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ABSTRACT	
Introduction:		

The	 use	 of	 cardiac	 magnetic	 resonance	 (CMR)	 imaging	 in	 the	 performance	 of	 cardiac	

electrophysiological	procedures	has	grown	rapidly	over	the	past	decade.	This	thesis	focuses	on	three	

main	 strands	 regarding	 the	 integration	 of	 CMR	 techniques	 within	 the	 management	 of	 atrial	

arrhythmias:	prior	to	ablation,	during	ablation,	and	after	ablation.	

Methods:		

Prior	to	catheter	ablation	for	atrial	fibrillation,	89	subjects	underwent	detailed	CMR	analysis	of	the	

AF	substrate,	with	extended	follow-up.	In	a	first-in-man	clinical	trial	of	MR-guidance	during	ablation,	

10	subjects	underwent	treatment	for	atrial	flutter	using	an	ablation	catheter	with	active	MR-tracking.	

Post	AF	ablation,	40	 subjects	were	enrolled	 in	 a	 cross-over	 study,	with	 two	 closely-coupled	 scan	

sessions	 (3	months	post-ablation,	 48	hour	 separation,	 total	 6	 LGE	 acquisitions	per	 subject):	 scar	

imaging	optimisation,	reproducibility	and	thresholding	were	assessed.	Finally,	the	predictive	value	

of	 the	VisiTag	 (CARTO3)	objective	 ablation	module	was	 evaluated	 against	 optimal	CMR-assessed	

scar.	

Results:	

Prior	 to	 ablation,	 on	 multi-variate	 Cox	 regression	 analysis	 only	 LA	 fibrosis	 was	 independently	

associated	with	outcome.	During	ablation,	MR-guided	therapy	was	performed	in	9	(90%)	of	subjects,	

with	two	late	arrhythmia	recurrences.	Post-ablation,	it	was	demonstrated	that	optimal	imaging	was	

performed	late	(>30min)	post-gadolinium	injection.	Reproducibility	of	scar	imaging	was	good,	and	

best	thresholded	using	a	blood-pool	z-score	method.	VisiTag	thresholds	should	be	set	relatively	low	

(10g,	15seconds)	to	avoid	a	high	ablation	burden.	

Conclusions:	

CMR	 techniques	 have	 an	 important	 role	 to	 play	 in	 the	 guidance	 of	 ablation	 therapies	 for	 atrial	

arrhythmias.	The	implementation	of	these	techniques,	though,	must	be	performed	with	a	thorough	

understanding	 of	 the	 capabilities	 and	 limitations	 of	 CMR.	 Image	 acquisition,	 image	 processing,	

engineering	constraints	and	subjective	interpretation	may	lead	to	false	findings,	both	positive	and	

negative.	In	this	cross-specialty	field,	cautious	and	informed	utilisation	of	CMR	may	in	time	improve	

clinical	outcomes,	but	further	work	is	required	to	establish	and	confirm	the	precise	role	and	benefits	

of	the	techniques.	 	
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EXTENDED	ABSTRACT	
Introduction:		

The	 use	 of	 cardiac	 magnetic	 resonance	 (CMR)	 imaging	 in	 the	 performance	 of	 cardiac	

electrophysiological	procedures	has	grown	rapidly	over	the	past	decade.	CMR	is	a	highly	attractive	

imaging	modality,	offering	excellent	soft	tissue	contrast	and	functional	indices	with	no	established	

long-term	adverse	effects.	 It	has	 therefore	been	used	extensively	both	prior	 to	and	after	ablation	

procedures.	However,	many	of	the	key	advantages	of	CMR	imaging	may	also	be	realised	in	real-time	

during	the	ablation	procedure.	This	thesis	focuses	on	three	main	strands	regarding	the	integration	of	

CMR	techniques	within	the	management	of	atrial	arrhythmias:	prior	to	ablation,	during	ablation,	and	

after	ablation.	

• Prior	to	ablation.	Multiple	CMR	indices	have	been	developed	by	 independent	groups	and	have	

been	shown	to	be	associated	with	long-term	outcome	(arrhythmia	recurrence)	following	catheter	

ablation	for	atrial	fibrillation	(AF).	In	this	thesis,	measurement	techniques	for	the	six	most	well-

established	 indices,	 including	atrial	 fibrosis,	were	developed	 independently	and	 implemented.	

For	the	first	time,	the	relative	contribution	and	combined	predictive	value	of	the	CMR-indices	of	

AF	substrate	was	assessed.	

• During	ablation.	Real-time	MR-guided	electrophysiological	(EP)	procedures	have	been	performed	

in	animal	models,	and	a	very	limited	number	of	human	procedures	performed.	Human	procedures	

have	been	performed	using	passive	tracking	techniques	to	establish	ablation	catheter	location,	a	

slow	and	laborious	process.	Active	tracking,	whereby	the	catheter	can	signal	its	position	in	3D	

space	 in	 real-time,	 brings	 MR-guided	 EP	 significantly	 closer	 to	 mainstream	 clinical	

implementation.	This	 thesis	documents	 the	 first-in-man	study	of	 the	use	of	active	 tracking	EP	

catheters	to	perform	ablation	of	typical	atrial	flutter	under	real-time	CMR	guidance.	

• After	 ablation.	 CMR	 has	 been	 used	 to	 assess	 the	 efficacy	 of	 ablation	 procedures,	 through	 the	

imaging	of	ablation	lesions,	and	even	to	guide	repeat	catheter	ablation	procedures.	However,	the	

precise	imaging	techniques	vary	widely	between	centres,	and	there	is	a	concomitant	variation	in	

imaging	 success.	 This	 thesis	 evaluates	 the	 optimal	 late	 gadolinium	 enhanced	 (LGE)	 imaging	

parameters,	 image	 interrogation	 techniques	 and	 reproducibility	 of	 detection	 of	 post-ablation	

atrial	scar	(PAAS),	and	then	assesses	the	predictive	value	of	a	novel	objective	marker	of	ablation,	

the	VisiTag	module	(CARTO3,	Biosense	Webster),	to	guide	user-defined	ablation	thresholds.		
	

Methods:		

• Prior	to	ablation.	89	patients	(53%	PAF,	73%	male)	underwent	comprehensive	CMR	study	prior	

to	 first-time	 ablation	 (PVI	 +/-	 additional	 lesion	 sets),	 with	 median	 follow-up	 383	 days	 post	

ablation.	3D	LGE	acquisition	(1.5T,	ECG	and	respiratory	gated,	1.3x1.3x2mm)	was	quantified	for	

atrial	 fibrosis	 according	 to	 image	 intensity	 ratio.	 Left	 atrial	 (LA)	 volume	 and	 sphericity	were	

assessed	 on	manual	 segmentation	 at	 atrial	 diastole,	 and	 LA	 and	 left	 ventricular	 (LV)	 ejection	

fractions	(EF)	quantified	on	multi-slice	cine	imaging.	

• During	ablation.	The	setup	integrated	a	clinical	1.5T	scanner,	an	EP	recording	and	ablation	system,	

and	a	real-time	image	guidance	platform	with	components	having	undergone	ex	vivo	and	in-vivo	
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validation.	For	the	clinical	study,	10	human	subjects	with	typical	atrial	flutter	(age	62±	15	years)	

underwent	MR-guided	cavotricuspid	isthmus	(CTI)	ablation.	

• After	ablation.	40	subjects	undergoing	first-time	radiofrequency	ablation	for	AF	(20	PAF,	31	male)	

underwent	3D	LGE	CMR	imaging	at	3	months	in	a	cross-over	study.	Post-ablation	imaging	was	

performed	on	two	separate	occasions,	separated	by	3	days,	with	acquisitions	performed	at	10,	20	

and	30min	post-gadolinium	administration	(total	6	acquisitions	per	patient).	At	Scan	1,	standard	

acquisition	 parameters	 were	 used	 (0.2mmol/kg	 Gadovist,	 1.5T	 magnet	 strength,	 4mm	 slice	

thickness).	At	Scan	2,	patients	were	randomised	to	identical	parameters	(n=10),	half	gadolinium	

dose	(n=10),	3T	(n=10)	or	half	slice	thickness	(2mm,	n=10).	PAAS	imaging	quality,	reproducibility	

and	thresholding	techniques	were	formally	assessed.	For	assessment	of	VisiTag	thresholds,	24	

subjects	underwent	standard	AF	ablation	with	VisiTag	module	activated.	27	export	datasets	were	

created	per	subject,	at	a	pre-selected	combination	of	thresholds	of	the	six	key	parameters,	based	

upon	a	UK	survey	of	clinical	practice.	PAAS	and	VisiTag	location	was	compared	on	a	regional	and	

point-by-point	basis.	
	

Results:	

• Prior	to	ablation.	LA	EF,	indexed	LA	volume,	LA	fibrosis	and	LV	EF	were	all	significantly	correlated	

with	 long-term	 outcome.	 On	 multi-variate	 Cox	 regression	 analysis	 only	 LA	 fibrosis	 was	

independently	associated	with	outcome.		

• During	 ablation.	 Targeted	 radiofrequency	 ablation	was	performed	 in	 9	 (90%)	 subjects.	 Seven	

patients	had	CTI	ablation	completed	using	CMR	guidance	alone;	2	patients	required	completion	

under	fluoroscopy,	with	2	late	flutter	recurrences.	Acute	and	chronic	CMR	imaging	demonstrated	

efficacious	 lesion	 formation,	 and	 anatomic	 shape	 of	 the	 CTI	was	 an	 independent	 predictor	 of	

procedural	success.		

• After	 ablation.	 Imaging	 of	 post-ablation	 atrial	 scar	 improves	 significantly	 with	 time	 from	

gadolinium	 administration,	 and	 a	 half	 dose	 of	 gadolinium	 improved	 contrast	 and	 total	 scar	

detected.	 There	 was	 good	 intra-scan	 and	 inter-scan	 reproducibility	 of	 PAAS	 detection,	 with	

thresholding	of	 the	scar	best	performed	using	a	blood-pool	z-score	method.	On	assessment	of	

VisiTag	 thresholds	 to	 predict	 scar	 formation,	 high	 force	 (>10g)	 and	 time	 (>15seconds)	 were	

associated	 with	 a	 lower	 negative	 predictive	 value,	 with	 scar	 frequently	 formed	 when	 these	

thresholds	had	not	been	achieved.	
	

Conclusions:	

CMR	 techniques	 have	 an	 important	 role	 to	 play	 in	 the	 guidance	 of	 ablation	 therapies	 for	 atrial	

arrhythmias.	The	implementation	of	these	techniques,	though,	must	be	performed	with	a	thorough	

understanding	 of	 the	 capabilities	 and	 limitations	 of	 CMR.	 Image	 acquisition,	 image	 processing,	

engineering	constraints	and	subjective	interpretation	may	lead	to	false	findings,	both	positive	and	

negative.	In	this	cross-specialty	field,	cautious	and	informed	utilisation	of	CMR	may	in	time	improve	

clinical	outcomes,	but	further	work	is	required	to	establish	and	confirm	the	precise	role	and	benefits	

of	the	techniques.	
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THESIS	OUTLINE	
	

SECTION	ONE:	BACKGROUND	AND	LITERATURE	REVIEW	

Chapter	1	provides	a	short	introduction	to	magnetic	resonance	imaging	(MRI),	the	technique	used	

in	all	the	experimental	chapters.		

Chapter	2	contains	an	outline	of	the	key	electrophysiological	principles	relevant	to	the	thesis.	Most	

of	the	chapter	addresses	the	two	atrial	arrhythmias	that	are	the	subject	of	the	experimental	chapters,	

atrial	fibrillation	(AF)	and	atrial	flutter	(AFL).	There	is	also	a	review	of	electroanatomical	mapping	

(EAM),	as	replication	of	the	functionalities	of	this	technique	are	key	in	the	development	of	a	clinically	

implementable	MR-guided	EP	system.	

Chapter	3	is	a	review	of	MR-guided	electrophysiology	(EP),	covering	technical	considerations	and	

the	history	of	the	field.	

	

SECTION	TWO:	METHODS	AND	EXPERIMENTAL	DATA	

Chapter	4	details	the	generic	methodological	techniques	that	are	relevant	to	all	experimental	data	

chapters.	This	comprises	core	CMR	imaging	techniques	and	parameters,	CMR	analysis	 techniques	

and	catheter	ablation	techniques.	

Chapter	5	presents	an	evaluation	of	six	of	the	main	CMR-derived	indices	of	left	atrial	AF	substrate,	

and	compares	their	relative	contribution	in	the	prediction	of	long-term	outcome	following	catheter	

ablation.	

Chapter	6	documents	the	development,	validation	and	first-in-man	clinical	study	of	an	MR-guided	

EP	ablation	system	using	active	catheter	tracking.	Using	an	EAM	analogue	on	an	MRI	platform,	ten	

patients	underwent	catheter	ablation	for	typical	AFL.	

Chapter	 7	 provides	 an	 assessment	 of	 the	 optimisation	 of	 CMR	 late	 gadolinium	 enhanced	 (LGE)	

imaging	for	the	detection	of	post-ablation	atrial	scar	in	a	cross-over	clinical	study.	

Chapter	 8	 reports	 the	 reproducibility	 of	 the	 imaging	 of	 LGE-detected	 post-ablation	 atrial	 scar.	

However,	 detection	 of	 scar	 is	 inseparable	 from	 the	 issues	 of	 signal	 intensity	 normalisation	 and	

thresholding,	and	therefore	all	three	are	evaluated	and	ablation	scar	is	also	compared	to	late	outcome	

following	ablation.	

Chapter	9	 describes	 the	predictive	 value	of	 an	objective	marker	 of	 ablation,	 the	VisiTag	module	

(CARTO3,	Biosense	Webster),	in	estimating	formation	of	chronic	atrial	ablation	scar.	3D	LGE	atrial	

datasets	at	three	months	post	ablation	are	used	as	a	marker	of	chronic	scar	following	ablation,	and	

ablation	parameter	thresholds	are	evaluated	in	a	retrospective	clinical	study.	

	

SECTION	THREE:	CONCLUDING	REMARKS	AND	SUPPLEMENTARY	DATA	

Chapter	10	concludes	the	thesis	by	discussing	original	contributions	and	future	directions.	
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1 CARDIAC	MAGNETIC	RESONANCE	
IMAGING	PRINCIPLES	

1.1 Basic	principles	of	MRI	

1.1.1 Nuclear	spins	and	their	properties	
The	principles	of	nuclear	magnetic	resonance	(NMR)	were	proposed	in	the	late	1940s	independently	

by	Felix	Bloch	and	Edward	Purcell	and	have	evolved	to	create	a	powerful,	varied	and	complex	tool	

for	medical	imaging	(magnetic	resonance	imaging,	MRI).		

	

In	quantum	mechanics,	each	particle	possesses	the	property	of	spin.	Particles	spin	about	their	axis,	

and	charged	particles	create	an	associated	magnetic	 field.	Protons	and	neutrons	each	have	a	spin	

number,	I,	of	½,	and	paired	protons	will	generally	cancel	out	the	spin	state	of	each	other.	However,	

atomic	nuclei	with	an	odd	number	of	protons	and/or	neutrons	exhibit	a	net	magnetic	field,	termed	a	

magnetic	dipole	moment	(MDM,	μ).	Several	elements	found	within	the	human	body	may	therefore	

be	used	for	NMR	assessment	(1H,	13C,	19F,	23Na,	31P),	but	1H	is	by	far	the	most	commonly	used	for	

medical	imaging	because	of	its	abundance	in	biological	tissues	and	large	gyromagnetic	ratio*	(I=	½,		

γ=	42.58MHz/T).		

	

At	resting	state,	the	MDMs	of	the	protons	are	in	an	equilibrium	state	where	each	cancels	out	the	other,	

resulting	in	a	net	magnetic	field	(M)	of	zero.	When	an	external	magnetic	field,	B0,	is	applied,	the	MDMs	

line	 up	 with	 the	 external	 field,	 pointing	 parallel	 or	 antiparallel.	 However,	 there	 is	 a	 small	 net	

magnetisation	(M0)	in	the	direction	of	B0,	representing	an	excess	of	approximately	one	in	1	million	

protons.	Furthermore,	in	a	manner	somewhat	analogous	to	a	spinning	top,	the	protons	wobble	or	

‘precess’	about	the	B0	axis	at	a	frequency,	ω,	proportional	to	the	gyromagnetic	ratio,	γ,	and	the	B0.	

	

	 	 	 	 !"#$%#	'()"*+%,:											. = 	012		 Equation	1.1	

1.1.2 RF	pulses,	excitation	and	relaxation	
In	order	to	interrogate	the	properties	of	a	tissue	within	a	magnetic	field,	the	spins	must	be	excited	

from	their	equilibrium	state.	This	is	achieved	by	applying	radiofrequency	(RF)	pulses	at	the	resonant	

(Larmor)	frequency.	These	RF	pulses	can	be	seen	as	the	application	of	an	oscillating	electromagnetic	

field,	B1,	and	the	frequency	of	the	pulse	must	be	sufficiently	close	to	the	Larmor	frequency,	ω0,	 in	

																																																																				

	

*	The	gyromagnetic	ratio	is	the	ratio	of	a	particle’s	(or	system’s)	angular	momentum	to	its	magnetic	momentum,	and	equal	to	

half	of	the	charge-to-mass	ratio.	Its	SI	unit	is	the	radian	per	second	per	tesla,	converted	to	hertz	per	tesla	by	dividing	by	2p.	
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order	 to	enable	resonance	of	 the	 torque	exerted	upon	the	baseline	magnetisation.	 In	practice,	RF	

pulses	are	often	labelled	according	to	the	flip	angle	(FA)	that	they	produce.	The	longer	the	pulse	is	

applied,	and	the	greater	the	magnitude	of	B1,	the	greater	the	angle	(FA)	M	is	moved	from	M0,	such	

that:	

	 	 	 	 34 = 0∫ 16(*)9*
:
2 	 	 	 Equation	1.2	

where	FA=	flip	angle,	γ=	gyromagnetic	ratio.		

	

The	 magnitude	 of	 the	 net	 magnetisation	 aligned	 parallel	 to	 B0	 is	 termed	 the	 longitudinal	

magnetisation	(Mz),	whilst	the	net	vector	perpendicular	to	B0	is	termed	transverse	magnetisation,	or	

Mxy.	Furthermore,	the	RF	pulse	causes	the	spins	to	precess	in	phase,	creating	an	oscillating	magnetic	

field	measurable	at	the	macroscopic	level.	

	

An	RF	pulse	that	tips	M	fully	onto	the	transverse	plane	(Mz=0,	Mxy=M0)	is	called	a	90°,	or	‘saturation’,	

pulse.	An	RF	pulse	that	flips	M	all	the	way	back	to	the	z-axis	is	a	180°,	or	‘inversion’,	pulse	(Mz=	-M0	

and	Mxy=0).	The	power	of	 the	pulse	 is	 important	 in	terms	of	 the	total	energy	applied	to	the	body	

within	the	scanner	that	may	be	deposited	within	tissues.	This	is	termed	the	specific	absorption	rate	

(SAR),	and	in	practice	is	calculated	rather	than	measured.		

1.1.2.1 T1	relaxation		
T1	relaxation	is	the	term	applied	to	the	return	of	M	to	M0,	the	baseline	equilibrium	state	within	B0,	

following	excitation.	It	also	applies	in	theory	to	the	transition	to	M0	when	a	body	is	first	placed	within	

an	external	magnetic	field.	

	

The	 T1	 characteristic	 of	 a	 tissue	 is	 determined	 by	 the	 efficiency	 of	 energy	 transfer	 between	 the	

protons	 and	 the	 surrounding	 tissue,	 ‘spin-lattice’	 energy	exchange.	The	most	 efficient,	 and	hence	

swiftest,	energy	transfers	occur	when	the	natural	motional	frequencies	(‘tumbling	rate’)	of	a	tissue	

(ω(tissue))	are	close	 to	 the	Larmor	 frequency	(ω0).	The	T1	 time	 is	 therefore	dependent	upon	the	

biological	tissue	type	(determining	tumbling	rate)	and	the	strength	of	B0	(determining	ω0).		

	

The	 tumbling	 rate	 is	 influenced	by	 the	 bonds	between	 atoms	 and	 local	 atomic	 environment.	 For	

example,	 in	water	 the	protons	have	 a	 very	high	degree	of	 freedom,	 and	 therefore	 a	 high	natural	

motional	 frequency	 (ω(H2O)>>ω0),	 in	 solids	 there	 is	 a	 low	degree	 of	 freedom,	 so	ω(solids)<<ω0.	

However,	 in	tissues	such	as	fat	the	frequency	is	very	close	to	ω0	at	typical	 imaging	field	strengths	

(ω(fat)	≈ω0).	Therefore	fat	lies	close	to	the	T1	‘sweetspot’	and	has	a	shorter	T1	time	than	either	solids	

or	water	at	either	end	of	the	spectrum.	Water	itself,	though,	may	be	relatively	constrained	when	in	

proximity	to	hydrophilic	molecules	such	as	some	proteins,	reducing	the	tumbling	rate	and	therefore	

substantially	shortening	its	T1	time.	

	

Typical	T1	relaxation	time:	water>solids>proteins>fat	
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Perhaps	slightly	counter-intuitively,	stronger	magnetic	fields,	B0,	tend	to	be	associated	with	longer	

T1	time.	This	is	related	to	the	increase	in	Larmor	frequency	proportional	to	B0	(see	Equation	1.1),	and	

the	consequent	shift	from	the	natural	‘tumbling	rates’	of	biological	tissues.	The	tumbling	rates	of	free	

water	and	solids	remain	significantly	different	from	the	Larmor	frequency	at	all	medically	relevant	

field	strengths,	but	those	of	proteins	and	fat	progressively	shift	below	the	Larmor	frequency	with	

increasing	 field	 strength.	 As	 a	 result,	 empirical	 measurements	 suggest	 that	 biological	 tissue	 T1	

increases	proportional	to	approximately	B01/3,	increasing	by	around	25%	from	1.5T	to	3T	(Hashemi,	

Bradley,	and	Lisanti	2010).	

	

The	return	of	M	to	M0	is	an	exponential	process,	and	the	T1	time	constant	is	defined	such	that,	for	a	

flip	angle	of	90°:	

	

	 	 	 ;<(*) = ;2(1 − ?
@ A
BC)	 	 	 	 Equation	1.3	

	

where	Mz(t)is	the	magnetisation	in	the	z-axis	(in	line	with	B0)	at	time	t.		

	

Therefore,	when	t=T1,	Mz	has	returned	to	M0(1-1/e),	or	approximately	0.632M0.	

1.1.2.2 T2	and	T2*	relaxation	
The	 transverse	magnetisation,	Mxy,	 decays	with	 a	 time	 constant	 T2,	 which	 describes	 an	 entropic	

process	in	which	there	is	a	loss	of	coherence	of	spins	rather	than	energy	exchange.	The	faster	the	

proton	spins	dephase	following	excitation,	the	shorter	the	T2	time	constant.	The	dephasing	is	largely	

dependent	 upon	 two	 main	 processes:	 the	 spin-spin	 interactions	 and	 the	 magnetic	 (B0)	

inhomogeneities.		

	

The	 ‘spin-spin’	 interaction,	 the	primary	determinant	of	T2	relaxation	time,	 is	dependent	upon	the	

proton	 density	 and	 structure	 of	 tissues.	 Water	 has	 minimal	 structure,	 reducing	 spin-spin	

interactions,	and	hence	lengthening	T2	relaxation	time	in	comparison	to	more	organised	structures	

such	as	fats,	proteins	or	solids.	

	

T2	relaxation	time:	water>fat>protein>solids	

	

The	decay	of	Mxy	is	also	an	exponential	process,	and	the	T2	time	constant	is	defined	such	that:	

	

	 	 	 	 ;DE(*) = ;DEFG?@:/IJ		 	 	 Equation	1.4	

where	MxyPE	is	the	initial	transverse	magnetisation	(Mxy)	immediately	post-

excitation	pulse.	
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However,	magnetic	inhomogeneities	may	exert	a	highly	significant	effect	upon	rapid	dephasing,	but	

are	considered	separately	as	they	may	be	reversible	if	fixed	(see	Spin	Echo	Sequences	below).		The	

combined	effect	of	spin-spin	interactions	and	field	inhomogeneities	is	described	by	decay	constant	

T2*,	such	that:	

	

	 	 	 	 	 6
IK∗
= 6

IK
+ 6

IKN
	 	 	 Equation	1.5	

	

where	T2’	is	the	modelled	decay	constant	attributable	to	magnetic	

inhomogeneities	alone.	

	

1.2 Signal	detection	
In	performing	an	NMR	experiment,	a	signal	from	the	sample	is	detected	following	the	RF	excitation	

via	a	receiver	coil.	The	small	oscillating	magnetic	field,	arising	from	the	in-phase	component	of	Mxy,	

will	induce	a	current	within	the	coil	and	generate	a	signal.		

	

In	 its	 simplest	 form,	 the	 recorded	 signal	would	be	 that	 generated	by	 free	 induction	decay	 (FID).	

Following	excitation,	the	spins	begin	to	precess	freely	then	decay	dependent	upon	T2*	time	constant.	

This	will	 create	 a	 signal	 intensity	 (SI)	 at	 time	 t	proportional	 to	 the	decaying	 in-phase	 transverse	

magnetisation,	with	oscillating	frequency	ω0:	

	

	 	 	 	 OP(*) ∝ ;DEFG?
@ A
BK∗(R%S .2*)	 	 Equation	1.6	

where	MxyPE	is	the	magnetisation	in	the	transverse	axis	immediately	post	excitation.	

	

However,	this	basic	FID	experiment	does	not	allow	for	creation	of	an	image,	as	the	signal	received	by	

the	coil	could	come	from	any	location	within	the	sample.	Therefore,	it	is	necessary	to	generate	more	

complex	excitation	sequences	that	allow	for	spatial	encoding	(see	Section	1.4).	

1.2.1 Signal	to	Noise	Ratio	(SNR)	
Noise	arises	primarily	from	electrical	noise	within	the	patient,	due	to	the	emission	of	RF	secondary	

to	thermal	motion	within	the	body.	Individual	voxel	intensities	reflect	the	joint	contribution	of	RF	

signal	 from	 the	 imaged	 region	 combined	 with	 noise.	 Excessive	 noise,	 relative	 to	 desired	 signal,	

degrades	the	sharpness	of	imaging	and	the	ability	to	distinguish	different	structures	in	the	image.	

The	relative	amount	of	noise	in	an	image	can	be	quantified	using	the	concept	of	signal	to	noise	ratio	

(SNR).	SNR	is	calculated	as:	
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	 	 	 OTU =	 VWXY	Z[\YX]	[Y	^_`
Z:XYaXba	aWc[X:[dY	de	Yd[ZW

	 	 	 Equation	1.7	

where	SNR	=	signal	to	noise	ratio,	ROI	=	region	of	interest	

	

Signal	 is	 measured	 as	 the	 average	 signal	 in	 a	 small	 region	 of	 interest,	 whilst	 noise	 is	 typically	

quantified	as	the	root	mean	square	(RMS)	amplitude	of	the	white	noise	that	is	superimposed	on	the	

signal	 (Dietrich	 et	 al.	 2007).	 Noise	 should	 be	 uniformly	 distributed	 across	 the	 image	 due	 to	 the	

Fourier	 transform	 reconstruction,	 and	 be	 of	 Gaussian	 distribution	 (McVeigh,	 Henkelman,	 and	

Bronskill	1985).	The	RMS	amplitude	of	a	Gaussian	distribution	is	equal	to	its	standard	deviation,	and	

therefore,	for	non-accelerated	imaging	sequences,	the	standard	deviation	of	the	signal	of	air	outside	

the	body	is	typically	used	as	the	measurement	of	noise.	The	measurement	of	noise	in	the	presence	of	

parallel	processing	 is	more	complex,	as	noise	 in	 the	MR	 image	becomes	spatially	modulated,	and	

Equation	1.7	cannot	be	used	directly	(see	1.3.3).	

1.2.2 Tissue	contrast	
As	described	above,	different	biological	tissues	have	different	T1	and	T2	(or	T2*)	time	constants,	and	

these	differences	can	be	exploited	to	create	contrast	between	tissues.	This	is	performed	primarily	by	

varying	 the	 interval	 between	 the	 excitation	 pulse	 and	 signal	 sampling	 (echo	 time,	 TE),	 and	 the	

subsequent	excitation	pulse	(repetition	time,	TR).		

	

• Echo	time.	TE	determines	the	time	during	which	transverse	magnetization	(Mxy)	dephasing	

occurs.	Very	early	signal	sampling	(TE<<T2(*))	will	yield	a	signal	almost	entirely	dependent	

upon	the	magnitude	of	Mz	pre-excitation,	and	hence	is	T1-weighted.	Increasing	TE	increases	

the	dependency	of	the	image	contrast	on	T2	differences	between	tissues	(T2-weighting).	

• Repetition	time.	TR	determines	the	time	during	which	longitudinal	recovery	takes	place.	A	

short	 TR	 generally	 increases	 the	 dependency	 of	 the	 image	 contrast	 on	 T1	 differences	

between	tissues	(T1-weighting),	but	at	the	cost	of	progressive	reduction	in	the	overall	signal	

as	Mz	has	minimal	time	to	recover.		A	long	TR	(TR>>T1)	will	allow	recovery	of	all	Mz	prior	to	

the	RF	pulse,	and	hence	will	reduce	the	effect	of	the	T1	time	constant	on	signal	intensity.	

	

A	further	determinant	of	tissue	contrast	is	the	proton	density.	The	received	signal	is	proportional	not	

only	to	 in-phase	Mxy,	but	also	the	number	of	protons	available	 for	excitation	(proton	density).	 	 In	

general,	proton	density	is	more	homogeneous	across	biological	tissues	than	T1	or	T2	and	therefore	

proton	density	weighted	images	tend	to	have	lower	contrast.		

	

In	 summary,	 the	 impact	 of	 TR,	 TE	 and	proton	density	 upon	 signal	 intensity	 can	be	 expressed	 as	

follows:	
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	 	 	 	 OP ∝ T(f)(?@
Bg
BK)(1 − ?@

Bh
BC)	 	 Equation	1.8	

where	SI	is	signal	intensity,	N(H)	is	the	proton	density,	TE	is	echo	time,	TR	is	

repetition	time.	Assuming	flip	angle	90°	(Hashemi,	Bradley,	and	Lisanti	2010).	

	

Contrast	 in	 MRI	 is	 therefore	 very	 flexible,	 and	 selection	 of	 optimal	 combinations	 of	 TR	 and	 TE	

depends	 upon	 imaging	 sequence	 and	 tissue	 T1	 and	 T2	 characteristics.	 Table	 1-1	 summarises	 the	

typical	image	weighting	at	combinations	of	TR	and	TE.	

	

	 Short	TR	 Long	TR	

Short	TE	

T1	weighted	

Moderate	SNR	

High	contrast	

“Proton	Density”	weighted	

High	SNR	

Low	contrast	

Long	TE	
Poor	SNR		

Poor	contrast	

T2	or	T2*	weighted	

High	SNR	

High	contrast	

Table	1-1.	Image	weighting	at	combinations	of	repetition	time	(TR)	and	echo	time	(TE).		

(SNR	=	signal	to	noise	ratio)	

1.2.3 Contrast	agents	
When	 T1-weighted	 sequences	 are	 used,	 tissues	 with	 shorter	 T1	 time	 demonstrate	 a	 higher	 SI.	

However,	 the	 difference	 in	 T1	 time	 of	 normal	 and	 pathological	 tissues	 may	 be	 insufficient	 to	

demonstrate	significant	imaging	contrast,	and	therefore	exogenous	contrast	agents	may	be	used	to	

alter	the	T1	(and	T2)	properties	of	tissues.		

	

The	most	commonly	used	contrast	agents	are	gadolinium-based	contrast	agents	(GBCA).	Gadolinium	

is	a	lanthanide	metal,	which	with	seven	unpaired	electrons	is	a	strongly	paramagnetic	substance†.	

																																																																				

	

†	Substances	relevant	within	medical	MRI	can	be	broadly	divided	into	three	groups	of	properties	of	magnetic	susceptibility	

(Hashemi,	Bradley,	and	Lisanti	2010).	

1. Diamagnetic.	Diamagnetic	substances	have	no	unpaired	orbital	electrons.	Within	an	external	magnetic	field	B0,	they	

produce	a	weak	magnetic	field	in	the	opposite	direction.	They	can	be	termed	‘non-magnetic’.	

2. Paramagnetic.	 Paramagentic	 substances	 have	 unpaired	 orbital	 electrons,	 and	 within	 B0	 they	 produce	 a	 weak	

magnetic	field	in	the	same	direction.	There	is	no	remnant	magnetic	field	when	the	external	field	is	zero.	They	are	

weakly	attracted	by	an	external	magnetic	field.	Gadolinium	is	the	element	with	the	greatest	number	of	unpaired	

electrons,	and	with	a	relatively	long	electron	spin	relaxation	time,	and	therefore	causes	significant	T1	shortening.	

Substances	with	very	large	numbers	of	unpaired	electrons,	such	as	haemosiderin,	exhibiting	a	very	large	magnetic	

moment	in	an	external	field	are	termed	‘superparamagnetic’.	

3. Ferromagnetic.	 Ferromagnetic	 substances	become	permanently	magnetised,	 even	when	B0	 is	 removed,	 and	are	

strongly	attracted	by	a	magnetic	field.	This	group	includes	iron,	cobalt	and	nickel.	

	



CMR	imaging	in	EP	
	

Cardiac	Magnetic	Resonance	Imaging	Principles	 23	

The	 unpaired	 electrons	 interact	 strongly	with	 the	water	 proton’s	magnetic	 field.	 Due	 to	 thermal	

motion,	 this	 interaction	 induces	 significant	 fluctuating	magnetic	 fields	 for	 the	water	protons	 and	

hence	shortens	T1	(Bjørnerud	2008).	The	ability	of	a	contrast	agent	to	enhance	proton	relaxation	is	

defined	in	terms	of	its	relaxivity	(r1,2):	

	

	 	 	 	 U6,Jj = 	 6
IC,K

= U6,J2 + #6,J[l]	 	 Equation	1.9	

where	R1,2	are	the	relaxation	rates,	the	inverse	of	T1	and	T2.	RC	is	the	relaxation	

rate	in	the	presence	of	contrast,	and	R0	the	rate	at	baseline.		r1,2	are	the	

relaxivity	constants	(T1	and	T2-relaxivity)	of	the	agent,	and	C	the	concentration	

of	the	agent	(Bjørnerud	2008).	Note	that	this	assumes	a	linear	relationship	

between	increase	in	relaxation	rate	and	contrast	concentration,	which	is	an	

over-simplification	in-vivo.		

	

Gadolinium	has	a	favourable	electron	spin	relaxation	time,	facilitating	energy	transfer,	and	hence	a	

high	relaxivity.	It	is	therefore	widely	used	for	enhancing	imaging	contrast,	but	gadolinium	itself	is	

toxic	 in	 its	 unbound	 Gd3+	 ion	 form.	 This	 necessitates	 the	 chelation	 of	 gadolinium	 within	

biocompatible	molecules,	which	 are	 generally	 of	 low	molecular	weight	 (<1000	Daltons).	 Despite	

chelation,	gadolinium	has	been	shown	to	cause	nephrogenic	systemic	 fibrosis	 (NSF)	on	very	rare	

occasions,	although	the	newer	macrocyclic	chelates	have	been	demonstrated	to	carry	an	even	lower	

risk	of	NSF	than	the	linear	chelates	(Khawaja	et	al.	2015).	These	chelates	are	small	enough	to	pass	

swiftly	between	extracellular	spaces,	and	the	agent	therefore	acts	to	enhance	T1	signal	of	the	water	

of	the	extracellular	spaces	within	which	it	may	accumulate.		

	

The	impact	of	an	administered	contrast	agent	on	MR	signal	is	complex.	Firstly,	although	the	relaxivity	

values	may	be	relatively	constant,	the	‘dose	response’	is	non-linear	and	highly	dependent	upon	the	

imaging	sequence	and	the	concentration	range.	However,	within	a	low	concentration	range,	as	used	

for	the	experiments	detailed	in	this	thesis,	a	fairly	linear	increase	in	signal	intensity	is	observed	with	

increasing	 concentration	 (Bjørnerud	 2008).	 Secondly,	 the	 pharmacokinetics	 of	 contrast	 agent	

distribution	are	highly	dependent	upon	tissue	perfusion,	extracellular	volume	and	differential	tissue	

permeabilities.	Initially	the	contrast	agent	lies	almost	exclusively	within	the	blood	pool,	facilitating	

high	 contrast	 angiography	 on	 T1-weighted	 sequences.	 However,	 there	 is	 then	 an	 equilibration	

process	as	the	contrast	accumulates	within	the	extracellular	space,	prior	to	physiological	clearance	

(Knowles	et	al.	2008).		

1.2.4 Other	sources	of	tissue	contrast	
Whilst	contrast	agents	play	a	key	role	in	the	imaging	detailed	within	this	thesis,	there	are	several	

other	relevant	mechanisms	through	which	image	contrast	is	generated	beyond	T1	and	T2	relaxation	

times	and	proton	density.	
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1.2.4.1 Chemical	shift	
Protons	within	different	molecules	precess	at	slightly	different	frequencies,	due	to	the	impact	on	B0	

of	 the	opposing	magnetic	 field	of	 the	 surrounding	electrons.	The	magnetic	 field	 at	 the	nucleus	 is	

therefore	generally	less	than	the	applied	B0,	thereby	shifting	the	Larmor	frequency.	For	example,	the	

Larmor	frequency	of	1H	atoms	in	water	molecules	is	typically	3.5ppm	higher	than	those	within	lipid	

molecules.	Whilst	this	may	lead	to	a	misregistration	of	several	voxels	(see	section	1.3.1),	the	chemical	

shift	may	also	act	to	accentuate	soft	tissue	interfaces.	

1.2.4.2 Magnetisation	transfer	
Magnetisation	transfer	(MT)	is	a	technique	that	may	be	used	to	suppress	protein-bound	water.	Due	

to	the	chemical	shift	phenomenon,	protein-bound	water	will	possess	a	resonant	frequency	1-2kHz	

away	from	bulk	water,	and	will	have	a	broad	peak	in	view	of	the	inverse	relationship	between	T2	and	

spectral	 bandwidth	 (bulk	 water	 has	 a	much	 longer	 T2	 than	 protein-bound	water).	 Spectral	 pre-

saturation	pulses,	using	off-resonance	MT	pulses	approximately	1kHz	away	from	the	centre	of	the	

peaks,	will	directly	saturate	the	protein-bound	spin	system,	but	not	the	bulk	water.	However,	bulk-

water	 in	 communication	with	 protein-bound	water	may	 exchange	magnetisation	 (magnetisation	

transfer).	 Therefore,	 saturating	 the	 protein	 will	 lower	 the	 signal	 of	 the	 adjacent	 water,	 and	 the	

contrast	between	water	compartments	that	may	or	may	not	be	in	contact	with	protein.		

1.2.4.3 Fat	suppression	
For	some	applications,	the	signal	from	fat	is	undesirable,	as	due	to	its	short	T1	and	long	T2,	it	is	usually	

much	brighter	than	other	tissues.	It	can	be	suppressed	using	the	techniques	below:	

• STIR-	short	inversion	time	(TI	or	‘tau’)	inversion	recovery.	At	1.5T,	the	inversion	time	(see	

Section	 1.4.4)	 of	 fat	 is	 approximately	 140-160msec,	 and	 therefore	 the	 application	 of	 an	

inversion	pulse	140msec	prior	to	the	excitation	pulse	will	achieve	nulling	of	the	signal	from	

fat,	at	the	cost	of	some	tissue	signal.	As	it	is	an	inversion	recovery	sequence,	signal	intensity	

in	STIR	images	is,	to	first	approximation,	proportional	to	the	magnitude	of	the	longitudinal	

magnetisation	at	the	time	of	excitation,	and	therefore	tissue	with	the	longest	T1	will	generate	

the	highest	signal,	in	contrast	to	most	T1	weighted	imaging.	

• CHESS-	 chemical	 shift	 selective	 magnetisation	 preparation.	 As	 discussed	 previously,	 the	

resonant	 frequency	 of	 fat	 is	 different	 to	 other	 tissues,	 differing	 by	 around	 3.5parts	 per	

million	(or	around	220Hz	at	1.5T).	A	spectrally	selective	90° saturation	pre-pulse	followed	
by	a	spoiler	gradient	(see	Section	1.4.3.1)	is	applied	to	eliminate	signal	arising	from	fat.		

• SPIR-	spectral	pre-saturation	with	 inversion	recovery.	SPIR	 is	a	combination	of	STIR	and	

CHESS.	The	latter	will	allow	partial	recovery	of	fat	magnetisation	prior	to	imaging,	and	SPIR	

instead	employs	a	partial	inversion	recovery	pulse,	with	FA	between	90-180°.	
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1.3 Building	an	MR	image	

1.3.1 Spatial	encoding	
A	simple	echo	following	RF	excitation	contains	no	information	on	the	location	of	the	origin	of	the	RF	

energy.	There	is	therefore	a	requirement	for	further	steps	to	encode	spatial	location	upon	a	signal,	

and	this	information	is	 imprinted	in	three	dimensions	using	different	adjustments	of	the	gradient	

fields	(see	Figure	1-1).	Gradient	fields	are	transient	magnetic	fields	that	are	usually	induced	using	

precisely	calibrated	loops	of	resistive	wire	within	the	scanner	bore.	The	activation	of	currents	within	

these	loops	creates	predictable	perturbations	of	B0	that	may	be	used	for	signal	encoding.	

	

	

Figure	1-1.	Spatial	encoding.	

(RF:	 radiofrequency,	 Gs:	 gradient	 in	 the	 slice	 selective	 orientation,	 Gp:	 gradient	 in	 the	

phase	encoding	direction,	Gf:	gradient	in	the	frequency	encoding	direction.)	

	

• Slice	 selection	 (Gs).	The	 imaging	 slice	 is	 selected	using	 the	application	of	 a	 gradient	 field	

during	the	excitation	pulse.	The	gradient	field	will	alter	the	Larmor	frequency,	and	therefore	

only	a	selected	region	will	be	excited.	The	thickness	of	the	slice	will	be	dependent	upon	the	

bandwidth	of	the	excitation	pulse	and	the	strength	of	the	slice	selection	gradient	(Gs).		
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• Phase	encoding	(Gp).	Within	a	2D	imaging	slice,	 two	dimensions	remain	to	be	delineated.	

Phase	 encoding	 is	performed	 through	 switching	on	 a	phase	 encoding	 gradient	 (Gp)	 for	 a	

specific	 time	 period,	 generating	 a	 predictable	 phase	 shift	 in	 proton	 spin	 along	 the	 Gp	

direction.	The	degree	of	phase	encoding	is	limited	to	+180°	to	-180°,	relative	to	the	centre	of	

the	 field.	 Phase	 encoding	 adds	 significantly	 to	 sequence	 acquisition	 time,	 as	 each	 phase	

encoding	step	requires	a	further	repetition	time.		

• Frequency	encoding	 (Gf).	 Sampling	of	 the	signal	 is	performed	during	 the	application	of	a	

frequency	encoding	gradient	(Gf).	The	frequency	of	the	sampled	signal	is	determined	by	the	

position	of	the	signal	origin	within	Gf,	with	a	higher	frequency	occurring	at	stronger	field	

strength.	

	

Gs	and	Gf	act	to	create	unnecessary	dephasing	of	spins,	and	therefore	decrease	the	acquired	signal	

strength.	Opposite	rephasing	gradients	are	required	to	maximise	signal	at	the	echo	time	(Figure	1-1).	

	

1.3.2 Fourier	transformation	and	K-space	
The	received	RF	signal	contains	information	from	all	the	excited	spins	within	an	imaging	slice.	The	

frequency	 encoded	 components	 are	 broken	 down	 using	 a	 Fourier	 transformation,	 isolating	 the	

relative	signal	contribution	of	each	frequency,	and	therefore	the	relative	signal	of	each	component	in	

the	frequency	encoded	direction.	The	analysis	of	relative	signal	contribution	from	each	component	

in	the	phase-encoded	direction	requires	multiple	samples,	each	with	a	differing	degree	of	dephasing,	

and	the	number	of	pixels	in	the	phase	encoding	direction	is	generally	equal	to	the	number	of	phase	

encoding	steps.	

	

The	use	of	phase	and	frequency	encoding	means	that	each	imaging	voxel	is	reconstructed	using	data	

from	every	 signal	 sample	within	 the	 slice.	The	 sampled	 signals	 are	acquired	 in	k-space,	 a	 spatial	

frequency	domain,	where	the	central	part	of	k-space	contains	the	low	spatial	frequency	information	

(contrast)	and	the	outer	parts	the	high	spatial	frequency	information	(detail	and	edges).	A	complete	

image	will	require	the	acquisition	of	all	spatial	frequencies,	up	to	the	number	that	define	the	spatial	

resolution	of	the	acquisition,	and	the	filling	of	k-space	may	theoretically	be	performed	in	any	order.	

Conventionally,	it	is	filled	line-by-line	(Cartesian	data	acquisition),	and	often	this	is	‘linear’	(with	the	

centre	of	k-space	and	contrast	acquired	halfway	through)	or	‘low-high’	(with	the	centre	outwards	

filled	in	alternating	lines	progressively	further	from	the	centre	of	k-space).	Alternative	techniques	

include	 radial	 or	 spiral	 trajectories,	 which	 entail	 their	 own	 advantages	 at	 the	 cost	 of	 increased	

complexity	and	oversampling	(Plein,	Greenwood,	and	Ridgway	2011).		

	

The	complex	conjugate	symmetry	of	k-space	may	be	exploited	to	reduce	acquisition	times,	enabling	

the	 acquisition	 of	 less	 than	 the	 full	 k-space	 along	 the	 phase	 encoding	 direction	 (partial	 Fourier	

imaging).	The	reduced	acquisition	time	is	achieved	at	the	cost	of	reduced	SNR	and	potentiation	of	
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signal	errors	and	artefacts.	Once	k-space	is	filled,	a	Fourier	transformation	converts	the	data	to	create	

the	acquired	image.	

1.3.3 Parallel	imaging	
Signal	 spatial	 distribution	 information	may	 also	 be	 derived	 using	 surface	 coil	 arrays,	 decreasing	

acquisition	time.	Characteristic	sensitivity	maps	are	used	to	provide	spatial	 information,	enabling	

under-sampling	of	k-space,	usually	along	the	phase	encoding	direction,	and	reducing	acquisition	time	

by	 an	 acceleration	 factor	 or	 reduction	 factor	 (R).	 On	 the	 Siemens	 systems,	 the	 reconstruction	

calculations	 are	 performed	 in	 k-space	 (GeneRalized	 Autocalibrating	 Partial	 Parallel	 Acquisition	

(GRAPPA)),	 with	 the	 reference	 image	 acquired	 as	 part	 of	 the	 acquisition.	 For	 Philips,	 the	

reconstruction	is	most	often	performed	in	the	image	space,	with	the	reference	image	acquired	prior	

to	imaging	(SENSitivity	Encoding	(SENSE)).	

	

Whilst	parallel	imaging	reduces	acquisition	time,	it	results	in	a	reduction	of	SNR	proportional	to	ÖR	

due	to	decreased	data	sampling	(Dietrich	et	al.	2007).	Furthermore,	the	assessment	of	SNR	is	more	

complex	secondary	to	a	non-uniform	distribution	of	noise,	and	this	problem	is	particularly	relevant	

to	analyses	within	Chapter	7	.		

	

Each	coil	element	detects	different	noise	characteristics,	resulting	in	a	heterogeneous	spread	of	noise	

across	the	image,	which	is	roughly	described	by	the	geometry	factor	(g-factor).	The	g-factor	varies	

between	voxels	as	the	coil	geometries	and	sensitivity	profiles	differ,	and	therefore	measurement	of	

the	 signal	 standard	 deviation	 in	 air	 outside	 the	 body	 can	 no	 longer	 be	 used	 as	 a	 reference	

measurement	for	noise	(see	Section	1.2).		

	

The	 most	 robust	 method	 for	 measurement	 of	 noise	 is	 the	 ‘multiple	 acquisition’	 method,	 which	

determines	noise	on	a	pixel-by-pixel	basis.	However,	multiple	 (30-300)	 identical	 acquisitions	are	

used	 to	 derive	 the	noise	measurement	 and	 this	 is	 clearly	 not	 practical	 in	 the	 clinical	 scenario.	A	

second	 method	 is	 the	 ‘difference’	 method,	 using	 only	 two	 identical	 acquisitions:	 the	 standard	

deviation	 in	 a	ROI	 of	 the	 two	 subtracted	 images	may	be	 approximated	 to	Ö2	 times	 the	 standard	

deviation	of	the	noise	in	the	original	images.	Thirdly,	an	‘SNR	ratio’	method	may	be	used,	particularly	

for	comparison	between	images	with	unchanged	acquisition	parameters.	Based	upon	the	assumption	

that	the	g-factor	remains	unchanged,	the	ratio	of	SNRs	may	be	compared,	providing	that	the	ROIs	

relative	to	the	coils	remain	unchanged	as	well.	Background	noise	is	typically	measured	in	a	low	signal	

region,	either	air	outside	the	body	or	lung.	(Dietrich	et	al.	2007)	

1.4 Basic	RF	pulse	sequences  
Thus	far,	only	a	single	excitation	RF	pulse	has	been	discussed.	The	application	of	precise	sequences	

of	RF	pulses	enables	both	improved	signal	quality	and	reduced	acquisition	times,	and	there	is	a	wide	

array	of	sequences	in	clinical	applications.	However,	there	are	two	main	groups	of	sequences	used	in	

the	clinical	imaging	described	in	this	thesis:	spin	echo	and	gradient	echo.	
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1.4.1 Spin	echo	sequences	
The	spin	echo	sequence	is	used	comparatively	little	throughout	this	thesis,	but	warrants	discussion	

in	view	of	its	role	as	one	of	the	most	basic	pulse	sequences.	The	strength	of	the	sequence	lies	in	the	

rephasing	 180°	 RF	 pulse	 that	 eliminates	 the	 dephasing	 caused	 by	 fixed	 magnetic	 field	

inhomogeneities. The	transverse	magnetization	recovery	is	therefore	dictated	by	T2	instead	of	the	
shorter	T2*,	leading	to	a	higher	SNR	when	compared	to	similar	gradient-echo	sequences. 
	

A	typical	pulse	sequence	is	shown	in	Figure	1-2.	Blood	is	typically	dark,	as	its	motion	prevent	its	spins	

from	 being	 successfully	 rephased,	 and	 blood	 signal	 may	 be	 further	 suppressed	 using	 a	 double	

inversion	preparation	pulse	technique,	where	a	non-slice	selective	180°	RF	pulse	is	followed	by	a	

slice	selective	reinversion	180°	RF	pulse.	Spin	echo	imaging	is	generally	slow	but	may	be	accelerated	

through	fast/turbo	spin	echo	(FSE/TSE)	techniques.		

	

	

Figure	1-2.	Basic	spin	echo	sequence.		

RF:	radiofrequency,	TE:	echo	time,	Gs:	slice	selection	gradient,	Gp:	phase	encoding	gradient,	

Gf:	frequency	encoding	gradient.	

1.4.2 Gradient	echo	sequences	(GRE)	
Gradient	echo	sequences	are	also	known	as	gradient-recalled	echo	(GRE),	or	 fast	 field	echo	(FFE-	

Philips	 systems),	 and	 they	 offer	 a	 substantial	 reduction	 in	 scan	 time.	 Using	 low	 flip	 angles,	 it	 is	
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possible	to	achieve	acceptable	degrees	of	Mxy	whilst	minimising	loss	of	Mz,	thereby	enabling	shorter	

TR‡.	However,	a	180°	refocusing	pulse	is	not	used	and	GRE	sequences	are	therefore	significantly	more	

susceptible	than	spin	echo	sequences	to	B0	inhomogeneities	and	susceptibility	artefacts.		

	

	

Figure	1-3.	Basic	Gradient	Recalled	Echo	sequence	(GRE).	

	A	 spoiler	 gradient	may	be	applied	prior	 to	 each	 excitation	RF	pulse	 (spoiled	gradient	

recalled	 echo)	 in	 order	 to	 dephase	 any	 remaining	 transverse	 magnetisation.	 RF:	

radiofrequency,	 Gs:	 slice	 selection	 gradient,	 Gp:	 phase	 encoding	 gradient,	 Gf:	 frequency	

encoding	gradient.	

	

A	 basic	 GRE	 pulse	 sequence	 diagram	 is	 shown	 in	 Figure	 1-3.	 GRE	 offers	 fast	 imaging,	 with	 the	

potential	for	practical	3D	acquisitions.	This	is	at	the	cost	of	decreased	SNR,	caused	by	small	flip	angle,	

																																																																				

	

‡	For	flip	angle	a:	Mxy=	M0sin	a,	and	Mz=M0cos	a.	For	example,	for	a	flip	angle	of	15°,	Mxy	is	approx	25.9%	of	M0,	whilst	Mz	

remains	96.6%	of	M0.	
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increased	magnetic	 susceptibility,	 and	 signal	 decay	 at	 T2*	 rather	 than	T2	 rate.	 In	 addition,	 signal	

intensity	depends	not	only	upon	TR	and	TE,	but	also	on	the	flip	angle.	For	a	spoiled	GRE	sequence:	

	

	 	 	 OP ∝ T(f)(?@
Bg
BK∗)(1 − ?@

Bh
BC)n Z[Y	o

6@pdZ o	qWr
Bh
BCs
t	 Equation	1.10	

where	SI=	signal	intensity,	N(H)=	number	of	excitable	protons,	TE=echo	time,	

TR=	repetition	time,		a=	flip	angle	

	

When	a=	90°,	sin	a	=	1,	and	cos	a	=	0,	and	therefore	the	equation	reverts	to	Equation	1.8.	However,	

for	very	small	flip	angles,	cos	a	tends	to	1,	and	sin	a	to	a,	and	Equation	1.10	tends	to:	

	

	 	 	 	 OP ∝ T(f)(?@
Bg
BK∗)(1 − ?@

Bh
BC)n o
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=>	 	 	 OP ∝ T(f)u(?@
Bg
BK∗)	 	 	 Equation	1.11	

	

T1	 weighting	 is	 therefore	 significantly	 reduced	 at	 low	 flip	 angles,	 regardless	 of	 TR,	 and	 this	 is	

significant	 for	 contrast	 enhanced	 imaging.	 In	 these	 cases,	 an	 initial	 preparation	 pulse	 may	 be	

employed,	which	is	typically	a	90°	saturation	pulse.	This	establishes	a	more	substantial	effect	of	T1	

relaxation,	effectively	storing	a	difference	in	Mz	available	at	each	excitation	pulse.	

1.4.3 Adaptions	of	the	GRE	sequence	
Fast	GRE	sequences,	with	short	TR,	are	subject	to	residual	transverse	magnetisation	that	may	corrupt	

the	image.	This	may	be	dealt	with	in	one	of	two	ways:	spoil	the	residual	Mxy,	or	use	it	for	further	signal	

interrogation.	

1.4.3.1 Spoiled	GRE	
For	most	GRE	 sequences,	 spoiling	of	 the	 transverse	magnetism	 is	 applied	at	 each	TR	 in	order	 to	

dephase	 any	 residual	 transverse	magnetism	 (see	 Figure	 1-3).	 This	may	 be	 applied	 via	 a	 spoiler	

gradient,	 or	 through	 using	 an	RF	 pulse	with	 phase	 offset.	 At	 short	 TE,	 the	 resulting	 image	 is	 T1	

weighted,	except	at	very	small	flip	angles	when	it	becomes	proton	density	weighted,	or	T2*	at	longer	

TE.	 It	should	be	noted	that	at	higher	flip	angles,	 tissue	or	blood	that	remains	in-slice	may	rapidly	

become	saturated,	reducing	SNR.		
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1.4.3.2 Steady-State	Free	Precession	(SSFP)	
For	steady-state	free	precession	(SSFP)	imaging,	additional	rephasing,	or	‘rewinder’,	gradients	are	

added	prior	to	each	RF	pulse,	to	maintain	a	maximum	of	in-phase	magnetisation	(subject	to	T2	decay).	

For	short	TR	(less	than	T2)	and	moderate	flip	angles,	the	contrast	varies	with	the	T2/T1	ratio.	

1.4.3.3 Balanced-SSFP	(b-SSFP)	
Balanced-SSFP	 (b-SSFP)	 is	 similar	 to	 SSFP	 imaging,	 but	 the	 total	 gradient	 waveform	 area	 is	

constrained	to	be	zero	during	each	TR	interval:	balanced	and	symmetrical	gradients	are	applied	in	

all	 three	 spatial	 directions.	 For	 very	 short	 TR,	 the	 signal	 intensity	 is	 to	 a	 first	 approximation	

proportional	to	the	T2/T1	ratio.	Such	an	approach	is	heavily	reliant	on	a	homogenous	B0,	and	these	

images	 are	 particularly	 vulnerable	 to	 inhomogeneities	 in	 magnetic	 susceptibility,	 which	 can	 be	

caused	 by	 foreign	 bodies	 or	 poor	 shimming,	 b-SSFP	 is	 a	 fast,	 high	 SNR	 sequence	with	 excellent	

blood/myocardium	contrast	and	less	susceptible	to	inflow	enhancement	than	spoiled	GRE.	The	T2/T1	

ratio	for	blood	is	approximately	four-fold	higher	than	for	myocardium.		

	

	 Philips	 Siemens	

Spoiled	 Gradient	

Echo	
T1	FFE	

T1-weighted	 fast	 field	

echo	
FLASH	 Fast	Low	Angle	SHot	

Ultrafast	 spoiled	

gradient	echo	
T1	TFE	

T1-weighted	 Turbo	

Field	Echo	

Turbo-

FLASH	

Turbo-	Fast	Low	Angle	

SHot	

SSFP	 FFE	 Fast	Field	Echo	 FISP	
Fast	 Imaging	 with	

Steady	Precession	

bSSFP	 bFFE	 Balanced	Fast	Field	Echo	 True	FISP	
True	Fast	Imaging	with	

Steady	Precession	

Table	1-2.	Manufacturer	nomenclature	 for	 spoiled	gradient	 echo	and	 steady-state	 free	

precession	sequences.		

1.4.4 Inversion	recovery	pulse	sequence	
Following	a	180° RF	pulse, Mxy	=	0,	and	Mz	=	-M0.	The	recovery	of	Mz	is	dependent	upon	the	T1	time,	

as	per	Equation	1.3,	and	for	each	tissue	will	pass	through	Mz=0	at	different	time	points.	When	Mz=0,	

at	the	null	time	point,	an	excitation	RF	pulse	will	elicit	no	transverse	magnetisation,	and	hence	no	

signal	from	that	tissue.	Solving	for	Mz=0,	the	inversion	time	to	null	a	tissue	with	a	given	T1	is	(ln2)T1,	

or	approximately	0.693	(T1).			

	

Reconstruction	of	an	inversion	recovery	image	will	typically	be	performed	using	magnitude	images,	

as	in	other	most	applications	of	MR	imaging.	However,	using	phase	information	to	retrieve	the	sign	

of	the	signal	may	improve	contrast	if	the	inversion	time	used	is	between	the	null	times	of	the	tissues	

of	 interest.	A	 technique	 called	phase	 sensitive	 inversion	 recovery	 (PSIR)	may	be	used	 to	 reliably	
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retrieve	phase	information	in	cardiac	scans	(Kellman	et	al.	2002).	In	this	technique,	reference	slices	

are	acquired,	usually	on	a	second	R-R	interval,	to	optimise	the	calculation	of	the	phase.		

1.5 Principles	of	MR	Imaging	pertinent	to	electrophysiology	

1.5.1 Electrocardiogram	recording	within	the	MR-environment	
The	monitoring	of	cardiac	electrical	activity	within	the	MRI	environment	poses	unique	challenges	

and	 is	 significantly	 more	 complex	 than	 conventional	 electrocardiography	 (ECG).	 However,	 it	 is	

crucial	 for	 triggering	 of	 cardiac	 magnetic	 resonance	 (CMR)	 imaging	 acquisitions,	 and,	 in	

interventional	electrophysiology	(EP),	for	elucidation	of	timing	and	sequence	of	cardiac	activation.	

Interference	 by	 electromagnetic	 fields,	 gradient	 fields	 and	magneto-hydrodynamic	 (MHD)	 effects	

may	cause	profound	corruption	of	the	ECG,	with	noise	one	to	two	orders	of	magnitude	greater	than	

the	ECG	signal.	MHD	effects	are	produced	when	a	conductive	fluid	travels	through	a	magnetic	field,	

and	generates	a	voltage	in	the	plane	perpendicular	to	the	magnetic	field,	in	the	direction	of	the	fluid	

flow.	This	is	therefore	particularly	pronounced	in	ventricular	systole,	with	marked	distortion	of	the	

S-T	segment	(Niendorf,	Winter,	and	Frauenrath	2012).		

	

The	induced	voltages	may	be	compensated	for	via	hardware	or	software	approaches.	Typical	ECG	

surface	electrode	placement	tends	to	be	narrowly	spaced,	and	a	parallel	arrangement,	orthogonal	to	

B0,	 is	 typically	 used	 in	 higher	 magnetic	 field	 strengths,	 whereas	 at	 lower	 field	 strength	 (1.5T),	

alternative	 arrangements	 may	 derive	 a	 stronger	 cardiac	 vector	 with	 acceptable	 level	 of	 MR	

interference.	Short	transmission	lines	with	high	impedance	(>10kW)	and	low-pass	filtering	(<50Hz)	

also	act	to	reduce	induced	voltages	(Schmidt,	Dumoulin,	and	Danik	2014).	

	

At	a	software	level,	the	use	of	the	vectorcardiogram	(VCG)	has	been	established	to	be	more	sensitive	

and	specific	for	the	detection	of	the	R-wave	than	evaluation	of	a	single	lead	(Fischer,	Wickline,	and	

Lorenz	 1999).	 The	 VCG	 represents	 the	 electrical	 activity	 in	 three	 dimensions	 over	 time,	 and	 is	

therefore	less	affected	by	directional	dependent	artefact.	Adaptive	digital	filters	have	also	been	used	

to	 detect	 and	 suppress	 the	 gradient	 induced	 waveforms.	 This	 works	 upon	 modelling	 the	 noise	

response,	by	 reference	 to	ECG	 traces	 acquired	 in	 the	MRI	 environment	but	without	 gradient	 coil	

activity	(Zhang	et	al.	2016).	However,	the	gradient	duty	cycle	(the	proportion	of	the	cardiac	cycle	

occupied	 by	 gradient	 activity)	 may	 be	 up	 to	 30%,	 and	 excessive	 filtering	 at	 these	 points	 risks	

suppression	 of	 key	 components	 of	 the	 ECG.	 A	 functional	 12-lead	 (or	 equivalent)	 ECG	 remains	

important	 for	 the	 development	 of	 MR-guidance	 of	 complex	 EP	 procedures,	 but	 further	 work	 is	

required	 in	order	 to	ensure	 safety	and	adequate	 suppression	of	MR-induced	electrical	noise	 (see	

Section	3.5).	

	

Alternatives	 for	 triggering	of	 cardiac	acquisitions	have	been	widely	developed,	and	 include	pulse	

oximetry,	 plethysmography	 and	 acoustic	 gating.	However,	 none	of	 these	present	 the	 information	

required	for	MR-guided	EP	procedures.		
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1.5.2 Three-Dimensional	Late	Gadolinium	Enhancement	(3D-LGE)	
Imaging	of	thin	walled	structures	that	move	with	the	cardiac	cycle,	such	as	coronary	arteries	or	atrial	

wall,	 is	 particularly	 challenging.	 A	 3D	 fast/turbo	 gradient	 echo	 sequence	 may	 be	 used	 with	

respiratory	and	ECG	gating	to	optimise	resolution,	combined	with	preparation	pulses	to	optimise	

contrast.	For	native	(without	contrast	enhancement)	imaging,	this	is	often	a	T2	preparation	scheme	

that	allows	spoiled	GRE	sequences	to	be	more	T2-weighted.	However,	for	LGE	imaging,	an	inversion	

recovery	scheme	is	usually	used.	

	

3D	 image	 acquisition	 is	 performed	 through	 excitation	 of	 a	 thick	 volume	 of	 tissue,	which	 is	 then	

encoded	in	one	direction	using	frequency	encoding,	and	the	remaining	two	directions	using	phase-

encoding.	The	advantages	include	that	thinner	slices	may	be	achieved,	with	contiguous	slices	with	no	

gap,	whilst	SNR	is	theoretically	increased,	as	each	echo	represents	data	from	the	entire	volume.		

	

In	2D	imaging:	

	 	 	 	 OTU ∝ (v%w?x	v%x)$?)yz{z|zG}
~�

	 	 Equation	1.12	

	

Whereas	in	3D	imaging:	

	 	 	 	 OTU ∝ (v%w?x	v%x)$?)yz{z|zÄzG}
~�

	 Equation	1.13	

where	Nx,y,z	are	the	number	of	phase	encoding	steps	in	x,y,z	directions	

respectively.	NEX	is	number	of	excitations,	and	BW	is	bandwidth	(Hashemi,	

Bradley,	and	Lisanti	2010)	

	

Therefore,	an	increase	in	SNR	proportional	to	ÖNz	could	be	anticipated,	compared	to	a	single	thin	2D	

slice.	 However,	 this	 is	 rarely	 achieved:	 it	 has	 been	 demonstrated	 that	 interleaved	multi-slice	 2D	

imaging	allows	more	time	for	T1	recovery	than	3D	imaging,	which	may	compensate	for	almost	all	of	

the	averaging	advantage	of	a	3D	sequence	(Johnson,	Wadghiri,	and	Turnbull	1999).	None-the-less,	

3D	sequences	remain	preferable	for	very	high	resolution	imaging,	with	sensitivity	and	imaging	time	

advantages.	 Furthermore,	 the	 3D	 acquisition	 prevents	 mismatch	 between	 slices,	 aiding	

reconstruction	and	homogenising	artefacts	across	the	entire	acquisition.	

1.5.3 Imaging	in	the	presence	of	devices	
Cardiac	MR	imaging	is	increasingly	performed	in	the	presence	of	implanted	or	introduced	devices,	

and	there	are	two	main	considerations:	patient	safety	and	imaging	artefact.	

1.5.3.1 Patient	safety	
Many	 devices	 are	 now	 accepted	 as	 MR	 conditional,	 and	 www.mrisafety.com	 maintains	 a	

compendium	of	guidelines	on	imaging	in	the	presence	of	a	wide	range	of	devices.	The	most	important	
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devices	to	be	considered	in	the	context	of	cardiac	imaging	are	cardiac	implanted	electronic	devices	

(CIEDs)	 such	 as	 pacemakers	 and	 implantable	 cardioverter	 defibrillators	 (ICDs).	 Potential	

interactions	between	the	CIED	and	MR	imaging	include	the	following	concerns	(Ipek	and	Nazarian	

2015):	

1. Magnetic	 induced	 forces:	 ferromagnetic	 materials	 may	 experience	 magnetic	 induced	

attraction	and	torque.	However,	risk	of	device	dislodgement	is	felt	to	be	extremely	low.	

2. Gradient	 field	 induced	 electrical	 current:	 this	 could	 potentially	 cause	 myocardial	

depolarisation	at	the	lead	tip.	

3. Heating	and	tissue	damage:	RF	energy	may	induce	heating,	particularly	at	the	myocardial-

lead	interface,	with	the	potential	for	increases	in	pacing	thresholds.	

4. Reed	 switch	 activation:	 most	 devices	 have	 a	 ‘magnet	 mode’,	 which	 generally	 triggers	

asynchronous	pacing	(AOO/VOO/DOO,	and	therapies	off	 for	 ICDs).	This	may	be	activated	

within	the	magnet.	

5. Electrical	 reset:	 electromagnetic	 interference	 may	 lead	 to	 a	 “power-on-reset”,	 which	 is	

similar	to	magnet	mode	but	there	is	a	risk	of	inhibition	of	pacing	or	reactivation	of	therapies.	

6. Other	inappropriate	therapies	and	function.	

	

Many	 modern	 CIEDs	 are	 now	 MR-conditional,	 and	 the	 frequency	 of	 complications	 is	 very	 low.	

However,	even	for	devices	without	MR-conditional	designs,	interactions	have	been	relatively	rare.	

The	MagnaSafe	Registry	was	a	multicentre	study	of	non-thoracic	MRI	at	1.5T	for	patients	with	a	“non-

MRI-conditional”	CIED.	A	total	of	1500	patients	were	recruited	(1000	pacemakers	and	500	ICDs)	and	

there	were	no	deaths,	lead	failures,	losses	of	capture	or	ventricular	arrhythmia	during	MRI.	There	

were	 six	 partial	 electrical	 resets	 and	 an	 increase	 in	 pacing	 lead	 threshold	 of	 0.5V	 or	 more	 was	

observed	in	0.7%	of	pacemaker	leads	and	0.8%	of	ICD	leads	(Russo	et	al.	2017).	The	Johns	Hopkins	

team	have	also	performed	>2000	MRI	scans	with	CIED	implanted	after	2001,	12%	of	which	have	been	

cardiac	scans,	reporting	9	power-on-resets	but	no	deaths	or	severe	adverse	events.	Overall,	MRI	in	

patients	with	CIEDs	is	feasible,	provided	the	specific	modality	imaging	benefit	outweighs	the	low	risk,	

and	appropriate	preparation	measures	are	taken	in	an	experienced	centre.	

1.5.3.2 Imaging	artefact	
The	presence	of	metal	typically	introduces	a	substantial	artefact,	dependent	upon	its	effect	on	B0	and	

the	sequence	sensitivity	to	magnetic	inhomogeneities.	Spin	echo	sequences,	with	a	refocusing	180°	

pulse,	correct	for	some	effects	of	local	field	inhomogeneities,	whereas	GRE	sequences	are	much	more	

susceptible.	b-SSFP	sequences	are	particularly	sensitive	to	inhomogeneities	in	magnetic	fields	and	

hence	spoiled	GRE	sequences	are	often	preferable	for	cine	imaging.	

	

However,	more	subtle	adjustments	of	the	imaging	parameters	may	reduce	the	impact	of	a	device.	

Increasing	the	receiver	bandwidth	(and	increased	bandwidth	RF	pulses)	should	decrease	the	number	

of	pixels	affected	by	the	artefact.	In	a	similar	way,	fat	saturation	relying	on	spectral	pre-saturation	

(CHESS/SPIR)	will	frequently	fail	in	the	presence	of	the	perturbation	in	B0,	and	STIR	tends	to	be	more	
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robust.	Some	manufacturers	have	also	introduced	sequences	that	are	designed	to	minimise	artefacts	

in	proximity	to	MR	conditional	devices	(syngo	WARP,	Siemens	Healthcare),	and	these	are	generally	

spin	echo	sequences	based	on	these	principles.	However,	the	overwhelming	determinant	of	imaging	

quality	is	the	size	and	location	of	the	device,	and	these	are	not	easily	changed.	Consideration	for	a	

right-sided	 placement	 of	 pacemaker	 or	 ICD	 should	 be	 made	 if	 frequent	 subsequent	 cardiac	 MR	

imaging	is	envisaged.		
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2 CARDIAC	ELECTROPHYSIOLOGY	
PRINCIPLES	

	

Cardiac	electrophysiology	(EP)	is	a	broad	field,	encompassing	the	study	of	cardiac	electrical	activity	

from	molecular	to	cellular	to	single	chamber	to	whole	heart	scale,	with	a	broad	range	of	normal	and	

pathological	variants.		This	thesis	aims	to	study	the	implementation	of	CMR	imaging	techniques	in	

the	management	of	a	distinct	subgroup	of	pathologies,	namely	atrial	 flutter	and	atrial	 fibrillation.	

This	introductory	chapter	will	discuss	the	relevant	core	concepts	for	these	two	arrhythmias,	and	the	

principles	and	evolution	of	EAM	systems.	

2.1 Typical	atrial	flutter	

2.1.1 Pathophysiology	
Typical	 atrial	 flutter	 (AFL)	 is	 a	 macro-re-entrant	 atrial	 tachycardia	 that	 uses	 the	 cavotricuspid	

isthmus	(CTI)	as	an	essential	part	of	its	circuit.	The	circuit	is	constrained	in	the	apical	direction	by	

the	tricuspid	valve	annulus,	whilst	the	posterior	(basal)	boundaries	are	less	well	defined,	occurring	

a	variable	distance	from	the	atrioventricular	(AV)	ring.	The	posterior	border	is	generally	widest	at	

the	superior	part	of	the	right	atrium	(RA),	and	narrowest	in	the	region	of	the	Eustachian	ridge.	

	

The	 basic	 three	 criteria	 for	 re-entry	 were	 proposed	 by	 Mines	 in	 1913	 (Mines	 1913).	 Firstly,	

unidirectional	block	is	necessary	for	 initiation.	Secondly,	the	wave	of	excitation	should	travel	 in	a	

single	direction	along	the	pathway	and	return	to	its	point	of	origin,	restarting	along	the	same	path.	

Thirdly,	the	tachycardia	should	terminate	when	one	limb	of	the	pathway	is	terminated	or	temporarily	

blocked.	All	 these	 criteria	 are	 fulfilled	 in	 typical	AFL.	 The	 substrate	 required	 to	 achieve	 re-entry	

includes	a	central	area	of	block	(functional	or	anatomical)	with	an	area	of	slow	conduction	sufficient	

to	create	an	excitable	gap	and	therefore	sustain	a	repetitive	wavefront	in	the	presence	of	a	critical	

tissue	mass.		In	AFL,	the	tricuspid	valve	annulus	forms	the	central	area	of	block	whilst	the	location	of	

zones	 of	 slow	 conduction	 may	 vary	 in	 position	 around	 the	 annulus.	 In	 younger	 patients,	 slow	

conduction	is	often	at	the	lateral	aspect	of	the	CTI,	whilst	it	is	at	the	medial	aspect	of	the	CTI	in	older	

patients	 (Huang	 et	 al.	 2008),	 but	 the	 mechanism	 of	 conduction	 slowing	 at	 the	 CTI	 is	 poorly	

understood.		

	

Typical	AFL	may	be	observed	to	propagate	counter	clockwise	or	clockwise	around	the	tricuspid	valve	

annulus	(as	viewed	from	the	ventricular	side	of	the	annulus),	the	commonest	direction	being	counter	

clockwise	in	around	90%	of	clinical	AFL	cases.	This	preponderance	is	thought	to	be	largely	related	to	

the	anisotropic	properties	of	the	CTI	and	the	provocation	of	unidirectional	block	secondary	to	the	

origin	of	stimulation,	which	may	often	be	from	pulmonary	vein	(PV)	or	 left	atrial	(LA)	discharges	

(Issa	et	al.	2012).		
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2.1.2 Diagnosis	
The	overall	incidence	of	AFL	has	been	quoted	as	88	per	100,000	person-years	in	the	USA,	increasing	

with	age,	male	sex,	heart	failure	and	lung	disease		(Issa	et	al.	2012).	However,	the	true	incidence	is	

likely	to	be	much	higher	as	25-35%	of	patients	with	AF	are	thought	to	have	episodes	of	AFL.	Patients	

may	be	asymptomatic,	but	 frequently	 they	present	with	symptoms	ranging	 from	palpitations	and	

fatigue	to	dyspnoea	or	even	acute	coronary	syndrome.	The	primary	determinant	of	symptomology	is	

the	 ventricular	 rate:	 atrial	 rate	 is	 typically	 around	300bpm	 (tachycardia	 cycle	 length	 (TCL)	 200-

220msec),	and	the	ventricular	rate	is	dependent	on	the	conduction	properties	of	the	AV	node.	

	

Surface	electrogram	(ECG)	diagnosis	is	often	accurate,	with	characteristic	‘saw-tooth’	waveform	of	

atrial	activation	(Figure	2-1).	There	is	variation	in	surface	ECG	appearance	for	counter	clockwise	AFL,	

but	 some	preserved	 features	 predominate.	 In	 the	 inferior	 leads,	 the	 flutter	wave	 exhibits	 a	 slow	

negative	deflection	prior	to	a	sharper	positive	deflection,	with	a	predominantly	negative	polarity.	V1	

is	positive	(or	occasionally	biphasic),	with	transition	to	negative	flutter	wave	across	the	precordial	

leads.	 In	contrast,	 the	clockwise	AFL	ECG	generally	has	broadly	positive	deflection	 in	 the	 inferior	

leads	with	characteristic	notching.	Lead	V1	has	a	broad,	notched,	negative	component	with	transition	

to	upright	flutter	wave	in	V6.	In	patients	with	significant	structural	heart	disease	or	extensive	prior	

atrial	ablation,	the	surface	ECG	appearance	may	be	very	different	(Chugh	et	al.	2006).	Furthermore,	

the	ECG	appearance	of	non-CTI-dependent	macro	re-entrant	atrial	tachycardias	may	mimic	typical	

AFL.	
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Figure	2-1.	Typical	atrial	flutter	surface	ECG	morphologies.	

Counter	clockwise	(left	panel)	and	clockwise	(right	panel)	typical	atrial	flutter.	Adapted	

with	permission	from	Ndrepepa	et	al	(2000).			

Invasive	 electrophysiological	 testing	 typically	 employs	 intracardiac	 multielectrode	 catheters	

positioned	 at	 the	 tricuspid	 annulus	 and	 coronary	 sinus	 and	 may	 include	 the	 use	 of	 an	

electroanatomical	mapping	(EAM)	system	(see	Section	2.3).	The	TCL	is	generally	constant	at	around	

220msec,	 with	minimal	 cycle-to-cycle	 variation	 (<2%).	 Sequential	 activation	mapping	 is	 used	 to	

confirm	the	counter-clockwise	or	clockwise	right	atrial	activation	pattern.	Diagnostic	manoeuvres	

are	 employed	 to	 confirm	 the	 diagnosis.	 Overdrive	 atrial	 pacing	 is	 used	 to	 achieve	 tachycardia	

entrainment§ ,	 with	 manifest	 fusion	 at	 pacing	 sites	 distant	 from	 the	 circuit	 (CS	 left	 atrium)	 and	

concealed	 fusion	 within	 the	 circuit	 (any	 tricuspid	 annular	 site	 within	 the	 RA).	 The	 post	 pacing	

																																																																				

	

§	‘Entrainment’	is	defined	to	occur	when	a	paced	beat	reaches	the	tachycardia	circuit	during	the	excitable	gap,	propagating	in	

the	 orthodromic	 direction	 and	 colliding	 with	 the	 previous	 tachycardia	 cycle	 in	 the	 antidromic	 direction,	 ‘resetting’	 the	

tachycardia	with	 resumption	 of	 the	 intrinsic	 tachycardia	 rate	 and	morphology	 after	 cessation	 of	 pacing.	 The	 presence	 of	

entrainment	is	verified	by	demonstrating	(1)	the	presence	of	fixed	fusion	of	the	paced	complexes	at	fixed	pacing	cycle	length,	

(2)	 progressive	 fusion	 at	 faster	 pacing	 cycle	 lengths	 and	 (3)	 resumption	 of	 the	 same	 tachycardia	morphology	 following	

cessation	of	pacing	with	a	non-fused	complex	at	a	return	cycle	equal	to	the	pacing	cycle	length	(Issa,	Miller,	and	Zipes	2012)	
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interval	(PPI),	the	interval	from	the	last	pacing	stimulus	that	entrained	the	tachycardia	to	the	next	

recorded	 electrogram	 at	 the	 pacing	 site,	 is	 short	 (maximum	 TCL+20msec)	 on	 entrainment	 from	

within	the	AFL	circuit,	at	the	tricuspid	annulus	(Waldo	1997).		

2.1.3 Non-ablative	management	
Acute	 treatment	of	AFL	 is	 like	 that	 for	AF	 (see	Section	2.2.3),	 and	 is	dependent	upon	 the	 clinical	

presentation.	Initial	management	may	involve	pharmacological	rate	control	or	rhythm	control	using	

drugs	or	electrical	cardioversion.	Anticoagulation	should	be	used	with	the	same	indications	as	for	AF	

(Kirchhof	et	al.	2016).	However,	the	long-term	management	strategy	is	for	ablative	treatment	in	the	

absence	of	contraindications,	in	view	of	the	high	procedural	success	rate	and	high	rates	of	recurrence	

on	medication	(Level	IB	recommendation	(Kirchhof	et	al.	2016))	

2.1.4 Cardiac	ablation	

2.1.4.1 Ablation	technique	
The	CTI	is	the	target	for	AFL	as	it	is	accessible,	relatively	narrow	and	safe	to	ablate,	and	essential	for	

the	AFL	circuit.	The	central	portion	of	the	isthmus	is	generally	viewed	as	the	optimal	location	for	the	

ablation	line:	not	only	is	it	generally	the	narrowest	part	(Cabrera	et	al.	2005),	but	also	the	paraseptal	

isthmus	may	contain	the	AV	nodal	artery	in	10%	of	patients,	and	the	inferolateral	isthmus	contains	

the	right	coronary	artery	in	closest	proximity	(Issa	et	al.	2012).	

	

For	an	isolated	AFL	ablation	procedure,	a	non-irrigated	steerable	RF	ablation	catheter	is	generally	

used	 and	 there	 is	 some	 evidence	 that	 a	 large	 tip	 (8-10mm)	 catheter	 may	 be	 more	 efficacious	

(Marrouche	et	al.	2003;	Pérez	et	al.	2009).	When	an	AFL	ablation	is	performed	in	the	context	of	an	

AF	 ablation,	 an	 irrigated	 catheter	 under	 EAM	 guidance	 is	 typically	 used,	 and	 results	 using	 EAM	

guidance	 alone	 are	 very	 similar	 to	 those	 achieved	 conventionally	 (Schoene	 et	 al.	 2015).	 After	

positioning	the	catheter	at	the	ventricular	end	of	the	isthmus,	the	ablation	may	be	performed	using	

a	point-by-point	or	pullback	technique,	and	more	than	one	pass	may	be	required	to	achieve	block.	

	

Conduction	block	can	be	verified	using	several	techniques.	Perhaps	most	simply,	the	transisthmus	

conduction	interval	should	be	prolonged,	with	prolongation	of	the	interval	by	more	than	50%	(or	

>150msec)	strongly	suggesting	block,	but	this	is	not	fully	specific	with	positive	predictive	value	of	

<90%	(Oral	et	al.	2001).	Further	confirmatory	endpoints	should	also	be	used,	but	none	can	exclude	

very	 slow	 residual	 conduction	 across	 the	 CTI.	 In	 the	 presence	 of	 CTI	 block,	 an	 activation	 detour	

should	be	observed	during	atrial	pacing	(Figure	2-2A),	with	high	to	low	activation	of	the	lateral	RA	

wall	on	CS	pacing.	On-line	double	potentials	(Figure	2-2B),	with	a	separation	of	more	than	100msec,	

and	 differential	 pacing	 manoeuvres	 (Figure	 2-2C)	 should	 also	 corroborate	 the	 presence	 of	

bidirectional	 block.	 Unipolar	 electrogram	 configuration,	with	 a	monophasic	 R	wave	 immediately	

adjacent	to	the	 line	of	block,	and	detailed	electroanatomical	mapping	have	also	been	proposed	to	

verify	conduction	block.	
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Figure	2-2.	Pacing	manoeuvres	to	confirm	bidirectional	cavotricuspid	isthmus		block	post	

ablation.		

Large	 black	 circle	 indicates	 tricuspid	 valve	 annulus,	 mapping	 catheter	 is	 	 yellow	 and	

pacing	site	indicated	by	pink	spark.	Adapted	with	permission	from	(Ganesan	et	al.	2012).	

(CS:	coronary	sinus,	SVC:	superior	vena	cava,	IVC:	inferior	vena	cava)	

2.1.4.2 Ablation	outcome		
In	contemporary	practice,	AFL	ablation	is	generally	safe	with	high	procedural	success	rate.	A	recent	

review	of	a	large	inpatient	dataset	in	the	USA	(Nationwide	Inpatient	Sample)	found	a	complication	

rate	of	3.2%	and	in-hospital	mortality	of	0.17%	(89,638	procedures	from	2000-2011),	but	data	on	

procedural	success	or	recurrence	were	not	recorded	(Patel	et	al.	2016).	For	assessment	of	procedural	

success,	Spector	et	al	found	on	meta-analysis	a	single-procedure	success	rate	of	92%,	rising	to	97%	

following	 multiple	 procedures,	 with	 repeat	 ablation	 reported	 in	 8%	 (Spector	 et	 al.	 2009).	 AFL	

recurrence	is	typically	early	(<1month)	if	it	is	to	occur,	but	in	the	longer	term	35-80%	of	patients	

with	AFL	may	represent	with	AF	despite	successful	flutter	ablation	(Ellis	et	al.	2007;	Pérez	et	al.	2009)	

2.2 Atrial	fibrillation	
AF	is	the	most	common	cardiac	rhythm	disturbance,	with	an	estimated	33million	individuals	affected	

worldwide	(Van	Wagoner	et	al.	2015).	Prevalence	increases	with	age,	with	a	lifetime	risk	estimated	

as	high	as	1	in	4	in	developed	countries,	and	the	health	impact	in	terms	of	morbidity,	mortality	and	

cost	is	substantial.	A	full	and	detailed	evaluation	of	the	epidemiology,	pathophysiological	principles	
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and	treatment	strategies	for	AF	is	beyond	the	scope	of	this	thesis.	However,	this	subsection	aims	to	

review	some	of	the	fundamental	mechanisms	and	ablation	strategies	relevant	to	the	CMR	imaging	

evaluation	of	AF	substrate	and	ablation	therapy.	

2.2.1 Pathophysiology	
AF	 is	 a	 supraventricular	 tachyarrhythmia	 characterised	 by	 rapid	 chaotic	 electrical	 activation	

(fibrillation)	of	the	atria	with	consequent	deterioration	of	atrial	mechanical	function.	Initiation	and	

subsequent	perpetuation	of	AF	represents	a	synergy	between	focal	or	triggered	activity	that	initiates	

AF,	and	the	presence	of	a	“vulnerable	substrate”	necessary	for	AF	persistence	(Van	Wagoner	et	al.	

2015).	The	atrial	substrate	may	result	from	alteration	of	electrical	properties,	including	shortening	

of	atrial	refractoriness	and	slowing	of	conduction,	or	structural	changes,	that	include	increased	atrial	

size	and	the	presence	of	scar.	The	principle	that	AF	drives	the	evolution	of	AF-promoting	substrate	

has	been	widely	cited	and	reproduced	(Wijffels	et	al.	1995;	Schotten	et	al.	2011),	and	both	electrical	

remodelling	(ion	channel	expression	and	behaviour)	and	structural	remodelling	(interstitial	fibrosis,	

apoptosis,	myocyte	hypertrophy)	have	all	been	shown	to	occur	in	the	presence	of	persistent	AF	(Van	

Wagoner	et	al.	2015;	Nattel	and	Dobrev	2016).	

	

The	electrophysiological	mechanisms	that	promote	and	sustain	AF	remain	controversial.	Three	main	

schools	 of	 thought	 are	 prevalent,	 holding	 AF	 to	 be	 caused	 by	 multiple	 random	 propagating	

wavefronts,	 rotors	 (localised	 re-entry	 with	 fibrillatory	 conduction)	 or	 focal	 electrical	 discharges	

(Figure	2-3A).	These	mechanisms	are	not	mutually	exclusive,	and	these	mechanisms	may	act	 in	a	

synergistic	fashion	first	to	initiate	then	to	perpetuate	the	fibrillatory	activity	(Figure	2-3B).	

	

The	multiple	wavelet	 hypothesis	was	 proposed	 in	 1964	 by	Moe	 and	 colleagues,	 and	was	widely	

accepted	as	the	dominant	AF	mechanism	until	the	late	80s	(Moe,	Rheinboldt,	and	Abildskov	1964;	

Calkins	 et	 al.	 2012).	 Heterogeneity	 of	 atrial	 conduction	 properties	 lead	 to	 continuous	 and	 often	

chaotic	interactions	between	multiple	wavefronts,	sustaining	the	arrhythmia.	Arrhythmia	stability	is	

enhanced	by	decreased	refractoriness,	slow	conduction	velocities	and	increased	tissue	mass,	as	is	

frequently	observed	clinically	(Eckstein	et	al.	2008).		

	

A	more	organised	model	of	re-entry	is	presented	by	the	‘rotor’	single	circuit	re-entrant	hypothesis.	A	

re-entrant	 mechanism	 of	 arrhythmia	 is	 classically	 ascribed	 to	 circus	 movement	 re-entry,	

characterised	 by	 a	waveform	 that	 propagates	 around	 an	 anatomical	 obstacle	 (see	 section	 2.1.1).		

However,	spiral	wave	re-entry,	or	rotors,	have	been	shown	to	exist	in	the	absence	of	fixed	anatomical	

obstructions.	Here,	an	imbalance	between	“source”	(diffusion	current	generated	by	excited	myocytes	

available	to	depolarise	adjacent	cells)	and	“sink”	(the	adjacent	cells)	causes	variations	in	conduction	

velocity.	Regions	of	the	activation	waveform	of	high	concavity	act	to	increase	the	source:	sink	ratio,	

accelerating	conduction.	Conversely,	high	convexity	promotes	slow	conduction,	creating	a	spiral,	or	

rotor,	waveform	that	rotates	upon	its	excitable	but	unexcited	core,	which	may	itself	wander	through	

the	atrial	myocardium	(Schotten	et	al.	2011).	Findings	consistent	with	the	presence	of	rotors	have	
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been	widely	observed	in	animal	studies	(Guillem	et	al.	2016),	but	proof	of	their	presence	in	human	

atria	remains	controversial	(Walters	and	Kalman	2015).	

	

The	ectopic	focus	hypothesis	is	corroborated	by	the	observation	of	Haïssaguerre	and	others	that	AF	

is	 initiated	 by	 focal	 atrial	 discharges	 and	 that	 elimination	 of	 the	 influence	 of	 a	 focal	 trigger	may	

eliminate	AF	(Haissaguerre	et	al.	1994;	Haïssaguerre	et	al.	1998).	Many	of	the	foci	are	identified	to	

be	 within	 the	 muscular	 sleeves	 of	 the	 PVs,	 where	 electrical	 and	 geometrical	 properties	 of	 the	

myocardium	differ	significantly	from	that	of	the	body	of	the	atria	(Schotten	et	al.	2011).	The	finding	

of	 PV	 foci	 as	 frequent	 drivers	 of	 AF	 are	 the	 foundation	 of	 pulmonary	 vein	 electrical	 isolation	 by	

catheter	ablation	(see	below).		Although	PVs	are	the	most	common	source	of	ectopy,	foci	have	also	

been	 found	 in	 the	superior	vena	cava,	 ligament	of	Marshall,	 left	posterior	 free	wall	and	coronary	

sinus.		

	

	

Figure	2-3.	Current	hypotheses	for	pathophysiological	mechanism	of	AF	maintenance.		

(A)	Diagram	of	AF	maintenance	near	a	PV	that	has	been	hypothesized	to	be	driven	by	

ectopic	focus	(left),	rotors	(middle),	or	multiple	wavelets	(right).	Different	wavefronts	are	

represented	in	purple.	(B)	Representation	of	the	compatibility	of	rotor	maintenance	with	

other	mechanisms.	Rotors	can	be	initiated	by	wavebreaks	near	an	ectopic	focus	(left)	and	

underlie	 endocardial	 or	 epicardial	 breakthroughs	 (middle).	 A	 drifting	 rotor,	 whose	

trajectory	is	depicted	in	blue,	can	be	the	driver	of	multiple	and	apparently	disorganized	

atrial	wavelets	 (right).	 Reproduced	 and	 adapted	with	 permission	 from	 (Guillem	 et	 al.	

2016)	
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2.2.2 Diagnosis	
AF	may	 be	 symptomatic	 or	 asymptomatic,	 even	 in	 the	 same	 patient,	 and	 therefore	 diagnosis	 is	

frequently	delayed.	According	to	the	2012	HRS/EHRA	consensus	statement	and	2016	ESC	guidelines	

(Calkins	 et	 al.	 2012;	 Kirchhof	 et	 al.	 2016),	 AF	 is	 an	 ECG	diagnosis	 confirmed	 by	 (1)	 “absolutely”	

irregular	RR	intervals	(in	the	absence	of	complete	AV	block),	(2)	no	distinct	p-waves	on	the	surface	

ECG	and	(3)	an	atrial	cycle	length	(when	visible)	that	is	usually	variable	and	less	than	200msec.	The	

arrhythmia	should	be	documented	 for	>30seconds,	or	 the	entire	duration	of	a	single	recording	 if	

<30seconds.	Onset	is	determined	at	the	point	of	first	confirmed	ECG	diagnosis,	rather	than	onset	of	

symptoms,	and	AF	subtype	is	then	classified	according	to	durability	of	the	arrhythmia	(Calkins	et	al.	

2012).		

• Paroxysmal	 AF	 (PAF)	 is	 defined	 as	 recurrent	 AF	 (>/=	 2	 episodes)	 that	 terminates	

spontaneously	within	7	days	(or	<48hours	if	terminated	electrically	or	pharmacologically)	

• Persistent	AF	(PersAF)	is	defined	as	continuous	AF	that	is	sustained	beyond	seven	days	(or	

>48hours	if	terminated	electrically	or	pharmacologically)	

• Longstanding	PersAF	is	defined	as	continuous	AF	of	greater	than	12months	duration	

• Permanent	AF	is	a	label	ascribed	once	a	decision	has	been	made	not	to	restore	or	maintain	

sinus	rhythm	by	any	means.	

The	subtypes	are	broad	and	unspecific,	and	provide	minimal	insight	into	the	triggers	or	structural	

remodelling	underlying	the	disease	process.	There	are	also	subtle	differences	between	the	European	

(Kirchhof	et	al.	2016)	and	American	classifications	(Calkins	et	al	2012),	particularly	 in	relation	to	

timing	 of	 cardioversion.	 However,	 the	 classification	 is	 non-invasive,	 (nearly)	 standardised	 and	

relatively	intuitive	and	therefore	has	been	widely	implemented	in	the	collection	and	interpretation	

of	trial	data.		

2.2.3 Non-ablative	management	of	atrial	fibrillation	
The	 acute	 management	 of	 AF	 focuses	 upon	 rate	 or	 rhythm	 control	 in	 order	 to	 maintain	

haemodynamic	 stability,	 whilst	 considering	 the	 risk	 of	 AF-associated	 thrombo-embolic	 events,	

particularly	 stroke.	 Rate	 control	 may	 be	 achieved	 pharmacologically	 using	 agents	 to	 reduce	

atrioventricular	 conduction,	 with	 beta-blockers	 or	 calcium	 channel	 blockers	 found	 to	 be	 more	

effective	than	digoxin	in	the	context	of	high	sympathetic	tone	(Kirchhof	et	al.	2016).	Rate	control	may	

also	be	used	as	a	bridge	to	rhythm	control	and	conversion	to	sinus	rhythm,	for	which	either	drugs	

(particularly	flecainide,	propafenone	or	amiodarone)	or	electrical	cardioversion	may	be	used.	Most	

patients	 with	 AF	 duration	 confirmed	 <48hours	 may	 undergo	 cardioversion	 with	 concomitant	

anticoagulation	with	low	molecular	weight	heparin	(Kirchhof	et	al.	2016).	For	those	with	AF	duration	

>48hours,	longer	term	anticoagulation	or	detailed	transoesophageal	echocardiographic	evaluation	

to	exclude	atrial	thrombus	is	required	prior	to	cardioversion.		

	

Ongoing	management	addresses	four	further	domains:	(1)	assessment	of	precipitating	factors	and	

underlying	cardiovascular	conditions,	(2)	assessment	of	stroke	risk	and	need	for	anticoagulation,	(3)	

heart	rate	and	requirement	for	rate	control,	and	(4)	symptom	assessment	with	decision	for	rhythm	
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control	 (Kirchhof	 et	 al.	 2016).	 The	management	 of	 precipitating	 factors	 and	modification	 of	 risk	

factors	(including	hypertension,	obesity,	valvular	heart	disease,	obstructive	sleep	apnoea)	may	yield	

significant	 symptomatic	 and	 electrophysiological	 improvements	 (Pathak	 et	 al.	 2015)	 and	 often	

requires	a	collaborative	interdisciplinary	approach.	Antithrombotic	management	is	based	upon	risk	

stratification,	with	most	groups	using	 the	CHAsDS2VASC	scoring	 system**	as	 the	primary	guide	 to	

therapy.	Oral	anticoagulation	therapy	has	historically	been	based	upon	vitamin	K	antagonists	such	

as	warfarin,	but	there	is	increasing	evidence	for	the	equivalency	and	possibly	superiority	of	novel	

oral	anticoagulation	agents	including	rivaroxaban,	dabigatran	and	apixaban	(Kirchhof	et	al.	2016).	

Alternatives	such	as	left	atrial	occlusion	devices	or	surgical	exclusion	also	exist	and	may	be	used	in	

selected	patients	unsuitable	for	oral	anticoagulants.	

	

Long-term	antiarrhythmic	therapy	may	be	based	upon	rate	or	rhythm	control	approaches.	Whilst	

rhythm	control	may	seem	attractive	as	a	more	holistic	approach	to	therapy,	multiple	studies	have	

generally	failed	to	demonstrate	superiority	of	such	an	approach	(Kirchhof	et	al.	2016;	Wyse	et	al.	

2002;	Carlsson	et	al.	2003).	Of	note,	the	AFFIRM	study	randomised	4060	patients	to	pharmacological	

rhythm	control	or	rate	control	and	found	no	survival	advantage	in	rhythm	control,	but	an	increased	

rate	of	hospitalisation	and	drug-related	side	effects	(Wyse	et	al.	2002).	There	is	a	suggestion,	though,	

that	 many	 of	 the	 benefits	 of	 rhythm	 control	 may	 be	 offset	 by	 the	 risks	 of	 the	 pharmacological	

intervention	 (Corley	 et	 al.	 2004),	 and	 research	 continues	 to	 seek	 to	 delineate	 the	 optimal	

management	strategy.	Catheter	ablation	for	AF	offers	a	potential	solution,	and	for	selected	groups	of	

patients	has	been	demonstrated	to	be	superior	to	drug	therapy	(RAFFT-2	study	(Morillo	et	al.	2014),	

A4	study	(Jaïs	et	al.	2008))	.	

2.2.4 Catheter	ablation	for	AF	

2.2.4.1 Indications	for	AF	ablation	
Catheter	 ablation	 for	 AF	 is	 accepted	 as	 an	 effective	 and	 potentially	 curative	 approach	 for	

appropriately	selected	patients	with	PAF,	PersAF	and	probably	longstanding	PersAF,	predominantly	

as	 a	 second	 line	 treatment	 following	 failure	 or	 intolerance	 of	 drug	 treatment	 (Class	 IA	

recommendation,	ESC	guidelines	2016	((Kirchhof	et	al.	2016)).	For	 those	with	symptomatic	PAF,	

catheter	 ablation	 may	 also	 be	 considered	 as	 a	 first-line	 treatment	 prior	 to	 drug	 therapy,	 but	

incremental	improvement	in	outcome	is	modest	(Calkins	et	al.	2012;	Cosedis	Nielsen	et	al.	2012).		

For	 patients	with	 PersAF,	 there	 is	 also	 evidence	 that	 catheter	 ablation	may	 be	 superior	 to	 drug	

therapy	 in	 terms	 of	 maintaining	 sinus	 rhythm	 (Mont	 et	 al.	 2014),	 but	 procedural	 success	 is	

																																																																				

	

**	The	CHAsDS2VASC	scoring	system	is	based	upon	a	point	system	in	which	2	points	are	assigned	for	a	history	of	stroke	or	TIA,	

or	age	>/=75	years.	1	point	is	assigned	for	age	65-74years,	a	history	of	hypertension,	diabetes,	recent	cardiac	failure,	vascular	

disease	and	female	sex.	Female	sex	is	only	assigned	a	point	in	the	presence	of	another	risk	factor.	A	score	of	1	in	men	and	2	in	

women	is	generally	accepted	as	an	indication	for	consideration	of	oral	anticoagulation,	and	scores	of	2	or	more	and	3	or	more	

respectively	as	an	indication	for	oral	anticoagulation	(Camm	et	al.	2010;	Kirchhof	et	al.	2016).	
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significantly	 lower	 (Ganesan	et	 al.	 2013).	Nonetheless,	 increasing	evidence	 for	 structural	 reverse	

remodelling	may	drive	early	ablative	intervention	(Walters	et	al.	2016;	Liang	et	al.	2016).	

2.2.4.2 Patient	stratification	
It	 is	 clear	 that	 AF	 ablation	 is	 more	 successful	 in	 some	 patient	 groups	 than	 others,	 but	 the	

identification	 of	 subjects	most	 likely	 to	 benefit	 from	 a	 costly	 and	 potentially	 harmful	 procedure	

remains	challenging	(Link,	Haïssaguerre,	and	Natale	2016;	O’Neill	and	Chubb	2016).	One	of	the	few	

widely-accepted	paradigms	of	AF	mechanism	is	that	development	of	AF	requires	both	a	trigger	and	

a	susceptible	substrate,	and	it	is	within	the	domain	of	substrate	susceptibility	that	there	may	be	a	

substantial	role	for	patient	selection	and	tailoring	of	the	intervention.		

	

Patients	with	highest	likelihood	of	success	are	generally	accepted	as	those	with	PAF,	no	underlying	

cardiac	disease	and	a	non-dilated	left	atrium	(Link,	Haïssaguerre,	and	Natale	2016).	However,	the	

identification	of	further	risk	factors	for	poor	procedural	outcome	is	hampered	by	the	necessity	of	

trial	design,	dictating	 that	 subjects	 should	undergo	a	 relatively	uniform	ablation	 strategy:	 a	poor	

outcome	for	a	patient	group	may	equally	be	ascribed	to	incorrect	tailoring	of	ablation	strategy	as	it	

is	to	patient	substrate	suitability	for	ablation	in	the	first	place.		

	

Conventional	risk	factors	for	poorer	outcome	following	catheter	ablation	include	non-modifiable	risk	

factors,	including	age,	sex,	AF	type	and	duration	of	AF,	and	modifiable	risk	factors	including	obesity,	

diabetes,	hypertension	and	sleep	apnoea	(Kirchhof	et	al.	2016).	However,	on	meta-analysis	 these	

predictors	 have	 often	 been	 found	 to	 be	 unreliable	 (Balk	 et	 al.	 2010).	 Imaging	 guided	 risk	

stratification,	particularly	using	CMR,	is	explored	in	more	detail	in	Chapter	5	and	novel	MR-derived	

atrial	substrate	parameters	continue	to	be	demonstrated.	Atrial	myocardial	scar	and	fibrosis	disrupt	

wavefront	propagation,	cause	anisotropy	and	consequently	promote	re-entry	and	AF.	The	detection	

of	atrial	fibrosis	is	at	the	limit	of	CMR	resolution,	and	therefore	other	parameters	have	also	focused	

on	substrate	indices	that	may	act	as	surrogates	of	fibrosis	or	alternative	modes	of	remodelling,	such	

as	atrial	shape	and	function.	

2.2.4.3 Techniques	and	technologies	
Ablation	 strategies	 that	 target	 the	 PVs	 and/or	 PV	 antrum	 remain	 the	 cornerstone	 for	 most	 AF	

ablation	 procedures,	 and	 complete	 electrical	 isolation	 of	 the	 PVs	 (PVI)	 is	 a	 core	 goal	 of	 ablation	

(Calkins	et	al.	2012).	A	wide	area	circumferential	ablation	(WACA)	lesion	set	is	typically	employed	to	

achieve	this,	with	selective	PV	isolation	now	rarely	performed.	For	patients	with	PAF,	studies	have	

failed	 to	 demonstrate	 significant	 improvement	 in	 outcome	 with	 additional	 lesion	 sets	 such	 as	

ablation	at	the	intervenous	ridge	(McLellan	et	al.	2015).	However,	whilst	an	approach	aiming	only	

for	PVI	yields	relatively	good	outcomes	for	ablation	of	PAF,	the	results	for	PersAF	are	more	modest,	

and	adjunctive	lesion	sets	have	been	employed	and	investigated	extensively	in	an	effort	to	minimise	

recurrence	(Kirchhof	and	Calkins	2016).		Additional	linear	ablation	lines	and	focal	targeted	ablation	

may	also	be	performed.	
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Linear	 lesions	between	 two	anatomical	or	electrical	barriers	 typically	 include	mitral	 isthmus	 line	

(Jais	et	al.	2004),	roof	line	or	full	posterior	wall	isolation.	However,	linear	lesions	may	also	act	as	an	

arrhythmogenic	 substrate	 if	 any	 conduction	 persists	 or	 recovers,	 and	 the	 STAR	 AF	 II	 study	

demonstrated	no	 significant	 improvement	 in	 outcome	with	 the	 addition	of	 electrogram	or	 linear	

ablation	 lesion	sets	(Verma	et	al.	2015).	Linear	 lesions	are	clearly	appropriate	for	 interruption	of	

confirmed	re-entrant	atrial	 tachycardias	pathways,	but	 their	role	 in	 first-time	ablation	for	PAF	or	

non-PAF	is	tenuous	(Kirchhof	and	Calkins	2016;	Kirchhof	et	al.	2016).	

	

Targeted	 focal	 ablation	has	also	been	hypothesised	 to	 improve	outcome	 in	patients	with	PersAF,	

where	non-PV	drivers	are	more	common.	Sanders	et	al	found	that	the	highest	dominant	frequency††	

sites	for	subjects	with	PAF	were	generally	clustered	around	the	PVs,	whilst	those	in	subjects	with	

permanent	 (sic)	 AF	 displayed	 a	much	wider	 distribution	 (Sanders	 et	 al.	 2005).	 Focal	 ablation	 of	

complex	 fractionated	 atrial	 electrograms‡‡ 	(CFAE),	 highest	 dominant	 frequency	 regions	 or	 core	

regions	of	stable	rotors	have	been	proposed	to	improve	long	term	outcome	(Narayan	et	al.	2014).	

However,	recent	larger	studies	have	failed	to	corroborate	those	findings	(STAR	AF	II	(Verma	et	al.	

2015),	CHASE-AF	(Vogler	et	al.	2015)	rotor	ablation	(Gianni	et	al.	2016;	Buch	et	al.	2016)).	Therefore,	

recent	reviews	suggest	that	PVI	alone	may	be	the	most	appropriate	strategy	for	first-time	ablation	

for	PersAF	(Kirchhof	and	Calkins	2016).	

	

Historically,	the	vast	majority	of	AF	ablation	procedures	have	been	performed	using	radiofrequency	

(RF)	 energy.	 Newer	 RF	 technologies,	 such	 as	 contact	 force	 sensing	 catheters,	 have	 been	

demonstrated	to	create	more	consistent	and	reliable	RF	lesion	formation	(Kuck	et	al.	2012;	Neuzil	et	

al.	2013).	More	recently,	cryoablation	has	been	demonstrated	to	be	non-inferior	to	RF	in	efficacy	and	

safety,	whilst	potentially	quicker	 to	perform	(Kuck,	Brugada,	 et	al.	2016).	The	 implementation	of	

cryoablation	AF	ablation	techniques	is	rapidly	increasing,	particularly	for	first	time	PAF	ablation,	and	

laser	ablation	is	also	performed	in	some	European	centres.	However,	in	this	thesis,	all	ablations	were	

performed	using	only	RF	energy.	

																																																																				

	

††	Dominant	frequency	is	determined	by	Fast	Fourier	Transformation	(see	section	1.3.2)	of	the	local	recorded	electrogram	

signal,	and	is	the	highest	magnitude	constituent	frequency.	Sites	of	the	highest	dominant	frequency	have	been	suggested	to	

play	a	key	role	in	AF	maintenance	(Calkins	et	al.	2012)	

‡‡	CFAEs	are	defined	as	low	voltage	(<0.15mV)	multiple	potential	signals	with	one	or	both	of	the	following	characteristics:	(1)	

atrial	EGMs	that	have	fractionated	EGMs	composed	of	two	deflections	or	more,	and/or	have	a	perturbation	of	the	baseline	

with	continuous	deflection	of	a	prolonged	activation	complex;	(2)	atrial	EGMs	with	a	very	short	cycle	length	(<120ms),	with	

or	without	multiple	potential;	however,	when	compared	to	the	rest	of	the	atria,	this	site	has	the	shortest	cycle	length	(Calkins	

et	al.	2012)	
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2.2.4.4 Procedural	endpoints	
The	achievement	of	electrical	 isolation	of	the	PVs	is	a	key	goal	of	the	vast	majority	of	AF	ablation	

procedures,	 but	 the	 technique	 used	 to	 verify	 isolation	 varies	 between	 operators.	 At	 a	minimum,	

entrance	block	should	be	demonstrated,	and	monitoring	for	a	further	20min	should	be	considered	

(Calkins	et	al.	2012).	However,	the	robustness	of	such	an	approach	has	been	questioned,	and	many	

operators	 perform	a	more	detailed	 assessment	 of	 electrical	 isolation	 that	may	 include	 exit	 block	

and/or	 the	 use	 of	 provocative	 agents	 such	 as	 adenosine	 (ADVICE	 trial	 (Macle	 et	 al.	 2015)).	 The	

appropriateness	of	 aiming	 for	 electrical	 isolation	of	 the	PVs	has	been	 confirmed	 in	a	 remarkable	

study	by	Kuck	et	al,	in	which	223	patients	were	randomised	in	a	1:1	ratio	to	complete	PVI	or	to	be	

left	with	an	intentional	gap	in	the	WACA	line.	The	AF	recurrence	rate	at	3	months	in	the	cohort	with	

a	gap	was	proven	to	be	higher	(79%	versus	62%,	p<0.001),	albeit	with	conduction	gaps	still	found	in	

70%	of	the	complete	PVI	group	at	invasive	reassessment	at	3	months	(Kuck,	Hoffmann,	et	al.	2016).	

	

An	 alternative	 or	 additional	 end-point	 is	 that	 of	 termination	 of	 AF	 through	 ablation,	 typically	

employing	a	‘step-wise’	ablation	approach	with	adjunctive	focal	and/or	linear	lesion	sets	in	order	to	

achieve	 termination	 (O’Neill	 et	 al.	 2009).	Mapping	or	pacing	manoeuvres	 should	be	 employed	 to	

demonstrate	the	completeness	of	linear	block	at	any	adjunctive	ablation	lines,	even	after	the	ablation-

induced	resumption	of	sinus	rhythm	(Kirchhof	and	Calkins	2016).	In	experienced	hands,	the	‘step-

wise’	 approach	 has	 yielded	 high	 long-term	 success	 rates	 for	 both	 PersAF	 (5%	 recurrence	 at	

32±11months	 (O’Neill	 et	 al.	 2009))	 and	PAF	 (26%	at	12months	 (Faustino	et	 al.	 2015),	 but	 these	

findings	have	not	been	universally	reproduced	(Vogler	et	al.	2015).		

2.2.4.5 Follow-up	and	outcomes	
Follow-up	and	monitoring	practices	post-ablation	vary	between	centres.	It	is	generally	agreed	that	

patients	should	be	seen	at	a	minimum	of	three	months	post	ablation,	with	reviews	at	least	every	six	

months	 thereafter	 for	 at	 least	 two	 years	 (Calkins	 et	 al.	 2012).	 Intensity	 and	 duration	 of	 ECG	

assessment	also	varies,	but	longer-term	monitoring	solutions,	such	as	event	recorder	or	implantable	

loop	recorder,	are	generally	tailored	to	the	frequency	of	symptoms.		

	

Recurrence	of	AF	is	defined	as	the	recurrence	of	AF	more	than	3months	following	AF	ablation,	and	

includes	episodes	of	flutter	or	atrial	tachycardia	(Calkins	et	al.	2012).	Early	recurrence	(<3	months	

post-ablation)	of	AF	 is	 common,	 and	a	blanking	period	 is	 typically	 employed.	During	 this	period,	

many	 operators	 continue	 anti-arrhythmic	 drugs,	 with	 early	 cardioversion	 in	 the	 event	 of	 AF	

recurrence.	 Early	 AF	 episodes	 in	 the	 context	 of	 significant	 post-ablation	 inflammation	 may	 not	

necessarily	indicate	long	term	recurrence,	but	they	remain	a	strong	risk	factor	for	later	treatment	

failure	(Liang	et	al.	2015;	Leong-Sit	et	al.	2011).	

	

Across	 the	wide	 range	of	 ablation	 strategies,	 serious	 complications	are	 rare	but	 recurrence	 rates	

remain	high.	Serious	complications	include	cardiac	tamponade	(1-3%),	PV	stenosis	(0-38%,	highly	

dependent	upon	ablation	strategy	and	increasingly	rarely	observed),	atrio-oesophageal	fistula	(0.1-
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0.25%),	phrenic	nerve	injury	(5%	temporary,	0.5%	permanent)	and	cerebral	embolic	events	(0-7%,	

with	a	much	higher	incidence	of	silent	micro	emboli).	Overall	mortality	is	around	0.1%	(Calkins	et	al.	

2012).	 In	 terms	 of	 procedural	 success,	 a	 recent	 meta-analysis	 (Ganesan	 et	 al.	 2013)	 found	 that	

freedom	from	AF	at	12	months	following	a	single	procedure	was	64%	(67%	in	PAF,	and	51%	in	non-

PAF),	falling	to	61%	for	PAF	and	42%	for	non-PAF	at	3	years.	With	multiple	procedures,	the	combined	

(PAF	and	non-PAF)	long-term	success	rate	was	80%	at	three	years,	but	with	wide	variation	between	

studies.	 The	 mechanism	 of	 AF	 recurrence	 is	 most	 commonly	 associated	 with	 PV	 electrical	

reconnection	(Ouyang	et	al.	2005),	and	organised	atrial	 tachycardias	are	 found	more	often	 in	 the	

context	of	persistent	PV	isolation	(Baldinger	et	al.	2016).	

2.3 Electroanatomic	mapping	systems	
Until	the	mid-1990s,	electrophysiological	procedures	were	guided	almost	exclusively	by	fluoroscopy.	

Procedures	were	long	and	the	radiation	exposure	substantial.	Fluoroscopy	frame	rates	have	been	

minimised	and	image	contrast	reduced	to	lower	total	skin	doses,	but	the	radiation	exposure	remains	

a	 concern.	 Alternative	 methods	 for	 assessing	 catheter	 position	 have	 therefore	 evolved,	 with	

electromagnetic	(magnetic	or	electrical)	positional	tracking	techniques	first	applied	in	the	cardiac	

field	 in	the	mid-1990s.	These	tracking	techniques	evolved	rapidly	to	combine	with	 interventional	

workstations	to	form	electroanatomic	mapping	(EAM)	systems,	displaying	the	location	of	multiple	

tracked	devices	in	the	context	of	acquired	cardiac	anatomy	and	electrophysiology.	

	

Two	main	techniques	are	currently	used	for	device	tracking	for	EAM:	transthoracic	impedance	fields	

and	magnetic	fields.	Each	of	these	techniques	has	innate	advantages	and	disadvantages,	and	it	is	little	

surprise	 that	 the	main	manufacturers	now	use	a	combination	of	both	 technologies	 for	 their	most	

advanced	EAM	systems.	Biosense	Webster	 (Diamond	Bar,	CA,	USA)	has	used	calibrated	magnetic	

fields	for	many	years,	and	this	has	generally	been	accepted	as	providing	robust	location	information.	

In	contrast	to	high	frequency,	low	voltage,	electrical	fields	applied	across	the	thoracic	cavity,	there	is	

minimal	 impact	 of	 soft	 tissue	 interfaces	 and	 impedance	 changes.	 Static	 accuracy	 has	 been	

demonstrated	 to	 be	 0.2mm	 in-vitro,	 and	 0.7mm	 in-vivo.	 However,	magnetic	 field	 sensors	within	

devices	are	costly,	relatively	bulky	and	have	been	limited	to	proprietary	catheters.	Typical	sensor	

size	 is	 1mmx4.5mm,	 with	 detection	 of	 magnetic	 field	 strength	 and	 direction	 arising	 from	

measurement	of	 induced	voltage	on	a	single	 tip	coil	or	 three	orthogonal	coils.	CARTO3	(Biosense	

Webster)	therefore	implemented	a	hybrid	of	magnetic	and	voltage	based	location	technology,	using	

further	skin	patches	to	detect	an	ultra-low	current,	high	frequency	electrical	signal	which	is	unique	

to	each	catheter	electrode.	This	has	enabled	the	use	of	non-proprietary	catheters	and	the	tracking	of	

many	more	electrodes,	including	information	on	the	location	of	device	shafts,	but	at	a	lower	accuracy	

(typically	 3mm).	 EnSiteNavX	 (St	 Jude	Medical,	 St	 Paul,	MN,	 USA)	 has	 been	 long-established	 as	 a	

reliable	EAM	system	using	impedance	field	navigation	alone.	Device	location	is	derived	relative	to	a	

reference	electrode,	based	on	impedance	gradients,	and	is	effectively	open	platform	allowing	the	use	

of	any	catheter.	Concerns	regarding	localisation	accuracy	have	been	addressed	in	the	recent	release	

of	 EnSite	 Precision	 (St	 Jude	 Medical)	 which	 utilises	 a	 hybrid	 approach	 of	 both	 magnetic	 and	
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impedance	 fields,	 this	 time	using	 the	magnetic	 field	 information	 to	provide	 live	calibration	of	 the	

impedance	field.	

	

An	EAM-guided	procedure	can	be	divided	into	three	phases-	establishing	cardiac	anatomy,	diagnostic	

electrophysiology,	and	ablation.	Cardiac	anatomy	may	be	acquired	through	device	tracking	alone,	or	

in	combination	with	prior	imaging	using	image	fusion	techniques.	Using	device	tracking	alone,	the	

intrathoracic	location	of	a	single	surface	(usually	endocardial)	is	derived	by	recording	all	locations	

that	the	tracked	device	has	reached.	This	mapping	technique	relies	upon	the	operator	placing	the	

device	 in	 all	 pertinent	 locations,	 and	 the	 EAM	 system	 interpolates	 those	 locations	 to	 generate	 a	

surface	shell.	 Interpolation	settings	and	compensation	for	respiratory	motion,	cardiac	motion	and	

contact	 force	may	be	adjusted	 to	optimise	 the	 fidelity	of	 the	virtual	anatomy.	Alternatively,	prior	

three-dimensional	imaging	may	be	registered	to	EAM	locations:	for	instance,	a	segmented	left	atrium	

from	a	contrast	enhanced	CT	scan	may	be	placed	within	 the	EAM	field	using	PV	and	mitral	valve	

annulus	 registration	 points.	 These	 image	 fusion	 techniques	 increase	 the	 likelihood	 that	 the	 full	

anatomical	extent	of	the	surface	has	been	established,	and	may	reduce	the	time	taken	to	acquire	the	

anatomy.		However,	they	are	reliant	on	accurate	co-location	of	registration	points	on	both	imaging	

and	 EAM	 shells:	 a	 registration	 that	 involves	 not	 only	 translation	 or	 rotation,	 but	 also	 affine	

transformations	that	may	cause	inappropriate	anatomical	distortions.	

	

Diagnostic	 electrophysiology	 is	 increasingly	 performed	 in	 parallel	 with	 anatomical	 mapping.	

Intracardiac	 electrograms	may	 be	 recorded	 at	 each	 surface	 location,	 and	metrics	 derived.	 Local	

activation	time	and	peak	voltage	are	often	annotated	automatically,	and	further	characteristics	may	

be	ascribed	manually	to	the	electrogram	(and	therefore	the	corresponding	cardiac	location)	such	as	

fractionation	 or	 splitting	 of	 potentials.	 Over	 the	 past	 two	 years,	 increasingly	 automated	 EGM	

acquisition	 methods	 have	 reached	 the	 market,	 including	 Confidense	 (BiosenseWebster)	 and	

AutoMap	(St	Jude),	which	act	to	acquire	and	annotate	electrogram	information	much	faster	than	can	

be	performed	manually,	whilst	employing	a	sophisticated	array	of	censoring	algorithms	to	prevent	

nonsensical	annotations.	In	this	way	cardiac	substrate	(in	terms	of	voltage),	normal	sinus	rhythm,	

paced	 rhythms	or	 arrhythmias	 can	be	mapped	 and	projected	 onto	 the	 cardiac	 chamber	 shell	 for	

diagnostic	purposes.	

	

Ablation	is	also	performed	in	the	EAM	environment.	The	capacity	to	ascribe	ablation	parameters	to	

cardiac	locations	is	a	highly	significant	step	forward	from	fluoroscopy,	without	which	some	complex	

ablation	 procedures	 would	 be	 much	 more	 difficult	 to	 perform.	 Ablation	 location	 is	 technically	

determined	 within	 the	 intrathoracic	 cavity	 space,	 but	 is	 generally	 projected	 to	 an	 appropriate	

location	on	the	cardiac	chamber	shell.	The	projection	may	be	calibrated	using	respiratory	or	cardiac	

motion	parameters,	but	it	cannot	currently	take	into	account	movement	of	the	cardiac	surface	below	

the	 catheter	 tip.	Ablation	 locations	 are	 therefore	only	 an	estimate,	 but	 increasingly	 sophisticated	

measures	are	being	developed	in	order	to	annotate	ablation	parameters	in	an	objective	fashion,	and	

even	guide	ablation	delivery.	
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3 TECHNICAL	CONSIDERATIONS	FOR	MRI-
GUIDED	ELECTROPHYSIOLOGY	
PROCEDURES	

3.1 Introduction	
Interventional	 MRI	 is	 a	 growing	 field,	 and	 the	 strength	 of	 MRI	 guidance	 for	 procedures	 rests	

fundamentally	in	the	high	contrast	imaging	of	soft	tissue	structures.	Coupled	with	the	avoidance	of	

radiation	exposure,	the	potential	for	functional	assessment,	and	the	ability	to	exploit	MR	signals	for	

calculation	 of	 the	 location	 of	 interventional	 instruments,	 it	 is	 clear	 that	 the	 implementation	 of	

interventional	MRI	will	continue	apace.	For	cardiac	interventions,	the	visualisation	of	thin,	mobile,	

structures	presents	particular	challenges	for	MRI	guidance.	Cardiac	electrophysiological	procedures	

add	a	further	dimension,	as	the	accurate	detection	of	intracardiac	electrograms	must	be	performed	

in	a	highly	active	electromagnetic	environment.	This	chapter	focuses	on	the	technical	considerations	

for	the	performance	of	electrophysiological	procedures	under	MRI	guidance	(MR-guided	EP).	

3.2 The	potential	benefits	of	MR-guided	EP		
MRI	 techniques	 offers	 a	 high	 soft	 tissue	 contrast-to-noise	 ratio	 compared	 to	 x-ray,	 computed	

tomography	(CT)	and	ultrasound.	However,	the	environment	is	a	challenging	and	expensive	one,	and	

all	 the	benefits	of	MR-guided	EP	need	 to	be	 fully	 realised	 to	 justify	 the	additional	difficulties	and	

expense.	Broadly	speaking,	these	benefits	can	be	divided	into	three	main	areas:	improved	precision	

of	ablation	targeting	(substrate	identification),	improved	intra-procedural	guidance,	and	improved	

assessment	of	ablation	lesion	formation.	

3.2.1 Substrate	identification	
Both	 ventricular	 and	 atrial	 arrhythmogenic	 substrate	 have	 been	 identified	 on	 CMR	 imaging	

(Ashikaga	 et	 al.	 2007;	 Marrouche	 et	 al.	 2014),	 and	 the	 implementation	 of	 data	 regarding	 local	

myocardial	 characterisation	 is	 increasingly	used	 to	guide	procedures.	However,	 improvements	 in	

clinical	ablation	outcome	with	the	use	of	CMR-substrate	information	have	been	modest	(Andreu	et	

al.	 2011).	 MR-guided	 EP	 presents	 a	 way	 in	 which	 CMR-derived	 substrate	 may	 be	 used	 more	

accurately	and	intuitively	to	guide	procedures.	

	

The	 evidence	 for	 CMR-derived	 arrhythmia	 substrate	 identification	 is	 strong,	 and	 ventricular	

substrate	is	generally	the	more	amenable	to	evaluation	by	CMR.	There	is	increased	wall	thickness	

and	higher	 consequent	 contrast	between	healthy	and	pathological	 tissue.	Ventricular	 tachycardia	

(VT)	occurs	due	to	scar	related	re-entry	and	scar	can	be	accurately	visualised	using	LGE	techniques	

(Nazarian	et	al.	2005;	Ashikaga	et	al.	2013).	In	particular,	the	scar	border	zone	has	been	shown	to	be	
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critical	in	the	perpetuation	of	the	arrhythmia,	and	its	abolition	forms	the	basis	of	substrate-based	VT	

ablation	(Carbucicchio	et	al.	2013;	Pop	et	al.	2013;	Perez-David	et	al.	2011).		

	

There	 is	 also	 emerging	 data	 to	 suggest	 that	 CMR	 imaging	 may	 be	 used	 to	 guide	 atrial	 ablation	

procedures.	Though	the	atrial	wall	is	thinner,	native	fibrosis	and	ablation	scar	can	be	identified	using	

primarily	three-dimensional	LGE	techniques	(Marrouche	et	al.	2014;	Khurram	et	al.	2014).	Recent	

studies	have	been	interpreted	to	suggest	that	successful	ablation	of	fibrotic	regions,	distant	to	the	

PVs,	may	help	improve	AF	ablation	success	rates	(Akoum	et	al.	2013),	and	these	observations	have	

led	to	the	instigation	of	the	DECAAF-II	trial	(www.decaaf.org).	Similarly,	atrial	re-entrant	circuits	can	

be	modelled	in-silico	based	upon	atrial	scar	location	and	used	to	inform	ablation	strategies	(Zahid	et	

al.	2016),	Sites	of	PV	reconnection	have	been	identified	using	CMR,	with	successful	ablation	guided	

by	the	CMR-derived	substrate	(Bisbal	et	al.	2014),	but	these	findings	have	not	been	replicated	by	

other	groups	including	our	own	(J	L	Harrison,	Sohns,	et	al.	2015).	

	

To	date,	all	studies	that	have	used	CMR-derived	substrate	identification	to	guide	ablation	have	relied	

upon	EAM	image	fusion	techniques	(see	Section	2.3)(Cochet	et	al.	2013;	Bisbal	et	al.	2014;	V.	Y.	Reddy	

et	al.	2004).	Accurate,	real-time,	registration	of	EAM	shell	and	substrate	data	is	crucial	and	may	be	

significantly	affected	by	registration	errors	(including	discrepancies	 in	 landmark	identification	on	

imaging	 and	 electrical	 criteria),	 cardiac	 chamber	 conformational	 changes	 (arising	 from	 differing	

loading	 conditions	 and	 tachyarrhythmias),	 and	 translational	 changes	 (due	 to	 patient	movement,	

cardiac	motion	and	respiratory	motion).	CMR-derived	targets	may	be	typically	2-4mm	wide	for	VT	

ablation	(Fernández-Armenta	et	al.	2013)	and	even	less	for	atrial	ablation	(Bisbal	et	al.	2014;	Ranjan	

et	al.	2012).	Small	errors	 in	registration	mean	that	either	a	very	broad	region	must	be	ablated	or	

critical	targets	are	left	untouched,	with	consequent	impact	on	safety,	time	and	efficacy.	

	

MR-guided	EP	can	use	one	of	two	techniques	in	order	to	overcome	the	registration	errors.	The	first	

is	to	use	image	registration	within	a	single	modality,	rather	than	trying	to	match	electroanatomical	

data	to	imaging	data.	The	second	is	by	using	real-time,	or	near-real-time,	visualisation	of	substrate,	

with	the	imaging	performed	during	the	same	procedure.	Such	approaches	may	improve	the	outcome	

of	CMR-substrate	guided	ablation.	

3.2.2 Procedural	guidance	
The	 vast	 majority	 of	 complex	 ablation	 procedures	 are	 performed	 using	 EAM,	 and	 procedural	

guidance	 is	 largely	 reliant	upon	anatomical	mapping	 techniques	alone.	Fusions	with	 fluoroscopy,	

using	 techniques	 such	 as	 CARTOUNIVUTM	 (Biosense	 Webster),	 or	 intracardiac	 ultrasound	

(CARTOSOUNDTM	(Biosense	Webster)),	provide	a	degree	of	structural	information	in	addition	to	that	

derived	from	solely	EAM.	However,	the	anatomical	information	and	depth	of	field	is	inferior	to	that	

achieved	with	CMR	imaging.	Detailed	information	on	the	chamber	of	interest	and	the	surrounding	

structures	such	as	oesophagus,	coronary	arteries	and	adjacent	chambers	can	assist	the	performance	

of	many	procedures,	particularly	those	in	patients	with	complex	congenital	heart	disease	(H	Chubb	
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et	al.	2014).	In	addition,	cardiac	motion	derived	from	both	respiration	and	the	cardiac	cycle	can	be	

assessed	more	accurately	using	CMR	than	with	any	other	imaging	modality.	Accurate	compensation	

for	this	motion	could	have	significant	implications	for	mechanisms	of	energy	delivery.		

3.2.3 Lesion	evaluation	
The	failure	to	create	durable	and	contiguous	transmural	lesions	has	been	held	largely	responsible	for	

the	high	recurrence	rates	following	many	complex	ablations,	particularly	VT	and	AF	(Aliot	et	al.	2009;	

Calkins	et	al.	2012).	CMR	may	be	used	to	assess	acute	ablation	lesions	(Celik	et	al.	2014;	Ranjan	et	al.	

2012;	Dickfeld	et	al.	2007),	and	this	does	not	necessarily	mandate	the	performance	of	the	procedure	

under	MR-guidance.	One	approach	might	be	to	perform	a	conventional	procedure	with	immediate	

evaluation	 of	 lesions	 prior	 to	 removal	 of	 sheaths.	 Patients	 would	 move	 to	 the	 MRI	 scanner	 for	

assessment,	then	return	to	the	conventional	lab	for	‘top-up’	ablation	of	inadequate	lesions.	However,	

a	number	of	factors	have	inhibited	such	an	approach.	First	and	foremost	is	the	absence	of	a	specific	

and	sensitive	acute	CMR	signature	of	chronic,	effective,	 lesion	formation,	of	sufficient	precision	to	

guide	 further	 ablation	 (Arujuna	 et	 al.	 2012;	 James	 L	 Harrison	 et	 al.	 2014).	 Ventricular	 lesion	

formation	is	likely	to	be	more	amenable	to	CMR	imaging,	but	investigations	into	ventricular	lesion	

imaging	are	sparse	in	comparison	to	those	assessing	acute	atrial	ablation	lesions.	Secondly,	 intra-

procedural	 CMR	 imaging	 requires	 substantial	 disruption:	 all	 ferromagnetic	 material	 must	 be	

removed,	 and	 almost	 all	 EAM	 equipment	 is	 currently	 incompatible	 with	 CMR	 imaging.	 Patches,	

catheters	and	most	long	sheaths	must	be	removed,	and	therefore	the	registration	of	imaging	to	EAM	

for	further	ablation	requires	the	procedure	to	re-start	almost	from	scratch.	Thirdly,	few	centres	have	

the	facility	to	move	patients	easily	from	EP	lab	to	MR	scanner	and	back	again	with	sufficient	sterility	

and	safety.	

	

MR-guided	EP	has	the	potential	to	streamline	the	process	of	acute	lesion	imaging,	and	also	to	perform	

real-time	imaging	of	lesion	formation.	It	has	been	postulated	that	oedema	may	hinder	radiofrequency	

energy	delivery	to	the	underlying	viable	myocardium	(Arujuna	et	al.	2012),	and	immediate	imaging	

presents	the	opportunity	for	early	repeat	ablation	and	even	energy	titration	(Figure	3-1).	Imaging	

techniques	continue	to	be	developed,	but	currently	no	single	technique	has	been	demonstrated	to	be	

robust	enough	for	clinical	implementation.	With	time,	MR-guided	EP	may	present	the	opportunity	

for	accurate	and	tailored	ablation	lesions.	
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Figure	3-1.	Real-time	temperature	mapping	of	 left	ventricular	(LV)	epicardial	ablation	

lesion,	using	MR-thermometry	(relative	tissue	temperature	mapping).		

Upper	six	panels	show	colour	coded	local	temperature	at	0	to	120	seconds	post	initiation	

of	 a	 60second	 50W	 radiofrequency	 ablation	 lesion,	 in	 a	 short-axis	 view	 (dotted	 lines	

denote	 limits	of	 ventricular	myocardium).	Note	 spread	of	maximum	temperature	 from	

epicardium	to	endocardium.	Lower	panel	shows	change	of	temperature	against	time	at	

individual	 voxels,	 the	 locations	 of	 which	 are	 shown	 on	 the	 right	 hand	 side.IVS:	

interventricular	septum.		Images	courtesy	of	Sebastien	Roujol,	King’s	College	London,	UK.		
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3.3 MR-compatibility	of	devices	
The	MR	environment	presents	considerable	challenges	in	terms	of	design	and	use	of	conventional	

procedural	equipment.	Interventional	instruments,	anaesthetic	equipment	and	monitoring	must	all	

be	 capable	 of	 safe	 and	 effective	 operation	 in	 a	 demanding	 environment.	 Commercial	 ablation	

solutions	 frequently	 include	non-compatible	 components,	which	are	not	 limited	 to	 ferromagnetic	

materials,	and	a	number	of	considerations	must	be	made.	

3.3.1 Constraints	associated	with	the	static	field	B0	
Contrary	 to	 conventional	 expectations,	 the	 presence	 of	 ferromagnetic	materials	 is	 not	 absolutely	

contra-indicated	within	 the	MR	 environment.	 	 However,	 the	 use	 of	 ferromagnetic	materials	 (see	

Section	1.2.3)	should	be	carefully	controlled	and	curtailed	as	far	as	possible.	Ferromagnetic	materials	

exhibit	strong	attraction	along	the	line	of	the	magnetic	field,	and	torque	to	align	the	object	with	the	

field	 lines§§ .	 Items	 that	 are	 fixed,	 such	 as	 a	 stent	 or	 iron	 doping	 on	 a	 catheter	 tip,	 will	 remain	

controlled	within	the	field.	However,	for	sensitive	interventional	devices	such	as	an	EP	catheter	the	

forces	may	be	intolerable,	and	the	susceptibility	artefact	tends	to	be	very	large.	

	

The	Lenz	effect	should	also	be	considered	for	non-ferromagnetic	conducting	materials.	Lenz’s	law	

states	 that	 if	an	 induced	current	 flows,	 its	direction	 is	always	such	that	 it	will	oppose	the	change	

which	produced	it.	This	produces	resistance	to	movement	of	metallic	materials	within	the	magnetic	

field	(such	as	old-style	metallic	heart	valve).	However,	the	induced	electromagnetic	force	is	unlikely	

to	have	significant	effect	upon	the	movement	of	catheters	when	close	to	the	relatively	uniform	field	

in	the	centre	of	the	bore***.	(Graf,	Lauer,	and	Schick	2006)	

3.3.2 Constraints	associated	with	the	rapidly	switching	gradient	fields	
Rapidly	switching	gradient	fields	have	important	implications	upon	electrically	conductive	materials,	

particularly	in	the	vicinity	of	highly	voltage	sensitive	tissue	such	as	myocardium.	Modern	gradient	

fields	have	a	steepness	of	up	to	100mT/m,	and	a	slew	rate	of	up	to	200mT/m/msec	(Kugel	2012).	

The	gradient	fields	cause	significant	acoustic	noise,	may	induce	peripheral	nerve	stimulation,	and	

also	 cause	 low-level	 heating	 of	 tissues	 (low	 in	 comparison	 to	 RF-induced	 heating-	 see	 below).	

However,	for	MR-guided	EP	a	further	consideration	is	induction	of	current	and	the	potential	for	local	

cardiac	stimulation.	Individual	catheter	channels	must	be	effectively	isolated	from	all	other	catheter	

channels	in	order	to	eliminate	gradient	induced	currents	(Hilbert	et	al.	2015).	

																																																																				

	

§§	The	force	experienced	by	a	ferromagnetic	object	at	distance	r	from	the	scanner	bore	(F(r))	is	proportional	to	12(#). Ç12/Ç#,	

where	B0	is	the	field	strength.	The	torque	acts	to	align	the	magnetic	axis	of	the	object	parallel	to	the	field	lines,	and	increases	

with	the	square	of	the	field	strength	(∝ 12J)	

	

***	É = − ÑÖ
Ñ:
,	where	É	is	the	induced	voltage,	and	df	the	change	in	magnetic	flux.		
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3.3.3 Constraints	associated	with	the	pulsed	RF	field	
A	high-frequency	RF	field	is	applied	to	tip	spins	to	the	imaging	plane	and	refocus	(see	Section	1.1.2).	

High	frequency	eddy	currents	are	also	induced	in	soft	tissue	and	devices,	and	these	produce	heat.	

Localised	 concentration	 of	 heating	 may	 occur	 in	 the	 vicinity	 of	 additional	 coils,	 cables	 or	 other	

conducting	devices,	particularly	at	the	entry	and	exit	points	of	devices	where	the	current	density	is	

highest.	However,	the	heating	effect	of	both	the	electrical	and	magnetic	components	of	the	RF	field	is	

complex	to	simulate,	and	is	 largely	dependent	upon	the	tuning	between	the	transmit	coil	and	the	

“receiving”	device	(Kugel	2012).	Multiple	tests	must	be	performed	in	order	to	ensure	that	the	worst-

case	 scenario	 is	 included,	 and	 significant	 constraints	 may	 be	 placed	 upon	 transmission	 lines	 in	

particular	(Steffen	Weiss	et	al.	2005).	

3.4 Device	tracking	
Device	tracking	within	the	MR	environment	 is	of	paramount	 importance,	and	there	are	two	main	

methods	of	localisation:	passive	and	active	tracking.	

3.4.1 Passive	tracking	sequences	
Passive	device	tracking	relies	on	the	identification	of	the	device	on	an	imaging	sequence.	Such	an	

approach	 does	 not	 require	 novel	 technology	 to	 be	 developed,	 but	 it	 suffers	 from	 poor	 CNR,	

particularly	with	thicker	imaging	slices,	and	is	highly	time-consuming.	

	

For	most	passive	tracking	purposes,	a	relatively	high	speed	imaging	sequence	is	required	in	order	to	

achieve	imaging	frame	rates	of	at	least	1Hz.	Device	identification	may	be	based	upon	a	device	MR	

signature	that	is	fundamentally	reduced	or	enhanced	for	the	imaging	sequence.	Signal	reduction	is	

generally	achieved	through	magnetic	susceptibility	artefact	(secondary	to	the	presence	of	metals),	or	

absence	of	signal	(for	non-metallic	anhydrous	devices).	Enhanced	signal	may	be	achieved	through	

the	use	of	resonant	radiofrequency	devices	(S	Weiss,	Eggers,	and	Schaeffter	2001)	or	filling	a	device	

with	an	enhanced	signal	source	such	as	a	GBCA-filled	tube.		

	

The	use	of	passive	tracking	sequences	generally	requires	significant	input	from	a	skilled	MR	operator	

in	order	 to	manipulate	 the	 imaging	plane	 to	keep	 the	device	within	slice.	This	 is	 relatively	easily	

achieved	in	narrow	tubular	structures	lying	within	a	single	plane,	such	as	the	aorta,	but	is	much	more	

difficult	when	there	is	a	greater	degree	of	varying	three-dimensional	movement	as	is	the	case	for	an	

EP	study	or	ablation.	Thicker	imaging	slices	(>10mm)	improve	the	ability	to	keep	the	device	within	

plane,	but	CNR	may	be	impaired	to	such	a	degree	that	the	device	may	not	be	identifiable.	There	are	

also	two	further	substantial	limitations	to	passive	tracking	pertinent	to	MR-guided	EP.	The	first	is	the	

difficulty	in	tracking	more	than	one	device	at	a	time:	EP	frequently	requires	multiple	diagnostic	and	

ablation	 catheters,	 and	 the	 narrow	 MR	 imaging	 planes,	 in	 contrast	 to	 the	 projection	 view	 of	

fluoroscopy,	 limits	the	monitoring	of	more	than	one	device	at	a	time.	The	second	limitation	is	the	

requirement	 to	 record	 location	 relative	 to	 cardiac	 structures.	 Automated	 image	 recognition	

techniques	 could	 theoretically	 be	 employed	when	 the	 device	 tip	 is	 in-plane	with	 sufficient	 CNR,	
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enabling	 device	 localisation	 to	 be	 referenced	 to	 pre-defined	 chambers.	 However,	 there	 is	 no	

published	evidence	that	this	capability	has	yet	been	developed.	

	

	

Nevertheless,	passive	tracking	remains	a	useful	technique,	even	when	actively	tracked	devices	are	

used	(see	below).	At	present,	the	number	of	tracked	electrodes	is	highly	limited,	and	therefore	there	

is	generally	no	information	on	catheter	shaft	or	sheath	location.	This	mirrors	the	earlier	iterations	of	

EAM	systems,	when	only	the	location	of	the	catheter	tip	was	visible.	Brief	runs	of	passive	tracking	

sequences,	preferably	in	imaging	planes	defined	by	the	location	of	the	actively	tracked	catheter	tip,	

facilitate	the	determination	of	the	shaft	orientation.	Such	knowledge	may	be	important	in	performing	

more	 complex	 catheter	 manipulations	 such	 as	 those	 required	 to	 reach	 within	 a	 pouch	 of	 the	

Eustachian	 ridge,	 or	 during	 retrograde	 access	 to	 the	 left	 ventricle.	 Furthermore,	 active	 tracking	

catheters	are	relatively	bulky	and	expensive,	and	for	simple	diagnostic	catheters	a	passive	tracking	

solution	may	be	more	appropriate.	Therefore	passive	tracking	remains	important	even	in	the	era	of	

active	device	tracking	for	MR-guided	EP.	

3.4.2 Active	tracking	sequences	
Active	tracking	of	devices	has	been	demonstrated	using	two	main	techniques.	The	first	exploits	the	

imaging	gradient	fields	to	derive	device	location.	Electrical	potentials	may	be	induced	by	the	time-

variable	magnetic	 fields	 in	a	set	of	miniature	coils	 implanted	 in	 the	device	(Nevo	2003),	and	 this	

technique	 has	 been	 FDA-cleared	 for	 non-cardiac	 MR-guided	 interventions	 (EndoScout®	 ,	 Robin	

Medical	 Inc.,	 MD,	 USA).	 However,	 it	 has	 not	 been	 implemented	 in	 the	 cardiac	 field.	 The	 second	

technique	is	that	used	in	this	thesis,	and	this	employs	a	dedicated	tracking	sequence,	detected	by	

micro-coils	within	the	catheter.		

	

The	technique	was	first	proposed	by	Dumoulin	et	al	(C	L	Dumoulin,	Souza,	and	Darrow	1993).	Small	

receive	coils	act	to	detect	a	highly	localised	spatially	encoded	signal	from	the	surrounding	tissue	(the	

coils	are	 insensitive	 to	signal	arising	more	 than	approximately	1mm	away).	Early	versions	of	 the	

tracking	signal	proposed	a	non-selective	RF	pulse,	followed	by	a	gradient-recalled	echo	with	readout	

gradient	pulse	on	a	single	axis.	However,	such	an	approach	is	highly	susceptible	to	local	magnetic	

inhomogeneities,	 as	 the	 location	 calculation	 is	 based	 on	 frequency	 alone.	 This	 is	 of	 particular	

relevance	as	a	receive	coil	will	create	a	susceptibility	artefact	around	itself,	and	the	orientation	of	the	

coil	within	B0	will	consequently	shift	the	calculated	location	significantly.	Therefore	a	more	accurate	

approach	 evolved.	 At	 first,	 the	 average	 of	 two	 locations	 was	 calculated	 with	 opposite	 gradient	

directions,	 and	 this	mitigated	 the	 errors	 at	 the	 cost	 of	 temporal	 resolution.	 In	 order	 to	 increase	

efficiency,	a	four-excitation	scheme	was	then	employed,	with	three	gradients	applied	in	each	of	four	

excitations,	allowing	a	unique	x-,	y-	and	z-axis	location	to	be	calculated.	In	addition,	multiple	coils	can	

be	tracked	simultaneously	using	the	same	tracking	sequence,	as	it	is	limited	only	by	the	number	of	

receivers.	
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This	approach	proved	relatively	robust,	but	there	were	issues	that	needed	to	be	addressed	even	at	

the	earliest	stages.		

• Signal	change	with	receive	coil	orientation	relative	to	B0.	When	the	receive	coil	lies	parallel	

to	B0,	the	transverse	spin	magnetisation	will	not	induce	any	current	in	the	coil.	Fortunately,	

the	 range	 of	 angles	 at	 which	 this	 occurs	 has	 been	 found	 to	 be	 extremely	 narrow	 (C	 L	

Dumoulin,	Souza,	and	Darrow	1993).			

• MR-signal	source	for	micro-receive	coil.	The	detection	of	a	location	signal	is	dependent	upon	

MR-signal	from	MR-active	material	adjacent	to	the	coil.	Consideration	was	given	to	placing	

MR-active	material	within	the	catheter,	but	this	was	unacceptably	bulky	for	a	complex	EP	

catheter	 and	 therefore	 the	 signal	 arises	 from	material	 outside	of	 the	 catheter	 itself.	 This	

severely	impairs	the	tracking	performance	when	the	coil	lies	within	the	sheath,	but	this	is	a	

problem	 familiar	 to	 electrophysiologists	 used	 to	 working	 with	 impedance-based	 EAM	

systems.	It	is	also	a	potential	problem	when	the	catheter	is	deflected	180°	and	the	receive	

coil	lies	within	the	susceptibility	artefact	of	the	transmission	line	capacitors	(see	below),	and	

care	must	be	taken	in	the	interpretation	of	tracking	signal	in	these	locations.	

• Sensitivity	to	noise.	The	 location	accuracy	is	clearly	 impaired	when	SNR	is	 low.	This	may	

occur	with	absence	of	MR-active	material	adjacent	to	the	coils,	but	also	with	poor	tuning	of	

the	receive	coils,	coupling	with	body	coils,	or	resonance	of	the	cable	within	the	device.	An	

approach	using	“phase	dithering”	has	therefore	been	proposed	(Charles	L.	Dumoulin	et	al.	

2010).	 This	 entails	 the	 application	 of	 a	 dephasing	 gradient	 orthogonal	 to	 the	 frequency	

gradient,	prior	 to	echo	 readout.	The	dephasing	acts	 to	destroy	 signal	 from	 large	 regions,	

whilst	having	minimal	effect	upon	very	small	volumes	such	as	that	immediately	surrounding	

the	micro-receive	coil.	There	are	an	infinite	number	of	possible	dephasing	directions	in	the	

two-dimensional	plane	defined	orthogonal	 to	 the	 frequency	encoding	direction.	For	each	

given	frequency	encoding	direction,	some	dephasing	directions	may	enhance	signal,	whilst	

others	may	reduce	it.	A	limited	number	of	directions	are	applied	for	each	location,	typically	

three	to	six,	and	the	highest	SNR	is	then	used	for	the	calculation	of	the	position	of	the	coil.	

• Double	signal	peak.	There	are	in	fact	two	signal	peaks	for	each	coil,	reflecting	the	sensitivity	

at	each	end	of	the	coil,	rather	than	at	the	centre.	The	difference	in	frequency	for	these	signals	

is	dependent	upon	the	orientation	of	the	coil	relative	to	the	frequency	encoding	direction.	

The	double	peak	reduces	SNR	and	could	generate	location	ambiguities.	However,	the	double	

peak	can	also	be	exploited	to	improve	accuracy	of	position	calculation	and	orientation,	using	

dedicated	real-time	evaluation	of	the	peak	locations	(Figure	3-2).		
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Figure	3-2.	Double	peak	detection	with	active	tracking	sequence.		

Peaks	in	signal	are	detected	at	each	end	of	the	micro-receive	coil.	Dedicated	algorithms	

search	for	further	signal	peaks	adjacent	to	the	main	peak,	generally	with	a	threshold	of	

approximately	 0.4x	 the	 height	 of	 the	 main	 peak.	 The	 central	 location	 of	 the	 coil	 is	

calculated	as	 the	mid-point	of	 the	peaks,	and	the	distance	between	them	also	provides	

information	on	the	orientation	relative	to	the	gradient	field.	

The	signal	detected	by	the	micro-receive	coils	must	then	be	passed	from	catheter	tip	to	the	surface	

coil	port	at	the	scanner	itself.	As	discussed,	there	are	significant	concerns	regarding	RF	safety	for	long	

transmission	lines,	whilst	they	must	remain	capable	of	conducting	µV	MR-receive	signals.	Some	in-

vivo	studies	have	used	thin,	high	resistivity	50-g	coaxial	cable	(Dukkipati	et	al.	2008;	Schmidt	et	al.	

2009),	 but	 these	 have	 not	 been	 demonstrated	 to	 be	 safe	 for	 human	 interventions.	 Initial	 efforts	

towards	lines	suitable	for	human	use	aimed	to	replace	wires	with	optical	fibres	(S	Weiss	et	al.	1999;	

Steffen	Weiss	 et	 al.	 2004).	 However,	 this	 approach	 failed	 to	 achieve	 the	 required	 robustness.	 In	

parallel,	other	groups	sought	to	improve	RF	safety	by	modified	wires	(Atalar	1999;	Ladd	and	Quick	

2000)	but	this	and	other	approaches	were	also	not	developed	into	clinical-grade	devices.	Finally	an	

approach	based	upon	miniature	 transformers	 in	 the	device	proved	 to	 provide	both	 the	 required	

tracking	robustness	and	RF	safety	(S.	Weiss	et	al.	2005;	Vernickel	et	al.	2005).	Further	work	resulted	

in	dedicated	EP	catheters	based	on	this	approach	(Krueger	et	al.	2009;	Steffen	Weiss	et	al.	2011).		
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3.4.3 Implementation	within	EAM-style	interface	
Whether	active	or	passive	tracking	is	used	for	MR-guided	EP	interventions,	it	is	necessary	to	project	

the	location	within	the	context	of	the	cardiac	chambers.	Most	studies	have	chosen	to	acquire	a	3D	b-

SSFP	whole	heart	volume	at	the	beginning	of	the	procedure,	and	then	to	display	the	location	within	

a	segmented	chamber	of	the	volume	(Figure	3-3)	(Dukkipati	et	al.	2008;	Hilbert	et	al.	2015;	H.	Chubb	

et	al.	2014).	Manual	or	automated	(see	Chapter	6)	chamber	segmentations	have	both	been	employed	

in	order	to	provide	an	interface	that	closely	mimics	the	strengths	of	a	clinical	EAM	system.	Passive	

and	 active	 tracking	 sequences	 may	 be	 interleafed,	 providing	 real-time	 location	 updates	 with	

visualisation	of	device	position	and	surrounding	anatomy,	and	the	passive	imaging	slice	position	can	

be	co-ordinated	with	catheter	tip	position	(Koken	et	al.	2010).	Interactive	interface	may	also	allow	

for	the	rapid	switching	between	several	MRI	pulse	sequences,	enabling	the	visualisation	of	anatomy	

with	different	contrasts.	

	

An	 alternative	 strategy	 has	 been	 proposed	 by	 the	Boston	 group	 (Schmidt	 et	 al.	 2013)	who	 have	

modified	an	impedance-based	tracking	system,	based	upon	Ensite	Velocity	(St	Jude),	and	adapted	it	

for	use	within	 the	MRI	environment.	 In	a	 swine	model	 they	performed	diagnostic	EP	procedures	

within	the	MR	scanner,	using	the	voltage-based	location	to	guide	catheter	manipulation.	There	were	

considerable	technical	challenges	in	terms	of	optimising	the	location	signal	in	the	MR-environment,	

and	tracking	performance	was	impaired	by	the	requirement	for	blanking	of	the	tracking	signal	during	

the	gradient	field	applications.	However,	the	approach	has	been	demonstrated	to	be	feasible	and	may	

open	 the	way	 for	a	 truly	hybrid	approach,	working	 in	both	conventional	and	MR	EP	 laboratories	

during	the	same	procedure,	or	for	tracking	of	simpler	devices	within	the	MR-scanner	itself.	
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Figure	 3-3.	 The	 first	 published	 example	 of	 EAM-style	 interface	 for	 MR-guided	

electrophysiological	procedures.	

Mapping	displays	the	left	ventricle	of	a	swine	infarct	model.	Three-dimensional	bipolar	

voltage	 maps	 using	 standard	 fluoroscopy-based	 CARTO	 (A)	 and	 the	 MRI-guided	

electrophysiology	system	(B)	in	the	same	animal.	The	maps	performed	by	both	methods	

demonstrate	 the	 same	 anterior	wall	myocardial	 scar.	 AP:	 Anteroposterior;	 RAO:	 right	

anterior	oblique;	RL:	right	lateral.	Adapted	from	(Dukkipati	et	al.	2008)	with	permission.	

3.5 Electrogram	fidelity	
As	discussed	in	Section	1.5.1,	the	detection	of	surface	cardiac	electrical	activity	is	difficult	within	the	

MR	environment,	particularly	in	the	presence	of	time	variable	gradient	fields	and	MHD	effects.	MR-

guided	EP	is	currently	performed	with	limited	surface	electrocardiogram	data,	typically	restricted	to	

four	 surface	 adhesive	 electrodes	 (Expression,	 Invivo	Medical,	 Gainesville,	 FL,	 USA),	with	marked	

distortion	of	many	 components	 of	 the	ECG.	 Identification	of	 the	 ST-segment	 and	P-wave	 is	 often	

obscured,	and	many	groups	are	working	on	improving	the	electrogram	quality	(Schmidt,	Dumoulin,	

and	Danik	2014).		

	

There	are	also	challenges	related	to	the	detection	and	transmission	of	the	intra-cardiac	electrograms	

(IEGMs).	As	for	a	conventional	EP	laboratory,	IEGMs	must	be	high-pass	and	low-pass	filtered,	often	

with	the	addition	of	further	notch	filters	to	account	for	the	frequency	of	mains	electricity	and	other	

identified	sources	of	noise.	Despite	filtering	however,	electrical	noise	levels	remain	high	in	the	MR-
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environment.	MHD	effects	have	also	been	shown	to	be	dependent	upon	catheter	orientation,	and	can	

result	in	detected	voltages	that	are	higher	in	late	systole	than	at	the	R-wave	(Schmidt	et	al.	2013).	In	

addition,	the	IEGM	voltage	must	be	transmitted	via	a	high	resistivity,	RF	safe,	transmission	line,	and	

IEGM	fidelity	will	need	to	improve	significantly	in	order	to	enable	detection	of	low	amplitude	signals	

such	 as	 late	 diastolic	 potentials	 (Hilbert	 et	 al.	 2015).	 There	 is	 no	 published	 example	 of	 unipolar	

voltage	 IEGM	 detection	 in	 the	 MR-environment,	 the	 measurement	 of	 which	 will	 increase	 the	

detection	of	environmental	noise	between	active	and	indifferent	electrodes.	This	will	provide	further	

challenges,	but	technical	solutions	are	likely	to	evolve.	

3.6 Anaesthesia	and	monitoring	
MR-guided	 EP	 procedures	 are	 currently	 longer	 than	 equivalent	 procedures	 using	 conventional	

guidance,	and	they	are	performed	in	a	noisy	and	potentially	claustrophobic	environment.	Therefore,	

published	human	studies	have	been	performed	under	general	anaesthesia	or	deep	sedation	(Hilbert	

et	 al.	 2015;	 H.	 Chubb	 et	 al.	 2014;	 Grothoff	 et	 al.	 2014;	 Nazarian	 et	 al.	 2008).	 Maintaining	 and	

monitoring	anaesthesia	 in	 the	MR-scanner	room	differs	 from	conventional	anaesthesia	 in	several	

ways.	These	include	the	use	of	MR-conditional	equipment	and	devices	within	the	room,	interference	

with	monitoring	(including	ECG-	see	above)	and	inaccessibility	of	the	patient.	

	

MR-conditional	 anaesthesia	 equipment	 is	 available	 on	 the	 commercial	 market,	 and	 include	 the	

Fabius®	MRI	from	Dräger	(Telford,	PA,	USA),	which	can	be	operated	safely	up	to	the	400	Gauss	line.	

Alternatively,	 the	use	of	 a	non-MR	conditional	 anaesthetic	machine	has	been	described,	with	 the	

machine	chained	to	the	wall	at	a	distance	determined	safe	by	local	physicists,	usually	beyond	the	5	

Gauss	line	(U.	Reddy,	White,	and	Wilson	2012).	Such	an	approach	increases	the	dead-space	within	

tubing	 significantly,	 and	 exposes	 the	 patient	 to	 unquantified	 risks	 related	 to	 interference	 with	

machine	function	from	the	(weak)	magnetic	field,	but	it	is	an	approach	that	has	been	employed	safely	

over	a	long	period	of	time	(Razavi	et	al.	2003).	Patient	monitoring	requires	an	MR-conditional	system,	

and	the	most	widely	employed	are	those	manufactured	by	Invivo	(Expression,	Gainesville,	FL,	USA).	

These	are	relatively	expensive	(>£80,000),	but	provide	a	comprehensive	range	of	monitoring	close	

to	 that	 achievable	 conventionally	 (CO2,	 invasive	 blood	 pressure,	 non-invasive	 blood	 pressure,	

saturations,	 heart	 rate,	 and	 respiratory	 rate).	MR-conditionality	 is	 generally	 restricted	 by	 power	

supply	transformers,	and	in	the	case	of	the	Expression	is	restricted	to	<5000	Gauss.		

	

Effective	and	reliable	monitoring	is	particularly	important	in	the	context	of	a	patient	who	is	largely	

hidden	from	view	within	the	scanner	bore.	The	airway	is	vulnerable	with	no	visual	confirmation	of	

endotracheal	tube	position,	temperature	is	often	difficult	to	regulate	without	conventional	warming,	

and	 the	 table	 is	 relatively	 hard,	 increasing	 risk	 to	 pressure	 areas.	 Furthermore,	 the	 anaesthetist	

generally	sits	within	the	control	room	to	avoid	scanner	noise	and	special	consideration	is	therefore	

needed	 for	 effective	 communication	 with	 the	 interventional	 team.	 All	 these	 factors	 need	 to	 be	

considered	carefully	in	the	planning	of	interventional	procedures.	
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The	final	consideration	is	evacuation	in	the	event	of	emergency,	with	particular	focus	on	arrhythmias.	

There	 is	 currently	 no	 commercial	 MR-conditional	 defibrillator	 solution	 that	 has	 been	 released,	

although	there	is	ongoing	work	to	develop	the	capabilities	(Schmidt	et	al.	2016).	Therefore,	robust	

protocols	 and	 training	must	 be	 in	 place	 for	 evacuation	 of	 the	 patient	 to	 a	 safe	 zone	 for	medical	

resuscitation	if	required.	

3.7 Brief	history	of	MR-guided	EP	procedures	
Table	 3-1	 summarises	 the	 key	 publications	 from	 the	 leading	 groups	worldwide	working	 in	MR-

guided	EP.	Pioneering	studies	by	the	group	in	Johns	Hopkins,	led	by	Henry	Halperin,	established	the	

benchmarks	 for	 the	 field	 in	 2000	 and	 highlighted	 the	 technical	 challenges	 that	 remained	 to	 be	

overcome	(Lardo	et	al.	2000).		Active	tracking	for	electrophysiological	procedures	was	established	

in-vivo	 in	 2008	 by	 the	 Boston	 group,	with	 the	 creation	 of	 an	 early	 EAM-style	 interface	 that	 has	

become	the	standard	for	ongoing	MR-guided	EP	work	(Figure	3-3)(Dukkipati	et	al.	2008).		They	went	

on	to	investigate	real-time	visualisation	of	lesion	formation	(Schmidt	et	al.	2009),	a	challenging	area	

that	has	also	been	investigated	by	the	Utah	group	(Vergara	et	al.	2011).	

	

Translation	to	clinical	implementation	has	been	difficult.	The	burden	of	proof	of	safety	for	human	use	

for	every	item	of	equipment	is	high,	and	Nazarian	published	the	first	report	of	a	diagnostic	MR-guided	

EP	study	in	humans	in	2008	(Nazarian	et	al.	2008).		MR-compatible	catheters	were	created	using	a	

polyether	block	amide	plastic	body,	copper	wires	and	platinum	electrodes.	A	susceptibility	artefact	

approximately	1mm	around	the	catheter	was	used	for	passive	position	identification	on	2D	fast	GRE	

sequences,	and	it	was	possible	to	perform	catheter	mapping	of	a	previously	ablated	CTI.	Catheter	

position	 was	 confirmed	 through	 a	 combination	 of	 real-time	 MRI	 guidance	 and	 intracardiac	

electrograms.	Electrical	interference	from	gradient	switching	was	suppressed	through	the	use	of	30-

300Hz	bandpass	 filtering,	 allowing	even	 the	 low-voltage	His	bundle	electrogram	 to	be	 identified.	

However,	the	procedures	were	lengthy	and	the	studies	were	discontinued.	

	

The	first	human	ablation	procedure	was	performed	by	the	group	from	Würzberg	in	2012,	completing	

a	CTI	ablation	following	two	previous	failed	conventional	procedures	(Nordbeck	et	al.	2012).	Given	

the	relatively	low	success	rates	reported	by	subsequent	investigators	(Grothoff	et	al.	2014;	Hilbert	et	

al.	2015;	H.	Chubb	et	al.	2014),	this	early	ablation	procedure	is	remarkable	for	achieving	conduction	

block	in	a	difficult	patient,	but	the	case	has	never	been	published	in	manuscript	form.	The	Leipzig	

group	went	on	to	perform	further	CTI	ablation	procedures	using	the	Imricor	Vision	catheter	(Imricor	

Inc.,	Minneapolis,	MN,	USA)	under	passive	guidance	(Grothoff	et	al.	2014).	Ten	patients	underwent	

MR-guided	ablation,	but	it	was	possible	to	achieve	conduction	block	in	only	one	of	the	ten	patients	

using	 MR-guided	 ablation	 alone.	 The	 nine	 remaining	 patients	 required	 further	 ablation	 under	

conventional	 fluoroscopic	 guidance,	 and	 one	 of	 the	 main	 issues	 identified	 was	 the	 work-flow	

difficulty	with	passive	tracking	of	the	catheter.	The	first	human	study	to	use	active	catheter	tracking	

is	detailed	in	Chapter	6.	
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Group	 Reference	 Subjects	 Procedure	

Magnet	

and	

Platform	

Catheter	 MR	Sequences	

Comments	
Tracking	 Manufacturer	 Tracking	

Real-time	

Imaging		
Acute	Imaging	

Jo
hn
s	H

op
ki
ns
	

(Lardo	et	al.	

2000)	
6	dogs	 Ablation	(ventricular	(RV))	

1.5T		

GE	
Passive	

7Fr	 Custom	 catheter	

(Dacron	 bodies	 and	 copper	

wires)	

Fast	 GRE	 (ST	

7mm,	5fps)	
None	

T2W:	FSE		

T1W:	 early	 then	

late	2D	post	-gad	

First	 MR-guided	

ablation	

(Nazarian	

et	al.	2008)	

10	 dogs	

and	 2	

humans	

Diagnostic	 (Atrial	 (RA)	 and	

ventricular	 (His	bundle,	RV	

apex))		

1.5T	

Siemens	

Passive	 +	

Enhanced	

Passive	

Passive:	7Fr	Irvine	Medical	

Enhanced	passive:	10Fr	with	

64MHz	loop	antenna		

Interactive	 fast	

GRE	 (ST	 10mm,	

5fps)	

N/A	 N/A	
First	 human	 MR-

guided	EP	

Bo
st
on
	

(Dukkipati	

et	al.	2008)	
14	swine	

Diagnostic	 (ventricular	

substrate-	 10	 chronic	

infarct)	

1.5T	

GE	
Active		

7Fr	 with	 five	 receiver	 coils	

(St	Jude)	

Proprietary	

(1.4mm	

isotropic,	13Hz)	

N/A	 N/A	
First	 using	 active	

tracking	

(Schmidt	 et	

al.	2009)	
8	swine	

Diagnostic	(7	LA)	

and	 ablation	 (1	 LV	 apex,	 3	

AV	node)	

1.5T	

GE	
Active		

8Fr	 with	 five	 receiver	 coils	

(St	Jude)	

Proprietary	

tracking	 signal	

(1.4mm	

isotropic,	 13-

15Hz)	

Ventricle:	

FGRE	 (T1W:	

10mm	ST)	

AVN:	 	 early	 3D	

LGE	(ST	3.6mm)	

T1W:	 3D	 LGE	

30min	post	gad		

Torqueable	 sheath	

with	 5	 tracking	

coils	also	used	

(Schmidt	 et	

al.	2013)	
5	swine	

Diagnostic	 (voltage-based	

device	 tracking	 in	 MR	

environment)	

1.5T		

GE	
VDT	

8Fr	 with	 five	 receiver	 coils	

(St	Jude)	

VDT	 based	

guidance	
N/A	 N/A	

Modified	 Ensite	

Velocity	system	

W
ür
zb
er
g	

(Nordbeck	

et	al.	2009)	
8	swine	

Ablation	(atrial	(RA	and	CS)	

and	 ventricular	 (RV	 apex,	

His	bundle))	

1.5T	

Siemens	

Philips	

Passive	

VascoMed/Biotronik	

(carbon	 fibre	 conductors,	

7Fr)	

bSSFP,	 FLASH	

and	 TrueVISP	

(ST	8mm,	2fps)	

Demonstration	

of	 RF	 induced	

noise	only	

None	 	

(Nordbeck	

et	al.	2011)	
9	swine		

Ablation	(one	site	only:	RA,	

RV,	 septum	 or	 coronary	

sinus)	

1.5T	

Siemens	

Philips	

Passive	

VascoMed/Biotronik	

(carbon	 fibre	 conductors,	

7Fr)	

bSSFP	 and	

FLASH	
None	

T2W:	TSE	

T1W:	 first-pass	

perfusion	

T1W:	 LGE	 at	 0-

120min		

Imaging	 also	

performed	 for	 24	

humans	 post-

flutter	ablation	

(Nordbeck	

et	al.	2012)	

(Abstract)	

1	human	

Ablation	 (CTI-	 Redo	 after	

two	 failed	 conventional	

ablations)	

1.5T	 Passive	

VascoMed/Biotronik	

(carbon	 fibre	 conductors,	

7Fr)	

Not	detailed	 None	
T2W:	 post	

ablation	

First	 human	

ablation	
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H
am

bu
rg
	

(Hoffmann	

et	al.	2010)	
20	swine	 Ablation	(CTI)	

1.5T	

Siemens	
Passive	

7Fr	 Custom	 with	 tuned	

conductor	wire	loop	

Interactive	

bSSFP	 (ST	6mm,	

5fps)		

None	 T2W:	TSE		 	
Ki
ng
’
s	C
ol
le
ge
,	L
on
do
n 	

(Steffen	

Weiss	 et	 al.	

2011)	

8	swine	 Diagnostic	
1.5T	

Philips	

Passive	

and	Active	

7Fr	 custom	 catheter,	 with	

micro-receive	coils		

Modified	 turbo	

GRE,	15Hz	
N/A	 N/A	

Evaluation	 of	 RF	

safety	

(H.	 Chubb	

et	al.	2014)	

	

3	human	
(Abstract)	

Ablation	(CTI)	
1.5T	

Philips	
Active	

Imricor	Vision	Catheter	

(9Fr)	

Modified	 turbo	

gradient	 echo,	

15Hz	

None	

T2W:	 TSE	 with	

DIR	

T1W:	 3D	 LGE	 at	

5,10,15,20min	

First	 human	

ablation	with	active	

tracking	

Ut
ah
	

(Vergara	 et	

al.	2011)	
6	swine	

Ablation	 (Atrium	 (LA	 and	

RA))	

3T	

Siemens	
Active	 SurgiVision	(7Fr)	

Spoiled	 GRE	

(5.5fps)	
T2W	(HASTE)	

T1W:	 3D	 LGE	 at	

20min	
	

(Ranjan	 et	

al.	2012)	
12	swine	

Ablation	(RA-	gaps	 filled	or	

unfilled)	

3T	

Siemens	
Active	

8Fr	 (MRI	 Interventions,	

Irvine),	 four	tracking	micro-

coils	

Spoiled	 GRE	

(5fps)	
None	

T1W:	 3D	 LGE	

(2.5mmST)	

Gaps	ablated	under	

MR-guidance	

Le
ip
zi
g	

(Eitel	 and	

et	al	2012)	
1	human	
(Abstract)	

Diagnostic	 (Sinus	 node	 AV	

node	conduction)	

1.5T	

Philips	
Passive	

Imricor	Vision	Catheter	

(9Fr)	

Interactive	

bSSFP	
N/A	 N/A	 	

(Grothoff	et	

al.	2014)	

10	

humans	
Ablation	(CTI)	

1.5T	

Philips	
Passive	

Imricor	Vision	Catheter	

(9Fr)	

Interactive	

bSSFP	 (ST	

10mm,	8fps)	

None	

T2W:	 24	 hours	

post	 ablation	 (3	

subjects)	

First	 human	

ablation	 series	

(passive	tracking)	

(Hilbert	 et	

al.	2015)	

6	

humans	
Ablation	(CTI)	

1.5T	

Philips	
Active	

Imricor	Vision	Catheter	

(9Fr)	

Modified	 turbo	

gradient	 echo,	

15Hz	

None	

Two	 subjects	

only:	 T2W:	 TSE	

with	DIR	

T1W:	3D	LGE		

50%	 success	 rate	

(one	 week	 follow-

up)	

Ad
el
ai
de
	

(Ganesan	et	

al.	2012)	
11	sheep	 Ablation	(PV	and	CTI)	

1.5T	

Siemens	
Passive	

Imricor	Vision	Catheter	

(9Fr)	

bSSFP	 (non-

interactive,	 ST	

8mm)	

Nil	

T2W	:	TSE,	

T1W:	 2D	 LGE	 at	

60min		

	

Su
nn
yb
ro
ok
	

(S.	

Oduneye,	

Biswas,	and	

Ghate	

2012)	

10	swine	
Diagnostic	 (eight	 healthy,	

two	infarct)	

1.5T	

GE	
Active	

Imricor	Vision	Catheter	

(9Fr)	
Not	detailed	 N/A	 N/A	 	
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(S.	 O.	

Oduneye	 et	

al.	2015)	

6	swine	
Diagnostic	 (ventricular	

infarct	model)	

1.5T		

GE	
Active	

Imricor	Vision	Catheter	

(9Fr)	
Not	detailed	 N/A	 N/A	

Detailed	 IEGM	

characterisation	 of	

scar	

Table	3-1.	Summary	of	key	in-vivo	MR-guided	EP	publications		from	leading	centres	worldwide.		

GE:	General	Electric,	(F)GRE:	(fast)		gradient	recalled	echo,		ST:	slice	thickness,	T2W:	T2-weighted,	T1W:	T1-weighted,	RA:	right	atrium,	RV:	right	ventricle,		CTI:	

cavotricuspid	 isthmus,	 VDT:	 voltage-based	 device-tracking,	 LGE:	 late	 gadolinium	 enhancement,	 TSE:	 turbo	 spin	 echo,	 DIR:	 double	 inversion	 recovery,	 IEGM:	

intracardiac	electrogram
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3.8 RF	ablation	within	the	MR	environment	
RF	ablation	within	the	MR	environment	has	been	demonstrated	to	be	safe	and	feasible	under	the	

correct	precautions.	RF	ablation	of	liver	lesions,	solid	tumours	in	the	lung,	kidney	and	symptomatic	

bone	tumours	have	all	been	described	(Kahn	and	Busse	2012).		The	frequency	of	RF	ablation	energy	

is	around	350kHz,	significantly	lower	than	the	Larmor	frequency	in	clinical	scanners	(64-138MHz).	

However,	the	rectangular-pulsed	waveform	of	the	ablation	energy	contains	higher	harmonics	that	

have	been	shown	to	destroy	imaging	(Nordbeck	et	al.	2009;	Lardo	et	al.	2000).	Low-pass	filtering	is	

therefore	 required	 to	maintain	 imaging	quality,	 and	 this	enables	 the	potential	 for	 live	 imaging	of	

lesion	formation.	

3.8.1 Real-time	lesion	imaging	
There	is	only	a	small	body	of	literature	that	has	demonstrated	real-time	MR	imaging	of	cardiac	lesion	

formation.	Clearly	it	can	only	be	performed	for	MR-guided	EP	procedures,	and	relatively	few	studies	

have	focused	on	this	aspect	of	research	(see	Table	3-1).	Real-time	lesion	imaging	is	attractive	as	it	

could	provide	a	means	to	titrate	energy	delivery,	potentially	decreasing	procedural	time,	increasing	

efficacy	and	reducing	procedural	risk.		

	

Steiner	et	al	first	demonstrated	the	technical	feasibility	of	real-time	in-vivo	MR-imaging	of	RF	lesion	

formation	 for	 a	 swine	paraspinal	muscle	 ablation	 (Steiner	 et	 al.	 1997).	 Lardo	 et	 al	 discussed	 the	

extent	of	RF-induced	image	artefact,	and	performed	imaging	immediately	post-ablation,	but	did	not	

document	live	visualisation	of	lesion	formation	(Lardo	et	al.	2000).	It	was	not	until	2009	that	Schmidt	

et	al	demonstrated	real-time	imaging	of	a	ventricular	RF	lesion,	using	a	fast	T1-weighted	gradient	

recalled	echo	sequence	(ECG-gated,	10mm	slice	thickness,	one	slice	per	2	second	acquisition).	Details	

regarding	 the	 results	 of	 imaging	 are	 limited	 to	 only	 presentation	 within	 a	 figure	 and	 were	 not	

quantified,	but	they	appeared	promising.	

	

Vergara	et	al	published	a	more	detailed	study	in	2011	(Vergara	et	al.	2011).	Using	a	Siemens	3T	Verio	

scanner,	they	employed	a	respiratory-gated	T2W-HASTE	(half-Fourier	acquisition	single-shot	turbo	

spin	echo)	sequence	to	detect	real-time	lesion	formation	visualisation,	again	in	a	swine	model.	This	

was	followed	by	a	3D-LGE	acquisition	at	20min.	However,	despite	the	increased	signal-to-noise	ratio	

offered	 by	 a	 3T	 scanner,	 only	 30%	 of	 lesions	 could	 be	 visualised	 during	 ablation.	Where	 lesion	

visualisation	occurred,	 changes	were	 identified	within	10-15second	of	 commencement	 of	 energy	

delivery.	Lesion	size	was	over-estimated	at	later	intra-ablation	imaging,	which	is	surprising	for	the	

rapidity	of	the	changes.	The	number	of	lesions	analysed	was	limited	to	only	four,	and	this	finding	is	

in	 keeping	 with	 other	 assessments	 of	 acute	 T2-weighted	 imaging	 (Arujuna	 et	 al.	 2012;	 James	 L	

Harrison	et	al.	2014),	but	it	provides	an	interesting	insight	into	the	temporal	evolution	of	ablation-

induced	 injury.	 However,	 such	 early	 distant	 changes	 means	 that	 it	 is	 unlikely	 that	 T2-weighted	

imaging	will	prove	to	be	specific	for	chronic	lesion	formation.			
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An	alternative	strategy	for	real-time	imaging	is	to	leave	the	catheter	in	place	and	perform	‘hyper-

acute’	 imaging	 of	 the	 ablation	 lesion,	 seconds	 after	 the	 completion	 of	 energy	 delivery.	 The	

susceptibility	artefact	of	 the	MR-compatible	 catheters	 is	 generally	very	 small,	 facilitating	 such	an	

approach,	 and	 this	 would	 enable	 immediate	 reapplication	 of	 energy	 if	 the	 lesion	 were	 judged	

inadequate.	Such	an	approach	was	taken	by	Schmidt	et	al	for	the	imaging	of	atrial	lesions	(Schmidt	

et	al.	2009).	They	felt	that	the	spatial	resolution	of	the	T1-weighted	2D	sequence	was	insufficient	for	

imaging	of	atrial	ablation,	and	instead	used	a	continuous	GBCA	infusion	during	AV	node	ablation.	A	

3D	LGE	sequence	(3mm	slice	thickness,	1.3x1.3mm	in	plane,	ECG	and	respiratory	gated)	was	then	

performed	 2	 minutes	 post	 ablation,	 with	 a	 2min	 acquisition	 time.	 Hyperenhancement	 was	

demonstrated	at	the	AV-node	in	all	animals,	but	was	not	quantified	histologically	against	the	extent	

of	 injury.	 Nordbeck	 et	 al	 (Nordbeck	 et	 al.	 2011)	 employed	 a	 similar	 approach	 using	 a	 first-pass	

perfusion	technique	directly	after	RF	ablation	in	the	coronary	sinus	of	a	pig.	The	ablation	lesion	was	

marked	by	a	profound	perfusion	defect,	and	this	modality	appears	promising.	However,	the	conflict	

in	finding	of	hyperenhancement	versus	no-flow	hypoenhancement	needs	to	be	resolved.	

		

In	 the	 longer	 term,	 it	 is	 likely	 that	 real-time	 lesion	 formation	 imaging	will	 rely	upon	more	novel	

sequences,	and	exploit	acute	physiological	changes	that	are	currently	not	being	assessed.	Gating	for	

cardiac	and	respiratory	motion	will	remain	challenging,	but	thermometry	has	proved	robust	in	non-

cardiac	settings.	Proton	density,	T1-	and	T2-relaxation	times	and	proton	resonance	frequency	(PRF)	

shift	are	all	 sensitive	 to	 temperature	change,	and	 it	 is	 the	shift	 in	PRF	 that	 is	most	promising	 for	

cardiac	applications	(Rieke	2011).	Protons	are	surrounded	by	electrons	which	act	to	disturb	the	local	

magnetic	 field	 (chemical	 shift-	 see	 Section	 1.2.4.1),	 reducing	 B0	 at	 a	 highly	 localised	 level.	With	

increased	 temperature,	 this	 reduction	 is	 augmented,	 with	 breaking	 of	 inter-molecular	 hydrogen	

bonds	 and	 increased	 density	 of	 free	 electrons.	 The	 change	 in	 PRF	 can	 be	 exploited	 through	

spectroscopic	imaging	or	phase	mapping,	and	it	is	the	latter	that	has	been	demonstrated	most	widely	

in	non-cardiac	ablation.	PRF	thermometry	remains	highly	sensitive	to	motion	and	early	work	is	being	

performed	to	implement	this	imaging	modality	in	a	cardiac	model.	

3.8.2 Acute	lesion	imaging	(<4	hours)	
There	 is	a	great	deal	more	evidence	 for	acute	 imaging	of	ablation	 lesions,	but	 the	sensitivity	and	

specificity	of	acute	lesion	imaging	for	prediction	of	chronic	lesion	formation	remains	controversial.	

Furthermore,	much	of	the	data	on	human	ablation	relates	to	imaging	at	24	hours	post	ablation,	which	

is	not	a	clinically	useful	time	interval.	Imaging	needs	to	be	performed	at	the	same	procedure	in	order	

to	guide	further	ablation,	and	therefore	a	maximum	time	interval	of	around	4	hours	post-ablation	is	

considered	applicable	for	intra-procedural	acute	imaging.		

	

In	animal	models,	it	has	long	been	established	that	ventricular	lesions	can	be	visualised	immediately	

following	ablation	(Lardo	et	al.	2000).	Detailed	delineation	of	the	pharmacokinetics	of	Gad	within	

acute	RF	injury	lesions	(Dickfeld	et	al.	2007)	has	been	performed,	and	has	been	correlated	with	non-

enhanced	sequences	such	as	T2-weighted,	turbo-spin	echo	techniques	(Nordbeck	et	al.	2011).	First	



CMR	imaging	in	EP	
	

Technical	Considerations	for	MRI-Guided	Electrophysiology	Procedures	 68	

pass	hypoenhancement	and	native	T1	sequences	have	been	particularly	promising,	and	Vijayakumar	

et	al	 (Vijayakumar	et	al.	2014)	have	demonstrated	the	utility	of	non-contrast	T1w	imaging	 in	the	

acute	identification	of	chronic	lesions	in	a	canine	model	of	ventricular	scar	(see	also	Figure	3-4).		

	

Non-contrast	 agent	 based	 imaging	 techniques	 are	particularly	 attractive	 as	 they	 can	be	 repeated	

multiple	times.	Celik	at	al	performed	a	detailed	study	of	the	characterisation	of	acute	RF	lesions	using	

native	contrast,	performing	imaging	of	left	ventricular	lesions	within	60min	of	ablation	in	13	pigs	

(Celik	et	al.	2014).	They	concluded	that	it	was	the	higher	ferric	iron	concentration	in	lesion	core	that	

caused	 a	 shortening	 of	 T1-relaxation	 time,	 and	 that	 this	 was	 best	 exploited	 using	 an	 inversion	

recovery	 SSFP	 sequence.	 Implementation	 and	 clinical	 validation	 in	 humans	 remains	 to	 be	

established.	

	

	

	

Figure	3-4.	Acute	imaging	of	canine	ventricular	ablation.		

Central	 image	 shows	a	 single	macroscopic	 short-axis	 slice	of	 the	 left	ventricle.	Chronic	

(3month)	lesion	locations	are	indicated	by	white	arrows,	and	acute	(<4hours)	lesions	by	

blue	 arrows,	 with	 a	 lesion	 core	 and	 haemorrhagic	 rim.	 A:	 T2-weighted	 imaging.	 The	

oedema	extends	far	beyond	the	ablation	region	and	individual	lesions	(and	gaps)	cannot	

be	discriminated.	B:	Native	T1-weighted	imaging.	Non-contrast	imaging	detects	individual	

lesions	and	dimensions	are	well-correlated	with	lesion	core.	C:	early	(<5min)	post	GBCA	

acquisition	demonstrates	both	no-reflow	areas	at	 the	 lesion	core,	and	subtly	 increased	

signal	in	the	regions	of	surrounding	oedema	(compare	to	A).	D:	late	(45min)	post	GBCA	

acquisition,	demonstrating	both	acute	and	chronic	lesions.	Note	that	the	dimensions	of	the	

acute	lesions	appear	likely	to	be	overestimated.	Images	courtesy	of	Eugene	G	Kholmovski,	

University	of	Utah,	by	private	correspondence.	
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3.9 Summary	
MR-guided	electrophysiology	remains	a	research	field	in	relative	infancy,	and	advances	have	been	

slowed	by	the	considerable	technical	challenges	that	it	presents.	The	potential	benefits,	though,	are	

substantial	 and	research	 into	 this	exciting	 field	will	 accelerate	greatly	with	 the	development	of	a	

robust,	clinically	approved,	MR-guided	EP	system.	Chapter	6	documents	the	first-in-man	study	of	MR-

guided	catheter	ablation	with	active	catheter	tracking.	

	 	



CMR	imaging	in	EP	
	

Technical	Considerations	for	MRI-Guided	Electrophysiology	Procedures	 70	

	

	

	

	

	

	

	

	

	

	

SECTION	TWO:	METHODS	AND	
EXPERIMENTAL	DATA	
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4 GENERAL	METHODS	
	

This	chapter	describes	the	recurring	techniques	and	methodological	principles	that	are	relevant	for	

all	studies	described	in	the	subsequent	data	chapters.		

4.1 Standard	CMR	acquisition	sequences	

4.1.1 3D	Late	Gadolinium	Enhancement	(LGE)	
CMR	imaging	was	performed	on	a	1.5T	Ingenia	Scanner	(Philips	Healthcare,	Best,	Netherlands),	with	

the	exception	of	the	interventional	procedural	CMR	studies	detailed	in	Chapter	6.	The	3D	inversion	

recovery	spoiled	gradient	echo	acquisition	was	performed	with	coverage	to	include	the	whole	of	the	

LA	in	axial	orientation.	Repetition	time	was	5.5msec,	echo	time	3.0msec,	flip	angle	25°	and	low-high	

k-space	ordering	was	employed.	Further	acquisition	parameters	were	optimised	as	follows:	

• Respiratory	 navigation:	 pencil	 navigator	 was	 placed	 upon	 the	 dome	 of	 the	 right	 hemi	

diaphragm.	 The	 one-dimensional	 slice	 was	 generally	 oriented	 with	 approximately	 15	

degrees	of	lateral	to	medial	tilt	from	cranial	to	caudal,	in	order	to	minimise	the	volume	of	

excited	 blood	 within	 the	 lung,	 and	 therefore	 the	 degree	 of	 respiratory	 navigator	 inflow	

artefact.	 Gating	 was	 set	 to	 ‘track	 and	 gate’,	 with	 a	 typical	 acceptance	 window	 of	 5mm.	

Acquisitions	for	which	the	acceptance	was	>80%	and	<20%	were	terminated,	in	anticipation	

of	poor	respiratory	selectivity	or	excessive	acquisition	time	respectively.	

• ECG	gating.	The	time	interval	between	the	R-peak	of	the	ECG	and	the	start	of	data	acquisition	

was	defined	using	the	cine	images.	Acquisition	window	was	set	for	atrial	standstill,	at	late	

ventricular	systole,	when	the	atrium	is	at	its	largest	volume.	A	maximum	acquisition	window	

of	150msec	was	allowed.	Across	all	acquisitions	included	in	this	thesis,	average	acquisition	

window	onset	was	301	(±41)	msec	post	R	wave,	offset	412	(±44)	msec	post	R	wave,	and	

duration	111	(±21)	msec.	For	longer	inversion	times,	typically	encountered	when	scanning	

on	3T	platform	and	late	after	GBCA	administration,	it	was	necessary	to	delay	the	start	of	the	

acquisition	 window.	 The	 window	 duration	 was	 shortened	 to	 preserve	 the	 end	 of	 the	

acquisition	window	within	atrial	standstill.	

• Inversion	 time.	 The	 inversion	 time	 (TI)	 was	 selected	 from	 a	 Look-Locker	 (or	 TI	 scout)	

sequence	 performed	 immediately	 prior	 to	 every	 3D	 acquisition.	 The	 TI	was	 selected	 for	

optimal	 nulling	 of	 the	myocardium	 of	 the	 ventricular	 septum,	 and	 a	 histogram	 of	 signal	

intensities	within	a	selected	region	of	interest	was	used	in	cases	where	optimal	nulling	time	

was	unclear.	5msec	was	typically	added	to	the	assigned	optimal	TI,	in	order	to	compensate	

for	myocardial	T1	drift	during	the	acquisition.	

• Spatial	resolution.	The	spatial	resolution	was	1.3x1.3x4mm3	with	2mm	slice	overlap,	unless	

stated	otherwise.	This	was	reconstructed	to	0.625x0.625x2mm3.	The	sequence	was	acquired	

in	axial	orientation,	and	typically	50	slices	were	required	to	achieve	full	coverage	of	the	LA.	

Further	slices	were	added	if	the	right	atrium	or	left	ventricle	were	also	to	be	interrogated.		
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• Fat	suppression.	Spatial	presaturation	(‘fat	sat’)	bands	were	placed	across	the	chest	wall.	

SPIR	was	employed	for	fat	suppression	within	the	imaged	region.	

4.1.2 Contrast	enhanced	Gated	Magnetic	Resonance	Angiogram	
(GMRA)	
Prior	to	20th	August	2014,	identification	and	segmentation	of	the	chamber	of	interest	(see	Section	

4.2)	was	performed	directly	upon	the	LGE	imaging.	However,	this	technique	is	prone	to	error	and	

ambiguities	in	the	interpretation	of	low	contrast	boundaries.	Therefore	all	subsequent	CMR	scans	

were	performed	with	gated	magnetic	resonance	angiogram	(GMRA)	in	order	to	assist	segmentation.	

The	technique	was	published	by	Groarke	et	al	(Groarke	et	al.	2014)	and	acquisition	settings	were	

adjusted	over	the	early	cases,	resulting	in	parameters	that	performed	robustly	for	the	vast	majority	

of	subjects.	The	acquisition	is	very	similar	to	the	conventional	3D	LGE	sequence	above:	

• Respiratory	and	ECG	gating:	identical,	in	order	to	facilitate	registration		

• Inversion	time:	on	the	1.5T	scanner	an	empirical	inversion	time	of	200msec	was	selected	for	

all	cases.	

• Spatial	Resolution:	a	spatial	resolution	of	2x2x4mm	was	used	for	all	GMRA	acquisitions	until	

18th	 November	 2015,	 at	 which	 time	 resolution	 reverted	 to	 identical	 to	 that	 for	 the	 LGE	

sequence.	The	rationale	for	the	reduced	resolution	was	rapidity	of	acquisition,	homogeneity	

of	 image	 contrast	 and	 increased	 SNR	 in	 order	 to	 optimise	 semi-automated	methods	 for	

identification	 of	 the	 blood	 pool	 /	 endocardium	 boundary.	 The	 reversion	 to	 standard	

resolution	 was	 driven	 by	 the	 technical	 difficulties	 encountered	 in	 the	 resampling	 of	

acquisitions	to	overlay	upon	the	3D	LGE	(see	section	4.2.2),	which	were	later	resolved.	

• Receiver	bandwidth:	receiver	bandwidth	was	increased	to	890Hz	(fat-water	ratio	0.5)	

• Timing	 post	 GBCA:	 GBCA	 was	 given	 as	 a	 slow	 infusion	 (0.3ml/s)	 with	 the	 acquisition	

commenced	 at	 90seconds	 from	 the	 start	 of	 the	 infusion,	 in	 line	with	 the	 publication	 by	

Groarke	et	al.	Similar	homogeneity	of	blood	pool	signal	was	observed	when	GBCA	was	given	

as	a	bolus,	but	the	standard	slow	infusion	protocol	was	continued.	

	

The	GMRA	sequence	resulted	in	a	high	contrast	acquisition	with	identical	gating	parameters	to	the	

3D	LGE	acquisition,	that	could	be	used	as	a	mask	to	interrogate	the	lower	contrast	LGE	image	(Figure	

4-1).	Other	studies	have	used	a	non-gated	conventional	MRA	sequence	(4D	Trak	sequence)	to	achieve	

a	high	contrast	mask	of	the	blood	pool	(Malcolme-Lawes	et	al.	2013),	but	empirically	the	registration	

to	the	3D	LGE	sequence	appeared	poor.	The	two	sequences	were	formally	compared	at	the	same	scan	

session	 for	 20	 subjects.	 LA	 volume	was	manually	 segmented	 from	 the	 two	 acquisitions,	with	 LA	

appendage	and	PVs	excluded.	The	GMRA	sequence	generated	a	significantly	 larger	volume	 for	all	

subjects	 (157±55ml	 versus	 136±56ml,	 p<0.0001	 (paired	 t-test)),	 with	 mean	 bias	 21ml	 (95%	

confidence	interval	2-41ml)	(Figure	4-2).	This	volume	discrepancy	is	a	substantial	mismatch	in	atrial	

size.	For	a	theoretical	sphere	of	the	same	volumes,	this	represents	approximately	a	1.5mm	difference	

in	mean	radius,	which	is	greater	than	half	of	the	estimated	thickness	of	the	atrial	wall		(Platonov	et	

al.	2008).	



CMR	imaging	in	EP	
	

General	Methods	 73	

	

	

Figure	 4-1	 Illustration	 of	 utility	 of	 gated	 magnetic	 resonance	 angiogram	 acquisition	

(Subject	14-	See	Appendix	A).	

(Top	 panel)	 Image	 merge	 of	 LGE	 (bottom	 left,	 orange	 in	 overlay)	 and	 gated	 MRA	

acquisition	(bottom	right,	white	in	overlay)	demonstrating	close	alignment	of	acquisitions	

and	potential	value	in	semi-automated	image	intensity	interrogation.	
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Figure	4-2.	Comparison	of	gated	and	non-gated	angiographic	volumes	of	the	LA.	

Bland-Altman	 plot	 comparing	 left	 atrial	 (LA)	 volume,	 with	 LA	 appendage	 and	 PVs	

removed,	for	gated	MRA	and	non-gated	MRA	sequences.		

4.2 CMR	analysis	techniques	
The	 quantitative	 assessment	 of	 a	 3D	 CMR	 acquisition	 is	 dependent	 upon	 two	 fundamental	

parameters:	the	delineation	of	the	region	of	interest	and	the	derivation	of	the	quantitative	index	from	

the	 voxel	 signal	 intensities.	 In	 the	 case	 of	 the	 assessment	 of	 atrial	 scar,	 this	 represents	 the	

requirement	for	segmentation	of	the	chamber	or	wall,	followed	by	image	interrogation.	These	two	

stages	of	CMR	analysis	are	discussed	in	sections	4.2.1	and	4.2.3,	and	they	were	combined	in	a	single	

graphical	user	 interface	 (GUI)	 called	CEMRGApp	 that	was	developed	with	 imaging	and	computer	

scientists	specifically	for	the	studies	in	this	thesis	(see	section	4.2.4).	

4.2.1 Segmentation	techniques	
Image	segmentation	is	to	divide	an	image	into	parts	that	have	a	strong	correlation	with	objects	or	

areas	in	the	real	world	(Sonka,	Hlavac,	and	Boyle	2008).	Segmentation	of	a	cardiac	chamber	or	wall	

may	be	performed	manually,	or	in	an	automated	fashion,	or	in	a	hybrid-type	approach	involving	both	

manual	and	automated	elements,	and	the	atria	present	particular	challenges.	These	include	the	size	

of	 the	 structure	 of	 interest	 (atrial	 wall	 thickness	 <3mm)	 and	 the	 intensity	 homogeneity	 in	

comparison	 to	 neighbouring	 structures.	 Furthermore,	 the	 absence	 of	 a	 ground	 truth	 renders	

evaluation	of	the	relative	merits	of	different	techniques	more	difficult.	

4.2.1.1 Manual	segmentation	
For	 the	atria,	a	manual	 segmentation	has	generally	been	seen	as	 the	gold	standard	and	has	been	

widely	employed	 in	 the	 largest	 studies	 (Oakes	et	al.	2009;	Marrouche	et	al.	2014;	Khurram	et	al.	

2014).	However,	 the	 segmentation	 is	user-dependent,	 suffers	 from	degrees	of	 subjectivity,	 and	 is	

highly	 time	 consuming.	 For	 an	 accurate,	 slice-by-slice	 segmentation	 of	 a	 single	 endocardial	 or	
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epicardial	border,	estimates	of	 time	 taken	 to	perform	the	segmentation	are	generally	around	20-

30min	(Khurram	et	al.	2014;	Oakes	et	al.	2009).	Seg3D	(NIH	NCRR	Centre	for	Integrative	Biomedical	

Research,	University	of	Utah,	Utah,	USA)	and	ITK-snap	(University	of	Pennsylvania,	USA)	are	the	most	

widely	employed	software	platforms	 for	manual	 segmentation,	but	 further	bespoke	 toolkits	have	

been	used	by	some	studies	(Khurram	et	al.	2014).	

	

For	 assessment	 of	 atrial	 wall	 signal,	 investigators	 have	 frequently	 chosen	 to	 define	 both	 the	

endocardial	and	epicardial	borders	(Marrouche	et	al.	2014;	Khurram	et	al.	2014;	Bisbal	et	al.	2014).	

Publications	have	not	been	explicit	regarding	the	exact	method	used	to	define	the	second	border.	At	

a	minimum,	the	subjectivity	of	border	delineation	in	a	low-contrast	3D	LGE	acquisition	suggests	that	

the	second	segmentation	is	performed	with	simultaneous	display	of	the	first	segmentation,	to	ensure	

that	the	borders	do	not	cross.	More	likely,	the	‘manual’	definition	of	the	second	border	is	performed	

using	an	automated	dilation	or	erosion	technique,	assuming	a	relatively	uniform	wall	thickness,	and	

then	optimised	manually.	For	example,	the	Johns	Hopkins	study	by	Khurram	et	al	quotes	the	atrial	

wall	thickness	as	2.08±0.35mm	(Khurram	et	al.	2014),	a	more	uniform	thickness	than	comparable	

autopsy	studies	(typically	2.8±1.3mm)	(Platonov	et	al.	2008).	Such	an	automated	technique	seems	

reasonable	in	the	context	of	time	constraints	and	limited	image	resolution,	but	the	impact	has	not	

been	formally	reported.	

	

Once	a	manual	segmentation	has	been	performed,	further	image	processing	steps	are	then	required	

for	visualisation.	These	generally	include	smoothing	filters,	and	finer	details	in	the	anatomy	may	be	

lost	(Karim	et	al.	2015)	

4.2.1.2 Automated	segmentation	
An	automated	segmentation	may	be	performed	in	a	number	of	ways,	with	a	spectrum	of	user	input.	

A	fully	automated	approach	has	been	demonstrated	on	the	Philips	platform,	using	shape-constrained	

deformable	models	(SmartHeart,	Philips	Research	Hamburg,	Germany)	 to	segment	all	 the	cardiac	

chambers	 within	 a	 high	 resolution	 3D	 whole-heart	 b-SSFP	 sequence.	 The	 first	 clinical	

implementation	of	this	technique	is	documented	in	Chapter	6,	and	variations	of	this	technique	have	

also	been	used	by	other	studies	using	earlier	versions	of	the	software	(Philips	segmentation	plug-in	

for	 Graphical	 Interface	 for	Medical	 Image	 Analysis	 and	 Simulation	 (GIMIAS),	 Unversitat	 Pompeu	

Fabra,	Barcelona)	(Malcolme-Lawes	et	al.	2013;	J	L	Harrison,	Sohns,	et	al.	2015).	However,	 it	was	

noted	that	manual	optimisation	of	 the	segmentation	was	often	required,	and	the	models	struggle	

with	LA	anatomical	 variants	 (James	L	Harrison	2014;	Karim	et	 al.	 2015).	Further	work	has	been	

performed	 on	 improving	 the	 automated	 segmentation	 techniques.	 Data	 and	 segmentations	

performed	in	the	course	of	this	thesis	have	be	used	to	refine	a	novel	deformable	image	registration	

technique	for	LA	segmentation,	using	a	super	voxel	belief	propagation	method	(Heinrich	et	al.	2016),	

but	quantification	of	the	reliability	and	accuracy	of	this	method	is	awaited.	Following	validation	work,	

it	 should	be	 feasible	 to	 implement	 such	a	 technique	within	 the	 graphical	 user	 interface	 that	was	

developed	for	this	study	(see	section	4.2.4)	
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Alternatively,	 a	 method	 employing	 a	 greater	 degree	 of	 user	 input	may	 be	 performed.	 The	most	

commonly	used	methods	are	region	growing	or	K-means	clustering	techniques,	both	relying	upon	

adequate	contrast	between	neighbouring	structures.	Here,	the	user	defines	the	region	of	interest	and	

this	 region	 is	 expanded	 based	 upon	 defined	 parameters.	 In	 the	 course	 of	 this	 thesis,	 work	 was	

performed	to	enable	the	use	of	the	GMRA	sequence	to	define	a	LA	mask	(Karim	et	al.	2015).	This	uses	

a	‘leak-sensing’,		threshold	based,	technique,	exploiting	Morse	partitions	of	the	image,	and	could	be	

performed	 with	 <3min	 of	 user	 input.	 Results	 also	 demonstrated	 good	 similarity	 with	 manual	

annotations	 of	 LA	 anatomy,	 with	 improved	 smoothness,	 which	 is	 important	 for	 reliable	 image	

interrogation.	

4.2.1.3 Semi-automated	segmentation	
A	semi-automated	segmentation	technique	relies	upon	a	hybrid	approach:	an	automated	delineation	

of	 the	 region	 of	 interest,	with	manual	 optimisation.	 In	 reality,	 the	 reliability	 of	 all	 automated	LA	

segmentation	 techniques	 is	 currently	 not	 sufficient	 to	 enable	 a	 blinded	 implementation	 of	 the	

automated	algorithms,	and	a	user	sense-check	step	is	necessary.	At	this	stage,	a	degree	of	refinement	

of	the	segmentation	may	be	performed	where	it	is	felt	that	there	is	error	in	the	accuracy	of	the	model.	

Most	commonly,	errors	at	the	thin	atrial	septum,	the	interface	of	the	descending	aorta	and	LA,	and	

the	interface	of	the	right	pulmonary	artery	and	LA	roof	are	detected.	In	addition,	the	LAA	and	left	

upper	PV	are	commonly	fused	due	to	their	close	apposition.	

	

For	all	quantitative	analyses	in	this	thesis,	a	manual	or	semi-automated	segmentation	technique	was	

employed.	Where	available,	the	GMRA	was	used	to	derive	the	atrial	mask,	and	the	segmentation	was	

performed	 using	 the	 	 ‘Region	 Growing	 Tool’	 with	 3D	 interpolation	 on	 the	 MITK	 platform	 with	

‘Segmentation	 Plugin’	 (German	 Cancer	 Research	 Center,	 Division	 of	 Medical	 and	 Biological	

Informatics,	Im	Neuenheimer	Feld	280,	69120	Heidelberg,	Germany).	Where	a	GMRA	acquisition	was	

not	performed	or	was	inadequate,	manual	segmentation	was	performed	on	a	slice-by-slice	basis	on	

the	same	platform.		

4.2.2 Image	resampling	and	registration	
Image	 resampling	 and	 registration	 is	 not	 necessary	 for	 single	 3D	 LGE	 acquisitions	 that	 have	

undergone	manual	segmentation.	However,	for	multiple	sequential	acquisitions	(see	Chapters	7	and	

8)	or	where	a	GMRA	acquisition	is	used	for	atrial	segmentation,	the	images	must	be	resampled	to	

matching	resolution	and	registered	to	correct	for	patient	movement.	For	this	thesis,	the	images	were	

resampled	 at	 a	 1mm	 isotropic	 resolution,	 which	 is	 superior	 to	 the	 acquired	 resolution	 for	 all	

sequences,	 and	 the	 images	 were	 saved	 as	 .nifti	 files.	 The	 registration	 was	 performed	 as	 a	 rigid	

registration	(Denton	et	al.	1999),	with	six	degrees	of	freedom	(3	translations	and	3	rotations).	The	

derived	transformation	of	the	GMRA	image	onto	the	LGE	image	was	then	applied	to	the	segmentation.	
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Within	the	graphical	user	interface	(GUI)	developed	for	this	study	(see	below),	the	registration	took	

35±17	seconds	for	each	acquisition,	assessed	across	255	registrations	performed	for	Chapters	7	and	

8.	 As	 a	 single	 registration	 the	 processing	 time	 required	 is	 acceptable,	 but	 for	 larger	 studies	 the	

processing	time	becomes	substantial.	It	was	therefore	assessed	whether	the	registration	step	was	

necessary	for	all	acquisitions,	particularly	when	native	registration	appeared	good	subjectively.	The	

translation	and	rotation	for	all	registrations	was	recorded,	alongside	subjective	blinded	assessment	

as	to	whether	registration	was	required	(Figure	4-1).	Subjective	grading	was	‘None’	when	there	was	

an	excellent	registration,	 ‘Minor’	for	<1mm	subjective	mismatch,	and	‘Major’	for	>1mm	subjective	

mismatch.	 Results	 are	 presented	 in	 Table	 4-1	 and	 Figure	 4-3,	 and	 two	 outliers	with	 substantial	

movement	(absolute	translation	21mm	and	24mm	respectively)	were	excluded	from	the	analysis.	

Subjective	assessment	was	significantly	associated	with	the	magnitude	of	the	correction	required	on	

objective	rigid	registration,	but	mismatch	was	generally	underestimated.	Furthermore,	there	were	

26	 acquisitions	 with	 an	 absolute	 translation	 >1mm	 that	 were	 judged	 subjectively	 to	 require	 no	

registration:	 in	 23	 (88%)	 of	 these	 cases	 the	 largest	 translation	 vector	 was	 in	 the	 axial	 (z-axis)	

direction,	which	was	most	difficult	to	assess	subjectively.	Given	an	atrial	wall	thickness	of	2-3mm,	an	

image	mismatch	of	>1mm	was	judged	as	significant.	Therefore	image	registration	was	performed	for	

all	acquisitions,	regardless	of	subjective	impression	of	image	co-location.	

	

	 Subjective	Registration	Requirement	 p-value	

(Kruskal-

Wallis)	
	

None	

(n=77)	

Minor	

(n=64)	

Major	

(n=114)	

Absolute	Translation	 0.94±0.6mm	 1.56±0.88mm	 2.76±2.90mm	 <0.0001	

Absolute	Rotation	 0.45±0.21°	 0.55±0.41°	 0.78±0.48°	 <0.0001	

Table	4-1.	Rigid	registration	translations	and	estimation	of	registration	requirement.	

Association	of	absolute	translation	and	rotation	required	for	rigid	registration,	and	the	

subjective	 assessment	 as	 to	 whether	 registration	 was	 required,	 graded	 from	 None	 to	

Minor	to	Major	registration	required.	

	

	

Figure	4-3.	Rigid	registration	translations	and	estimation	of	registration	requirement.		

(Left)	Absolute	translation	and	(middle)	absolute	rotation	against	subjective	requirement	

for	registration.	The	scatter-plot	on	the	right	demonstrates	the	association	of	translation	

and	rotation.	
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4.2.3 Image	interrogation	
Several	methods	 have	 been	 proposed	 and	 implemented	 for	 the	 interrogation	 of	 image	 intensity	

following	delineation	of	the	region	of	interest	(ROI).	At	its	simplest,	the	value	of	every	voxel	with	the	

ROI	is	represented,	but	this	poses	a	problem	for	quantification	and	interpretation	of	the	resulting	

new	three-dimensional	dataset	(Oakes	et	al.	2009;	Khurram	et	al.	2014).	Each	surface	point	on	an	

atrial	 shell	 overlies	 several	 voxels	 of	 differing	 signal	 intensity,	 and	 investigators	 have	 generally	

chosen	 to	use	a	highly	 localised	(Oakes	et	al.	2009)	or	regional	 (Khurram	et	al.	2014)	average	 to	

assign	a	single	index	to	locations.	Alternatively,	multiple	single	lines	of	interrogation	can	be	drawn	

between	the	endocardial	and	epicardial	borders,	and	the	signal	represented	by	a	single	voxel	value	

at	each	point	along	the	line	(Bisbal	et	al.	2014).	

	

In	recognition	of	this	averaging	process,	some	groups	have	chosen	to	perform	a	mean	or	maximum	

intensity	 projection	 interrogation	 of	 the	 imaging,	 based	upon	 a	 single	 segmentation	 (Figure	4-4)	

(Malcolme-Lawes	et	al.	2013;	J	L	Harrison,	Sohns,	et	al.	2015;	Knowles	et	al.	2010).	For	this	study,	the	

maximum	and	mean	intensity	projection	interrogation	algorithms	integrated	within	the	CEMRGApp	

were	assessed	and	validated	(Figure	4-5).	To	date,	 there	 is	no	published	work	that	has	sought	 to	

assess	the	correct	intensity	projection	parameters	for	the	assessment	of	atrial	scar.		

	

The	impact	of	variations	in	distance	of	internal	and	external	image	interrogation	was	assessed	and	

was	found	to	be	relatively	small.	Despite	substantial	impact	upon	the	interrogation	volume	(approx	

20ml	with	1mm	internal	or	external	 interrogation,	versus	140ml	with	4mm	internal	and	external	

interrogation,	 Table	 4-2	 and	 Table	 4-3),	 the	 change	 in	 percentage	 scar	 on	 the	 atrial	 shell	 was	

relatively	small	(approx	11%	to	14%	at	minimum	to	maximum	interrogation	volume	respectively,	

scar	thresholded	to	3.3	standard	deviations	above	the	blood	pool	mean)	and	almost	imperceptible	

on	visual	 inspection	(Figure	4-7,	Figure	4-8,	Figure	4-9).	Many	studies	have	chosen	to	use	a	3mm	

internal	and	3mm	external	maximum	intensity	projection	(Malcolme-Lawes	et	al.	2013;	J	L	Harrison,	

Sohns,	et	al.	2015),	which	controls	well	 for	 inaccuracies	of	 segmentation,	but	 risks	 integration	of	

signal	from	distant	structures.	Therefore	for	this	study	an	endocardial	segmentation	was	performed	

and	 a	 1mm	 internal	 and	 3mm	external	maximum	 intensity	 projection	 performed	 for	 atrial	 post-

ablation	scar	assessment.	The	smaller	internal	projection	was	performed	in	order	to	avoid	detection	

of	 respiratory	 navigator	 artefact	whenever	 possible.	 The	 3mm	 external	 interrogation	was	 based	

upon	the	maximum	typical	atrial	wall	thickness	(Platonov	et	al.	2008).	A	more	conservative	0mm	

internal	and	2mm	external	mean	intensity	projection	interrogation	was	used	for	assessment	of	pre-

ablation	atrial	fibrosis,	and	is	described	in	more	detail	in	Chapter	5.	

	

Atrial	shells	were	exported	as	a	 .vtk	file,	with	a	raw	image	intensity	unit	recorded	at	each	surface	

triangle	of	the	shell.	Atrial	scar	was	thresholded	at	3.3	standard	deviations	above	the	blood	pool	mean	

where	a	single	validated	indexing	method	was	required	(James	L	Harrison	et	al.	2014).	
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Figure	4-4	Illustration	of	surface	fused	with	delayed	enhancement	image.		

Arrows	indicate	the	direction	in	which	the	maximum	or	mean	intensity	projection	is	taken.	

Reproduced	with	permission	from	Knowles	et	al	2011	(©	IEEE	2011)
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Figure	4-5.	Representative	validation	

dataset	for		interrogation	distance	

and	maximum	intensity	projection	

algorithm.		

A	 standard	 geometry	 was	 placed	

within	the	LA,	and	the	distance	to	the	

voxel	with	the	highest	signal	intensity	

was	 measured	 (left	 hand	 panels,	 A	

and	 B).	 Serial	 maximum	 intensity	

projection	 interrogations	 of	 the	

image	were	performed	at	2mm,	3mm,	

4mm	and	 5mm	 ‘Search	Radius’,	 and	

the	 generated	 .vtk	 file	 was	

thresholded	at	the	level	of	the	highest	

intensity	 voxel	 (C-E,	 four	 right	 hand	

panels).	 projection	 distances	 The	

voxel	at	the	crosshairs	is	1447	signal	

intensity	units,	and	it	is	visualised	as	

the	bright	spot	on	the	lower	two	.vtk	

shells	 on	 the	 left,	 with	 accurate	

representation	of	the	signal.		
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Figure	4-6.	Illustration	of	the	effect	of	variable	erosions	and	dilations	on	the	interrogation	

volume	for	scar	assessment.		

The	external	volume	of	the	dilated	segmentation	is	shown	in	the	five	bottom	panels:	note	

the	 loss	of	 some	anatomical	 features	with	 increases	 in	dilation	distance.	The	upper	25	

panels	 show	 a	 single	 representative	 slice	 for	 the	 subtracted	 segmentations	 ([dilated	

volume]-[eroded	volume]),	with	segmentation	shown	in	red.		
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	 Baseline/ml	
1mm	

inside/ml	

2mm	

inside/ml	

3mm	

inside/ml	

4mm	

inside/ml	

Baseline	/ml	 -	 20.07	 34.62	 46.18	 58.66	

1mm	

outside/ml	 21.5	 42.22	 56.77	 68.33	 80.8	

2mm	

outside/ml	 41.66	 61.73	 76.28	 87.84	 100.3	

3mm	

outside/ml	 59.5	 79.57	 94.12	 105.7	 118.2	

4mm	

outside/ml	 82.48	 102.5	 117.1	 128.7	 141.1	

Table	4-2.	Volumes	of	wall	segmentations	at	variable	erosion	and	dilation	distances	for	

single	representative	shell.	

Total	volume	of	interrogated	voxels,	calculated	as	the	volume	of	a	full	dilation	of	the	shell	

(0-4mm	outside	shell),	minus	the	erosion	of	the	shell	(0-4mm	inside	shell).	Volumes	show	

a	relatively	linear	response	to	dilation	and	erosion,	despite	irregularity	of	shell.	

	

	 Baseline/%	
1mm	

inside/%	

2mm	

inside/%	

3mm	

inside/%	

4mm	

inside/%	

Baseline	/%	 -	 10.98	 11.53	 12.12	 12.58	

1mm	

outside/%	 10.70	 11.51	 12.06	 12.64	 13.11	

2mm	

outside/%	 11.39	 12.21	 12.72	 13.28	 13.73	

3mm	

outside/%	 11.80	 12.59	 13.10	 13.65	 14.08	

4mm	

outside/%	 12.12	 12.90	 13.41	 13.94	 14.36	

Table	 4-3.	 Scar	 burden	 at	 variable	 maximum	 intensity	 projection	 distance	 for	 single	

representative	shell.	

	%	is	the	percentage	of	the	total	surface	area	of	the	LA	containing	scar.	thresholded	at	

3.3standard	deviations	above	the	blood	pool	mean.	
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Figure	 4-7.	 Left	 lateral	 view	 of	 representative	 LA	 shell	 at	 variable	maximum	 intensity	

projection	distances.	

	

	

Figure	 4-8.	 Posterior	 view	 of	 representative	 LA	 shell	 at	 variable	 maximum	 intensity	

projection	distances.	
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Figure	 4-9.	 Anterior	 view	 of	 representative	 LA	 shell	 at	 variable	 maximum	 intensity	

projection	distances.	

4.2.4 GUI	development	
The	CEMRGApp	GUI	was	developed	 in	order	 to	 facilitate,	visualise	and	validate	 the	multiple	CMR	

analysis	 steps	 required	 for	 assessment	 of	 atrial	 scar.	 I	 developed	 the	 GUI	 in	 collaboration	 with	

imaging	and	computer	scientists	(Dr	Rashed	Karim,	Dr	Orod	Razeghi,	Dr	Steven	Niederer	and	Prof	

Kawal	 Rhode),	with	 a	 view	 to	 creating	 a	 user-friendly	 interface	 that	 could	 be	 shared	with	 other	

groups.	Several	solutions	were	investigated,	and	assessed	for	cross-platform	compatibility,	ease	of	

software	distribution,	long-term	maintenance,	and	scope	of	pre-developed	tools.	The	platform	that	

was	settled	upon	is	one	developed	by	researchers	and	engineers	of	Mint	Medical	and	the	German	

Cancer	Research	Centre	(DKFZ)	in	Heidelberg.	The	Medical	Imaging	Interaction	Toolkit	(MITK)	is	a	

free	open-source	software	system	suitable	for	development	of	interactive	medical	image	processing	

tools,	 combining	 the	 Insight	 Toolkit	 (ITK)	 and	 the	 Visualisation	 Toolkit	 (VTK).	 MITK	 also	 offers	

features	relevant	to	medical	imaging	but	covered	neither	by	ITK	nor	VTK.	

	

MITK	can	be	used	at	three	distinctive	levels.	At	the	application	level	MITK	Workbench	enables	end-

users	to	perform	regular	image	processing	tasks,	at	the	toolkit	level	MITK	supplements	the	standard	

ITK	and	VTK	with	concepts	for	interactive	applications,	and	at	the	framework	level	MITK	offers	an	

infrastructure	for	end-user	applications.	CEMRGAPP	was	developed	as	an	MITK	based	framework	

extended	with	ready	to	use	plugins.	It	was	made	available	as	source	code	on	Bitbucket	and	in	binaries	

for	Linux	and	Mac	OSX,	and	the	interface	is	demonstrated	in		Figure	4-10.		

	

Plugins	were	constructed	that	performed	the	resampling,	facilitated	segmentation,	performed	rigid	

registration	of	 images,	 applied	 the	derived	 rigid	 registration	algorithm	 to	 specific	 segmentations,	
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enabled	 bespoke	 smoothing	 of	 manual	 segmentations,	 performed	 image	 interrogation	 (mean	

intensity	 projection	 and	 maximum	 intensity	 projection)	 and	 enabled	 quantification	 of	 scar	 and	

sphericity	(see	section	5.3.7).		

4.2.5 Image	interpretation	
The	analysis	techniques	detailed	in	this	section	(segmentation,	image	resampling	and	registration,	

image	interrogation)	are	all	necessary	to	obtain	as	faithful	a	representation	as	possible	of	the	signal	

intensity	of	the	original	raw	CMR	imaging.	This	signal	intensity,	on	LGE	imaging,	is	interpreted	to	be	

proportional	 to	 the	 extracellular	 volume,	 itself	 related	 to	 fibrosis	 (see	 Section	 1.2.3),	 but	 the	

relationship	 is	 not	 well	 understood	 in	 the	 atrial	 wall.	 It	 is	 therefore	 important	 for	 the	 analysis	

techniques	 to	 be	 compared	 to	 those	 of	 other	 established	 groups,	 which	 themselves	 have	 been	

validated	to	fibrosis	to	a	varying	degree.	
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Figure	4-10.	CEMRGApp	interface.		

On	the	left	side	the	bespoke	tools	for	atrial	scar	assessment	are	shown,	with	Data	Manager	lying	beneath.	A	multiplanar	reconstruction	is	shown	in	the	middle	

panels,	with	segmentation	in	red.	The	3D	reconstruction	of	the	scar	shell	(.vtk)	is	shown	on	the	bottom	right,	with	normal	atrial	tissue	in		yellow	and	scar	in	red.	

Standard	segmentation	and	morphological	tools	are	shown	on	the	right
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4.3 Comparison	to	published	CMR	analysis	techniques	
The	image	analysis	technique	described	in	the	previous	section	was	developed	de	novo	in	view	of	the	

absence	of	openly	available	solutions	from	other	centres.	Two	main	groups	have	published	multiple	

studies	assessing	pre-ablation	atrial	fibrosis	(Utah	and	Johns	Hopkins),	but	the	imaging	processing	

platforms	are	not	released	in	their	 full	 forms.	Both	these	groups	have	also	assessed	post-ablation	

atrial	scar,	using	the	same	image	interrogation	techniques,	and	there	are	several	further	groups	that	

have	participated	more	actively	in	this	field,	including	Boston	(Taclas	et	al.	2010),	Imperial	College	

London	(Hunter	et	al.	2013),	Barcelona	(Bisbal	et	al.	2014)	and	King’s	College	London	(Knowles	et	al.	

2010;	Arujuna	et	al.	2012;	J	L	Harrison,	Sohns,	et	al.	2015).	This	section	aims	to	summarise	the	key	

features	of	the	techniques	of	the	two	main	centres	(Utah	and	Johns	Hopkins),	for	comparison	to	those	

used	in	this	study.	The	methods	of	the	Boston,	Imperial	College	London,	Barcelona	and	KCL	groups	

are	discussed	further	specifically	in	relation	to	post-atrial	scar	assessment	in	Chapters	7	and	8.	

4.3.1 Utah	method-	slice-by-slice	thresholding	
The	Utah	method	has	been	summarised	and	implemented	in	multiple	publications	(see	Table	4-4),	

but	the	most	detailed	breakdown	of	their	technique	was	included	as	a	supplement	in	the	Oakes	et	al	

paper,	published	in	2009	(Oakes	et	al.	2009).	The	same	software	and	techniques	have	also	been	used	

by	the	Bordeaux	group	(Cochet	et	al.	2015;	Jadidi	et	al.	2013).	In	brief,	the	scar	quantification	is	based	

upon	an	endocardial	and	epicardial	segmentation	of	the	LA,	and	a	threshold	is	then	assigned	on	a	

slice-by-slice	basis.	 “Normal”	 tissue	 is	 defined	 as	 the	 lower	 region	of	 a	pixel	 intensity	histogram,	

between	2%	and	40%	of	the	maximum	intensity	within	the	LA	wall.	The	fibrosis	threshold	is	defined	

as	voxels	‘two	to	four	standard	deviations	above	the	mean	of	“normal”’,	and	can	vary	between	slices	

(Figure	4-11)	

	

There	 is	 no	 doubt	 that	 the	 technique	 has	 enabled	 an	 assessment	 of	 LA	 SRM	 that	 has	 correlated	

strongly	with	real	outcomes	and	other	independent	cardiac	and	non-cardiac	parameters.	However,	

there	are	concerns	that	remain	unresolved:	

• Reproducibility.		

  Inter	 and	 intra-observer	 reproducibility	 has	 been	 assessed	 in	 several	 of	 the	

publications,	notably	in	2009	and	2014	(Oakes	et	al.	2009;	C.	McGann	et	al.	2014).	

However,	 there	 are	 no	 published	 reproducibility	 studies	 documenting	 the	

reproducibility	of	findings	between	different	scans	for	the	same	patient.	The	recent	

DECAFF	study	 (Marrouche	et	 al.	2014)	has	 investigated	 the	 issue	of	 inter-centre	

reproducibility,	in	terms	of	whether	the	CMR	sequences	can	be	reproduced	in	other	

centres,	 but	 has	 not	 resolved	 the	 question	 of	 reproducibility	 of	 the	 analysis	

technique	itself.	

• Subjectivity	
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  The	 slice-by	 slice	 analysis	 of	 the	 segmented	 atrial	 wall	 requires	 a	 subjective	

assessment	of	the	threshold	for	assignation	of	signal	intensity	to	fibrosis,	and	the	

criteria	that	the	operator	uses	to	select	the	threshold	are	not	defined.		

• Physiological	correlates	

  A	small	subgroup	(10	patients	undergoing	cardiac	surgery	(C.	McGann	et	al.	2014))	

have	 had	 their	 local	 LGE-defined	 fibrosis	 compared	 to	 histological	 findings,	 and	

there	has	been	a	strong	correlation,	despite	concerns	that	registration	issues	might	

make	 such	 a	 comparison	 difficult	 to	 perform.	 Further	 robust	 assessment	 of	 the	

association	between	LGE-defined	fibrosis,	histology	and	other	surrogate	markers	of	

fibrosis	such	as	intracardiac	electrogram	fractionation	and	voltage	is	required.	

	

	

Figure	4-11.	The	Utah	method	of	atrial	fibrosis	quantification.		

After	 LGE	 	 images	 are	 obtained	 (Step	 1),	 the	 endocardial	 and	 epicardial	 borders	 are	

manually	contoured	and	isolated	(Steps	2	and	3),	and	the	extent	of	LGE	is	then	quantified	

using	the	pixel	intensity	distribution	(Step	4),	qualitative	confirmation	is	then	performed,	

a	 colour	 lookup	 table	 mask	 is	 then	 applied	 to	 better	 differentiate	 enhanced	 and	

nonenhanced	tissue	(Step	5),	and	finally	a	3-dimensional	rendering	of	the	LA	is	generated	

allowing	for	better	visualization	and	spatial	localization	of	the	LGE	(Step	6).	Reproduced	

with	permission	from	Vergara	et	al	(2011)	(Vergara	and	Marrouche	2011).	
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Publication	 Patients	 Outcome	measure	 Conclusion	

Oakes	et	al	
2009	

81	patients,	6	
volunteers	

AF	recurrence	at	6-19	
months	

Degree	of	SRM	may	predict	
responders	to	AF	ablation	

Kuppahally	et	al	
2010	

68	patients	
31	mild	SRM	(<10%)	
37	severe	SRM	
(>10%)	

Echocardiographic	LA	
strain	post	ablation	

Severe	SRM	group	had	no	
improvement	in	LA	strain	
post	ablation	

Mahnkopf	et	al	
2010	

40	patients	with	lone	
AF	
293	patients	with	AF	
and	comorbidities	

SRM	quantification	and	
comorbidities	

SRM	is	independent	of	
comorbidities	and	is	a	
predictor	of	AF	recurrence	

Daccarett	et	al	
2011	 387	patients	with	AF	

Correlation	of	SRM	
with	stroke	and	
CHADS2	score	

SRM	is	independently	
associated	with	prior	stroke	

Akoum	et	al	
2012	

344	patients	with	AF	
(LA	fibrosis)	
134	patients	(RA	
fibrosis)	

Pacemaker	
implantation	at	329	
±245	days	

SRM	is	associated	with	
clinically	significant	sinus	
nodal	disease	

Akoum	et	al	
2013	

178	patients	with	AF	
undergoing	TOE	and	
CMR	imaging	prior	to	
ablation	

Spontaneous	echo	
contrast	(SEC)	or	LAA	
thrombus	

SRM	is	independently	
associated	with	
SEC/thrombus	

Akkaya,	et	al	
2013	

384	patients	
(105	with	LVEF	
<50%,	279	with	LVEF	
>50%)	

LVEF	prior	to	and	after	
ablation	

Increased	SRM	is	associated	
with	reduced	LVEF	and	less	
recovery	of	LVEF	post	
ablation	

Akkaya	et	al		
2013	 404	patients	

(122	with	LV	mass	
index	>116g/m2)	

Pre-ablation	LV	mass	
Increased	SRM	is	associated	
with	increased	LV	mass	
index	

Marrouche	et	al	
2014	 DECAAF	study	

SRM	quantified	in	272	
of	329	patients	
(15	centres)	

Hazard	ratio	of	
recurrence		

Increased	SRM	is	
independently	associated	
with	AF	recurrence	

C.	McGann	et	al	
2014	

426	patients	with	AF,	
21	controls	

AF	recurrence	and	
histological	correlation	
of	SRM	with	biopsy	(10	
patients	only)	

SRM	correlates	with	
histological	findings		

Akoum	et	al	
2015	 DECAAF	study	

177	patients	with	
CMR	imaging	at	3	
months	post	ablation	

Recurrence	at	325	
days	

Residual	(non-ablated)	atrial	
fibrosis	is	associated	with	
recurrence	

Rizvi	et	al	
2016	

145	patients	
(all	underwent	
exercise	test	prior	to	
ablation)	
	

Exercise	capacity	(EC)	
Recurrence	at	1	year	

Weak	correlation	(R2=0.071)	
between	SRM	and	EC.	EC	is	
not	an	independent	
predictor	of	outcome	

Table	4-4	Summary	of	the	major	publications	from	the	Utah	group	regarding	pre-ablation	

atrial	fibrosis.		

SRM:	structural	remodelling	(LA	structural	remodelling	as	assessed	by	late–gadolinium	

MRI	 detection	 of	 fibrosis),	 TOE:	 transoesophageal	 echocardiogram,	 LAA:	 left	 atrial	
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appendage.	(Oakes	et	al.	2009;	Kuppahally	et	al.	2010;	Mahnkopf	et	al.	2010;	Daccarett	

et	al.	2011;	Akoum	et	al.	2012;	Akoum	et	al.	2013;	Akkaya,	Higuchi,	Koopmann,	Damal,	

et	al.	2013;	Akkaya,	Higuchi,	Koopmann,	Burgon,	et	al.	2013;	Marrouche	et	al.	2014;	C.	

McGann	et	al.	2014;	Akoum	et	al.	2015;	Rizvi	et	al.	2016)	

4.3.2 Johns	Hopkins	technique:	image	intensity	ratio	(IIR)	
Whilst	the	Utah	group	has	looked	to	compare	the	LGE	signal	intensity	of	pathological,	fibrotic	LA	wall	

to	“normal”	LA	myocardium,	the	Johns	Hopkin’s	group	have	chosen	to	compare	voxel	signal	intensity	

to	that	of	the	blood	pool	(Khurram	et	al.	2014).		In	the	creation	of	a	normalised	image	intensity	ratio	

(IIR),	 some	of	 the	 concerns	of	partial	 voluming	of	 the	atrial	blood	pool	are	overcome.	The	signal	

intensity	of	 the	LA	wall	 is	evaluated	within	each	sector	(20	per	slice,	3.5mm	slice	thickness),	and	

divided	 by	 the	 blood	 pool	mean	 to	 generate	 a	 ratio.	 Thresholds	 for	 assignation	 as	 fibrosis	were	

derived	via	comparison	to	local	voltage	on	electroanatomical	mapping	(Figure	4-12).	It	was	noted	

that	the	IIR	closely	correlated	with	local	intracardiac	bipolar	LA	voltage	measurements,	but	some	of	

that	correlation	may	be	augmented	by	the	fact	that	32	of	the	75	patients	had	had	a	prior	ablation.	

	

	

Figure	4-12	Example	of	LGE	3D	LA	dataset	and	EAM	registration.	

	A:	Manually	 drawn	 endo-	 and	 epicardial	 contours	 on	 LGE	 axial	 planes.	 Each	 plane	 is	

divided	into	20	sectors	within	the	contours,	and	the	mean	pixel	intensity	of	each	sector	is	

calculated.	B:	Registration	of	EAM	points	to	LA	angiogram	by	using	standard	techniques.	

Anterosuperior	ostial	left	superior	pulmonary	vein	(LSPV)	and	right	superior	PV	(RSPV)	

as	well	as	anteroinferior	ostial	left	inferior	PV	(LIPV)	and	right	inferior	PV	(RIPV)	points	

(yellow	balls)	were	used	to	merge	the	MR	angiogram	with	the	EAM	by	using	standard	EAM	

system	tools,	thus	minimizing	rotational	errors.	Multiple	posterior	wall	and	anterior	wall	

points	(white	dots)	were	then	used	for	surface	registration.	C:	Multiplanar	reformatted	

panel	corresponding	to	the	grey	line	in	panel	B	is	visualized.	The	merged	coordinates	from	

panel	B	were	then	used	within	the	Volley	software	to	merge	the	EAM	with	the	LGE		planes.	



CMR	imaging	in	EP	
	

General	Methods	 91	

Image	sectors	from	axial	planes	corresponding	to	each	EAM	point	(white	boxes)	on	that	

plane	 were	 identified.	 Image	 intensities	 of	 each	 sector	 corresponding	 to	 EAM	 point	

voltages	were	recorded.	EAM:	electroanatomical	map;	LA:	left	atrial;	LGE:	late	gadolinium	

enhancement.	Reproduced	with	permission	 from	 	Khurram	et	al	2014	 (Khurram	et	al.	

2014).	

	

4.4 Atrial	fibrillation	ablation	strategy	
Catheter	ablation	procedures	for	all	subjects	with	AF	(Chapters	5,	7,	8,	and	9)	were	performed	by	two	

operators	 at	 St	 Thomas’	 Hospital	 London.	 Class	 I	 and	 III	 antiarrhythmic	 medications,	 with	 the	

exception	of	amiodarone,	were	discontinued	at	least	five	half-lives	prior	to	the	procedure.	Patients	

taking	warfarin	underwent	ablation	on	uninterrupted	warfarin	so	long	as	the	INR	was	less	than	3.5.	

Patients	on	novel	oral	anti-coagulants	discontinued	medication	the	day	before	the	procedure	and	

restarted	6	hours	after	the	procedure.	

	

Ablation	 procedures	 were	 performed	 under	 general	 anaesthesia	 with	 transoesophageal	 echo	 to	

exclude	 intracardiac	 thrombus	 and	 to	 guide	 transseptal	 puncture.	 Three	 8Fr	 short	 sheaths	were	

inserted	at	 the	 femoral	vein,	with	 two	upsized	 to	 two	8.5Fr	SR0	 long	sheaths	under	 fluoroscopic	

guidance.	 A	 6Fr	 decapole	 catheter	 was	 placed	 in	 the	 coronary	 sinus	 to	 provide	 an	

electrophysiological	and	electroanatomical	reference.	Following	transseptal	puncture,	intravenous	

heparin	was	administered	to	maintain	activated	clotting	time	>300seconds.		

	

The	majority	of	procedures	were	performed	using	CARTO3	(Biosense	Webster/Johnson&Johnson,	

New	Jersey,	USA),	with	8	procedures	in	total	(data	included	in	Chapters	5,	7	and	8)		performed	using	

EnSite	Velocity	(St	Jude	Medical,	St	Paul,	Minnesota,	USA).		Detailed	three-dimensional	LA	anatomy	

was	 acquired	 on	 EAM	 without	 image	 integration,	 typically	 using	 20	 electrode	 Lasso	 catheter	

(Biosense	Webster)	or	21	electrode	Pentaray	catheter	(Biosense	Webster),	with	mitral	valve	annulus	

identified	electrically	using	the	ablation	catheter.	

	

For	patients	with	a	diagnosis	of	PAF	and	in	sinus	rhythm,	a	point-by-point	wide	area	circumferential	

ablation	(WACA)	achieving	PVI	was	typically	performed	using	an	8Fr	irrigated	SmartTouch	catheter	

(Biosense	Webster),	or	8Fr	irrigated	TactiCath	catheter	(St	Jude).	Target	ablation	parameters	were	

>5g	for	at	least	15seconds	per	RF	delivery	location.	Power	was		30W	throughout	the	LA	except	on	

the	posterior	wall	where	it	was	limited	to	25W.	Procedural	endpoint	was	defined	as	PV	isolation	as	

confirmed	on	entry	block	(and	exit	block	if	PV	capture	could	be	achieved).	For	patients	presenting	

with	PersAF,	a	WACA	was	performed	followed	by	additional	ablation	lesion	sets	(mitral	 line,	roof	

line,	inferior	posterior	line,	complex	fractionated	electrogram	ablation)	as	indicated.		

	

A	waiting	time	of	30	minutes	following	the	last	RF	delivery	was	observed	to	permit	assessment	of	

linear	and	circumferential	conduction	block.	Once	sheaths	were	removed	from	the	LA,	protamine	
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100mg	was	administered	and	on-table	echocardiography	used	to	confirm	the	absence	of	pericardial	

effusion.	 Anti-arrhythmic	 medication	 was	 not	 uniformly	 discontinued	 in	 all	 patients	 following	

ablation.	

	

Patients	were	typically	discharged	home	the	day	after	the	ablation	procedure.	
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5 CARDIAC	MAGNETIC	RESONANCE	
IMAGING	OF	THE	ARRHYTHMIA	
SUBSTRATE:	ATRIAL	FIBRILLATION	

5.1 Aims	
To	assess	the	ability	of	CMR-derived	indices	of	cardiac	structure	and	function	to	predict	response	to	

ablation	for	AF.	

5.2 Introduction	
Catheter	ablation	is	an	effective	treatment	for	appropriately	selected	patients	with	AF	(Calkins	et	al.	

2012).	What	constitutes	appropriate	selection,	however,	remains	poorly	understood	and	vigorously	

debated.	In	the	emerging	era	of	“mechanism-directed	therapy”,	one	perspective	might	be	that	any	

patient	with	 AF	 is	 a	 potential	 candidate	 for	 ablation	when	 an	 electrophysiological	 target	 can	 be	

identified	 and	 therefore	 eliminated.	 An	 alternative	 perspective	 considers	 catheter	 ablation	 as	 a	

precious	resource,	to	be	offered	only	when	there	is	a	high	likelihood	of	a	safe,	clinically	successful	

and	relevant	outcome	for	the	patient.	An	understanding	of	the	complex	interplay	of	mechanisms	in	

their	structural	context	represents	a	major	goal	of	patient-tailored	AF	therapy	(O’Neill	and	Chubb	

2016).	 CMR	 represents	 a	 widely	 acceptable	 technique	 for	 the	 assessment	 of	 atrial	 structural	

remodelling	(SRM),	which	may	be	linked	to	likelihood	of	procedural	success.	

	

The	LA	and	PVs	may	be	visualised	on	CMR	imaging,	and	the	imaging	technique	therefore	plays	a	core	

role	in	many	centres	prior	to	ablation	procedures.	It	is	a	reasonable	step	to	use	the	same	imaging	

modality	to	determine	markers	of	atrial	SRM.	The	most	widely	published	CMR-derived	index	that	has	

been	shown	to	be	associated	with	outcome	is	that	of	atrial	wall	LGE	quantification.	However,	several	

other	MR	derived	indices	of	LA	SRM	have	also	been	proposed	and	validated	in	single-centre	studies,	

and	the	complex	interaction	of	these	indices	has	not	been	established.	This	study	aims	to	evaluate	

the	following	indices:	

5.2.1 Pre-ablation	LA	fibrosis	quantification	
LGE	 imaging	 has	 long	 been	 used	 for	 the	 assessment	 of	 ventricular	 myocardium.	 More	 recently,	

successful	 LGE	 characterisation	 of	 the	 atrial	 wall	 has	 been	 demonstrated,	 and	was	 first	 used	 to	

visualise	the	formation	of	scar	post-ablation	using	a	three-dimensional	LGE	sequence	(Peters	et	al.	

2007).	The	Utah	group	have	used	the	same	imaging	principles	to	assess	the	extent	of	pre-ablation	

fibrosis,	and	have	demonstrated	a	robust	correlation	with	long-term	outcome,	in	terms	of	recurrence	

of	arrhythmia	following	ablation	procedure	(Oakes	et	al.	2009;	Marrouche	et	al.	2014).	However,	the	

technique	 is	 labour-intensive,	 highly	 sensitive	 to	 imaging	 quality,	 subject	 to	 some	 degrees	 of	

subjectivity,	and	requires	bespoke	 image	processing	software,	and	 therefore	pre-ablation	 fibrosis	
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assessment	is	not	widely	employed	(Calkins	et	al.	2012).	Some	groups	have	chosen	to	employ	the	

Utah	image	interrogation	techniques	(Jadidi	et	al.	2013),	whilst	other	groups	have	developed	their	

own	 (Khurram	 et	 al.	 2014;	 Malcolme-Lawes	 et	 al.	 2013).	 Image	 acquisition	 parameters	 remain	

broadly	similar,	but	there	are	significant	differences	in	the	quantification	of	scar,	leading	to	widely	

differing	normal	ranges	(O’Neill	and	Chubb	2016).	

5.2.2 Left	atrial	size	
LA	diameter	is	established	as	a	marker	of	atrial	SRM	and	a	predictor	of	AF	recurrence	(Vaziri	et	al.	

1994;	Psaty	et	al.	1997;	Berruezo	et	al.	2007;	Dodson	et	al.	2014).	CMR	imaging	may	be	used	to	assess	

atrial	volume,	which	may	be	calculated	from	multi-slice	imaging	techniques	(typically	cine	imaging),	

or	from	segmentation	of	a	3D	volumetric	dataset.	Maximum	LA	size	is	measured	at	end	atrial	diastole	

(end	 ventricular	 systole),	 and	 has	 been	 shown	 to	 be	 associated	 with	 long-term	 AF	 recurrence	

(Dodson	et	al.	2014;	Costa	et	al.	2015)	

5.2.3 Left	atrial	function	
LA	 systolic	 function	 is	 difficult	 to	 quantify	 on	 echocardiographic	 imaging,	 but	 is	 relatively	 easily	

assessed	 on	 CMR	 imaging.	 Function	may	 be	 evaluated	 on	 volumetric	 analysis	 of	multi-slice	 cine	

imaging,	or	on	extrapolation	from	cine	two-chamber	and	four-chamber	slices.	However,	the	phases	

of	atrial	contraction	are	more	complex	than	ventricular	contraction,	and	therefore	there	are	several	

indices	of	atrial	function.	In	a	large	cohort	of	346	patients,	Dodson	et	al	demonstrated	that	the	risk	of	

recurrence	is	associated	with	LA	passive	ejection	fraction	(Dodson	et	al.	2014).	Habibi	et	al	went	on	

to	review	both	LA	passive	ejection	fraction	and	LA	total	ejection	fraction	(LAEF).	On	multivariable	

analysis,	LAEF	was	found	to	be	the	only	index	of	LA	function	that	was	independently	associated	with	

arrhythmia	recurrence,	and	LAEF	has	therefore	been	included	as	the	index	of	LA	function.	(Habibi	et	

al.	2016).	

5.2.4 Left	ventricular	function	
AF	may	be	both	a	cause	and	effect	of	left	ventricular	(LV)	systolic	dysfunction.	It	is	well-established	

that	pre-existing	LV	systolic	dysfunction	is	associated	with	up	to	6-fold	increase	in	risk	of	developing	

AF	(Benjamin	et	al.	1994).	LV	dysfunction	has	also	been	shown	to	be	associated	with	an	increased	

risk	of	AF	recurrence	post-ablation	in	some,	but	not	all,	studies	(Balk	et	al.	2010;	Dodson	et	al.	2014).	

However,	LV	function	in	many	studies	has	been	assessed	using	echocardiography,	rather	than	the	

gold	standard	of	CMR	imaging,	and	therefore	CMR	derived	LV	function	was	included	in	the	analysis.	

5.2.5 Left	atrial	shape	
LA	shape,	in	addition	to	atrial	size,	has	been	demonstrated	to	be	correlated	with	AF	recurrence.	One	

group	(Bisbal	et	al.	2013)	has	described	the	segmentation	of	the	body	of	the	LA	from	a	non-gated	

magnetic	resonance	angiogram	(MRA).	The	resulting	‘sphericity	index’,	derived	through	quantitative	

comparison	to	a	sphere,	was	found	to	be	strongly	predictive	of	AF	recurrence.		
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5.2.6 Pulmonary	venous	anatomy	
Pulmonary	 venous	 anatomy,	 as	 assessed	 by	 cross-sectional	 imaging,	 has	 also	 been	 shown	 to	 be	

related	to	long-term	outcome,	with	a	reduced	risk	of	recurrence	in	those	with	a	single	left	sided	PV	

(13%	versus	34%)	(McLellan,	Ling,	Ruggiero,	et	al.	2014).		

5.3 Methods	

5.3.1 Patients	
Patients	 planned	 for	 first-time	 AF	 ablation	 procedure	 were	 referred	 for	 routine	 pre-procedural	

clinical	CMR	scan,	from	January	2014	to	October	2015.	Patient	demographics	and	comorbidities	were	

documented	at	the	time	of	the	scan	and	paroxysmal	and	persistent	AF	were	defined	as	per	HRS/EHRA	

guidelines	(Calkins	et	al.	2012).	Patients	who	underwent	subsequent	cryoablation	(n=1)	or	did	not	

receive	GBCA	(n=2,	one	previous	allergic	reaction,	one	patient	choice)	were	excluded.	Patients	were	

included	regardless	of	rhythm	at	the	time	of	scan.	

5.3.2 CMR	imaging	acquisition	
See	 Section	 4.1	 for	 full	 details	 of	 CMR	 imaging	 protocols.	 Cine	 imaging	 was	 performed	 using	 a	

standard	 multislice	 bSSFP	 technique	 (typical	 parameters:	 effective	 TR	 2.7msec,	 TE	 1.3msec,	

1.25x1.25mm2	in-plane,	slice	thickness	10mm,	50	phases).		

5.3.3 Fibrosis	assessment	
Analysis	was	performed	on	an	MITK-based	platform	(German	Cancer	Research	Centre,	Heidelberg,	

Germany),	with	custom-build	modifications	 to	enable	 the	quantification	of	atrial	 fibrosis.	 	The	LA	

endocardial	surface	was	defined	via	manual	segmentation	within	the	3D	LGE	volume	on	a	slice	by	

slice	basis,	using	3D	interpolation	to	minimise	slice-by-slice	discontinuities.	A	2mm	surface	dilation	

was	used	to	define	the	epicardial	border,	in	keeping	with	established	methods	(Khurram	et	al.	2014),	

and	a	mean	intensity	projection	technique	through	the	defined	atrial	wall	was	used	to	ascribe	a	single	

signal	intensity	value	to	each	point	on	the	LA	endocardial	surface	model	(vtk	shell,	typically	20,000	

polygons	 per	 shell).	 The	mitral	 valve,	 distal	 PVs	 (>approx	2mm	distal	 to	 antrum)	 and	 LAA	were	

removed	using	 the	Clip	 filter	 in	Paraview	 (Kitware,	New	York,	NY,	USA)	 and	 the	 surface	was	 re-

extracted	as	a	binary	file.	

	

Scar	quantification	was	performed	through	measurement	of	the		proportion	of	the	surface	area	above	

a	defined	threshold.	Three	different	methods	were	used	to	define	threshold	values,	corresponding	to	

established	publications.	The	first	was	an	image	intensity	ratio	(IIR),	derived	from	the	Johns	Hopkins	

quantification	technique	(Khurram	et	al.	2014),	with	a	threshold	equivalent	to	0.97	times	the	mean	

of	the	blood	pool	(BP)	signal	intensity.	This	quantification	method	was	used	as	the	primary	fibrosis	

score,	 in	 view	 of	 the	 close	 replication	 of	 published	 technique,	 strong	 published	 association	with	

outcome	and	avoidance	of	user	selected	thresholds.	The	second	was	an	atrial	BP	z-score,	derived	
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from	 the	 Imperial	 College	London	quantification	 technique	 (Malcolme-Lawes	 et	 al.	 2013),	with	 a	

threshold	equivalent	to	3	(BP)	standard	deviations	(SD)	above	the	BP	mean.	The	third	was	an	atrial	

wall	z-score,	derived	from	the	Utah	quantification	technique	(Oakes	et	al.	2009),	with	thresholds	at	

2,	3	and	4	(atrial	wall)	SDs	above	the	atrial	wall	mean.	It	should	be	noted	that	for	the	final	technique	

a	universal	threshold	was	applied,	and	there	was	no	slice-by-slice	tailoring	of	the	threshold.	BP	signal	

mean	and	SD	were	measured	for	a	4ml	spherical	volume	placed	in	the	centre	of	the	LA	blood	pool,	

distant	 from	artefact	 including	 respiratory	navigator	 signal.	Atrial	wall	 signal	mean	and	SD	were	

measured	across	 the	whole,	 clipped,	atrial	 shell.	For	 reproducibility	assessment,	43	LGE	volumes	

were	 re-segmented	 independently	 by	 a	 separate	 observer	 (WS).	 The	 same	 image	 interrogation	

technique	was	employed.	

5.3.4 Left	atrial	size	
LA	size	was	assessed	in	atrial	diastole	at	maximum	volume.	The	left	atrium	was	manually	segmented	

from	the	3D	LGE	volume,	excluding	the	atrial	appendage	and	pulmonary	veins.	The	volume	of	the	

segmentation	was	assessed	using	ITK-snap	 	(Version	3.4.0,	University	of	Pennsylvania,	USA).	 	For	

reproducibility	 assessment,	 45	 LGE	 volumes	 were	 re-segmented	 independently	 by	 a	 separate	

observer	(WS).	

5.3.5 Left	atrial	function	
LA	 function	 was	 assessed	 on	 multi-slice	 short-axis	 cine	 imaging	 stack.	 The	 LA	 was	 manually	

contoured	 at	maximum	volume	 (LAVmax-	 end	atrial	 diastole),	 and	minimum	volume	 (LAVmin-	 end	

atrial	 systole),	 with	 the	 appendage	 and	 veins	 excluded.	 LAEF	was	 defined	 as	 total	 LA	 emptying	

fraction	 ((LAVmax-LAVmin)/LAVmax).	 For	 reproducibility	 assessment,	 45	 patients	 underwent	

independent	measurement	by	a	separate	observer	(JG).	

5.3.6 Left	ventricular	function	
LV	function	was	also	assessed	on	the	same	multi-slice	short-axis	imaging	stack,	using	a	conventional	

manual	 chamber	 contouring	 technique.	 Volumes	 were	 assessed	 using	 ViewForum	 (Philips	

Healthcare,	Best,	Netherlands).	Reproducibility	was	not	assessed	for	this	well-established	technique.		

5.3.7 Atrial	sphericity	
LA	sphericity	was	calculated	according	to	the	methods	of	Bisbal	and	co-workers	(Bisbal	et	al.	2013).	

The	LA	body	was	segmented	on	the	3D	LGE	acquisition	on	a	slice	by	slice	basis	on	the	MITK	platform.	

The	 segmentation	 was	 performed	 separately	 to	 that	 defined	 for	 the	 atrial	 fibrosis	 analysis,	 and	

excluded	the	LAA	and	PVs.	A	VTK	shell	was	created	from	the	segmentation	and	the	centre	of	mass	

and	best	fit	sphere	for	the	shell	atrium	was	calculated	per	the	published	technique	(see	Figure	5-1C).	

The	coefficient	of	variation	of	the	sphere	(CVS)	was	defined	as	sAR/AR,	where	sAR	is	calculated	as:	

	



CMR	imaging	in	EP	
	

Cardiac	Magnetic	Resonance	Imaging	of	the	Arrhythmia	Substrate:	Atrial	Fibrillation	 97	

!"# = 	&
1

()*) + ((-./)(∥ (()*23 − -.23) ∥ −)5)6)
789:2_<=7/9>?@A

78B
	

	

	

where	LACA	is	LA	cavity	area	(2d	surface	area),	Tia	is	the	area	of	each	triangle	of	the	mesh,	LACmc	is	

the	centre	of	mass	of	the	whole	LA	cavity,	Timc	is	the	centre	of	mass	of	each	triangle,	and	AR	is	the	

average	 radius	 of	 the	 best	 fit	 sphere.	 LA	 sphericity	 was	 then	 defined	 as	 (1-CVS)*100.	 For	

reproducibility	assessment,	45	LGE	datasets	were	re-segmented	by	an	independent	observer	(KL).	
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Figure	5-1.	Illustration	of	left	atrial	fibrosis	quantification	and	sphericity	assessment.	

(A)	Low	fibrosis	left	atrium	(LGE	CMR-	5%	(left)),	with	atrial	shell	thresholded	at	image	

intensity	 ratio	 (IIR)	 0.97.	 (B)	High	 fibrosis	 left	 atrium	 (65%),	white	 arrows	 indicating	

regions	of	LA	wall	enhancement		(C)	(Left)	multiplanar	reconstruction	of	3D	LGE	dataset,	

with	LA	body-only	segmentation,	and	(right)	demonstration	of	sphericity	calculation.	For	

this	subject,	sphericity	was	88.6%.	
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5.3.8 Pulmonary	venous	anatomy	
Pulmonary	venous	anatomy	was	assessed	on	the	3D	LGE	dataset.	They	were	classified	as	normal	(2	

left	and	2	right	veins),	single	 left	(with	any	combination	of	right	sided	veins),	 isolated	three	right	

sided	veins	(with	2	left	sided	veins),	or	any	other	pulmonary	venous	arrangement.	

5.3.9 Atrial	fibrillation	ablation	procedure	
The	atrial	ablation	procedure	strategy	is	detailed	in	Section	4.4.		

5.3.10 Subject	follow-up	
Recurrence	of	AF	post-ablation	was	defined	as	a	recurrence	of	AF	(>30seconds),	or	episodes	of	atrial	

tachycardia	or	atrial	flutter,	in	line	with	HRS/EHRA	guidelines	(Calkins	et	al.	2012),	and	confirmed	

on	ECG	or	Holter/event	monitoring.	There	were	no	episodes	of	AV	nodal	re-entrant	tachycardia,	AV	

re-entrant	tachycardia	or	ventricular	tachycardia	documented	following	ablation.	Follow-up	was	at	

3months	 post-ablation,	 with	 symptom	 review,	 24	 hour	 tape	 and	 12	 lead	 ECG	 performed.	

Subsequently,	patients	were	typically	reviewed	at	6	and	12months	after	the	index	procedure,	and	

yearly	 thereafter.	 A	 12	 lead	 ECG	 ±	Holter	monitor	was	 performed	 at	 each	 clinical	 review,	 in	 the	

absence	of	reported	symptoms.	If	symptoms	were	reported,	patients	underwent	12	lead	ECG,	24	(or	

48/72)	 hour	 Holter	 monitor,	 cardiac	 implantable	 device	 interrogation	 or	 assessment	 using	

implantable	loop	recorder,	according	to	symptom	frequency	and	clinical	suspicion.		

Patients	without	recurrence	were	censored	at	 the	time	of	 the	 last	available	 follow-up.	A	blanking	

period	 of	 three	 months	 was	 employed	 post	 ablation.	 However,	 in	 the	 presence	 of	 continued	

arrhythmia	 recurrence	outside	of	 the	blanking	period,	 the	 timing	of	 recurrence	was	dated	 to	 the	

earliest	documented	arrhythmia	post-ablation.		

5.3.11 Statistics	
Normally	distributed	continuous	variables	are	presented	as	mean	±	standard	deviation,	and	median	

with	interquartile	range	(IQR)	for	non-normal	distribution	or	non-continuous	ordinal	data.		Statistics	

were	analysed	using	SPSS	Statistics	(Version	22,	 	Armonk,	 	NY).	Baseline	characteristics	and	CMR	

indices	were	compared	using	c2	test	or	Student	t-test	as	appropriate.	Kaplan-Meier	survival	curves	

were	compared	using	Log-rank	(Mantel-Cox)	test.	Multivariable	Cox	proportional-hazards	models	

were	used	to	assess	the	association	of	pre-determined	indices	against	arrhythmia	recurrence,	and	

results	are	presented	as	hazard	ratio	(HR)	with	95%	confidence	interval.	For	Model	1,	the	analysis	

was	 adjusted	 for	 age	 and	 sex	 only.	 For	 Model	 2,	 in	 addition,	 the	 analysis	 was	 adjusted	 for	

hypertension,	 body	mass	 index,	 diabetes	 mellitus,	 type	 of	 AF	 and	 AF	 duration.	 For	 Model	 3,	 all	

adjustment	 factors	were	 retained,	 but	 all	 CMR	 indices	were	 assessed	 in	 a	 single	model.	Receiver	

operator	characteristic	curves	and	outcomes	for	binomial	logistic	regression	were	censored	at	150	

days.	
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5.3.12 Ethics	
All	pre-ablation	CMR	studies	were	clinically	 indicated,	 and	subjects	provided	written	consent	 for	

retrospective	analysis	(REC	reference	09-H0802-78).	

5.4 Results	

5.4.1 Patients	
In	 total,	 89	 subjects	 underwent	 full	 CMR	 prior	 to	 routine	 first-time	 ablation,	 and	 baseline	

demographics	and	findings	are	detailed	in	Table	5-1.	Median	total	follow-up	time	was	383	days	(IQR	

204-613days),	and	there	were	30	recurrences,	at	median	92	days	(IQR	30-118days).	Kaplan-Meier	

survival	curves	 for	baseline	parameters	are	shown	in	Figure	5-2.	 In	assessment	of	recurrence,	all	

subjects	had	at	least	one	24	hour	tape	performed,	with	50	(56%)	subjects	undergoing	ECG	Holter	

monitoring	on	≥1	occasion	for	at	 least	48hours,	and	a	 further	3	subjects	had	an	 implantable	 loop	

recorder	or	device.	There	was	no	significant	difference	in	intensity	of	monitoring	between	recurrence	

and	non-recurrence	groups.	CMR	 imaging	was	 completed	 for	 all	 subjects	 for	 all	 indices,	with	 the	

exception	of	three	subjects	for	whom	atrial	fibrosis	could	not	be	assessed	(poor	myocardial	nulling	

in	two,	and	unacceptable	artefact	in	one).		

	 	



CMR	imaging	in	EP	
	

Cardiac	Magnetic	Resonance	Imaging	of	the	Arrhythmia	Substrate:	Atrial	Fibrillation	 101	

	

	

Table	5-1.	Baseline	demographics	and	findings.	

	AF:	atrial	fibrillation,	BMI:	body	mass	index,	LA:	left	atrium,	SR:	sinus	rhythm,	LAPx:	long	

axis	parasternal.	Significant	comorbidity	was	defined	as	Charlson	comorbidity	index	>/=	

1	(Charlson	et	al.	1987)	

 	
All Subjects 

(n=89)	

No	Recurrence	

(n=59)	

Recurrence	

(n=30)	

p-value	

Male	 65 (73%)	 38	(64%)	 27	(90%)	 0.010	

Paroxysmal AF	 48 (53%)	 37	(63%)	 11	(37%)	 0.11	

CHA2DS2VASC Score 	 1 (IQR 0-2)	 1	(IQR	0-2)	 0	(IQR	0-1)	 0.004	

AF duration (years)	
3.9 (IQR 2.0-

5.0)	

3.6	(IQR	2.0-4.5)	 4.3	 (IQR	 2.0-

5.0)	

0.41	

Significant Comorbidities	 26 (29%)	 30	(51%)	 16	(53%)	 0.82	

Hypertension 23 (26%) 17	(29%)	 6	(20%)	 0.37	

Ischaemic Heart Disease 7 (8%) 3	(5%)	 4	(13%)	 0.17	

Age (years)	 59.6 ±11.0	 60.6±11.6	 57.3±9.7	 0.22	

Weight (kg)	 88.4±15.9	 87.0±16.2	 91.3±15.0	 0.21	

Height (cm)	 175.4±8.1	 173.9±8.2	 178.4±7.0	 0.009	

BMI (kg/m2)	 28.7±4.8	 28.7±5.1	 28.7±4.4	 0.94	

LA size on echo (LAPx (mm)) 48.4 ± 8.4 47.6	±7.7	 49.6	±	9.5	 0.34	

Heart Rate at scan (bpm)	 71±15	 68±14	 77±16	 0.011	

SR at baseline scan	 53 (60%)	 39	(66%)	 14	(47%)	 0.077	

Follow-up duration (days) 
383	 (IQR	 204-

613)	

334	(IQR	191-516)	 463	 (IQR	 252-

676)	

0.147	

Longest 

duration of 

rhythm 

monitoring 

24 hour ECG 36 21 15 0.19 

48 hour ECG 40 27 13 0.82 

72 hour ECG 4 4 0 0.14 

7 day ECG 6 4 2 0.93 

Device 

interrogation 

or ILR 

3 3 0 0.20 
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Figure	5-2.	Kaplan	Meier	survival	curves	for	baseline	indices.		

Each	 parameter	 has	 been	 dichotomised,	 and	 the	 number	 of	 subjects	 in	 each	 group	 at	

time=0	 is	 shown	 at	 the	 end	 of	 each	 curve	 (total	 =89	 in	 all	 plots).	 	Where	 there	 is	 no	

established	cut-off	value	for	high	and	low	risk,	a	cut-off	value	as	close	the	50th	centile	as	

possible	has	been	used,	and	the	values	are	indicated	to	the	right	of	associated	plots.	
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5.4.2 CMR	indices	
CMR-derived	indices	are	summarised	in	Table	5-2,	and	associated	Kaplan-Meier	plots	in	Figure	5-3.	

LV	native	T1	time	and	LV	mass	were	also	assessed	for	association	with	outcome,	with	no	difference	

between	no-recurrence	and	recurrence	groups	(LV	mass:	111±32g	and	111±25g	(p=0.96);	LV	native	

T1	 time	992±42msec	 versus	979±34msec	 (p=0.15)	 respectively).	A	 single	 left-sided	PV	occurred	

with	similar	frequency	in	 	recurrence	and	non-recurrence	groups	(p=0.81)	and	therefore	was	not	

included	in	further	evaluations.	

	

On	separate	multivariable	analysis	adjusting	for	age	and	sex	(Model	1),	only	atrial	fibrosis	(p=0.002)	

and	LA	EF	(p=0.018)	were	independently	associated	with	recurrence	(Table	5-3).	In	Models	2	and	3,	

with	adjustment	for	multiple	risk	factors,	atrial	fibrosis	was	the	only	factor	independently	associated	

with	recurrence.		LA	EF	demonstrated	significant	collinearity	with	AF	type	(mean	40±14%	in	PAF,	

versus	21±13%	in	non-PAF,	p<0.001),	and	therefore	was	not	independently	associated	with	outcome	

in	Model	2	(HR	for	non-PAF	2.0,	p=0.03).		

	

Table	5-2.	CMR-derived	indices	by	recurrence	group.		

Normal	pulmonary	venous	anatomy	was	classified	as	2	left	and	2	right	pulmonary	veins.	

LA:	left	atrium,	LV:	left	ventricle.	

	

 	 All Subjects 

(n=89)	

No	Recurrence	

(n=59)	

Recurrence	

(n=30)	
p-value	

LA fibrosis (%) 33.5±18.8 28.9±16.7	 42.6±19.4	 0.002	

Indexed LA Volume (ml/m2) 61.6±18.8 60.9±17.8	 63.3±21	 0.59	

LA ejection fraction (%)	 30.9±16.5 34.3±15.8 24.1±16.1 0.006 

LV ejection fraction (%)	 60.7±10.3	 62.7±10.5	 57.0±8.9	 0.009	

LA sphericity	 82.1±3.4	 82.3±3.4	 81.7±3.5	 0.42	

Single left sided pulmonary 

vein	

8 (9%) 
5 (6%) 3 (10%) 0.81 
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Model	1	 Model	2	 Model	3	

HR	
95%	

CI	

P-

value	
HR	 95%	CI	

P-

value	
HR	 95%	CI	

P-

value	

Fibrosis	(%)	 1.031	
1.011-

1.051	
0.002	 1.035	

1.013-

1.058	
0.002	 1.032	

1.008-

1.056	
0.007	

Indexed	 LA	

Volume	

(ml/m2)	

1.003	
0.995-

1.012	
0.435	 0.997	

0.976-

1.019	
0.804	 0.998	

0.974-

1.023	
0.883	

LA	EF		 0.064	
0.007-

0.622	
0.018	 0.178	

0.013-

2.501	
0.200	 0.645	

0.012-

34.83	
0.830	

LV	EF	 0.038	
0.001-

1.209	
0.064	 0.056	

0.001-

2.596	
0.141	 0.059	

0.000-

9.725	
0.277	

Sphericity	 0.965	
0.872-

1.067	
0.487	 0.939	

0.843-

1.042	
0.258	 0.923	

0.810-

1.023	
0.229	

Table	5-3.	Multivariable	Cox	regression	analysis	of	 the	association	of	 	established	CMR	

indices	with	arrhythmia	recurrence.		

For	Model	1	and	2,	 each	row	represents	a	 separate	multi-variable	analysis.	Model	1	 is	

adjusted	for	age	and	sex	alone,	Model	2	additionally	for	hypertension,	body	mass	index,	

diabetes	mellitus,	type	of	AF	and	AF	duration.	Model	3	contains	all	factors	of	Model	2,	and	

all	CMR	derived	indices,	in	a	single	multivariable	analysis.	LA:	left	atrium,	LV:	left	ventricle,	

EF:	ejection	fraction,	HR:	Hazard	Ratio,	CI:	confidence	interval.	
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Figure	5-3.	Kaplan	Meier	survival	curves	for	CMR	indices.		

Each	 parameter	 has	 been	 dichotomised,	 except	 for	 PV	 anatomy,	 and	 the	 number	 of	

subjects	in	each	group	at	the	start	of	the	follow-up	is	shown	at	the	end	of	the	curve	(total	

=89	in	all	plots	except	fibrosis,	where	n=86).	Where	there	is	no	established	cut-off	value	

for	high	and	low	risk,	a	cut-off	value	as	close	the	50th	centile	as	possible	has	been	used,	and	

the	cut-off	values	are	indicated	to	the	right	of	associated	plots.	

5.4.3 Atrial	fibrosis	burden	
Atrial	fibrosis	burden	was	associated	with	arrhythmia	recurrence	on	univariable	and	multivariable	

analysis.	The	relationship	of	the	three	atrial	fibrosis	quantification	methods	was	also	assessed	and	is	

summarised	in	Figure	5-4.		There	is	minimal	correlation	between	the	fibrosis	score	assessed	as	an	

IIR,	 and	 the	 two	 alternative	methods	 (blood-pool	 z-score	 and	 shell	 z-score	 thresholds).	 Fibrosis	

scores	derived	at	thresholds	of	2	and	3	standard	deviations	above	the	shell	mean	designated	only	

very	small	portions	of	 the	 shell	 as	 scar,	 and	many	shells	had	no	surface	points	 that	achieved	 the	

thresholds.	 However,	 there	 remained	 a	 significant	 association	 between	 BP	 derived	 z-scores	 and	
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outcome,	and	3SD	above	shell	mean	threshold	and	outcome,	as	shown	in	the	associated	Kaplan-Meier	

plots.		

	

Figure	5-4.	Co-dependence	of	the	cut-off	values	for	quantification	of	atrial	fibrosis.		

The	left	hand	scatter	plots	show	the	fibrosis	burden	against	image	intensity	ratio	(IIR)-

derived	index,	with	regression	line	(±95%	confidence	interval).	R2	correlation	coefficient	

for	 linear	 regression	 is	 shown	 for	 each	 plot.	 	 Right	 hand	 Kaplan	 Meier	 plots	 show	
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corresponding	 survival	 curves	 for	 each	 fibrosis	 quantification	methods.	 Note	 that	 the	

lower	three	pairs	of	plots	all	correspond	to	the	Utah	method	(Oakes	et	al.	2009),	but	do	

not	include	a	slice-by-slice	variation	of	the	cut-off	value,	and	for	many	shells	there	were	

no	scalars	that	were	above	the	defined	threshold.	

5.4.4 Confounding	variables	and	collinearity	
Analyses	have	been	performed	including	all	eligible	patients,	regardless	of	underlying	arrhythmia	

type	 (paroxysmal	 or	 persistent)	 and	 the	 rhythm	 at	 scan.	 The	 heart	 rhythm	 at	 the	 time	 of	 CMR	

assessment	is	a	clear	confounding	factor,	with	particular	impact	on	LAEF	(Figure	5-5),	as	is	the	type	

of	AF,	which	was	significantly	associated	with	outcome	on	assessment	of	survival	curves	(Figure	5-

2).	On	exclusion	of	subjects	in	AF,	there	was	no	significant	increase	in	recurrence	rate	in	those	with	

lower	ejection	fraction	(p=0.09).		

	

The	 collinearity	 of	 the	 CMR	 indices	 is	 quantified	 in	 Table	 5-4.	 The	 regression	 coefficients	 were	

generally	weak,	demonstrating	relative	independence.	There	was	a	significant	association	with	AF	

type	 for	 all	 indices	 (see	 Figure	 5-6),	 but	 there	 was	 substantial	 overlap	 throughout	 with	 a	 clear	

absence	of	dichotomisation.	

	

	

Figure	5-5.	Association	of	rhythm	at	scan	and	LA	ejection	fraction	

(Left	panel)	The	association	of	LA	ejection	fraction	with	rhythm	at	the	time	of	scan.	(right	

panel)	Kaplan	Meier	plot	showing	a	non-significantly	increased	recurrence	rate	for	those	

with	 a	 reduced	 LA	 ejection	 fraction.	 The	 cut-off	 value	 is	 derived	 from	Habibi	 and	 co-

workers	(Habibi	et	al.	2016).	
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LA fibrosis (%)	 Indexed LA 

Volume 

(ml/m2)	

LA ejection 

fraction (%)	

LV ejection 

fraction (%)	
LA sphericity 

LA fibrosis (%)	
N/A	

R2=	0.001	

p=0.72	

R2=0.12	

P<0.001	

R2=0.06	

p=0.03	

R2<0.001	

p=0.82	

Indexed LA 

Volume 

(ml/m2)	

-	 N/A	
R2=0.20	

P<0.001	

R2=0.09	

p=0.005	

R2=0.19	

P<0.001	

LA ejection 

fraction (%)	
-	 -	 N/A	

R2=0.29	

P<0.001	

R2=0.04	

p=0.06	

LV ejection 

fraction (%)	
-	 -	 -	 N/A	

R2=0.003	

p=0.59	

Table	5-4.	Quantification	of	collinearity	of	CMR-derived	indices.		

Values	shown	are	the	linear	regression	correlation	coefficient	and	p-values	for	each	pair	

of	CMR	indices.		

	

	

Figure	5-6.	Plots	demonstrating	the	segregation	of	each	CMR	index	according	to	AF	type.		

5.4.5 Reliability	of	parameter	assessment	
The	assessment	of	each	CMR	index	is	complex,	and	the	reliability	of	all	CMR	index	derivations	was	

assessed.	 Interobserver	 Bland-Altman	 plots	 are	 shown	 in	 Figure	 5-7.	 Interobserver	 differences	

should	be	interpreted	in	the	context	of	the	dynamic	range	of	the	index	observed	across	the	subject	

cohort,	and	agreement	was	generally	good	with	minimal	impact	of	the	measurement	error	upon	the	

derived	CMR	 index-outcome	association.	 Interobserver	Lin’s	 concordance	 correlation	 coefficients	



CMR	imaging	in	EP	
	

Cardiac	Magnetic	Resonance	Imaging	of	the	Arrhythmia	Substrate:	Atrial	Fibrillation	 109	

were	0.866	(95%	CI	0.787-0.917)	for	LA	fibrosis,	0.923	(95%	CI	0.873-0.954)	for	indexed	LA	volume,	

0.860	(95%	CI	0.779-0.912)	for	LAEF	and	0.906	(95%	CI	0.842-0.945)	for	sphericity.	

	

Figure	 5-7.	 Bland	 Altman	 plots	 demonstrating	 the	 interobserver	 differences	 in	

measurement	for	each	CMR	index.		

The	reliability	of	left	ventricular	ejection	fraction	has	been	widely	reported	and	was	not-

reassessed.	

5.4.6 Predictive	value	
Figure	5-8	shows	receiver	operator	characteristic	curves	 for	the	 five	CMR	indices,	with	outcomes	

dichotomised	(recurrence/no-recurrence)	at	150	days.	There	were	26	recurrences	by	150	days.	For	

the	 index	 with	 the	 greatest	 area	 under	 curve,	 fibrosis	 index,	 the	 sensitivity	 (proportion	 of	

recurrences	correctly	identified)	and	specificity	(proportion	of	non-recurrences	correctly	identified)	

at	an	index	value	of	35%	were	63%	and	64%	respectively.	90%	of	recurrences	were	predicted	at	a	

threshold	of	15%,	but	with	a	specificity	of	only	23%.	Conversely,	at	a	fibrosis	cut-off	value	of	50%,	

specificity	for	recurrence	was	95%	with	sensitivity	44%.	At	the	observed	overall	recurrence	rate,	this	

represents	 a	 positive	 predictive	 value	 of	 80%	 at	 the	 50%	 fibrosis	 threshold,	 with	 a	 negative	

predictive	value	of	79%.	

	

A	 binomial	 logistic	 regression	 was	 performed	 to	 ascertain	 the	 combined	 effects	 of	 the	 CMR	

parameters	 (atrial	 fibrosis,	 LAEF,	 LVEF,	 indexed	 LA	 volume,	 sphericity)	 on	 the	 likelihood	 of	
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arrhythmia	 recurrence.	 The	 logistic	 regression	 model	 was	 statistically	 significant,	 χ2(5)=	 21.47	

(p=0.001).	The	model	explained	32.6%	(NagelKerke	R2)	of	 the	variance	 in	arrhythmia	recurrence	

and	correctly	classified	77.8%	of	cases.	Sensitivity	was	53.8%,	and	specificity	89.1%	(Table	5-5).	Of	

the	five	CMR	parameters,	only	fibrosis	was	statistically	significant	(Table	5-6).	
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Figure	 5-8.	 Receiver	 operator	 characteristic	 curves	 (left	 sided	 panels)	 and	 index	

distribution	between	subjects	with	recurrence	and	no	recurrence	(right	sided	panels)	at	

150days	post	procedure.		

AUC:	Area	under	curve.	CI:	confidence	interval		
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Predicted	

No	

Recurrence	
Recurrence	

Percentage	

Correct	

Outcome		

	

No	

Recurrence	
49	 6	

Specificity	

89.1%	

Recurrence	 12	 14	
Sensitivity	

53.8%	

	
NPV	

80.3%	

PPV	

70.0%	

Accuracy	

77.8%	

Table	 5-5.	 Classification	 table	 for	 binomial	 logistic	 regression	 analysis	 of	 arrhythmia	

recurrence.		

PPV:	positive	predictive	value,	NPV:	negative	predictive	value	

	

	
Odds	

Ratio	

95%	CI	
Significance	

Lower	 Upper	

Fibrosis	(%)	 1.072	 1.025	 1.122	 0.002	

LA	Max	Volume	

(ml/m2)	
1.002	 0.969	 1.037	 0.896	

LAEF	(%)	 0.263	 0.003	 22.73	 0.558	

LVEF	(%)	 0.024	 0.000	 18.70	 0.272	

Sphericity	 0.995	 0.842	 1.177	 0.955	

Constant	 0.606	 	 	 0.945	

Table	5-6.	Binomial	logistic	regression	model:	AF	recurrence	and	CMR	indices.		

CI:	confidence	interval.	

5.5 Discussion	
The	 long-term	outcome	 following	AF	 ablation	 is	 excellent	 in	 selected	 patients	 but	 for	 others	 the	

outcome	 remains	 suboptimal.	 In	 parallel	 with	 technical	 and	 methodological	 developments	 in	

ablation	 procedures,	 improved	 patient	 selection	 has	 the	 potential	 to	 impact	 on	 success	 rates	 for	

intervention.	Multiple	CMR	indices	have	been	shown	to	be	associated	with	long-term	outcome,	but	

their	 implementation	 in	 parallel	 has	 never	 been	 demonstrated.	 Moreover,	 many	 studies	 have	

excluded	 patients	 in	 AF,	 and	 it	 is	 this	 group	 that	 stands	 to	 benefit	 the	 most	 from	 accurate	

stratification.	This	study	has	taken	a	real-world	cohort	of	first-time	AF	ablation	patients,	and	the	key	

findings	are	as	follows:	

1. LA	fibrosis	is	independently	associated	with	long-term	outcome,	as	assessed	by	arrhythmia	

recurrence	
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2. LAEF,	 LVEF	 and	 indexed	 LA	 volume	 are	 significantly	 associated	 with	 outcome,	 but	 the	

association	is	not	independent	of	other	established	baseline	indices	

3. LA	sphericity,	using	the	assessment	methods	of	this	study,	is	not	associated	with	outcome.	

5.5.1 Comparison	with	prior	studies	
LA	fibrosis	has	been	proposed	as	a	powerful	risk	stratification	modality	for	patients	being	considered	

for	AF	ablation.	However,	the	implementation	of	the	technique	outside	of	two	core	centres	in	Utah	

and	Johns	Hopkins	(Oakes	et	al.	2009;	Khurram	et	al.	2015)	has	been	limited.	Teams	in	Bordeaux	and	

London	have	validated	fibrosis	scores,	using	the	Utah	method	and	an	automated	maximum	intensity	

projection	 technique	 respectively	 (Malcolme-Lawes	 et	 al.	 2013;	 Jadidi	 et	 al.	 2013).	 However,	

widespread	 adoption	 of	 the	 technique	 has	 been	 limited	 by	 the	 requirement	 for	 CMR	 imaging	

specialists	and	image	processing	teams	using	bespoke	software	and	considerable	experience.		

	

This	study	has	implemented	a	relatively	streamlined	approach	in	the	generation	of	a	fibrosis	index,	

and	 has	 replicated	 the	mainstream	 image	 thresholding	 techniques.	 The	 study	 did	 not	 set	 out	 to	

replicate	 the	 exact	 image	 processing	 techniques	 (see	 below),	 but	 instead	 aimed	 to	 produce	 a	

technique	that	could	be	made	freely	available	to	other	centres	and	would	eliminate	as	much	of	the	

subjectivity	 and	 time	 consuming	 segmentation	 as	 possible.	 Consequently,	 LA	 fibrosis	 scores	 are	

different	 for	this	study,	as	they	are	between	previous	studies.	The	hazard	ratio	per	%	increase	 in	

fibrosis	in	this	study	(1.035,	95%	CI	1.013-1.058)	was	comparable	to	the	DECAAF	study	(HR	1.06)	

and	the	IIR	study	(approximate	HR	1.05).	However,	 it	 is	 important	to	note	that	the	mean	fibrosis	

score	 was	 lower	 for	 DECAAF	 (18.1±8.7%)	 than	 this	 study	 and	 that	 for	 IIR	 (33.5±18.8%	 and	

35.9±14.8%	 respectively),	 with	 a	 commensurate	 reduction	 in	 range.	 This	 infers	 a	 significantly	

weaker	association	of	LA	fibrosis	and	outcome	than	that	found	in	DECAAF,	but	the	superiority	of	one	

technique	over	another	is	difficult	to	explain	in	the	context	of	low	dice	scores	for	overlapping	scar	on	

objective	quantification	(Karim	et	al.	2013).		

	

LAEF,	LVEF	and	indexed	LA	volume	have	been	shown	to	be	independently	associated	with	outcome	

in	other	studies	(Habibi	et	al.	2015;	Dodson	et	al.	2014).	In	this	combined	assessment,	the	association	

was	replicated,	but	was	not	shown	to	be	independent	of	established	risk	factors.	This	may	reflect	the	

broad	 inclusion	 criteria,	 which	 are	 likely	 to	 weaken	 associations	 that	 are	 stronger	 in	 a	 more	

homogenous	cohort.	For	 instance,	 it	 is	clear	 that	LAEF	may	be	associated	with	 the	rhythm	at	 the	

baseline	 scan.	 However,	 a	 risk	 stratification	 method	 needs	 to	 be	 as	 inclusive	 as	 possible,	 and	

elimination	of	subjects	in	AF	is	not	generally	feasible.	DC	cardioversion	can	clearly	be	co-ordinated	

with	MR	assessment,	but	the	time-dependent	impact	of	cardioversion	on	LV	and	LA	function	has	not	

been	detailed	sufficiently,	and	the	longer	the	MR	scan	is	delayed	post-cardioversion,	the	more	likely	

the	arrhythmia	is	to	recur.	Larger,	inclusive	studies	are	required	for	the	effective	implementation	of	

these	measures	in	the	PersAF	population.	
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Somewhat	 surprisingly,	 LA	 sphericity	 demonstrated	no	 association	with	AF	 ablation	 outcome,	 in	

contrast	to	the	findings	of	other	groups	(Bisbal	et	al.	2013).	It	is	an	attractive	index:	reproducible	and	

relatively	 intuitive	 to	 understand,	 as	 there	 is	 a	 clear	 variation	 in	 shape	 even	 to	 the	 naked	 eye.	

However,	in	this	study	there	was	no	association	with	outcome,	and	this	may	be	related	at	least	in	part	

to	 the	method	 of	 assessment.	 Bisbal	 and	 co-workers	 assessed	 sphericity	 using	 a	 non-ECG	 gated	

magnetic	resonance	angiogram	acquisition,	which	may	acquire	in	atrial	systole	or	diastole,	whereas	

in	this	study	the	sphericity	was	assessed	at	a	uniform	point	in	the	cardiac	cycle,	 in	atrial	diastole.	

However,	 derived	 sphericity	 scores	 for	 this	 study	 and	 the	 Bisbal	 study	were	 very	 similar	 (PAF:	

81.1±3.2	versus	81.4±2.95	and	PersAF:	83.3±3.3	and	82.8±3.4	respectively),	as	was	the	reliability	of	

the	measure	 (this	 study	 interobserver	 Lin’s	 concordance	 correlation	 coefficient	 ICC	 0.91,	 versus	

0.94).	 The	 sphericity	 index	 may	 be	 more	 important	 when	 assessed	 in	 atrial	 systole,	 but	 this	 is	

dependent	upon	imaging	in	sinus	rhythm.	For	the	study	described	by	Bisbal	et	al,	there	may	also	have	

been	 some	degree	of	 confounding	of	 rhythm	at	 scan	 (AF	versus	 sinus)	 and	 sphericity,	 but	 in	 the	

current	study	the	association	between	rhythm	at	scan	and	outcome	was	relatively	weak,	and	further	

investigation	is	required.	

5.5.2 Image	interrogation	
A	mean	intensity	projection	technique	was	used	in	this	study,	rather	than	a	voxel	by	voxel	(Khurram	

et	 al.	 2014;	 Oakes	 et	 al.	 2009)	 or	 maximum	 intensity	 projection	 (Malcolme-Lawes	 et	 al.	 2013)	

technique.	 A	 voxel-by-voxel	 technique	 was	 avoided	 for	 two	 reasons.	 Firstly,	 delineation	 of	 the	

epicardial	surface	of	the	LA	wall	is	difficult	and	subjective	in	many	locations:	the	roof,	floor	and	septal	

surfaces	pose	particular	difficulties,	and	publications	appear	to	include	non-myocardial	regions	such	

as	 the	 interatrial	 fold	 in	 quantification	 methods	 of	 atrial	 fibrosis	 (Khurram	 et	 al.	 2014).	 The	

delineation	of	the	margins	of	the	blood	pool	is	generally	less	subjective,	and	there	are	data	to	suggest	

that	the	atrial	wall	thickness	is	relatively	uniform	in	most	regions	(Hall	et	al.	2006).	The	degree	of	

uniformity	between	subjects	and	 locations	 requires	 further	 investigation	and	an	atlas-based	wall	

expansion	index	may	improve	image	interrogation	accuracy	(Whitaker	et	al.	2016).	Secondly,	a	voxel-

by-voxel	interrogation	adds	a	further	dimension	to	the	image	interrogation,	increasing	complexity	

where	each	location	of	the	atrial	surface	represents	a	variable	number	of	signal	intensity	values.	An	

averaging	process	is	inevitable	in	order	to	present	a	readily	interpretable	representation	of	fibrosis.	

A	maximum	intensity	projection	technique	was	avoided	as	it	has	been	demonstrated	that	areas	of	

fibrosis	are	detectable	at	below	the	blood	pool	intensity	(Khurram	et	al.	2014):	a	maximum	value,	

particularly	if	interrogation	is	performed	inside	as	well	as	outside	the	endocardial	border,	will	fail	to	

detect	any	myocardial	signal	enhancement	below	the	threshold	of	the	blood	pool.	

	

However,	 there	 is	 an	 impact	 of	 the	 mean	 intensity	 projection	 technique	 on	 the	 application	 of	

thresholds.	 In	 this	 study,	 each	 surface	point	 signal	 intensity	 value	was	derived	 as	 the	 average	of	

multiple	voxels	(median	n=2),	and	the	standard	error	of	the	mean	is	reduced	in	proportion	to	Ön.	

Consequently,	the	blood	pool	and	shell	standard	deviations	should	be	increased	by	Ön,	in	order	to	

account	for	averaging	process.	The	change	in	fibrosis	value	from	two	to	three	to	four	SD	above	the	
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shell	mean	(see	Figure	5-4)	demonstrates	the	shift	that	occurs	with	such	a	change	in	threshold	values,	

and	 further	 correction	 would	 be	 required	 to	 allow	 comparison	 of	 absolute	 values	 between	

techniques.	 Such	 a	 correction	was	 not	 felt	 to	 be	 necessary	 at	 the	 outset	 as	 the	 absolute	 fibrosis	

percentages	 vary	widely	 between	 studies.	 The	 crossover	 point	 for	 hazard	 ratio	 (from	 below-	 to	

above-average	cohort	risk)	was	approximately	35%	for	Khurram	et	al.	(Khurram	et	al.	2015)	and	

18%	for	DECAAF	(Marrouche	et	al.	2014):	and	the	discrepancy	does	not	invalidate	the	index	itself.	

Indeed,	the	weakness	of	the	correlation	observed	in	Figure	5-4	and	the	preservation	of	association	

with	outcome	presents	 the	 interesting	potential	 for	 the	synergistic	 implementation	of	multi-level	

fibrosis	 thresholds	 for	 the	same	subject.	Binarisation	of	 fibrosis	 into	scar	and	healthy	based	on	a	

single	threshold	is	clearly	not	physiological.	The	degree	of	fibrosis	heterogeneity	and	ratio	of	dense	

versus	low-grade	scar	merits	further	investigation	in	terms	of	improving	predictive	value	of	fibrosis	

assessment.	

5.5.3 Clinical	implementation	
The	aim	of	the	study	was	to	implement	multiple	CMR	indices	for	AF	recurrence	post-ablation,	with	a	

view	to	generating	a	weighted	risk	score	for	future	validation,	based	on	all	parameters	and	derived	

from	a	single	imaging	procedure.	Such	a	risk	score	would	be	extremely	valuable	clinically.	However,	

in	this	patient	cohort	only	LA	fibrosis	was	independently	associated	with	outcome.	The	study	may	

have	been	underpowered	to	detect	the	impact	of	LAEF,	LVEF	and	indexed	LA	volume,	especially	in	

the	context	of	minimal	patient	exclusion	criteria.	LA	sphericity,	as	evaluated	using	this	method,	was	

not	associated	with	outcome.	

	

The	most	useful	outcome	would	be	a	reliable	predictor	for	patients	highly	unlikely	to	benefit	from	a	

standard	ablation	procedure.	In	this	study,	a	fibrosis	cut-off	of	50%	had	a	positive	predictive	value	

for	recurrence	of	80%.	However,	excluding	this	cohort	would	risk	20%	of	those	patients	not	having	

a	procedure	from	which	they	might	otherwise	derive	substantial	benefit.	Furthermore,	only	17/86	

(20%)	of	patients	fell	into	this	high	fibrosis	group.		

	

Larger	 studies	 may	 show	 that	 combining	 LA	 fibrosis	 with	 other	 CMR-derived	 indices	 improves	

predictive	value	further.	Combination	with	other	CMR	indices	such	as	atrial	T1	mapping	(Beinart	et	

al.	 2013;	Ling	 et	 al.	 2014),	 LV	 scar	 (Neilan	et	 al.	 2013;	 Suksaranjit	 et	 al.	 2015),	 ventricular	post-

contrast	T1-mapping	(McLellan,	Ling,	Azzopardi,	et	al.	2014),	and	PV	size	(Hauser	et	al.	2015)	may	

improve	 overall	 performance,	 but	were	not	 investigated	 in	 this	 study.	However,	 a	multimodality	

score	 is	 most	 likely	 to	 achieve	 the	 highest	 precision,	 and	 other	 non-invasive	 non-CMR	 indices	

including	surface	ECG	dominant	frequency	(Lankveld	et	al.	2016),	CHA2DS2Vasc	score	(Jacobs	et	al.	

2015)	and	LA	deformation	patterns	on	echocardiography	(Montserrat	et	al.	2015)	may	be	combined	

with	invasive	characterisation	such	as	voltage	mapping	(Masuda	et	al.	2016)	(Kosiuk	et	al.	2015)	in	

order	to	optimise	ablation	strategies	through	the	identification	of	a	high-performance	biomarker.	
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5.5.4 Limitations	
This	study	aimed	to	implement	a	‘real-world’	assessment	of	CMR-derived	indices,	and	it	is	important	

that	 limitations	should	be	acknowledged.	Firstly,	 the	cohort	size,	and	 in	particular	 the	number	of	

recurrences	(30),	is	small	for	the	evaluation	of	so	many	indices.	However,	the	use	of	a	single	centre	

and	 two	operators	was	 important	 to	minimise	 inter-procedural	variations.	Here,	96%	of	patients	

underwent	ablation	using	contact	 force	data,	and	criteria	 for	progressing	 from	PVI	alone	to	more	

extensive	ablation	strategies	were	dependent	upon	patient	and	electrophysiological	 findings,	and	

were	not	determined	by	CMR	indices.	

	

The	use	of	arrhythmia	recurrence	as	an	outcome	measure	is	imperfect	on	a	number	of	counts.	Firstly,	

arrhythmia	 episodes	 may	 be	 missed	 without	 continuous,	 uninterrupted,	 monitoring	 techniques.	

Even	then,	the	algorithms	for	recognition	of	AF	may	fail	to	recognise	some	episodes.	Secondly,	death,	

stroke,	 symptoms	 or	 quality	 of	 life	 are	 more	 relevant	 outcome	 measures,	 but	 they	 are	 either	

thankfully	rare	or	difficult	to	measure.	Thirdly,	even	when	arrhythmic	episodes	are	captured,	there	

is	a	lack	of	consensus	on	the	definition	of	recurrence:	typical	atrial	flutter	is	frequently	defined	not	to	

constitute	a	recurrence.	This	study	has	used	the	most	widely	employed	recurrence	definitions,	in	the	

context	of	thorough	clinical	follow-up,	but	there	exists	the	possibility	that	brief	recurrences	are	likely	

to	have	been	missed	that	may	have	been	captured	by	more	comprehensive	monitoring	strategies.	

	

It	is	also	important	to	consider	whether	patients	should	only	be	scanned	in	sinus	rhythm.	Imaging	

quality	 is	 generally	 inferior	 in	 AF,	 and	 indices	 vary	 between	 sinus	 rhythm	 and	 AF.	 However,	 as	

discussed,	 imaging	 immediately	post	 cardioversion	 is	 unlikely	 to	 be	 the	most	 robust	 solution,	 or	

straightforward	 to	 implement	 in	 all	 clinical	 environments.	 Correction	 of	 CMR	 indices	 for	 heart	

rhythm	will	be	required	if	they	are	to	achieve	wider	implementation.		

5.6 Conclusion	
In	this	study,	the	individual	and	combined	predictive	value	of	CMR-derived	indices	for	AF	recurrence	

post-ablation	 were	 evaluated.	 In	 this	 real-world	 cohort,	 only	 LA	 fibrosis	 was	 found	 to	 be	

independently	associated	with	outcome.	An	effective	biomarker	 for	AF	ablation	stratification	and	

tailoring	of	treatment	is	required,	but	it	seems	likely	that	CMR	can	perform	only	a	partial	evaluation	

of	 the	 atrial	 substrate.	 Combinations	 of	 multimodality	 indices	 or	 more	 sophisticated	 tissue	

characterisation	techniques	are	required	in	order	to	further	improve	pre-ablation	assessment.		
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6 INTRA-PROCEDURAL	IMAGING:	
MAGNETIC	RESONANCE	GUIDED	
ABLATION	OF	TYPICAL	RIGHT	ATRIAL	
FLUTTER	

6.1 Contributions	
All	data	(ex-vivo,	pre-clinical	and	clinical)	were	published	for	the	first	time	in	a	single	manuscript	

(Henry	 Chubb	 et	 al.	 2017),	with	 the	 intention	 that	 the	MR-EP	 system	was	 presented	 as	 a	 single	

narrative.	The	narrative	has	been	maintained	for	this	chapter,	but	it	is	important	to	be	clear	regarding	

my	contribution	to	the	work	detailed	below.		

	

The	ex-vivo	technical	validation	work	was	performed	in	Germany	by	Dr	Steffen	Weiss	and	Dr	Sascha	

Krueger,	who	also	performed	the	analyses.	I	have	presented	these	results	in	my	own	words	and	with	

my	own	 interpretation.	The	 in-vivo	 technical	validation	work,	porcine	 thigh	muscle	ablation,	was	

performed	in	the	USA	by	the	Imricor	team.	For	this	work,	I	obtained	the	raw	data	and	performed	my	

own	analyses,	on	account	of	 the	critical	 relevance	of	 lesion	 formation	 in	 the	 light	of	atrial	 flutter	

recurrence.	I	have	presented	the	results	in	my	own	words.	The	pre-clinical	data	was	collected	prior	

to	the	start	of	my	PhD,	co-ordinated	by	Dr	James	Harrison	and	performed	in	Aarhus	in	Denmark.	

Initial	analysis	was	performed	by	James	Harrison,	and	the	text	has	been	written	by	me	based	upon	

his	detailed	accounts.	I	co-ordinated	and	ran	the	clinical	study,	including	MHRA	and	ethical	approval,	

recruitment	of	all	patients,	management	of	the	system	set-up	throughout	the	procedures,	follow-up	

and	scan	at	3months	and	all	data	analysis.	

6.2 Aims	
To	document	 the	pre-clinical	development	and	clinical	 implementation	of	 an	MR-guided	ablation	

system	with	active	catheter	tracking.		

6.3 Introduction	
Over	 the	 last	 decade,	 centres	 worldwide	 have	 sought	 to	 establish	 the	 core	 technologies	 and	

techniques	for	MR-guided	electrophysiological	procedures	(MR-EP).		Building	upon	the	principles	of	

interventional	MR	procedures	(Razavi	et	al.	2003),	platforms	have	been	developed	that	are	capable	

of	 performing	 diagnostic	 and	 interventional	 electrophysiological	 (EP)	 procedures	 in	 an	 MR	

environment	in	animals	(Lardo	et	al.	2000;	Nazarian	et	al.	2008;	Dukkipati	et	al.	2008;	Schmidt	et	al.	

2009;	Hoffmann	et	 al.	 2010;	Nordbeck	 et	 al.	 2012;	Ganesan	 et	 al.	 2012;	Ranjan	 et	 al.	 2012;	 S.	O.	

Oduneye	et	al.	2015)	and	humans	(H.	Chubb	et	al.	2014;	Nazarian	et	al.	2008;	Sommer	et	al.	2012;	

Grothoff	et	al.	2014;	Hilbert	et	al.	2015).	Whilst	relatively	simple	in	concept,	MR-EP	presents	a	range	
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of	 complex	 technical	 challenges.	 Most	 obviously,	 the	 operating	 environment	 is	 within	 a	 strong	

magnetic	 field,	 and	 therefore	 the	use	of	magnetic	material	 is	 severely	 curtailed.	Other	 important	

challenges	 include	 radiofrequency	 (RF)	 safety,	 gradient	 field	 safety,	 and	minimisation	 of	mutual	

electromagnetic	 interference	 between	MRI	 and	EP	 components.	 All	 this	must	 be	 achieved	whilst	

maintaining	 the	 multiple	 functions	 of	 the	 ablation	 catheter	 (manoeuvrability,	 position	 tracking,	

measurement	 of	 low	 amplitude	 intracardiac	 potentials,	 pacing,	 temperature	 sensing,	 RF	 ablation	

energy	delivery).	Equally	 importantly,	MR	imaging	with	various	suitable	contrasts	and	MR	device	

tracking	 must	 be	 developed	 and	 combined	 into	 a	 clinically	 viable	 workflow	 that	 replaces	

conventional	fluoroscopy	and	exploits	the	unique	capabilities	of	MR	for	imaging	of	cardiac	anatomy	

and	arrhythmia	substrate.		

	

On	account	of	these	challenges,	overall	progress	in	the	field	of	MR-EP	has	been	relatively	slow.	It	has	

been	 possible	 to	 demonstrate	 use	 of	 ablation	 catheters	 within	 MR-scanners	 (Lardo	 et	 al.	 2000;	

Nazarian	et	al.	2008;	S.	O.	Oduneye	et	al.	2015),	performance	of	ablation	in	animals	(Schmidt	et	al.	

2009;	Hoffmann	et	al.	2010;	Nordbeck	et	al.	2011;	Ganesan	et	al.	2012;	Ranjan	et	al.	2012)	and	of	MR-

guided	ablation	of	atrial	flutter	in	humans	(Grothoff	et	al.	2014;	Hilbert	et	al.	2015;	Nordbeck	et	al.	

2012).	However,	in	order	to	make	the	leap	from	research	to	viable	clinical	tool,	the	realisation	of	RF-

safe	 active	 tracking	 in	 a	 clinical-grade	 catheter	 is	 paramount.	 Passive	 tracking	 relies	 upon	 MR	

visualisation	of	the	ablation	catheter	and	is	therefore	slow	and	prone	to	localisation	errors.	Active	

tracking	enables	automation	of	the	tracking	of	the	catheter,	freeing	the	operator	to	work	in	real-time	

throughout	the	cardiac	target	field.		

	

The	achievement	of	active	tracking	opens	up	all	the	strengths	of	fast	electroanatomic	mapping	(EAM),	

including	local	activation	time	(LAT)	mapping	and	voltage	mapping,	which	may	then	be	combined	

synergistically	with	real-time	 imaging	of	 cardiac	anatomy,	arrhythmia	substrate	and	surrounding	

structures.	This	study	documents	the	development	of	the	first	MR-guided	electrophysiology	platform	

using	active	catheter	tracking	for	ablation	of	arrhythmias	from	development	to	pre-clinical	validation	

to	clinical	translation.		

	

6.4 Methods	
The	 technical	 development	 of	 the	 underlying	 technologies	 for	 the	MR-EP	 catheter	 and	 guidance	

platform	was	performed	between	2004	and	2010.		This	study	details	the	pre-clinical	optimisation,	

testing	and	system	validation	(2010-2013)	and	clinical	studies	with	medium	term	follow-up	(2014-

2015).	Approximately	9	months	after	the	start	of	the	clinical	study,	the	system	that	was	developed	

and	validated	was	made	available	to	a	second	group,	who	started	clinical	studies	in	2015	and	have	

recently	published	acute	 results	 of	 their	 first	 six	 cases	 (Hilbert	 et	 al.	 2015).	However,	 this	paper	

describes	 the	 technical	developments,	 their	 integration	 into	 a	 clinical	 system,	 as	well	 as	 the	pre-

clinical	validation	and	acute	and	medium	term	results	in	patients.		
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6.4.1 MR-EP	setup	
The	 working	 MR-EP	 setup	 combined	 a	 standard	 clinical	 1.5	 Tesla	 MR	 scanner	 (Achieva,	 Philips	

Healthcare,	Best,	Netherlands),	a	clinical	patient	monitoring	system	suitable	for	MR	use	(Expression,	

Invivo,	Gainsville,	FL,	USA),	a	standard	clinical	RF	generator	(IBI	1500,	St.	Jude	Medical,	St.	Paul,	MN)	

with	 an	 investigational	 EP	 recording	 system	 specifically	 designed	 for	 MR	 use	 (Horizon,	 Imricor	

Medical	Systems,	Burnsville,	MN,	USA),	investigational	MR	electrophysiology	and	ablation	catheters	

(Vision	Ablation	Catheter,	Imricor	Medical	Systems,	Figure)	and	a	novel	MR-EP	guidance	platform	

for	mapping	and	ablation	of	cardiac	arrhythmias	(Interventional	MRI	Suite	(iSuite),	Philips	Research,	

Hamburg,	Germany)	(Figure	6-2).		

	

	

Figure	6-1.	MR-EP	Imricor	investigational	devices	

(A)	Investigational	ablation	catheter	(Vision	Catheter,	Imricor)	and	(B)	Horizon	Digital	

Amplifier	Stimulator	(DAS)	connected	to	ablation	catheter.	(C)	Detailed	view	of	ablation	

tip	 with	 (D)	 stripped	 back	 view.	 Arrows	 indicate	 location	 of	 two	 miniature	 solenoid	

receiver	coils.	

	

6.4.2 MR-compatible	ablation	catheter		
An	irrigated	9F	deflectable	MR-EP	mapping	and	ablation	catheter	(Vision,	Imricor	Medical	Systems)	

was	 designed	 for	 this	 study,	 equipped	with	 a	 unidirectional	 deflectable	 tip	 (D-curve)	 utilizing	 a	

polymer	pull	cable.	The	electrodes	were	gold,	rather	than	platinum,	in	order	to	reduce	the	MR-artifact	

(3.5mm	 tip	 electrode	 and	 ring	 electrode),	 and	 the	 catheter	 shaft	 was	 reinforced	 with	 polymer	
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braiding	providing	torque	response.	Ferromagnetic	materials	were	virtually	eliminated	except	for	

the	miniature	tuning	capacitors	used	to	tune	the	tracking	coils	to	the	scanner	frequency.	MR	RF	safety	

was	ensured	through	multiple	engineering	solutions	for	cable	and	device	configurations.	Tracking	

coils	 (see	6.4.3)	were	connected	via	 transformer	cables	with	 transformers	deliberately	 located	 to	

minimize	coil	heating,	(Steffen	Weiss	et	al.	2005;	Steffen	Weiss	et	al.	2011).	For	the	catheter	electrode	

wires,	 an	 RF	 winding	 structure	 was	 used	 that	 passes	 small	 intracardiac	 electrogram	 (IEGM)	

potentials,	 larger	 pacing	 stimuli,	 and	 high	 power	 RF	 ablation	 energy,	 whilst	 simultaneously	

presenting	a	high	impedance	around	the	Larmor	frequency	at	1.5T	(64MHz).	Temperature	sensing	

was	facilitated	by	a	fibre-optic	cable	utilizing	a	fibre	Bragg	grating	at	its	tip.	Gradient	field	safety	was	

provided	 by	 a	 combination	 of	 the	 high	 resistivities	 and	 the	 Horizon	 MR-EP	 Digital	 Amplifier	

Stimulator	(DAS-	Figure	6-1B)	
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Figure	6-2.	MR-EP	setup.	

	IEGM:	intracardiac	electrogram.
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6.4.3 Active	catheter	tracking	
The	 investigational	 catheter	was	 equipped	with	 two	miniature	2.5mm	solenoid	MR	 receive	 coils,	

positioned	2mm	and	11mm	proximal	to	the	ring	electrode	(Figure	S1(D)),	and	7.75mm	and	15.5mm	

proximal	to	the	ablation	tip.	The	receive	coils	were	permanently	tuned	to	the	scanner	frequency	of	

63.87MHz.	The	tracking	sequence	was	a	modified	Fast	Field	Echo	(FFE)	sequence	(10Hz	tracking	

rate),	acquiring	signal	from	the	blood	around	the	coils	and	the	system	was	capable	of	tracking	up	to	

three	 catheters	 simultaneously	 (TR	 5.1msec,	 TE	 2.6msec,	 in-plane	 resolution	 0.83mm,	 flip	 angle	

10degrees,	 acquiring	 three	mutually	 orthogonal	 k-space	 lines	 through	 k0,	 along	 the	 system	main	

axes).	A	 relaxation	pause	was	added	 following	 the	 three	 readouts,	 giving	a	 tracking	 frequency	of	

10Hz.	

	

The	 catheter	was	 connected	 to	 a	 catheter	 interface	module	 (Horizon	 Tracking	 Interface,	 Imricor	

Medical	Systems),	comprising	pre-amplifiers	for	the	MR	tracking	signal	and	RF	safety	circuitry,	which	

in	turn	was	connected	to	a	coil	connector	of	the	Achieva	MR	scanner.	Robustness	and	accuracy	of	

tracking	 was	 improved	 using	 orthogonal	 dephasing	 gradients	 in	 the	 MR	 tracking	 sequence,	 for	

background	signal	suppression	(Charles	L.	Dumoulin	et	al.	2010),	and	a	dedicated	evaluation	of	the	

spatial	projections	of	the	micro	coil	signal	for	increased	accuracy	(see	3.4.2).			

	

The	 tracking	 signal	 enabled	 the	 localization	 of	 the	 two	 tip	 coils	 in	 three	 dimensions.	 Using	 this	

information,	 the	 location	of	 a	3D	model	of	 the	 catheter	 tip	was	displayed	on	 the	 image	guidance	

platform	 and	 overlaid	 on	 a	 pre-acquired	 balanced	 steady	 state	 free	 precession	 3D	 whole	 heart	

(bSSFP-3DWH)	dataset.		

6.4.4 Electrophysiology	recording	system		
The	Horizon	system	(Imricor	Medical	Systems,	Burnsville,	MN)	is	an	MR-Conditional	EP	recording	

system	with	 an	 integrated	 stimulator	 that	 monitored,	 amplified,	 filtered	 and	 digitized	 the	 IEGM	

signals	 from	 the	 investigational	 catheters,	 and	 the	 ECG	 signals	 from	 the	 Invivo	 patient	monitor.	

Horizon	was	also	used	to		generate	pacing	stimuli	and	calculated	the	temperature	measured	at	the	

fibre	Bragg	grating	embedded	in	the	tip	of	the	ablation	catheter.	The	system	acted	as	an	interface	for	

RF	energy	delivery	(including	ablation	return	electrode)	and	to	the	iSuite	image	guidance	system	for	

electroanatomical	mapping.	The	DAS	was	 located	within	 the	scanner	room,	and	 the	Horizon	host	

computer	and	display	module	were	located	in	the	control	room.	

	

RF	energy	from	a	commercial	RF	generator	(IBI	1500,	St	Jude	Medical)	was	filtered	in	order	to	reduce	

imaging	artifact	and	interference.	Digitized	IEGM	and	ECG	data	were	transmitted	to	the	Horizon	host	

computer	 in	 the	 scanner	 control	 room	 via	 fiber	 optic	 cable,	 where	 IEGM,	 ECG,	 temperature,	

impedance,	pacing	parameters	and	status,	RF	power,	and	ablation	duration	data	were	displayed	in	

real	 time	 on	 the	 Horizon	 display	module	 (Figure	 6-4).	 Pacing	 stimuli	 could	 be	 delivered	 to	 any	
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connected	electrode	pair.	IEGM	timing	measurements	were	made	manually	and	were	transmitted	via	

a	dedicated	Ethernet	cable	to	the	iSuite	host	computer.	

	

6.4.5 iSuite	image	guidance	platform	
The	 iSuite	 (Philips	 Research,	Hamburg,	 Germany)	 image	 guidance	 platform	 included	 a	 computer	

located	 in	 the	MR	control	 room	with	a	custom	software	application,	a	 software	patch	 for	 the	MR	

scanner,	 and	 an	MR-conditional	 foot	pedal	 located	next	 to	 the	 scanner.	The	 iSuite	 computer	was	

connected	to	the	MR	scanner	and	the	screen	output	of	the	computer	was	repeated	on	a	monitor	next	

to	 the	 scanner.	 A	 foot	 pedal	was	 connected	 to	 the	 computer	 via	 a	 cable	 equipped	with	 filters	 to	

remove	RF	noise	and	maintain	MR	image	quality.	All	functions	of	the	iSuite	could	be	controlled	from	

the	computer,	with	simultaneous	control	of	the	imaging	mode	(real-time	imaging	or	active	catheter	

tracking)	 via	 the	 foot	 pedal.	 The	 iSuite	 provided	 visualisation	 of	 3D	 datasets	 by	 multi-planar	

reformatting	 (MPR)	 of	 2D	 slices	 in	 user-defined	 orientations,	 or	 by	 surface	 models	 created	 by	

segmentation	of	anatomical	structures.	The	positions	of	the	tips	of	the	EP	catheters	were	projected	

onto	 the	 surface	model	 view	and	 the	MPR	 slice	position	 automatically	updated	 to	 show	 relevant	

views	(Figure	6-3A).		

	

There	was	also	the	facility	to	interleave	real-time	and	cine	MR	image	slices,	with	slice	orientation	

calculated	automatically	 to	 include	the	catheter	shaft	and	demonstrate	 the	catheter-	myocardium	

interface.	The	scan	plane	was	automatically	modified	to	ensure	it	was	perpendicular	to	the	wall	of	

the	heart	to	give	an	accurate	representation	of	the	underlying	morphology	(Steffen	Weiss	et	al.	2013;	

Voigt	et	al.	2013)	(Figure	6-3B).	Cine	imaging	parameters	were	TR	3.8ms,	TE	1.9ms,	flip	angle	45	

degrees,	in-plane	resolution	1.4x1.4mm2,	slice	thickness	8mm,	30	cardiac	phases.	Real	time	imaging	

was	 performed	 using	 a	 balanced	 fast	 field	 echo	 sequence	 (bFFE).	 Acquisition	 parameters	 were	

typically	 TR	 3.0ms,	 TE	 1.5ms,	 flip	 angle	 45degrees,	 slice	 thickness	 8mm,	 in	 plane	 resolution	

2.3x2.3mm2,	SENSE	factor	2,	frame	rate	8/s.	

	

All	electrical	activation	data	was	acquired	during	CS	pacing.	For	each	sampling	point,	the	time	delay	

from	the	pacing	artifact	to	the	local	RA	electrogram	was	measured	on	the	EP	recording	system	and	

automatically	 transmitted	 to	 the	 image	guidance	platform	to	produce	a	conventional	 color-coded	

LAT	map	on	the	RA	shell	(Figure	6-3A).	
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Figure	6-3.	iSuite	Visualisation.		

A:	 Screenshot	 demonstrating	 three	 multiplanar	 reconstruction	 views,	 with	 projected	

ablation	catheter	(red)	and	coronary	sinus	catheter	(green)	positions.	The	3D	mesh	shows	

local	activation	time	map	 for	right	atrium.	Red	dots:	ablation	 lesions	delivered.	Purple	

dots:	planned	ablation	sites.	B-D:	Still	frames	from	cine	MR	acquisitions	during	an	ablation	

procedure.	The	minimal	impact	of	catheter	related	artefact	on	the	catheter-myocardium	

interface	should	be	noted.	Ablation	catheter	(white	arrow)	at	tricuspid	valve	annulus	(B),	

midway	along	cavotricuspid	isthmus	(C)	and	at	the	prominent	Eustachian	ridge	(D).	
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Figure	6-4.	Intracardiac	electrograms	recorded	during	ablation	procedure.		

Top	 left:	double	potential	on	 the	ablation	 line	 (102msec),	with	corresponding	catheter	

position	 shown	 top	 right	 (white	 arrow,	 ablation	 points	 in	 red).	 Bottom	 left:	 septal	 to	

lateral	 conduction	 delay	 (160msec)	 at	 end	 ablation,	 corresponding	 catheter	 position	

shown	bottom	right.	

6.4.6 Ex-vivo	technical	development	

6.4.6.1 Magnetically	induced	torque	
The	study	was	performed	at	MR:comp	GmbH	(Gelsenkirchen,	Germany),	according	to	ASTM	F2213-

06.	The	torque	was	measured	by	using	a	torsional	spring,	with	the	investigational	catheter	placed	

centrally	 on	 a	holder,	 connected	 rigidly	 to	 the	 torsional	 spring.	The	 apparatus	was	placed	 in	 the	

center	of	the	magnet	of	the	MR	bore	((1.5T	Intera,	Philips	Medical	Systems)	where	the	magnetic	field	

was	uniform.	The	torque	was	determined	from	the	measurement	of	the	deflection	angle	of	the	holder	

from	 its	 equilibrium	 position,	 and	was	measured	 at	 36	 angular	 positions,	with	maximum	Δθ	 17	

degrees.	

6.4.6.2 Magnetically	induced	force		
The	study	was	performed	at	MR:comp	GmbH,	according	to	ASTM	F2052-06e1.	The	investigational	

catheter	 was	 suspended	 by	 a	 string	 at	 the	 point	 in	 the	 MR	 bore	 that	 produced	 the	 greatest	

magnetically	induced	deflection	(1.5T	Intera,	Philips	Medical	Systems).	Measurements	were	made	at	

two	locations:	maximum	technically	accessible	spatial	gradient	(|ΔB|)	(5.68T/m),	and	static	spatial	

magnetic	field	gradient	product	(|B|.|ΔB|)	(7.76	T2/m).	The	angular	deflection	of	the	string	from	the	

vertical	was	measured,	and	the	force	calculated..	
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6.4.6.3 RF	heating	
The	study	was	performed	 in	a	Philips	 Intera	1.5T	scanner	 in	a	mobile	MRI	unit	 leased	 from	DMS	

Health	Technologies	(Maple	Grove,	Minnesota),	using	a	phantom	that	met	the	specification	of	ASTM	

F2182-02.	A	balanced	turbo	field	echo	scan	was	selected	on	account	of	high	reported	SAR	(TR	4.8ms,	

TE	2.4	ms,	Whole	body/level	4.0W/kg),	with	scan	duration	800seconds.	Temperature	was	assessed	

using	 Neoptix	 (Québec,	 Canada)	 T1	 fibre	 optic	 temperature	 sensors,	 and	 Neoptic	 Reflex	 signal	

conditioner	for	receiving	and	recording	temperature	measurements.	

In	stage	1,	saline	was	used	to	determine	the	insertion	length	resulting	in	maximum	temperature	rise,	

with	 temperature	measurements	 taken	at	5cm	 intervals	along	a	curved	 trajectory.	Once	 this	was	

ascertained	 (40-45cm	 insertion	 depth),	 the	 test	media	was	 changed	 to	 gelled	 saline,	 in	 order	 to	

eliminate	 thermal	 convection	 (conductivity	 0.48S/cm),	 and	 temperature	 rise	 assessed	 with	 the	

investigational	catheter	placed	at	the	assigned	location	for	maximum	temperature	rise.	

6.4.6.4 Active	catheter	tracking	
The	 study	was	 performed	 in	 Hamburg,	 Germany	 using	 1.5T	 Achieva	MR	 Scanner	 (Philips).	 	 The	

investigational	 catheter	 was	 suspended	 by	 a	 dedicated	 device	 holder	 and	 positioned	 in	 a	 bowl	

phantom	 filled	 with	 standard	 phantom	 liquid.	 Subsequently,	 the	 catheter	 was	 fixed	 in	 different	

orientations	to	assess	the	influence	of	read-out	and	B0	direction.	For	each	orientation,	MR	imaging	

and	 active	 tracking	 measurements	 were	 used	 to	 estimate	 the	 tip	 position	 and	 direction	

independently.	 The	 difference	 in	 catheter	 position	 as	 derived	 from	 imaging	 and	 tracking	

measurements	 was	 evaluated	 as	 tracking	 accuracy.	 The	 standard	 deviation	 of	 repeated	 active	

tracking	measurements	was	evaluated	as	tracking	precision.	Imaging	was	performed	using	a	turbo	

spin	 echo	 (TSE)	 single	 slice	 protocol	 (TR	 158ms,	 TE	 5.8ms,	 TSE	 factor	 11,	 Tshot	 64ms,	 in-plane	

resolution	0.6x0.6mm,	slice	thickness	1.5mm),	and	taken	to	be	gold	standard	of	tip	position.	True	tip	

position	on	MR	imaging	was	degraded	by	metal	artefact	related	to	the	gold	catheter	tip,	and	therefore	

a	wooden	pin	was	aligned	parallel	to	the	catheter,	with	identical	tip	position	in	a	direction	parallel	to	

catheter	axis,	and	was	used	to	calculate	exact	tip	location.	

6.4.7 RF	lesion	formation-	porcine	thigh	model	
Procedures	were	performed	at	the	Animal	Preclinical	Services	Laboratory,	Minneapolis,	MN,	USA,	

registered	 with	 the	 United	 States	 Department	 of	 Agriculture	 to	 conduct	 research	 in	 laboratory	

animals.	 The	 studies	 were	 reviewed	 and	 approved	 by	 the	 institutional	 Animal	 Care	 and	 Use	

Committee.	Five	Yorkshire	Cross	pigs	were	used.	Under	anaesthesia,	a	cut-down	of	the	lateral	thigh	

muscle	was	performed.	The	skin	was	tented	to	create	a	cradle	to	pool	blood	or	saline	during	testing,	

and	circulating	blood	was	added	to	the	cradle	during	the	application	of	RF	energy.		

	

The	study	was	performed	as	an	open,	unmasked	study.	Each	animal	received	standardised	irrigated	

(17ml/min)	RF	ablation	with	either	the	control	catheter	(Biosense	Webster	Thermocool,	Diamond	

Bar,	CA,	USA)	or	 the	 investigational	 catheter	 (Vision	Catheter),	using	 IBI	T1500	RF	generator	 (St	

Jude).	A	 total	 of	76	ablation	 lesions	were	performed	 for	 each	 catheter,	with	 each	 thigh	 receiving	
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lesions	solely	from	control	or	test	catheter.	The	following	ablation	parameters	were	selected	to	cover	

the	range	of	settings	that	may	be	used	for	clinical	electrophysiology	studies	(Table	6-1).	

	
Duration	

30	seconds	 60	seconds	 90	seconds	 120	seconds	

Power	(W)	

20	 20	 20	 20	

25	 25	 25	 25	

30	 30	 30	 30	

35	 35	 35	 35	

40	 40	 40	 40	

45	 45	 45	 45	

50	 50	 50	 50	

Table	6-1.	Duration	and	power	settings	evaluated	 for	 the	Vision	ablation	catheter	and	

Thermocool	catheter.	

Following	all	treatment,	 femoral	arterial	sheaths	were	placed	to	administer	TTC	(2,3,5-Triphenyl-

2H-tetrazolium	 chloride)	 to	 the	 lesion	 sites,	 and	 euthanasia	 was	 performed	 following	 adequate	

circulation.	The	thigh	was	then	isolated	and	immersed	in	10%	NBF.	Measurements	were	made	of	

lesion	surface	length,	surface	width	and	depth	following	incision	along	the	lesion	axis.	

6.4.8 Subjects	

6.4.8.1 Pre-clinical	study	
The	complete	MR-EP	ablation	system	was	tested	prospectively	in	five	Danish	Landrace	pigs	(Aarhus	

University	Hospital,	Skejby,	Denmark,	approximately	40kg).	Studies	complied	with	institutional	and	

national	guidelines	for	the	care	and	use	of	animals.		

6.4.8.2 Clinical	study	
Ten	patients	with	typical	atrial	flutter	were	consented	for	ablation	of	isthmus	dependent	atrial	flutter	

under	MR	guidance.	Inclusion	criteria	were	age	18-80	years	undergoing	first	time	clinically	indicated	

ablation	 therapy	of	documented	paroxysmal	or	persistent	 counter-clockwise	 (typical)	 right	atrial	

flutter.	Procedures	were	performed	on	uninterrupted	warfarin	or	interrupted	rivaroxaban.	Exclusion	

criteria	included	any	contraindication	to	MR	imaging	or	GBCA,	previous	ablation,	previous	cardiac	

surgery	 and	 any	 intracardiac	 mass	 including	 thrombus	 or	 myxoma.	 Patient	 characteristics	 are	

summarised	in	Table	6-2.	
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	 Value	

Age/	years	 62.1	(±14.5)	

Weight/	kg	 82.7	(±13.6)	

BMI/	kg/m2	 26.8	(±3.9)	

Male	Gender	 8	(80%)	

Significant	Comorbidities	 7	(70%)	

Flutter	at	Procedure	 7	(70%)	

Structural	Heart	Disease	 0	

Left	atrial	volume/ml	 121	(±48)	

Right	atrial	volume/ml	 131	(±72)	

LV	ejection	fraction	 64%	(±5.2%)	

Table	6-2.	Baseline	patient	characteristics.		

BMI:	body	mass	index.	

One	further	subject	was	accepted	for	the	study,	but	did	not	undergo	an	interventional	procedure.	The	

subject	met	all	 inclusion	criteria,	met	no	exclusion	criteria	and	was	fully	informed	and	consented.	

However,	relative	contra-indications	were	present,	with	a	raised	body	mass	index,	borderline	low	

left	ventricular	function	and	previous	right	hip	replacement.	The	patient	was	aware	that	it	might	not	

be	possible	to	proceed	to	ablation	on	the	day	of	the	procedure,	and	following	careful	discussion	it	

was	felt	that	if	there	were	any	instability	under	anaesthesia,	the	risks	of	performing	the	procedure	in	

an	 MRI	 environment	 were	 likely	 to	 outweigh	 any	 potential	 benefits.	 On	 clinical	 grounds	 a	

transesophageal	 echocardiogram	 was	 performed	 under	 general	 anaesthetic,	 with	 detailed	 CMR	

imaging	 to	 review	 coronary	 arteries,	 ventricular	 function	 and	 ventricular	 scar.	 However,	

cardiovascular	 stability	 under	 anaesthesia	 was	 poor	 and	 LV	 function	 was	 worse	 than	 on	 pre-

procedural	assessment,	and	therefore	the	interventional	procedure	was	not	performed.	The	subject	

has	subsequently	had	a	standard	CTI	ablation.	This	subject	has	not	been	included	in	further	analysis	

and	the	local	monitoring	team	was	informed	of	the	decision	not	to	proceed	to	ablation	under	MR-

guidance.	

	

The	clinical	study	was	performed	at	the	interventional	MR	suite,	St	Thomas’	Hospital	(London,	UK),	

approved	 by	 the	 UK	 Health	 Research	 Authority	 (NRES	 Committee	 East	 of	 England,	 reference	

14/EE/0031,	UKCRN	Study	ID	14226),	and	informed	consent	was	obtained	from	all	patients.	
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6.4.9 Pre-clinical	system	evaluation	
The	procedure	was	performed	in	the	MR	scanner	without	fluoroscopy.	Animals	were	pre-sedated	

using	 azaperone	 (4	mg/kg)	 and	midazolam	 (0.5	mg/kg).	 General	 anaesthesia	was	 induced	 using	

intravenous	 ketamine	 (5	 mg/kg)	 and	 midazolam	 (0.5	 mg/kg),	 and	 maintained	 with	 propofol	

(3mg/kg/hr)	 and	 fentanyl	 (15mcg/kg/hr).	 Animals	were	 intubated	 and	mechanically	 ventilated.	

Two	 9F	 sheaths	 were	 placed	 percutaneously	 in	 the	 right	 femoral	 vein,	 followed	 by	 a	 bolus	

intravenous	injection	of	100	IU/kg	heparin.		

6.4.9.1 Pre-clinical:	Pre-ablation	Imaging	
A	 bSSFP-3DWH	 dataset	 was	 acquired	without	 contrast	 in	 order	 to	 provide	 a	 ‘road-map’	 for	 the	

procedure.	 An	 acquisition	 window	 in	 ventricular	 diastole	 was	 selected,	 with	 maximum	window	

180msec	(sagittal	orientation,	2x2x2mm	resolution,	(reconstructed	1.3x1.3x1.3mm),	T2	preparation,	

pencil	respiratory	navigation,	five-channel	phased	array	coil).	The	RA	was	manually	segmented	from	

the	bSSFP-3DWH	using	freely	available	3D	medical	image	segmentation	software	(itk-SNAP	Version	

2.2.0)	and	the	shell	imported	into	iSuite	to	act	as	a	roadmap	for	mapping	and	ablation.	

	

As	 a	 baseline	 for	 post-ablation	 imaging,	 T2-weighted	 (T2W)	 images	were	 also	 acquired	 prior	 to	

ablation	 (multi-slice	Turbo	 Spin	Echo	 (TSE),	 double	 inversion	 recovery	 (DIR)	 pre-pulse,	 SPIR	 fat	

suppression,	echo	time	(TE)	45ms,	repetition	time	(TR)	twice	the	cardiac	cycle	length,	1.5x1.5	mm	

(reconstructed	1.0x1.0	mm),	slice	thickness	3mm).		

6.4.9.2 Pre-clinical:	electro-anatomical	mapping	and	ablation	
Active	catheter	tracking	was	used	to	place	investigational	catheters	in	the	coronary	sinus	(CS)	and	

RA,	using	the	segmented	roadmap.	Activation	data	was	acquired	during	CS	pacing.	For	each	sampling	

point,	the	time	delay	(LAT)	from	the	pacing	artifact	to	the	local	RA	electrogram	was	measured	on	the	

EP	recording	system	and	automatically	 transmitted	 to	 the	 image	guidance	platform	 to	produce	a	

color-coded	activation	map	on	the	RA	shell.	

	

Point-by-point	RF	ablation	(35W,	48oC,	60s	per	lesion,	17	ml/min	irrigation)	was	then	performed	

from	the	superior	vena	cava	(SVC)	to	the	inferior	vena	cava	(IVC)	along	the	posterior	wall	of	the	RA	

and	the	location	of	each	ablation	point	recorded	on	the	RA	shell.	A	linear	set	of		RA	ablation	lesions,	

rather	 than	CTI	 line,	was	chosen	due	to	 the	propensity	of	swine	to	develop	VF	 in	response	to	RV	

ablation.	The	foot	pedal	was	used	to	allow	rapid	switching	from	active	catheter	tracking	(for	catheter	

navigation)	to	real-time	imaging	(to	confirm	the	tracked	catheter	position	before	each	RF	delivery).		

	

Following	completion	of	the	intercaval	ablation	lesion	and	post-ablation	MR,	the	activation	map	was	

repeated	according	to	the	same	protocol.	



CMR	imaging	in	EP	
	

Intra-Procedural	Imaging:	Magnetic	Resonance	Guided	Ablation	of	Typical	Right	Atrial	Flutter	 131	

6.4.9.3 Pre-clinical:	post-ablation	imaging	and	histology	
T2W	imaging	was	repeated	 immediately	post-ablation	with	 identical	parameters.	3D	LGE	imaging	

was	 then	 performed	 approximately	 20minutes	 after	 administration	 of	 0.2ml/kg	 Gadovist	 (Bayer	

HealthCare	 Pharmaceuticals,	 Berlin,	 Germany).	 (Respiratory-navigated,	 ECG-triggered	 inversion	

recovery	turbo	field	echo	acquisition,	1.3x1.3x4	mm,	reconstructed	to	0.6x0.6x2	mm	(TE	3.0ms	TR	

6.2	ms,	flip	angle	25°)).		

	

Following	 procedure	 completion,	 euthanasia	 was	 performed	 using	 an	 intravenous	 bolus	 of	

phenobarbital	 (80	 mg/kg)	 and	 the	 porcine	 hearts	 were	 explanted	 and	 the	 RA	 was	 opened	 and	

photographed.	The	hearts	were	then	fixed	in	formaldehyde.	The	ablation	line	and	surrounding	tissue	

were	excised	en	bloc	and	cut	into	4mm	sections	perpendicular	to	the	ablation	line.	Each	cross	section	

was	photographed	and	then	dehydrated,	embedded	in	paraffin,	sectioned	(3μm	sections)	and	stained	

with	haematoxylin	and	eosin	for	microscopic	examination.	

6.4.10 Clinical	study	
For	the	clinical	study,	procedures	were	performed	under	general	anaesthesia.	Beyond	the	five	Gauss	

(500μTesla)	line,	two	10F	long	venous	sheaths	were	placed	percutaneously	in	the	right	femoral	vein	

and	the	patient	was	then	moved	to	the	MR	scanner	bore.		

6.4.10.1 Clinical	study:	pre-ablation	imaging	
bSSFP-3DWH	 imaging	was	 performed	without	 contrast	 as	 above	 (32-channel	 phased-array	 coil).	

Patients	in	atrial	flutter	(7/10	subjects)	at	the	start	of	procedure	underwent	DC	cardioversion	(50-

100J)	prior	to	entry	to	the	scanner	in	order	to	facilitate	cardiac	gating.	An	automated	segmentation	

technique,	 using	 a	 shape-constrained	 deformable-model,	 was	 used	 to	 derive	 the	 RA	 contour	

(SmartHeart,	 Philips	 Research,	 Hamburg,	 Germany).	 CS	 and	 IVC	 were	 delineated	 manually	 (itk-

SNAP)	and	added	to	the	cardiac	model	to	assist	the	procedure.	

	

The	length	and	morphology	of	the	CTI	were	measured	on	bSSFP-3DWH	using	the	technique	detailed	

by	Kirchhof	 et	 al	 (Kirchhof	 et	 al.	 2009).	 IVC/CTI	 angle	was	measured	 as	 the	 angle	 between	 two	

tangential	lines	placed	parallel	to	the	CTI	floor	and	the	adjacent	wall	of	the	IVC.	Measurements	were	

performed	twice	by	a	single	observer	(HC,	one	month	between	measurements)	and	once	by	a	second	

observer	(JH)	to	assess	reproducibility.	

6.4.10.2 Clinical	study:	electro-anatomical	mapping	and	ablation	
Activation	mapping	was	performed	as	above	prior	to	ablation.	A	point-by-point	RF	ablation	(35-45W,	

60s	per	lesion,	17	ml/min	irrigation)	was	performed	along	a	pre-planned	CTI	line	during	coronary	

sinus	pacing.	CTI	conduction	block	was	confirmed	by	a	superior	to	inferior	activation	pattern	at	the	

lateral	wall	on	CS	pacing,	with	LAT	mapping	repeated	following	completion	of	ablation.	Bidirectional	

block	was	confirmed	by	differential	pacing	from	two	sites	lateral	to	the	CTI	line.	
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The	protocol	allowed	a	maximum	of	two	hours	(from	first	ablation	lesion)	to	obtain	bidirectional	CTI	

block.	 For	 patients	 in	 whom	 this	 was	 not	 achieved,	 the	 subject	 was	 moved	 to	 a	 conventional	

fluoroscopy	suite	and	ablation	completed	using	a	conventional	non-irrigated	ablation	catheter	(Large	

Curve	Blazer	II,	8mm	tip	(Boston	Scientific,	Mass.,	USA))	under	fluoroscopic	guidance.	

6.4.10.3 Clinical	study:	post-ablation	imaging		
All	clinical	subjects	underwent	acute	T2W	imaging	immediately	after	ablation	(parameters	as	above).	

3D	LGE	imaging	was	performed	acutely	post-ablation	for	all	but	two	human	subjects	that	underwent	

MR-guided	ablation:	 the	 time	required	 for	procedure	completion	precluded	 late	acute	 imaging	 in	

these	two	subjects.	LGE	acquisition	parameters	were	identical	to	those	for	the	pre-clinical	study,	but	

performed	in	a	slice	orientation	parallel	to	the	CTI.	Multiple	time-separated	LGE	acquisitions	were	

performed,	and	the	dataset	commenced	at	20minutes	post-contrast	was	used	for	RF	lesion	analysis.	

T2W	 enhancement	 was	 quantified	 using	 a	 threshold	 of	 3.3	 standard	 deviations	 (SD)	 above	 the	

adjacent	right	ventricular	myocardial	signal,	and	ablation	volume	was	assessed	within	the	pseudo-

3D	dataset	using	Seg3D	(University	of	Utah,	Utah,	USA).		

	

Chronic	 lesion	 imaging	was	performed	 at	 3	months	post	 ablation.	An	ECG	 and	 respiratory	 gated	

Magnetic	 Resonance	 Angiogram	 (MRA)	 was	 performed	 using	 a	 previously	 described	 technique	

(Groarke	 et	 al.	 2014).	 This	 high	 contrast	 sequence	 was	 used	 to	 derive	 a	 mask	 of	 the	 RA	 for	

interrogation	of	the	3D	LGE	sequence	imaging	the	CTI,	acquired	along	the	axis	of	the	CTI	ablation	line	

(acquisition	 parameters	 as	 for	 acute	 LGE	 post-ablation	 imaging,	 commenced	 at	 20minutes	 post	

contrast	injection).	MR	derived	scar	was	interrogated	using	a	maximum	intensity	projection	(MIP)	

technique	 (2mm	 inside	 and	 outside	 RA	 shell),	 and	 thresholded	 on	 the	 3D	 scar	mesh	 to	 a	 signal	

intensity	of	3.3SD	above	the	blood	pool	mean	(James	L	Harrison	et	al.	2014).	The	ablated	area	of	the	

RA	floor	was	assessed	defining	the	superior	margin	of	the	RA	floor	as	the	most	inferior	axial	slice	

lying	 above	 the	 CS	 os,	 and	 inferior	 margin	 as	 the	 most	 superior	 axial	 slice	 below	 the	 RA	 floor.	

Measurements	were	performed	using	Paraview	(Kitware,	New	York,	NY,	USA)	(Figure	6-5).	
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Figure	6-5.	Assessment	of	cavotricuspid	isthmus	scar.		

A:	 the	maximum	 intensity	projection	mesh	was	 thresholded	at	3.3	 standard	deviations	

above	 the	blood	pool	mean,	 and	 the	 region	of	 the	 floor	 of	 the	 right	 atrium	defined	as	

described	 in	the	text	(B).	The	total	scarred	area	was	then	measured	(C).	 	TV:	 tricuspid	

valve,	CS:	coronary	sinus,	IVC:	inferior	vena	cava.			

	

Lesion	specific	scar	was	also	assessed	using	a	point-specific	technique.	The	catheter	tip	site	during	

RF	delivery	was	recorded	relative	to	the	bSSFP-3DWH	sequence,	and	then	referenced	to	the	chronic	

imaging	using	an	affine	registration	technique	(Rueckert	et	al.	1999).	The	registration	technique	was	

used	to	define	the	matrix	for	the	transformation	of	the	bSSFP-3DWH	during	ablation	to	the	3D	MRA	

sequence	at	chronic	imaging,	and	the	same	matrix	was	applied	to	the	RF	delivery	sites.	The	derived	

RF	lesion	sites	were	then	projected	to	the	closest	surface	on	the	3D	scar	mesh	and	the	projection	

distance	and	associated	scar	were	recorded.	The	scar	value	was	recorded	as	the	maximum	signal	

intensity	within	a	3mm	radius	of	the	projected	lesion	site	(Figure	6-6).	
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Figure	6-6.	Method	for	evaluation	of	scar	formation	at	lesion	sites.	

	A:	 derivation	 of	 rigid	 registration	 transformation.	 	 B:	 typical	 right	 atrial	 mesh,	 with	

ablation	lesion	sites	shown	as	black	dots	within	the	same	Cartesian	co-ordinate	system	

(black	 circle).	 The	 matrix	 represents	 the	 transformation	 derived	 from	 the	 rigid	

registration	(A),	which	is	applied	to	the	lesions	in	order	to	move	to	the	same	patient	space.	

C:	ablation	 lesions	are	 then	projected	 to	 the	nearest	mesh	position,	and	 the	projection	

distance	 recorder.	D:	 the	 scar	 around	 each	ablation	 lesion	 site	was	 then	 interrogated,	

using	a	3mm	radius.			

6.4.10.4 Clinical	study:	hepatic	injury	
Hepatic	 injury	was	assessed	acutely	and	at	 three	months	post	ablation.	T2-weighted	 imaging	and	

gadolinium	enhanced	imaging	were	visually	assessed,	and	graded	according	to	a	four-level	grading	

system.	Imaging	was	thresholded	at	3.3	standard	deviations	above	RV	myocardium	for	T2-weighted	

imaging,	and	3.3	standard	deviations	above	blood	pool	for	LGE.		Nil:	no	enhancement;	mild:	hepatic	

capsule	only;	moderate:	hepatic	capsule	and	 liver	<5mm	depth;	 severe:	hepatic	capsule	and	 liver	

>5mm	depth.	Chronic	scar	was	assessed	on	LGE	imaging	as	described	above.	The	liver	was	manually	

segmented	 and	 a	 maximum	 intensity	 projection	 technique	 used	 to	 interrogate	 enhancement.	

Projection	distance	was	1mm	outside	of	liver,	and	3mm	within	liver,	in	order	minimise	interrogation	

of	diaphragm,	pericardium	and	adjacent	myocardium.	

6.4.11 Statistics	
Continuous	variables	are	expressed	as	mean	±standard	deviation.	Statistical	analysis	was	performed	

using	 IBM	SPSS	Statistics	 (Version	22,	 	Armonk,	 	NY).	ANCOVA	(full	 factorial	model)	was	used	 to	
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determine	difference	of	regression	lines,	and	intra-class	correlation	coefficient	was	calculated	using	

a	two-way	mixed	model.	

	

6.5 Results	

6.5.1 Ex-vivo	technical	validation	
The	maximum	magnetically	induced	torque	and	force	on	the	investigational	catheter	at	1.5T	were	

<2.2mNm	and	<7.7mN	respectively,	well	below	regulatory	thresholds	(351mNm	and	79.5mN).	The	

maximum	temperature	rise	on	any	portion	of	the	investigational	catheter	due	to	RF	induced	heating	

was	observed	at	the	tracking	coil	locations	at	a	catheter	insertion	depth	of	45cm,	and	was	measured	

to	be	2.1°C	above	background	heating.		

	

Average	tip	displacement,	the	discrepancy	between	actively	tracked	and	gold-standard	TSE-derived	

positions,	 along	 the	 axis	 of	 the	 catheter,	 was	 0.90±0.58mm.	 The	 angular	 deviation	 of	 catheter	

orientation	from	its	true	direction	was	8.5	±3.6degrees.	

6.5.2 In-vivo	technical	validation	
In	the	assessment	of	system	RF	ablation	energy	delivery,	the	porcine	thigh	lesion	formation	using	the	

control	catheter	(Thermocool)	was	greater	per	energy	delivered	than	that	 for	 the	Vision	catheter	

0.057	mm3/J	(95%	CI	0.041	to	0.072)	versus	0.036	mm3/J	(95%	CI	0.029	to	0.044),	p=0.02).	The	

coefficient	 of	 determination	 (R2)	 for	 lesion	 formation	was	 lower	 for	 the	 control	 catheter	 (0.424	

versus	0.544)	(Figure	6-7).	

	

	

Figure	6-7.	Ablation	lesion	formation	in	a	porcine	thigh	model.		

Lesion	volume	is	plotted	against	total	delivery	energy.	
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6.5.3 System	performance	

6.5.3.1 Pre-clinical	study	
Active	catheter	tracking	was	achieved	in	all	animals,	and	the	two	investigational	MR	catheters	were	

positioned	in	the	CS	and	RA	without	the	requirement	for	fluoroscopy.	Bipolar	IEGMs	were	recorded	

with	minimal	MR	interference	and	a	LAT	map	was	created	during	CS	pacing	 in	all	animals.	Using	

active	tracking,	activation	maps	during	CS	pacing	were	created	in	all	animals	(mean	number	of	points	

34	±	5,	mean	acquisition	time	20	±	8	minutes)	prior	to	ablation.	Irrigated	RF	ablation	was	successfully	

performed	from	the	SVC	to	IVC	in	all	five	animals.	Activation	maps	following	ablation	demonstrated	

a	change	in	the	pattern	of	activation	of	the	RA,	with	activation	detour	secondary	to	the	linear	ablation	

lesion.	

	

All	 five	 animals	 survived	 until	 the	 end	 of	 the	 procedure	 and	 there	 was	 no	 evidence	 of	 cardiac	

perforation,	pericardial	effusion	or	cardiac	tamponade.		

6.5.3.2 Clinical	study	
Active	catheter	tracking,	appropriate	catheter	manipulation	and	activation	mapping	were	achieved	

in	all	10	subjects.	SmartHeart	was	capable	of	creating	a	3D	roadmap	automatically	in	all	subjects,	and	

LAT	map	(28±7	points)	created	in	24±	11minutes.	Cine	MR	imaging	was	used	to	confirm	catheter	

position	and	there	was	no	detected	discrepancy	in	projected	and	imaged	positions	(Figure	6-3B-D),	

including	during	RF	delivery.	Bipolar	EGMs	of	sufficient	quality	for	local	activation	annotation	were	

recorded	(Figure	6-4).	

	

MR-guided	RF	ablation	was	performed	in	nine	of	the	10	subjects.	Ablation	was	not	possible	for	one	

subject	due	to	a	persistent	impedance	error	detected	by	the	non-investigational	RF	generator,	later	

attributed	to	an	error	in	generator	setup.	The	procedure	was	therefore	performed	in	a	conventional	

EP	laboratory.	For	the	nine	remaining	subjects,	seven	(78%)	had	an	acutely	successful	procedure	

under	 MR	 guidance	 alone	 with	 a	 post-procedural	 transisthmus	 conduction	 time	 ranging	 from	

124msec	 to	 180msec	 (mean	 160msec).	 Two	 subjects	 (22%)	 required	 completion	 of	 the	 CTI	 line	

under	fluoroscopic	guidance,	using	a	conventional	non-irrigated	ablation	catheter	(post-MR	guided	

ablation	transisthmus	conduction	times	73	and	95	msec	respectively).	Radiation	exposure	in	patients	

who	underwent	solely	MR-guided	ablation	was	zero,	and	was	mean	90	(range	64-106)	cGy.cm2	for	

those	three	patients	who	required	conventional	fluoroscopically	guided	ablation.		

	

Total	 procedure	 time	 was	 314±54	 minutes,	 including	 the	 additional	 time	 for	 conventional	

fluoroscopically	guided	ablation	(286±29min	excluding	fluoroscopy).	Time	from	first	to	last	ablation	

lesion	 under	MR	 guidance	was	 78±40	min,	with	 an	 average	 of	 24±9	 lesions	 required	 under	MR	

guidance	(total	ablation	time	18.3±9.1	min)	(Figure	6-8).	There	were	no	significant	safety	concerns	

and	all	patients	were	discharged	within	24	hours	of	the	procedure.	
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Final	ablation	outcome	 is	 summarised	 in	Figure	6-9.	Two	subjects	had	a	 late	 recurrence	of	atrial	

flutter.	One	returned	asymptomatic	at	three	months	and	the	second	presented	symptomatic	to	the	

emergency	department.	Both	patients	underwent	a	second	ablation	procedure	under	conventional	

EAM	guidance	(CARTO	3,	Biosense	Webster/Johnson&Johnson,	USA)	with	evidence	of	low	voltage	

IEGMs	 in	 the	 region	 of	 prior	 ablation	 (Figure	 6-10).	 In	 all	 other	 patients	 there	were	 no	 further	

arrhythmias	detected	on	24-hour	tape	or	12-lead	ECG	at	3	months	follow-up.	

	

	

Figure	6-8	Clinical	study	procedural	time	breakdown.	

	(Left)	Aggregate	timeline	for	human	flutter	ablation	procedures.	(Right)	Breakdown	for	

individual	subjects.	Subjects	8	and	10	required	completion	of	MR-guided	ablation	under	

fluoroscopic	 guidance.	 Subject	 6	 had	 ablation	 performed	 under	 fluoroscopic	 guidance	

following	non-investigational	equipment	error.	
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Figure	6-9.	Flowchart	outlining	study	outcome	for	human	subjects	

	

	

Figure	6-10.	CARTO3	assessment	of	the	intracardiac	electrical	characteristics	following	

MR	guided	ablation,	for	the	two	subjects	with	atrial	flutter	recurrence.		
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Double	potentials	were	recorded	on	the	MR-guided	ablation	line,	with	reduced	bipolar	and	

unipolar	voltage	at	the	site	of	prior	ablation	and	scar	as	assessed	on	late	(3month)	CMR	

imaging	(far	right	panel).	

6.5.4 Intra-procedural	ablation	assessment	

6.5.4.1 Pre-clinical	study	
Pre-ablation,	no	appreciable	T2W	enhancement	was	seen	in	any	of	the	animals.	Post-ablation,	there	

was	increased	T2W	enhancement	and	atrial	wall	thickness	between	the	SVC	and	IVC	in	all	animals.		

6.5.4.2 Clinical	study	
Post-ablation	T2W	imaging	was	performed	at	a	mean	of	27±17	min	after	the	final	ablation	lesion.	

Mean	volume	of	CTI	T2W	enhancement	was	6.4	(±4.0)	ml	and	there	was	no	significant	correlation	

with	total	ablation	time	(R2=0.009).	Gaps	in	T2W	enhancement	along	the	ablation	line	could	not	be	

discerned	 in	 any	patient,	 and	enhancement	position	 closely	overlaid	 ablation	 lesion	 sites	 (Figure	

6-11).	Gadolinium-enhanced	imaging	was	performed	in	7	out	of	9	human	subjects	who	underwent	

MR-guided	ablation.	Early	no-reflow	in	the	CTI	region	was	seen	in	all	7	cases,	with	subsequent	LGE	

(Figure	6-11).	Again,	there	were	no	discernible	gaps	in	the	ablation	line.	
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Figure	6-11.	Acute	post-ablation	imaging.	

	(Top	four	panels)	Multiplanar	reconstruction	of	pseudo-3D	T2	weighted	MR	acquisition,	

demonstrating	 location	 of	 oedema	 (white	 arrows)	 at	 cavotricuspid	 isthmus	 following	

ablation.	Red	dots	 indicate	 location	of	radiofrequency	energy	delivery	calculated	using	

active	tracking.	(Bottom	three	panels)	gadolinium	enhanced	imaging	for	a	single	human	

subject	following	successful	ablation.	Dashed	white	arrow	indicates	cavotricuspid	isthmus	

location,	and	time	in	minutes	is	following	GBCA	administration.	Dark	regions	of	early	non-

enhancement	 (‘no	 reflow’,	 indicating	 poor	 tissue	 perfusion	 of	 gadolinium	 contrast	

following	ablation)	at	1min	become	progressively	more	enhanced	over	 the	 subsequent	

18minutes	with	slow	uptake	of	GBCA	then	sequestration	within	the	increased	extracellular	

space	related	to	radiofrequency	lesions.	(RA:	right	atrium,	LA:	left	atrium,	PA:	pulmonary	

artery)	
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6.5.5 Final	lesion	assessment	

6.5.5.1 Pre-clinical	study	
The	linear	ablation	lesion	was	inspected	macroscopically,	both	immediately	after	heart	explantation	

and	following	fixation	in	formaldehyde.	There	was	close	correspondence	between	the	iSuite	3D	RA	

shell,	showing	the	intended	location	of	ablation,	and	the	sites	directly	visualised	(Figure	6-12A	and	

B).	A	macroscopic	cross-section	through	the	ablation	line	(showing	the	typical	features	of	RF	injury	

–	a	central	zone	of	pallor	and	a	surrounding	haemorrhagic	border	zone)	and	microscopic	sections	

(stained	with	haematoxylin	and	eosin)	are	shown	in	Figure	6-12D	and	E.	Microscopic	examination	

demonstrated	histological	findings	consistent	with	RF	ablation.	

	

Figure	6-12.	Histological	validation	of	ablation	in	pre-clinical	study.			
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Macroscopic	 examination.	A:	 3D	anatomical	 shell	 from	 iSuite	 in	 a	 corresponding	 view	

showing	the	position	of	ablation	lesions	(red	circles).	B:	macroscopic	view	of	the	opened	

RA,	with	 the	SVC	at	 the	 top	of	 the	 image	and	 the	 IVC	at	 the	bottom	of	 the	 image.	The	

ablation	line	is	seen	on	the	posterior	wall	of	the	RA	(arrows).		Microscopic	examination.	C:	

tissue	slice	cut	perpendicular	to	the	ablation	line	shows	transmural	injury.	Scale	bar	5	mm.	

D:	border	zone	between	ablated	and	spared	atrial	wall	(marked	with	dashed	box	in	C).	

Haematoxylin-eosin	 stain.	 Scale	bar	250	µm.	E:	higher	magnification	of	 ablated	 tissue	

(marked	with	*	in	C).	Scale	bar	50	µm.		

	

6.5.5.2 Clinical	study	
Ablation	scar	at	the	CTI	was	found	in	all	patients	at	3	months	on	LGE	imaging	(Figure	6-13).	There	

was	no	relationship	between	total	ablation	time	and	total	scarred	area	(R2=0.003)	or	proportion	of	

the	 floor	 of	 the	 right	 atrium	 occupied	 by	 scar	 (R2=0.02).	 For	 ablations	 performed	 using	 the	

investigational	catheter	versus	conventional	non-irrigated	catheter	(alone	or	in	combination),	there	

was	no	detected	difference	in	surface	area	of	scar	(11.3	(±11.7)	cm2	versus	13.8	(±6.4)	cm2).		
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Figure	6-13.	LGE	CMR	imaging	of	the	right	atrium	at		post	ablation.	
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	For	each	subject,	on	the	left	panel	an	inferior	view	of	a	maximum	intensity	projection	of	

the	right	atrium	(RA)	shell	 is	shown,	atrial	scar	thresholded	at	3.3	standard	deviations	

above	the	blood	pool	mean.	Right	panel	shows	final	ablation	lesion	set	for	each	patient	

(iSuite	screenshot,	red	dots	show	ablation	lesion	sites,	purple	dots	planned	ablation	sites	

and	 green	 dots	 locations	 for	 local	 activation	 time	 assessment).	 Ablation	 modality	 is	

detailed	above	the	subject	number	(MR-EP:	MR	guided	ablation	only;	Fluoro:	fluoroscopy	

only;	MR-EP	+	Fluoro:	 fluoroscopy	guided	 completion	of	ablation	 following	MR-guided	

ablation).	Final	outcome	is	detailed	below	the	subject	number	(No	Rec:	no	recurrence	of	

flutter;	Rec:	recurrence).	Graph	(bottom	right)	shows	total	scar	area	(red	circles,	left	axis,	

dashed	regression	line)	and	percentage	of	the	inferior	right	atrium	scarred	(blue	squares,	

right	 axis,	 solid	 regression	 line)	 at	 3	month	CMR	 imaging,	 against	 total	 ablation	 time	

under	MR	guidance.	 RA:	 right	 atrium,	 CS:	 coronary	 sinus,	 IVC:	 inferior	 vena	 cava,	 TV:	

tricuspid	valve,	BP:	blood	pool,	LAT:	local	activation	time.	

For	lesion	specific	scar	assessment,	patients	who	underwent	fluoroscopically	guided	ablation	(either	

alone	or	in	combination)	were	excluded	(n=3),	leaving	a	total	of	151	ablation	lesions	assessed	(Table	

6-3).	108	lesions	(72%)	were	associated	with	scar	on	the	3D	mesh,	and	projection	distance	to	mesh	

was	mean	6.2mm	(±4.1mm).		MR-assessed	scar	was	significantly	greater	when	the	RF	energy	was	

delivered	inside	the	mesh	or	<	10mm	outside	of	the	right	atrial	mesh	(signal	intensity	6.2	±4.1	and	

5.0±2.8	standard	deviations	(SD)	above	blood	pool	mean	respectively,	versus	1.43±2.9	SD	at	>10mm	

(p<0.001)).	In	predicting	effective	ablation,	the	area	under	receiver	operator	characteristic	curve	for	

distance	from	mesh	was	0.68.	

	

	 All Lesions	 Inside mesh	 Outside mesh 

<10mm	

Outside mesh 

>10mm	

	

Total	 151	 19	 110	 23	 N/A	

Projection 

Distance/ mm	

6.2 ± 4.1	 4.4 ±3.2 

(Range 0.4-11)	

5.0 ± 2.8	 13.0 ± 2.4 

(Range 10-21)	

N/A	

Scar present at 

ablation point	

108 (72%)	 16 (84%)	 90 (82%)	 4 (17%)	 P<0.001	

Mean Scar 

Signal (SD from 

Mean)	

4.7 ± 3.9	 6.2 ±4.1	 5.0 ±2.8	 1.43 ±2.9	 P<0.001	

Table	6-3.	Lesion	specific	scar	formation.	
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Figure	6-14.	Ablation	lesion	specific	scar	formation.	

	(Left)	 Left-sided	 axis	 (blue	 circles)-	 scar	 signal	 intensity	 against	 distance	 of	 ablation	

lesion	 from	 right	 atrial	 wall.	 Right-sided	 axis	 (red	 bars)-	 number	 of	 lesions	 at	 each	

distance	 from	 RA	 wall.	 (Right).	 Receiver	 operator	 characteristic	 curve	 (ROC)	 for	

prediction	of	lesion	formation	by	distance	from	the	right	atrial	wall.	Area	under	the	curve	

0.68.	

6.5.6 Determinants	of	successful	ablation	
Table	 6-4	 details	 the	 relationship	 of	 CTI	 anatomy	 and	 acute	 ablation	 imaging	 parameters	 to	 the	

outcome	of	an	acutely	successful	ablation	procedure	under	MR-guided	ablation	alone.	The	subject	

who	underwent	entirely	fluoroscopically	guided	ablation	(see	above)	is	excluded	from	the	analysis.	

The	IVC/CTI	angle	showed	minimal	overlap	between	successful/unsuccessful	groups,	but	the	small	

sample	 sizes	 preclude	meaningful	 statistical	 analysis.	 Intraobserver	 and	 interobserver	 intraclass	

correlation	coefficients	for	IVC/CTI	angle	measurement	were	0.90	(95%	CI	0.53-0.97)	and	0.89	(95%	

CI	0.54-0.98)	respectively.	
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	 All	subjects	
Acutely		

Successful	(n=5)	

Unsuccessful	

(n=4)	

CTI	Length/mm	 34	(±12)	 30	(±13)	 37	(±10)	

CTI	Depth/mm	 2.9(±1.0)	 2.6	(±0.7)	 3.2	(±1.4)	

Eustachian	

Ridge/mm	
6.2	(±4.2)	 3.6	(±2.7)	 8.0	(±4.1)	

IVC/CTI	

angle/degrees	
117	(±19)	 127	(±12)	 99	(±13)	

T2W	volume/ml	 6.4	(±4.0)	 6.9	(±5.2)	 5.8	(±3.2)	

T2W	mean		

thickness/	mm	
4.6	(±1.9)	 5.2	(±2.4)	 3.7	(±0.8)	

T2W	 minimum	

thickness/	mm	
2.1(±1.7)	 2.6	(±2.0)	 1.4	(±1.1)	

Table	6-4.	Determinants	of	acutely	successful	MR-guided	ablation.		

Unsuccessful	includes	both	acutely	unsuccessful	(with	subsequent	fluoroscopically	guided	

completion	of	procedure,	n=2)	and	late	recurrence	(n=2).	CTI:	cavotricuspid	isthmus;	IVC:	

inferior	vena	cava;	T2W:	T2	-weighted.	

6.5.7 Hepatic	injury	
The	incidence	of	hepatic	injury	is	summarised	in	Table	6-5.	There	was	a	wide	variation	in	size	and	

location	of	the	left	hepatic	vein	,	with	a	median	distance	to	CTI	6mm	(range	3-18mm),	and	median	

calibre	4mm	(range	1.4-9mm).	No	enhancement	was	detected	within	4mm	of	the	hepatic	vein.	
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Subject	 Ablation	

modality	

MR-guided	

RF	

energy/kJ	

Acute:	

T2W	

enhancement	

Acute:	

Early	 no	

reflow	

Acute:	

LGE	

Chronic:	

Residual	

LGE	

1	 MR	 21.7	 Mild	 Nil	 Mild	 Mild	

2	 MR	 52.8	 Mild	 Nil	 Nil	 Mild	

3	 MR	 32.4	 Mild	 Mod	 Mild	 Nil	

4	 MR	 81	 Severe	 *	 *	 Mild	

5	 MR	 40.5	 Mod	 *	 *	 Mild	

6	 Fluoro		 N/A	 N/A	 N/A	 N/A	 Nil	

7	 MR	 50.6	 Mild	 Mild	 Mod	 Mild	

8	 MR	+	fluoro	 68.8	 Mod	 Mild	 Mod	 Mild	

9	 MR	 60.7	 Mild	 Mild	 Mild	 Mild	

10	 MR	+	fluoro	 72.9	 Nil	 Mod	 Mod	 Mild	

Table	6-5.	Hepatic	enhancement	following	atrial	flutter	ablation.		

Note	that	two	subjects	did	not	undergo	gadolinium	enhanced	imaging	following	ablation	

(*),	and	one	subject	did	not	have	MR-guided	ablation.	

6.6 Discussion	
These	studies	have	demonstrated	the	development,	feasibility	and	safety	of	an	actively-tracked	MR-

guided	electrophysiology	set-up,	capable	of	robust	performance	in	the	demanding	MR-environment	

in	 both	 animals	 and	 humans.	 Many	 of	 the	 key	 attributes	 of	 conventional	 EAM	 systems,	 such	 as	

operator	ease	of	use	and	intuitive	data	representation,	have	also	been	established.	The	clinical	study	

has	 identified	 limitations	 in	 efficacy	 and	 highlighted	 discrete	 areas	 for	 further	 development,	 but	

demonstrates	significant	progress	of	MR-EP	towards	clinical	utility.	

6.6.1 MR-EP	system	evaluation	
Using	 this	MR-EP	 set-up,	 active	 catheter	 tracking	 for	 ablation	was	 achieved	 for	 the	 first	 time	 in	

humans	 (H.	 Chubb	 et	 al.	 2014).	 This	 is	 in	 contrast	 to	 passive	 tracking	 techniques	 that	 rely	 on	

detection	of	magnetic	susceptibility	artefacts	or	signal	voids	to	locate	the	catheter	tip,	necessitating	

constant	communication	between	the	electrophysiologist	and	a	skilled	manipulator	of	the	imaging	

planes.	With	passive	tracking,	complex	movements	of	a	curved	catheter	almost	inevitably	cause	the	

catheter	 to	 leave	 the	 imaging	 plane,	 and	 in	 human	 studies	 skilled	 operators	 have	 struggled	

considerably	to	perform	many	relatively	routine	aspects	of	EP	ablation	procedures,	such	as	selective	

intubation	of	the	coronary	sinus	or	completion	of	CTI	block	(Grothoff	et	al.	2014).	All	these	factors	

impact	upon	procedural	success	rate,	safety	and	time.	

	

With	active	catheter	tracking,	accurate	and	fast	EAM	was	enabled	with	generation	of	activation	time	

maps	by	the	image	guidance	platform.		In	both	humans	and	animals	up	to	40	mapping	points	were	
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recorded	 in	 less	 than	 20	minutes,	 whereas	 passive	 tracking	 requires	 2-5	 minutes	 for	 each	 MR-

acquired	mapping	point	(Nordbeck	et	al.	2009).		Furthermore,	automatic	tip	alignment	algorithms	

enabled	rapid	slice	determination	for	optimal	imaging	of	the	ablation	catheter	within	the	soft	tissue	

environment	 (Voigt	 et	 al.	 2013),	 a	 unique	 capability	 that	 may	 be	 invaluable	 for	 more	 complex	

ablation	procedures	and	for	imaging	of	real-time	lesion	formation	during	ablation.	Imaging	could	be	

performed	during	energy	delivery,	and	the	impact	of	the	500kHz	RF	energy	source	on	MR-imaging,	

based	around	the	64MHz	proton	precession	frequency	at	1.5T,	was	minimal.	

6.6.2 Clinical	study-	procedural	outcome	
The	overall	time	for	the	human	procedures	was	long,	averaging	over	five	hours	for	a	procedure	that	

rarely	exceeds	one	hour	under	conventional	fluoroscopic	guidance.	It	should	be	noted	that	imaging	

and	mapping	protocols	were	performed	that	would	not	typically	be	required	for	a	simple	ablation,	

but	even	accounting	for	these	phases	the	duration	remains	substantially	longer	than	conventional	

methods.	

	

Furthermore,	the	overall	medium-term	success	rate	for	flutter	ablation	was	low	(72%	for	MR-guided	

ablation	alone,	56%	overall)	compared	to	85-92%	for	conventional	flutter	ablation	techniques.	In	all	

subjects	who	underwent	MR-guided	ablation	there	was	significant	scar	at	3	months	at	 the	site	of	

ablation.		However,	in	four	patients	there	was	either	a	need	for	further	lesions	under	fluoroscopy,	or	

recurrence	at	medium-term	follow-up	of	three	months.	The	cause	of	failure	in	this	subset	of	patients	

required	detailed	assessment,	 and	 is	 likely	 to	be	 related	 to	 three	 factors:	 failure	 to	 recognise	 the	

correct	target	for	ablation,	failure	to	reach	the	correct	location,	or	failure	to	form	effective	ablation	

lesions.	

6.6.2.1 Ablation	target	recognition	
Diagnosis	of	the	arrhythmia	mechanism	and	selection	of	the	CTI	as	the	ablation	target	was	based	

upon	 the	 12	 lead	 ECG	 P	 wave	 morphology	 during	 atrial	 flutter	 in	 patients	 with	 normal	

echocardiography.	The	two	recurrences	were	of	confirmed	typical	atrial	flutter,	successfully	treated	

with	 completion	 of	 a	 CTI	 line.	 The	 absence	 of	 activation	mapping	 or	 entrainment	 to	 confirm	 the	

diagnosis	is	unlikely	to	have	impacted	upon	procedural	outcome.		

	

At	 the	 end	 of	 the	MR	 guided	 ablation,	 the	 assessment	 of	 the	 adequacy	 of	 the	 ablation	 line	 was	

performed	both	electrically	and	through	MR	imaging.	The	acquired	IEGMs	were	acceptable	and	could	

demonstrate	double	potentials	and	local	timings	(Figure	6-4).	Electrical	assessment	of	bidirectional	

block	was	performed	to	an	acceptable	standard	however	electrogram	fidelity	was	 insufficient	 for	

demonstration	 of	 low	 amplitude,	 fractionated	 electrograms	which	might	 indicate	 a	 zone	 of	 slow	

conduction.	Imaging	could	not	identify	gaps	in	the	cavotricuspid	isthmus	ablation	lines	and	therefore	

locations	for	targeting	for	further	MR-guided	ablation	could	not	be	delineated.	
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6.6.2.2 Catheter	reach	to	ablation	target	
The	reach	of	the	current	MR-compatible	catheter,	which	was	designed	to	mimic	a	D	curve	profile	and	

to	 function	 as	 an	 all-purpose	 EP	 catheter,	 may	 have	 been	 insufficient	 in	 patients	 with	 an	 acute	

IVC/CTI	angle	(Table	6-4	and	Figure	6-15).	There	was	substantial	difficulty	in	catheter	manipulation	

to	the	IVC	end	of	the	CTI	during	procedures,	which	is	reflected	in	the		Eustachian	ridge	as	the	site	of	

highest	voltage	(least	scar)	for	the	two	patients	who	returned	for	re-do	ablation	procedure	(Figure	

6-10).	

	

	

Figure	6-15.	Investigational	catheter	reach.	

Reach	 characteristics	 of	 investigational	 Vision	 catheter	 (left)	 and	 second	 generation	

catheter	 (right).	 Support	 is	 provided	 by	 10Fr	 long	 Mullins	 sheath,	 and	 note	 reduced	

maximum	angulation	of	the	investigational	catheter.	

6.6.2.3 Ablation	lesion	formation	
The	 pre-clinical	 study	 clearly	 demonstrated	 efficacious	 lesion	 formation	 (Figure	 6-12).	 This	was	

confirmed	on	late	assessment	of	ablation	lesions	in	the	clinical	study,	and	both	electrical	(CARTO)	

and	MR	assessment	demonstrated	effective	chronic	scar	formation.	Lesion-by-lesion	analysis	for	the	

clinical	study	found	that	72%	of	lesions	were	associated	with	scar,	although	transmurality	remains	

challenging	to	assess.	Comparison	with	conventional	ablation	 is	difficult	as	MR-guided	ablation	 is	
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uniquely	suited	for	lesion	formation	assessment,	with	virtual	elimination	of	registration	issues:	the	

registration	 of	 EAM-guided	 ablation	 to	 imaging	 is	 subject	 to	 imperfect	 comparisons	 of	 variable	

landmarks.	However,	a	72%	lesion	formation	rate	at	3	months	is	comparable	to	conventional	ablation	

studies	(Bisbal	et	al.	2014)	where	up	to	25%	of	an	ablation	line	may	not	be	associated	with	chronic	

scar.		

	

Contrary	to	expectation,	greater	wall	deformation	was	associated	with	less	efficacious	chronic	lesion	

formation.	The	 lesion-by-lesion	evaluation	was	conceived	as	a	contact-force	surrogate,	and	it	was	

hypothesised	 that	 lesions	 performed	 deeper	within	 the	mesh	would	 be	more	 likely	 to	 cause	 the	

creation	 of	 a	 chronic	 lesion.	 Several	 explanations	may	 be	 postulated	 for	 this	 finding.	 Firstly,	 the	

further	the	projection	distance,	the	more	likely	that	the	lesion	will	be	projected	to	an	inappropriate	

location,	 not	 reflecting	 true	 catheter-myocardial	 contact	 location.	 Secondly,	 substantial	 catheter	

pressure	may	cause	tissue	compression	and	increased	energy	delivery	to	adjacent	structures	(F.	H.	

M.	 Wittkampf	 and	 Nakagawa	 2006).	 Thirdly,	 the	 tracking	 signal	 may	 suffer	 from	 increased	

interference	once	the	catheter	doubles	back	on	the	shaft,	placing	the	receiver	coils	in	closer	proximity	

to	the	capacitors,	and	therefore	corrupting	the	location	calculation.	The	final	issue	was	noted	ex-vivo,	

and	requires	further	investigation.	

6.6.3 Hepatic	injury	
RF	ablation	for	atrial	flutter	is	frequently	associated	with	pain,	typically	experienced	at	the	chest	and	

shoulder	tip.	The	mechanism	has	not	been	determined	definitively,	but	has	been	postulated	to	be	

related	to	pericardial	irritation,	cardiac	sensory	nerve	stimulation	or	hepatic	irritation	(Timmermans	

2003).	 The	 pain	 can	 be	 severe,	 in	 some	 cases	 necessitating	 procedural	 termination	 without	

achievement	of	the	ablation	endpoint.	In	prospective	studies	of	flutter	ablation	it	has	been	graded	at	

mean	 4.6	 (±2)/10,	 with	 average	 peak	 pain	 6.8	 (±2.4)	 /10,	 despite	 2.5mg	 morphine	 and	 2.5mg	

diazepam	pre-procedure	(Bastani	et	al.	2013).		

	

Real-time	MR	guided	procedures	provide	a	unique	insight	into	the	mechanism	of	pain,	and	in	this	

study	it	was	clear	that	there	was	frequently	both	early	and	late	enhancement	of	the	liver	adjacent	to	

the	CTI.	Furthermore,	it	is	interesting	that	the	one	ablation	performed	without	an	irrigated	catheter	

(subject	6)	had	no	late	enhancement	of	the	liver,	perhaps	reflecting	shallower	lesions	with	the	non-

irrigated	Blazer	catheter.	Differentiation	of	diaphragm	from	hepatic	capsule	was	difficult	 in	some	

cases,	 and	 prospective	 evaluation	 with	 conscious	 patients,	 contemporaneous	 pain	 scores,	 liver	

enzyme	measurements	and	imaging	immediately	post	ablation	may	be	warranted	to	investigate	this	

hypothesis	further.	Correlation	with	size	and	position	of	the	left	hepatic	vein	would	also	be	helpful,	

and	it	may	be	found	that	those	without	the	protective	effect	of	a	large	blood	vessel	in	proximity	are	

more	likely	to	suffer	procedural	pain	and	can	be	managed	appropriately.	
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6.6.4 Future	developments	and	clinical	implications	

6.6.4.1 MR-Guided	ablation	system	
MR-EP	 provides	 a	 platform	 for	 anatomically-guided	 ablation	 procedures,	 informed	 by	 cardiac	

structure	and	arrhythmia	substrate	amenable	to	imaging,	such	as	scar,	with	the	tantalising	possibility	

of	 visualization	 of	 acute	 lesion	 formation	 during	 the	 procedure.	 The	 implications	 for	 ablation	

procedures	for	AF	(Bisbal	et	al.	2014;	Marrouche	et	al.	2014)	and	ventricular	tachycardia	(Nazarian	

et	al.	2005)	are	substantial,	and	the	most	complex	ablation	procedures	are	likely	to	reap	the	greatest	

benefit	 from	 the	 additional	 capabilities	 of	 CMR	 imaging.	 However,	 further	 complementary	

developments	are	also	required.		

	

A	 number	 of	 commercial	 and	 academic	 institutions	 are	 working	 on	 technologies	 responding	 to	

challenges	such	as	communication	in	the	noisy	MR	environment,	MR-compatible	12-lead	ECG,	MR-

compatible	 defibrillation,	 rapid	 and	 automated	MR-scar	 segmentation,	 and	 transseptal	 puncture	

equipment.	These	are	at	varying	stages	of	commercial	development	(Rogers	and	Lederman	2015;	

Bhagirath	et	al.	2015),	and	their	realisation	will	bring	MR-EP	ever	closer.	

6.6.4.2 Imaging	
The	 complex	 structural	 and	 physiological	 responses	 to	 ablation,	 including	 interstitial	 oedema,	

hyperaemia,	tissue	coagulation	and	microvascular	obstruction	can	be	visualized	using	CMR	imaging.	

Acute	 lesion	 imaging	 techniques	 may	 rely	 on	 native	 intrinsic	 contrast	 (T1	 and/or	 T2	 weighted	

(Arujuna	et	al.	2012;	Celik	et	al.	2014;	Lardo	et	al.	2000;	Vergara	et	al.	2011;	Dickfeld	et	al.	2007))	or	

contrast	agent	enhancement	(LGE	(Celik	et	al.	2014;	Lardo	et	al.	2000;	Ranjan	et	al.	2012)),	but	acute	

imaging	of	lesions	within	the	thin	atrial	myocardium	remains	particularly	challenging	(Williams	et	

al.	2015;	J	L	Harrison,	Whitaker,	et	al.	2015).	Purely	T2-weighted	imaging	is	a	blunt	tool.		No	gaps	in	

ablation	 line	were	 identified	acutely	with	T2	or	LGE	imaging,	and	this	was	despite	a	56%	clinical	

success	rate.	This	finding	of	low	sensitivity	of	acute	atrial	lesion	imaging	for	gaps	is	in	keeping	with	

that	of	other	groups	and	 further	developments	 in	acute	post	ablation	MR	imaging	techniques	are	

necessary	(Ranjan	et	al.	2012;	Williams	et	al.	2015;	James	L	Harrison	et	al.	2014;	J	L	Harrison,	Sohns,	

et	al.	2015).	Identifying	gaps	within	the	ventricle	is	likely	to	be	more	easily	achievable	in	the	first	

instance.	Lesion	imaging	in	the	future	is	likely	to	rely	on	the	intrinsic	T1–time	shortening	that	occurs	

swiftly	with	effective	lesion	formation	(Celik	et	al.	2014),	and	non-enhanced	visualisation	techniques	

are	particularly	attractive	for	repeated	imaging.	

6.6.5 Limitations	
The	studies	were	designed	to	take	the	new	MR-EP	platform	from	development	to	pre-clinical	to	first-

in-man	 feasibility	 trials.	 As	 such,	 there	 are	 limitations	 that	 should	 be	 acknowledged.	 Using	 the	

methodology	 of	 this	 study,	 the	 ablation	 procedure	 for	 atrial	 flutter	 does	 not	 constitute	 a	

comprehensive	assessment	of	the	capability	of	surface	ECG	and	IEGM	fidelity	to	guide	more	complex	

electrophysiological	 procedures.	 Local	 activation	 times	were	mapped	 only	 on	 pacing,	 and	 not	 in	
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arrhythmia.	However,	ablation	location	relative	to	the	TV	annulus	was	guided	by	IEGMs,	and	sites	for	

further	 ablation	were	 also	 identified	 based	 upon	 electrophysiological	 features.	 IEGM	 fidelity	will	

continue	 to	 improve	 towards	 that	 achievable	 for	 conventional	 EAM,	 but	 will	 require	 further	

engineering	and	time	to	match	it.		

	

In	addition,	the	arrhythmia	was	not	mapped,	following	the	decision	to	cardiovert	at	the	start	of	the	

procedure	 on	 account	 of	 the	 impact	 of	 arrhythmia	 on	 acquisition	 of	 ECG-gated	MR-imaging.	 The	

primary	concern	was	for	the	timely	acquisition	of	the	3D	whole-heart,	and	this	was	adversely	affected	

by	the	clinical	arrhythmia.	However,	active	tracking	technology	is	independent	of	heart	rhythm	and	

arrhythmia	mapping	 should	 not	 be	 limited	 in	 further	 studies.	 Technical	 solutions	 for	 the	 	 swift	

acquisition	of	a	high	resolution	3D	road	map	in	arrhythmia	will	require	further	development.	

	

Finally,	ablation	procedures	 in	both	animals	and	humans	were	weighted	towards	achievement	of	

effective	 and	 targeted	 RF	 lesions,	 and	 imaging	 protocols	 were	 relatively	 focused	 on	 more	

conventional	 imaging	sequences	 that	demonstrated	 feasibility	rather	 than	 long-term	durability	of	

acute	lesions.		

6.7 Conclusions	
Real-time	MRI	 guidance	 of	 EP	 procedures	 is	 feasible,	 and	 active	 tracking	 technologies	 enable	 an	

approach	and	workflow	that	closely	mimics	conventional	EAM.	MR-compatible	catheters	can	be	used	

to	create	effective	ablation	lesions,	including	for	the	treatment	of	atrial	flutter	in	humans.	The	MR-EP	

system	is	currently	slower	and	less	effective	than	conventional	ablation	and	this	appears	to	be	related	

primarily	to	the	reach	of	the	investigational	catheter.	However,	MR-EP	provides	contemporaneous,	

high	fidelity	imaging	of	cardiac	anatomy,	fibrotic	arrhythmia	substrate	and	ablation	lesions.	Further	

innovation	of	these	new	tools	may	lead	to	fundamental	changes	in	the	way	in	which	both	simple	and	

complex	ablation	procedures	are	performed.	
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7 ATRIAL	IMAGING	POST	
RADIOFREQUENCY	ABLATION:	
OPTIMISATION	OF	LESION	IMAGING	

7.1 Aims	
To	establish	the	optimal	imaging	parameters	to	detect	post	ablation	atrial	scar	(PAAS).		

7.2 Introduction	
Over	the	last	two	decades	there	has	been	a	substantial	increase	in	the	implementation	of	catheter	

ablation	 for	 the	 treatment	 of	AF.	 Concurrently,	 advances	 in	 CMR	 imaging	have	 enabled	 clinically	

useful	 visualisation	 of	 the	 LA	wall	 and	 ablation	 lesions	 (Akoum	 et	 al.	 2015;	 Badger	 et	 al.	 2010;	

Fukumoto	et	al.	2015;	Peters	et	al.	2007;	C.	J.	McGann	et	al.	2008;	Bisbal	et	al.	2014;	Hunter	et	al.	

2013;	 J	L	Harrison,	Sohns,	et	al.	2015;	Malcolme-Lawes	et	al.	2013;	Taclas	et	al.	2010).	However,	

arrhythmia	recurrence	rates	post-ablation	remain	high,	and	 there	 is	evidence	 that	many	of	 these	

recurrences	 are	 secondary	 to	 pulmonary	 venous	 reconnection	 or	 linear	 lesion	 discontinuities	

following	 ineffective	 lesion	 formation.	 Effective	 and	 reliable	 non-invasive	 assessment	 of	 PAAS	

provides	a	unique	insight	into	lesion	formation,	and	may	help	guide	further	ablation	procedures.	

	

LGE	 acquisition	 techniques	 have	 been	 shown	 to	 be	 the	most	 sensitive	 to	 detect	 PAAS	 (James	 L	

Harrison	et	al.	2014)	and	can	identify	gaps	in	ablation	lesion	sets	(Ranjan	et	al.	2012).	In	2009,	Peters	

et	al	demonstrated	that	AF	recurrence	post-ablation	correlates	with	the	extent	of	PAAS	(Peters	et	al.	

2009).	This	finding	was	corroborated	by	Badger	et	al	in	2010,	who	found	that	complete	encirclement	

of	a	PV	by	CMR-defined	PAAS	had	a	100%	positive	predictive	value	in	identifying	electrical	isolation	

(Badger	 et	 al.	 2010).	 However,	 the	 clinical	 implementation	 of	 these	 findings	 is	 controversial.	 In	

patients	requiring	repeat	AF	ablation	procedure,	some	groups	have	shown	good	correlation	between	

CMR-derived	lesion	gaps	and	sites	of	successful	re-isolation	(Bisbal	et	al.	2014;	Taclas	et	al.	2010),	

whilst	others	have	shown	the	opposite	(J	L	Harrison,	Sohns,	et	al.	2015;	Spragg	et	al.	2012).	

	

Consistent	between	all	studies	 is	the	finding	that	complete	encirclement	of	PVs	by	PAAS	is	a	rare	

occurrence.	90-100%	of	patients	do	not	have	complete	encirclement	of	 	all	PVs	by	CMR-detected	

PAAS	(Badger	et	al.	2010;	Akoum	et	al.	2015;	Spragg	et	al.	2012;	Taclas	et	al.	2010;	Bisbal	et	al.	2014).	

This	 is	 in	 the	 context	 of	 a	 recurrence	 rate	 in	 these	 studies	 of	 30-50%.	 In	many	 cases,	 electrical	

reconnection	will	not	result	in	AF	recurrence	(Cappato	et	al.	2003;	Kuck,	Hoffmann,	et	al.	2016),	but	

on	invasive	assessment	many	of	the	veins	remain	isolated,	despite	detection	of	gaps	(Bisbal	et	al.	

2014).	The	specificity	of	PAAS	gaps	for	electrical	reconnection	is	low.	Imaging	techniques	need	to	be	

optimised	in	order	to	maximise	detection	of	effective	ablation	injury.	
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The	 core	 imaging	 sequences	 have	 remained	 relatively	 unchanged	 from	 those	 first	 proposed	 and	

evaluated	 by	 the	Boston	 and	Utah	 groups	 (Peters	 et	 al.	 2007;	 C.	 J.	McGann	 et	 al.	 2008).	 The	T1-

weighted	ECG-	and	respiratory-navigated	3D	turbo	gradient	echo	sequence	is	now	widely	available	

on	most	 imaging	platforms	and	moderately	robust	(Marrouche	et	al.	2014).	Novel	sequences	will	

continue	to	be	developed	and	employed,	but	mainstream	use	of	PAAS	imaging	in	the	medium	term	is	

highly	 likely	 to	 rely	 upon	 these	 conventional	 imaging	 techniques.	 However,	 the	 acquisition	

parameters	vary	widely	between	leading	groups	(see	Table	7-1).	Timing	post-	GBCA	administration,	

scanner	 field	 strength,	 slice	 thickness	 and	 even	 GBCA	 dose	 differ	 and	 this	 chapter	 evaluates	 the	

relative	contribution	of	these	imaging	parameters	to	PAAS	quantification.	

	

The	measurement	of	improvement	in	imaging	should	ideally	be	referenced	to	a	gold	standard	or	hard	

clinical	endpoint.	For	assessment	of	PAAS,	there	is	no	gold	standard	readily	available.	Comparison	to	

invasive	voltage	mapping	is	prone	to	registration	errors	(See	Chapter	9).	Furthermore,	voltage	does	

not	 entirely	 reflect	 scar	 formation	 (Kowalski	 et	 al.	 2012)	 and	 varies	 according	 to	 the	 electrode	

characteristics	 used	 to	 perform	 voltage	mapping	 (Josephson	 and	 Anter	 2015;	 Tung	 et	 al.	 2016).	

Furthermore,	the	clinical	end-point	of	arrhythmia	recurrence	does	not	necessarily	reflect	a	lack	of	

PAAS	 in	any	given	 location	(J	L	Harrison,	Sohns,	et	al.	2015).	This	study,	 therefore,	has	sought	 to	

measure	the	improvement	in	imaging	parameters	through	the	assessment	of	conventional	subjective	

and	objective	imaging	quality	markers,	including	post-processed	atrial	scar	quantification.	
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	 Centre	 Subjects	

Timing	

post-

gadolinium	

GBCA	Dose	
Scanner	

Strength	

Slice	

thickness	

Badger	 et	

al	(2010)	
Utah,	USA	 144	

15min	

(repeated	 if	

‘suboptimal’)	

0.1mmol/kg		

(Multihance)	
1.5T	 2.5mm		

Taclas	 et	

al	(2010)	
Boston,	USA	 19	 15-20min	

0.2mmol/kg	

(Magnevist)	
1.5T	

4mm	

	

Hunter	 et	

al	(2013)		

Imperial/Barts,	

London,	UK	
50	 20min	

0.4mmol/kg	

(Magnevist)	
1.5T	 4mm		

Bisbal	 et	

al	(2014)	

Barcelona,	

Spain	
15	 25-30min	

0.2mmol/kg	

(Gadovist)	
3T	 2.5mm		

Fukumoto	

et	 al	

(2015)	

Johns	 Hopkins,	

USA	
20	 10-32min	

0.2mmol/kg	

(Magnevist)	
1.5T	

2mm	

	

Harrison	

et	 al	

(2015)	

King’s	 College	

London,	UK	
20	 20min	

0.2mmol/kg	

(Gadovist)	
1.5T	 4mm		

Akoum	 et	

al	(2015)	

DECAAF,	

Multicentre	
177	 15min	

0.1-

0.2mmol/kg	

(Multiple	

agents)	

1.5T	 (9	

centres)	

3T	 (5	

centres)	

2.5mm		

Table	 7-1.	 Post-ablation	 atrial	 scar	 imaging	 techniques	 utilised	 in	 leading	 centres	

worldwide.		

In-plane	resolution	is	1.25x1.25mm	or	1.3x1.3mm	for	all	centres.	GBCA:	gadolinium	based	

contrast	agent†††	

7.3 Methods	

7.3.1 Study	population	
Between	January	2014	and	September	2015,	all	patients	undergoing	routine	MR	imaging	prior	to	a	

first-time	AF	ablation	procedure	were	approached	to	join	the	study.	40	subjects	provided	written	

and	informed	consent	and	the	study	was	approved	by	the	National	Research	Ethics	Service	(South	

London	 Research	 Ethics	 Committee	 reference	 08/H0802/68).	 Exclusion	 criteria	 included	

																																																																				

	
†††	Note	relaxivities	vary	significantly	between	GBCAs:	Multihance	r1=6.3	L	mmol-1	 s-1	 (1.5	T)	r1=	5.5	L	mmol-1	 s-1	1	 	 (3T),	
Magnevist	r1=4.1	L	mmol-1	s-1	(1.5	T)	r1=	3.7	L	mmol-1	s-1	1	(3T),	Gadovist	r1=5.2	L	mmol-1	s-1	(1.5	T)	r1=	5.0	L	mmol-1	s-1	(3T)	

(Rohrer	et	al.	2005)	
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contraindication	to	MR	imaging	or	prior	allergic	reaction	to	contrast	agent.	Baseline	demographics	

were	documented	at	the	initial	scan,	including	age,	weight,	height,	body	mass	index	(BMI),	duration	

of	AF,	type	of	AF,	and	rhythm	at	scan.	.	Comorbidities	including	ischaemic	heart	disease	and	diabetes	

mellitus	were	recorded.	

	

All	patients	underwent	CMR	imaging	once	before	and	twice	following	clinically	indicated	catheter	

ablation	 for	 AF	 (Figure	 7-1).	 The	 first	 post-ablation	 CMR	 scan	 (Scan	 1)	 was	 performed	 at	

approximately	 three	 months	 after	 the	 ablation	 procedure,	 regardless	 of	 rhythm	 or	 arrhythmia	

recurrence	 (median	94	days,	 (interquartile	 range	 (IQR)	89-101	days)),	 and	was	performed	using	

standard	 acquisition	 parameters	 (see	 below).	 A	 second	 scan	 session	 (Scan	 2)	 was	 performed	

approximately	2	days	later	(median	48.1	hours,	IQR	47.9-49.1hours).	Subjects	were	allocated	to	scan	

2	in	3T	scanner	or	the	same	1.5T	scanner.	3T	scanner	availability	was	limited,	and	therefore	it	was	

not	 possible	 to	 randomise	 the	 allocation,	 but	 the	 allocation	 was	 performed	 blinded	 to	 patient	

outcome	and	demographics.	The	remaining	patients	were	randomised	in	equal	ratios	to	one	of	three	

different	imaging	parameter	groups	for	scan	2:	repeat	scan	with	identical	acquisition	parameters,	

repeat	with	half	dose	of	GBCA,	or	repeat	with	half-slice	thickness.	
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Figure	7-1.	Flowchart	demonstrating	subject	allocation	and	number	of		scan	acquisitions	

achieved.	

7.3.2 CMR	protocol	
All	patients	underwent	detailed	assessment	at	baseline	prior	to	ablation,	including	left	ventricular	

(LV)	 and	 right	 ventricular	 (RV)	 volumes	 and	 function,	 LA	 volumes	 and	 function,	 LA	 sphericity	

assessment,	LA	fibrosis	assessment	and	documentation	of	baseline	demographic.	A	single,	standard	

LA	3D	LGE	dataset	was	acquired.	The	standard	3D	LGE	acquisition	parameters	are	detailed	in	4.1.1.	

	

Scan	 1	 (post-procedure)	 was	 performed	 using	 the	 same	 3D	 LGE	 acquisition	 parameters	 as	 the	

baseline	 scan,	 and	 a	 total	 of	 three	 LA	 3D	 LGE	 datasets	 were	 acquired.	 The	 start	 of	 the	 dataset	

acquisitions	 were	 at	 10minutes,	 20minutes	 and	 30minutes	 after	 GBCA	 administration.	 In	 cases	
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where	 the	 acquisitions	 took	 longer	 than	 10minutes,	 the	 subsequent	 acquisition	 was	 started	

immediately.	

		

Scan	2	(post-procedure)	was	performed	with	allocated	modifications	of	the	baseline	scan.		

1. Half-gadolinium	dose.	0.1mmol/kg	of	gadobutrol	(Gadovist)	was	injected	at	the	same	rate	

(0.3ml/s),	with	identical	scanning	parameters	thereafter.	

2. Half-slice	thickness.	The	acquired	voxel	size	was	reduced	to	1.3x1.3x2mm	(reconstructed	

0.625x0.625x1mm).	Field	of	view	remained	unchanged	to	cover	the	whole	of	the	left	atrium,	

and	therefore	approximately	90-100	slices	were	acquired.	

3. 3T	 scanner.	 Scans	were	 performed	 on	 Philips	 Achieva	 3T	 scanner	with	 32-channel	 coil.	

Parameters	were	matched	to	those	for	1.5T	scanning	as	closely	as	possible	(TR	4.4msec,	TE	

2.1msec,	flip	angle	35°,	slice	thickness	4mm,	acquired	voxel	size	1.3x1.3x4mm).	

	

Native	 T1-time	 constant	 assessment	 was	 performed	 prior	 to	 GBCA	 administration	 at	 each	 scan	

session	in	order	to	confirm	myocardial	washout.	This	was	assessed	using	a	balanced	steady	state	free	

precession	single	breath-hold	modified	inversion	recovery	look-locker	(MOLLI)	sequence,	in	a	single	

mid-ventricular	short	axis	slice	(TE:	1.64ms,	TR	3.3ms,	flip	angle	50°,	voxel	size	1.8x1.8x8mm,	phase	

encoding	steps	n	=166,	11	images	from	three	inversions	(3	+3	+	5)	with	three	heartbeat	pauses	prior	

to	 the	 second	 and	 third	 inversions	 and	 an	 adiabatic	 prepulse).	 Myocardial	 T1	 relaxation	 was	

measured	at	the	septal	myocardium,	avoiding	contamination	from	the	blood	pool,	and	also	at	the	

centre	of	the	blood	pool,	with	T1	time	constant	extrapolated	from	the	exponential	model	fitted	using	

ViewForum	workstation	(Philips	Healthcare)	(Dabir	et	al.	2014).	

7.3.3 Atrial	fibrillation	ablation	protocol	
The	details	of	the	ablation	procedure	are	documented	in	Chapter	4.4	

7.3.4 Imaging	assessment	

7.3.4.1 Qualitative	assessment	
Qualitative	 assessment	 of	 all	 acquisitions	 was	 performed	 independently	 by	 three	 experienced	

observers	(HC,	JH,	SA).	Observers	were	presented	with	a	single	representative	transverse	slice	at	the	

level	of	 the	aortic	root	 in	random	order,	with	10	 initial	 training	sets,	and	20	random	acquisitions	

repeated	in	order	to	assess	intra-observer	reproducibility.	Likert	Scale	assessment	was	performed,	

with	acquisitions	graded	across	four	criteria:	image	sharpness,	scar	contrast,	freedom	from	artefact	

and	quality	 of	myocardial	 nulling.	All	 criteria	were	 scored	 from	1-5,	with	 a	 score	 of	 5	 indicating	

optimal	imaging.	

7.3.4.2 Signal-to-Noise	and	Contrast-to-Noise	ratios	
All	acquisitions	were	analysed	for	signal-to-noise	(SNR)	and	contrast-to-noise	(CNR)	ratios.	In	the	

presence	 of	 parallel	 imaging,	 noise	 is	 spatially	 heterogeneous	 throughout	 the	 imaging	 field,	 and	
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should	 ideally	 be	 quantified	 through	 the	 assessment	 of	 multiple	 (>10)	 identical	 acquisitions.	

However,	 this	 is	not	 feasible	on	account	of	 the	highly	significant	additional	 imaging	time,	and	the	

shifting	tissue	signal	intensities	during	the	acquisition	following	GBCA	administration.		

	

Apparent	 SNR	 (aSNR)	 and	 apparent	 CNR	 (aCNR)	 were	 therefore	 calculated	 as	 the	 relationship	

between	the	mean	signal	intensity	within	a	circular	region	of	interest	(ROI)	within	the	blood	(SIBlood),	

the	mean	of	a	ROI	within	scar	(SIScar),	and	the	standard	deviation	of	the	background	signal	within	the	

lungs	(SDL)	(Kolbitsch	et	al.	2011).	

	

!"#$%&'( = 	 %+,-./%01
		 	 	 	 Equation	8.1	

	

!"#$23445 = %+67889
%01

	 	 	 	 Equation	8.2	

	

!:#$ = !"#$%&'( − !"#$23445	 	 	 	 Equation	8.3	

	

ROIs	were	all	 selected	within	 the	same	transverse	slice,	at	 the	 level	of	 the	origin	of	 the	 left	main	

coronary	artery.	For	SIBlood,	a	200mm2	circular	ROI	was	placed	 in	the	LA	blood	pool,	distant	 from	

potential	 artefact	 due	 to	 inflow	 enhanced	 by	 respiratory	 navigator	 signal;	 for	 SIScar,	 a	 5mm2	ROI	

within	 the	most	 intense	 region	of	PAAS	within	 slice,	 and	 for	 SDL	 a	200mm2	ROI	within	 the	 lung,	

distant	from	any	apparent	large	blood	vessels	at	the	same	distance	from	the	surface	coils	as	the	blood	

pool	ROI.		

7.3.5 Scar	quantification	
The	methods	for	quantification	of	atrial	scar	are	documented	in	Chapter	4.2.	Scar	was	thresholded	at	

3.3	standard	deviations	above	the	blood	pool	mean	(James	L	Harrison	et	al.	2014).	

7.3.6 Statistical	analysis	
Data	are	expressed	as	mean	(±	standard	deviation)	for	normally	distributed	data,	and	median	(with	

interquartile	 range	 (IQR))	 for	 non-normally	 distributed	 data.	 Statistical	 analysis	 was	 performed	

using	 IBM	SPSS	Statistics	 (Version	22,	 	Armonk,	 	NY).	Baseline	parameters	were	compared	using	

unpaired	 t-test	 for	 normally	 distributed	 continuous	 variables,	 Mann-Whitney	 U	 test	 for	 non-

parametric	 variables	 and	C2-test	 for	 categorical	 data.	 Intraclass	 correlation	 coefficient	 (ICC)	was	

assessed	using	a	two-way	mixed	effects	model	(average	measures,	alpha	model).	Assessment	was	for	

consistency	for	interobserver,	and	absolute	agreement	for	intra-observer,	and	are	quoted	with	95%	

confidence	interval	(CI)	(McGraw	and	Wong	1996).	Two-way	ANOVA	(repeated	measures)	was	used	

to	assess	scan	parameters	and	acquisition	time.	For	acquisition	time,	Wilcoxon	matched-pairs	signed	

rank	 test	 was	 used	 to	 compare	 side-by-side	 time	 points,	 and	 Friedman	 test	 for	 overall	 effect	 of	

acquisition	time,	in	view	of	significant	deviation	from	normal	distribution.	
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7.4 Results	
The	MR	imaging	sets	for	40	subjects	were	evaluated.	In	total,	there	were	40	datasets	(one	per	subject)	

acquired	prior	 to	 ablation	and	231	datasets	post-acquisition	 (271	out	of	maximum	possible	280,	

96.7%).	Of	 the	nine	3D	LGE	acquisitions	not	performed,	 three	were	at	Scan	1	(patient	 tolerance),	

three	 at	 the	 standard	 scan	 2	 (single	 patient	with	 viral	 illness),	 one	 from	 half	 gadolinium	 scan	 2	

(patient	tolerance)	and	two	from	3T	scan	2	(patient	tolerance)	(Figure	7-1).	Myocardial	T1	time	at	

scan	1	was	989±21msec,	and	at	scan	2	was	987±22msec	(paired	t-test	p=0.34,	subjects	allocated	to	

3T	excluded).	

	

Subject	baseline	demographics	are	summarised	in	Table	7-2.	There	were	no	significant	differences	

between	patients	allocated	to	1.5T	versus	3T	scanner.	

	

 	 All Subjects 

(n=40)	

Scan	2	1.5T	

(n=30)	

Scan	2	3T	

(n=10)	
p-value	

Male	 31 (78%)	 22	(73%)	 9	(90%)	 0.27	

Paroxysmal AF	 20 (50%)	 17	(56%)	 3	(30%)	 0.14	

CHA2DS2VASC Score 	 1 (IQR 0-2)	 1	(IQR	0-2)	 0	(IQR	0-1.5)	 0.28	

AF duration (years)	 3.0 (IQR 2.1-5.3)	 2.5	(IQR	1.9-5.0)	 5.5	(IQR	2.6-12.5)	 0.19	

Significant Comorbidities	 22 (56%)	 16	(53%)	 6	(60%)	 0.71	

Age (years)	 61 ±10	 61±8	 61±13	 0.99	

Weight (kg)	 88 ±17	 88±18	 87±12	 0.77	

Height (cm)	 176 ±7.1	 176±6.4	 177±9.3	 0.60	

BMI (kg/m2)	 28.4±5.3	 28.7±5.9	 27.6±3.1	 0.48	

HR at baseline scan (bpm)	 61 ±10	 61±8	 61±13	 0.99	

Sinus rhythm at baseline 

scan	

25 (62.5%)	
19	(63%)	 7	(70%)	 0.70	

LV ejection fraction (%)	 60 ±10	 62±10	 58±11	 0.41	

LA size (ml)	 121 ±32	 122±37	 119±19	 0.75	

LA sphericity	 82.6 ±3.8	 82.7±3.9	 82.2±3.6	 0.72	

LA fibrosis at baseline (%)	 36.0 ±13.9	 36.7±15.1	 33.9±9.3	 0.49	

LA ejection fraction (%)	 30 ±18	 29±19	 34±12	 0.41	

LV native T1 time (msec)	 988 ±22	 991±24	 985±21	 0.33	

Table	 7-2.	 Baseline	 demographics,	 as	 assessed	 at	 the	 initial	 scan	 prior	 to	 ablation	

procedure.	

	LA	sphericity	and	LA	fibrosis	were	analysed	according	to	methods	detailed	in	Chapter	5,	

with	the	Johns	Hopkins	threshold	(image	intensity	ratio	0.97)	used	to	quantify	fibrosis.		P-

value	 is	 for	 comparison	 between	 patients	 that	 underwent	 scan	 2	 in	 1.5T	 versus	 3T	
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scanners.	LA:	 left	atrium,	LV:	 left	ventricle,	BMI:	body	mass	 index,	HR:heart	 rate,	bpm:	

beats	per	minute.	

7.4.1 Scar	imaging	
A	single	representative	transverse	slice	for	every	acquisition	volume,	at	the	level	of	the	aortic	root,	is	

included	in	Appendix	A.	

7.4.2 Likert	scale	assessment	of	imaging	quality	
Imaging	quality	in	terms	of	sharpness,	scar	contrast	and	overall	score	improved	with	time	from	GBCA	

administration	 across	 all	 imaging	 parameter	 sets	 (p<0.0001),	 whilst	 freedom	 from	 artefact	 and	

quality	of	myocardial	nulling	remained	unchanged	(Figure	7-2).	Between	imaging	parameter	sets,	

imaging	 at	 3T	 had	 a	 lower	 overall	 imaging	 score,	 primarily	 driven	 by	 inferior	 sharpness	 and	

increased	 artefact.	 Imaging	 quality	 for	 the	 other	 imaging	 parameter	 sets	 demonstrated	minimal	

significant	 differences,	 with	 the	 exception	 of	 the	 improved	 scar	 contrast	 at	 10min	 for	 the	 half	

gadolinium	dose	scans	(p=0.03).	Likert	score	assessment	was	evaluated	for	reliability,	and	there	was	

generally	 good	 interobserver	 consistency	 (ICC=0.888	 (95%	 CI	 0.862-0.910))	 and	 excellent	

intraobserver	 agreement	 (ICC=0.964	 (95%	 CI	 (0.939-0.979))	 (Table	 7-3).	 Imaging	 acquisitions	

where	myocardial	nulling	did	not	receive	at	least	a	score	of	3		(‘Good’)	from	all	three	observers	were	

excluded	from	further	analysis	(n=7	out	of	231,	3%).		
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Figure	7-2.	Summary	of	Likert	Scores	for	each	set	of	imaging	acquisition	parameters	

See	above	for	full	details	of	imaging	parameters.	The	blue,	green	and	red	columns	indicate	

imaging	performed	at	10min,	20min	and	30min	post	GBCA	injection	respectively.	P-values	

for	two-way	ANOVA.	
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Intraclass	

Correlation	

Coefficient	

Sharpness	
Scar	

Contrast	

Freedom	

from	

Artefact	

Myocardial	

Nulling	
Total	

Interobserver	
0.763	

(0.707-0.809)	

0.892	

(0.866-

0.913)	

0.789	

(0.739-

0.830)	

0.824		

(0.783-0.859)	

0.888		

(0.862-

0.910)	

Intraobserver	
0.924	

(0.872-0.954)	

0.965	

(0.942-

0.979)	

0.853	

(0.755-

0.912)	

0.876	

(0.786-0.927)	

0.964	

(0.939-

0.979)	

Table	7-3.	Inter-	and	intraobserver	intraclass	correlation	coefficients.		

Brackets	indicate	95%	confidence	intervals.	

	

7.4.3 Timing	of	LGE	acquisition	
Following	GBCA	administration,	3D	LGE	acquisitions	were	targeted	to	be	commenced	at	10,	20	and	

30min	(performed	at	10.7±2.6min,	22.6±3.6min	and	33.6±5.0min	respectively).	The	small	drift	 in	

true	rather	than	intended	acquisition	time	reflects	acquisition	times	>10min,	and	also	operator	time	

taken	to	compensate	for	inadequate	respiratory	navigator	signal,	ECG	noise,	patient	movement	and	

patient-related	delays	such	as	anxiety.	Total	acquisition	time	for	the	sequence	was	broadly	similar	at	

all	 time	 intervals	 (6.4±3.1min	at	10min,	6.7±2.5min	at	20min	and	7.3±3.5min	at	30min	(p=0.06),	

across	all	 imaging	parameters).	Average	acquisition	 time	varied	between	 imaging	parameter	sets	

(6.4±2.7min	 control,	 7.2±2.4	 half	 gadolinium,	 8.4±2.7min	 half	 slice	 thickness,	 6.2±2.4min	 3T,	

p=0.002)	

	

Figure	7-3	shows	the	effect	of	acquisition	timing	on	blood	pool	aSNR,	scar	aSNR,	aCNR	and	overall	

scar	area,	 for	standard	acquisitions	only	 (n=49	at	each	 time	point,	 total	147	3D	datasets).	For	all	

parameters	there	was	a	significant	change	with	time:	blood	pool	aSNR	fell	(p=0.009),	as	scar	aSNR,	

aCNR	and	scar	area	all	increased	(p=0.0016,	p<0.0001	and	p<0.0001	respectively).	For	blood	pool	

and	scar	aSNR,	there	was	no	significant	change	with	Bonferroni	correction	between	20	and	30min	

(p=0.03	and	p=0.30	respectively).	However,	post-processing	of	atrial	scar	is	heavily	reliant	on	the	

interaction	of	these	two	factors,	and	both	aCNR	(p=0.0009)	and	total	atrial	scar	(p<0.0001)	continued	

to	rise.		
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Figure	 7-3.	 Relationship	 of	 acquisition	 timing	 post	 GBCA	 administration	 and	

signal/contrast-to-noise	ratios.	

(Top	left)	apparent	blood	pool	signal-to-noise	ratio	(SNR),	(top	right)	apparent	scar	SNR,	

(bottom	left)	apparent	scar	to	blood	pool	contrast-to-noise	ratio,	and	(bottom	right)	LA	

scar	area	as	a	percentage	of	 left	atrium,	 thresholded	at	3.3	 standard	deviations	above	

blood	pool	mean.	Values	presented	are	for	standard	acquisition	parameters	only	(n=49	at	

each	 time	 point).	 For	 each	 plot,	 three	 p-values	 are	 presented:	 the	 top	 is	 p-value	 for	

Friedman	test,	assessing	overall	impact	of	time,	and	the	bottom	two	are	the	p-values	for	

Wilcoxon	matched-pairs	signed	rank	test.	

7.4.4 Scan	parameters	
The	 effect	 of	 scan	 parameters	 on	 aCNR	 and	 scar	 area	 are	 shown	 in	 Figure	 7-4	 and	 Figure	 7-5	

respectively.	 Timing	 of	 the	 acquisition	 post	 GBCA	 administration	 remained	 an	 important	

determinant	of	aCNR	and	scar	area	across	all	imaging	parameters	(p<0.0001	to	p=0.023),	except	for	

aCNR	in	the	cohort	randomised	to	half	GBCA	dose,	where	the	impact	of	scan	parameter	dominated	

(time:	p=0.529,	scan	parameters:	p<0.0001).		
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For	the	control	group,	with	 identical	scanning	parameters	 in	scan	sessions	1	and	2,	 there	was	no	

significant	difference	between	scan	sessions.	Half	GBCA	dose	increased	the	aCNR	(p<0.0001)	and	the	

detected	 scar	 area	 (p=0.0039).	 At	 	 half	 slice	 thickness,	 there	was	 no	 significant	 change	 in	 aCNR	

(p=0.77)	 but	 scar	 area	was	 lower	 (p=0.004).	 One	 potential	 factor	 to	 account	 for	 the	 absence	 of	

decrease	 in	 aCNR	 could	 have	 been	 the	 timing	 of	 the	 acquisitions,	 if	 half-slice	 acquisitions	 were	

significantly	 later	 due	 to	 over-run	 of	 the	 longer	 acquisition.	 However,	 there	 was	 no	 significant	

difference	 at	 any	 time	 point	 for	 scan	 1	 versus	 scan	 2	 acquisition	 commencement	 times	 (10min:	

11.6±4min	versus	10.3±1.4min	(p=0.31),	20min:	23.2±5.4min	versus	23.3±3.3min	(p=0.95),	30min	

35.5±6.8min	 versus	 34.1±4.6min	 (p=0.51)	 respectively).	 For	 3T	 bore	 strength	 	 there	 was	 no	

significant	 overall	 decrease	 in	 aCNR	 (p=0.12)	 but	 there	 was	 an	 overall	 decrease	 in	 scar	 area	

(p=0.019).	

	

	

Figure	7-4.	Impact	of	scan	parameters	on	apparent	scar	to	blood	pool	contrast-to-noise	

ratio.		

Paired	acquisitions	at	10,	20	and	30min	post	GBCA	injection,	for	control	subjects	(top	left),	

half	 GBCA	 dose	 (top	 right),	 half	 slice	 thickness	 (bottom	 left)	 and	 3T	 scanner	 (bottom	

right).	Scan	1	(standard	acquisition,	circle)	and	scan	2	(experimental	acquisition,	square)	

are	linked	for	each	subject.	P-values	are	for	two-way	repeated	measures	ANOVA:	at	the	

bottom	of	each	plot	is	the	p-value	for	variance	with	time,	and	to	the	right	is	the	p-value	
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for	 variance	with	acquisition	parameter.	Unpaired	acquisitions	are	 shown	as	unlinked	

circle	or	square,	and	were	not	included	in	statistical	analyses.	

	

	

Figure	7-5.	Impact	of	scan	parameters	on	LA	scar	area,	as	a	percentage	of	total	LA	surface	

area.	

	Paired	acquisitions	at	10,	20	and	30min	post	GBCA	injection,	for	control	subjects	(top	left),	

half	 GBCA	 dose	 (top	 right),	 half	 slice	 thickness	 (bottom	 left)	 and	 3T	 scanner	 (bottom	

right).	Scan	1	(standard	acquisition,	circle)	and	scan	2	(experimental	acquisition,	square)	

are	linked	for	each	subject.	P-values	are	for	two-way	repeated	measures	ANOVA:	at	the	

top	of	each	plot	is	the	p-value	for	variance	with	time,	and	to	the	right	is	the	p-value	for	

variance	with	acquisition	parameter.	Unpaired	acquisitions	are	shown	as	unlinked	circle	

or	square,	and	were	not	included	in	statistical	analyses.	

7.5 Discussion	
The	quality	of	3D	LGE	imaging	of	PAAS	varies	widely	between	different	scanning	parameters.	This	

has	 important	 implications	 for	 the	 routine	performance	of	 these	 scans	 and,	 in	particular,	 clinical	

decision	making	on	the	basis	of	MR-defined	metrics.	The	findings	are	summarised	as	follows:	

1. Imaging	 quality	 improves	with	 time	 from	GBCA	 administration	 and	 LGE	 imaging	 is	 best	

performed	at	least	30min	after	injection	of	contrast		
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2. Half	dose	of	GBCA	(0.1mmol/kg)	improved	aCNR	and	the	amount	of	PAAS	detected,	without	

significant	detrimental	effect	upon	imaging	quality	

3. Halving	slice	thickness	reduced	the	amount	of	PAAS	detected	

4. Imaging	 at	 3T	 magnet	 strength	 did	 not	 improve	 aCNR	 in	 this	 patient	 cohort,	 and	 was	

associated	with	a	reduction	in	imaging	quality	and	amount	of	scar	detected	

7.5.1 Timing	of	acquisition	
The	finding	that	aCNR	and	scar	detection	improved	with	time	is	not	surprising.	In	an	informative	

study	by	Goldfarb	et	al	(Goldfarb,	Arnold,	and	Roth	2009),	they	documented	the	T1	values	for	left	

ventricular	myocardial	scar,	viable	myocardium	and	blood	pool	at	two	minute	intervals	following	

GBCA	 administration.	 Assessment	 was	 continued	 for	 up	 to	 one	 hour,	 and	 it	 was	 found	 that	

discrimination	between	scar	and	viable	myocardium	was	significant	even	at	very	early	acquisitions	

(<10min).	However,	the	discrimination	between	blood	pool	and	scar	was	only	significant	at	>10min,	

and	continued	to	improve	with	time,	such	that	imaging	at	>30min	was	recommended	for	blood	pool	

to	scar	differentiation.	

	

For	PAAS	imaging,	it	is	the	blood	pool	to	scar	differentiation	that	is	crucial,	not	viable	myocardium	to	

scar.	All	centres	currently	acquire	3D	LGE	imaging	with	in-plane	resolution	around	1.3x1.3mm	(Table	

7-1),	and	therefore	blood	pool	partial	voluming	effects	are	inevitable	for	most	voxels	within	an	atrial	

wall	of	thickness	2-4mm	(Platonov	et	al.	2008;	Khurram	et	al.	2014).	PAAS	detection	will	be	improved	

as	the	blood	pool	signal	falls,	regardless	of	the	image	interrogation	technique.	This	is	most	critical	

when	the	maximum	intensity	projection	technique	is	used	to	interrogate	scar	(Badger	et	al.	2010;	J	L	

Harrison,	Sohns,	et	al.	2015;	Hunter	et	al.	2013;	Malcolme-Lawes	et	al.	2013),	but	the	principle	also	

applies	for	a	voxel-by-voxel	interrogation	of	the	atrial	wall	(Bisbal	et	al.	2014;	Akoum	et	al.	2015;	

Fukumoto	et	al.	2016;	Taclas	et	al.	2010).	

	

The	timing	of	3D	LGE	acquisition	varies	widely	in	published	studies,	with	no	centre	routinely	imaging	

at	>30min	(Table	7-1).	There	have	been	two	large	non-selective	studies	of	PAAS	imaging,	where	CMR	

imaging	was	performed	regardless	of	recurrence	status.	Both	acquired	3D	LGE	sequences	at	around	

15min	post-GBCA	administration.	Badger	et	al	detected	gaps	in	PV	scar	at	405/576	veins	(70%)	and	

in	93%	of	patients	overall	(Badger	et	al.	2010).	Akoum	et	al,	on	assessment	of	a	subset	of	the	DECAAF	

study,	detected	circumferential	scar	at	1.26	veins	per	patient	(gaps	estimated	at	67%	of	veins)	and	

in	93%	of	patients	overall	(Akoum	et	al.	2015).	The	findings	of	the	present	study	suggest	that	the	

incidence	of	gaps	may	have	been	substantially	lower	if	image	acquisition	had	been	delayed	until	later	

after	GBCA	administration.	

7.5.2 Scan	parameters	
The	improvement	in	PAAS	imaging	with	half	GBCA	dose	relates	largely	to	the	increase	in	blood	pool	

to	 scar	 contrast,	 and	 the	 superiority	 is	most	marked	at	 early	acquisitions.	The	persistence	of	 the	

improved	aCNR	at	20	and	30min	is	an	interesting	illustration	of	the	aphorism	that	‘less	is	more’.	The	
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highly	significant	improvement	in	imaging	with	reduced	GBCA	dose	is	not	necessarily	apparent	from	

first	principles,	and	this	is	an	important	finding	of	the	study.	From	equation	1.9	in	1.2.3,	and	equation	

1.10	in	1.4.2,	it	is	clear	that	the	relationship	between	contrast	concentration	and	signal	intensity	is	

not	a	linear	one.		A	halving	of	contrast	concentration	in	any	given	compartment	will	not	result	in	a	

halving	of	relaxation	rate	(the	inverse	of	the	relaxation	time	constant),	and	in	turn	the	increase	in	

signal	 resulting	 from	 a	 shortened	 T1	 time-constant	 is	 a	 relationship	 that	 is	 also	 dependent	 on	

inversion	 time	 and	 repetition	 time	 (Knowles	 et	 al.	 2008).	 Furthermore,	 the	 time	 dependent	

concentrations	of	GBCA	within	 the	blood	pool	and	atrial	myocardial	scar	compartments	have	not	

been	ascertained	(Knowles	et	al.	2008).			

	

The	lack	of	improvement	in	imaging	at	3T	may	be	explained	at	least	in	part	by	challenges	in	image	

acquisition	that	are	more	frequently	encountered	in	this	environment.	ECG	interference	is	higher,	

leading	to	triggering	errors,	and	the	respiratory	navigator	is	less	reliable,	although	once	successfully	

commenced	 overall	 acquisition	 time	 was	 unchanged	 from	 controls.	 Contrast	 behaviour	 is	 also	

relatively	 unchanged,	 with	 minimal	 reduction	 in	 relaxivity	 of	 GBCAs	 at	 higher	 field	 strengths	

(5.0mmol-1s-1,	(range	4.7-5.3mmol-1s-1)	at	3T	in	plasma,	versus	5.2mmol-1s-1	(range	4.9-5.5mmol-1s-

1)	 at	 1.5T)	 (Rohrer	 et	 al.	 2005).	However,	 the	 acquisition	window	was	 late	 atrial	 diastole	 (onset	

296±40msec,	 end	 398±39msec	 post	 R-wave),	 which	was	more	 frequently	 impinged	 upon	 at	 the	

longer	inversion	times	necessary	for	imaging	at	3T,	requiring	compromise	in	terms	of	acquisition	

window.		

	

There	was	a	general	decline	in	imaging	quality	with	half-slice	thickness,	which	is	not	surprising.	The	

reduced	voxel	size	will	decrease	the	voxel	SNR,	but	on	direct	image	assessment	the	blood	pool	and	

scar	aSNR	remained	relatively	preserved	(Supplementary	Figure	7-6	and	Supplementary	Figure	7-7)	

as	was	aCNR.	However,	there	was	a	significant	decrease	in	PAAS	area	overall.	This	has	implications	

for	 the	detection	of	small	gaps.	 In	 the	recent	study	by	Bisbal	et	al,	 they	 found	median	gap	size	of	

13mm,	but	the	smallest	was	1.6mm	(Bisbal	et	al.	2014),	and	Ranjan	et	al	detected	deliberate	gaps	as	

small	as	1.4mm,	using	a	1.0x1.0x1.5mm	resolution	3D	LGE	acquisition	in	an	animal	model	(Ranjan	et	

al.	2012).	Small	gaps	will	only	be	detectable	within	plane	for	thicker	slice	3D	acquisitions,	and	not	if	

it	lies	between	slices.	Two	consecutive	orthogonal	acquisitions	may	represent	the	best	compromise	

for	 accurate	 gap	 detection	whilst	 maintaining	 scar	 sensitivity,	 but	 would	 require	more	 complex	

registration	and	co-processing	for	gap	detection.	

7.5.3 Clinical	implications	
PAAS	 imaging	 in	 the	 immediate	 term	 presents	 opportunities	 for	 non-invasive	 evaluation	 of	

conventional	and	novel	therapies.	This	includes	assessment	of	the	impact	of	contact	force	(Sohns	et	

al.	 2013),	 evaluation	 of	 ablation	 extent	 by	 cryoballoon	 (Halbfass	 et	 al.	 2015),	 and	 even	 ablation-

induced	modification	of	 fat	pads	containing	ganglionated	plexi	(Higuchi	et	al.	2013).	Optimal,	and	

ideally	uniform,	imaging	acquisition	parameters	would	increase	precision	and	facilitate	comparison	

of	studies.	



CMR	imaging	in	EP	
	

Atrial	Imaging	Post	Radiofrequency	Ablation:	Optimisation	of	Lesion	Imaging	 169	

	

The	 use	 of	 PAAS	 imaging	 to	 guide	 ablation	 procedures	 is	 more	 controversial.	 Inter-scan	

reproducibility	needs	to	be	demonstrated,	and	sensitivity	needs	to	improve.	However,	if	the	findings	

of	Bisbal	 et	 al	 can	be	 replicated	 then	 there	 is	 opportunity	 for	 swifter	 and	more	efficacious	 re-do	

procedures	 (Bisbal	 et	 al.	 2014).	 This	may	 become	 even	more	 relevant	 in	 the	 light	 of	 the	 recent	

PRESSURE	trial	(Gupta	et	al,	presented	Late	Breaking	Clinical	Trials,	HRS	2016,	http://ondemand-

qc.hrsonline.org/common/media-player.aspx/26/23/1866/14988).	 In	 this	 study,	 80	 patients	

underwent	routine	paroxysmal	AF	ablation	prior	to	randomisation	to	routine	follow-up	or	repeat	PVI	

isolation	procedure	at	2	months,	 regardless	of	symptoms.	For	 those	 that	underwent	prophylactic	

repeat	procedure,	12	month	arrhythmia-free	 survival	was	 increased	 from	58%	 to	83%	(p=0.03).	

Non-invasive	 CMR	 correlates	 that	 identify	 subjects	 who	 would	 benefit	 from	 pre-emptive	 repeat	

procedures	could	be	extremely	valuable.	

	

For	 post-ablation	macro	 re-entry	 arrhythmias,	 identification	 of	 PAAS	may	 also	 assist	 in	 the	 pre-

procedural	prediction	of	 the	arrhythmia	mechanism.	This	 in	 turn	may	 inform	activation	mapping	

strategy,	diagnostic	manoeuvres	and	possibly	lesion	delivery.	Zahid	et	al	used	atrial	LGE	datasets	to	

derive	patient	 specific	models	of	LA	 tachycardia	pathways,	 in	 combination	with	 fibre	orientation	

atlas.	In	7	out	of	10	patients	(all	post–PVI)	it	was	possible	to	model	a	LA	macro-reentrant	circuit,	and	

the	ablation	trajectory	that	was	successful	clinically	was	predicted	in-silico	in	all	7	patients	(Zahid	et	

al.	2016).		

	

This	 study	 has	 clear	 implications	 for	 modification	 of	 PAAS	 imaging	 practices:	 	 delaying	 LGE	

acquisition	 to	at	 least	30minutes	post	 administration	of	 contrast	 increases	visualisation	of	PAAS.	

However,	the	optimal	timing	for	PAAS	detection	was	not	identified	as	the	imaging	quality	continued	

to	improve	at	30min	(with	true	acquisition	commencement	in	this	study	closer	to	35min).	Further	

studies	are	required	to	assess	imaging	at	>35min,	but	the	effect	of	time	was	significantly	diminished	

at	20	versus	30min,	compared	to	10	versus	20min,	suggesting	that	improvement	was	beginning	to	

plateau.	Practical	considerations	also	have	to	be	made,	and	scan	durations	of	>60min	will	be	more	

costly,	 less	efficient	for	managing	a	CMR	service	and	may	compromise	patient	compliance.	GBCAs	

could	be	administered	prior	to	commencement	of	the	scan,	but	this	would	preclude	early	gadolinium	

enhanced	 imaging	 or	 angiography.	 Alternatively,	 a	 split	 imaging	 session,	 with	 offline	 image	

registration	 and	 interleaving	 of	 subjects,	 could	 be	 considered	 but	 would	 require	 a	 repetition	 of	

patient	set-up	and	surveys.	It	is	likely	that	a	suitable	compromise	would	include	administration	of	

GBCA	and	early	post-gadolinium	imaging	at	the	earliest	possible	opportunity,	with	all	functional	and	

ventricular	scar	imaging	performed	during	a	minimum	30min	waiting	time.	

7.5.4 Limitations	
This	study	was	performed	at	3	months	post	ablation,	and	is	an	evaluation	of	chronic	scar	formation.	

As	such,	the	results	are	not	directly	applicable	to	the	assessment	of	acute	lesion	formation,	and	could	

not	be	used	to	guide	acute	repeat	ablation	during	the	index	procedure	in	a	hybrid-type	environment.	
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Likewise,	there	is	evidence	that	there	is	a	slow	fading	of	scar	with	time	(Badger	et	al.	2009),	and	the	

application	of	these	results	to	imaging	>3months	post-ablation	should	be	performed	with	caution.		

	

There	is	no	gold	standard	for	validation	of	PAAS	detection,	in	the	absence	of	histological	assessment.	

Voltage	mapping	has	been	only	weakly	correlated	with	PAAS,	and	it	is	likely	that	registration	errors,	

bipolar	sampling	considerations	and	electrode	size	confer	upon	voltage	mapping	a	similar	level	of	

error	as	CMR	assessment	of	scar.	Furthermore,	there	is	evidence	that	voltage	and	true	scar	are	only	

moderately	well-correlated	(Kowalski	et	al.	2012).	Therefore	the	study	has	focused	on	optimising	

sensitivity,	rather	than	evaluations	of	specificity	of	scar	detection.	

	

In	terms	of	the	study	design,	the	acquisitions	could	not	be	performed	at	identical	timepoints	post-

GBCA	administration,	which	may	introduce	a	bias	for	late	acquisition	for	patients	that	experienced	

more	difficult	and	prolonged	imaging	acquisitions.	In	addition,	on	account	of	technical	considerations	

it	was	not	possible	to	randomise	patients	to	the	3T	scanner.	The	interval	between	scan	sessions	was	

minimised	in	order	to	control	for	time	dependent	scar	maturation	(Badger	et	al.	2009),	but	there	was		

a	possibility	of	residual	GBCA	accumulation	between	scans.	T1	relaxation	times	for	the	myocardium	

were	unchanged	between	scan	sessions,	and	there	was	no	systematic	difference	between	scans	in	

any	 parameter	 for	 control	 patients.	 However,	 recent	 studies	 have	 suggested	 that	 very	 low	

concentrations	may	persist	beyond	48	hours	(Lancelot	2016),	despite	the	interval	being	>20	half-

lives,	but	the	impact	on	the	results	is	likely	to	be	minimal.	

7.6 Conclusions	
Imaging	of	post-ablation	atrial	 scar	 improves	with	greater	delay	 from	GBCA	administration,	with	

imaging	 recommended	 at	 least	 30min	post-contrast.	 A	 half	 dose	 of	GBCA	 is	 superior	 in	 terms	of	

contrast-to-noise	ratio	and	area	of	scar	detected,	whilst	reduced	slice	thickness	and	imaging	at	3T	

tend	to	result	in	inferior	imaging	quality.		
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signal	intensities	within	every	region	of	interest	was	performed	in	collaboration	with	an	MSc	student	

whom	I	supervised,	Shadman	Aziz,	who	won	the	prize	for	best	undergraduate	project	in	2015	on	an	

analysis	 of	 the	 first	 half	 of	 the	 data	 cohort.	 He	 performed	 approximately	 half	 of	 the	 ROI	

measurements.	 Of	 those	 that	 I	 did	 not	 perform	 myself,	 I	 re-verified	 a	 random	 selection	 of	 20	

acquisitions.	I	am	also	grateful	to	Prof	Rene	Botnar	and	Dr	Marcus	Henningsson	for	their	guidance	in	

the	estimation	of	noise	in	the	presence	of	parallel	processing.	I	performed	all	the	statistical	analyses	

myself.		
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7.8 Supplementary	Figures		

	

Figure	7-6.	Impact	of	scan	parameters	on	blood	pool	apparent	signal	to	noise	ratio.		

Paired	acquisitions	at	10,	20	and	30min	post	GBCA	injection,	for	control	subjects	(top	left),	

half	 GBCA	 dose	 (top	 right),	 half	 slice	 thickness	 (bottom	 left)	 and	 3T	 scanner	 (bottom	

right).	Scan	1	(standard	acquisition,	circle)	and	scan	2	(experimental	acquisition,	square)	

are	linked	for	each	subject.	P-values	are	for	two-way	repeated	measures	ANOVA:	at	the	

top	of	each	plot	is	the	p-value	for	variance	with	time,	and	to	the	right	is	the	p-value	for	

variance	with	acquisition	parameter.	Unpaired	acquisitions	are	shown	as	unlinked	circle	

or	square,	and	were	not	included	in	statistical	analyses.	
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Figure	7-7.	Impact	of	scan	parameters	on	scar	apparent	signal	to	noise	ratio.		

Paired	acquisitions	at	10,	20	and	30min	post	GBCA	injection,	for	control	subjects	(top	left),	

half	 GBCA	 dose	 (top	 right),	 half	 slice	 thickness	 (bottom	 left)	 and	 3T	 scanner	 (bottom	

right).	Scan	1	(standard	acquisition,	circle)	and	scan	2	(experimental	acquisition,	square)	

are	linked	for	each	subject.	P-values	are	for	two-way	repeated	measures	ANOVA:	at	the	

top	of	each	plot	is	the	p-value	for	variance	with	time,	and	to	the	right	is	the	p-value	for	

variance	with	acquisition	parameter.	Unpaired	acquisitions	are	shown	as	unlinked	circle	

or	square,	and	were	not	included	in	statistical	analyses.	
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8 THE	REPRODUCIBILITY	AND	
THRESHOLDING	OF	CARDIAC	MAGNETIC	
RESONANCE	IMAGING	OF	THE	LEFT	
ATRIUM	FOLLOWING	RADIOFREQUENCY	
ABLATION		

	

8.1 Aims	
To	assess	the	reproducibility	of	the	3D	LGE	CMR	technique	to	determine	locations	of	PAAS.		

	

To	determine	the	optimal	normalisation	technique	for	the	scaling	of	arbitrary	signal	intensity	scalars,	

and	hence	

	

To	establish	the	optimal	thresholding	technique	for	delineation	of	PAAS,	and	to	re-assess	the	impact	

of	thresholding	upon	reproducibility	of	PAAS	detection.	

	

To	evaluate	the	predictive	value	of	PAAS	imaging	for	late	arrhythmia	recurrence	

8.2 Introduction	
The	technique	of	3D	LGE	imaging	for	the	assessment	of	PAAS	has	been	used	for	almost	a	decade	but	

its	reproducibility	has	never	been	formally	quantified.	This	step	is	crucial	from	both	a	clinical	and	

research	perspective	as	the	use	of	the	technique	becomes	increasingly	mainstream.	From	a	clinical	

perspective,	confidence	in	the	technique	should	be	founded	upon	the	knowledge	that	the	location	of	

PAAS	remains	fixed	between	scanning	sessions.	At	a	research	level,	the	reproducibility	of	an	imaging	

technique	has	a	profound	impact	upon	the	design	and	scaling	of	research	studies	(Bellenger	et	al.	

2000)	and	 the	 interpretation	of	 its	 results.	Quantification	of	 the	reproducibility	of	PAAS	 imaging,	

between	multiple	acquisitions,	scanning	sessions	and	established	variations	 in	 imaging	protocols,	

was	the	first	objective	of	this	study.	

	

However,	 there	 is	no	single	metric	of	PAAS	 imaging	 that	has	been	established.	Whilst	 some	have	

looked	to	determine	scar	burden	and	location	(Badger	et	al.	2010;	Hunter	et	al.	2013),	others	have	

sought	to	determine	the	presence	of	gaps	in	the	ablation	line	(Bisbal	et	al.	2014;	J	L	Harrison,	Sohns,	

et	 al.	 2015),	 each	 using	 a	 bespoke	 thresholding	 and	 image	 interrogation	 technique	 (Table	 8-1).	

Therefore,	techniques	to	assess	point-by-point	scar	location,	to	measure	global	scar	burden,	and	to	
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establish	ablation	gaps	objectively	need	to	be	developed	in	order	to	establish	quantitative	measures	

of	PAAS	for	reproducibility	assessment.	

	

All	measures	of	PAAS	are	closely	entwined	with	the	SI	threshold	by	which	they	are	identified.	Similar	

to	 assessment	 of	 ventricular	myocardial	 scar	 (Flett	 et	 al.	 2011),	 the	 selection	 of	 an	 appropriate	

threshold	is	complicated	by	the	requirement	for	a	normalisation	method	of	SIs.	CMR-derived	image	

SI	is	expressed	in	arbitrary	units,	and	absolute	threshold	values	may	be	expressed	as	a	raw	SI	value,	

but	 indexing	 to	 acquisition	 specific	 reference	 SIs	 is	 almost	 always	 required.	 This	 is	 generally	

performed	using	a	direct	ratio	to	a	single	acquisition	specific	metric,	such	as	blood	pool	or	scar	SI,	or	

alternatively	using	a	two-metric	normalisation	method	where	both	a	mean	and	standard	deviation	

are	 defined.	 For	 instance,	 PAAS	 may	 be	 thresholded	 at	 a	 set	 number	 of	 (blood	 pool)	 standard	

deviations	 from	 the	 blood	 pool	 mean,	 creating	 effectively	 a	 Z-score.	 Therefore	 the	 two-metric	

normalisation	technique	may	be	interpreted	as	a	surrogate	for	confidence	in	the	differentiation	of	

one	voxel	population	 from	another,	 but	 it	 is	 highly	 sensitive	 to	 the	measurement	of	 the	 index	of	

variance.	 The	 relative	 strengths	 of	 the	 two	 groups	 of	 normalisation	 techniques	 has	 not	 been	

established,	and	formed	the	second	objective	of	this	study.	

	

Once	a	normalisation	technique	has	been	selected,	an	appropriate	threshold	 is	also	required.	The	

thresholding	 of	 PAAS	 on	 LGE	 imaging	 is	 challenging	 and	 there	 is	 no	 consensus	 in	 the	 literature	

regarding	the	best	method	for	establishing	an	image	intensity	threshold.	Table	8-1	summarises	levels	

that	have	been	used	by	established	groups	for	delineation	of	PAAS:	it	is	clear	that	different	methods	

will	derive	different	patterns	of	PAAS	for	the	same	acquisition,	which	may	lead	to	very	different	scar	

quantification	measures.	Ideally,	image	intensity	threshold	would	be	validated	from	a	gold	standard,	

such	as	histology,	and	recent	studies	have	sought	to	do	so	(James	L	Harrison	et	al.	2014).	However,	a	

number	 of	 factors	 lead	 to	 the	 introduction	 of	measurement	 error,	 and	 hence	 to	wide	 ranges	 for	

confidence	 intervals.	 Post-mortem	 topographical	 and	 scaling	 changes,	 registration	 of	 histological	

section	 to	 imaging	section	and	accurate	histological	 identification	of	scar	all	 lead	 to	challenges	 in	

establishing	 a	 clear	 relationship	 between	 histological	 findings	 and	 local	 imaging	 intensity.	

Alternatively,	 scar	 may	 be	 compared	 to	 invasive	 voltage	 mapping.	 However,	 not-withstanding	

reservations	 in	 using	 voltage	 as	 an	 accurate	 surrogate	 of	 scar	 (Kowalski	 et	 al.	 2012),	 there	 are	

significant	technical	challenges	related	to	registration	of	EAM	and	post-ablation	CMR	scar	imaging,	

and	 the	 correlation	 coefficients	 of	 the	 relationship	 between	 the	 two	 are	 generally	 poor	 (R2=0.57	

(Badger	 et	 al.	 2010),	 R2=0.04	 (J	 L	Harrison,	 Sohns,	 et	 al.	 2015).	Derivation	 of	 an	 evidence-based	

threshold	for	PAAS	in	humans	was	therefore	the	third	objective	of	this	study.	

	

Finally,	the	association	of	PAAS	and	AF	recurrence	remains	controversial	(Taclas	et	al.	2010;	Spragg	

et	al.	2012;	Bisbal	et	al.	2013;	J	L	Harrison,	Sohns,	et	al.	2015).	The	fourth	objective	of	this	study	was	

to	assess	the	association	of	the	derived	indices	of	PAAS	with	long-term	AF	recurrence.	
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Study	 Centre	
Number	 of	

patients	

Thresholding	

Reference	

Thresholding	

Level	
Validation	

(Badger	 et	 al.	

2010)	
Utah,	USA	 144	

Atrial	 wall	 z-

score	

3	 SD	 above	

normal	 atrial	

wall	tissue	

EAM	 voltage	

comparison	

(R2=0.57)	

(Bisbal	 et	 al.	

2014)	

Barcelona,	

Spain	
15	 Scar	IIR	

40%	 or	 60%	 of	

maximum	scar	

EAM	 voltage	

and	 repeat	

ablation	

(J	 L	Harrison,	

Sohns,	 et	 al.	

2015)	

King’s	

College,	

London	

20	
Blood	 pool	 z-

score	

Nil	 (minimum	

point	 on	 PV	

antrum)	

EAM	 voltage	

(R2=0.04)	and	

repeat	

ablation	

(Fukumoto	 et	

al.	2015)	

Johns	

Hopkins	
20	 Blood	pool	IIR	

LGE:	>0.97		

Dense	 LGE:	

>1.61	

EAM	voltage	

(Malcolme-

Lawes	 et	 al.	

2013)	

Imperial	

College,	

London	

11	
Blood	 pool	 z-

score	
3SD	above	BP	 EAM	voltage	

(Hunter	 et	 al.	

2013)	

Barts	 and	

Imperial	

College,	

London	

50	
Myocardial	 z-

score	

5	SD	above	vent	

myocardium	

Ablation	 type	

(WACA	versus	

cryo)	

Taclas	 et	 al	

(2010)	

Boston,	

USA	
19	

Blood	 pool	 z-

score	

‘average	 3.6SD	

above	BP’	
	

Table	8-1.	Thresholding	techniques	for	establishing	post-ablation		atrial	scar.	

8.3 Methods	

8.3.1 Subjects,	imaging	protocol	and	ablation	protocol	
Study	population	and	imaging	protocol	are	described	in	Sections	7.3.1	and	7.3.2	respectively.	Further	

details	 of	 imaging	 acquisition	 parameters	 are	 provided	 in	 Section	 4.1.	 The	 ablation	 protocol	 is	

detailed	in	Section	4.4.	

8.3.2 Imaging	interrogation	and	comparison	technique	
Imaging	interrogation	techniques	are	described	in	detail	in	Section	4.2.	For	all	acquisitions	a	semi-

automated	 segmentation	 of	 the	 gated	 magnetic	 resonance	 angiogram	 (GMRA)	 acquisition	 was	

performed	where	possible,	which	was	then	registered	(rigid	registration)	independently	to	each	LGE	

acquisition	of	the	same	imaging	session	(Acq1,	Acq2,	Acq3,	see	Table	8-2	for	nomenclature).	For	the	
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subsequent	imaging	session	at	48-72	hours,	the	GMRA	acquisition	at	post-ablation	scan	1	(GMRA1)	

was	 registered	 to	 the	 GMRA	 acquisition	 of	 post-ablation	 scan	 2	 (GMRA2),	 which	was	 itself	 then	

registered	to	each	subsequent	LGE	acquisition	(Acq4,	Acq5,	Acq6).	Through	this	method,	an	identical	

atrial	shell	could	be	used	for	all	six	acquisitions	for	most	subjects.	The	GMRA	was	 inadequate	 for	

semi-automated	 segmentation	 in	 six	 subjects,	 for	 whom	 a	 manual	 segmentation	 of	 Acq1	 was	

performed,	and	registered	to	all	subsequent	acquisitions.	

	

Adequacy	of	fit	of	the	registered	segmentation	was	visually	assessed	for	every	acquisition,	and	was	

rejected	if	the	LA	segmentation	to	LA	wall	distance	was	>1mm	in	the	majority	of	slices.	In	these	cases,	

a	 new	LA	 segmentation	was	performed.	 For	 all	 acquisitions,	 the	 registration	within	 scan	 session	

(Acq1	to	Acq2	and	Acq3,	or	Acq4	to	Acq5	and	Acq6)	was	good,	and	re-segmentation	within	scan	session	

was	never	required.	However,	for	two	subjects,	in	whom	there	was	a	change	in	heart	rhythm	between	

scans,	the	registration	between	scan	sessions	was	inadequate	and	therefore	a	new	segmentation	was	

performed	for	each	scan	session.	

	

LA	 scar	 was	 interrogated	 using	 a	 maximum	 intensity	 projection	 (MIP)	 technique,	 1mm	 inside	

endocardial	 shell	 and	3mm	beyond	endocardial	 shell,	 and	a	 single	SI	 value	was	assigned	 to	each	

triangular	face	of	the	generated	.vtk	shell	(typically	40,000	faces	per	LA	shell).	For	all	reproducibility	

measures,	 Acq1	 and	Acq4	 (acquisitions	 performed	 at	 10min	 post	 GBCA	 administration)	were	 not	

assessed	 on	 account	 of	 the	 poor	 imaging	 quality	 and	 low	 scar:	 blood	 pool	 CNR	 (see	 Chapter	 7).	

Comparison	between	 two	acquisitions	 i	 and	 j	 is	 termed	Ci,j,	 and	 	multiway	 comparisons	between	

acquisitions	i,	j,...	j+1	termed	Ci,j…,j+1.	

	

3D	 Late	 Gadolinium	

Enhanced	Acquisition	

Scan	Session	1	 Scan	Session	2	

10min	 20min	 30min	 10min	 20min	 30min	

Acq1	 Acq2	 Acq3	 Acq4	 Acq5	 Acq6	

Sc
an
	

Se
ss
io
n
		1
	 10min	 Acq	1	 -	 C1,2	 C1,3	 C1,4	 C1,5	 C1,6	

20min	 Acq	2	 -	 -	 C2,3	 C2,4	 C2,5	 C2,6	

30min	 Acq	3	 -	 -	 -	 C3,4	 C3,5	 C3,6	

Sc
an
	

Se
ss
io
n
	2
	 10min	 Acq	4	 -	 -	 -	 -	 C4,5	 C4,6	

20min	 Acq	5	 -	 -	 -	 -	 -	 C5,6	

30min	 Acq	6	 -	 -	 -	 -	 -	 -	

Table	8-2.	Image	acquisition	and		comparison	nomenclature.		

Acqi	is	the	ith	post-ablation	LGE	acquistion	for	each	subject,	Ci,j	is	the	comparison	between	

Acqi	and	Acqj.	
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8.3.3 Left	atrial	volumes	and	cardiac	function		
LA	 size	 and	 function	were	 evaluated	 on	 CMR	 imaging	 prior	 to	 ablation,	 and	 then	 again	 at	 post-

ablation	scan	1	and	2.	LA	volume	was	assessed	based	upon	the	segmentation	of	the	LA.	PVs	and	LA	

appendage	were	manually	removed,	and	volume	was	indexed	to	body	surface	area	(BSA-	calculated	

according	to	the	method	of	Du	Bois	and	Du	Bois	(Du	Bois	and	Du	Bois	1916)).	LA	and	LV	function	

were	assessed	on	multi-slice	short-axis	cine	imaging,	as	detailed	in	Section	5.3.5.	LA	function	was	

assessed	 on	both	post-ablation	 scan	1	 and	2,	whilst	 LV	 function	was	 assessed	on	 only	 one	post-

ablation	scan.	

8.3.4 Reproducibility	of	thresholded	PAAS	
Research	groups	have	almost	universally	chosen	to	threshold	PAAS,	and	a	variety	of	normalisation	

methods	and	absolute	thresholds	have	been	implemented	(Badger	et	al.	2010;	Bisbal	et	al.	2014;	J	L	

Harrison,	Sohns,	et	al.	2015;	Fukumoto	et	al.	2015;	Malcolme-Lawes	et	al.	2013;	Hunter	et	al.	2013;	

Taclas	et	al.	2010).	However,	evidence	 for	 identification	of	 thresholds	has	 frequently	 relied	upon	

correlation	with	voltage	mapping	techniques,	which	are	prone	to	registration	and	voltage	sampling	

errors,	or	extrapolation	from	ventricular	scar	studies.	A	histologically	validated	value	of	3.3	standard	

deviations	above	the	blood	pool	mean	was	therefore	used	for	all	 indices	where	a	single	threshold	

value	was	required	(James	L	Harrison	et	al.	2014).	

	

Three	measures	of	reproducibility	of	thresholded	PAAS	were	used.	The	first	measure	was	that	of	total	

scar	burden,	expressed	as	a	proportion	of	the	surface	area	of	the	LA	shell	occupied	by	PAAS.	The	

second	measure	 exploited	 the	 identical	 morphologies	 of	 the	 shells	 to	 calculate	 a	 Sorensen	 Dice	

Similarity	Coefficient	(DSC),	assessing	the	co-location	of	CMR-derived	scar	on	a	face-by-face	basis	on	

the	atrial	shell	(Crum,	Camara,	and	Hill	2006)	.	The	DSC	was	calculated	according	to	Equation	9.1,	

assessing	both	healthy	and	scar	regions.	Intra-scan	DSC	was	calculated	for	pooled	analysis	of	C2,3	and	

C5,6,	whilst	inter-scan	DSC	was	calculated	for	pooled	analysis	of	C2,5	and	C3,6.	

	

<":=,?(AℎCDEℎFGH(A)) = 	
JK%&'(L∩%&'(NOPJ(QR'3STUL∩QR'3STUN)

V33	W=XXYRLPV33	W=XXYRN
																						 Equation	9.1	

	

where	DSCi,j(Threshold(T))	is	the	DSC	for	the	comparison	of	Acqi	with	Acqj,	at	the	

same	signal	 intensity	threshold	T.	Scari	and	Healthyi	are	the	faces	designated	as	

scar	and	healthy	tissue	respectively	at	threshold	T.	

	

The	third	measure	of	scar	was	a	gap	quantification	method,	developed	in	collaboration	with	Marta	

Núñez	 and	 Constantine	 Butakoff	 at	 Universitat	 Pompeu	 Fabra,	 Barcelona,	 Spain.	 In	 brief,	 the	

technique	 aimed	 to	 perform	 an	 objective	 measurement	 of	 the	 proportion	 of	 the	 wide	 area	

circumferential	ablation	line	that	is	occupied	by	uninterrupted	scar	on	LGE	CMR,	a	percentage	PV	

encirclement	(PVE)	(Figure	8-1).	Scar	was	again	thresholded	at	3.3	standard	deviations	above	the	

blood	pool	mean,	and	the	full	method	of	the	derivation	of	PVE	is	detailed	in	Appendix	B.	
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Figure	8-1.	Illustration	of	derivation	of	pulmonary	vein	encirclement	(PVE)	measurement.	

	Atrial	shell	(16M,	Acq2)		is	thresholded	at	3.3	standard	deviations	above	the	blood	pool	

mean,	with	scar	shown	in	red	and	healthy	atrial	myocardium	in	blue.	The	computed	route	

of	the	PV	encirclement	is	shown	in	yellow	dashed	line,	whilst	detected		gaps	in	the	ablation	

line	are	shown	in	white.		For	this	acquisition,	the	PVE	for	the	right	sided	veins	was	98.5%,	

and	 for	 the	 left	was	 81.5%.	 (LSPV:	 left	 superior	 PV,	 LIPV:	 left	 inferior	 PV,	 RSPV:	 right		

superior	PV,	RIPV:	right	inferior	PV)	

8.3.5 Reproducibility	of	PAAS	imaging	without	thresholding	
These	three	measures	are	all	highly	dependent	upon	the	scar	threshold,	and	therefore	the	imaging	

reproducibility	 was	 also	 assessed	 point-by-point	 using	 a	 method	 that	 was	 not	 dependent	 upon	

thresholding.	However,	signal	intensity	is	expressed	in	arbitrary	units,	and	therefore	normalisation	

methods	were	required	to	enable	inter-scan	comparisons.		

8.3.5.1 Signal	intensity	normalisation	methods	
Shell	surface	SI	units	were	normalised	using	four	different	acquisition	specific	reference	methods,	

based	upon	established	image	analysis	techniques	(Table	8-1).	Two	of	the	methods	are	direct	ratios,	

indexing	by	a	single	acquisition	specific	metric:	blood	pool	image	intensity	ratio	(BP-IIR-	ratio	of	SI	

to	blood	pool	mean)(Fukumoto	et	al.	2015)	and	scar	image	intensity	ratio	(Scar-IIR-	ratio	of	SI	to	best	

scar	 in	 reference	 slice)(Bisbal	 et	 al.	 2014).	 The	 other	 two	methods	 index	 by	 both	 a	mean	 and	 a	

variance:	 nulled	 myocardium	 z-score	 (V-Myo-Z:	 number	 of	 (ventricular	 myocardial)	 standard	

deviations	(SD)	from	healthy	ventricular	septal	myocardium	mean)(Hunter	et	al.	2013),	and	blood	

pool	z-score	(BP-Z:	number	of	(blood	pool)	SDs	from	the	blood	pool	mean)(Taclas	et	al.	2010;	J	L	

Harrison,	Sohns,	et	al.	2015;	Malcolme-Lawes	et	al.	2013).	Blood	pool	and	scar	reference	values	were	

obtained	in	a	single	standard	slice	at	the	level	of	the	aortic	root	(see	Section	7.3.4.2	and	Appendix	A).		
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Ventricular	myocardial	mean	and	SD	were	obtained	in	the	mid-septum	in	a	region	of	homogenous	

signal	intensity	(50mm2)	without	blood	pool	contamination.	Kurtosis	and	skew	were	not	controlled	

for	in	any	of	the	indexing	systems.		

	

The	referencing	method	employed	by	Utah,	i.e.	SDs	from	the	mean	atrial	wall	intensity	within	slice,	

was	not	formally	assessed	for	two	main	reasons.	Firstly,	the	thresholding	is	on	a	slice	by	slice	basis,	

and	is	allowed	to	vary	between	slices.	 It	 is	technically	possible	to	assess	each	transverse	slice	for	

mean	and	standard	deviation,	but	it	was	not	feasible	to	assign	a	subjective	threshold	at	each	slice	on	

every	acquisition.	Secondly,	the	threshold	technique	is	likely	to	represent	a	hybrid	of	the	V-Myo-Z	

and	BP-Z	indexing	methods	.	Partial	voluming	effects	at	the	atrial	myocardium	to	blood	pool	interface	

mean	that	the	voxels	designated	as	the	thin	atrial	wall	are	highly	likely	to	contain	signal	from	both	

blood	pool	and	myocardium.	The	inversion	time	aims	to	null	atrial	myocardium,	but	most	centres	

use	ventricular	myocardium	as	a	surrogate	for	atrial	myocardium	(Badger	et	al.	2010;	Bisbal	et	al.	

2014;	Taclas	et	al.	2010;	 J	L	Harrison,	Sohns,	 et	 al.	2015),	based	upon	 the	assumption	 that	atrial	

myocardial	signal	should	closely	mimic	that	of	ventricular	myocardium.		

8.3.5.2 Shell	comparisons	
Following	normalisation,	intraclass	correlation	coefficients	(ICCs)	for	both	consistency	and	absolute	

agreement	 were	 calculated	 on	 a	 face-by-face	 basis	 (typically	 40,000	 triangular	 faces	 per	 shell),	

exploiting	the	identical	morphology	of	the	atrial	shells.	

8.3.6 Derivation	of	a	gold	standard	for	thresholding	of	PAAS	
Two	methods	were	assessed	for	determination	of	a	gold	standard	for	thresholding	of	PAAS.	Firstly,	

an	expert-derived	gold	standard	for	PAAS	threshold	was	assigned	based	upon	comparison	to	the	sites	

of	energy	delivery	at	the	time	of	ablation.	For	twenty	subjects,	the	locations	of	objective	markers	of	

ablation	(VisiTag	markers	(Biosense	Webster))	were	projected	upon	the	EAM-derived	LA	shell	(see	

Chapter	9	 for	details	of	 technique).	The	presence	of	an	objective	ablation	marker	(at	any	VisiTag	

parameter	setting)	was	used	to	define	all	potential	ablation	locations.	Each	CMR	LGE	shell	(Acq1-6)	

was	then	compared	side	by	side	to	the	ablation	shell,	and	the	CMR	SIs	binarised	to	scar	and	no	scar	

at	user-defined	values,	using	Paraview	(Kitware,	New	York,	NY,	USA).	An	optimal	threshold	value	

was	selected	that	was	judged	to	balance	sensitivity	for	scar,	without	unacceptable	loss	of	specificity,	

blinded	to	derived	conventional	threshold	values	(Figure	8-2).	
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Figure	8-2.	Example	of	subjective	selection	of	threshold	for	scar	delineation	(subject	40T,	

Acq6).		

Upper	twelve	panels	show	the	CMR	imaging	shell	with	binary	threshold	level	defined	in	

arbitrary	signal	intensity	units.	The	bottom	panel	shows	the	ablation	locations,	as	defined	

by	 location	 of	 objective	 ablation	markers	 (VisiTag	markers-	 see	 Chapter	 9	 for	 further	

details).	Note	the	lack	of	specifity	of	CMR	imaging-defined	scar	at	low	threshold,	and	lack	

of	 sensitivity	 at	 high	 thresholds:	 here,	 750	 SI	 units	 was	 selected	 as	 an	 appropriate	

threshold,	where	there	is	adequate	separation	between	ablation	regions,	but	minimal	scar	
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drop-out	 within	 ablation	 regions.	 For	 this	 acquisition,	 600	 SI	 units	 is	 0.2	 standard	

deviations	above	blood	pool	mean,	and	875	SI	units	is	4.4SD	above	BP	mean.	LSPV:	left	

superior	PV,	LIPV:	left	inferior	PV,	RSPV:	right	superior	PV,	RIPV:	right	inferior	PV.	

The	second	method,	an	objective	comparison	of	CMR	scar	to	ablation	locations	was	performed	on	a	

point-by-point	basis.	For	each	of	the	twenty	subjects,	a	single	representative	CMR	LA	shell	was	fused	

to	the	EAM	LA	shell,	using	an	iterative	closest	point	registration	technique,	detailed	in	Section	9.3.8.2.	

Similar	 to	 above,	 a	 DSC	 	 was	 then	 calculated	 to	 assess	 the	 co-location	 of	 CMR-derived	 scar	 and	

ablation	locations		(Equation	9.2).	

	

														<":=(AℎCDEℎFGH(A))) = 		
2("[!C\]^ ∩ _DE`FabV])
"[!C\]^ + _DE`FabV]

	

	

	

Equation	9.2	

	

where	DSCi(Threshold(T))	is	the	DSC	for	the	comparison	of	the	fused	CMR	shell	

Acqi	 with	 the	 ablation	 location	 EAM	 shell,	 at	 signal	 intensity	 threshold	 T.	

ScarCMR	are	the	faces	designated	as	scar	on	the	CMR	shell,	at	Threshold(T),	and	

LesionEAM	are	the	faces	associated	with	an	objective	ablation	marker	(VisiTag)	

	

On	account	of	the	identical	morphology	of	the	CMR	shells	 for	each	subject,	the	same	single	image	

fusion	could	be	used	for	each	acquisition	(Acq1-6)	for	a	single	subject.	A	DSC	was	derived	for	every	SI	

threshold	 for	 each	acquisition,	 and	 the	SI	 value	 for	 the	highest	DSC	 recorded	as	 the	DSC-derived	

threshold.	Acquisitions	for	which	the	highest	DSC	was	below	the	BP	mean,	representing	cases	where	

optimal	DSC	was	achieved	when	the	vast	majority	of	the	shell	was	assigned	as	scar,	were	excluded.		

	

A	final	threshold	method	was	also	evaluated,	using	an	Otsu	thresholding	technique.	Otsu’s	method	is	

a	clustering-based	image	thresholding	technique	that	aims	to	derive	a	‘least-cost’	threshold	through	

assessment	of	all	potential	 thresholds	values,	 aiming	 to	minimise	 the	within-class	variance	 (Otsu	

1975).	Whilst	the	technique	may	be	extended	to	multiple	thresholds,	in	this	case	it	was	used	only	for	

dichotomisation	of	 the	shell	signal	 intensities,	based	upon	the	hypothesis	 that	 there	are	only	two	

signal	intensity	groups:	scar	and	healthy	tissue.	Otsu	thresholding	was	performed	on	the	population	

of	signal	intensities	upon	the	LA	shell,	not	the	whole	image,	and	therefore	a	signal	threshold	value	

was	derived	for	every	shell.	

8.3.7 Association	of	scar	with	arrhythmia	recurrence	
Arrhythmia	recurrence	was	assessed	as	detailed	in	Section	5.3.10,	and	the	scar	burden	and	%PVE	

were	assessed	against	 the	binary	outcome	of	 recurrence	of	atrial	arrhythmia.	Where	a	 repeat	LA	

ablation	procedure	was	performed,	the	presence	or	absence	of	electrical	reconnection	of	each	PV	

pair	was	recorded	and	corresponding	PVE	assessed.	
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8.3.8 Statistics	
Normally	distributed	continuous	variables	are	presented	as	mean	±	standard	deviation,	and	median	

with	interquartile	range	(IQR)	for	non-normal	distribution	or	non-continuous	ordinal	data.	Baseline	

characteristics	 and	 CMR	 indices	 were	 compared	 using	 c2	 test	 or	 Student	 t-test	 as	 appropriate.	

Statistics	were	analysed	using	SPSS	Statistics	(Version	22,		Armonk,		NY)	unless	otherwise	stated.	For	

ICC,	a	two-way	mixed	effects	model	was	selected,	on	the	assumption	that	the	measurement	technique	

(sequence	 timing,	 acquisition	 parameters	 and	 indexing	 technique)	 was	 a	 systematic	 source	 of	

variance	(McGraw	and	Wong	1996).	ICC	was	generated	for	both	consistency	and	absolute	agreement	

using	Matlab	(Version	R2015a,	The	Mathworks,	 Inc.),	and	the	 ICC	plugin	(Arash	Salarian,	Version	

1.2),	C-1	and	A-1	type	analysis	for	consistency	and	absolute	agreement	respectively.	Inter-scan	ICC	

was	 calculated	 for	 C2,3,5,6	 (four-way	 comparison	 between	 Acq2,3,5,6).	 ICC	 of	 0.41	 to	 0.60	 was	

interpreted	to	represent	“moderate”	agreement,	0.61	to	0.80	“good”	agreement,	and	>0.81	“excellent”	

agreement	 (Landis	 and	 Koch	 1977).	 Repeated	 measures	 one-way	 ANOVA	 was	 used	 to	 assess	

differences	 in	 ICC	 between	 normalisation	 methods,	 with	 Tukey’s	 range	 test	 used	 to	 correct	 for	

multiple	comparisons.	

8.4 Results	
The	subject	characteristics	and	acquisitions	achieved	are	summarised	in	Section	7.4	and	Table	7-2,	

with	representative	imaging	for	each	acquisition	included	in	Appendix	A.	There	were		a	total	of	231	

out	of	maximum	possible	240	acquisitions	completed	(96.2%).	40	acquisitions	were	completed	at	

10min	on	scan	1	(Acq1),	40	Acq2,	37	Acq3,	39	Acq4,	39	Acq5	and	36	Acq6.	

8.4.1 Left	atrial	volumes	and	cardiac	function	post-ablation	
Findings	are	shown	in	Figure	8-3.	There	was	no	significant	change	in	LA	indexed	volume	pre-	and	

post-ablation	 (57.8±16.5ml/m2	 versus	 53.9±15.3ml/m2,	 p=0.08	 (paired	 t-test)).	 On	 subgroup	

analysis	of	subjects	 in	AF	at	the	time	of	the	baseline	scan,	there	was	a	significant	reduction	in	LA	

volume	post-ablation	 (69.7±16.2ml/m2	versus	60.5±18.0ml/m2,	 p=0.03).	 For	LA	ejection	 fraction	

(LAEF),	 there	was	no	significant	change	pre-	and	post	ablation	(0.317±0.172	versus	0.331±0.114,	

p=0.52).	On	subgroup	analysis	of	 those	 in	AF	at	 the	 time	of	 the	baseline	scan,	 there	remained	no	

significant	 change	 in	 LAEF	 (0.189±0.112	 versus	 0.237±0.098,	 p=	 0.29).	 Left	 ventricular	 ejection	

fraction	 improved	 from	 pre-	 to	 post-ablation	 (0.608±0.099	 versus	 0.64±0.074,	 p=0.04),	 and	 this	

improved	was	most	marked	in	the	group	in	AF	at	the	time	of	the	baseline	scan	(0.549±0.087	versus	

0.645±0.066,	p=0.023).	
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Figure	8-3.	Post-ablation	volumetric	and	functional	comparisons.	

	Relationship	 of	 pre-	 and	 post-ablation	 LA	 indexed	 volume	 (top	 left),	 left	 ventricular	

ejection	 fraction	 (LVEF)	 (bottom	 left)	 and	 LA	 ejection	 fraction	 (bottom	 right).	 Dotted	

straight	line	is	line	of	equality	(x=y).	Error	bars	represent	standard	deviation	of	the	two	

sets	 of	 measurements,	 performed	 at	 each	 of	 the	 two	 post-ablation	 scans.	 LVEF	 was	

measured	at	only	one	of	the	two	post-ablation	scans,	and	therefore	there	are	no	error	bars.		

Agreement	 in	 post-ablation	 measurement	 of	 LA	 ejection	 fraction	 and	 LA	 indexed	 volumes	 was	

generally	 good,	 particularly	 in	 the	 measurement	 of	 LA	 indexed	 volume.	 Bland-Altman	 plots	 are	

shown	in	Figure	8-4.	
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Figure	8-4.	Bland	Altman	plots	demonstrating	agreement	between	the	measurements	of	

Indexed	LA	volume	(left)	and	LAEF	(right)	

Measurements	are	assessed	at	each	of	the		two	post-ablation	scans.	Heavy	dashed	red	line	

shows	mean	bias	(scan	1	measurement	minus	scan	2	measurement),	with	 light	dashed	

lines	illustrating	95%	confidence	interval.	
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8.4.2 Reproducibility	of	PAAS	imaging	

	

Figure	8-5.	Examples	of	raw	images	and	corresponding	scar	shells	for	a	single	subject	

(ID:30)	

Scans	1	and	2	were	performed	using	 identical	(standard)	acquisition	parameters,	with	

acquisitions	performed	at	10min,	20min	and	30min	post	injection	of	gadolinium.	Upper	

six	panels	show		single	representative	slices	of	the	3D	LGE	dataset,	at	the	level	of	the	aortic	

root.	Lower	six	panels	show	corresponding	scar	shells,	normalised	according	to	blood	pool	
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z-score.	 Note	 the	 relatively	 poor	 reproducibility	 for	 acquisitions	 at	 10min.	 Acq:	

acquisition.	LSPV:	left	superior	pulmonary	vein,	LIPV:	left	inferior	pulmonary	vein,	RSPV:	

right	 superior	 pulmonary	 vein,	 RIPV:	 right	 inferior	 pulmonary	 vein,	 SD:	 standard	

deviation,	BP:	blood	pool.	

8.4.2.1 Total	scar	burden	
ICC	 for	scar	burden	 for	acquisitions	performed	at	10min	post	gadolinium	(C1,4)	was	very	poor	at	

0.070	(95%	CI	-0.249	–	0.373).	This	correlated	with	poor	imaging	quality	at	this	time	point.	Scar	to	

blood	 pool	 contrast	was	 significantly	 lower	 at	 10min	 versus	 20min	 (Acq1	 and	 4	 (10min	 post	 gad)	

16.3±15.9	versus	Acq2	and	5	(20min)	31.4	±	16.8,	p<0.0001),	as	was	scar	burden	(Acq1	and	4	7.1%	±	6.8%	

versus	 Acq2	 and	 5	 21.7%	 ±	 15.6%,	 p<0.0001)	 (Figure	 8-5).	 Acquisitions	 performed	 at	 10min	 post	

gadolinium	(Acq1	and	Acq4)	were	therefore	removed	from	further	analyses.	

	

At	 20	 and	 30min	 post	 gadolinium,	 reproducibility	 of	 total	 scar	 burden	 was	 good	 for	 intra-scan	

comparisons	(C2,3	and	C5,6		pooled	analysis),	with	an	ICC	0.752	(95%	CI	0.481-0.869).	Scar	burden	

was	 also	 significantly	 higher	 for	 acquisitions	 performed	 at	 30min	 (20min:	 21.7±15.6%,	 30min:	

28.0±16.1%,	p<0.0001).	Inter-scan	ICC	improved	with	time	from	acquisition	(Figure	8-6),	with	ICC	

0.556	(95%	CI	0.280	–	0.747)	at	20min	(C2,5)	and		0.702	(95%	CI	0.482	to	0.839,	p<0.0001	between	

groups)	at	30min	(C3,6).	On	assessment	of	only	those	subjects	that	underwent	identical	scan	protocol	

at	Scan	1	and	Scan	2,	the	ICCs	at	10min	(C1,4),	20min	(C2,5)	and	30min	(C3,6)	were	0.237	(95%	CI	-

0.544-	0.765),	0.678	(95%	CI	0.119-0.916)	and	0.723	(95%	CI	0.083-0.938),	respectively.	
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Figure	8-6.	Bland	Altman	plots	demonstrating	the	reproducibility	of	LA	shell	scar	burden	

between	scan	acquisitions.	

	The	 top	 left	 chart	 shows	 the	 comparison	 for	 acquisitions	 performed	 with	 identical	

imaging	paramters.	The	other	three	charts	show	the	reproducibility	for	those	performed	

with	 differing	 imaging	 protocols,	 as	 previously	 detailed.	 Crosses	 show	 data	 points	 for	

comparison	of	acquisitions	at	10min	post	gadolinium	(C1,4),	open	circles	for	comparison	

of	 acquisitions	 at	 20min	 post	 gadolinium	 (C2,5),	 and	 closed	 circles	 for	 comparison	 of	

acquisitions	at	30min	post	gadolinium	(C3,6).	

8.4.2.2 Dice	similarity	coefficient	for	co-location	of	PAAS	
The	DSCs	at	the	threshold	of	3.3SD	above	BP	mean	are	shown	in	Table	8-3.	There	was	generally	good	

overlap	 of	 scar	 and	 healthy	 tissues	 respectively,	 with	 overall	 DSC	 0.849	 ±	 0.069	 for	 intra-scan	

comparisons	(C2,3	and	C5,6	pooled	analysis),	and	0.821	±0.042	for	inter-scan	comparisons	(C2,5	and	

C3,6	pooled	analysis).	
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Acquisition	

parameters	

Intra-scan		

Dice	Similarity	Coefficient	

Inter-scan		

Dice	Similarity	Coefficient	

C2,3	 C5,6	 All	 C2,5	 C3,6	 All	

Standard	
0.843	

±0.073	

0.863	

±0.047	

0.847	

±0.069	

0.835	

±0.045	

0.807	

±0.038	

0.821	

±0.042	

Half	

gadolinium	
NA	

0.805	

±0.073	

0.805	

±0.073	

0.801	

±0.064	

0.821	

±0.041	

0.811	

±0.052	

Half	slice	

thickness	
NA	

0.879	

±0.043	

0.879	

±0.043	

0.845	

±0.080	

0.823	

±0.080	

0.834	

±0.080	

3T	 NA	
0.876	

±0.067	

0.876	

±0.067	

0.822	

±0.086	

0.811	

±0.086	

0.817	

±0.086	

All	
0.843	

±0.073	

0.855	

±0.061	

0.849	

±0.069	

0.827	

±0.069	

0.816	

±0.062	

0.821	

±0.065	

Table	8-3.	Dice	similarity	coefficient	(DSC)	for	co-location	of	post	ablation	atrial	scar	and	

healthy	tissue.		

Scans	 thresholded	 at	 3.3	 standard	 deviations	 above	 the	 blood	 pool	 mean.	 Ci,j	 is	 a	

comparison	between	acquisitions	i	and	j:	refer	to	methods	for	details.	All	acquisitions	on	

Scan	 1	 (Acq1,2,3)	were	 performed	with	 standard	 parameters,	 and	 therefore	 C2,3	 is	 only	

expressed	for	standard	parameters.	

8.4.2.3 Reproducibility	of	pulmonary	vein	encirclement	
PVE	was	significantly	lower	at	20min	than	30min	(76.4±21.9%	versus	82.3±18.1%,	p<0.0001),	but	

despite	this	there	remained	a	good	intra-scan	reproducibility	(C2,3	and	C5,6	pooled	analysis)	with	ICC	

0.784	(95%	CI	0.633-0.865).	Mean	bias	(20min	minus	30min)	was		-5.9%	(95%	confidence	interval	

-29.8%	to	+18.0%)(Figure	8-7).	

	

For	inter-scan	comparisons	(C2,5	and	C3,6	pooled	analysis),	the	ICC	was	0.694	(95%	CI	0.567-0.798).	

There	was	better	reproducibility	at	later	acquisitions:	the	ICC	at	20min	alone	(C2,5)	was	0.675	(0.95%	

CI	 0.511-0.792)	 versus	 0.744	 (95%	 CI	 0.601-0.842)	 at	 30min	 alone	 (C3,6)	 (p=0.02).	 PVE	 was	

significantly	higher	at	each	time	point	when	a	half	dose	of	GBCA	was	used	(standard:	70.7±26.0%	

versus	half	gad:	84.7±15.6%,	p<0.001,	denoted	by	closed	circles	in	Figure	8-7).	When	scan	sessions	

with	 identical	 imaging	 parameters	 and	 timing	 (C2,5	 and	 C3,6	 standard	 acquisition	 only)	 were	

considered	 in	 isolation,	 there	was	an	excellent	degree	of	 reproducibility	between	scans,	with	 ICC	

0.892	(95%	CI	0.784-0.947).	Mean	bias	(C2,5	and	C3,6)	was	+1.2%	(95%	confidence	interval	-10.6%	to	

+13.0%,	standard	deviation	of	bias	6.0%)	(Figure	8-7,	bottom	right	panel).	

	

An	analysis	of	the	additional	determinants	of	PVE	(scar	burden	and	scan	quality)	is	presented	in	the	

Chapter	Appendix	A	(Section	8.8).	
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Figure	8-7.	Reproducibility	of	pulmonary	vein	encirclement	(PVE)	measurements.	
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	Scatter	plots	(left	column-	with	black	unbroken	line	showing	line	of	equality,	and	red	line	

linear	regression	line	±	95%	confidence	interval)	and	Bland-Altman	plots	(right	column-	

red	 lines	 show	mean	bias	±	95%	confidence	 interval)	demonstrating	 reproducibility	of	

assessment	of	PVE	by	CMR	LGE.	Each	point	represents	PVE	score	for	a	single	vein	pair	(left-

sided	or	right-sided).		The	top	row	shows	intra-scan	reproducibility:	(C2,3	(closed	circles)	

and	C5,6	 (open	circles)).	Note	the	higher	PVE	at	30min	versus	20min.	Rows	two	to	 four	

show	 inter-scan	 reproducibility.	 Second	 row	 shows	 reproducibility	 for	 acquisitions	 at	

20minutes	post	gadolinium	(C2,5).	Open	circles	represent	comparisons	where	the	second	

scan	 was	 performed	 with	 half	 gadolinium	 dose.	 Third	 row	 shows	 reproducibility	 for	

acquisitions	 at	 30minutes	 post	 gadolinium	 (C3,6).	 Again,	 open	 circles	 represent	

comparisons	where	the	second	scan	was	performed	with	half	gadolinium	dose.	Fourth	row	

shows	reproducibility	between	scans	when	identical	imaging	parameters	were	employed.	

Open	squares	denote	comparison	between	acquisitions	at	20min	only	(C2,5),	and	closed	

squares	comparison	between	acquisitions	at	30min	(C3.6).	

8.4.3 Impact	of	normalisation	method	upon	reproducibility	
For	all	normalisation	methods,	the	pooled	intra-scan	ICCs	for	consistency	and	agreement	are	shown	

in	Table	8-4.	There	was	high	consistency	between	acquisitions	at	the	same	imaging	session	(intra-

scan	ICC	0.754-0.804	across	all	normalisation	measures),	and	fair	to	good	consistency	between	scan	

sessions	 (inter-scan,	 ICC	 0.677-0.721	 across	 all	 normalisation	 measures).	 The	 highest	 ICC	 for	

consistency	intra-scan	was	with	no	normalisation,	but	for	inter-scan	it	was	with	normalisation	by	

scar	intensity	(scar	IIR).		

	

Absolute	 agreement	 between	 scanning	 sessions	 (inter-scan)	 was	 much	more	 heavily	 dependent	

upon	the	normalisation	method	used.	Without	normalisation,	absolute	agreement	was	very	poor	(ICC	

0.243),	 and	 remained	 poor	 even	 for	 the	 10	 subjects	 for	 whom	 the	 scans	 were	 performed	 with	

identical	acquisition	parameters	 (reproducibility	subjects:	 ICC	0.568).	However,	with	appropriate	

normalisation,	the	inter-scan	ICC	rose	to	0.670	(IQR	0.589-0.720),	and	to	0.759	(IQR	0.739-0.768)	for	

the	 subject	 who	 underwent	 identical	 protocols	 at	 Scans	 1	 and	 2.	 The	 highest	 ICC	 for	 absolute	

agreement	 was	 consistently	 with	 BP	 z-score	 normalisation.	 Both	 the	 scar	 IIR	 and	 BP	 z-score	

techniques	 consistently	 outperformed	BP	 IIR	 and	myocardial	 z-score	 techniques	 (Figure	8-8	 and	

Figure	8-9)	across	most	measures,	and	BP	z-score	normalisation	significantly	outperformed	all	other	

normalisation	methods	for	inter-scan	absolute	agreement.	
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Intra-scan	

(C2,3	and	C5,6)	

Inter-scan	

(C2,3,5,6)	

Inter-scan	

(standard	 parameters	

only)	

Consistency	
Absolute	

Agreement	
Consistency	

Absolute	

Agreement	
Consistency	

Absolute	

Agreement	

			
			
			
			
			
			
			
			
N
or
m
al
is
at
io
n
	T
ec
h
n
iq
u
e	

Nil	
0.804	

(IQR	 0.756-

0.860)	

0.708	
(IQR	 0.580-

0.799)	

0.677	
(IQR	 0.568-

0.742)	

0.243	
(IQR	 0.088-

0.443)	

0.791	
(IQR	 0.769-	

0.833)	

0.568	
(IQR	 0.356-	

0.707)	

BP		

Z-score	

0.796	
	(IQR	 0.729-

0.848)	

0.750	
	(IQR	 0.667-

0.827)	

0.713	
	(IQR	 0.659-

0.764)	

0.670		

(IQR	 0.589-

0.720)	

0.790	
(IQR	 0.767-

0.799)		

0.759	

(IQR	 0.739-	

0.768)	

V-Myo	

	Z-score	

0.754	
	(IQR	 0.688-

0.815)	

0.499		
(IQR	 0.355-

0.702)	

0.677		
(IQR	 0.622-

0.742)	

0.363		
(IQR	 0.258-

0.458)	

0.748	
(IQR	 0.744-	

0.788)	

0.436	
(IQR	 0.339-	

0.549)	

BP	IIR	
0.788		
(IQR	 0.723-

0.837)	

0.743		
(IQR	 0.644-

0.805)	

0.691	
(IQR	 0.655-

0.722)	

0.628	
(IQR	 0.530-

0.677)	

0.770	
(IQR	 0.664-	

0.799)		

0.679	
(IQR	 0.622-	

0.744)	

Scar	IIR	
0.801	
(IQR	 0.752-

0.852)	

0.772	

(IQR	 0.647-

0.813)	

0.721		

(IQR	 0.682-

0.774)	

0.618		
(IQR	 0.491-

0.694)	

0.809	

(IQR	 0.773-	

0.828)		

0.691	
(IQR	 0.576-	

0.744)	

Table	 8-4.	 Median	 (with	 interquartile	 range	 (IQR))	 intraclass	 correlation	 coefficients	

(ICCs)	for	point-by-point	comparison,	using	each	normalisation	technique.		

“standard	parameters	only”	are	those	subjects	that	underwent	identical	scan	protocol	at	

post	ablation	scans	1	and	2.	Highest	ICC	in	each	column	is	highlighted	in	bold.		IIR:	image	

intensity	ratio,	BP:	blood	pool,	V-Myo:	ventricular	myocardium.	
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Figure	8-8.	Intra-scan	Intraclass	Correlation	Coefficients	(ICCs)	

An	assessment	of	all	paired	scans	performed	under	the	same	standard	imaging	conditions.	

Left	hand	graphs	(box	and	whiskers)	show	median,	with	box	at	interquartile	range	and	

whiskers	at	10th	and	90th	percentiles,	with	each	point	showing	the	ICC	for	a	single	shell	

comparison.	Right	hand	graphs	show	the	group	by	group	comparisons	for	each	pair	of	

normalisation	techniques,	with	the	symbol	(and	95%	confidence	interval	(Tukey))	placed	

on	 the	 side	 of	 the	 equivalence	 line	 that	 favours	 the	 normalisation	 technique.	 The	

comparison	between	the	two	best-performing	normalisation	measures	(Scar	IIR	and	BP	

Z-score)	is	highlighted	in	red.	Upper	two	graphs	show	ICC	for	absolute	agreement,	lower	

two	graphs	for	consistency	(Scar-IIR:	scar	image	intensity	ratio,	BP-IIR:	blood	pool	image	

intensity	 ratio,	 Myo-Z:	 nulled	 myocardium	 z-score,	 BP-Z:	 blood	 pool	 z-score,	 nil:	 no	

normalisation.)	
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Figure	8-9.	Inter-scan	Intraclass	Correlation	Coefficients(ICCs)	

An	assessment	of	all	four	scans	performed	at	two	separate	imaging	sessions.	See	Figure	

8-8	legend	for	details.	

8.4.4 Thresholding	of	PAAS	imaging	

8.4.4.1 Normalisation	of	signal	intensities	
Across	all	228	acquisitions,	BP	SD	was	on	average	9.4±3.9%	of	the	mean	BP	SI,	and	for	ventricular	

myocardium	(V-Myo)	it	was	45.6±18.6%	of	mean	V-Myo	SI.	Otsu	threshold	represented	a	BP	z-score	

of	1.37±2.54,	V-Myo	z-score	of	16.4±14.6,	BP	IIR	of	1.17±0.26	and	scar	IIR	of	0.66±0.13.	On	exclusion	

of	the	10	minute	acquisitions,	which	often	had	very	poor	contrast,	the	Otsu	threshold	was	at	BP	z-

score	of	2.33±1.95,	V-Myo	z-score	of	17.3±16.9,	BP	 IIR	of	1.25±0.25	and	 scar	 IIR	of	0.63±0.08.	A	

comparison	of	standard	threshold	values	for	all	acquisitions	are	shown	in	Figure	8-10,	plotted	against	

a	BP	z-score	threshold	of	3.3.	There	is	a	significant	correlation	between	all	normalisation	techniques	

(p<0.0001	 for	 all	 comparisons),	 but	 it	 is	 clear	 that	 there	 is	 a	wide	 variation	 in	 the	 stringency	 of	

thresholds	employed	in	published	studies.	The	thresholds	of	V-Myo	at	6	and	scar	IIR	at	0.5	are	much	

lower	than	the	more	stringent	typical	BP	z-score	threshold	(3.3),	BP	IIR	(1.1)	and	Otsu	thresholds.	
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Figure	8-10.	Relationship	of	threshold	levels.	

	Graph	 demonstrating	 relationship	 between	 the	 most	 commonly	 used	 thresholding	

technique	(blood	pool	(BP)		z-score,	with	threshold	at	3.3	standard	deviations	from	the	BP	

mean)	 and	 and	 other	 standard	 threshold	 values.	 IIR:	 image	 intensity	 ratio,	 V-Myo:	

ventricular	myocardium.	

8.4.4.2 Derivation	of	a	gold-standard	threshold	value	
The	median	expert-derived	SI	threshold	was	assessed	only	for	the	20min	and	30min	acquisitions,	as	

the	contrast	was	generally	poor	for	acquisitions	at	10min.	A	total	of	79	acquisitions	were	assessed.	

Median	 threshold	was	109	SI	units	 (IQR	92-144),	and	 they	are	expressed	 in	 terms	of	normalised	

values	 in	 Table	 8-5.	 A	 BP	 z-score	 threshold	 at	 3.3	 appears	 to	 be	 over-stringent,	whilst	 all	 other	

conventional	threshold	values	are	too	permissive	except	for	Otsu	threshold	at	30min	(p<0.0001	for	

all	 comparisons	 to	established	 thresholds,	except	Otsu	at	30min	(p=0.18)).	 In	addition,	 there	 is	a	

significant	 change	 over	 time	 for	 all	 normalisation	 methods	 with	 the	 exception	 of	 ventricular	

myocardial	z-score.		

	

The	objective	DSC-derived	thresholds	demonstrated	a	similar	pattern.	Again,	acquisitions	at	10min	

were	excluded,	and	a	further	35	shells	were	excluded	as	derived	DSC	threshold	was	at	a	value	below	

the	BP	mean.	Thresholds	were	lower	than	those	for	expert	derived	thresholds	(median	96	(IQR	75-

120),	 p<0.001),	 but	 the	 correlation	 was	 strong	 (R2	 linear	 regression	 0.93).	 DSC	 thresholds	 are	

expressed	in	terms	of	normalised	values	in	Table	8-5.		There	was	no	significant	difference	in	values	

for	20min	and	30min	scans.	
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Conventional	

Threshold	

Expert-derived	 Objective	DSC-derived	

Mea

n	

Valu

e	
(All)	

Mean	

Value	
(20min)	

Mean	

Value	
(30min

)	

p-value	
(20	vs	30	

min)	

Mean	

Value	
(All)	

Mean	

Value	
(20min)	

Mean	

Value	
(30min)	

p-value	
(20	 vs	 30	

min)	

BP	 Z-

score	

	3	to	3.6	
(James	 L	 Harrison	 et	 al.	 2014;	

Malcolme-Lawes	 et	 al.	 2013;	

Taclas	et	al.	2010)	

2.22	

±1.26	

1.96	

±1.31	

2.47	

±1.16	
<0.001	

1.69	

±1.06	

1.44	

±0.85	

1.92	

±1.18	
0.15	

V-Myo	

Z-score	
5	
(Hunter	et	al.	2013)	

15.3	

±	5.7	

15.1	

±4.9	

14.8	

±5.2	
0.70	

12.1	

±4.2	

12.1	

±4.8	

12.1	

±3.6	
0.87	

BP	IIR	 0.97-1.6	
(Fukumoto	et	al.	2015)	

1.24	

±0.30	

1.21	

±0.24	

1.27	

±0.23	
0.002	

1.18	

±0.11	

1.16	

±0.11	

1.20	

±0.11	
0.22	

Scar	IIR	 0.4-0.6	
(Bisbal	et	al.	2014)	

0.676	

±0.13

1	

0.670	

±0.107	

0.628	

±0.097	
0.001	

0.577	

±0.099	

0.594	

±0.093	

0.564	

±0.104	
0.45	

Ratio	 to	

Otsu	

Thresh

old	

N/A	
1.06	

±0.12	

1.05	

±0.10	

1.02	

±0.10	
0.002	

0.938	

±0.103	

0.944	

±0.097	

0.933	

±0.110	
0.20	

Table	8-5.	Gold-standard	threshold	levels.	

Gold	standard	expert-derived	thresholds	and	DSC-derived	thresholds	expressed	in	units	of	

standard	normalisation	methods	 (blood	pool	 (BP)	z-score,	 ventricular	myocardium	(v-

myo)	z-score,	BP	image	intensity	ratio	(IIR)	and	scar	IIR).	Ratio	to	Otsu	threshold	is	also	

shown	(gold	standard/Otsu	threshold).	Units	are	expressed	for	all	scans,	scans	performed	

at	20min	after	GBCA	administration	only,	and	at	30min	only.	P-value	is	paired	t-test	within	

scan	session	(C2,3	and	C5,6)	

8.4.5 Recurrence	of	atrial	arrhythmia	
Total	follow-up	post	ablation	was	for	a	median	417	days	(IQR	285-628	days),	and	in	total	there	were	

13	patients	(33%)	with	a	recurrence	of	AF	or	tachycardia,	at	median	88	days	(IQR	57-100days)	post	

ablation.	11	patients	elected	to	undergo	a	further	ablation	procedure,	with	two	patients	undergoing	

conservative	management	(one	with	a	single	episode	of	AF	successfully	treated	with	IV	flecainide	at	

566	days	post	ablation,	and	the	second	with	a	single	DC	cardioversion	at	98	days,	just	outside	of	the	

blanking	period,	both	with	no	subsequent	recurrence).	
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Overall	scar	burden	was	23.3±14.2%	in	the	no	recurrence	group,	and	28.3±20.2%	in	the	recurrence	

group	 (p=0.32).	 There	 was	 also	 no	 significant	 difference	 in	 average	 PVE	 between	 groups	 (no	

recurrence:	 81.7%	 (IQR	 63.2-96.3%),	 recurrence:	 86.1%	 (IQR	 73.2-95.4%),	 p=0.10).	 Electrical	

reconnection	of	at	least	one	PV	pair	was	confirmed	in	10	of	the	11	subjects	that	underwent	repeat	

ablation,	and	sites	of	reconnection	versus	respective	PVE	are	shown	in	Figure	8-11.	There	was	no	

significant	relationship	between	PVE	and	likelihood	of	electrical	isolation	of	the	vein	pair:	subjects	

could	 demonstrate	 very	 high	 or	 even	 complete	 PVE	 on	 CMR	 imaging,	 but	 still	 have	 electrical	

reconnection	of	the	vein	pair.		

	

Complete	PVE	(>99%)	of	both	vein	pairs	was	observed	in	a	total	of	11	acquisitions	(out	of	total	152	

‘late’	acquisitions	performed	at	20	or	30min	post	GBCA	administration,	7%).	Of	these,	a	recurrence	

was	observed	on	3	occasions	(27%,	chi-square	p=0.94).	One	subject	had	>99%	PVE	of	both	veins	on	

both	acquisitions	within	a	single	scan	session	(subject	had	recurrence	of	AF),	and	no	subject	had	

>99%	PVE	on	all	four	‘late’	acquisitions.	Near-complete	PVE	(>95%)	of	both	vein	pairs	was	observed	

on	25	acquisitions	(16%,	9	with	recurrence),	7	times	on	both	acquisitions	within	a	scan	session	(2	

with	recurrence),	and	once	on	all	four	late	acquisitions	(none	with	recurrence).	Again,	there	was	no	

significant	association	with	recurrence	(p=	0.23,	p=0.85,	p=0.55,	respectively).	

	

	

	

Figure	8-11.	Relationship	between	percentage	PVE	and	electrical	reconnection.		

Electrical	reconnection	was	assessed	at	repeat	procedure	in	patients	who	had	a	sustained	

recurrence	of	arrhythmia	(n=11),	and	analysed	as	vein	pairs	(left	and	right,	as	indicated	

on	charts).	Closed	circles	indicate	PVE	at	scan	1,	open	circles	PVE	at	scan	2,	and	PVE	scores	

are	shown	only	for	acquisitions	at	20min	(Acq2	and	Acq5)	and	30min	(Acq3	and	Acq6)	post	

gadolinium.	
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8.5 Discussion	
	

The	key	findings	of	this	study	can	be	summarised	as	follows:	

1. There	is	good	intra-scan	reproducibility	of	thresholded	PAAS	imaging	(between	acquisitions	

at	20min	and	30min	post-GBCA	administration)	

2. There	is	good	to	excellent	inter-scan	reproducibility	of	PAAS	imaging	when	identical	imaging	

parameters	are	used	

3. There	is	good	inter-scan	reproducibility	of	non-thresholded	PAAS,	provided	that	the	signal	

intensities	are	normalised	using	appropriate	methods	

4. Normalisation	of	SIs	is	best	performed	using	a	BP	z-score,	or	a	scar	IIR	

5. The	thresholds	for	identification	of	PAAS	used	by	established	studies	vary	very	widely	

6. Threshold	for	identification	of	PAAS	is	likely	to	lie	between	2	and	3	SD	from	the	BP	mean,	

and	the	Otsu	thresholding	technique	is	a	reliable	and	objective	alternative	

7. There	was	no	significant	relationship	between	PAAS	summary	indices	and	AF	recurrence	

	

8.5.1 Reproducibility	
The	reproducibility	of	the	global	summary	indices	of	thresholded	PAAS	(total	scar	burden,	DSC	and	

PVE)	was	good	to	excellent	for	optimal	imaging	acquisitions.	Imaging	quality	was	found	to	be	poorer	

when	the	3D	LGE	sequence	was	acquired	at	less	than	20min	after	GBCA	administration,	and	this	was	

reflected	 in	 very	 low	 ICCs	 for	 comparisons	 involving	 acquisitions	 at	 10min	 post-GBCA	

administration.	 For	 intra-scan	 comparisons,	 there	 was	 generally	 good	 reproducibility	 for	 the	

comparison	 of	 acquisitions	 at	 20min	 and	 30min	 post	 GBCA	 administrations	 (ICC	 for	 absolute	

agreement	0.752	-	0.784),	with	more	scar	consistently	 identified	on	scans	acquired	at	30min.	For	

inter-scan	comparisons,	the	ICC	was	as	high	as	0.892,	with	a	95%	confidence	interval	of	agreement	

of	12%,	on	assessment	of	PVE	with	identical	imaging	parameters.	The	clinical	implications	of	these	

small	 differences	 in	measurements	 of	 PAAS	 remain	 to	 be	 established.	However,	 the	measures	 of	

reproducibility	are	of	a	similar	magnitude	to	those	of	ventricular	scar	imaging	(Mahrholdt	et	al.	2002;	

Vermes	et	al.	2013),	a	very	widely	accepted	clinical	imaging	modality,	and	are	superior	to	those	of	

myocardial	perfusion	imaging	(Morton	et	al.	2012).		

	

The	 use	 of	 a	 single	 threshold	 (3.3	 standard	 deviations	 above	 the	 blood	 pool	 mean)	 could	 have	

inappropriately	 strengthened	 or	weakened	 the	measures	 of	 reproducibility,	 depending	 upon	 the	

clinical	 accuracy	 of	 the	 threshold	 selected.	 It	 was	 therefore	 necessary	 to	 employ	 a	 measure	 of	

reproducibility	that	was	independent	of	thresholding,	and	the	intra-scan	and	inter-scan	variability	

remained	good.	The	ICC	for	inter-scan	absolute	agreement	was	as	high	as	0.759	on	a	point-by-point	

analysis	 when	 only	 the	 reproducibility	 group	 was	 assessed.	 This	 fell	 to	 0.67	 when	 all	 scanning	

parameter	groups	were	assessed,	but	this	still	represents	moderate	to	good	reproducibility	in	the	

context	 of	 very	 different	 imaging	 parameters.	 These	 ICCs	 are	 for	 absolute	 agreement,	which	 are	
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important	for	comparison	between	scans,	enabling	the	designation	of	a	fixed	threshold.	This	study	

suggests	that	it	is	valid	to	compare	scans	between	patients	and	scanning	sessions,	even	with	different	

acquisition	parameters,	provided	that	the	imaging	is	normalised	or	thresholded	appropriately.	

	

The	demonstration	and	quantification	of	the	reproducibility	of	the	imaging	technique	will	facilitate	

the	design	and	evaluation	of	further	studies.	Knowledge	of	the	inter-scan	variability	assists	in	the	

determination	of	the	sample	size	required	to	demonstrate	a	statistically	significant	alteration	in	the	

parameter	 assessed.	 In	 this	 study,	 for	 therapies	 evaluated	with	 identical	 scanning	 protocols,	 the	

standard	deviation	of	the	measurement	error	of	PVE	between	scans	was	only	6%.	Furthermore,	this	

study	 suggests	 that	 sample	 size	 could	 also	 be	 reduced	 through	 ensuring	 that	 acquisitions	 are	

performed	later	(>20min)	post	GBCA	administration.	

	

The	 reproducibility	 of	 assessment	 of	 indexed	 LA	 volume	 and	 LA	 ejection	 fraction	 was	 within	

acceptable	 limits.	 In	 accordance	with	 a	 recent	 study	 by	 Kowallick	 et	 al,	 95%	 CI	 of	 difference	 in	

measurement	of	LA	volume	was	<10ml/m2,	but	the	difference	in	LAEF	was	higher	(95%	CI	12%),	

which	may	reflect	the	impact	of	atrial	rhythm	on	image	acquisition	and	processing	(Kowallick	et	al.	

2015).	

8.5.2 Normalisation	methods	
In	the	absence	of	a	gold	standard	for	assessment	of	PAAS,	a	reproducibility	study	serves	as	a	useful	

surrogate	 for	 imaging	 validation.	 The	 close	 coupling	 of	 the	 two	 scan	 sessions	 (approximately	

48hours)	makes	 reasonable	 the	 assumption	 that	 the	 true	 location	 and	 extent	 of	 PAAS	 should	 be	

virtually	 unchanged	 (Badger	 et	 al.	 2009),	 and	 therefore	 optimal	 imaging	 processing	 techniques	

should	improve	the	reproducibility	of	indices	of	scar	delineation.		

	

The	 referencing	or	normalisation	of	 arbitrary	 signal	 intensity	units	 remains	 challenging,	but	 it	 is	

essential	in	order	to	facilitate	comparison	of	scans	and	thresholding	of	key	features.	In	this	study,	it	

was	clear	that	the	use	of	some	normalisation	methods	was	actually	worse	than	processing	raw	signal	

intensities	alone.	The	V-Myo	z-score	performed	particularly	poorly,	and	caused	a	deterioration	 in	

intra-scan	 ICC	and	 inter-scan	 ICC	 for	 the	 reproducibility	group	compared	 to	no	normalisation.	 In	

contrast,	 the	 three	other	normalisation	methods	 significantly	 improved	absolute	agreement.	This	

finding	 is	 similar	 to	 that	 for	 normalisation	 of	 ventricular	 LGE	 scar.	 Flett	 et	 al	 evaluated	 seven	

threshold	levels	(two	normalisation	techniques	and	one	manual	method),	and	found	that	a	full	width	

at	half	maximum	(FWHM)	threshold,	essentially	a	scar	IIR	of	0.5,	was	the	most	reproducible	whilst	a	

V-myo	z-score	score	was	consistently	worse	(Flett	et	al.	2011).	

	

Overall	the	BP	z-score	method	was	superior	in	terms	of	reproducibility	for	most	measures	of	absolute	

agreement,	although	scar	IIR	was	marginally	superior	for	assessment	of	intra-scan	reproducibility.	

This	 has	 important	 implications	 for	 the	 interpretation	 of	 results	 that	 have	 used	 a	 ventricular	
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myocardial	z-score	for	referencing	of	atrial	scar,	such	as	a	relatively	recent	study	that	found	that	LGE	

imaging	was	not	sufficiently	accurate	to	reliably	identify	ablation	lesions	(Hunter	et	al.	2013).	

8.5.3 Derivation	of	thresholds	for	PAAS	identification	
An	approach	to	imaging	validation	via	reproducibility	optimisation	does	not	assist	in	the	selection	of	

an	appropriate	threshold,	and	therefore	an	alternative	approach	was	required.	Manual	delineation	

of	scar	has	been	performed	for	ventricular	scar	on	LGE	imaging,	but	was	found	to	be	poor	in	terms	of	

inter	and	intraobserver	variability	(Flett	et	al.	2011)	and	therefore	was	not	performed	for	the	more	

challenging	atrial	scar	delineation.	The	alternative	that	was	used	in	this	study,	a	comparison	against	

sites	of	intended	ablation,	aimed	to	minimise	visually	the	enhancement	of	regions	of	the	atrial	shell	

that	had	not	been	ablated	at	any	point	during	the	procedure,	whilst	maintaining	scar	coverage	 in	

areas	that	had	received	RF	energy.	The	CMR	shell	was	compared	to	an	EAM	that	documented	even	

minimal	ablation	energy	at	each	location,	and	was	deliberately	blinded	to	contact	force	and	ablation	

time	parameters.	The	impact	of	these	parameters	is	explored	in	detail	in	Chapter	9:	the	unquantified	

effect	on	scar	formation	may	have	caused	subconscious	bias	in	the	selection	of	imaging	thresholds,	

and	was	therefore	avoided.	The	close	correlation	of	the	objective	DSC-derived	threshold	and	manual	

threshold	 (R2=0.93)	 largely	 reflects	 the	 similarity	 in	 the	 two	 processes	 of	 optimising	 fit,	 one	

automated	and	one	manual.		

	

Both	threshold	derivation	techniques	generated	normalised	thresholds	that	differ	slightly	from	those	

used	 previously,	 which	 is	 perhaps	 not	 surprising.	 BP	 z-score	 threshold	 of	 3.3	 appeared	 overly	

stringent,	 risking	 the	 mis-assignment	 of	 scar	 regions	 as	 healthy,	 whilst	 most	 other	 established	

thresholds	may	be	too	permissive.	In	particular,	the	variation	in	applied	BP	IIR	thresholds	is	striking,	

with	a	recent	study	by	the	Johns	Hopkins	group	using	a	threshold	of	0.97	to	delineate	LGE,	and	1.6	

for	dense	LGE	(Fukumoto	et	al.	2015).	Based	upon	data	in	this	study,	a	BP	IIR	of	1.6	would	typically	

represent	a	BP	z-score	of	>6SD.	However,	on	assessment	of	ablation	induced	LGE,	they	found	that	

sites	of	LGE	had	a	BP	IIR	of	1.25±0.25,	very	similar	to	the	derived	threshold	in	this	study	(1.24±0.30).	

Simulations	by	another	group	using	Bloch	equations	to	model	SI	of	BP	and	PAAS	have	been	also	been	

performed,	suggesting	that	a	BP	IIR	(which	they	termed	‘enhancement	ratio’)	of	1.4	is	sufficient	for	

identification	of	atrial	scar	(Peters	and	Bertelsen	2015).	

	

The	 wide	 confidence	 intervals	 for	 thresholds	 is	 consistent	 with	 previous	 studies.	 A	 histological	

validation	of	LGE	 imaging	of	PAAS	 identified	a	BP	z-score	of	3.3	 to	 represent	a	1:1	 ratio	of	CMR:	

histological	scar	volumes	(James	L	Harrison	et	al.	2014).	However,	alternative	thresholds	of	+1.5	to	

+5	 SDs	were	within	 a	 single	 standard	deviation	 of	 the	measured	 ratio,	with	 the	 95%	 confidence	

interval	spreading	correspondingly	further.	In	this	context,	the	confidence	intervals	for	thresholding	

are	comparatively	tight.	However,	it	is	important	to	consider	the	fallacy	of	thresholding	and	the	false	

assumption	of	dichotomisation	of	scar	and	healthy	myocardium.	Scar	borderzone,	with	an	altered	

ratio	of	connective	tissue	(collagen,	fibroblasts)	to	healthy	myocytes,	and	partial	thickness	lesions	

are	both	well	established	to	exist	post-ablation	(Kowalski	et	al.	2012).	The	 identification	of	 these	
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borderzones	 is	more	 important	 than	dense	scar	 in	 the	understanding	of	arrhythmogenesis	 in	 the	

ventricle	(Fernández-Armenta	et	al.	2013)	and	a	similar	principle	 is	 likely	to	apply	 in	the	atrium.	

However,	the	thin	atrial	wall	(2-4mm	typically)	greatly	limits	the	identification	of	partial	thickness	

lesions	at	current	imaging	resolutions,	and	also	the	differentiation	of	scar	borderzone	due	to	partial	

voluming	effects.	Therefore,	dichotomisation	of	atrial	scar	remains	the	most	approachable	option	at	

the	 current	 limits	 of	 resolution,	 and	 it	must	 be	 accepted	 that	 the	 precise	 threshold	will	 allocate	

varying	proportions	of	the	borderzone	to	scar	or	healthy	myocardium	populations.	

	

Otsu	 thresholding	 was	 also	 explored	 as	 it	 has	 previously	 been	 advocated	 for	 the	 delineation	 of	

ventricular	LGE	scar	(Vermes	et	al.	2013).	In	this	study	it	was	found	to	correlate	closely	with	BP	z-

score,	 the	optimal	normalisation	method,	and	 is	relatively	reliable	 in	 terms	of	consistency	versus	

derived	thresholds.	The	simplicity	of	the	computation	and	its	objectivity	is	attractive,	and	it	warrants	

further	assessment	of	its	use	in	routine	practice.	

8.5.4 Association	of	PAAS	imaging	and	outcome	
The	absence	of	a	significant	relationship	in	this	study	between	detection	of	gaps	in	the	CMR-derived	

ablation	line	and	recurrence	questions	the	immediate	relevance	of	PAAS	imaging.	This	finding	is	in	

keeping	with	some	recent	studies	(J	L	Harrison,	Sohns,	et	al.	2015;	Spragg	et	al.	2012),	but	at	odds	

with	others	which	have	demonstrated	a	relationship	(Bisbal	et	al.	2014;	Taclas	et	al.	2010).	In	one	of	

the	first	and	largest	studies	of	PAAS,	Badger	et	al	found	that	only	10	out	of	144	(7%)	of	patients	had	

complete	PVE	of	all	PVs,	but	that	there	were	no	recurrences	in	this	group.	The	metrics	used	to	assess	

gaps	in	this	study	are	arguably	more	rigorous,	but	the	overall	proportion	without	a	gap	in	both	vein	

pairs’	 encirclement	 is	 similar	 (7%	 of	 acquisitions	 had	 >99%	 PVE	 of	 both	 veins),	 and	 was	 not	

associated	with	recurrence.		

	

However,	the	interplay	of	interruption	of	the	continuity	of	the	PVI	lesion	set	and	AF	recurrence	is	a	

complex	one:	many	gaps	will	not	necessarily	lead	to	recurrence	of	arrhythmia,	whilst	very	small	gaps	

may	 be	 sufficient	 for	 electrical	 reconnection.	 In	 a	 recent	meta-analysis	 of	 the	 relationship	 of	 PV	

reconnection	and	AF	recurrence,	Nery	et	al	reviewed	11	studies	totalling	683	subjects	(Nery	et	al.	

2016).	Amongst	those	with	AF	recurrence,	only	86%	had	at	least	one	PV	reconnected.	Conversely,	

overall	59%	of	patients	who	were	free	of	AF	had	at	least	one	PV	reconnection,	and	Jiang	et	al	(Jiang	

et	al.	2014)	demonstrated	that	there	was	a	90%	rate	of	reconnection	at	12months	in	the	absence	of	

recurrence.	This	is	corroborated	by	a	recent	remarkable	randomised	controlled	study	published	by	

Kuck	et	al	(Kuck,	Hoffmann,	et	al.	2016)	which	directly	investigated	the	impact	of	a	small	deliberate	

gap	in	the	PVI	lesion	set.	The	AF	recurrence	rate	at	3	months	in	the	cohort	with	a	gap	was	slightly	

higher	(79%	versus	62%,	p<0.001),	but	conduction	gaps	were	still	found	in	70%	of	the	complete	PVI	

group	at	invasive	reassessment	at	3	months.	

	

The	results	of	 this	study	suggest	 that	detection	of	PAAS	 is	a	reproducible	 finding,	but	 the	clinical	

implications	for	guidance	of	repeat	procedures	are	unclear	and	warrants	further	investigation.	
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8.5.5 Limitations	
The	limitations	discussed	in	Chapter	7	remain	relevant.	However,	 there	are	additional	 limitations	

that	should	also	be	reviewed	on	the	assessment	of	reproducibility.	The	first	is	the	method	of	image	

interrogation,	 and	whether	 the	 technique	 introduces	bias	 towards	 improved	 reproducibility.	The	

technique	involved	a	rigid	image	registration	step,	in	order	to	maintain	morphologically	identical	LA	

shells	which	were	important	for	subsequent	assessments.	The	endocardial	mask	(GMRA	acquisition)	

was	generally	registered	to	the	subsequent	LGE	acquisitions,	with	a	translation	of	mean	magnitude	

1.9±1.6mm,	and	rotation	0.62±0.41°	(see	4.2.2).	For	the	majority	of	the	subjects	this	was	performed	

blinded	to	scar,	using	the	GMRA	sequence	only.	However,	in	five	subjects	the	registration	was	of	a	

10min	acquisition	to	subsequent	LGE	acquisitions.	The	re-registration	goodness	of	fit	is	evaluated	

across	all	high	contrast	features	within	the	dataset,	including	bone	and	soft	tissue,	and	therefore	the	

effect	of	LA	scar	(approx	6ml	within	6,000ml	dataset,	<0.1%)	was	felt	to	be	negligible,	particularly	

given	the	poor	PAAS	enhancement	on	the	10min	acquisitions.	

	

The	summary	indices	of	PAAS	were	all	developed	specifically	for	this	study	and	further	validation	of	

their	robustness	is	warranted.	In	particular,	the	implementation	of	semi-automated	steps	in	image	

interrogation	has	meant	that	inter-	and	intra-observer	variability	has	not	been	explored	in	this	study.	

Further	 evaluation	 of	 the	 variation	 in	 summary	 indices	warrants	 the	 re-segmentation	 of	 the	 LA	

endocardium,	with	subsequent	image	processing	steps	repeated.		

	

8.6 Conclusions	
CMR	imaging	of	PAAS	is	a	reproducible	finding,	particularly	when	the	3D	LGE	dataset	is	acquired	at	

least	30min	after	the	administration	of	GBCA.	Intra-scan	and	inter-scan	reproducibility	 is	good	to	

excellent.	Normalisation	of	signal	intensities	is	required	in	order	to	facilitate	the	use	of	a	consistent	

threshold,	and	in	most	cases	is	best	referenced	to	the	blood	pool	signal	as	a	z-score	including	SD	of	

blood	pool	signal.	The	threshold	for	PAAS	lies	between	2	and	3SD	from	the	blood	pool	mean,	and	the	

use	of	an	objective	Otsu	threshold	should	be	considered.	
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her	departure	to	work	in	industry,	the	project	was	taken	forward	by	Marta	Núñez	and	Constantine	

Butakoff	at	Universitat	Pompeu	Fabra,	Barcelona,	Spain.	They	have	developed	multiple	iterations	of	
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The	use	of	ICCs	to	compare	signal	normalisation	measures	was	performed	in	collaboration	with	Dr	

Sebastien	Roujol.	I	sourced	and	tested	the	Matlab	code	to	derive	ICCs,	and	Dr	Roujol	wrote	the	Matlab	
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For	manual	thresholding,	I	used	the	EAM	shells	that	were	extracted	and	processed	in	collaboration	

with	 Kulvinder	 Lal	 and	 Dr	 Steven	Williams	 (see	 Chapter	 9).	Manual	 selection	 of	 thresholds	was	

performed	by	myself,	and	the	code	for	the	DSC	generation	was	developed	in	collaboration	with	Dr	

Rashed	Karim.	Again,	raw	values	were	generated	for	each	comparison	and	subsequently	analysed	by	

myself.	I	proposed	the	Otsu	thresholding	of	the	LA	shells	to	Dr	Rashed	Karim,	and	he	also	wrote	that	

code,	generating	a	single	value	for	each	shell.	
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All	statistical	calculations,	with	the	exception	of	the	ICC	calculation	above,	were	performed	by	myself.		
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8.8 Chapter	Appendix	A-	Pulmonary	Vein	Encirclement		
Figure	8-12	shows	the	relationship	between	total	scar	burden,	scan	quality	and	PVE.	It	is	clear	that	

there	is	a	significant	relationship	between	PVE	and	scar	burden	(R2	for	both	vein	pairs	0.632	(linear	

regression)	 and	 0.818	 (one	 phase	 decay	 regression)),	 but	 that	 scar	 burden	 is	 not	 the	 only	

determinant	of	PVE.	Likewise,	there	is	a	significant	relationship	between	PVE	and	overall	scan	quality	

(R2	for	both	vein	pairs	0.302),	but	a	high	degree	of	PVE	can	still	be	detected	on	relatively	poor	quality	

scans	(see	Section	7.3.4.1.	for	details	of	derivation	of	Likert	score)	

	

Figure	 8-12.	 The	 dependence	 of	 pulmonary	 vein	 encirclement	 (PVE)	 upon	 scan	

parameters.		

(Top	row)	Percentage	PVE	against	the	proportion	of	the	whole	LA	scar	that	is	above	the	

threshold	of	3.3	standard	deviations	above	the	blood	pool	mean.	Note	the	increase	in	PVE	

with	increase	in	total	scar	burden,	but	that	in	some	cases	complete	PVE	may	be	observed	

in	the	presence	of	low	(<20%)	total	scar	burden,	whilst	in	others	a	much	larger	proportion	

of	 the	 shell	 may	 be	 ascribed	 to	 scar	 status	 without	 complete	 PVE.	 (Bottom	 row)	

Percentage	PVE	against	scan	quality,	expressed	in	terms	of	overall	average	Likert	Score	

across	all	four	criteria	(see	Chapter	7).	Again,	there	is	a	general	increase	in	%	PVE	with	

improved	scan	quality,	but	a	wide	range	of	degree	of	PVE	is		observed	with	both	high	and	

low	quality	scans.	
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9 IMAGING	POST	ABLATION:	PREDICTIVE	
VALUE	OF	OBJECTIVE	MARKERS	OF	
RADIOFREQUENCY	ABLATION	EFFICACY	
FOR	CHRONIC	ATRIAL	LESION	
FORMATION	ON	LATE	GADOLINIUM	
ENHANCED	CMR	IMAGING	

9.1 Aims	
To	determine	the	VisiTag	thresholds	that	best	correlate	with	chronic	atrial	ablation	lesion	formation,	

as	assessed	by	LGE	CMR.	

9.2 Introduction	
Catheter-myocardial	contact	 is	a	key	determinant	of	ablation	lesion	formation,	with	many	studies	

demonstrating	 the	 importance	 of	 contact	 force	 (CF)	 technology	 in	 the	 determination	 of	 ablation	

lesion	quality	and	size	(Haldar	et	al.	2013;	Kuck	et	al.	2012;	Neuzil	et	al.	2013;	Yokoyama	et	al.	2008;	

Shurrab	et	al.	2015)	.	Real-time	CF	measurement	and	display	using	CF-sensing	catheters	provides	

immediate	 feedback	 to	 the	 operator,	 improving	 catheter	 positioning	 (Okumura	 et	 al.	 2008)	 and	

estimation	of	radiofrequency	(RF)	energy	delivery	(Neuzil	et	al.	2013).	

	

However,	 it	has	been	recognised	from	the	outset	of	clinical	 implementation	of	CF	technology	that	

absolute	CF	is	only	one	of	several	factors	contributing	to	RF	lesion	formation	(F.	H.	M.	Wittkampf	and	

Nakagawa	2006).	In	tandem	with	electroanatomical	mapping	(EAM)	systems,	multiple	parameters	

can	 be	 assessed	 simultaneously,	 including	 ablation	 time,	 catheter	 stability,	 impedance	 drop,	 and	

catheter	 tip	 temperature.	 Simple	 summative	 indices	 such	 as	 force	 time	 integral	 (FTI)	 have	 been	

shown	to	be	associated	with	lesion	formation	(Sohns	et	al.	2013),	but	there	has	been	a	drive	towards	

more	objective	and	inclusive	markers	of	predicted	tissue	injury.	VisiTag	(Biosense	Webster,	Diamond	

Bar,	CA,	USA)	is	a	software	module	within	the	CARTO	EAM	system	that	was	introduced	in	2014	to		

permit	quantification	and	display	of	RF-induced	injury.	It	enables	operators	to	specify	the	values	of	

a	 specific	 selection	 of	 parameters	 (including	 minimum	 CF,	 time	 at	 location,	 stability	 indices,	

impedance	drop	and	temperature)	that	must	be	met	in	order	for	a	VisiTag	marker	to	be	placed	at	the	

ablation	location.	As	such,	it	is	an	objective	binary	marker	of	ablation	that	is	highly	dependent	upon	

the	thresholds	selected	by	the	operator.	
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Ex-vivo	(F.	H.	Wittkampf,	Hauer,	and	Robles	de	Medina	1989)	and	pre-clinical	work	(Williams	et	al.	

2015)	has	contributed	to	informed	selection	of	VisiTag	thresholds,	but	there	remains	a	wide	variation	

between	clinical	operators	(Fujiwara	et	al.	2016;	Lin	et	al.	2013;	Okumura	et	al.	2016).	Human	atria,	

particularly	in	those	with	severe	atrial	remodelling,	are	likely	to	respond	to	RF	energy	in	a	manner	

that	differs	from	standard	animal	models.	However,	histological	assessment	is	clearly	not	feasible.	

CMR	 imaging	 is	 the	 most	 promising	 and	 reliable	 modality	 for	 non-invasive	 ablation	 lesion	

assessment,	using	LGE	as	a	marker	of	extracellular	space,	and	therefore	fibrosis	secondary	to	tissue	

injury.	Animal	and	human	studies	have	demonstrated	a	strong	correlation	between	ablation	lesions	

and	LGE	signal	intensity,	as	assessed	histologically	(James	L	Harrison	et	al.	2014;	Williams	et	al.	2015)	

and	by	voltage	mapping	(Badger	et	al.	2010;	Bisbal	et	al.	2014;	Malcolme-Lawes	et	al.	2013).	

9.3 Methods	

9.3.1 Study	population	
Between	 March	 2014	 and	 September	 2015,	 patients	 with	 pre-procedural	 baseline	 CMR	 scan	

undergoing	first-time	ablation	procedure	for	AF	were	approached	to	join	the	study.	Inclusion	criteria	

included	 ablation	 performed	 using	 SmartTouch	 ablation	 catheter	 (Biosense	 Webster)	 and	 that	

VisiTag	 module	 was	 activated	 for	 the	 entire	 ablation	 procedure.	 Exclusion	 criteria	 included	

contraindication	to	further	CMR	imaging	or	prior	allergic	reaction	to	contrast	agent.	24	patients	in	

total	were	recruited.	Subjects	provided	written	and	informed	consent	and	returned	for	CMR	scan	

assessment	of	atrial	scar	at	3months.	Baseline	demographics	were	documented	at	the	initial	scan,	

including	 age,	weight,	 height,	 body	mass	 index	 (BMI),	 ischaemic	 heart	 disease,	 diabetes	mellitus,	

duration	of	AF,	type	of	AF,	and	rhythm	at	scan.	Comorbidities	were	recorded.		

The	study	was	performed	at	St	Thomas’	Hospital,	London,	UK	and	was	approved	by	the	UK	Health	

Research	Authority	(NRES	Committee	for	South	London,	reference	08/H0802/68).	

9.3.2 Ablation	procedure	
The	details	of	the	ablation	procedure	are	documented	in	Chapter	4.4	

9.3.3 CMR	imaging	acquisition	and	image	interrogation	
The	 details	 of	 the	 3D	 LGE	 acquisition	 are	 documented	 in	 Chapter	 4.1.1.	 Only	 the	 acquisition	

performed	at	30minutes	post-GBCA,	under	standard	acquisition	parameters,	was	analysed	for	each	

patient.	Image	interrogation	was	performed	as	documented	in	Chapter	4.2,	and	shells	were	exported	

with	CMR	LGE	signal	intensity	assigned	at	each	triangular	face.	Binarisation	to	scar	and	no	scar	was	

required	 for	 some	 assessments,	 and	 in	 these	 cases	 the	 threshold	 was	 assigned	 at	 3.3	 standard	

deviations	(SD)	above	the	blood	pool	(BP)	mean	(James	L	Harrison	et	al.	2014).	
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9.3.4 VisiTag	parameter	survey	
A	 questionnaire	 regarding	 prevailing	 practice	 in	 the	 use	 of	 contact	 force	 settings	 was	 sent	 in	

September	2015	to	all	UK	centres	performing	AF	ablation.	The	full	set	of	questions	with	potential	

responses	 is	 shown	 in	Table	9-1,	and	was	circulated	via	SurveyMonkey	(Palo	Alto,	CA,	USA).	The	

responses	were	used	to	determine	median	ranges	 for	 the	default	VisiTag	parameter	settings	(see	

below).



CMR	imaging	in	EP	

	

Imaging	Post	Ablation:	Predictive	Value	of	Objective	Markers	of	Radiofrequency	Ablation	Efficacy	for	Chronic	Atrial	Lesion	Formation	on	Late	Gadolinium	Enhanced	CMR	Imaging	 207	

1. How	many	AF	ablations	does	your	institution	perform	each	year?	
<50	 51-150	 151-250	 251-350	 351-500	 501-700	 701-1000	 >1000	 	 	
2. At	your	Institution,	how	often	do	you:	

A. Use	CARTO	for	AF	ablation	procedures	

B. Use	a	contact	force	sensing	catheter	when	using	CARTO	for	AF	ablations	?	

C. Activate	the	VisiTag	module	when	using	CARTO	with	a	force	sensing	catheter	

Never	 (<1%	 of	
ablations)	

Rarely	 (1-20%	
of	ablations)	

Sometimes	(20-50%	of	
ablations)	

Often	(50-80%	of	ablations)	
	

Almost	always	(80-99%	of	
ablations)	

Always	(>99%	of	ablations)	

3. Catheter	Position	stability:	‘Minimum	Time’	
What	setting	do	you	usually	use	for	‘Minimum	Time’	at	your	institution?	

Nil*	 5-9sec	 10-14sec	 15-19sec		 20-24sec	 25-29sec	 30-34sec	 >34sec	 Varies§	 	
4. Catheter	Position	Stability:	'Max	Range'.	

What	setting	do	you	usually	use	for	'Max	Range'	at	your	institution?	

Nil*	 <2mm	 2mm	 3mm	 4mm	 5mm	 6mm	 7mm	 >7mm	 Varies§	
5. Force	over	Time:	'Time	Percentage'	

What	setting	do	you	usually	use	for	'Time	Percentage'	at	your	institution?	

Nil*	 <40%	 40-49%	 50-59%	 60-69%	 70-79%	 80-89%	 >89%	 Varies§	 	
6. Force	over	Time:	'Minimum	Force'	

What	setting	do	you	usually	use	for	'Minimum	Force'	at	your	institution?	

Nil*	 <4g	 5-8g	 9-12g	 13-16g	 17-20g	 21-24g	 >24g	 Varies§	 	
7. Impedance	Drop	

What	setting	do	you	usually	use	for	'Impedance	Drop'	at	your	institution?	

Nil*	 <4ohms	 5-8ohms	 9-12ohms	 13-16ohms	 17-20ohms	 >20ohms	 Varies§	 	 	
8. Target	Temperature	
What	setting	do	you	usually	use	for	'Target	Temp'	at	your	institution?	

Nil*	 <38	˚C	 39-40	˚C	 41-42	˚C	 43-44	˚C	 45-46	˚C	 >46	˚C	 	Varies§	 	 	
9. Please	rank	the	following	factors	in	the	order	that	you	feel	are	most	important	in	determining	the	formation	of	an	effective	ablation	lesion	

	(1=	most	important,	6=	least	important)	

Catheter	position	stability:	time	
Catheter	position	stability:	
range	

Force	over	time:	time	
percentage	

Force	over	time:	minimum	
force	

Impedance	
drop	

Target	
Temperature	

Table	9-1.	Contact	force	parameter	settings	survey.		

Questions	in	bold,	with	permitted	responses	in	italics	below.		Nil*:	option	in		full	read	“Filter	not	activated	routinely”.		Varies§:	option	in	full	read	“Varies	widely	

between	operators.
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9.3.5 VisiTag	data	export	
CARTO3	(Biosense	Webster)	has	a	comprehensive	‘Export	Data’	tool,	enabling	operators	to	review	

and	analyse	retrospectively	most	elements	of	an	interventional	procedure.	The	reconstruction	of	the	

ablation	procedure	off-line	is	well	established,	and	the	data	export	includes	all	information	required	

to	reconstruct	the	mesh	of	the	cardiac	chamber,	all	catheter	movements,	 intracardiac	and	surface	

electrograms,	and	ablation	information	recorded	during	RF	sessions	(including	power,	impedance	

and	temperature).	Where	the	SmartTouchTM	module	has	been	activated,	all	contact	force	information	

is	 also	 recorded	 at	 a	 sampling	 rate	 of	 20Hz.	 The	 data	 is	 referenced	 to	manual	 ablation	 location	

annotations	(9.5sec	prior	and	0.5sec	after),	and	includes	the	force	in	grams	and	the	axial	and	lateral	

contact	 angles.	This	 ablation	data	may	be	 supplemented	and	cross-referenced	with	an	additional	

export	file	which	contains	contact	force	and	angles	for	all	timepoints	when	RF	is	activated	(again,	at	

20Hz	 sampling	 rate),	 increasing	 reliability	 distant	 from	 manual	 ablation	 markers.	 With	 the	

implementation	of	the	VisiTag	module,	further	ablation	details	are	recorded	broken	down	into	the	

‘Grid’	points,	containing	a	millimetre	by	millimetre	breakdown	of	time,	temperature,	power	and	force	

achieved	at	each	location	in	3D	space.		

	

In	theory,	the	information	contained	within	these	files	may	be	used	to	reconstruct	the	timeline	and	

ablation	parameters	for	the	ablation	procedure,	and	a	VisiTag	surrogate	can	be	estimated.	However,	

the	algorithms	used	to	determine	the	placement	of	the	objective	VisiTag	marker	are	not	published,	

and	therefore	any	surrogate	is	prone	to	error.	For	example,	“Stability	Maximum	Range”	(hereafter	

called	“Range”-	see	Figure	9-1)	is	defined	as	the	maximum	distance	that	the	calculated	catheter	tip	

position	may	move	before	ablation	parameters	are	allocated	to	a	different	 location.	However,	 the	

mechanism	by	which	the	central	locations	of	adjacent	lesions	are	identified	is	not	clear,	and	is	related	

to	 a	 moving	 average	 of	 the	 cluster	 of	 ablation	 points.	 Likewise,	 “Force	 over	 Time-Time	 (%)”	

(hereafter	called	“Percentage	Time”)	reflects	a	rolling	average	of	the	amount	of	time	that	the	CF	has	

been	greater	than	the	minimum	stipulated	force,	but	the	start	and	finish	of	the	analysis	window	has	

not	 been	 stipulated.	 “Force	 over	 Time-	 Minimum	 Force”	 (hereafter	 called	 “Force”),	 “Stability	

Minimum	Time”	(hereafter	called	“Time”),	“Impedance	Drop”	and	“Target	Temperature”	are	clearer,	

but	again	there	are	ambiguities	that	preclude	the	creation	of	an	exact	replica	of	VisiTag	markers.	

	

Therefore,	 in	order	to	assess	the	predictive	value	of	VisiTag	markers,	the	data	was	exported	with	

VisiTag		status	ascribed	directly	by	the	CARTO3	system.	The	default	settings	were	selected	based	

upon	the	median	values	of	the	UK	survey	(force	8g,	time	10seconds,	range	3mm,	percentage	time	

50%,	impedance	drop	filter	‘off’,	target	temperature	filter	‘off’).	Each	parameter	was	then	adjusted	

maintaining	all	other	parameters	constant	at	default	values,	and	a	new	export	dataset	created.	The	

number	 of	 settings	 exported	 for	 each	 parameter	 were	 weighted	 according	 to	 the	 subjective	

impression	of	relative	importance	of	the	parameter	in	the	survey:	

• ‘Force’	(g)-		 	 	 ten	setting	levels-	 2,	4,	6,	(8-default),	10,	12,	14,	16,	
18,	20	
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• ‘Time’	(seconds)-	 	 six	setting	levels-		 5,	(10-default),	15,	20,	25,	30	

• ‘Percentage	time’	(%)-		 	 six	setting	levels-		 30,	40,	(50-	default),	60,	70,	80	

• ‘Range’	(mm)-		 	 	 six	setting	levels-		 2,(3-default),	4,	5,	6,	7	

• 	‘Impedance	drop’	–	 	 two	setting	levels	–		 on	(10	Ω),	(off-	default)	

• ‘Target	temperature’-		 	 two	setting	levels	–		 on	(42°C),	(off-	default)	

In	 total,	27	export	datasets	were	created	 for	each	subject.	Examples	of	VisiTag	density	across	all	

parameter	thresholds,	for	a	single	subject	(39F)	is	shown	in	Chapter	Appendix	A.	

	

	

Figure	9-1.	VisiTag	preference	window,	with	default	settings	applied	

9.3.6 Comparison	of	ablation	and	CMR	shells	
The	CARTO3	export	datasets	were	processed	using	custom	written	Matlab	software	(MathWorks,	

MA,	USA),	and	the	scripts	are	documented	in	Chapter	Appendix	B.	I	was	responsible	for	the	design	

and	logic	of	the	programming,	and	a	colleague	familiar	with	the	syntax	of	Matlab	(Steven	Williams)	

implemented	the	design.	For	each	subject,	the	mesh	was	extracted,	remeshed	(see	below)	and	the	27	

sets	 of	 VisiTag	 locations	 extracted.	 A	 7.5mm	 search	 radius	 was	 defined	 for	 each	 triangle	 of	 the	

remeshed	shell,	and	the	surface	triangles	were	binarised	to	those	associated	with	a	VisiTag	marker,	

and	those	that	were	not	.	The	7.5mm	search	radius	was	defined	based	upon	anticipated	maximum	
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lesion	 radius	width	 of	 4.5mm	 at	 30W	 (Thiagalingam	 et	 al.	 2010),	with	 the	 addition	 of	 a	 default	

“Range”	threshold	of	3mm.	The	surface	mesh	was	created	with	27	layers,	each	containing	the	binary	

data	for	a	defined	VisiTag	setting	in	an	identical	anatomical	orientation.	

9.3.7 Lesion	continuity	assessment	
The	presence	of	continuous	CMR	LGE	scar	was	assessed	at	each	of	18	regions	for	each	patient	shell	

(Figure	9-2),	 thresholded	at	3.3	SD	above	the	BP	mean.	Continuous	VisiTag	marker	presence	was	

assessed	for	the	same	regions	at	each	of	the	27	parameter	setting	groups.	Lesion	continuity	on	CMR	

LGE	and	VisiTag	markers	was	assessed	in	Paraview	(Kitware,	New	York,	NY,	USA),	and	the	ablation	

line	was	 considered	 continuous	 in	 the	 absence	of	 any	gap	>1mm.	Distances	were	measured	as	 a	

straight	line	between	closest	points	of	lesion	apposition,	using	the	‘Ruler’	source	tool.	

	

	

Figure	9-2.	Regions	for	assessment	of	CMR	LGE	scar	and	VisiTag	presence.	

	LS:	left	superior	PV,	LI:	left	inferior,	RS:	right	superior,	RI:	right	inferior.	

9.3.8 Point-by-point	assessment	

9.3.8.1 Re-meshing	of	left	atrium	
The	core	model	 for	 the	surface	mesh	was	created	 from	the	CARTO	mesh	dataset.	However,	 these	

surface	meshes	 lack	 ideal	 characteristics	 for	 further	analysis:	 they	are	anisotropic,	with	a	widely	

varying	inter-vertex	distance,	and	there	are	frequent	misshapen	regions	on	closer	examination,	such	

as	‘kites’.	Any	analysis	based	on	a	triangle-by-triangle	technique	is	prone	to	systematic	inaccuracies,	

especially	in	regions	of	extreme	curvature.	The	surfaces	were	therefore	remeshed	to	create	a	smooth,	

isotropic,	surface	domain	 for	analysis.	vmtk	(Orobix,	Bergamo,	 Italy)	was	used	to	remove	surface	

kites	and	Meshlab	(ISTI,	Pisa,	Italy)	to	preform	Poisson	smoothing	and	mesh	regularisation	with	a	

uniform	edge	length	of	0.4mm	(Figure	9-3).	
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Figure	9-3.	Left	atrial	re-meshing	technique.		

The	original	CARTO	mesh	 export	dataset	 is	 a	 surface	with	a	wide	 variation	 in	 surface	

triangulation	size	(A),	with	size	largely	determined	by	local	curvature.	Initial	attempts	at	

simple	remeshing	caused	significant	artefacts	(B),	secondary	to	small	shell	imperfections	

(not	 shown).	The	 surfaces	were	 therefore	Poisson	 smoothed	 (C)	and	 remeshed	at	high	

resolution	(D).	

9.3.8.2 Fusion	of	CMR	data	to	CARTO3	shell	
Fusion	of	CMR	shell	to	CARTO3	shell	was	performed	using	an	iterative	closest	point	(ICP)	technique.	

Anatomical	landmarks	were	ascribed	to	both	the	CMR	imaging	shell	and	CARTO	mesh,	and	the	two	

shells	 fused,	blinded	 to	VisiTag	 thresholds.	CMR	data	was	placed	on	 the	high	 resolution	CARTO3	

mesh.	Mis-registration	resulted	in	a	varying	degree	of	matching	of	scar	to	ablation	location,	despite	

excellent	visual	correlation	of	ablation	scar	(Figure	9-4).	A	strong	qualitative	relationship	between	

ablation	and	atrial	scar	was	apparent,	but	in	some	locations	a	direct	point-by-point	assessment	led	

to	a	 falsely	poor	correlation.	All	registrations	were	therefore	performed	twice,	and	Sorensen	dice	

similarity	coefficient	 (DSC)	used	 to	analyse	co-location	of	 thresholded	CMR	LGE	scar	and	VisiTag	

status	(at	“default”	threshold	settings)(Crum,	Camara,	and	Hill	2006).		
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Figure	9-4	Illustration	of	the		subtle	mismatch	of	EAM	and	CMR	LA	shells.	

(A)	3D	rendering	derived	from	CARTO3	shell	demonstrating	contact	force.	(B)	Maximum	

intensity	 projection	 of	 CMR	 LGE	 signal,	 fused	 to	 the	 CARTO3	 shell.	 Note	 the	 strong	

qualitative	correlation	of	contact	force	and	signal	intensity,	but	the	relatively	poor	point-

by-point	correspondence	in	some	locations	(white	arrow)	

9.3.8.3 Data	analysis	
For	every	surface	triangle	on	the	CMR	and	ablation	meshes,	there	were	27	VisiTag	values	(binary	

data)	and	one	CMR	LGE	scar	value	(signal	intensity),	with	typically	200,000	to	400,000	triangular	

surfaces	per	shell.	This	resolution	is	far	in	excess	of	the	source	data	(1.3x1.3x2mm	for	CMR	scar	and	

7.5mm	search	radius	for	ablation	shell),	and	the	uniform	triangle	size	across	subjects	inferred	that	a	

greater	 proportion	 of	 the	 data	 points	 arose	 from	 the	 subjects	 with	 the	 largest	 LA	 surface	 area.	

Therefore,	the	surface	was	resampled	at	5000	points	per	patient,	corresponding	to	an	inter-vertex	

distance	of	approximately	3mm	and	weighting	the	data	equally	for	each	patient.	

	

9.3.9 Electrical	reconnection	of	pulmonary	veins	
Both	VisiTag-derived	and	CMR-derived	lesion	continuity	were	assessed	against	the	site	of	electrical	

reconnection,	which	was	assessed	as	detailed	in	Section	8.3.7.		

9.3.10 Statistical	methods	
Normally	distributed	continuous	variables	are	presented	as	mean	±	standard	deviation,	and	median	

with	interquartile	range	(IQR)	for	non-normal	distribution	or	non-continuous	ordinal	data.	Statistics	

were	analysed	using	SPSS	Statistics	(Version	22,		Armonk,		NY).	For	assessment	of	VisiTag	accuracy	

for	scar	prediction,	the	locations	of	CMR-derived	chronic	scar	were	taken	as	the	indication	of	effective	

lesion	formation.	Sensitivity	and	specificity	of	VisiTag	prediction	of	lesion	formation	were	assessed	

on	a	regional	or	point-by-point	basis,	using	standard	methods	(outlined	in	Table	9-2).	Within-patient	

differences	for	binary	thresholding	(impedance	on/off,	temp	on/off)	were	compared	using	Wilcoxon	
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matched-pairs	signed	rank	test,	and	the	non-parametric	Friedman	test	was	used	for	multi-setting	

parameters	(force,	time,	range,	percentage	time).		

	

	

Condition	

Positive	

(CMR-Scar	

Positive)	

Condition	Negative	

(CMR-Scar	Negative)	
	

Predicted	 Condition	

Positive	

(VisiTag	Positive)	

True	Positive	
(TP)	

False	Positive	
(FP)	

Positive	 Predictive	

Value	

(nTP)/(nVisiTag	+ve)	

Predicted	 condition	

Negative	

(VisiTag	Negative)	

False	Negative	
(FN)	

True	Negative	
(TN)	

Negative	 Predictive	

Value	

(nTN)/(nVisiTag	–ve)	

	

Sensitivity	

(nTP)/(nCMRscar	

+ve)	

Specificity	

(nTN)/(nCMRscar	 -

ve)	

Accuracy	

	(nTP+nTN)/(nAll	

Points)	

Table	9-2.	Methods	for	determination	of	key	indices	of	VisiTag	performance.	

	n(group)	indicates	the	number	of	points	within	each	subgroup.			

9.4 Results	

9.4.1 Subjects	
24	 subjects	 were	 included	 in	 the	 study,	 and	 demographics	 are	 summarised	 in	 Table	 9-3.	 On	

assessment	of	DSC,	6	shell	pairs	(VisiTag	and	CMR	scar)	had	a	DSC<0.3,	with	significant	scar	mis-

registration	confirmed	on	visual	assessment.	These	6	subjects	were	excluded	from	point-by-point	

analysis,	and	a	breakdown	of	the	characteristics	of	the	two	subgroups	is	also	detailed	in	Table	9-3.	Of	

note,	the	LA	volume	on	pre-ablation	assessment	was	significantly	smaller	for	patients	with	poor	DSC	

(99±15ml	 versus	 141±44ml,	 p=0.002),	 and	 the	 3D	 LGE	 acquisition	 contrast-to-noise	 ratio	 (scar:	

blood	pool)		was	significantly	poorer	(26±12	versus	44±24,	p=0.04).	
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 	 All Subjects 

(n=24)	

Good	 Dice	

Coefficient	

(n=18)	

Poor	 Dice	

Coefficient	

(n=6)	

p-

value	

Male	 18 (75%)	 15	(83%)	 3	(50%)	 0.10	

Paroxysmal AF	 11 (61%)	 8	(44%)	 3	(50%)	 0.81	

CHA2DS2VASC Score 	 1 (IQR 0-2)	 1	(IQR	0-2)	 2	(IQR	1-3)	 0.11	

AF duration (years)	 3.0 (IQR 1.75-5.5)	 2.0	 (IQR	 1.5-

5.0)	

4.0	 (IQR	 2.2-

5.7)	
0.99	

Significant Comorbidities	 14 (58%)	 10	(56%)	 4	(67%)	 0.63	

Age (years)	 62 ±11	 61±12	 65±10	 0.40	

Weight (kg)	 88 ±20	 89±20	 84±23	 0.50	

Height (cm)	 175 ±8	 176±7	 171±8	 0.20	

BMI (kg/m2)	 28.9±6.7	 28.9±6.7	 28.7±7.3	 0.94	

Heart Rate at scan	 76±26	 76±29	 75±14	 0.84	

Sinus rhythm at scan	 19 (79%)	 14	(78%)	 5	(83%)	 0.77	

Max LA volume pre-ablation 

(ml)	

130±42	
141±44	 99±15	 0.002	

Max LA volume at post-

ablation scan (ml) 

124±40 
129±45	 108±14	 0.11	

Change in LA Volume (ml) -1±46 -11±28	 +9±13	 0.03	

LA sphericity pre-ablation	 82.9±3.6	 82.8±3.7	 83.1±3.7	 0.89	

LA fibrosis pre-ablation (%)	 37.4±12.8	 37.3±11.1	 37.8±18.2	 0.95	

Scan quality (Likert scale, %) 85±7 87±4	 79±9	 0.09	

CMR Scan CNR 39±23 44±24	 26±12	 0.04	

Dice Similarity Coefficient 

(Point-by-Point) 

0.38±0.11 
0.44±0.06	 0.21±0.05	 <0.001	

Dice Similarity Coefficient 

(Regional) 

0.87±0.08 
0.88±0.08	 0.85±0.07	 0.55	

Table	9-3.	Summary	of	baseline	demographics	and	scan	characteristics.	

DSC	 is	 the	 Dice	 Similarity	 Coefficient,	 assessing	 co-location	 of	 CMR-derived	 scar	 and	

VisiTag.	 Poor	 DSC	 was	 defined	 as	 DSC<0.3	 on	 point-by-point	 assessment.	 	 AF:	 atrial	

fibrillation,	BMI:	body	mass	index,	LA:	left	atrium,	CNR:	contrast-to-noise	ratio	(scar	to	

blood	pool).	

9.4.2 VisiTag	settings	survey	
The	survey	was	completed	by	a	total	of	14	centres,	representing	approximately	7000	AF	ablation	

cases	per	year.	CARTO3	was	used	for	a	median	“50-80%”	of	ablations	(IQR	“50-80%”	to	“80-99%”),	
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and	of	these	cases	CF	information	and	VisiTag	module	were	used	a	median	“>99%”	(IQR	“80-99%”	

to	“>99%”)	and	“>99%”	(IQR	“80-99%”	to	“>99%”)	of	the	time	respectively.	On	a	centre	by	centre	

estimation,	 CARTO3,	 CF	 information	 and	VisiTag	module	were	 therefore	 used	 for	 approximately	

5200,	5000	and	4600	cases	per	year	respectively.	The	VisiTag	TM	thresholds	and	subjective	ranking	

of	importance	in	lesion	formation	are	shown	in	Table	9-4.	‘Force’	was	generally	judged	to	be	the	most	

important	VisiTag-assessed	parameter	in	terms	of	lesion	formation,	but	it	was	ranked	as	low	as	5th	

by	some	institutions.	‘Target	Temperature’	and	Impedance	Drop’	filters	were	generally	not	activated.	

‘Target	 Temperature’	 was	 generally	 viewed	 as	 of	 lowest	 importance,	 but	 ‘Impedance	 Drop’	 was	

ranked	first	by	one	institution	and	second	by	two	institutions.	Interestingly,	both	the	centres	that	

placed	‘Impedance	Drop’	second	in	ranking	of	importance	chose	not	to	activate	the	filter	routinely.	

	

	

	
Median	 Threshold	

(IQR)	

Median	

Ranking	

(IQR)	

Filter	 not	

activated	

routinely	

Varies	 widely	

between	

operators	

‘Force’	(grams)	
“5-8”	
(IQR	“5-8”	to	“5-8”)	

1	
(IQR	1-3)	

0	
1	
(7%)	

‘Time’	(seconds)	
“10-14”	
(IQR	“5-9”	to	“10-14”)	

3	
(IQR	2-4)	

0	
1	
(7%)	

‘Range’	

(mm)	
3	
(IQR	2-4)	

3	
(IQR	2-4)	

0	
1	
(7%)	

‘Percentage	Time’	

(%)	
“50-59”	
(IQR	“50-59”	to	“50-59”)	

3		
(IQR	2-4)	

2	
(14%)	

4	
(29%)	

‘Impedance	Drop’	 None	stipulated	
5	
(IQR	4-5)	

12	
(86%)	

2	
(14%)	

‘Target	

Temperature’	

(°C)	

“41-42”	
(IQR	“39-40”to“41-42”)	

6	
(IQR	6-6)	

8	
(57%)	

1	
(7%)	

Table	9-4.	Results	of	UK	survey	of	VisiTag	parameter	settings.		

IQR:	interquartile	range.	

9.4.3 VisiTag	density	
The	 proportion	 of	 the	 left	 atrium	 (LA)	 associated	 with	 VisiTag	 markers	 was	 assessed	 at	 each	

parameter	 threshold	 (Figure	 9-5).	With	 increasingly	 stringent	 thresholds,	 the	 number	 of	 VisiTag	

markers	falls,	and	hence	the	proportion	of	the	atrium	associated	with	a	marker	also	falls.	The	impact	

of	‘Force’	and	‘Time’	is	profound	(p<0.0001,	Friedman	statistic	207	and	120	respectively),	with	less	

than	half	the	atrial	coverage	at	highest	VisiTag	thresholds	compared	to	lowest	(Force:	0.29±0.07	at	

2g,	0.14±0.06	at	20g,	Time:	0.30±0.06	at	5	sec	versus	0.13±0.05	at	30sec).	The	impact	of	‘Percentage	
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Time’	is	less	marked	(0.28±0.06	at	30%,	0.26±0.06	at	80%),	but	remains	significant.	There	is	a	56%	

and	74%	fall	in	marker	extent	with	activation	of	‘Impedance	Drop’	filter	and	‘Target	Temperature’	

filter	respectively.		

	

The	relationship	of	VisiTag	extent	with	alteration	in	‘Range’	is	more	complex.	The	number	of	markers	

increases	 from	2mm	 to	 3mm	 threshold,	 but	 then	decrease	 as	 the	markers	 agglomerate	 at	 larger	

‘Range’	sizes.	On	a	point-by-point	basis,	there	are	locations	that	may	be	associated	with	only	one	or	

two	Range	thresholds,	and	these	may	be	at	any	size	(Table	9-5).		
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Figure	9-5.	The	proportion	of	the	left	atrium	(LA)	associated	with	VisiTag	marker,	with	

variation	in	thresholds.		

F:	Friedman	statistic,	generated	from	the	Friedman	test,	a	non-parametric	statistical	test	

similar	to	repeated	measures	ANOVA.		
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Number	 of	

Contiguous	 VisiTag		

‘Ranges’	

1	
e.g.	2mm	

only	

2	
e.g.	 2	

and	

3mm	

3	
e.g.	 2,3,	

4mm	

4	
e.g.	 2,3,4	

,5mm	

5	
e.g.	 2,3,4	

,5,6mm	

6		
(all	

‘Ranges’	

positive)	

Any	 other	

combination	

Min	2mm	(%)	 3.1	 3.5	 3.4	 3.7	 3.4	 60.6	 4.8	

Min	3mm	(%)	 1.6	 1.1	 0.8	 0.8	 8.1	 -	 -	

Min	4mm	(%)	 0.7	 0.3	 0.2	 1.3	 -	 -	 -	

Min	5mm	(%)	 0.5	 0.2	 0.5	 -	 -	 -	 -	

Min	6mm	(%)	 0.3	 0.5	 -	 -	 -	 -	 -	

Min	7mm	(%)	 0.6	 -	 -	 -	 -	 -	 -	

Total	 6.8	 5.6	 4.9	 5.8	 11.5	 60.6	 4.8	

Table	9-5.	VisiTag	distribution	at	varying	‘Range’	thresholds.	

Values	within	table	are	the	percentage	of	VisiTag	positive	shell	surface	covered	by	each	

VisiTag	“Range”	combination.	A	high	“range’	value	does	not	necessarily	mean	that	VisiTag	

confirmation	is	 less	stringent.	At	any	given	shell	 location,	VisiTag	confirmation	may	be	

achieved	at	an	assortment	of	VisiTag	‘Range’	thresholds.	The	rows	are	sorted	according	

to	the	smallest	‘Range’		threshold	achieved,	and	the	columns	are	sorted	according	to	the	

number	 of	 contiguous	 ‘Range’	 thresholds	 at	 which	 a	 VisiTag	 was	 achieved.	 The	 final	

column	shows	the	proportion	of	Shell	covered	by	a	non-contiguous	set		of	‘Ranges’.	

9.4.4 Lesion	continuity	assessment	
The	results	of	the	regional	assessment	are	shown	in	Figure	9-6.	Continuous,	uninterrupted,	scar	on	

thresholded	CMR	LGE	was	present	 at	 67%	of	 regions	 in	 total,	with	 significant	 regional	 variation	

(p<0.001).	The	inter-ostial	region	was	ablated	on	the	right	in	13	patients	(54%),	and	on	the	left	in	9	

patients	(37%),	and	of	these	continuous	scar	was	present	in	6	patients	(47%)	on	right	and	7	patients	

(78%)	 on	 the	 left.	 ‘Force’	 thresholds	were	 generally	 highest	 at	 the	 right	 anterior	 region	 and	 left	

posterior	regions.	A	slightly	different	pattern	was	observed	for	‘Time’	thresholds:	on	the	right	they	

remained	highest	anteriorly,	but	on	the	left	were	highest	infero-anterior.		Median	‘Percentage	Time’	

was	80%	in	all	regions.	As	shown	in	Table	9-5,	 ‘Range’	 is	not	an	ordinal	scale	variable.	A	median	

number	of	6	(all)	VisiTag	‘Range’	settings	were	positive	at	all	regions.	
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Figure	9-6.Presence	of	continuous	LGE	scar	or	VisiTag	markers	by	ablation	region.	

	(Top)	Regional	distribution	of	continuous		scar	on	CMR	LGE,	expressed	as	percentage	of	

all	subjects.	(Middle)	median	‘Force’	threshold	(in	grams,	with	interquartile	range	(IQR)).	

(Lower)	 median	 ‘Time’	 threshold	 (in	 seconds,	 with	 IQR).	 For	 region	 9	 (inter-ostial)	

bilaterally	 in	middle	 and	 lower	 plots,	 values	 reflect	 only	 subjects	 in	whom	 inter-ostial	

ablation	was	performed.	LS:	left	superior	PV,	LI:	left	inferior,	RS:	right	superior,	RI:	right	

inferior.	
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Figure	9-7.	Predictive	value	of	continuous	VisiTag	markers	for	uninterrupted	scar.	

(Top	 four	 panels).	 Receiver	 operator	 characteristic	 (ROC)	 curves	 for	 prediction	 of	

continuous	CMR	LGE	scar	within	each	region	by	presence	of	VisiTag	markers,	varied	over	

multiple	 thresholds.	 For	 ‘Range’	 threshold,	 which	 is	 not	 an	 ordinate	 variable,	 the	

summative	statistic	is	number	of	‘Range’	thresholds	for	which	the	region	demonstrated	no	

gaps.	The	bottom	two	panels	are	frequency	histograms,	demonstrating	the	proportion	of	
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regions	with	and	without	CMR	LGE	gaps,	according	to	the	presence	or	absence	of	VisiTag	

markers	once	the	threshold	was	imposed.	AUC:	area	under	curve.	

	

Figure	9-8.	Positive	predictive	value	(PPV)	and	negative	predictive	value	(NPV)	of	VisiTag	

predicting	continuous	scar	on	CMR	LGE,	across	thresholds.	
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Figure	9-7	 shows	ROC	 curves	 for	 the	prediction	 of	 continuous	CMR	LGE	 scar	within	 a	 region	by	

presence	or	absence	of	a	gap	 in	VisiTag	markers.	There	was	a	significant	relationship	(p<0.0001)	

between	a	gap	in	markers	and	gap	in	CMR	LGE	for	all	four	parameters.	For	‘Force’,	the	sensitivity	and	

specificity	were	0.975	and	0.504	respectively	at	8g,	shifting	to	0.822	and	0.626	at	12g,	0.582	and	

0.820	at	16g	and	0.385	and	0.892	at	20g.	Positive	predictive	value	(PPV)	and	negative	predictive	

value	(NPV)	for	prediction	of	uninterrupted	scar	are	shown	in	Figure	9-8.	The	PPV	improves	steadily	

with	increasing	‘Force’	threshold,	but	there	is	a	step	in	the	progression	of	NPV.	NPV	is	static	between	

2g	and	8g	(0.909	and	0.909	respectively)	then	drops	rapidly	to	0.539	at	14g:	the	false	negative	rate	

increases	significantly	once	the	‘Force’	threshold	is	set	above	8g.	

	

‘Time’	demonstrates	a	more	linear	response	to	changes	in	thresholds,	with	sensitivity	and	specificity	

0.975	 and	 0.489	 respectively	 at	 10	 seconds,	 	 and	 0.418	 and	 0.856	 respectively	 at	 30	 seconds.	

‘Percentage	Time’	changes	the	presence	of	markers	little	across	the	thresholds:	the	AUC	represents	

the	 sensitivity	 and	 specificity	 of	 the	 default	 VisiTag	 parameters.	 ‘Range’	 demonstrates	 a	 peak	 in	

sensitivity	at	3mm	(0.975),	with	relatively	stable	specificity	throughout	(maximum	0.576	at	2mm,	

minimum	0.475	at	4mm).	The	implementation	of	the	 ‘Target	Temperature’	and	 ‘Impedance	Drop’	

filters	greatly	improves	the	specificity	(from	0.489	to	0.928	and	0.489	to	0.885	respectively),	but	at	

the	cost	of	a	much	higher	false	negative	rate	and	consequently	lower	NPV.	

	

A	binomial	logistic	regression	was	performed	to	ascertain	the	effects	of	the	‘Force’,	 ‘Time’,	 ‘Target	

Temperature’	 and	 ‘Impedance	 Drop’	 thresholds	 on	 the	 likelihood	 of	 continuous	 CMR	 LGE	 scar.	

“Percentage	Time’	and	‘Range’	were	excluded	due	to	significant	collinearity	with	default	values,	and	

complex	 distribution	 of	 non-ordinate	 values	 respectively.	 The	 logistic	 regression	 model	 was	

statistically	 significant,	 χ2(4)=148,	 p<0.0001.	 The	model	 explained	 41.7%	 (Nagelkerke	 R2)	 of	 the	

variance	in	scar	formation	and	correctly	classified	82%	of	cases.	Sensitivity	was	94.9%	and	specificity	

56.8%	at	a	cut-off	value	of	0.5	(see	Table	9-6).	Of	the	four	predictor	variables,	only	‘Force’	and	‘Time’	

were	statistically	significant	(Table	9-7).	

	

	

LGE	CMR	Assessment	

Uninterrupted	

Scar	
Gap	 	

VisiTag	

prediction		

	

Uninterrupted	

scar	
261	 60	 PPV:	81.3	

Gap	 14	 79	 NPV:	84.9	

Percentage	

Correct	

Sensitivity	

94.9	

Specificity	

56.8	

Accuracy	

82.1	

Table	9-6.	Classification	table	for	binomial	logistic	regression	analysis	of	gap	assessment.		
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PPV:	positive	predictive	value,	NPV:	negative	predictive	value 

	

	
Odds	

Ratio	

95%	CI	
Significance	

Lower	 Upper	

‘Force’	(per	gram)	 1.14	 1.075	 1.208	 <0.0001	

‘Time’	(per	second)	 1.054	 1.016	 1.093	 0.005	

‘Target	Temperature’	 0.973	 0.443	 2.137	 0.946	

‘Impedance	Drop’	 0.659	 0.341	 1.273	 0.214	

Constant	 0.215	 	 	 0.009	

Table	9-7.	Variables	in	equation:	binomial	logistic	regression.	

	CI:	confidence	interval.	

9.4.5 Point-by-point	assessment	

9.4.5.1 Quality	of	shell	registration	
DSC	was	assessed	for	each	ablation	and	CMR	shell	pair,	thresholded	at	default	VisiTag	parameters	

and	3.3	SD	above	BP	mean	respectively.	The	average	difference	in	DSC	between	the	shell	pairs	at	each	

of	 two	 fusion	 processes	 was	 0.003±0.002,	 indicating	 a	 highly	 reproducible	 fusion	 (Figure	 9-9).	

However,	there	was	a	wide	range	in	accuracy	of	registration,	with	DSC	ranging	from	0.13	to	0.54.	The	

six	shells	with	severe	mis-registration	were	excluded	from	further	analysis,	and	the	characteristics	

of	the	subgroups	have	been	reviewed	above.	An	example	of	good	scar:	ablation	lesion	registration	is	

shown	in	Figure	9-10	and	Figure	9-11.	

	

	

Figure	9-9.	Bland	Altman	plot	demonstrating	reproducibility	of	dice	similarity	coefficient	

(DSC)	following	two	independent	shell	fusions.	
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Figure	9-10.	Example	of	‘Time’	threshold	alteration.		

CMR	signal	intensity	(blue-red	shell,	scar	in	red)	with	VisiTag	locations	overlaid	in	grey	at	

varying	 thesholds	 (5-30seconds).	 Note	 over-estimation	 of	 lesion	 formation	 (low	

specificity)	 compared	 to	 chronic	 scar	 at	 low	 threshold,	 and	 underestimation	 (low	

sensitivity)	at	high	threshold.
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Figure	9-11.	Example	of	‘Force’	threshold	alteration.	

	CMR		signal	intensity	(blue-red	shell,	scar	in	red)	with	VisiTag	locations	overlaid	in	grey	at	varying	thresholds	(2-20grams).	Again,	note	over-estimation	of	lesion	

formation	(low	specificity)	compared	to	chronic	scar	at	low	threshold,	and	underestimation	(low	sensitivity)	at	high	thresholds.	
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9.4.5.2 Quantification	of	predictive	value	of	VisiTag	markers	
The	relationship	between	CMR	imaging	scar	and	local	VisiTag

	
parameters	were	assessed	on	a	point-

by-point	basis	across	the	whole	left	atrium,	and	the	results	are	shown	in	Figure	9-12.	There	was	a	

general	increase	in	CMR	signal	intensity	with	increased	VisiTag	thresholds,	and	the	change	was	most	

marked	for	the	alterations	in	‘Force’	and	‘Time’	 .	NPV	for	CMR	LGE	scar	was	altered	minimally	by	

changes	 in	 threshold,	with	a	clinically	 irrelevant	(but	significant)	 fall	 in	NPV	at	higher	 thresholds	

(p<0.001	for	all	parameters).	Positive	predictive	value	(PPV)	rose	more	markedly	(p<0.001	for	all	

parameters	except	‘Percentage	Time’	where	p=0.04),	with	improved	PPV	for	scar	formation	at	higher	

thresholds.		

	

ROC	 curves	 were	 generated	 for	 ‘Force’,	 ‘Time’,	 ‘Percentage	 Time’	 and	 ‘Range’	 parameters	 for	

assessment	of	the	whole	left	atrium,	and	also	for	assessment	of	VisiTag	positive	regions	only	(Figure	

9-13).	AUC	was	generally	low	across	all	parameters	and	both	assessment	methods.	On	assessment	of	

the	whole	LA,	there	was	generally	high	specificity	but	low	sensitivity,	reflecting	a	high	true	negative	

rate	(with	the	assessment	of	 large	regions	of	unablated	LA)	but	also	a	high	false	positive	rate.	On	

assessment	 only	 of	 regions	 covered	 by	 at	 least	 one	 VisiTag	 a	 different	 pattern	 was	 observed.	

Sensitivity	was	generally	high	for	low	stringency	thresholds	(for	example,	average	0.903	for	‘Force’	

2g,	0.941	for	‘Time’	5seconds),	but	at	the	cost	of	very	low	specificity	(0.145	and	0.102	respectively).	

Conversely,	at	high	stringency	thresholds	sensitivity	was	low	(0.467	for	‘Force’	20g,	0.423	for	‘Time’	

30seconds),	but	with	improved	specificity	(0.598	and	0.612	respectively).	

	

The	VisiTag	positive	region	was	also	assessed	for	the	impact	of	VisiTag	thresholds	on	sensitivity	for	

chronic	lesion	formation	and	DSC	(Figure	9-14).	Sensitivity	fell	overall	with	increased	stringency	of	

all	parameters,	but	was	most	marked	for	 ‘Force’	and	‘Time’.	The	fall	 in	sensitivity	with	increasing	

‘Force’	 threshold	demonstrated	a	step	pattern.	The	decrease	 in	sensitivity	was	non-significant	 for	

each	2g	increase	from	2g	to	8g	(p=	0.02	to	0.03,	with	threshold	p=0.006	with	Bonferroni	correction),	

but	was	significant	thereafter	(8	versus	10g	p=0.002,	further	increments	p<0.0001).	For	‘time’,	no	

step	was	observed	(p<0.0001	for	all	inter-threshold	comparisons).	‘Range’	had	a	significant	increase	

in	 sensitivity	 from	 2	 to	 3mm	 (p=0.001),	 followed	 by	 significant	 falls	 at	 each	 further	 threshold	

increment	(p<0.001	throughout).	Changes	in	‘Percentage	Time’	thresholds	had	the	smallest	impact	

on	sensitivity	(p=0.002	to	p=0.3).		

	

There	was	a	similar	overall	pattern	for	fall	in	DSC	with	increasing	threshold,	which	was	significant	

for	 all	 parameters	 except	 ‘Percentage	 Time’.	 Interthreshold	 comparisons	 for	 ‘Force’	 were	 non-

significant	below	8g,	borderline	for	8-10g	(p=0.02),	and	significant	for	10-12g	comparison	and	all	

comparisons	 at	 higher	 threshold	 (p<0.0001).	 	 For	 ‘Time’,	 all	 inter-threshold	 comparisons	 were	

significant	(p<0.003	throughout),	and	for	‘Range’	only	the	comparisons	between	5-6mm	and	6-7mm	

were	significant	(p<0.001).		
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Figure	9-12.	Predictive	value	of	VisiTag	marker	for	LGE	scar	(point-by-point)	

Positive	 predictive	 value	 (PPV),	 negative	 predictive	 value	 (NPV)	 and	 CMR	 LGE	 signal	

intensity	 (SI)	 assessed	 on	 a	 point-by-point	 basis	 at	 each	 VisiTag	 threshold.	 CMR	 SI	 is	

expressed	as	number	of	standard	deviations	above	the	blood	pool	(BP)	mean,	error	bars	

show	95%	confidence	interval	of	the	mean.	
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Figure	9-13.	Receiver	operator	characteristic	(ROC)	curves	for	prediction	of	CMR	LGE	scar	

by	VisiTag	marker,	on	a	point-by-point	assessment.		

Left	column	shows	ROC	curves	for	assessment	of	whole	of	LA,	and	right	column	only	for	

assessment	 of	 points	 that	 are	 associated	with	 a	 VisiTag	marker	 at	 a	minimum	of	 one	

threshold	setting.	
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Figure	9-14.	Impact	of	VisiTag	threshold	settings	on	sensitivity	for	prediction	of	scar.		

Sensitivity	analysis	was	performed	for	VisiTag	regions	only,	and	is	the	proportion	of	CMR	

imaging-derived	 scar	 associated	with	 VisiTag	 at	 that	 threshold:	 as	 thresholds	 become	

more	 stringent,	 scar	 is	 formed	 without	 the	 placement	 of	 a	 VisiTag.	 Dice	 similarity	

coefficient	(DSC)	was	assessed	for	the	whole	shell.	P-values	shown	are	for	overall	trend	in	

sensitivity	(upper	value)	and	DSC	(lower	value)	(Friedman	test).	

9.4.6 Predictive	value	of	CMR	and	Visitag	lesion	continuity	in	the	
prediction	of	electrical	reconnection	

8	patients	 (33%)	had	a	recurrence	of	arrhythmia,	all	of	whom	went	on	 to	have	a	repeat	ablation	

procedure.	 17	 of	 the	 32	 (53%)	 individual	 veins	 were	 found	 to	 be	 electrically	 reconnected.	 The	
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sensitivity	and	specificity	of	contiguous	VisiTags	(at	default	settings)	in	predicting	electrical	isolation	

were	46%	and	29%	respectively	(accuracy	38%).	The	sensitivity	and	specificity	of	uninterrupted	

CMR	 scar	 in	 predicting	 electrical	 isolation	 were	 80%	 and	 35%	 respectively	 (accuracy	 56%)			

Sensitivity	 and	 specificity	 of	 contiguous	 VisiTags	 were	 both	 improved	 when	 the	 least	 stringent	

settings	were	 used	 (‘Force’	 2g	 or	 ‘Time’	 “5sec”),	 at	 60%	 and	 41%	 respectively	 for	 both	 settings	

(accuracy	44%).		

	

9.5 Discussion	
This	 study	was	designed	 to	assess	 the	value	of	VisiTag	markers	 in	 the	prediction	of	 chronic	 scar	

following	AF	ablation,	and	to	examine	the	impact	of	variations	in	thresholds	for	each	parameter.	The	

principal	findings	can	be	summarised	as	follows:	

1. ‘Force’:	Higher	VisiTag	thresholds	are	associated	with	low	sensitivity	and	poor	NPV:	scar	is	

frequently	created	at	lower	CF	

2. ‘Time’:	there	is	an	increased	likelihood	of	scar	formation	with	all	incremental	increases	in	

time	thresholds	

3. ‘Range’:	 the	 interaction	 of	 the	 ‘Range’	 threshold	 and	 location	 of	 VisiTag	 placement	 is	

complex,	however,	the	changes	in	threshold	are	associated	with	only	a	minor	change	in	scar	

formation	

4. ‘Percentage	Time’:	there	is	minimal	change	in	scar	formation	with	increased	stringency	of	

the	‘Percentage	Time’	threshold.	

5. ‘Target	Temperature’	 and	 ‘Impedance	Drop’:	 the	 implementation	of	 these	 filters	 at	 these	

settings	(42°C	and	10	Ω	respectively)	increases	the	PPV	for	scar,	but	at	the	cost	of	a	much	

higher	false	negative	rate.	

9.5.1 Contact	force	
There	is	increasingly	compelling	evidence	for	the	improvement	in	clinical	outcomes	with	the	use	of	

contact	force	technologies.	Leading	on	from	the	early	benchmark	clinical	studies	(TOCCATA	study	

(Kuck	et	al.	2012)	and	EFFICAS	I	(Neuzil	et	al.	2013)),	meta-analysis	has	demonstrated	the	benefit	of	

operator	 feedback	 of	 real-time	 CF.	 Use	 of	 CF	 technology	 is	 associated	 with	 a	 reduced	 risk	 of	

recurrence	following	AF	ablation,	reduced	ablation	time,	and	may	reduce	total	procedural	time	(Afzal	

et	al.	2015;	Shurrab	et	al.	2015),	but	the	findings	have	not	been	reproduced	universally	in	carefully	

designed	randomised	studies	(W.	Ullah	et	al.	2016).	

	

Furthermore,	 the	 target	 CF	 for	 creation	 of	 permanent,	 transmural	 lesions	 remains	 	 unclear.	 The	

EFFICAS	I	study	was	the	first	to	propose	firm	recommendations,	suggesting	that	a	target	CF	of	>20g	

and	FTI	>400gs	was	associated	with	a	reduced	risk	of	electrical	reconnection	at	3	months	on	invasive	

testing.	 These	 targets	 were	 used	 in	 the	 subsequent	 EFFICAS	 II	 study,	 which	 reported	 a	

consequentially	 improved	 durability	 of	 PV	 isolation	 at	 three	months	 (98%,	 compared	 to	 81%	 in	
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EFFICAS	I)	(Kautzner	et	al.	2015).	Most	other	studies,	though,	have	been	reluctant	to	stipulate	a	target	

CF,	in	the	context	of	increased	risk	of	complications	with	high	CF	(Yokoyama	et	al.	2008).	The	SMART-

AF	study,	using	CF	information	for	ablation	of	drug-refractory	paroxysmal	AF	(PAF)	in	172	patients,	

deliberately	did	not	define	a	target	CF	(Natale	et	al.	2014).	Likewise,	the	more	recent	TOCCASTAR	

study	(V.	Y.	Reddy	et	al.	2015),	in	which	300	patients	were	randomised	to	treatment	of	PAF	with		or	

without	CF	sensing	catheter,	did	not	define	a	target	CF.	Both	SMART-AF	and	TOCCASTAR	did	look	at	

CF	retrospectively.	SMART-AF	 found	 that	 clinical	outcome	was	 improved	when	≥80%	of	ablation	

lesions	were	performed	within	 ‘user-defined’	target	ranges	(overall	average	CF	17.9±9.4g),	whilst	

TOCCASTAR	noted	that	ablation	effectiveness	improved	from	58%	to	76%	with	the	use	of	‘optimal	

CF’,	 defined	 as	 ≥90%	 of	 lesions	 created	 with	 CF	 ≥10g.	 Such	 findings	 are	 difficult	 to	 implement	

clinically,	and	seem	to	suggest	that	perhaps	consistent	catheter	control,	rather	than	CF	alone,	 is	a	

strong	determinant	of	effective	lesion	formation.	

	

More	recently,	studies	have	suggested	that	more	conservative	CF	 levels	may	be	safer	and	equally	

efficacious.	Pre-clinical	work	by	Williams	et	al	(Williams	et	al.	2015)	found	no	difference	in	chronic	

atrial	 lesion	 formation	 using	 high	 CF	 (22.6±11.4g)	 versus	 low	 CF	 (7.8±4.0g),	 validated	 on	 LGE	

imaging,	 chronic	 voltage	 mapping	 and	 histology.	 In	 humans,	 SMART-AF	 found	 no	 evidence	 of	

increased	ablation	effectiveness	at	higher	CF,	but	there	was	an	increased	rate	of	procedural	major	

adverse	events	with	CF	≥	14g.	Kimura	et	al	(Kimura	et	al.	2014)	found	no	improvement	in	ablation,	

in	terms	of	residual	acute	electrical	connection,	for	CFs	≥10g,	and	Andreu	et	al	(Andreu	et	al.	2016)	

found	that	a	CF	threshold	of	>12g	predicts	a	complete	lesion	within	a	PV	antral	segment	with	high	

specificity.	

	

In	this	context,	the	findings	of	this	study	are	interesting.	The	fixing	of	‘Time’,	‘Range’	and	“Percentage	

Time’	VisiTag	thresholds	controls	for	the	first	time	the	potential	confounder	of	variation	in	catheter	

stability.	Here,	the	sensitivity	for	VisiTag
	
prediction	of	scar	was	flat	for	2-8g,	but	then	fell	markedly	

at	higher	CF,	suggesting	that	chronic	scar	was	frequently	formed	at	 lower	CF,	and	more	stringent	

thresholds	may	to	lead	to	excessive	ablation.	However,	the	specificity	and	positive	predictive	value	

of	VisiTag	placement	continued	to	 improve	with	 increasing	CF	≥10g.	This	 implies	that	CF	≥10g	 is	

required	in	order	to	be	confident	of	lesion	formation,	even	though	a	large	proportion	of	chronic	scar	

is	 formed	 at	 lower	 CF.	 The	 selection	 of	 a	 CF	 threshold	 is,	 unsurprisingly,	 a	 trade-off	 between	

confidence	in	efficacy	and	safety.	However,	this	study	quantifies	the	decreasing	benefit	of	increasing	

thresholds	above	14g.	

9.5.2 Ablation	time	
Increased	 total	 ablation	 time	 and	FTI	have	been	 shown	 to	be	 associated	with	 improved	 ablation	

efficacy	(Waqas	Ullah	et	al.	2014;	Neuzil	et	al.	2013),	and	increased	chronic	scar	formation	on	CMR	

imaging	(Sohns	et	al.	2013).	To	my	knowledge,	no	clinical	studies	have	sought	to	dissociate	the	effect	

of	 time	 from	 force,	 either	 applying	 constant	 force	 or	 constant	 FTI	 over	 varying	 time	 periods.	

However,	there	is	a	suggestion	that	the	effect	of	RF	energy	on	chronic	lesion	formation	may	begin	to	
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plateau	 above	 500gs	 (Waqas	 Ullah	 et	 al.	 2014)	 or	 total	 20seconds	 of	 effective	 ablation	 (F.	 H.	

Wittkampf,	 Hauer,	 and	 Robles	 de	 Medina	 1989).	 It	 has	 also	 been	 shown	 that	 it	 takes	 around	

10seconds	for	full	power	to	be	achieved	when	ablating	in	temperature	control	mode	(Waqas	Ullah	et	

al.	2014).	In	this	study	there	was	improved	specificity	for	lesion	formation	with	increasing	time	up	

to	30	seconds,	and	there	was	no	significant	plateau	of	sensitivity,	in	contrast	to	‘Force’	thresholds.	

The	FTI	was	not	formally	assessed	in	this	study,	but	a	minimum	FTI	can	be	estimated	from	VisiTag	

thresholds.	At	the	highest	‘Force’	and	‘Time’	thresholds,	minimum	FTIs	were	approximately	200gs	

and	300gs	respectively,	and	FTI	exceeded	1000gs	at	<1%	of	VisiTags	at	default	settings	(note	that	

FTI	is	highly	dependent	upon	‘Range’	setting	(Figure	9-18)).	Any	improvement	in	efficacy	at	higher	

FTI	was	not	assessed	in	view	of	the	interaction	of	‘Force’,	‘Time’	and	‘Range’	in	the	generation	of	the	

metric,	and	the	limitation	of	point-by-point	analysis	by	misregistration	issues.	

9.5.3 Other	parameters	
Alteration	of	‘Range’	and	‘Percentage	Time’	thresholds	appeared	to	have	only	a	minor	impact	upon	

VisiTag	performance.	‘Range’	reflects	the	distance	the	catheter	is	allowed	to	travel	before	ablation	

indices	are	allocated	 to	a	 separate	VisiTag	marker.	The	decrease	 in	number	of	markers	at	higher	

‘Range’	 thresholds	 reflects	 the	 increased	 area	 that	 the	marker	 represents,	 despite	 the	 increased	

leniency	of	the	marker	threshold.	The	peak	number	of	markers	at	3mm	suggests	that	this	is	a	suitable	

setting	to	capture	both	catheter	stability	and	ablation	location,	but	it	should	be	noted	that	2.5mm	was	

not	assessed.	The	significant	reduction	in	proportion	of	shell	associated	with	VisiTag	marker	at	high	

‘Range’	threshold	reflects	the	fixed	search	radius:	consideration	should	be	given	to	increasing	the	

size	of	the	marker	on	visualisation	in	CARTO3	if	a	large	range	is	stipulated,	but	there	is	a	risk	that	the	

majority	of	ablation	energy	will	be	delivered	in	only	a	select	proportion	of	the	marker.	

	

‘Percentage	Time’	reflects	a	rolling	average	of	the	amount	of	time	that	the	CF	has	been	greater	than	

the	minimum	stipulated	force,	and	as	such	it	would	be	anticipated	to	be	a	strong	marker	of	catheter	

stability.	However,	on	assessment	of	the	data	in	this	study	the	 ‘Percentage	Time’	was	found	to	be	

>80%	for	the	vast	majority	of	lesions,	and	therefore	it	has	proved	an	ineffective	filter	at	minimum	

force	8g.	At	higher	target	CF	it	may	become	a	more	critical	index	of	catheter	stability.	

	

‘Target	Temperature’	and	‘Impedance	Drop’	filters	are	used	by	few	operators	(Table	9-4	and	Table	

9-8),	 but	 they	 clearly	 improve	 discrimination	 in	 terms	 of	 positive	 predictive	 value.	 The	

manufacturers	 themselves	 recommend	 that	 the	 filters	 are	 not	 used	 during	 ablation,	 but	 only	 for	

retrospective	review	of	ablation	parameters.	In	view	of	the	limited	implementation	of	the	filters,	only	

a	single	filter	setting	was	assessed.	They	may	warrant	further	assessment	in	the	future.	
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	 Force	 Time	 Range	
Percent	

Time	

Imp	

Drop	

Target	

Temp	
Comments	

(Fujiwara	

et	 al.	

2016)	

5g	 5sec	 1mm	 25%	 Off	 Off	

Assessment	of	acute	

reconnection	(37	patients).	

Difference	only	in	‘Time’	

and	FTI	between	

conducting	and	non-

conducting	lesions	

(Lin	 et	 al.	

2013)	

6g	 15sec	 4mm	 60%	 Off	 Off	

Review	publication-	

institutional	preference	

reported	

(Okumura	

et	 al.	

2016)	

10g
a
	

8g
b
	

10s
a
	

5s
b	

3mm
a,b	

50%
a
	

25%
b
	

Off
a,b
	 Off

a,b
	

Stricter	settings	(
a
)	

resulted	in	non-significant	

(p=0.1)	reduction	in	

dormant	conduction	(54	

patients)	

Table	9-8.	VisiTag	thresholds	used	in	published	studies	or	reviews.	

9.5.4 CMR	imaging	assessment	of	chronic	scar	
LGE	 CMR	 techniques	 have	 been	 shown	 to	 be	 a	 valid	 assessment	 of	 chronic	 ablation	 scar	 injury,	

associated	with	clinical	outcome	measures	(Badger	et	al.	2010;	Peters	et	al.	2007;	Bisbal	et	al.	2014;	

Fukumoto	 et	 al.	 2015;	 James	 L	 Harrison	 et	 al.	 2014;	 Akoum	 et	 al.	 2015).	 In	 this	 thesis,	 I	 have	

demonstrated	methods	for	optimisation	of	imaging	of	atrial	ablation,	and	the	reproducibility	of	the	

technique,	and	 therefore	 it	 is	appropriate	 to	use	LGE	CMR	as	a	non-invasive	assessment	of	PAAS	

formation.	However,	it	 is	also	important	to	bear	in	mind	the	limitation	of	PAAS	assessment	in	the	

direct	prediction	of	electrical	reconnection	((J	L	Harrison,	Sohns,	et	al.	2015)	and	Section	8.4.5).	The	

poor	accuracy	of	both	VisiTag	lesions	and	CMR-derived	scar	in	predicting	PV	reconnection	in	this	

study	is	likely	to	reflect	the	complex	relationship	between	recurrence,	electrical	reconnection,	and	

objective	measures	of	post-ablation	scar.	There	is	also	corroborative	evidence	that	the	qualitative	

correlation	 between	 ablation	 and	 CMR-derived	 scar	 is	 strong.	 Andreu	 et	 al	 (Andreu	 et	 al.	 2016)	

recently	demonstrated	a	strong	relationship	between	minimum	CF	and	visual	assessment	of	location	

of	 gaps	 in	 CMR-derived	 scar.	 At	 a	 CF	 of	 >12g	 there	 was	 >94%	 specificity	 in	 prediction	 of	 an	

uninterrupted	ablation	line	in	one	of	the	18	PV	segments,	but	there	was	no	control	for	the	impact	of	

time	or	catheter	stability.	In	this	study,	on	similar	regional	qualitative	assessment,	the	sensitivity	is	

generally	higher	and	specificity	lower	at	similar	CF	thresholds,	with	comparable	AUC	for	CF	(0.800	

versus	0.834	for	Andreu	et	al).	This	is	likely	to	be	due	to	the	difference	in	CF	quantification	using	

manual	versus	objective	(VisiTag)	annotation,	with	variable	versus	fixed	time	integration.	Incidence	

of	 gaps	 on	 LGE	 were	 very	 similar	 (33%	 versus	 39%	 for	 Andreu	 et	 al),	 despite	 different	 image	
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interrogation	and	thresholding	methods,	but	differing	CF	interpolation	methods	between	ablation	

points	may	also	play	a	role	in	the	difference	between	the	two	studies.	

			

Quantitative	point-by-point	assessment	 requires	 further	 registration	of	 the	 two	datasets,	with	an	

inevitable	degree	of	misregistration	of	the	two	anatomies.	Techniques	such	as	CARTOMerge
TM
	were	

considered	at	the	outset	of	the	study,	but	the	technique	cements	the	subtle	misregistration	errors	

without	 any	 opportunity	 to	 quantify	 or	 rectify	 the	 mismatch.	 Therefore	 the	 registration	 was	

performed	independent	to	the	procedure,	and	it	has	proven	a	robust	process,	as	demonstrated	by	

the	high	reproducibility	of	DSC	between	independent	fusion	episodes.	However,	registration	errors	

remain	 inevitable,	 and	 Taclas	 et	 al,	 using	 a	 similar	 registration	 technique	 to	 fuse	 EAM	 and	 CMR	

anatomies,	found	a	mean	registration	error	of	3.6±1.3mm	(Taclas	et	al.	2010).	

	

Alternative	fusion	techniques,	using	location	of	scar	and	ablation	to	inform	the	fusion	process	have	

been	demonstrated	(Roujol	et	al.	2013),	and	may	reduce	 the	degree	of	mismatch	but	with	 innate	

biasing	of	the	results.	The	contrast	in	sensitivity	and	specificity	between	the	regional	assessment	and	

point-by-point	assessment	 is	stark,	and	is	 likely	to	reflect	the	homogeneity	of	the	ablation.	Subtle	

variations	in	ablation	parameters	on	a	mm-by-mm	basis	have	proven	difficult	to	detect,	but	the	broad	

changes	 in	 sensitivity	 across	 ‘Force’	 and	 ‘Time’	 threshold	 ranges	 have	 remained	 clear.	 This	 is	

reflected	in	the	relatively	flat	PPV,	where	a	large	proportion	of	the	shift	in	sensitivity	is	confounded	

by	the	change	in	VisiTag	density.	Furthermore,	NPV	is	difficult	to	assess	on	a	point-by-point	basis:	

the	 absence	 of	 CMR	 imaging-derived	 scar	 at	marker	 location	may	 be	 related	 to	mis-registration,	

rather	than	ineffective	lesion	formation.		

9.5.5 Limitations	
This	study	was	a	retrospective	analysis	of	standard	PV	isolation	procedures	for	both	persistent	and	

paroxysmal	AF.	All	ablations	were	performed	by	two	experienced	operators,	using	a	similar	point-

by-point	 ablation	 technique	 and	 reflect	 real-world	 practice.	However,	 the	 target	 CF	 and	 ablation	

strategy	were	not	formally	controlled.	The	use	of	the	LGE	scar	as	the	gold	standard	for	scar	formation	

is	a	technique	that	has	been	shown	to	be	sensitive	to	the	presence	of	scar,	but	not	highly	specific	

(Bisbal	et	al.	2014;	J	L	Harrison,	Sohns,	et	al.	2015).	Despite	the	implementation	of	the	findings	of	

earlier	chapters	within	this	thesis,	LGE	may	have	missed	scar	where	it	was	in	fact	present,	and	this	

would	 imply	 that	 lower	 thresholds	 than	 those	 identified	may	be	 effective.	 Some	of	 the	 statistical	

analyses	 did	 not	 take	 into	 account	 clustering	 by	 patients,	 and	 a	 hierarchical	 analysis	 may	 be	

preferable.	 In	 addition,	 a	 quantitative	 step	 analysis	 of	 the	 change	 in	 gradients	 with	 thresholds	

(looking	for	plateau)	was	not	performed	on	account	of	the	large	standard	deviations	at	relatively	few	

measurement	intervals.	Finally,	VisiTag	annotation	does	not	take	into	account	power	delivery,	and	

this	is	almost	certainly	another	important	factor	in	lesion	formation.	New	objective	lesion	annotation	

indices	that	have	been	introduced	after	this	study	was	performed,	such	as	“Ablation	Index”	(Carto3,	

Biosense	Webster),	integrate	this	parameter	(Das	et	al.	2016),	and	further	evaluation	of	outcome	is	
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required.	 However,	 the	 algorithms	 used	 to	 derive	 the	 “Ablation	 Index”	 are	 not	 published	 and	

therefore	it	was	not	possible	to	assess	the	predictive	value	of	the	index	itself	retrospectively.	

9.6 Conclusion	
Markers	 created	on	objective	 assessment	of	 ablation	parameters	 are	highly	predictive	of	 chronic	

lesion	 formation	on	 regional	assessment.	On	point-by-point	assessment,	 the	 relationship	 is	much	

weaker	and	is	likely	to	represent	subtle	mis-registrations.	Scar	formation	increases	in	a	non-linear	

fashion	 with	 increased	 contact	 force,	 and	 in	 a	 linear	 fashion	 with	 increased	 ablation	 time.	 The	

relationship	with	stability	indices,	‘Percentage	Time’	and	‘Range’	is	more	complex,	with	‘Percentage	

Time’	 having	 minimal	 impact	 on	 predictive	 value.	 This	 study	 provides	 the	 first	 detailed	 clinical	

assessment	 of	 the	 impact	 of	 ablation	 parameter	 thresholds	 on	 scar	 formation.	 It	 quantifies	 the	

relationship	 between	 sensitivity	 and	 specificity	 at	 each	 threshold,	 assisting	 informed	 clinician	

selection	of	threshold	values.	
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9.8 Chapter	appendix	A-	VisiTag	review	
	

This	appendix	documents	the	change	in	VisiTag	density	and	labelling	across	the	thresholds	examined	

in	this	study,	 for	a	single	subject	(39F).	For	each	parameter,	all	other	settings	are	fixed	at	default	

values	(see	above).	

	

Figure	9-15.	VisiTag	locations	with	variation	of	‘Force’	(grams).		

Colouring	 of	 tags	 is	 according	 to	 FTI	 (force	 time	 interval)	 in	 gram.seconds.	 LIPV:	 left	

inferior	pulmonary	vein	(PV),	RIPV:	right	inferior	PV,	RSPV:	right	superior	PV,	LIPV:	left	

inferior	PV.	 	
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Figure	9-16.	VisiTag	locations	with	variation	of	‘Time’		(seconds).		

Colouring	 of	 tags	 is	 according	 to	 FTI	 (force	 time	 interval)	 in	 gram.seconds.	 LIPV:	 left	

inferior	pulmonary	vein	(PV),	RIPV:	right	inferior	PV,	RSPV:	right	superior	PV,	LIPV:	left	

inferior	PV.	
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Figure	9-17.	VisiTag	locations	with	variation	of	‘Percentage	Time’.		

Colouring	 of	 tags	 is	 according	 to	 FTI	 (force	 time	 interval)	 in	 gram.seconds.	 LIPV:	 left	

inferior	pulmonary	vein	(PV),	RIPV:	right	inferior	PV,	RSPV:	right	superior	PV,	LIPV:	left	

inferior	PV.	
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Figure	9-18.	VisiTag	locations	with	variation	of	‘’Range’	(in	mm).		

Colouring	 of	 tags	 is	 according	 to	 FTI	 (force	 time	 interval)	 in	 gram.seconds.	 LIPV:	 left	

inferior	pulmonary	vein	(PV),	RIPV:	right	inferior	PV,	RSPV:	right	superior	PV,	LIPV:	left	

inferior	PV.	
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Figure	9-19.	VisiTag	locations	with	variation	of	‘Target	Temperature’	(in	°C).		

Colouring	 of	 tags	 is	 according	 to	 FTI	 (force	 time	 interval)	 in	 gram.seconds.	 LIPV:	 left	

inferior	pulmonary	vein	(PV),	RIPV:	right	inferior	PV,	RSPV:	right	superior	PV,	LIPV:	left	

inferior	PV.	
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Figure	9-20.	VisiTag	locations	with	variation	of	‘Impedance	Drop’	(in	ohms	(Ω)).		

Colouring	 of	 tags	 is	 according	 to	 FTI	 (force	 time	 interval)	 in	 gram.seconds.	 LIPV:	 left	

inferior	pulmonary	vein	(PV),	RIPV:	right	inferior	PV,	RSPV:	right	superior	PV,	LIPV:	left	

inferior	PV.	
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Figure	9-21.	VisiTag	visualisation	with	variation	of	tag	size	(mm).		

VisiTag	settings	are	kept	at	default,	with	only	the	projected	size	of	the	tag	altered.	

	

Figure	9-22.	VisiTag	visualisation	set	up.		

The	colouring	of	 tags	 is	varied	according	to	 force	(in	grams	(G),	power	(in	Watts	(W).	

temperature	(in	°C),	total	time	(in	seconds),	and	force	time	integral	(FTI,	in	gram.seconds).	

The	bottom	right	panel	demonstrates	the	visualisation	of	VisiTags	alongside	Grid	tags.	
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9.9 Chapter	appendix	B-	Matlab	scripts	
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file:///Users/henry/Documents/SmartTouch%20Sept15/Matlab%20Code/html/henry_combineVisitagMRIData2_HC.html 1/2

function henry_combineVisitagMRIData2
% HENRY_COMBINEVISITAGMRIDATA takes the visitag data (0/1 for each triangle
% in the shell and combines it with the MRI scar data (0/1 for each
% triangle in the shell) and outputs CSV files.
%
% Usage:
%   henry_combineVisitagMRIData
% Where:
%   There are no input or output arguments
%   Cases to be included in the programme run are hard-coded at line 40.
%   Output is to CSV files for post-processing.
%
% HENRY_COMBINEVISITAGMRIDATA completes the following actions:
%   1. Load MRI and Visitag VTK files
%   2. Locates the range, time, percent and force data in the Visitag VTK file
%   3. Locates the column of 'Any_Visitags' in the Visitag VTK file
%   4. Thresholds the MRI at 40% of SI maximum
%   5. Writes the Visitag/MRI data for individual cases to CSV files (e.g. 33SP.vtk)
%   6. Writes all the Visitag/MRI data concatenated to a single file (called rawdata.vtk)
%   7. Counts the number of visitag+/visitag-/scar+/scar- cells in the whole population
%   8. Calculates TP/FP/TN/FN values based on the above
%   9. Writes four CSV files (one for range, percent, force and time) containing:
%       [Visitag+ Visitag- MRI+ MRI- TP FN TN FP]
%       (with columns representing different values for range, percent force or time)
%
% Author: Designed by Henry Chubb, implemented by Steven Williams (2015)
% Modifications -
%   1. Threshold changed to import from "thesholds.csv": 3.3 sd from mean
%   (July 2016)
%
% Info on Code Testing:
% ---------------------------------------------------------------
% test code
% ---------------------------------------------------------------
%
% ---------------------------------------------------------------
% code
% ---------------------------------------------------------------

% define MRI data paths
baseDir = '/Volumes/Data1/Henry/ROMPA SmartTouch';

% define Visitag data paths
baseDir_visitag = [baseDir '/VisitagShells/minDist_7.5/'];

% define CMR data paths
baseDir_cmr = [baseDir '/CMRonCarto'];

meshesVisitag = nameFiles(baseDir_visitag);
meshesCmr = nameFiles(baseDir_cmr);

if numel(meshesVisitag) ~= numel(meshesCmr)
    error('HENRY_COMBINEVISITAGMRIDATA\The number of files in the MRI directory is not the same as the number of files in the Visitag directory');
end

% load the thresholds
thresholdFile = [baseDir '/Thresholds.csv'];
M = csv2cell(thresholdFile);

outputData = [];

rangeValue = [2 3 4 5 6 7]';
timeValue = [5 10 15 20 25 30]';
percentValue = [30 40 50 60 70 80]';
forceValue = [2 4 6 8 10 12 14 16 18 20]';

rangeData = zeros(numel(rangeValue), 8);
timeData = zeros(numel(timeValue), 8);
percentData = zeros(numel(percentValue), 8);
forceData = zeros(numel(forceValue), 8);

% step through each case
for iCase = 1:numel(meshesVisitag);

        % load the VTK files
        hVtk_MRI = VTKReader([baseDir_cmr '/' meshesCmr{iCase}]);
        hVtk_Visitag = VTKReader([baseDir_visitag '/' meshesVisitag{iCase}]);
        hVtk_MRI.readAllData();
        hVtk_Visitag.readAllData();

        % load the thresholds
        ind = findStr(M(:,1), meshesCmr{iCase}(1:4));
        thresh = M{ind,2};

        % perform thresholding on the MRI data
        mriFaceData = trVertToFaceData(hVtk_MRI.getTriRep, hVtk_MRI.PointData);
        mri = mriFaceData;
        mri(mriFaceData<thresh) = 0;
        mri(mriFaceData>=thresh) = 1;

        % Find the location of all the data
        fieldName = hVtk_Visitag.CellDataNames;

        range(1) = find(strcmpi(fieldName, 'range2'));
        range(2) = find(strcmpi(fieldName, 'default'));
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        range(3) = find(strcmpi(fieldName, 'range4'));

        range(4) = find(strcmpi(fieldName, 'range5'));

        range(5) = find(strcmpi(fieldName, 'range6'));

        range(6) = find(strcmpi(fieldName, 'range7'));

        time(1) = find(strcmpi(fieldName, 'time5'));

        time(2) = find(strcmpi(fieldName, 'default'));

        time(3) = find(strcmpi(fieldName, 'time15'));

        time(4) = find(strcmpi(fieldName, 'time20'));

        time(5) = find(strcmpi(fieldName, 'time25'));

        time(6) = find(strcmpi(fieldName, 'time30'));

        percent(1) = find(strcmpi(fieldName, 'percent30'));

        percent(2) = find(strcmpi(fieldName, 'percent40'));

        percent(3) = find(strcmpi(fieldName, 'default'));

        percent(4) = find(strcmpi(fieldName, 'percent60'));

        percent(5) = find(strcmpi(fieldName, 'percent70'));

        percent(6) = find(strcmpi(fieldName, 'percent80'));

        force(1) = find(strcmpi(fieldName, 'force2'));

        force(2) = find(strcmpi(fieldName, 'force4'));

        force(3) = find(strcmpi(fieldName, 'force6'));

        force(4) = find(strcmpi(fieldName, 'default'));

        force(5) = find(strcmpi(fieldName, 'force10'));

        force(6) = find(strcmpi(fieldName, 'force12'));

        force(7) = find(strcmpi(fieldName, 'force14'));

        force(8) = find(strcmpi(fieldName, 'force16'));

        force(9) = find(strcmpi(fieldName, 'force18'));

        force(10) = find(strcmpi(fieldName, 'force20'));

        any_visitag = find(strcmpi(fieldName, 'ANY_VISITAGS'));

        %atRisk = numel(find(hVtk_Visitag.CellData{any_visitag})); %#ok<FNDSB>

        % Write a spreadsheet for an individual case; and concatenate with

        % the previous cases into the outputData matrix

        filename = [meshesCmr{iCase}(1:4) '.csv'];

        matVisitags = cell2mat(hVtk_Visitag.CellData);

        tempData = [matVisitags mriFaceData mri];

        caseNumber = str2double(meshesCmr{iCase}(1:2));

        caseNumbers = repmat(caseNumber, length(tempData), 1);

        outputData = [outputData; [caseNumbers tempData]];

        csvwrite(filename, tempData);

        txt = [strjoin(hVtk_Visitag.CellDataNames, ',') ',MRI,MRI-thresh'];

        inserttextintotextfile(filename, 1, txt);

end

% Write a spreadsheet of the outputData matrix

csvwrite('rawdata.csv',outputData);

txt = ['CaseNumber,' strjoin(hVtk_Visitag.CellDataNames, ',') ',MRI,MRI-thresh'];

inserttextintotextfile('rawdata.csv', 1, txt);

    function data = local_Intersection(dataset, celldata, M, colAnyVisitag)

        % dataset is the indexes into celldata

        % atrisk are the number of triangles with any visitags

        % M is the MRI data

        % colAnyVisitag indexes into celldata

        % remove any MRI data that is not within any_visitag zone

        M(colAnyVisitag==0) = [];

        for iData = 1:numel(dataset)

            V = celldata{dataset(iData)};

            % remove any Visitag data that is not within any_visitag zone

            V(colAnyVisitag==0) = [];

            %T = V & mri;

            %intersection(iData) = numel(find(T)) / atRisk; %#ok<AGROW>

            % rowData1 is [Visitag+ Visitag- MRI+ MRI-]

            rowData1 = [numel(V(V==1)) numel(V(V==0)) numel(M(M==1)) numel(M(M==0))];

            % rowData2 is [TP FN TN FP]

            rowData2 = [sum(M&V) sum(M&~V) sum(~M&~V) sum(~M&V)];

            data(iData, 1:8) = [rowData1 rowData2];

        end

    end

end

Published with MATLAB® R2015a
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% HENRY_PROCESSVISITAGDATA reads all Carto3 export files, verifying
% correct labelling of the export dataset, then interrogating sites.txt to
% define VisiTag locations. A multi-dimensional vtk file is created, with
% 27 layers, each corresponding to a specific permutation of VisiTag
% threshold settings.
%
% Usage:
%   henry_processVisitagData
%
% HENRY_PROCESSVISITAGDATA completes the following actions:
%   1. Gets the full list of cases
%   2. Defines the default export settings for verification step
%   3. Loads each subject's Carto3 export datasets
%   4. Stepwise, verifies the correct labelling of the export datafile, referenced to
%   'VisiTagSettings.txt'
%   5. For each VisiTag "sites.txt", labels all triangles within the remeshed shell (MeshRM) according to
%   distance from VisiTag (minDist defined)
%   6. Creates a final dataset of "any_visitag", which is positive (1) if
%   any threshold setting is positive
%   7. Writes and labels a multidimensional .vtk file
%
% Author: Designed by Henry Chubb, implemented by Steven Williams (2016)
% Modifications -
%
% Info on Code Testing:
% ---------------------------------------------------------------
% test code
% ---------------------------------------------------------------
%
% ---------------------------------------------------------------
% code
% ---------------------------------------------------------------

% Get the list of cases
baseDir = '/Volumes/Data1/Henry/ROMPA SmartTouch'; % Henry's Hard Drive
meshesRM = nameFiles([baseDir filesep 'MeshesRM']);
numCases = numel(meshesRM);

% Define the median values
medianValues.useRespirationCompensation = 0;
medianValues.isLocationStabilityFilterEnabled = 1;
medianValues.locationStabilityThreshold = 3;
medianValues.minimalAblationTimeThreshold = 10;
medianValues.isImpedanceDropFilterEnabled = 0;
medianValues.impedanceDropThreshold = 10; %irrelevant unless ImpON
medianValues.isContactForceFilterEnabled = 1;
medianValues.contactForcePercentThreshold = 50;
medianValues.contactForceValueForPercentThreshold = 8;
medianValues.isTemperatureFilterEnabled = 0;
medianValues.temperatureThreshold = 43; %irrelevant unless TempON

% Preinitialise some variables
dataRange = [];
dataTime = [];
dataPercent = [];
dataForce = [];

% The distance between triangles and visitags
minDist = 7.5;

% Step through each case
invalidCases = false(numCases);
for iCase = 24:24%numCases
    % Check if Visitag data exists
    subFolders = nameFolds([baseDir filesep meshesRM{iCase}(1:4)]);
    initials = meshesRM{iCase}(3:4);
    tfDataExists = any(strcmpi(subFolders, initials));
    if ~tfDataExists
        continue
    else
        casePath{iCase} = [baseDir filesep meshesRM{iCase}(1:4) filesep initials]; %#ok<*SAGROW>
        expFolders = nameFolds(casePath{iCase});

        % Get a list of all data directories for a case
        for iExp = 1:numel(expFolders)
            % Go two folders further down ...
            firstSubFolder = nameFolds([baseDir filesep meshesRM{iCase}(1:4) filesep initials filesep expFolders{iExp}]); % Study 1
            secondSubFolder = nameFolds([baseDir filesep meshesRM{iCase}(1:4) filesep initials filesep expFolders{iExp} filesep firstSubFolder{1}]); 
            dataDirectory{iExp} = [baseDir filesep meshesRM{iCase}(1:4) filesep initials filesep expFolders{iExp} filesep firstSubFolder{1}]; % Address of Carto data directory
            visiTagDirectory{iExp} = [baseDir filesep meshesRM{iCase}(1:4) filesep initials filesep expFolders{iExp} filesep firstSubFolder{1} filesep secondSubFolder{1}]; 
        end %iExp

        % Confirm all visitag settings are correct
        for iExp = 1:numel(expFolders)
            disp(['----- Checking data: ' expFolders{iExp} '-----'])
            % Load VisiTagSettings.txt
            visitagSettings = read_visitagsettings([visiTagDirectory{iExp} filesep 'VisiTagSettings.txt']);
            medianValuesTemp = medianValues;
            switch lower(expFolders{iExp}(1:3))
                case 'def'
                    % do nothing
                case 'for'
                    medianValuesTemp.contactForceValueForPercentThreshold = str2double(expFolders{iExp}(regexp(expFolders{iExp}, '\d')));
                case 'imp'
                    medianValuesTemp.isImpedanceDropFilterEnabled = 1;
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                case 'per'
                    medianValuesTemp.contactForcePercentThreshold = str2double(expFolders{iExp}(regexp(expFolders{iExp}, '\d')));
                case 'ran'
                    medianValuesTemp.locationStabilityThreshold = str2double(expFolders{iExp}(regexp(expFolders{iExp}, '\d')));
                case 'tem'
                    medianValuesTemp.isTemperatureFilterEnabled = 1;
                case 'tim'
                    medianValuesTemp.minimalAblationTimeThreshold = str2double(expFolders{iExp}(regexp(expFolders{iExp}, '\d')));
                otherwise
                    error('HENRY_PROCESSVISITAGDATA: Unrecognised folder name')
            end
            if visitagSettings.useRespirationCompensation ~= medianValuesTemp.useRespirationCompensation
                disp('Error: useRespirationCompensation set incorrectly');
                %invalidCases(iCase) = true;
            else
                disp(['useRespirationCompensation set to ' num2str(visitagSettings.useRespirationCompensation) ' ............. OK']);
            end
            if visitagSettings.isLocationStabilityFilterEnabled ~= medianValuesTemp.isLocationStabilityFilterEnabled
                disp('Error: isLocationStabilityFilterEnabled set incorrectly');
                invalidCases(iCase) = true;
            else
                disp(['isLocationStabilityFilterEnabled set to ' num2str(visitagSettings.isLocationStabilityFilterEnabled) ' ....... OK']);
            end
            if visitagSettings.locationStabilityThreshold ~= medianValuesTemp.locationStabilityThreshold
                disp('Error: locationStabilityThreshold set incorrectly');
                invalidCases(iCase) = true;
            else
                disp(['locationStabilityThreshold set to ' num2str(visitagSettings.locationStabilityThreshold) ' ............. OK']);
            end
            if visitagSettings.minimalAblationTimeThreshold ~= medianValuesTemp.minimalAblationTimeThreshold
                disp('Error: minimalAblationTimeThreshold set incorrectly');
                invalidCases(iCase) = true;
            else
                disp(['minimalAblationTimeThreshold set to ' num2str(visitagSettings.minimalAblationTimeThreshold) ' .......... OK']);
            end
            if visitagSettings.isImpedanceDropFilterEnabled ~= medianValuesTemp.isImpedanceDropFilterEnabled
                disp('Error: isImpedanceDropFilterEnabled set incorrectly');
                invalidCases(iCase) = true;
            else
                disp(['isImpedanceDropFilterEnabled set to ' num2str(visitagSettings.isImpedanceDropFilterEnabled) ' ........... OK']);
            end
            if visitagSettings.isImpedanceDropFilterEnabled == 1 % ImpOn, so check impedanceDropThreshold
                if visitagSettings.impedanceDropThreshold ~= medianValuesTemp.impedanceDropThreshold
                    disp('Error: impedanceDropThreshold set incorrectly');
                    invalidCases(iCase) = true;
                else
                    disp(['... with impedanceDropThreshold set to ' num2str(visitagSettings.impedanceDropThreshold) ' ... OK']);
                end
            end
            if visitagSettings.isContactForceFilterEnabled ~= medianValuesTemp.isContactForceFilterEnabled
                disp('Error: isContactForceFilterEnabled set incorrectly');
                invalidCases(iCase) = true;
            else
                disp(['isContactForceFilterEnabled set to ' num2str(visitagSettings.isContactForceFilterEnabled) ' ............ OK']);
            end
            if visitagSettings.contactForcePercentThreshold ~= medianValuesTemp.contactForcePercentThreshold
                disp('Error: contactForcePercentThreshold set incorrectly');
                invalidCases(iCase) = true;
            else
                disp(['contactForcePercentThreshold set to ' num2str(visitagSettings.contactForcePercentThreshold) ' .......... OK']);
            end
            if visitagSettings.contactForceValueForPercentThreshold ~= medianValuesTemp.contactForceValueForPercentThreshold
                disp('Error: contactForceValueForPercentThreshold set incorrectly');
                invalidCases(iCase) = true;
            else
                disp(['contactForceValueForPercentThreshold set to ' num2str(visitagSettings.contactForceValueForPercentThreshold) ' ... OK']);
            end
            if visitagSettings.isTemperatureFilterEnabled ~= medianValuesTemp.isTemperatureFilterEnabled
                disp('Error: isTemperatureFilterEnabled set incorrectly');
                invalidCases(iCase) = true;
            else
                disp(['isTemperatureFilterEnabled set to ' num2str(visitagSettings.isTemperatureFilterEnabled) ' ............. OK']);
            end
            if visitagSettings.temperatureThreshold == 1 % TempON, so check temperatureThreshold
                if visitagSettings.temperatureThreshold ~= medianValuesTemp.temperatureThreshold
                    disp('Error: temperatureThreshold set incorrectly');
                    invalidCases(iCase) = true;
                else
                    disp(['... with temperatureThreshold set to ' num2str(visitagSettings.useRespirationCompensation) ' ... OK']);
                end
            end
        end %iExp

        if invalidCases(iCase)
            disp(['***' casePath{iCase}(end-6:end-3) ': INVALID DATA, see above ***']);
            continue % on to the next case
        else % process this case
            % Import all data folders for a case
            hVtk = VTKReader([baseDir filesep 'meshesRM' filesep meshesRM{iCase}]);
            shell = hVtk.readAllData().getTriRep();
            textprogressbar('importing data: ');
            for iExp = 1:numel(expFolders)
                visitag{iExp} = read_visitag_sites([visiTagDirectory{iExp} filesep 'Sites.txt']);
                fieldName{iExp} = expFolders{iExp}(regexp(expFolders{iExp},'\w'));
                textprogressbar((iExp/numel(expFolders))*100);
            end %iExp
            textprogressbar(' done');
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            % Label triangles within minDist of a visitag
            textprogressbar('calculating distances: ');
            cellData = zeros(length(shell.Triangulation),iExp);
            for iExp = 1:numel(expFolders)
                [~, allCentroids] = tricentroid(shell);
                dist = distBetweenPointClouds(allCentroids, visitag{iExp}(:,4:6));
                cellData(dist<minDist,iExp)=1;
                textprogressbar((iExp/numel(expFolders))*100);
            end
            textprogressbar(' done');

            % Create a dataset "any(visitag)"
            cellData(:,end+1) = any(cellData,2);
            fieldName{end+1} = 'ANY_VISITAGS';

            % Write a multidimensional VTK
            outputFileName = [casePath{iCase}(end-6:end-3) '_visitags_minDist' num2str(minDist) '.vtk'];
            op = writeTriRep2VTK(shell, [], 'outputfile', outputFileName, 'scalarnames', fieldName, 'type', 'binary', 'celldata', cellData);

            % Save the data for use in Matlab
            allData{iCase} = cellData;
            allDataNames{iCase} = fieldName;
            allDataCaseNames{iCase} = casePath{iCase}(end-6:end-3);

            % Find the location of all the data
            range2 = find(strcmpi(fieldName, 'range2'));
            range3 = find(strcmpi(fieldName, 'default'));
            range4 = find(strcmpi(fieldName, 'range4'));
            range5 = find(strcmpi(fieldName, 'range5'));
            range6 = find(strcmpi(fieldName, 'range6'));
            range7 = find(strcmpi(fieldName, 'range7'));

            time5 = find(strcmpi(fieldName, 'time5'));
            time10 = find(strcmpi(fieldName, 'default'));
            time15 = find(strcmpi(fieldName, 'time15'));
            time20 = find(strcmpi(fieldName, 'time20'));
            time25 = find(strcmpi(fieldName, 'time25'));
            time30 = find(strcmpi(fieldName, 'time30'));

            percent30 = find(strcmpi(fieldName, 'percent30'));
            percent40 = find(strcmpi(fieldName, 'percent40'));
            percent50 = find(strcmpi(fieldName, 'default'));
            percent60 = find(strcmpi(fieldName, 'percent60'));
            percent70 = find(strcmpi(fieldName, 'percent70'));
            percent80 = find(strcmpi(fieldName, 'percent80'));

            force2 = find(strcmpi(fieldName, 'force2'));
            force4 = find(strcmpi(fieldName, 'force4'));
            force6 = find(strcmpi(fieldName, 'force6'));
            force8 = find(strcmpi(fieldName, 'default'));
            force10 = find(strcmpi(fieldName, 'force10'));
            force12 = find(strcmpi(fieldName, 'force12'));
            force14 = find(strcmpi(fieldName, 'force14'));
            force16 = find(strcmpi(fieldName, 'force16'));
            force18 = find(strcmpi(fieldName, 'force18'));

            temp_dataRange = [size(visitag{range2},1); size(visitag{range3},1); size(visitag{range4},1); size(visitag{range5},1); size(visitag{range6},1); size(visitag{range7},1)];
            temp_dataTime = [size(visitag{time5},1); size(visitag{time10},1); size(visitag{time15},1); size(visitag{time20},1); size(visitag{time25},1); size(visitag{time30},1)];
            temp_dataPercent = [size(visitag{percent30},1); size(visitag{percent40},1); size(visitag{percent50},1); size(visitag{percent60},1); size(visitag{percent70},1); size(visitag{percent80},1)];
            temp_dataForce = [size(visitag{force2},1); size(visitag{force4},1); size(visitag{force6},1); size(visitag{force8},1); size(visitag{force10},1); size(visitag{force12},1); size(visitag{force14},1); size(visitag{force16},1); size(visitag{force18},1)];

            dataRange = [dataRange temp_dataRange];
            dataTime = [dataTime temp_dataTime];
            dataPercent = [dataPercent temp_dataPercent];
            dataForce = [dataForce temp_dataForce];
        end
    end %~tfDataExists
end %iCase

dataRangeX = [2 3 4 5 6 7]';
dataTimeX = [5 10 15 20 25 30]';
dataPercentX = [30 40 50 60 70 80]';
dataForceX = [2 4 6 8 10 12 14 16 18]';

Published with MATLAB® R2015a
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10 CONCLUSIONS	
	

10.1 Original	Contributions	
The	aim	of	this	thesis	was	to	explore	the	application	of	CMR	imaging	techniques	to	the	management	

of	atrial	arrhythmias,	at	three	main	timepoints	with	reference	to	the	ablation	procedure.		

	

• Prior	to	ablation-	assessment	of	the	AF	substrate	

o There	are	a	 large	number	of	CMR-derived	indices	that	have	been	proposed	to	be	

predictive	of	long-term	outcome	following	catheter	ablation.	Most	of	these	are	likely	

to	 represent	 markers	 of	 LA	 remodelling,	 but	 some	 may	 also	 impact	 upon	 the	

procedure	 itself,	 such	 as	 pulmonary	 venous	 anatomy.	 However,	 the	 indices	 are	

generally	 time-consuming	 to	 generate,	 and	 an	 integrated	 approach	 has	 been	

required	 in	 order	 to	 help	 guide	 clinicians	 and	 patients	 in	 their	 selection	 of	 AF	

management	strategy.		

o This	 thesis	 has	 independently	 demonstrated	 the	 utility	 of	 the	 assessment	 of	 LA	

fibrosis.	 LA	 ejection	 fraction	 and	 left	 ventricular	 ejection	 fraction	 trend	 towards	

significance,	and	in	larger	studies	may	have	an	additive	effect	in	terms	of	improving	

prediction	of	long-term	outcome.	However,	the	impact	of	sphericity,	LA	volume	and	

pulmonary	 venous	 anatomy	 could	 not	 be	 replicated,	 and	 these	 findings	 have	

important	 implications	 for	 centres	 looking	 to	 set	 up	 CMR-derived	 AF	 pre-

assessment	services.	

• During	ablation-	first-in-man	study	of	MR-guided	ablation		

o Establishing	feasibility	and	safety	of	a	highly	novel	procedure	is	challenging,	and	the	

work	 performed	 in	 the	 course	 of	 this	 thesis	 has	 created	 a	 platform	 for	 further	

development	of	 the	 technique.	The	outcome	of	 the	procedure	was	not	compared	

formally	to	a	control	cohort	undergoing	conventionally	guided	AFL	ablation,	but	the	

clinical	outcome	was	clearly	inferior	both	in	terms	procedural	time	and	outcome	at	

3	months.	However,	many	of	the	issues	were	demonstrated	to	be	related	to	catheter	

reach	and	handling	characteristics,	rather	than	the	core	technology	itself.	

o Clearly	the	field	of	MR-EP	requires	substantial	time	and	resources	to	develop	to	the	

level	of	conventional	EAM	systems.	Much	more	work	is	also	required	to	maximise	

the	 benefits	 of	 working	 in	 the	 challenging	 environment,	 particularly	 substrate	

assessment	and	real-time	lesion	evaluation,	but	the	study	was	highly	informative	in	

guiding	 further	 grant	 applications	 and	 development	 of	 completely	 new	 imaging	

platform.	

• After	ablation-	cross-over	study	of	imaging	of	post-ablation	atrial	lesions	and	application	

to	the	assessment	of	a	novel	objective	marker	of	ablation	energy	delivery	
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o The	reproducibility	and	optimisation	study	of	post-ablation	atrial	scar	imaging	has	

generated	a	huge	amount	of	data,	and	there	are	several	key,	new,	messages	to	be	

drawn	from	the	study	

o Firstly,	 in	 terms	 of	 optimisation	 of	 imaging,	 it	 is	 clear	 that	 imaging	 late	 after	

gadolinium	 administration	 improves	 the	 contrast-to-noise	 ratio	 of	 scar	 to	 blood	

pool,	 and	 consequently	 the	 reproducibility	 of	 scar	 imaging.	 A	 half-dose	 of	

gadolinium	based	contrast	agent	should	also	be	considered.	

o The	normalisation	method	for	referencing	of	signal	intensity	has	also	varied	widely	

between	 centres,	 but	 it	 is	 clear	 that	 some	 methods	 are	 superior	 to	 others.	

Referencing	 to	 ventricular	 myocardial	 signal	 intensity	 risks	 significant	 mis-

allocation	of	scar	and	healthy	myocardial	populations,	whilst	a	blood	pool	z-score	

has	been	demonstrated	for	the	first	time	to	be	the	superior	normalisation	method	

in	terms	of	reproducibility	of	scar	locations	and	overall	distribution	

o The	demonstrable	reproducibility	of	post-ablation	scar	imaging	justifies	the	use	of	

the	technique	in	the	assessment	of	the	objective	marker	of	ablation	energy	delivery,	

the	VisiTag	module.	In	this	way	it	has	been	possible	to	provide	for	the	first	time	an	

evidence	base	to	help	guide	the	selection	of	appropriate	VisiTag	thresholds.	

10.2 Future	Directions	

10.2.1 Prior	to	ablation:	MR	assessment	of	the	arrhythmia	substrate	
As	 was	 alluded	 to	 in	 the	 discussion	 of	 Chapter	 5,	 the	 synergistic	 use	 of	 multiple	 atrial	 fibrosis	

interrogation	techniques	is	 intriguing.	In	this	thesis,	a	surrogate	of	the	different	image	processing	

techniques	was	used,	and	the	main	difference	between	the	techniques	is	in	fact	the	threshold	level.	

Despite	using	very	different	SI	thresholds	to	detect	scar,	and	a	very	poor	correlation	in	fibrosis	level	

was	observed	between	techniques,	a	significant	association	with	late	outcome	was	maintained.		Focal	

and	diffuse	fibrosis	within	the	atrium	has	been	demonstrated	(Dzeshka	et	al.	2015).	It	seems	highly	

plausible	that	these	represent	different	pathologies	along	a	fibrosis	spectrum,	detectable	at	different	

SI	 thresholds,	 and	 that	 they	 may	 be	 relatively	 independent	 predictors	 of	 successful	 outcome	

following	catheter	ablation.			

10.2.2 During	ablation:	MR-guided	ablation	procedures	
In	Chapter	6	it	was	demonstrated	for	the	first	time	that	it	is	feasible	to	perform	a	clinical	ablation	

procedure	under	MR	guidance,	using	active	tracking	of	the	ablation	catheter.	However,	MR-guidance	

for	relatively	simple,	and	conventionally	highly	successful,	ablation	procedures	is	unlikely	to	yield	

significant	 improvements	 in	 terms	 of	 patient	 outcome	 or	 health	 economics.	 On	 the	 other	 hand,	

complex	procedures	 for	which	 conventional	 ablation	methods	have	 resulted	 in	 relatively	modest	

success	rates	may	be	improved	by	the	application	of	direct	MR	guidance	and	image.	One	area	that	is	

amenable	to	study	is	ventricular	tachycardia,	where	arrhythmia	substrate	and	lesion	imaging	will	be	

much	improved	with	a	greater	myocardial	mass.	
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Figure	10-1,	Figure	10-3,	and	Figure	10-2	demonstrate	the	early	results	of	an	MR-guided	ablation	

system	 for	 the	 treatment	of	ventricular	 tachycardia,	developed	 in	 collaboration	with	 Imricor	and	

Siemens	Healthcare	GmBH	(Siemens	Healthineers,	Erlangen,	Germany).	This	project	is	supported	by	

a	substantial	grant	from	the	Wellcome	Trust	and	NIHR	and	aims	to	develop	a	platform	for	clinical	

ablation	of	ventricular	tachycardia	over	the	next	10	years.	

	

	

Figure	10-1.	Early	results	of	MR-guided	ventricular	epicardial	ablation.	

A:	Single	slice	of	3D	LGE	acquisitions,	performed	at	30min	post	gadolinium	based	contrast	

agent	administration,	and	approximately	1	hour	post	ablation.	Site	of	ablation	is	indicated	

by	arrow.	Note	rim	of	enhancement	with	central	core	of	no-reflow	B:	Left	ventricular	shell	

(maximum	 intensity	projection)	 interrogating	 the	acquisition	 shown	 in	A.	Large	 lesion	

(white	arrow)	was	formed	with	60W	energy	for	60s,	and	the	smaller	lesion	(black	arrow)	

with	50W.	C:	macroscopic	findings	at	2	hours	post	ablation.	D:	ablation	lesion	locations	

(arrows)	 shown	 on	 the	 MR-EP	 guidance	 platform,	 developed	 in	 collaboration	 with	

Siemens.	
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Figure	10-2.	First	successful	MR-guided	actively-tracked	trans-septal	puncture,	in	a	swine	

model.	

A:	Position	of	actively-tracked	dilator	shown	on	multiplanar	imaging	and	chamber	shells,	

immediately	 post	 puncture	 of	 the	 atrial	 septum.	 B:	 anterograde	 access	 of	 ablation	

catheter	to	the	LV	immediately	following	trans-septal	puncture.	C	and	D:	position	of	the	

steerable	sheath	across	the	atrial	septum	at	post-mortem	evaluation.	
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Figure	10-3.	Acute	and	real-time	MR	imaging	of	lesion	formation.	

A:	conventional	cine	imaging	during	RF	energy	delivery.	Arrow	indicates	location	of	the	

ablation	 catheter,	 confirmed	 on	 active	 tracking.	 Note	 the	 absence	 of	 any	 significant	

interference	by	the	RF	energy	source	upon	image	acquisition.	B:	T1	mapping	performed	

at	seven	minutes	post	ablation:	note	significant	lengthening	of	the	T1	relaxation	time	at	

ablation	location	(arrow).	C:	Real-time	MR	thermometry	during	RF	energy	delivery,	with	

highly	 significant	 temperature	 rise	 at	 ablation	 core,	 and	 much	 lower	 rises	 for	 pixels	

adjacent	to	the	ablation	region.	

10.2.3 Post	ablation:	MR	assessment	of	ablation		
In	Chapter	8	it	was	demonstrated	that	MR-imaging	of	ablation	lesions	in	the	atrium	is	a	reproducible	

technique.	 However,	 the	 issue	 of	 thresholding	 of	 ablation	 lesions	 within	 the	 atrium	 remains	

challenging,	with	a	broad	range	of	signal	intensities	likely	to	represent	a	spectrum	of	scar,	from	dense	

core	 scar	 to	 scar	 borderzone.	 LGE	 imaging	 remains,	 at	 present,	 the	most	 sensitive	 technique	 for	

detecting	these	changes	in	the	thin-walled	atrium,	but	an	objective	thresholding	method	would	be	

highly	 desirable	 in	 order	 to	 help	 establish	 clinical	 and	 research	 protocols	 to	 guide	 the	

implementation	of	imaging	of	ablation	lesions.		

	

As	 an	 alternative	 to	 conventional	 thresholding	 by	 signal	 intensity	 cut-off,	 an	 image	 subtraction	

technique	was	developed	in	the	course	of	this	thesis.	It	was	established	in	Chapter	7	that	the	scar:	

blood	pool	SI	ratio	typically	rises	with	time	following	gadolinium	administration	(Figure	7-4),	in	the	

context	 of	 almost	 identical	 imaging	 parameters	 (only	 the	 inversion	 time	 was	 altered	 between	
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acquisitions	 in	order	 to	maintain	optimal	ventricular	nulling).	There	was	no	observed	 significant	

trend	in	blood	pool	SI	(Figure	7-6)	or	PAAS	SI	(Figure	7-7)	but	within	patients	the	trend	was	towards	

a	divergence	of	these	two	SIs.	Therefore	a	technique	was	developed	that	aimed	to	exploit	the	time	

derivative	of	the	signals	of	these	structures	(Figure	10-4).	

	

The	morphologically	identical	LGE	shells	were	compared	on	a	face-by-face	basis.	In	total,	three	new	

shells	per	patient	imaging	session	were	derived	by	subtracting	the	local	SIs:	20min	minus	10min	(C1,2,	

and	 C4,5),	 30min	 minus	 10min	 (C1,3	 and	 C4,6),	 and	 30min	 minus	 20min	 (C2,3	 and	 C5,6).	 It	 was	

hypothesised	 that	a	negative	derived	SI	would	be	an	objective	 indication	of	healthy	 tissue,	 and	a	

positive	derived	SI	an	indication	of	scar	tissue	(Figure	10-4).	However,	as	discussed	previously,	the	

SD	 of	 the	 SIs	 of	 atrial	 scar	 is	 proportionally	 large	 at	 baseline.	 The	 result	 of	 the	 summation	 (or	

subtraction)	 of	 two	 populations	 with	 means	 µ1	 and	 µ2	 and	 standard	 deviations	 	 SD1	 and	 SD2	

respectively	is	to	create	a	scar	voxel	population	that	may	have	a	mean	(µ1	minus	µ2)	further	from	the	

mean	 of	 healthy	 tissue,	 but	 a	 larger	 derived	 standard	 deviation	 (SD1	 plus	 SD2)	 (Figure	 10-5).	

Consequently	the	technique	in	its	simplest	form	does	not	help	to	inform	the	selection	of	scar.		

	

However,	 the	 implementation	 of	multiple	 acquisitions	 and	more	 sophisticated	 image	 processing	

techniques,	such	as	the	time	derivative	of	local	signal	intensity,	has	promise	to	act	as	a	gold	standard	

for	scar	detection.	

	

	

Figure	10-4	Principles	of	image	subtraction	technique.	

Single	 representative	 slice	 of	 acquisition	 (subject	 27,	 post-ablation	 scan	 1)	 performed	

under	 standard	 parameters	 at	 10min	 post	 gadolinium	 (A-	 Acq1)	 and	 30min	 post	
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gadolinium	 (B-	 Acq3),	with	 subtraction	 image	 ([B-A],	 C1,3)	 shown	 in	 C.	 Note	 enhanced	

contrast	at	the	core	of	scar	in	the	subtraction	image	(white	arrow),	in	comparison	to	B.	

	

	

Figure	10-5.	Visualisation	of	LA	shells	and	subtraction	shell,	with	associated	pixel	intensity	

frequency	histograms	(subject	27,	scan	1).	

Note	in	the	top	two	rows	the	shift	of	the	putative	scar	population	(blue	line)	away	from	

the	 healthy	 myocardial	 population	 (white	 line)	 with	 time	 from	 gadolinium	

administration.	The	subtraction	shell	and	associated	pixel	intensity	frequency	histogram	

is	shown	in	the	third	column.		The	means	of	the	two	populations	(scar	and	healthy)	are	

likely	to	have	separated	to	a	greater	degree,	but	in	the	process	of	population	subtraction,	

the	standard	deviation	has	increased,	making	thresholding	of	the	two	populations	more	

challenging.	
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APPENDIX	B:	PULMONARY	VEIN	

ENCIRCLEMENT	ANALYSIS	

TECHNIQUE	

	

The	main	stages	of	the	method	are:	

• Left	atrial	(LA)	segmentation	and	tissue	characterisation.	

• Semi-automatic	labelling	of	regions	within	the	left	atrium		

• Gap	identification	and	quantification.	

	

1.	Left	atrial	segmentation	and	tissue	characterisation.	

LA	segmentation	was	performed	according	to	the	methods	described	in	Chapter	4,	and	the	resulting	

LA	shell	was	thresholded	at	3.3	standard	deviations	above	the	blood	pool	mean	in	order	to	define	the	

locations	of	atrial	scar.	

	

2.	Semi-automatic	labelling	of	the	regions	of	the	LA	

In	order	to	determine	consistent	anatomical	regions	for	each	LA,	a	registration-based	method	was	

applied.	Anatomical	regions	were	defined	on	a	template	atrium	that	was	developed	in	collaboration	

with	Catalina	Tobon-Gomez	(Tobon-Gomez	et	al.	2015).	An	extra	division	in	the	middle	of	the	atrium	

separating	the	left	from	the	right	side	was	also	added,	creating	28	regions	in	total,	with	particular	

attention	paid	to	the	regions	surrounding	the	pulmonary	veins	(PVs)	Figure	B	1.	

	

	

Figure	B	1.	Labelling	of	LA	regions.		

From	 left	 to	right:	LA	region	definition;	 surface	projection	 to	standardised	unfold	map	

(SUM);	Radial	sampling	of	the	four	quadrants	around	each	PV;	Representation	in	polar	

coordinates	(only	one	vein	in	this	case).	Reproduced	with	permission	from	Nuñez	Garcia	

et	al.,	2015.	
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In	order	to	define	the	regions	of	the	LA,	it	required	registration	to	the	LA	template.	However,	prior	to	

registration,	standardisation	of	the	shell	was	required,	with	the	semi-automated	removal	of	PVs,	left	

atrial	appendage	(LAA)	and	mitral	valve	(MV)	orifice.	Five	user-defined	seeds	were	placed	at	 the	

antrum	of	the	PVs	and	the	LAA,	and	lines	connecting	each	PV	(or	the	LAA)	to	the	2	PVs	on	the	other	

side	of	the	LA	were	calculated	to	define	the	lumen	of	the	vein	or	appendage.	The	body	of	the	atrium	

was	then	defined	at	the	point	along	the	connecting	line	when	the	contour	of	the	vein	(or	the	LAA)	

widened	significantly,	and	an	automated	clipping	was	then	applied	at	a	user-defined	distance	from	

the	LA	body.	For	this	study	the	distance	was	set	to	3mm.	Other	clipping	distances	were	trialled	(0	to	

10mm),	 and	 minimal	 difference	 in	 the	 final	 outcome	 was	 observed.	 The	 MV	 was	 then	 cut	

automatically	using	the	location	of	the	placed	seeds	to	define	a	suitable	plane	representing	the	MV	

position.		

	

Registration	was	then	performed	using	an	affine	registration	technique	with	iterative	closest	point	

fusion.	 	 In	this	way,	each	vertex	on	the	original	(not	template)	LA	shell	was	 labelled	according	to	

region.	

	

3.	Gap	identification	and	quantification	

Gaps	 in	 the	 ablation	 line	were	 quantified	 using	 a	 technique	 developed	 from	 that	 described	 in	 a	

previous	publication	by	the	Barcelona	group	(Nuñez	Garcia	et	al.	2015).	The	detailed	labelling	of	the	

LA	shell	enabled	the	size	of	the	wide	area	circumferential	ablation	to	be	defined	accurately,	and	the	

veins	were	assessed	in	pairs.	The	ablation	line	was	assessed	at	a	relatively	large	maximum	distance	

from	the	PV	antrum	(up	to	one	quarter	of	the	whole	LA	diameter)	in	order	not	to	ignore	appropriate	

ablation	locations	when	a	very	wide	ablation	line	was	performed.	The	isolating	path	was	defined	as	

the	closed	path	that	encircled	the	PV	pair	with	the	minimum	gap	length	between	regions	of	binarised	

scar	along	that	pathway.	A	graph	was	constructed	where	each	node	represented	a	scar	patch	and	the	

edges	are	the	minimum	distance	between	the	corresponding	patches.	The	Dijkstra	algorithm	was	

then	applied	to	find	the	shortest	path.	Note	that	according	to	this	method,	healthy	areas	would	only	

be	defined	as	gap	if	they	belonged	to	the	isolating	path.		
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Figure	B	2.	Results	of	the	gap	quantification	method.		

The	peri-antral	 region	 is	unfolded,	and	 scar	 regions	are	 shown	 in	 red.	On	 top	of	 every	

subplot	the	corresponding	RGM	is	shown.	Reproduced	with	permission	from	Nuñez	Garcia	

et	al.,	2015.	

	

In	this	way	a	Relative	Gap	Measure	(RGM)	was	defined	where:	

!"# = "%&	()*+,ℎ
./,%0	()*+,ℎ	

Where	where	gap	length	is	the	sum	of	the	length	of	all	gaps	in	the	isolating	path	and	total	

length	is	the	total	length	of	the	path	(gaps	+	scar	patches	length).	

As	a	more	intuitive	measure	for	clinical	application,	a	Pulmonary	Vein	Encirclement	(PVE)	index	was	

also	defined	where:	

123 = 1 − !"#	
	

	

	


