metabolites from the Metabolon platform, I then examined whether these microbe-related 

metabolites were associated with reported food intakes and finally, I explored longitudinal 

changes of the top diversity-associated metabolite and its association with metabolic syndrome 

risk and its components. 

 

 

6.1 Introduction 

The microbiome refers to the collective genomes of the microorganisms within an environmental 

niche. Within the human gut, microbiota undertake important processes allowing for potential 

host-microbe interactions such as vitamin synthesis, hormone production, metabolism of food 

components and interactions with host innate immunity. The number of different organisms 

present within the human gut (referred to as ‘richness’ or ‘diversity’) is associated with the 

increased abundance of beneficial bacteria and is emerging as an important indicator of health.  

Richness represents the total gene count, while diversity additionally accounts for the rarity of 

those microbial genes present within the whole dataset. Reduced alpha-diversity (intra-

individual diversity) has been coupled with dysbiosis (microbial imbalance) in inflammatory 

bowel disease patients (Manichanh et al., 2006, Michail et al., 2012, Scher et al., 2015), though 

this has not been highlighted in studies of obesity (Turnbaugh et al., 2009) or metabolic health 

(Le Chatelier et al., 2013). Although mechanisms are unclear microbial imbalance occurs when 

beneficial bacterial growth is compromised and a few pathogenic taxa dominate and overtake 

the metabolic potential of the microbiome with possible deleterious effects. Recent studies have 

shown reduced diversity is present in disease states and metabolic conditions such as auto-

immune diseases, including inflammatory bowel disease (Michail et al., 2012, Ott et al., 2004, 

Manichanh et al., 2006) and in patients with psoriatic arthritis and inflammatory bowel disease 

(Scher et al., 2015), and metabolic derangements, including obesity (Turnbaugh et al., 2009) 

and MetS-related phenotypes (Le Chatelier et al., 2013). Diet has been shown to contribute to 

gut microbiome richness (Cotillard et al., 2013), in particular dietary fibre promotes stability in 
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richness in humans (Tap et al., 2015) and this stability has recently been shown to be 

transferred to future generations in mice (Sonnenburg et al., 2016), highlighting the important 

potential of good nutrition in humans. 

Microbes play a distinct role in human metabolism by transforming food- and host-

derived metabolites, such as bile acids, polyphenols and fibre. These products may in turn 

influence disease development by interacting with human host physiology. Studies are now 

attempting to untangle these interactions through measuring the chemical profile (metabolome) 

in biofluids (urine and blood), faeces, tissues and organs in collaboration with microbiome 

analysis. Comparing conventional versus germ-free mice, conventional mice exhibited elevated 

blood levels of indole-containing compounds (e.g. indoxyl sulfate and indole-3-propionic acid), 

serotonin, sulfated compounds (e.g. phenyl and p-cresol sulfate), and glycine-conjugated 

compounds (hippuric acid, cinnamoylglycine and phenylpropionylglycine), showing the major 

contribution of the gut microbiome to metabolism (Wikoff et al., 2009). In another study, urinary 

excretion of hippuric acid, a metabolite derived from high polyphenol foods (Gonthier et al., 

2003, Walsh et al., 2007), has been found to discriminate well between obese and normal 

weight controls (Calvani et al., 2010). Many of the metabolites implicated are food-derived 

components. In the two previous chapters I found many food associations with microbial co-

metabolites, therefore merging microbiome and metabolomics approaches with dietary studies 

is the logical next step in improving our understanding of the interplay between diet, the 

microbiome and metabolic disease. 

Diet is thought to be the most important avenue for modulating the gut microbial 

composition and its metabolic outputs, despite this there are relatively few good human studies. 

It has been shown that daily consumption of 40 g of dark chocolate for 2 weeks altered urinary 

output of gut microbial metabolites, increasing hippurate and methylamines, and reducing p-

cresol sulfate (Martin et al., 2009). A recent randomized controlled pilot found consuming 30 g/d 

of heat-stabilized rice bran for 28 days increased abundance of 8 operational taxonomic units 

(OTUs) from the genera Methanobrevibacter, Paraprevotella, Ruminococcus, 

Dialister, Anaerostipes and Barnesiella, and 3 from Bifidobacterium and Ruminococcus, 

moreover elevated levels of secondary bile acids (deoxycholic and lithocholic) and metabolites 

derived from plants and microbial modifications of plant phenolics (benzoic, hydrocinnamic and 

phosphoric acids, and inositol monophosphate) were observed in the faecal metabolome 

(Sheflin et al., 2015). The microbial metabolism of choline and L-carnitine, mainly found in meat, 
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fish and eggs, to trimethylamine  (TMA) and then oxidized in the liver to trimethylamine-N-oxide 

(TMAO) has been implicated in why some red-meat consumers develop atherosclerosis (Koeth 

et al., 2013, Wang et al., 2011). Specifically, TMAO has been suggested to encourage the 

upregulation of macrophage scavenger receptors and through this enhance forward cholesterol 

transport (Bremer, 1983). Though in mice with intact intestinal microbiota and also with higher 

TMA and TMAO blood concentrations, choline and L-carnitine feeding each suppressed reverse 

cholesterol transport (Koeth et al., 2013). Interestingly, suppression of the gut microbiota 

removed the effect. 

 

The metabolomic signature of gut microbial alpha-diversity has yet to be examined on a large 

scale, and could provide useful candidate markers of a metabolically fit microbiome. Therefore 

for the current chapter, I aimed to: 

i) Identify the blood metabolites correlated with gut microbiome diversity.  

ii) Examine the impact of food intake on these metabolites.  

iii) Examine if longitudinal changes in these metabolites are predictive of both future 

metabolic syndrome and its components.
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6.2 Materials and methods 

Data relevant to this chapter included the reported intakes of 20 food groups as described in the 

previous chapter (Section 5.3.1), microbiome data and blood metabolomics data (details 

Section 3.1.6.1). I used all 292 known metabolites measured by the Metabolon platform. Twins 

who completed FFQs collected between 1995 and 2001 and in 2007 were used in the discovery 

analysis (n=1529). New FFQ data were collected between 2014 and 2015, 484 additional twins 

had microbiome, metabolomics data and completed FFQs during this time, 420 of these twins 

who had no co-twin in the discovery sample were used as a validation sample. The remaining 

64 twins who had co-twins in the discovery sample were used for the subsequent microbiome 

and MetS analyses. 

Table 6.1 provides the study population characteristics and subject numbers.  

Table 6-1. Study population characteristics for the whole, discovery and validation 
samples 

 Whole  FFQ<2014 
(Discovery) 

 FFQ≥2014  
(including validation) 

 Mean (SD)  Mean (SD)  Mean (SD) 
N 2013  1529  484 
Age (y) 57.2 (10.6)  57.7 (10.6)  55.4 (10.4) 
BMI 26.0 (4.6)  26.1 (4.6)  25.9 (4.6) 
Sex (M:F) 113:1909  0:1535  113:374 
MZ:DZ pairs 
Singletons 

408:392 
421 

    

Food groups 
(servings/week) 

     

Vegetables 34.9 (16.5)  34.8 (15.4)  35.1 (19.6) 
Fruit  21.4 (12.7)  21.9 (12.4)  19.5 (13.5) 

Whole grains  10.3 (8.0)  10.7 (8.1)  9.2 (7.4) 
Refined grains 8.6 (7.6)  9.0 (7.9)  7.2 (6.3) 

Nuts and legumes 7.9 (5.8)  7.6 (5.2)  8.8 (7.2) 
Seafood 2.4 (2.0)  2.5 (2.0)  2.3 (2.1) 

White meat 1.9 (1.3)  1.9 (1.3)  1.9 (1.3) 
Red meat 6.9 (4.1)  6.8 (3.9)  7.4 (4.6) 

Fermented dairy 6.2 (5.1)  6.1 (4.7)  6.5 (6.2) 
Fried foods 4.5 (3.5)  4.5 (3.3)  4.8 (4.1) 

Sweets and sweet 
baked products 

15.2 (13.9)  15.5 (14.0)  14.1 (13.4) 

Chocolate 4.0 (5.9)  4.0 (5.8)  3.9 (6.3) 
Butter and cream 4.4 (6.5)  4.2 (6.4)  5.0 (6.8) 

Spreads and 
dressings 

8.2 (9.0)  8.5 (9.1)  7.2 (8.6) 

Milk 3.2 (2.3)  3.4 (2.3)  2.8 (2.2) 
Soya and other milk 0.2 (0.8)  0.2 (0.9)  0.2 (0.8) 

Soda 1.7 (4.2)  1.8 (4.3)  1.3 (3.5) 
Tea 19.3 (13.5)  19.2 (13.5)  19.4 (13.5) 

Coffee 9.0 (10.6)  9.1 (10.7)  8.8 (10.5) 
Alcohol 6.1 (8.0)  6.2 (7.9)  5.9 (8.4) 

 



 

 
 

109 

6.2.1 Faecal microbiome composition 

Faecal samples were collected at follow-up and the composition of the gut microbiome was 

determined by 16S rRNA gene sequencing carried out at Cornell as previously described 

(Goodrich et al., 2016). Firstly, the V4 region of the 16S rRNA gene was amplified and then 

sequenced on Illumina MiSeq. The reads were next compiled to operational taxonomic units 

(OTUs) (Ley et al., 2006). Quality control was undertaken by Matthew Jackson and Tiphaine 

Martin at KCL by sample, paired-ends with an overlap of less than 200nt were removed. 

Chimeric sequences were then removed by de novo chimera detection in USEARCH (Edgar et 

al., 2011). Using Sumaclust within QIIME 1.9.0 de novo OTU clustering was undertaken across 

all reads, reads with a 97% identity threshold were brought together (Jackson et al., 2016a, 

Caporaso et al., 2010). Log transformation was undertaken on OTU counts, prior to 

transformation zero counts were given an arbitrary value (1x10
-6

). OTU abundances were then 

adjusted for technical covariates including sequencing depth, sequencing run, sequencing 

technician and sample collection method using linear modelling and the residuals obtained. As 

the residuals were not normally distributed, I completed an inverse normalisation. To determine 

alpha diversity, the total OTU count table was rarefied to 10000 sequences for each sample 50 

times. Per sample, alpha diversity metrics were determined in each of the rarefied tables and 

the average score for all 50 was considered as the final diversity measure. The primary alpha 

diversity metric considered was the Shannon Index as this was considered the most robust and 

is a commonly used metric though findings were confirmed on other parameters including 

observed OTU counts and Chao1 (richness), and the Simpson diversity index. All alpha 

diversity indices were standardised to have mean 0 and SD 1. 

6.2.2 Classification of the metabolic syndrome 

I determined MetS status using the criteria outlined by the International Diabetes Federation 

and the American Heart Association/National Heart, Lung, and Blood Institute (Alberti et al., 

2009). Consult Section 5.2.4 for details.  

Table 6-2 provides the clinical characteristics of the subsample of twins studied.  
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Table 6-2. Clinical characteristics of the twin subsample to investigate longitudinal 
hippurate, diversity, diet with the MetS phenotypes and its components 

 Londitudinal sample (n=1032) 

 Mean (SD) 

Age at MetS status (y) 64.2 (7.8) 

MetS status (0, no; 1, yes) 906:116 

Longitudinal metabolomics baseline to 
endpoint (y) 

10.6 (3.9) 

Sex (M:F) 27:1005 

BMI (kg/m2)  26.2 (4.5) 

Systolic blood pressure (mmHg) 129.0 (15.7) 

Diastolic blood pressure (mmHg) 75.5 (9.7) 

Glucose (mmol/L) 4.9 (0.6) 

Cholesterol (mmol/L) 5.6 (1.0) 

HDL-Cholesterol (mmol/L) 1.9 (0.5) 

Triglycerides (mmol/L) 1.1 (0.5) 

 

6.2.3 Statistical analysis 

Statistical analysis was carried out using Stata version 12. The statistical analysis was 

undertaken in two parts. First, a marker of microbiome diversity was identified, its relationship to 

food intake explored and associations with microbiome OTUs/collapsed taxonomies identified. 

In the second part, the relationship between longitudinal levels of the diversity metabolite 

marker, diet, diversity and associated OTUs/taxa with the risk of MetS and its components were 

explored.  

6.2.3.1 Part 1: Metabolite associations with diversity, relationship to food intake 

and associations with microbiome OTUs/taxa 

Figure 6-1 shows the analysis pipeline for part 1.  

6.2.3.1.1 Microbiome diversity-metabolite associations 

I ran a linear regression model with Shannon diversity as a predictor of the metabolite level (292 

metabolites, Metabolon platform) in a group of 1529 female twins, adjusted for age, batch, BMI 

and family relatedness (closest to blood sampling) and multiple testing (Bonferroni: 0.05/292 = 

1.71x10
-4

). Significant metabolites from the discovery sample were then evaluated against 

Shannon diversity using the same linear regression (additionally including sex as a covariate) in 

the male (n=113) and female validation sample (n=420), associations passing the 5% level of 

significance were considered validated.  
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6.2.3.1.2 Food intakes associated with diversity-associated metabolites 

To identify if any validated diversity-associated metabolites were potentially related to food 

intake, in the discovery sample I used reported intakes of the 20 food groups to predict levels of 

the metabolites (Bonferroni: 0.05/[5 metabolites x 20 food groups] = 5.00x10
-4

), adjusted for the 

same covariates as above. In a subsample of individuals from the discovery group (n=788) 

longitudinal metabolomics data were available (n=705 3 time points, n=83 2 time points) as well 

as reported food group intake at the same time or 5 years before the first blood sample. 

Figure 6-1. Flowchart of study design for part 1 
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I determined trajectories of change in the top diversity-associated metabolite (years after 

baseline: 2
nd

 time point: 7.4 [range: 2.3-12.8]; 3
rd

 time point: 13.9 [range: 8.3-17.9]) by empirical 

Bayes predictions (adjusted for age and BMI) which estimates the rate of change in standard 

deviations/year (Rabe-Hesketh and Skrondal, 2008). Using this method point estimates were 

calculated and a slope of change determined. Food group intake at baseline was then used to 

predict the metabolite trajectories (Bonferroni: 0.05/20 food groups = 0.0025). 

A predictive score was created from those significantly associated foods according to 

the direction of association (i.e. positive association: Q1=0, Q2=1, Q3=2, Q4=3; negative 

association: Q1=3, Q2=2, Q3=1, Q4=0) and summed. In the validation sample, I conducted a 

logistic regression model (adjusted for covariates, including sex) to test the ability of the top 

diversity-associated metabolite to identify twins in the top and bottom tertiles of Shannon 

diversity, as well as the utility of the diet score to identify the top and bottom tertiles of the 

metabolite in blood.  

6.2.3.1.3 Food-microbiome-metabolite axis 

To identify associations between the metabolite and the microbiome I combined the discovery 

and validation samples (n=2013). To establish the strong association between the metabolite 

and diet score with richness (observed OTUs) and additional diversity metrics (Simpson and 

Chao1), I ran these associations using the same linear regression as for the Shannon diversity 

discovery analysis in the pooled sample. I then evaluated associations within the microbiome by 

running a linear regression model using the OTUs and OTUs collapsed at each taxonomic level 

(phylum, class, order, family, genus) as predictors of the metabolite adjusted for covariates, 

Shannon diversity and multiple-testing (Bonferroni cut-off; Table 6-3 shows the significance 

threshold for the OTUs and each taxonomic level). To determine the total variance in both 

Shannon diversity and the metabolite accounted for by metabolite-associated OTUs, I included 

all associated OTUs in a backwards stepwise linear regression using P<0.05 as the threshold 

cut-off, I report the R
2 
for each model. Metabolite-associated OTUs/taxa were examined for their 

association with the diet score (predictor) adjusted for covariates, the metabolite and multiple 

testing (assigned at each taxonomic level; Table 6-3). To investigate if any of the foods forming 

the score were driving associations, I ran a multivariate regression model including all 

metabolite-associated foods and the same covariates. 
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Table 6-3. Statistical significance thresholds for microbiome analysis using Bonferroni 
correction 

(1)
 

(1) Bonferroni correction was calculated within each level.  
(2) Variables significantly associated with hippurate were tested for their association against 

the hippurate diet score. 
 

6.2.3.1.4 Microbiome-metabolite-diet interactions 

I next tested if there was an interaction between the diet score and the microbiome 

OTU/collapsed taxa associated to both the metabolite and the diet score in the prediction of the 

blood metabolite levels. I first ran a continuous x continuous interaction model using each 

OTU/collapsed taxa adjusting for covariates (age, BMI, batch, sex and Shannon diversity). In 

the second analysis, to determine if total numbers of all associated bacteria were important, I 

first multiplied abundances of associated microbiome variables by the direction of association 

with the metabolite (-1, negative, 1, positive) and summed the variables. I then ran the same 

continuous x continuous interaction model as above using this variable.  

6.2.3.2 Part 2: The relationship between longitudinal levels of the diversity 

metabolite marker, diet, diversity and associated OTUs/taxa with the risk 

of MetS and its components 

Figure 6-2 shows the analysis pipeline for part 2.  

6.2.3.2.1 Relationship between microbiome diversity, longitudinal metabolite and the 

MetS score and its components 

Microbiome diversity has been reduced in metabolic diseases, therefore I hypothesized that 

reduced longitudinal changes in the top metabolite diversity marker would be associated with 

increased MetS risk. A subsample of 1032 individuals had longitudinal blood metabolite levels 

(n=533 with 2 time points, n=499 with 3 time points). The time for the longitudinal analysis 

ranged from 2.4-17.9 years. I evaluated whether the longitudinal levels of the top diversity 

 Hippurate  Hippurate diet 
(2)

 

Level Number of variables P  Number of variables P 

Phylum 34 1.47x10
-3

  1 0.05 

Class 72 6.94x10
-4

  2 0.025 

Order 137 3.65x10
-4

  3 0.017 

Family 194 2.58x10
-4

  3 0.017 

Genus 382 1.31x10
-4

  7 7.14x10
-3

 

OTU 581 8.61x10
-5

  30 1.67x10
-3
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metabolite predicted MetS status and scoring or any of its components. I ran a linear regression 

model using Shannon diversity, the metabolite trajectory, the diet score or metabolite/diet-

associated OTUs/taxa to predict MetS status (adjusting for age, sex, and family relatedness), 

and each component adjusting for age, BMI (except for BMI), sex, and family relatedness.  

6.2.3.2.2 Metabolite trajectory association with MetS (and components) mediated by 

Shannon diversity, the diet score and specific OTUs/taxa 

The aim of this analysis was to determine the degree to which the variance in MetS (and 

components) attributable to the metabolite trajectory was accounted for by the MetS (and 

components) association with Shannon diversity, the diet score or specific OTUs/taxa. The 

proportion of the variance of the MetS status and its components were determined for the 

metabolite trajectory after taking into account all covariates. This quantity is indicated as r
2
x. The 

proportion of the variance for the MetS status (and its components) explained by the metabolite 

trajectory was then calculated after taking into account the same covariates as above but also 

including, Shannon diversity, the diet score (if applicable) or associated OTUs/taxa (r
2
xy). The 

percentage of the longitudinal metabolite association mediated by Shannon diversity, the diet 

score and associated OTUS/taxa (r
2
y.) was calculated as the proportion of the variance of MetS 

status (and components) that is due to the longitudinal metabolite trajectory association with 

Shannon diversity, the diet score and associated taxa, namely 1 – (r
2

xy/r
2

x). 

6.2.3.2.1 Confirmation of findings in twins discordant for Shannon diversity 

Fifty-five MZ twin pairs discordant (≥ 1 SD) for Shannon diversity were used to confirm 

associations with diversity associations with the top metabolite cross-sectionally and 

longitudinally, the diet score and significant MetS components. 
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Figure 6-2. Flowchart of study design for part 2 
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6.3 Part 1 results 

6.3.1 Microbiome diversity metabolomics associations 

Eight metabolites significantly correlated with Shannon diversity in the discovery sample and 

five were validated in the validation sample (Table 6-4). Among those, hippurate, a benzoate 

metabolite, associated significantly (P<5.00x10
-4

: 0.05/[5 metabolites x 20 food groups]) with 

intakes of fruit (0.012[0.002]; P=7.36x10
-8

) and whole grains (0.013[0.003]; P=2.05x10
-5

). 

Another benzoate metabolite 3-phenylpropionate was associated with fried foods (-

0.045[0.009]; P=5.63x10
-7

), whole grains (0.018[0.004]; P=2.71x10
-6

) and fruit (0.010[0.002]; 

P=2.45x10
-5

). Hippurate and 3-phenylpropionate were strongly correlated (r=0.51), although 

summing the two metabolites did not improve their association with Shannon diversity 

(hippurate R
2
: 0.0258; 3-phenylpropionate R

2
: 0.0122; and combined R

2
: 0.0236), therefore for 

the remainder of the analysis I focused on hippurate.
 

6.3.2 Food intakes predict longitudinal hippurate trajectories  

I next analysed longitudinal levels of hippurate (Figure 6-3 shows the data for 25 randomly 

selected twins). Higher intakes of whole grains, coffee and fruit significantly (P<0.0025) 

predicted increasing hippurate trajectories (Table 6-5). All associations remained significant in a 

multivariate linear regression (Table 6-5) and together accounted for 5.3% of the variance in the 

hippurate trajectory. The nutrient profile of the score formed from these foods is shown in Table 

6-6. I validated the hippurate diet score in the validation sample against hippurate (0.089[0.024]; 

P=3.21x10
-4

) and Shannon diversity (0.040[0.019]; P=0.035), independently of hippurate. The 

diet score was moderately (h
2
≥30%) heritable (A: 0.3782 [0.3024, 0.4485]; E: 0.6218 [0.5515, 

0.6976]), with the AE model being the best fit.  
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Figure 6-3. Blood hippurate levels at 3 visits 

Figure 6-3 shows blood hippurate levels at 3 different visits for 25 randomly selected twins. 
The data were adjusted for age and BMI.  
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Table 6-4. Metabolites associated to Shannon diversity in the discovery sample, following backward stepwise linear regression and in the 
validation sample 

(1) 

*Statistically significant: P<0.05 
(1) A linear regression was performed using Shannon diversity to predict levels of 292 metabolites adjusting for age, BMI, batch effects (and sex in the 

validation) and family relatedness.  
(2) Statistically significant (P<1.71x10

-4
) associations from the discovery group were validated in the validation group.  

 
Table 6-5. Food intake and score predictions of longitudinal hippurate trajectories and following a backwards stepwise linear regression in a 
subsample of 788 twins 

(1) Intakes of 20 food groups at baseline were used to predict the hippurate trajectory adjusted for age, BMI and sex. Statistical significance was defined as 
P<0.0025 (0.05/20 food groups). The diet score was formed by summing quartile ranked intakes of food groups significantly associated with the hippurate 
trajectory. 

(2) Whole grain, coffee and fruit intake were included in a multivariate regression to predict the hippurate trajectory including age, BMI and sex as covariates. 

   Discovery  
(n=1529) 

 Validation 
(n=420) 

(2)
 

Metabolite Super-
pathway 

Sub-pathway beta (SE) P  beta (SE) P 

Hippurate Xenobiotics Benzoate metabolism 0.230 (0.040) 3.72x10
-8

  0.238 (0.072) 0.001* 

p-cresol sulfate Amino acid Phenylalanine & tyrosine metabolism 0.200 (0.040) 9.90x10
-8

  0.179 (0.063) 0.005* 

phenol sulfate Amino acid Phenylalanine & tyrosine metabolism -0.200 (0.040) 5.82x10
-7

  -0.121 (0.063) 0.055 

Phenylacetylglutamine Amino acid Phenylalanine & tyrosine metabolism 0.180 (0.040) 5.21x10
-6

  0.195 (0.062) 0.002* 

3-phenylpropionate (hydrocinnamate) Amino acid Phenylalanine & tyrosine metabolism 0.160 (0.040) 3.43x10
-5

  0.185 (0.084) 0.028* 

4-ethylphenylsulfate Xenobiotics Benzoate metabolism 0.190 (0.050) 5.12x10
-5

  0.062 (0.081) 0.441 

Hyodeoxycholate Lipid Bile acid metabolism -0.190 (0.050) 8.66x10
-5

  -0.215 (0.089) 0.016* 

Indolepropionate Amino acid Tryptophan metabolism 0.140 (0.040) 9.20x10
-5

  0.093 (0.083) 0.262 

 Independent regression
 (1)

  Multivariate regression 
(2)

 
 

Beta (SE) P 
 

Beta (SE) P 

Whole grains 1.70x10
-4

 (3.84x10
-5

) 9.54x10
-6

  1.58x10
-4

 (3.83x10
-5

) 3.90x10
-5

 

Coffee 1.03x10
-4

 (2.82x10
-5

) 2.73x10
-4

  1.14x10
-4

 (2.79x10
-5

) 4.46x10
-5

 

Fruit 8.43x10
-5

 (2.71x10
-5

) 1.89x10
-3

  7.90x10
-5

 (2.70x10
-5

) 3.48x10
-3

 

Diet score 1.07x10
-3

 (1.71x10
-4

) 7.18x10
-10
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Table 6-6. Nutrient profile and linear trends of the hippurate diet score according to 
tertiles of the hippurate diet score 

NS= not significant: P>0.05. FA: fatty acid, MUFAS: monounsaturated fatty acids, PUFAS: 
polyunsaturated fatty acids, NSP: non-starch polysaccharides                                                                 
Tertile 1: score 0-3; tertile 2: score 4-5; tertile 3: scores 6-9. Linear trend determined by using the tertile of 
the hippurate diet score as a predictor of the energy-adjusted nutrient intake.

 

 Tertile 1 Tertile 2 Tertile 3 Trend 

Nutrient Mean (SD) Mean (SD) Mean (SD) Beta (SE) P 
Energy (kcal) 2009.4 (562.8) 1847.1 (534.2) 1826.6 (498.7) -90.77 (14.75) 9.16x10-10 

Fat (g/d) 72.2 (12.5) 67.2 (10.4) 62.5 (9.9) -4.87 (0.3) 9.54x10-55 

   Saturated FAs (g/d) 26.8 (6.6) 23.7 (5.8) 21.2 (5.2) -2.76 (0.16) 8.00x10-61 

   MUFAs (g/d) 24.2 (4.6) 22.1 (3.8) 20.2 (3.7) -1.98 (0.11) 2.19x10-64 

   PUFAs (g/d) 15.6 (5.2) 15.8 (4.3) 15.7 (4) 0.04 (0.13) NS 

   trans-FAs (g/d) 1.8 (0.7) 1.5 (0.6) 1.3 (0.5) -0.22 (0.02) 2.47x10-37 

   Cholesterol (mg/d) 241.4 (92.2) 233.1 (78.5) 210.8 (70.7) -15.34 (2.24) 8.98x10-12 

Protein (g/d) 79.3 (13) 80.5 (12.7) 80.4 (11.5) 0.56 (0.34) NS 

Carbohydrate (g/d) 221.6 (39.3) 232.2 (32) 245.2 (29.8) 11.83 (0.93) 2.14x10-35 

   Starch (g/d) 112.3 (31.2) 108.8 (26.6) 111.2 (27) -0.54 (0.78) NS 

   Total sugars (g/d) 106.6 (30.6) 120.7 (28.2) 131.1 (26.2) 12.23 (0.78) 8.44x10-52 

   Glucose (g/d) 17.8 (7.8) 23.4 (9.1) 27.1 (7.9) 4.64 (0.23) 2.42x10-82 

   Fructose (g/d) 19.8 (9.1) 27.5 (11.2) 32.9 (9.8) 6.57 (0.28) 1.02x10-107 

   Sucrose (g/d) 44.3 (18.9) 44.2 (14.2) 45.5 (12.8) 0.58 (0.43) NS 

   Maltose (g/d) 3.4 (1.9) 3.1 (1.5) 3.3 (1.5) -0.03 (0.05) NS 

   Lactose (g/d) 18.2 (10.7) 17.7 (9.8) 17.3 (9.2) -0.45 (0.27) 9.79x10-2 

NSP (g/d) 16.8 (5) 20.4 (4.9) 23.4 (5.2) 3.29 (0.14) 9.35x10-110 

Alcohol (g/d) 10.6 (14.8) 9.6 (11.9) 8.6 (10.5) -0.95 (0.35) 5.77x10-3 

Water (g/d) 2395.3 (596.3) 2623.5 (575.6) 2817.4 (591.6) 210.9 (16.26) 5.21x10-37 

Sodium (mg/d) 2172.9 (487.6) 2263 (502.5) 2341.4 (468.7) 84.19 (13.47) 4.98x10-10 

Potassium (mg/d) 3526.7 (575.9) 3886 (576.2) 4174.1 (564.8) 323.4 (15.84) 2.50x10-84 

Chloride (mg/d) 3446.9 (750.3) 3603.9 (773) 3757.3 (712.8) 155.16 (20.65) 8.56x10-14 

Calcium (mg/d) 1015.3 (288) 1037.2 (276.3) 1037.9 (274.2) 11.17 (7.73) NS 

Magnesium (mg/d) 299.1 (48.6) 343.4 (48.3) 377.1 (50.4) 38.93 (1.36) 2.03x10-151 

Phosphorous (mg/d) 1388.4 (223.7) 1476.2 (213.8) 1528.9 (207.9) 70.11 (5.96) 5.50x10-31 

Iron (mg/d) 11.5 (2.5) 12.8 (2.7) 13.7 (3) 1.08 (0.08) 1.64x10-43 

Copper (mg/d) 1.5 (0.5) 1.6 (0.5) 1.6 (0.4) 0.08 (0.01) 5.57x10-9 

Zinc (mg/d) 9.8 (1.7) 10.2 (1.6) 10.3 (1.5) 0.27 (0.04) 2.00x10-9 

Manganese (mg/d) 3.7 (1.1) 4.1 (1.1) 4.5 (1.1) 0.41 (0.03) 2.02x10-39 

Iodine (ug/d) 199.3 (74.8) 205.7 (72.6) 206.1 (67.2) 3.35 (1.98) 9.12x10-2 

Retinol (ug/d) 610 (776.9) 500.6 (508.6) 439.2 (425.7) -85.14 (16.18) 1.58x10-7 

Carotene (ug/d) 4987.8 (3370.1) 5754.6 (3645.7) 5896.5 (3627.5) 451.48 (98.45) 4.80x10-6 

Vitamin D (ug/d) 2.3 (1) 2.5 (1) 2.5 (1.2) 0.1 (0.03) 5.47x10-4 

Vitamin E (mg/d) 10.1 (3.2) 11.2 (3.2) 11.7 (3.1) 0.78 (0.09) 9.48x10-19 

Thiamin (mg/d) 1.6 (0.4) 1.7 (0.4) 1.8 (0.4) 0.1 (0.01) 1.15x10-21 

Riboflavin (mg/d) 2.2 (0.7) 2.2 (0.7) 2.3 (0.6) 0.02 (0.02) NS 

Niacin (mg/d) 19.8 (4.9) 21.2 (4.7) 23 (4.6) 1.6 (0.13) 2.67x10-33 

Tryptophan (mg/d) 16.6 (2.7) 16.8 (2.6) 16.9 (2.3) 0.17 (0.07) 1.59x10-2 

Vitamin B6 (mg/d) 2.3 (0.6) 2.5 (0.6) 2.7 (0.5) 0.16 (0.02) 6.41x10-26 

Vitamin B12 (mg/d) 6.2 (3) 6.1 (2.4) 5.9 (2.2) -0.16 (0.07) 1.87x10-2 

Folate (ug/d) 358 (106.9) 388.7 (113.4) 416 (110.1) 28.97 (3.05) 6.00x10-21 

Pantothenate (mg/d) 5.7 (1.6) 6.2 (5.3) 6.2 (1.8) 0.24 (0.09) 1.11x10-2 

Biotin (ug/d) 40.9 (9.8) 45.4 (9.1) 49.4 (8.9) 4.25 (0.26) 4.40x10-58 

Vitamin C (mg/d) 126.8 (58.5) 169.6 (72.2) 200.6 (74.1) 36.88 (1.91) 1.37x10-76 
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6.3.3 Utility of hippurate as a marker of diversity and the hippurate diet score as 

a marker of hippurate 

Overall hippurate measured at a single time point correctly classified 64.64% of individuals into 

the upper and lower tertiles of Shannon diversity (sensitivity: 68.57%; specificity: 60.71%). The 

AUC was 0.682 (0.620, 0.745) (Figure 6-4). The hippurate diet score correctly classified 

60.93% of individuals into the upper and lower tertiles of hippurate levels (sensitivity: 64.03%; 

specificity: 57.86%). The AUC was 0.649 (0.585, 0.713) (Figure 6-5). This suggests both 

models had low accuracy.  

Figure 6-4. Receiver operating characteristic curve for the 
ability of hippurate to predict the upper and lower tertiles of 
Shannon diversity in the validation sample 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6-5. Receiver operating characteristic curve for the 
ability of the hippurate diet score to predict the upper and 
lower tertiles of blood hippurate in the validation sample 
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6.3.4 Associations with hippurate and the hippurate diet score across diversity 

metrics 

I confirmed the same directional effects for other diversity metrics for hippurate and the diet 

score (Table 6-7).   

 

Table 6-7. Associations between hippurate and the hippurate diet score across diversity 
metrics in the whole sample 

 Hippurate 
(2)

  Hippurate diet score
 (3)

 

Diversity metric
 (1)

 Beta(SE) P  Beta(SE) P 

Observed species  0.158 (0.024) 9.55x10
-11

  0.086 (0.023) 2.17x10
-4

 
Shannon 0.160 (0.025) 2.16x10

-10
  0.108 (0.023) 3.03x10

-6
 

Simpson 0.082 (0.026) 0.002  0.062 (0.021) 0.003 
Chao1 0.060 (0.023) 0.011  0.023 (0.023) NS 
NS= not significant: P>0.05. 

(1) Standardized to have mean 0, SD 1. 
(2) Hippurate associations with diversity metrics adjusted for sex, age, BMI, metabolite 

batch and family relatedness.  
(3) Hippurate diet score associations with diversity adjusted for sex, hippurate, age, BMI, 

metabolite batch and family relatedness. 

6.3.5 OTU and collapsed taxa associations with hippurate  

Thirty OTUs and sixteen collapsed taxa (Figure 6-6; Appendix E Tables 1 and 2) were 

significantly associated with blood levels of hippurate (P<8.61x10
-5

 [OTUs]-1.47x10
-3

 [phylum]). 

At the phylum level, the Firmicutes were associated with reduced levels of hippurate in blood, 

suggesting reduced diversity. Within the Firmicutes phylum, 28 OTU associations were 

assigned to the order Clostridiales, though not all associations were in the same direction. 

Within the order Clostridiales, higher hippurate levels were associated with increased 

abundances of two OTUs assigned to the family Clostridiaceae and 10 OTUs assigned to the 

family Ruminococcacea (including 2 Oscillospira genus OTUs, 1 Ruminococcus genus OTU 

and 1 Faecalibacterium prausnitzii OTU).  

 Increased abundances of 14 OTUs assigned to the family Lachnospiraceae were 

associated with reduced hippurate levels. Associations within the Lachnospiraceae family 

remained strong and in the same direction within the collapsed taxonomies, including at the 

family level. In particular, within the Lachnospiraceae family there were associations with OTUs 

assigned to the genera Ruminococcus (2 OTUs), Blautia (4 OTUs), Dorea (2 OTUs) and 

Roseburia (1 OTU), these OTUs were likely driving associations within their respective 

collapsed genera.  

At the class level, lower hippurate levels were associated with increased abundance of 

Erysipelotrichi, a trend that continued at the order, family and genus levels with 
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Erysipelotrichales, Erysipelotrichaceae, and Eubacterium, respectively. Interestingly there were 

no OTUs associated to blood hippurate that were assigned to this class.  

Outside of the Firmicutes phyla, increased abundances of one OTU assigned to the 

genus Actinomyces was associated with increased blood hippurate levels, this association was 

likely driving associations within the family Actinomycetaceae and order Actinomycetales 

collapsed taxa. Increased levels of hippurate were also associated with increased abundances 

of an OTU belonging to the family Rikenellaceae of the Bacteroidetes phyla and reduced 

abundances of the collapsed genus Ralstonia of the Proteobacteria phyla. 

Following a backward stepwise linear regression using P<0.05 as the cut-off threshold, 

together the remaining OTUs accounted for 58.0% of the variance in Shannon diversity and 

7.1% of the variance in hippurate levels (adjusted for diversity).  

6.3.6 OTU and taxa associated with both hippurate and the hippurate diet score 

Five OTUs and five taxa were associated with hippurate were also associated with the diet 

score in the same direction (Table 6-8). Specifically, reduced abundances of one OTU assigned 

to the genus Actinomyces was associated with increased scores on the diet, similar to hippurate 

this trend was significant both the family and order levels. At the genus level, reduced 

abundances of Ruminococcus (including 2 OTUs) and Eubacterium were associated with 

increasing diet scores. Moreover, increased diet scores were associated to increased 

abundances of OTUs assigned to the species Faecalibacterium prausnitzii and the genus 

Clostridiales. Most associations appeared to be primarily driven by intakes of fruit and whole 

grains. Though higher abundances of one Clostridiales OTU were associated with increased 

coffee intake.  

 I did not identify any significant interactions between the diet score and hippurate/diet-

associated microbes independently, nor when abundances were summed, in the prediction of 

blood hippurate levels.  
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Figure 6-6. OTU and collapsed taxonomic associations with hippurate  
 
 
 

Associations between blood hippurate and microbiome variables are represented by the histogram bars on the right side of 
the plot. The histogram bars represent the –log10 of the P-value of the regression and the colour of the bars indicates the 
direction of association: green, positive; red, negative.  
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Table 6-8. List of taxa associated with hippurate, the hippurate diet score and foods 
(1)

 
    

Hippurate Diet score 
 

Order Family Genus species OTU ID
 (2)

 Beta (SE) P Beta (SE) P 
Foods 

(3) 
 

P<0.05 
Actinomycetales   Collapsed -0.083(0.022) 1.31x10

-4
 -0.035(0.011) 1.67x10

-3
 Fruit: -0.004(0.002) 

WG: -0.007(0.003) 
Actinomycetales Actinomycetaceae  Collapsed -0.089(0.021) 2.89x10

-5
 -0.036(0.011) 1.70x10

-3
 Fruit: -0.004(0.002) 

WG: -0.007(0.003) 
Actinomycetales Actinomycetaceae Actinomyces Collapsed -0.101(0.021) 1.55x10

-6
 -0.045(0.011) 5.71x10

-5
 Fruit: -0.005(0.002) 

WG: -0.008(0.003) 
Actinomycetales Actinomycetaceae Actinomyces denovo467 -0.099(0.022) 5.14x10

-6
 -0.051(0.011) 2.81x10

-6
 Fruit: -0.005(0.002) 

WG: -0.009(0.003) 
Clostridiales   denovo299 0.113(0.024) 2.21x10

-6
 0.044(0.010) 9.76x10

-6
 Coffee: 0.013(0.002)* 

Clostridiales Lachnospiraceae Ruminococcus Collapsed -0.111(0.022) 4.03x10
-7

 -0.038(0.011) 6.35x10
-4

 Fruit: -0.005(0.002) 
WG: -0.008(0.003) 

Clostridiales Lachnospiraceae Ruminococcus denovo55 -0.123(0.021) 1.17x10
-8

 -0.054(0.011) 2.79x10
-6

 Fruit: -0.006(0.002)* 
WG: -0.009(0.003) 

Clostridiales Lachnospiraceae Ruminococcus gnavis denovo27 -0.107(0.023) 3.04x10
-6

 -0.064(0.011) 1.99x10
-8

 Fruit: -0.006(0.002)* 
WG: -0.009(0.003) 

Clostridiales Ruminococcaceae Faecalibacterium prausnitzii denovo469 0.100(0.023) 1.66x10
-5

 0.034(0.010) 9.24x10
-4

 WG: 0.007(0.003) 

Erysipelotrichales Erysipelotrichaceae Eubacterium Collapsed -0.083(0.021) 9.30x10
-5

 -0.040(0.012) 6.12x10
-4

 Fruit: -0.004(0.002) 
WG: -0.010(0.003)* 

*= statistically significant: P<0.0017; WG: whole grain products
 

(1) Microbiome OTUs and collapsed taxa significantly associated with both hippurate and the hippurate diet score are shown. Associations were adjusted 
for covariates (age, Shannon Index, metabolite batch, BMI, sex and family relatedness) and multiple testing using Bonferroni correction. Hippurate diet 
score associations were also adjusted for hippurate. 

(2) OTU ID assignment is specific to the TwinsUK cohort.  
(3) All foods included in the hippurate diet score were fitted into a backwards stepwise linear regression using P<0.05 as the cut-off threshold with each 

taxa associated to both hippurate and the diet score. Results displayed are the betas with standard errors of foods at least nominally associated 
(P<0.05). Statistical significance was defined as P<0.0017 (Bonferronil: 0.05/[10 taxa x 3 foods]). 
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6.4 Part 2 results 

6.4.1 Relationship of diversity, the hippurate trajectory and diet to MetS and its 

components 

Longitudinal hippurate trajectories were significantly associated with Shannon diversity, 

independently of diet and covariates in a subsample of 1032 twins (15.736[1.96]; P=4.95x10
-15

), 

moreover the hippurate trajectory accounted for 6.5% of the variance in Shannon diversity.  

 Figure 6-7 shows the results of the analysis for associations between diversity, the 

hippurate trajectory and MetS (Appendix E Tables 3 and 4 contain the full results). Higher 

Shannon diversity (R
2
: 0.0105) and an increasing hippurate trajectory (R

2
: 0.0054) were 

associated with a reduced risk of having MetS (Figure 6-7a). The variance in MetS attributable 

to the hippurate trajectory was accounted for 61.1% by Shannon diversity. The variance in MetS 

attributable to the hippurate trajectory was accounted for from 3.7% (Eubacterium genus) to 

51.9% (Clostridiales OTU) for the five collapsed taxa and 3 of the OTUs that were associated to 

both hippurate and the diet (Figure 6-7b). 

 Increased Shannon diversity and the hippurate trajectory were significantly associated 

with a reduced BMI (diversity R
2
: 0.0288) and TG (diversity R

2
: 0.0213; Figure 6-7a). Increased 

Shannon diversity was also associated with higher HDL cholesterol (R
2
: 0.0126). Shannon 

diversity accounted for 57.6% of the variance in BMI (R
2
: 0.0288) attributable to the hippurate 

trajectory, the impact of specific OTUs/taxa ranged from 22.6% (Ruminococcus genus) to 

35.4% (Faecalibacterium prausnitzii). Shannon diversity accounted for 63.2% of the variance in 

TG (R
2
: 0.0087) attributable to the hippurate trajectory, the impact of specific OTUs/taxa ranged 

from 3.4% (Eubacterium genus) to 48.3% (Clostridiales OTU). 
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Figure 6-7a shows the associations between MetS, BMI, triglycerides and HDL-cholesterol with 
Shannon diversity, the hippurate trajectory, the diet score and taxa significantly associated with both 
hippurate, the diet score and MetS represented as betas with SEs; all variables have been 
standardized. Figure 6-6b shows the percentage variance the MetS, BMI and triglycerides are 
attributable to the hippurate trajectory accounted for through each applicable variable.  
Abbreviations: MetS, metabolic syndrome; HDL, high density lipoprotein; BMI, body mass index.   

Figure 6-7. Associations between diversity, the hippurate trajectory, diet and OTUs and 
collapsed taxa with MetS status and its components 
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6.4.2 Confirmation of results in discordant twins 

I identified 55 MZ twin pairs who were discordant (≥1 SD apart) for Shannon diversity. 

Associations between Shannon diversity and hippurate cross-sectionally and the longitudinal 

trajectory were significant (P<0.05), associations with all other variables were in the same 

direction as in the whole group analysis (Table 6-9), except for HDL-cholesterol.   

 

Table 6-9. Associations between hippurate (discovery), the hippurate trajectory, MetS 
status and components in MZ twins discordant for diversity 
Variable Beta(SE) P R

2
 

Hippurate (discovery) 0.208 (0.081) 0.013 0.0607 

Hippurate trajectory 0.478 (0.078) 9.53x10
-8

 0.1768 

Hippurate diet score 0.149 (0.099) 0.137 0.0136 

MetS status* 1.046 (0.299) 0.875 0.0004 

BMI 0.021 (0.063) 0.737 0.0010 

HDL-cholesterol -0.035 (0.069) 0.612 0.0022 

TG -0.073 (0.060) 0.233 0.0118 

MetS, metabolic syndrome; HDL, high density lipoprotein; TG, triglycerides 
A linear regression was conducted using diversity to predict hippurate (discovery), the hippurate trajectory, 
and MetS status and components in the MZ discordant (1 SD apart in diversity) twin sample.   
*Statistical results show the odds ratio. Variables were standardized to have mean=0, SD=1. 
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6.5 Discussion 

In summary circulating levels of hippurate were significantly and positively associated with gut 

microbiome diversity in all twins and confirmed in MZ twins discordant for diversity. Blood 

hippurate levels longitudinally and cross-sectionally were also associated with food intakes, 

specifically self-reported intakes of fruit and whole grains. Longitudinal changes in blood 

hippurate (reflecting in part food polyphenol content) were also strongly associated with 

Shannon diversity, accounting for 17.7% of the variance in diversity in MZ discordant twins. 

Blood hippurate levels and reported intakes of associated foods were associated with 5 OTUs 

and 5 collapsed taxa independent of diversity. Both an increasing Shannon diversity and higher 

hippurate trajectory were associated with a lower risk of MetS, which was primarily accounted 

for by their relationship to BMI and TG, moreover the 5 collapsed taxa and 3 OTUs were 

associated with MetS.  

 

Metabolite associations with diversity 

I identified and validated in an independent sample of male and female twins 5 blood 

metabolites associated with gut microbiome diversity: hippurate, p-cresol sulfate, 

phenylacetylglutamine and 3-phenylpropionate which were associated positively; and negatively 

with hyodeoxycholate. All of these metabolites are derived from or modified by bacterial 

metabolism.  

P-cresol sulfate (also p-cresyl sulfate) and phenylacetylglutamine are potentially toxic 

uremic solutes formed from the putrefication by colonic bacteria of dietary proteins that have 

escaped digestion in the small intestine. Our group previously showed p-cresol sulfate and 

phenylacetylglutamine to be strongly associated with reduced estimated glomerular filtration 

rate, moreover 52 OTUs assigned to the genera Christensenellaceae, Ruminococcaceae and 

Lachnospiraceae were associated with phenylacetylglutamine and 3 OTUs assigned to the 

genera Ruminococcaceae and Lachnospiraceae with P-cresol sulfate (Barrios et al., 2015). 

Hyodeoxycholate is a secondary bile acid, produced from intestinal bacterial metabolism. In 

healthy individuals hyodeoxycholate is metabolised by glucuronidation in the human liver and 

kidneys, a pathway for toxin elimination (Perreault et al., 2013). In individuals with cholestatic 

liver disease or intestinal malabsorption increased levels of hyodeoxycholate are excreted in the 
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urine (Sacquet et al., 1983), suggesting hyodeoxycholate may act as a marker of poor liver 

function. Which is an interesting observation considering the relationship between some 

metabolic diseases and poor liver function. 

Increased blood 3-phenylpropionate and hippurate were associated with increased 

diversity and also intakes of fruits and whole grains. Both 3-phenylpropionate and hippurate are 

derived from gut microbial metabolism of polyphenols to benzoates and are significantly 

correlated (r=0.51), though hippurate accounted for a greater degree of variance in diversity 

therefore I decided to focus on it. Hippurate is emerging as a key mammalian-microbial co-

metabolite. It is a glycine conjugate of benzoic acid formed in the mitochondria of the liver 

(Gatley and Sherratt, 1977) and kidneys (Temellini et al., 1993), through gut bacterial 

production of benzoic acid from dietary components, primarily polyphenols (Gonthier et al., 

2003). Supporting my findings, human feeding studies of foods with a high polyphenol content, 

such as teas, fruit and coffee, have shown to increase urinary output of hippurate (Gonthier et 

al., 2003, Walsh et al., 2007). It should be noted however that the ROC analysis showed 

hippurate was a poor marker of Shannon diversity, therefore future studies should aim to 

identify biomarkers with better predictive performance. 

 

Microbiome associations with hippurate but not associated with diet 

To date, the microbiome profile associated with blood hippurate levels has not been well 

characterised. Within the TwinsUK dataset I found overall higher hippurate levels were 

associated to both increased and reduced abundances of 30 OTUs and 16 collapsed taxa, 

independently of Shannon diversity. At the phylum level, increased levels of hippurate were 

associated with reduced abundances of Firmicutes. The Firmicutes, which primarily consist of 

gram-positive bacteria, are one of the dominating phyla of the adult microbiome. One of the first 

large-scale microbiome studies suggested that a high Firmicutes to Bacteroidetes ratio is 

characteristic of obesity (Ley et al., 2006), although I did not investigate this ratio. A handful of 

studies have found reduced Firmicutes levels with increasing BMI (Duncan et al., 2008, Tims et 

al., 2013, Escobar et al., 2014). Moreover, increased faecal SCFAs have been shown in obese 

compared to lean subjects which also correlated with a higher ratio of Firmicutes to 

Bacteroides/Prevotella (Fernandes et al., 2014). Interestingly, polyphenol (concord grape 

extract) feeding to mice has recently shown to prevent obesity induced by a high fat diet in part 

by decreasing the Firmicutes/Bacterodetes ratio (Roopchand et al., 2015). Although I did not 



 

 
 

130 

find a relationship between total Firmicutes and dietary factors, it is possible our dataset was not 

powerful enough to detect associations.  

Increased hippurate levels were associated to both increased and decreased 

abundances of bacteria within lower taxonomies of the Firmicutes phyla. Twenty-eight 

associations with hippurate were with OTUs/taxa belonging to the Clostridiales order which was 

negatively associated overall. The Clostridiales order belonging to the class Clostridia, are 

obligate anaerobes found primarily in soil. Directions within lower taxonomic levels of 

Clostridiales were not consistent with the collapsed order. For instance, increased abundances 

of two OTUs belonging to the Clostridiales order and 2 OTUs within the Clostridiaceae family 

were associated with increased blood hippurate levels. OTUs within the Clostridiales order were 

related to diet and MetS and will be discussed in more detail below. 

Notably, the direction of associations between hippurate and OTUs/taxa within the 

Ruminococcaceae (10 associations) and Lachnospiraceae (14 associations) families of the 

order Clostridiales, were consistently increased and decreased, respectively. Both 

Lachnospiraceae and Ruminococcaceae are involved in butyrate production (Vital et al., 2014). 

In a previous study conducted on the TwinsUK dataset, higher abundances of multiple OTUs 

assigned to Lachnospiraceae were associated with increased eGFR and reduced levels of 

blood phenylacetylglutamine (Barrios et al., 2015), a metabolite that was also related to 

diversity. Another study found that higher abundances of Ruminococcaceae and 

Lachnospiraceae were associated with increased levels of urinary 3-indoxyl-sulfate and better 

outcomes in patients at risk of developing gastrointestinal (GI) graft-versus-host-disease (Weber 

et al., 2015). Moreover, lower abundances of both families are associated with inflammatory 

bowel disease (Kostic et al., 2014). I did not identify associations with hippurate or other 

polyphenol-related metabolites in the literature. It is interesting and perhaps noteworthy that I 

identified clear opposing directions between hippurate levels and these families.  

Higher levels of hippurate were associated with reduced abundances of the class 

Erysipelotrichi, and associations were consistent at the order, family and genus levels with 

Erysipelotrichales, Erysipelotrichaceae, and Eubacterium, respectively. Elevated levels of 

Clostridium ramosum, a member of Erysipelotrichi, have shown in mice fed a high-fat, 

obesogenic diet, which the authors suspected was due to increasing nutrient absorption (Woting 

et al., 2014). Moreover, on a 2-month inpatient study of 15 females fed a choline-deficient diet it 
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was found that faecal levels of of Erysipelotrichi and Gammaproteobacteria were related to 

changes in liver fat (Spencer et al., 2011).  

Outside of the Firmicutes phyla, lower abundances of Actinobacteria were observed 

with increasing hippurate, these bacteria were further found to be associated with diet and MetS 

as discussed below. These results provide a microbiome profile associated with hippurate levels 

although, the complex metabolic relationships require further investigation. As I found diet to be 

significantly associated with food intakes, I investigated the relationship between these 

hippurate-associated OTUs and collapsed taxa. 

 

Microbiome associations with hippurate and the hippurate diet 

Three of the OTUs and 5 collapsed taxonomies associated to both hippurate and the hippurate 

diet (independently of diversity), moreover the variance in MetS attributable to the hippurate 

trajectory that was accounted for by these OTUs and taxa was between 3.7% and 51.9% (Table 

6-10). These included the increased abundances of the Actinomycetaceae family, Eubacterium 

and Ruminococcus being associated with an increased risk (and reduced blood hippurate and 

diet score) and OTUs within the order Clostridiales and of the species Faecalibacterium 

prausnitzii associated with a reduced MetS risk (and increased blood hippurate and diet score). 

A detailed discussion of each observation is given below.  

 

Table 6-10. Direction of associations between OTUs/collapsed taxa and hippurate, food 
intakes, MetS and its components.   

Microbiome Hippurate Fruit WG Coffee MetS BMI TG HDL 
Actinomycetales         
Actinomycetaceae         
Actinomyces         
Eubacterium         
Ruminococcus         
Ruminococcus (OTU)        

Clostridiales (OTU)         

Faecalibacterium 
prausnitzii (OTU) 

        

Abbreviations: WG, whole grain; MetS, metabolic syndrome; BMI, body mass index; TG, triglycerides; 
HDL, high density lipoprotein cholesterol.  

 

An increasing hippurate trajectory associated with a lower MetS risk 

Overall, increased Shannon diversity and the hippurate trajectory were associated with a 

reduced risk of having MetS. Supporting this, previous studies have shown reduced gut 

bacterial diversity has been found in metabolic conditions, including atherosclerosis (Koren et 
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al., 2011), obesity (Turnbaugh et al., 2009) and with phenotypes characteristic of the metabolic 

syndrome (Le Chatelier et al., 2013). Interestingly, most of the variance in MetS that was 

attributable to the hippurate trajectory was accounted for by Shannon diversity (61.1%). An 

increasing hippurate trajectory (accounting for BMI) was similarly associated with a lower BMI 

and TG (variance 57.6% and 63.2% by Shannon diversity, respectively) at endpoint.   

Previous studies that examined urinary excretion or serum levels of hippurate have 

shown reduced urinary hippuric acid excretion in obesity (Shearer et al., 2008, Waldram et al., 

2009, Calvani et al., 2010), though mainly in animal models. To my knowledge, no human 

studies to date have investigated specifically the relationship between the MetS and markers of 

dietary polyphenol consumption, such as hippurate. Though the diet score was not associated 

with MetS, it was associated with a lower BMI for which the hippurate trajectory (60.4%) and 

Shannon diversity (45.3%) contributed particularly strongly (Appendix E Table 5), suggesting 

that these factors were important mediators between of the effect of diet on obesity and 

consequential metabolic risk. 

 

Increased abundances of the Actinomycetaceae family, and Eubacterium and 

Ruminococcus genera associate with MetS risk 

The Actinomycetaceae family are typical commensals within the oral cavity. Elevated levels of 

Actinomycetaceae within the gut have been implicated in conditions where stomach acid 

production has been compromised, such as with proton pump inhibitor use (Imhann et al., 

2016). The metabolic implications of increased abundance of Actinomycetaceae in the gut are 

not clear at this time, though higher levels within the oral cavity contribute to periodontitis and 

correlate with reduced insulin sensitivity (Demmer et al., 2015). In rare cases an Actinomyces 

overgrowth contribute to an infection within the gut (abdominal actinomycosis) through forming 

filamentous branches that grow through damaged mucosal tissue penetrating the gut barrier, 

forming abscesses and fistula (Bonnefond et al., 2016). As mucosal inflammation and bacterial 

translocation are emerging as important factors in the aggravation of MetS, Actinomyces should 

be explored further. The relationship between Actinomycetaceae and the foods forming the 

hippurate score is not entirely clear, though these findings suggest a healthy diet may prevent 

the proliferation of Actinomycetaceae.  

Increased abundance of the genus Eubacterium was significantly associated with both 

reduced hippurate and the diet score (in particular whole grain intake), and higher risk of MetS. 
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The Eubacterium genus is within the family Eubacteriaceae of the Firmicutes phyla. Effects at 

the Eubacterium genus level have not been clarified, though different species belonging to the 

same genus may have different metabolic capacities and therefore be enriched by varying 

dietary exposures. Contrary to my findings others have shown feeding of whole grains (Martinez 

et al., 2013) and switching from a Western to plant-based diet (David et al., 2014) have shown 

to enrich abundances of Eubacterium rectale. More studies are needed to outline effects at the 

Eubacterium genus level or with other species.   

Higher abundances of the genus Ruminococcus (one OTU and collapsed taxonomy) 

were associated with MetS risk and in particular higher levels of both HDL and TG. 

Ruminococcus are most abundant in one of the 3 major, though controversial (Jeffery et al., 

2012) enterotypes (Arumugam et al., 2011). Functional analyses have shown the 

Ruminococcus enterotype to be enriched for genes that produce membrane sugar transporters 

(Arumugam et al., 2011), which may predispose to weight gain. Ruminococcus are also able to 

ferment complex carbohydrates (Walker et al., 2011) and produce alcohol (Christopherson et 

al., 2014). Previous studies have not found the Ruminococcus enterotype to be consistently 

modified by diet (Wu et al., 2011a, Claesson et al., 2012). I found increased Ruminococcus 

abundances were shown to be associated with a lower fruit intake. Following 12 weeks feeding 

of schisandra chinensis fruit, high in flavonoids, to obese women was previously been shown to 

reduce Ruminococcus abundances (Song et al., 2015). Increased abundances of 

Ruminococcus were also associated significantly with increased severity of NAFLD lesions 

(Boursier et al., 2016). Supporting the strong association between TG and Ruminococcus, 

uncultured phylotypes of the Ruminococcus gnavus-group correlated positively with 

polyunsaturated serum TGs of dietary origin (Lahti et al., 2013). The Ruminococcus genus 

contains species with differential effects on metabolism, moreover dietary effects are likely quite 

complex, for instance increased consumption of foods of animal origin increase abundances of 

Ruminococcus gnavus, but decrease Ruminococcus bromii and Ruminococcus callidus (David 

et al., 2014).  

 

Increased abundances of OTUs belonging to the order Clostridiales and 

Faecalibacterium prausnitzii associate with protection from MetS 

Increased abundances of OTUs within the order Clostridiales and species Faecalibacterium 

prausnitzii were associated with hippurate, dietary components and reduced risk of MetS. The 
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Clostridiales OTU was particularly strongly associated to coffee intake and TG. The gut 

microbiota play an important role in the metabolism of chlorogenic acids found in high 

concentrations in coffee. Significantly elevated levels of the Clostridium coccoides-Eubacterium 

rectale group have been shown following the incubation of human faecal microbiota with coffee 

samples (Mills et al., 2015). Due to the high polyphenol content coffee intake has been thought 

to have beneficial effects on metabolic health. In a large observational study including 93,179 

individuals high coffee intake was associated with a low risk of obesity, MetS and type 2 

diabetes, though this was not supported by Mendellian Randomization using five genetic 

variants associated with coffee intake (Nordestgaard et al., 2015).  

Increased abundances of the Faecalibacterium prausnitzii OTU were strongly inversely 

associated with BMI and mildly with higher whole grain intake. Faecalibacterium prausnitzii is an 

important gut commensal accounting for 5% of the total faecal microbiota (Arumugam et al., 

2011) that ferments dietary fibre to short-chain fatty acids (including butyrate). In our sample 

Faecalibacterium prausnitzii was strongly associated with Shannon diversity (Beta[SE]: 

0.250[0.015]; P=5.09x10
-59

) and most strongly related to BMI of all microbes related to hippurate 

and the diet. This clear effect reflects previous findings where Faecalibacterium prausnitzii was 

shown to correlate with microbiome gene count and predict weight loss over time (Le Chatelier 

et al., 2013). Faecalibacterium prausnitzii has previously shown to be depleted in 239 MetS 

subjects, an effect shown to be partially restored following a long-term (2 years) Mediterranean 

diet intervention (Haro et al., 2016). Whole grain intake and increased fibre intake as a result 

allows Faecalibacterium prausnitzii to flourish (Benus et al., 2010) and encourages the anti-

inflammatory properties of Faecalibacterium prausnitzii (Sokol et al., 2008), which may further 

protect against MetS.  

 

Limitations 

There were a number of potential limitations to this study. There were a small number of male 

subjects in the sample, therefore these results may be applicable only to women. A de novo 

method was used to classify the OTUs into taxonomies. The de novo method involves creating 

a reference panel that is sample specific, therefore replicating our results in independent 

populations may be difficult to achieve. But this is true of all OTU studies. As the FFQ relies on 

subject reporting, the accuracy of this data have been called into question. Though in the 

previous chapters I have shown that reported intakes of those foods significantly associated 
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with hippurate, coffee, fruit and whole grains, associate with biologically plausible metabolites. If 

misclassification had occurred it would likely have obscured real findings and not strengthened 

them. Furthermore, we replicate findings from feeding studies that have shown hippurate 

urinary excretion to be increased following the consumption of these foods. 

There were a number of advantages to this study. I had a large number of unique 

subjects with metabolomics profiling, dietary information and microbiome profiling. I also had 

access to a unique longitudinal metabolomics data in order to evaluate the influence of changes 

in hippurate levels on MetS risk.  

 

Conclusion 

In conclusion, hippurate, is associated with gut microbiome diversity and foods high in 

polyphenols. Subjects whose hippurate trajectory increased showed a reduced risk of MetS and 

related risk factors, largely accounted for by Shannon diversity. Microbiome OTUs/taxa related 

to blood hippurate and related food intakes, including increased abundances of 

Actinomycetaceae, Eubacterium and Ruminococcus and reduced OTUs within the order 

Clostridiales and the species Faecalibacterium prausnitzii associated with an increased MetS 

risk. These findings support the gut microbiome as an important mediator in the relationship 

between diet, in particular high polyphenol foods, and metabolic disease. The potential of 

hippurate as a marker of alpha-diversity and the interplay between high polyphenol foods, gut 

microbes and hippurate production should now be established in mechanistic studies ideally 

under a dietary intervention setting.  
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Chapter 7 Untangling the Relationship Between Diet and 

Visceral Fat Mass Through Blood Metabolomics and Gut 

Microbiome Profiling 

 
In this chapter I created a visceral fat mass diet (VFM) score using the intakes of top foods 

associated with VFM. I then examined the blood metabolomics and gut microbiome profiles 

associated with the diet score with the aim of identifying potential biological intermediates 

linking diet with VFM development.  

The work from this chapter has been formatted as a manuscript and submitted to the 

International Journal of Obesity.  

 

7.1 Introduction 

Increased visceral fat (VF) is a primary risk factor for cardio-metabolic diseases. Observational 

studies examining the impact of habitual food consumption on VFM or waist circumference 

(WC) have found that increased intakes of fruit (Romaguera et al., 2011), dairy products 

(Romaguera et al., 2011) and related nutrients (Fischer et al., 2015), and whole grains (Caron-

Jobin et al., 2011) and fibre (Hairston et al., 2012, Fischer et al., 2015) are associated with 

lower risk, whereas higher intakes of fried foods and fat (Mollard et al., 2014, Romaguera et al., 

2011), alcohol, red and processed meats (Romaguera et al., 2011) and related nutrients 

(Fischer et al., 2015), sugar-sweetened beverages (Ma et al., 2014, Mollard et al., 2014, 

Odegaard et al., 2012, Romaguera et al., 2011), refined grains (Caron-Jobin et al., 2011, 

Romaguera et al., 2011) and high glycaemic index foods (Dal Molin Netto et al., 2014, 

Romaguera et al., 2010) are associated with higher risk of VF.  

Within the past decade, the effects of an unhealthy dietary pattern have been 

increasingly explored. For instance, Nettleton and colleagues created a diet protective health 

score using self-reported intakes of whole grains, fish, fruits, vegetables, nuts/seeds (favorable) 

and red/processed meats, sweets, sugar-sweetened beverages and fried potatoes 

(unfavorable). They were then able to show that the score was a powerful means to examine 

gene X diet interactions in obesity in 68,317 subjects of European ancestry (Nettleton et al., 

2015). Similarly, Romaguera et al. (Romaguera et al., 2011) formed a summary score 
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combining the intake frequencies for all foods associated with changed in WC over a 5.5 year 

median in 48,631 men and women. However, dietary pattern scores have not yet been applied 

against high-throughput omic datasets.  

Metabolomics is being increasingly used in dietary studies in order to further explore the 

mechanisms of diet on metabolic disease development as extensively shown in this thesis. A 

recent study from our group showed that some of the metabolites associated with VF mass 

relate also to type 2 diabetes, insulin resistance and blood pressure (Menni et al., 2016). 

Moreover, we have found that self-reported reported food intakes are associated with 106 

unique metabolites (Pallister et al., 2016), which confirmed the strong role of food intake on 

metabolic traits (see Chapter 4). At this time, the characteristic metabolomics profile of a 

metabolically unhealthy diet has yet to be established, nor have those primary metabolites that 

connect diet to VFM development been defined.  

Recent studies are alluding to a role of the gut microbiota in VF development by 

interacting with food compounds and as a result, supplying metabolites to our bodies (Shoaie et 

al., 2015), this is supported by in Chapters 4 and 5 where I showed food intakes to be 

correlated with microbially-derived metabolites. Moreover, I found microbiome alpha diversity 

and hippurate (a microbial co-metabolite) to be associated with a reduced risk of MetS 

supporting the interplay of diet, the microbiome and the metabolome in metabolic disease 

development. These interactions may also intensify the health effects of a calorific, low nutrient 

dense Western Diet. Through feeding rodents high-fat or high-fat/high-sugar diets, early studies 

have shown HF feeding increases Firmicutes and reduces Bacteriodetes (Taira et al., 2015) 

abundances,  reduces the abundance of the class Clostridia which was additionally linked to 

higher visceral adipose tissue (Etxeberria et al., 2015), and increases abundances of 

sulfidogenic bactera which was associated with higher intestinal inflammation (Shen et al., 

2014). Under high fat feeding of animals, cranberry (Anhe et al., 2015) and pomegranate 

(Neyrinck et al., 2013) polyphenols, resveratrol from red wine (Neyrinck et al., 2013) and gluco-

oligosaccharide (Serino et al., 2012) have been found to be protective of obesity and associated 

inflammation in by changing the gut microbiome profiles. Also, conjugated linoleic acid, a 

constituent of dairy fats has been shown to encourage fat loss, which may be due to increasing 

the abundance of Bacteroidetes (Marques et al., 2015).  
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Previous studies have not undertaken a multi-omic approach to decipher the influence of an 

unhealthy diet on VFM, as such the aims of this chapter were: 

i) To identify foods most strongly associated with VFM from these develop and validate a 

predictive dietary VFM-risk score. 

ii) To characterise the blood metabolomics profile of the VFM-risk score.  

iii) To characterise the gut microbiome profile of the dietary VFM-risk score.  
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7.2 Materials and methods 

Figure 7-1 shows the summary of the study protocol.  

For the analysis I used FFQs completed between 1995 and 2001, in 2007 and 2014 to 2015. I 

used the 20 food groups as defined in Section 5.2.1.  

7.2.1 Visceral Fat Mass 

During clinical visits a train research nurse or assistant determined visceral fat mass (VFM; g) in 

3457 twins using Dual-Energy X-ray Absorptiometry  (DXA; Hologic QDR; Hologic, Inc., 

Waltham, MA, USA) whole-body scanning in the supine position. To analyse the scans, the 

QDR System Software Version 12.6 was used. VFM was estimated at one cross-section of the 

whole body (L4-L5), this is the usual area of a computed tomography slice. If VFM was 4 SD 

above or below the mean VFM, twins were excluded from the analysis. I normalized the VFM 

data using a rank-based inverse-normalization as it did not follow a normal distribution.  

7.2.2 Metabolomic profiling 

For this chapter, I used 292 chemically identified metabolites analyzed by the non-targeted 

Metabolon platform. Quality control of the metabolomics dataset has been described in Section 

3.1.6.1. For the analysis I included 2218 twins (99.8% female) with metabolomics profiling, BMI 

and VFM data within ± 5 years of FFQ completion. 

7.2.3 Gut microbiome profiles 

16S rRNA gene sequencing was used to determine the faecal bacterial profiles. For a previous 

study (Goodrich et al., 2014b) microbial DNA was extracted, amplified, sequenced and 

processed by the Cornell technical team, since this earlier study an additional ∼1000 samples 

were collected and processed using the same protocols. Quality control of the microbiome data 

were undertaken by Tiphaine Martin, Matthew Jackson and Dr Michelle Beaumont. At 97% 

sequence similarity, sequencing reads were condensed as operational taxonomic units (OTUs). 

To do this, UCLUST open-reference clustering was used against Greengenes v13_5 reference 

within QIIME 1.7.0. Of the total sequences, 6.2% did not cluster to the reference and were 

therefore excluded from further analysis (Goodrich et al., 2014b). 
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Figure 7-1. Outline of the study design 
 



 

 
 

141 

OTUs that were found in fewer than 25% of individuals were removed from the analysis. 

Using this threshold and after removing singletons, of 9,840 OTUs only 2,118 OTUs (16%) 

remained for the final analysis. All OTU counts, including those OTUs present in less than 25% 

of individuals, were collapsed into taxonomies at the family (124 taxa), genus (283 taxa) and 

species (153 taxa) levels. For the analysis I only considered taxa fully classified within each 

taxonomic level. Following rarefaction of the complete OTU table to 10000 reads per sample, 

alpha-diversity was determined by Shannon’s phylogenetic diversity (Faith, 1992) using QIIME. 

Using linear regression, OTUs were adjusted for technical covariates which included 

sequencing run and sequence number per sample. I normalized the data using rank-based 

inverse normalization. I analyzed a subsample (n=889) of twins from the FFQ, VFM and 

metabolomics dataset that additionally had fecal microbiome profiling. 

7.2.4 Muther expression data  

Gene expression of abdominal fat samples in 825 individuals were analysed with the Illumina 

Human HT-12 V3 for the Muther study, as described previously (Grundberg et al., 2012). Using 

random intercept linear regression, 586 individuals were analyzed for AT expression 

associations with the top metabolite adjusting for age, BMI, metabolite and expression batches, 

and family relatedness. This analysis was conducted by Dr Cristina Menni. 

7.2.5 Statistical analysis 

I conducted all statistical analysis using Stata version 12. 

7.2.5.1 Food group associations with VFM and diet score formation and 

heritability 

First, I randomly allocated twins to two independent groups: the test (n=1109) and replication 

(n=1109) groups. I ensured that twin pairs were assigned to the same group. To identify food 

group associations with VFM, in the test group I ran a linear regression for each of the 20 food 

groups as predictors of VFM (residual adjusted for BMI), I adjusted for covariates including total 

fat mass, age, sex, height
2
, family relatedness and DXA batch. The cut-off for statistical 

significance was defined using Bonferroni correction (P<2.50x10
-3 

= [0.05/20 food groups]). I 

included food groups that were significantly associated with VFM in the risk score. I calculated 

the score, first I quartile ranked the consumption frequencies of associated foods and then 

assigned a score of 0 to 3 by the direction of the association (positive association: Q1=0, Q2=1, 
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Q3=2, Q4=3; negative association: Q1=3, Q2=2, Q3=1, Q4=0). Next I summed each food group 

score to create the final risk score that ranged from 0 to 15. I used linear structural equation 

modelling in Mx (Neale et al., 1992, Neale et al., 2003) to determine the heritability of the VFM 

diet score (consult Section 3.2.1 for analysis details).  

7.2.5.2 Binary classification test 

I next tested the VFM risk score in the replication group by first fitting a logistic regression model 

with the diet score predicting low and high VFM. I defined the lower tertile of VFM as a negative 

outcome (0; n=369) and the upper tertile of VFM as a positive outcome (1; n=370). In the model 

I adjusted for covariates including total fat mass, age, sex, height
2
, family relatedness, DXA 

batch, and BMI category (1: <18.5 kg/m
2
; 2: ≥18.5-24.9 kg/m

2
; 3: ≥25-29.9 kg/m

2
; 4: ≥30 kg/m

2
). 

To assess the predictive ability of the VFM diet score, I conducted a binary classification test. 

The ability of the VFM diet score to identify twins with high VFM accurately (sensitivity; true 

positive rate) and identify twins with low VFM accurately (specificity; true negative rate) was 

predicted. The receiver operating characteristic curve (ROC) was then generated by plotting the 

true positive rate against the false positive rate at a number of threshold settings.  

7.2.5.3 VFM diet score and metabolomics and microbiome 

For each metabolite or microbiome taxon, I ran a random intercept linear regression analysis for 

each metabolite or microbiome OTU/taxa adjusting for age, BMI, sex and metabolite batch (for 

metabolomics) or Shannon Index (for microbiome), and family relatedness: 

𝛶𝑖 = 𝛽0 + 𝜷𝒊𝜲𝒊𝒋 + 𝛿1𝑖𝑎𝑔𝑒𝑖𝑗 + 𝛿2𝑖𝐵𝑀𝐼𝑖𝑗 + 𝛿3𝑖𝑆𝑒𝑥𝑖𝑗 + 𝛾1𝑖𝑍𝑖𝑗 + 𝜁𝑗 + 𝜀𝑖𝑗 

where Yi is the metabolite/microbiome OTU/taxa, Xij is the VFM diet score of twin j from pair i, Zij 

is the metabolite batch or Shannon Index and ζj, is the family-specific error component that 

captures the unobserved heterogeneity or family characteristics. I also used Bonferroni 

correction to account for multiple testing giving a significance threshold for metabolites of 

1.71x10
-4

 (0.05/(292 known metabolites)). For the microbiome analysis I defined statistical 

significance within each taxonomic level, Table 7-1 shows the thresholds by level. 

A large number of potentially correlated metabolites were associated with the VFM diet, 

therefore I next undertook a backwards stepwise linear regression including all associated 

metabolites, using a cut-off threshold of P<0.01.  
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Table 7-1. Statistical significance thresholds for microbiome analysis using Bonferroni 
correction 

 VFM diet score  VFM 

Level 
(1)

 Number of variables P  Number of variables 
(2)

 P 

Family 124 4.03x10
-4

  2 0.025 
Genus 283 1.77x10

-4
  2 0.025 

Species 153 3.27x10
-4

  2 0.025 
OTU 2118 2.36x10

-5
  8 6.25x10

-3
 

(1) Bonferroni correction was calculated within each level.  

(2) Variables significantly associated with the VFM diet score were tested for their 

association against VFM. 

 

7.2.5.4 VFM and metabolomics and microbiome 

To determine if the remaining metabolites, and OTUs/taxa (both residual-adjusted for BMI) 

associated with the VFM diet score were also associated with VFM, I used each of these 

variables as predictors of VFM (residual-adjusted for BMI at scan) in a linear regression 

including the covariates scan age, sex, total fat mass, height
2
, scan batch and metabolite batch 

(for metabolomics) or Shannon Index (for microbiome), family relatedness and for the VFM diet 

score. 

𝑉𝐹𝑀𝑖 = 𝛽0 +  𝜷𝟏𝒊𝒀𝒊 + 𝛽2𝑖𝛸𝑖𝑗 + 𝛿1𝑖𝑎𝑔𝑒𝑖𝑗 + 𝛿3𝑖𝑆𝑒𝑥𝑖𝑗 + 𝛿4𝑖𝑇𝑜𝑡𝑎𝑙_𝑓𝑎𝑡_𝑚𝑎𝑠𝑠𝑖𝑗 + 𝛿5𝑖𝐻𝑒𝑖𝑔ℎ𝑡_𝑠𝑞𝑢𝑎𝑟𝑒𝑑𝑖𝑗

+ 𝛿6𝑖𝑆𝑐𝑎𝑛_𝑏𝑎𝑡𝑐ℎ𝑖𝑗 +  𝛾1𝑖𝑍𝑖𝑗 + 𝜁𝑗 + 𝜀𝑖𝑗 

where Yi is the metabolite/taxon, Xij is the VFM diet score of twin j from pair i, Zij is the 

metabolite batch for metabolomics data or Shannon Index for microbiome data and ζj, is the 

family-specific error component that captures the unobserved heterogeneity or family 

characteristics. Associations which passed the Bonferroni cut-off were considered significant. 

For metabolites the threshold was 5.56x10
-3

 (0.05/9 metabolites). The assignment for statistical 

significance for the microbiome analysis is shown in Table 7-1.  

 I identified MZ twins who were discordant (1 SD apart) for VFM, this included 80 pairs in 

the metabolomics dataset and 27 pairs in the microbiome subsample. In this group, I ran a 

linear regression to validate top associations between diet, metabolites and the microbiome and 

VFM.  

7.2.5.5 Top microbiome and metabolite associations with food groups  

To confirm the associations between the metabolites/microbiome and the VFM diet score were 

not due to intakes of other foods, I ran a backward stepwise linear regression model including 

the VFM diet score and food groups not forming the score to predict the associated metabolite 

and OTU/taxa. I used a cut-off threshold of P<0.01 for metabolites and P<0.05 for microbiome.  
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I then assessed whether the foods contributing to the VFM diet score were independently 

driving the association between the VFM diet score and taxa/metabolites. I fitted all 20 food 

groups into a backward stepwise linear regression model using cut-off thresholds of P<0.01 for 

metabolites and P<0.05 for microbiome.  

7.2.5.6 VFM diet score association with VFM mediated by metabolite and 

microbiome 

I first determined the proportion of the variance of VFM attributable to the VFM diet score after 

accounting for all covariates (age, sex, BMI, total fat, height
2
, family relatedness, metabolite 

batch, Shannon Index and scan batch). This quantity was represented by r
2

x. I next determined 

the proportion of the variance in VFM explained by the VFM diet score by adjusted for the same 

covariates as above but additionally including the metabolite or OTU/taxon (r
2
xy). To calculate 

the percentage of the VFM diet score association that was mediated by the metabolite or 

OTU/taxa (r
2
y), I determined the proportion of the variance of VFM that is due to the VFM diet 

score association with the metabolite or OTU/taxa: 1 – (r
2
xy/r

2
x).     

7.2.5.7 Microbiome association with VFM mediated by metabolite 

I determined the proportion of the variance of VFM attributable to the taxon after taking into 

account all covariates as above in addition to the VFM diet score (r
2
x). I next determined the 

proportion of the variance in VFM explained by the taxon after adjusting for the same covariates 

as above but additionally adjusting for the metabolite (r
2
xy). To calculate the percentage of the 

taxon association that was mediated by the metabolite (r
2
y), I determined the proportion of the 

variance of VFM that is due to the metabolite association with the taxon: 1 – (r
2
xy/r

2
x).       
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7.3 Results 

7.3.1 VFM food group associations 

The characteristics of the sample as well as the training and validation groups are shown in 

Table 7-2. 

Table 7-2. Study population characteristics
 

  No significant differences between the training and validation sets. 

 

I found 5 food groups were significantly associated with VFM in the training dataset (Table 7-3). 

Higher intakes of fruit, whole grain and fermented dairy products were associated with reduced 

VFM, whereas increased intakes of fried and fast foods and red, processed meat and eggs 

were associated with increased VFM.  

 

 Whole 
(n=2218) 

Training  
(n=1109) 

Validation 
(n=1109) 

 
Mean (SD) Mean (SD) Mean (SD) 

Age (years) 58.3 (10.9) 58.1 (11.1) 58.4 (10.8) 

BMI (kg/m
2
) 26.2 (4.8) 26.1 (4.8) 26.4 (4.8) 

Total fat (grams) 6827 (2180) 6779 (2178) 6911 (2258) 

Visceral fat (grams) 562.7 (293.7) 553.9 (293.8) 572.7 (295.5) 

Height (m) 1.61 (0.06) 1.62 (0.06) 1.62 (0.06) 

Sex (M:F) 4:2214 0:1109 4:1105 

Food intakes (servings/week)    

Vegetables 34.3 (15.4) 33.8 (15.0) 34.8 (15.8) 

Fruit and fruit juices 22.4 (13.3) 22.7 (13.8) 22.1 (12.8) 

Nuts and legumes 7.9 (5.5) 7.8 (5.6) 8.0 (5.4) 

Whole grains 10.2 (7.9) 10.2 (7.7) 10.2 (8.1) 

Refined grains 8.4 (7.4) 8.4 (7.4) 8.5 (7.4) 

Fermented dairy 6.3 (4.8) 6.4 (4.7) 6.3 (4.8) 

White meat 1.9 (1.3) 1.9 (1.3) 2.0 (1.3) 

Seafood 2.4 (2.1) 2.4 (1.9) 2.5 (2.2) 

Red, processed meat and eggs 6.9 (4.0) 6.9 (3.9) 6.9 (4.0) 

Fried and fast foods 4.5 (3.4) 4.5 (3.4) 4.6 (3.4) 

Sweets and sweet baked products 15.7 (13.6) 16.2 (13.3) 15.2 (13.8) 

Chocolate 4.0 (5.8) 4.1 (6.0) 3.9 (5.7) 

Butter and cream 4.4 (6.6) 4.7 (6.8) 4.1 (6.4) 

Spreads and dressings 8.3 (8.4) 8.4 (8.8) 8.2 (8.1) 

Soy and other milks 0.2 (0.8) 0.2 (0.8) 0.2 (0.8) 

Milk 3.9 (4.2) 3.8 (4.1) 4.0 (4.3) 

Soda 2.0 (5.2) 1.9 (5.5) 2.1 (4.9) 

Coffee 8.7 (10.4) 8.8 (10.5) 8.6 (10.4) 

Tea 19.3 (13.7) 19.5 (13.8) 19.1 (13.6) 

Alcohol 6.0 (8.0) 5.7 (7.8) 6.3 (8.3) 
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Table 7-3. List of food groups significantly associated with VFM and the VFM diet score 
association with VFM in the training group 

(1)
 

(1) 20 food groups were tested for their association with VFM in the training group adjusting for 
covariates (scan batch, age, BMI, total fat, height

2
, sex and family relatedness) and multiple 

testing (P<0.0025).  

(2) The VFM diet score was formed from quartile ranking the VFM-associated food groups, scoring 
them according to the direction of association and summing the scores.  

 

Based on the direction of the food group association with VFM in the training dataset, I created 

the VFM diet score and tested it in the validation sample. I found 93.21% of the subjects were 

accurately classified into low and high VFM by the diet score. Moreover, the sensitivity (true 

positive rate) and specificity (true negative rate) of the VFM diet score were 93.72% and 

92.70%, respectively. The ROC curve is displayed in Figure 7-2. The area under the receiver 

operating curve (AUC) was 0.9841 (95% CI: 0.9772; 0.9911). Notably, I found the association 

between the diet score and VFM to be significant in the VFM-discordant MZ twin sample 

(0.281[0.091]; P=0.002).  

 

 

 

 

 

 

 

 

 

 

 

 

Food group Beta SE  P 

Fruits -0.005 0.001 1.95x10
-5

 

Red, processed meat and eggs 0.016 0.005 3.94x10
-4

 

Fermented dairy products -0.011 0.004 1.14x10
-3

 

Fried and fast foods 0.015 0.005 1.18x10
-3

 

Whole grains -0.008 0.002 1.27x10
-3

 

VFM diet score 
(2)

  0.033 0.006 7.38x10
-9

 

Figure 7-2. Receiver operating characteristic curve for the VFM diet 
score ability to predict the bottom and top tertiles of VFM 
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The best-fitting model for the heritability analysis of the VFM diet score was the AE model, with 

a heritability estimate of 44% (95% CI: 37%, 50%) (Table 7-4 shows details of heritability 

analysis). 

 

Table 7-4. Results of the structural equation modelling for heritability of the visceral fat 
mass diet score 

Model A C E 
log-

likelihood Χ
2
 P AIC 

ACE 
0.44  

(0.31, 0.50) 
0.00  

(0.00, 0.11) 
0.56  

(0.50, 0.63) 9067 
  

5493 

AE* 
0.44  

(0.37, 0.50) - 
0.56  

(0.50, 0.63) 9067 0.00 Incalc 5491 

CE - 
0.33  

(0.27, 0.38) 
0.67  

(0.62, 0.73) 9090 23.40 0.000 5514 

E - - 
1.00  

(1.00, 1.00) 9192 124.70 0.000 5613 

*Best fitting model; Abbreviations: A, additive; C, common; E, environmental; df, degrees of freedom; AIC, 
Akaike’s information criterion; Incalc, incalculable.  
Structural equation modeling was performed on the visceral fat mass diet score. The best-fitting model is 
indicated by the lowest AIC.  

 

Figure 7-3 displays the nutrient profile of the VFM diet score (consult Appendix F 

Table 1 for details). Individuals scoring highly on the VFM diet score had significantly 

increased intakes of fat (notably monounsaturated fatty acids) and reduced carbohydrate 

(notably, sucrose and non-starch polysaccharides [NSP]), vitamin C and magnesium intakes.  

 



 

 
 

148 

 

Figure 7-3. Nutrient profile of the VFM diet score presented as percentages of the UK 
dietary reference values by tertile of the VFM diet score 

 
Average nutrient intakes by increasing tertile of the VFM diet score from clockwise (lightest to 
darkest) were assessed for percentage of the recommended intakes for 55-year-old women 
(according to the UK Dietary Reference Values (Health., 1991)). Using VFM diet score by 
tertile as the predictor of the residual energy adjusted nutrient intakes in a linear regression 
statistically significant trends (P<0.001) were observed for all nutrients, except 
polyunsaturated fatty acids, protein, zinc and vitamin D. Carotene and retinol are represented 
as percentage of the recommended intake for total retinol equivalents. There is no UK DRV 
for vitamin D therefore 10 ug/d was used. Abbreviations: SFAs, saturated fatty acids; MUFAs, 
monounsaturated fatty acids; PUFAs, polyunsaturated fatty acids; Trans, trans fatty acids; 
CHO, carbohydrates; NSP, non-starch polysaccharides; vit, vitamin. 

 

7.3.2 VFM diet score metabolomics associations  

Thirty metabolites were significantly associated (P<1.71x10
-4

) with the VFM diet, shown in 

Table 7-5. Overall, these metabolites belonged to 21 unique sub-pathways, specifically, there 

were associations with 12 lipids, 5 amino acids, 5 vitamins and cofactors, 3 carbohydrates, 3 

xenobiotics, 1 nucleotide and 1 peptide. 
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After I adjusted for other food group intakes (Table 7-5) all associations between the 

VFM diet score and metabolites remained (P<0.01) however 6 associations did not pass 

adjustment for multiple testing (primarily lysolipids). 

7.3.3 Metabolites associated with the VFM diet score and food groups 

independently 

Following the backward stepwise regression including all food groups, I found that 18 

metabolites were significantly (P<3.33x10
-4

 (0.05/[5 food groups x 30 metabolites])) associated 

with the food groups forming the VFM diet score (Table 7-5). Fruit intakes were associated with 

11 metabolites, suggesting it was an important influence on associations between the VFM diet 

score and metabolites. Moreover, 5 metabolites were significantly associated with whole grain 

intake, 3 metabolites with red, processed meat, and eggs, and 2 metabolites with fried and fast 

food intakes. I found associations between the food groups forming the VFM diet score and the 

12 remaining metabolites did not pass statistical significance. 
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Table 7-5. List of metabolites significantly associated with the VFM diet score and with each food group independently (P<0.01 backward 
stepwise regression) 

  
VFM Score

 (1)
 

VFM Score adjusted 
foods 

(2)
 Foods associated 

(3)
 

Metabolite Sub-pathway Beta (SE) P Beta (SE) P P<0.01 P<3.33x10
-4

 
Eicosapentaenoate  Essential fatty acid -0.058(0.007) 3.24x10

-17
 -0.052(0.006) 2.22x10

-15
 Fruit (0.005(0.002)) 

FD (0.011(0.004)) 
FF (-0.017(0.006)) 

WG (0.011(0.003)) 

Indolepropionate Tryptophan 
metabolism 

-0.056(0.007) 1.58x10
-16

 -0.054(0.007) 2.91x10
-16

 Fruit (0.006(0.002)) 
WG (0.008(0.003)) 
RM (-0.018(0.005)) 

 

3-Carboxy-4-methyl-5-propyl-2-
furanpropanoate  

Fatty acid, 
dicarboxylate 

-0.055(0.007) 2.43x10
-16

 -0.045(0.006) 3.19x10
-12

 FF (-0.023(0.007)) WG (0.013(0.003)) 

Docosahexaenoate  Essential fatty acid -0.054(0.007) 6.17x10
-16

 -0.045(0.006) 1.30x10
-12

 WG (0.010(0.003)) Fruit (0.008(0.002)) 

Stachydrine Food component, 
Plant 

-0.056(0.007) 7.95x10
-16

 -0.057(0.007) 2.59x10
-16

 RM (-0.019(0.006)) Fruit (0.014(0.002)) 

3-Phenylpropionate  Phenylalanine & 
tyrosine metabolism 

-0.059(0.007) 1.70x10
-15

 -0.053(0.008) 3.53x10
-12

 Fruit (0.006(0.002)) WG (0.014(0.003)) 
FF (-0.028(0.007)) 

Hippurate  Benzoate metabolism -0.052(0.007) 1.84x10
-13

 -0.052(0.007) 5.06x10
-14

  Fruit (0.010(0.002)) 
WG (0.011(0.002)) 

Catechol sulfate  Benzoate metabolism -0.051(0.007) 1.75x10
-12

 -0.046(0.007) 1.94x10
-10

 WG (0.008(0.003)) Fruit (0.008(0.002)) 

Glycerate  Glycolysis, 
gluconeogenesis, 
pyruvate metabolism 

-0.049(0.007) 3.81x10
-12

 -0.042(0.007) 1.57x10
-9

  Fruit (0.010(0.002)) 

Pyridoxate  Vitamin B6 
metabolism 

-0.049(0.007) 9.08x10
-12

 -0.042(0.007) 2.96x10
-9

  Fruit (0.007(0.002)) 
WG (0.011(0.002)) 

Threitol  Nucleotide sugars, 
pentose metabolism 

-0.044(0.007) 7.73x10
-11

 -0.043(0.007) 1.65x10
-10

  Fruit (0.011(0.002)) 

Butyrylcarnitine  Fatty acid metabolism 
(also BCAA 
metabolism) 

 0.040(0.007) 4.77x10
-9

  0.039(0.007) 9.09x10
-9

  RM (0.020(0.005)) 

alpha-Hydroxyisovalerate  Valine, leucine and 
isoleucine metabolism 

 0.037(0.007) 1.12x10
-7

  0.027(0.006) 4.48x10
-5

  RM (0.022(0.005)) 

1-Arachidonoylglycerophospho-
ethanolamine* 

Lysolipid  0.038(0.007) 2.09x10
-7

  0.030(0.007) 3.43x10
-5

 WG (-0.011(0.003)) 
FD (-0.013(0.005)) 

 

Threonate  Ascorbate and 
aldarate metabolism 

-0.036(0.007) 4.51x10
-7

 -0.033(0.007) 3.66x10
-6

  Fruit (0.007(0.002)) 

1,5-Anhydroglucitol (1,5-AG)  Glycolysis, 
gluconeogenesis, 
pyruvate metabolism 

 0.035(0.007) 1.80x10
-6

  0.026(0.007) 3.46x10
-4

  Fruit (-0.008(0.002)) 

Uridine  Pyrimidine 
metabolism, uracil 
containing 

-0.032(0.007) 2.05x10
-6

 -0.03(0.007) 9.21x10
-6

 WG (0.008(0.003))  

Stearidonate  Long chain fatty acid -0.033(0.007) 2.65x10
-6

 -0.028(0.007) 3.20x10
-5

 None  

1-
Docosahexaenoylglycerophosphocholin
e* 

Lysolipid -0.032(0.007) 2.95x10
-6

 -0.027(0.007) 4.14x10
-5

 FD (0.014(0.004))  
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Table 7-5. List of metabolites significantly associated with the VFM diet score and with each food group independently (P<0.01 backward 
stepwise regression) 

  
VFM Score

 (1)
 

VFM Score adjusted 
foods 

(2)
 Foods associated 

(3)
 

Metabolite Sub-pathway Beta (SE) P Beta (SE) P P<0.01 P<3.33x10
-4

 
Bilirubin (Z,Z)  Hemoglobin and 

porphyrin metabolism 
-0.033(0.007) 3.88x10

-6
 -0.032(0.007) 4.69x10

-6
  FF (-0.020(0.006)) 

1-Oleoylglycerophosphoethanolamine Lysolipid  0.032(0.007) 9.21x10
-6

  0.023(0.007) 1.35x10
-3

 WG (-0.008(0.003))  

1-Arachidonoylglycerophosphocholine* Lysolipid  0.032(0.007) 1.76x10
-5

  0.024(0.007) 1.26x10
-3

 WG (-0.010(0.003))  

Pantothenate  Pantothenate and 
CoA metabolism 

-0.029(0.007) 4.20x10
-5

 -0.029(0.007) 6.28x10
-5

 None  

4-Androsten-3beta,17beta-diol disulfate 
1* 

Sterol, Steroid  0.032(0.008) 4.67x10
-5

  0.019(0.007) 7.86x10
-3

 None  

X-11793--oxidized bilirubin* Hemoglobin and 
porphyrin metabolism 

 0.028(0.007) 5.10x10
-5

  0.027(0.007) 7.01x10
-5

 WG (-0.009(0.002)) 
FD (-0.015(0.005)) 

 

trans-4-Hydroxyproline Urea cycle; arginine-, 
proline-, metabolism 

 0.027(0.007) 8.28x10
-5

  0.031(0.007) 7.13x10
-6

 FD (-0.013(0.005)) RM (0.028(0.006)) 

Glycoursodeoxycholate Bile acid metabolism  0.032(0.008) 1.00x10
-4

  0.028(0.008) 5.70x10
-4

 None  

gamma-Glutamylvaline gamma-glutamyl  0.023(0.006) 1.11x10
-4

  0.023(0.006) 1.38x10
-4

 FD (-0.014(0.004)) Fruit (-0.005(0.001)) 

1-Eicosatrienoylglycerophosphocholine* Lysolipid  0.028(0.007) 1.32x10
-4

  0.020(0.007) 4.40x10
-3

 WG (-0.009(0.003))  

Proline Urea cycle; arginine-, 
proline-, metabolism 

 0.028(0.007) 1.44x10
-4

  0.028(0.007) 1.45x10
-4

 FF (0.015(0.006)) Fruit (-0.008(0.002)) 

FD: Fermented dairy; FF: Fried and fast foods; RM: Red meat; WG: Whole grain products
 

(1) Metabolite associations with the VFM diet score were adjusted for covariates (batch effects, age, BMI and sex) and multiple testing (P<1.71x10
-

4
).  

(2) The VFM diet score and 15 food groups not forming the score were fitted into a backward stepwise linear regression model to predict each 
significant metabolite using P<0.01 as the cut off threshold.  

(3) All 20 food groups were fitted into a backward stepwise linear regression model to predict each significant metabolite using P<0.01 as the cut 
off threshold. Significant results shown only for foods forming the VFM diet score. Associations passing the Bonferonni cut-off were considered 
statistically significant: P<3.33x10

-4
 = 0.05/[5 food groups x 30 metabolites]. 
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7.3.4 Metabolites associated to both the VFM diet and VFM 

I included all 30 metabolites in a backward stepwise linear regression and found 9 metabolites 

were significantly and independently associated with the VFM diet score (Table 7-6), these 

metabolites accounted for 14% of the variance in the VFM diet score. Notably, four of these 

metabolites also passed the cut-off four multiple testing (P<5.56x10
-3

). I also found 6 out of the 

9 metabolites were nominally associated (P<0.05) with both the VFM diet and VFM. The 

remaining 3 metabolites were associated only with the VFM diet and not VFM.  

I found higher scores on the VFM diet score and high VFM (independently of diet and 

total body fat) were associated with lower hippurate and bilirubin (Z,Z), and higher alpha-

hydroxyisovalerate and butyrylcarnitine (Table 7-6). Notably, in the VFM-discordant MZ twins, 

associations between VFM and butyrylcarnitine (0.199[0.087]; P=0.023) and hippurate (-

0.297[0.095]; P=0.002) were significant (Figure 7-4; Appendix G Table 2). On average, these 

four metabolites accounted for 18.5% (range: 13.5% [alpha-hydroxyisovalerate]-28.9% 

[hippurate]) of the variance in the association between the VFM diet score and VFM (Table 7-

6). 
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Table 7-6. List of metabolites independently associated with the VFM diet score (P<0.01 in backward linear regression), their association with 
VFM and the proportion of the association of the VFM diet score with VFM that is mediated by the VFM diet score association with the 
metabolites (P<5.56x10

-3
) 

NS= not significant: P>0.05 
(1) Thirty metabolites significantly associated with the VFM diet score (Table 7-5) were adjusted for covariates (batch effects, age, BMI and sex) 

and fitted into a backward stepwise linear regression to predict the VFM diet score using P<0.01 as the threshold cut-off.  
(2) Nine metabolites independently associated with the VFM diet score were tested for their association with VFM adjusted for covariates (age, 

batch effects, BMI, total fat, sex, height
2
, and family relatedness). Associations passing the Bonferonni cut-off were considered significant 

(P<5.56x10
-3

).  
(3) the proportion of the variance in VFM explained by the VFM diet score after taking into account all covariates (age, sex, BMI, height

2
, and batch 

effects). 
(4) the proportion of the variance in VFM explained by the VFM diet score after taking into account all covariates as in (1) and adjusting for the 

metabolite. 

 
VFM diet score stepwise 

(1)
 VFM 

(2)
 

  
% association 

through 
metabolite Metabolite name beta(SE) P beta(SE) P 

diet R
2
 no 

metabolite 
(3)

 
diet R

2
 with 

metabolite 
(4)

 
Hippurate  -0.45(0.10) 2.15x10

-5
 -0.081(0.012) 1.33x10

-11
 0.0312 0.0222 28.8% 

alpha-Hydroxyisovalerate  0.38(0.10) 9.60x10
-5

  0.050(0.013) 1.65x10
-4

  0.0270 13.5% 

Butyrylcarnitine   0.33(0.10) 8.54x10
-4

  0.072(0.013) 5.86x10
-8

  0.0267 14.4% 

Bilirubin (Z,Z)   -0.31(0.10) 1.76x10
-3

 -0.049(0.013) 1.88x10
-4

  0.0258 17.3% 

Indolepropionate  -0.33(0.11) 2.21x10
-3

 -0.030(0.012) 1.40x10
-2

    

1-Arachidonoylglycerophospho-
choline*  

 0.27(0.10) 5.20x10
-3

  0.031(0.012) 1.07x10
-2

    

Eicosapentaenoate (EPA; 20:5n3) -0.75(0.10) 1.13x10
-13

  0.020(0.012) NS    

Threonate  -0.32(0.11) 2.59x10
-3

 -0.016(0.012) NS    

X-11793--Oxidized bilirubin*  0.33(0.11) 2.63x10
-3

 -0.004(0.012) NS    
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Figure 7-4. Comparisons of the VFM diet score, alpha diversity and top microbiome 
and metabolite associations in the low and high MZ VFM-discordant twins 

 
All variables were standardized to have mean=0, SD=1. A linear regression was conducted 
using the VFM diet score, alpha diversity (Shannon Index) and top microbiome and 
metabolite associations to predict VFM in the MZ discordant (1 SD apart in VFM) twin 
sample.  Significantly (P<0.05) higher VFM diet scores and butyrylcarnitine, and lower 
hippurate were observed with increasing VFM (*). 

 

7.3.5 VFM diet score microbiome associations 

In a subsample of 889 twins I found higher scores on the VFM diet were associated with lower 

gut microbiome diversity (Shannon Index; -0.025[0.009], P=6.26x10
-3

), after I adjusted for VFM 

this association was reduced but remained significant (-0.020[0.010], P=0.035).  

I found the VFM diet score was associated significantly with 8 OTUs (Table 7-7) and 6 

taxa (Table 7-8). However, after I adjusted for intakes of other food groups, the associations 

became nominally significant (P<0.05) (Table 7-8). 

7.3.6 Microbiome taxa associated to both the VFM diet and VFM 

I found higher abundances of the species species Eubacterium dolichum (0.057[0.019], 

P=2.73x10
-3

) was associated significantly with increased VFM and a Bifidobacterium OTU (OTU 

ID: 4426298; -0.046[0.016], P=0.005) with reduced VFM (adjusting for the VFM diet score). I 

found that 16.4% of the effect of the VFM diet score on VFM (r
2

x= 0.0238) was mediated by E. 

dolichum (r
2
xy= 0.0199) and 17.2% by the Bifidobacterium OTU.  
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7.3.7 Eubacterium dolichum and hippurate associated with both VFM and VFM 

diet 

I tested associations between those 4 metabolites significantly associated to both VFM and the 

VFM diet to determine if E. dolichum and the Bifidobacterium OTU may be related to the 

metabolomics profile. I found that higher abundances of E. dolichum were associated with lower 

levels of hippurate at the nominal level (P<0.05) after adjusting for VFM, the VFM diet score, 

Shannon Index and covariates (-0.075[0.032], P=0.021). Moreover, I found that 36.9% of the 

effect of Eubacterium dolichum on VFM (r
2
x= 0.0065) was mediated by hippurate (r

2
xy= 0.0041) 

independently of diet and covariates.  

7.3.8 Hippurate association with adipose tissue transcriptome 

Adipose tissue gene expression levels in the greater twin population, in order to provide 

potential mechanisms of the effect of hippurate on fat mass development. Higher levels of 

hippurate were associated with increased expression of neuroglobin (0.016[0.004], P=9.82x10
-

6
). Neuroglobin has roles in cellular energy maintenance as a vertebrate globin family member.
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Table 7-7. List of OTUs associated with the VFM diet score (unadjusted and adjusted for other food intakes), their association with foods 
forming the VFM diet score and their independent association with the VFM diet score (P<0.05 in backward linear regression) 

*= statistically significant: P<0.0025; FD: fermented dairy; FF: fried and fast foods; RM: red meat; WG: whole grain products
 

(1) OTU associations with the VFM diet score were adjusted for covariates (age, Shannon Index, BMI and sex) and multiple testing (P<2.36x10
-5 

[Bonferroni: 0.05/2118 OTUs]). 
(2) The VFM diet score and 15 food groups not forming the score were fitted into a backward stepwise linear regression model to predict each 

significant OTU using P<0.05 as the cut off threshold.  
(3) All 20 food groups were fitted into a backward stepwise linear regression model to predict each significant OTU using P<0.05 as the cut off 

threshold. Significant results shown only for foods forming the VFM diet score.  
(4) OTU 4426298 is the only taxon associated with VFM independently of the VFM diet score (Beta[SE]: (-0.046[0.016]; P=0.005).

  VFM score 
(1)

 VFM score adjusted foods 
(2)

 Foods associated 
(3)

 
OTU ID Assigned Taxonomy Beta(SE) P Beta(SE) P P<0.05 
4426298 

(4)
 k__Bacteria; p__Actinobacteria; 

c__Actinobacteria; o__Bifidobacteriales; 
f__Bifidobacteriaceae; g__Bifidobacterium; s__ 

-0.058(0.011) 6.19x10
-7

 -0.053(0.011) 9.56x10
-7

 FD (0.029(0.008))* 
FF (-0.022(0.010)) 

183686 k__Bacteria; p__Firmicutes; c__Clostridia; 
o__Clostridiales; f__Ruminococcaceae; g__; s__ 

0.053(0.011) 1.25x10
-6

 0.042(0.011) 9.01x10
-5

 RM (0.018(0.009)) 
WG (-0.016(0.004))* 

592616 k__Bacteria; p__Firmicutes; c__Erysipelotrichi; 
o__Erysipelotrichales; f__Erysipelotrichaceae; 
g__; s__ 

0.050(0.011) 3.35x10
-6

 0.042(0.010) 4.48x10
-5

 RM (0.027(0.009))* 
 

2368865 k__Bacteria; p__Firmicutes; c__Clostridia; 
o__Clostridiales; f__; g__; s__ 

-0.047(0.011) 1.11x10
-5

 -0.044(0.010) 2.40x10
-5

 FD (0.031(0.006))* 

509709 k__Bacteria; p__Firmicutes; c__Clostridia; 
o__Clostridiales; f__Lachnospiraceae; g__; s__ 

-0.051(0.011) 1.15x10
-5

 -0.047(0.011) 2.57x10
-5

 RM (0.011(0.004)) 
WG (-0.023(0.008)) 

New.0.Reference
OTU51 

k__Bacteria; p__Bacteroidetes; c__Bacteroidia; 
o__Bacteroidales; f__Rikenellaceae; g__; s__ 

0.049(0.011) 1.44x10
-5

 0.045(0.011) 3.87x10
-5

 WG (-0.011(0.004)) 

3801267 k__Bacteria; p__Firmicutes; c__Clostridia; 
o__Clostridiales; f__Veillonellaceae; 
g__Veillonella; s__parvula 

-0.043(0.011) 1.75x10
-5

 -0.039(0.010) 7.29x10
-5

 Fruit (0.006(0.002)) 

2407149 k__Bacteria; p__Firmicutes; c__Clostridia; 
o__Clostridiales; f__Lachnospiraceae; g__; s__ 

-0.043(0.010) 2.24x10
-5

 -0.028(0.010) 0.006 None 
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 Table 7-8. List of taxa associated with the VFM diet score (unadjusted and adjusted for other food intakes), their association with foods 
forming the VFM diet score and their independent association with the VFM diet score (P<0.05 in backward linear regression) 

*= statistically significant: P<0.0025: FF: Fried and fast foods; RM: Red meat; WG: Whole grain products
 

(1) Taxa associations with the VFM diet score were adjusted for covariates (age, Shannon Index, BMI and sex) and multiple testing.  
(2) The VFM diet score and 15 food groups not forming the score were fitted into a backward stepwise linear regression model to predict each 

significant taxon using P<0.05 as the cut off threshold.  
(3) All 20 food groups were fitted into a backward stepwise linear regression model to predict each significant taxon using P<0.05 as the cut off 

threshold. Significant results shown only for foods forming the VFM diet score.  
(4) Eubacterium dolichum is the only taxon associated with VFM independently of the VFM diet score (Beta[SE]: 0.057[0.019], P=2.74x10

-3
). 

 

  
VFM Score

 (1)
 VFM Score adjusted foods 

(2)
 Foods associated 

(3)
 

Taxon Level beta(SE) P beta(SE) P P<0.05 
Actinomyces genus  0.052(0.011) 9.77x10

-7
  0.052(0.011) 9.77x10

-7
 FF (0.028(0.009))* 

RM (0.027(0.008))* 
Lachnospira genus -0.045(0.009) 2.79x10

-6
 -0.038(0.010) 8.33x10

-5
 Fruit (0.006(0.002)) 

Actinomycetaceae family  0.043(0.011) 5.47x10
-5

  0.043(0.011) 5.47x10
-5

 FF (0.021(0.010)) 
RM (0.024(0.008)) 

Eubacterium dolichum 
(4)

 species  0.042(0.011) 8.47x10
-5

  0.043(0.011) 6.19x10
-5

 WG (-0.010(0.004)) 

Veillonella dispar species -0.039(0.011) 3.05x10
-4

 -0.031(0.011) 4.00x10
-3

 None 

Anaeroplasmataceae family -0.037(0.010) 3.75x10
-4

 -0.036(0.010) 3.37x10
-4

 Fruit (0.007(0.003)) 
WG (0.011(0.004)) 
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7.4 Discussion 

In this chapter, I developed a dietary VFM risk score and evaluated it against blood 

metabolomics and faecal microbiome profiles. I characterised the metabolomics profile of the 

VFM dietary pattern and additionally found a specific gut bacterial species to associate with this 

pattern and VFM independently of confounders such as age, BMI and total fat mass. In 

particular, using this novel dataset I found the species E. dolichum in the gut and hippurate in 

blood may connect an unhealthy diet to VFM. 

The score I created was strongly predictive of VFM in the TwinsUK cohort, and it was 

replicated VFM-discordant MZ twins. This allowed me to further explore the potential effects of 

diet on VFM development through metabolomics and microbiome methods. Overall, I found 4 

metabolites were significantly associated with both the VFM diet score and VFM (after adjusting 

for diet). These metabolites also accounted for some portion of the variance in the association 

between the VFM diet score and VFM. Specifically lower levels of hippurate and bilirubin (Z,Z), 

and higher levels of alpha-hydroxyisovalerate and butyrylcarnitine were associated with higher 

VFM diet scores and VFM. Both alpha-hydroxyisovalerate and butyrylcarnitine are metabolites 

involved in BCAA catabolism and fatty acid metabolism, both have previously been shown to be 

higher in obese children (Butte et al., 2015) and adults (Moore et al., 2014). In particular, alpha-

hydroxyisovalerate has been found to predict insulin resistance and glucose intolerance well 

(Gall et al., 2010, Varvel et al., 2014). Higher levels of both alpha-hydroxyisovalerate and 

butyrylcarnitine were associated with increased intakes of red and processed meats and eggs. 

Although animal sources of fats and protein have yet to be connected to deranged BCAA 

metabolism in humans, a previous study has shown through feeding mice a HF diet the addition 

of BCAA (which are primarily sourced from animal-derived proteins) aggravates insulin 

resistance by activating the mTOR kinase pathway (Newgard et al., 2009).  

Bilirubin is an endogenous anti-oxidant that also has roles in haemoglobin and 

porphyrin metabolism. Similar to my findings, reduced levels of serum bilirubin have been 

associated with increased abdominal adiposity and metabolic derangements (Wu et al., 2011b, 

Kwon et al., 2011, Jenko-Praznikar et al., 2013). I found increased reported consumption of 

fried and fast foods were associated with reduced bilirubin (Z,Z). A previous study identified 

reported intakes of total fatty acids were correlated with reduced bilirubin in serum (Jenko-

Praznikar et al., 2013). This association may be potentially derived from elevated levels of 
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oxidative stress depleting bilirubin. In support of this, increased intakes of fried and fast foods 

were associated with reduced levels of EPA and increased proline (related to collagen 

breakdown (Palka, 1996)) that might suggest higher inflammation and oxidative stress 

(Krishnan et al., 2008). Moreover, vegetable oil frying also lowers polyphenols and was shown 

to increase liver microsomal lipid peroxides when fed to mice (Quiles et al., 2002).  

The primary metabolite connecting diet to VFM was hippurate. Overall, reduced levels 

of hippurate in blood were associated with higher VFM, a finding that I additionally replicated in 

VFM-discordant MZ twins, the VFM dietary score and E. dolichum in the gut. Hippurate is a 

glycine conjugate of benzoic acid formed in the mitochondria of the liver (Gatley and Sherratt, 

1977) and kidneys (Temellini et al., 1993), but is also a is a mammalian-microbial co-metabolite 

formed by gut bacterial metabolism of dietary components, in particular polyphenols (Gonthier 

et al., 2003, Walsh et al., 2007), to produce benzoic acid. I found increased levels of hippurate 

to be independently associated with higher intakes of fruit and whole grain products, which are 

high in polyphenols. Concerning obesity and metabolic diseases animal models which have 

shown reduced hippuric acid urinary excretion in obesity (Shearer et al., 2008, Waldram et al., 

2009, Calvani et al., 2010) and higher levels in Type II diabetes (Williams et al., 2005) 

compared to controls. To my knowledge no human studies to date have extensively evaluated 

the relationship between VFM and blood metabolite biomarkers of dietary polyphenol 

consumption, including hippurate. Although in the previous chapter I found hippurate to be 

positively associated with microbiome diversity as well as inversely associated with MetS risk. 

Interestingly, I also identified higher levels of hippurate in blood to be associated with increased 

expression of neuroglobin in adipose tissue. Neuroglobin, is a globin protein expressed mainly 

in neurons and some endocrine tissues (Burmester et al., 2000), it has roles in protecting cells 

against hypoxia and oxidative stress (Burmester et al., 2007). Hypoxia, which is a lack of 

oxygen reaching tissues, has emerged in recent studies as an important mechanism in the 

progression of adipose tissue dysfunction (Kim et al., 2014). This finding suggests a mechanism 

in which hippurate could protect against adipose tissue dysfunction and resultant VFM 

development.  

E. dolichum is a bacterial species belonging to the family Erysipelotrichaceae, 

increased abundances of E. dolichum were associated with higher dietary VFM scores and 

VFM (independently of diet). This finding suggests this microbe may contribute to VFM 

development through diet, notably lower intakes of whole grains. Similar to my findings, in a 
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murine model of Western-style diet induced obesity, abundances of E. dolichum were increased 

(Turnbaugh et al., 2008), additionally further metagenomics analysis showed the E. dolichum 

genome may be enriched for genes that allow this microbe to have an advantage under a 

Western-style diet as it is enriched for phosphotransferase proteins which have roles in the 

import and metabolism of simple sugars. An additional study of Japanese quail strains 

(atherosclerotic-resistant and non-resistant) showed increased E. dolichum abundance in 

atherosclerotic-resistant quails compared to control when fed a high cholesterol diet (Liu et al., 

2015). I believe this is the first human study to find a connection between E. dolichum and a diet 

high in fat and low in fibre and micronutrients however I do not believe there to be literature on 

the mechanisms of the effect of this species on VFM development. It may be that the 

relationship between E. dolichum and VFM is primarily an artefact of poor diet and not 

specifically contributing to VFM, however the association was unaffected when adjusted for the 

diet score. Within TwinsUK higher abundances of E. dolichum have associated with increased 

scores on the frailty index, a finding that remained strong after adjustment for diet and diversity 

(Jackson et al., 2016b). The association I found between E. dolichum and hippurate is difficult to 

untangle with my limited dataset, though should be assessed in future studies.  

This chapter had many strengths. I believe this to be the first large-scale study applying 

multi-omic methods to explore the effect of diet on VFM. The food intake associations with VFM 

replicate findings from previous studies, this confirms the strength and validity of the dietary 

VFM score. In particular, I replicated associations from previous studies finding higher reported 

intakes of fruit (Romaguera et al., 2011), dairy products (Romaguera et al., 2011), and whole 

grains (Caron-Jobin et al., 2011) with reduced VFM or WC, while higher intakes of fried and 

fatty foods (Mollard et al., 2014, Romaguera et al., 2011) and red and processed meats 

(Romaguera et al., 2011) with increased VFM or WC. Similar to VFM (Direk et al., 2013), I found 

the dietary risk score determined strongly by genetics (h
2
: 44%) this is in line with previous 

studies suggesting the heritability of an ‘unhealthy’ diet pattern ranges from 33 to 50 % (Pallister 

et al., 2014). I also experienced a number of limitations throughout this chapter. The study 

population was mainly females and my results may not apply to men. Due to the cross-sectional 

nature of the study, I cannot attribute cause and effect to my findings. I adjusted for a large 

number of potential confounders, though I still face possible residual or unmeasured 

confounding due to other unmeasured factors or measurement error. Although, as I did adjust 

for a large set of confounders as well as for multiple testing it is not likely that these factors 
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would totally account for my results. The measurement of the gut microbiome was further limited 

by using 16S gene sequencing. Subsequent investigations using more accurate metagenomic 

methods may allow for a more thorough examination into microbe-metabolite interactions at the 

functional level. I used a variety of time points for sampling, however it is likely my results may 

be enhanced if the same time point was used throughout. I also did not have repeated 

measurements for individuals and therefore I could not evaluate intra-individual variation. 

Finally, I was not able to replicate my findings in an independent population, despite this I was 

able to replicate top association in MZ VFM-discordant twins that are matched for age, gender 

and the baseline genetic sequence.  

 

Conclusions 

An unhealthy dietary is an important influence on VFM. In this chapter I connected a dietary 

VFM score and VFM to a single gut microbial species and blood metabolites. In particular, I 

found the species E. dolichum seems to link a dietary pattern with low in fruit, whole grains and 

fermented dairy product intakes and high red, processed meat and eggs, and fried and fast 

foods intakes to VFM, which was independent of BMI and total fat mass. Additionally, I found 

hippurate, an important benzoate and microbial co-metabolite, to link these features to the 

microbiome. Finally, I found hippurate to associate with neuroglobin expression in adipose 

tissue, alluding to a potential mechanism of interaction. In the future, studies may aim to verify 

my findings through dietary intervention and establish further how our findings influence long-

term metabolism and health.  
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Chapter 8 Conclusions and suggested future directions  

 

Metabolomics has emerged from this work as a key application for furthering nutrition research. 

Through examining the metabolome in a bodily system, specific organ, tissue or cell, 

information is provided as to the metabolic state of an individual. Nutrition and the metabolome 

are highly related as nutrients and non-nutrient food constituents supply chemical components 

to the body, although separating these contributions can be challenging (Gibney et al., 2005). In 

spite of this, using self-reported food intakes candidate biomarkers have been identified within 

the metabolome in this study and others (O'Sullivan et al., 2011, Altmaier et al., 2011, Guertin et 

al., 2014b), validating this approach. However, the genetic effect on the metabolite profile is 

highly variable (Suhre et al., 2011), as such application of the co-twin control method can 

provide an excelled way to further metabolomics studies by providing cases and controls 

matched for age, sex and genetics.  

In this thesis, through using metabolomics in collaboration with self-reported dietary 

intakes I have identified a number of candidate biomarkers that can be used and assessed in 

subsequent epidemiology studies. I evaluated the utility of using metabolite scores to assess 

food intakes and applied the scores to study the odds of developing MetS. I used metabolites to 

investigate the metabolomics signature of gut microbiome diversity and connected increased 

levels of hippurate in blood to intakes of foods high in polyphenols, diversity and lower odds of 

developing MetS. Finally, I attempted to untangle the influence of a diet predictive of VFM on 

VFM development and found blood levels of hippurate and E. dolichum in the gut may be 

important links. Throughout each chapter I used discordant MZ twins who are controlled for age, 

sex and the baseline genetic sequence to validate my findings. In the discussion below I have 

highlighted the key findings from each chapter. 

 

Key points/learning from the thesis  

Chapter 4: Metabolite-food intake discovery analysis 

 Self reported food intakes correlate strongly with levels of blood metabolites. 

 Of 601 total metabolites assessed, 128 metabolites (21.3%) were associated with food 

intakes and dietary patterns using stringent cut-offs for multiple testing. 

 Wine intake and seafood/fish intakes yielded the strongest and most abundant results, 

many replicated from previous studies. 
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 72 food intake-metabolite associations were novel: including associations between 

mushroom intake and ergothioneine, apples/pear and 3-phenylpropionate, and meat 

intake and trans-4-hydroxyproline. 

 Assessing both dietary patterns and specific food group intakes yielded unique results.  

Chapter 5: Metabolite-food scores 

 Creating metabolite scores provided an advantage over using single metabolites to 

measure food intakes.  

 Differences between each of the methods to create the scores were negligible, though 

the weighted method performed the best. 

 Metabolite scores performed moderately for alcohol (AUC>0.8) and (AUC>0.7) for fruit, 

whole grains, seafood, fried foods, tea and coffee. 

 Metabolite scores for seafood, whole grains, and butter and creams were associated 

with a reduced odds of future MetS, a finding not replicated by intake data. 

Chapter 6: Metabolite markers of gut microbiome diversity 

 Gut microbiome alpha-diversity was associated with five blood metabolites: hippurate, 

p-cresol sulfate, phenylacetylglutamine and 3-phenylpropionate which were associated 

positively; and negatively with hyodeoxycholate 

 Hippurate, a benzoate metabolite derived from polyphenols, was associated with 

intakes of fruit and whole grains cross-sectionally and longitudinally. 

 Hippurate was positively associated with OTUs and collapsed taxa within the family 

Ruminococcacea.  

 Hippurate was negatively associated with OTUs and collapsed taxa within the 

Firmicutes phyla, the family Lachnospiraceae, the class Erysipelotrichi, and the order 

Actinomycetales.  

 Longitudinal hippurate levels were associated with a reduced odds of MetS, which was 

largely mediated by Shannon diversity (61.1%). 

Chapter 7: Dietary VFM score and metabolomic and microbiome profiles 

 Creating a diet score was a robust means to predict VFM 

 The dietary risk score had a strong metabolomics signature: associating with 30 

metabolites  

 Notably, in blood lower hippurate and bilirubin (Z,Z) levels, and higher alpha-

hydroxyisovalerate and butyrlcarnitine levels were associated to increased VFM and the 

VFM diet score.   

 Increased abundances of the collapsed taxonomy assigned to Eubacterium dolichum 

was associated with both increased VFM and the VFM diet score 

 Increased Eubacterium dolichum adbundances were associated with reduced blood 

hippurate and adipose tissue expression of neuroglobin, a protein protective of hypoxia 

and oxidative stress. 

 

Chapter 4: Metabolite-food intake discovery analysis 

I explored all metabolomic associations with reported food intakes and dietary patterns and 

used MZ twins discordant for food intakes to validate the findings. Overall, I identified and 

validated 128 metabolites to be associated between self-reported food intakes and diet 

patterns. To my knowledge, 72 metabolite associations with food intakes were novel (have not 

been identified in blood previously by studies also using FFQ data (Guertin et al., 2014b, Zheng 
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et al., 2014)). Identifying this many novel associations is encouraging for future dietary 

metabolomics studies suggesting there is much potential within the metabolome. Moreover, that 

I replicated many findings from previous studies further supports the methods used. 

Interestingly, 21 metabolites were associated to dietary patterns not items which may suggest 

that through measuring dietary patterns we are able to capture information not obtained by 

measuring single foods independently. In my analysis, I did not attempt to assess the utility of 

using single food items versus combined biomarkers of dietary patterns when applied to other 

indicators of health such as MetS, fasting blood glucose, waist circumference or BMI, which 

could be an area for future studies. Certainly a larger number of metabolites representing 

diverse metabolic pathways are associated with dietary patterns highlighting this potential area 

of importance. Although, my results with principal components patterns are population-specific 

and therefore cannot be replicated, which is why I chose to analyse the Mediterranean diet 

using an a priori method. This method yielded a lower number of associations than the 

comparable Fruit and Vegetable PC pattern, though this also highlights that the Mediterranean 

diet score has limitations, which have been outlined previously (Hoffman and Gerber, 2013). 

Moreover, I did not find any metabolite-associated SNPs to be related to food intake, though 

more precise food intake data or using combined genetic risk may have a stronger effect. 

Moreover, testing these SNPs or combined genetic risk SNPs to examine gene-diet interactions 

are a potential area for future study.  I used discordant MZ twins as a validation population 

which was very stringent criteria, though this strongly supports the value of the associations I 

identified. Future large-scale feeding studies need to be undertaken to confirm our associations, 

to properly quantify effects and also to determine the origin of the associations (e.g. whether the 

metabolite is derived from a food itself and its quantity in food). Further adding to the complexity 

of associations are intermediate processes such as one’s genetic makeup and the influence of 

gut bacteria metabolism. Finally, 32 metabolites that were associated to food intakes and 29 to 

dietary patterns are currently not identified but in the future may provide useful metabolic 

insights.  

 

Chapter 5: Metabolite-food scores 

For the Chapter 5 analysis, I created metabolite scores (when there were multiple metabolites 

associated to a food) using three methods (quartile ranking, continuous scoring and weighted) 

and compared each method against the top associated metabolite. I believe this was the first 
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time this was done before and certainly with such a large dataset. In the training dataset, I was 

able to form metabolite scores for fifteen different food groups (vegetables, fruit, whole grains, 

nuts and legumes, seafood, white meat, red meat, fried foods, sweets and sweet baked 

products, butter and cream, spreads and dressings, milk, tea, coffee and alcohol). To form 

these groups I used highly stringent methods: associations must have passed multiple testing 

cut-offs, been replicated in MZ discordant twins and maintained significance following the data 

reduction steps. Of course, the methods I used may have been too stringent and I may have 

formed more powerful groups if I had used more metabolites, on the other hand, if my results 

were to be replicated this would be easier done with fewer metabolites. Nonetheless, I 

replicated my results in the testing group, therefore at least some of these scores should 

translate as important markers in independent populations. As for the performance of the 

scores, they generally performed better than the top single metabolite and the weighted method 

tended to perform best although differences were negligible. At predicting high and low 

consumers in the test group, metabolite scores performed well (AUC>0.8) for alcohol and 

reasonably (AUC>0.7) for fruit, whole grains, seafood, fried foods, tea and coffee. Moreover, I 

applied a unique method by using food group liking as an alternative way of indicating food 

intakes, I found metabolite scores for all groups but vegetables, white meat and spreads and 

dressings to correlate with reported food liking which also supported the results of the ROC 

analysis. Based on my findings from this analysis, each scoring method appears to be suitable 

for use in biomarker studies, though due to its simplicity, the continuous method (multiplying 

metabolite concentrations according to the association direction and summing) may be ideal, 

especially in studies using multiple populations.  

In the second part of the chapter, I used validated metabolite scores to examine their 

association with MetS and its components in the twins at least 5 years after metabolomics 

profiling. I found high levels of metabolites correlated to consumption of seafood, whole grains 

and butter and cream intakes to associate with a lower risk of MetS. Although reported intakes 

did not reflect these findings in our sample. However, the dataset I used to examine these 

associations was very small and only 25 twins developed MetS in later years. Therefore, further 

analysis could be done on dataset with a larger number of cases. Although, the ability to identify 

an association with MetS with such a small sample size might be encouraging for the usage of 

metabolomics for future studies. Also, the potential applicability for these metabolite biomarkers 
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to be used as pre-disease markers of dietary risk in a personalised medicine setting is an 

exciting area for further development.  

 

Chapter 6: Metabolite markers of gut microbiome diversity 

 I found five blood metabolites correlated with gut microbiome diversity (hippurate, p-cresol 

sulfate, phenylacetylglutamine and 3-phenylpropionate which were associated positively; and 

negatively with hyodeoxycholate) and examined their association with diet and relationship with 

MetS. Figure 8-1 shows a summary of the findings. Overall, higher levels of hippurate in blood 

were the strongest correlate of increased gut microbiome diversity, which was validated in MZ 

twins discordant for diversity. Hippurate was also associated with reported food intakes and I 

therefore examined it more thoroughly. Hippurate is a metabolite derived from benzoic acid 

which is primarily produced by gut bacterial metabolism of dietary phenolic acid (Gonthier et al., 

2003). Supported by previous studies (Gonthier et al., 2003, Walsh et al., 2007), reported 

intakes of high polyphenol-containing foods, whole grains, fruits and coffee, were significantly 

predictive of longitudinal changes in blood hippurate levels. In the faecal microbiome I 

characterised a gut microbiome profile correlated with blood hippurate levels and overall 

identified 46 associations. This included higher hippurate levels being associated with lower 

levels of Firmicutes phyla overall, and lower and higher levels of Lachnospiraceae and 

Ruminococcaceae, respectively. Interestingly, both Lachnospiraceae and Ruminococcaceae 

are butyrate-producing bacteria (Vital et al., 2014), therefore measuring faecal short-chain fatty 

acid production may be an interesting area future investigation. Comparing those OTUs/taxa 

associated with hippurate, I found 5 OTUs and 5 collapsed taxa to be associated to the the 

hippurate diet score as well, suggesting food intake may modify hippurate production through 

enriching these bacteria, though this would need to be confirmed by feeding studies. I had the 

advantage of using longitudinal hippurate data and found an increasing trajectory to be 

associated with a reduced odds of later having MetS, reduced BMI and TG. The longitudinal 

metabolite data certainly provided a strong advantage to this analysis, though Shannon diversity 

accounted for 61.1% of the variance in the association between the hippurate trajectory and 

MetS, suggesting that Shannon diversity was strongly driving this association. Although, the 

dietary factors were not associated with MetS, which may be related to less measurement 

precision. Untangling the dietary influence of hippurate and Shannon diversity on MetS and its 

components is challenging due to the nature of FFQ data. It is likely that food intakes are 
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influencing diversity, the gut microbiome profile and hippurate production though separating the 

effect of diet is a challenge. It is important to consider whether there are diet-microbe 

interactions in the formation of hippurate, I attempted to investigate this but did not find any 

associations, potentially due to the limited precision of the dataset but also the time between 

sample collection and FFQ completion may be of relevance. It is likely some individuals have a 

gut microbiome profile with an increased capacity for hippurate production and therefore 

increased ability to handle oxidative stress, a central component of metabolic diseases. 

However no clear patterns of microbes emerged. Future dietary intervention studies should test 

our findings by feeding individuals high polyphenol-containing foods and testing the changes 

induced on the microbiome, and blood hippurate levels. Longer-term studies should explore the 

influence of hippurate on MetS.  

Figure 8-1. Summary of findings from Chapater 6 
Figure 8-1a represents increased gut microbiome diversity correlates with increased blood 
hippurate. Figure 8-1b represents increased intakes of high polyphenol foods (whole grains, 
coffee and fruits) predict an increasing hippurate trajectory. Moreover, an increasing hippurate 
trajectory correlates with lower risk of MetS (metabolic syndrome) at endpoint. Images have 
been obtained and modified from google search under the usage right option ‘labelled for reuse 
with modification’. 

 

Chapter 7: Dietary VFM score and metabolomic and microbiome profiles 

I identified foods most strongly associated with VFM and developed and validated a predictive 

dietary VFM-risk score. I also characterised the blood metabolomics and gut microbiome 

profiles associated with the dietary VFM-risk score and VFM. Figure 8-2 shows a summary of 

the findings. I found reported intakes of fried and fast foods and red, processed meats and eggs 
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were associated with increased VFM while intakes of fruits, fermented dairy products, and 

whole grain products were associated with lower VFM, moreover the dietary risk score was 

highly predictive of VFM correctly identifying 92.7% of twins in the upper and lower tertiles of 

VFM. The dietary risk score had a strong metabolomics signature, associating with 30 

metabolites, many of which were associated to food intakes in the first and second chapters. 

After data reduction, I found 4 metabolites were associated with both increased VFM and the 

VFM-diet, including reduced hippurate and bilirubin (Z,Z) (involved in hemoglobin and porphyrin 

metabolism), and increased alpha-hydroxyisovalerate (involved in valine, leucine and isoleucine 

metabolism) and butyrylcarnitine (involved in fatty acid and BCAA metabolism). It is 

encouraging that hippurate was found to associate with future MetS in Chapter 6 and also with 

VFM, as waist circumference is a component of MetS.  

The VFM diet score was also associated with 6 collapsed taxa and 8 OTUs, within the 

faecal microbiome, though only 1 Bifidobacterium OTU and 1 taxa, Eubacterium dolichum was 

associated with both VFM and the VFM-diet. Interestingly, increased levels of E. dolichum 

associated with a reduced level of hippurate in blood. Upon further investigation I found 

increased hippurate in blood to be associated with elevated adipose tissue expression of 

neuroglobin (Burmester et al., 2000) a protein which protects cells against hypoxia and 

oxidative stress (Burmester et al., 2007), the importance of hypoxia in the development adipose 

tissue dysfunction has recently emerged (Kim et al., 2014). This may also suggest that 

hippurate protects against adipose tissue dysfunction and VFM development as a result. It 

would be useful if mechanistic studies were performed to confirm if hippurate plays a protective 

role in adipose tissue dysfunction and also, importantly, determine the function of neuroglobin in 

adipose tissue as no studies have outlined this before. Abundance of the species Eubacterium 

dolichum has previously shown to increase in mice fed a Western-style diet high in saturated fat 

and simple carbohydrates and low in plant polysaccharides (Turnbaugh et al., 2008). This study 

on mice found E. dolichum to function in the import and processing of simple sugars 

(Turnbaugh et al., 2008), using metagenomics analysis of the microbiome data from my study 

could be used to confirm their findings (Turnbaugh et al., 2008). To my knowledge this is the 

first time a relationship between Eubacterium dolichum and a poor diet has been made in 

humans and the usefulness of this marker for epidemiology and clinical studies when diet 

histories are difficult to obtain should be evaluated.  
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Figure 8-2. Summary of findings from Chapter 7 
Figure 8-2 represents the visceral fat mass (VFM) diet which is composed of high intakes of 
fried and fast foods and red processed meat and eggs and low intakes of fruits, whole grains 
and fermented dairy products. The VFM diet and VFM correlate with lower levels of blood 
hipurate and faecal Eubacterium dolichum. The color of the arrows represent direction 
protective of VFM: red, increased VFM; green, lower VFM. Images have been obtained and 
modified from google search under the usage right option ‘labelled for reuse with modification’. 

 

What I learned and challenges  

In general I found using FFQ data throughout the thesis to be problematic. Though I did have 

success in finding associations, to bring the field forward we will need to step away from using 

FFQs and begin to apply intervention studies or use more detailed dietary data (such as food 

records). I also found defining food intake groups to be problematic. Although it is a common 

practice in nutritional epidemiology, statistically intakes of the foods included within these food 

groups are not always correlated and therefore I found providing a logical reasoning for group 

assignment or understanding the biological mechanisms for the metabolite associations was 

challenging. Moreover, the relative importance of a single food as opposed to dietary patterns is 

difficult to ascertain. I did learn how to conduct a principal component dietary pattern analysis, 

though whether these patterns are more reflective of patterns in reporting rather than true 

behaviours is a question that requires asking. I recognise that FFQ data is the best data I had 

access to for the study and for some foods it is better at capturing habitual consumption for (e.g. 

coffee and alcohol).  

I also learned that there are many ways to analyse metabolomics data. In the field of 

metabolomics it is a common practice to perform dimension reduction techniques (such as PCA 

or partial least squares regression) due to the correlation between metabolites. The results of 
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my thesis may have been quite different if I had first undertaken dimension reduction 

techniques. For one, I would have had less risk for false negative associations with fewer 

variables. However, it is likely that not all of the metabolites included in latent variables (e.g. 

PCs) would be directly related to the intake of a food, similar to the issue that not all foods 

included in a food group are likely to explain a metabolite association. Had I undertaken 

dimension reduction it would also have been challenging to unravel the reasoning for 

correlations between certain metabolites.  

Throughout my work I learned and employed the co-twin control method that was a 

unique aspect of the thesis as a whole. One issue I did have was with defining discordance for 

food intake data. As FFQ data is not precise using a 1 SD cut-off for discordance may not have 

been an ideal definition for all foods. The significant food-metabolite associations I found in 

discordant MZ twins may have just been a reflection of improved accuracy of the FFQ to 

measure certain food intakes. It may have been better to define MZ discordance as one twin 

consuming a food while the other does not, though likely there would have been fewer 

instances of these and it would have been food-dependent. The twin model does have potential 

for further exploitation especially in the context of dietary intervention studies, where twin 

studies are few. Despite all of these challenges I encountered, I do believe that metabolomics 

has strong potential for improving our understanding of the relationship between diet and 

disease and we should continue the work being done in this field. 

 

Future directions and conclusion 

Dietary metabolomics research is still very much in its infancy and there are a number of issues 

which need to be overcome before the ideal clinical test panel of dietary biomarkers to measure 

food intake status can be achieved. To take the field forward, I have specific recommendations 

regarding the work I undertook in this thesis (providing Chapter 7 as an example) and general 

recommendations concerning the field as a whole.  

With regards to carrying the work I undertook in this thesis forward, I would recommend the 

following: 

1. Replication of significant results in independent cohorts using similar 

datasets 

2. Repeating the analysis with new metabolomics platforms 

3. Dietary intervention:  

a. To confirm and quantify the food intake effect on 

biomarkers 
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b. To evaluate metabolomics and microbiome findings 

with the metabolic phenotypes studied (VFM and MetS 

[plus components]) 

Due to the very good predictive performance of the VFM dietary risk score, I would 

suggest undertaking a 4- or 5-week dietary intervention modelled after the score. Ideally, this 

could also be done as a cross-over study where for one phase a VFM-risk diet is consumed 

while during the other phase a VFM-protective diet is consumed, separated by a washout 

period.  Therefore, for the VMF-risk phase, the diet would consist of low intakes of fruit, whole 

grains and fermented dairy products and increased intakes of fried and fast foods and red, 

processed meat and eggs, and the opposite for the VFM-protective phase. A challenge may be 

determining the ideal quantities of foods to be consumed and the incorporation of other foods to 

ensure a balanced diet. This could involve collecting subject food records prior to beginning the 

study and personalising the diets to ensure compliance and real-world applicability of the 

findings, though this would utilize more time and resources. Visceral fat mass, faecal 

microbiome and blood metabolomics data would be measured at the beginning and end of each 

phase.  

To analyse the data I would aim to confirm the findings from my analysis in the greater 

twin dataset. Therefore I hypothesize that following a diet high in fried and fast foods and red, 

processed met and eggs, and low in fruit, whole grains and fermented dairy products will 

increase VFM, alpha-hydroxyisoverate, butyrlcarnitine and E. dolichum, and reduce levels of 

hippurate and bilirubin (Z,Z). However, if the same technologies were used it could be 

interesting to confirm if overall results using all metabolites and microbiome phenotypes are 

comparable to my findings in the larger twin dataset. Moreover, twin modelling could be an 

asset, for instance to determine if MZ twins are more alike than DZ twins in their response to the 

intervention, or through using the co-twin control method, which in this case could be confirming 

the hypothesis using MZ twins discordant for feeding (e.g. comparing endpoint phenotypes of 

one twin fed the VFM-risk diet compared to baseline phenotypes of other twin).   

 

General areas to further nutritional metabolomics studies    

For the future of nutritional metabolomics there are a number of issues to be resolved, some of 

which I encountered, and areas of research which require further exploration to strengthen the 

field. For instance, many of the associations I identified were with metabolites endogenous to 

the human body and therefore determining the origin of these metabolites and quantifying the 
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effect of food consumption on levels is complex. The food metabolome potentially contains 

many metabolites that are exogenous to the human body and therefore are less influenced by 

metabolic processes, though it may be more difficult to obtain biological information on these 

metabolites. Delving deeper into the food metabolome therefore may be useful, this would also 

involve compiling more complete metabolomics profiles of foods into databases, which is now 

already taking place (Scalbert et al., 2014), such as the FooDB (www.foodb.ca), Phenol-

Explorer (www.phenol-explorer.eu) and PhytoHub (www.phytohub.eu). Moreover, careful 

intervention studies are needed to evaluate the utility of biomarkers, whether they are applicable 

for short (hours/days) or long-term usage (months/years), as well as the relevance of the type of 

biosample provided (e.g. urine vs blood). Feeding studies evaluating short-term biomarkers 

within exposure are of course the easiest to undertake whereas longer-term studies will be 

more challenging due to difficulties such as participant compliance and cost factors, however 

these will be more valuable.  

The generalisability of my findings to both males and females and determining racial 

effects have also not been thoroughly explored here nor in many other studies. One study found 

one third of metabolites were influenced by sex, with network analysis revealing sex-specific 

metabolic pathways (Krumsiek et al., 2015). Racial effects have not been well characterised, 

though one study found distinct differences between the metabolomics profiles of Caucasians 

versus African Americans in response to atenolol treatment (Wikoff et al., 2013), I did however 

confirm some of the top findings from two food metabolomics studies on African Americans 

(Zheng et al., 2014).  

Longitudinal data of metabolite levels, which I was able to have access to for hippurate, 

will likely provide stronger correlations with intakes and power for outcome prediction, improving 

studies more still. In additions, repeating the findings of my study with more advanced platforms 

measuring more metabolites and with increased quantitative accuracy (such as NMR-based 

metabolomics) will likely generate further novel findings. Applications of food intake biomarkers 

to study disease outcomes is one of the primary aims of the research and future studies should 

begin to apply these methods, for which longitudinal data will be a particular asset.   

Interactions between the human gut microbiome and diet and the subsequent influence 

on metabolism are not well characterised at this time therefore future studies are needed. One 

way this could be taken further is through re-analysing the gut microbiome data used in my 

study using metagenomics data to determine the metabolic functions of the bacteria associated 

http://www.foodb.ca/
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with hippurate or the VFM diet. Analysing the faecal metabolome would add further information. 

Another continuing issue with microbiome data is that methods have not been effectively 

established, for instance studies are quite heterogeneous with regards to quality control 

procedures and referencing panels used making cross-study comparisons difficult. Even within 

my thesis, two different referencing methods were used for chapters 6 and 7. This meant that it 

was difficult to compare results across the thesis, it may have been useful if I had repeated the 

analysis using the same datasets for both chapters. To aid this and other issues collaboration 

between cohorts is essential. 

Conclusion 

In conclusion, I have shown that metabolomics has great promise for furthering nutrition 

research. Using high-throughput omic data and a unique human cohort I have generated a 

number of novel and exciting findings. In particular, I found unique correlations between food 

intakes and metabolites, I evaluated different methods for creating combined metabolite scores, 

I identified hippurate as a useful blood marker of gut microbiome diversity that is also related to 

diet and MetS and VFM. I also characterised the metabolomics and microbiome profile of an 

unhealthy diet associated with VFM. I have shown the broad applications of metabolomics to 

nutritional epidemiology which should stimulate further work in this area. 
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Appendix A. Chapter 1 Appendices 

Table 1. Selection of twin studies estimating heritability of energy and macronutrient intakes (from Pallister et al., 2014).* 

Author Sex Age 

Dietary 
assessment 
method Twin registry 

Twin 
pair 
count 

Heritability 

Energy 
intake 

 Macronutrient intake 

 Grams per day  Percent energy 

 Fat Protein CHO Fat Protein CHO 
Pimpin et al. 
(2013)

a
 

Male + female 
(n = 3605) 

21 months 3-day diet diary Gemini cohort 
(UK) 

384 MZ 
832 DZ 

12
b
  11 12 9  10 8 9 

Liu et al. 
(2013) 

Male + female 
(n = 358) 

11-13  
(x̄ = 11.8) 

3-day diet diary USC Twin Study 
(US) 

94 MZ  
85 DZ 

48  44 31 43     

Faith et al. 
(1999)

b
 

Male + female 
(n = 108) 

≥ 18 Two Buffet-style 
meals 

New York 
Obesity Centre 
twin registry 
(US) 

36 MZ 
18 DZ 

33         

Wade et al. 
(1981)

c
 

Female  
(n = 46) 

19-58  
(x̄= 39.2) 

3-day diet diary Toronto Twin 
Register 
(Canada) 

13 MZ  
10 DZ 

    11 ns  -
f
 20 ns 66  48 

ns 
70 67 

Heller et al. 
(1988)

c
 

Male + female 
(n = 400) 

17-66  
(x̄ = 36) 

4-day food diary Australia 106 MZ 
94 DZ 

    38 ns  24 ns   8 ns 31 ns     

        SFA:  
10 ns  

 SC:  
20 ns  
 

    

        MUFA: 
33 ns       

 CC:  
55  
 

    

        PUFA: 
3 ns  
 

      

de Castro et 
al. (1993)

d
 

Male + female 
(n = 390) 

x̄ = 38.8 7-day diet diary Minnesota Twin 
Registry, (US) 

109 MZ 
86 DZ 

65  
(65) 

  51  
(47) 

 57  
(58) 

  61  
 (64) 

    

Hasselbalch 
et al. (2008) 

Male & female 
(n = 1212)  

18-67  
(x̄ = 38) 

247-item FFQ Geminakar 
(Denmark) 

600          

        Males     38      36
g
 28 36 

        Females     32      53
g
 55

g
 49 

Hur et al. 
(1998)

e
 

Male + female 
(n = 335) 

18-77  
(x̄ = 42.4) 

67-item FFQ MSTRA (Multi-
national) 

66 MZ  
51 DZ 

       32      
      (40)

e
 

 35 16 ns 25     

        SFA:  
37 
 

 SC:  
24 ns  

    

        PUFA:  
46  

 CC: 
18 ns  

    

FFQ, food frequency questionnaire; USC, University of Southern California; MSTRA, Minnesota Study of Twins Reared Apart; MZ, monozygotic; DZ, dizygotic; ns, not significant (confidence interval spans 

0); SFA, saturated fat; MUFA, monounsaturated fat; PUFA, polyunsaturated fat; CHO, carbohydrates; SC, simple carbohydrates; CC, complex carbohydrates.  
*Heritability estimates are derived from the additive genetic effect value (a2) calculated using structural equation modelling techniques as outlined by (Neale et al., 1992) unless otherwise specified. Twin pairs 

are same-sex.  Ages are in years, unless otherwise specified. Energy intakes were calculated in kilocalories unless otherwise specified. 
aValues are age- and sex- adjusted. Energy intake calculated in kilojoules.  
bAge and sex-adjusted total caloric intake/meal heritability estimated only. 
cHeritability estimates were calculated via Holzingers’ H [(DZ variance-MZ variance)/DZ variance] or Falconer [2(rMZ-rDZ)] equations.  
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dHeritability estimated using the LISREL method. Heritability per meal is provided in paratheses.  
eTwins reared apart study. Weight-adjusted heritability in parentheses (kilocalories/kg). Values are age- and gender- adjusted. 
fMZ within-pair exceeded between-pair mean square. 
gHeritability estimate derived from non-additive genetic effects (d2) due to correlation coefficient between MZ two times greater than DZ twins. 
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Table 2. Selection of twin studies estimating heritability of empirically derived food intake patterns (from Pallister et al., 2014).*  

Author Sex Age 

Dietary 
assessment 
method 

Twin 
registry 

Twin 
pair 
count Dietary factor Description h

2
 

Faith et al. 
(2008)

a
 

Male & 
Female  
(n = 792) 

7  24-h recall 
(parents) 

MacArthur 
Longitudinal 
Study of 
Twins (US) 

222 MZ 
182 DZ 

Peanut butter and jelly 
intake 

Frequent intakes of legumes (peanuts and 
peanut butter), and jam and jelly. 

M: 79 

      Breakfast cereal and milk 
intake 

Frequent intakes of milk and breakfast cereal.       ns 

      Bread and butter intake Frequent intakes of breads, butter and 
margarine. 

M: 18 
F:  20 

      Adjusted fruit intake Frequent intakes of non-citrus fruit, and fruit 
juice, punch and soda (reverse coded). 

M: 26 

      Adjusted red meat and 
pork intake 

Frequent intakes of beef, pork, lamb and 
poultry (reverse coded). 

M: 57 

      Vegetable intake Frequent intakes of deep-coloured vegetables 
and other vegetables. 

      ns 

      Adjusted candy intake Frequent intakes of candy, and sweets (reverse 
coded). 

M: 41 
F:  27 

      Fish and lemon intake Frequent intakes of fish and citrus fruit. M: 12 
F:  56 

      High-salt snack food intake Frequent intakes of high-salt snack foods. M: 24 
Keskitalo et 
al. (2007)

b
 

Male + 
female  
(n = 4018) 

22-27  
(x̄ = 24.4) 

24-item FFQ Finnish Twin 
Registry 
(Finland) 

704 MZ 
1490 DZ 

“Healthy foods” Frequent intakes of fresh vegetables, fruits, 
cooked vegetables, berries, porridge, muesli, 
cereals, reduced-fat cheeses, rice or pasta, 
chicken yoghurt, and fish. 

M: 49 
F:  54 

      High-fat foods Frequent intakes of fried foods, hamburgers, 
pizza, fried potatoes or French fries, creamy 
foods, and salty snacks. 

M: 44 
F:  47 

      Sweet foods Frequent intakes of other sweets, chocolate, 
and sweet desserts.  

M: 42 
F:  43 

      Meat High intakes of sausage and meat.  M: 39 
F:  44 

Teucher et 
al. (2007)

a
 

Female  
(n = 3262) 

18-79  
(x̄ = 48.1) 

131-item FFQ Twins UK 
(UK) 

498 MZ  
1133 DZ 

Fruit and vegetable Frequent intakes of fruit, allium and cruciferous 
vegetables; low intakes of fried potatoes. 

      43 

      High alcohol Frequent intakes of beer, wine and allium 
vegetables; low intakes of high fibre breakfast 
cereals and fruit. 

      48 

      Traditional English Frequent intakes of fried fish and potatoes, 
meats, savoury pies and cruciferous 
vegetables. 

      41 

      Dieting Frequent intakes of low-fat dairy products, low-
sugar soda; low intakes of butter and sweet 
baked products. 

      41 

      Low meat Frequent intakes of baked beans, pizza and 
soy foods; low intakes of meat, other fish and 
seafood, and poultry. 

      43 

Breen et al. 
(2006)

b,c
 

Male + 
female  
(n = 428) 

4-5  
(x̄ = 4.4) 

95-item 
modified FFQ 
(parents) 

Twins Early 
Development 
Study (UK) 

103 MZ 
111 DZ 

Vegetables High liking of broccoli, cabbage, carrots, 
cauliflower, green beans, mushrooms, onions, 
parsnips, salad greens and tomato.  

      37 

      Desserts High liking of cream, cakes, pastries, fruit pie, 
sponge pudding, custard and dairy desserts. 

      20 
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FFQ, food frequency questionnaire; MZ, monozygotic; DZ, dizygotic; M, male; ns, not significant (confidence interval spans 0); F, female. 
*Heritability estimates are derived from the additive genetic effect value (a

2
) calculated using structural equation modelling techniques as outlined by (Neale et al., 1992) 

unless otherwise specified.  Twin pairs are same-sex. Ages are in years, unless otherwise specified.  
a
Food patterns identified through principal component analysis. 

b
Food patterns identified through factor analysis. 

c
Heritabilities derived from a modified 95-item food frequency questionnaire which asked food ‘liking’ as opposed to intake frequency. 

d
Utilized a twins of mistaken zygosity approach.

      Meat and fish High liking of beef, lamb, pork, chicken, bacon, 
fried fish, white fish and oily fish. 

      78 

      Fruit High liking of apples, bananas, citrus fruits, 
grapes, peaches, strawberries and fruit juice. 

      51 

Gunderson 
et al. 
(2006)

b,d
 

Female  
(n = 700) 

30-90  
(x̄ = 50) 

100-item FFQ Kaiser 
Permanente 
Twin Registry 
(US) 

704 MZ 
1490 DZ 

‘Healthy’ dietary pattern Frequent intakes of fish or chicken, carrots, 
tomatoes, salad, green or yellow vegetables, 
fruits, high fibre grains, rice and potatoes.  

      50 

      ‘Unhealthy’ dietary pattern Frequent intakes of beef, pork, hot dogs, eggs, 
cheese, ice cream, butter, margarine, soda, 
and desserts. 

      ns 

van den 
Bree et al. 
(1999)

b
 

Male + 
female  
(n = 4640) 

≥50 
 

99-item semi-
quantitative 
FFQ 

Virginia 
Commonweal
th University 
(US) 

935 MZ  
713 DZ 

Less healthful Frequent intakes of foods high in fat, salt and 
sugar. 
 

      33 

      Healthful Frequent intakes of a variety of vegetables, 
fruit, rice, yogurt, skim milk and dark bread. 

      33 
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FFQ, food frequency questionnaire; MZ, monozygotic; DZ, dizygotic; ns, not significant (confidence interval spans 0); HF, high fat; LF, low fat; RG, refined grain; WG, whole grain. 
*Heritability estimates are derived from the additive genetic effect value (a

2
) calculated using structural equation modelling techniques as outlined by (Neale et al., 1992) unless otherwise 

specified. Twin pairs are same-sex. ‘ns’ indicates confidence interval spans 0.  ‘-‘ indicates model including additive genetic effects not the best fit. Ages are in years, unless otherwise 
specified. Values presented were derived from single variables, unless otherwise specified.  
a
Heritability analysis performed on age- and sex- adjusted residual scores.  

b
Heritability analysis performed on age- and sex- adjusted residual scores.  

c
Heritability analysis performed on food groups adjusted for total energy intake.  

d
Heritability analysis performed on energy-adjusted residual scores.  

e
Two variables are included in the range.   

f
Five variables are included in the range.  

g
Hertiability for root vegetable intake. 

h
Includes fish. 

i
Three variables are included in the range.  
j
Includes eggs. 

Table 3. Selection of twin studies estimating heritability of food group intakes (from Pallister et al., 2014).* 

      Heritability 

Author Sex Age Method 
Twin 
registry 

Twin 
pair 
count Veg  Potatoes Fruit Meat Fish Dairy  Eggs Cereals 

Legumes 
/nuts Total Sweets Savoury 

Fast 
food 

Fats 
and 
oils 

Pimpin et 
al. (2013)

a
 

Male + 
female 
(n = 
3605) 

21 
months 

3-day 
diet 
diary 

Gemini 
cohort 
(UK) 

384 
MZ 
832 
DZ 

15   9 10   9 
ns

h
 

 17 6 ns 9   5-15 
ns

i
 

  4 ns  5 ns 

Fildes et al. 
(2014)

b
 

Male + 
Female 
(n = 
2686) 

3 114-
item 
modified 
FFQ 
(parent) 

Gemini 
cohort 
(UK) 

458 
MZ  
872 
DZ 

54  53 48
h
  27

j
  32  29     

Hasselbalch 
et al. 
(2008)

c
 

Male & 
female 
(n = 
1212)  

18-67 
(x̄ = 
38) 

247-
item 
FFQ 

Geminakar 
(Denmark) 

600               

Males      24 68 - 34-
47

e
 

17 HF: 
37   
LF: 
39  

- RG: 19 
WG: 24 

  22 ns-
45

e
 

  35-
48

e
 

Females      14 ns 28 - 29-
38

i
 

61 HF: 
32  
LF: 
39  

0 ns RG:  
12 ns 
WG: 20 

  23-27 
ns

e
 

  9 
ns-
42

i
 

Keskitalo et 
al. (2007) 

Male + 
female 
(n = 
4018) 

22-27 
(x̄ = 
24.4) 

24-item 
FFQ 

Finnish 
Twin 
Registry 
(Finland) 

704 
MZ 
1490 
DZ 

              

Males      38-40
e
 40-46

e
 37-

51
e
 

22-
47

i
 

45 38-
48

i
 

30 42-49
e
   23-55

i
 43  22-

55
i
 

 

Females      48-50
e
 38-44

e
 44-

39
e
 

44-
49

i
 

44 37-
43

i
 

37 40-41
e
   33-54

i
 41  43-

54
i
 

 

Teucher et 
al. (2007)

d
 

Female 
(n = 
3262) 

18-79 
(x̄ = 
48.1) 

131-
item 
FFQ 

Twins UK 
(UK) 

498 
MZ  
1133 
DZ 

35-46
f
 36

g
 40 29-

39
e
 

17 
ns 

HF: 
24 
LF: 
36 

29 RG:    8 
WG: 29  

30-32
e
  30   7 ns 26  
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Table 4. Selection of twin studies estimating heritability of fluid intakes (from Pallister et al., 2014).*  
      Heritability 

Author Sex Age Dietary assessment method 
Twin 
registry 

Twin 
pair 
count Water Alcohol Soda 

Diet 
soda Milk Coffee Tea 

Fruit 
juice 

Pimpin et 
al. (2013)

a
 

Male + 
female  
(n = 3605) 

21 months 3-day diet diary Gemini 
cohort (UK) 

384 MZ 
832 DZ 

7  5 ns
h
  8 

 
  1 ns 

de Castro et 
al. 1993

b
 

Male + 
female  
(n = 390) 

x̄ = 38.8 7-day diet diary Minnesota 
Twin 
Registry, 
(US) 

109 MZ 
86 DZ 

80 73 ns 61 64 58 
ns 

73  - 

Males      76
f
 82 38

i
 68

i
 - 71  - 

Females      - 51 73 65
i
 52 73  - 

Hasselbalch 
et al. 
(2008)

c
 

Male & 
female  
(n = 1212)  

18-67  
(x̄ = 38) 

247-item FFQ Geminakar 
(Denmark) 

600         

Males        26   63
j
 63

j
 36 

Females        30   - - 0 ns 
Teucher et 
al. (2007)

d
 

Female  
(n = 3262) 

18-79  
(x̄ = 48.1) 

131-item FFQ Twins UK 
(UK) 

498 MZ 
1133 DZ 

 28          41 38 0 ns 

Hur et al. 
(1998)

e
 

Male + 
female  
(n = 335) 

18-77  
(x̄ = 42.4) 

67-item FFQ MSTRA 
(Multi-
national) 

66 MZ 
51 DZ 

 38
g
 20 ns  33 29 46 25 ns 

FFQ, food frequency questionnaire; MSTRA, Minnesota Study of Twins Reared Apart; MZ, monozygotic; DZ, dizygotic; ns, not significant (confidence interval spans 0). 
*Heritability estimates are derived from the additive genetic effect value (a

2
) calculated using structural equation modelling techniques as outlined by (Neale et al., 1992) unless otherwise 

specified. Twin pairs are same-sex.  ‘-‘ indicates model including additive genetic effects not the best fit. Ages are in years, unless otherwise specified.  
a
Heritability analysis performed on age- and sex- adjusted residual scores.  

b
Heritability estimated using the LISREL method.  

c
Heritability analysis performed on food groups adjusted for total energy intake.  

d
Heritability analysis performed on energy-adjusted residual scores. 

e
Study used twins of mistaken zygosity approach. Heritability analysis performed on age- and gender- adjusted values. 

f
Significant dominant genetic effect 

g
Heritability of alcohol type intake. 

h
Heritability of other beverages group. 

i
Model including additive genetic effects not best fitting model. 
j
Obtained from group ‘other’, includes coffee, tea and unspecified items. 
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Appendix B. Chapter 3 Appendices 

 

Document 1. Food frequency questionnaire before 2007 
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Document 2: Food frequency questionnaire after 2007
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Appendix C. Chapter 4 Appendices 

Table 1. Study population characteristics 
  Whole population (n=3559)  Discordant monozygotic twins 

sample Variable Mean (SD)   Range   n pairs Mean 
(SD) 

  Range 

Age (years) 55.3 (13.4)   18 - 84           

Body mass index (kg/m
2
) 26.1 (4.9)   13.6 - 50.1          

Intakes (servings/week)                 

Allium vegetables 4.5 (4.2)   0 - 84.5   174 7.1 (5.6)   0 - 37 

Apples/pears 4.7 (4.9)   0 - 74   206 7.0 (6.2)   0 - 36 

Avocado 0.4 (0.9)   0 - 18   129 1.6 (2)   0 - 18 

Baked beans 0.9 (1.0)   0 - 7   149 1.8 (1.6)   0 - 7 

Bananas 3.9 (3.7)   0 - 42   210 5.3 (5)   0 - 32 

Beef burgers 0.1 (0.3)   0 - 3   172 0.3 (0.4)   0 - 3 

Beer 0.7 (2.4)   0 - 42   63 3.5 (5.6)   0 - 32 

Berries 0.9 (1.4)   0 - 14   137 2.1 (2.7)   0 - 14 

Black tea 18.9 (13.8)   0 - 42   240 18.4 
(14.1) 

  0 - 42 

Butter 3.5 (6.1)   0 - 50   173 8.5 (8.9)   0 - 42 

Cheese 3.1 (3.1)   0 - 36   198 5.0 (4.8)   0 - 36 

Chocolate 3.8 (6.1)   0 - 84   153 8.9 (10.7)   0 - 84 

Citrus fruit 3.0 (4.3)   0 - 45   167 6.2 (6.6)   0 - 36 

Coffee 12.3 (12.4)   0 - 84   252 17.4 
(14.4) 

  0 - 84 

Cooked potatoes 3.4 (2.6)   0 - 42   207 4.1 (3.3)   0 - 32 

Cream 0.5 (1.3)   0 - 36   70 2.1 (2.1)   0 - 8 

Crispbread 1.2 (3.4)   0 - 42   85 6.1 (8.6)   0 - 42 

Cruciferous vegetables 6.1 (4.7)   0 - 98   219 8.6 (5.7)   0 - 35 

Dairy desserts 0.2 (0.7)   0 - 18   94 0.9 (1.8)   0 - 18 

Eggs 1.4 (1.6)   0 - 18   209 2.6 (2.5)   0 - 18 

Fried fish 0.5 (0.7)   0 - 11   195 0.9 (1)   0 - 7.5 

Fried potatoes 1.4 (1.4)   0 - 32   184 2.2 (1.7)   0 - 12 

Fruit juice 3.4 (4.3)   0 - 42   221 5.8 (6)   0 - 42 

Grapes 2.0 (2.9)   0 - 42   161 4.3 (4.7)   0 - 32 

Green leafy vegetables 4.7 (4.4)   0 - 53   186 8.0 (7)   0 - 43 

Herbal tea 1.6 (5.2)   0 - 64   117 9.5 (10.3)   0 - 50 

High fat milk 1.0 (4.0)   0 - 45.5   59 7.4 (10.4)   0 - 45.5 

High fibre breakfast 
cereals 

2.7 (3.5)   0 - 42   220 4.1 (4.1)   0 - 32.5 

High sugar drinks 2.5 (5.6)   0 - 60   109 9.1 (10.2)   0 - 49 

Ice cream 0.7 (1.2)   0 - 18   132 2.0 (1.8)   0 - 7 

Lasagne 0.3 (0.4)   0 - 3   307 0.4 (0.4)   0 - 3 

Legumes 4.3 (3.3)   0 - 43   230 5.8 (4.2)   0 - 32 

Low fat milk 3.3 (2.4)   0 - 10.5   228 3.6 (3)   0 - 10.5 

Low fibre breakfast cereals 1.6 (2.9)   0 - 42   224 3.4 (3.9)   0 - 42 

Low fat spread 1.4 (4.5)   0 - 74   90 6.8 (8.5)   0 - 42 

Malt drinks 0.3 (1.4)   0 - 32   66 2.9 (3.1)   0 - 18 

Margarine 2.3 (4.9)   0 - 64   186 6.5 (7.8)   0 - 42.5 

Marrow 0.7 (1.3)   0 - 32   130 2.1 (1.8)   0 - 7 

Meat 2.4 (2.0)   0 - 16.5   222 3.3 (2.4)   0 - 11 

Melon 0.9 (1.7)   0 - 32   150 2.8 (3.4)   0 - 32 

Mushrooms 1.5 (1.7)   0 - 32   258 2.4 (1.8)   0 - 7 

Nuts 1.7 (3.2)   0 - 43.5   144 5.0 (5.3)   0 - 41.5 

Oily fish 1.1 (1.2)   0 - 18   217 2.1 (1.7)   0 - 18 

Other fish/seafood 1.2 (1.2)   0 - 16.5   171 2.1 (1.7)   0 - 9.5 

Peaches 0.7 (1.3)   0 - 14   141 1.8 (2.2)   0 - 14 

Pizza 0.5 (0.7)   0 - 8   199 0.8 (0.9)   0 - 5.5 

Polyunsaturated margarine 3.1 (6.0)   0 - 42   143 9.3 (10)   0 - 42 

Porridge 1.4 (2.4)   0 - 32   215 3.0 (2.7)   0 - 7 

Poultry 1.9 (1.3)   0 - 7   344 2.2 (1.4)   0 - 7 

Processed meats 1.8 (3.1)   0 - 60   190 4.3 (4.2)   0 - 32 

Processed fruit 2.8 (2.3)   0 - 18   228 3.9 (2.8)   0 - 15.5 

Root vegetables 4.6 (3.7)   0 - 96   202 6.3 (4.5)   0 - 28 

High fat salad dressing 1.6 (2.2)   0 - 25   201 3.1 (3.3)   0 - 25 

Low fat salad dressing 0.7 (1.4)   0 - 18   140 2.3 (2.4)   0 - 18 
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Table 1. Study population characteristics 
  Whole population (n=3559)  Discordant monozygotic twins 

sample Variable Mean (SD)   Range   n pairs Mean 
(SD) 

  Range 

Savoury pies 0.3 (0.5)   0 - 7   163 0.5 (0.8)   0 - 7 

Savoury snacks 2.1 (3.0)   0 - 35   170 4.5 (5.3)   0 - 35 

Seasonings 3.6 (3.7)   0 - 84.5   195 5.6 (6.6)   0 - 84.5 

Low sugar soda 1.8 (4.8)   0 - 42   92 7.9 (9.2)   0 - 42 

Soup 1.1 (1.9)   0 - 64   149 2.9 (2.6)   0 - 14 

Soy/other milk 0.1 (0.8)   0 - 10.5   68 1.7 (1.9)   0 - 10.5 

Soy foods 0.2 (1.0)   0 - 18   60 2.2 (3.2)   0 - 18 

Spirits/liquor 1.2 (3.2)   0 - 50   97 5.1 (7)   0 - 42.5 

Sweet baked products 7.9 (8.9)   0 - 85   155 15.5 
(14.2) 

  0 - 76.5 

Sweetcorn 0.9 (1.3)   0 - 18   187 2.1 (1.9)   0 - 18 

Sweet peppers 1.4 (1.8)   0 - 32   245 2.5 (2.1)   0 - 18 

Confectionary/jam 8.1 (11.9)   0 - 84.5   149 18.2 
(16.3) 

  0 - 84 

Tomatoes 4.0 (3.6)   0 - 42   175 6.5 (6.2)   0 - 42 

White/brown bread, refined 
grains 

8.3 (8.5)   0 - 70   206 12.8 
(10.7) 

  0 - 43.5 

Wholemeal bread/grains 4.9 (6.7)   0 - 44   179 10.3 (9.2)   0 - 43 

Wine 3.9 (6.1)   0 - 64   111 12.2 
(10.5) 

  0 - 43 

Yoghurt 2.9 (3.7)   0 - 47.5   180 5.3 (5.6)   0 - 47.5 
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Table 2. Food frequency questionnaire variables included in each food group and 
descriptions 

Food group FFQ Variable Name FFQ Description 
Included 
FFQ1 

Included 
FFQ2 

Allium vegetables Garlic Garlic (clove) TRUE TRUE 

Allium vegetables Leeks Leeks TRUE TRUE 

Allium vegetables Onions Onions TRUE TRUE 

Apples/pears Apples Apples (1 fruit) TRUE TRUE 

Apples/pears Pears Pears (1 fruit) TRUE TRUE 

Avocado Avocado Avocado TRUE TRUE 

Baked beans BakedBeans Baked beans TRUE TRUE 

Bananas Bananas Bananas (1fruit) TRUE TRUE 

Beef burgers MFburgers Beefburgers TRUE TRUE 

Beer Beer Beer, lager or cider (half pint) TRUE TRUE 

Berries Strawberries Strawberries, raspberries, other 
berries, kiwi fruit (one fruit or 
handful) 

TRUE TRUE 

Black tea Tea Tea (cup) TRUE TRUE 

Butter RedFatButter Reduced fat butter (teaspoon) FALSE TRUE 

Butter Butter Butter (teaspoon) TRUE TRUE 

Cheese DairyLFcheese Low fat cheese e.g. reduced fat 
cheddar  (matchbox size) 

FALSE TRUE 

Cheese Dairycheese Cheese, e.g. cheddar, brie, 
edam  (matchbox size) 

TRUE TRUE 

Cheese DairyCottageCheese Cottage cheese, low fat soft 
cheese  (2 tablespoons) 

TRUE TRUE 

Chocolate ChocsDark Dark chocolates, single or 
squares (one) 

FALSE TRUE 

Chocolate ChocsMilk White or milk chocolates, single 
or squares (one) 

FALSE TRUE 

Chocolate LowFatHotChoc Low fat hot chocolate (cup) FALSE TRUE 

Chocolate Cocoa Cocoa, hot chocolate (cup) TRUE TRUE 

Chocolate Chocolatebar Chocolate snack bars e.g. Mars, 
Crunchie (one) 

TRUE TRUE 

Chocolate Chocolates Chocolate, fancy and filled TRUE FALSE 

Citrus fruit Grapefruit Grapefruit (half) TRUE TRUE 

Citrus fruit Oranges Oranges, satsumas, mandarins 
(1 fruit) 

TRUE TRUE 

Coffee Coffee Coffee, instant or ground (cup) TRUE TRUE 

Coffee CoffeeDecaffeinated Coffee, decaffeinated (cup) TRUE TRUE 

Confectionary/ja
m 

Jam Jam, marmalade, honey 
(teaspoon) 

TRUE TRUE 

Confectionary/ja
m 

SugarAdded Sugar added to tea, coffee, 
cereal (teaspoon) 

TRUE TRUE 

Confectionary/ja
m 

SweetsToffees Sweets, toffees, mints (small 
packet) 

TRUE TRUE 

Cooked potatoes Boiledpotato Boiled, mashed, instant or one 
jacket potato 

TRUE TRUE 

Cream Dairydouble Double or clotted cream 
(tablespoon) 

TRUE TRUE 

Cream Dairysingle Single or sour cream 
(tablespoon) 

TRUE TRUE 

Crispbread Crispbread Crispbread, e.g. Ryvita TRUE TRUE 

Cruciferous 
vegetables 

Broccoli Broccoli, spring green, kale TRUE TRUE 

Cruciferous 
vegetables 

BrusselsSprouts Brussel sprouts TRUE TRUE 
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Table 2. Food frequency questionnaire variables included in each food group and 
descriptions 

Food group FFQ Variable Name FFQ Description 
Included 
FFQ1 

Included 
FFQ2 

Cruciferous 
vegetables 

Cabbage Cabbage TRUE TRUE 

Cruciferous 
vegetables 

Cauliflower Cauliflower TRUE TRUE 

Cruciferous 
vegetables 

Coleslaw Coleslaw TRUE TRUE 

Dairy desserts DairyDesserts Dairy desserts (small pot) e.g. 
chocolate mousse, cream 
caramels 

TRUE TRUE 

Eggs Eggs Eggs as boiled, fried, scrambled, 
etc. (one) 

TRUE TRUE 

Fried fish MFFishFingers Fish fingers, fish cakes & 
breaded fish 

TRUE TRUE 

Fried fish MFFriedfish Fried fish in batter, as in fish and 
chips 

TRUE TRUE 

Fried potatoes ChipsRoastPots Chips, roast potatoes FALSE TRUE 

Fried potatoes Chips Chips, retail, fried in vegetable oil TRUE FALSE 

Fried potatoes PotatoSalad Potato salad TRUE TRUE 

Fried potatoes RoastPotatoes Old potatoes, roast in blended oil TRUE FALSE 

Fruit juice Smoothies Smoothies (cup) FALSE TRUE 

Fruit juice PureFruitJuice Pure fruit juice (100%) e.g. 
orange, apple juice (cup) 

TRUE TRUE 

Grapes Grapes Grapes (handful) TRUE TRUE 

Green leafy 
vegetables 

GreenSalad Green salad, lettuce, cucumber, 
celery 

TRUE TRUE 

Green leafy 
vegetables 

Spinach Spinach TRUE TRUE 

Green leafy 
vegetables 

Watercress Watercress TRUE TRUE 

Herbal tea FruitTea Fruit tea (cup) FALSE TRUE 

Herbal tea GreenTea Green tea (cup) FALSE TRUE 

High fat milk ChannelIslandMilk Channel Islands milk TRUE TRUE 

High fat milk EvaporatedMilk Evaporated milk TRUE TRUE 

High fat milk FullMilk Full cream milk TRUE TRUE 

High fat milk CoffeeWhitener Coffee whitener, e.g. Coffee-
mate (teaspoon) 

TRUE TRUE 

High fat salad 
dressing 

FrenchDressing French dressing (tablespoon) TRUE TRUE 

High fat salad 
dressing 

Mayo Full fat salad cream, mayonnaise 
(tablespoon) 

TRUE TRUE 

High fat salad 
dressing 

Otherdressing Other salad dressing 
(tablespoon) 

TRUE TRUE 

High fibre 
breakfast cereals 

HighFibreCereal High Fibre cereals e.g. 
Branflakes, All Bran, Fruit and 
Fibre 

FALSE TRUE 

High fibre 
breakfast cereals 

AllBran All Bran TRUE FALSE 

High fibre 
breakfast cereals 

Branflakes Branflakes TRUE FALSE 

High fibre 
breakfast cereals 

Cheerios Cheerios TRUE FALSE 

High fibre 
breakfast cereals 

FruitnFibre Fruit n' fibre TRUE FALSE 

High fibre 
breakfast cereals 

Grapenuts Grape nuts TRUE FALSE 

High fibre 
breakfast cereals 

Muesli Muesli TRUE TRUE 

High fibre 
breakfast cereals 

OatBasedCereal Oat based TRUE FALSE 
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Table 2. Food frequency questionnaire variables included in each food group and 
descriptions 

Food group FFQ Variable Name FFQ Description 
Included 
FFQ1 

Included 
FFQ2 

High fibre 
breakfast cereals 

OtherCereal Cereal, other TRUE FALSE 

High fibre 
breakfast cereals 

ShreddedWheat Shredded wheat TRUE FALSE 

High fibre 
breakfast cereals 

Shreddies Shreddies TRUE FALSE 

High fibre 
breakfast cereals 

Start Start TRUE FALSE 

High fibre 
breakfast cereals 

SultanaBran Sultana Bran TRUE FALSE 

High fibre 
breakfast cereals 

WeetabixType Weetabix type TRUE FALSE 

High fibre 
breakfast cereals 

WheatFlakes Wheat flakes TRUE FALSE 

High sugar drinks FruitSquash Fruit squash or cordial (cup) TRUE TRUE 

High sugar drinks FizzySoftDrinks Fizzy soft drinks, e.g. Coca Cola, 
lemonade (cup) 

TRUE TRUE 

Ice cream IceCream Ice cream, choc ices TRUE TRUE 

Lasagne Lasagne Lasagne, moussaka TRUE TRUE 

Legumes Beansprouts Beansprouts TRUE TRUE 

Legumes DriedLentils Pulses e.g. lentils, beans, peas TRUE TRUE 

Legumes GreenBeans Green beans, broad beans, 
runner beans 

TRUE TRUE 

Legumes Peas Peas TRUE TRUE 

Low fat milk DriedMilk Dried milk TRUE TRUE 

Low fat milk SemiSkimmedMilk Semi-skimmed milk TRUE TRUE 

Low fat milk SkimmedMilk Skimmed milk TRUE TRUE 

Low fat salad 
dressing 

Lowcalsaladcream Low calorie, low fat salad cream 
(tablespoon) 

TRUE TRUE 

Low fat spread LowFatSpread Low fat spread, e.g. Outline, 
Gold (teaspoon) 

TRUE TRUE 

Low fat spread VLowFatSpread Very low fat spread (teaspoon) 
e.g. Diet Flora 

TRUE TRUE 

Low fibre 
breakfast cereals 

BreakfastCereal Breakfast cereal e.g.  Cornflakes, 
Rice Krispies 

FALSE TRUE 

Low fibre 
breakfast cereals 

CocoPops Coco pops TRUE FALSE 

Low fibre 
breakfast cereals 

Cornflakes Corn Flakes TRUE FALSE 

Low fibre 
breakfast cereals 

CrunchynutCornflake
s 

Crunchynut cornflakes TRUE FALSE 

Low fibre 
breakfast cereals 

Frosties Sugar topped cereals e.g. 
Frosties 

TRUE TRUE 

Low fibre 
breakfast cereals 

JustRightType Just right type TRUE FALSE 

Low fibre 
breakfast cereals 

RiceKrispies Rice Krispies TRUE FALSE 

Low fibre 
breakfast cereals 

SpecialK Special K TRUE FALSE 

Low fibre 
breakfast cereals 

SugarPuffType Sugar puffs TRUE FALSE 

Low sugar soda Dietfizzy Low calorie or diet fizzy soft 
drinks (cup) 

TRUE TRUE 

Malt drinks Horlicks Horlicks, Ovaltine (cup) TRUE TRUE 

Margarine CholLowerSpread Cholesterol lowering fat spreads 
e.g. Benecol (teaspoon) 

FALSE TRUE 

Margarine OliveOilSpread Olive oil spread (teaspoon) FALSE TRUE 

Margarine BlockMarg Block margarine, e.g. Stork, 
Krona (teaspoon) 

TRUE TRUE 
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Table 2. Food frequency questionnaire variables included in each food group and 
descriptions 

Food group FFQ Variable Name FFQ Description 
Included 
FFQ1 

Included 
FFQ2 

Margarine OtherSoftMarg Other soft margarine, dairy 
spreads, e.g. Blue Band, Clover 
(teaspoon) 

TRUE TRUE 

Marrow Marrow Marrow, courgettes TRUE TRUE 

Meat MFBeef Beef: roast, steak, mince, stew or 
casserole 

TRUE TRUE 

Meat MFLamb Lamb: roast, chops or stew TRUE TRUE 

Meat MFPork Pork: roast, chops or stew TRUE TRUE 

Melon Melon Melon (1 slice) TRUE TRUE 

Mushrooms Mushrooms Mushrooms TRUE TRUE 

Nuts NutsSalted Salted nuts e.g. peanuts, 
cashews (handful) 

FALSE TRUE 

Nuts NutsUnsalted Unsalted nuts, e.g. brazil, 
walnuts (handful) 

FALSE TRUE 

Nuts Seeds Seeds e.g. Sunflower, pumpkin 
(tablespoon) 

FALSE TRUE 

Nuts Nuts Mixed nuts TRUE FALSE 

Nuts PeanutButter Peanut butter (teaspoon) TRUE TRUE 

Oily fish MFOilyfish Oily fish, fresh or canned, e.g. 
tuna, mackerel, kippers, salmon, 
sardines, herring 

TRUE TRUE 

Other 
fish/seafood 

MFFishroe Fish roe, taramasalata TRUE TRUE 

Other 
fish/seafood 

MFShellfish Shellfish, e.g. crab, prawns, 
mussels 

TRUE TRUE 

Other 
fish/seafood 

MFWhitefish Other white fish, fresh or frozen, 
e.g. cod, plaice, sole, haddock, 
halibut 

TRUE TRUE 

Peaches Peaches Peaches, plums, apricots (1 fruit) TRUE TRUE 

Pizza Pizza Pizza (one slice) TRUE TRUE 

Pizza Quiche Quiche (slice) TRUE TRUE 

Polyunsaturated 
margarine 

PufaMarg Polyunsaturated margarine, e.g. 
Flora, sunflower (teaspoon) 

TRUE TRUE 

Porridge Porridge Porridge, Readybreak, oats TRUE TRUE 

Poultry MFPoultry Chicken or other poultry e.g. 
turkey 

TRUE TRUE 

Processed fruit DriedFruit Dried fruit, e.g. raisins, prunes 
(heaped tablespoon) 

TRUE TRUE 

Processed fruit TinnedFruit Tinned fruit (handful) TRUE TRUE 

Processed meats MFBacon Bacon or gammon TRUE TRUE 

Processed meats MFCornedBeef Corned Beef, Spam, luncheon 
meats 

TRUE TRUE 

Processed meats MFHam Ham, cured meats & chorizo TRUE TRUE 

Processed meats MFLiver Liver, liver pate, liver sausage TRUE TRUE 

Processed meats MFSausages Sausages TRUE TRUE 

Root vegetables Beetroot Beetroot TRUE TRUE 

Root vegetables Parsnips Parsnips, turnips, swedes TRUE TRUE 

Root vegetables Carrots Carrots TRUE TRUE 

Savoury pies MFPies Savoury pies, e.g. meat pie, pork 
pie, pasties, steak & kidney pie, 
sausage rolls 

TRUE TRUE 

Savoury snacks CreamCrackers Cream crackers, savoury biscuits TRUE TRUE 

Savoury snacks Crisps Crisps or other packet snacks, 
e.g. Wotsits (one packet) 

TRUE TRUE 
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Table 2. Food frequency questionnaire variables included in each food group and 
descriptions 

Food group FFQ Variable Name FFQ Description 
Included 
FFQ1 

Included 
FFQ2 

Seasonings Marmite Marmite, Bovril (teaspoon) TRUE TRUE 

Seasonings PicklesChutney Pickles, chutney (tablespoon) TRUE TRUE 

Seasonings Sauces Sauces, e.g. white sauce, 
cheese sauce, gravy 
(tablespoon) 

TRUE TRUE 

Seasonings TomatoKetchup Tomato ketchup (tablespoon) TRUE TRUE 

Soup MeatSoup Meat soups (bowl) (to include 
meat and vegetable soups) 

TRUE TRUE 

Soup VegSoup Vegetable soups (bowl) TRUE TRUE 

Soy foods Tofu Meat substitutes e.g. tofu, 
soyameat, textured vegetable 
protein, vegeburger 

TRUE TRUE 

Soy/other milk GoatsMilk Goats' milk TRUE TRUE 

Soy/other milk RiceMilk Rice milk TRUE TRUE 

Soy/other milk SoyaMilk Soya milk TRUE TRUE 

Spirits/liquor Liqueurs Port, sherry, vermouth, liqueurs 
(pub measure) 

TRUE TRUE 

Spirits/liquor Spirits Spirits, e.g. gin, brandy, whisky, 
vodka (pub measure) 

TRUE TRUE 

Sweet baked 
products 

BiscuitsRedFat Reduced fat biscuits e.g. Go 
Ahead, Highlights (one small 
packet or one small bar/biscuit) 

FALSE TRUE 

Sweet baked 
products 

Biscuitschoc Sweet biscuits, chocolate, e.g. 
digestive (one) 

TRUE TRUE 

Sweet baked 
products 

Biscuitsplain Sweet biscuits, plain, e.g. Nice, 
ginger (one) 

TRUE TRUE 

Sweet baked 
products 

Bunshome Buns, pastries e.g. scones, 
flapjacks, croissants, doughnuts, 
home baked 

TRUE TRUE 

Sweet baked 
products 

Cakeshome Cakes e.g. fruit, sponge, home 
baked 

TRUE TRUE 

Sweet baked 
products 

Cakesready Cakes e.g. fruit, sponge, ready 
made 

TRUE TRUE 

Sweet baked 
products 

Fruitpiehome Fruit pies, tarts, crumbles, home 
baked 

TRUE TRUE 

Sweet baked 
products 

Fruitpiesready Fruit pies, tarts, crumbles, ready 
made 

TRUE TRUE 

Sweet baked 
products 

MilkPuddings Milk puddings e.g. rice, custard, 
trifle 

TRUE TRUE 

Sweet baked 
products 

SpongePudhome Sponge puddings, home baked TRUE TRUE 

Sweet baked 
products 

SpongePudready Sponge puddings, ready made TRUE TRUE 

Sweet peppers SweetPeppers Sweet peppers TRUE TRUE 

Sweetcorn Sweetcorn Sweetcorn TRUE TRUE 

Tomatoes Tomatoes Tomatoes TRUE TRUE 

White/brown 
bread, refined 
grains 

NaanPoppdmTort Naan, poppadoms, flour tortillas FALSE TRUE 

White/brown 
bread, refined 
grains 

BrownBread Brown bread/rolls TRUE TRUE 

White/brown 
bread, refined 
grains 

WhiteBread White bread/rolls TRUE TRUE 

White/brown 
bread, refined 
grains 

Whitepasta White or green pasta, e.g. 
spaghetti, macaroni, noodles 

TRUE TRUE 
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Table 2. Food frequency questionnaire variables included in each food group and 
descriptions 

Food group FFQ Variable Name FFQ Description 
Included 
FFQ1 

Included 
FFQ2 

White/brown 
bread, refined 
grains 

WhiteRice White rice TRUE TRUE 

Wholemeal 
bread/grains 

BrownRice Brown rice TRUE TRUE 

Wholemeal 
bread/grains 

WholemealBread Wholemeal & granary bread/rolls TRUE TRUE 

Wholemeal 
bread/grains 

WholemealPasta Wholemeal pasta TRUE TRUE 

Wine RedWine Red wine (small glass) FALSE TRUE 

Wine WhiteWine White wine (small glass) FALSE TRUE 

Wine Wine White wine, red wine TRUE FALSE 

Wine Wine White wine, red wine TRUE FALSE 

Yoghurt DairyFFYog Full fat or Greek yoghurt (small 
pot) 

TRUE TRUE 

Yoghurt DairyLFYog Low fat yoghurt, fromage frais 
(small pot) 

TRUE TRUE 

Notes: Details of each food frequency questionnaire (FFQ) variables included in each food 
group analysis are shown. FFQs completed before 2007 (FFQ1) included slightly different 
variables than FFQs completed during 2007 (FFQ2), therefore the right hand columns indicate if 
a particular variable was included in the final (TRUE) or not (FALSE). 
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Figure 1. Scree plot for the first 20 principal components, adapted from 
(Teucher et al., 2007) 
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Table 3. Factor loadings for the five principal components (modified from (Teucher et 
al., 2007)) 

Food 
Fruit and 
Vegetable High Alcohol 

Traditional 
English Dieting Low Meat 

Baked beans –.01 (–.04,.01) –.07 (–.18,.10) .17 (–.01,.25) .10 (–.19,.36) .31 (–.16,.37) 
Beefburgers –.14 (–.16,–.13) .13 (–.11,.23) .18 (–.02,.25) .15 (–.02,.23) .08 (–.18,.19) 

Beer –.03 (–.05,–.01) .22 (.07,.26) .00 (–.18,.17) .09 (–.03,.16) .04 (–.12,.14) 

Berries .16 (.14,.19) –.05 (–.11,.04) –.05 (–.11,.04) .00 (–.10,.09) –.05 (–.13,.06) 

Butter –.07 (–.09,–.05) .11 (.00,.19) –.03 (–.16,.13) –.35 (–.40,–.03) –.20 (–.40,.37) 

Citrus fruit .19 (.16,.21) –.11 (–.16,–.01) –.01 (–.12,.09) .08 (–.11,.16) –.07 (–.15,.06) 

Coffee –.01 (–.04,.01) .17 (.04,.21) –.01 (–.17,.14) .13 (–.20,.23) –.16 (–.25,.06) 

Cooked potatoes .03 (.00,.05) –.19 (–.27,.00) .19 (–.02,.28) –.08 (–.17,.08) –.02 (–.15,.15) 

Crisp bread .11 (.09,.14) –.06 (–.11,.02) –.03 (–.10,.05) .03 (–.07,.10) .02 (–.08,.11) 

Dairy products; 
high fat 

–.07 (–.09,–.06) .14 (.00,.20) –.13 (–.21,.02) –.12 (–.20,.02) –.07 (–.18,.16) 

Dairy products; 
low fat 

.15 (.13,.17) –.29 (–.33,–.06) –.05 (–.24,.21) .25 (–.09,.29) –.02 (–.27,.22) 

Drinks; other .04 (.02,.06) –.07 (–.14,.07) –.10 (–.17,.02) .17 (–.01,.23) .11 (–.19,.23) 

Eggs .00 (–.02,.02) .04 (–.08,.12) .11 (.01,.17) –.05 (–.14,.07) –.06 (–.16,.11) 

Fried fish –.11 (–.13,–.09) –.02 (–.18,.13) .21 (.08,.24) –.01 (–.11,.10) .03 (–.07,.13) 

Fried potatoes –.21 (–.22,–.19) .09 (–.17,.23) .22 (.04,.27) .01 (–.12,.17) .12 (–.05,.19) 

Fruit juice .09 (.07,.12) .06 (–.03,.12) –.07 (–.14,.03) .08 (–.08,.13) –.04 (–.13,.07) 

High fibre 
breakfast cereals 

.06 (.04,.09) –.23 (–.29,.04) –.14 (–.26,.12) .13 (–.17,.23) –.13 (–.27,.08) 

Lasagne .01 (–.01,.03) .13 (.02,.18) .00 (–.14,.13) .25 (–.00,.31) .13 (–.27,.29) 

Legumes .19 (.16,.21) .03 (–.24,.23) .29 (.10,.33) –.16 (–.27,.18) .13 (–.09,.28) 

Low fibre 
breakfast cereals 

–.07 (–.09,–.05) –.06 (–.11,.01) .05 (–.04,.11) –.05 (–.12,.10) .07 (–.03,.14) 

Low fat spread .02 (–.01,.04) –.10 (–.14,–.01) .02 (–.09,.12) .15 (–.01,.22) .11 (–.18,.22) 

Margarine –.09 (–.11,–.07) –.01 (–.08,.07) .07 (–.01,.12) .00 (–.12,.16) .13 (–.04,.20) 

Meat –.10 (–.12,–.08) –.02 (–.27,.21) .34 (.11,.41) .05 (–.35,.31) –.32 (–.39,.02) 

Nuts .06 (.02,.09) 0.14 (–.02,.24) –.15 (–.25,.01) –.12 (–.20,.11) .07 (–.09,.18) 

Oily fish .15 (.12,.19) 0.01 (–.04,.07) –.01 (–.09,.07) .02 (–.16,.13) –.12 (–.17,.02) 

Other fish and 
seafood 

.18 (.16,.21) 0.07 (–.03,.13) .07 (–.06,.18) –.04 (–.25,.19) –.20 (–.26,.07) 

Other fruit .27 (.25,.29) –.21 (–.26,.00) –.07 (–.21,.13) .09 (–.06,.14) –.01 (–.13,.10) 

Pizza –.06 (–.08,–.04) 0.15 (.02,.22) –.10 (–.21,.07) .18 (–.09,.31) .22 (–.20,.32) 

Polyunsaturated 
margarine 

–.02 (–.04,.00) –.08 (–.14,.03) –.06 (–.15,.06) .07 (–.10,.21) .18 (–.10,.25) 

Porridge .08 (.06,.10) –.13 (–.17,–.03) .05 (–.08,.15) –.14 (–.20,.05) .00 (–.15,.17) 

Poultry .05 (.03,.07) –.02 (–.13,.09) .14 (.01,.25) .17 (–.30,.32) –.25 (–.33,.04) 

Processed meats –.10 (–.12,–.08) .02 (–.25,.24) .32 (.10,.38) .13 (–.23,.28) –.16 (–.27,.06) 

Salad dressing 
high fat 

.12 (.09,.14) .30 (.08,.34) –.11 (–.31,.13) –.02 (–.10,.08) –.03 (–.10,.07) 

Salad dressing 
low fat 

.14 (.10,.17) –.02 (–.13,.11) .10 (–.03,.19) .18 (–.03,.27) .13 (–.20,.25) 

Savoury pies –.19 (–.21,–.17) .03 (–.20,.19) .24 (.09,.27) .00 (–.10,.09) –.01 (–.09,.09) 

Savoury snacks –.10 (–.12,–.08) .12 (.03,.17) –.03 (–.12,.08) .04 (–.07,.13) .09 (–.07,.15) 

Seasonings .02 (.00,.05) .05 (–.05,.11) .07 (–.04,.14) .02 (–.15,.23) .18 (–.06,.25) 

Soda; high sugar –.08 (–.10,–.06) .09 (–.01,.15) .04 (–.07,.12) .08 (–.05,.19) .11 (–.12,.20) 

Soda; low sugar .02 (–.01,.04) .06 (–.05,.14) .04 (–.10,.18) .33 (–.05,.36) .08 (–.34,.33) 

Soup .12 (.10,.14) –.03 (–.10,.03) .03 (–.05,.11) .05 (–.17,.18) –.13 (–.20,.02) 

Soy and other milk .05 (.03,.08) .00 (–.06,.08) –.03 (–.11,.05) –.15 (–.22,.12) .08 (–.10,.21) 

Soy foods .11 (.07,.14) .06 (–.06,.17) –.09 (–.24,.05) –.15 (–.37,.40) .38 (.03,.43) 

Spirits and liquor .00 (–.02,.02) .20 (.06,.23) .01 (–.17,.16) .10 (–.18,.20) –.13 (–.21,.04) 
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Table 3. Factor loadings for the five principal components (modified from (Teucher et 
al., 2007)) 

Food 
Fruit and 
Vegetable High Alcohol 

Traditional 
English Dieting Low Meat 

Sweet baked –.16 (–.17,–.14) –.22 (–.26,.00) –.10 (–.25,.14) –.22 (–.27,.10) .00 (–.20,.24) 

Sweets and sweet 
condiments 

–.17 (–.19,–.15) –.02 (–.08,.05) –.01 (–.13,.09) –.26 (–.29,.17) .09 (–.19,.28) 

Tea –.03 (–.05,–.01) –.23 (–.28,–.05) .08 (–.13,.26) –.24 (–.29,.12) .02 (–.22,.27) 

Vegetables; allium .23 (.21,.25) .27 (.04,.30) .06 (–.18,.23) –.13 (–.18,.07) .02 (–.13,.18) 

Vegetables; 
cruciferous 

.21 (.17,.24) –.03 (–.32,.26) .36 (.14,.39) –.08 (–.20,.15) .07 (–.08,.19) 

Vegetables; green 
leafy 

.30 (.28,.32) .12 (–.04,.17) .07 (–.06,.15) –.06 (–.12,.10) .07 (–.04,.13) 

Vegetables; other .32 (.30,.33) .18 (–.09,.26) .15 (–.05,.25) –.13 (–.20,.15) .12 (–.07,.19) 

Vegetables; yellow .30 (.28,.32) –.03 (–.17,.13) .18 (.06,.23) –.09 (–.15,.11) .06 (–.07,.15) 

White and brown 
bread, refined 
grains 

–.11 (–.13,–.09) .04 (–.02,.09) –.03 (–.10,.05) –.02 (–.14,.17) .15 (–.04,.22) 

Wholemeal bread 
and grains 

.15 (.12,.17) –.11 (–.22,.12) –.18 (–.23,.00) –.01 (–.10,.08) –.01 (–.10,.08) 

Wine .08 (.06,.10) .33 (.07,.37) –.14 (–.35,.14) .03 (–.25,.21) –.22 (–.27,.02) 
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Table 4. Items and gram amounts per frequency category for the Mediterranean diet score calculation 
Fruit & nuts  Vegetable  Meat  Fish  Dairy  Cereal

1
  Legume 

Item g 
 

Item g 
 

Item g 
 

Item g 
 

Item g 
 

Item g 
 

Item g 

Apples 100  Avocado 75  Bacon 25  Shellfish 60  
Channel 
Islands milk 585  Brown bread 36  

Baked 
beans 135 

Bananas 100  Beansprouts 20  Beef 128  Oilyfish 96  
Cottage 
cheese 55  Brown rice 180  Lentils 70 

Dried fruit 30  Beetroot 40  Burgers 78  Fried fish 180  Dairy cheese 40  
Cream 
crackers 7    

Tinned fruit 100  Broccoli 85  
Corned 
beef 30  Fish roe 45  Dairy deserts 125  Crispbread 10    

Grapefruit 80  Cabbage 95  Ham 23  Fish fingers 50  Low fat yogurt 125  Frosties 40    

Grapes 80  Brussel sprouts 90  Lamb 94  Whitefish 120  Double cream 30  Lasagne 420    

Melon 200  Carrots 60  Liver 40     Single cream 15  White pasta 230    

Oranges 120  Cauliflower 90  Meat pies 124     Dried milk 585  Porridge 160    

Peaches 70  Coleslaw 45  Pork 128     Eggs 50  Muesli 60    

Pears 170  Garlic 5  Poultry 125     Full milk 585  
Wholemeal 
pasta 230    

Strawberries 100  Green beans 90  Sausages 40     Goats milk 585  White bread 36    

Mixed nuts
2
 40  Green salad 30        Rice milk 585  White rice 180    

Nuts 
unsalted

2
 40  Leeks 75        

Semi-
skimmed milk 585  

Wholemeal 
bread 36    

Nuts salted
2
 40  Marrow 90        Skimmed milk 585       

   Mushrooms 56        Soya milk 585       

   Onions 60        
Evaporated 
milk 585       

   Peas 70                

   Spinach 90                

   Sweetcorn 85                

   Sweet peppers 80                

   Tomatoes 85                

   Watercress 20                

   Tofu 50                

   Parsnips 65                

Notes: 
1
The cereal category for FFQ 1 included multiple cereal types which were omitted from FFQ 2, therefore only items which were included in both questionnaires 

were quantified. 
2
’Mixed nuts’ was quantified on only FFQ 1, ‘nuts unsalted’ and ‘nuts salted’ were quantified on FFQ 2. For this analysis, frequencies for these items were 

combined to make one category. 
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Table 5. List of metabolites associated with food intake from the Metabolon platform 

        
Discovery Discordant Meta-analysis 

Whole 
sample 

Variable Metabolite name Pathway 
Super-
pathway Beta(SE) P Beta(SE) P Beta(SE) P R

2
 

Allium 
vegetables 

X-11858     0.040(0.007) 3.65E-08 0.036(0.015) 1.69E-02 0.039(0.007) 1.42E-09 0.030 

Allium 
vegetables 

tryptophan betaine Tryptophan 
metabolism 

Amino acid 0.041(0.007) 3.82E-08 0.023(0.010) 1.57E-02 0.034(0.006) 4.73E-09 0.025 

Allium 
vegetables 

X-02269     0.024(0.005) 2.82E-07 0.019(0.010) 4.75E-02 0.023(0.004) 3.55E-08 0.010 

Apples/pears threitol Nucleotide sugars, 
pentose 
metabolism 

Carbo-
hydrate 

0.034(0.004) 2.50E-17 0.030(0.007) 4.05E-05 0.033(0.003) 1.69E-21 0.031 

Apples/pears X-11315     0.035(0.004) 9.14E-15 0.036(0.008) 6.10E-06 0.035(0.004) 9.63E-20 0.029 

Apples/pears X-11372     -0.024(0.004) 1.97E-09 -0.021(0.007) 3.40E-03 -0.023(0.003) 2.02E-11 0.014 

Apples/pears indolepropionate Tryptophan 
metabolism 

Amino acid 0.027(0.005) 4.50E-07 0.024(0.008) 1.71E-03 0.026(0.004) 2.39E-09 0.016 

Apples/pears 3-phenylpropionate 
(hydrocinnamate) 

Phenylalanine & 
tyrosine 
metabolism 

Amino acid 0.025(0.005) 3.76E-07 0.023(0.009) 1.21E-02 0.024(0.004) 1.24E-08 0.015 

Apples/pears X-09789     0.021(0.004) 2.73E-07 0.016(0.007) 2.58E-02 0.020(0.004) 2.22E-08 0.010 

Avocado X-11469     0.204(0.027) 3.59E-14 0.100(0.027) 3.31E-04 0.153(0.019) 9.36E-16 0.023 

Avocado X-02269     0.193(0.028) 3.88E-12 0.107(0.026) 6.44E-05 0.147(0.019) 6.33E-15 0.021 

Avocado 3-carboxy-4-methyl-
5-propyl-2-
furanpropanoate 
(CMPF) 

Fatty acid, 
dicarboxylate 

Lipid 0.185(0.027) 8.83E-12 0.116(0.029) 1.26E-04 0.153(0.020) 1.03E-14 0.022 

Avocado 1-
docosahexaenoylgl
ycerophosphocholi
ne* 

Lysolipid Lipid 0.125(0.024) 2.54E-07 0.094(0.028) 1.06E-03 0.112(0.018) 1.03E-09 0.009 

Avocado eicosapentaenoate 
(EPA; 20:5n3) 

Essential fatty acid Lipid 0.163(0.026) 3.82E-10 0.056(0.025) 2.56E-02 0.108(0.018) 2.01E-09 0.013 

Bananas indolepropionate Tryptophan 
metabolism 

Amino acid 0.038(0.006) 5.61E-11 0.022(0.010) 3.37E-02 0.034(0.005) 1.05E-11 0.016 

Beef burgers trans-4-
hydroxyproline 

Urea cycle; 
arginine-, proline-, 
metabolism 

Amino acid 0.428(0.085) 5.90E-07 0.257(0.104) 1.48E-02 0.360(0.066) 5.34E-08 0.009 

Berries X-11315     0.124(0.018) 2.28E-12 0.072(0.021) 8.29E-04 0.103(0.013) 2.70E-14 0.021 

Black tea X-14473     -0.025(0.001) 8.51E-60 -0.020(0.003) 5.16E-09 -0.024(0.001) 1.36E-72 0.110 

Black tea quinate Food component, 
Plant 

Xenobiotics -0.019(0.002) 9.74E-34 -0.019(0.003) 1.61E-09 -0.019(0.001) 5.58E-44 0.066 

Black tea X-12816     -0.019(0.002) 4.68E-23 -0.021(0.004) 2.59E-07 -0.020(0.002) 3.57E-30 0.062 



 

239 
 

Table 5. List of metabolites associated with food intake from the Metabolon platform 

        
Discovery Discordant Meta-analysis 

Whole 
sample 

Variable Metabolite name Pathway 
Super-
pathway Beta(SE) P Beta(SE) P Beta(SE) P R

2
 

Black tea X-14374     -0.013(0.001) 8.48E-21 -0.011(0.003) 2.12E-03 -0.013(0.001) 2.50E-23 0.030 

Black tea X-12039--3-
hydroxypyridine 
sulfate 

Chemical Xenobiotics -0.014(0.002) 2.23E-16 -0.013(0.004) 4.61E-04 -0.014(0.002) 1.60E-19 0.035 

Black tea X-05426     -0.010(0.002) 8.54E-12 -0.008(0.003) 1.66E-02 -0.010(0.001) 3.62E-13 0.019 

Black tea cyclo(leu-pro) Dipeptide Peptide -0.012(0.002) 5.64E-11 -0.010(0.004) 2.26E-02 -0.012(0.002) 2.89E-12 0.026 

Black tea X-12230     -0.009(0.002) 3.07E-08 -0.010(0.003) 4.67E-03 -0.009(0.001) 3.98E-10 0.015 

Black tea X-13741--3-methyl 
catechol sulfate 1 

Benzoate 
metabolism 

Xenobiotics -0.010(0.002) 6.29E-08 -0.011(0.004) 4.92E-03 -0.010(0.002) 8.73E-10 0.017 

Butter X-13431--
nonanoylcarnitine* 

Carnitine 
metabolism 

Lipid 0.028(0.004) 9.12E-15 0.020(0.006) 1.97E-03 0.026(0.003) 6.48E-17 0.026 

Butter X-02249     0.027(0.003) 6.97E-15 0.019(0.007) 1.06E-02 0.026(0.003) 2.31E-16 0.023 

Butter X-10510     0.023(0.003) 1.85E-11 0.019(0.005) 1.50E-04 0.022(0.003) 8.28E-15 0.019 

Butter 15-methylpalmitate 
(isobar with 2-
methylpalmitate) 

Fatty acid, 
branched 

Lipid 0.027(0.004) 6.27E-11 0.019(0.008) 1.38E-02 0.025(0.004) 3.09E-12 0.026 

Butter 10-undecenoate 
(11:1n1) 

Medium chain 
fatty acid 

Lipid 0.023(0.004) 5.99E-10 0.014(0.005) 4.11E-03 0.020(0.003) 2.35E-11 0.018 

Butter myristate (14:0) Long chain fatty 
acid 

Lipid 0.019(0.004) 5.57E-08 0.019(0.006) 4.34E-03 0.019(0.003) 6.68E-10 0.014 

Butter X-08402     0.018(0.003) 1.85E-08 0.013(0.005) 1.10E-02 0.017(0.003) 7.17E-10 0.012 

Butter 10-nonadecenoate 
(19:1n9) 

Long chain fatty 
acid 

Lipid 0.017(0.004) 9.50E-07 0.019(0.006) 8.91E-04 0.018(0.003) 2.43E-09 0.013 

Butter pentadecanoate 
(15:0) 

Long chain fatty 
acid 

Lipid 0.019(0.004) 8.48E-08 0.015(0.006) 1.03E-02 0.018(0.003) 2.77E-09 0.013 

Chocolate theobromine Xanthine 
metabolism 

Xenobiotics 0.024(0.005) 3.43E-07 0.023(0.005) 1.83E-05 0.024(0.003) 1.34E-11 0.020 

Chocolate 7-methylxanthine Xanthine 
metabolism 

Xenobiotics 0.029(0.005) 2.48E-08 0.012(0.006) 3.31E-02 0.022(0.004) 2.00E-08 0.020 

Citrus fruit stachydrine Food component, 
Plant 

Xenobiotics 0.058(0.006) 6.43E-24 0.036(0.008) 4.05E-05 0.051(0.005) 2.07E-27 0.051 

Citrus fruit glycerate Glycolysis, 
gluconeogenesis, 
pyruvate 
metabolism 

Carbohydrat
e 

0.027(0.005) 1.15E-07 0.031(0.008) 1.39E-04 0.028(0.004) 4.57E-11 0.014 

Citrus fruit X-11315     0.029(0.005) 4.72E-08 0.021(0.007) 3.30E-03 0.026(0.004) 6.50E-10 0.014 

Coffee X-14473     0.041(0.001) 6.89E-139 0.027(0.003) 1.38E-19 0.038(0.001) 6.12E-187 0.246 

Coffee quinate Food component, 
Plant 

Xenobiotics 0.036(0.001) 6.60E-106 0.024(0.003) 6.84E-15 0.033(0.001) 4.31E-136 0.190 
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Table 5. List of metabolites associated with food intake from the Metabolon platform 

        
Discovery Discordant Meta-analysis 

Whole 
sample 

Variable Metabolite name Pathway 
Super-
pathway Beta(SE) P Beta(SE) P Beta(SE) P R

2
 

Coffee X-14374     0.025(0.002) 1.61E-55 0.019(0.003) 1.78E-10 0.023(0.001) 1.87E-68 0.083 

Coffee X-12039--3-
hydroxypyridine 
sulfate 

Chemical Xenobiotics 0.026(0.002) 6.89E-52 0.020(0.003) 1.72E-09 0.025(0.001) 1.64E-64 0.108 

Coffee X-12816     0.032(0.002) 1.07E-51 0.021(0.004) 7.67E-07 0.030(0.002) 3.22E-61 0.133 

Coffee X-05426     0.019(0.002) 5.06E-34 0.012(0.003) 2.06E-04 0.018(0.001) 6.64E-38 0.058 

Coffee X-12230     0.019(0.002) 1.07E-27 0.015(0.003) 1.99E-06 0.018(0.002) 1.02E-33 0.060 

Coffee X-13741--3-methyl 
catechol sulfate 1 

Benzoate 
metabolism 

Xenobiotics 0.020(0.002) 3.43E-27 0.016(0.004) 1.05E-05 0.019(0.002) 1.25E-32 0.063 

Coffee catechol sulfate Benzoate 
metabolism 

Xenobiotics 0.015(0.002) 5.39E-22 0.011(0.003) 2.24E-04 0.014(0.001) 3.44E-25 0.033 

Coffee cyclo(leu-pro) Dipeptide Peptide 0.014(0.002) 9.25E-14 0.009(0.004) 1.58E-02 0.013(0.002) 5.29E-15 0.030 

Coffee X-12217--O-methyl 
catechol sulfate 

Benzoate 
metabolism 

Xenobiotics 0.012(0.002) 5.43E-12 0.009(0.003) 8.66E-03 0.011(0.002) 1.45E-13 0.022 

Coffee 1-methylxanthine Xanthine 
metabolism 

Xenobiotics 0.010(0.002) 2.82E-07 0.010(0.003) 4.20E-03 0.010(0.002) 3.31E-09 0.016 

Confectionary
/jam 

X-11315     -0.011(0.002) 6.99E-11 -0.006(0.003) 2.77E-02 -0.010(0.001) 1.53E-11 0.017 

Confectionary
/jam 

glycerate Glycolysis, 
gluconeogenesis, 
pyruvate 
metabolism 

Carbo-
hydrate 

-0.011(0.002) 4.86E-08 -0.008(0.003) 1.30E-02 -0.010(0.002) 2.02E-09 0.014 

Confectionary
/jam 

pipecolate Lysine metabolism Amino acid -0.009(0.002) 4.07E-07 -0.008(0.004) 3.81E-02 -0.008(0.002) 3.94E-08 0.008 

Fried fish X-11372     0.360(0.051) 2.88E-12 0.165(0.049) 8.66E-04 0.258(0.035) 2.81E-13 0.040 

Fried fish 3-phenylpropionate 
(hydrocinnamate) 

Phenylalanine & 
tyrosine 
metabolism 

Amino acid -0.167(0.032) 2.07E-07 -0.184(0.045) 7.67E-05 -0.172(0.026) 4.12E-11 0.012 

Fried fish X-11315     -0.174(0.035) 6.30E-07 -0.149(0.044) 7.69E-04 -0.164(0.027) 1.54E-09 0.013 

Fried fish scyllo-inositol Inositol 
metabolism 

Lipid -0.170(0.031) 6.22E-08 -0.116(0.048) 1.77E-02 -0.154(0.026) 4.44E-09 0.011 

Fruit juice stachydrine Food component, 
Plant 

Xenobiotics 0.064(0.005) 2.87E-30 0.045(0.008) 1.06E-07 0.058(0.005) 3.26E-37 0.064 

Green leafy 
vegetables 

X-11469     0.034(0.005) 9.00E-11 0.025(0.006) 1.24E-04 0.030(0.004) 5.66E-14 0.020 

Green leafy 
vegetables 

X-02269     0.033(0.005) 9.43E-10 0.025(0.006) 6.56E-05 0.030(0.004) 2.39E-13 0.018 

Green leafy 
vegetables 

X-11315     0.038(0.006) 4.37E-10 0.025(0.007) 5.56E-04 0.033(0.005) 1.71E-12 0.023 

Green leafy 
vegetables 

X-11372     -0.028(0.004) 5.23E-10 -0.021(0.009) 1.58E-02 -0.026(0.004) 2.51E-11 0.012 



 

241 
 

Table 5. List of metabolites associated with food intake from the Metabolon platform 

        
Discovery Discordant Meta-analysis 

Whole 
sample 

Variable Metabolite name Pathway 
Super-
pathway Beta(SE) P Beta(SE) P Beta(SE) P R

2
 

Green leafy 
vegetables 

3-carboxy-4-methyl-
5-propyl-2-
furanpropanoate 
(CMPF) 

Fatty acid, 
dicarboxylate 

Lipid 0.028(0.006) 9.29E-07 0.021(0.006) 8.06E-04 0.025(0.004) 3.03E-09 0.013 

Green leafy 
vegetables 

1-
docosahexaenoylgl
ycerophosphocholi
ne* 

Lysolipid Lipid 0.025(0.005) 9.36E-08 0.017(0.007) 1.87E-02 0.023(0.004) 7.11E-09 0.009 

High fat salad 
dressing 

eicosapentaenoate 
(EPA; 20:5n3) 

Essential fatty acid Lipid 0.048(0.010) 8.34E-07 0.035(0.015) 1.82E-02 0.044(0.008) 5.48E-08 0.010 

High fibre 
breakfast 
cereals 

X-09789     0.046(0.006) 4.90E-14 0.019(0.009) 4.34E-02 0.038(0.005) 7.28E-14 0.021 

High fibre 
breakfast 
cereals 

X-11469     0.032(0.005) 1.54E-10 0.028(0.008) 1.21E-03 0.031(0.004) 5.40E-13 0.013 

High fibre 
breakfast 
cereals 

X-02269     0.031(0.005) 7.68E-10 0.028(0.009) 1.65E-03 0.030(0.004) 3.63E-12 0.012 

High fibre 
breakfast 
cereals 

pyridoxate Vitamin B6 
metabolism 

Cofactors 
and vitamins 

0.040(0.006) 9.41E-11 0.020(0.010) 3.54E-02 0.035(0.005) 3.52E-11 0.019 

High fibre 
breakfast 
cereals 

X-11315     0.031(0.006) 8.40E-08 0.027(0.010) 1.12E-02 0.030(0.005) 2.75E-09 0.011 

Low fat mik X-21365 [trimethyl-
N-aminovalerate] 

Carnitine 
metabolism 

Lipid 0.085(0.008) 3.30E-25 0.045(0.015) 2.55E-03 0.076(0.007) 9.36E-27 0.018 

Low fat mik X-12798     0.071(0.009) 4.88E-15 0.036(0.016) 2.12E-02 0.062(0.008) 1.24E-15 0.024 

Meat trans-4-
hydroxyproline 

Urea cycle; 
arginine-, proline-, 
metabolism 

Amino acid 0.077(0.010) 7.70E-14 0.070(0.017) 6.28E-05 0.075(0.009) 1.08E-17 0.020 

Meat creatine Creatine 
metabolism 

Amino acid 0.070(0.011) 5.01E-11 0.041(0.019) 3.12E-02 0.063(0.009) 8.24E-12 0.016 

Meat pyroglutamine* Glutamate 
metabolism 

Amino acid -0.066(0.011) 4.33E-09 -0.049(0.020) 1.46E-02 -0.062(0.010) 2.10E-10 0.016 

Meat X-09789     -0.052(0.011) 1.11E-06 -0.053(0.020) 7.66E-03 -0.052(0.009) 2.39E-08 0.009 

Mushrooms ergothioneine Food component, 
Plant 

Xenobiotics 0.189(0.023) 6.45E-16 0.165(0.033) 9.28E-07 0.181(0.019) 5.93E-22 0.107 

Nuts X-11315     0.060(0.006) 6.48E-21 0.042(0.009) 1.81E-05 0.054(0.005) 3.75E-25 0.037 

Oily fish docosahexaenoate 
(DHA; 22:6n3) 

Essential fatty acid Lipid 0.244(0.017) 1.72E-45 0.087(0.019) 9.66E-06 0.177(0.013) 2.09E-44 0.064 

Oily fish X-11469     0.214(0.017) 6.59E-34 0.117(0.022) 1.89E-07 0.176(0.013) 5.87E-39 0.062 
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Table 5. List of metabolites associated with food intake from the Metabolon platform 

        
Discovery Discordant Meta-analysis 

Whole 
sample 

Variable Metabolite name Pathway 
Super-
pathway Beta(SE) P Beta(SE) P Beta(SE) P R

2
 

Oily fish 3-carboxy-4-methyl-
5-propyl-2-
furanpropanoate 
(CMPF) 

Fatty acid, 
dicarboxylate 

Lipid 0.204(0.016) 3.52E-34 0.112(0.022) 9.22E-07 0.172(0.013) 8.57E-39 0.054 

Oily fish X-02269     0.208(0.017) 1.44E-32 0.122(0.022) 7.36E-08 0.175(0.013) 1.44E-38 0.058 

Oily fish eicosapentaenoate 
(EPA; 20:5n3) 

Essential fatty acid Lipid 0.212(0.017) 1.95E-33 0.085(0.024) 5.01E-04 0.169(0.014) 1.57E-33 0.052 

Oily fish 1-
docosahexaenoylgl
ycerophosphocholi
ne* 

Lysolipid Lipid 0.145(0.017) 7.40E-17 0.068(0.032) 3.36E-02 0.128(0.015) 3.33E-17 0.025 

Oily fish X-11315     0.138(0.018) 6.44E-15 0.054(0.022) 1.68E-02 0.106(0.014) 1.62E-14 0.020 

Oily fish 1-
oleoylglycerophosp
hoethanolamine 

Lysolipid Lipid -0.115(0.018) 2.65E-10 -0.074(0.026) 4.23E-03 -0.101(0.015) 6.89E-12 0.012 

Oily fish 1-
eicosatrienoylglycer
ophosphocholine* 

Lysolipid Lipid -0.099(0.017) 9.17E-09 -0.087(0.024) 4.03E-04 -0.095(0.014) 1.12E-11 0.011 

Oily fish 1-
arachidonoylglycer
ophosphoethanola
mine* 

Lysolipid Lipid -0.106(0.018) 1.24E-08 -0.081(0.026) 1.97E-03 -0.097(0.015) 9.46E-11 0.013 

Oily fish docosapentaenoate 
(n3 DPA; 22:5n3) 

Essential fatty acid Lipid 0.111(0.017) 3.62E-11 0.038(0.019) 4.72E-02 0.080(0.013) 2.22E-10 0.014 

Oily fish 1-
linoleoylglyceropho
sphoethanolamine* 

Lysolipid Lipid -0.106(0.018) 5.45E-09 -0.055(0.025) 3.12E-02 -0.089(0.015) 1.60E-09 0.009 

Oily fish X-12627     0.093(0.016) 1.38E-08 0.044(0.019) 2.34E-02 0.073(0.012) 5.74E-09 0.009 

Other 
fish/seafood 

3-carboxy-4-methyl-
5-propyl-2-
furanpropanoate 
(CMPF) 

Fatty acid, 
dicarboxylate 

Lipid 0.201(0.017) 1.16E-29 0.150(0.029) 8.90E-07 0.188(0.015) 6.64E-36 0.061 

Other 
fish/seafood 

docosahexaenoate 
(DHA; 22:6n3) 

Essential fatty acid Lipid 0.198(0.017) 5.83E-29 0.141(0.028) 9.10E-07 0.182(0.015) 6.10E-35 0.052 

Other 
fish/seafood 

X-11469     0.189(0.017) 5.51E-27 0.131(0.031) 3.07E-05 0.175(0.015) 2.99E-31 0.052 

Other 
fish/seafood 

X-02269     0.184(0.017) 7.33E-26 0.141(0.031) 1.21E-05 0.174(0.015) 9.25E-31 0.050 

Other 
fish/seafood 

eicosapentaenoate 
(EPA; 20:5n3) 

Essential fatty acid Lipid 0.156(0.017) 1.71E-19 0.148(0.033) 1.38E-05 0.154(0.015) 2.66E-24 0.036 

Other 
fish/seafood 

1-
docosahexaenoylgl
ycerophosphocholi
ne* 

Lysolipid Lipid 0.125(0.015) 7.30E-16 0.071(0.029) 1.35E-02 0.113(0.014) 6.70E-17 0.020 
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Table 5. List of metabolites associated with food intake from the Metabolon platform 

        
Discovery Discordant Meta-analysis 

Whole 
sample 

Variable Metabolite name Pathway 
Super-
pathway Beta(SE) P Beta(SE) P Beta(SE) P R

2
 

Other 
fish/seafood 

pyroglutamine* Glutamate 
metabolism 

Amino acid -0.097(0.018) 3.81E-08 -0.102(0.025) 5.51E-05 -0.099(0.014) 5.22E-12 0.015 

Other 
fish/seafood 

docosapentaenoate 
(n3 DPA; 22:5n3) 

Essential fatty acid Lipid 0.086(0.015) 1.27E-08 0.102(0.030) 8.79E-04 0.089(0.013) 3.44E-11 0.010 

Other 
fish/seafood 

1-
eicosatrienoylglycer
ophosphocholine* 

Lysolipid Lipid -0.082(0.016) 2.73E-07 -0.083(0.032) 1.14E-02 -0.082(0.014) 8.44E-09 0.009 

Other 
fish/seafood 

1,5-anhydroglucitol 
(1,5-AG) 

Glycolysis, 
gluconeogenesis, 
pyruvate 
metabolism 

Carbo-
hydrate 

-0.079(0.016) 6.12E-07 -0.087(0.034) 1.06E-02 -0.081(0.014) 1.80E-08 0.011 

Other 
fish/seafood 

X-12696--3,4-
dihydroxyphenylace
tate sulfate  

Phenylalanine and 
Tyrosine 
Metabolism 

Amino 
acid       

-0.084(0.017) 6.20E-07 -0.078(0.036) 2.96E-02 -0.083(0.015) 4.73E-08 0.011 

Peaches X-11315     0.158(0.024) 8.45E-11 0.097(0.024) 6.51E-05 0.127(0.017) 5.92E-14 0.039 

Porridge X-09789     0.099(0.009) 9.10E-26 0.083(0.015) 1.01E-07 0.094(0.008) 4.96E-33 0.048 

Porridge X-12253--2-
aminophenol 
sulfate 

Chemical Xenobiotics 0.053(0.010) 3.85E-08 0.043(0.019) 2.50E-02 0.051(0.009) 2.63E-09 0.016 

Poultry pyroglutamine* Glutamate 
metabolism 

Amino acid -0.102(0.016) 1.87E-10 -0.070(0.022) 1.29E-03 -0.091(0.013) 1.36E-12 0.017 

Poultry creatine Creatine 
metabolism 

Amino acid 0.104(0.015) 2.57E-11 0.044(0.022) 4.56E-02 0.083(0.013) 3.17E-11 0.015 

Processed 
meats 

trans-4-
hydroxyproline 

Urea cycle; 
arginine-, proline-, 
metabolism 

Amino acid 0.052(0.009) 4.07E-09 0.035(0.016) 3.14E-02 0.048(0.008) 4.69E-10 0.011 

Processed 
meats 

X-11381     0.052(0.009) 6.89E-09 0.039(0.017) 2.18E-02 0.049(0.008) 4.74E-10 0.011 

Savoury pies X-11315     -0.287(0.044) 5.59E-11 -0.116(0.054) 3.44E-02 -0.221(0.034) 9.08E-11 0.016 

Savoury pies 3-phenylpropionate 
(hydrocinnamate) 

Phenylalanine & 
tyrosine 
metabolism 

Amino acid -0.264(0.044) 2.06E-09 -0.151(0.068) 2.89E-02 -0.231(0.037) 3.72E-10 0.013 

Savoury pies X-11372     0.290(0.047) 1.14E-09 0.114(0.055) 4.02E-02 0.216(0.036) 2.04E-09 0.015 

Savoury pies ergothioneine Food component, 
Plant 

Xenobiotics -0.320(0.060) 1.31E-07 -0.291(0.105) 6.63E-03 -0.313(0.052) 2.16E-09 0.017 

Savoury 
snacks 

X-11372     0.064(0.008) 8.31E-14 0.029(0.011) 9.73E-03 0.051(0.007) 3.88E-14 0.026 

Soy foods X-11381     -0.184(0.033) 1.95E-08 -0.063(0.025) 1.46E-02 -0.108(0.020) 5.80E-08 0.018 

Soy/other milk 4-
ethylphenylsulfate 

Benzoate 
metabolism 

Xenobiotics 0.299(0.051) 6.10E-09 0.195(0.043) 3.18E-05 0.239(0.033) 6.05E-13 0.061 

Spirits/liquor 4-androsten-
3beta,17beta-diol 

Sterol, Steroid Lipid 0.044(0.008) 2.53E-08 0.028(0.013) 4.24E-02 0.040(0.007) 4.30E-09 0.021 
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Table 5. List of metabolites associated with food intake from the Metabolon platform 

        
Discovery Discordant Meta-analysis 

Whole 
sample 

Variable Metabolite name Pathway 
Super-
pathway Beta(SE) P Beta(SE) P Beta(SE) P R

2
 

disulfate 1* 

Sweet baked 
products 

eicosapentaenoate 
(EPA; 20:5n3) 

Essential fatty acid Lipid -0.016(0.002) 1.20E-10 -0.012(0.004) 2.30E-03 -0.014(0.002) 1.08E-12 0.016 

Sweet baked 
products 

docosahexaenoate 
(DHA; 22:6n3) 

Essential fatty acid Lipid -0.016(0.002) 3.75E-11 -0.011(0.004) 7.33E-03 -0.015(0.002) 1.28E-12 0.016 

Sweet baked 
products 

scyllo-inositol Inositol 
metabolism 

Lipid -0.018(0.003) 8.43E-09 -0.014(0.005) 5.30E-03 -0.017(0.003) 1.44E-10 0.019 

Sweet baked 
products 

X-11799     -0.018(0.003) 1.39E-07 -0.015(0.006) 1.37E-02 -0.017(0.003) 4.88E-09 0.020 

Sweet baked 
products 

X-11315     -0.014(0.003) 3.66E-07 -0.009(0.003) 1.26E-02 -0.012(0.002) 2.90E-08 0.014 

Tomatoes glycerate Glycolysis, 
gluconeogenesis, 
pyruvate 
metabolism 

Carbo-
hydrate 

0.029(0.006) 7.50E-07 0.018(0.007) 1.02E-02 0.025(0.005) 4.72E-08 0.009 

White/brown 
bread, refined 
grains 

X-11315     -0.017(0.003) 1.00E-08 -0.019(0.005) 6.53E-05 -0.017(0.002) 1.84E-12 0.017 

Wholemeal 
bread/grains 

X-09789     0.017(0.003) 3.91E-07 0.011(0.005) 3.58E-02 0.015(0.003) 6.03E-08 0.010 

Wine scyllo-inositol Inositol 
metabolism 

Lipid 0.056(0.004) 3.04E-43 0.036(0.007) 3.42E-06 0.052(0.003) 1.47E-49 0.117 

Wine alpha-
hydroxyisovalerate 

Valine, leucine 
and isoleucine 
metabolism 

Amino acid 0.047(0.004) 2.09E-36 0.038(0.006) 2.32E-08 0.045(0.003) 1.23E-45 0.072 

Wine X-11795     0.042(0.003) 5.04E-34 0.030(0.007) 9.51E-05 0.039(0.003) 1.74E-38 0.062 

Wine 4-androsten-
3beta,17beta-diol 
disulfate 1* 

Sterol, Steroid Lipid 0.043(0.004) 1.09E-26 0.034(0.008) 3.31E-05 0.041(0.003) 1.50E-31 0.071 

Wine X-11799     0.035(0.004) 3.49E-22 0.028(0.006) 8.74E-06 0.033(0.003) 1.66E-27 0.052 

Wine X-10395     0.035(0.003) 9.31E-25 0.018(0.006) 3.51E-03 0.031(0.003) 3.45E-26 0.034 

Wine X-04495     0.032(0.003) 4.68E-20 0.028(0.006) 8.69E-06 0.031(0.003) 3.26E-25 0.035 

Wine 5alpha-androstan-
3beta,17beta-diol 
disulfate 

Sterol, Steroid Lipid 0.038(0.004) 6.27E-21 0.030(0.008) 4.21E-04 0.036(0.004) 2.71E-24 0.059 

Wine pipecolate Lysine metabolism Amino acid 0.031(0.003) 1.57E-19 0.024(0.007) 4.94E-04 0.029(0.003) 1.51E-22 0.029 

Wine eicosapentaenoate 
(EPA; 20:5n3) 

Essential fatty acid Lipid 0.030(0.003) 1.66E-20 0.017(0.006) 4.40E-03 0.027(0.003) 6.63E-22 0.027 

Wine docosahexaenoate 
(DHA; 22:6n3) 

Essential fatty acid Lipid 0.029(0.003) 2.42E-17 0.014(0.005) 1.25E-02 0.025(0.003) 6.92E-18 0.022 

Wine myo-inositol Inositol 
metabolism 

Lipid 0.026(0.003) 7.58E-16 0.011(0.005) 4.93E-02 0.022(0.003) 1.36E-15 0.022 
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Table 5. List of metabolites associated with food intake from the Metabolon platform 

        
Discovery Discordant Meta-analysis 

Whole 
sample 

Variable Metabolite name Pathway 
Super-
pathway Beta(SE) P Beta(SE) P Beta(SE) P R

2
 

Wine docosapentaenoate 
(n3 DPA; 22:5n3) 

Essential fatty acid Lipid 0.025(0.003) 5.38E-13 0.019(0.006) 3.46E-03 0.024(0.003) 5.28E-15 0.019 

Wine X-12627     0.024(0.003) 4.95E-14 0.014(0.006) 1.55E-02 0.022(0.003) 5.88E-15 0.017 

Wine X-01911     0.029(0.004) 7.11E-11 0.022(0.006) 1.27E-04 0.026(0.003) 2.55E-14 0.031 

Wine 2-aminobutyrate Butanoate 
metabolism 

Amino acid 0.027(0.004) 2.83E-13 0.016(0.007) 2.04E-02 0.025(0.003) 2.73E-14 0.023 

Wine X-05907     0.024(0.003) 4.22E-12 0.017(0.005) 1.85E-03 0.022(0.003) 3.03E-14 0.019 

Wine X-10429     0.025(0.003) 1.88E-12 0.019(0.007) 7.10E-03 0.024(0.003) 3.62E-14 0.019 

Wine caprate (10:0) Medium chain 
fatty acid 

Lipid 0.021(0.003) 1.36E-11 0.023(0.007) 2.09E-03 0.022(0.003) 6.60E-14 0.016 

Wine piperine Food component, 
Plant 

Xenobiotics 0.028(0.004) 1.04E-10 0.022(0.006) 2.34E-04 0.026(0.003) 6.81E-14 0.026 

Wine X-12038     0.020(0.003) 2.27E-09 0.028(0.007) 1.20E-04 0.022(0.003) 9.20E-13 0.014 

Wine X-13215     0.023(0.004) 1.48E-09 0.023(0.006) 3.37E-04 0.023(0.003) 1.07E-12 0.016 

Wine X-11317     0.019(0.003) 3.11E-09 0.026(0.007) 1.84E-04 0.020(0.003) 1.88E-12 0.012 

Wine 4-methyl-2-
oxopentanoate 

Valine, leucine 
and isoleucine 
metabolism 

Amino acid 0.021(0.003) 1.36E-09 0.021(0.006) 1.07E-03 0.021(0.003) 3.44E-12 0.011 

Wine beta-
hydroxyisovalerate 

Valine, leucine 
and isoleucine 
metabolism 

Amino acid 0.021(0.003) 9.19E-11 0.016(0.007) 1.64E-02 0.020(0.003) 4.44E-12 0.009 

Wine X-09026     0.020(0.003) 1.93E-09 0.019(0.006) 2.71E-03 0.020(0.003) 1.30E-11 0.011 

Wine caprylate (8:0) Medium chain 
fatty acid 

Lipid 0.019(0.003) 2.10E-09 0.020(0.007) 4.05E-03 0.019(0.003) 2.13E-11 0.012 

Wine benzoate Benzoate 
metabolism 

Xenobiotics 0.019(0.003) 4.37E-09 0.018(0.006) 2.84E-03 0.019(0.003) 3.20E-11 0.009 

Wine X-11550     0.018(0.003) 1.54E-08 0.020(0.006) 9.97E-04 0.018(0.003) 3.94E-11 0.011 

Wine stearidonate 
(18:4n3) 

Long chain fatty 
acid 

Lipid 0.019(0.003) 1.47E-08 0.019(0.007) 8.49E-03 0.019(0.003) 3.17E-10 0.012 

Wine 2-hydroxybutyrate 
(AHB) 

Cysteine, 
methionine, SAM, 
taurine 
metabolism 

Amino acid 0.019(0.004) 4.61E-08 0.021(0.007) 3.45E-03 0.020(0.003) 4.15E-10 0.015 

Wine 3-(4-
hydroxyphenyl)lacta
te 

Phenylalanine & 
tyrosine 
metabolism 

Amino acid 0.017(0.003) 3.11E-08 0.018(0.007) 1.37E-02 0.018(0.003) 1.08E-09 0.011 

Wine 3-methyl-2-
oxobutyrate 

Valine, leucine 
and isoleucine 
metabolism 

Amino acid 0.018(0.003) 2.72E-07 0.020(0.007) 3.55E-03 0.018(0.003) 2.61E-09 0.007 
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Discovery Discordant Meta-analysis 

Whole 
sample 

Variable Metabolite name Pathway 
Super-
pathway Beta(SE) P Beta(SE) P Beta(SE) P R

2
 

Wine X-11452     0.023(0.004) 1.18E-07 0.017(0.006) 6.54E-03 0.021(0.003) 2.79E-09 0.015 

Wine epiandrosterone 
sulfate 

Sterol, Steroid Lipid 0.018(0.003) 2.21E-07 0.016(0.006) 1.05E-02 0.018(0.003) 6.29E-09 0.010 

Wine X-13496     0.017(0.003) 1.08E-07 0.015(0.006) 2.23E-02 0.017(0.003) 6.56E-09 0.009 

Wine arachidonate 
(20:4n6) 

Long chain fatty 
acid 

Lipid 0.017(0.004) 1.13E-06 0.018(0.006) 5.04E-03 0.017(0.003) 1.50E-08 0.009 

Wine theophylline Xanthine 
metabolism 

Xenobiotics 0.020(0.004) 2.47E-07 0.014(0.006) 2.41E-02 0.018(0.003) 1.99E-08 0.009 

Wine X-12644--1-
docosahexaenoylgl
ycerophosphoethan
olamine 

Lysolipid Lipid 0.015(0.003) 8.33E-07 0.017(0.007) 2.16E-02 0.015(0.003) 4.82E-08 0.007 

Notes: Table shows results of the linear regression analysis for the discovery population (excluding monozygotic twins discordant for each food group intake), the MZ 
discordant twin sample and the fixed effects meta-analysis of both groups. Only significant associations are shown which includes those associations passing the 
bonferroni cut-off in the discovery and fixed effects analyses (1.08x10

-6
 = 0.05/[77 food variables x 601 detected metabolites]) and passing the 5% level of significance in 

the discordant twin group. The R-squared was calculated for the relevant metabolite and food group in the study population. The Metabolon platform is a non-targeted 
platform which identified 456 metabolites in blood; data were available for 3559 twins.
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Table 6. List of metabolites associated with food intake from the Biocrates platform 
    

Discovery Discordant Meta-analysis 
Whole 
sample 

Variable Biocrates name Pathway 
Super-
pathway Beta(SE) P Beta(SE) P Beta(SE) P R

2
 

Cream lysoPhosphatidylcholine 
acyl C17:0 

Glycerophsopholipids Lipid 0.029(0.005) 1.36E-07 0.057(0.020) 7.68E-03 0.030(0.005) 3.36E-09 0.013 

Cream Hydroxysphingomyeline 
C14:1 

Sphingolipids Lipid 0.034(0.005) 8.09E-10 0.039(0.016) 2.37E-02 0.035(0.005) 2.22E-11 0.013 

Cream lysoPhosphatidylcholine 
acyl C28:1 

Glycerophsopholipids Lipid 0.025(0.005) 7.57E-07 0.050(0.025) 5.63E-02 0.026(0.005) 1.17E-07 0.012 

Herbal tea Phosphatidylcholine 
acyl-alkyl C38:3 

Glycerophsopholipids Lipid -0.012(0.002) 1.78E-08 -0.001(0.005) 7.75E-01 -0.011(0.002) 9.91E-08 0.017 

Herbal tea Phosphatidylcholine 
acyl-alkyl C40:4 

Glycerophsopholipids Lipid -0.010(0.002) 6.94E-07 -0.003(0.006) 5.44E-01 -0.009(0.002) 8.01E-07 0.014 

Herbal tea Phosphatidylcholine 
acyl-alkyl C40:3 

Glycerophsopholipids Lipid -0.014(0.002) 3.64E-09 -0.004(0.006) 5.40E-01 -0.013(0.002) 5.57E-09 0.013 

Herbal tea Phosphatidylcholine 
acyl-alkyl C38:2 

Glycerophsopholipids Lipid -0.018(0.003) 1.61E-07 -0.002(0.008) 8.05E-01 -0.016(0.003) 6.68E-07 0.012 

Herbal tea Phosphatidylcholine 
diacyl C42:4 

Glycerophsopholipids Lipid -0.014(0.003) 1.51E-07 -0.002(0.008) 7.43E-01 -0.013(0.002) 2.80E-07 0.011 

Herbal tea Phosphatidylcholine 
acyl-alkyl C38:1 

Glycerophsopholipids Lipid -0.020(0.003) 1.65E-08 -0.001(0.010) 9.33E-01 -0.018(0.003) 6.19E-08 0.010 

Oily fish Phosphatidylcholine 
diacyl C40:6 

Glycerophsopholipids Lipid 0.073(0.011) 1.07E-11 0.015(0.021) 4.88E-01 0.061(0.009) 7.34E-11 0.041 

Oily fish Phosphatidylcholine 
diacyl C38:6 

Glycerophsopholipids Lipid 0.077(0.011) 9.80E-13 0.012(0.021) 5.68E-01 0.064(0.009) 1.04E-11 0.041 

White/brown 
bread, refined 
grains 

Octenoylcarnitine Acylcarnitines Lipid 0.013(0.002) 1.32E-08 0.008(0.005) 8.23E-02 0.012(0.002) 2.45E-09 0.031 

Wine Phosphatidylcholine 
diacyl C36:5 

Glycerophsopholipids Lipid 0.018(0.003) 1.16E-08 0.011(0.008) 1.73E-01 0.017(0.003) 3.63E-09 0.038 

Wine Phosphatidylcholine 
diacyl C32:1 

Glycerophsopholipids Lipid 0.015(0.003) 2.83E-07 0.013(0.011) 2.25E-01 0.015(0.003) 9.27E-08 0.028 

Notes: Table shows results of the linear regression analysis for the discovery population (excluding monozygotic twins discordant for each food group intake), the MZ 
discordant twin sample and the fixed effects meta-analysis of both groups. Only significant associations are shown which includes those associations passing the 
bonferroni cut-off in the discovery and fixed effects analyses (1.08x10

-6
 = 0.05/[77 food variables x 601 detected metabolites]) and in the same direction in the discordant 

twin group. The R-squared was calculated for the relevant metabolite and food group in the study population. The Biocrates platform is a targeted platform which 
measured 163 metabolites in blood; data were available for 858 twins.  
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Table 7. Information for metabolites associated to food intakes, including biological role, previous dietary and disease associations 

Pathway Subpathway Metabolite Replicated Novel Biological role 
Previous dietary 
associations 

Previous 
disease/metabolic 
associations 

Lip Essential fatty 
acid 

Docosahexaenoat
e (DHA; 22:6n3) 

↑ Oily fish 
↑ Other 
seafood 
  
  
  

↑ Wine 
↓ Baked goods 
  
  
  

Essential fatty acid, derived 
endogenously from α-linolenic 
acid and in high concentrations 
in oily fish. 

↑ Fish (excluding shellfish);  
↑ Other vegetables: Celery, 
green beans, squash, 
cucumbers;  
↑ White rice;  
↓ Chips (Guertin et al., 2014) 
↑ Fish and seafood (Zheng, 
Yu, Alexander, Steffen, & 
Boerwinkle, 2014) 

↓ NASH (Kalhan et al., 
2011) 
↓ Simvastatin treatment 
(Chen et al., 2011) 
  
  
  

Lip Essential fatty 
acid 

Docosapentaenoat
e (n3 DPA; 22:5n3) 

↑ Wine ↑ Other 
seafood                                      
↑ Oily fish 
  
  

Essential fatty acid, derived 
endogenously from omega-3 and 
6 fatty acids and in high 
concentrations in oily fish. 

↑ Eggs (Zheng, Yu, 
Alexander, Steffen, & 
Boerwinkle, 2014) 
↑ Alcohol (Zheng, Yu, 
Alexander, Steffen, & 
Boerwinkle, 2014) 

  

Lip Essential fatty 
acid 

Eicosapentaenoate 
(EPA; 20:5n3) 

↑ Oily fish 
↑ Other 
seafood 
  
  

↑ Wine 
↓ Baked goods 
↑ Avocado 
↑ High fat 
salad 
dressings 

Essential fatty acid, derived 
endogenously from α-linolenic 
acid and in high concentrations 
in oily fish. 

↑ Fish and seafood (Zheng, 
Yu, Alexander, Steffen, & 
Boerwinkle, 2014) 

↓ NASH (Kalhan et al., 
2011) 

Lip Lysolipid 1-
Docosahexaenoylg
lycerophosphocholi
ne* 

↑ Oily fish 
↑ Other 
seafood 

↑ Avocado 
↑ Green leafy 
vegetables 

Downstream product of omega-3 
essential fatty acid metabolism.  

↑ Fish (excluding shellfish), ↑ 
Healthy eating index 
(Guertin et al., 2014) 

  

Lip Lysolipid 1-
docosahexaenoylgl
ycerophosphoetha
nolamine 

  ↑ Wine Downstream product of omega-3 
essential fatty acid metabolism. 

    

Lip Lysolipid 1-
Arachidonoylglycer
ophosphoethanola
mine* 

  ↓ Oily fish  Downstream product of omega-6 
essential fatty acid metabolism. 
Lysolipids form cellular lipid 
bilayer, when cleaved by 
lipoprotein-associated 
phospholipase A2 form free 
lysophosphatidylcholines 
involved in inflammatory 
processes and may influence 
artherosclerotic plaque 
inflammation (Goncalves et al., 
2012). 

↓ HEI (Guertin et al., 2014)   

Lip Lysolipid 1-Eicosatrienoyl 
glycerophosphoch
oline* 

  ↓ Oily fish 
↓ Other 
seafood 

    ↓ Dilated cardiomyopathy 
(Alexander, Lombardi, 
Rodriguez, Mitchell, & 
Marian, 2011) 
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Table 7. Information for metabolites associated to food intakes, including biological role, previous dietary and disease associations 

Pathway Subpathway Metabolite Replicated Novel Biological role 
Previous dietary 
associations 

Previous 
disease/metabolic 
associations 

Lip Lysolipid 1-
Linoleoylglyceroph
osphoethanolamin
e* 

  ↓ Oily fish   ↓ HEI (Guertin et al., 2014) ↓ Dilated cardiomyopathy 
(Alexander et al., 2011) 

Lip Lysolipid 1-
Oleoylglycerophos
phoethanolamine 

  ↓ Oily fish     ↓ Dilated cardiomyopathy 
(Alexander et al., 2011) 

Lip Fatty acid, 
dicarboxylate 

3-Carboxy-4-
methyl-5-propyl-2-
furanpropanoate 
(CMPF) 

↑ Oily fish 
↑ Other 
seafood 
  
  
  

↑ Avocado 
↑ Green leafy 
vegetables 
  
  
  

Furan fatty acid, found in 
significant concentrations in fish. 
Thought to be a uremic toxin 
(Miyamoto et al., 2012). Though 
to induce beta cell dysfunction 
(Prentice et al., 2014). 

↑ Fish and shellfish;  
↑ Alliums (garlic and onions);  
↑ Greens: lettuce, spinach, 
green pepper (Guertin et al., 
2014) 
↑ Fish and seafood (Zheng, 
Yu, Alexander, Steffen, & 
Boerwinkle, 2014) 
↓ Dietary choline depletion 
(Sha et al., 2010) 

  

Lip Long chain 
fatty acid 

Stearidonate 
(18:4n3) 

↑ Wine   Derived endogenously from 
essential fatty acid α-linolenic 
acid.  

↑ Alcohol (Zheng, Yu, 
Alexander, Steffen, 
Nettleton, et al., 2014) 

  

Lip Long chain 
fatty acid 

10-Nonadecenoate 
(19:1n9) 

  ↑ Butter Monounsaturate of 
nonadecenoate (19:0). 

↓ Sugar-rich foods and 
beverages, dietary sucrose 
and carbohydrate (Zheng, 
Yu, Alexander, Steffen, & 
Boerwinkle, 2014) 

  

Lip Long chain 
fatty acid 

Myristate (14:0)   ↑ Butter Contained in most animal and 
vegetable fats. Higher 
concentrations in plasma 
associated with heart failure 
(Yamagishi, Nettleton, & Folsom, 
2008). 

↑ Alcohol (Zheng, Yu, 
Alexander, Steffen, 
Nettleton, et al., 2014) 

↓ T2D, IFG (Menni et al., 
2013) 

Lip Long chain 
fatty acid 

Pentadecanoate 
(15:0) 

↑ Butter   Produced by ruminal bacteria in 
livestock, found in highest 
concentrations in dairy products, 
butter and meats from ruminant 
animals. 

↑ Butter (Guertin et al., 2014) ↓ T2D, IFG (Menni et al., 
2013) 

Lip Medium chain 
fatty acid 

10-Undecenoate 
(11:1n1) 

↑ Butter   Monounsaturated fatty acid 
found in oils and animal fats and 
produced endogenously. 

↑ Butter (57) ↓ NASH, steatosis (51) 

Lip Fatty acid, 
branched 

15-Methylpalmitate 
(isobar with 2-
methylpalmitate) 

↑ Butter   Methylated long chain fatty acid, 
found to be anti-inflammatory 
and anti-fibrotic in liver disease 
animal models (Mantawy, 
Tadros, Awad, Hassan, & El-
Demerdash, 2012).  

↑ Butter, ↓ HEI (Guertin et 
al., 2014) 

↓ T2D, IFG (Menni et al., 
2013) 
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Table 7. Information for metabolites associated to food intakes, including biological role, previous dietary and disease associations 

Pathway Subpathway Metabolite Replicated Novel Biological role 
Previous dietary 
associations 

Previous 
disease/metabolic 
associations 

Lip Medium chain 
fatty acid 

Caprate (10:0)   ↑ Wine Saturated fatty acid found in oils 
and animal fats and produced 
endogenously. 

    

Lip Medium chain 
fatty acid 

Caprylate (8:0)   ↑ Wine Saturated fatty acid found in oils 
and animal fats and produced 
endogenously. 

    

Lip Phosphatidyl-
choline 

lysoPhosphatidylch
oline acyls C17:0 & 
C28:1 

  ↑ Cream       

Lip Phosphatidyl-
choline 

Phosphatidylcholin
e acyl-alkyls 
C38:1, C38:2, 
C38:3, C40:3 & 
C40:4 

  ↓ Herbal tea       

Lip Phosphatidyl-
choline 

Phosphatidylcholin
e diacyls C32:1 & 
C36:5 

  ↑ Wine   ↑ Factor 1: ↑ Fish and 
poultry, ↓ Confectionary, 
cake, cookies, desserts, 
margarine, tea, whole grain 
bread, pasta, rice and high 
fat cheese;  
↑ Factor 2: ↑ sauce and 
butter, ↓ fish, whole grain 
bread, tea, grain flakes, 
muesli (Floegel et al., 2013) 

  

Lip Phosphatidyl-
choline 

Phosphatidylcholin
e diacyls C38:6 & 
C40:6 

  ↑ Oily fish   ↑ Factor 1: ↑ Fish and 
poultry, ↓ Confectionary, 
cake, cookies, desserts, 
margarine, tea, whole grain 
bread, pasta, rice and high 
fat cheese;  
↓ Factor 2: ↑ sauce and 
butter, ↓ fish, whole grain 
bread, tea, grain flakes, 
muesli (Floegel et al., 2013) 

  

Lip Phosphatidyl-
choline 

Phosphatidylcholin
e diacyl C42:4 

  ↓ Herbal tea       

Lip Sphingomyelin Hydroxysphingomy
eline C14:1 

  ↑ Cream   ↑ Factor 1: ↑ Butter, garlic 
and coffee, ↓ Margarine, 
fresh fruit and soup; ↓ Factor 
2: ↓ Butter, sweet bread 
spreads, high fat cheese, 
fresh fruit, whole grain 
bread, desserts, cake, 
cookies, high-fat dairy 
products (Floegel et al., 
2013) 
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Table 7. Information for metabolites associated to food intakes, including biological role, previous dietary and disease associations 

Pathway Subpathway Metabolite Replicated Novel Biological role 
Previous dietary 
associations 

Previous 
disease/metabolic 
associations 

Lip Carnitine 
metabolism 

Nonanoylcarnitine*   ↑ Butter Ester of carnitine with pelargonic 
acid (C9). 

    

Lip Carnitine 
metabolism 

Octenoylcarnitine   ↑ White and 
brown bread, 
refined grains 

Acylcarnitines consist of carnitine 
and fatty acid derivatives; formed 
from mitochondrial beta-
oxidation. 

↓ Factor 1: ↑ Butter, ↓ 
Margarine and low fat 
cheese;  
↑ Factor 2: ↑ Cornflakes and 
crisps, ↓ Fish, other 
vegetable fat, whole grain 
bread, cooked vegetables, 
garlic, nuts, tea, cabbage, 
sweet bread spreads, cake, 
cookies, high fat cheese 
(Floegel et al., 2013);  

  

Lip Sterol, Steroid 4-Androsten-
3beta,17beta-diol 
disulfate 1* 

↑ Wine 
↑ Spirits and 
liquors 
  

  Sex steroid. Found to be a 
testosterone precursor and 
androgen receptor agonist (Chen 
et al., 2004).  

↑ Alcohol (Zheng, Yu, 
Alexander, Steffen, 
Nettleton, et al., 2014) 
↓ Nuts and peanut butter, 
Sugar-rich foods and 
beverages, dietary sucrose 
and carbohydrate (Zheng, 
Yu, Alexander, Steffen, & 
Boerwinkle, 2014) 
↑ Total alcohol (Guertin et 
al., 2014) 

  

Lip Sterol, Steroid 5-Alpha-androstan-
3beta,17beta-diol 
disulfate 

↑ Wine   Sex steroid. Arrests growth of 
prostate cells in mice (Weihua, 
Lathe, Warner, & Gustafsson, 
2002), promotes growth of breast 
cancer cells in vitro (Couture, 
Theriault, Simard, & Labrie, 
1993).  

↑ Alcohol (Zheng, Yu, 
Alexander, Steffen, 
Nettleton, et al., 2014) 
↓ Nuts and peanut butter, 
Sugar-rich foods and 
beverages, dietary sucrose 
and carbohydrate (Zheng, 
Yu, Alexander, Steffen, & 
Boerwinkle, 2014) 
↑ Total alcohol (Guertin et 
al., 2014) 

  

Lip Sterol, Steroid Epiandrosterone 
sulfate 

  ↑ Wine Sex steroid, also known as 
3beta-hydroxy-5alpha-
androstan-17-one sulfate. 
Downstream metabolite of 
dehydroepiandrosterone 
(DHEA).  

    

Lip Inositol 
metabolism 

Myo-inositol   ↑ Wine Contained in citrus fruits (Katz et 
al., 2011), beans, grains and 
nuts (Clements & Darnell, 1980). 

↓ Dietary choline depletion 
(Sha et al., 2010) 

↑ Insulin sensitivity (Gall et 
al., 2010) 
↑ Dilated cardiomyopathy 
(Alexander et al., 2011) 
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Table 7. Information for metabolites associated to food intakes, including biological role, previous dietary and disease associations 

Pathway Subpathway Metabolite Replicated Novel Biological role 
Previous dietary 
associations 

Previous 
disease/metabolic 
associations 

Lip Inositol 
metabolism 

Scyllo-inositol ↑ Wine ↓ Baked goods 
↓ Fried fish 
  

Contained in citrus juices and 
grapes; has been used as a 
potential Alzheimer’s treatment 
(Ma, Thomason, & McLaurin, 
2012). 

↑ Citrus fruit: oranges, 
orange juice, grapefruit; 
↑ Wine (Guertin et al., 2014) 
↑ Fruit juice (Zheng, Yu, 
Alexander, Steffen, & 
Boerwinkle, 2014) 

  

AA Butanoate 
metabolism 

2-Aminobutyrate ↑ Wine   Part of AHB-related pathway. 
AHB is a by-product of hepatic 
glutathione synthesis under 
oxidative stress (Lord & Bralley, 
2008). 

↑ Alcohol (Zheng, Yu, 
Alexander, Steffen, 
Nettleton, et al., 2014) 
↓ Sugar-rich foods and 
beverages, dietary sucrose 
and carbohydrate (Zheng, 
Yu, Alexander, Steffen, & 
Boerwinkle, 2014) 

  

AA Cysteine, 
methionine, 
SAM, taurine 
metabolism 

2-Hydroxybutyrate 
(AHB) 

↑ Wine   Part of AHB-related pathway. 
AHB is a by-product of hepatic 
glutathione synthesis under 
oxidative stress (Lord & Bralley, 
2008). 

↑ Alcohol (Zheng, Yu, 
Alexander, Steffen, 
Nettleton, et al., 2014) 
↓ Sugar-rich foods and 
beverages, dietary sucrose 
and carbohydrate (Zheng, 
Yu, Alexander, Steffen, & 
Boerwinkle, 2014) 
  

↑ T2D, IFG (Menni et al., 
2013)                   ↓ Insulin 
sensitivity (Gall et al., 
2010) 
↑ BMI (Moore, 2013)                                   
↑ Dilated cardiomyopathy 
(Alexander et al., 2011) 
  

AA Valine, leucine 
and isoleucine 
metabolism 

alpha-
Hydroxyisovalerate 

↑ Wine   Part of AHB-related pathway. 
AHB is a by-product of hepatic 
glutathione synthesis under 
oxidative stress (Lord & Bralley, 
2008). 

↑ Alcohol (Zheng, Yu, 
Alexander, Steffen, 
Nettleton, et al., 2014) 
↓ Sugar-rich foods and 
beverages, dietary sucrose 
and carbohydrate (Zheng, 
Yu, Alexander, Steffen, & 
Boerwinkle, 2014) 

↑ Dilated cardiomyopathy 
(Alexander et al., 2011) 
↑ 28-day mortality in 
critically ill patients 
(Rogers et al., 2014) 

AA Valine, leucine 
and isoleucine 
metabolism 

beta-
Hydroxyisovalerate 

  ↑ Wine Part of AHB-related pathway. 
AHB is a by-product of hepatic 
glutathione synthesis under 
oxidative stress (Lord & Bralley, 
2008). 

    

AA Valine, leucine 
and isoleucine 
metabolism 

3-Methyl-2-
oxobutyrate 

  ↑ Wine Derived from branched chain 
amino acid, precursor to leucine 
and valine synthesis. 

  ↑ T2D, IFG (Menni et al., 
2013) 
↑ BMI (Moore, 2013) 

AA Valine, leucine 
and isoleucine 
metabolism 

4-Methyl-2-
oxopentanoate 

  ↑ Wine Derived from branched chain 
amino acid, leucine, metabolism; 
accumulates, and may contribute 
to DNA damage and 
neurotoxicity, in maple-syrup 
urine disease (Mescka et al., 
2014). 

  ↑ T2D, IFG (Menni et al., 
2013)                   ↑ BMI 
(Moore, 2013)   
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Table 7. Information for metabolites associated to food intakes, including biological role, previous dietary and disease associations 

Pathway Subpathway Metabolite Replicated Novel Biological role 
Previous dietary 
associations 

Previous 
disease/metabolic 
associations 

AA Lysine 
metabolism 

Pipecolate   ↑ Wine                                                     
↓ 
Confectionary 
& jams 

Present in citrus fruits (Servillo et 
al., 2012). Thought to be formed 
primarily by gut bacterial lysine 
degradation (Fujita, Fujita, 
Kodama, Hada, & Higashino, 
2003). 

    

AA Phenylalanine 
& tyrosine 
metabolism 

3-(4-
Hydroxyphenyl)lact
ate 

  ↑ Wine The L-form is produced from 
tyrosine metabolism. The 
unusual D-form is of bacterial 
origin (Spaapen, Ketting, 
Wadman, Bruinvis, & Duran, 
1987), particularly by 
Bifidobacteria and lactobacilli, 
from dietary phenolic compounds 
and has shown to reduce 
mitochondrial and neutrophil 
ROS production (Beloborodova 
et al., 2012).  

  ↑ BMI (Moore, 2013) 

AA Phenylalanine 
& tyrosine 
metabolism 

3-
Phenylpropionate 
(hydrocinnamate) 

  ↓ Fried fish 
↓ Savoury pies 
↑ Apples & 
pears 

Formed by gut bacterial 
degradation of tyrosine (Smith & 
Macfarlane, 1996) and phenolic 
compounds (Anson et al., 2009; 
van Dorsten et al., 2012). 

  ↑ NASH vitamin E 
responders at baseline 
(62)  

AA Phenylalanine 
& tyrosine 
metabolism 

3,4-
dihydroxyphenylac
etate sulfate 

  ↓ Other 
seafood 

      

AA Tryptophan 
metabolism 

Indolepropionate   ↑ Bananas                                                
↑ Apples & 
pears 
  
  
  

Formed by gut bacterial 
degradation of tryptophan (Smith 
& Macfarlane, 1996). 
Acts as an antioxidant 
(Karbownik et al., 2001). 
  
  

↓ Eggs, ↓ Red meat (Guertin 
et al., 2014) 
↓ Dietary choline depletion 
(Sha et al., 2010) 
  
  

↑ Insulin sensitivity (Gall et 
al., 2010) 
↑ NASH vitamin E 
responders at baseline 
(Cheng, Joyce, Yates, 
Aouizerat, & Sanyal, 2012) 
↓ Dilated cardiomyopathy 
(Alexander et al., 2011) 
↓ Muscle mass indices in 
elderly (Lustgarten, Price, 
Chale, Phillips, & Fielding, 
2014) 

AA Tryptophan 
metabolism 

Tryptophan 
betaine  

  ↑ Allium 
vegetables 

Indole alkaloid found in legumes 
of Erythrina species, also called 
hypaphorine. Found to induce 
sleep in mice (Ozawa, Honda, 
Nakai, Kishida, & Ohsaki, 2008).  

↑ Peanuts (Guertin et al., 
2014) 
↑ Nuts and peanut butter 
(Zheng, Yu, Alexander, 
Steffen, & Boerwinkle, 2014) 
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Table 7. Information for metabolites associated to food intakes, including biological role, previous dietary and disease associations 

Pathway Subpathway Metabolite Replicated Novel Biological role 
Previous dietary 
associations 

Previous 
disease/metabolic 
associations 

AA Creatine 
metabolism 

Creatine   ↑ Meat 
↑ Poultry 
  

Red meat a major source; 
vegetarians have lower 
circulating levels (Delanghe et 
al., 1989).  

↓ Sugar-rich foods and 
beverages, dietary sucrose 
and carbohydrate (Zheng, 
Yu, Alexander, Steffen, & 
Boerwinkle, 2014) 

↓ Insulin sensitivity (Gall et 
al., 2010) 
↓ Steatosis vs. NASH 
(Kalhan et al., 2011) 
↑ Dilated cardiomyopathy 
(Alexander et al., 2011) 

AA Glutamate 
metabolism 

Pyroglutamine* ↓ Poultry ↓ Other 
seafood 
↓ Meat 

  ↓ Poultry (chicken) (Guertin 
et al., 2014) 
↑ Dietary choline depletion 
(Sha et al., 2010) 

↑ Active TB (Weiner et al., 
2012) 
↑ Dilated cardiomyopathy 
(Alexander et al., 2011) 

AA Urea cycle; 
arginine-, 
proline-, 
metabolism 

Trans-4-
hydroxyproline 

  ↑ Meat                                                    
↑ Processed 
meat                                    
↑ Beef burgers 

Major component of collagen; 
circulating levels increase 
following oral gelatin ingestion 
(Ohara, Matsumoto, Ito, Iwai, & 
Sato, 2007). 

↑ Dietary choline depletion 
(Sha et al., 2010) 

  

Xeno Xanthine 
metabolism 

1-Methylxanthine ↑ Coffee     ↑ Coffee (Zheng, Yu, 
Alexander, Steffen, & 
Boerwinkle, 2014) (Guertin 
et al., 2015) 
↑ β-carotene 
supplementation in smokers 
(Mondul et al., 2013) 

  

Xeno Xanthine 
metabolism 

7-Methylxanthine   ↑ Chocolate   ↑ Coffee (Zheng, Yu, 
Alexander, Steffen, & 
Boerwinkle, 2014) 
↑ Chocolate (Guertin et al., 
2014) 

  

Xeno Xanthine 
metabolism 

Theobromine ↑ Chocolate   Bitter alkaloid characteristic of 
the cacao plant. 

↑ Sugar-rich foods and 
beverages, dietary sucrose 
and carbohydrate (Zheng, 
Yu, Alexander, Steffen, & 
Boerwinkle, 2014) 
↑ Coffee (Guertin et al., 
2015) 

  

Xeno Xanthine 
metabolism 

Theophylline   ↑ Wine Theophylline is methylxanthine 
metabolite found in caffeinated 
beverages and foods but also 
administered as a treatment for 
COPD and asthma. Alcohol has 
been shown to delay plasma 
clearance of theophylline 
(Thompson, 1992). 

    

Xeno Benzoate 3-methyl catechol ↑ Coffee ↓ Black tea   ↑ Coffee (Guertin et al.,   
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Table 7. Information for metabolites associated to food intakes, including biological role, previous dietary and disease associations 

Pathway Subpathway Metabolite Replicated Novel Biological role 
Previous dietary 
associations 

Previous 
disease/metabolic 
associations 

metabolism sulfate 1 2015) 

Xeno Benzoate 
metabolism 

Catechol sulfate ↑ Coffee   Chlorogenic acid derived 
metabolite (Lang et al., 2013). 

↑ Coffee (Guertin et al., 
2014) 
↑ β-carotene 
supplementation in smokers 
(Mondul et al., 2013) 

↑ Insulin sensitivity (Gall et 
al., 2010) 

Xeno Benzoate 
metabolism 

O-methyl catechol 
sulfate 

  ↑ Coffee       

Xeno Benzoate 
metabolism 

4-
Ethylphenylsulfate 

  ↑ Soy and 
other milks 

Synthesized by gut bacteria, 
elevated in chronic kidney 
disease (Itoh, Ezawa, Kikuchi, 
Tsuruta, & Niwa, 2013);  
elevated levels may indicate 
intestinal permeability (Hsiao et 
al., 2013). 

↑ Tofu (Guertin et al., 2014)   

Xeno Benzoate 
metabolism 

Benzoate   ↑ Wine Added to foods to prevent mold 
and bacterial growth (often as 
sodium benzoate in wine). 

  ↓ BMI (Moore, 2013) 

Xeno Chemical 3-hydroxypyridine 
sulfate 

↑ Coffee ↓ Black tea   ↑ Coffee (Guertin et al., 
2015) 

  

Xeno Chemical 2-aminophenol 
sulfate 

  ↑ Porridge Benzoxazinoid metabolite 
excreted in urine following whole 
grain rye bread consumption 
(Bondia-Pons et al., 2013). 

    

Xeno Food 
component, 
Plant 

Quinate ↑ Coffee ↓ Black tea Phenolic product of chlorogenic 
acid, acts as an antioxidant 
(Lang et al., 2013). 

↑ Coffee (Guertin et al., 
2014; Zheng, Yu, Alexander, 
Steffen, & Boerwinkle, 2014) 
↓ Sugar-sweetened 
beverages: soda, fruit punch 
(Guertin et al., 2014) 

↑ Insulin sensitivity 

Xeno Food 
component, 
Plant 

Piperine ↑ Wine   Compound in black pepper with 
antioxidant effects (Srinivasan, 
2014). 

↑ Alcohol (Zheng, Yu, 
Alexander, Steffen, 
Nettleton, et al., 2014) 

  

Xeno Food 
component, 
Plant 

Ergothioneine   ↑ Mushroom 
↓ Savoury pies 

Thiol compound which enters 
human cells via the organic 
cation transporter OCTN1. Is 
found in particularly high 
concentrations in specialty 
mushrooms, oat bran and beans 
and demonstrates protection 
against copper(II)-induced 
toxicity (Ey, Schomig, & Taubert, 
2007). 

  ↓ Parkinson’s disease 
patients (Ey et al., 2007) 
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Table 7. Information for metabolites associated to food intakes, including biological role, previous dietary and disease associations 

Pathway Subpathway Metabolite Replicated Novel Biological role 
Previous dietary 
associations 

Previous 
disease/metabolic 
associations 

Xeno Food 
component, 
Plant 

Stachydrine ↑ Fruit juice 
↑ Citrus fruit 
  

  Present in citrus fruits and juices 
(Servillo, Giovane, Balestrieri, 
Cautela, & Castaldo, 2011). 

↑ Citrus fruit: oranges, 
orange juice, grapefruit 
(Guertin et al., 2014) 
↑ Fruit juice (Zheng, Yu, 
Alexander, Steffen, & 
Boerwinkle, 2014) 
↓ Dietary choline depletion 
(Sha et al., 2010) 

↑ Dilated cardiomyopathy 
(Alexander et al., 2011) 

Cho Glycolysis, 
gluconeogenes
is, pyruvate 
metabolism 

Glycerate ↑ Citrus fruit ↓ 
Confectionary 
& jams 
↑ Tomatoes 

Contained in citrus fruits (Katz et 
al., 2011) 

↑ Fruits and vegetables;  
↑ Fruit juice (Zheng, Yu, 
Alexander, Steffen, & 
Boerwinkle, 2014) 

↑ Insulin sensitivity (Gall et 
al., 2010) 

Cho Glycolysis, 
gluconeogenes
is, pyruvate 
metabolism 

1,5-Anhydroglucitol 
(1,5-AG) 

  ↑ Other 
seafood 

Marker of glycaemic control and 
of dietary origin (Yamanouchi et 
al., 1989). 

↓ β-carotene 
supplementation in smokers 
(Mondul et al., 2013) 

↓ T2D, IFG (Menni et al., 
2013) 
↓ BMI (Moore, 2013) 

Cho Nucleotide 
sugars, 
pentose 
metabolism 

Threitol   ↑ Apples and 
pears 

Primary end product of D-xylose 
metabolism. Found in the edible 
fungus Armillaria mellea, jute 
and the pigeon pea plant 
FDB002261. 

    

Vit Vitamin B6 
metabolism 

Pyridoxate   ↑ High fibre 
breakfast 
cereals 

Essential nutrient, coenzyme for 
synthesis of amino acids, 
neurotransmitters (serotonin, 
norepinephrine), sphingolipids, 
and aminolevulinic acid. 

↑ Vitamins/supplements;  
↑ Healthy eating index;  
↑ Other fruits: plums, 
apricots, peaches, prunes, 
raisins, grapes, pineapple 
(Guertin et al., 2014) 
↓ Dietary choline depletion 
(Sha et al., 2010) 

  

Pep Dipeptide Cyclo(leu-pro)   ↑ Coffee  
↓ Black tea 

Cyclo(leu-pro) is a 
diketopiperazine which 
contributes to the bitter flavor of 
roasted coffee beans (Ginz & 
Engelhardt, 2000). 

↓ Starchy vegetables: white 
potatoes, corn, and peas, ↑ 
Total alcohol (Guertin et al., 
2014) 
↑ Alcohol (Zheng, Yu, 
Alexander, Steffen, 
Nettleton, et al., 2014) 

  

Notes: Associations are reported which replicate previous findings from food intake and blood metabolite association studies and those which 
associations which we believe to be novel. Biological roles of most metabolites are defined and some previous disease associations with the 
appropriate metabolite in blood are included. 
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Table 8. List of metabolites associated with dietary patterns from the Metabolon platform 

        
Discovery Discordant Meta-analysis Unique 

to 
pattern Variable Metabolite name Pathway 

Super-
pathway Beta(SE) P Beta(SE) P Beta(SE) P 

Mediterranean 
Diet Score 

X-11315     0.117(0.010) 3.22E-28 0.085(0.018) 2.01E-06 0.109(0.009) 7.94E-34 No 

Mediterranean 
Diet Score 

X-11469     0.104(0.010) 3.86E-23 0.091(0.016) 3.08E-08 0.100(0.009) 9.16E-31 No 

Mediterranean 
Diet Score 

X-02269     0.101(0.010) 7.10E-22 0.093(0.016) 2.98E-08 0.099(0.009) 1.70E-29 No 

Mediterranean 
Diet Score 

docosahexaenoate 
(DHA; 22:6n3) 

Essential fatty acid Lipid 0.100(0.010) 5.78E-21 0.090(0.017) 3.88E-07 0.097(0.009) 2.45E-27 No 

Mediterranean 
Diet Score 

3-carboxy-4-methyl-5-
propyl-2-
furanpropanoate 
(CMPF) 

Fatty acid, 
dicarboxylate 

Lipid 0.084(0.010) 4.57E-17 0.082(0.016) 2.72E-07 0.084(0.008) 1.82E-23 No 

Mediterranean 
Diet Score 

eicosapentaenoate 
(EPA; 20:5n3) 

Essential fatty acid Lipid 0.089(0.010) 2.82E-18 0.062(0.019) 9.62E-04 0.083(0.009) 9.54E-21 No 

Mediterranean 
Diet Score 

1-
docosahexaenoylglyce
rophosphocholine* 

Lysolipid Lipid 0.084(0.011) 2.16E-15 0.068(0.018) 2.11E-04 0.080(0.009) 1.28E-18 No 

Mediterranean 
Diet Score 

indolepropionate Tryptophan 
metabolism 

Amino acid 0.086(0.011) 7.59E-16 0.054(0.018) 3.44E-03 0.078(0.009) 1.60E-17 No 

Mediterranean 
Diet Score 

X-21365 [trimethyl-N-
aminovalerate] 

    -0.076(0.011) 1.60E-12 -0.064(0.018) 3.20E-04 -0.073(0.009) 1.48E-15 No 

Mediterranean 
Diet Score 

tryptophan betaine Tryptophan 
metabolism 

Amino acid 0.089(0.012) 2.36E-13 0.068(0.022) 2.53E-03 0.084(0.011) 1.65E-15 No 

Mediterranean 
Diet Score 

X-11847     0.091(0.013) 9.97E-13 0.074(0.024) 2.38E-03 0.088(0.011) 6.32E-15 Yes 

Mediterranean 
Diet Score 

X-11381     -0.075(0.011) 5.75E-12 -0.052(0.018) 3.27E-03 -0.069(0.009) 8.27E-14 No 

Mediterranean 
Diet Score 

X-11849     0.094(0.014) 3.05E-11 0.067(0.023) 3.69E-03 0.086(0.012) 4.15E-13 Yes 

Mediterranean 
Diet Score 

X-12798     -0.067(0.011) 2.68E-09 -0.076(0.019) 8.03E-05 -0.069(0.010) 6.80E-13 No 

Mediterranean 
Diet Score 

ergothioneine Food component, 
Plant 

Xenobiotics 0.083(0.016) 1.08E-07 0.107(0.026) 4.21E-05 0.090(0.013) 1.56E-11 No 

Mediterranean 
Diet Score 

X-13477     0.060(0.012) 4.66E-07 0.086(0.021) 6.66E-05 0.067(0.010) 1.56E-10 Yes 

Mediterranean 
Diet Score 

scyllo-inositol Inositol 
metabolism 

Lipid 0.067(0.012) 1.52E-08 0.061(0.022) 5.19E-03 0.066(0.010) 2.25E-10 No 

Mediterranean 
Diet Score 

piperine Food component, 
Plant 

Xenobiotics 0.060(0.012) 4.12E-07 0.050(0.020) 1.39E-02 0.057(0.010) 1.73E-08 No 

Fruit & 
Vegetable 

X-11315     0.145(0.009) 5.48E-52 0.130(0.022) 1.20E-08 0.142(0.008) 3.87E-63 No 

Fruit & 
Vegetable 

X-11469     0.112(0.010) 3.63E-29 0.083(0.018) 1.16E-05 0.106(0.009) 3.39E-34 No 

Fruit & 
Vegetable 

X-11372     -0.109(0.009) 6.97E-32 -0.061(0.021) 4.25E-03 -0.102(0.008) 5.27E-34 No 



 

262 
 

Table 8. List of metabolites associated with dietary patterns from the Metabolon platform 

        
Discovery Discordant Meta-analysis Unique 

to 
pattern Variable Metabolite name Pathway 

Super-
pathway Beta(SE) P Beta(SE) P Beta(SE) P 

Fruit & 
Vegetable 

X-02269     0.108(0.010) 1.21E-26 0.079(0.019) 5.22E-05 0.102(0.009) 7.46E-31 No 

Fruit & 
Vegetable 

glycerate Glycolysis, 
gluconeogenesis, 
pyruvate 
metabolism 

Carbo-
hydrate 

0.094(0.010) 1.57E-21 0.094(0.019) 1.78E-06 0.094(0.009) 1.97E-27 No 

Fruit & 
Vegetable 

eicosapentaenoate 
(EPA; 20:5n3) 

Essential fatty acid Lipid 0.105(0.011) 2.63E-22 0.069(0.018) 1.66E-04 0.095(0.009) 1.86E-25 No 

Fruit & 
Vegetable 

scyllo-inositol Inositol 
metabolism 

Lipid 0.093(0.010) 1.08E-20 0.068(0.021) 1.08E-03 0.088(0.009) 2.22E-23 No 

Fruit & 
Vegetable 

ergothioneine Food component, 
Plant 

Xenobiotics 0.117(0.013) 7.72E-20 0.080(0.030) 8.94E-03 0.111(0.012) 8.16E-22 No 

Fruit & 
Vegetable 

docosahexaenoate 
(DHA; 22:6n3) 

Essential fatty acid Lipid 0.102(0.012) 5.49E-18 0.067(0.018) 1.91E-04 0.091(0.010) 6.05E-21 No 

Fruit & 
Vegetable 

threonate Ascorbate and 
aldarate 
metabolism 

Cofactors 
and vitamins 

0.080(0.009) 5.50E-17 0.090(0.022) 6.95E-05 0.081(0.009) 6.46E-21 Yes 

Fruit & 
Vegetable 

indolepropionate Tryptophan 
metabolism 

Amino acid 0.081(0.010) 1.81E-16 0.085(0.020) 3.00E-05 0.082(0.009) 8.42E-21 No 

Fruit & 
Vegetable 

1-
docosahexaenoylglyce
rophosphocholine* 

Lysolipid Lipid 0.077(0.009) 8.09E-18 0.048(0.020) 2.03E-02 0.072(0.008) 5.51E-19 No 

Fruit & 
Vegetable 

3-carboxy-4-methyl-5-
propyl-2-
furanpropanoate 
(CMPF) 

Fatty acid, 
dicarboxylate 

Lipid 0.082(0.010) 9.19E-17 0.053(0.020) 7.55E-03 0.076(0.009) 2.74E-18 No 

Fruit & 
Vegetable 

tryptophan betaine Tryptophan 
metabolism 

Amino acid 0.083(0.010) 9.57E-16 0.064(0.025) 1.06E-02 0.080(0.009) 1.94E-17 No 

Fruit & 
Vegetable 

X-14056     -0.071(0.010) 2.40E-13 -0.081(0.021) 1.29E-04 -0.073(0.009) 6.78E-17 Yes 

Fruit & 
Vegetable 

X-12056     0.094(0.012) 1.19E-14 0.086(0.029) 3.95E-03 0.093(0.011) 6.91E-17 Yes 

Fruit & 
Vegetable 

1,5-anhydroglucitol 
(1,5-AG) 

Glycolysis, 
gluconeogenesis, 
pyruvate 
metabolism 

Carbo-
hydrate 

-0.074(0.009) 2.92E-15 -0.054(0.021) 1.32E-02 -0.071(0.009) 1.02E-16 No 

Fruit & 
Vegetable 

3-phenylpropionate 
(hydrocinnamate) 

Phenylalanine & 
tyrosine 
metabolism 

Amino acid 0.077(0.011) 4.84E-12 0.089(0.020) 1.72E-05 0.080(0.010) 1.73E-16 No 

Fruit & 
Vegetable 

X-11847     0.077(0.011) 2.85E-11 0.092(0.025) 3.65E-04 0.080(0.010) 2.68E-14 Yes 

Fruit & 
Vegetable 

X-11849     0.085(0.013) 1.96E-11 0.083(0.027) 2.38E-03 0.085(0.011) 9.86E-14 Yes 

Fruit & 
Vegetable 

pipecolate Lysine metabolism Amino acid 0.060(0.009) 6.41E-11 0.057(0.020) 3.94E-03 0.059(0.008) 6.30E-13 No 

Fruit & 
Vegetable 

hippurate Benzoate 
metabolism 

Xenobiotics 0.061(0.009) 2.42E-11 0.042(0.021) 4.86E-02 0.058(0.008) 3.29E-12 Yes 
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Table 8. List of metabolites associated with dietary patterns from the Metabolon platform 

        
Discovery Discordant Meta-analysis Unique 

to 
pattern Variable Metabolite name Pathway 

Super-
pathway Beta(SE) P Beta(SE) P Beta(SE) P 

Fruit & 
Vegetable 

X-09789     0.062(0.010) 7.79E-10 0.059(0.025) 1.84E-02 0.061(0.009) 3.50E-11 No 

Fruit & 
Vegetable 

catechol sulfate Benzoate 
metabolism 

Xenobiotics 0.058(0.010) 1.78E-08 0.071(0.021) 7.28E-04 0.060(0.009) 4.21E-11 No 

Fruit & 
Vegetable 

myo-inositol Inositol 
metabolism 

Lipid 0.051(0.009) 5.14E-09 0.056(0.019) 3.08E-03 0.052(0.008) 4.43E-11 No 

Fruit & 
Vegetable 

threitol Nucleotide sugars, 
pentose 
metabolism 

Carbo-
hydrate 

0.056(0.010) 6.64E-09 0.058(0.021) 6.08E-03 0.056(0.009) 1.07E-10 No 

Fruit & 
Vegetable 

X-11261     -0.062(0.011) 2.39E-08 -0.057(0.019) 3.08E-03 -0.061(0.010) 2.08E-10 Yes 

Fruit & 
Vegetable 

X-12063     -0.047(0.009) 1.73E-07 -0.052(0.018) 4.69E-03 -0.048(0.008) 2.31E-09 Yes 

Fruit & 
Vegetable 

X-11858     0.080(0.015) 9.59E-08 0.077(0.034) 2.48E-02 0.080(0.014) 5.28E-09 No 

Fruit & 
Vegetable 

proline Urea cycle; 
arginine-, proline-, 
metabolism 

Amino acid -0.053(0.010) 2.60E-07 -0.060(0.027) 2.87E-02 -0.054(0.010) 1.95E-08 Yes 

Fruit & 
Vegetable 

N-acetylornithine Urea cycle; 
arginine-, proline-, 
metabolism 

Amino acid 0.049(0.010) 3.45E-07 0.052(0.024) 2.92E-02 0.050(0.009) 2.57E-08 Yes 

Fruit & 
Vegetable 

gamma-glutamylvaline gamma-glutamyl Peptide -0.047(0.009) 1.04E-06 -0.043(0.018) 1.71E-02 -0.046(0.008) 4.79E-08 Yes 

High Alcohol alpha-
hydroxyisovalerate 

Valine, leucine 
and isoleucine 
metabolism 

Amino acid 0.165(0.014) 1.32E-32 0.108(0.036) 3.05E-03 0.158(0.013) 2.20E-35 No 

High Alcohol X-11795     0.150(0.013) 1.93E-28 0.118(0.026) 1.02E-05 0.143(0.012) 1.19E-33 No 

High Alcohol scyllo-inositol Inositol 
metabolism 

Lipid 0.146(0.015) 2.89E-22 0.128(0.033) 1.54E-04 0.143(0.014) 4.20E-26 No 

High Alcohol piperine Food component, 
Plant 

Xenobiotics 0.133(0.015) 1.91E-18 0.084(0.026) 1.63E-03 0.121(0.013) 1.62E-20 No 

High Alcohol 4-androsten-
3beta,17beta-diol 
disulfate 1* 

Sterol, Steroid Lipid 0.113(0.015) 9.34E-14 0.157(0.031) 1.35E-06 0.122(0.014) 3.27E-19 No 

High Alcohol X-09789     -0.118(0.014) 6.15E-16 -0.107(0.030) 4.23E-04 -0.116(0.013) 4.99E-19 No 

High Alcohol ergothioneine Food component, 
Plant 

Xenobiotics 0.147(0.019) 1.65E-14 0.147(0.037) 1.21E-04 0.147(0.017) 2.44E-18 No 

High Alcohol X-11799     0.116(0.015) 9.27E-14 0.137(0.032) 4.04E-05 0.120(0.014) 6.07E-18 No 

High Alcohol X-01911     0.129(0.016) 7.26E-16 0.074(0.027) 7.15E-03 0.115(0.014) 3.77E-17 No 

High Alcohol tryptophan betaine Tryptophan 
metabolism 

Amino acid 0.129(0.016) 6.70E-16 0.069(0.030) 2.27E-02 0.116(0.014) 1.08E-16 No 

High Alcohol X-12798     -0.103(0.014) 8.77E-13 -0.086(0.025) 6.77E-04 -0.099(0.012) 1.58E-15 No 
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Table 8. List of metabolites associated with dietary patterns from the Metabolon platform 

        
Discovery Discordant Meta-analysis Unique 

to 
pattern Variable Metabolite name Pathway 

Super-
pathway Beta(SE) P Beta(SE) P Beta(SE) P 

High Alcohol 5alpha-androstan-
3beta,17beta-diol 
disulfate 

Sterol, Steroid Lipid 0.109(0.015) 1.02E-12 0.130(0.038) 7.44E-04 0.112(0.014) 1.73E-15 No 

High Alcohol X-21365 [trimethyl-N-
aminovalerate] 

    -0.083(0.013) 1.72E-10 -0.123(0.026) 4.64E-06 -0.091(0.012) 3.91E-15 No 

High Alcohol gamma-tocopherol Tocopherol 
metabolism 

Cofactors 
and vitamins 

0.107(0.015) 4.11E-13 0.062(0.029) 3.39E-02 0.098(0.013) 6.75E-14 Yes 

High Alcohol 2-aminobutyrate Butanoate 
metabolism 

Amino acid 0.088(0.014) 1.23E-10 0.109(0.030) 2.85E-04 0.092(0.012) 1.08E-13 No 

High Alcohol X-10395     0.097(0.014) 3.99E-12 0.066(0.030) 2.90E-02 0.091(0.013) 3.80E-13 No 

High Alcohol X-04495     0.090(0.014) 4.83E-11 0.079(0.026) 3.16E-03 0.088(0.012) 4.06E-13 No 

High Alcohol X-11381     -0.073(0.013) 2.04E-08 -0.096(0.028) 6.04E-04 -0.077(0.012) 4.54E-11 No 

High Alcohol X-11847     0.087(0.015) 1.42E-08 0.075(0.035) 3.16E-02 0.085(0.014) 1.11E-09 Yes 

High Alcohol 4-vinylphenol sulfate Benzoate 
metabolism 

Xenobiotics 0.078(0.014) 7.28E-08 0.074(0.027) 7.55E-03 0.077(0.013) 1.50E-09 Yes 

High Alcohol 10-undecenoate 
(11:1n1) 

Medium chain fatty 
acid 

Lipid 0.072(0.014) 4.15E-07 0.075(0.028) 7.09E-03 0.073(0.013) 8.17E-09 No 

High Alcohol X-12816     0.093(0.017) 1.19E-07 0.075(0.036) 3.97E-02 0.089(0.016) 1.22E-08 No 

High Alcohol X-12038     0.065(0.013) 9.44E-07 0.057(0.028) 4.23E-02 0.064(0.012) 1.02E-07 No 

Traditional 
English 

stachydrine Food component, 
Plant 

Xenobiotics -0.100(0.013) 1.17E-13 -0.076(0.025) 2.74E-03 -0.094(0.012) 9.94E-16 No 

Traditional 
English 

X-11315     -0.099(0.017) 4.61E-09 -0.082(0.025) 1.08E-03 -0.093(0.014) 1.68E-11 No 

Traditional 
English 

3-phenylpropionate 
(hydrocinnamate) 

Phenylalanine & 
tyrosine 
metabolism 

Amino acid -0.083(0.016) 4.19E-07 -0.089(0.025) 4.17E-04 -0.084(0.014) 5.18E-10 No 

Traditional 
English 

X-11372     0.083(0.016) 2.83E-07 0.083(0.024) 7.93E-04 0.083(0.013) 6.68E-10 No 

Traditional 
English 

creatine Creatine 
metabolism 

Amino acid 0.089(0.015) 6.26E-09 0.050(0.022) 2.63E-02 0.076(0.013) 1.19E-09 No 

Traditional 
English 

X-11381     0.072(0.014) 1.84E-07 0.070(0.026) 7.14E-03 0.072(0.012) 3.71E-09 No 

Dieting X-14473     -0.143(0.017) 3.69E-17 -0.161(0.028) 2.78E-08 -0.148(0.014) 8.46E-25 No 

Dieting X-02249     0.097(0.016) 8.79E-10 0.072(0.029) 1.35E-02 0.091(0.014) 4.01E-11 No 

Dieting quinate Food component, 
Plant 

Xenobiotics -0.098(0.017) 1.70E-08 -0.088(0.029) 2.86E-03 -0.095(0.015) 1.40E-10 No 

Dieting 4-ethylphenylsulfate Benzoate 
metabolism 

Xenobiotics 0.104(0.019) 1.01E-07 0.093(0.039) 1.84E-02 0.102(0.017) 4.89E-09 No 

Dieting X-14374     -0.088(0.017) 1.27E-07 -0.065(0.031) 3.85E-02 -0.083(0.015) 1.48E-08 No 

Low Meat 3-carboxy-4-methyl-5- Fatty acid, Lipid -0.145(0.017) 4.24E-17 -0.139(0.034) 5.26E-05 -0.144(0.015) 3.63E-21 No 
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Table 8. List of metabolites associated with dietary patterns from the Metabolon platform 

        
Discovery Discordant Meta-analysis Unique 

to 
pattern Variable Metabolite name Pathway 

Super-
pathway Beta(SE) P Beta(SE) P Beta(SE) P 

propyl-2-
furanpropanoate 
(CMPF) 

dicarboxylate 

Low Meat pyroglutamine* Glutamate 
metabolism 

Amino acid 0.102(0.016) 1.62E-10 0.162(0.024) 1.28E-10 0.120(0.013) 8.99E-20 No 

Low Meat docosahexaenoate 
(DHA; 22:6n3) 

Essential fatty acid Lipid -0.134(0.017) 4.71E-15 -0.128(0.030) 2.97E-05 -0.133(0.015) 2.65E-19 No 

Low Meat eicosapentaenoate 
(EPA; 20:5n3) 

Essential fatty acid Lipid -0.131(0.016) 2.89E-15 -0.102(0.026) 9.59E-05 -0.123(0.014) 8.44E-19 No 

Low Meat 2-aminobutyrate Butanoate 
metabolism 

Amino acid -0.114(0.017) 1.57E-11 -0.108(0.028) 1.89E-04 -0.113(0.015) 7.47E-15 No 

Low Meat X-11261     0.111(0.016) 1.30E-11 0.089(0.027) 9.83E-04 0.105(0.014) 4.20E-14 Yes 

Low Meat X-11469     -0.111(0.017) 2.74E-11 -0.106(0.035) 2.73E-03 -0.110(0.015) 1.88E-13 No 

Low Meat X-02269     -0.112(0.017) 2.97E-11 -0.097(0.032) 3.24E-03 -0.109(0.015) 2.61E-13 No 

Low Meat creatine Creatine 
metabolism 

Amino acid -0.092(0.015) 2.80E-09 -0.117(0.028) 4.24E-05 -0.098(0.014) 4.12E-13 No 

Low Meat X-02249     -0.122(0.018) 6.73E-12 -0.073(0.031) 1.99E-02 -0.110(0.015) 7.70E-13 No 

Low Meat X-11372     0.112(0.017) 1.24E-10 0.076(0.024) 1.73E-03 0.099(0.014) 1.17E-12 No 

Low Meat alpha-
hydroxyisovalerate 

Valine, leucine 
and isoleucine 
metabolism 

Amino acid -0.106(0.016) 1.24E-10 -0.078(0.027) 4.42E-03 -0.099(0.014) 2.09E-12 No 

Low Meat 15-methylpalmitate 
(isobar with 2-
methylpalmitate) 

Fatty acid, 
branched 

Lipid -0.109(0.019) 5.20E-09 -0.091(0.029) 2.06E-03 -0.104(0.016) 3.23E-11 No 

Low Meat X-11478     0.103(0.017) 3.48E-09 0.073(0.027) 6.92E-03 0.094(0.015) 9.86E-11 Yes 

Low Meat 2-hydroxybutyrate 
(AHB) 

Cysteine, 
methionine, SAM, 
taurine 
metabolism 

Amino acid -0.081(0.016) 1.70E-07 -0.095(0.028) 7.53E-04 -0.085(0.014) 4.08E-10 No 

Low Meat betaine Glycine, serine 
and threonine 
metabolism 

Amino acid 0.087(0.017) 1.90E-07 0.078(0.029) 7.05E-03 0.085(0.014) 3.87E-09 Yes 

Low Meat C-glycosyltryptophan* Tryptophan 
metabolism 

Amino acid 0.072(0.014) 3.27E-07 0.056(0.024) 1.77E-02 0.068(0.012) 1.80E-08 Yes 

Low Meat X-11521     0.086(0.017) 2.79E-07 0.064(0.028) 2.32E-02 0.080(0.014) 2.12E-08 Yes 

Low Meat X-11204     -0.081(0.016) 6.79E-07 -0.063(0.025) 1.12E-02 -0.076(0.014) 2.52E-08 Yes 

Notes: Table shows results of the linear regression analysis for the discovery population (excluding monozygotic twins discordant for each diet pattern), the MZ 
discordant twin sample and the fixed effects meta-analysis of both groups. Only significant associations are shown which includes those associations passing the 
bonferroni cut-off in the discovery and fixed effects analyses (1.08x10

-6
 = 0.05/[77 diet phenotypes x 601 detected metabolites]) and passing the 5% level of significance 

in the discordant twin group. The Metabolon platform is a non-targeted platform which identified 456 metabolites in blood for which data were available for 3559 twins. 
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Table 9. List of metabolites associated with dietary patterns from the Metabolon platform. 

Notes: Table shows results of the linear regression analysis for the discovery population (excluding monozygotic twins discordant for each diet pattern), the MZ 
discordant twin sample and the fixed effects meta-analysis of both groups. Only significant associations are shown which includes those associations passing the 
bonferroni cut-off in the discovery and fixed effects analyses (1.08x10

-6
 = 0.05/[77 diet phenotypes x 601 detected metabolites]) and in the same direction in the 

discordant twin group. The Biocrates platform is a targeted platform which measures 163 metabolites in blood for which data were available for 858 twins.   
 
 

    
Discovery Discordant Meta-analysis Unique 

to 
patterns Variable Metabolite Pathway 

Super-
pathway Beta(SE) P Beta(SE) P Beta(SE) P 

Fruit & 
Vegetable 

Octenoylcarnitine Acylcarnitines Lipid -0.052(0.009) 1.96E-08 -0.021(0.018) 0.261 -0.045(0.008) 2.09E-08 No 

Low Meat Phosphatidylcholine 
diacyl C36:5 

Glycerophospholipids Lipid -0.115(0.016) 8.26E-12 -0.028(0.032) 0.380 -0.096(0.015) 3.96E-11 No 

Low Meat Phosphatidylcholine 
diacyl C36:6 

Glycerophospholipids Lipid -0.094(0.016) 3.81E-09 -0.024(0.036) 0.510 -0.083(0.014) 8.53E-09 Yes 

Low Meat Phosphatidylcholine 
acyl-alkyl C38:6 

Glycerophospholipids Lipid -0.061(0.011) 9.29E-08 -0.016(0.023) 0.481 -0.053(0.010) 2.33E-07 Yes 

Low Meat Phosphatidylcholine 
diacyl C38:6 

Glycerophospholipids Lipid -0.067(0.013) 6.80E-07 -0.037(0.035) 0.294 -0.063(0.012) 3.91E-07 No 
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Table 10. SNP associations with diet-associated metabolites from previous genome-wide association study (Shin et al., Nat Genet. 2014 Jun;46(6):543-50) 

  
  

Diet variable-Metabolite  
(Meta-analysis result) 

   
  

SNP-Metabolite  
(Shin et al., 2014) 

Metabolite Diet variable 

Diet 
pattern 
or food Beta(SE) P 

Gene 
symbol SNP EA/OA EAF Beta(SE) P 

2-Aminobutyrate Low Meat Pattern -0.113(0.015) 7.47E-15 PPM1K rs10022462 T/C 0.45 -0.012(0.002) 4.55E-11 

2-Aminobutyrate Wine Food 0.025(0.003) 2.73E-14 SLC1A4 rs10211524 A/G 0.42 0.019(0.002) 5.59E-16 

2-Aminobutyrate Wine Food 0.025(0.003) 2.73E-14 PPM1K rs10022462 T/C 0.45 -0.012(0.002) 4.55E-11 

2-Aminobutyrate High Alcohol Pattern 0.092(0.012) 1.08E-13 SLC1A4 rs10211524 A/G 0.42 0.019(0.002) 5.59E-16 

3-(4-
Hydroxyphenyl)lactate 

Wine Food 0.018(0.003) 1.08E-09 CCDC57 rs4625783 T/C 0.43 -0.019(0.003) 3.90E-13 

3-Phenylpropionate 
(hydrocinnamate) 

Fruit & Vegetable Pattern 0.080(0.010) 1.73E-16 ACSM5 rs11647589 A/G 0.72 0.030(0.005) 2.85E-11 

3-Phenylpropionate 
(hydrocinnamate) 

Fried fish Food -0.172(0.026) 4.12E-11 ACSM5 rs11647589 A/G 0.72 0.030(0.005) 2.85E-11 

3-Phenylpropionate 
(hydrocinnamate) 

Savoury pies Food -0.231(0.037) 3.72E-10 ACSM5 rs11647589 A/G 0.72 0.030(0.005) 2.85E-11 

3-Phenylpropionate 
(hydrocinnamate) 

Traditional 
English 

Pattern -0.084(0.014) 5.18E-10 ACSM5 rs11647589 A/G 0.72 0.030(0.005) 2.85E-11 

3-Phenylpropionate 
(hydrocinnamate) 

Apples & pears Food 0.024(0.004) 1.24E-08 ACSM5 rs11647589 A/G 0.72 0.030(0.005) 2.85E-11 

alpha-
Hydroxyisovalerate 

Wine Food 0.045(0.003) 1.23E-45 HAO2 rs12141041 T/C 0.47 -0.025(0.004) 1.77E-12 

alpha-
Hydroxyisovalerate 

High Alcohol Pattern 0.158(0.013) 2.20E-35 HAO2 rs12141041 T/C 0.47 -0.025(0.004) 1.77E-12 

alpha-
Hydroxyisovalerate 

Low Meat Pattern -0.099(0.014) 2.09E-12 HAO2 rs12141041 T/C 0.47 -0.025(0.004) 1.77E-12 

Betaine Low Meat Pattern 0.085(0.014) 3.87E-09 CBS rs2851391 T/C 0.46 -0.012(0.002) 1.15E-11 

Creatine Low Meat Pattern -0.098(0.014) 4.12E-13 CPS1 rs715 T/C 0.71 -0.045(0.004) 9.63E-25 

Creatine Meat Food 0.063(0.009) 8.24E-12 CPS1 rs715 T/C 0.71 -0.045(0.004) 9.63E-25 

Creatine Poultry Food 0.083(0.013) 3.17E-11 CPS1 rs715 T/C 0.71 -0.045(0.004) 9.63E-25 

Creatine Traditional 
English 

Pattern 0.076(0.013) 1.19E-09 CPS1 rs715 T/C 0.71 -0.045(0.004) 9.63E-25 

Indolepropionate Fruit & Vegetable Pattern 0.082(0.009) 8.42E-21 ACSM2A rs1394678 T/C 0.28 -0.035(0.004) 1.70E-20 

Indolepropionate Mediterranean 
Diet Score 

Pattern 0.078(0.009) 1.60E-17 ACSM2A rs1394678 T/C 0.28 -0.035(0.004) 1.70E-20 

Indolepropionate Bananas Food 0.034(0.005) 1.05E-11 ACSM2A rs1394678 T/C 0.28 -0.035(0.004) 1.70E-20 

Indolepropionate Apples & pears Food 0.026(0.004) 2.39E-09 ACSM2A rs1394678 T/C 0.28 -0.035(0.004) 1.70E-20 

N-acetylornithine Fruit & Vegetable Pattern 0.050(0.009) 2.57E-08 NAT8 rs10206899 T/C 0.78 0.221(0.005) 4.66E-481 

proline Fruit & Vegetable Pattern -0.054(0.010) 1.95E-08 PRODH rs2540641 A/C 0.08 0.063(0.004) 2.98E-59 
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Table 10. SNP associations with diet-associated metabolites from previous genome-wide association study (Shin et al., Nat Genet. 2014 Jun;46(6):543-50) 

  
  

Diet variable-Metabolite  
(Meta-analysis result) 

   
  

SNP-Metabolite  
(Shin et al., 2014) 

Metabolite Diet variable 

Diet 
pattern 
or food Beta(SE) P 

Gene 
symbol SNP EA/OA EAF Beta(SE) P 

Pyroglutamine* Low Meat Pattern 0.120(0.013) 8.99E-20 SLC6A13 rs11613331 A/G 0.55 0.037(0.004) 2.23E-25 

Pyroglutamine* Low Meat Pattern 0.120(0.013) 8.99E-20 SLC6A20 rs17279437 A/G 0.10 0.059(0.006) 1.25E-20 

Pyroglutamine* Poultry Food -0.091(0.013) 1.36E-12 SLC6A13 rs11613331 A/G 0.55 0.037(0.004) 2.23E-25 

Pyroglutamine* Poultry Food -0.091(0.013) 1.36E-12 SLC6A20 rs17279437 A/G 0.10 0.059(0.006) 1.25E-20 

Pyroglutamine* Other seafood Food -0.099(0.014) 5.22E-12 SLC6A13 rs11613331 A/G 0.55 0.037(0.004) 2.23E-25 

Pyroglutamine* Other seafood Food -0.099(0.014) 5.22E-12 SLC6A20 rs17279437 A/G 0.10 0.059(0.006) 1.25E-20 

Pyroglutamine* Meat Food -0.062(0.010) 2.10E-10 SLC6A13 rs11613331 A/G 0.55 0.037(0.004) 2.23E-25 

Pyroglutamine* Meat Food -0.062(0.010) 2.10E-10 SLC6A20 rs17279437 A/G 0.10 0.059(0.006) 1.25E-20 

Tryptophan betaine Fruit & Vegetable Pattern 0.080(0.009) 1.94E-17 SLC22A4 rs2405522 A/G 0.17 -0.126(0.011) 4.49E-29 

Tryptophan betaine High Alcohol Pattern 0.116(0.014) 1.08E-16 SLC22A4 rs2405522 A/G 0.17 -0.126(0.011) 4.49E-29 

Tryptophan betaine Mediterranean 
Diet Score 

Pattern 0.084(0.011) 1.65E-15 SLC22A4 rs2405522 A/G 0.17 -0.126(0.011) 4.49E-29 

Tryptophan betaine  Allium vegetables Food 0.034(0.006) 4.73E-09 SLC22A4 rs2405522 A/G 0.17 -0.126(0.011) 4.49E-29 

1,5-anhydroglucitol 
(1,5-AG) 

Fruit & Vegetable Pattern -0.071(0.009) 1.02E-16 RAB3GA
P1 

rs7570971 A/C 0.33 -0.037(0.003) 7.86E-45 

1,5-Anhydroglucitol 
(1,5-AG) 

Fruit & Vegetable Pattern -0.071(0.009) 1.02E-16 MGAM rs3800993 T/C 0.17 0.029(0.004) 1.53E-15 

1,5-Anhydroglucitol 
(1,5-AG) 

Other seafood Food -0.081(0.014) 1.80E-08 RAB3GA
P1 

rs7570971 A/C 0.33 -0.037(0.003) 7.86E-45 

1,5-Anhydroglucitol 
(1,5-AG) 

Other seafood Food -0.081(0.014) 1.80E-08 MGAM rs3800993 T/C 0.17 0.029(0.004) 1.53E-15 

1-
Arachidonoylglyceroph
osphoethanolamine* 

Oily fish Food -0.097(0.015) 9.46E-11 FADS1 rs174578 A/T 0.66 0.056(0.003) 1.86E-94 

1-
Arachidonoylglyceroph
osphoethanolamine* 

Oily fish Food -0.097(0.015) 9.46E-11 SLCO1B
1 

rs4149056 T/C 0.84 -0.040(0.003) 3.66E-31 

1-
Eicosatrienoylglycerop
hosphocholine* 

Oily fish Food -0.095(0.014) 1.12E-11 FADS1 rs968567 T/C 0.18 0.040(0.005) 2.84E-19 

1-
Eicosatrienoylglycerop
hosphocholine* 

Other seafood Food -0.082(0.014) 8.44E-09 FADS1 rs968567 T/C 0.18 0.040(0.005) 2.84E-19 

1-
Linoleoylglycerophosp
hoethanolamine* 

Oily fish Food -0.089(0.015) 1.60E-09 FADS1 rs174535 T/C 0.67 -0.044(0.004) 2.82E-36 

10-Undecenoate 
(11:1n1) 

Butter Food 0.020(0.003) 2.35E-11 CYP4A11 rs9333029 A/G 0.87 -0.070(0.004) 1.52E-61 
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Table 10. SNP associations with diet-associated metabolites from previous genome-wide association study (Shin et al., Nat Genet. 2014 Jun;46(6):543-50) 

  
  

Diet variable-Metabolite  
(Meta-analysis result) 

   
  

SNP-Metabolite  
(Shin et al., 2014) 

Metabolite Diet variable 

Diet 
pattern 
or food Beta(SE) P 

Gene 
symbol SNP EA/OA EAF Beta(SE) P 

10-Undecenoate 
(11:1n1) 

High Alcohol Pattern 0.073(0.013) 8.17E-09 CYP4A11 rs9333029 A/G 0.87 -0.070(0.004) 1.52E-61 

4-Androsten-
3beta,17beta-diol 
disulfate 1* 

Wine Food 0.041(0.003) 1.50E-31 SULT2A1 rs296396 T/C 0.17 -0.175(0.009) 1.48E-92 

4-Androsten-
3beta,17beta-diol 
disulfate 1* 

High Alcohol Pattern 0.122(0.014) 3.27E-19 SULT2A1 rs296396 T/C 0.17 -0.175(0.009) 1.48E-92 

4-Androsten-
3beta,17beta-diol 
disulfate 1* 

Spirits and liquors Food 0.040(0.007) 4.30E-09 SULT2A1 rs296396 T/C 0.17 -0.175(0.009) 1.48E-92 

5-Alpha-androstan-
3beta,17beta-diol 
disulfate 

Wine Food 0.036(0.004) 2.71E-24 CYP3A5 rs10278040 A/G 0.04 -0.190(0.017) 1.17E-29 

5-Alpha-androstan-
3beta,17beta-diol 
disulfate 

Wine Food 0.036(0.004) 2.71E-24 SULT2A1 rs2547231 A/C 0.83 0.081(0.008) 3.35E-22 

5-Alpha-androstan-
3beta,17beta-diol 
disulfate 

Wine Food 0.036(0.004) 2.71E-24 ZCWPW1 rs13222543 T/C 0.02 -0.263(0.028) 1.18E-20 

5-Alpha-androstan-
3beta,17beta-diol 
disulfate 

High Alcohol Pattern 0.112(0.014) 1.73E-15 CYP3A5 rs10278040 A/G 0.04 -0.190(0.017) 1.17E-29 

5-Alpha-androstan-
3beta,17beta-diol 
disulfate 

High Alcohol Pattern 0.112(0.014) 1.73E-15 SULT2A1 rs2547231 A/C 0.83 0.081(0.008) 3.35E-22 

5-Alpha-androstan-
3beta,17beta-diol 
disulfate 

High Alcohol Pattern 0.112(0.014) 1.73E-15 ZCWPW1 rs13222543 T/C 0.02 -0.263(0.028) 1.18E-20 

Docosapentaenoate 
(n3 DPA; 22:5n3) 

Wine Food 0.024(0.003) 5.28E-15 FADS1 rs174538 A/G 0.30 -0.026(0.004) 8.90E-14 

Docosapentaenoate 
(n3 DPA; 22:5n3) 

Other seafood Food 0.089(0.013) 3.44E-11 FADS1 rs174538 A/G 0.30 -0.026(0.004) 8.90E-14 

Docosapentaenoate 
(n3 DPA; 22:5n3) 

Oily fish Food 0.080(0.013) 2.22E-10 FADS1 rs174538 A/G 0.30 -0.026(0.004) 8.90E-14 

Eicosapentaenoate 
(EPA; 20:5n3) 

Oily fish Food 0.169(0.014) 1.57E-33 FADS1 rs174556 T/C 0.30 -0.036(0.004) 1.97E-22 

Eicosapentaenoate 
(EPA; 20:5n3) 

Fruit & Vegetable Pattern 0.095(0.009) 1.86E-25 FADS1 rs174556 T/C 0.30 -0.036(0.004) 1.97E-22 

Eicosapentaenoate 
(EPA; 20:5n3) 

Other seafood Food 0.154(0.015) 2.66E-24 FADS1 rs174556 T/C 0.30 -0.036(0.004) 1.97E-22 

Eicosapentaenoate 
(EPA; 20:5n3) 

Wine Food 0.027(0.003) 6.63E-22 FADS1 rs174556 T/C 0.30 -0.036(0.004) 1.97E-22 
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Table 10. SNP associations with diet-associated metabolites from previous genome-wide association study (Shin et al., Nat Genet. 2014 Jun;46(6):543-50) 

  
  

Diet variable-Metabolite  
(Meta-analysis result) 

   
  

SNP-Metabolite  
(Shin et al., 2014) 

Metabolite Diet variable 

Diet 
pattern 
or food Beta(SE) P 

Gene 
symbol SNP EA/OA EAF Beta(SE) P 

Eicosapentaenoate 
(EPA; 20:5n3) 

Mediterranean 
Diet Score 

Pattern 0.083(0.009) 9.54E-21 FADS1 rs174556 T/C 0.30 -0.036(0.004) 1.97E-22 

Eicosapentaenoate 
(EPA; 20:5n3) 

Low Meat Pattern -0.123(0.014) 8.44E-19 FADS1 rs174556 T/C 0.30 -0.036(0.004) 1.97E-22 

Eicosapentaenoate 
(EPA; 20:5n3) 

Baked goods Food -0.014(0.002) 1.08E-12 FADS1 rs174556 T/C 0.30 -0.036(0.004) 1.97E-22 

Eicosapentaenoate 
(EPA; 20:5n3) 

Avocado Food 0.108(0.018) 2.01E-09 FADS1 rs174556 T/C 0.30 -0.036(0.004) 1.97E-22 

Eicosapentaenoate 
(EPA; 20:5n3) 

High fat salad 
dressings 

Food 0.044(0.008) 5.48E-08 FADS1 rs174556 T/C 0.30 -0.036(0.004) 1.97E-22 

Epiandrosterone 
sulfate 

Wine Food 0.018(0.003) 6.29E-09 CYP3A5 rs11974702 A/G 0.91 0.184(0.010) 2.80E-75 

Epiandrosterone 
sulfate 

Wine Food 0.018(0.003) 6.29E-09 ZCWPW1 rs13222543 T/C 0.02 -0.347(0.024) 3.31E-47 

Myo-inositol Wine Food 0.022(0.003) 1.36E-15 SLC5A11 rs4788439 T/C 0.08 -0.027(0.004) 6.59E-13 

Myo-inositol Fruit & Vegetable Pattern 0.052(0.008) 4.43E-11 SLC5A11 rs4788439 T/C 0.08 -0.027(0.004) 6.59E-13 

Nonanoylcarnitine* Butter Food 0.026(0.003) 6.48E-17 ACADL rs3738934 T/C 0.62 -0.106(0.004) 1.21E-134 

Nonanoylcarnitine* Butter Food 0.026(0.003) 6.48E-17 THEM4 rs12566232 A/C 0.71 -0.045(0.005) 5.69E-19 

Scyllo-inositol Wine Food 0.052(0.003) 1.47E-49 SLC5A11 rs4787294 A/T 0.93 0.075(0.008) 9.64E-21 

Scyllo-inositol High Alcohol Pattern 0.143(0.014) 4.20E-26 SLC5A11 rs4787294 A/T 0.93 0.075(0.008) 9.64E-21 

Scyllo-inositol Fruit & Vegetable Pattern 0.088(0.009) 2.22E-23 SLC5A11 rs4787294 A/T 0.93 0.075(0.008) 9.64E-21 

Scyllo-inositol Baked goods Food -0.017(0.003) 1.44E-10 SLC5A11 rs4787294 A/T 0.93 0.075(0.008) 9.64E-21 

Scyllo-inositol Mediterranean 
Diet Score 

Pattern 0.066(0.010) 2.25E-10 SLC5A11 rs4787294 A/T 0.93 0.075(0.008) 9.64E-21 

Scyllo-inositol Fried fish Food -0.154(0.026) 4.44E-09 SLC5A11 rs4787294 A/T 0.93 0.075(0.008) 9.64E-21 

Stearidonate (18:4n3) Wine Food 0.019(0.003) 3.17E-10 FADS1 rs174601 T/C 0.34 -0.034(0.004) 7.93E-16 

1-Methylxanthine Coffee Food 0.010(0.002) 3.31E-09 NAT2 rs4921914 T/C 0.78 0.088(0.005) 1.09E-60 

X-01911 High Alcohol Pattern 0.115(0.014) 3.77E-17 COMT rs4680 A/G 0.51 -0.044(0.006) 1.31E-13 

X-01911 Wine Food 0.026(0.003) 2.55E-14 COMT rs4680 A/G 0.51 -0.044(0.006) 1.31E-13 

X-02249 Butter Food 0.026(0.003) 2.31E-16 CYP2C8 rs1934955 A/G 0.71 -0.030(0.004) 3.33E-16 

X-02249 Low Meat Pattern -0.110(0.015) 7.70E-13 CYP2C8 rs1934955 A/G 0.71 -0.030(0.004) 3.33E-16 

X-02249 Dieting Pattern 0.091(0.014) 4.01E-11 CYP2C8 rs1934955 A/G 0.71 -0.030(0.004) 3.33E-16 

X-02269 Oily fish Food 0.175(0.013) 1.44E-38 CYP2C8 rs2071426 T/C 0.71 0.055(0.007) 6.87E-14 

X-02269 Fruit & Vegetable Pattern 0.102(0.009) 7.46E-31 CYP2C8 rs2071426 T/C 0.71 0.055(0.007) 6.87E-14 
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Table 10. SNP associations with diet-associated metabolites from previous genome-wide association study (Shin et al., Nat Genet. 2014 Jun;46(6):543-50) 

  
  

Diet variable-Metabolite  
(Meta-analysis result) 

   
  

SNP-Metabolite  
(Shin et al., 2014) 

Metabolite Diet variable 

Diet 
pattern 
or food Beta(SE) P 

Gene 
symbol SNP EA/OA EAF Beta(SE) P 

X-02269 Other fish and 
seafood 

Food 0.174(0.015) 9.25E-31 CYP2C8 rs2071426 T/C 0.71 0.055(0.007) 6.87E-14 

X-02269 Mediterranean 
Diet Score 

Pattern 0.099(0.009) 1.70E-29 CYP2C8 rs2071426 T/C 0.71 0.055(0.007) 6.87E-14 

X-02269 Avocado Food 0.147(0.019) 6.33E-15 CYP2C8 rs2071426 T/C 0.71 0.055(0.007) 6.87E-14 

X-02269 Green leafy 
vegetables 

Food 0.030(0.004) 2.39E-13 CYP2C8 rs2071426 T/C 0.71 0.055(0.007) 6.87E-14 

X-02269 Low Meat Pattern -0.109(0.015) 2.61E-13 CYP2C8 rs2071426 T/C 0.71 0.055(0.007) 6.87E-14 

X-02269 High fibre 
breakfast cereals 

Food 0.030(0.004) 3.63E-12 CYP2C8 rs2071426 T/C 0.71 0.055(0.007) 6.87E-14 

X-02269 Allium vegetables Food 0.023(0.004) 3.55E-08 CYP2C8 rs2071426 T/C 0.71 0.055(0.007) 6.87E-14 

X-08402 Butter Food 0.017(0.003) 7.17E-10 SGPP1 rs7157785 T/G 0.16 0.068(0.003) 7.23E-87 

X-08402 Butter Food 0.017(0.003) 7.17E-10 SPTLC3 rs4814176 T/C 0.39 0.022(0.003) 2.97E-17 

X-09789 Porridge Food 0.094(0.008) 4.96E-33 SLC51A rs7642243 C/G 0.39 0.048(0.006) 7.5E-16 

X-09789 High Alcohol Pattern -0.116(0.013) 4.99E-19 SLC51A rs7642243 C/G 0.39 0.048(0.006) 7.50E-16 

X-09789 High fibre 
breakfast cereals 

Food 0.038(0.005) 7.28E-14 SLC51A rs7642243 C/G 0.39 0.048(0.006) 7.5E-16 

X-09789 Fruit & Vegetable Pattern 0.061(0.009) 3.50E-11 SLC51A rs7642243 C/G 0.39 0.048(0.006) 7.50E-16 

X-09789 Apples & pears Food 0.020(0.004) 2.22E-08 SLC51A rs7642243 C/G 0.39 0.048(0.006) 7.5E-16 

X-09789 Wholemeal 
bread, grains 

Food 0.015(0.003) 6.03E-08 SLC51A rs7642243 C/G 0.39 0.048(0.006) 7.5E-16 

X-10395 Wine Food 0.031(0.003) 3.45E-26 NR1I3 rs4073054 A/C 0.63 0.016(0.002) 4.42E-19 

X-10395 High Alcohol Pattern 0.091(0.013) 3.80E-13 NR1I3 rs4073054 A/C 0.63 0.016(0.002) 4.42E-19 

X-10510 Butter Food 0.022(0.003) 8.28E-15 SGPP1 rs7157785 T/G 0.86 -0.044(0.004) 3.41E-37 

X-11261 Low Meat Pattern 0.105(0.014) 4.20E-14 SLC22A1 rs662138 C/G 0.83 0.063(0.006) 9.38E-25 

X-11261 Low Meat Pattern 0.105(0.014) 4.20E-14 SLC16A9 rs1171614 T/C 0.22 -0.042(0.006) 6.68E-14 

X-11261 Fruit & Vegetable Pattern -0.061(0.010) 2.08E-10 SLC22A1 rs662138 C/G 0.83 0.063(0.006) 9.38E-25 

X-11261 Fruit & Vegetable Pattern -0.061(0.010) 2.08E-10 SLC16A9 rs1171614 T/C 0.22 -0.042(0.006) 6.68E-14 

X-11315 Fruit & Vegetable Pattern 0.142(0.008) 3.87E-63 SLC6A20 rs4327428 A/C 0.11 -0.031(0.004) 2.81E-12 

X-11315 Mediterranean 
Diet Score 

Pattern 0.109(0.009) 7.94E-34 SLC6A20 rs4327428 A/C 0.11 -0.031(0.004) 2.81E-12 

X-11315 Nuts Food 0.054(0.005) 3.75E-25 SLC6A20 rs4327428 A/C 0.11 -0.031(0.004) 2.81E-12 

X-11315 Apples & pears Food 0.035(0.004) 9.63E-20 SLC6A20 rs4327428 A/C 0.11 -0.031(0.004) 2.81E-12 
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Table 10. SNP associations with diet-associated metabolites from previous genome-wide association study (Shin et al., Nat Genet. 2014 Jun;46(6):543-50) 

  
  

Diet variable-Metabolite  
(Meta-analysis result) 

   
  

SNP-Metabolite  
(Shin et al., 2014) 

Metabolite Diet variable 

Diet 
pattern 
or food Beta(SE) P 

Gene 
symbol SNP EA/OA EAF Beta(SE) P 

X-11315 Oily fish Food 0.106(0.014) 1.62E-14 SLC6A20 rs4327428 A/C 0.11 -0.031(0.004) 2.81E-12 

X-11315 Berries Food 0.103(0.013) 2.70E-14 SLC6A20 rs4327428 A/C 0.11 -0.031(0.004) 2.81E-12 

X-11315 Peaches Food 0.127(0.017) 5.92E-14 SLC6A20 rs4327428 A/C 0.11 -0.031(0.004) 2.81E-12 

X-11315 Green leafy 
vegetables 

Food 0.033(0.005) 1.71E-12 SLC6A20 rs4327428 A/C 0.11 -0.031(0.004) 2.81E-12 

X-11315 White and brown 
bread, refined 
grains 

Food -0.017(0.002) 1.84E-12 SLC6A20 rs4327428 A/C 0.11 -0.031(0.004) 2.81E-12 

X-11315 Confectionary & 
jams 

Food -0.010(0.001) 1.53E-11 SLC6A20 rs4327428 A/C 0.11 -0.031(0.004) 2.81E-12 

X-11315 Traditional 
English 

Pattern -0.093(0.014) 1.68E-11 SLC6A20 rs4327428 A/C 0.11 -0.031(0.004) 2.81E-12 

X-11315 Savoury pies Food -0.221(0.034) 9.08E-11 SLC6A20 rs4327428 A/C 0.11 -0.031(0.004) 2.81E-12 

X-11315 Citrus fruit Food 0.026(0.004) 6.50E-10 SLC6A20 rs4327428 A/C 0.11 -0.031(0.004) 2.81E-12 

X-11315 Fried fish Food -0.164(0.027) 1.54E-09 SLC6A20 rs4327428 A/C 0.11 -0.031(0.004) 2.81E-12 

X-11315 High fibre 
breakfast cereals 

Food 0.030(0.005) 2.75E-09 SLC6A20 rs4327428 A/C 0.11 -0.031(0.004) 2.81E-12 

X-11315 Baked goods Food -0.012(0.002) 2.90E-08 SLC6A20 rs4327428 A/C 0.11 -0.031(0.004) 2.81E-12 

X-11381 Mediterranean 
Diet Score 

Pattern -0.069(0.009) 8.27E-14 SLC16A9 rs12356193 A/G 0.84 0.024(0.003) 8.36E-20 

X-11381 High Alcohol Pattern -0.077(0.012) 4.54E-11 SLC16A9 rs12356193 A/G 0.84 0.024(0.003) 8.36E-20 

X-11381 Processed meats Food 0.049(0.008) 4.74E-10 SLC16A9 rs12356193 A/G 0.84 0.024(0.003) 8.36E-20 

X-11381 Traditional 
English 

Pattern 0.072(0.012) 3.71E-09 SLC16A9 rs12356193 A/G 0.84 0.024(0.003) 8.36E-20 

X-11381 Soy foods Food -0.108(0.020) 5.80E-08 SLC16A9 rs12356193 A/G 0.84 0.024(0.003) 8.36E-20 

X-11469 Oily fish Food 0.176(0.013) 5.87E-39 CYP2C8 rs2071426 T/C 0.71 0.052(0.007) 3.97E-14 

X-11469 Oily fish Food 0.176(0.013) 5.87E-39 SLC17A3 rs11754288 A/G 0.44 0.043(0.006) 1.88E-12 

X-11469 Fruit & Vegetable Pattern 0.106(0.009) 3.39E-34 CYP2C8 rs2071426 T/C 0.71 0.052(0.007) 3.97E-14 

X-11469 Other fish and 
seafood 

Food 0.175(0.015) 2.99E-31 CYP2C8 rs2071426 T/C 0.71 0.052(0.007) 3.97E-14 

X-11469 Other fish and 
seafood 

Food 0.175(0.015) 2.99E-31 SLC17A3 rs11754288 A/G 0.44 0.043(0.006) 1.88E-12 

X-11469 Mediterranean 
Diet Score 

Pattern 0.100(0.009) 9.16E-31 CYP2C8 rs2071426 T/C 0.71 0.052(0.007) 3.97E-14 

X-11469 Avocado Food 0.153(0.019) 9.36E-16 CYP2C8 rs2071426 T/C 0.71 0.052(0.007) 3.97E-14 

X-11469 Avocado Food 0.153(0.019) 9.36E-16 SLC17A3 rs11754288 A/G 0.44 0.043(0.006) 1.88E-12 
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Table 10. SNP associations with diet-associated metabolites from previous genome-wide association study (Shin et al., Nat Genet. 2014 Jun;46(6):543-50) 

  
  

Diet variable-Metabolite  
(Meta-analysis result) 

   
  

SNP-Metabolite  
(Shin et al., 2014) 

Metabolite Diet variable 

Diet 
pattern 
or food Beta(SE) P 

Gene 
symbol SNP EA/OA EAF Beta(SE) P 

X-11469 Green leafy 
vegetables 

Food 0.030(0.004) 5.66E-14 CYP2C8 rs2071426 T/C 0.71 0.052(0.007) 3.97E-14 

X-11469 Green leafy 
vegetables 

Food 0.030(0.004) 5.66E-14 SLC17A3 rs11754288 A/G 0.44 0.043(0.006) 1.88E-12 

X-11469 Low Meat Pattern -0.110(0.015) 1.88E-13 SLC17A3 rs11754288 A/G 0.44 0.043(0.006) 1.88E-12 

X-11469 High fibre 
breakfast cereals 

Food 0.031(0.004) 5.40E-13 CYP2C8 rs2071426 T/C 0.71 0.052(0.007) 3.97E-14 

X-11469 High fibre 
breakfast cereals 

Food 0.031(0.004) 5.40E-13 SLC17A3 rs11754288 A/G 0.44 0.043(0.006) 1.88E-12 

X-11478 Low Meat Pattern 0.094(0.015) 9.86E-11 ACSM2A rs6497490 T/G 0.88 -0.082(0.008) 4.95E-27 

X-11550 Wine Food 0.018(0.003) 3.94E-11 CETP rs247616 T/C 0.32 0.010(0.001) 1.11E-11 

X-11799 Wine Food 0.033(0.003) 1.66E-27 GBA3 rs3099557 A/G 0.85 -0.148(0.011) 1.83E-39 

X-11799 High Alcohol Pattern 0.120(0.014) 6.07E-18 GBA3 rs3099557 A/G 0.85 -0.148(0.011) 1.83E-39 

X-11799 Baked goods Food -0.017(0.003) 4.88E-09 GBA3 rs3099557 A/G 0.85 -0.148(0.011) 1.83E-39 

X-12038 Wine Food 0.022(0.003) 9.20E-13 CETP rs1800775 A/C 0.50 0.013(0.002) 1.02E-11 

X-12038 High Alcohol Pattern 0.064(0.012) 1.02E-07 CETP rs1800775 A/C 0.50 0.013(0.002) 1.02E-11 

X-12063 Fruit & Vegetable Pattern -0.048(0.008) 2.31E-09 CYP3A5 rs10242455 A/G 0.93 0.221(0.010) 1.67E-109 

X-12063 Fruit & Vegetable Pattern -0.048(0.008) 2.31E-09 SLCO1B
1 

rs4149056 T/C 0.84 -0.118(0.007) 1.26E-73 

X-12627 Wine Food 0.022(0.003) 5.88E-15 ELOVL2 rs4713169 C/G 0.42 -0.032(0.004) 2.87E-14 

X-12627 Oily fish Food 0.073(0.012) 5.74E-09 ELOVL2 rs4713169 C/G 0.42 -0.032(0.004) 2.87E-14 

X-12798 Low fat milk Food 0.062(0.008) 1.24E-15 SLC22A1 rs316019 A/C 0.09 -0.181(0.005) 1.56E-259 

X-12798 Low fat milk Food 0.062(0.008) 1.24E-15 SLC16A9 rs1171615 T/C 0.78 -0.048(0.004) 3.19E-34 

X-12798 High Alcohol Pattern -0.099(0.012) 1.58E-15 SLC22A1 rs316019 A/C 0.09 -0.181(0.005) 1.56E-259 

X-12798 Mediterranean 
Diet Score 

Pattern -0.069(0.010) 6.80E-13 SLC16A9 rs1171615 T/C 0.78 -0.048(0.004) 3.19E-34 

X-13477 Mediterranean 
Diet Score 

Pattern 0.067(0.010) 1.56E-10 NAT8 rs10206899 T/C 0.78 0.025(0.003) 1.73E-14 

X-14473 Coffee Food 0.038(0.001) 6.12E-
187 

CYP2C9 rs4986894 T/C 0.84 -0.042(0.006) 5.55E-12 

X-14473 Black tea Food -0.024(0.001) 1.36E-72 CYP2C9 rs4986894 T/C 0.84 -0.042(0.006) 5.55E-12 

X-14473 Dieting Pattern -0.148(0.014) 8.46E-25 CYP2C9 rs4986894 T/C 0.84 -0.042(0.006) 5.55E-12 

X-21365 [trimethyl-N-
aminovalerate] 

Low fat milk Food 0.076(0.007) 9.36E-27 SLC22A4 rs273913 T/C 0.38 0.026(0.003) 1.08E-25 
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Table 10. SNP associations with diet-associated metabolites from previous genome-wide association study (Shin et al., Nat Genet. 2014 Jun;46(6):543-50) 

  
  

Diet variable-Metabolite  
(Meta-analysis result) 

   
  

SNP-Metabolite  
(Shin et al., 2014) 

Metabolite Diet variable 

Diet 
pattern 
or food Beta(SE) P 

Gene 
symbol SNP EA/OA EAF Beta(SE) P 

X-21365 [trimethyl-N-
aminovalerate] 

Low fat milk Food 0.076(0.007) 9.36E-27 MARCH8 rs2291429 A/C 0.76 0.017(0.003) 8.69E-11 

X-21365 [trimethyl-N-
aminovalerate] 

Mediterranean 
Diet Score 

Pattern -0.073(0.009) 1.48E-15 SLC22A4 rs273913 T/C 0.38 0.026(0.003) 1.08E-25 

X-21365 [trimethyl-N-
aminovalerate] 

Mediterranean 
Diet Score 

Pattern -0.073(0.009) 1.48E-15 MARCH8 rs2291429 A/C 0.76 0.017(0.003) 8.69E-11 

X-21365 [trimethyl-N-
aminovalerate] 

High Alcohol Pattern -0.091(0.012) 3.91E-15 SLC22A4 rs273913 T/C 0.38 0.026(0.003) 1.08E-25 

X-21365 [trimethyl-N-
aminovalerate] 

High Alcohol Pattern -0.091(0.012) 3.91E-15 MARCH8 rs2291429 A/C 0.76 0.017(0.003) 8.69E-11 

Notes: Statistics are reported for the most associated metabolite at each single nucleotide polymorphism (SNP) for those metabolites associated with food intakes and 
diet patterns. The genome-wide association study was previously performed on the TwinsUK and KORA blood metabolite datasets (Shin et al., Nat Genet. 2014 
Jun;46(6):543-50). EA/OA = effect/other allele; EAF = effect allele frequency.
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Table 11. Diet-SNP associations with SNPs associated with metabolites from a previous genome-wide association study (Shin et al., Nat 
Genet. 2014 Jun;46(6):543-50) 

   

Food Group-Metabolite  
(Meta-analysis result) 

 

SNP-Metabolite         
(Shin et al., 2014) Food variable-SNP 

 

Metabolite Diet variable 

Diet 
pattern 
or food Beta(SE) P SNP Beta(SE) P Beta(SE) P 

Gene 
symbol 

3-Phenylpropionate 
(hydrocinnamate) 

Fruit & 
Vegetable 

Pattern 0.080(0.010) 1.73E-16 rs11647589 0.030(0.005) 2.85E-11 0.140(0.059) 1.80E-02 ACSM5 

3-Phenylpropionate 
(hydrocinnamate) 

Savoury pies Food -0.231(0.037) 3.72E-10 rs11647589 0.030(0.005) 2.85E-11 -0.023(0.012) 4.76E-02 ACSM5 

Indolepropionate Fruid & 
Vegetable 

Pattern 0.082(0.009) 8.42E-21 rs1394678 -0.035(0.004) 1.70E-20 0.163(0.065) 1.20E-02 ACSM2A 

Indolepropionate Mediterranean 
Diet Score 

Pattern 0.078(0.009) 1.60E-17 rs1394678 -0.035(0.004) 1.70E-20 0.125(0.053) 1.80E-02 ACSM2A 

Pyroglutamine* Meat Food -0.062(0.010) 2.10E-10 rs17279437 0.059(0.006) 1.25E-20 -0.142(0.069) 3.95E-02 SLC6A20 
1,5-Anhydroglucitol 
(1,5-AG) 

Other seafood Food -0.081(0.014) 1.80E-08 rs3800993 0.029(0.004) 1.53E-15 -0.090(0.034) 8.51E-03 MGAM 

5-Alpha-androstan-
3beta,17beta-diol 
disulfate 

High Alcohol Pattern 0.112(0.014) 1.73E-15 rs10278040 -0.190(0.017) 1.17E-29 0.198(0.077) 1.10E-02 CYP3A5 

5-Alpha-androstan-
3beta,17beta-diol 
disulfate 

High Alcohol Pattern 0.112(0.014) 1.73E-15 rs13222543 -0.263(0.028) 1.18E-20 0.301(0.129) 2.00E-02 ZCWPW1 

Myo-inositol Wine Food 0.022(0.003) 1.36E-15 rs4788439 -0.027(0.004) 6.59E-13 -0.654(0.236) 5.59E-03 SLC5A11 
Scyllo-inositol Fried fish Food -0.154(0.026) 4.44E-09 rs4787294 0.075(0.008) 9.64E-21 0.088(0.035) 1.25E-02 SLC5A11 
Scyllo-inositol Wine Food 0.052(0.003) 1.47E-49 rs4787294 0.075(0.008) 9.64E-21 -0.586(0.243) 1.60E-02 SLC5A11 
X-02269 Green leafy 

vegetables 
Food 0.030(0.004) 2.39E-13 rs2071426 0.055(0.007) 6.87E-14 0.228(0.110) 3.76E-02 CYP2C8 

X-08402 Butter Food 0.017(0.003) 7.17E-10 rs7157785 0.068(0.003) 7.23E-87 0.004(0.001) 2.95E-03 SGPP1 
X-10395 High Alcohol Pattern 0.091(0.013) 3.80E-13 rs4073054 0.016(0.002) 4.42E-19 -0.071(0.034) 4.10E-02 NR1I3 
X-10510 Butter Food 0.022(0.003) 8.28E-15 rs7157785 -0.044(0.004) 3.41E-37 0.004(0.001) 2.95E-03 SGPP1 
X-11315 Citrus fruit Food 0.026(0.004) 6.50E-10 rs4327428 -0.031(0.004) 2.81E-12 0.473(0.209) 2.37E-02 SLC6A20 
X-11315 Traditional 

English 
Pattern -0.093(0.014) 1.68E-11 rs4327428 -0.031(0.004) 2.81E-12 -0.114(0.057) 4.80E-02 SLC6A20 

X-11469 Green leafy 
vegetables 

Food 0.030(0.004) 5.66E-14 rs2071426 0.052(0.007) 3.97E-14 0.228(0.110) 3.76E-02 CYP2C8 

X-11469 Avocado Food 0.153(0.019) 9.36E-16 rs11754288 0.043(0.006) 1.88E-12 0.043(0.022) 4.75E-02 SLC17A3 

Notes: Statistics are reported for associations between food intake at metabolite-SNPs which meet the 5% level of significance. A linear regression was performed using 
the applicable metabolite-associated SNP as a predictor of reported food group intake or dietary pattern score adjusted for age, energy intake and family relatedness; an 
additive genetic model was performed for each. No associations met statistical significance of 4.76x10

-4
 (0.05/105 tests). The genome-wide association study was 

previously performed on the TwinsUK and KORA blood metabolite datasets (Shin et al., Nat Genet. 2014 Jun;46(6):543-50).  
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Document 1: Food Preference Questionnaire
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Table 1. Training group food group metabolite associations 

  

Super-
pathway 

 
Discovery  Discordant  Meta-analysis 

Food 
group Metabolite Sub-pathway Beta (SE) P  Beta (SE) P  Beta (SE) P 
Vegetables X-11315   0.009 (0.002) 1.06E-08  0.007 (0.005) 1.51E-01  0.009 (0.002) 2.94E-09 

X-11372   -0.007 (0.001) 1.09E-06  -0.004 (0.004) 3.06E-01  -0.007 (0.001) 6.20E-07 

X-12063   -0.006 (0.001) 2.36E-06  -0.002 (0.003) 4.28E-01  -0.005 (0.001) 2.33E-06 

Fruit stachydrine Xenobiotics Food component, 
Plant 

0.021 (0.002) 3.65E-17  0.012 (0.004) 6.86E-03  0.019 (0.002) 8.71E-19 

glycerate Carbohydrate Glycolysis, 
gluconeogenesis, 
pyruvate metabolism 

0.017 (0.002) 7.92E-13  0.017 (0.004) 2.33E-04  0.017 (0.002) 2.08E-16 

threonate Cofactors and 
vitamins 

Ascorbate and 
aldarate metabolism 

0.012 (0.002) 2.47E-08  0.015 (0.004) 3.38E-04  0.013 (0.002) 1.89E-11 

threitol Carbohydrate Nucleotide sugars, 
pentose metabolism 

0.012 (0.002) 5.18E-10  0.005 (0.003) 1.19E-01  0.010 (0.002) 7.27E-10 

docosahexaenoate 
(DHA; 22:6n3) 

Lipid Essential fatty acid 0.011 (0.002) 6.54E-06  0.010 (0.004) 2.13E-02  0.011 (0.002) 3.42E-07 

scyllo-inositol Lipid Inositol metabolism 0.012 (0.002) 1.03E-06  0.007 (0.004) 1.11E-01  0.011 (0.002) 3.68E-07 

proline Amino acid Urea cycle; arginine-, 
proline-, metabolism 

-0.010 (0.002) 1.70E-06  -0.005 (0.005) 3.33E-01  -0.009 (0.002) 1.30E-06 

hippurate Xenobiotics Benzoate metabolism 0.011 (0.002) 7.86E-07  0.003 (0.004) 4.69E-01  0.009 (0.002) 2.12E-06 

X-11315   0.021 (0.002) 1.08E-16  0.014 (0.004) 1.43E-03  0.019 (0.002) 2.52E-19 

X-11372   -0.012 (0.002) 5.68E-08  -0.007 (0.004) 8.31E-02  -0.011 (0.002) 1.66E-08 

Whole 
grains 

3-phenylpropionate 
(hydrocinnamate) 

Amino acid Phenylalanine & 
tyrosine metabolism 

0.017 (0.003) 1.90E-07  0.003 (0.007) 6.79E-01  0.015 (0.003) 7.90E-07 

eicosapentaenoate 
(EPA; 20:5n3) 

Lipid Essential fatty acid 0.015 (0.003) 2.30E-07  0.001 (0.006) 9.09E-01  0.013 (0.003) 1.67E-06 

X-09789   0.021 (0.003) 1.19E-12  0.015 (0.006) 1.00E-02  0.020 (0.003) 2.65E-14 

X-11372   -0.022 (0.003) 7.00E-13  -0.005 (0.006) 3.43E-01  -0.018 (0.003) 6.97E-12 

X-11469   0.019 (0.003) 4.72E-11  0.003 (0.007) 6.77E-01  0.017 (0.003) 2.64E-10 

X-02269   0.019 (0.003) 1.09E-10  0.001 (0.007) 8.54E-01  0.017 (0.003) 7.75E-10 

X-11315   0.015 (0.003) 3.95E-06  0.014 (0.005) 1.42E-02  0.014 (0.003) 1.37E-07 

Nuts and 
legumes 

tryptophan betaine Amino acid Tryptophan 
metabolism 

0.048 (0.007) 9.22E-12  0.017 (0.011) 1.49E-01  0.040 (0.006) 2.52E-11 

X-11315   0.030 (0.006) 7.82E-07  0.023 (0.012) 6.24E-02  0.028 (0.005) 1.18E-07 

Seafood 3-carboxy-4-methyl-
5-propyl-2-
furanpropanoate 
(CMPF) 

Lipid Fatty acid, 
dicarboxylate 

0.149 (0.014) 7.86E-24  0.112 (0.026) 2.84E-05  0.140 (0.012) 4.47E-29 

docosahexaenoate 
(DHA; 22:6n3) 

Lipid Essential fatty acid 0.167 (0.016) 5.32E-25  0.085 (0.022) 1.96E-04  0.139 (0.013) 1.03E-27 

eicosapentaenoate 
(EPA; 20:5n3) 

Lipid Essential fatty acid 0.133 (0.015) 4.36E-19  0.100 (0.027) 3.97E-04  0.126 (0.013) 1.25E-22 

1-
docosahexaenoylglyc

Lipid Lysolipid 0.103 (0.013) 4.42E-14  0.050 (0.030) 9.59E-02  0.094 (0.012) 1.47E-14 
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Table 1. Training group food group metabolite associations 

  

Super-
pathway 

 
Discovery  Discordant  Meta-analysis 

Food 
group Metabolite Sub-pathway Beta (SE) P  Beta (SE) P  Beta (SE) P 

ero-phosphocholine* 

docosapentaenoate 
(n3 DPA; 22:5n3) 

Lipid Essential fatty acid 0.088 (0.014) 1.62E-10  0.038 (0.023) 1.06E-01  0.075 (0.012) 1.42E-10 

1-
arachidonoylglycer
o-
phosphoethanolami
ne* 

Lipid Lysolipid -0.068 (0.013) 4.51E-07  -0.117 (0.028) 7.99E-05  -0.077 (0.012) 1.99E-10 

pyroglutamine* Amino acid Glutamate metabolism -0.072 (0.014) 7.09E-07  -0.079 (0.021) 2.52E-04  -0.074 (0.012) 3.54E-10 

1-oleoylglycero-
phosphoethanolami
ne 

Lipid Lysolipid -0.076 (0.013) 2.99E-09  -0.052 (0.027) 5.66E-02  -0.072 (0.012) 4.28E-10 

pseudouridine Nucleotide Pyrimidine 
metabolism, uracil 
containing 

-0.071 (0.013) 1.04E-07  -0.051 (0.018) 6.92E-03  -0.064 (0.011) 2.40E-09 

1-
eicosatrienoylglyce
ro-phosphocholine* 

Lipid Lysolipid -0.062 (0.013) 2.28E-06  -0.092 (0.026) 7.74E-04  -0.068 (0.012) 6.45E-09 

1-linoleoylglycero-
phosphoethanolami
ne* 

Lipid Lysolipid -0.064 (0.014) 4.08E-06  -0.058 (0.028) 4.26E-02  -0.063 (0.012) 4.01E-07 

X-11469   0.140 (0.014) 2.17E-21  0.120 (0.028) 4.19E-05  0.136 (0.013) 2.04E-26 

X-02269   0.139 (0.015) 2.27E-20  0.121 (0.027) 2.49E-05  0.135 (0.013) 1.45E-25 

X-11315   0.078 (0.014) 1.82E-08  0.044 (0.025) 7.47E-02  0.070 (0.012) 5.35E-09 

X-12627   0.076 (0.013) 1.61E-08  0.026 (0.023) 2.53E-01  0.064 (0.012) 3.62E-08 

X-12644   0.087 (0.015) 9.74E-09  0.008 (0.019) 6.84E-01  0.057 (0.012) 1.39E-06 

X-11437   0.076 (0.015) 3.97E-07  0.009 (0.027) 7.53E-01  0.061 (0.013) 3.41E-06 

X-12798   -0.061 (0.013) 6.13E-06  -0.035 (0.035) 3.18E-01  -0.058 (0.013) 4.15E-06 

White meat 3-methylhistidine Amino acid Histidine metabolism 0.138 (0.023) 4.46E-09  0.136 (0.046) 3.97E-03  0.138 (0.021) 3.63E-11 

Red, 
processed 
meat and 
eggs 

trans-4-
hydroxyproline 

Amino acid Urea cycle; arginine-, 
proline-, metabolism 

0.039 (0.007) 5.30E-08  0.014 (0.015) 3.57E-01  0.034 (0.006) 8.32E-08 

creatine Amino acid Creatine metabolism 0.037 (0.007) 6.84E-07  0.016 (0.014) 2.62E-01  0.032 (0.006) 7.36E-07 

X-11381   0.034 (0.007) 6.10E-07  0.023 (0.013) 8.56E-02  0.032 (0.006) 1.44E-07 

X-09789   -0.033 (0.007) 1.65E-06  -0.012 (0.014) 4.01E-01  -0.029 (0.006) 2.65E-06 

Fermented 
dairy 

X-11315   0.034 (0.006) 1.71E-08  0.008 (0.012) 5.02E-01  0.029 (0.005) 6.90E-08 

Fried 
foods 

3-phenylpropionate 
(hydrocinnamate) 

Amino acid Phenylalanine & 
tyrosine metabolism 

-0.037 (0.008) 2.82E-06  -0.027 (0.014) 4.79E-02  -0.035 (0.007) 3.59E-07 

X-11372   0.071 (0.009) 2.09E-15  0.045 (0.010) 3.66E-05  0.060 (0.007) 2.93E-19 

X-11469   -0.035 (0.006) 5.23E-08  -0.009 (0.019) 6.36E-01  -0.032 (0.006) 8.19E-08 

X-02269   -0.035 (0.006) 9.23E-08  -0.008 (0.020) 6.80E-01  -0.032 (0.006) 1.52E-07 

X-11315   -0.042 (0.009) 1.24E-06  -0.022 (0.013) 8.69E-02  -0.036 (0.007) 5.26E-07 

Sweets 
and sweet 

docosahexaenoate 
(DHA; 22:6n3) 

Lipid Essential fatty acid -0.010 (0.002) 7.56E-09  -0.016 (0.002) 3.97E-09  -0.012 (0.001) 1.07E-17 



 

295 
 

Table 1. Training group food group metabolite associations 

  

Super-
pathway 

 
Discovery  Discordant  Meta-analysis 

Food 
group Metabolite Sub-pathway Beta (SE) P  Beta (SE) P  Beta (SE) P 
baked 
products 

eicosapentaenoate 
(EPA; 20:5n3) 

Lipid Essential fatty acid -0.009 (0.002) 2.20E-08  -0.013 (0.003) 2.14E-06  -0.010 (0.001) 7.29E-14 

pipecolate Amino acid Lysine metabolism -0.010 (0.002) 1.05E-08  -0.011 (0.004) 4.30E-03  -0.010 (0.002) 9.37E-11 

scyllo-inositol Lipid Inositol metabolism -0.012 (0.002) 7.77E-09  -0.011 (0.005) 3.49E-02  -0.012 (0.002) 5.14E-10 

C-
glycosyltryptophan* 

Amino acid Tryptophan 
metabolism 

0.008 (0.002) 3.73E-07  0.008 (0.003) 1.09E-02  0.008 (0.001) 9.24E-09 

glycerate Carbohydrate Glycolysis, 
gluconeogenesis, 
pyruvate metabolism 

-0.011 (0.002) 2.89E-07  -0.006 (0.004) 1.10E-01  -0.009 (0.002) 1.13E-07 

1-
docosahexaenoylglyc
ero-phosphocholine* 

Lipid Lysolipid -0.008 (0.002) 3.37E-07  -0.005 (0.004) 1.89E-01  -0.008 (0.001) 1.70E-07 

pyroglutamine* Amino acid Glutamate metabolism 0.008 (0.002) 3.05E-06  0.007 (0.004) 9.02E-02  0.007 (0.001) 5.91E-07 

piperine Xenobiotics Food component, 
Plant 

-0.009 (0.002) 4.26E-06  -0.007 (0.004) 6.64E-02  -0.008 (0.002) 7.19E-07 

X-11315   -0.013 (0.002) 2.16E-13  -0.004 (0.003) 1.61E-01  -0.011 (0.001) 1.99E-12 

X-11437   -0.010 (0.002) 3.42E-08  -0.002 (0.006) 7.89E-01  -0.009 (0.002) 6.75E-08 

X-12696   0.008 (0.002) 1.84E-06  0.003 (0.004) 4.78E-01  0.007 (0.002) 3.48E-06 

Butter and 
cream  

X-13431--
nonanoylcarnitine* 

Lipid Carnitine metabolism 0.034 (0.005) 1.61E-12  0.028 (0.009) 2.67E-03  0.033 (0.004) 6.30E-15 

myristate (14:0) Lipid Long chain fatty acid 0.024 (0.005) 1.04E-06  0.015 (0.011) 1.99E-01  0.022 (0.004) 4.99E-07 

caprate (10:0) Lipid Medium chain fatty 
acid 

0.020 (0.004) 4.99E-06  0.017 (0.010) 8.37E-02  0.020 (0.004) 9.38E-07 

X-02249   0.028 (0.005) 1.98E-09  0.025 (0.009) 5.53E-03  0.027 (0.004) 2.22E-11 

X-10510   0.020 (0.004) 3.28E-06  0.022 (0.008) 7.81E-03  0.021 (0.004) 6.04E-08 

Spreads 
and 
dressings  

X-11478   0.020 (0.003) 1.69E-08  0.012 (0.005) 1.40E-02  0.017 (0.003) 1.22E-09 

X-11521   0.017 (0.003) 8.82E-08  0.013 (0.005) 5.17E-03  0.015 (0.003) 1.22E-09 

X-11261   0.020 (0.004) 1.16E-07  0.015 (0.006) 1.15E-02  0.019 (0.003) 3.94E-09 

Milk alpha-
hydroxyisovalerate 

Amino acid Valine, leucine and 
isoleucine metabolism 

-0.055 (0.012) 3.85E-06  -0.048 (0.026) 6.36E-02  -0.054 (0.011) 5.48E-07 

X-21365 [trimethyl-N-
aminovalerate] 

  0.107 (0.012) 6.14E-18  0.076 (0.025) 3.08E-03  0.101 (0.011) 2.04E-20 

X-12798   0.093 (0.012) 3.21E-14  0.047 (0.026) 6.94E-02  0.084 (0.011) 7.72E-15 

X-11381   0.076 (0.011) 2.58E-11  0.024 (0.026) 3.54E-01  0.068 (0.010) 5.01E-11 

X-11795   -0.060 (0.012) 3.58E-07  -0.005 (0.021) 8.03E-01  -0.048 (0.010) 3.93E-06 

Soy and 
other milks 

glycerate Carbohydrate Glycolysis, 
gluconeogenesis, 
pyruvate metabolism 

0.150 (0.031) 1.14E-06  0.238 (0.048) 2.75E-04  0.175 (0.026) 1.24E-11 

Soda X-11469   -0.020 (0.004) 1.85E-06  -0.001 (0.012) 9.58E-01  -0.018 (0.004) 5.32E-06 

Tea quinate Xenobiotics Food component, 
Plant 

-0.019 (0.002) 6.87E-18  -0.025 (0.005) 1.08E-06  -0.020 (0.002) 1.95E-24 

N-acetylornithine Amino acid Urea cycle; arginine-, 
proline-, metabolism 

0.009 (0.002) 2.55E-06  0.008 (0.004) 5.49E-02  0.009 (0.002) 3.14E-07 

pseudouridine Nucleotide Pyrimidine 0.008 (0.002) 4.01E-06  0.003 (0.005) 5.02E-01  0.008 (0.002) 4.53E-06 
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Table 1. Training group food group metabolite associations 

  

Super-
pathway 

 
Discovery  Discordant  Meta-analysis 

Food 
group Metabolite Sub-pathway Beta (SE) P  Beta (SE) P  Beta (SE) P 

metabolism, uracil 
containing 

X-14473   -0.026 (0.002) 6.70E-34  -0.021 (0.005) 1.29E-04  -0.025 (0.002) 2.82E-40 

X-12734   0.019 (0.002) 1.32E-20  0.002 (0.006) 7.34E-01  0.018 (0.002) 2.90E-20 

X-09789   0.014 (0.002) 3.40E-13  0.006 (0.005) 2.05E-01  0.013 (0.002) 2.01E-13 

X-14374   -0.012 (0.002) 2.59E-10  -0.008 (0.006) 1.88E-01  -0.012 (0.002) 9.06E-11 

Coffee quinate Xenobiotics Food component, 
Plant 

0.035 (0.002) 1.08E-43  0.027 (0.005) 4.30E-08  0.033 (0.002) 1.77E-56 

catechol sulfate Xenobiotics Benzoate metabolism 0.017 (0.002) 1.43E-12  0.013 (0.005) 1.84E-02  0.016 (0.002) 4.57E-14 

paraxanthine Xenobiotics Xanthine metabolism 0.013 (0.003) 8.63E-07  0.008 (0.005) 1.11E-01  0.012 (0.002) 2.77E-07 

theophylline Xenobiotics Xanthine metabolism 0.012 (0.003) 3.88E-06  0.007 (0.005) 1.09E-01  0.011 (0.002) 1.26E-06 

X-14473   0.040 (0.002) 1.53E-77  0.028 (0.005) 6.27E-08  0.039 (0.002) 6.41E-102 

X-14374   0.024 (0.002) 1.98E-28  0.021 (0.006) 1.84E-04  0.023 (0.002) 1.08E-33 

X-05426   0.018 (0.002) 4.64E-13  0.008 (0.005) 9.86E-02  0.016 (0.002) 2.01E-13 

X-12217   0.014 (0.003) 1.64E-07  0.010 (0.006) 1.03E-01  0.013 (0.002) 3.82E-08 

X-09789   -0.014 (0.002) 6.43E-08  -0.004 (0.005) 4.04E-01  -0.012 (0.002) 1.43E-07 

X-12734   -0.014 (0.003) 1.20E-06  -0.007 (0.006) 2.41E-01  -0.013 (0.003) 8.02E-07 

Alcohol scyllo-inositol Lipid Inositol metabolism 0.042 (0.005) 2.16E-18  0.037 (0.011) 1.83E-03  0.041 (0.004) 1.57E-21 

alpha-
hydroxyisovalerate 

Amino acid Valine, leucine and 
isoleucine metabolism 

0.035 (0.005) 1.29E-12  0.034 (0.009) 4.11E-04  0.035 (0.004) 3.98E-16 

4-androsten-
3beta,17beta-diol 
disulfate 1* 

Lipid Sterol, Steroid 0.032 (0.004) 1.25E-12  0.037 (0.011) 1.64E-03  0.032 (0.004) 1.89E-15 

eicosapentaenoate 
(EPA; 20:5n3) 

Lipid Essential fatty acid 0.019 (0.004) 2.26E-07  0.024 (0.005) 7.77E-05  0.021 (0.003) 1.57E-11 

docosahexaenoate 
(DHA; 22:6n3) 

Lipid Essential fatty acid 0.020 (0.004) 4.03E-08  0.024 (0.007) 1.57E-03  0.020 (0.003) 1.09E-10 

2-oleoylglycero-
phosphocholine* 

Lipid Lysolipid 0.016 (0.003) 2.32E-07  0.030 (0.008) 6.93E-04  0.018 (0.003) 6.90E-10 

docosapentaenoate 
(n3 DPA; 22:5n3) 

Lipid Essential fatty acid 0.019 (0.004) 2.58E-07  0.025 (0.009) 1.15E-02  0.020 (0.003) 7.10E-09 

pipecolate Amino acid Lysine metabolism 0.020 (0.004) 6.11E-06  0.021 (0.008) 1.31E-02  0.020 (0.004) 1.71E-07 

1-
docosahexaenoylglyc
ero-phosphocholine* 

Lipid Lysolipid 0.015 (0.003) 1.39E-06  0.012 (0.009) 1.65E-01  0.015 (0.003) 4.40E-07 

X-11795   0.030 (0.004) 1.11E-11  0.036 (0.009) 1.36E-04  0.031 (0.004) 1.15E-15 

X-10395   0.026 (0.004) 6.35E-11  0.019 (0.010) 6.55E-02  0.025 (0.004) 7.70E-12 

X-14473   0.020 (0.003) 1.06E-09  0.023 (0.009) 1.06E-02  0.020 (0.003) 1.98E-11 

X-12627   0.019 (0.003) 2.06E-08  0.016 (0.008) 5.24E-02  0.018 (0.003) 2.13E-09 

X-11204   0.017 (0.003) 2.34E-07  0.015 (0.008) 5.40E-02  0.017 (0.003) 2.61E-08 

X-11444   -0.018 (0.003) 9.08E-08  -0.012 (0.008) 1.43E-01  -0.017 (0.003) 3.13E-08 

X-12644   0.014 (0.003) 6.55E-06  0.017 (0.008) 2.86E-02  0.014 (0.003) 4.46E-07 

X-11787   -0.014 (0.003) 2.67E-06  -0.007 (0.009) 4.12E-01  -0.014 (0.003) 2.22E-06 
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Notes: Table shows results of the linear regression analysis for the discovery population (excluding monozygotic twins discordant for each food group), the MZ 
discordant twin sample and the fixed effects meta-analysis of both groups. Only significant associations are shown which includes those associations passing the 
bonferroni cut-off in the discovery and fixed effects analyses (7.60x10

-6
 = 0.05/[20 food groups x 329 detected metabolites]) and passing the 5% level of significance in 

the discordant twin group. The Metabolon platform is a non-targeted platform which identified 456 metabolites in blood for which data were available for 1780 twins.
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Table 2. Multivariate regression results for metabolites associated with multiple food groups  

Superpathway Metabolite Food group beta (SE) P 
Amino acid 
 

3-phenylpropionate (hydrocinnamate) Fried foods -0.028 (0.007) 2.44E-05 
Whole grains 0.012 (0.003) 6.98E-05 

alpha-hydroxyisovalerate Alcohol  0.033 (0.004) 1.37E-14* 
Milk  -0.038 (0.011) 3.60E-04 

pipecolate Sweets and sweet baked products -0.008 (0.002) 1.78E-06* 
Alcohol  0.016 (0.004) 2.77E-05 

pyroglutamine* Seafood  -0.064 (0.012) 2.31E-07* 
Sweets and sweet baked products 0.006 (0.002) 2.35E-04 

Carbohydrate 
 

glycerate Fruit  0.013 (0.002) 2.38E-11* 
Soy and other milk 0.132 (0.030) 9.40E-06 
Sweets and sweet baked products -0.006 (0.002) 1.97E-04 

Lipid 
 

1-docosahexaenoylglycerophosphocholine* 
 

Seafood  0.083 (0.012) 3.08E-12* 
Alcohol  0.010 (0.003) 1.09E-03 
Sweets and sweet baked products -0.004 (0.002) 7.12E-03 

docosahexaenoate (DHA; 22:6n3) 
 

Seafood  0.127 (0.012) 1.79E-24* 
Alcohol  0.015 (0.003) 7.79E-08* 
Sweets and sweet baked products -0.005 (0.002) 1.71E-03 
Fruit  0.005 (0.002) 8.25E-03 

docosapentaenoate (n3 DPA; 22:5n3) 
 

Seafood  0.070 (0.011) 2.94E-10* 
Alcohol  0.017 (0.003) 1.39E-07* 

eicosapentaenoate (EPA; 20:5n3) 
 

Seafood  0.112 (0.012) 2.24E-19* 
Alcohol  0.015 (0.003) 7.21E-08* 
Whole grains 0.010 (0.003) 7.59E-05 
Sweets and sweet baked products -0.004 (0.001) 1.96E-03 

scyllo-inositol 
 

Alcohol  0.042 (0.004) 3.03E-22* 
Fruit  0.013 (0.002) 7.22E-10* 
Sweets and sweet baked products -0.004 (0.002) 3.16E-02 

Nucleotide 
 

pseudouridine 
 

Seafood  -0.065 (0.011) 1.76E-09* 
Tea   0.007 (0.002) 1.85E-05 

Xenobiotics 
 

quinate 
 

Coffee  0.029 (0.002) 4.90E-35* 
Tea   -0.012 (0.002) 1.66E-09* 

Unknown X-02269 
 

Seafood  0.127 (0.012) 6.27E-24* 
Whole grains 0.012 (0.003) 3.52E-06* 
Fried foods -0.014 (0.007) 3.75E-02 

X-09789 
 

Whole grains 0.017 (0.003) 3.95E-11* 
Tea   0.011 (0.002) 9.24E-10* 
Red, processed meat and eggs -0.022 (0.006) 3.20E-04 
Coffee  -0.007 (0.002) 2.48E-03 

X-11315 
 

Fruit  0.014 (0.002) 1.21E-10* 
Fermented dairy 0.017 (0.005) 1.17E-03 
Seafood  0.037 (0.012) 2.03E-03 
Sweets and sweet baked products -0.005 (0.002) 2.61E-03 
Whole grains 0.007 (0.003) 1.23E-02 
Nuts and legumes 0.012 (0.006) 3.39E-02 
Fried foods  5.16E-02 
Vegetable   2.60E-01 

X-11372 Fried foods 0.052 (0.007) 9.20E-15* 
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Table 2. Multivariate regression results for metabolites associated with multiple food groups  

Superpathway Metabolite Food group beta (SE) P 
 Whole grains -0.012 (0.003) 1.03E-05 

Fruit  -0.004 (0.002) 4.39E-02 
Vegetable  -0.003 (0.001) 4.85E-02 

X-11381 
 

Milk  0.070 (0.010) 9.83E-12* 
Red, processed meat and eggs 0.035 (0.006) 1.39E-08* 

X-11437 
 

Seafood  0.047 (0.013) 5.05E-04 
Sweets and sweet baked products -0.006 (0.002) 6.14E-04 

X-11469 
 

Seafood  0.127 (0.012) 2.13E-24* 
Whole grains 0.012 (0.003) 2.89E-06* 
Soda -0.012 (0.004) 1.74E-03 
Fried foods -0.014 (0.007) 4.25E-02 

X-11795 
 

Alcohol  0.029 (0.004) 1.48E-13* 
Milk  -0.035 (0.010) 6.93E-04 

X-12627 
 

Alcohol  0.017 (0.003) 9.29E-09* 
Seafood  0.057 (0.011) 1.70E-07* 

X-12644 
 

Seafood  0.067 (0.012) 2.25E-08* 
Alcohol  0.012 (0.003) 3.48E-05 

X-12734 
 

Tea   0.016 (0.002) 2.55E-14* 
Coffee  -0.006 (0.003) 2.38E-02 

X-12798 
 

Milk  0.080 (0.011) 8.80E-13* 
Seafood  -0.042 (0.013) 1.43E-03 

X-14374 
 

Coffee  0.020 (0.002) 2.54E-22* 
Tea   -0.007 (0.002) 3.88E-04 

X-14473 
 

Coffee  0.032 (0.002) 4.05E-57* 
Tea   -0.016 (0.002) 1.47E-17* 
Alcohol  0.011 (0.003) 1.41E-04 

Notes: Table shows results of a multivariate backwards stepwise linear regression including all food groups associated to a metabolite from the discovery analysis using 
P<0.05 as the cut-off threshold. Metabolites and foods in bold, and with an asterisk (*) beside the P-value passed the Bonferroni cut-off for multiple testing from the 
discovery analysis (7.60x10

-6
) and were considered significant. The analysis was conducted in 1780 twins. 
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Table 3. Backward stepwise linear regression results for foods associated with multiple metabolites and foods associated with single 
metabolites 

  Model 1  Model 2 Standardized 
betas Food group Metabolite R

2
 Beta(SE) P  R

2
 Beta(SE) P 

Vegetables X-12063 0.0094 -1.798 (0.627) 4.23E-03     -0.101 

Fruit  stachydrine 0.1195 2.327 (0.345) 2.59E-11      0.194 

X-11315  2.586 (0.391) 6.16E-11      0.207 

proline  -1.506 (0.346) 1.48E-05     -0.119 

threitol  1.614 (0.409) 8.63E-05      0.097 

hippurate   5.46E-02      

glycerate   6.20E-02      

scyllo-inositol   0.454      

threonate   0.798      

Whole grains X-09789 0.0508 1.552 (0.229) 2.08E-11      0.173 

X-11469  1.337 (0.235) 1.79E-08      0.142 

X-02269   0.650      0.173 

Nuts and legumes tryptophan betaine 0.0384 0.905 (0.132) 1.32E-11      0.181 

Seafood  docosahexaenoate (DHA; 22:6n3) 0.1514 0.563 (0.090) 7.03E-10  0.1535 0.399 (0.056) 2.09E-12  0.192 

X-11469  0.246 (0.063) 9.44E-05   0.281 (0.061) 3.89E-06  0.130 

pseudouridine  -0.165 (0.047) 5.13E-04   -0.164 (0.046) 4.31E-04 -0.079 

1-eicosatrienoylglycerophosphocholine*  -0.182 (0.067) 6.71E-03   -0.205 (0.063) 1.29E-03 -0.105 

pyroglutamine*  -0.133 (0.050) 8.34E-03   -0.130 (0.049) 8.44E-03 -0.065 

docosapentaenoate (n3 DPA; 22:5n3)  -0.194 (0.076) 1.08E-02      

1-
arachidonoylglycerophosphoethanolami
ne* 

 -0.110 (0.053) 3.99E-02   -0.123 (0.051) 1.52E-02 

-0.062 

1-
docosahexaenoylglycerophosphocholine
* 

 0.162 (0.081) 4.52E-02   0.169 (0.078) 3.01E-02 

 0.084 

eicosapentaenoate (EPA; 20:5n3)   6.37E-02      

1-
linoleoylglycerophosphoethanolamine* 

  7.63E-02      

1-oleoylglycerophosphoethanolamine   8.13E-02      

X-02269   0.255      

3-carboxy-4-methyl-5-propyl-2-
furanpropanoate (CMPF) 

  0.271      

X-12627   0.450      

X-12644   0.580      

White meat 3-methylhistidine 0.0291 0.219 (0.034) 1.62E-10      0.170 

Red meat  trans-4-hydroxyproline 0.0403 0.449 (0.101) 9.20E-06      0.113 

X-11381  0.393 (0.093) 2.83E-05      0.102 

creatine  0.401 (0.099) 5.40E-05      0.102 

Fried foods X-11372 0.0668 1.058 (0.100) 9.39E-25      0.279 

Sweets and sweet baked C-glycosyltryptophan* 0.0588 2.233 (0.500) 8.93E-06      0.129 
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Table 3. Backward stepwise linear regression results for foods associated with multiple metabolites and foods associated with single 
metabolites 

  Model 1  Model 2 Standardized 
betas Food group Metabolite R

2
 Beta(SE) P  R

2
 Beta(SE) P 

products pipecolate  -1.719 (0.439) 9.77E-05     
-0.117 

X-12696  1.582 (0.435) 2.94E-04      0.102 

piperine  -1.406 (0.405) 5.40E-04     -0.093 

Butter and cream nonanoylcarnitine* 0.0754 1.030 (0.188) 5.95E-08      0.164 

X-02249  0.615 (0.185) 8.99E-04      0.093 

myristate (14:0)  0.511 (0.175) 3.52E-03      0.083 

caprate (10:0)  0.363 (0.168) 3.05E-02      0.058 

X-10510  0.349 (0.161) 3.09E-02      0.053 

Spreads and dressings X-11261 0.0331 1.103 (0.355) 1.94E-03      0.101 

X-11478  0.774 (0.291) 8.00E-03      0.093 

Milk  X-21365 [trimethyl-N-aminovalerate] 0.0735 0.401 (0.065) 1.31E-09      0.175 

X-11381  0.206 (0.059) 4.88E-04      0.091 

X-12798  0.238 (0.069) 6.52E-04      0.102 

Tea   X-14473 0.2113 -3.959 (0.503) 1.33E-14     -0.282 

N-acetylornithine  1.710 (0.376) 6.26E-06      0.122 

X-12734  1.675 (0.390) 2.01E-05      0.121 

X-09789  1.461 (0.430) 7.15E-04      0.102 

quinate  -1.253 (0.495) 1.16E-02     -0.090 

Coffee   X-14473 0.1963 3.756 (0.404) 2.02E-19      0.344 

quinate  2.197 (0.439) 7.27E-07      0.204 

X-14374   5.46E-02      

X-05426   0.115      

catechol sulfate   0.313      

X-12217   0.715      

theophylline   0.887      

paraxanthine   0.964      

Alcohol  scyllo-inositol 0.2537 1.813 (0.213) 1.04E-16  0.2493 1.776 (0.209) 1.16E-16  0.231 

4-androsten-3beta,17beta-diol disulfate 
1* 

 1.692 (0.272) 8.18E-10   1.623 (0.271) 3.21E-09  0.188 

X-11795  1.107 (0.209) 1.57E-07   1.141 (0.206) 4.39E-08  0.143 

X-11444  -1.130 (0.224) 5.74E-07   -1.075 (0.221) 1.33E-06 -0.131 

alpha-hydroxyisovalerate  1.066 (0.224) 2.28E-06   1.010 (0.213) 2.54E-06  0.127 

eicosapentaenoate (EPA; 20:5n3)  1.042 (0.281) 2.23E-04   0.827 (0.222) 2.06E-04  0.098 

2-oleoylglycerophosphocholine*  0.630 (0.206) 2.30E-03   0.626 (0.203) 2.11E-03  0.080 

X-11787  -0.491 (0.217) 2.42E-02   -0.442 (0.217) 4.18E-02 -0.053 

X-12627  -0.484 (0.241) 4.51E-02      

X-10395   0.112      

docosapentaenoate (n3 DPA; 22:5n3)   0.489      

docosahexaenoate (DHA; 22:6n3)   0.502      

X-11204   0.928      
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Notes: Table shows the results of a multivariate backwards stepwise linear regression including all associated metabolites used to predict food group intakes using 
P<0.05 as the cut-off threshold. Metabolites highlighted in red indicate the association was in the opposite direction to the discovery analysis for model 1 and therefore, 
for the corresponding food group a second multivariate regression was undertaken. The rightmost column shows the final standardized betas used for the weighted 
scoring method. The analysis was conducted in 1780 twins. 
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Table 4. Associations between reported food intakes and the final scores in the training and test groups 
   Training group  Test group 

Food group No. metabolites in score Score Beta (SE) P   Beta (SE) P 
Vegetables 1 Top: X-12063 -0.005 (0.001) 2.96E-06  -0.006 (0.002) 3.62E-04* 

  Quartiles 0.004 (0.001) 8.59E-03  0.005 (0.002) 6.88E-03* 
Fruit 4 Top: X-11315  0.019 (0.002) 7.14E-20  0.016 (0.002) 1.81E-18 

  Quartiles 0.064 (0.005) 4.06E-34  0.062 (0.005) 1.28E-36 
  Continuous 0.060 (0.005) 2.68E-36  0.055 (0.004) 3.76E-37 
  Weighted 0.010 (0.001) 3.03E-36  0.009 (0.001) 4.48E-40 

Whole grains 3 Top: X-09789  0.020 (0.003) 1.33E-13  0.031 (0.003) 4.35E-22 
  Quartiles 0.038 (0.005) 6.99E-16  0.049 (0.005) 5.42E-23 
  Continuous 0.036 (0.004) 1.40E-18  0.046 (0.005) 6.98E-22 
  Weighted 0.006 (0.001) 8.78E-19  0.008 (0.001) 9.51E-23 

Nuts and legumes 1 Top: tryptophan betaine 0.044 (0.006) 1.45E-13  0.037 (0.005) 3.38E-13 
  Quartiles 0.041 (0.005) 2.78E-14  0.037 (0.005) 1.29E-13 

Seafood 7 Top: DHA 0.147 (0.013) 6.98E-30  0.141 (0.011) 1.76E-34 
  Quartiles 0.711 (0.048) 1.24E-45  0.599 (0.049) 7.85E-32 
  Continuous 0.662 (0.046) 1.30E-42  0.575 (0.045) 3.43E-34 
  Weighted 0.076 (0.005) 6.01E-44  0.069 (0.005) 1.63E-41 

White meat 1 Top: 3-methylhistidine 0.135 (0.021) 1.52E-10  0.077 (0.023) 7.78E-04 
  Quartiles 0.176 (0.021) 2.11E-16  0.134 (0.022) 1.03E-09 

Red meat 3 Top: trans-4-hydroxyproline 0.035 (0.006) 9.27E-08  0.036 (0.007) 3.66E-08 
  Quartiles 0.108 (0.013) 9.64E-16  0.124 (0.014) 9.23E-19 
  Continuous 0.100 (0.012) 2.96E-16  0.114 (0.012) 3.43E-19 
  Weighted 0.011 (0.001) 3.40E-16  0.012 (0.001) 3.79E-19 

Fried foods 1 Top: X-11372 0.067 (0.007) 3.28E-20  0.080 (0.009) 2.55E-17 
  Quartiles 0.068 (0.008) 2.30E-18  0.084 (0.010) 1.31E-16 

Sweets and sweet baked products 4 Top: C-glycosyltryptophan*  0.136 (0.034) 8.54E-05  0.008 (0.001) 1.78E-09 
  Quartiles 0.457 (0.095) 2.00E-06  0.032 (0.004) 6.44E-17 
  Continuous 0.427 (0.082) 2.27E-07  0.031 (0.003) 8.93E-21 
  Weighted 0.047 (0.009) 1.73E-07  0.003 (0.000) 3.28E-21 

Butter and creams 5 Top: nonanoylcarnitine* 0.034 (0.004) 2.69E-16  0.022 (0.004) 8.92E-08 
  Quartiles 0.122 (0.013) 2.53E-21  0.107 (0.013) 4.89E-16 
  Continuous 0.120 (0.013) 1.90E-18  0.094 (0.012) 8.66E-15 
  Weighted 0.011 (0.001) 8.09E-21  0.009 (0.001) 2.30E-15 

Spreads and dressings 2 Top: X-11261 0.019 (0.003) 2.77E-09  0.014 (0.003) 6.34E-06 
  Quartiles 0.041 (0.006) 4.21E-12  0.034 (0.007) 4.86E-07 
  Continuous 0.036 (0.005) 5.47E-11  0.026 (0.006) 1.83E-05* 
  Weighted 0.003 (0.001) 5.89E-11  0.002 (0.001) 1.68E-05* 

Milk 3 Top: X-21365 0.102 (0.011) 2.58E-20  0.094 (0.010) 6.20E-19 
  Quartiles 0.264 (0.026) 3.02E-23  0.247 (0.028) 1.60E-18 
  Continuous 0.250 (0.023) 1.23E-25  0.204 (0.024) 4.95E-17 
  Weighted 0.032 (0.003) 2.90E-26  0.027 (0.003) 1.49E-19 

Tea 5 Top: X-14473  -0.025 (0.002) 2.56E-37  -0.024 (0.002) 2.83E-36 
  Quartiles 0.078 (0.005) 3.98E-42  0.050 (0.005) 3.32E-22 
  Continuous 0.073 (0.005) 2.96E-50  0.051 (0.004) 2.08E-32 
  Weighted 0.012 (0.001) 1.15E-52  0.009 (0.001) 7.64E-38 
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Table 4. Associations between reported food intakes and the final scores in the training and test groups 
   Training group  Test group 

Food group No. metabolites in score Score Beta (SE) P   Beta (SE) P 
Coffee 2 Top: X-14473 0.038 (0.002) 3.47E-83  0.036 (0.002) 3.00E-61 

  Quartiles 0.090 (0.003) 8.56E-115  0.091 (0.004) 1.06E-104 
  Continuous 0.064 (0.003) 2.63E-82  0.057 (0.003) 1.66E-71 
  Weighted 0.018 (0.001) 4.83E-87  0.016 (0.001) 5.92E-72 

Alcohol 8 Top: scyllo-inositol 0.041 (0.004) 8.22E-22  0.039 (0.004) 2.48E-24 
  Quartiles 0.212 (0.018) 7.53E-31  0.191 (0.013) 1.21E-42 
  Continuous 0.197 (0.018) 1.06E-27  0.180 (0.013) 2.51E-41 

   Weighted 0.029 (0.003) 5.47E-27   0.027 (0.002) 7.79E-45 

Notes: A linear regression was performed in the training (n=1780) and test groups (n=1779) using each food group intake as a predictor of the top 
metabolite and metabolite scores. An asterisk (*) beside the P-value indicates the association does not pass the Bonferroni cut-off from the discovery 
analysis (P<7.60x10

-6
) 
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Table 5. Average (SD) energy-adjusted intakes (servings/week) for the top and bottom tertiles for 
each food in the test group 

 
Food group 

Tertile 1 
(n=593) 

Tertile 3 
(n=593) 

Vegetables 19.5 (5.4) 51.0 (13.4) 

Fruit 9.7 (4.4) 35.6 (10.3) 

Whole grains 2.7 (2.4) 19.2 (7.4) 

Nuts and legumes 3.0 (1.5) 12.9 (5.4) 

Seafood 0.7 (0.5) 4.5 (1.8) 

White meat 0.6 (0.4) 3.4 (0.8) 

Red meat 2.9 (1.5) 10.8 (3.0) 

Fried foods 1.6 (1.1) 8.0 (3.3) 

Sweets and sweet baked products 4.2 (3.6) 30.4 (14.5) 

Butter and cream -0.4 (1.0) 10.6 (7.4) 

Spreads and dressings 1.7 (2.1) 17.3 (10.8) 

Milk 1.1 (0.9) 5.8 (1.5) 

Tea 3.2 (3.7) 35.5 (5.6) 

Coffee 0.0 (0.5) 22.1 (7.9) 

Alcohol 0.4 (1.0) 14.3 (8.8) 
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Table 6. Results of ROC analysis 

      Versus top metabolite 

Food group Score Sensitivity Specificity Correctly classified ROC area χ² P 
Vegetables Top: X-12063 59.74% 55.47% 57.60% 0.6136 [0.5802, 0.6470]   

Quartiles 59.22% 54.50% 56.85% 0.6136 [0.5802, 0.6470] 0.00 1.0000 

Fruit Top: X-11315  65.59% 60.34% 62.98% 0.6783 [0.6479, 0.7087]   

Quartiles 68.54% 67.06% 67.80% 0.7305 [0.7020, 0.7590] 18.14 <0.0001 

Continuous 67.52% 66.55% 67.04% 0.7339 [0.7057, 0.7622] 19.99 <0.0001 

Weighted 66.84% 67.24% 67.04% 0.7411 [0.7131, 0.7690] 29.77 <0.0001 

Whole grains Top: X-09789  65.25% 67.07% 66.15% 0.7134 [0.6841, 0.7428]   

Quartiles 66.61% 65.47% 66.04% 0.7063 [0.6768, 0.7359] 0.60 0.4394 

Continuous 67.46% 66.32% 66.89% 0.7186 [0.6895, 0.7478] 0.36 0.5500 

Weighted 67.63% 65.81% 66.72% 0.7224 [0.6934, 0.7514] 1.37 0.2425 

Nuts and legumes Top: tryptophan betaine 64.25% 60.70% 62.47% 0.6723 [0.6366, 0.7080]   

Quartiles 65.82% 57.68% 61.77% 0.6629 [0.6268, 0.6991] 2.42 0.1197 

Seafood Top: DHA 64.79% 67.46% 66.13% 0.7230 [0.6943, 0.7516]   

Quartiles 65.81% 67.12% 66.47% 0.7307 [0.7023, 0.7592] 0.42 0.5172 

Continuous 66.15% 67.12% 66.64% 0.7356 [0.7075, 0.7637] 1.12 0.2893 

Weighted 69.57% 70.68% 70.13% 0.7547 [0.7274, 0.7821] 11.88 0.0006 

White meat Top: 3-methylhistidine 77.78% 32.44% 56.86% 0.5733 [0.5371, 0.6096]   

Quartiles 54.31% 62.39% 58.40% 0.5536 [0.5172, 0.5901] 4.74 0.0295 

Red meat Top: trans-4-hydroxyproline 58.94% 65.37% 62.16% 0.6697 [0.6390, 0.7003]   

Quartiles 61.73% 63.50% 62.62% 0.6920 [0.6622, 0.7218] 5.36 0.0207 

Continuous 63.10% 65.70% 64.40% 0.6963 [0.6666, 0.7260] 8.63 0.0033 

Weighted 63.61% 65.53% 64.57% 0.6963 [0.6666, 0.7260] 9.36 0.0022 

Fried foods Top: X-11372 65.30% 66.32% 65.81% 0.7322 [0.7038, 0.7606]   

Quartiles 65.98% 65.93% 65.96% 0.7217 [0.6928, 0.7506] 6.70 0.0096 

Sweets and sweet baked products Top: C-glycosyltryptophan*  58.67% 56.51% 57.59% 0.6002 [0.5679, 0.6325]   

Quartiles 58.57% 57.78% 58.18% 0.6235 [0.5917, 0.6552] 3.29 0.0697 

Continuous 60.27% 59.32% 59.80% 0.6249 [0.5932, 0.6566] 4.29 0.0384 

Weighted 60.10% 58.97% 59.54% 0.6254 [0.5937, 0.6571] 5.07 0.0243 

Butter and cream Top: nonanoylcarnitine* 71.88% 39.55% 56.84% 0.5889 [0.5529, 0.6249]   

Quartiles 61.02% 58.87% 59.95% 0.6386 [0.6037, 0.6735] 7.45 0.0064 

Continuous 58.31% 60.75% 59.52% 0.6383 [0.6034, 0.6732] 7.38 0.0066 

Weighted 59.15% 59.90% 59.52% 0.6385 [0.6036, 0.6734] 11.39 0.0007 

Spreads and dressings Top: X-11261 59.08% 57.48% 58.28% 0.6199 [0.5880, 0.6518]   

Quartiles 60.27% 60.10% 60.19% 0.6374 [0.6059, 0.6689] 5.42 0.0199 

Continuous 59.25% 60.61% 59.93% 0.6319 [0.6003, 0.6636] 3.07 0.0799 

Weighted 58.90% 60.27% 59.59% 0.6316 [0.5999, 0.6633] 3.14 0.0762 

Milk Top: X-21365 60.17% 60.65% 60.41% 0.6409 [0.6096, 0.6723]   

quartiles 60.51% 61.33% 60.92% 0.6403 [0.6089, 0.6717] 0.00 0.9575 

Continuous 60.68% 61.33% 61.00% 0.6355 [0.6040, 0.6669] 0.22 0.6402 

Weighted 60.68% 60.48% 60.58% 0.6442 [0.6130, 0.6755] 0.14 0.7122 

Tea Top: X-14473  59.28% 73.51% 67.04% 0.7384 [0.7078, 0.7691]   

Quartiles 61.63% 64.63% 63.13% 0.7121 [0.6803, 0.7439] 2.68 0.1016 

Continuous 66.04% 66.16% 66.10% 0.7257 [0.6943, 0.7572] 0.80 0.3705 

Weighted 67.40% 65.65% 66.53% 0.7443 [0.7139, 0.7747] 0.40 0.5276 
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Table 6. Results of ROC analysis 

      Versus top metabolite 

Food group Score Sensitivity Specificity Correctly classified ROC area χ² P 
Coffee Top: X-14473 78.21% 65.38% 72.42% 0.7779 [0.7483, 0.8074]   

Quartiles 72.06% 76.36% 74.21% 0.7917 [0.7627, 0.8208] 3.08 0.0790 

Continuous 66.78% 70.92% 68.85% 0.7803 [0.7510, 0.8096] 0.11 0.7388 

Weighted 67.63% 70.75% 69.19% 0.7856 [0.7565, 0.8148] 2.06 0.1511 

Alcohol Top: scyllo-inositol 75.75% 63.32% 70.02% 0.7531 [0.7230, 0.7832]   

Quartiles 71.48% 70.97% 71.22% 0.7914 [0.7638, 0.8191] 5.52 0.0188 

Continuous 70.80% 74.02% 72.41% 0.8067 [0.7800, 0.8333] 11.05 0.0009 

Weighted 74.70% 76.40% 75.55% 0.8351 [0.8104, 0.8598] 38.99 <0.0001 

Notes: Table shows the results of the receiver operating characteristic analysis testing the ability of each top metabolite or metabolite score to predict 
the top (1, positive outcome) and bottom (0, negative outcome) tertiles of food group intake. The area under the receiver operating characteristic curve 
(AUC) was compared for each metabolite score against the top performing metabolite. Metabolite scores which performed the best and better than the 
top metabolite are in bold. The analysis was conducted in the test group (n=1779). 
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Table 7. Top metabolite and score associations with food preferences in the test group 

   Liking 

Food group 

No. 
metabolites in 

score Score Beta (SE) P 
Vegetables 1 Top: X-12063 -0.062 (0.059) NS 

  Quartiles 0.036 (0.067) NS 
Fruit 4 Top: X-11315  0.203 (0.045) 7.40E-06 

  Quartiles 0.490 (0.122) 6.62E-05 
  Continuous 0.448 (0.108) 3.51E-05 
  Weighted 0.077 (0.017) 1.12E-05 

Whole grains 3 Top: X-09789  0.287 (0.054) 1.37E-07 
  Quartiles 0.226 (0.083) 6.62E-03* 
  Continuous 0.258 (0.075) 6.29E-04 
  Weighted 0.045 (0.012) 1.70E-04 

Nuts and legumes 1 Top: tryptophan betaine 0.271 (0.045) 3.04E-09 
  Quartiles 0.293 (0.042) 9.87E-12 

Seafood 7 Top: DHA 0.333 (0.035) 6.85E-20 
  Quartiles 1.538 (0.139) 2.12E-26 
  Continuous 1.464 (0.129) 1.01E-27 
  Weighted 0.173 (0.014) 1.51E-30 

White meat 1 Top: 3-methylhistidine 0.083 (0.037) 2.45E-02* 
  Quartiles 0.118 (0.035) 8.28E-04 

Red meat 3 Top: trans-4-hydroxyproline 0.221 (0.046) 2.29E-06 
  Quartiles 0.854 (0.093) 4.01E-19 
  Continuous 0.766 (0.083) 3.54E-19 
  Weighted 0.081 (0.009) 7.71E-19 

Fried foods 1 Top: X-11372 0.344 (0.046) 2.69E-13 
  Quartiles 0.355 (0.051) 1.12E-11 

Sweets and sweet baked 
products 

4 Top: C-glycosyltryptophan*  0.004 (0.002) 1.09E-02* 

  Quartiles 0.021 (0.004) 5.24E-07 
  Continuous 0.020 (0.004) 2.07E-07 
  Weighted 0.002 (0.000) 2.24E-07 

Butter and creams 5 Top: nonanoylcarnitine* 0.023 (0.033) 4.79E-01* 
  Quartiles 0.294 (0.094) 1.78E-03 
  Continuous 0.262 (0.080) 1.11E-03 
  Weighted 0.022 (0.007) 2.61E-03 

Spreads and dressings 2 Top: X-11261 0.105 (0.041) 1.15E-02* 
  Quartiles 0.207 (0.089) 2.06E-02* 
  Continuous 0.203 (0.073) 5.71E-03* 
  Weighted 0.020 (0.007) 5.67E-03* 

Milk 3 Top: X-21365 0.167 (0.041) 5.71E-05 
  Quartiles 0.384 (0.116) 9.55E-04 
  Continuous 0.352 (0.097) 3.15E-04 
  Weighted 0.047 (0.012) 9.71E-05 

Tea 5 Top: X-14473  -0.217 (0.031) 7.83E-12 
  Quartiles 0.624 (0.082) 8.88E-14 
  Continuous 0.549 (0.068) 3.19E-15 
  Weighted 0.089 (0.011) 2.53E-16 

Coffee 2 Top: X-14473 0.241 (0.055) 1.36E-05 
  Quartiles 0.689 (0.101) 1.98E-11 
  Continuous 0.379 (0.073) 2.50E-07 
  Weighted 0.104 (0.020) 4.38E-07 

Alcohol 8 Top: scyllo-inositol 0.322 (0.042) 1.01E-13 
  Quartiles 1.559 (0.144) 1.22E-25 
  Continuous 1.299 (0.125) 6.46E-24 

   Weighted 0.197 (0.018) 4.08E-27 

NS, not significant; *, not statistically significant (P<3.33x10
-3

). 
Notes: Table shows the results of the linear regression using each food group liking score used 
to predict the top metabolite and metabolite score. The analysis was conducted in the test group 
(n=1779).  
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Appendix E. Chapter 6 Appendices 

 

Table 1. List of OTUs associated with hippurate, the hippurate diet score and foods 
(1)

 

OTU ID 
(2)

 Assigned taxonomy 
Hippurate Diet score Foods 

(3)
 

(P<0.05) Beta (SE) P Beta (SE) P 
denovo467  k__Bacteria; p__Actinobacteria; c__Actinobacteria; o__Actinomycetales; 

f__Actinomycetaceae; g__Actinomyces; s__ 
-0.099 (0.022) 5.14E-06 -0.051 (0.011) 2.81E-06 Fruit: -0.005(0.002) 

WG: -0.009(0.003) 
denovo44  k__Bacteria; p__Bacteroidetes; c__Bacteroidia; o__Bacteroidales; f__Rikenellaceae; 

g__; s__ 
0.094 (0.023) 6.55E-05    

denovo299  k__Bacteria; p__Firmicutes; c__Clostridia; o__Clostridiales; f__; g__; s__ 0.113 (0.024) 2.21E-06 0.044 (0.010) 9.76E-06 Coffee: 0.013(0.002)* 

denovo346  k__Bacteria; p__Firmicutes; c__Clostridia; o__Clostridiales; f__; g__; s__ 0.129 (0.025) 2.07E-07    

denovo197  k__Bacteria; p__Firmicutes; c__Clostridia; o__Clostridiales; f__Clostridiaceae; g__; 
s__ 

0.126 (0.026) 1.44E-06    

denovo52  k__Bacteria; p__Firmicutes; c__Clostridia; o__Clostridiales; f__Clostridiaceae; 
g__Clostridium; s__ 

0.117 (0.024) 1.50E-06    

denovo1263  k__Bacteria; p__Firmicutes; c__Clostridia; o__Clostridiales; f__Lachnospiraceae -0.097 (0.022) 1.38E-05    

denovo272  k__Bacteria; p__Firmicutes; c__Clostridia; o__Clostridiales; f__Lachnospiraceae; 
g__; s__ 

-0.094 (0.022) 1.29E-05    

denovo20  k__Bacteria; p__Firmicutes; c__Clostridia; o__Clostridiales; f__Lachnospiraceae; 
g__; s__ 

-0.117 (0.022) 1.29E-07    

denovo100  k__Bacteria; p__Firmicutes; c__Clostridia; o__Clostridiales; f__Lachnospiraceae; 
g__; s__ 

-0.107 (0.022) 1.92E-06    

denovo55  k__Bacteria; p__Firmicutes; c__Clostridia; o__Clostridiales; f__Lachnospiraceae; 
g__[Ruminococcus]; s__ 

-0.123 (0.021) 1.17E-08 -0.054 (0.011) 2.79E-06 Fruit: -0.006(0.002)* 
WG: -0.009(0.003) 

denovo27  k__Bacteria; p__Firmicutes; c__Clostridia; o__Clostridiales; f__Lachnospiraceae; 
g__[Ruminococcus]; s__gnavus 

-0.107 (0.023) 3.04E-06 -0.064 (0.011) 1.99E-08 Fruit: -0.006(0.002)* 
WG: -0.009(0.003) 

denovo25  k__Bacteria; p__Firmicutes; c__Clostridia; o__Clostridiales; f__Lachnospiraceae; 
g__Blautia; s__ 

-0.135 (0.024) 1.28E-08    

denovo35  k__Bacteria; p__Firmicutes; c__Clostridia; o__Clostridiales; f__Lachnospiraceae; 
g__Blautia; s__ 

-0.137 (0.022) 4.94E-10    

denovo13  k__Bacteria; p__Firmicutes; c__Clostridia; o__Clostridiales; f__Lachnospiraceae; 
g__Blautia; s__ 

-0.177 (0.021) 5.56E-17    

denovo144  k__Bacteria; p__Firmicutes; c__Clostridia; o__Clostridiales; f__Lachnospiraceae; 
g__Blautia; s__ 

-0.165 (0.022) 4.83E-14    

denovo237  k__Bacteria; p__Firmicutes; c__Clostridia; o__Clostridiales; f__Lachnospiraceae; 
g__Blautia; s__producta 

-0.102 (0.022) 4.78E-06    

denovo329  k__Bacteria; p__Firmicutes; c__Clostridia; o__Clostridiales; f__Lachnospiraceae; 
g__Dorea; s__ 

-0.130 (0.023) 1.73E-08    

denovo97  k__Bacteria; p__Firmicutes; c__Clostridia; o__Clostridiales; f__Lachnospiraceae; 
g__Dorea; s__formicigenerans 

-0.114 (0.022) 2.46E-07    

denovo414  k__Bacteria; p__Firmicutes; c__Clostridia; o__Clostridiales; f__Lachnospiraceae; 
g__Roseburia; s__ 

-0.091 (0.022) 3.67E-05    

denovo79  k__Bacteria; p__Firmicutes; c__Clostridia; o__Clostridiales; f__Ruminococcaceae; 
g__; s__ 

0.097 (0.022) 8.32E-06    

denovo123  k__Bacteria; p__Firmicutes; c__Clostridia; o__Clostridiales; f__Ruminococcaceae; 
g__; s__ 

0.103 (0.024) 2.83E-05    

denovo12  k__Bacteria; p__Firmicutes; c__Clostridia; o__Clostridiales; f__Ruminococcaceae; 
g__; s__ 

0.167 (0.025) 8.61E-11    

denovo1380  k__Bacteria; p__Firmicutes; c__Clostridia; o__Clostridiales; f__Ruminococcaceae; 
g__; s__ 

0.095 (0.022) 1.10E-05    
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Table 1. List of OTUs associated with hippurate, the hippurate diet score and foods 
(1)

 

OTU ID 
(2)

 Assigned taxonomy 
Hippurate Diet score Foods 

(3)
 

(P<0.05) Beta (SE) P Beta (SE) P 
denovo438  k__Bacteria; p__Firmicutes; c__Clostridia; o__Clostridiales; f__Ruminococcaceae; 

g__; s__ 
0.100 (0.025) 5.01E-05    

denovo33  k__Bacteria; p__Firmicutes; c__Clostridia; o__Clostridiales; f__Ruminococcaceae; 
g__; s__ 

0.098 (0.024) 4.87E-05    

denovo469  k__Bacteria; p__Firmicutes; c__Clostridia; o__Clostridiales; f__Ruminococcaceae; 
g__Faecalibacterium; s__prausnitzii 

0.100 (0.023) 1.66E-05 0.034 (0.010) 9.24E-04 WG: 0.007(0.003) 

denovo276  k__Bacteria; p__Firmicutes; c__Clostridia; o__Clostridiales; f__Ruminococcaceae; 
g__Oscillospira; s__ 

0.110 (0.026) 2.53E-05    

denovo59  k__Bacteria; p__Firmicutes; c__Clostridia; o__Clostridiales; f__Ruminococcaceae; 
g__Oscillospira; s__ 

0.170 (0.026) 2.17E-10    

denovo424  k__Bacteria; p__Firmicutes; c__Clostridia; o__Clostridiales; f__Ruminococcaceae; 
g__Ruminococcus; s__ 

0.107 (0.026) 3.36E-05    

*= statistically significant: P<0.0017; WG: whole grain products; OTUs, operational taxonomic units
 

(4) Microbiome OTUs significantly associated with both hippurate and the hippurate diet score are shown. Associations were adjusted for covariates (age, 
Shannon Index, metabolite batch, BMI, sex and family relatedness) and multiple testing using Bonferroni correction. Hippurate diet score associations 
were also adjusted for hippurate. 

(5) OTU ID assignment is specific to the TwinsUK cohort.  
(6) All foods included in the hippurate diet score were fitted into a backwards stepwise linear regression using P<0.05 as the cut-off threshold with each 

collapsed taxa/OTU associated to both hippurate and the diet score. Results displayed are the betas with standard errors of foods at least nominally 
associated (P<0.05). Statistical significance was defined as P<0.0017 (Bonferronil: 0.05/[10 taxa x 3 foods]).
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Table 2. List of collapsed taxa associated with hippurate, the hippurate diet score and foods 
(1)

 
     Hippurate Diet score Foods 

P<0.05 
(2)

 Phylum Class Order Family Genus Beta (SE) P Beta (SE) P 

Actinobacteria Actinobacteria Actinomycetales   -0.083 (0.022) 1.31E-04 -0.035 (0.011) 1.67E-03 Fruit:  
-0.004(0.002) 

WG: 
-0.007(0.003) 

Actinobacteria Actinobacteria Actinomycetales Actinomycetaceae  -0.089 (0.021) 2.89E-05 -0.036 (0.011) 1.70E-03 Fruit: 
 -0.004(0.002) 

WG: 
 -0.007(0.003) 

Actinobacteria Actinobacteria Actinomycetales Actinomycetaceae Actinomyces -0.101 (0.021) 1.55E-06 -0.045 (0.011) 5.71E-05 Fruit:  
-0.005(0.002) 

WG:  
-0.008(0.003) 

Firmicutes     -0.102 (0.024) 1.94E-05    

Firmicutes Clostridia    -0.088 (0.024) 2.44E-04    

Firmicutes Clostridia Clostridiales   -0.088 (0.024) 2.40E-04    

Firmicutes Clostridia Clostridiales Lachnospiraceae  -0.125 (0.022) 1.72E-08    

Firmicutes Clostridia Clostridiales Lachnospiraceae [Ruminococcus] -0.111 (0.022) 4.03E-07 -0.038 (0.011) 6.35E-04 Fruit:  
-0.005(0.002) 

WG: 
 -0.008(0.003) 

Firmicutes Clostridia Clostridiales Lachnospiraceae Blautia -0.146 (0.021) 5.68E-12    

Firmicutes Clostridia Clostridiales Lachnospiraceae Dorea -0.116 (0.021) 6.13E-08    

Firmicutes Clostridia Clostridiales Lachnospiraceae Roseburia -0.089 (0.022) 4.18E-05    

Firmicutes Erysipelotrichi    -0.111 (0.021) 1.64E-07    

Firmicutes Erysipelotrichi Erysipelotrichales   -0.111 (0.021) 1.64E-07    

Firmicutes Erysipelotrichi Erysipelotrichales Erysipelotrichaceae  -0.111 (0.021) 1.64E-07    

Firmicutes Erysipelotrichi Erysipelotrichales Erysipelotrichaceae [Eubacterium] -0.083 (0.021) 9.30E-05 -0.040 (0.012) 6.12E-04 Fruit:  
-0.004(0.002) 

WG:  
-0.010(0.003)* 

Proteobacteria Betaproteobacteria Burkholderiales Oxalobacteraceae Ralstonia -0.084 (0.021) 7.85E-05    

*= statistically significant: P<0.0017; WG: whole grain products
 

(1) Microbiome collapsed taxa significantly associated with both hippurate and the hippurate diet score are shown. Associations were adjusted for 
covariates (age, Shannon Index, metabolite batch, BMI, sex and family relatedness) and multiple testing using Bonferroni correction. Hippurate diet 
score associations were also adjusted for hippurate. 

(2) All foods included in the hippurate diet score were fitted into a backwards stepwise linear regression using P<0.05 as the cut-off threshold with each 
collapsed taxa associated to both hippurate and the diet score. Results displayed are the betas with standard errors of foods at least nominally 
associated (P<0.05). Statistical significance was defined as P<0.0017 (Bonferronil: 0.05/[10 taxa/OTUs x 3 foods]) 
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 Table 3. Associations between MetS status and criteria categories with Shannon 
diversity, the hippurate gradient, the hippurate diet score and associated OTUs and taxa 

MetS, metabolic syndrome; HDL, high density lipoprotein; OTU, operational taxonomic unit; OR, odds ratio 
Notes: A linear regression was performed using Shannon diversity, the hippurate trajectory, the hippurate 
diet and hippurate and diet associated taxa/OTUs as predictors of MetS status (adjusting for age, sex, and 
family relatedness) and each component adjusting for age, BMI (except for BMI), sex, and family 
relatedness. Statistical significance was defined as P<0.05.  

 

 

MetS 
phenotype Variable Beta(SE) P R

2
 

MetS status 
(0, no; 1, yes) 

Shannon diversity OR: 0.744 (0.064) 6.35E-04 0.0105 

Hippurate trajectory OR: 0.795 (0.082) 0.026 0.0054 

Actinomycetaceae family OR: 1.397 (0.145) 0.001 0.0110 

Actinomycetales order OR: 1.373 (0.140) 0.002 0.0100 

Actinomyces genus OR: 1.310 (0.134) 0.009 0.0072 

Eubacterium genus OR: 1.215 (0.111) 0.034 0.0038 

Ruminococcus genus OR: 1.308 (0.128) 0.006 0.0075 

Ruminococcus genus OTU 

denovo55 
OR: 1.373 (0.145) 0.003 0.0099 

Clostridiales order OTU 
denovo299 

OR: 0.703 (0.063) 9.47E-05 0.0122 

Faecalibacterium prausnitzii OTU 
denovo469 

OR: 0.732 (0.065) 4.33E-04 0.0095 

BMI Shannon diversity -0.770 (0.151) 4.63E-07 0.0288 

Hippurate trajectory -0.700 (0.149) 3.25E-06 0.0240 

Hippurate diet -0.332 (0.154) 0.032 0.0053 

Actinomycetaceae family 0.393 (0.152) 0.010 0.0075 

Actinomycetales order 0.420 (0.153) 0.006 0.0085 

Actinomyces genus 0.431 (0.155) 0.005 0.0089 

Ruminococcus genus 0.407 (0.149) 0.006 0.0081 

Ruminococcus genus OTU 
denovo55 

0.430 (0.151) 0.005 0.0091 

Clostridiales order OTU 
denovo299 

-0.317 (0.147) 0.031 0.0048 

Faecalibacterium prausnitzii OTU 

denovo469 
-0.487 (0.143) 7.26E-04 0.0115 

HDL-
cholesterol 

Shannon diversity 0.096 (0.027) 4.42E-04 0.0126 

Hippurate diet 0.081 (0.027) 0.003 0.0095 

Ruminococcus genus OTU 
denovo55 

0.092 (0.027) 8.46E-04 0.0123 

Clostridiales order OTU 
denovo299 

0.073 (0.027) 0.007 0.0076 

Faecalibacterium prausnitzii OTU 
denovo469 

0.056 (0.026) 0.035 0.0044 

Triglycerides Shannon -0.122 (0.027) 4.97E-06 0.0213 

Hippurate -0.077 (0.026) 0.003 0.0087 

Diet -0.094 (0.027) 5.72E-04 0.0130 

Actinomycetaceae family 0.055 (0.025) 0.029 0.0045 

Eubacterium genus 0.061 (0.026) 0.019 0.0056 

Ruminococcus genus 0.072 (0.026) 0.005 0.0077 

Ruminococcus genus OTU 

denovo55 
0.109 (0.026) 3.56E-05 0.0178 

Clostridiales order OTU 
denovo299 

-0.115 (0.024) 2.38E-06 0.0194 

Faecalibacterium prausnitzii OTU 
denovo469 

-0.079 (0.025) 0.002 0.0092 



 

313 
 

Table 4. Percent variance in the association between the hippurate trajectory and MetS, 
BMI and triglycerides accounted for through each associated variable 

MetS, metabolic syndrome; OTU, operational taxonomic unit 
(5) All variables were significantly (P<0.05) associated with each listed MetS phenotype. 
(6) The proportion of the variance in each MetS phenotype explained by the hippurate trajectory after 

taking into account all covariates (age, sex, family relatedness and BMI [for triglycerides]). 
(7) The proportion of the variance in each MetS phenotype explained by the hippurate trajectory after 

taking into account all covariates as in (2) and adjusting for the applicable variable. 
 

 

 

MetS 
phenotype Variable 

(1)
 

Hippurate 
trajectory 

% 
variance 
through 
variable r

2
x 

(2)
 r

2
xy 

(3)
 

MetS status  
(0, no; 1, yes) 

Hippurate trajectory 0.0054   

Shannon diversity  0.0021 61.1 

Actinomycetaceae family  0.0040 25.9 

Actinomycetales order  0.0042 22.2 

Actinomyces genus  0.0042 22.2 

Eubacterium genus  0.0052 3.7 

Ruminococcus genus  0.0046 14.8 

Ruminococcus genus OTU denovo55  0.0038 29.6 

Clostridiales order OTU denovo299  0.0026 51.9 

Faecalibacterium prausnitzii OTU denovo469  0.0031 42.6 

BMI Hippurate trajectory 0.0288   

Hippurate diet  0.0203 29.5 

Shannon diversity  0.0122 57.6 

Actinomycetaceae family  0.0215 25.3 

Actinomycetales order  0.0217 24.7 

Actinomyces genus  0.0211 26.7 

Ruminococcus genus  0.0223 22.6 

Ruminococcus genus OTU denovo55  0.0207 28.1 

Clostridiales order OTU denovo299  0.0199 30.9 

Faecalibacterium prausnitzii OTU denovo469  0.0186 35.4 

Triglycerides Hippurate trajectory 0.0087   

Hippurate diet  0.0055 36.8 

Shannon diversity  0.0032 63.2 

Actinomycetaceae family  0.0077 11.5 

Eubacterium genus  0.0084   3.4 

Ruminococcus genus  0.0079   9.2 

Ruminococcus genus OTU denovo55  0.0063 27.6 

Clostridiales order OUT denovo299  0.0045 48.3 

Faecalibacterium prausnitzii OTU denovo469  0.0060 31.0 
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Table 5. Percent variance in the association between the hippurate diet score and BMI, 
HDL cholesterol and triglycerides accounted for through each associated variable 

MetS phenotype Variable 
(1)

 

Hippurate diet 
score 

% variance 
through 
variable r

2
x 

(2)
 r

2
xy 

(3)
 

BMI Hippurate diet 0.0053   

Shannon diversity  0.0029 45.3 

Hippurate trajectory  0.0021 60.4 

Actinomycetaceae family  0.0042 20.8 

Actinomycetales order  0.0042 20.8 

Actinomyces genus  0.0039 26.4 

Ruminococcus genus  0.0045 15.1 

Ruminococcus genus OTU denovo55  0.0038 28.3 

Clostridiales order OTU denovo299  0.0038 28.3 

Faecalibacterium prausnitzii OTU denovo469  0.0034 35.8 

HDL Hippurate diet 0.0095   

Shannon diversity  0.0074 22.1 

Ruminococcus genus OTU denovo55  0.0073 23.2 

Clostridiales order OTU denovo299  0.0070 26.3 

Faecalibacterium prausnitzii OTU denovo469  0.0079 16.8 

Triglycerides Hippurate diet 0.0130   

Shannon diversity  0.0100 23.1 

Hippurate trajectory  0.0097 25.4 

Actinomycetaceae family  0.0118   9.2 

Eubacterium genus  0.0118   9.2 

Ruminococcus genus  0.0120   7.7 

Ruminococcus genus OTU denovo55  0.0100 23.1 

Clostridiales order OUT denovo299  0.0087 33.1 

Faecalibacterium prausnitzii OTU denovo469  0.0104 20.0 

MetS, metabolic syndrome; HDL, high density lipoprotein; OTU, operational taxonomic unit 
(1) All variables were significantly (P<0.05) associated with each listed MetS phenotype. 
(2) The proportion of the variance in each MetS phenotype explained by the hippurate diet score 

after taking into account all covariates (age, sex, family relatedness and BMI [for triglycerides]). 
(3) The proportion of the variance in each MetS phenotype explained by the hippurate diet score 

after taking into account all covariates as in (2) and adjusting for the applicable variable. 
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Appendix F. Chapter 7 Appendices 

Table 1. Nutrient profile and linear trends of the visceral fat mass diet score according to score tertile 

NS= not significant: P>0.05. FA: fatty acid, MUFAS: monounsaturated fatty acids, PUFAS: polyunsaturated fatty acids, 
NSP: non-starch polysaccharides 
Tertile 1: score 0-6; tertile 2: score 7-9; tertile 3: scores 10-15. Linear trend determined by using the tertile of the VFM 
diet score as a predictor of the energy-adjusted nutrient intake. 
 

 Tertile 1  Tertile 2  Tertile 3  Trend 

Nutrient Mean (SD) Mean (SD) Mean (SD) Beta (SE) P 

Energy (kcal) 1892.1 (510.9) 1804.2 (522.9) 1870.4 (552.2) -15.61 (14.56) NS 

Fat (g/d) 61.5 (10.4) 68.6 (9.5) 72.4 (10.3) 5.53 (0.28) 1.62x10
-75

 

   Saturated FAs (g/d) 21.3 (5.4) 24.5 (5.2) 26.6 (5.1) 2.65 (0.14) 1.90x10
-67

 

   MUFAs (g/d) 19.7 (3.7) 22.7 (3.4) 24.7 (3.8) 2.54 (0.1) 2.33x10
-113

 

   PUFAs (g/d) 15.2 (4.4) 15.9 (4.4) 15.7 (4.5) 0.3 (0.12) 1.21x10
-2

 

   trans-FAs (g/d) 1.3 (0.6) 1.6 (0.6) 1.8 (0.6) 0.25 (0.02) 2.55x10
-51

 

   Cholesterol (mg/d) 202.5 (69.1) 234.8 (74.2) 251.5 (78.2) 24.98 (2.06) 4.04x10
-32

 

Protein (g/d) 79.5 (12.2) 81 (12.3) 79.6 (12.5) 0.15 (0.34) NS 

Carbohydrate (g/d) 248.1 (29.6) 229 (29.1) 217.2 (31.1) -15.66 (0.84) 1.13x10
-69

 

   Starch (g/d) 107.7 (26.3) 107.9 (25.1) 111.2 (26.1) 1.65 (0.71) 2.05x10
-2

 

   Total sugars (g/d) 137.5 (28.1) 118.3 (24.4) 103.4 (24.1) -17.22 (0.71) 5.34x10
-108

 

   Glucose (g/d) 28 (9.2) 22.4 (7.8) 18 (6.5) -5.05 (0.22) 8.20x10
-101

 

   Fructose (g/d) 33.7 (11.4) 26 (9.2) 19.9 (7.5) -6.99 (0.26) 1.29x10
-125

 

   Sucrose (g/d) 48 (14.1) 44.2 (14.4) 42.7 (15.6) -2.73 (0.41) 6.34x10
-11

 

   Maltose (g/d) 3.3 (1.5) 3 (1.6) 3.3 (1.8) -0.02 (0.05) NS 

   Lactose (g/d) 18.7 (9.9) 18.3 (8.9) 17 (9.8) -0.82 (0.26) 1.82x10
-3

 

NSP (g/d) 22.9 (5.5) 19.6 (4.5) 16.4 (4.2) -3.22 (0.13) 2.27x10
-110

 

Alcohol (g/d) 8.4 (11.1) 8.8 (11.3) 10.9 (14.9) 1.24 (0.38) 9.45x10
-4

 

Water (g/d) 2754.6 (662) 2593.7 (598.9) 2478.5 (598.1) -139.45 (16.71) 1.80x10
-16

 

Sodium (mg/d) 2308.6 (498.6) 2262.8 (471.7) 2162.2 (453.5) -71.5 (12.87) 3.33x10
-8

 

Potassium (mg/d) 4080.4 (624.4) 3833 (569.2) 3550.3 (524.2) -263.97 (15.56) 1.48x10
-58

 

Chloride (mg/d) 3705.3 (764.9) 3598.8 (728.6) 3411.9 (694.5) -144.23 (19.7) 4.30x10
-13

 

Calcium (mg/d) 1095.7 (286.9) 1039.4 (260.8) 949.3 (264.1) -72.17 (7.31) 3.18x10
-22

 

Magnesium (mg/d) 369.1 (52.3) 336.3 (49.2) 296.7 (42.4) -36.01 (1.27) 3.72x10
-138

 

Phosphorous (mg/d) 1534.9 (218.8) 1474.9 (202.7) 1357 (211.8) -87.14 (5.81) 4.40x10
-47

 

Iron (mg/d) 13.5 (3.1) 12.5 (2.4) 11.5 (2.3) -0.99 (0.07) 2.43x10
-39

 

Copper (mg/d) 1.6 (0.4) 1.6 (0.5) 1.5 (0.5) -0.07 (0.01) 1.90x10
-8

 

Zinc (mg/d) 10.1 (1.5) 10.1 (1.6) 9.8 (1.7) -0.13 (0.04) 2.60x10
-3

 

Manganese (mg/d) 4.4 (1.1) 4 (1) 3.6 (0.9) -0.43 (0.03) 9.54x10
-52

 

Iodine (ug/d) 212.9 (73) 207 (68.7) 196.5 (68.7) -8.03 (1.89) 2.25x10
-5

 

Retinol (ug/d) 407.1 (403.2) 533.9 (586.6) 617.4 (772.6) 106.49 (16.78) 3.05x10
-10

 

Carotene (ug/d) 6060.1 (4193.3) 5399.6 (3002.5) 4729.8 (2742.7) -664.87 (94.64) 3.41x10
-12

 

Vitamin D (ug/d) 2.5 (1.1) 2.5 (1) 2.4 (0.9) -0.05 (0.03) 5.36x10
-2

 

Vitamin E (mg/d) 11.7 (3.4) 10.9 (2.9) 9.9 (2.8) -0.92 (0.08) 1.02x10
-26

 

Thiamin (mg/d) 1.8 (0.4) 1.7 (0.3) 1.6 (0.3) -0.12 (0.01) 3.38x10
-31

 

Riboflavin (mg/d) 2.3 (0.7) 2.2 (0.6) 2.1 (0.6) -0.09 (0.02) 2.03x10
-7

 

Niacin (mg/d) 21.7 (5) 21.1 (4.5) 20.5 (4.5) -0.59 (0.13) 4.09x10
-6

 

Tryptophan (mg/d) 16.6 (2.5) 16.9 (2.5) 16.6 (2.5) 0.02 (0.07) NS 

Vitamin B6 (mg/d) 2.6 (0.6) 2.5 (0.5) 2.3 (0.5) -0.15 (0.01) 2.63x10
-23

 

Vitamin B12 (mg/d) 5.8 (2.2) 6.3 (2.5) 6.4 (2.9) 0.31 (0.07) 6.65x10
-6

 

Folate (ug/d) 416 (116) 378.8 (103.5) 341.8 (91.7) -37.1 (2.79) 5.95x10
-38

 

Pantothenate (mg/d) 6.1 (1.6) 6 (2.8) 5.6 (1.3) -0.23 (0.04) 1.43x10
-8

 

Biotin (ug/d) 46.9 (10.1) 45.5 (9.4) 42.3 (9.5) -2.27 (0.26) 1.50x10
-17

 

Vitamin C (mg/d) 198.9 (81.5) 164.1 (66.9) 125.8 (50.8) -36.44 (1.82) 8.20x10
-78
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Table 2. Associations between visceral fat mass (VFM) and the VFM diet score, Shannon 
Index and top microbiome and metabolite associations in the MZ discordant twin sample 

Notes: A linear regression was conducted using the VFM diet score, Shannon Index and top 
microbiome and metabolite associations to predict VFM in the MZ discordant (1 SD apart in 
VFM) twin sample.  Variables standardized to have mean=0, SD=1. 
 

     Regression 

    
Low-VFM 

twins 
High-VFM 

twins   VFM 

Variable N pairs Mean(SE) Mean(SE)   Beta(SE) P R
2
 

VFM diet score 80 -0.141(0.122) -0.047(0.115) 
  

0.281(0.091) 0.002 0.057 

Alpha-
hydroxyisovalerate 

80 -0.239(0.120) 0.064(0.111) 
  

0.141(0.094) 0.136 0.014 

Bilirubin (Z,Z) 68 0.093(0.102) -0.110(0.134) 
  

-0.187(0.102) 0.068 0.023 

Butyrylcarnitine  80 -0.168(0.126) 0.096(0.124) 
  

0.199(0.087) 0.023 0.032 

Hippurate 80 0.062(0.112) -0.162(0.114) 
  

-0.297(0.095) 0.002 0.058 

Shannon Index 27 -0.019(0.182) -0.268(0.224) 
  

-0.287(0.176) 0.110 0.048 

Bifidobacterium 
OTU (4426298) 

27 0.140(0.718) 0.175(1.098) 
 

-0.064(0.197) 0.749 0.002 

Eubacterium 
dolichum 

27 -0.108(0.155) -0.013(0.171) 
  

0.131(0.227) 0.566 0.006 
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