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ABSTRACT 
The Network of Cancer Genes (NCG) is a manually curated repository of 2,372 genes 

whose somatic modifications have known or predicted cancer driver roles. These 

genes were collected from 275 publications, including two sources of known cancer 

genes and 273 cancer sequencing screens of more than one hundred cancer types 

from 34,905 cancer donors and multiple primary sites. NCG 6.0 represents a more 

than 1.5-fold content increase compared to the previous version. NCG also annotates 

properties of cancer genes, such as duplicability, evolutionary origin, RNA and protein 

expression, miRNA and protein interactions, protein function and essentiality. NCG is 

accessible at http://ncg.kcl.ac.uk/. 

 

KEYWORDS 
Cancer genomics screens, cancer genes, cancer heterogeneity, systems level 

properties   
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BACKGROUND 

One of the main goals of cancer genomics is to find the genes that, upon 

acquiring somatic alterations, play a role in driving cancer (cancer genes). To this end, 

in the last ten years, hundreds of cancer sequencing screens have generated 

mutational data from thousands of cancer samples. These include large sequencing 

efforts led by international consortia such as the International Cancer Genome 

Consortium (ICGC)	[1] and The Cancer Genome Atlas (TCGA) [2]. Cancer genomes 

usually acquire thousands of somatic alterations and several methods have been 

developed to identify cancer genes from the pool of all altered genes [3, 4]. These 

methods have been applied to specific datasets from individual cancer types and to 

pooled datasets from several cancer types. This is the case for the Pan-Cancer Atlas 

project [5] and for the recent analysis of the whole set of TCGA samples [6], which 

accompanied the conclusion of the TCGA sequencing phase [7]. As more and more 

studies contribute to our knowledge of cancer genes, it becomes increasingly 

challenging for the research community to maintain an up-to-date overview of cancer 

genes and of the cancer types to which they contribute. 

The Network of Cancer Genes (NCG) is a project launched in 2010 with the aim 

to gather a comprehensive and curated collection of cancer genes from cancer 

sequencing screens and to annotate their systems-level properties [8-11]. These 

define distinctive properties of cancer genes compared to other human genes [12] and 

include gene duplicability, evolutionary origin, RNA and protein expression, miRNA 

and protein interactions, protein function and essentiality. NCG is based on the manual 

curation of experts who review studies describing cancer sequencing screens, extract 

the genes that were annotated as cancer genes in the original publications and collect 

and analyse the supporting evidence. 

Various other databases have been developed to analyse cancer data. Some of 

them focus on cancer alterations rather than cancer genes (COSMIC [13], DoCM [14], 

DriverDB [15], the Cancer Genome Interpreter [16], OncoKB [17], and cBIOPortal [18] 

among others). Other databases collect only cancer genes with a strong indication of 

involvement in cancer (the Cancer Gene Census, CGC [19]), annotate specifically 

oncogenes or tumour suppressor genes (ONGene [20], TSGene [21]) or cancer genes 

in specific cancer types (CoReCG [22]). NCG differs from all the above resources 

because it does not focus on mutations, on particular groups of genes or cancer types. 
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It instead compiles a comprehensive repository of mutated genes that have been 

proven or predicted to be the drivers of cancer. NCG is widely used by the community. 

Recent examples of its use include studies identifying and validating cancer genes 

[23-25] and miRNA cancer biomarkers [26]. NCG has also been used to investigate 

the effect of long noncoding RNAs on cancer genes [27] and to find non-duplicated 

cancer-related transcription factors [28]. 

Here, we describe the sixth release of NCG, which contains 2,372 cancer genes 

extracted from 275 publications consisting of two sources of known cancer genes and 

273 cancer sequencing screens. As well as mutational screens of individual cancer 

types, the collected publications now include four adult and two paediatric pan-cancer 

studies. In addition to an update of the systems-level properties of cancer genes 

already present in previous releases (gene duplicability, evolutionary origin, protein 

function, protein-protein and miRNA-target interactions, and mRNA expression in 

healthy tissues and cancer cell lines), NCG now also annotates the essentiality of 

cancer genes in human cell lines and their expression at the protein level in human 

tissues. Moreover, broader functional annotations of cancer genes in KEGG [29], 

Reactome [30] and BioCarta [31] are also provided. 

 The expert curation of a large number of cancer sequencing screens and the 

annotation of a wide variety of systems-level properties make NCG a comprehensive 

and unique resource for the study of genes that promote cancer.  

 

CONSTRUCTION AND CONTENT 
The NCG database integrates information about genes with a known or predicted 

driver role in cancer. To facilitate the broad use of NCG, we have developed a user-

friendly, interactive and open-access web portal for querying and visualising the 

annotation of cancer genes. User queries are processed interactively to produce 

results in a constant time. The front-end is connected to a database, developed using 

relational database management system principles [32] (Additional file 1: Figure S1). 

The web application for the NCG database was developed using MySQL v.5.6.38 and 

PHP v.7.0. Raw data for each of the systems-level properties were acquired from 

heterogeneous data sources and processed as described below. The entire content 

of NCG is freely available and can be downloaded from the database website. 
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Gene duplicability and evolutionary origin 

Protein sequences from RefSeq v.85 [33] were aligned to the human genome 

assembly hg38 with BLAT [34]. From the resulting genomic alignments, 19,549 unique 

gene loci were identified and genes sharing at least 60% of the original protein 

sequence were considered to be duplicated [35] (Additional file 2: Table S1). 

Orthologous genes for 18,486 human genes (including 2,348 cancer genes, Additional 

file 2: Table S1) in 2,032 species were collected from EggNOG v.4.5.1 [36] and used 

to trace the gene evolutionary origin as previously described [37]. Genes were 

considered to have a pre-metazoan origin if their orthologs could be found in 

prokaryotes, unicellular eukaryotes or opisthokonts [37]. 

Gene and protein expression 

RNA-Seq data from healthy human tissues for 18,984 human genes (including all 

2,372 cancer genes, Additional file 2: Table S1) were derived from the non-redundant 

union of Protein Atlas v.18 [38] and GTEx v.7 [39]. Protein Atlas reported the average 

Transcripts Per Million (TPM) values in 37 tissues, and genes were considered to be 

expressed in a tissue if their expression value was ³1 TPM. GTEx reported the 

distribution of TPM values for individual genes in 11,688 samples across 30 tissue 

types. In this case, genes were considered to be expressed if they had a median 

expression value ³1 TPM.  

Gene expression data for all 2,372 cancer genes in 1,561 cancer cell lines were 

taken from the Cancer Cell Line Encyclopedia (CCLE, 02/2018) [40], the COSMIC 

Cancer Cell Line Project (CLP, v.84) [19] and a Genentech study (GNE, 06/2014) [41] 

(Additional file 2: Table S1). Gene expression levels were derived directly from the 

original sources, namely Reads Per Kilobase Million (RPKM) values for CCLE and 

GNE, and microarray z-scores for CLP. Genes were categorised as expressed if their 

expression value was ≥1 RPKM in CCLE or GNE, and were annotated as over, under 

or normally expressed in CLP, as determined by COSMIC. 

The current release of NCG also includes protein expression from 

immunohistochemistry assays of healthy human tissues as derived from Protein Atlas 

v.18. Data were available for 13,001 human proteins including 1,799 cancer proteins 

(Additional file 2: Table S1). Proteins were categorised as not detected or as having 

low, medium or high expression in 44 tissues on the basis of staining intensity and 

fraction of stained cells [38]. In Protein Atlas, expression levels were reported in 
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multiple cell types for each tissue. NCG retained the highest reported value as the 

expression level for that tissue. 

Gene essentiality 
Gene essentiality was derived from two databases, PICKLES (09/2017) [42] and 

OGEE v.2 [43], both of which collected data from CRISPR Cas9 knockout and shRNA 

knockdown screens of human cell lines. In PICKLES, data from primary publications 

have been re-analysed and genes were considered essential in a cell line if their 

associated Bayes factor was >3 [44]. We therefore used this threshold to define 

essential genes. In OGEE, genes were labelled as “essential” or “not essential” 

according to their annotation in the original publications. Consistently, we retained the 

same annotation. From the non-redundant union of the two databases, essentiality 

information was available for a total of 18,833 genes (including all 2,372 cancer genes) 

in 178 cell lines (Additional file 2: Table S1). 

Protein-protein and miRNA-target interactions 
Human protein-protein interactions were derived from four databases (BioGRID 

v.3.4.157 [45]; MIntAct v.4.2.10 [46]; DIP (02/2018) [47] and HPRD v.9 [48]). Only 

interactions between human proteins supported by at least one original publication 

were considered [8]. The union of all interactions from the four sources was used to 

derive a human protein-protein interaction network of 16,322 proteins (including 2,203 

cancer proteins, Additional file 2: Table S1) and 289,368 binary interactions. To control 

for a possible higher number of studies on cancer proteins resulting in an artificially 

higher number of interactions, a network of 15,272 proteins and 224,258 interactions 

was derived from high-throughput screens reporting more than 100 interactions [11].  

Data on human protein complexes for 8,080 human proteins (including 1,414 

cancer proteins, Additional file 2: Table S1) were derived from the non-redundant 

union of three primary sources, namely CORUM (07/2017) [49], HPRD v.9 [48] and 

Reactome v.63 [30]. Only human complexes supported by at least one original 

publication were considered [11]. 

Experimentally validated interactions between human genes and miRNAs were 

downloaded from miRTarBase v.7.0 [50] and miRecords v.4.0 [51], resulting in a total 

of 14,649 genes (including 2,034 cancer genes) and 1,762 unique miRNAs (Additional 

file 2: Table S1). To control for the higher number of single-gene studies focussing on 
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cancer genes, a dataset of high-throughput screens testing ≥250 different miRNAs 

was also derived (Additional file 2: Table S1). 

Functional annotation 
Data on functional categories (pathways) were collected from Reactome v.63 [30], 

KEGG v.85.1 [29] and BioCarta (02/2018) [31]. Data for BioCarta were extracted from 

the Cancer Genome Anatomy Project [52]. All levels of Reactome were included, and 

level 1 and 2 pathways from KEGG were added separately. Overall, functional 

annotations were available for 11,344 human proteins, including 1,750 cancer proteins 

assigned to 2,318 pathways in total.  

 

UTILITY AND DISCUSSION 
Catalogue of known and candidate cancer genes 
To include new cancer genes in NCG, we applied a modified version of our well-

established curation pipeline [11] (Figure 1A). We considered two main groups of 

cancer genes: known cancer genes whose involvement in cancer has additional 

experimental support, and candidate cancer genes whose somatic alterations have a 

predicted cancer driver role but lack further experimental support.  

As sources of known cancer genes, we used 708 genes from CGC v.84 [19] and 

125 genes from a manually curated list [53]. Of the resulting 711 genes, we further 

annotated 239 as tumour suppressor genes (TSGs) and 239 as oncogenes (OGs). 

The remaining 233 genes could not be unambiguously classified because either they 

had conflicting annotations in the two original sources (CGC and [53]) or they were 

defined as both OGs and TSGs. Despite these two sources of known cancer genes 

have been extensively curated, 49 known cancer genes are in two lists of possible 

false positives [6, 54]. 

Next, we reviewed the literature to search for studies that (1) described 

sequencing screens of human cancers and (2) provided a list of genes considered to 

be the cancer drivers. This led to 273 original papers published between 2008 and 

March 2018, 98 of which were published since the previous release of NCG [11] and 

42 of which came from ICGC or TGCA (Additional file 2: Table S2). Overall, these 

publications describe the sequencing screens of 119 cancer types from 31 primary 

anatomical sites as well as six pan-cancer studies (Additional file 2: Table S2). In total, 
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this amounts to samples from 34,905 cancer donors. Each publication was reviewed 

independently by at least two experts and all studies whose annotation differed 

between the experts were further discussed. Additionally, 31 randomly selected 

studies (11% of the total) were re-annotated blindly by a third expert to assess 

consistency. The manual revision of the 273 studies led to 2,088 cancer genes, of 

which 427 were known cancer genes and the remaining 1,661 were candidate cancer 

genes (Figure 1B). Compared to the previous release, this version of NCG constitutes 

a significant increase in the number of cancer primary sites (1.3-fold), cancer genes 

(1.5-fold), publications (1.6-fold), and analysed donors (2.6-fold, Figure 1C). 

Based on literature evidence [6, 54], gene length and function [10], 201 

candidates were labelled as possible false positive predictions. We further 

investigated the reasons why 284 known cancer genes were not identified as drivers 

in any of the 273 cancer sequencing screens. We found that these genes predispose 

to cancer rather than acquiring somatic alterations, are the chimeric product of gene 

fusions, are part of CGC Tier 2 (i.e. genes with lower support for their involvement in 

cancer) or were identified with different methods. Eleven of these 284 genes are 

possible false positives [6, 54]. 

The annotation of a large number of studies allowed us to gain insights into how 

cancer genes have been identified in the last ten years. Of the overall 18 prediction 

methods (Additional file 2: Table S2), the recurrence of a gene alteration within the 

cohort is the most widely used across screens (Figure 1D). In this case, no further 

threshold of statistical significance or correction for the genome, gene and cancer 

background mutation rate was applied, thus leading to possible false positive 

predictions. Other frequently used prediction methods are MutSig [55], MuSiC	[56] and 

ad hoc pipelines developed in the same publication (referred as ‘paper-specific’). 

Although they apply statistical methods to correct for the background mutation rate 

and reduce false positives, all of these approaches estimate the tendency of a gene 

to mutate more than expected within a cohort and therefore they all depend on sample 

size. Indeed, we observed an overall positive correlation between the number of 

cancer donors and the number of cancer genes (Figure 1E). This confirms that the 

sensitivity of the approaches currently used to predict cancer genes is higher for large 

cohorts of samples. Finally, although the vast majority of analysed studies tend to 
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apply only one prediction method, more recent publications have started to use a 

combination of two or three methods (Figure 1F).  

Heterogeneity and specificity of cancer genes 
The number of cancer genes and the relative proportion of known and candidate 

cancer genes vary greatly across cancer primary sites (Figure 2A). More than 75% of 

cancer genes in cancers of the prostate, soft tissues, bone, ovary, cervix, thymus and 

retina are known drivers. On the contrary, more than 75% of driver genes in cancers 

of the penis, testis and vascular system are candidate cancer genes (Figure 2A). This 

seems to be due to several factors including the sample size, the number of different 

methods that have been applied to identify cancer genes and the biology of each 

cancer type. For example, penis, vascular system and testis cancers show a high 

proportion of candidate cancer genes. The corresponding cohorts have a small 

sample size and have been analysed by one or two prediction methods. However, 

other cancer types showing equally high proportions of candidates (pancreas, skin, 

blood) have large sample sizes and were analysed by several methods (Figure 2B). 

Moreover, although the number of cancer genes is overall positively correlated with 

the number of sequenced samples (Figures 1C, 2C), there are marked differences 

across primary sites. For example, ovary, bone, prostate, thyroid and kidney cancers 

have substantially fewer cancer genes compared to cancers with similar numbers of 

cancer donors such as uterine, stomach, skin and hepatobiliary cancers (Figure 2C). 

This is likely due to variable levels of genomic instability and heterogeneity across 

cancer types of the same primary site. For example, in seven of the nine mutational 

screens of skin melanoma, a cancer type with high genomic instability [57], more than 

50% of cancer genes are study-specific (Figure 3A). Similarly, the 24 types of blood 

cancer are variable in terms of number of cancer genes, with diffuse large B-cell 

lymphoma having many more cancer genes than other blood cancers with higher 

numbers of cancer donors (Figure 3B). In both cases, the use of the same method 

(i.e. MutSig in Figure 3A and MuSiC in Figure 3B) identified different cancer genes in 

different patient cohorts, highlighting the biological heterogeneity even across donors 

of the same cancer type. 

Cancer genes, and in particular candidates, are highly cancer specific (Figure 

3C). Hemicentin 1 (HMCN1) is the only candidate cancer gene to be significantly 

mutated in six primary sites (blood, brain, oesophagus, large intestine, liver, and 
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pancreas). A few known cancer genes are recurrently mutated across several primary 

sites, including TP53 (25), PIK3CA (21) and PTEN (20, Figure 3C). These are, 

however, exceptions and the large majority of known and candidate cancer genes 

(64% of the total) are found only in one primary site, indicating high heterogeneity of 

cancer driver events. Similar specificity is also observed in terms of supporting 

publications. The majority of cancer genes are publication-specific, again with few 

exceptions including TP53 (173), PIK3CA (87) and KRAS (86, Figure 3D). Of note, 

the best-supported candidate gene is Titin (TTN, predicted in nine publications), which 

is a well-known false positive of recurrence-based approaches [55]. Interestingly, the 

scenario is different when analysing the number of prediction methods that support 

cancer genes reported in at least two screens (Figure 3E). In this case, few candidate 

and known cancer genes are identified by only one method, while the majority of them 

are supported by at least two (candidates) and three (known cancer genes) 

approaches. However, only 6 candidate cancer genes are supported by six methods 

and TP53 is the only cancer genes to be identified by 16 of the 18 methods (Figure 

3E). 

Finally, the heterogeneity of the cancer driver landscape is reflected in the pan-

cancer studies. Approximately 40% of the cancer genes from pan-cancer analyses 

were not previously predicted as drivers (Figure 3F), despite the large majority of 

cancer samples having been already analysed in the corresponding cancer-specific 

study. This is yet a further confirmation that current methods depend on the sample 

size and that a larger cohort leads to novel predictions. Only 35 cancer genes were 

shared across four pan-cancer re-analyses of adult tumours (Figure 3G), suggesting 

that the prediction of cancer genes is highly method- and cohort-dependent. This is 

further confirmed by the poor overlap between cancer genes from adult and paediatric 

pan-cancer studies (Figure 3H). In this case, however, it is also likely that different 

biological mechanisms are responsible for adult and childhood cancers. 

Overall, our analysis of the cancer driver landscape suggests that the high 

heterogeneity of cancer genes observed across cancer types is due to a combination 

of sample size effect, prediction methods and true biological differences across 

cancers.  

Systems-level properties of cancer genes 
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In addition to collecting cancer genes from the literature, NCG also annotates the 

systems-level properties that distinguish cancer genes from other genes that are not 

implicated in cancer (Additional file 2: Table S1). We therefore compared each of these 

properties between cancer genes and the rest of human genes. We considered seven 

distinct groups of cancer genes. The first three were 711 known cancer genes, 1,661 

candidate cancer genes and 2,372 total cancer genes. After removing 201 possible 

false positive predictions [6, 54] from the list of candidate cancer genes, we also 

identified two sets of candidate cancer genes with a stronger support. One was 

composed of 104 candidate cancer genes found in at least two independent screens 

of the same primary site. The other was formed of 711 candidate cancer genes 

identified in large cohorts composed of at least 140 donors (top 25% of the sample 

size distribution across screens). Finally, we compared the properties between 239 

TSGs and 239 OGs.  

As previously reported [35], we confirmed that a significantly lower fraction of 

cancer genes has duplicated copies in the human genome due to a high proportion of 

single-copied TSGs (Figure 4A). The same trend was observed in both known and 

candidate cancer genes, and is significant for the combination of the two gene sets. 

Interestingly, candidate cancer genes found in ≥ 2 screens show a high proportion of 

duplicated cancer genes (albeit not significant probably due to the small size of the 

group, Figure 2B). This could suggest that several genes in this group may exert an 

oncogenic role. 

Cancer genes, and in particular candidate cancer genes, originated earlier in 

evolution (Figure 4B) [37, 58, 59]. Known cancer genes alone do not differ from the 

rest due to the fact that OGs are significantly younger than TSGs (Figure 4B).  

Known cancer genes tend to be ubiquitously expressed at the mRNA (Figure 4C) 

and protein (Figure 4D) levels and TSGs are more widely expressed than OGs. This 

trend is less clear when analysing candidate cancer genes separately. Candidates 

with stronger support tend to resemble known cancer genes, however the overall set 

of candidate cancer genes has a narrower tissue expression pattern at the gene and 

protein level (Figure 4C, D) 

A similar scenario is observed when analysing gene essentiality. A higher 

fraction of cancer genes, and in particular of known cancer genes, is essential in at 
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least one human cell line (Figure 4E). Moreover, known cancer genes tend to be 

essential in a higher fraction of cell lines. Both measures of gene essentiality are 

higher in TSGs as compared to OGs (Figure 4E). Candidate cancer genes with 

stronger support are again similar to known cancer genes but, when considered 

together, all candidate cancer genes are not significantly enriched in essential genes 

(Figure 4E). 

Proteins encoded by cancer genes are more often involved in protein complexes 

(Figure 4F). They are also more connected (higher degree), central (higher 

betweenness) and clustered (higher clustering coefficient) in the protein-protein 

interaction network (Figure 4G). We verified that this trend holds true also when using 

only data from high-throughput screens (Additional file 2: Table S2), thus excluding 

the possibility that the distinctive network properties of cancer proteins are due to their 

better annotation. These trends remain significant for all sets of cancer genes. 

Cancer genes are regulated by a higher number of miRNAs (higher degree) and 

occupy more central positions (higher betweenness) in the miRNA-target interaction 

network (Figure 4H). As above, these results remain valid also when only considering 

the miRNA-target network from high throughput screens (Additional file 2: Table S2) 

and for any group of cancer genes considered.  

Cancer genes are consistently enriched in functional categories such as signal 

transduction, chromatin reorganisation and cell cycle and depleted in others, such as 

metabolism and transport (Figure 4I, Additional file 2: Table S3). Candidate cancer 

genes generally exhibit weaker enrichment than the other groups, most notably in DNA 

repair. Interestingly, however, extracellular matrix reorganisation displays a specific 

enrichment for candidate cancer genes. Some functional categories are selectively 

enriched for OGs (i.e. development, immune and endocrine systems, Figure 4J) or 

TSGs (i.e. DNA repair and programmed cell death). While annotations from Reactome 

and KEGG generally give concordant results, they differ significantly for gene 

transcription. In this case, Reactome shows a strong enrichment for cancer genes, 

while it is not significant in KEGG (Figure 4I,J). 

Overall our analyses confirm that cancer genes are a distinctive group of human 

genes. Despite their heterogeneity across cancer types and donors, they share 

common properties. Candidate cancer genes only share some of the properties of 



	 13 

known cancer genes, such as an early evolutionary origin (Figure 4B) and higher 

centrality and connectivity in the protein-protein and miRNA-target interaction 

networks (Figure 4G, H). They do not differ from the rest of genes for all other 

properties. However, the two sets of candidate cancer genes with a stronger support 

overall maintain the vast majority of the distinctive properties of known cancer genes. 

This suggests that the current set of candidate cancer genes likely contains false 

positives and genes with weak support that do not resemble the properties of known 

cancer genes. This is further indicated when directly comparing the properties of 

known and candidate cancer genes (Additional file 2: Table S4). In this case, known 

cancer genes are significantly different for most properties when compared to the 

whole set of candidate cancer genes. However, these differences are reduced when 

he two sets of candidates with stronger support are used. Finally, TSGs and OGs 

constitute two distinct classes of cancer genes even based on their systems-level 

properties (Figure 4). 

 

Future directions  
In the coming years, NCG will continue to collect new cancer genes and annotate their 

properties, including novel properties such as genetic interactions or epigenetic 

features for which large datasets are becoming available. So far, the cancer genomics 

community has focussed mostly on the identification of protein-coding genes with 

putative cancer driver activity. With the increasing availability of whole genome 

sequencing data and a rising interest in non-coding alterations [27, 60], NCG will 

expand to also collect non-coding cancer drivers. Another direction for future 

development will be the analysis of clinical data, including therapeutic treatments, to 

link them to the altered drivers. This will contribute to the expansion of our knowledge 

of cancer driver genes in the context of their clinical relevance. 

 

CONCLUSIONS 

The present release of NCG describes a substantial advance in annotations of known 

and candidate cancer driver genes as well as an update and expansion of their 

systems-level properties. The extensive body of literature evidence collected in NCG 

enabled a systematic analysis of the methods used to identify cancer genes, 

highlighting their dependence on the number of cancer donors. We also confirmed the 

high heterogeneity of cancer genes within and across cancer types. The broad set of 
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systems-level properties collected in NCG shows that cancer genes form a distinct 

group, different from the rest of human genes. For some of these properties, the 

differences observed for known cancer genes hold true also for candidate cancer 

genes, and TSGs show more pronounced cancer gene properties than OGs. 

Interestingly, these properties are shared by all cancer genes, independently of the 

cancer type or gene function. Therefore, focussing on genes with similar 

characteristics could be used for the identification and prioritisation of new cancer 

driver genes [61]. In conclusion, the large-scale annotation of the systems-level 

properties of cancer genes in NCG is a valuable source of information not only for the 

study of individual genes, but also for the characterisation of cancer genes as a group. 
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LIST OF ABBREVIATIONS 
CCLE, Cancer Cell Line Encyclopedia; CLP, Cell Line Project (COSMIC); GNE, 

Genentech; ICGC, International Cancer Genome Consortium; miRNA, microRNA; 

NCG, Network of Cancer Genes; OG, Oncogene; RPKM, Reads Per Kilobase Million; 

TCGA, The Cancer Genome Atlas; TPM, Transcripts Per Million; TSG, Tumour 

Suppressor Gene.  
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Genentech:  https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-2706/ [69];  

GTEx: https://www.gtexportal.org/home/ [70];  

HPRD: http://www.hprd.org/ [71]; 

KEGG: http://www.genome.jp/kegg/pathway.html [72];  

MIntAct: https://www.ebi.ac.uk/intact/ [73];  

miRecrods: http://c1.accurascience.com/miRecords/ [74]; 

miRTarBase: http://mirtarbase.mbc.nctu.edu.tw/php/index.php	[75]; 

OGEE: http://ogee.medgenius.info/browse/ [76];  

PICKLES: https://hartlab.shinyapps.io/pickles/ [77];  
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Protein Atlas: https://www.proteinatlas.org/ [78];  

Reactome: https://reactome.org/ [79];  

RefSeq: https://www.ncbi.nlm.nih.gov/refseq/ [80] 
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Figure 1. Manual curation of cancer genes in NCG  
a. Pipeline used for adding cancer genes to NCG. Two sources of known cancer genes 

[19, 53] were integrated leading to 711 known cancer genes. In parallel, 273 

publications describing cancer sequencing screens were reviewed to extract 2,088 

cancer genes. The non-redundant union of these two sets led to 2,372 cancer genes 

currently annotated in NCG. 

b. Intersection between known and candidate cancer genes in NCG. 

c. Comparison of NCG content with the previous version [11]. 

d. Pie chart of the methods used to identify cancer genes in the 273 publications. The 

total is greater than 273 because some studies used more than one method 

(Additional file 2: Table S2). 

e. Cancer genes as a function of the number of cancer donors per study. The grey 

inset shows a magnification of the left bottom corner of the plot. 

f. Number of methods used to identify cancer genes over time. PanSoftware used in 

one of the pan-cancer studies [6] was considered as a single method but is in fact a 

combination of 26 prediction tools. 

 
Figure 2. Distribution of cancer genes across primary sites and cancer donors 
a. Number of total cancer genes and proportion of known and candidate cancer genes 

across the 31 tumour primary sites analysed in the 267 cancer-specific studies. The 

number of cancer donors followed by the number of cancer genes is given in brackets 

for each primary site. 

b. Proportion of candidate cancer genes over all cancer genes across the 31 tumour 

primary sites. The dot size is proportional to the donor cohort size.  
c. Total number of cancer genes and cancer donors across the 31 tumour primary 

sites. The colour scale in (b) and (c) indicates the number of screens for each primary 

site. 
 
Figure 3. Recurrence of cancer across primary sites and publications 
a. Proportion of study-specific cancer genes reported by each of the seven skin 

melanoma screens. 

b. Total number of cancer genes and donors across 24 cancer types of the blood. The 

full list of blood cancer types is reported in Additional file 2: Table S2. 
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c. Number of primary sites in which each known or candidate cancer gene was 

reported to be a driver.  

d. Number of publications in which each known or candidate cancer gene was 

reported to be a driver. 

e. Number of methods used to predict cancer genes for drivers found in more than 

one publication. 
f. Intersection of cancer genes in the cancer-specific and pan-cancer studies.  

g. Venn diagram of cancer genes across the four pan-cancer studies of adult donors.  

h. Intersection of cancer genes in pan-cancer screens of adult and paediatric donors. 

In f, g, and h the number of donors followed by the total number of cancer genes are 

given in brackets. 

 
Figure 4. Systems-level properties of cancer genes 
a. Percentage of genes with ≥1 gene duplicate covering ≥60% of the protein sequence. 

b. Proportion of genes originating in pre-metazoan species. c,d. Number of human 

tissues in which genes (c) and proteins (d) are expressed. In panel c, tissue types 

were matched between GTEx and Protein Atlas wherever possible, giving 43 unique 

tissues. In tissues represented in both datasets, genes were defined as expressed if 

they had ≥1 TPM in both datasets. Only genes present in both sources were compared 

(Additional file 2: Table S1). e. Percentage of genes essential in ≥1 cell line and 

distribution of cell lines in which each gene is essential. Only genes with concordant 

annotation between OGEE and PICKLES were compared (Additional file 2: Table S1).  

f. Percentage of proteins involved in ≥1 protein complex. g. Median values of 

betweenness (centrality), clustering coefficient (clustering) and degree (connectivity) 

of human proteins in the protein-protein interaction network. h. Median values of 

betweenness and degree of the target genes in the miRNA-target interaction network. 

The clustering coefficient is zero for all nodes, because interactions occur between 

miRNAs and target genes. Known, candidate and all cancer genes were compared to 

the rest of human genes, while TSGs were compared to OGs. Significance was 

calculated using a two-sided Fisher test (a,b,e,f) or Wilcoxon test (c,d,g,h). * = p<0.05, 

** = p<0.01, *** = p<0.001. Enrichment and depletion of cancer genes in representative 

functional categories taken from level 1 of Reactome (i) and level 2 of KEGG (j). 
Significance was calculated comparing each group of cancer genes to the rest of 

human genes using a two-sided Fisher test. False discovery rates were calculated in 
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each gene set separately. Only pathways showing enrichment or depletion are shown. 

The full list of pathways is provided in Additional file 2: Table S3. 


