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Abstract	

	

Human	neurodegenerative	tauopathies	exhibit	pathological	tau	aggregates	in	

the	brain	 along	with	diverse	 clinical	 features	 including	 cognitive	 and	motor	

dysfunction.	 Post-translational	 modifications	 of	 tau,	 including	 tau	

phosphorylation	 and	 truncation,	 are	 characteristic	 features	 of	 human	

tauopathy.	We	 previously	 identified	 a	 highly	 phosphorylated	 and	 truncated	

form	of	tau	associated	with	the	development	of	disease	in	humans.	We	have	

generated	a	new	mouse	model	of	tauopathy	in	which	this	human	brain-derived,	

tau	 fragment	 (Tau35)	 is	 expressed	 under	 the	 control	 of	 the	 human	 tau	

promoter.	Notably,	unlike	most	existing	mouse	models	of	tauopathy,	the	Tau35	

transgene	encoding	truncated	wild-type	tau,	is	expressed	at	less	than	10%	of	

the	amount	of	endogenous	mouse	tau.	

Behavioural	 and	 phenotypic	 assessments	 showed	 that	 Tau35	 mice	

exhibit	a	disease-associated	phenotype	of	reduced	survival,	clasping,	kyphosis	

and	defective	motor	function.	Cognitive	testing	in	the	Morris	water	maze	also	

revealed	 a	 deficit	 in	 spatial	 learning	 and	 hippocampal	 dependent	 memory.	

Neuropathological	 examination	using	a	 range	of	 antibodies	 to	 tau,	 including	

phosphorylated	 and	 conformational	 epitopes,	 showed	 a	 progressive	

accumulation	 of	 aggregated	 and	 phosphorylated	 tau	 inclusions,	 comprising	

both	 endogenous	 and	 transgenically	 expressed	 tau.	 Alterations	 in	 several	

disease-associated	proteins	were	also	detected	in	Tau35	mice,	including	kinase	

activity,	and	proteins	involved	in	autophagic-lysosomal	and	synaptic	function,	

suggesting	a	toxic	gain	of	function	of	this	tau	fragment.	Importantly,	we	found	

that	 a	 pharmacological	 agent	 reverses	 the	 molecular	 and	 behavioural	

neurodegenerative	 phenotype	 apparent	 in	 Tau35	 mice.	 Backcrossing	 the	

original	 mixed	 background	 Tau35	 mice	 onto	 a	 pure	 C57BL/6	 background	

revealed	that	the	previously	observed	behavioural	deficits	were	preserved	in	

this	mouse	model.	A	novel	cell	based	CHO-Tau35	phosphorylation	assay	was	

successfully	established	in	which	to	test	potential	therapeutic	compounds.	

These	results	show	for	the	first	time	that	minimal	expression	of	a	wild-

type	human	disease-associated	tau	fragment	in	Tau35	mice	causes	a	profound	

and	 progressive	 tauopathy,	 which	 can	 be	 rescued	 by	 pharmacological	
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intervention.	Tau35	mice	therefore	represent	a	highly	disease-relevant	animal	

model	 in	 which	 to	 investigate	 molecular	 mechanisms	 underlying	 tau-

associated	neurodegeneration	and	to	develop	novel	and	innovative	therapies	

for	human	tauopathies.	
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CHAPTER	1	
	

1.1 Tau	Protein	
	

Tau,	a	neuron	specific	microtubule-associated	protein,	is	encoded	by	the	MAPT	

gene	 on	 chromosome	 17	 in	 humans	 and	 is	 found	 primarily	 in	 axons	 of	 the	

central	 nervous	 system	 (CNS).	 The	 primary	 identified	 role	 of	 tau	 was	 to	

promote	 the	 polymerisation	 of	 tubulin	 into	 microtubules	 (MTs),	 which	 are	

important	 for	 axonal	 transport	 (Witman	 et	 al.,	 1976;	 Ávila	 et	 al.,	 2002).	

However,	tau	is	now	well	known	as	a	multifunctional	protein	involved	in	adult	

neurogenesis,	 modulation	 of	 a	 number	 of	 signalling	 pathways,	 possible	

cholinergic	signalling	role	of	secreted	tau,	synaptic	roles	through	interaction	

with	 Src-family	 kinases	 such	 as	 fyn,	 DNA	 damage	 protection	 and	 roles	 in	

nuclear	organisation	(Sjöberg	et	al.,	2006;	Reynolds	et	al.,	2008;	Gómez-Ramos	

et	 al.,	 2009;	 Ittner	 et	 al.,	 2011;	 Sultan	 et	 al.,	 2011;	 Spillantini	 and	 Goedert,	

2013).		

In	 neurons,	 tau	 is	 essential	 for	 a	 variety	 of	 functions	 including	

morphogenesis,	 axonal	 outgrowth,	 axonal	 vesicle	 and	 protein	 transport,	

neuronal	plasticity	and	 is	 implicated	 in	 the	development	and	progression	of	

tauopathy	neurodegenerative	diseases	(Trinczek	et	al.,	1999;	Buée	et	al.,	2000;	

Sultan	et	al.,	2011;	Iqbal	et	al.,	2015).	At	a	mechanical	level,	tau	stimulates	MT	

stabilisation	 and	 suppresses	 MT	 dynamics	 (Tint	 et	 al.,	 1998).	 Tau	 is	 most	

abundantly	 expressed	 in	 CNS	 neurons	 but	 can	 also	 be	 found	 in	 the	

somatodendritic	 compartment	 of	 neurons,	 oligodendrocytes,	 and	 in	 non-

neuronal	tissues,	and	in	its	pathological	form	in	peripheral	tissue,	as	well	as	to	

a	lesser	extent	in	heart,	 lung	muscle,	pancreas,	fibroblast,	kidneys	and	testes	

(Trojanowski	et	al.,	1989;	 Ingelson	et	al.,	1996;	Vanier	et	al.,	1998;	Gu	et	al.,	

2002;	 Maurage	 et	 al.,	 2004;	 Rouzier	 et	 al.,	 2005;	 Souter	 and	 Lee,	 2009).	

Sequence	analysis	has	distinguished	four	main	structural	components	in	tau;	

an	N-terminal	domain,	a	proline-rich	domain,	a	MT	and	a	C-terminal	domain	

(Figure	 1.1).	 The	 MT	 binding	 repeats	 in	 tau	 are	 each	 separated	 by	 short	

stretches	 of	 13-14	 amino	 acids.	 The	 entire	 repeat/inter-repeat	 region	 is	
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positively	charged,	facilitating	electrostatic	interactions	between	tau	and	the	

negatively	charged	MT	surface.	The	C-terminal	tail	of	tau	contains	both	basic	

and	acidic	sub	regions	and	indirectly	regulates	tau	binding	to	MTs	(Brandt	and	

Lee,	1993).	

	

	

Figure	 1.1:	 Schematic	 representation	 of	 human	 CNS	 full-length	 tau	

protein.	Representation	of	the	largest	tau	isoform	(441	amino	acids	long).	The	

proline	 rich	 domain	 is	 highlighted	 in	 blue.	 There	 are	 either	 three	 or	 four	

microtubule-binding	repeat	regions	(M1-M4)	(pink)	depending	on	alternative	

splicing	of	exon	10	encoding	M2.	The	number	of	acidic	repeats	in	yellow	(N1,	

N2)	at	the	N-terminal	of	the	protein	alters	depending	on	the	isoform	(Williams,	

2006).		

	

1.1.1	Alternative	splicing	of	tau	

The	MAPT	gene	of	over	100	kb	consists	of	16	exons	and	is	located	on	human	

chromosome	17q21	(Figure	1.2).	Alternative	splicing	of	exons	occurs	in	70%	

of	vertebrate	genes,	and	splicing	variants	are	regulated	both	temporarily	and	

spatially,	 to	 produce	 functionally	 diverse	 proteins	 with	 differing	 affinities	

(Lander	et	al.,	2001).	Alternative	splicing	of	tau	results	in	multiple	variants	and	

it	is	a	major	contributor	to	proteomic	complexity	(Andreadis,	2005).	Exons	1,	

4,	5,	7,	9,	11,	12,	and	13	are	constitutive	tau	exons.	Exons	14	is	present	in	mRNA,	

but	 has	 not	 been	 detected	 in	 tau	 protein	 (Goedert	 et	 al.,	 1989a,	 1989b;	

Andreadis	et	al.,	1992;	Sawa	et	al.,	1994).	Alternative	splicing	of	exons	2,	3	and	

10	(E2,	E3,	E10)	generates	six	distinct	 tau	 isoforms	ranging	 from	352	–	441	

amino	acids	and	are	tightly	regulated	developmentally	(Figure	1.2)	(Hong	et	

al.,	1998).	Functionally	4R	tau	is	known	to	bind	and	assemble	MTs	with	greater	

affinity	 than	 3R	 tau	 (Goedert	 and	 Jakes,	 1990;	 Butner,	 1991;	 Gustke	 et	 al.,	

1994).	 	
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Figure	1.2:	The	human	MAPT	gene	encompassing	 the	16	exons	and	six	

isoforms	of	tau	and	their	domain	structures	expressed	in	the	human	adult	

CNS.	Human	tau	gene	contains	16	exons.	Human	tau	isoforms	are	formed	from	

alternative	splicing	of	exons,	2,	3	and	10.	Exon	2	and	3	together,	or	exon	2	alone,	

can	be	included	or	excluded	in	the	N-terminal	projection	domain	(exon	2:	green	

and	 exon	 3:	 yellow).	 Exon	 10	 alternative	 splicing	 in	 the	 C-terminal	 region	

results	in	the	production	of	either	three	or	four	tubulin-binding	repeats,	3R	and	

4R,	respectively	(3R:	blue,	4R:	red)	(Wang	and	Mandelkow,	2015).	

	

	

	

Tau	isoforms	differ	from	each	other	by	the	presence	of	either	three	or	

four	 repeats	 in	 the	 carboxy-terminal	 (C-terminal)	 half,	 and	 the	 presence	 or	

absence	of	one	or	2	inserts	of	29	or	58	amino	acids	in	the	amino	terminal	(N-

terminal)	region	of	tau	(Figure	1.2)	(Goedert	et	al.,	1989a,	1989b;	Himmler	et	

al.,	1989;	Lee	et	al.,	1989).	Three	tau	isoforms	contain	exon	10	(E10+,	4R	tau)	

and	three	tau	isoforms	lack	exon	10	(E10+,	3R	tau)	(D’Souza	et	al.,	1999).	The	

largest	 of	 the	 tau	 isoforms	 in	 the	 human	 CNS	 comprises	 441	 amino	 acids	

(Figure	1.1,	Figure	1.2)	(Lee	et	al.,	1989).	Normal	adult	human	brain	expresses	

approximately	 equal	 levels	 of	 3R	 and	 4R	 tau	 and	 regulation	 of	 alternative	

splicing	 is	 particularly	 important	 because	mutations	 causing	 changes	 in	 the	

3R:4R	ratio	result	 in	neurodegenerative	disease	(Figure	1.2).	Although	most	

tau	 isoforms	 are	 primarily	 expressed	 in	 the	 CNS	 in	 the	 peripheral	 nervous	

system	 (PNS),	 tau	 can	 be	 found	 as	 a	 high	 molecular	 weight	 tau	 isoform	
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expressing	exon	4A,	yielding	a	~100kDa	protein	(Nunez,	1988;	Couchie	et	al.,	

1992;	Goedert	et	al.,	1992b).	

	

1.2 Tauopathies	
	

Highly	phosphorylated	aggregates	of	 tau	deposited	 in	 the	CNS	may	be	a	key	

driver	 of	 the	 group	 of	 neurodegenerative	 diseases	 collectively	 known	 as	

tauopathies.	 These	 disorders	 include	 Alzheimer’s	 disease	 (AD),	 corticobasal	

degeneration	 (CBD),	 progressive	 supranuclear	 palsy	 (PSP)	 and	 certain	

frontotemporal	 dementias	 (FTD)	 (Hernández	 and	 Avila,	 2007).	 The	

tauopathies	differ	by	affected	brain	regions	and	cell	 types,	as	well	as	by	 the	

biochemical	features	of	aggregated	tau	in	each	disorder	(Table	1)	(Wang	and	

Mandelkow,	2015).	Abnormalities	 in	the	ratio	of	tau	isoforms	are	associated	

with	 a	 variety	 of	 different	 tauopathies	 (Table	 1).	 Whereas	 AD	 and	 control	

brains	each	exhibit	approximately	equal	amounts	of	4R	and	3R	tau	isoforms	in	

the	brain;	PSP	and	CBD	exhibit	predominantly	4R	tau,	PiD	predominantly	3R	

tau,	and	in	frontotemporal	dementia	and	parkinsonism	linked	to	chromosome	

17	 with	 a	 mutation	 in	 the	 tau	 gene	 (FTLD-tau)	 the	 isoform	 predominance	

depends	on	which	tau	mutation	is	present	(Table	1)	(Hong	et	al.,	1998;	Arai	et	

al.,	2003;	de	Silva	et	al.,	2006).	The	neuropathological	hallmark	of	tauopathies	

is	the	aggregation	of	insoluble,	fibrous	protein	into	brain	lesions.	In	tauopathy	

brain,	 tau	 is	 highly	 phosphorylated	 and	 is	 polymerised	 into	 paired	 helical	

filaments	 (PHF)	 and/or	 straight	 filaments	 (SF)	 forming	 neurofibrillary	

aggregates	 (Table	 1)	 (Iqbal	 et	 al.,	 2010).	 The	 characteristic	 tau	 aggregates	

present	 in	different	tauopathies	differ	 in	both	phosphorylation	status	and	in	

the	accumulation	of	specific	tau	isoforms,	enabling	a	biochemical	classification	

of	the	tauopathies	(Sergeant	et	al.,	2005).	 	
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Table	1:	Summarising	the	different	tau	pathologies	characteristic	of	the	

major	 tauopathies	 and	 showing	 the	 typical	 filament	 types	 present	 in	

these	 diseases.	 PHF:	 paired	 helical	 filaments.	 SF:	 straight	 filaments,	 AD:	

Alzheimer	 disease,	 FTD:	 frontotemporal	 dementia,	 PSP:	 progressive	

supranuclear	palsy,	CBD:	corticobasal	degeneration,	PiD:	Pick’s	disease,	NFT:	

neurofibrillary	tangles	(adapted	from	Williams	et	al	2006)	

	

Disease	 Ratio	

(3R:4R)	

Tau	

pathology	

Filament	

type	

Clinical	features	

AD	 3R	and	

4R	

NFTs	 PHF		

(and	SF)	

Cognitive	impairment,	cortical	

dementia,	amnestic,	rare	

movement	problems	

PSP	 4R	 PSP	tangles	 SF	 Frontal	dysexecutive,	cognitive	

impairment,	asymmetric	onset	

of	motor	dysfunction,	axial	

rigidity,	tremor,	late	falls	

PiD	 3R	 Pick	bodies	 SF	 Frontal	dysexecutive,	

progressive	non-fluent	aphasia,	

semantic	dementia,	rare	

movement	problems	

CBD	 4R	 Neuronal	tau	

inclusions	

SF	 Parietal,	frontal	dysexecutive,	

asymmetric	parkinsonism,	

alien	limb	

FTD	 4R	 Tangles,	

neuronal	and		

glial	tau	

inclusions	

PHF		

and/or	SF	

Frontal	behaviour	cognitive	

impairment,	symmetric	rigidity	

and	bradykinesis,	

opthalmoplegia	
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Figure	1.3:	Stylised	western	blots	showing	the	predominant	tau	isoforms	

present	in	different	tauopathies.	AD	contains	both	4R	and	3R	tau	isoforms,	

tau	pathology	in	PSP	and	CBD	contains	mainly	4R	tau,	while	in	PiD	mainly	3R	

tau	 is	 present.	 In	 FTLD-tau	 the	 pattern	 is	 more	 varied	 with	 some	 cases	

containing	both	3R	and	4R	tau,	and	others	characterised	by	predominantly	4R	

or	3R	tau.	(adapted	from	Buée	et	al.,	2000).	

	

	

	

1.2.1 Alzheimer’s	disease	
	

Age	is	the	biggest	risk	factor	for	AD,	which	is	by	far	the	most	prevalent	of	the	

tauopathies	 in	people	over	 the	age	of	65	 (60%	of	dementia	cases),	 affecting	

approximately	6%	of	the	population	and	50%	of	people	over	the	age	of	90,	with	

800,000	people	in	the	UK	alone	affected	by	the	disease	(Wimo	et	al.,	2013,	WHO	

2013).	Current	predictions	are	that	AD	will	affect	1	 in	85	people	globally	by	

2050,	 making	 it	 a	 global	 epidemic	 (Brookmeyer	 et	 al.,	 2007;	 Norton	 et	 al.,	

2014).	This	rise	will	largely	be	due	to	improved	healthcare	and	increases	in	an	

ageing	 populations,	 which	 will	 have	 a	 huge	 economic	 impact	 (Wimo	 et	 al.,	

2013).		

	 In	AD	brain,	neural	 tissue	and	peripheral	nerves	contain	tau	which	 is	

abnormally	 phosphorylated.	 Tau	 is	 the	 major	 protein	 component	 of	

neurofibrillary	tangles	(NFTs),	one	of	the	pathological	hallmark	lesions	of	the	
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disease	(Tortosa	et	al.,	2011).	NFTs	are	primarily	composed	of	aggregated	β-

sheet-rich	PHF	structures	(Iqbal	et	al.,	1975;	Yagishita	et	al.,	1981;	Wood	et	al.,	

1986;	Goedert	et	al.,	1989a).	NFTs	are	primarily	localised	to	the	cell	soma	of	

degenerating	neurons	and	glia	but	they	also	occur	in	cell	processes	as	neuropil	

threads	(Braak	and	Braak,	1986;	Gómez-Isla	et	al.,	1997).	Once	neuronal	death	

occurs,	NFTs	remain	 in	the	extracellular	spaces	and	become	associated	with	

microglia	and	invading	astrocytic	processes	(Ikeda	et	al.,	1992).	Nevertheless,	

it	 remains	 unclear	 whether	 NFTs	 are	 cytotoxic.	 Interestingly,	 Braak	 and	

colleagues	 (Braak	 and	 Braak,	 1991)	 found	 that	 NFT	 spreading	 follows	 a	

consistent	pattern	throughout	the	brain	in	AD	which	allows	the	disease	to	be	

neuropathologically	categorised	into	six	primary	stages	as	well	as	correlating	

brain	pathology	to	disease	severity	and	clinical	phenotypes.	As	seen	in	Figure	

1.4	at	first	NFTs	appear	in	the	transentorhinal/peripheral	cortex	(Braak	stage	

I),	followed	by	the	CA1	region	of	the	hippocampus	(Braak	stage	II).	Following	

from	 that	NFTs	 appear	 and	 accumulate	 in	 the	 limbic	 structures	 such	 as	 the	

subiculum	of	the	hippocampus	(Braak	Stage	III),	then	amygdala,	thalamus	and	

claustrum	(Braak	Stage	IV).	Finally,	NFTs	spread	to	the	isocortical	areas,	with	

associative	 areas	 affected	 first	 (Braak	 Stage	 V),	 followed	 by	 the	 primary	

sensory,	motor	and	visual	areas	(Braak	Stage	VI)	(Figure	1.4)	(Hyman	et	al.,	

1984;	Arnold	et	al.,	1991;	Braak	and	Braak,	1991).	This	hierarchical	pattern	of	

NFTs	 and	 degeneration	 amongst	 the	 brain	 regions	 is	 very	 consistent	 and	

regularly	used	as	a	diagnostic	tool	(NIA-Reagan	Working	Group,	1997).	

AD	brain	 is	also	characterised	by	the	deposition	of	amyloid	β	(Aβ)	 in	

extracellular	spaces	and	blood	vessels	as	amyloid	plaques,	which,	along	with	

tau	 deposition,	 are	 used	 to	 diagnose	 disease	 neuropathologically	 at	 post-

mortem	 (Wong	 et	 al.,	 1985).	 Unlike	 tau,	 Aβ	 plaque	 deposition	 does	 not	

correlate	 with	 cognitive	 decline,	 nevertheless	 biochemical	 and	 genetic	

evidence	has	identified	that	Aβ	is	a	critical	early	trigger	leading	to	tauopathy	

and	neuronal	dysfunction	(Hardy	and	Selkoe,	2002)	with	the	spread	of	amyloid	

pathology	being	more	obvious	in	cortical	and	subcortical	regions	(Figure	1.4).	

Aβ	 plaques	 are	 generated	 by	 the	 extracellular	 deposition	 of	 proteolytic	

fragments	derived	from	the	amyloid	precursor	protein	(APP).		
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Figure	 1.4:	 Accumulation	 of	 β-amyloid	 and	 tau	 in	 AD	 brain	 shows	

characteristic	 patterns	 of	 spreading.	 (a)	 Cross	 section	 of	 β-amyloid	 (Aβ)	

plaques	 labelling	 which	 first	 appear	 in	 the	 neocortex,	 cortex	 and	 finally	

subcortical	 regions.	 (b)	 Cross	 section	 of	 paired	 helical	 filaments	 (PHF)	 and	

neuropathological	staging	of	severity.	NFT	load	in	early	AD	(Braak	stages	I-II)	

occurs	first	in	the	locus	coeruleus	and	trans	entorhinal	area	(CA1,	subiculum	

and	entorhinal	cortex).	followed	by	spreading	to	neighbouring	limbic	system	

regions	 such	 as	 the	 amygdala	 and	 hippocampus	 in	 later	 stages	 of	

mild/moderate	 AD	 (Braak	 stages	 III	 and	 IV)	 and	 finally	 to	 connected	

neocortical	brain	regions	and	rest	of	the	brain	in	late	stage	severe	AD	(Braak	

stages	V-VI)	 as	 indicated	by	black	and	white	 arrows	 in	 the	bottom	3	brains	

(adapted	from	Jucker	and	Walker,	2011).		 	
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APP	 is	 cleaved	 sequentially	 by	 beta-site	 APP	 cleavage	 enzyme-1	

(BACE1)	and	γ-secretase,	the	latter	yielding	Aβ40	or	Aβ42.	Aβ42	is	more	readily	

aggregated,	 believed	 to	 be	 more	 toxic,	 and	 is	 the	 predominant	 form	 of	 Aβ	

deposited	 in	 plaques	 (Wilquet	 and	 De	 Strooper,	 2004).	 Throughout	 the	

progression	of	AD,	Aβ	is	continuously	deposited	in	the	extracellular	matrix,	and	

with	increasing	involvement	of	neurites,	over	time	this	results	in	the	formation	

of	dense	core	neuritic	plaques	that	are	also	tau-positive.	Unlike	diffuse	plaques,	

mature	amyloid	plaques	stain	with	Congo	red	and	Thioflavin	S	and	have	high	

β-sheet	content,	 indicating	the	presence	of	misfolded	fibrillar	Aβ	(Irvine	and	

El-Agnaf,	2008).	Extensive	research	has	implicated	Aβ	in	the	pathogenesis	of	

AD	 by	 analysis	 of	 its	 distinctive	 histopathology.	 For	 example,	 there	 is	 an	

association	between	Aβ	plaques	and	neuronal	cell	death	in	the	areas	primarily	

affected	in	AD,	such	as	the	hippocampus	and	frontotemporal	cortices	(Masters	

et	 al.,	 1985;	Rogers	and	Morrison,	1985).	The	vast	majority	of	AD	cases	are	

sporadic,	 with	 no	 known	 genetic	 cause,	 however	 a	 proportion	 of	 AD	 cases	

(approximately	2.2%),	are	familial,	and	these	result	from	inherited	mutations	

in	either	APP,	presenilin-1,	or	presenilin-2	(Wilquet	and	De	Strooper,	2004),	

the	latter	two	being	required	for	full	proteolytic	activity	of	g-secretase	(Zhang	

et	 al.,	 2006).	 Furthermore,	 it	 is	 unclear	 whether	 the	 Aβ	 plaques	 themselves	

underlie	this	deficit.	Clinicopathological	studies	have	shown	only	weak	correlation	

between	plaque	density	 and	 severity	of	 cognitive	 impairment,	 and	 suggest	 that	

plaque	pathogenesis	 is	mediated	by	NFTs	 in	 late	 stage	AD	 (Serrano-Pozo	et	 al.,	

2011).		 	
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1.2.2 Progressive	supranuclear	palsy	
	

Progressive	 supranuclear	 palsy	 (PSP)	 is	 a	 relatively	 rare	 tauopathy	 with	 a	

prevalence	of	approximately	6/100,000	(Nath	et	al.,	2001).	However,	 this	 is	

likely	 to	be	an	underestimate	as	PSP	 is	 significantly	under	diagnosed	 in	 the	

clinic	 due	 to	 substantial	 variation	 in	 presentation	 leading	 to	 late-stage	

identification	 of	 cases	 and	 because	 it	 is	 often	 clinically	 misdiagnosed	 as	

Parkinson’s	disease	(PD)	(Schrag	et	al.,	1999).	PSP	has	some	clinical	similarities	

with	 AD,	 such	 as	 behavioural	 and	 cognitive	 impairment.	 However,	 the	

presenting	symptoms	are	normally	associated	with	motor	impairments,	such	

as	 ataxia,	 loss	 of	 balance,	 supranuclear	 vertical	 gaze	 paralysis,	 postural	

instability,	and	nuchal	and	troncular	dystonia	(Steele	et	al.,	1964,	2014;	Morris	

et	 al.,	 1999;	 Henderson	 et	 al.,	 2000),	 partially	 explaining	 its	 frequent	

misdiagnosis	as	PD.		

The	 varied	 tau	 aggregation	 distribution	 may	 explain	 some	 of	 the	

symptomatic	differences	with	AD	(Zampieri	and	Di	Fabio,	2006).	 In	PSP,	 the	

gross	 structural	 appearance	 of	 tau-containing	 globose	 tangles	 are	 most	

commonly	 found	 in	 the	 basal	 ganglia,	 brainstem	 (particularly	 the	midbrain	

focusing	on	supranuclear	eye	movements)	frontal	lobes	and	the	cerebellum	(a	

region	associated	with	movement).	Tangles	are	also	found	in	the	spinal	cord	as	

far	down	as	the	lumbar	region	in	PSP,	which	may	account	for	other	problems	

such	as	incontinence.	The	gross	structural	appearance	of	tau	inclusions	in	PSP	

are	 comprised	 of	 straight	 filaments	 compared	 to	 the	 other	 tauopathies	 see	

Table	1	(Warren	and	Burn,	2007).		

PSP	is	the	second	most	common	case	of	degenerative	Parkinsonism	as	

first	recognised	by	Steel	and	et	al.,	(1964).	Neuropathologically	tangles	in	PSP	

patients	are	primarily	localised	to	subcortical	regions,	found	in	both	neurons	

and	glia.	Takanashi	et	al.,	(2002)	found	that	people	with	PSP	had	a	4R:3R	tau	

isoform	ratio	that	varied	from	1.28	to	4.04	in	the	globus	pallidus,	whereas	in	

the	frontal	cortex	the	tau	isoform	ratio	varied	from	0.37	to	1.42	(the	ratio	in	

normal	adult	brain	being	approximately	1)	(Takanashi	et	al.,	2002).	The	results	

from	 that	 study	 suggest	 that	 differing	 tau	 isoform	 ratios	 might	 be	 due	 to	

variable	 degrees	 of	 degeneration	 in	 the	 different	 brain	 regions	 in	 PSP	
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(Takanashi	 et	 al.,	 2002).	 The	 predominance	 of	 highly	 phosphorylated	

aggregates	 of	 4R	 tau	 isoforms	 in	 PSP,	 indicates	 a	 possible	 role	 in	 the	

progression	of	degeneration	(Quadros	et	al.,	2007).	Unlike	the	characteristic	

triplet	pattern	of	phosphorylated	tau	bands	observed	in	AD	brain	on	western	

blots,	PSP	exhibits	a	characteristic	doublet	of	pathological	tau	proteins	(Figure	

1.3),	 indicating	 biochemical	 differences	 in	 tau	 between	 these	 two	 disorders	

(Flament	et	al.,	1991).	

	

1.2.3	Corticobasal	degeneration	

	

Corticobasal	degeneration	(CBD)	is	another	example	of	a	rare	tauopathy	with	

a	 prevalence	 of	 around	 7	 in	 100,000	 people	 (Mahapatra	 et	 al.,	 2004).	 CBD	

clinical	 features	 comprise	 a	 mixture	 of	 motor	 and	 cognitive	 symptoms,	

including	dementia.	Neuropathologically,	CBD	features	tau	inclusions	that	are	

both	intraneuronal	and	extraneuronal,	formed	into	both	PHFs	and	SFs	(Table	

1)	 (Mahapatra	et	al.,	2004).	Like	PSP,	CBD	 is	a	4R	 tauopathy,	occurring	as	a	

result	of	damage	to	the	basal	ganglia	and	loss	of	myelination	in	the	substantia	

nigra	 (Scaravilli	 et	 al.,	 2005).	 CBD	 can	 be	 distinguished	 neuropathologically	

from	PSP	by	its	asymmetric	atrophy	of	frontal	and	parietal	regions	and	gliosis	

(Scaravilli	et	al.,	2005;	Wadia	and	Lang,	2007).	Due	to	the	largely	undiagnosed	

nature	 and	 low	 prevalence	 of	 CBD,	 very	 little	 is	 understood	 regarding	 the	

pathogenesis	of	the	disease	(Williams	and	Lees,	2009;	Mathew	et	al.,	2012).	

	

1.2.4	Frontotemporal	lobar	degeneration-tau	

	

Frontotemporal	 lobar	 degeneration-tau	 (FTLD-tau)	 is	 the	 term	 used	 for	 a	

group	 of	 non-AD	 degenerative	 dementias	 with	 focal	 cortical	 neuronal	 loss	

gliosis	 and	 tau	 inclusions	 (McKhann,	 2001).	 FTLD-tau	 is	 a	 group	 of	 familial	

neurodegenerative	 tauopathies	 characterised	 by	 language	 and	 memory	

impairment,	motor	deficits	and	behavioural	abnormalities,	which	may	reflect	

the	 differential	 degeneration	 of	 specific	 brain	 regions	 (Foster	 et	 al.,	 1997).	

Autosomal	 inheritance	 of	 FTLD-tau	 suggest	 that	 MAPT	 mutations	 plays	 a	

critical	role	 in	 these	disorders,	and	 linkage	analysis	has	 located	several	mis-
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sense	 mutations	 in	 different	 exons	 of	 the	MAPT	 gene	 (Hutton	 et	 al.,	 1998;	

Poorkaj	 et	 al.,	 1998;	 Spillantini	 et	 al.,	 1998;	 D’Souza	 et	 al.,	 1999).	

Subsequentially,	 several	 other	missense	 and	 deletion/silent	 disease	 causing	

mutations	in	MAPT	were	found	in	FTLD-tau	(Ghetti	et	al.,	2015).	The	presence	

of	 tau	 as	 the	 main	 component	 of	 NFTs	 prompted	 the	 hypothesis	 that	 tau	

changes	 are	 causally	 related	 to	 neurodegeneration.	 This	 was	 confirmed	 in	

documented	cases	of	FTLD-tau	caused	by	a	MAPT	mutation	(P30IL),	where	tau	

dysfunction	 led	to	neuronal	death	(Hutton	et	al.,	1998;	Poorkaj	et	al.,	1998).	

Silent	mutations	have	been	identified	to	alter	the	3R:4R	tau	ratio	making	tau	

more	favourable	for	hyperphosphorylation	(Alonso	et	al.,	2004).	Furthermore,	

4R	 tau	 binds	 MTs	 more	 readily	 than	 3R	 tau	 and	 altered	 tau	 ratios	 lead	 to	

distinct	 tauopathies	 (Lu	 and	 Kosik,	 2001).	 The	 various	missense	 and	 silent	

mutations	 in	the	tau	gene	which	are	associated	with	FTLD-tau	are	shown	in	

Figure	1.5	and	Table	2	(Dickson	et	al.,	2011;	Iqbal	et	al.,	2015).
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Figure	1.5:	Tau	mutations	in	FTLD-tau.	Schematic	image	of	full	length	human	tau	showing	various	missense	mutations	(green)	and	silent	

mutations	(red)	found	in	FTLD-tau.	Several	mutations	that	can	affect	alternative	splicing	of	MAPT	pre-mRNA,	giving	rise	to	isoform	imbalance	

of	the	3R:4R	tau	ratio	(Iqbal	et	al.,	2015).	
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Table	2:	Classification	of	most	common	subtypes	of	FTLD-tau	compared	to	Alzheimer’s	Disease.	FTLD-tau	=	 frontotemporal	 lobar	

dementia-tau,	with	MAPT	mutation	(Dickson	et	al.,	2011).		

	

	

Disorder	 Anatomy	 (major	 areas	 affected	 in	 typical	

cases)	

Major	clinical	feature	

4R	TAUOPATHIES	 	 	

Corticobasal	degeneration	 Cortex	and	basal	ganglia	 Focal	cortical	syndrome	and	

parkinsonism	

Progressive	supranuclear	

palsy	

Basal	ganglia,	brainstem	and	cerebellum	 Atypical	parkinsonism	

FTLD-tau	 Cortex,	basal	ganglia	and	brainstem	 Focal	cortical	syndrome	and	

parkinsonism	

3R	TAUOPATHIES	 	 	

Pick’s	disease	 Cortex	and	limbic	lobe	 Dementia	and	focal	cortical	syndromes	

FTLD-tau	 Cortex,	basal	ganglia	and	brainstem	 Dementia	and	focal	cortical	syndromes	

3R + 4R	TAUOPATHIES	 	 	

Alzheimer	disease	 Cortex	and	limbic	lobe	 Dementia	

FTLD-tau	 Cortex	and	limbic	lobe	 Dementia	and	psychosis	
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1.2.5	Pick’s	Disease	
	
Pick’s	 disease	 (PiD)	 is	 a	 rare	 form	of	 neurodegeneration	 characterised	 by	 a	

distinct	progressive	frontotemporal	dementia	that	accounts	for	approximately	

2%	of	dementias	(Takeda	et	al.,	2012).	People	with	PiD	have	clinical	signs	of	

frontal	 disinhibition,	 apathy,	memory	 deficits,	 and	 apraxia,	 as	well	 as	mood	

disturbances	 and	 language	 impairments	 (Constantinidis	 et	 al.,	 2008).	

Neuropathologically,	 there	 is	 progressive	 cortical	 atrophy	 mainly	 of	 the	

anterior	 and	 frontal	 temporal	 lobes,	white	matter	 degeneration,	 achromatic	

neurons	 and	 intraneuronal	 lesions	 known	 as	 Pick	 bodies	 (PBs)	 in	 the	

hippocampus,	 selective	 brainstem	 nuclei	 and	 cerebral	 cortex	 (Yoshimura,	

1989;	Hauw	et	al.,	1994;	Feany	and	Dickson,	1996;	Constantinidis	et	al.,	2008;	

Takeda	et	al.,	2012).	Studies	have	also	shown	glial	inclusions	and	NFTs	in	PBs	

(Hof	et	al.,	1994;	Probst	et	al.,	1996;	Good,	2003;	Dickson,	2006).	PiD	brains	

have	been	described	as	randomly	oriented	straight	fibrils	with	PBs	showing	the	

presence	of	loosely	arranged	SFs	(Takauchi	et	al.,	1984;	Kato	and	Nakamura,	

1990;	Murayama	et	 al.,	 1990).	People	with	PiD	exhibit	 a	 reduced	4R:3R	 tau	

ratio	in	the	frontal	gyrus,	superior	temporal	gyrus	and	cerebellum.	In	sporadic	

PiD,	the	main	pathological	tau	isoform	is	3R	(Flament	et	al.,	1991;	Delacourte	

et	al.,	1996),	although	immunohistochemically	examination	also	identified	the	

4R	tau	isoform	in	PiD	(Ishizawa	et	al.,	2000).	

	

1.3	Phosphorylation	of	tau	

	
Tau	 protein	 has	 a	 high	 propensity	 to	 become	 phosphorylated,	 the	 longest	

human	CNS	tau	isoform	contains	80	serine	and	threonine	residues,	as	well	as	5	

tyrosine	 residues,	 (Goedert	 et	 al.,	 1989a).	 Human	 2N4R	 tau	 can	 be	

phosphorylated	on	at	least	45	different	sites,	including	serine,	threonine	and	

tyrosine	residues	 (Hanger	et	al.,	2007,	2009;	Gendron	and	Petrucelli,	2009).	

Tau	extracted	 from	control	adult	human	brain	at	post-mortem,	contains	2-3	

phosphates	per	mole	of	tau	(Köpke	et	al.,	1993).	In	AD	tau	phosphorylation	is	

increased	3-4	fold,	to	8	phosphates	per	mole	(Köpke	et	al.,	1993;	Mawal-Dewan	
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et	al.,	1994).	In	control	brain,	the	extent	of	tau	phosphorylation	is	high	in	fetal	

brain	 and	 decreases	 with	 age,	 in	 tauopathies	 however,	 the	 degree	 of	 tau	

phosphorylation	 increases	 with	 disease	 progression	 (Mawal-Dewan	 et	 al.,	

1994;	Rösner	et	al.,	1995;	Buée	et	al.,	2000).	Highly	phosphorylated	tau	may	

represent	 a	 dysfunctional	 form	 of	 tau	 as	 it	 neither	 binds/promoted	 MT	

stability,	 in	 fact,	 it	 inhibits/disrupts	 assembly	 of	MTs	 (Khatoon	 et	 al.,	 2002;	

Alonso	et	al.,	2006).	Furthermore,	several	studies	have	implicated	pathological	

tau	species,	 including	synthetic	tau	fibrils	to	sequester	and	drive	soluble	tau	

into	NFTs	and	tangle	 like	 inclusions	 in	both	cell	cultures	and	animal	models	

(Alonso	et	al.,	1996;	Clavaguera	et	al.,	2009;	Frost	et	al.,	2009;	Nonaka	et	al.,	

2010;	Guo	and	Lee,	2013;	 Iba	et	 al.,	 2013).	However,	 the	exact	mechanisms	

leading	to	neurodegeneration	in	the	tauopathies	are	not	yet	known.		

One	proposed	mechanism	 for	 the	neurodegeneration	observed	 in	AD	

and	other	tauopathies	is	the	removal	of	tau	from	MTs	caused	by	increased	tau	

phosphorylation.	The	removal	of	tau	from	the	MTs	destabilises	them,	leading	

to	disruption	of	protein	and	organelle	transport	throughout	the	axon	(Roy	et	

al.,	2005).	The	likelihood	of	further	tau	processing	increases	as	the	amount	of	

free	cytosolic	tau	increases	due	to	the	dissociation	of	tau	from	MTs.	Another	

proposed	neurodegenerative	mechanism	is	that	increased	tau	phosphorylation	

may	result	 from	a	reduction	in	protein	phosphatase	activity,	such	as	protein	

phosphatase	1	(PP1),	PP2A	and/or	PP2C	(Ballatore	et	al.,	2007;	Spillantini	and	

Goedert,	 2013;	 Driver	 et	 al.,	 2014).	 Notably,	 PP1	 and	 PP2A	 activity	 are	

diminished	by	20-30%	in	AD	brain	(Spillantini	and	Goedert,	2013;	Iqbal	et	al.,	

2015)	suggesting	a	potential	role	for	phosphatases	in	AD	(Gong	et	al.,	1993;	Liu	

et	al.,	2005;	Rahman	et	al.,	2005).		

Although	the	link	between	tau	phosphorylation	and	the	propensity	of	

tau	 to	 aggregate	 is	 unclear	 (Lippens	 et	 al.,	 2007),	 preventing	 tau	

phosphorylation	with	kinase	inhibitors	at	AD-relevant	epitopes	diminishes	tau	

aggregation	 and	 is	 neuroprotective	 in	 transgenic	mutant	mice	 (Hong	 et	 al.,	

1997;	 Pérez	 et	 al.,	 2003;	 Noble	 et	 al.,	 2005).	 The	 spectrum	 of	 tau	

phosphorylation	identified	with	antibodies	specific	for	phosphorylated	tau	and	

by	mass	 spectrometry	 is	 partially	 summarised	 in	 Figure	 1.6	 and	 to	 a	 fuller	

extent	in:	(http://bit.ly/1SpzgoL).		
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Figure	1.6:	Phosphorylation	sites	and	epitopes	on	tau	protein	in	control	

AD	and	PSP	brain.	Amino	 acids	 phosphorylated	 in	 control	 (blue)	AD	 (red)	

control	and	AD	(green)	PSP	and	AD	(red)	and	PSP,	AD	and	control	(green)	and	

not	yet	fully	characterised	sites	(black).	Monoclonal	tau	antibodies	specific	for	

phosphorylated	 tau	 epitopes	 (purple)	 and	 non-phosphorylated	 and	

phosphorylation	 independent	 tau	 epitopes	 (grey).	 Alz-50	 (aa	 2–10,	 aa	

312−342),	43D	(aa	1–100),	77E9	(aa	185–195),	39E10	(aa	189–195),	Tau-5	(aa	

210–230),	5C7	(aa	267–278),	Tau-1	(aa	195,	198,	199	and	202),	77G7	(aa	270–

375),	Tau-46	(aa	404–441),	TauC-3	(tau	cleaved	at	aa	421)	(adapted	from	Šimić	

et	al.,	2016).	 	
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1.3 Tau	kinases	
	
The	overall	state	of	 tau	protein	phosphorylation	 is	a	 function	of	 the	balance	

between	 the	 activities	 of	 tau	 protein	 kinases	 and	 phosphatases.	

Phosphorylation	of	tau	can	affect	the	ability	of	tau	to	bind	to	and	stabilise	MTs	

and	tau	is	therefore	a	substrate	for	several	different	protein	kinases	(Singh	et	

al.,	1994;	Johnson	and	Stoothoff,	2004;	Avila,	2006;	Hanger	et	al.,	2009).	A	large	

number	 of	 protein	 kinases	 have	 been	 implicated	 in	 the	 abnormal	

phosphorylation	of	tau,	including	glycogen	synthase	kinase	3a/β	(GSK3a/β),	

cyclin-dependent	 kinase	 5	 (Cdk5),	 protein	 kinase	 A	 (PKA),	

calcium/calmodulin-dependent	protein	kinase-II	(CaMKII),	mitogen-activated	

protein	 (MAP)	 kinase,	 extracellular	 signal-regulated	 kinase	 (ERK	 1/2),	 p38	

MAPK,	c-Jun	N-terminal	kinase	(JNK),	prostate-derived	sterile	20-like	kinases	

(PSKs)	 and	 other	 stress-activated	 protein	 kinases	 further	 sumarised	 here:	

(http://bit.ly/1SpzgoL)	(Baumann	et	al.,	1993;	Pei	et	al.,	2003;	Ballatore	et	al.,	

2007;	Martin	et	al.,	2013;	Tavares	et	al.,	2013).	Therefore,	targeting	tau	kinases	

to	 reduce	 tau	phosphorylation	may	be	 of	 therapeutic	 benefit	 (Hanger	 et	 al.,	

2009).	The	C-terminal	 region	of	 tau	comprises	 the	KXGS	motifs	 (Figure	1.7)	

which	 can	 be	 phosphorylated	 by	 kinases	 such	 as	 the	MT	 affinity-regulating	

kinase	(MARK),	CaMKII,	PKA	and	PSK	(Johnson	and	Stoothoff,	2004;	Hanger	et	

al.,	 2007;	 Tavares	 et	 al.,	 2013).	 Phosphorylation	 of	 KXGS	motifs	 can	 reduce	

interaction	between	tau	and	MTs	(Biernat	et	al.,	1993;	Biernat	and	Mandelkow,	

1999)	 and	may	 constitute	 an	 early	 event	 in	 the	 pathogenesis	 of	 tauopathy	

(Nishimura	et	al.,	2004).	
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Figure	1.7:	 Protein	kinases	phosphorylating	 tau.	 The	 diagram	 illustrates	

the	sites	 identified	on	 tau	as	being	phosphorylated	by	several	candidate	 tau	

kinases.	KXGS	motifs	(yellow	text),	and	other	sites	(represented	in	grey)	can	be	

phosphorylated	 by	 proline-directed	 kinases	 (represented	 in	 blue)	 and	 non-

proline	 directed	 Ser/Thr	 kinases	 (represented	 in	 green).	 Antibody	 epitopes	

AT8,	 AT100,	 AT180,	 and	 PHF-1	 comprise	 dual	 and	 triple	 serine/threonine	

residues	(indicated	by	brackets).	GSK3:	Glycogen	synthase	kinase	3β/a,	Cdk5:	

Cyclin-dependent	kinase5;	CK1:	casein	kinase	1,	MARK:	MT	affinity-regulating	

kinase;	LRRK2:	 leucine-rich	 repeat	kinase2;	DAPK:	Death-associated	protein	

kinase;	 Dyrk1A:	 dual-specificity	 protein	 kinase	 1,	 SAPK:	 stress-activated	

protein	 kinase,	 PSK:	 Prostate-derived	 Sterile	 20-like	 kinases	 (adapted	 from	

Tenreiro	et	al.,	2014).		 	
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1.4.1	 Proline-directed	 protein	 kinases	 and	 non-proline	

directed	protein	kinases	

Several	 phosphorylation	 sites	 on	 tau	 are	 immediately	 followed	by	 a	 proline	

residue,	suggesting	that	these	are	phosphorylated	by	proline-directed	protein	

kinases	(PDPKs).	Examples	of	candidate	tau	PDPKs	include	GSK3a/β,	Cdk5	and	

ERK1/2,	all	of	which	have	been	shown	to	phosphorylate	tau	at	similar	sites	in	

AD	 (Wang	et	 al.,	 1998;	Anderton	et	 al.,	 2001;	Liu	 et	 al.,	 2002;	Hanger	 et	 al.,	

2009).	 GSK3a/β	 and	 Cdk5	 are	 expressed	 abundantly	 in	 control	 brain	

(Woodgett,	1990)	and	have	previously	been	linked	to	all	stages	of	pathology	in	

tauopathies	particularly	AD	(Hanger	et	al.,	1992;	Tsai	et	al.,	1993;	Lew	et	al.,	

1994;	Pei	et	al.,	1999).	Non-PDPKs	also	phosphorylate	tau	at	numerous	sites.	

For	 instance,	PKA	phosphorylates	tau	at	Ser214,	Ser217,	Ser396/404	and	at	

Ser416	 (Litersky	 et	 al.,	 1996;	 Wang	 et	 al.,	 1998;	 Anderton	 et	 al.,	 2001;	

Robertson	 et	 al.,	 2004;	 Hanger	 et	 al.,	 2007),	 whereas	 PKA	 and	 MARK	

phosphorylate	tau	at	Ser262	(Scott	et	al.,	1993;	Drewes	et	al.,	1997).	CaMKII	

phosphorylates	tau	at	Ser262/356	and	Ser416	(Steiner	et	al.,	1990;	Singh	et	al.,	

1996;	 Sironi	 et	 al.,	 1998).	 Interestingly,	 the	 phosphorylation	 of	 tau	 by	 non-

PDPKs	substantially	increases	GSK3	and	Cdk5	phosphorylation,	suggesting	the	

possibility	of	tau	priming	by	non-PDPKs	(Singh	et	al.,	1995a,	1995b;	Wang	et	

al.,	1998;	Cho,	2003).	

	

1.4.1.1	Glycogen	synthase	kinase	3		

Glycogen	 synthase	 kinase	 3	 (GSK3)	 has	 been	 proposed	 as	 one	 of	 the	 most	

significant	tau	kinases	and	it	exists	as	two	structurally	similar	isoforms,	GSK3α	

and	 GSK3β.	 GSK3	 exhibits	 unconventional	 characteristics	 whereby	 it	 is	 a	

constitutively	 active	 PDPK,	 with	 its	 substrate	 optimally	 requiring	 pre-

phosphorylation	 by	 another	 kinase.	 The	 GSK3	 enzyme	 is	 inhibited	 by	

phosphorylation	in	response	to	stimulation	of	the	insulin	and	Wnt	signalling	



	 49	

pathways.	 GSK3	 is	 involved	 in	 several	 cellular	 mechanisms	 including	 gene	

transcription,	 glycogen	metabolism,	 apoptosis	 and	MT	 stability	 (Welsh	 and	

Proud,	1993;	Troussard	et	al.,	1999;	Anderton	et	al.,	2001;	Brion	et	al.,	2001;	

Turenne	and	Price,	2001).	Although	both	GSK3α	and	GSK3β	phosphorylate	tau	

most	 research	 has	 been	 based	 around	 GSK3β.	 GSK3β	 has	 previously	 been	

linked	 to	 long	 term	 potentiation	 (LTP)	 impairment,	 Aβ	 production,	

inflammation	and	neuritic	damage	(Hooper	et	al.,	2008;	DaRocha-Souto	et	al.,	

2012).	Overexpressing	GSK3β	in	mice	transgenic	for	human	tau,	results	in	tau	

hyperphosphorylation	at	sites	similar	to	those	seen	in	tau	in	AD	brain,	as	well	

as	reducing	the	axonopathy	compared	with	mice	expressing	only	human	tau	

(Spittaels	et	al.,	2000).	Interestingly,	in	the	GSK3/tau	double	transgenic	mice,	

motor	impairment	is	less	severe	than	in	mice	overexpressing	human	tau	alone.	

Furthermore,	 inhibition	 of	 GSK3	 by	 lithium	 attenuated	 phosphorylation	 in	

double	transgenic	and	mutant	human	tau	overexpression	models	(Hong	et	al.,	

1997;	Pérez	et	al.,	2003;	Ballatore	et	al.,	2007).	Non-specific	kinase	inhibition	

by	 the	 small	 molecule	 non-specific	 kinase	 inhibitor,	 K252a,	 reduced	 tau	

aggregate	formation	and	ameliorated	motor	symptoms	in	P301L	tau	transgenic	

mice	(Le	Corre	et	al.,	2006).	Unfortunately,	GSK3β	inhibitors	tested	in	phase	II	

clinical	trials,	including	lithium,	trideglusib	and	valproic	acid	have	so	far	been	

unsuccessful	(Iqbal	et	al.,	2015).	This	could	be	due	to	the	fact	that	GSK3β	is	a	

multifunctional	kinase	with	many	diverse	roles	in	the	CNS	(e.g.,	apoptosis	and	

neuroinflammation).	These	results	imply	the	need	for	more	specific	targets	to	

selective	 inhibit	 functions	 of	 GSK3β-mediated	 tau	 phosphorylation	 or	

inhibition	of	other	kinases	modifying	tau	at	different	epitopes	(e.g.	MARK2	and	

LRRK2)	(Tenreiro	et	al.,	2014;	Iqbal	et	al.,	2015).	

	

1.4.1.2	Cyclin-dependent	kinase	5	

Cdk5	 is	 another	 major	 candidate	 tau	 kinase,	 which	 may	 be	 key	 to	 the	

underlying	 tau	 pathology	 seen	 in	 tauopathies.	 Cdk5	 is	 responsible	 for	

phosphorylating	 tau	 at	 epitopes	 which	 are	 known	 to	 be	 usually	 over	
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hyperephosphorylated	in	AD	(Paudel	et	al.,	1993;	Ohshima	et	al.,	1995;	Castro-

Alvarez	et	al.,	2014).	Overexpression	of	Cdk5	in	mutant	tau	mice	leads	to	tau	

aggregation	 and	 cortical	 NFTs	 (Noble	 et	 al.,	 2003),	 as	 well	 as	 significant	

memory	decline	and	neurodegeneration	(Cruz	et	al.,	2003).	In	order	for	Cdk5	

to	be	activated,	calcium	influx	through	N-methyl-D-aspartate	receptor	(NMDA)	

receptors	activates	calpain	which	cleaves	Cdk5	activators	p35	to	p25	and	p10	

(Patrick	et	al.,	1999).	The	p35/Cdk5	subsequentially	phosphorylates	p35	and	

becomes	degraded	through	the	proteasome	(Patrick	et	al.,	1998).	P25	becomes	

a	stable	complex	with	Cdk5,	where	it	may	increase	tau	phosphorylation	due	it	

increased	 activation	 in	 neurodegenerative	 tauopathies	 (Cruz	 et	 al.,	 2003).	

Interestingly,	 when	 overexpressing	 p25	 in	 transgenic	 mice,	 tau	 becomes	

hyperphosphorylated	 (Cruz	 et	 al.,	 2003;	 Noble	 et	 al.,	 2003).	 Cdk5	may	 also	

indirectly	 lead	 to	 tau	 phosphorylation	 via	 GSK3β.	 Cdk5	 can	 induce	

phosphorylation	 and	 activation	 of	 protein	 kinase	 B	 (PKB/Akt)	 (a	

serine/threonine	 kinase	 that	 is	 involved	 in	 cell	 survival	 pathways	 thereby	

increasing	 tau	 phosphorylation	 of	 tau	 in	 tauopathies	 (Li	 et	 al.,	 2003).	 The	

phosphorylation	of	Ser235	and	SerSer400	therefore	leading	to	an	even	greater	

increase	in	tau	phosphorylation	by	GSK3β	(Figure	1.8)	(Li	et	al.,	2006).		 	
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Figure	 1.8:	 Schematic	 diagram	 of	 Cdk5	 signalling	 pathway	 in	 tau	

phosphorylation.	 Diagram	 shows	 direct	 and	 indirect	 ability	 of	 Cdk5	 to	

phosphorylate	 tau.CDK5:	 cyclin	 kinase	5	PP1:	protein	phosphatase	1,	 PP2A:	

protein	 phosphatase	 2A,	 NMDA	 NR1/2b:	 N-methyl-D-aspartate	 receptors	

NR1/2b,	 GSK3:	 glycogen	 synthase	 kinase	 3,	 AKT:	 protein	 kinase	 B	 (Castro-

Alvarez	et	al.,	2014).	
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1.5	Tau	truncation	and	tau	fragments	in	tauopathies	

Tau	 is	 tightly	 regulated	 and	 exhibits	 several	 different	 and	 complex	 post-

translational	 modifications	 including	 phosphorylation,	 isomerisation,	

ubiquitination,	 O-linked	 β-N-acetylglucosamine	 acetylation	 (O-GlcNAc),	

oxidation	 nitration	 glycosylation,	 acetylation	 and	 proteolytic	 cleavage	

(Wischik	et	al.,	1988b;	Goedert	et	al.,	1992a;	Novak	et	al.,	1993;	Alonso	et	al.,	

2001;	Gorath	et	 al.,	 2001;	Liu	et	 al.,	 2004a;	Guillozet-Bongaarts	 et	 al.,	 2005;	

Mondragón-Rodríguez	 et	 al.,	 2008,	 2014;	 Min	 et	 al.,	 2010;	 Kolarova	 et	 al.,	

2012).	 Although	 tau	 aggregates	 are	 a	 seminal	 diagnostic	 neuropathological	

feature	 of	 tauopathies,	 the	 generation	 of	 tau	 fragment	 can	 be	 a	 toxic	 event	

regardless	 of	 tau	 aggregation	 status.	 Truncation	 is	 a	 post-translational	

modification	of	tau	that	occurs	in	AD	and	other	tauopathies,	either	at	the	N-	or	

C–terminus,	or	at	both	termini	(Novak	et	al.,	1993;	Zilka	et	al.,	2006;	García-

Sierra	et	al.,	2008;	Wang	et	al.,	2010;	Derisbourg	et	al.,	2015).	Truncation	of	tau	

increases	 during	 disease	 progression	 in	 tauopathies	 and	 this	 can	 influence	

neurofibrillary	 pathology	 as	 well	 as	 phosphorylation	 and	 accumulation	 of	

misfolded	 insoluble	 forms	 of	 tau	 (Kovacech	 and	 Novak,	 2010;	 Wang	 et	 al.,	

2010).	Although	monomeric	tau	is	likely	to	be	a	proteosomal	substrate,	there	

is	increasing	evidence	that	tau	is	a	substrate	for	a	wide	range	of	proteases.		

	

1.5.1	Proteases	responsible	for	tau	truncation	

	

Several	proteases	have	been	shown	to	act	on	tau,	including	thrombin	(Olesen,	

1994;	Wang	et	al.,	1996b;	Khlistunova	et	al.,	2006),	aminopeptidases	(Karsten	

et	 al.,	 2006;	 Sengupta	 et	 al.,	 2006),	 human	 high	 temperature	 requirement	

serine	protease	A1	 (HTRA1)	 (Tennstaedt	 et	 al.,	 2012),	 calpains	 (Canu	et	 al.,	

1998;	Xie	and	Johnson,	1998),	and	caspases	(Chung	et	al.,	2001;	Fasulo	et	al.,	

2002;	Horowitz,	2004).	Proteolysis	 can	 lead	 to	 the	generation	of	potentially	

toxic	tau	fragments	which	may	play	a	role	in	disease	pathogenesis	(Figure	1.9).	

Tau	 fragments	may	 be	 trafficked	 into	 cellular	 compartments	 and	 cause	 cell	
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death,	 neuronal	 loss	 and/or	 tau	 aggregation	 in	 a	 variety	 of	 tauopathies	

(Wischik	et	al.,	1988b;	Arai	et	al.,	2004;	Zilka	et	al.,	2006;	Igaz	et	al.,	2008).	

	

	

	

	
	

Figure	1.9:	Schematic	representation	of	proteolytic	cleavage	of	tau.	Tau	is	

subject	 to	 cleavage	 at	 different	 proteolytic	 sites	 by	 a	 number	 of	 different	

proteases.	 Cleavage	 can	 lead	 to	 either	 exacerbation	 of	 or	 protection	 from	

neuronal	 loss.	 For	 instance,	 cleavage	 by	 calpains	 (Calp;	 purple)	 or	 caspases	

(Casp;	dark	green)	and	thrombin	(Thrm;	beige)	can	lead	to	the	production	of	

toxic	tau	species	that	can	exacerbate	pathology.	However,	cleavage	of	tau	by	

puromycin-sensitive	 aminopeptidase	 (PSA),	 Human	 high	 temperature	

requirement	serine	protease	A1	(Htra1)	and	often	also	caspase	3	can	generate	

fragments	 for	 degradation	 potentially	 protecting	 neurons	 from	 tauopathy	

related	neuronal	death	(Chesser	et	al.,	2013).	 	
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1.5.2	Tau	fragmentation	and	implications	for	tauopathies	

	

Several	 previous	 studies	 have	 identified	 the	 importance	 of	 tau	 fragments	

present	in	human	tauopathy	brains,	with	some	tau	fragments	also	appearing	in	

cultured	 cells	 in	 response	 to	 Ab	 (Gamblin	 et	 al.,	 2003;	 Arai	 et	 al.,	 2004;	

Guillozet-Bongaarts	et	al.,	2005;	Khlistunova	et	al.,	2007;	Delobel	et	al.,	2008;	

García-Sierra	 et	 al.,	 2008;	 Amadoro	 et	 al.,	 2010;	 Hanger	 and	 Wray,	 2010;	

Ferreira	and	Bigio,	2011).	

Much	in	vitro	research	has	centred	on	the	pro-apoptotic	caspases,	since	

tau	contains	three	consensus	sequences	for	caspase	cleavage,	namely	residues	

Asp22-Asp25,	Asp345-Asp348	and	Asp418-Asp421	cleaved	by	caspase-3.	Of	

these	residues,	Asp421	appears	 to	be	the	preferred	cleavage	site	 in	 tau,	and	

mutation	of	this	residue	results	in	resistance	to	toxicity	in	neuroblastoma	cells	

exposed	to	apoptosis-inducing	agents	(Chung	et	al.,	2001;	Fasulo	et	al.,	2002;	

Gamblin	 et	 al.,	 2003;	 Rametti	 et	 al.,	 2004;	 Rissman	 et	 al.,	 2004;	 Guillozet-

Bongaarts	et	al.,	2006).	The	expression	of	an	N-terminal	tau	fragment	truncated	

at	 Asp421	 (Δtau)	 in	 BL21(DE3)	 cells,	 increased	 the	 extent	 of	 cell	 death	 in	

comparison	to	full-length	tau,	suggesting	a	possible	toxic	gain	of	function	when	

tau	 is	 cleaved	 at	 this	 site	 (Chung	 et	 al.,	 2001).	 A	 variety	 of	 different	 tau	

constructs	 have	 been	 used	 in	 attempts	 to	 generate	 tau	 aggregates	 in	

transfected	 cells	 and	 mammalian	 models.	 However,	 these	 studies	 have	

required	either	mutant	forms	of	truncated	tau,	or	additional	treatment	of	cells	

with	agents	that	promote	tau	aggregation	(Table	3)	(Zilka	et	al.,	2006;	Amadoro	

et	al.,	2010;	Filipcik	et	al.,	2012).	These	combined	results	suggest	a	need	for	

expression	of	more	pathophysiologically	relevant	 forms	of	human	truncated	

tau	 to	 understand	 the	 mechanisms	 underlying	 the	 role	 of	 tau	 in	 the	

pathogenesis	of	the	tauopathies.
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Table	3:Characteristics	of	tau	fragments	investigated	in	cell	and	animal	models.	Summary	of	several	existing	tau	fragments,	their	

presence	in	tauopathy	human	brain,	aggregation	status	and	accordant	models.	N/A:	not	available.	

	

	

Tau	fragment	(sequence)	 Presence	in	

tauopathy	

brain	

Intact	C-

terminus	

Aggregates	in	

transfected	cells	

Phosphorylation	

increases	aggregation	

Transgenic	

in	vivo	

model?	

Reference	

Δtau	(1-421)		 Yes	 No	 Only	when	co-

transfected	with	

GSK3	

Yes	 No	 (Chung	et	al.,	2001;	Cho	and	

Johnson,	2004)	

TauRD	and	TauRD	ΔK280	

(244-372)		

No	 No	 2-9%	of	stably	

expressing	

transfected	cells	

Phosphorylation	

precedes	aggregation	

Yes	 (Mocanu	et	al.,	2008)	

TauRD	ΔK280	with	I277P	

and	I308P	(244-372)		

No	 No	 No	 No	 Yes	 (Khlistunova	et	al.,	2006)	

NH2	fragment		 Yes	 No	 No	 N/A	 No	 (Amadoro	et	al.,	2010)	

3R	tau	fragment	(residues	

151-391)		

No	 Yes	 N/A	 N/A	 Yes	 (Filipcik	et	al.,	2012)	

4R	tau	fragment	(residues	

151-391)		

Yes	 Yes	 N/A	 N/A	 Yes	 (Zilka	et	al.,	2006)	

Tau35		 Yes	 Yes	 Yes	 Yes	 Yes	 (Wray	et	al.,	2008;	Bondulich	et	

al.,	2016)	
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Several	previous	studies	of	human	post-mortem	tissue	have	identified	
the	importance	of	tau	fragments	present	in	human	tauopathy	brains	in	which	
there	is	an	overproduction	of	4R	tau	isoforms	(PSP,	CBD	and	the	majority	of	
FTDP-17T	cases)	(Arai	et	al.,	2004;	Wray	et	al.,	2008).	Antibodies	specific	for	
Δtau	label	tangles	in	the	CA1	(cornus	ammonis	1)	region	of	the	hippocampus	
of	 AD	brain	 (Gamblin	 et	 al.,	 2003).	However,	 labeling	 of	 inclusions	 in	 other	
tauopathies	 is	much	 less	 intense,	predicting	differences	 in	 the	proportion	of	
neural	and	glial	pathology	in	these	related	disorders	(Guillozet-Bongaarts	et	al.,	
2007).	One	study,	using	a	novel	monoclonal	antibody	DC39N1,	specific	for	the	
first	N	terminal	insert	N1	(residues	45-73)	(Figure	1.1),	demonstrated	that	the	
N-terminus	of	tau,	particularly	the	N1	insert	encoded	by	exon	2,	is	present	in	a	
sub-population	 of	 tau	 in	 NFTs	 (Amadoro	 et	 al.,	 2004;	 Soltys	 et	 al.,	 2005).	
Notably,	these	N-termini,	when	released	during	truncation	events,	could	have	
a	deleterious	 effect	 on	neurons	 (Amadoro	et	 al.,	 2004,	2014).	Various	other	
forms	 of	 cleaved	 tau	 have	 been	 shown	 to	 initiate	 tau	 aggregation	 which	
suggests	 that	 this	 process	 is	 an	 integral	 part	 of	 disease	 pathogenesis	 in	 the	
tauopathies	(Wischik	et	al.,	1988b;	Chung	et	al.,	2001;	Arai	et	al.,	2004;	Zilka	et	
al.,	2006;	Zhang	et	al.,	2009,	2014;	Melis	et	al.,	2015).	Amador	and	colleagues	
(2010)	 identified	 a	 17	 kDa,	 N-terminal	 tau	 fragment	 that	 is	 produced	 in	
response	 to	 Aβ	 oligomer	 exposure	 in	 cultured	 mature	 SH-SY5Y	 human	
neuroblastoma	 cells	 and	 in	 rat	 hippocampal	 neurons.	 This	 tau	 fragment	 is	
responsible	 for	 mitochondrial	 NH2-derived	 tau	 peptide	 degeneration	 of	
synapses	(Amadoro	et	al.,	2010).	Furthermore,	in	Drosophila,	expression	of	a	C	
terminal	 truncated	 tau	 showed	greater	 stability,	 degrade	 faster	 and	 seemed	
less	toxic	than	full	length	tau	or	N-terminal	truncated	tau	due	to	the	unstable	
nature	 of	 C-terminal	 truncated	 fragments	 (Geng	 et	 al.,	 2015).	 However,	 the	
hypothesis	 of	 which	 fragments	 are	more	 toxic	 remains	 largely	 unclear	 and	
therefore	 further	 investigation	 is	 required	 to	 fully	establish	 the	 relationship	
between	truncated	tau	species	and	tauopathies.	
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1.5.3	Tau35	fragment	in	human	tauopathy	

	
A	novel	C-terminal	tau	fragment	(termed	Tau35)	has	been	identified	in	post-
mortem	human	brain	in	both	PSP	and	CBD	and	FTLD-tau	(4R	tauopathies	and	
4R	mutation	 cases)	 (Wray	 et	 al.,	 2008).	 Tau35	was	 absent	 from	 AD	 (equal	
4R:3R	 tauopathy),	 PiD	 (3R	 tauopathy),	 and	 control	 human	brain.	 Tau35	 co-
enriches	and	partially	co-purifies	with	full-length	insoluble	tau	in	these	same	
brain	 fractions	 (Wray	 et	 al.,	 2008).	 Using	 antibody	 epitope	 scanning,	 it	was	
found	 that	 Tau35	 is	 N-terminally	 truncated	 and	 corresponds	 to	 a	 4R	 tau	
isoform	(Figure	1.10)	(Wray	et	al.,	2008).	Mass	spectrometric	analysis	revealed	
that	Tau35	lacks	the	N-terminus	and	that	the	C-terminus	of	Tau35	precisely	
matches	that	of	full-length	tau	(Wray	et	al.,	2008).	Therefore,	compared	to	full	
length	 tau,	 Tau35	 corresponds	 to	 an	 insoluble	 fragment	 of	 tau	 that	 spans	
residues	 in	 the	 C-terminal	 half	 of	 4R	 tau	with	 an	 intact	 C-terminus	 (Figure	
1.10).	 Phosphorylation	 analysis	 indicated	 that	 more	 than	 75%	 of	 the	
phosphorylation	 sites	 identified	 previously	 in	 insoluble	 tau	 from	AD	 brains	
resides	 in	 the	 sequence	 corresponding	 to	Tau35	 (Hanger	et	 al.,	 2002,	2007;	
Wray	et	al.,	2008).	The	characterisation	of	a	novel	murine	model	expressing	the	
Tau35	fragment	is	described	in	more	detail	later	in	this	thesis	(Table	3).	
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Figure	 1.10:	 Tau35	 fragment	 linked	 to	 tauopathies	 with	 4R	 isoform	

imbalance.	(a)	Western	blots	probed	with	an	antibody	which	recognises	the	
C-terminus	of	tau	(TP70)	identified	a	35	kDa	(green	arrowhead)	truncated	tau	
species	only	in	the	insoluble	brain	fractions	of	4R	tau	isoform-related	disorders	
(progressive	 supranuclear	 palsy,	 PSP;	 corticobasal	 degeneration,	 CBD;	
frontotemporal	dementia,	FTD),	but	not	 in	Alzheimer’s	disease	 (AD),	3R	 tau	
isoform-predominant	Pick's	disease	 (PiD),	or	 control	brain.	 Intact	 tau	 in	 the	
insoluble	fractions	is	indicated	at	60-68	kDa	(b)	Structure	of	full-length	tau	and	
Tau35	including	four	microtubule-binding	domains	(orange),	truncation	at	N-
terminus	within	proline-rich	domain	(beige)	and	an	intact	C-terminus	(Hanger	
&	Wray,	2010;	Wray	et	al.,	2008).	 	
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1.6	Tau	degradation	

	
The	ubiquitin–proteasome	system	(UPS)	and	the	autophagy-lysosomal	system	
are	 the	 two	major	pathways	responsible	 for	 the	degradation	of	 intracellular	
proteins.	Previous	research	has	focused	primarily	on	the	proteasome	because	
this	was	considered	to	be	the	primary	pathway	for	tau	degradation	(David	et	
al.,	2002;	Yen,	2011;	Rodríguez-Martín	et	al.,	2013).	Nevertheless,	autophagy	
and	lysosomal	degradation	of	tau	is	becoming	of	increasing	interest	(Feuillette	
et	al.,	2005;	Lee	et	al.,	2013).	However,	the	exact	contribution	of	each	of	these	
pathways	to	tau	clearance	is	still	not	fully	understood	and	is	of	great	interest	
for	 understanding	 the	 mechanisms	 underlying	 human	 tauopathies.	 For	 the	
purpose	 of	 this	 thesis,	 the	main	 focus	 will	 be	 on	 autophagy	 and	 lysosomal	
degradation.	
	

1.6.1	Autophagic	degradation	of	tau	
	
Autophagy	 is	 the	 catabolic	 process	 involving	 lysosomal	 degradation	 of	
cytoplasmic	material.	Whereas	 the	 proteasomes	 are	mostly	 responsible	 for	
short	lived	proteins,	autophagy	degrades	a	number	of	long	lived	proteins,	as	
well	as	damaged	organelles,	such	as	mitochondria	and	peroxisomes	(Johansen	
and	 Lamark,	 2011),	 and	 pathogenic	 bacteria	 (Ivanov	 and	 Roy,	 2009;	 von	
Muhlinen	 et	 al.,	 2012).	 There	 are	 three	 major	 forms	 of	 autophagy:	
microautophagy,	 macroautophagy	 and	 chaperone	 mediated-autophagy.	 The	
most	common	of	these	sub-types	is	macroautophagy,	which	is	discussed	here	
and	referred	to	as	autophagy.	Autophagic	degradation	involves	the	formation	
of	a	double	membraned	autophagophore,	which	expands	to	allow	engulfing	of	
cytoplasmic	 substrates,	 including	 tau,	 for	 degradation.	 Once	 formed	 into	 an	
enclosed	vesicle	(autophagosome),	this	is	trafficked	to	the	lysosome,	where	it	
fuses	to	form	the	autophagic	vacuole	(AV).	Lysosomal	cathepsins	then	degrade	
the	inner	membrane	of	the	AV,	as	well	as	its	contents	(Figure	1.11)	(Chesser	et	
al.,	 2013).	 It	 has	 also	 been	 observed	 that	 increased	 accumulation	 of	 AVs	 is	
apparent	 in	AD	brains	and	mouse	models	of	 tauopathy,	 indicating	abnormal	
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autophagy	in	neurons	(Lin	et	al.,	2003;	Yu	et	al.,	2004;	Nixon	et	al.,	2005).	The	
autophagosome	is	labelled	by	the	MT	associated	protein	1A/1B	light	chain	3	
(LC3)	 (He	 and	 Klionsky,	 2009).	 Cytosolic	 LC3	 (LC3-I)	 is	 conjugated	 to	
phosphatidylethanolamine	 (PE)	 to	 localise	 the	 resultant	 LC3-II	 (a	 LC3-PE	
conjugate)	on	the	autophagosome	before	it	fuses	with	the	lysosome	(Kabeya,	
2000).	 As	 intra-autophagosomal	 LC3-II	 is	 degraded	 by	 lysosomes,	 it	 is	
frequently	used	as	a	marker	for	autophagosome	formation,	and	its	degradation	
is	to	monitor	autophagic	flux	(Tanida	et	al.,	2005).	

Other	 important	 components	 of	 the	 lysosomal-autophagy	 process	
include,	sequestosome	1	(p62/SQSTM1)	which	acts	as	a	receptor,	facilitating	
the	removal	of	damaged	proteins	and	organelles	by	lysosomes	(Bjørkøy	et	al.,	
2006;	Ichimura	et	al.,	2008).	P62	has	previously	been	shown	to	exist	in	NFTs,	
indicating	that	p62	may	correlate	with	the	appearance	of	tauopathy	(Reynolds	
et	al.,	2007;	Alonso	et	al.,	2008).	Indeed,	CBD	and	PSP	brains	show	abnormal	
accumulation	 of	 p62,	 as	 well	 as	 LC3	 and	 colocalisation	 with	
hyperphosphorylated	 tau	 (Piras	 et	 al.,	 2016).	 However,	 LC3-II	 can	 often	 be	
difficult	to	interpret	as	it	is	itself	degraded	by	autophagy	and	accumulation	of	
AVs	in	AD	brain	may	reflect	defective	lysosomal	clearance,	rather	than	induced	
autophagy.	Therefore,	it	is	difficult	to	determine	whether	this	increase	in	AVs	
reflects	excessive	autophagosome	formation	and/or	impaired	autophagosome	
degradation	at	different	stages	of	tau	pathology	(Lee	et	al.,	2013).	

The	lysosomal	enzyme	cathepsin	D	(an	aspartyl	protease),	degrades	tau	
in	 cultured	 hippocampal	 cells	 (Bednarski	 and	 Lynch,	 2002).	 Treating	
hippocampal	cells	with	chloroquine	impairs	cathepsin	D	function,	and	this	has	
been	linked	to	increased	full-length	tau	and	accumulation	phosphorylated	tau	
(Bednarski	and	Lynch,	2002;	Bendiske	and	Bahr,	2003).	Incubating	rat	tau	with	
cathepsin	D	in	vitro	resulted	in	an	increase	in	cleaved	tau	fragments	of	sizes	23-
29	kDa	 in	hippocampal	 cultures	 (Bednarski	and	Lynch,	2002).	 Interestingly,	
cysteine	protease	 inhibition	prevented	generation	of	 these	 tau	 fragments	by	
cathepsin	D,	suggesting	a	possible	role	for	cathepsin	D	in	degrading	tau	outside	
the	 lysosome,	 although	 this	 is	 likely	 to	 occur	 at	 a	 very	 reduced	 rate	 since	 a	
previous	study	showed	limited	proteolytic	activity	of	cathepsin	D	above	pH	6.0	
(Johnson	et	al.,	1991).		
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It	has	previously	been	shown	that	both	LC3-I	and	LC3-II	interact	with	
MT-associated	proteins,	such	as	MAP1A/B,	and	this	facilitates	their	association	
with	MTs	(Mann	and	Hammarback,	1994;	Wang	et	al.,	2006).	MT-associated	
proteins	regulate	the	dynamics	of	tubulin	dimers	constantly	polymerising	and	
depolymerising,	facilitating	the	trafficking	of	organelles	along	MT	tracks	(Desai	
and	Mitchison,	1997;	Downing,	2000;	Nogales,	2001;	Heald	and	Nogales,	2002).	
MTs	 are	 constantly	modified	 after	 assembly	 to	 enhance	 their	 function.	 One	
such	modification	is	acetylation,	which	results	in	an	increased	flux	of	vesicles	
along	acetylated	MTs	(Bulinski,	2007;	Dompierre	et	al.,	2007).	Recently	Xie	and	
colleagues	 showed	 that	 acetylated	 MTs	 are	 required	 for	 fusion	 of	
autophagosomes	 with	 lysosomes	 to	 form	 autolysosomes	 (Xie	 et	 al.,	 2010),	
providing	an	important	link	between	acetylation	and	autophagic	degradation	
of	 substrate	 proteins.	 It	 is	 becoming	 evident	 that	 the	 autophagy-lysosomal	
pathway	 plays	 a	 key	 role	 in	 the	 clearance	 of	 phosphorylated	 tau	 in	 the	
tauopathies.	 Furthermore,	 this	 suggests	 that	 elevated	 autophagy	 may	 be	
beneficial	for	neurons	affected	by	tauopathy	by	preventing	accumulation	of	tau	
aggregates.	
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Figure	1.11:	Schematic	representation	of	tau	degraded	via	autophagy.	The	
nature	of	post-translational	modification	or	aggregation	determines	by	which	
system	tau	is	degraded.	If	tau	is	truncated	or	hyperphosphorylated,	it	can	bind	
to	ubiquitinated	membrane	proteins	(such	as	p62),	bind	to	cytosolic	LC3	which	
gets	conjugated	 to	LC3-II,	become	 internalised	 into	autophagophores,	which	
then	merge	with	lysosomes	to	form	the	autophagic	vacuole	where	tau	and	LC3-
II	 are	 degraded	 by	 cathepsins.	 Once	 the	 contents	 are	 fully	 degraded	 the	
lysosome	is	regenerated	via	acidification	through	vascular	ATPase’s	(adapted	
from	Chesser	et	al.,	2013).	 	
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1.7	Tau	propagation		

	
Tau	propagation	is	now	a	well	characterised	phenomenon	through	which	tau	
pathology	may	systematically	spreads	through	defined	brain	regions	(Frost	et	
al.,	 2009).	 The	 original	 concept	 developed	 from	 human	 prion	 disease	 and	
animal	models	of	transmissible	diseases,	such	as	Creutzfeldt-Jakob	disease	in	
humans	 and	 scrapie	 in	 sheep,	 whereby	 brain	 extracts	 from	 infected	 hosts	
introduced	 into	 unaffected	 individuals	 was	 able	 to	 transmit	 the	 disease	
(Prusiner,	 1982).	 In	 AD,	 tau	 exhibits	 a	 consistent	 pattern	 of	 spreading	
throughout	the	brain	(Figure	1.4,	Braak	staging	I-VI)	(Braak	and	Braak,	1991).	
Different	 tauopathies	exhibit	 a	 somewhat	different	pathological	 cell-type,	or	
regional	 propagation	 pattern	 and	 this	 difference	may	 potentially	 be	 due	 to	
differing	metabolic	rates	due	to	oxidative	stress	(Gerst	et	al.,	1999;	Aoyama	et	
al.,	 2006;	 Yan	 et	 al.,	 2013),	 differing	 neuronal	 vulnerability	 such	 as	 loss	 of	
myelination	(Braak	et	al.,	1996),	or	even	differing	vulnerability	to	toxins	(Nave	
and	Werner,	2014).		

In	vivo	a	number	of	factors	can	influence	tau	propagation,	including	the	
source	of	the	seed	protein,	the	type	of	tau	isoform,	the	precise	tau	species	and	
the	passage	of	time	(Figure	1.12)	(Gerson	and	Kayed,	2013;	Ahmed	et	al.,	2014;	
Gerson	et	al.,	2014;	Medina	and	Avila,	2014).	Injection	of	brain	homogenates	
from	six	different	 tauopathies	 (AD,	PiD,	PSP,	CBD,	 tangle	only	dementia	and	
argyrophilic	grain	disease)	into	the	ALZ17	mouse	line	(expressing	the	longest	
human	 brain	 tau	 isoform	 of	 441	 amino	 acids),	 resulted	 in	 tau-positive	
inclusions	 6	 months	 post-injection,	 which	 progressively	 spread	 over	 time	
(Clavaguera	 et	 al.,	 2013).	 With	 the	 exception	 of	 PiD,	 the	 tau	 inclusions	
resembled	 those	 seen	 in	 the	 specific	 human	 disease	 from	which	 they	were	
derived,	 indicating	 the	 disease-related	 spreading	 and	 seeding	 of	 human	
inclusions	in	the	mice	(Figure	1.13)	(Clavaguera	et	al.,	2013).	Control	injections	
of	homogenates	from	the	brains	of	people	exhibiting	amyloidosis	post-mortem	
failed	to	show	tau	or	amyloid	pathology	in	these	mice.	Interestingly	following	
injection	of	PiD	brain	homogenate,	mice	developed	only	very	mild	pathology,	
which	did	not	resemble	PD	pathology.	This	was	possibly	due	to	the	fact	that	
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that	PiD	is	a	3R	tauopathy	and	as	ALZ17	mice	are	4R	human	tau	overexpressing	
mice,	it	may	be	that	3R	tau	cannot	seed	aggregation	of	4R	tau.	Tau	aggregation	
can	also	be	induced	by	recombinant	tau	fibrils	in	cells	and	tau	PS19	transgenic	
mice,	which	express	human	1N4R	tau	with	the	P301S	mutation,	driven	by	the	
murine	prion	protein	promoter	(Guo	and	Lee,	2013;	Iba	et	al.,	2013).		

Emerging	 evidence	 suggests	 that	 tau	 spreads	 through	 neuronal	
connectivity.	When	inoculating	tau	aggregates	from	human	tauopathy	brains	
or	 from	 transgenic	 mice,	 this	 triggered	 a	 time-dependent	 seeding	 and	
spreading	 of	 tau	 pathology	 to	 synaptically	 connected	 regions	 in	 P301S	 tau-
expressing	 transgenic	 mice	 as	 well	 as	 in	 wild-type	 mice	 (Clavaguera	 et	 al.,	
2009;	Holmes	and	Diamond,	2014).	However,	the	exact	type	of	tau	species	and	
precise	mechanism	underlying	tau	transmission	remain	to	be	elucidated	with	
some	summarised	in	Figure	1.12.		
	 	



	 65	

	

	
	

Figure	1.12:	Schematic	diagram	of	potential	mechanisms	of	neuronal	tau	

propagation.	 (a)	 Tau	 transmission	 occurs	 through	 a	 proximity-dependent	
transynaptic	manner	whereby	 donor	 neurons	 release	 tau	 and	 seed	 through	
exocytosis	(1	and	3),	or	vesicle	such	as	exosomes	derived	from	multivesicular	
bodies	 (MVB)	 (2)	 which	 can	 deliver	 their	 contents	 into	 recipient	 adjacent	
neurons.	Tau	can	also	be	internalised	by	endocytosis	(1),	or	through	receptors	
(3).	 (b)	 Degenerating	 neurons	 can	 lead	 to	 leakage	 of	 the	 presynaptic	
membrane,	allowing	presynaptic	tau	seeds	to	diffuse	across	the	synaptic	cleft	
(top	 synapse).	 Tau	 may	 be	 released	 from	 the	 presynaptic	 terminal	 via	
exocytosis	(1)	or	via	exosomes	(2),	or	synaptic	vesicles	(3).	Once	released,	tau	
seeds	 can	 be	 taken	 up	 by	 postsynaptic	 neurons	 and	 further	 initiate	 tau	
aggregation.	(c)	Upstream	of	the	circuit	tau	pathology	can	occur	later	on	(Wang	
and	Mandelkow,	2015).	 	
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Figure	1.13:	Human	tauopathy	and	ALZ17	injected	mice	showing	Gallyas	

silver-positive	 tau	 inclusions	 in	 the	 hippocampus.	 Pathological	 tau	
hallmark	lesions	observed	in	human	tissue	used	for	brain	extract	preparation.	
Upper	row:	Gallyas	stained	tissue	visualising	human	tau	pathology	in	different	
tauopathies	using	AT100.	Lower	row:	tau	lesions	in	the	ALZ17	mice	injected	
with	 human	 brain	 extracts	 from	 different	 tauopathies.	 Scale	 bars	 =	 50	 μm.	
Sections	were	counterstained	with	haematoxylin	(Clavaguera	et	al.,	2013).	

	

1.8	Synaptic	dysfunction	and	tau	

	
As	well	as	being	primarily	an	axonal	protein,	several	studies	have	established	
that	 tau	 is	 also	 present	 at	 the	 synapse	 (Harris	 et	 al.,	 2012;	 Tai	 et	 al.,	 2012;	
Pooler	et	al.,	2014;	Spires-Jones	and	Hyman,	2014).	As	previously	mentioned,	
tau	 correlates	 with	 cognitive	 impairment,	 which	 also	 closely	 matches	 with	
synaptic	density,	with	AD	brains	exhibiting	extensive	synaptic	loss	throughout	
disease	progression	(Masliah	et	al.,	1989;	DeKosky	and	Scheff,	1990;	Serrano-
Pozo	 et	 al.,	 2011).	 Synaptic	 dysfunction	 is	 believed	 to	 be	 an	 early	 event	 in	
tauopathies	(de	Calignon	et	al.,	2012)	with	changes	in	the	synaptic	proteome	
often	 associated	 with	 the	 dysfunction	 of	 synapses	 in	 neurodegenerative	
diseases	(Marttinen	et	al.,	2015).	There	are	a	number	of	key	proteins	associated	
specifically	with	 the	 synapse	 including	 synaptophysin,	 synaptotagmin,	 post-
synaptic	 density	 protein	 95	 (PSD95),	 synapsin-1	 and	 synaptobrevin	 (Figure	
1.14).	
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Synaptophysin	is	one	of	the	most	commonly	used	markers	of	synapses	
since	it	is	involved	in	vesicular	endocytosis	and	vesicular	recycling	(Kwon	and	
Chapman,	 2011).	 Previous	 research	 from	AD	 post-mortem	brain	 found	 that	
NFT	 bearing	 neurons	 had	 reduced	 synaptophysin	 expression	 compared	 to	
neurons	lacking	NFT	(Callahan	and	Coleman,	1995;	Callahan	et	al.,	1999).	The	
number	 of	 spine-associated	 synapses	 and	 the	 amount	 of	 synaptophysin	
labelling	is	also	reduced	in	the	hippocampus	of	mice	expressing	pro-aggregant	
tau	species	(comprising	the	MT	binding	domains	with	a	deletion	of	lysine	280	
[ΔK280]).	 However,	 a	 similar	 loss	 and	 synaptophysin	 labelling	 was	 also	
observed	 in	mice	 expressing	 anti-aggregated	 tau	 construct	 (ΔK280	 deletion	
with	two	point	mutations	at	I277P	and	I308P),	suggesting	that	tau	aggregation	
may	not	be	essential	for	synaptic	loss	(Eckermann	et	al.,	2007;	Van	der	Jeugd	
et	al.,	2012).		

A	 more	 recently	 examined	 synaptic	 marker	 is	 synapsin1,	 which	 is	
responsible	for	holding	vesicles	close	to	the	active	zone	(Bloom	et	al.,	2003).	
Previous	research	identified	synapsin1	as	a	tau-interacting	protein	(Kang	et	al.,	
2013).	Tau	was	 found	 to	 interact	with	 several	 synaptic	proteins	 involved	 in	
pre-synaptic	 signalling	 transduction	 such	 as	 synapsin1,	 synaptotagmin	 and	
synaptophysin	(Liu	et	al.,	2016).	Interestingly,	interaction	network	analysis	by	
mass	spectrometry	revealed	tau	interacting	proteins	including	actin.	Both	tau	
and	synapsin1	have	previously	been	shown	 to	 interact	with	actin.	Whereas,	
synapsin1	 is	 an	 actin-bundling	 protein	 regulating	 clustering	 of	 synaptic	
vesicles	(Bloom	et	al.,	2003),	tau	can	interact	with	actin	and	mediate	neuronal	
degeneration	by	altering	the	organisation	of	the	actin	cytoskeleton	(Fulga	et	al.,	
2007).	Therefore,	as	both	tau	and	synapsin1	co-immunoprecipitated,	both	with	
each	other	and	with	actin,	Liu	and	colleagues	proposed	that	these	interact	with	
actin	 in	 wild	 type	 (WT)	 C57BL/6	 mice	 therefore,	 suggesting	 that	 tau	 can	
potentially	 interact	 with	 synapsin1	 via	 actin,	 altering	 actin	 dynamics,	 and	
possibly	presynaptic	vesicle	transport,	which	could	result	in	synaptic	failure	in	
neurodegeneration	(Liu	et	al.,	2016).		

Synaptobrevin	or	vesicle-associated	membrane	protein	1	(VAMP1)	is	a	
protein	involved	in	the	vesicular	SNARE	(soluble	N-ethylmaleimide-sensitive	
factor	 attachment	 protein	 receptor)	 mechanism	 that	 is	 associated	 with	
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synaptic	vesicle	fusion	to	the	plasma	membrane	during	synaptic	transmission	
(Schoch	et	al.,	2001).	Synaptotagmin1	is	a	synaptic	calcium	sensor	involved	in	
calcium-dependent	 neurotransmitter	 release	 (Vrljic	 et	 al.,	 2010).	 Both	
synaptobrevin	and	synaptotagmin1	have	previously	been	found	to	be	reduced	
in	AD	post	mortem	brain	(Reddy	et	al.,	2005).	PSD95	is	a	scaffolding	protein	
required	 for	 post-synaptic	 NMDA	 receptors	 and	 is	 critical	 for	 regulating	
synaptic	plasticity	(Kornau	et	al.,	1995;	El-Husseini	et	al.,	2000).	Endogenous	
tau	in	the	dendrites	and	postsynapses	has	been	found	to	bind	to	PSD95/NMDA	
receptor	 complexes	 in	 both	 mice	 and	 rats	 (Ittner	 et	 al.,	 2010;	 Mondragon-
Rodriguez	 et	 al.,	 2012)	 and	 is	 postulated	 to	 do	 so	 by	 interaction	 with	 the	
tyrosine	kinase	fyn	(Lee	et	al.,	1998;	Bhaskar	et	al.,	2005;	Ittner	et	al.,	2010;	
Usardi	et	al.,	2011;	Lau	et	al.,	2016).	

Synapsin1,	 PSD95,	 synaptophysin	 and	 synaptotagmin	 have	 also	 been	
identified	by	mass	spectrometry	as	tau	interacting	proteins	(Liu	et	al.,	2016),	
implicating	 them	 and	 their	 interaction	 with	 tau	 in	 disease	 pathogenesis.	 A	
summary	 of	 the	 location	 of	 synaptic	 proteins	 is	 shown	 in	 Figure	 1.14.	
Investigating	 the	 role	 of	 tau	 at	 the	 synapse	 is	 essential	 and	 potentially	
interesting	for	developing	new	therapeutic	strategies	for	protecting	synapses	
in	dementia.	
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Figure	1.14:	Summary	diagram	showing	the	distinct	 location	of	several	

key	 pre-	 and	 post-	 synaptic	 proteins.	 Pre-synaptic	 vesicle	 proteins	
synaptophysin,	synaptobrevin	and	synaptotagmin	are	located	on	the	synaptic	
vesicle	membrane.	The	post-synaptic	density	marker	95	(PSD95)	is	located	on	
the	 post	 synaptic	 membrane	 (image	 adapted	 from	
http://www.biolegend.com/category_synaptic_function).	 	
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1.9	Mouse	models	of	tauopathies	

	
Advances	in	genetic	and	transgenic	approaches	have	had	a	major	impact	on	the	
understanding	 of	 tauopathies.	 Several	 neurodegenerative	 changes	 can	 be	
reproduced	 and	 observed	 in	 transgenic	 mouse	 models	 with	 many	 of	 these	
accurately	replicating	aspects	of	pathological	and	behavioural	changes,	similar	
to	those	seen	in	human	tauopathies	and	related	disorders.	Tau	knockout	(KO)	
mice	show	that	tau	depletion	is	not	detrimental	although	some	minor	defects	
do	 exist	 compared	 to	WT	 animals.	 Mice	 lacking	 tau	 reproduce	 and	 survive	
relatively	normally,	most	 likely	because	at	 least	some	of	the	functions	of	tau	
can	be	 compensated	 for	by	other	proteins	 (Harada	et	 al.,	 1994;	Takei	 et	 al.,	
2000;	 Dawson	 et	 al.,	 2007;	 Gómez	 de	 Barreda	 et	 al.,	 2010).	 The	 defects	 in	
TauKO	 are	 observed	 as	 mice	 age,	 such	 as	 an	 altered	 sleep-wake	 cycle	 and	
parkinsonism-like	 symptoms	 (Cantero	 et	 al.,	 2010;	 Lei	 et	 al.,	 2012).	 These	
symptoms	however,	may	depend	on	the	genetic	background	of	the	particular	
tau	KO	mouse.	Most	existing	mouse	models	are	not	good	representations	of	AD	
because	 they	 are	 disadvantaged	 by	 expression	 of	 abnormally	 high	 levels	 of	
mutant	 or	 wild-type	 proteins	 (2-	 to	 15-	 fold,	 usually	 amyloid,	 presenilin-1,	
and/or	 tau),	 often	 at	 anatomical	 sites	 that	 are	 not	 relevant	 to	 disease	 (for	
example,	reviewed	in	(Ishihara	et	al.,	1999;	Spittaels	et	al.,	1999;	Probst	et	al.,	
2000;	Noble	et	al.,	2010;	Filipcik	et	al.,	2012)).	These	mouse	models	may	exhibit	
substantial	 artefacts	 in	 vivo	 because	 increases	 in	 tau	 expression	 are	
detrimental	to	neuronal	function	(Ebneth	et	al.,	1998).	Some	models	express	
lower	levels	of	tau	at	more	physiological	levels	such	as	the	N279K	(Dawson	et	
al.,	2007)	and	A152T	tau	(Maeda	et	al.,	2016),	or	the	P301L	tau	knock	in	mice	
(Rodríguez-Martín	 et	 al.,	 2016).	Nevertheless,	 these	 are	 all	 tau	mutants	 and	
mutations	account	for	only	a	minority	of	human	tauopathies.	Recent	literature	
has	focused	on	modelling	diseases	such	as	AD	and	FTLD-tau	(Denk	and	Wade-
Martins,	 2009),	 whilst	 other	 tauopathies	 remain	 largely	 unexplored,	 and	
mouse	 models	 that	 accurately	 resemble	 human	 tauopathies	 are	 yet	 to	 be	
established.	A	summary	of	the	key	transgenic	mouse	models	in	current	use	are	
provided	in	Table	4.	Notable	amongst	current	models	of	tauopathy	is	the	use	of	
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different	 promoters	 including	 the	 Thy	 1.2	 promoter,	 which	 drives	 neuron-
specific	 expression	 of	 transgene	 expression	 in	 the	 CNS	 (Aigner	 et	 al.,	 1995;	
Caroni,	 1997;	 Feng	 et	 al.,	 2000)	 and	 is	 therefore	 unrelated	 to	 the	 normal	
pattern	 of	 tau	 expression,	 which	 could	 potentially	 lead	 to	 abnormal	 tau	
distribution	 (Denk	 and	Wade-Martins,	 2009;	 Zilka	 et	 al.,	 2009;	 Noble	 et	 al.,	
2010).	In	addition,	transgenic	models	of	tauopathy	in	rodents	are	complicated	
by	the	fact	that	endogenous	tau	in	adult	mice	is	expressed	only	as	the	4R	tau	
isoform	(Lee	et	al.,	1988).		
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Table	 4:	 Summarising	 the	 phenotype	 of	 transgenic	 rodent	models	 expressing	 tau,	 tau	 truncation	 and	 tau	 seeding	models:	

Summary	of	the	majority	of	existing	mouse	models	of	tau	expressing	or	seeding	mouse	models.	Unless	stated	otherwise	all	transgenes	are	

human.	Transgene	expression	 levels	when	reported	are	represented	as	 fold-change	to	endogenous	mouse	tau.	All	models	are	murine	

unless	 otherwise	 stated.	 CaMKII:	 calmodulin-dependent	 protein	 kinase-II;	 CMV:	 cytomegalovirus;	 CNP:	 2',3'-cyclic	 nucleotide	 3'	

phosphodiesterase;	GFAP:	glial	fibrillary	associated	protein;	HMGCR:	3-hydroxy-3-methylglutaryl	coenzyme	A	reductase;	LTP:	long-term	

potentiation;	NF:	neurofilament;	NFT:	neurofibrillary	tangle;	NR2B:	NMDA	receptor	2B;	NSE:	neuron	specific	enolase;	PDGF-β:	platelet-

derived	growth	factor-β;	PrP:	prion	protein.	ND:	no	data	(adapted	from	Noble	et	al.,	2010)	

	

Common	
name	

Transgene		 Promoter	 Regional	
expression	

Molecular	phenotype	 Axonal	
Degeneration	

Accelerated	
neuronal	loss	

Cognitive	
or	Motor	
deficit	

Reference	

Single	wild-type	human	tau	isoforms	

Line	7	 0N3R	 Mouse	
PrP	

Cortex,	
hippocampus	
amygdala,	
brainstem,	
spinal	cord	

5-fold	tau	over-expression.	
Phosphorylation	of	
neuronal	and	astrocytic	
tau.	Altered	tau	
conformation	and	
compartmentalisation.	
Congophilic	
neurofibrillary	tau	
inclusions	with	straight	
filaments	

Degeneration	
of	axons	and	
reduced	axonal	
transport	

ND	 Motor	
weakness	

(Ishihara	et	
al.,	1999,	
2001)	
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Line	23	 0N3R	 HMGCR	 Cortex,	
hippocampus,	
striatum,	
thalamus,	
brainstem	

Transgenic	tau	accounts	
for	14%	of	all	tau	protein	
in	brain.	Phosphorylated	
tau	in	cell	body,	dendrites	
and	axons.	No	NFTs	

ND	 ND	 ND	 (Brion	et	al.,	
1999)	

GFAP-tau	 1N4R	 Human	
GFAP	

Cortex,	
thalamus,	
brainstem,	
spinal	cord	

2-fold	tau	over-expression	
in	cortex.	Tufted	
astrocytes,	age-dependent	
accumulation	of	
filamentous	tau	in	cortex,	
brain	stem	and	spinal	cord	

ND	 Focal	neuron	
Degeneration	in	
areas	with	high	
levels	of	
filamentous	tau	

Reduced	
motor	
function.	

(Forman,	
2005;	
Dabir,	
2006)	

WT	16	 1N4R	 Mouse	
PrP	

Cortex,	
hippocampus,	
amygdala,	
brainstem,	
spinal	cord	

5-fold	tau	over-expression.	
Perikaryal	and	dendritic	
tau	localisation.	No	
progressive	
somatodendritic	
accumulation	of	
phosphorylated	tau	

No	 No	 No	 (Yoshiyama	
et	al.,	2007)	

Line	14	 2N3R	 Mouse	α-	
tubulin	
(Tα-1)	

Cortex,	
hippocampus,	
amygdala,	
brainstem	
and	spinal	
cord	

5.5-fold	tau	over-
expression.	No	neuronal	
tau	aggregates,	age-	
dependent	accumulation	
of	hyperphosphorylated	
tau	and	tau	filaments	in	
oligodendrocytes	and	
astrocytes	

ND	 Cell	loss,	mainly	
of	glial	cells,	in	
aged	
Mice	

Motor	
weakness	
and	
muscle	
twitching/	
spasms	

(Higuchi	et	
al.,	2002)	
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Htau40-1	 2N4R	 Mouse	
Thy1	

Cortex,	
brainstem	
and	spinal	
Cord	

4-fold	tau	over-expression.	
Somatodendritic	
localisation	of	
phosphorylated	tau.	No	
NFTs,	astrogliosis	

Axonal	dilations	
with	NF	
accumulations	

Wallerian	
Degeneration	of	
peripheral	
Nerves	

Sensorimot
or	
dysfunction	

(Spittaels	et	
al.,	1999)	

Alz	7	 2N4R	 Human	
Thy1	

Cortex,	
hippocampus,	
striatum,	
thalamus,	
midbrain	

5-fold	tau	over-expression.	
Cell	body,	axon	and	
dendritic	localisation	of	
hyperphosphorylated	tau.	
No	NFTs	

ND	 ND	 ND	 (Götz	et	al.,	
1995)	

Tau-4R2N	 2N4R	 Mouse	
Thy1	

Cortex,	
amygdala,	
hippocampus,	
thalamus,	
brainstem,	
spinal	cord	

4-fold	tau	over-expression.	
Somatodendritic	
phosphorylated	tau.	No	
tau	aggregation.	

Dilated	axons	
in	brain	and	
spinal	cord.	
Axonal	
dystrophy	

ND	 Early	
severe	
motor	
disturbance
s	

(Terwel	et	
al.,	2005)	

Alz	17	 2N4R	 Mouse	
Thy1	

Cortex,	
hippocampus,	
amygdala,	
brainstem,	
spinal	cord	

1.5-fold	tau	over-
expression.	Tau	present	in	
somatodendritic	regions	
and	dendrites	

Enlarged	
axons	with	
spheroids	
containing	NF	
and	tau	

Signs	of	
Wallerian	
degeneration	

Muscle	
weakness	

(Probst	et	
al.,	2000)	

WTau-Tg	 2N4R	 CaMKII	 Cortex,	
hippocampus,	
striatum,	
thalamus	

3	to	5-fold	tau	over-
expression.	
Phosphorylation	of	soluble	
tau.	No	NFTs.	Increased	
activity	of	
parahippocampal	regions	

ND	 No	obvious	
neurodegenerat
ion,	but	synapse	
loss	is	apparent	

Impaired	
place	
learning	
and	
memory.	
No	motor	
deficit.	

(Kimura	et	
al.,	2007)	
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Tau	KOKI	 2N4R	
knock-in	

Mouse	
Thy1	

Forebrain,	
spinal	cord	

Mildly	increased	tau	
phosphorylation	in	
forebrain	and	spinal	cord,	
no	abnormal	tau	
conformations,	insoluble	
tau	or	NFTs.	

No	 ND	 Severe	
motor	
impairment
s	

(Terwel	et	
al.,	2005)	

T-WT	 Human	tau	
minigene	

Human	
MAPT	

Cortex,	
hippocampus,	
thalamus,	
midbrain,	
brainstem,	
spinal	cord,	
basal	ganglia	

3	to	5-fold	tau	over-
expression.	Approximately	
equal	4R:3R	tau	ratio.	No	
accumulation	of	tau	in	cell	
bodies.	No	NFTs	or	tufted	
astrocytes	

ND	 ND	 ND	 (Dawson	et	
al.,	2007)	

hTau-
A152T	
(CaMKII-
tTA/TRE-
hTau-
A152T)	

hTau-WT	
(similar	
expression	
levels	to	
hTau-
A152T)	

	

1N4R	
isoform	of	
hTau-A152T		

	

Second-
generation	
minimal	
promoter	
that	
harbors	
tetracycline	
response	
elements	
(pTRE-
Tight)	
transgene	
expression	
requires	co-
expression	
of	the	

Cortex,	
hippocampus	
	

Tau	levels	in	both	lines	
were	4-	to	5-fold	higher	in	
the	cortex	and	3-	to	4-fold	
higher	in	the	
hippocampus.	Cortical	and	
hippocampal	tau	fragment	
levels	were	lower	in	hTau-
A152T	than	hTau-WT	
mice	Full-length	hTau	
protein	to	hTau	mRNA	
was	higher	in	hTau-
A152T.	Increased	
neuronal	dysfunction	in	
hTau-A152T	mice.	
Hyperphosphorylated	and	

ND	 At	20–23	
months,	hTau-
A152T,	but	not	
hTau-WT,	mice	
had	neuronal	
loss	in	dentate	
gyrus	and	CA3	
but	not	in	CA1		

	

Decreased	
body	
weight	in	
both	lines.	
nest	
building	
impairment
s	in	middle-
aged	hTau-	
A152T	mice	
and	deficits	
in	spatial	
learning	
and	
memory	in	
old	hTau-

(Maeda	et	
al.,	2016)	
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	 tetracycline	
transactivat
or	protein	
(tTA)	In	
this	“tet-off”	
system,	
binding	of	
tTA	to	TRE,	
and	
consequentl
y	transgene	
expression,	
can	be	
prevented	
by	feeding	
mice	chow	
containing	
doxycycline	
(DOX).	tTA	
expression	
is	directed	
to	
excitatory	
forebrain	
neurons	by	
the	
calcium/cal
modulin-
dependent	

conformational	tau	in	both	
lines.	No	tau	inclusions.		

	

	

A152T	
mice.	
Higher	
spontaneou
s	epileptic	
spike	
activity	at	
baseline	in	
hTau-
A152T	
mice.	

	

	



	 77	

protein	
kinase	II	a	
promoter	
(CaMKII-
tTA)		

Genomic	mouse	and	human	tau	
mTau	 Entire	

mouse	tau	
Gene	

Mouse	
MAPT	

Endogenous	
expression	
pattern	

Approximately	1.8-fold	tau	
over-	expression.	Tau	
hyperphosphorylation	and	
accumulation	of	insoluble	
tau	from	15	to	18	months.	
Reactive	gliosis	and	
vacuolization	

ND	 Trend	towards	
neuronal	loss	in	
aged	mice	
(>22	months)	

ND	 (Adams	et	
al.,	2009)	

8c	 Entire	
human	tau	
Gene	

Human	
MAPT	

Endogenous	
expression	
pattern	

3	to	4-fold	tau	over-
expression	
Somatodendritic	and	
synaptic	accumulation	of	
tau.	Increased	3R:4R	tau	
ratio.	Phosphorylation	and	
abnormal	tau	
conformations	in	neurons	
and	axons	

No	 No	 No	motor	
abnormaliti
es	

(Duff	et	al.,	
2000)	
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Htau	 Entire	
human	tau	
gene	(mouse	
tau	
KO	
background)	

Human	
MAPT	

Endogenous	
expression	
pattern	

Age-dependent	
somatodendritic	
accumulation	of	
hyperphosphorylated,	
insoluble	tau.	Argyrophilic	
NFTs.	Paired	helical	tau	
filaments.	Cell-cycle	re-
entry	of	degenerating	
neurons	

ND	 Ventricular	
enlargement	
and	reduced	
cortical	
diameter	with	
ageing.	Selective	
loss	of	cortical	
and	
hippocampal	
neurons,	not	
related	to	NFTs.	

Spatial	
learning	
deficits,	
perturbed	
long-term	
potentiatio
n	

(Andorfer	
et	al.,	2003;	
Andorfer,	
2005;	
Polydoro	et	
al.,	2009)	

FTDP-17T	mutant	human	tau	
n/a	 G272V	

(2N4R)	
Mouse	
PrP/	
CaMKII	
(tet	off)	

Brainstem,	
spinal	cord	

Inclusions	of	
phosphorylated	insoluble	
tau	in	neurons	and	
oligodendrocytes.	Straight	
and	twisted	tau	filaments	

ND	 ND	 ND	 (Götz	et	al.,	
2001)	

SJLB9	and	
UBJAP18	

N279K	
(0N4R)	

Mouse	
PrP	

Hippocampus	 1.5	to	1.6-fold	tau	over-
expression.	
Increased	tau	
phosphorylation	in	
hippocampus.	Dendritic	
tau	accumulation.	No	NFTs	

ND	 ND	 Impaired	
spatial	and	
active	
avoidance	
learning.	No	
locomotor	
deficits	

(Taniguchi	
et	al.,	2005)	
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T-279	 N279K	
(human	tau	
minigene)	

Human	
MAPT	

Cortex,	
hippocampus,	
thalamus,	
midbrain,	
brainstem,	
spinal	cord,	
basal	ganglia	

Mutant	tau	expression	is	
10-fold	lower	than	
endogenous	tau.	
Significant	over-
expression	of	4R	tau.	
Accumulation	of	
phosphorylated	tau	in	
neurons.	Argyrophilic	
NFTs.	Tufted	astrocytes	
containing	tau	filaments.	

Axonal	
spheroids	with	
accumulated	
neurofilaments	
.	

Degeneration	of	
neuronal	
processes	
from	18	weeks.	
Dopaminergic	
neuron	loss.	
Increased	
caspase-3	
activity.	

Acute	
progressive	
motor	
disturbance
s	in	25%	of	
mice	before	
52	weeks	of	
age.	
Learning	
and	
memory	
impairment
s	from	23	
weeks	
of	age.	

(Dawson	et	
al.,	2007)		

C-279	 N279K	
(human	tau	
minigene)	

CMV	 Frontal	
cortex,	
hippocampus	

9-fold	tau	over-expression.	
Significant	
over-expression	of	4R	tau.	
No	accumulation	of	tau	in	
soma.	No	NFTs	or	tufted	
astrocytes.	

ND	 ND	 ND	 (Dawson	et	
al.,	2007)	
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Htau40∆K
280	

∆K280	
(2N4R)	
expressed	
postnatally	

CMV/CaM	
KII	(tet-off)	

Cortex,	
hippocampus	

1	to	3-fold	tau	over-
expression.	Increased	
accumulation	of	insoluble	
human	tau	from	4	months	
of	age.	Somatodendritic	
tau	accumulation.	
Abnormal	tau	
conformations.	Increased	
tau	phosphorylation	with	
age.	Tau	pathology	
reversed	upon	
suppression	of	transgene	

ND	 40%	loss	of	
spine	synapses	
at	13	months	

ND	 (Eckerman
n	et	al.,	
2007)	

Htau40∆K
280/PP	

∆K280/I277
P/I308P	
(2N4R)	
expressed	
postnatally	

CMV	(tet-	
off)	

Cortex,	
hippocampus	

1	to	3-fold	tau	over-
expression.	No	
accumulation	of	insoluble	
human	tau.	
Somatodendritic	tau	
accumulation.	Some	tau	
phosphorylation	with	
ageing.	Tau	pathology	
reversed	upon	
suppression	of	transgene	

ND	 20%	loss	of	
spine	synapses	
at	13	months	

ND	 (Eckerman
n	et	al.,	
2007)	
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RDtau	
∆K280	

∆K280	
(residues	
244-372	of	
2N4R	tau)	

CMV/CaM	
KII	(tet-off)	

Cortex,	
hippocampus	

0.7-fold	transgenic	tau	
expression	compared	to	
endogenous	tau.	Insoluble	
phosphorylated	tau	from	3	
months	(decreased	at	12	
months)	and	NFTs	
containing	mutant	and	
endogenous	tau	from	3	
months	after	gene	
expression.	Abnormal	
conformation	of	mouse	
tau.	Cortical	astrogliosis.	

ND	 Progressive	
Hippocampal	
neuronal	loss	
from	5	months	
after	gene	
expression.	
27%	decrease	
in	spine	
synapses	9.5	
months	after	
gene	
expression.	

ND	 (Mocanu	et	
al.,	2008)	

Rdtau	
∆K280/PP	

∆K280/I277	
P/I308P	
(residues	
244-	
372	of	
2N4R	tau)	

CMV/CaM	
KII	(tet-off)	

Cortex,	
hippocampus	

0.7-fold	transgenic	tau	
expression	compared	to	
endogenous	tau.	No	
insoluble	tau	or	NFTs.	Low	
levels	of	tau	
phosphorylation	at	sites	
including	those	
phosphorylated	by	MARK	
kinase.	

ND	 No	increase	in	
neuronal	loss	
compared	to	
wild-type.	

ND	 (Mocanu	et	
al.,	2008)	

JNPL3	 P301L	
(0N4R)	

Mouse	
PrP	

Cortex,	
brainstem,	
spinal	cord	

2-fold	tau	over-expression.	
Accumulation	of	
hyperphosphorylated	
(64kDa)	insoluble	tau	with	
age.	NFTs	and	Pick	body-
like	inclusions	from	4.5	
months.	Fibrillary	gliosis	
in	spinal	cord.	

Axonal	
degeneration,	
vacuolar	
myelinopathy.	
Granular	
axonal	
spheroids	
containing	

48%	loss	of	
motor	neurons	
in	spinal	cord	in	
aged	mice.	
Decreased	
density	of	
synaptic	
boutons	in	

Progressive	
motor	
disturbance
s	
from	4.5	
months.	
Impaired	
cognitive	

(Hutton	et	
al.,	2000;	
Lin	et	al.,	
2003;	
Arendash	et	
al.,	2004;	
Zehr	et	al.,	
2004;	
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Hyperphosphorylated	
mutant	tau	is	cross-linked	
by	transglutaminase.	
Fragmentation	of	Golgi	
apparatus.	Phenotype	in	
females	is	accelerated	
and	more	aggressive.	

neurofilaments	 contact	with	
NFT-bearing	
neurons.	
Oligodendrocyt
e	apoptosis	

performanc
e	

Halverson,	
2005;	
Liazoghli	et	
al.,	2005;	
Katsuse	et	
al.,	2006)	

pR5	 P301L	
(2N4R)	

Mouse	
Thy1.2	

Cortex,	
hippocampus,	
brainstem,	
spinal	cord	

Age-dependent	
accumulation	of	
hyperphosphorylated,	
aggregated	and	insoluble	
tau	in	somatodendritic	
regions.	NFTs	with	
straight	and	twisted	
filaments	from	6	months	
of	age.	Astrogliosis.	
Mitochondrial	dysfunction	

ND	 Neuronal	
apoptosis	

Impaired	
spatial	
reference	
memory	
from	6	
months	of	
age.	

(Gotz	et	al.,	
2001;	David	
et	al.,	2005;	
Pennanen	
et	al.,	2006)	
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Tau-4R-	
P301L	

P301L	
(2N4R)	

Mouse	
Thy1	

Cortex,	
brainstem,	
spinal	cord	

4-fold	tau	over-expression.	
Reduced	tau	
phosphorylation	in	young	
P301L	mice	compared	to	
wild-type.	Abnormal	tau	
conformations	and	
hyperphosphorylated	and	
aggregated	tau	accumulate	
in	aged	mice.	NFTs	from	6	
months.	

No	axonal	
dilations	or	
degeneration	

ND	 Only	minor	
late	motor	
problems.	
Improved	
long-term	
potentiatio
n	
and	
memory	in	
young	mice.	
Cognitive	
impairment
s	in	aged	
mice.	

(Terwel	et	
al.,	2005;	
Boekhoorn,	
2006)	

PLT-34	 P301L	
(1N4R)	

Mouse	
CNP	

Basal	ganglia,	
spinal	cord	

Accumulation	of	
hyperphosphorylated,	
insoluble,	filamentous	tau	
in	oligodendrocytes	with	
age.	Impaired	vesicular	
transport	in	
oligodendrocytes.	

Progressive	
loss	of	myelin	
in	spinal	cord	
from	9	months	
of	age,	axonal	
degeneration	
from	6	months.	

Age-dependent	
loss	of	
oligodendrocyte
s,	significant	
at	12	months	
of	age.	

Progressive	
motor	
impairment
s,	limb	
twitching.	

(Hutton	et	
al.,	2000)	
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TgTauP30
1L	

P301L	
(2N4R)	

Hamster	
PrP	

Cortex,	
hippocampus,	
amygdala,	
brainstem,	
spinal	cord	

Age-related	accumulation	
of	hyperphosphorylated,	
conformationally	altered,	
ubiquitinated	and	
insoluble	tau.	NFTs	and	
glial	tangles	with	wavy	
filaments.	Severe	reactive	
astrocytosis	and	activation	
of	microglia.	

ND	 Brain	atrophy	
by	18	months,	
particularly	in	
temporal	lobe	
and	
hippocampus.	

No	gross	
motor	
deficits.	No	
spatial	
memory	
impairment
,	but	
reduced	
working	
memory.	

(Murakami	
et	al.,	2006;	
Sasaki	et	al.,	
2008)	

GFAP/Tau
P30	
1L	

P301L	
(1N4R)	

GFAP	 Brainstem,	
spinal	cord	

1.25	to	2-fold	tau	over-
expression.	
Hyperphosphorylated,	
ubiquitinated	and	
filamentous	tau	pathology	
develops	in	astrocytes	
with	ageing.	Reactive	
astrocytosis.	Argyrophilic	
astrocyte	tangles	from	12	
months	

Reduced	
glutamate	
transport	
activity	

ND	 Reduced	
motor	
function	
from	4	
months	of	
age.	

(Dabir,	
2006)	
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rTg4510	
	

P301L	
(0N4R)	

CaMKII	
(tet	off)	

Forebrain,	
hippocampus	

13-fold	tau	over-
expression.	Tau	
hyperphosphorylation,	
conformational	changes	
and	NFTs	in	cortex	from	4	
months,	in	hippocampus	
from	5.5	months.	Straight	
tau	filaments.	
Accumulation	with	
aggregated	tau	multimers	
with	age	that	correlate	
with	extent	of	memory	
decline.	DNA	
fragmentation,	caspase-3	
activation	and	caspase-3	
mediated	tau	cleavage	in	
hippocampus	and	frontal	
cortex,	that	is	not	directly	
associated	with	neuronal	
death.	Slowed	tau	
turnover	in	aged	mice.	
Phenotype	in	females	is	
accelerated	and	more	
aggressive.	

Signs	of	
axonal	
degeneration.	

77%	loss	of	
CA1	
Hippocampal	
neurons	and	
gross	forebrain	
atrophy	by	10	
months.	
Neuronal	
death	not	
related	to	NFT	
formation.	

Reduced	
retention	of	
spatial	
reference	
memory	
from	2.5	
months.	No	
apparent	
motor	
abnormaliti
es.	

(Ramsden,	
2005;	
Santacruz	
et	al.,	2005;	
Berger	et	
al.,	2007;	
Ramalho	et	
al.,	2008;	
Spires-
Jones	et	al.,	
2008;	
Rocher	et	
al.,	2010)	
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Line	2541	
	

P301S	
(0N4R)	

Mouse	
Thy1.2	

Cortex,	
hippocampus,	
brainstem,	
spinal	cord	

2-fold	tau	over-expression.	
Hyperphosphorylated	
insoluble	tau	in	neurons	
from	5-6	months	of	age.	
NFTs	and	Pick-body	like	
inclusions	from	6	months	
of	age.	‘Half-twisted’	
ribbon-like	tau	filaments.	
Activation	of	MAP	kinases.	
Microglial	activation	and	
induction	of	inflammatory	
mediators.	Caspase-3	
cleaved	tau	present	in	
soluble	and	filamentous	
tau	preparations.	

ND	 Non-apoptotic	
death	of	motor	
neurons	from	6	
months	(up	to	
49%	loss	in	
anterior	horn	of	
spinal	cord).	

Muscle	
weakness,	
tremor,	
severe	
paraparesis	

(Allen	et	al.,	
2002;	
Bellucci	et	
al.,	2004;	
Delobel	et	
al.,	2008)	
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PS5	and	
PS19	

P301S	
(1N4R)	

Mouse	
PrP	

Cortex,	
hippocampus	

3	to	5-fold	tau	over-
expression.	Age-	
dependent	increase	in	
highly	phosphorylated	
insoluble	tau	from	3	
months	of	age.	Reduced	
binding	of	mutant	tau	to	
microtubules.	NFTs	in	
neocortex,	hippocampus	
and	amygdala	at	5	months,	
with	randomly	oriented	
filaments.	Microglial	
activation	and	astrogliosis.	
Impaired	synaptic	
plasticity.	

Axonal	
spheroids	
containing	
neurofilaments	
and	tau.	

20%	and	45%	
reduction	in	
cerebral	brain	
and	
hippocampus	
volumes,	
respectively	at	
12	months	of	
age.	

Hindlimb	
clasping	
and	
limb	
retraction	
from	3	
months	
of	age.	
Hindlimb	
paralysis	by	
7	months.	

(Yoshiyama	
et	al.,	2007)	

Tg214	 V337M	
(2N4R)	

PDGF-β	 Cortex,	
hippocampus	

Mutant	tau	expression	is	
10-fold	lower	than	
endogenous	tau.	
Hyperphosphorylated,	
insoluble	tau	and	NFT	
formation	between	4	and	
11	months	of	age.	Straight	
tau	filaments.	

ND	 Degenerating	
neurons	in	
areas	of	high	
tau	expression,	
including	the	
hippocampus.	
Decreased	
number	of	
functional	
neurons	with	
age.	

Reduced	
spontaneou
s	
locomotion.	
Impaired	
cognition,	
but	not	
spatial	
recognition.	

(Tanemura	
et	al.,	2001,	
2002)	
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K3	 K369I	
(2N4R)	

Mouse	
Thy1.2	

Cortex,	
hippocampus,	
basal	
Ganglia	

2.9-fold	tau	over-
expression.	Age-
dependent	accumulation	
of	hyperphosphorylated	
intraneuronal	insoluble	
tau	aggregates	and	NFTs.	
Disturbed	kinesin	motor	
complex	formation.	
Interaction	of	
phosphorylated	tau	with	
c-Jun	N-terminal	kinase	
interacting	protein-1.	

Amyotrophy	
and	spinal	cord	
degeneration.	
Axonal	
swellings	and	
spheroids	from	
2-5	months.	
Impaired	
Axonal	
transport	from	
6	weeks.	

Significant	loss	
of	
Dopaminergic	
neurons	
between	12	
and	24	
months.	

Impaired	
working	
memory	
from	4	
months	of	
age.	Muscle	
tremors	
from	4	
weeks.	
Progressive
ly	
worsening	
gait	and	
postural	
stability.	

(Ittner	et	
al.,	2008,	
2009)	

Tg748,	
Tg502,	
Tg492	and	
Tg483	

R406W	
(2N4R)	

CaMKII	 Hippocampus	 Mutant	tau	accounts	for	7-
18%	of	total	tau.	
Somatodendritic	
accumulation	of	
phosphorylated,	insoluble	
and	ubiquitinated	tau	with	
age.	A	subset	of	neurons	in	
aged	mice	contain	NFTs.	
Mainly	straight	tau	
filaments.	

ND	 Degenerating	
neurons	in	
aged	mice	

No	
locomotor	
dysfunction	
Impaired	
contextual	
and	cued	
fear	
conditionin
g.	Increased	
immobility	
in	forced	
swim	test.	

(Tatebayas
hi	et	al.,	
2002)	
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RW	lines	
34	
and	65	

R406W	
(2N4R)	

Mouse	
PrP	

Brainstem	
and	spinal	
cord	

8	to	10-fold	tau	over-
expression.	Development	
if	insoluble	tau	inclusions	
and	reduced	microtubule-
binding	of	tau	with	age	in	
brain	and	spinal	cord.	
Somatodendritic	
hyperphosphorylated	
tau.	NFTs	and	fibrillary	
glial	tau	inclusions	in	aged	
mice.	Straight	tau	
filaments.	

Retardation	of	
slow	axonal	
transport.	

ND	 Progressive	
motor	
weakness.	
Postural	
dystonia.	

(Zhang	et	
al.,	2004)	

TgTauR40
6W	

R406W	
(2N4R)	

Hamster	
PrP	

Cortex,	
hippocampus,	
amygdala,	
brainstem,	
spinal	
Cord	

0.8-fold	mutant	tau	
expression	compared	to	
endogenous	tau.	
Accumulation	of	
phosphorylated	and	
ubiquitinated	tau	in	brain	
and	spinal	cord	neurons	
from	10	months	of	age.	
NFTs	in	hippocampus	and	
amygdala	of	14	month	old	
mice.	Straight	tau	
filaments.	Cortical	
astrogliosis	and	
microgliosis	

ND	 Loss	of	
neurons	in	
amygdala	of	
aged	mice	

Decreased	
locomotor	
ability	and	
acquired	
memory	
loss	from	
10	months	
onwards.	

(Ikeda	et	al.,	
2005)	
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Ala152Thr
-Tau	

A152T,	
hTau40AT	
(2N4R)	

	

	

	

	

	

	

	

	

Murine	
Thy1.2		

pan-neuronal	
expression	in	
the	brain	and	
spinal	cord		

	

1-2-fold	mutant	tau.	Tau	
conformation	and	Tau-
hyperphosphorylation	
combined	with	Tau	
missorting	into	the	
somatodendritic	
compartment	of	neurons	
starting	at	2/3	months.	
Tau	aggregation	including	
co-aggregates	of	
endogenous	mouse	tau	
and	exogenous	human	tau,	
accompanied	by	loss	of	
synapses	(especially	
presynaptic	failure)	and	
neurons.	From	10	months	
onwards	mice	show	
prominent	
neuroinflammatory	
response	(increased	
activation	of	microglia	and	
astrocytes).	Strong	
induction	of	autophagy.		

	

	

	

ND	 Neuronal	death	
from	16	
months.	

Spatial	
reference	
memory	
from	~16	
months	of	
age		

	

(Sydow	et	
al.,	2016)	
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Co-expression	of	mutant	tau	
THY-
Tau22	

G272V,	
P301S	
(1N4R)	

Mouse	
Thy1.2	

Cortex,	
hippocampus,	
dentate	gyrus,	
amygdala,	
low	levels	in	
spinal	cord	

2	to	5-fold	tau	over-
expression.	Age	dependent	
tau	hyperphosphorylation	
and	abnormal	tau	
conformations	starting	
from	3	months.	
Progressive	redistribution	
of	tau	to	cell	bodies.	NFTs	
visible	at	6	months,	and	
ghost	tangles	at	12	
months.	Mainly	straight	
tau	filaments.	Increased	
neurogenesis	and	re-
activation	of	the	cell	cycle	
during	tau	
hyperphosphorylation	and	
aggregation.	Accumulation	
of	astrocytes	and	
microglia	around	neurons	
with	phosphorylated	tau.	

ND	 34%	loss	of	
pyramidal	
neurons	from	
12	months	of	
age.	Decreased	
synaptic	
transmission.	

No	motor	
deficits.	
Impaired	
spatial	
learning	
from	2-3	
months,	
and	
decreased	
spatial	
memory	
from	10	
months.	

(Schindows
ki	et	al.,	
2006,	2008;	
Belarbi	et	
al.,	2009)	
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Tg30Tau	 G272V,	
P301S	
(1N4R)	

Mouse	
Thy1.2	

Cortex,	
hippocampus,	
brainstem,	
spinal	cord,	
sciatic	
Nerve	

4	to	6-fold	tau	over-
expression.	
Somatodendritic	
localisation	of	
phosphorylated	tau	in	18	
day-old	mice,	
hyperphosphorylated	tau	
species	from	3	months.	
Caspase-cleaved	tau	only	
in	year-old	mice.	NFTs	
from	3	months	of	age.	
Mainly	straight	filaments.	
Increased	numbers	of	
astrocytes	and	microglia.	
Accumulation	of	
phosphorylated	GSK3,	JNK	
and	ERK1	in	tau	
inclusions.	

Axonopathy,	
myelin	
destruction.	
Axonal	
swellings	and	
spheroids	with	
accumulation	
of	degraded	
mitochondria	
and	
neurofilaments	
.	

Decreased	
brain	weight	
and	
hippocampal	
volume	at	12	
months	of	age	

Severe	
motor	
deficit,	
hindlimb	
paresis	
from	8	
months.	
Postural	
dytonia	in	
aged	mice.	

(Leroy	et	
al.,	2007)	

DM-htau	 K257T,	
P301S	
(0N4R)	

Rat	MAPT	 Cortex,	
hippocampus,	
brainstem,	
spinal	cord	

Mutant	tau	accounts	for	5-
10%	of	total	tau.	Age-
dependent	increases	in	
hyperphosphorylated	
insoluble	tau.	
NFTs	and	reactive	
astrogliosis	from	6	
months	of	age.	Twisted	tau	
filaments.	

ND	 Degenerating	
neurons.	

No	motor	
deficit.	
Hippocamp
al	plasticity	
deficit.	
Inability	to	
induce	
short-	term	
potentiatio
n.	Spatial	

(Rosenman
n	et	al.,	
2008)	
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memory	
deficit.	

VLW	
	

G272V,	
P301L,	
R406W	
(2N4R)	

Mouse	
Thy1	

Cortex,	
hippocampus,	
striatum,	
spinal	cord	

1	to	2.5-fold	tau	over-
expression.	Age-	
dependent	tau	
hyperphosphorylation	and	
accumulation	of	insoluble	
tau	in	NFTs.	
Conformational	changes	
and	tau	truncation	
following	increased	tau	
phosphorylation.	Straight	
and	twisted	tau	filaments.	
Lysosomal	abnormalities.	

ND	 No	 Episodic	
memory	
deficits	

(Lim	et	al.,	
2001;	Ribé	
et	al.,	2005;	
Mondragón
-Rodríguez	
et	al.,	2008;	
Navarro	et	
al.,	2008)	
	

Transgenic	rat	model	of	tauopathy	

SHR318,	
SHR72,	
SHR	

Human	
truncated	
tau	(4R	
151-391)	

Human	
Thy1	

Cortex,	
hippocampus,	
brainstem,	
spinal	cord	

2.5-fold	tau	over-
expression.	Age-related	
accumulation	of	
somatodendritic	
phosphorylated,	insoluble	
tau.	Argyrophilic	NFTs	in	
brain	and	spinal	cord	

ND	 No	 Altered	
spatial	
navigation.	
Hindlimb	
clasping	
and	
muscle	
weakness.	

(Zilka	et	al.,	
2006;	
Hrnkova	et	
al.,	2007;	
Koson	et	al.,	
2008)	

n/a	 Human	
truncated	
tau	(3R	
tau151-391)	

	

Human	
Thy1	

Cortex,	
hippocampus,	
brainstem.	

Progressive	
neurofibrillary	
degeneration	in	the	
isocortex.	NFT’s	appeared	
as	early	as	9	months	of	age	
and	increased	in	an	age-

ND	 No	 Reduced	
lifespan.	

(Filipcik	et	
al.,	2012)	
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dependent	manner.	
Hyperphosphorylated	and	
conformational	tau.	
Sarkosyl	insoluble	tau	at	
10	months	of	age	
suggesting	that	the	
insoluble	tau	aggregates	in	
the	brain	are	composed	of	
both	truncated	and	
endogenous	rat	wild-type	
tau.		

	
	
	
	
	
	
	
	
	
	
	

Triple	transgenic	models	of	AD	

3	x	Tg-AD	
	

Tau	P301L	
(0N4R),	
PS1	M146V	
knock-in,	
APPKM670/671	
NL	

Mouse	
Thy1.2	

Cortex,	
hippocampus	
hypothalamus
,	thalamus,	
brainstem	

6	to	8-fold	transgene	over-
expression.	
Progressive	increase	in	Aβ	
production,	plaque	
deposition,	tau	
phosphorylation	and	NFT	
production	with	age.	
Amyloid	deposition	
precedes	NFT	formation.	
Caspase-cleaved	tau	is	
apparent	in	adult	mice.	
Microglial	activation	and	
release	of	pro-
inflammatory	mediators	in	
young	mice.	

ND	 Synaptic	
dysfunction	
from	6	months	
of	age.	

Deficits	in	
LTP	
correlate	
with	
increased	
plaque	
burden.	
Reduced	
long-term	
retention	
from	4	
months.	

(Oddo,	
2003;	Oddo	
et	al.,	2003;	
Rissman	et	
al.,	2004;	
Billings	et	
al.,	2005;	
Janelsins	et	
al.,	2005)	
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n/a	 Tau	P301L	
(2N4R),	
PS2	N141I,	
APPKM670/671	
NL	

Mouse	
Thy1.2	
(tau),	
Mouse	
Thy1	
(APP),	

Cortex,	
hippocampus,	
amygdala,	

Increased	Aβ	production	
with	age.	Phosphorylation	
of	tau	at	Thr231	and	
Ser422	from	4	months,	
phosphorylation	at	Ser422	
associated	with	increased	
Aβ	production.	NFTs	and	
plaques	visible	from	8	
months.	
	
	
	

ND	 No	loss	of	
Hippocampal	
neurons	at	16	
months	of	age.	

Impaired	
spatial	
learning	
from	4	
months	of	
age.	

(Grueninge
r	et	al.,	
2010)	

Tau	truncation	model	
Tau35	 Truncated	N-

terminal	tau	
(4R,	182-
441)	

Human	tau	
promoter	

Throughout	
entire	brain	
and	spinal	
cord	

10%	of	endogenous	mouse	
tau.	
Hyperphosphorylation	of	
tau	from	2	months	if	age.	
Pre-tangle	like	structures	
from	8	months	of	age.	
Impaired	synaptic	
integrity.	Impaired	
autophagy	lysosomal	
degradation.	Increased	
GSK3β	activity.	Reduced	
acetylated	tubulin	activity.	

ND	 No	significant	
loss	of	
hippocampal	
neurons.	

Reduced	
survival.	
Kyphosis.	
Clasping.	
Imparired	
motor	
phenotype	
from	1	
months	of	
age	and	
cognitive	
function	
from	8	
months	of	
age.	

(Bondulich	
et	al.,	2016)	
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E391-
3608		

E391-
3610	

4R1N	human	
C-terminal	
truncated	
tau	at	
glutamic	
acid	391	
(E391)		

	

Thy1.2	
neuron-
specific	
promoter		

	

Truncated	tau	
is	distributed	
in	a	
somatodendri
tic	pattern	in	
the	
hippocampus,	
amygdala	and	
cortex		

	

Total	tau	levels	were	~1.9-
fold	greater	than	normal	
endogenous	mouse	tau	in	
E391-3608	mice	and	~2.6-	
fold	greater	in	E391-3610	
mic.	There	were	similar	
levels	of	total	tau	among	
transgenic	and	non-
transgenic	animals	in	
soluble	tau	fraction	
indicated	that	expression	
of	the	human	transgene	
was	relatively	low	
compared	to	that	of	
endogenous	mouse	tau.	
Pretangle	tau,	including	
accumulation	of	tau	in	
insoluble	fraction,	
somatodendritic	
redistribution,	formation	
of	pathologic	
conformations,	and	dual	
phosphorylation	of	tau	at	
sites	associated	with	AD	
pathology.	E391-3610	
mice	exhibited	higher	
accumulation	of	truncated	
tau	species	than	E391-
3608	mice	Atypical	neu-	

ND	 ND	 ND	 (McMillan	
et	al.,	2011)	
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rites.	Tau	pathologic	
conformation	(as	detected	
by	Alz50,	MC1,	and	Tau2)	
in	the	EC	and	amygdala	in	
E391-3608	but	not	E391-
3610	mice		
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1.9.1	Mouse	models	exhibiting	tau	truncation	
	

Several	studies	have	identified	tau	fragments	in	mouse	brains	over-expressing	

mutant	 forms	 of	 tau,	 suggesting	 a	 pivotal	 role	 of	 tau	 cleavage	 in	

neurodegenerative	diseases	(Delobel	et	al.,	2008;	Zhang	et	al.,	2009;	Maeda	et	

al.,	2016).	Maeda	and	colleagues	recently	developed	a	model	expressing	hTau	

(expressing	 all	 six	 isoforms	 of	 human	 tau,	 but	 do	 not	 express	 mouse	 tau)-

A152T	 (a	 risk	 factor	 for	 FTD	 and	 AD)	 (Maeda	 et	 al.,	 2016).	 Mice	 showed	

increased	tau	fragmentation	and	developed	age	dependent	neuronal	loss	and	

cognitive	impairment	implicating	tau	fragments	in	these	processes	(Maeda	et	

al.,	2016).	McMillan	and	colleagues	generated	two	mouse	lines	with	either	high	

or	 low	 expression	 of	 human	4R	 tau	with	 a	 C-terminal	 truncation	 at	 Glu391	

(lines	E391-3610	and	E391-3608,	respectively)	(McMillan	et	al.,	2011).	Despite	

low	 transgene	 expression	 in	 the	 E391-3608	 line,	 these	mice	 exhibited	 pre-

tangle	 pathology,	 including	 accumulation	 of	 insoluble	 tau,	 as	 well	 as	 dual	

phosphorylation	of	tau	(Ser	202	and	Thr	205),	similar	to	that	seen	in	AD	brain.	

However,	 this	 model	 lacked	 any	 tangle	 pathology	 and	 cannot	 therefore	 be	

considered	 a	 complete	 model	 in	 which	 to	 study	 the	 generation	 of	 tau	

aggregation.	

Several	rodent	studies	have	identified	the	importance	of	mutant	tau	in	

the	development	of	tau	pathology	(Denk	and	Wade-Martins,	2009;	Zilka	et	al.,	

2009).	However,	many	of	these	models	failed	to	identify	the	development	of	

tau	pathology,	particularly	when	trying	to	examen	the	pathological	differences	

between	FTLD-tau	and	AD	(Denk	and	Wade-Martins,	2009;	Zilka	et	al.,	2009).	

Nevertheless,	although	these	animal	models	 failed	to	produce	extensive	 tau	

pathology,	it	has	been	demonstrated	that	neurofibrillary	degeneration	can	be	

generated	solely	from	tau	fragments	(Zilka	et	al.,	2006;	Filipcik	et	al.,	2012).	

The	 first	 rat	 models	 expressing	 human	 truncated	 tau	 were	 generated	 by	

Filipcik	 and	 Novak	 (2012),	 who	 identified	 neurofibrillary	 degeneration.	

Transgenic	rats	expressing	truncated	human	wild-type	4R	tau	(comprising	tau	

residues	 151-391),	 develop	 extensive	 tau	 pathology	 in	 the	 brainstem	 and	

spinal	cord	only	(Table	4)	(Filipcik	et	al.,	2012).	 In	contrast,	 transgenic	rats	

expressing	truncated	human	wild-type	3R	tau	(comprising	tau	residues	151-
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391)	develop	pathology	in	the	isocortex	(Zilka	et	al.,	2006;	Koson	et	al.,	2008;	

Filipcik	et	al.,	2012).	This	indicates	that	distinct	tau	fragments	associated	with	

3R	and	4R	tau	isoforms	can	selectively	influence	NFT	formation,	thus	making	

cleaved	tau	fragments	valuable	targets	for	therapeutic	intervention.	

	

1.10	Aims	and	objectives	of	this	thesis	

	

The	 aim	 of	 this	 project	 is	 to	 investigate	 the	 molecular	 and	 behavioural	

phenotypes	in	a	new	transgenic	mouse	model	of	tauopathy	that	expresses	the	

human	 tauopathy-related	 tau	 fragment,	 Tau35,	 that	 was	 first	 identified	 in	

diseased	human	postmortem	brain.	The	hypothesis	under	investigation	states	

that	N-terminal	 tau	 truncation	drives	 tau	 aggregation	 and	 tangle	 formation,	

leading	 to	 biochemical	 and	behavioural	 changes	 in	 the	 transgenic	mice	 that	

mirror	those	present	in	human	tauopathies.		

	

The	specific	objectives	of	this	project	were:	

1. To	 determine	 the	 behavioural	 phenotype	 of	 Tau35	 mice	 and	 to	

monitor	how	this	progresses	as	the	mice	age.	

2. To	 determine	 whether	 increased	 tau	 phosphorylation	 occurs	 in	

Tau35	mice	and	how	this	progresses	as	the	mice	age.	

3. To	 investigate	 the	 temporal	 development	 and	 progression	 of	 tau	

aggregation	and	pathological	tau	lesions	in	Tau35	mice.	

4. To	determine	whether	the	changes	observed	in	Tau35	mice	can	be	

rescued	 or	 prevented	 upon	 treatment	 with	 potential	 therapeutic	

agents,	such	as	phenylbutyrate.	

5. To	 investigate	 whether	 altering	 the	 strain	 background	 of	 Tau35	

mice	 influences	 the	 biochemical	 and	 behavioural	 abnormalities	

observed	in	these	animals.	

6. To	establish	a	cell-based	assay	to	investigate	the	effects	of	potential	

therapeutic	 compounds	 on	 phosphorylation	 of	 the	 Tau35	 tau	

fragment.	 	
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CHAPTER	2	
	

Material	and	Methods	

2.0	Materials	

	

All	 reagents	 were	 from	 Sigma	 Aldrich	 Company	 Limited	 unless	 otherwise	

stated.	 All	 plasticware	 used	 for	 tissue	 culture	 was	 purchased	 from	 Fisher	

Scientific	Ltd.,	UK.	Ultrapure	water	was	used	to	prepare	all	solutions	(Elgar®	

Maxima	water	purification	system).	

	

2.1	Animals	and	tissue	

	

All	 transgenic	 mice	 used	 in	 this	 study	 were	 male	 Tau35	 (hemizygous),	

expressing	tau35	cDNA	with	a	hemagglutinin	tag	(HA)	under	the	control	of	the	

human	 tau	 promoter	with	 targeted	 insertion	 into	 the	Hprt	 locus	 (genOway	

“Quick	Knock-inTM”	 technology).	Mice	were	 bred	 on	 a	 75%	 ;25%	C57	Black	

5(C57BL/6);	 129/Ola	 mice	 (129Ola)	 background	 and	 reared	 in-house.	

Transgenic	animals	were	 identified	by	genotyping	using	Real	 time	PCR	(RT-

PCR),	as	described	below.	Control	mice	were	wild	type	(WT)	male	littermates.	

All	mice	were	weaned	at	3	weeks	of	age.	All	animals	had	unlimited	access	to	

water	and	rodent	chow	(RM1	for	all	mice	except	breeders,	which	received	RM3,	

Special	Diet	Services,	Essex,	UK).	Mice	were	singly	or	group	housed	with	a	12-

hour	 light-dark	 cycle	 with	 constant	 room	 temperature.	 Genotype-blinded	

behavioural	assessments	were	conducted	on	transgenic	and	WT	mice	during	

the	light	phase.	
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2.2	General	biochemistry	reagents	

	
PCR	reagents	

REDExtract-N-Amp	for	tissue		 	Extraction	solution	tissue	

PCR	extraction	kit:		 preparation	solution		

neutralising	solution	B		

REDExtract-N-Amp		

PCR	reaction	mix	

	

Table	5.	Primers	and	sequence	used	for	PCR	genotyping	
	
Primer	 Primer	sequence	5’	to	3’	(number	of	bases)	

Forward	Tau35	 CGTATGTGATGGACATGGAGATGGAGG	(27)	

Reverse	Tau35	 GCCTCCCTCTTATTAAGGACGCTGAGG	(27)	

Forward	HPRT	 TGTCCTTAGAAAACACATATCCAGGGTTTAGG	(32)	

Reverse	HPRT	 CTGGCTTAAAGACAACATCTGCAGAAAAA	(30)	

	

Buffers	and	tissue	lysis	solution	

50x	TAE	buffer	(1	litre)	 242	g	Tris	base	

57.1	ml	Glacial	acetic	acid	

100	ml	0.5	M	EDTA	pH	8.0		

Ethidium	bromide	 	 	 	 	 10mg/ml	

Agarose	 	 	 	 	 	 1.2g	in	120ml	of	1xTAE	

	

Tris-buffered	saline	(TBS),	pH	7.6	 	 	 50mM	Trizma	base		

150	mM	NaCl		

In	ultra-pure	H2O	

	

Phosphate-buffered	saline	(PBS),	pH	7.4	 	 137mM	NaCl	

2.7mM	KCl	
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10mM	Na2HPO4	
2mM	KH2PO4	
In	ultra	pure	H2O	

	

PBS-Tween	(PBS-T)	 	 	 	 	 PBS	containing	 	

	 	 	 	 	 	 	 0.05%	(v/v)	Tween	20	

	

Extra	strong	lysis	buffer	(ESLB),	pH	7.5	 	 10	mM	Tris-HCl	

75	mM	NaCl	

0.5	%	(w/v)	sodium	dodecyl	

sulfate	(SDS)	

20	mM	sodium	deoxycholate	

1	%	(v/v)	Triton	X-100	

2	mM	Na3VO4	

1.25	mM	NaF	

10	mM	

Ethylenediaminetetraacetic	

acid	(EDTA)	

Complete	mini	protease	

inhibitor	cocktail	tablet,	1	

tablet	in	10	ml		

(Roche	Diagnostics	Ltd.,	UK)	

	

TBS	homogenisation	buffer			 	 	 50	mM	TBS,	pH	7.4		

1	mM	NaF		

1	mM	Na3VO4		

1	mM	PMSF		
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Mini	protease	inhibitor	

cocktail	tablet,	1	tablet	in	10	

ml	(Roche	Diagnostics	Ltd.,	

UK)		

in	ultrapure	H20	

	

2	x	protein	loading	buffer		 0.5	M	Tris-HCl,	pH	6.8		

(National	Diagnostics	Ltd.,	UK)		 4.4	%	(w/v)	sodium	dodecyl	

sulfate	(SDS)		

20	%	(v/v)	glycerol		

2	%	(v/v)	2-

mercaptoethanol	(β-ME)	

0.01	%	(w/v)	bromophenol	

blue	

	

1	%	N-Lauroylsarcosine	sodium	salt		 	 1	%	Sarkosyl	in	TBS		

(sarkosyl)	solution		 from	20	%	(w/v)	sarkosyl	

stock	solution	

	

2.2.1	 SDS-polyacrylamide	 gel	 electrophoresis	 (SDS-PAGE)	

reagents	
	

Sodium	dodecyl	sulphate	 	 	 	 30%	(w/v)	Acrylamide	

	

Polyacrylamide	gel	electrophoresis	 0.5%	(w/v)	Bis-acrylamide	

from	Stock	Acrylamide	

(National	Diagnostics)	
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10%	Resolving	gel,	pH	8.3	 10%	(w/v)	Acrylamide	

(National	Diagnostics)	

25%	(v/v)	Resolving	gel	

buffer	(National	

Diagnostics)	

0.01%	Ammonium	

persulphate	(APS)		

0.1%	(v/v)	

N,N,N’,N’tetramethylethylen

diamine	(TEMED)		

	

4%	Stacking	gel,	pH	6.8	 4%	(w/v)	Acrylamide	

(National	Diagnostics)	

25%	Stacking	gel	buffer	

(National	Diagnostics)	

0.075%	(w/v)	APS	

0.15%	(v/v)	TEMED	

	

Running	buffer,	pH	8.3	 	 	 	 192mM	Glycine	

25mM	Tris	base	

0.1%	(w/v)	SDS	

	

Molecular	weight	markers	 IRDye	 (680/800)	 Protein	

Marker	(Li-Cor)	
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Transfer	buffer,	pH	8.3	 	 	 	 25mM	Tris	

200mM	Glycine	

20%	(v/v)	Methanol	

	

Laemlli	sample	buffer	(2x)	 	 	 	 25mM	Tris-HCl	

4%	(w/v)	SDS	

20%	(v/v)	Glycerol		

0.01%	 (w/v)	 Bromophenol	

blue	

100mM	dithiothreitol	(DTT)	

	

Blocking	solution	and	antibody	diluent	 5%	 (w/v)	 Dried	 skimmed	

milk	in	TBS		

	

2.2.2	Immunohistochemistry	reagents	
	

TBS-antifreeze	 	 	 	 	 30%	(v/v)	Ethylene	glycol	 	

15%	(w/v)	Sucrose	

0.05%	(w/v)	Sodium	azide	

in	TBS	

	

Paraformaldehyde	(PFA)		 4%	(w/v)	PFA	in	PBS	

	

Cryoprotectant	 	 	 	 	 30%	(w/v)	Sucrose	in	PBS	
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OCT	 Cryo-embedding	media	

(Fisher	Scientific)	

	

Peroxidase	blocking	solution	 0.6%	(v/v)	H2O2	in	

methanol		

	

Blocking	solutions	 2%	(v/v)	Normal	horse	

serum	(NHS),	(Vector	

Laboratories)	in	TBS	

or	

2%	(v/v)	Normal	goat	

serum	(NGS),	(Vector	

Laboratories)	in	TBS	

	

Antibody	diluent		 	 	 	 	 1%	(v/v)	NHS	in	TBS	

or	

1%	(v/v)	NGS	in	TBS	

	

Secondary	antibodies	 Biotinylated	horse	anti-

mouse	IgG	(Vector	

Laboratories)	in	1%	(v/v)	

NHS	in	TBS	

Biotinylated	goat	anti-rabbit	

IgG	(Vector	Laboratories)	in	

1%	(v/v)	NGS	in	TBS	

	



	 107	

Avidin-Biotin	complex	(ABC)		 4	drops	of	avidin,	4	drops	

biotin	in	10ml	TBS	

(Vectastain	Elite	ABC	kit,	

Vector	Laboratories)		

	 	 	 	 	

3,3’—Diaminobenzidine	(DAB)		 4	drops	Buffer	stock,	8	

drops	DAB	reagent,	4	drops	

H2O2	added	to	10ml	H2O	

from	DAB	peroxidase	

substrate	kit	(Vector	

Laboratories)	

	 	 	 	

Acid	rinse	solution	 2%	(v/v)	Glacial	acetic	acid	

in	H2O	

	

Bluing	solution	 1.5%	(v/v)	of	30%	(v/v)	

NH4OH	in	70%	(v/v)	ethanol	

	

Thioflavin	S	staining	solution	 0.1%	(v/v)	Thioflavin	S	in	

H2O	

	

Eosin	staining	solution	 0.5%	Eosin	Y	solution	in	1%	

(w/v)	acetic	acid	(Merck	

Millipore)	

Gill’s	Haematoxylin	solution	
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2.2.3	In	Cell	Western	(ICW)	reagents		
	

4	%	paraformaldehyde	(PFA)	 4	%	Paraformaldehyde	

(PFA)	4%	(w/v)	PFA	in	TBS,	

or	diluted	in	PBS	from	16	%	

liquid	PFA	stock	solution	

(Alfa	Aesar,	Johnson	

Matthey	Co.,	MA,	USA)		

	

Permeabilisation	solution	 Permeabilisation	solution	5	

%	(w/v)	bovine	serum	

albumin	(BSA)	in	TBS		

0.1	%	(v/v)	Triton	X-100		

	

	

ICC	blocking	solution	 	 	 	 5	%	(w/v)	BSA	in	TBS		

0.05	%	(v/v)	Triton	X-	100
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2.2.4	Antibodies	
	

Table	6:	Primary	antibodies	used	on	western	blots	(WB)	and	immunohistochemistry	(IHC).	Information	on	epitope	and	antigen,	
species,	working	dilution,	manufacturer	and	blocking	solution	are	given	N/A:	not	applicable.	
	

Antibody	 Epitope	and	
specificity	

Species	
(monoclonal/
polyclonal)	

WB	 IHC	 Source	 Blocking	reagent	

Acetylated	tubulin	 Acetylated	α-	
Tubulin	[6-11B-1]	

Mouse	
monoclonal	

1/1,000	 N/A	 Abcam,(Piperno	and	Fuller,	
1985)	

5	%	(w/v)	milk	blocking	
solution	

DAKO	 Tau,	phosphorylation-
independent	

Rabbit	IgG	
/polyclonal	

1/10,000	 N/A	 Dako	Ltd.,	UK	 5	%	(w/v)	milk	blocking	
solution	

GSK3	
	
	
	

Glycogen	synthase	
kinase	3α	and	β	
(GSK3α/β)	Clone:	1H8	

Mouse	IgG	
monoclonal	

1/1,000	 N/A	 Enzo	Life	Science	Ltd;	
Exeter,	UK	

5	%	(w/v)	milk	blocking	
solution	

pGSK3	 GSK3α/β	
phosphorylated	at	
Ser21	(α)	and	Ser9	(β)	

Rabbit	IgG	
polyclonal	

1/500	 N/A	 Cell	Signalling	Inc.,	MA,	USA	 5	%	(w/v)	milk	blocking	
solution	

NSE	
(BBS/NC/VI-H14)	

Neuron	specific	
enolase,	human	specific	

Mouse	IgG	
monoclonal	

1/2,000	
	

N/A	 Dako,	Ltd.,	UK	
	

5	%	(w/v)	milk	blocking	
solution	

p62	 Human	p62	
(14	amino	acids	near	C-
terminus)	

Mouse	IgG	
monoclonal	

1/1,000	 1/500	 Abcam,	Ab91526	 5	%	(w/v)	milk	blocking	
solution	/NHS	
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PHF1	 Tau	phosphorylated	at	
Ser396/404	

Mouse	IgG	
monoclonal	

1/2,000	 1/00	 Kind	gift	from	Professor	
Peter	Davies	(Albert	
Einstein	College	of	
Medicine,	New	York)	

5	%	milk	blocking	solution/	
NHS	

PSD95	 endogenous	levels	of	
total	PSD95	protein.	

Rabbit	IgG	
polyclonal	

1/1,000	 N/A	 Cell	Signalling	technology	
(Danvers,	US)	

5	%	milk	blocking	solution	

Synapsin1	 Bovine	brain	
synapsin1	

Mouse	IgG	
monoclonal	

1/1,000	 N/A	 Merck	Millipore	
(Darmstadt,	Germany)	

5	%	milk	blocking	solution	

Synaptophysin	 Human	
Synaptophysin	

Mouse	IgG	
monoclonal	

1/2,000	 N/A	 Enzo	(Lausen,	Switzerland)	 5	%	milk	blocking	solution	

Synaptobrevin	 Synaptobrevin	[VAMP],	
SP11	

Mouse	IgG	
monoclonal	

1/1,000	 N/A	 Merck	Millipore	
(Darmstadt,	Germany)	

5	%	milk	blocking	solution	

Synaptotagmin	 Rat	Synaptotagmin	aa.	
72-223	

Mouse	IgG	
monoclonal	

1/1,000	 N/A	 BD	Transduction	(Franklin	
Lakes,	US)	

5	%	milk	blocking	solution	

HA.11	clone	
16B12	

HA	tag	on	Tau35	
protein		

Mouse	IgG	
monoclonal	

1/1,000	 N/A	 Covance	 5	%	milk	blocking	solution	

β-actin	 N-terminal	end	of	the	
β-isoform	of	actin	

Rabbit	IgG	
polyclonal	

1/5,000	 N/A	 Abcam	plc,	UK	 5	%	milk	blocking	solution	

β-actin	
(AC-74)	

N-terminal	end	of	the	
β-isoform	of	actin	

Mouse	IgG	 1:5,000	 N/A	 Sigma-Aldrich	Company	
Ltd.,	UK	

5	%	milk	blocking	solution	

Anti-LC3	 Human,	rat	and	
mouse	LC3A/B-I	
and	LC3A/B-II	

Rabbit	IgG	
polyclonal	

1/1,000	 N/A	 Sigma-Aldrich,	
L7543	

5	%	milk	blocking	solution	

Cathepsin	D	 C-terminus	of	
cathepsin	D	of	
human	origin	

Goat	IgG	
polyclonal	

1/2,000	 N/A	 Santa	Cruz	
Biotech,	
SC6486	

5	%	milk	blocking	solution	

Hemagglutinin	
(HA)		

HA	tag	
(YPYDVPDYA)	

Mouse	IgG	
monoclonal	

1/1,000	 N/A	 Covance,	HA.11	 5	%	milk	blocking	solution	
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TOC1	 Tau	oligomers	 Mouse	IgG	
monoclonal	

N/A	 1/00	 L.I.	Binder	 NHS	

AT8	
	

Tau	
pSer202/pThr205	

Mouse	IgG	
monoclonal	

N/A	 1500	 Thermo	Scientific	 NHS	

TP007	
	

Tau	N-terminus	
(amino	acids	1-16)	

Rabbit	IgG	
polyclonal	

N/A	 1/500	 	 NGS	

Glial	fibrillary	
acidic	protein	
(GFAP)	

Mammalian	
GFAP	

Rabbit	IgG	
polyclonal	

1/1,000	 1/500	 DAKO	 5	%	milk	blocking	solution	
/NHS	

MC1	 Detects	conformational	
epitopes	of	abnormally	
phosphorylated	tau	

Mouse	IgG	
monoclonal	

N/A	 1/500	 Kind	gift	from	Professor	
Peter	Davies	(Albert	
Einstein	College	of	
Medicine,	New	York)	

NHS	

	
	
Table	7:	Secondary	antibodies	used	for	WB	and	IHC	

	
	
	
	
	
	
	
	
	
	

	 	

Secondary	antibody	 WB	 IHC	 Host	 Company	

Anti-mouse	IgG	AlexaFluor680	 1/10000	 N/A	 Goat	 Invitrogen/Molecular	Probes	
Anti-rabbit	IgG	IRDye800	 1/10000	 N/A	 Goat	 Rockland	Laboratories		
Anti-mouse	IgG,	horseradish	peroxidase	linked	with	whole	antibody	 1/1000	 N/A	 Sheep	 GE	Healthcare	Life	Sciences	

Anti-rabbit	IgG,	horseradish	peroxidase	linked	with	whole	antibody	 N/A	 1/1000	 Donkey	 GE	Healthcare	Life	Sciences	
Biotinylated	anti-mouse	IgG	(H+L)	 N/A	 1/1000	 Mouse	 Vector	Laboratories		

Biotinylated	anti-rabbit	IgG	(H+L)	 1/1000	 N/A	 Rabbit	 Vector	Laboratories	
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2.3	Methods	

	

2.3.1	Generation	of	Tau35	mice	

	

Tau35	mice	were	generated	by	targeted	knock-in	of	the	Tau35	cDNA	construct	

fused	 at	 the	C-terminus	 to	 a	HA	 tag	 (Fig.	 1B).	 The	 construct	was	 expressed	

under	the	control	of	the	human	tau	promoter	and	targeted	to	the	Hprt	 locus	

using	“Quick	Knock-inTM”	targeting	(genOway,	Lyon,	France).	The	vector	was	

transfected	 into	E14Tg2a	 embryonic	 stem	 cells	 derived	 from	129/Ola	mice.	

Clones	were	selected	and	validated	on	Southern	blots.	Confirmed	clones	were	

subsequently	injected	into	C57BL6/J	blastocysts.	Heterozygous	females	were	

generated	by	mating	 the	F1	generation	of	 the	male	 chimeras	with	C57BL/6	

females.	 Heterozygous	 females	were	 then	 crossed	with	wild-type	 C57BL/6J	

males	or	with	a	transmitting	chimera	allowing	the	generation	of	hemizygous	

males	and	heterozygous	females	that	were	interbred	to	generate	homozygous	

females,	 and	 these	 mice	 were	 imported	 from	 genOway.	 Genotype-blinded	

behavioral	assessments	were	conducted	on	male	hemizygous	transgenic	and	

WT	mice	during	 the	 light	phase.	All	animal	experiments	were	carried	out	 in	

accordance	 with	 the	 Animal	 (Scientific	 Procedures)	 Act	 1986	 (UK),	 under	

relevant	 Home	 Office	 project	 and	 personal	 licences,	 and	 conformed	 to	

international	guidelines	on	the	ethical	use	of	animals.	

	

2.3.2	Preparation	of	mouse	brain	homogenates	

	

Mice	were	sacrificed	by	cervical	dislocation	and	brains	were	dissected	into	four	

regions	(frontal	region;	hippocampus	and	associated	cortex;	amygdala;	brain	

stem	and	cerebellum).	Tissue	was	frozen	immediately	in	liquid	nitrogen	and	

stored	at	-80	until	use.	Tissue	was	disrupted	in	1ml	ice-cold	extra	strong	lysis	

buffer	(ESLB)	per	brain	region	using	a	Dounce	homogeniser.		

	 	



	 113	

2.3.3	Protein	assay	

	

Protein	 concentration	 of	 brain	 homogenates	 was	 determined	 using	 a	

biconchoninic	 acid	 (BCA,	 Thermo	 Scientific)	 protein	 assay	 according	 to	 the	

manufacturer’s	instruction.	

	

2.3.4	SDS-PAGE	and	western	blotting	

	

Samples	 were	 heated	 at	 100	̊C	 for	 5	 min,	 and	 centrifuged	 for	 5	 min	 at	

16,000g(av).	5-20μg	protein	was	loaded	onto	10%	(w/v)	polyacrylamide	gels	

and	electrophoresed	at	150V	for	80	min	or	until	blue	dye	ran	off	the	bottom	of	

the	 gel.	 Separated	 proteins	 were	 transferred	 to	 0.2	 um	 nitrocellulose	

membranes	(Whatman)	using	a	wet	transfer	system	(Bio-Rad).	Nitrocellulose	

membranes,	 sponges,	 and	 filter	 papers	 (Whatman)	were	 soaked	 in	 transfer	

buffer	prior	to	assembly	in	the	blotting	cassette	and	electro-blotted	at	100V	for	

60	 min.	 To	 reduce	 non-specific	 binding,	 membranes	 were	 incubated	 in	

blocking	 buffer	 for	 1	 hour	 at	 ambient	 temperature,	 prior	 to	 incubation	 in	

primary	 antibody	 (Table	6),	 overnight	 at	4	̊C.	After	washing	3	 times	 in	PBS,	

membranes	 were	 incubated	 in	 the	 appropriate	 fluorophore-conjugated	

secondary	 antibody	 (Table	 7)	 for	 1	 hour	 at	 ambient	 temperature.	 Antigens	

were	visualised	 and	quantified	using	 an	Odyssey®	 infrared	 imaging	 system	

(Li-Cor	Biosciences,	Cambridge,	UK).	All	figures	of	blots	throughout	this	thesis	

show	2	selected	lanes	per	genotype/dose	from	the	same	blot.	

	

2.3.5	PCR	genotyping	

	

Mouse	ear	notches	were	incubated	in	REDExtract-N-Amp	(0.25	ml	per	sample)	

at	ambient	 temperature	 for	10	min,	 followed	by	 the	addition	of	neutralising	

solution	B.	Samples	were	cycled	using	primers	(Table	5)	and	REDExtract-N-

Amp	PCR	reaction	mix.	The	following	cycling	conditions	were	used:	

One	denaturing	cycle	at	94°C	for	2	min	

35	cycles	of	94°C	for	30	s,	55	ºC	for	30	s,	and	68°C	for	5	min.	
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PCR	products	were	electrophoresed	on	1.2%	(w/v)	agarose	gels	and	visualised	

using	ethidium	bromide.	

	

2.3.6	Immunohistochemistry	

	

Tau35	 hemizygous	 mice	 and	 WT	 littermate	 mice,	 aged	 between	 2	 and	 18	

months,	 were	 used	 in	 this	 study.	 Mice	 were	 sacrificed	 by	 intraperitoneal	

injection	 of	 terminal	 anaesthetic	 (pentorbarbital	 at	 50mg/kg),	 followed	 by	

transcardial	perfusion	with	PBS	followed	by	4%	(w/v)	PFA	in	PBS.	The	brains	

and	muscle	 tissue	were	 excised,	 dissected	 and	 post-fixed	 in	 4%	 (w/v)	 PFA	

before	incubating	in	PBS	for	24	hours	at	ambient	temperature.	Tissue	samples	

were	 cryoprotected	 in	 30%	 (w/v)	 sucrose	 in	 PBS	 for	 24	 hours	 at	 ambient	

temperature	and	transferred	into	PBS.	Brain	tissue	was	frozen	for	30	seconds	

in	 isopentane,	 pre-cooled	 to	 -90°C	 in	 dry	 ice,	 and	 stored	 at	 -80°C.	 Muscle	

samples	 were	 embedded	 in	 OCT	 mounting	 medium	 and	 frozen	 in	 chilled	

isopentane	and	stored	at	-80°C.	

	

2.3.7	In-cell	western	assays	

	

Cells	plated	at	a	density	of	100,000	cells	per	well	on	96-well	plates	were	used	

for	in-cell	western	assays.	Cells	were	washed	with	TBS	pre-warmed	to	37	°C	

and	fixed	in	4	%	(v/v)	PFA	in	TBS	for	15	minutes	at	37	°C.	All	traces	of	PFA	

were	 removed	 by	 three	 washes	 with	 TBS,	 and	 cell	 membranes	 were	

permeabilised	by	 the	 addition	of	permeabilisation	 solution	 for	2	minutes	 at	

room	 temperature.	 After	 a	 brief	 wash	 with	 PBS,	 non-specific	 binding	 was	

blocked	 by	 incubation	 in	 ICC	 blocking	 solution	 for	 1	 hour	 at	 ambient	

temperature.	 Following	 blocking,	 primary	 antibody,	 diluted	 in	 ICC	 blocking	

solution,	 was	 added	 and	 left	 to	 incubate	 overnight	 at	 4	 °C.	 The	 primary	

antibody	was	then	removed,	followed	by	three	washes	in	TBS	and	incubation	

with	 the	 appropriate	 species	 of	 fluorophore-coupled	 secondary	 antibodies,	

diluted	 in	 BSA	 blocking	 solution,	 for	 1	 hour	 at	 ambient	 temperature.	 The	

secondary	antibody	was	then	removed	and	the	cells	washed	3	times	with	PBS.	

The	Odyssey®	infrared	scanning	system	(Li-Cor	Biosciences	Ltd.,	UK)	was	used	



	 115	

to	detect	infra-red	fluorescence	emissions	at	700	nm	and	800	nm.	Data	were	

exported	to	Excel	(Microsoft	Corp.,	USA),	where	calculations	were	performed	

to	standardise	the	immunoreactivies	of	proteins	of	interest	against	either	total	

tau	or	β-actin).	Statistical	analysis	was	performed	using	Graphpad	Prism	(Ver	

5.01,	Graphpad	Software	Inc.,	CA,	USA).		

	

2.3.8	Tissue	sectioning	

	

Brain	and	quadriceps	and	latissimus	muscle	samples	were	sectioned	using	a	

cryostat	(Leica	CM1860,	Leica	Microsystems).	Samples	were	mounted	onto	a	

specimen	disc	using	OCT	mounting	medium	and	sectioned	as	 follows:	Brain	

tissue	for	analysis	by	DAB	immunohistochemistry	was	cut	into	30μm	coronal	

sections	and	stored	free	floating	in	TBS-antifreeze	at	-20°C.	

	

2.3.9	DAB	staining	of	mouse	brain	tissue	

	

Free	floating	sections	of	mouse	brain	(2-16	months	of	age)	were	removed	from	

antifreeze	and	transferred	to	Netwell	inserts	(Sigma)	Sections	were	washed	in	

TBS	 and	 treated	 with	 peroxidase	 blocking	 solution	 to	 quench	 the	 sections	

before	being	blocked	blocking	solution	before	incubating	in	primary	antibody	

(Table	6)	for	24	hours	at	4°C.	After	washing	in	TBS,	sections	were	incubated	in	

the	appropriate	biotinylated	secondary	antibody	(Table	7).	The	staining	was	

developed	using	 the	ABC	 system,	 followed	by	 further	washes	 in	TBS	before	

incubation	 in	 DAB.	 Sections	 from	 Tau35	 and	 control	 mouse	 brain	 were	

incubated	 in	 DAB	 for	 identical	 periods	 of	 time	while	 the	 colour	 developed.	

Sections	were	washed	 in	H2O,	 then	TBS,	 prior	 to	mounting	 onto	 Superfrost	

microscope	 slides	 and	 air	 drying	 overnight	 at	 ambient	 temperature.	 Dried	

sections	 were	 washed	 in	 running	 tap	 water,	 counterstained	 using	 Gill’s	

Haemotoxylin	 solution,	 for	 2	 min	 then	 rinsed	 in	 running	 tap	 water,	

differentiated	 in	 2%	 (v/v)	 glacial	 acetic	 acid	 and	 rinsed	 again	 in	 tap	water.	

Sections	 were	 blued	 using	 blueing	 solution	 and	 dehydrated	 in	 increasing	

concentrations	 of	 ethanol	 (70%,	 95%	 and	 100%	 (v/v)),	 before	 clearing	 in	
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xylene	 (Fisher	 Scientific	 Ltd).	 Sections	 were	 mounted	 in	 DPX	 mounting	

medium	 (Sigma),	 coverslipped	 and	 allowed	 to	 set.	 Images	 of	 hippocampal	

(primarily	cortical	area	1	and	3	(CA1/3))	and	cortical	regions	of	mouse	brains	

were	captured	from	DAB-stained	tissue	using	an	EVOS	XL	Core	Imaging	system	

(Thermo	Fisher	Scientific).	

	

2.3.10	 Muscle	 staining	 with	 haematoxylin	 and	 eosin	 and	

muscle	analysis	

	

Muscle	 sections	 from	mice	aged	8	 and	16	months	were	brought	 to	 ambient	

temperature	 and	 outlined	 using	 a	 Pap	 pen	 (Sigma-Aldrich).	 Sections	 were	

washed	 in	TBS	and	blocked	 in	blocking	solution.	Sections	were	 incubated	 in	

primary	antibody	(Table	6)	for	24	hours	at	4°C.	Muscle	sections	were	stained	

using	 DAB.	 Sections	 from	 Tau35	 and	 control	 mouse	 muscle	 tissue	 were	

incubated	 in	 DAB	 for	 identical	 periods	 of	 time	while	 the	 colour	 developed.	

Sections	were	washed	in	water,	then	TBS,	prior	to	staining	with	haematoxylin	

for	2	min.	Following	counterstaining	with	Gill’s	haematoxylin,	differentiation	

and	bluing,	the	muscle	sections	were	incubated	in	eosin	for	10	minutes.	Excess	

eosin	was	removed	by	repeated	washes	in	water	and	sections	were	dehydrated	

in	 increasing	 concentrations	of	 ethanol	 (70%,	90%	and	100%	(v/v))	before	

being	cleared	 in	xylene	and	mounting	 in	DPX	(Sigma).	Muscle	sections	were	

imaged	using	an	EVOS	XL	Imaging	system.	The	number	of	 individual	muscle	

fibres	harbouring	 internal	nuclei	was	expressed	as	a	percentage	of	 the	 total	

muscle	 fibres.	 The	 minimal	 Ferret’s	 diameter	 of	 20–40	 fibres	 from	 three	

animals	 of	 each	 genotype	 was	 calculated	 using	 ImageJ	 to	 determine	 the	

distribution	of	muscle	fibre	sizes.	For	analysis	3	slides	were	used	per	mouse	

and	 10	 different	 images	 from	 every	 muscle	 section	 were	 counted	 and	

measured.	
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2.3.11	Extraction	of	aggregated	tau	from	Tau35	mouse	brain		

	

For	 sarkosyl	 extraction,	 frozen	 mouse	 hippocampal	 sections	 were	

homogenised	in	fresh	homogenisation	buffer	using	a	Tissue	Master-125	Omni	

International	mechanical	homogeniser	(Omni	Tissue	Master	125)	with	a	final	

concentration	 of	 100	 mg/ml.	 Samples	 were	 centrifuged	 in	 a	 bench	 top	

centrifuge	at	maximum	speed	13,000g(av)	for	20	min	at	4	°C.	The	supernatant	

(low	speed	supernatant,	LSS)	was	collected	and	an	aliquot	was	frozen	at	-20	°C	

for	total	brain	western	blots,	and	pellets	were	stored	at	-20	°C.	Sodium	lauroyl	

sarcosinate	(sarkosyl;	Sigma-Aldrich)	was	added	to	the	remaining	supernatant,	

resulting	 in	 a	 final	 sarkosyl	 concentration	 of	 1%	 (w/v).	 Samples	 were	

incubated	at	ambient	temperature	for	30	min	with	shaking	before	centrifuging	

at	100,000	g(av)	for	1h	at	ambient	temperature.	The	high	speed	supernatant	

(HSS,	 sarkosyl-soluble	 fraction)	 was	 collected	 and	 stored	 at	 -20°C.	 The	

remaining	pellet	(sarkosyl-insoluble	 fraction)	was	washed	with	1%	sarkosyl	

by	centrifuging	at	100,000	g(av)	for	10	min,	then	resuspended	in	2x	Laemmli	

buffer	with	5%	β-merceptoethanol	and	stored	at	-20	°C.	For	western	blots	the	

LSS	 and	HSS	 fractions	were	mixed	 1:1	with	 2x	 Laemmli	 buffer	with	 5%	 β-

mercaptoethanol.	

	

2.3.12	Animals,	behavioural	analysis	and	drug	treatment	

	

2.3.12.1	Animals	

	

All	mice	used	in	this	study	were	male	animals,	either	expressing	Tau35	or	of	

the	equivalent	background	(wild-type,	WT)	strain.	Mice	were	bred	and	reared	

in-house	 and	 were	 weaned	 at	 3	 weeks	 of	 age.	 Transgenic	 animals	 were	

identified	 by	 PCR.	 Control	mice	were	WT	male	 littermates.	 All	 animals	 had	

unlimited	 access	 to	 rodent	 chow	 (RM1	 for	 all	 mice	 except	 breeders	 which	

received	RM3	 from	Special	Diet	 Services,	 Essex,	U.K.)	 and	water.	Mice	were	

singly	 or	 group	 housed	 with	 a	 12hour	 light-dark	 cycle	 with	 constant	
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temperature.	Genotype-blinded	behavioural	assessments	were	conducted	on	

transgenic	and	WT	mice	during	the	light	phase.	

	

2.3.12.2	Mouse	survival	time	

	

All	mice	were	sacrificed	when	reaching	end	stage	using	cageside	observations	

of	their	body	posture,	eye	appearance	and	activity	level.	Kaplan-Meier	survival	

curves	were	for	constructed	for	Tau35	and	WT	mice	to	analyse	cumulative	and	

median	survival	times	using	GraphPad	Prism	(n=10	for	each	genotype).	

	

2.3.12.3	Limb	clasping	reflex	

	

Mice	were	suspended	by	their	tail	 for	20	seconds	and	assessed	for	hind	and	

forelimb	clasping.	Mice	were	scored	on	a	binary	scale,	as	either	clasping	or	not	

clasping,	 and	 the	 percentage	 of	 mice	 clasping	 within	 each	 age	 group	 (1-18	

months)	was	calculated.	

	

2.3.12.4	Assessment	of	kyphosis	

	

To	assess	kyphosis	mice	were	carefully	dissected	and	tissue	dissolved	in	1%	

(w/v)	KOH,	20%	(v/v)	glycerol,	following	careful	dissection	of	the	spine.	The	

kyphosis	 index	(KI)	was	 then	determined	by	 the	 following	 formula,	adapted	

from	 Laws	 &	 Hoey	 2004.	 Distance	 between	 the	 last	 cervical	 vertebra,	

corresponding	the	dip	in	the	neck	area	or	posterior	edge	of	L6,	and	the	caudal	

margin	 of	 the	 sixth	 lumbar	 vertebra	 (=length),	 divided	 by	 the	 length	 of	 a	

perpendicular	line	to	the	most	dorsal	edge	of	the	vertebra	at	the	point	where	

the	greatest	curvature	occurred	(=height)	(Figure	3.9a).	Data	were	analysed	

using	one-way	ANOVA.	
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2.3.12.5	Rotarod	performance	

	

Rotarod	 analysis	 was	 performed	 on	 a	 UgoBasile7650	 accelerating	 Rotarod	

(Linton	Instruments,	Diss,	UK),	modified	to	accelerate	from	4	to	40	rpm	over	a	

period	 of	 500s.	 All	mice	 received	 an	 initial	 training	 session	 of	 2	minutes	 at	

2	revolutions	per	minute	(rpm)	to	allow	the	animals	to	acclimatise.	Mice	were	

tested	once	a	month	for	4	consequitive	days	and	the	average	of	3	readings	of	

their	latency	to	fall	from	the	Rotarod	was	recorded.	Data	were	analysed	using	

one-way	ANOVA	(Hockly	et	al.	2003).	

	

2.3.12.6	Grip	strength	

	

Test	 mice	 were	 assessed	 for	 forelimb	 and	 All	 limb	 grip	 strength	 using	 the	

Linton	Instrumentation	Grip	Strength	Meter.	Animals	were	 lowered	by	their	

tail	 towards	 a	 metal	 grid	 and	 allowed	 to	 grasp	 the	 grid	 with	 either	 their	

forelimbs	only	or	all	four	limbs.	Mice	were	then	pulled	steadily	away	from	the	

apparatus	with	constant	 force.	Average	of	3	readings	per	mouse	were	taken	

and	analysed.	Data	were	analysed	using	ANOVA.	

	

2.3.12.7	Olfactory	habituation	

	

Mice	were	placed	in	a	clean	standard	housing	cage	with	bedding,	and	allowed	

to	acclimatise	for	24	hours.	Before	testing,	bedding	was	removed	and	odours	

were	presented	as	follows:	3	x	water	(neutral),	3	x	bananas	(non-social),	and	3	

x	age-matched	male	mouse	urine	(social).	Banana	essence	(Natural	Products	

Co-Op)	was	diluted	1/100	in	water	and	urine	was	diluted	1/250	in	water.	The	

time	 each	 mouse	 spent	 sniffing	 each	 odour	 was	 quantified	 for	 each	 trial	

(adapted	from	Young	&	Goldstein	2012).	

	 	



	 120	

2.3.12.8	Locomotor	activity	

	

At	eight	months	of	age,	the	locomotor	activity	of	animals	was	assessed	in	a	60	

cm	diameter	circular	open	field	environment.	Mice	were	placed	 in	the	outer	

part	of	the	arena	facing	the	outer	wall	and	allowed	to	explore	the	open	field	

freely	for	30	min.	The	open	field	was	divided	into	three	circular	zones	(outer,	

middle,	and	inner)	and	the	number	of	entries	made	by	each	mouse	and	the	time	

spent	 in	 each	 zone	was	 quantified.	 Trials	were	 videoed	 and	 analysed	 using	

EthovisionXT	7.1	(Noldus,	The	Netherlands).	Data	were	analysed	using	ANOVA.	

	

2.3.12.9	Morris	water	maze	

	

A	 pool	 of	 1.2	 m	 diameter	 was	 filled	 with	 opacifier	 (Acusol	 OP301,	 DOW	

chemical	company)	and	water	and	maintained	at	ambient	temperature	(21°C).	

The	maze	was	surrounded	by	spatial	cues	on	the	wall.	The	pool	was	divided	

into	quadrants	on	the	tracking	device	(target,	opposite,	left	and	right).	Visible	

platform	 training	 was	 performed	 on	 day	 one	 followed	 by	 fixed	 non-visible	

platform	training	for	the	next	four	consecutive	days,	with	four	trials	per	day.	

Average	swim	speed,	path	length,	and	time	taken	to	reach	the	platform	were	

tracked	using	EthovisonXT	7.1.	One	hour	after	the	final	 trial	on	day	5,	a	one	

minute	probe	trial	was	conducted	in	which	the	platform	was	removed,	and	the	

percentage	time	spent	in	each	quadrant	was	recorded.	Spatial	learning	for	each	

day	was	analysed	using	one-way	ANOVA.	

	

2.3.12.10	Treatment	of	mice	with	phenyl	butyrate	

	

Phenylbutyrate	(PBA)	was	prepared	by	titrating	equimolecular	amounts	of	4-

phenylbutyric	acid	(Sigma-Aldrich)	with	sodium	hydroxide	to	pH	7.4	and	filter	

sterilised.	Groups	of	eight	Tau35	and	wildtype	mice	(7.5	and	8.5	months)	were	

treated	 with	 PBA	 (400	 mg/kg,	 intraperitoneally	 daily)	 or	 vehicle	 (sterile	

water)	for	6	weeks	(Ricobaraza	et	al.,	2009)	(n	=	8	per	treatment	group).	 	
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2.3.4	Statistical	analysis	

	

All	 statistical	 analysis	 was	 performed	 using	 SPSS	 software	 except	 for	 the	

survival	Kaplan	Meier	curve	 for	which	graph	pad	prism	was	used.	To	check	

data	was	normally	distributed,	the	Levine	test	for	homogeneity	of	variance	and	

Kolmogorov-Smirnov	 test	were	used	 to	 test	 for	normality.	One-way	ANOVA	

was	used	to	compare	between	groups,	as	indicated	above	for	all	data	except	for	

Kaplan	Meier	survival	curve	which	used	the	Log-rank	(Mantel-Cox)	test.	For	

ICW	analysis,	effect	size	was	measured	using	Cohens	D	with	ranking	0.2:	small,	

0.5:	medium	and	0.8:	large	effect	size.	 	
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CHAPTER	3	
	

Expression	 of	 a	 human-tauopathy-derived	 N-

terminally	 truncated	 tau	 fragment	 in	 mice	 causes	

behavioural,	biochemical	and	pathological	deficits	

	

3.1	Introduction	

	

Tauopathies	 have	 distinct	 clinical	 presentations	which	 are	 characterised	 by	

progressive	 cognitive	 and/or	 motor	 dysfunction.	 Neuropathologically,	

tauopathies	 exhibit	 highly	 phosphorylated	 aggregates	 of	 the	 microtubule-

associated	 protein	 tau	 in	 brain	 and	 peripheral	 nerve.	Whereas	 Alzheimer’s	

disease	(AD)	shows	primarily	a	cognitive	dysfunction	other	tauopathies,	such	

as	 progressive	 supranuclear	 palsy	 (PSP),	 corticobasal	 degeneration	 (CBD),	

Pick’s	disease	(PiD),	and	FTLD-tau	present	mainly	with	motor	deficits	and	later	

stage	 cognitive	 decline	 (Neary	 et	 al.,	 1988;	 Lee	 et	 al.,	 2001;	 Goedert	 and	

Spillantini,	2011)	Previous	mouse	models	of	 tauopathy	have	 focused	almost	

entirely	 on	 modelling	 of	 diseases	 such	 as	 AD	 (e.g.	 3xTg	 and	 specific	 tau	

mutations	causal	for	FTLD-tau	(FTD	associated	with	MAPT	mutations))	(Oddo	

et	al.,	2003).	Although	tau	mutations	account	for	a	small	percentage	(~2%)	of	

tauopathies,	 the	 majority	 of	 these	 disorders	 are	 sporadic	 and	 of	 unknown	

cause,	and	for	these	novel	animal	models	are	urgently	required.	Existing	rodent	

models	of	human	 tauopathy	 invariably	 involve	significant	overexpression	of	

mutant	 or	 wild-type	 (WT)	 tau	 under	 the	 control	 of	 a	 variety	 of	 different	

promoters	 (Denk	 and	 Wade-Martins,	 2009;	 Zilka	 et	 al.,	 2009;	 Noble	 et	 al.,	

2010).	 These	 lines	 may	 exhibit	 substantial	 over-expression	 artefacts	 since	

increased	 tau	 is	 detrimental	 to	 neuronal	 function	 (Ebneth	 et	 al.,	 1998).	

Therefore,	new	models	expressing	low	levels	of	physiologically	relevant	tau	are	

essential	to	fully	elucidate	the	mechanism	of	tau	in	vivo.	
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Tau	 truncation	 is	 a	 pathological	modification	 altering	 the	 subcellular	

localisation	 and	 leading	 to	 the	 accumulation	 of	 toxic	 truncated	 fragments	

causing	 cellular	 dysfunction,	 cell	 death,	 neuronal	 loss	 and/or	 increased	 tau	

phosphorylation	 and	 aggregation	 in	 a	 variety	of	 tauopathies	 (Wischik	 et	 al.,	

1988a;	Novák,	1994;	Amadoro	et	al.,	2004;	Arai	et	al.,	2004;	Igaz	et	al.,	2008;	

Quintanilla	et	al.,	2009).	Numerous	mammalian	models	exist	that	replicate	the	

normal	and	pathological	functions	of	tau	but	very	few	are	available	to	model	

tau	 truncation	and	disease	manifestation.	The	 first	 tau	 truncation	rat	model	

expressing	human	truncated	tau	was	generated	by	Felicia	and	Novak	(Filipcik	

et	al.,	2012),	who	identified	extensive	neurofibrillary	degeneration	generated	

by	the	expression	of	a	tau	fragment.	These	findings	demonstrate	the	important	

association	of	 truncated	 fragments	of	3R	and	4R	 isoforms	of	human	WT	tau	

with	 distinct	 tangle	 formation.	 Nevertheless,	 both	 these	 rat	models	 did	 not	

show	extensive	neuronal	loss	implicating	truncated	tau	in	tangle	formation.	

Our	 lab	 previously	 identified	 a	 highly	 phosphorylated	C-terminal	 tau	

fragment	in	the	brains	of	people	affected	by	4R	tauopathies	(Wray	et	al.,	2008)	

the	most	common	tau	isoform	imbalance	observed	in	the	tauopathies	(Goedert	

and	Spillantini,	2011).	To	evaluate	the	pathological	role	of	this	truncated	tau	

species,	 a	new	 transgenic	mouse	 line	 (Tau35	mice)	 expressing	 this	disease-

associated	 tau	 fragment	 under	 the	 control	 of	 the	 human	 tau	 promoter	was	

generated	 (Bondulich	 et	 al.,	 2016).	 In	 contrast	 to	 the	 majority	 of	 mouse	

overexpression	 models	 in	 the	 current	 literature,	 transgene	 expression	 in	

Tau35	mice	is	<10%	of	the	total	amount	of	tau	(data	provided	by	Tong	Guo,	

King’s	 College	 London)	 and	 therefore	 non-physiological	 functions	 of	 over-

expressed	tau	are	avoided.	In	addition,	Tau35	mice	also	provide	a	model	for	

tauopathies	such	as	PSP	and	CBD,	for	which	no	mammalian	models	expressing	

WT	 tau	 currently	 exist.	 Nevertheless,	 the	 commonalities	 in	 tau-associated	

neurodegeneration	between	the	different	tauopathies	suggest	that	Tau35	mice	

provide	 a	 human	 disease-relevant	 model	 with	 which	 to	 further	 our	

understanding	 of	 the	 molecular	 mechanisms	 underlying	 related	 disorders,	

such	as	AD.		

In	 this	 chapter,	 the	 biochemical,	 neuropathological	 and	 behavioural	

characterisation	of	the	new	Tau35	mice	line	is	described.	Evidence	is	provided	
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that	 low	 level	 expression	 of	 an	 N-terminally	 truncated	 human	 derived	 tau	

fragment	in	Tau35	mice	leads	to	the	development	and	progression	of	a	human	

tauopathy-like	disease	phenotype	(Bondulich	et	al.,	2016).	The	abnormalities	

in	Tau35	mice	include	altered	tau	processing	and	neuropathology,	deficits	in	

cognitive	and	motor	function,	muscle	degeneration	and	impaired	proteostasis	

	

3.2	Results	

In	order	for	a	mouse	model	to	be	an	effective	translational	parallel	to	human	

disease,	it	is	essential	to	evaluate	its	pathophysiological	profile	and	how	well	

this	 parallels	 disease	 progression	 seen	 in	 humans.	 This	 chapter	 aims	 to	

characterise	 aspects	 of	 the	 (1)	 behavioural,	 (2)	 biochemical	 and	 (3)	

pathological	changes	observed	in	the	Tau35	transgenic	mice	compared	to	WT	

littermates	and	to	determine	how	this	parallels	the	clinical	manifestations	of	

human	 tauopathies.	 These	 experiments	 used	 male	 mice	 only	 to	 avoid	 the	

complications	of	the	oestrous	cycle	during	different	stages	and	ages	of	mouse	

behaviour.	 Additionally,	 as	 the	 transgene	was	 X-linked,	males	were	 used	 to	

prevent	 potential	 X-linked	 inactivation	 in	 female	 mice	 which	 can	 affect	

expression	levels.	Successful	baseline	evaluation	allows	further	investigation	

into	Tau35	mice,	leading	to	a	potential	new	model	of	human	tauopathy.	

	

3.2.1	 Generation	 and	 transgene	 expression	 of	 Tau35	

mice	

	

3.2.1.1	Generation	of	Tau35	mice	

	

The	Tau35	truncated	fragment	of	tau	was	first	identified	by	this	laboratory	in	

diseases	in	which	4R	tau	accumulates	in	the	brain	(Wray	et	al.,	2008).	Antibody	

epitope	scanning	was	used	to	confirm	that	Tau35	is	an	N-terminally	truncated,	

C-terminal	intact	fragment	that	contains	4R	microtubule-binding	repeats,	and	

which	exists	both	 in	PSP	and	CBD	but	 is	absent	 from	AD	and	control	brains	
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(Wray	et	al.,	2008).	Mass	spectrometry	analysis	revealed	that	the	C-terminus	

of	Tau35	precisely	matches	that	of	full-length	tau.	In	full	length	tau	the	amino	

terminal	domain	of	 tau	contains	 two	 inserts	 (N1,	N2),	 followed	by	a	 central	

proline-rich	domain	 and	MT	binding	domain,	which	 comprises	 four	 repeats	

(R1-R4).	 Tau35	 retains	 the	 majority	 of	 the	 proline-rich	 domain,	 four	 MT	

binding	 repeats	 and	 an	 intact	 C-terminus	 (Figure	 3.1b).	 To	 evaluate	 the	

pathological	role	of	this	species	of	truncated	tau,	a	new	transgenic	mouse	line	

(Tau35	mice)	expressing	this	disease-associated	tau	fragment	was	generated	

via	 targeted	 insertion	 of	 human	 Tau35	 construct	 under	 the	 control	 of	 the	

human	 tau	promoter	 at	 the	hypoxanthine	phosphoribosyltransferase	 (Hprt)	

locus	(Bronson	et	al.,	1996).	This	strategy	ensures	single	copy	gene	integration	

thereby	 eliminating	 the	 requirement	 to	 generate	 and	 characterise	 multiple	

founder	lines	and	reduces	the	potential	for	any	possible	complications	due	to	

over	expression	of	the	transgene,	which	has	previously	been	a	major	factor	in	

several	 other	 transgenic	 lines	 (Götz	 et	 al.,	 2007).	 Use	 of	 the	 human	 tau	

promoter	 regulates	 expression	 of	 tau	 to	 regions	 in	 which	 tau	 is	 normally	

expressed.	In	order	to	distinguish	transgenic	Tau35	from	endogenous	mouse	

tau,	 a	 haemagglutinin	 (HA)	 tag	 was	 fused	 to	 the	 C-terminal	 of	 the	 Tau35	

sequence	(Figure	3.1a).	Mice	were	genotyped	for	accurate	analysis	prior	to	any	

behavioural,	 biochemical	 or	 pathological	 testing.	 Genotyping	 of	 the	 animals	

resulted	 in	 either	 a	 double	 band	 (upper	 band:	 535bp;	 lower	 band:	 677bp),	

indicating	heterozygous	females,	a	single	lower	band	(677bp),	indicating	WT	

male	or	female	mice	and	an	upper	single	band,	indicating	hemizygous	male	or	

homozygous	female	mice	(Figure	3.1c).		 	
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Figure	3.1:	Tau35	construct	and	genotyping	outcome.	(a)	Construct	used	

to	generate	Tau35	mice	with	the	human	tau	promoter	(phTau),	upstream	of	

the	 Tau35	 sequence	 with	 the	 hemagglutinin	 tag	 (HA).	 The	 hypoxanthine	

phosphoribosyltransferase	 promoter	 (pHprt)	 and	 exons	 1,	 2,	 3,	 enabled	

targeted	integration	of	the	Tau35-HA	transgene.	(b)	schematic	representation	

of	 the	 expressed	Tau35-HA	protein	 in	 comparison	 to	 full-length	 human	 tau	

(441	 amino	 acids).	 The	 epitopes	 of	 the	 phospho-dependent	 (orange	 boxes),	

conformation-dependent	 (black	 boxes)	 and	 region-specific	 (grey	 boxes)	 tau	

antibodies	used	in	this	study	are	indicated	above	full	length	tau.	(c)	Agarose	

gel	showing	Tau35	and	WT	genotyping,	lower	Hprt	band	only	represents	WT,	

lower	677	bp	and	upper	345	bp	bands	represents	Het	females,	upper	band	only	

represents	homozygous	female	or	hemizygous	male	mice.	 	
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3.2.1.2	Transgene	expression	in	Tau35	mice	

	

In	order	to	confirm	expression	of	the	Tau35-HA	transgene	in	the	mice,	RT-PCR	

was	used	to	discriminate	transgenically	encoded	mRNA	yielding	an	HA	band	in	

Tau35	but	not	WT	mice	confirming	expression	of	HA-Tau35	in	these	animals	

(work	by	Tong	Guo)	(Bondulich	et	al.,	2016).	Tau35-HA	transgene	expression	

was	determined	relative	to	endogenous	mouse	tau	by	PCR	(work	by	Tong	Guo)	

(Bondulich	et	al.,	2016).	The	total	amount	of	tau	mRNA	was	similar	in	WT	and	

Tau35	mice,	showing	that	Tau35	does	not	disturb	expression	of	endogenous	

tau.	The	amount	of	mouse	tau	mRNA	in	Tau35	mice	comprised	93%	±	2%	of	

total	 tau	 expression.	 Hence,	 Tau35	 transgene	 expression	 is	 estimated	 to	

comprise	<10%	of	total	tau	mRNA,	similar	to	a	previous	report	using	the	same	

promoter	in	tau	mutant	mice	(Dawson	et	al.,	2007).		

Translation	of	the	transgenic	tau	fragment	was	verified	in	Tau35	mice	

by	immunohistochemical	labelling	and	on	western	blots	using	an	HA	antibody	

(Figure	 3.2).	 The	 distribution	 of	 HA	 labelling	 closely	 matches	 endogenous	

mouse	tau	expression	in	the	Allen	Developing	Mouse	Brain	Atlas	(©2014	Allen	

Institute	for	Brain	Science.	Available	from:	http://mouse.brain-map.org/	(Lein	

et	al.,	2007),	including	expression	in	the	hippocampus,	the	cortex,	basal	nuclei,	

pontine	 grey,	 superior	 and	 inferior	 colliculus,	 and	 cerebellum.	 HA	

immunoreactivity	was	intense	in	cell	bodies	and	dendrites	of	neurons,	but	was	

very	weak	or	absent	from	axons	in	white	matter	tracts.	The	glial	cells	were	not	

HA-positive.	No	HA	labelling	was	apparent	in	WT	mouse	brain.		

	 	



	 128	

	

Figure	 3.2:	 Transgene	 level	 expression	 in	 Tau35.	 Sagittal	 sections	 show	

widespread	 HA	 labelling	 in	 Tau35	 mouse	 brain	 (scale	 bar=2	 mm).	 Higher	

magnifications	 of	 the	 hippocampal	 CA1	 region	 show	 strongly	 HA-positive	

pyramidal	neurons	in	Tau35	mice	(scale	bar=200	μm).		

	

	

	

To	 determine	 the	 levels	 of	 Tau35	 protein	 expression	 in	 the	 Tau35	

transgenic	 mice	 compared	 to	 their	 WT	 littermates,	 different	 mouse	 brain	

regions	and	spinal	cord	were	analysed	for	Tau35	expression	levels	on	western	

blots	probed	with	an	antibody	against	HA	(Figure	3.3).	An	HA-positive	species	

corresponding	 to	Tau35	was	detected	at	~35kDa	 in	all	brain	 regions	 tested	

(frontal	cortex,	hippocampus	and	associated	cortex,	amygdala,	brain	stem	and	

cerebellum)	 and	 also	 in	 the	 spinal	 cord	 of	 transgenic	 mice,	 but	 not	 in	WT	

animals.	 Blots	 were	 probed	 with	 antibody	 to	 β-actin	 as	 a	 loading	 control.	

Analysis	of	transgenic	Tau35-HA	expression,	relative	to	β-actin,	indicated	no	

significant	differences	 in	expression	between	these	brain	regions	but	higher	

levels	in	both	hippocampus	and	amygdala	(Figure	3.3).	
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Figure	 3.3:	 Protein	 level	 expression	 in	 Tau35	 brain	 and	 spinal	 cord.	

Western	 blots	 of	 different	 brain	 regions	 and	 spinal	 cord	 show	 HA	 protein	

expression	 only	 in	 Tau35	 mice.	 Quantification	 shows	 similar	 transgene	

expression	in	all	brain	regions	and	spinal	cord	of	HA	relative	to	β-actin.	Results	

are	shown	as	mean	±	SEM	(n=3	mice	for	each	genotype).	

	

3.2.2	Behavioural	characterisation	of	Tau35	mice	

	

For	behavioural	 analyses,	 groups	of	n=8-40	male	Tau35	and	WT	mice	were	

tested	serially	between	 the	ages	of	1	and	18	months	of	 age,	 as	described	 in	

section	2.3.12	Animals,	behavioural	analysis	and	drug	treatment.	

	

3.2.2.1	Survival	is	reduced	in	Tau35	mice	

	

The	life	spans	of	WT	and	Tau35	mice	were	determined	and	used	to	construct	a	

Kaplan-Meier	survival	curve	(Figure	3.4).	Tau35	mice	had	a	median	survival	of	

717	 days	 compared	 to	 788	 days	 in	 WT	 mice	 (Log-rank	 (Mantel-Cox)	 test,	

P<0.05)),	showing	that	low-level	expression	of	Tau35	significantly	decreases	

life-span.		
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Figure	3.4:	Survival	of	Tau35.	Kaplan-Meier	survival	plots	of	Tau35	mice	and	

WT	littermates.	Tau35	have	a	median	lifespan	of	717	days,	compared	to	788	

days	for	WT	mice,	n=10	for	each	genotype.	

	

3.2.2.2	Tau35	exhibit	no	changes	in	weight	with	aging	

	

Despite	their	reduced	survival,	there	was	no	statistically	significant	difference	

in	the	mean	weight	of	Tau35	and	WT	mice	between	the	ages	of	2	and	18	

months	(Figure	3.5,	P>0.05).	This	indicates	that	Tau35	protein	expression	did	

not	influence	weight	in	these	mice.	

	

	
Figure	 3.5:	 Tau35	 and	 WT	 mice	 body	 weight.	 Graph	 showing	 the	 body	

weights	of	age-matched	Tau35	and	WT	mice	between	2	and	18	months	of	age.	

Values	represent	mean	and	±	SEM,	n=8	per	genotype.	
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3.2.2.3	Tau35	mice	exhibit	an	early	limb	clasping	phenotype	

	

Aberrant	 clasping	 of	 forelimbs	 and/or	 hindlimbs	 is	 a	 marker	 of	 disease	

progression	 in	a	number	of	neurodegenerative	mouse	models	and	has	been	

seen	most	typically	in	mouse	models	of	Huntington’s	disease,	but	has	also	been	

observed	in	other	mouse	models	of	neurodegenerative	disease,	particularly	in	

AD	models	(Lin,	2001;	Filali	et	al.,	2012).	The	Tau35	mice	showed	a	biphasic	

and	marked	clasping	phenotype	(Figure	3.6a).	At	two	to	three	months	of	age,	

when	clasping	was	first	observed,	approximately	2%	of	Tau35	mice	exhibit	a	

clasping	phenotype,	with	an	incidence	of	5%	at	4	months	of	age	(Figure	3.6a).	

The	incidence	of	 limb	clasping	in	Tau35	mice	increased	markedly	to	26%	at	

five	months	of	age.	There	was	a	steady	 increase	 in	 the	 incidence	of	clasping	

from	6	to	11	months	and	another	marked	increase	at	12	months,	by	which	time	

when	82%	of	Tau35	mice	exhibited	a	clasping	phenotype.	By	16	months,	100%	

of	 the	 Tau35	mice	 exhibited	 clasping	 (Figure	 3.6b).	 Limb	 clasping	 was	 not	

observed	 in	 any	 WT	 mice	 of	 the	 same	 ages.	 These	 results	 demonstrate	 a	

progressive	age-related	loss	of	the	normal	limb	extension	reflex	in	Tau35	mice.	
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Figure	3.6:	Expression	of	Tau35	 induces	progressive	 limb	clasping.	 (a)	

Tau35-expressing	mice	clasp	their	hind	limbs	and	forelimbs	from	an	early	age	

when	suspended	by	the	tail	(left,	WT,	wild-type;	right,	Tau35)	both	at	8	months	

of	age.	(b)	The	proportion	of	Tau35	mice	exhibiting	clasping	was	determined	

at	 intervals	 between	 1	 and	 18	months	 of	 age.	 Limb	 clasping	 is	 apparent	 in	

Tau35	mice	from	2	months	of	age	with	all	Tau35	animals	affected	by	18	months	

(n=40).	 Clasping	 was	 not	 observed	 in	 wild-type	 (WT)	 mice	 at	 any	 age	

examined.		

	

	

3.2.2.4	Tau35	mice	exhibit	early	onset	motor	learning	deficits		

	

A	variety	of	human	tauopathies	show	an	early	and	extensive	motor	dysfunction	

prior	to	the	appearance	of	any	cognitive	impairment,	and	particularly	in	PSP,	

CBD	 and	 FTLD-tau.	 Therefore,	 motor	 learning	 coordination	 skills	 were	

determined	 by	 measuring	 Rotarod	 performance	 of	 Tau35	 mice.	 Motor	

coordination	was	assessed	on	an	accelerating	Rotarod	 from	1-16	months	of	

age.	Compared	to	WT	mice,	Tau35	mice	showed	a	significant	decrease	in	their	

latency	to	fall	from	the	Rotarod,	from	the	first	day	tested	at	1	month	of	age	and	

consecutively	at	 all	 ages	 tested	 (Figure	3.7a,	P<0.05),	Tau35	mice	 showed	a	

progressive	deterioration	with	age,	 indicating	an	 impairment	 in	 their	motor	

coordination	ability.	To	 further	assess	 skilled	behavioural	 learning,	 the	data	

were	analysed	for	single	day	performance	over	the	four	day	testing	period	at	

the	 ages	 of	 one,	 two,	 four	 and	 six	 months.	 Tau35	 showed	 impaired	 motor	
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learning	performance	at	all	ages	with	and	an	overall	inability	to	learn	to	remain	

on	the	Rotarod	compared	to	WT	mice	which	showed	learning	behaviour	at	1	

and	 2	 months	 of	 age	 (Figure	 3.7b-e).	 Testing	 for	 motor	 co-ordination	 and	

learning	ability	showed	that	Tau35	mice	have	a	reduced	motor	learning	ability,	

which	decreased	with	age,	indicating	a	progressive	age-related	defect	in	motor	

co-ordination	(Figure	3.7).	

	

	

	

Figure	3.7:	Motor	learning	performance	of	Tau35	and	WT	mice	(a)	Mean	

latency	to	fall	from	an	accelerating	Rotarod	for	Tau35	and	WT	mice	between	1	

and	16	months	of	age.	Tau35	mice	show	a	significant	impairment	compared	to	

WT	 mice	 at	 all	 ages	 tested.	 (b-e)	 Individual	 days	 of	 Rotarod	 performance	

between	1	and	6	months	of	age.	Values	shown	are	mean	±	SEM,	n=8	for	each	

genotype.	**P<0.01,	***P<0.001,	ANOVA.	 	
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3.2.2.5	Tau35	mice	exhibit	neuromuscular	deficits		

	

Motor	 deficits	 are	 often	 attributed	 to	 reduced	 neuromuscular	 strength,	

therefore	the	grip	strength	was	tested	of	either	the	forelimbs	only	or	all	limbs	

in	 Tau35	 mice	 aged	 4-16	 months.	 Whereas	 WT	 mice	 exhibited	 a	 steady	

increase	in	grip	strength	across	this	age	range,	it	was	apparent	that	Tau35	mice	

showed	a	significant	reduction	in	grip	strength	from	the	age	of	6	months,	which	

decreased	further	up	to	16	months	of	age	(Figure	3.8,	P<0.001).	Tau35	mice	

showed	no	 significant	 difference	 in	 forelimb	 grip	 strength	 compared	 to	WT	

mice	 at	 all	 ages	 tested	 (Figure	 3.8).	 These	 results	 show	 a	 progressive	

deterioration	in	muscle	tone	of	Tau35	mice	from	an	early	age	and	the	rate	of	

decline	accelerates	slightly	between	8	and	12	months	of	age.	Interestingly,	the	

results	of	the	grip	strength	test	parallel	the	increase	in	clasping	seen	in	Tau35	

mice	at	5	months	(Figure	3.6).	

	

	

	

Figure	3.8:	Grip	strength	of	Tau35	and	WT	mice.	Grip	strength	of	Tau35	and	

WT	mice	at	4-16	months	of	age.	WT	mice	show	an	age-related	increase	in	grip	

strength,	whereas	Tau35	mice	show	a	progressive	decline	from	6	months	of	

age.	 Values	 shown	 are	 mean	 ±	 SEM,	 n=8	 for	 each	 genotype,	 **P<0.01,	

***P<0.001,	ANOVA.	 	
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3.2.2.6	Tau35	mice	exhibit	curvature	of	the	spine	(kyphosis)	

	

Kyphosis	is	a	curvature	of	the	spine	that	is	observed	primarily	in	mouse	models	

of	muscular	dystrophy,	and	prion	disorders,	and	is	not	a	common	symptom	of	

human	 tauopathies	 but	 rather	 of	 neuromuscular	 diseases	 (Laws,	 2004).	

Nevertheless,	kyphosis	has	previously	also	been	reported	in	parkin	null	mice,	

and	in	mice	over-expressing	human	mutant	tau	and	Niemann–Pick	type	C	mice	

(Pacheco	et	al.,	2008;	Rodríguez-Navarro	et	al.,	2008).	The	kyphotic	index	(KI)	

was	 determined	 as	 described	 by	 (Laws,	 2004)	 to	 quantify	 the	 degree	 of	

kyphosis	in	Tau35	and	WT	animals	aged	4-14	months	(Figure	3.9a).	However,	

instead	of	measuring	KI	from	radiographs	(which	were	not	readily	available)	

the	spines	of	mice	were	manually	determined	(see	section	2.3.12.4	Assessment	

of	kyphosis	Figure	3.9a,	b).	WT	mice	had	a	KI	of	4.4-4.6	at	all	ages	examined,	

similar	to	previously	reports	(Laws,	2004;	Vianello	et	al.,	2014).	Tau35	mice	

aged	 4	months	 also	 exhibited	 a	 KI	 of	 4.5,	 similar	 to	 their	WT	 counterparts.	

However,	 the	 KI	 of	 Tau35	 mice	 decreased	 to	 3.8	 at	 6	 months	 of	 age	 and	

continued	 to	 steadily	decline	 to	2.9	by	14	months	of	 age	 (Figure	3.9c).	This	

reduction	 in	 the	KI	of	Tau35	mice	demonstrates	a	progressive	worsening	of	

spine	 curvature	 in	 these	 animals	with	 increasing	 age.	 These	data	paralleled	

those	 of	 the	 grip	 strength	 and	 limb	 clasping	neuromuscular	 deficits	 seen	 in	

Tau35	mice.	
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Figure	3.9:	Kyphosis	phenotype	of	Tau35.	(a)	Kyphosis	index	(KI)=length	of	

spine/height	 at	 point	 of	 maximum	 curvature.	 (b)	 Skeletal	 structure	 shows	

spine	curvature	in	Tau35	mice	that	is	not	apparent	in	WT	mice	at	14	months	of	

age.	(c)	There	is	a	marked	reduction	in	the	kyphosis	index	in	Tau35	mice	from	

6	 months	 of	 age,	 indicating	 progressive	 spinal	 curvature.	 The	 degree	 of	

kyphosis	was	determined	 at	 4-14	months	 of	 age.	Values	 shown	are	mean	±	

SEM,	n=8	mice	per	genotype,	**P	<	0.01,	***P	<	0.001,	ANOVA.	 	
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3.2.2.7	Locomotor	activity	is	not	reduced	in	Tau35	at	8	months	

of	age.	

	

In	order	to	test	for	any	patterns	of	anxiety	or	abnormal	behaviour,	locomotor	

activity	was	tested	in	Tau35	mice	at	8	months	of	age	using	the	open	field	test.	

Tau35	mice	showed	no	significant	differences	in	either	time	spent	in	each	zone	

(Figure	 3.10a)	 or	 the	 total	 distance	 travelled	 (Figure	 3.10b).	 No	 abnormal	

rearing	 or	 other	 behaviours	 were	 observed	 upon	 visual	 analysis	 of	 the	

behavioural	patterns	in	Tau35	mice.	

	

	

	

Figure	3.10:	Locomotor	activity	was	monitored	in	the	open	field	test.	(a)	

Results	are	expressed	as	the	time	spent	in	the	outer,	middle	or	inner	zone	of	

the	 open	 field	 during	 an	 observation	 period	 of	 30	 min.	 (b)	 Total	 distance	

travelled	in	the	30min	spent	in	the	open	field.	Tau35	and	WT	mice	at	8	months	

of	age,	indicating	that	there	are	no	significant	differences	in	anxiety	between	

the	two	genotypes.	Values	shown	are	mean	±	SEM,	n=8	for	each	genotype.	 	
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3.2.2.8	Spatial	learning	and	memory	is	impaired	in	Tau35	mice	

	

The	Morris	water	maze	is	a	well-established	memory	test	for	long-term	spatial	

hippocampal-dependent	 learning	 encompassing	 the	 acquisition	 and	 spatial	

localisation	 of	 relevant	 visual	 cues	 that	 are	 then	 processed,	 consolidated,	

retained	and	sub-sequentially	retrieved	in	order	to	navigate	and	find	a	hidden	

platform	to	escape	the	water	(Morris,	1984).	At	2,	4	and	6	months	of	age,	Tau35	

mice	 showed	no	 significant	differences	during	 the	visible	platform	and	 four	

consecutive	 non-visible	 platform	 learning	 days	 in	 their	 ability	 to	 find	 the	

platform	 (spatial	 learning),	 compared	 to	 WT	 controls	 (Figure	 3.11a-c).	

However,	by	8	months	of	age,	Tau35	mice	exhibited	 longer	escape	 latencies	

over	 the	 four	 days	 of	 testing	 compared	 to	 WT	 controls	 and	 this	 was	

significantly	 impaired	by	day	4	 (Figure	3.11d).	The	ability	of	Tau35	mice	 to	

learn	 the	 location	 of	 the	 platform	 was	 further	 decreased	 at	 the	 age	 of	 10	

months,	at	which	point	Tau35	mice	showed	a	significantly	reduced	ability	to	

find	the	hidden	platform	on	days	3	and	4	(Figure	3.11e).	By	12	months	of	age,	

the	 impaired	ability	of	Tau35	mice	to	 learn	the	 location	of	 the	platform	was	

even	further	reduced	(Figure	3.11f).	These	results	indicate	an	age-dependent	

spatial	learning	impairment	in	Tau35	mice.	
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Figure	 3.11:	 Latency	 testing	 in	 the	 Morris	 water	 maze.	 (a-f)	 Graphs	

showing	the	time	taken	for	Tau35	and	WT	mice,	at	2-12	months	of	age,	during	

visible	 platform	 training	 (VP)	 on	 day	 one	 and	 latency	 to	 reach	 the	 hidden	

platform	in	the	Morris	water	maze	on	days	1-4.	Values	represent	mean	and	±	

SEM,	n=8	per	genotype,	*P<0.05,	**P	<	0.01,	ANOVA.	
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3.2.2.9	Hippocampal	dependent	memory	is	impaired	in	Tau35	

mice	

	

To	asses	hippocampal-dependent	memory,	a	probe	trial	was	conducted	with	

the	WT	and	Tau35	mice	24	hours	after	hidden	platform	training.	This	showed	

that	hippocampal-dependent	memory	was	impaired	from	8	months	of	age	in	

Tau35	 mice,	 which	 paralleled	 their	 defective	 ability	 to	 locate	 the	 hidden	

platform	 (Figure	 3.12a,	 P<0.001).	 Hippocampal-dependent	 memory	

progressively	deteriorated	further	with	age	at	10	and	12	months	(Figure	3.11a,	

P<0.001,	 P<0.001,	 respectively).	 To	 assess	 time	 %	 occupancy	 in	 target	

quadrant,	 data	 from	 the	 8	 months	 old	 cohort	 were	 analysed.	 As	 expected,	

Tau35	mice	spent	less	%	of	the	time	in	the	target	quadrant	during	the	probe	

trial	when	 the	platform	was	removed,	 further	demonstrating	 their	 impaired	

hippocampal-dependent	memory	(Figure	3.11b;	P<0.001).	

	

Figure	 3.12:	 Hippocampal	 dependent	memory	 in	 Tau35	 (a)	 During	 the	

probe	trial	(60s),	Tau35	mice	show	reduced	latency	on	target	compared	to	WT	

mice.	 (b)	 The	 percentage	 occupancy	 of	 the	 target	 quadrant	 is	 significantly	

reduced	for	Tau35	mice	compared	to	WT	mice	aged	8	months.	Values	shown	

are	mean	±	SEM,	n=8	mice	for	each	genotype,	**P<0.01,	***P<0.001,	ANOVA.		

	 	



	 141	

3.2.2.10	The	distance	swum	in	the	Morris	water	maze,	but	not	

swim	speed,	is	increased	in	Tau35	mice		

	

To	 validate	 whether	 the	 hippocampal-dependent	 memory	 deficit	 in	 Tau35	

mice	was	related	to	a	reduced	ability	to	swim,	the	total	swim	distance	to	the	

hidden	 platform	 and	 the	 swim	 speed	 of	mice	was	 determined.	 Tau35	mice	

showed	a	 longer	 travelling	distance	 to	 the	 target	platform	compared	 to	WT	

mice,	 which	 correlated	 with	 the	 increased	 time	 spent	 searching	 for	 the	

platform	in	these	animals,	 indicating	a	reduced	ability	to	locate	the	platform	

(Figure	 3.13a;	 P<0.05).	 Neuromuscular	 impairment	 could	 potentially	

compromise	 the	 swimming	 ability	 of	 Tau35	mice.	 However,	 Tau35	 did	 not	

show	any	 significant	 reduction	 in	 swim	 speed	 (Figure	3.13b).	 These	 results	

indicate	that,	although	Tau35	mice	have	apparent	motor	and	neuromuscular	

deficits	 (Rotarod	and	grip	strength,	 respectively),	 their	 swim	speed	was	not	

compromised	(Figure	3.13b).	Thus,	the	progressive	reduction	in	the	ability	of	

Tau35	mice	 to	 find	 the	hidden	platform	 in	 the	Morris	water	maze	 is	due	 to	

cognitive	 impairment,	 rather	 than	 to	 defective	motor	 function,	 or	 increased	

anxiety	in	these	animals.	
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Figure	3.13:	Total	distance	and	swim	speed	in	Tau35	(a)	Total	swim	speed	

at	2,	7	and	8	months	of	age.	(b)	Total	distance	travelled	to	escape	platform	at	8	

months	of	age.	Values	shown	are	mean	±	SEM,	n=8	mice	 for	each	genotype,	

*P<0.05,	ANOVA.	

	

	

	

3.2.2.11	Olfactory	habituation	is	not	impaired	in	Tau35	mice	

	

The	 time	mice	 spend	 investigating	 novel	 odours	 is	 used	 as	 an	 indicator	 of	

olfactory	 perception	 and	 function,	 as	 well	 as	 non-associative	 memory	

(Freedman	et	al.,	2013).	When	olfactory	habituation	was	assessed	at	8	months	

of	 age	 in	 Tau35	 and	 WT	 mice,	 no	 significant	 difference	 was	 observed	 in	

habituation/dishabituation	of	novel	 olfactory	 cues	 (Figure	3.14).	Tau35	and	

WT	mice	each	spent	longer	sniffing	social	odours	compared	to	non-social	and	

control	odours	and	the	heights	of	the	curves	confirms	that	the	mice	have	the	
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sensory	ability	to	discriminate	between	different	odours	and	to	habituate,	as	

well	 as	 being	 able	 to	 discriminate	 social	 (urine)	 from	 non-social	 (banana)	

odours	(Figure	3.14)	(Silverman	et	al.,	2010).	This	indicates	that	Tau35	mice	

experienced	no	differences	in	non-associative	short-term	memory	olfaction	or	

olfactory	 function	 or	 anxiety	 aged	 8	 months.	 This	 is	 an	 important	 finding	

because	 it	 shows	 that	 Tau35	 mice	 exhibit	 normal	 olfactory	 learning	 and	

potentially	 they	do	not	have	 impaired	short-term	memory,	although	 further	

test	would	have	to	be	conducted	to	confirm	this	finding.	

	

	

	

Figure	 3.14:	 Olfactory	 habituation/dishabituation	 is	 not	 impaired	 in	

Tau35	mice.	Graph	showing	 the	presentation	of	water,	non-social	 (banana)	

and	social	odours	(urine)	to	Tau35	and	WT	mice.	Decreased	investigation	time	

indicates	habituation	to	novel	odours.	Values	represent	mean	and	±	SEM,	n=8	

per	genotype.	 	
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3.2.3	Biochemical	analysis	of	Tau35	mice	

	

To	 gain	 more	 insight	 into	 the	 behavioural	 changes	 seen	 in	 Tau35	 mice,	

biochemical	analyses	were	performed.	Brain	homogenates	from	Tau35	and	WT	

littermates	aged	14	months	were	prepared	from	hippocampus	and	associated	

cortex,	as	described	in	section	2.3.2	Preparation	of	mouse	brain	homogenates.	

Samples	were	assessed	on	western	blots	using	antibodies	directed	against	key	

proteins	of	interest.	

	

3.2.3.1	Tau	is	phosphorylated	at	several	different	epitopes	in	

Tau35	mice	whereas	the	total	amount	of	tau	is	unchanged	

	

A	major	 feature	of	human	tauopathies	 is	 increased	tau	phosphorylation	at	a	

myriad	 of	 phosphorylation	 sites	 (Hanger	 et	 al.,	 2009).	 When	 examining	

western	blot	analysis	of	hippocampal	homogenates	from	Tau35	and	WT	mice	

at	14	months	of	 age,	 it	was	apparent	 that	 the	 total	 amount	of	 total	 tau	was	

similar	in	Tau35	and	WT	mice	(Figure	3.15a,	right).	Interestingly	this	was	in-

line	with	the	equivalent	amounts	of	tau	mRNA	expression	observed	in	these	

animals,	indicating	physiologically	relevant	amounts	of	tau	expression	in	these	

mice,	even	in	the	presence	of	the	transgene.	When	probed	with	an	antibody	for	

the	PHF1	epitope	pSer396/Ser404,	western	blots	showed	a	2.7-fold	increase	in	

PHF1	 immunoreactivity,	 relative	 to	 total	 tau	 (Figure	 3.15,	 P<0.05)	 in	 the	

hippocampus	and	associated	cortex	(Figure	3.15a).	This	 increase	 in	PHF1	in	

Tau35	mice	was	 accompanied	 by	 the	 appearance	 of	 a	 slower	migrating	 tau	

species	 in	 both	 PHF1	 and	 total	 tau	 blots	 (Figure	 3.15,	 red	 arrowheads).	

Significant	 changes	 in	 tau	 phosphorylation	 were	 also	 found	 at	 epitopes	

corresponding	 to:	 TG3	 (Figure	 3.16a,	 pT231,	 5.72-	 fold	 increase),	 AT270	

(Figure	 3.16b,	 pT181,	 3.6-	 fold	 increase),	 and	 Tau.1	 (Figure	 3.16c,	

dephosphorylated	 S199/S202/T205,	 1.3-	 fold	 decrease).	 These	 results	

indicate	 that	 expression	 of	 Tau35	 induces	 phosphorylation	 of	 a	 number	 of	

tauopathy	related	tau	epitopes.	The	fact	that	this	phosphorylation	occurs	both	

inside	 (PHF1,	 TG3,	 and	 Tau.1)	 and	 outside	 (AT270)	 the	 transgenically	
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expressed	tau	sequence	shows	that	expression	of	this	tau	fragment	influences	

tau	phosphorylation	of	endogenous	mouse	tau.		

	

	

	

	

	

Figure	 3.15:	 PHF1	 antibody	 immunoreactivity	 in	 Tau35	 and	WT	mice	

hippocampus	at	14	months	of	age.	Western	blots	show	PHF1	(pS396/Se04),	

total	 tau,	 and	β-actin	 reveal	 a	 significant	 increase	 in	 tau	phosphorylation	 in	

Tau35	mice,	compared	to	wild-type	(WT)	mice,	whereas	the	total	amount	of	

tau	relative	to	β-actin	is	equivalent	in	both	genotypes.	Higher	molecular	weight	

tau	bands	are	visible	seen	in	Tau35	(red	arrows).	Values	represent	mean	and	

±	SEM,	n=6,	P<0.01,	*P<0.05,	ANOVA.	
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Figure	3.16:	Phosphorylation	dependent	antibody	labelling	in	Tau35	and	

WT	mice.	 (a)	 TG3	 (pT231)	 relative	 to	 total	 tau	 reveals	 an	 increase	 level	 in	

Tau35	compared	to	WT	mice	(b)	AT270	(pT181)	relative	to	total	tau	shows	an	

increase	 in	 Tau35	 compared	 to	 WT	 mice.	 (c)	 Tau.1	 (S199/S202/T205)	

dephosphorylated	 tau	 relative	 to	 total	 tau	 shows	 a	 decrease	 in	 Tau35	

compared	to	WT	mice.	Values	shown	are	mean	±	SEM,	n=6	for	each	genotype,	

*P<0.05,	***P<0.001,	ANOVA.	

	

	

	

3.2.3.2	The	amount	of	sarkosyl-insoluble	and	sarkosyl-soluble	

tau	is	equivalent	in	Tau35	and	WT	mice	

	

The	 amount	 of	 sarkosyl-insoluble	 tau	 has	 previously	 been	 identified	 in	 a	

variety	of	transgenic	mouse	models,	indicating	an	increase	in	highly	aggregated	

tau	 species.	 Sarkosyl-soluble	 and	 insoluble	 fractions	 were	 prepared	 from	

Tau35	and	WT	mouse	hippocampus	at	14	months	of	age.	Tau35	mice	showed	

no	significant	differences	in	the	amounts	of	tau	present	in	sarkosyl-insoluble	

and	 soluble	 fractions,	 compared	 to	 WT	 mice	 (Figure	 3.17).	 These	 results	
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indicate	 that	 sarkosyl-insoluble,	 highly	 aggregated	 tau	 species	 do	 not	

accumulate	appreciably	in	Tau35	mice	aged	14	months.	

	

	

Figure	3.17:	Sarkosyl-soluble	and	insoluble	tau	is	comparable	in	Tau35	

and	WT	mice.	Western	 blot	 of	 sarkosyl-soluble	 and	 insoluble	 tau	 fractions	

from	Tau35	and	WT	mice	labelled	with	PHF1,	total	tau	and	b-actin	antibodies.	

Molecular	weight	markers	are	shown	on	the	left.	n=3	for	each	genotype.		

	

	

	

3.2.3.3	Glycogen	synthase	kinase	3b	is	activated	in	Tau35	mice	

Several	 different	 proline-directed	 candidate	 kinases	 are	 responsible	 for	

increased	 tau	 phosphorylation	 in	 human	 tauopathy.	 GSK3	has	 the	 ability	 to	

phosphorylate	tau	in	many	of	the	serine	and	threonine	residues	in	tau	(Hanger	

et	al.,	1992,	2009;	Mandelkow	et	al.,	1992;	Cho,	2003).	The	activity	of	GSK3	is	

regulated	by	opposing	serine	and	tyrosine	phosphorylation	of	the	enzyme,	in	

which	 phosphorylation	 of	 Ser9	 in	 GSK3b	 or	 Ser21	 in	 GSK3a	 inhibits	 GSK3	

activity	(Stambolic	and	Woodgett,	1994),	whereas	phosphorylation	of	Tyr216	

in	GSK-3b	and	Tyr279	in	GSK3a	activates	GSK3	(Hughes	et	al.,	1993).	Tau35	

mice	showed	a	reduction	in	inhibitory	Ser9	phosphorylation	of	GSK3b	(Figure	

3.18),	indicating	increased	GSK3b	activity	in	Tau35	hippocampus	(Hanger	et	

al.,	 1992;	 Mandelkow	 et	 al.,	 1992;	 Leclerc	 et	 al.,	 2001;	 Bhat	 et	 al.,	 2003).	

Interestingly,	 the	 elevated	 GSK3b	 activity	 paralleled	 the	 increase	 in	 tau	

phosphorylation	 in	 Tau35	mice.	 The	 phosphorylation	 sites	 Thr181,	 Thr231	

and	Ser396/Ser404	have	all	previously	been	shown	to	be	phosphorylated	by	
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GSK3b	(Cho,	2003;	Maldonado	et	al.,	2011).	No	differences	were	observed	in	

the	amounts	of	either	GSK3α	phosphorylated	at	Ser21	(Figure	3.18b,	left)	or	

total	GSK3α/b,	relative	to	b-actin,	between	Tau35	and	WT	mice	(Figure	3.18b	

and	c,	right).	These	results	show	a	selective	activation	of	GSK3β,	but	not	GSK3α,	

in	Tau35	mice.	

	

	

	

Figure	3.18:	GSK3β	activation	 in	Tau35	mice	 (a)	Western	 blots	 showing	

phosphorylated	(inactive)	glycogen	synthase	kinase-3α	and	β	(pGSK3α/β)	and	

total	 (T-)	 GSK3α	 and	 β	 (b)	 Phosphorylated	 pGSK3α	 and	 T-GSK3α	 are	

unchanged	 in	Tau35	and	WT	mice.	 (c)	 pGSK3β	 relative	 to	 total	T-GSK3β,	 is	

significantly	 decreased	 in	 Tau35	 mice,	 indicating	 increased	 GSK3β	 activity.	

Values	shown	are	mean	±	SEM,	n=6	for	each	genotype,	**P	<	0.01,	ANOVA.	
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3.2.3.4	Lysosomal	degradation	markers	are	altered	in	Tau35	

	

Alterations	in	lysosomal	mediated	degradation	and/or	autophagy	are	features	

of	 several	 human	 tauopathies	 (Piras	 et	 al.,	 2016).	 Therefore,	 lysosomal	

degradation	in	Tau35	mouse	brain	was	determined	by	measuring	the	amount	

of	 microtubule-associated	 protein	 1-light	 chain	 3	 (LC3)	 present.	 During	

autophagy,	cytosolic	LC3-I	is	conjugated	to	phosphatidylethanolamine	to	form	

LC3-II,	 which	 is	 targeted	 to	 the	 autophagosome	 and	 therefore	 LC3-II	 is	 a	

commonly	studied	marker	of	autophagy	due	to	its	importance	in	the	elongation	

step	of	the	autophagosomal	membrane	(Banduseela	et	al.,	2013).	Both	LC3-I	

and	LC3-II	were	found	to	be	significantly	increased,	relative	to	β-actin,	in	the	

hippocampus	of	Tau35	mice	aged	14	months,	compared	to	age-matched	WT	

animals	(Figure	3.19a,	p<0.05).	However,	the	ratio	of	LC3-II	to	LC3-I	did	not	

change,	 indicating	 no	 alteration	 in	 the	 conversion	 of	 LC3-I	 to	 LC3-II.	 These	

results	 suggest	 altered	 autophagic/lysosomal	 processes	 in	 Tau35	 mice	

through	increased	production	of	LC3-I,	enhanced	conversion	of	LC3-I	to	LC3-

II,	and/or	reduced	lysosomal	degradation	of	LC3-II	(Mizushima	and	Yoshimori,	

2007).	

A	further	marker	of	autophagy	is	the	MT-associated	protein	1A/1B-light	

chain	3	(LC3)	and	the	ubiquitin-binding	scaffold	protein,	p62/SQSTM1,	which	

recognises	ubiquitinated	misfolded	proteins	such	as	highly	phosphorylated	tau	

and	 which	 is	 subsequently	 degraded	 by	 autophagy,	 accumulating	 under	

conditions	when	autophagy	is	inhibited	(Kuusisto	et	al.,	2002;	Bjørkøy	et	al.,	

2006;	Komatsu	et	al.,	2007).	Western	blots	of	Tau35	mouse	brain	revealed	a	4-

fold	increase	in	the	amount	of	p62	(Figure	3.19b,	P<0.05),	supporting	the	view	

that	autophagic/lysosomal	function	is	impaired	in	Tau35	mice.	

Cathepsins	are	important	family	of	enzymes	that	are	responsible	for	the	

degradation	 of	 proteins	 during	 lysosomal	 degradation	 and	 soluble	 tau	 has	

previously	 been	 identified	 as	 a	 substrate	 for	 these	 lysosomal	 proteases	

(Kenessey	et	 al.,	 2002;	Bendiske	and	Bahr,	2003).	Measuring	 the	amount	of	

mature	 cathepsin	 D	 in	 Tau35	 mice	 aged	 14	 months	 showed	 a	 significant	

decrease	 of	 2.1-	 fold	 compared	 to	 WT	 mice,	 whereas	 the	 amount	 of	 pro-

cathepsin	 D	 was	 unchanged	 (Figure	 3.20a,	 P<0.05).	 These	 results	 indicate	
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lysosomal	dysfunction	in	Tau35	mice	which	could	be	contributing	further	to	

defective	autophagy.	

Reduced	 tubulin	acetylation	has	previously	been	 identified	 in	 tangle-

bearing	neurons	as	an	early	event	in	tauopathies	(Cook	et	al.,	2014).	Acetylated	

MTs	 are	 required	 for	 LC3-II	 degradation	 and	 for	 fusion	 of	 autophagosomes	

with	lysosomes	(Hempen	and	Brion,	1996;	Xie	et	al.,	2010;	Cohen	et	al.,	2011;	

Bánréti	 et	 al.,	 2013).	 Western	 blots	 of	 Tau35	 mouse	 brain	 showed	 that	

acetylated	α-tubulin	was	significantly	reduced	in	Tau35	mice	aged	14	months,	

whilst	 the	 total	 amount	 of	 α-tubulin	 was	 unchanged	 (Figure	 3.20b).	 Taken	

together,	these	findings	suggest	that	expression	of	Tau35	in	mice	results	in	a	

significant	 impairment	of	molecular	mechanisms	 involved	 in	autophagy	and	

lysosomal-mediated	degradation.		

	

	

	

Figure	 3.19:	 LC3	 and	 p62	 levels	 in	 Tau35	 and	WT	mice.	 Western	 blots	

showing	 (a)	 the	 amounts	 of	microtubule-associated	 protein	 1-light	 chain	 3	

(LC3)-I	and	LC3-II,	relative	to	β-actin,	are	increased	in	Tau35	mice	(b)	p62	is	

significantly	 increased,	 relative	 to	β-actin,	 in	Tau35	mice.	Values	 shown	are	

mean	±	SEM,	n=6	for	each	genotype,	*P	<	0.05,	**P<0.01,	ANOVA.	 	
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Figure	3.20:	Cathepsin	D	and	acetylated	tubulin	levels	in	Tau35	and	WT	

mice.	Western	blot	showing	(a)	Mature	(active)	cathepsin	D	(CatD)	is	reduced	

in	Tau35	mice,	whilst	the	amount	of	pro-cathepsin	D	(Pro	CatD)	is	unchanged.	

(b)	Western	blots	show	a	small	but	significant	decrease	in	acetylated	α-tubulin	

in	Tau35	mice.	The	total	amount	of	tubulin	relative	to	β-actin	is	equivalent	in	

both	 genotypes.	 Values	 shown	 are	 mean	 ±	 SEM.,	 n=6	 for	 each	 genotype.	

*P<0.05,	**P<0.01,	ANOVA.	
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3.2.3.5	Synaptic	proteins	in	Tau35	mice	

	

Synaptic	loss	and	dysfunction	are	common	features	in	tauopathies	and	in	the	

case	of	AD,	synaptic	loss	is	correlated	with	disease	progression.	Hence	it	was	

important	 to	 determine	 whether	 Tau35	 mice	 exhibit	 changes	 in	 synaptic	

proteins.	 To	 evaluate	 synaptic	 function,	 a	 range	 of	 pre-	 and	 post-synaptic	

markers	were	examined	in	the	hippocampus	of	14	months	old	Tau35	and	WT	

mice.	Synaptobrevin	is	a	key	element	of	the	SNARE	complex	and	is	thought	to	

play	a	major	role	in	vesicular	fusion	with	the	plasma	membrane	(Parlati	et	al.,	

2000).	A	2-fold	reduction	in	the	amount	of	synaptobrevin	relative	to	α-tubulin	

was	 observed	 in	Tau35	mice	 (Figure	 3.22a,	 P<0.001),	 indicating	 a	 potential	

deficit	in	synaptic	vesicle	fusion	and	hence	reduced	neurotransmission.	When	

measuring	the	pre-synaptic	marker	synapsin1,	a	65%	reduction	in	the	amount	

of	synapsin1	was	observed	(Figure	3.22b,	P<0.001).	No	changes	were	found	in	

the	 amounts	 of	 the	 scaffolding	 protein	 that	 is	 present	 in	 the	 post	 synaptic	

density,	PSD95	(Figure	3.21a),	the	pre-synaptic	marker	synaptophysin	(Figure	

3.21b)	 or	 the	 calcium-dependent	 neurotransmitter	 release	 protein,	

synaptotagmin	 (Figure	 3.21c)	 relative	 to	 tubulin.	 These	 results	 indicate	 a	

selective	 loss	 of	 releasable	 synaptic	 vesicles	 (Cesca	 et	 al.,	 2010)	 without	

affecting	 synaptophysin-regulated	 synaptic	 vesicle	 endocytosis	 (Kwon	 and	

Chapman,	2011).	
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Figure	 3.21:	 Synaptic	markers	 in	 Tau35	mice.	 (a)	Post	 synaptic	marker	

PSD95	showed	no	changes	when	comparing	Tau35	and	WT	mice	normalised	

to	 a-tubulin.	 (b)	 Synaptophysin	 is	 unchanged	 in	 Tau35	 mice.	 (c)	

Synaptotagmin	levels	are	unchanged	in	Tau35	compared	to	WT	mice.	Values	

shown	are	mean	±	SEM.,	n=6	for	each	genotype.		

	

	

	

Figure	 3.22:	 Synaptic	 markers	 in	 Tau35	 mice.	 (a)	 The	 amount	 of	

synaptobrevin	is	reduced	relative	to	tubulin	in	Tau35	mice.	(b)	The	amount	of	

synapsin1	is	reduced	relative	to	α-tubulin.	Values	shown	are	mean	±	SEM.,	n=6	

for	each	genotype,	**P<0.01,	***P<0.001,	ANOVA.	 	
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3.2.3.6	GFAP	is	not	increased	in	Tau35	mice	

	

A	 variety	 of	 tauopathies	 such	 as	PSP	 exhibit	 astrocytic	 activation.	However,	

Tau35	mice	aged	showed	no	changes	in	astrocyte	morphology	or	the	amount	

of	glial	fibrillary	acidic	protein	(GFAP)	at	14	months	in	the	hippocampus	and	

associated	cortex	(Figure	3.23a).	Furthermore,	no	difference	was	observed	via	

immunohistochemistry	 (Figure	 3.23b).	 Indicating	 that	 Tau35	mice	 exhibit	 a	

progressive	tauopathy	characterised	by	conformationally-altered,	aggregated	

and	phosphorylated	tau,	in	the	absence	of	detectable	astroglial	activation.	

	

	

	

	

	

Figure	3.23:	Tau	35	mice	show	no	alteration	in	an	astrocytic	marker.	(a)	

Western	blots	of	GFAP	in	14	months	old	mouse	brains	show	no	changes	in	

Tau35	mice	when	normalised	to	β-actin.	(b)	Hippocampal	sections	from	

Tau35	and	WT	mice	at	14	months	of	age	probed	with	GFAP.	Values	shown	are	

mean	±	SEM.,	n=6	for	each	genotype,	Scale	bar=200µm.		
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3.2.4	Neuropathological	analysis	of	Tau35	mouse	brain	

	

For	 immunohistochemical	 analysis,	 perfused	 brains	 from	 2,	 8,	 14	 and	 16	

months	old	Tau35	and	WT	mice	were	prepared	as	described	in	section	2.3.8	

Tissue	sectioning.	The	fixed	brain	tissue	was	labelled	with	antibodies	directed	

towards	key	proteins	of	interest.	

	

3.2.4.1	 Tau35	 mice	 exhibit	 increased	 phosphorylated	 tau	

immunoreactivity	

	

Neurofibrillary	tangle	and	pre-tangle	formation	is	perhaps	the	most	distinctive	

feature	 of	 tauopathies	 indicating	 extensive	 neuronal	 dysfunction	 and	 tau	

accumulation.	When	examining	Tau35	and	WT	hippocampal	and	cortical	brain	

sections	 for	 the	 presence	 of	 phosphorylated	 tau,	 pre-tangle	 pathology	 was	

evident.	 When	 labelling	 with	 the	 antibody	 for	 PHF1	 (recognising	 tau	

phosphorylated	 at	 Ser396/Ser404),	 cytoplasmic	 neuronal	 labelling	 was	

apparent	 from	 2	 months	 of	 age	 in	 Tau35	 mice,	 with	 dystrophic	 neurites	

labelling	at	8	months	and	extensive	pre-tangle	pathology	evident	by	14	months	

of	 age	 (Figure	 3.24,	 PHF1).	 When	 labelling	 with	 an	 antibody	 against	 tau	

phosphorylated	 at	 Ser202/Thr205	 (AT8),	 cytoplasmic	 background	

cytoplasmic	labelling	was	present	in	the	hippocampus	from	8	months	of	age.	

By	14-16	months,	tangle-like	structures	labelled	with	AT8	were	apparent	in	the	

hippocampus	 of	 Tau35	 mice	 (Figure	 3.24,	 AT8),	 similar	 to	 the	 pathology	

observed	 in	 tau	 over-expressing	 mutant	 tau	 mice	 (Hutton	 et	 al.,	 2000;	

Santacruz	et	al.,	2005;	Terwel	et	al.,	2005;	Schindowski	et	al.,	2006;	Yoshiyama	

et	 al.,	 2007).	 When	 labelling	 with	 phosphorylation-dependent	 antibodies	

AT100	 (Thr212/Ser214)	 and	 pS422,	 appreciable	 amounts	 of	 background	

labelling	were	evident	at	14	months	of	age	in	Tau35	mouse	brain,	which	was	

absent	from	WT	mice	of	the	same	age.	There	was	an	increase	in	labelling	with	

pS422	antibody	in	the	molecular	layer	of	the	hippocampus	with	only	very	few	

distinctive	 immunopositive	 structures	 for	 pS422	 in	 Tau35	 hippocampus	

(Figure	3.25,	pS422).	WT	hippocampus	up	to	14-16	months	of	age	did	not	show	
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any	cytoplasmic	or	aggregated	tau	using	the	same	tau	antibodies	(Figure	3.25,	

right	lanes).		

	

	

	

Figure	 3.24:	 Tau	 immunoreactivity	 using	 a	 range	 of	 phosphorylation	

dependent	tau	antibodies	in	Tau35	mice	at	2	and	8	months	of	age.	CA1	

hippocampal	 regions	of	Tau35	mouse	brains	 at	2	 and	8	months	of	 age,	 and	

wild-type	 (WT)	 mice	 aged	 8	 months	 (right	 panels),	 labelled	 with	 tau	

antibodies,	 PHF1	 and	 AT8	 and	 counterstained	 with	 haematoxylin.	 PHF1	

revealed	tau-positive	labelling	at	2	and	8	months	of	age	(right	panels).	n=5	mice	

for	each	genotype,	scale	bar=200µm.	 	
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Figure	 3.25:	 Tau	 immunoreactivity	 using	 a	 range	 of	 phosphorylation	

dependent	 tau	 antibodies	 in	 Tau35	 at	 14-16	 months	 of	 age.	 CA1	

hippocampal	regions	of	Tau35	mouse	brains	at	14-16	months	of	age,	and	wild-

type	(WT)	mice	aged	16	months	(right	panels),	 labelled	with	tau	antibodies,	

PHF1,	 AT8,	 AT100	 and	 pS422,	 and	 counterstained	 with	 haematoxylin.	 n=5	

mice	for	each	genotype,	scale	bar=200µm.	 	
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3.2.4.2	 Conformational	 tau	 antibodies	 show	 increased	

immunoreactivity	in	Tau35	mice	

	

One	of	the	neuropathological	hallmarks	of	tauopathies	is	the	accumulation	of	

abnormally	 modified	 and	 oligomeric	 species	 of	 tau	 which	 are	 linked	 to	

cognitive	decline	seen	in	tauopathies	(Brandt	et	al.,	2005;	Williams	et	al.,	2006).	

When	examining	Tau35	for	such	species,	mice	showed	increased	cytoplasmic	

staining	 in	 the	 hippocampus	 at	 8	 months	 of	 age	 labelled	 with	 antibodies	

recognising	oligomeric	tau	(TOC1)	or	abnormal	tau	conformations	(MC1).	At	

14	months	 of	 age,	 tau-positive	 neurons	 became	 apparent	 in	 pre-tangle	 like	

structures	(TOC1	and	MC1).	An	antibody	recognising	nearly	pathological	tau	

conformation	 and	phosphorylated	 tau	 (PG5)	 labelled	 tau	 phosphorylated	 at	

Ser409	in	Tau35	hippocampus	from	8	months	of	age	(Figure	3.26,	PG5).	These	

three	epitopes	are	unique	to	tauopathy	and	therefore	they	clearly	distinguish	

abnormal	tau	from	WT	tau	(Jicha	et	al.,	1999).	This	indicates	that	marked	tau	

immunoreactivity	was	present	in	Tau35	mice	in	the	apical	dendrites	and	in	the	

cell	bodies	of	CA1	neurons	for	conformational	antibodies	from	8	months	of	age,	

and	oligomeric	species	from	14	months	of	age.	There	was	also	evidence	of	some	

pyramidal	neurons	containing	somatodendritic	tau	immunoreactivity	with	all	

conformational	antibodies	tested.	
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Figure	3.26:	Altered	 tau	Conformation	 in	Tau35	mice.	 CA1	hippocampal	

sections	of	Tau35	mice	at	2	and	8,	months	of	age,	and	wild-type	(WT)	mice	aged	

8	 months	 (right	 panels),	 labelled	 with	 oligomeric	 and	 conformational	 tau	

antibodies,	TOC1,	MC1,	and	PG5,	and	counterstained	with	haematoxylin.	n=5	

mice	for	each	genotype,	scale	bar=200µm.	
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Figure	3.27:	Altered	tau	Conformation	in	Tau35	mice	at	14-16	months	of	

age.	 CA1	 hippocampal	 sections	 of	 Tau35	mice	 at	 14-16	months	 of	 age,	 and	

wild-type	(WT)	mice	aged	16	months	(right	panels),	labelled	with	oligomeric	

and	conformational	tau	antibodies,	TOC1,	MC1,	and	PG5,	and	counterstained	

with	haematoxylin.	n=5	mice	for	each	genotype,	scale	bar=200µm.		 	
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3.2.4.3	Tau35	recruits	endogenous	mouse	tau	

	

The	spreading	of	tau	in	a	prion-like	manner	through	the	brain	is	an	emerging	

concept	that	suggests	that	pathological	tau	can	be	seeded	and	transmitted	to	

otherwise	 healthy	 cells	 to	 form	 inclusions	 which	 may	 underlie	 the	

stereotypical	 progression	 of	 neurodegenerative	 tauopathies	 (Goedert	 et	 al.,	

2010;	 Clavaguera	 et	 al.,	 2013).	 To	 assess	 the	 potential	 role	 of	 endogenous	

mouse	 tau	 in	 the	 formation	 of	 tau	 inclusions	 in	 Tau35	 mice,	 hippocampal	

sections	 were	 probed	 using	 an	 antibody	 labelling	 the	 N-terminus	 of	 tau	

(TP007),	which	 is	 absent	 from	 transgenically	 expressed	Tau35.	Tau35	mice	

showed	increased	cytoplasmic	labelling	with	TP007	from	8	months	of	age,	with	

tau	inclusions	becoming	apparent	at	14-16	months	of	age	indicating	misfolding	

of	endogenous	mouse	tau	(Figure	3.28).	

	

	

	

	

Figure	3.28:	Labelling	of	tau	inclusions	with	an	antibody	recognising	the	

N-terminus	of	tau.	CA1	hippocampal	sections	of	Tau35	mice	at	2,	8,	and	14-16	

months	 of	 age,	 and	 wild-type	 (WT)	 mice	 aged	 16	 months	 (right	 panels),	

labelled	with	tau	antibody	TP007,	and	counterstained	with	haematoxylin.	Tau-

positive	 labelling	of	 inclusions	 in	Tau35	brain,	 including	dystrophic	neurites	

and	neuropil	threads,	was	apparent	at	14-16	months	(inset).	WT	hippocampal	

sections	showed	no	labelling	of	inclusions	with	these	antibodies	at	16	months	

of	age.	n=5	mice	for	each	genotype,	scale	bar=200µm.	 	
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3.2.4.4	Analysis	of	pathology	

	

A	semi-quantitative	analysis	of	tau	antibodies	used	in	this	study	was	performed	

to	profile	tau	immunoreactivity	in	Tau35	mice	(Table	8).	From	the	analysis	it	

was	clear	 that	 staining	was	most	prominent	 in	 the	CA1	of	 the	hippocampus	

followed	by	CA3	and	cortex.	

	

Table	8:	Immunolabelling	with	tau	antibodies	PHF1,	TOC1,	MC1,	AT8,	

TP007,	AT100	and	pS422	in	the	hippocampus	(CA1	and	CA3	regions)	

and	cortex	(Cx)	of	Tau35	mice.	The	extent	of	tau	pathology	was	assessed	in	

mice	2-16	months	of	age	(n=3)	using	a	semi-quantitative	scale	of	tau-positive	

inclusions:	+++	moderate	inclusions;	++	few	inclusions;	+	no	inclusions	but	

increased	background	staining;	-	no	tau	immunoreactivity,	N/A:	not	available.	

	

	 	

	

Antibody	

Age	

2	months	 8	months	 14	months	 16	months	

CA1	 CA3	 Cx	 CA1	 CA3	 Cx	 CA1	 CA3	 Cx	 CA1	 CA3	 Cx	

PHF1	 ++	 +	 +	 ++	 ++	 +	 +++	 ++	 ++	 +++	 ++	 ++	

TOC1	 -	 -	 -	 +	 +	 +	 +++	 ++	 ++	 +++	 ++	 ++	

MC1	 -	 -	 -	 +	 +	 +	 +++	 ++	 ++	 +++	 ++	 ++	

AT8	 -	 -	 -	 +	 +	 +	 ++	 ++	 ++	 +++	 ++	 ++	

TP007	 -	 -	 -	 +	 +	 +	 ++	 ++	 ++	 +++	 ++	 ++	

AT100	 N/A	 N/A	 N/A	 N/A	 N/A	 N/A	 ++	 ++	 ++	 ++	 ++	 ++	

pS422	 N/A	 N/A	 N/A	 N/A	 N/A	 N/A	 ++	 ++	 ++	 ++	 ++	 ++	
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3.2.4.5	Other	pathologies	in	Tau35	mouse	brain	

	

The	 absence	 of	 distinct,	mature	 neurofibrillary	 tangles	 in	 Tau35	mice,	 even	

towards	the	end	stage	of	disease,	suggests	that	other	proteins	may	be	involved	

in	the	mechanism	underlying	the	development	of	the	phenotypic,	cognitive	and	

motor	 deficits	 seen	 in	 these	 animals.	 Since	 impaired	 lysosomal	 degradation	

appeared	to	play	a	role	in	the	abnormalities	present	in	Tau35	mice,	markers	of	

autophagy	 and	 protein	 degradation	 were	 examined	 using	

immunohistochemistry.	

Increased	p62	 immunolabelling	was	 apparent	 in	 the	hippocampus	of	

Tau35	mice	at	14-16	months	of	age,	which	was	absent	from	WT	mice	(Figure	

3.29a,	 insert).	 Ubiquitinated	 proteins	 bind	 to	 p62,	 targeting	 them	 for	

degradation,	and	p62	has	previously	been	associated	with	tangle	pathology	in	

a	variety	of	 tauopathies	 (Kuusisto	et	al.,	2001;	 Iqbal	et	al.,	2005).	Ubiquitin-

positive	 inclusions	were	 apparent	 in	 pyramidal	 cells	 of	 the	 hippocampus	 in	

Tau35	mice	aged	14	months	(Figure	3.29b,	insert).	These	results	suggest	that	

highly	phosphorylated	tau	aggregates	are	potentially	ubiquitinated,	marking	

them	 for	 degradation	 by	 the	 ubiquitin	 proteasome	 pathway.	 However,	 in	

Tau35	 mice	 this	 clearance	 mechanism	 may	 be	 impaired,	 leading	 to	 the	

appearance	of	tau	like	aggregates.	

Behavioural	 analysis	 of	 Tau35	 mice	 identified	 significant	 motor	

dysfunction	 in	 these	 animals.	 Tauopathies	 can	 exhibit	 pathological	 features	

that	overlap	with	other	proteinopathies,	such	as	Parkinson’s	disease,	in	which	

a	primary	clinical	 feature	 is	severe	motor	dysfunction,	 (Xia	and	Mao,	2012).	

Motor	dysfunction	is	also	a	prominent	feature	of	mouse	models	of	Parkinson’s	

disease	in	which	a-synuclein,	the	main	component	of	the	Lewy	bodies	present	

in	 Parkinson’s	 disease,	 is	 over	 expressed	 (Spillantini	 et	 al.,	 1997;	 Goedert,	

2001;	Kim,	2013).	Therefore,	Tau35	mouse	brain	sections	were	examined	for	

a-synuclein	 expression.	 Labelling	 with	 a-synuclein90	 antibody,	 which	

recognises	the	central	region	of	a-synuclein	(Totterdell	et	al.,	2004)	revealed	

a-synuclein	inclusions	in	Tau35	mice	that	were	absent	from	WT	mice	(Figure	

3.29c,	insert).	Although	this	was	analysis	was	performed	only	at	late	stage	of	
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the	disease	(14-16	months	of	age),	these	results	suggest	a	potential	role	played	

by	a-synuclein	in	the	motor	deficits	exhibited	by	Tau35	mice.		

Tau35	mice	exhibit	kyphosis	and	abnormal	spinal	curvature,	a	feature	

not	normally	observed	in	tauopathy,	but	rather	a	feature	seen	in	ALS	and	prion	

models	(Newman	et	al.,	1995;	Lenoir	et	al.,	2010).	One	of	the	most	distinctive	

pathological	 hallmarks	of	ALS	 is	 abnormal	 aggregation	of	TAR	DNA-binding	

protein	 43	 (TDP-43)	 (Arai	 et	 al.,	 2006;	 Neumann	 et	 al.,	 2006).	 In	 order	 to	

explore	 the	 role	 TDP-43	 may	 play	 in	 Tau35	 mice,	 immunohistochemical	

labelling	with	an	antibody	recognising	TDP-43	was	performed.	Labelling	with	

TDP-43	 showed	 staining	both	 in	Tau35	mice	 and	 in	WT	hippocampus,	with	

Tau35	 labelling	 appearing	 somewhat	 more	 intense	 in	 the	 nucleus	 of	 the	

molecular	layer	than	in	WT	mice	(Figure	3.30).	

	

	

	

Figure	 3.29:	 p62,	 ubiquitin	 and	 synuclein	 pathological	 changes	 in	

hippocampus	 from	14	months	 in	 Tau35	 and	WT	mice.	 (a)	Positive	 p62	

labelling	in	inclusions	was	observed	in	CA1	and	CA3	hippocampal	regions	(b)	

Ubiquitin	positive	inclusions	were	observed	in	Tau34	mice	at	14	month	of	age	

in	 the	 hippocampus	 (c)	 a-synuclein	 labelling	 revealed	 n=5	 mice	 for	 each	

genotype,	scale	bar=200µm.		 	
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Figure	3.30:	TDP43	immunohistochemistry	in	hippocampus	of	Tau35	and	

WT	mice.	Tau35	and	WT	mouse	brain	sections	(14-16	months)	were	labelled	

with	antibodies	recognising	TDP-43	and	counterstained	with	hematoxylin	and	

eosin.	n=5	mice	for	each	genotype,	scale	bar=200µm.	

	

	

3.2.4.6	Tau35	mice	show	degenerative	muscle	pathology	

	

Due	to	the	significant	motor	and	neuromuscular	deficits	seen	in	Tau35	mice,	

the	muscle	 fibres	 in	quadriceps	(hind	 limb,	main	motor	driving	muscle)	and	

latissimus	 (back	 muscle)	 muscles	 were	 examined	 in	 mice	 aged	 8	 and	 16	

months.	 The	 muscle	 fibres	 of	 Tau35	 mice	 exhibited	 increased	 numbers	 of	

centrally	located	nuclei	compared	to	WT	animals	at	the	same	age	(Figure	3.31a	

and	 b).	 The	 presence	 of	 centralised	 nuclei	 in	 muscle	 fibres	 is	 indicative	 of	

muscle	degeneration/regeneration.	Fibrous	endomysial	connective	tissue	and	

occasional	split	fibres	were	also	present	in	Tau35	muscle	in	the	absence	of	any	

inflammatory	infiltration.	Analysis	of	individual	fibre	sizes	and	distribution	in	

mice	aged	16	months	showed	an	increased	number	of	smaller	muscle	fibres	in	

Tau35	mice,	particularly	fibres	of	40-60µm	diameter	(Figure	3.31c),	and	a	lack	

of	large	diameter	muscle	fibres.	In	contrast,	WT	muscle	fibre	numbers	showed	

a	 peak	 diameter	 of	 70-90µm.	 Labelling	 with	 a	 phosphorylation	 depended	

antibody	PHF1,	revealed	extensive	immunolabelling	for	PHF1	in	Tau35	mouse	

quadriceps	muscle	fibres,	indicating	potential	PHF1-positive	inclusions	(Figure	
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3.32).	 This	 data	 suggests	 that	 expression	 of	 Tau35	 results	 in	 substantial	

changes	 in	 mouse	 muscle	 fibre	 morphology	 and	 induces	 pathology	 that	

parallels	the	motor	and	neuromuscular	deficits	previously	observed	in	these	

animals.	

	

	

	

Figure	3.31:	Muscle	fibre	morphology	in	Tau35	mice.	(a)	Haematoxylin	and	

eosin	staining	of	quadriceps	and	latissimus	muscle	from	WT	and	Tau35	mice	

aged	8	and	16	months.	Muscle	fibres	from	Tau35	mice	show	centralised	nuclei	

at	8	and	16	months	(arrows).	(b)	Graphs	show	increased	centralised	nuclei	(8	

and	 16	 months)	 (c)	 Graph	 showing	 altered	 distribution	 of	 muscle	 fibre	

diameter	(minimal	Ferret’s	diameter,	16	months).	Values	shown	are	mean	±	

SEM.,	n=3,	*P<0.05,	**P<0.01,	***P<0.001.	Scale	bar	=	60	μm	
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Figure	3.32:	Tau	phosphorylation	in	muscle	of	Tau35	and	WT	mice.	(a)	

PHF1,	 haematoxylin	 and	 eosin-	 stained	 quadriceps	muscle	 shows	 increased	

PHF1	immunolabelling	in	Tau35	muscle	fibres.	n=3	per	genotype.	Scale	bar	=	

60μm.	

	 	



	 168	

3.3	Summary	and	Discussion	

	

The	main	aim	of	the	study	was	to	characterise	the	behavioural,	biochemical	

and	pathological	profile	of	Tau35	mice,	to	determine	how	well	this	new	

mouse	line	models	the	changes	apparent	in	human	tauopathies.	Here	it	was	

demonstrated	for	the	first	time	that	low	level	expression	of	WT	human	tau	

comprising	<10%	of	endogenous	mouse	tau	leads	to	the	development	of	

behavioural,	biochemical	and	pathological	aspects	of	tauopathy	which	

parallels	that	seen	in	human	tauopathies.		

The	main	findings	of	this	work	are	that	targeted	insertion	of	N-

terminally	truncated	WT	human	tau	in	mice	leads	to	a	number	of	significant	

changes	related	to	human	tauopathy:	

	

1) Reduced	 survival	 lifespan,	 age-related	 clasping	 and	 kyphotic	 phenotype	

without	any	overt	changes	in	animal	weight.	

2) Progressive	motor	and	neuromuscular	deterioration.	

3) Progressive	 alterations	 in	 spatial	 learning	 and	 hippocampal-dependent	

memory	cognition.	

4) Progressive	 increases	 in	 phosphorylated,	 conformational	 and	 oligomeric	

tau,	neuropathological	changes	consistent	with	human	disease.	

5) Seeding	of	endogenous	mouse	tau	into	filamentous	tau	inclusions.	

6) Impaired	lysosomal	degradation/autophagy.	

7) Evidence	 of	 some	 pathology	 involving	 other	 key	 proteins	 (α-synuclein,	

ubiquitin,	TDP43	and	p62)	associated	with	neurodegenerative	disease.	
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3.3.1	Tau35	mice	exhibit	progressive	phenotypic,	motor	and	

cognitive	deficits	

	

In	human	tauopathies,	motor	deficits	such	as	dysarthria,	a	loss	of	motor	speech	

control	 in	PSP	 (Morris	 et	 al.,	 1999;	 Lenoir	 et	 al.,	 2010),	 and	extrapyramidal	

motor	dysfunction	in	CBD	(Rebeiz	et	al.,	1968),	often	precede	clinical	signs	of	

impaired	cognition	(Neary	et	al.,	1988;	Noble	et	al.,	2010;	Bruns	and	Josephs,	

2013;	Burrell	et	al.,	2014;	Litvan	and	Kong,	2014).	The	results	presented	in	this	

chapter	demonstrate	that	tau	truncation	can	elicit	a	broad	phenotypic	profile,	

whereby	 mice	 display	 a	 commonly	 reported	 neurodegenerative	 clasping	

phenotype	 as	well	 a	 reduced	 lifespan.	 As	 is	 the	 case	 for	 several	 4R	 human	

tauopathies,	 Tau35	mice	 exhibit	 early	 deficits	 in	motor	 learning	 ability	 and	

neuromuscular	dysfunction,	paralleled	by	the	appearance	of	significant	muscle	

pathology,	 followed	 by	 progressive	 cognitive	 decline	 and	 reduced	 survival.	

These	phenotypic	and	behavioural	deficits	are	potentially	due	to	a	variety	of	

factors	 that	 may	 be	 initiated	 by	 the	 detrimental	 effects	 of	 N-terminal	 tau	

truncation	 on	 the	 propensity	 of	 tau	 to	 misfold	 and	 become	 highly	

phosphorylated.	 Tau	 truncation	 has	 previously	 been	 identified	 as	 a	 factor	

leading	 to	 potentially	 conformational,	 truncated	 or	 oligomeric	 toxic	 species	

(Flores-Rodríguez	et	al.,	2015)	and	therefore,	one	potential	mechanism	for	the	

muscle	 degeneration/denervation	 seen	 in	 Tau35	mice	 is	 a	 deterioration	 or	

malfunction	of	motor	neurons	in	the	spinal	cord	where	tau	is	also	abundantly	

expressed.	Due	to	the	presence	of	highly	phosphorylated	tau	in	muscle	fibres,	

tau	may	also	be	transported	into	peripheral	axons	where	it	could	accumulate	

and	result	in	disruption	of	muscle	fibres.	Tau	deposition	has	recently	also	been	

identified	 in	 diseases	 such	 as	 Huntington’s	 disease	 and	 spinal	 muscular	

atrophy,	 suggesting	 additional	 roles	 for	 tau	 in	muscle	 co-ordination	 and/or	

motor	 neuron	 degeneration	 in	 these	 disorders,	 and	 potentially	 also	

physiologically	(Fernández-Nogales	et	al.,	2014;	Miller	et	al.,	2015).		

	 Cognitive	decline	is	a	common	feature	of	tauopathy	and	spatial	learning	

in	the	water	maze	is	a	very	sensitive	and	widely	accepted	tool	with	which	to	

assess	hippocampal	impairment	and	memory	in	rodents	(Astur	et	al.,	2002).	

The	 results	 obtained	 here	 with	 Tau35	 mice	 indicate	 that	 expression	 of	 N-
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terminally	truncated	tau	leads	to	a	progressive	memory	loss	in	these	animals,	

which	could	be	due	to	changes	in	synaptic	plasticity	and/or	accumulation	of	

neurofibrillary	structures	 in	 the	hippocampus,	particularly	 the	CA1	and	CA3	

regions,	 both	of	which	have	been	 implicated	 in	 the	 affects	 seen	on	memory	

formation	in	the	tauopathies	(Williams,	2006;	Padurariu	et	al.,	2012).	Tau35	

mice	 also	 required	 a	 longer	 path	 length	 to	 reach	 the	 target	 platform	 in	 the	

water	maze,	which	 is	 considered	 to	be	a	 specific	measure	of	neurocognitive	

performance	(Graziano	et	al.,	2003).		

	

3.3.2	 Tau35	 mice	 display	 increased	 phosphorylation,	

oligomerisation	and	abnormal	conformations	of	tau	

	

It	is	becoming	increasingly	evident	that	accumulation	of	phosphorylated	and	

abnormally	modified	tau	that	forms	as	a	result	of	tau	truncation	can	lead	to	the	

neuropathology	observed	in	human	tauopathy	(Delobel	et	al.,	2008).	Mounting	

evidence	 is	 now	 available	 linking	 proteases	 such	 as	 caspases,	 calpains	 and	

thrombins	 to	 tau	 truncation,	 which	 in	 turn	 can	 generate	 potentially	 toxic	

fragments	and	even	initiate	the	aggregation	of	tau	(Iqbal	et	al.,	2005;	Delobel	

et	al.,	2008;	Lee	and	Shea,	2012;	Zilka	et	al.,	2012).	The	results	described	in	this	

chapter	verify	the	presence	of	phosphorylated,	oligomeric	and	conformational	

tau	species	in	Tau35	mice	brains,	particularly	in	the	hippocampus.		

Positive	tau	 immunoreactivity	consistent	with	neurofibrillary	tangles,	

dystrophic	 neurites	 and	 neuropil	 threads	 was	 observed	 using	 several	

phosphorylation-dependent	 tau	 antibody	 PHF1	 in	 Tau35	 mice,	 and	 not	

observed	 in	 age-matched	 WT	 mice.	 Interestingly	 this	 antibody	 detects	 tau	

inside	of	the	transgene.	Additional	antibodies	TG3,	AT100,	AT8	and	Tau1,	also	

present	 inside	 the	 transgenically	 expressed	 construction	 showed	 high	

phosphorylation	and	dephosphorylation	protein	levels	respectively	in	Tau35	

compared	 to	 WT	 mice	 whereas	 AT270	 and	 TP700	 detects	 tau	 outside	 the	

transgene	area	 indicating	 that	 endogenous	mouse	 tau	 is	 included	 in	 the	 tau	

aggregates	 in	 Tau35	 mice.	 Therefore,	 inclusions	 staining	 positive	 for	 these	

antibodies	 indicate	 phosphorylated	 tau	 aggregation	 generated	 from	 the	

fragment	itself	and	potential	recruitment	of	endogenous	tau	and	hence	the	tau	
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fragment	induces	phosphorylation	of	native	mouse	tau	and	therefore	seeds	tau	

aggregation	 in	 Tau35	mice.	 Indeed,	 such	 a	mechanism	 has	 previously	 been	

proposed	by	Clavaguera	et	al.,	who	proposed	that	tau	acts	as	a	seed,	similar	to	

misfolded	prion	protein	(Clavaguera	et	al.,	2013).	Her	group	and	others	have	

demonstrated	that	different	human	tauopathy	aggregates	have	the	ability	 to	

seed	further	aggregation	of	innate	tau	proteins,	causing	them	to	misfold	in	a	

prion-like	manner	(Sydow	and	Mandelkow,	2010;	Clavaguera	et	al.,	2013;	Ren	

et	 al.,	 2014).	 The	Tau35	mice	 exhibit	 neuropathological	 phosphorylated	 tau	

species	from	2	months	of	age	(PHF1	antibody)	and	misfolded	tau	is	detectable	

from	8	months	of	 age	 (PG5	antibody),	 indicating	 that	phosphorylation	 is	 an	

early	event	in	these	mice.	Furthermore,	the	temporal	appearance	of	increased	

tau	phosphorylation	correlates	well	with	the	onset	of	progressive	motor	and	

cognitive	decline	witnessed	 in	 these	mice,	 and	 this	 is	 followed	by	abnormal	

misfolding	of	tau.	

The	aggregation	of	tau	in	the	hippocampus,	a	brain	region	responsible	

for	spatial	learning,	could	explain	the	deficits	in	memory	seen	in	Tau35	mice.	

Previous	studies	have	shown	correlations	between	the	presence	of	abnormal	

tau	species	and	cognitive	decline	 in	mouse	models	and	 in	human	 tauopathy	

(Arriagada	et	al.,	1992;	Ramsden,	2005;	Armstrong	et	al.,	2009).	Multiple	tau	

inclusions	were	observed	in	the	CA1	and	CA3	regions	in	Tau35	hippocampus.	

These	 tau	 deposits	 mainly	 took	 the	 form	 of	 pre-tangles	 located	 in	 the	

perinuclear	 region	 and	 cell	 body,	 and	 sometimes	 extending	 to	 the	 apical	

dendrites	of	neurons.	In	addition	to	these	deposits,	strong	tau	immunostaining	

was	also	seen	in	mossy	fibres	in	the	CA3	and	dentate	gyrus,	from	the	age	of	8	

months	onwards.	Increased	staining	in	the	mossy	fibre	network	could	be	due	

to	a	number	of	factors,	including	pre-tangle	formation	or	increased	sensitivity	

in	these	fibres	to	tau	phosphorylation.	A	number	of	previously	reported	mouse	

models	of	tauopathy	have	presented	with	increased	staining	in	the	mossy	fibre	

network	 and	 the	 mice	 have	 shown	 that	 CA3	 fibres	 have	 impairments	 in	

synaptic	 transmission,	 leading	 to	 impaired	 memory	 formation	 (Gotz	 et	 al.,	

2001;	Liu	et	al.,	2004b;	Decker	et	al.,	2015).	HA	labelling	was	also	intense	in	

Tau35	mice	indicating	not	only	perfuse	transgene	expression	but	also	that	the	
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intense	 tau	 labelling	could	 indicate	 that	 the	human	phospho-tau	species	are	

potentially	transported	into	the	axons	

Tau	has	been	shown	to	form	dimers	early	in	disease,	and	these	dimers	

interact	 to	 form	 small	 oligomeric	 complexes,	 which	 later	 aggregate	 into	

filaments	and	neurofibrillary	tangles	(Lasagna-Reeves	et	al.,	2012;	Cowan	and	

Mudher,	2013).	The	brains	of	Tau35	mice	display	age-dependent	oligomeric	

and	conformational	tau	inclusions	from	8	months	of	age	with	antibodies	(TOC1,	

MC1	and	PG5),	that	bind	tau	oligomers	in	specific	conformations	and	have	been	

described	as	early	stage	markers	of	tau	pathology	(Ren	and	Sahara,	2013;	Ward	

et	al.,	2013,	2014).	 Interestingly,	Tau35	mice	did	not	show	any	difference	 in	

total	 tau	 expression	 compared	 to	 WT	 mice	 at	 14	 months	 of	 age,	 which	

highlights	the	lack	of	tau	overexpression	in	these	mice.	Importantly,	this	also	

shows	that	the	pathological	and	behavioural	defects	observed	in	Tau35	mice	

are	not	due	to	potential	artefacts	caused	by	highly	overexpressed	tau.	

Tau35	mice	did	not	show	any	distinct	sarkosyl-insoluble	aggregated	tau	

species	relative	to	their	WT	littermates,	and	there	was	no	apparent	increase	in	

insoluble	tau,	inferring	that	the	dysfunction	induced	by	low	level	expression	of	

N-terminally	 truncated	 tau	 occurs	 in	 advance	 of	 significant	 accumulation	 of	

highly	aggregated	tau.	Hence,	the	phenotypic	changes	reported	here	are	more	

likely	 to	 result	 from	 oligomeric	 tau	 species	 in	 Tau35	 mice,	 a	 phenomenon	

which	has	previously	been	reported	in	hTau-A152T	and	Tg4510	mice	by	other	

groups	(de	Calignon	et	al.,	2010;	Maeda	et	al.,	2016).	The	PHF1	and	total	tau	

antibodies	did	detect	weak	bands	corresponding	to	higher	molecular	weight	

species	of	tau	on	western	blots	(Figure	3.15a,	arrow	head),	inferring	that	tau	

may	be	conformationally	different	in	Tau35	mice.	This	finding	suggests	that	the	

pathological	tau	species	involved	may	take	the	form	of	oligomeric	or	seeded	

endogenous	tau	to	form	these	species.	

At	 the	 terminal	 stage	of	disease	 in	Tau35	mice,	 a	high	density	of	 tau	

inclusions	was	not	observed,	suggesting	that	the	development	of	tangles	may	

not	be	critical	for	the	cognitive	and	motor	deficits	observed	in	these	mice.	A	

similar	 mechanism	 has	 previously	 been	 suggested,	 such	 as	 the	 P301L	 tau	

mutant	overexpression	model	in	which	tangles	carry	on	forming	even	after	tau	

is	no	longer	produced	(Santacruz	et	al.,	2005).	It	is	therefore	conceivable	that	
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an	early	neuronal	deficit,	without	an	overt	neuropathological	signature,	occurs	

before	the	appearance	of	widespread	fibrillar	tau	in	Tau35	mice	and	in	human	

tauopathies,	and	this	may	be	responsible	for	cognitive	dysfunction.	

	

3.3.3	Tau35	mice	 exhibit	 elevated	GSK3β	activity	 along	with	

impaired	autophagic	lysosomal	degradation		

	

Expression	of	Tau35	has	been	shown	to	induce	significant	tau	phosphorylation	

and	tau	pathology.	This	highlights	the	fact	that	N-terminal	tau	truncation	can	

have	deteriorating	effects	on	tau	proteostasis.	The	phosphorylation	of	 tau	 is	

tightly	 regulated	by	 several	 kinases	 that	phosphorylate	 specific	 sites	 on	 tau	

(Ferrer	et	al.,	2005;	Hanger	et	al.,	2009;	Martin	et	al.,	2013)	A	key	tau	candidate	

kinase	 is	 GSK3β,	 which	 is	 responsible	 for	 the	 phosphorylation	 of	 over	 30	

distinct	phosphorylation	sites	(Hanger	et	al.,	1992,	2007,	2009;	Mandelkow	et	

al.,	1992).	In	this	study,	Tau35	mice	exhibited	a	selective	increase	in	GSK3β,	but	

not	 GSK3α,	 activation	 suggesting	 an	 important	 role	 for	 this	 tau	 kinase	 in	

disease	 pathogenesis,	 possibly	 related	 to	 its	 association	 with	 autophagic	

pathways	 (Inoue	 et	 al.,	 2012).	 GSK3β	 activity	 has	 been	 shown	 to	 suppress	

lysosomal	acidification	and	thereby	to	suppress	autophagy	in	cells	(Azoulay-

Alfaguter	 et	 al.,	 2015).	When	 GSK3	 is	 inhibited,	 lysosomal	 numbers	 can	 be	

inherently	increased	due	to	activation	of	the	autophagic	network,	perhaps	due	

to	the	phosphorylation	of	transcription	factors	such	as	transcription	factor	EB	

(TFEB),	the	master	regulator	of	lysosome	biogenesis	(Parr	et	al.,	2012).	This	

inhibition	 can	 in	 turn	 lead	 to	 increased	 nuclear	 localisation	 of	 TFEB	 and	

induction	of	the	lysosomal-autophagy	system	(Marchand	et	al.,	2015).		

Synthesised	misfolded	proteins	are	primarily	degraded	via	three	main	

quality	 control	 mechanisms:	 the	 ubiquitin	 proteasome	 system	 (UPS),	 the	

unfolded	protein	response	(UPR)	and	the	autophagosome-lysosome	pathway	

(ALP).	 The	 accumulation	 of	 misfolded,	 phosphorylated	 tau	 is	 considered	 a	

pathological	hallmark	of	tauopathies	and	a	number	of	studies	have	identified	

positive	 ubiquitin	 inclusions	 in	 tauopathies	 such	 as	 in	 PSP	 patient	 brains	

(Fergusson	et	al.,	2000;	Schubert	et	al.,	2000;	Nijholt	et	al.,	2012;	Takalo	et	al.,	

2013).	Tau35	mice	show	ubiquitin	 labelled	pre-tangles	at	14	months	of	age,	
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suggesting	 a	 potential	 attempt	 to	 remove	 abnormal	 tau	 inclusions	 through	

ubiquitin	 tagging.	 However,	 as	 these	 inclusions	 are	 still	 present	 after	 14	

months,	 it	 suggests	 that	 this	 mechanism	 fails	 to	 efficiently	 remove	 the	

aggregated	ubiquitinated	proteins	in	Tau35	mouse	brain.	In	support	of	this,	a	

number	of	research	groups	have	provided	evidence	that	inactivation	of	the	UPS	

leads	 to	 neurodegeneration	 coupled	 with	 the	 appearance	 of	 ubiquitin	

aggregates	 (Hara	 et	 al.,	 2006;	 Komatsu	 et	 al.,	 2006;	 Riley	 et	 al.,	 2010).	

Additionally,	inhibition	of	the	UPS	stimulates	tau	accumulation	in	rats	(Liu	et	

al.,	2009).	Therefore,	it	is	likely	that	when	the	level	of	tau	aggregation	exceeds	

the	 capacity	 of	 the	 UPS	 and	 ALP	 pathways,	 aggregated	 proteins	 are	

compartmentalised	as	inclusions,	particularly	as	previous	research	has	shown	

that	 inhibition	 of	 autophagy	 in	 neurons	 leads	 to	 the	 accumulation	 of	

phosphomimic	 tau	 (Rodríguez-Martín	 et	 al.,	 2013).	 Furthermore,	 it	 has	 also	

been	 suggested	 that	 excessive	 accumulation	of	 aggregated	 tau	 can	overload	

both	systems,	accelerating	the	disease	process	and	leading	to	further	protein	

aggregation	 and	 neurodegeneration	 (Bennett	 et	 al.,	 2005;	 Hol	 and	 Scheper,	

2008;	Cuervo	et	al.,	2010).		

Accumulation	of	autophagic	and	lysosomal	markers	have	been	reported	

in	human	tauopathy	brains	suggesting	that	disruption	in	these	processes	may	

be	involved	in	disease	pathogenesis	(Piras	et	al.,	2016).	The	autophagic	marker	

p62	 and	 its	 binding	 protein	 LC3-II	 (which	 is	 converted	 from	 LC3-I)	 are	

important	 regulatory	 components	 in	quality	 control	of	 the	ALP,	 and	both	of	

these	increase	in	Tau35	mice.	Binding	of	p62	to	LC3-II	induces	further	binding	

of	 polyubiquitinated	 proteins,	 targeting	 them	 to	 the	 autophagosome	 for	

subsequent	degradation,	 and	 these	markers	also	accumulate	 if	 autophagy	 is	

defective	(Komatsu	et	al.,	2007;	Ren	and	Sahara,	2013;	Richter-Landsberg	and	

Leyk,	2013).	The	increased	amounts	of	p62,	LC3-I	and	LC3-II	in	Tau35	mouse	

brain	 implies	 attenuation	 in	 the	 ALP	 as	 tau	 aggregates	 are	 tagged	 for	

degradation	but	ultimately	are	not	cleared.	This	is	supported	by	experiments	

showing	that	inactivation	of	p62,	leads	to	accumulation	of	phosphorylated	tau	

and	 neurodegeneration	 (Ramesh	 Babu	 et	 al.,	 2008).	 Furthermore,	 p62-

deficient	cells	have	a	significantly	reduced	ability	to	form	aggregates	 in	vitro	

(Pankiv	 et	 al.,	 2007)	 and	 mice	 with	 impaired	 autophagosome	 formation	
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accumulate	 phosphorylated	 p62	 (Kurosawa	 et	 al.,	 2016).	 The	 early	

accumulation	of	p62	in	Tau35	mice	suggests	that	this	protein	may	play	a	role	

in	tau	aggregation.	Evidence	for	this	has	been	seen	in	AD	brains	in	which	p62	

immunolabelling	 is	 tightly	 linked	 to	 the	presence	of	 tangles	 (Kuusisto	et	 al.,	

2002).	 In	 Tau35	 mice,	 ubiquitin-positive	 and	 p62-positive	 inclusions	 are	

present	 in	 neurons,	 suggesting	 that	 p62	 accumulates	 in	 inclusions,	 as	

autophagy	 mechanisms	 are	 impaired.	 This	 implies	 that	 in	 tauopathies	 p62	

accumulation	 reduces	 autophagic	 clearance	 of	 tau	 inclusions	 or	 that,	 p62	

inclusions	aggregate	when	autophagic	clearance	is	impaired.	It	is	possible	that	

Tau35	protein	is	transported	to	the	lysosome	for	degradation	after	binding	to	

ubiquitin	and	p62	 since	 increased	LC3-1,	LC3-II,	 p62	and	ubiquitin	were	all	

observed	in	the	hippocampus	of	these	mice.	Together	with	increased	GSK3β	

activity,	 these	 findings	 suggest	 a	 potential	 blockage	 in	 endolysosomal	

trafficking	and	dysfunctional	autophagy/lysosomal-mediated	degradation	as	a	

potential	neuropathological	mechanism	in	Tau35	mice.	Interestingly,	GSK3	has	

previously	 been	 shown	 to	 phosphorylate	 p62,	 increase	 p62	 and	 inhibit	

autophagic	 flux	 by	 reducing	 lysosomal	 acidification	 (Korolchuk	 et	 al.,	 2009;	

Azoulay-Alfaguter	et	al.,	2015).	As	well	as	the	reduced	autophagic	flux	in	aged	

neurons,	the	activity	of	autophagy	can	be	adversely	affected	by	the	interaction	

with	protein	aggregates	such	as	tau	and	α-synuclein	(Cuervo	et	al.,	2004;	Wang	

et	al.,	2009;	Orenstein	et	al.,	2013),	generated	by	impaired	UPS.	For	instance,	

tau	in	FTD	with	ubiquitin	positive	inclusions	and	α-synuclein	in	PD	bind	LAMP-

2A	at	several	fold	higher	affinity	leading	to	impaired	cargo	translocation	across	

the	lysosomal	membrane	(Cuervo	et	al.,	2004).	

Alpha-	 and	 beta-tubulin	 are	 the	 major	 component	 of	 MTs	 and	

acetylation	of	tubulin	stabilises	MTs.	Decreased	acetylated	α-tubulin,	a	feature	

of	tangle-bearing	neurons	(Hempen	and	Brion,	1996),	plays	a	key	role	in	the	

fusion	 of	 lysosomes	 with	 autophagosomes	 and	 the	 trafficking	 of	 these	 two	

organelles,	 as	well	 as	 degradation	 of	 LC3-II	 (Xie	 et	 al.,	 2010;	Mackeh	 et	 al.,	

2013).	Therefore,	the	decrease	of	acetylated	tubulin	in	Tau35	mice	is	a	further	

indication	 of	 aberrant	 autophagy	 in	 these	 mice.	 The	 attenuation	 of	 the	

autophagy	 pathways	 could	 explain	 the	 further	 cognitive	 and	motor	 decline	

seen	 in	 Tau35	 mice.	 However,	 the	 precise	 mechanism	 underlying	
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neurodegeneration	 related	 to	 autophagy	 impairment	 remains	 elusive	 and	

needs	to	be	investigated	further.	

Another	 key	 component	 of	 the	 lysosome	 is	 the	 hydrolase	 enzymatic	

activity	catalysed	by	as	the	cathepsin	family	of	proteases	(Repnik	et	al.,	2012).	

Tau35	mice	show	a	marked	reduction	in	mature	cathepsin	D,	which	is	further	

indicative	 of	 lysosomal	 dysfunction	 in	 these	 mice.	 Taken	 together,	 these	

findings	 indicate	 that	 accumulation	 of	 protein	 targeted	 for	 degradation,	

reduced	acetylated	 tubulin,	 increased	ubiquitin,	and	 impaired	maturation	of	

cathepsin	D,	can	all	lead	to	adverse	neuronal	effects	which	rely	on	autophagic	

degradation	to	clear	accumulated	misfolded/truncated	proteins	(Boland	et	al.,	

2008).	These	deficiencies	in	autophagy	and	lysosomal	degradation	support	the	

idea	that	these	mechanisms	could	be	linked	to	the	cognitive	impairment	seen	

in	 neurodegeneration	 (Nixon,	 2007;	 Nixon	 and	 Yang,	 2011;	 Schaeffer	 et	 al.,	

2012;	Vilchez	et	al.,	2014;	Ciechanover	and	Kwon,	2015).	

	

3.3.4	Tau35	exhibit	impaired	synaptic	vesicle	integrity	

	

Selective	 loss	 of	 synaptic	 proteins	 and	 dysfunction	 of	 synapses	 occurs	 both	

early	and	in	late-stage	tauopathy,	preceding	the	loss	of	neurons	and	correlating	

with	the	onset	of	cognitive	decline	(DeKosky	et	al.,	1996).	Synaptic	damage	is	

characterised	by	 the	deregulation	of	certain	pre-	and	post-synaptic	proteins	

(Coleman,	2003;	Honer,	2003;	Tao	et	al.,	2003)	and	pattern	of	neurofibrillary	

structures	occurs	in	the	same	brain	regions	(Serrano-Pozo	et	al.,	2016).		

Upon	examination	of	pre-synaptic	markers,	it	was	evident	that	Tau35	

mice	 aged	 14	 months	 showed	 a	 marked	 reduction	 in	 expression	 of	 both	

synapsin1	and	synaptobrevin,	but	not	of	synaptophysin.	Synaptophysin	is	the	

major	 synaptic	 vesicle-bound	 pre-synaptic	 protein,	 whereas	 synaptobrevin	

and	synapsin1	are	synaptic	vesicle	proteins	involved	in	fusion	and	interaction	

with	vesicle	membranes	and	regulating	the	reserve	pool	of	synaptic	vesicles	

(Gitler,	 2004).	 Mice	 that	 do	 not	 express	 synaptophysin	 exhibit	 functional	

neurotransmission,	 indicating	 that	 synaptophysin	 is	 not	 a	 necessary	

requirement	 for	 neurotransmitter	 release	 (Eshkind	 and	 Leube,	 1995;	

McMahon	 et	 al.,	 1996).	 Therefore,	 selective	 reduction	 in	 these	 pre-synaptic	
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markers	 in	 Tau35	 mice	 may	 suggest	 that	 the	 overall	 number	 of	 synaptic	

vesicles	and	integrity	is	reduced	rather	than	the	number	of	total	synapses	per	

se.	A	recent	study	in	a	transgenic	rat	model	of	tauopathy	expressing	truncated	

tau	 showed	 that,	 in	 the	 pre-synaptic	 compartment,	 truncated	 tau	 was	

associated	with	impaired	dynamic	stability	of	MTs,	which	could	be	responsible	

for	the	reduction	of	synaptic	vesicles,	without	any	decreasing	synaptophysin	in	

the	pre-	synaptic	compartment	(Jadhav	et	al.,	2015).	

Synaptophysin	 is	 the	 most	 common	 pre-synaptic	 marker	 used	 in	

models	of	 tauopathy	but,	due	 to	 its	wide	expression	pattern,	 including	 sites	

such	 as	 the	 nucleus,	 cell	 bodies	 and	 dendritic	 cytoplasm.	 Therefore,	

synaptophysin	 is	 perhaps	 not	 an	 optimum	 indicator	 of	 small	 changes	 in	

synaptic	 integrity,	 but	 rather	 a	 marker	 for	 gross	 synaptic	 loss.	 Similarly,	

synaptotagmin	 is	 expressed	 in	 neurons	 and	 also	 in	 non-neuronal	 cells,	

including	astrocytes,	which	could	also	mask	small	changes	in	the	complement	

of	 fully	 functional	neurons	at	 the	 synapse.	 Synapsin1	however,	 is	 expressed	

almost	exclusively	at	synapses	(De	Camilli	et	al.,	1983;	Micheva	et	al.,	2010)	

and	indeed	this	pre-synaptic	protein	showed	the	most	significant	changes	in	

Tau35	mice,	suggesting	it	may	be	a	preferred	marker	of	small	synaptic	changes	

(Micheva	et	al.,	2010).	In	fact,	this	highlights	the	importance	of	using	multiple	

synaptic	markers	to	fully	understand	synaptic	complexity	in	novel	transgenic	

models	of	neurological	disease.	

The	reduction	in	these	synaptic	markers	could	indicate	further	evidence	

for	 the	 cognitive	 deficits	 seen	 in	 these	mice.	 Synaptobrevin	 is	 essential	 for	

calcium-dependent	neurotransmitter	release	and	knockout	of	synaptobrevin	

has	 significant	 detrimental	 effects	 on	 synaptic	 transmission	 (Schoch	 et	 al.,	

2001).	A	near	total	abolition	of	evoked	responses	to	electric	field	stimuli	results	

from	 synaptobrevin	 knockout	 in	 cultured	 neurons	 and	 this	 could	 therefore	

have	detrimental	effects	on	synaptic	communication	and	memory	 formation	

(Schoch	et	al.,	2001).	

Notably	 there	 was	 no	 significant	 difference	 in	 the	 amount	 of	 the	

postsynaptic	marker	PSD-95	in	Tau35	mice.	As	PSD-95	is	a	major	scaffolding	

protein,	 this	 could	 indicate	 that	 Tau35	 protein	 does	 not	 target	 the	 post-

synaptic	proteasome,	suggesting	greater	localisation	in	pre-synaptic	terminals.	
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However,	as	this	was	the	only	post-synaptic	marker	tested	in	this	study,	these	

results	may	not	be	definitive	and	further	studies	need	to	be	performed	to	fully	

understand	this	mechanism.	

	

3.3.5	Tau35	mice	show	other	proteinopathy	pathology	

	

Protein	 misfolding,	 accumulation	 and	 subsequent	 aggregation	 are	 common	

features	 of	 many	 neurodegenerative	 diseases.	 The	 existence	 of	 common	

mechanisms	suggest	 that	many	neurodegenerative	diseases	might	share	 the	

same	triggers	and	that	the	nature	of	the	neuropathology	observed	is	primarily	

associated	 with	 the	 type	 of	 protein	 aggregation	 and	 post-translational	

modification.	 Therefore,	 the	 idea	 that	 there	 is	 an	 overlap	 in	 different	

proteinopathies	is	becoming	increasingly	popular.		

This	study	for	the	first	time	demonstrates	that	Tau35	protein	directly	

or	 indirectly	 leads	 to	 α-synuclein	 expression,	 a	 common	 feature	 seen	 in	

Parkinson’s	disease,	which	may	be	 linked	 to	 the	motor	deficit	 seen	 in	 these	

mice.	Although	the	accumulation	of	α-synuclein	in	the	form	of	Lewy	bodies	is	

primarily	a	pathological	hallmark	of	Parkinson’s	disease,	Lewy	pathology	has	

also	been	described	in	human	tauopathy	brain	(Hamilton,	2006).	Positive	α-

synuclein	immunoreactivity	in	Tau35	mice	aged	14	months	therefore	implies	

its	possible	involvement	in	the	observed	motor	defects.	A	number	of	other	tau	

mouse	models	 also	 develop	 Parkinsonian	motor	 defects.	 For	 example,	mice	

overexpressing	P301L	and	P301S	mutant	tau	exhibit	motor	deficits	see	Table	

4	for	a	summary	of	mouse	models	exhibiting	motor	deficits	(Hutton	et	al.,	2000;	

Allen	 et	 al.,	 2002;	Noble	 et	 al.,	 2010).	However,	 although	positive	diffuse	α-

synuclein	staining	was	observed,	together	with	some	tangle-like	structures	in	

Tau35	mice,	 no	 Lewy	 bodies	were	 present.	 One	 possible	 reason	 is	 that	 the	

pathology	here	may	be	at	an	early	stage	at	which	α-synuclein	is	just	starting	to	

build	 up,	 similar	 to	 the	 tau	 pre-tangles	 before	 neurofibrillary	 tangles	

aggregates	present.	As	significant	motor	defects	are	observed	early	in	disease	

progression	in	Tau35	mice,	it	would	be	interesting	to	investigate	α-synuclein	

staining	in	mice	aged	8	months	to	determine	if	this	correlates	with	the	motor	

defects.		
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	 TDP-43	aggregations	were	also	 investigated	 in	Tau35	mice	and	some	

differences	were	detected	between	Tau35	and	WT	mice,	although	this	was	not	

explored	further	due	to	time	constraints.	This	result	suggests	a	possible	role	

for	TDP-43	in	the	disease	pathogenesis	in	Tau35	mice.	To	determine	whether	

TDP-43	plays	a	role	in	this	process,	an	antibody	against	phosphorylated	TDP-

43	would	be	useful	to	further	investigate	the	potential	role,	if	any,	of	TDP-43	in	

Tau35	mice.		

	 Numerous	 tauopathies,	 particularly	 PSP,	 display	 extensive	 astrocytic	

pathology.	Tau35	mice	failed	to	show	any	astrocyte	pathology.	This	finding	was	

not	entirely	unexpected	because	appreciable	amounts	of	tau	are	not	normally	

found	in	astrocytes	or	microglia	(microglia	were	not	investigated	in	Tau35).	A	

study	of	tauopathy	in	a	transgenic	mouse	overexpressing	mutant	A152T	tau,	a	

tau	 mutation	 associated	 with	 increased	 risk	 of	 PSP,	 also	 lacked	 glial	 tau	

pathology	 (Sydow	 et	 al.,	 2016).	 In	 diseases	 such	 as	 PSP	which	 exhibit	 glial	

pathology	 the	 presence	 of	 tau	 in	 glia	 may	 be	 related	 to	 pathological	

mechanisms	involving	glial	uptake	of	neuronal	expressed	tau,	however	Tau35	

mice	 lack	 glial	 pathology	 suggesting	 that	 altered	 tau	 expression/truncation	

alone	may	not	be	sufficient	to	cause	the	glial	pathology	seen	in	PSP.	

	

3.3.6	Conclusions	

	

In	summary,	 the	 findings	presented	 in	 this	chapter	suggest	 that	Tau35	mice	

represent	 a	 pathophysiologically	 relevant	 mouse	 model	 that	 exhibits	

behavioural,	 biochemical	 and	 pathological	 features	 which	 parallel	 those	 in	

human	tauopathy.	Due	to	the	normal	physiological	expression	and	the	use	of	

truncated	WT	tau,	rather	than	overexpression	under	the	control	of	the	human	

tau	 promoter,	 this	mouse	model	 is	 unlike	 other	 previous	 in	 vivo	models	 of	

tauopathy.	In	the	following	chapter,	the	use	of	this	animal	model	is	described	

in	 the	 evaluation	 of	 a	 potential	 therapeutic	 intervention	 using	 a	 clinical	

available	compound.	
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CHAPTER	4	
	

Phenylbutyrate	rescues	behavioural,	biochemical	and	

pathological	 deficits	 in	 Tau35	mice	 and	 rescues	 tau	

phosphorylation	in	a	Tau35	cell-based	model	

	

4.1	Introduction	

Sodium	4-phenylbutyrate	 (PBA),	 a	 short	 chain	 fatty	 acid	 compound	 (Figure	

4.1),	 is	 a	 clinically	 approved,	 orally	 available	pleiotropic	drug	with	 few	 side	

effects	and	is	relatively	safe	for	patients	(Burlina	et	al.,	2001).	Importantly,	PBA	

has	the	ability	to	cross	the	blood-brain	barrier	via	the	cerebrospinal	fluid	(Berg	

et	al.,	2001).	PBA	is	primarily	used	to	treat	conditions	such	as	urea	acid	cycle	

disorders	(Brusilow	and	Maestri,	1996).	Furthermore,	PBA	has	been	found	to	

induce	 autophagy	 and	 eradicate	 tuberculosis	 (TB)	 in	 human	 macrophages	

(Rekha	et	al.,	2015),	and	has	also	been	used	in	clinical	trials	for	the	treatment	

of	sickle	cell	anemia	as	it	induces	the	formation	of	fetal	haemoglobin	(Dover	et	

al.,	 1994).	 PBA	 has	 also	 been	 used	 in	 cancer	 treatment	 trials,	 however,	 its	

effectiveness	is	limited	by	toxicity	caused	by	the	high	dosages	needed	(Carducci	

et	al.,	2001;	Gore	et	al.,	2002;	Phuphanich,	2005).	PBA	inhibits	most	class	I	and	

class	 II	 HDACs	 and	 it	 has	 the	 ability	 to	 act	 as	 a	 molecular	 and	 chemical	

chaperone,	 protecting	 against	 endoplasmic	 reticulum	 (ER)	 stress	 and	 the	

unfolded	 protein	 response,	 as	 well	 as	 acting	 as	 a	 stabiliser	 for	 misfolded	

proteins	(Wiley	et	al.,	2010;	Cohen	et	al.,	2011;	Mimori	et	al.,	2012;	Cho	et	al.,	

2014).	Furthermore,	PBA	activates	transcription	of	a	variety	of	genes	involved	

in	the	regulation	of	cell	proliferation	and	development	(Levenson	et	al.,	2004).	

PBA	has	been	extensively	used	as	a	therapeutic	compound	in	vitro	and	in	vivo	

and	has	shown	an	array	of	neuroprotective	functions	in	several	animal	models	

of	 neurodegenerative	 disease.	 For	 example,	 in	 mice	 subjected	 to	 hypoxia-

ischaemia,	PBA	protects	against	endoplasmic	reticulum	(ER)	stress,	as	well	as	

protecting	against	glutamate-induced,	NMDA	receptor-mediated	excitotoxicity	
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in	 cerebellar	 granule	 cells.	 In	 a	 mouse	 model	 of	 Huntington’s	 disease,	

hypoacetylation	associated	with	gene	downregulation,	was	alleviated	by	PBA	

(Qi,	2004;	Gardian	et	al.,	2005;	Leng	and	Chuang,	2006;	Ying	et	al.,	2006;	Sadri-

Vakili	et	al.,	2007;	Chuang	et	al.,	2009).	Notably,	PBA	prevents	dendritic	spine	

loss,	 improves	 cognitive	 function	 and	 reduces	 tau	 phosphorylation	 in	 mice	

overexpressing	 a	 mutant	 form	 of	 amyloid	 precursor	 protein	 (APP),	

APPK670/671L	(Tg2576	mice)	(Ricobaraza	et	al.,	2009,	2012),	suggesting	PBA	

as	a	potential	candidate	drug	for	the	treatment	of	Tau35	mice.	

	

Figure	 4.1:	 Chemical	 structure	 of	 sodium	 phenylbutyrate	 (Iannitti	 and	

Palmieri,	2011).	

	

4.2	Results	

	

The	use	of	potentially	therapeutic	compounds	in	mouse	models	of	tauopathy	is	

crucial	 to	 evaluate	 safety	 and	 toxicity,	 and	 potentially	 to	 identify	 new	

therapeutics	 to	 cure	 the	 disease	 or	 to	 halt	 disease	 progression	 in	 human	

tauopathies.	Tau35	mice	were	established	as	a	model	of	human	tauopathy,	and	

hence	it	was	important	to	evaluate	whether	these	changes	could	be	rescued	by	

therapeutic	 intervention.	 Therefore,	 PBA	 or	 vehicle	 (sterile	 saline)	 was	

administered	(400mg/kg,	 i.p.,	daily	 for	6	weeks),	 to	 two	separate	cohorts	of	

Tau35	 and	 WT	 mice	 (n=8	 for	 each	 genotype	 in	 each	 group),	 as	 described	

previously	in	2.3.12.10	Treatment	of	mice	with		(Ricobaraza	et	al.,	2009).	Two	

different	groups	of	Tau35	and	WT	mice	were	treated	with	PBA	or	vehicle,	the	

first	 younger	 group	 w	 (aged	 7.5	 months)	 and	 the	 second	 older	 group	 (8.5	

months)	for	cognitive	decline	in	the	Morris	water	maze.	At	the	end	of	the	trial	

the	younger	cohort	were	9	months	and	the	older	cohort	10	months	of	age.	
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Since	PBA	exhibits	pleiotropy	and	has	been	shown	to	improve	a	number	

of	behavioural	and	biochemical	abnormalities	in	a	variety	of	animal	models	of	

neurodegenerative	disease,	this	study	will	determine	whether	PBA	can	exert	a	

therapeutic	effect	in	the	Tau35	model	of	human	tauopathy.	

	

4.2.1	Phenylbutyrate	 treatment	does	not	affect	body	mass	of	

Tau35	mice	

	

To	assess	whether	PBA	affects	the	body	weight	of	Tau35	and	WT	mice,	animals	

were	weighed	at	weekly	intervals	from	the	start	of	the	treatment	with	PBA	and	

throughout	 the	 six	week	 PBA	 or	 vehicle	 dosing	 period.	 The	weight	 of	 each	

animal	included	in	the	study	was	measured	3	days	prior	to	the	first	dosing	and	

then	at	weekly	intervals	on	the	day	of	administration,	30	min	prior	to	dosing.	

During	the	treatment	period,	there	were	no	statistically	significant	differences	

(P>0.05)	between	the	body	weights	of	Tau35	and	WT	mice	treated	with	PBA,	

compared	to	vehicle-treated	controls	(Figure	4.2).	This	finding	indicates	that	

daily	administration	of	PBA	at	400mg/kg	 for	six	weeks	does	not	 induce	any	

harmful	changes	in	the	body	mass	of	Tau35	or	WT	mice.	

	

	

Figure	4.2:	Lack	of	effect	of	Phenylbutyrate	on	the	body	mass	of	Tau35	

and	WT	mice.	Weights	of	Tau35	and	WT	mice	were	measured	weekly	during	

PBA	or	vehicle	dosing	for	6	weeks.	Values	shown	are	mean	±	SEM.,	n=8	for	each	

treatment	group.	 	
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4.2.2	Phenylbutyrate	rescues	neuromuscular	motor	deficits	in	

Tau35	mice	

	

Tau35	mice	experience	significant	neuromuscular	motor	deficits	as	described	

in	 section	 3.2.2.5	 Tau35	 mice	 exhibit	 neuromuscular	 deficits.	 People	 with	

tauopathies	such	as	PSP	and	CBD,	also	present	clinically	with	motor	deficits	

that	 are	paralleled	 in	Tau35	mice.	 Therefore,	 therapeutic	 interventions	 that	

target	 these	 motor	 deficits	 would	 be	 of	 significant	 clinical	 benefit	 in	 the	

tauopathies.	Prior	to	dosing	with	PBA,	the	two	groups	of	Tau35	mice,	aged	7.5	

and	8.5	months,	exhibited	reduced	neuromuscular	grip	strength	compared	to	

their	counterpart	WT	mice,	as	described	previously	in	Chapter	3	(Figure	3.8).	

The	 7.5	 and	 8.5	 month	 old	 groups	 of	 Tau35	 mice	 showed	 no	 statistically	

significant	 difference	 in	 grip	 strength	 (P<0.05)	 prior	 to	 treatment	 (Figure	

4.3a,b,	untreated),	whereas	Tau35	mice	exhibited	a	significantly	reduced	grip	

strength	compared	to	WT	mice	at	the	same	ages	(Figure	4.3a	and	b,	untreated,	

P<0.001).	 Following	 6	 weeks	 of	 dosing	 with	 PBA,	 the	 grip	 strength	 of	 the	

younger	cohort	of	Tau35	mice	increased	from	a	mean	value	of	61g	(+/-	6.4)	at	

7.5	months	 to	73g	 (+/-	6.2)	 at	9	months,	 an	 increase	of	17%,	 resulting	 in	 a	

statistically	 significant	 difference	 between	 PBA	 and	 vehicle-treated	 Tau35	

mice	 (P<0.001).	 In	 contrast,	 the	 grip	 strengths	 of	 the	 younger	 group	 of	WT	

mice,	whether	treated	with	vehicle	or	PBA,	did	not	show	significance	but	did	

increased	slightly	during	the	same	period	(PBA:	from	76g	to	79g,	Vehicle:	from	

74g	to	78g)	(Figure	4.3a).	

	 	For	 the	 older	 cohort,	 PBA	 treatment	 resulted	 in	 an	 increase	 in	 grip	

strength	of	Tau35	mice	from	a	mean	value	of	60g	(+/-6.3)	at	8.5	months	to	77g	

(+/-6.1)	 at	 10	months,	 an	 increase	 of	 22%.	 In	 contrast,	 the	 grip	 strength	of	

Tau35	mice	treated	with	vehicle	decreased	from	62g	(+/-4.1)	to	57g	(+/-3.9),	

resulting	 in	a	 statistically	 significant	difference	 (P<0.001)	between	PBA	and	

vehicle-treated	Tau35	mice.	The	grip	strengths	of	WT	mice,	whether	treated	

with	vehicle	or	PBA,	increased	slightly	during	the	same	period	(PBA:	from	81g	

to	83g,	Vehicle:	from	78g	to	80g)	and	did	not	show	any	significant	differences	

under	these	two	conditions	(Figure	4.3b).	These	results	indicate	that	PBA	has	
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the	 ability	 to	 rescue	 motor	 deficits	 in	 Tau35	 mice,	 without	 significantly	

affecting	the	grip	strength	of	WT	mice.	

	

	

	

	

	

Figure	 4.3:	 Phenylbutyrate	 restores	 grip	 strength	 in	 Tau35	mice.	Grip	

strength	of	Tau35	and	WT	mice	before	and	after	6	weeks’	treatment	with	PBA	

or	vehicle.	Mice	were	aged	7.5	months	(a)	 or	8.5	months	(b)	 at	 the	start	of	

treatment.	Grip	strength	of	Tau35	was	restored	upon	administration	of	PBA,	

but	 not	 vehicle.	 Values	 shown	 are	 mean	 ±	 SEM.,	 n=8	 for	 each	 genotype.	

***P<0.001,	ANOVA.	
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To	 assess	 whether	 the	 rescue	 in	 neuromuscular	 deficit	 correlates	 with	

improved	 muscle	 morphology,	 PBA	 and	 vehicle-treated	 quadriceps	 muscle	

sections,	 from	Tau35	mice	aged	10	months,	were	stained	with	haematoxylin	

and	eosin	(Figure	4.4a,	b).	PBA

	

reduced	the	number	of	centralised	nuclei	by	

3.5-fold	 in	 quadriceps	muscle	 fibres	 of	 Tau35	mice	 compared	with	 vehicle-

treated	 Tau35	 mice,	 indicative	 of	 muscle	 fibre	 degeneration/regeneration	

(Figure	4.4c,	P<0.05).	Interestingly,	PBA-treated	muscle	morphology	in	Tau35	

mice	was	similar	to	that	seen	in	WT	mice	(Figure	3.31).	These	results	indicate	

that	PBA	was	able	to	reverse	the	muscle	degenerative/regenerative	phenotype	

observed	in	Tau35	mice.	

	

	

	

Figure	 4.4:	 Phenylbutyrate	 rescues	 muscle	 fibre	

degeneration/regeneration	 in	 Tau35	 mice.	 Haematoxylin	 and	 eosin	

staining	 of	 quadriceps	 muscle	 sections	 from	 vehicle-treated	 (a)	 and	 PBA-

treated	(b)	Tau35	mice	aged	10	months.	Muscle	 fibres	 from	vehicle-treated	

Tau35	mice	 show	 centralised	 nuclei	 (arrows),	 scale	 bar=200µm.	 (c)	 Graph	

shows	 the	 percentage	 of	 fibres	 in	 quadriceps	muscle	 from	Tau35	mice	 that	

exhibit	centralised	nuclei	following	6	weeks	of	PBA	(400mg/kg,	i.p.,	daily)	or	

vehicle	 treatment.	 Values	 shown	 are	mean	 ±	 SEM.,	 n=3	 for	 each	 treatment	

group,	*P<0.05,	ANOVA.	 	
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4.2.3	Phenylbutyrate	rescues	spatial	learning	deficits	in	Tau35	

mice	in	the	Morris	water	maze	when	treated	at	8.5	months	of	

age	

	

Reduced	spatial	learning	was	first	observed	in	naïve	Tau35	mice	at	8	months	

of	age,	as	described	in	section	3.2.2.8	Spatial	learning	and	memory	is	impaired	

in	Tau35	mice.	To	evaluate	the	effects	of	PBA	on	cognition,	Tau35	mice	were	

tested	 in	 the	 Morris	 water	 maze	 to	 identify	 whether	 PBA	 treatment	 could	

alleviate	 learning	 abnormalities.	 Groups	 of	mice	 aged	 7.5	months	 (younger	

cohort)	and	8.5	months	(older	cohort)	were	tested	before	and	after	6	weeks	of	

treatment	with	PBA,	as	described	in	section	4.2	Results	above.	No	statistically	

significant	differences	in	cognitive	ability	were	found	between	untreated	and	

treated	groups	of	Tau35	and	WT	mice	during	visible	platform	training	prior	or	

after	dosing	of	either	the	younger	or	older	mouse	cohorts	(Figure	4.5a,	b,	c	and	

d).	Following	the	6-week	dosing	period,	the	latency	of	the	younger	cohort	of	

Tau35	mice	to	find	the	platform	on	day	4	decreased	by	36%,	from	a	mean	value	

of	15s	at	7.5	months	to	11s	after	PBA.	In	contrast,	the	latency	to	find	the	target	

for	the	younger	group	of	vehicle-treated	Tau35	mice	decreased	by	only	12%,	

which	 did	 not	 reach	 statistical	 significance	 (Figure	 4.5b).	 In	 contrast,	 the	

latency	 to	 find	 the	 platform	of	 the	 younger	WT	mice,	whether	 treated	with	

vehicle	 or	 PBA,	 did	 not	 differ	 and	 did	 not	 show	 any	 significant	 differences	

under	 these	 two	 conditions.	 Although	 this	 data	 shows	 no	 significant	

differences,	 interestingly	 the	 biggest	 difference	 between	 day	 1	 and	 day	 4	

latencies	was	observed	 in	Tau35	mice	 treated	with	PBA.	The	 younger	PBA-

treated	Tau35	mice	exhibited	a	 latency	to	find	the	platform	of	31s	on	day	1,	

which	reduced	to	11s	on	day	4,	a	decrease	of	65%.	The	younger	vehicle-treated	

Tau35	mice,	however,	exhibited	a	28%	decrease	in	latency	between	days	1	and	

4,	which	was	43%	of	the	reduction	in	the	PBA-treated	animals.	In	contrast,	both	

vehicle	 and	 PBA-treated	 WT	 mice	 showing	 a	 decreased	 latency	 of	 50%,	

somewhat	 less	 than	 that	 observed	 in	 the	 PBA-treated	 Tau35	 mice.	 This	

indicates	 that	 PBA	 may	 well	 have	 positively	 influenced	 spatial	 learning	 in	

Tau35	 mice	 at	 this	 age,	 but	 did	 not	 reach	 significance	 perhaps	 due	 to	 the	
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amount	of	variation	present	between	some	groups	of	animals	(Figure	4.5a,	b).	

Interestingly,	unlike	 the	vehicle-treated	Tau35	mice,	by	9	months	of	age	 the	

performance	 of	 PBA-treated	 Tau35	 mice	 in	 the	 water	 maze	 did	 appear	 to	

overlap	 somewhat	 with	 that	 of	 WT	 mice	 (Figure	 4.5b).	 This	 indicates	 that	

although	PBA	did	not	significantly	rescue	the	spatial	 learning	 impairment	 in	

Tau35	mice,	 it	may	 have	 contributed	 towards	 a	 slight	 reduction	 in	 severity	

given	 that	 the	 expected	memory	 impairment	 in	Tau35	mice	 aged	8	months	

becomes	evident	only	by	day	4	of	training	and	is	not	severe	at	this	age	(Figure	

3.11d).	

In	the	older	cohort	of	mice	aged	8.5	months,	both	the	vehicle	and	PBA-

treated	 Tau35	 mice	 had	 a	 slightly	 longer	 escape	 latency	 than	 WT	 mice,	

although	 this	 was	 not	 significantly	 different,	 possibly	 due	 to	 amount	 of	

variation	between	the	performance	of	the	mice	in	each	group	(Figure	4.5c).	All	

of	 the	 older	 groups	 of	 mice	 exhibited	 improved	 learning,	 with	 latencies	

between	 8-12s	 shorter	 than	 on	 day	 1.	 By	 day	 4	 of	 the	 learning	 trial,	 a	

comparison	of	Tau35	and	WT	mice	showed	an	increase	in	escape	latency	of	6-

8	s	in	Tau35	mice,	compared	to	WT	mice	(Figure	4.5c).	After	6	weeks	of	PBA	

treatment,	 Tau35	mice	 showed	 no	 significant	 differences	 in	 escape	 latency	

compared	to	vehicle-treated	mice,	on	days	1-3.	However,	by	day	4,	the	older	

cohort	of	PBA-treated	Tau35	mice	showed	an	improved	spatial	learning	ability	

of	more	than	2-fold,	compared	to	the	vehicle-treated	Tau35	mice	(Figure	4.5d).	

These	 results	 showed	 that	 PBA	 effectively	 rescued	 the	 performance	 of	 the	

older	group	of	Tau35	so	that	they	became	almost	equivalent	to	the	WT	mice	of	

the	same	age.	These	data	indicate	that	PBA	has	the	ability	to	rescue	impaired	

learning	 in	 the	 older	 cohort	 of	 Tau35	 mice	 and	 hence	 PBA	 can	 rescue	 of	

cognition	when	these	mice	were	treated	at	8.5	months	of	age.	
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Figure	4.5:	Phenylbutyrate	rescues	spatial	learning	in	the	Morris	water	

maze	in	8.5	months	Tau35	mice.	Morris	water	maze	testing	of	Tau35	and	WT	

mice	 treated	with	PBA	or	 vehicle.	 4-phenylbutyrate	 (PBA,	 dotted	 lines)	 and	

vehicle-treated	 (solid	 lines)	mice	 aged	10	months	Tau35	 (circles)	 and	wild-

type	 (WT,	 squares)	mice.	 (a-b)	 At	7.5	months	before	 treatment	 (untreated)	

with	PBA	and	9	months	after	treatment	with	PBA	(treated).	(c-d)	Water	maze	

performance	 of	 mice	 before	 treatment	 with	 PBA	 at	 8.5	 months	 of	 age	

(untreated)	and	after	treatment	with	PBA	at	10	months	of	age	(treated).	Values	

shown	are	mean	±	SEM.,	n=8	for	each	genotype,	*P<0.05,	ANOVA.	
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4.2.4	Phenylbutyrate	rescues	memory	deficits	in	Tau35	mice	in	

the	Morris	water	maze	when	treated	at	8.5	months	of	age	

	

Previous	 studies	 have	 demonstrated	 the	 ability	 of	 HDAC	 inhibitors	 to	

accelerate	memory	formation	in	developing	mice	(Vecsey	et	al.,	2007;	Bredy	

and	Barad,	2008)	and	 to	rescue	memory	 formation	and	cognition	 in	several	

neurodegenerative	mouse	models	(Fischer	et	al.,	2007;	Fontán-Lozano	et	al.,	

2008).	 Tau35	 mice	 show	 hippocampal-dependent	 memory	 deficits	 in	 the	

Morris	 water	 maze	 from	 8	 months	 of	 age,	 as	 described	 in	 section	 3.2.2.9	

Hippocampal	dependent	memory	is	impaired	in	Tau35	mice.	After	the	learning	

trial,	PBA	and	vehicle-treated	mice	were	subjected	to	a	probe	trial,	 in	which	

mice	swim	for	60s	with	no	platform,	and	the	time	spent	in	the	quadrant	where	

the	platform	was	previously	located	is	recorded.	The	probe	trial	is	used	as	an	

indication	of	the	ability	of	the	mice	to	retain	hippocampal-dependent	memory.	

	 Prior	to	dosing	with	PBA,	both	groups	of	Tau35	mice	aged	7.5	months	

did	not	show	an	increased	latency	in	the	target	quadrant	compared	to	WT	mice	

(Figure	4.6a,	untreated).	Following	PBA	treatment	for	six	weeks,	Tau35	mice	

aged	9	months	similarly	failed	to	show	increased	latency	in	the	target	quadrant	

compared	to	vehicle-treated	Tau35	(Figure	4.6a,	treated).	This	highlights	the	

fact	that	PBA	was	unable	to	prevent	the	onset	of	the	memory	deficit	previously	

observed	in	Tau35	mice	at	this	age.	In	the	older	cohorts	of	animals,	untreated	

Tau35	mice	aged	8.5	months	showed	a	significant	reduction	of	10s	in	the	time	

spent	 in	 the	 target	 quadrant	 compared	 to	 untreated	WT	mice	 (Figure	 4.6b,	

untreated),	 indicating	 impaired	 memory	 in	 relation	 to	 the	 location	 of	 the	

hidden	platform.	After	6	weeks	of	dosing,	the	older	Tau35	mice	treated	with	

PBA	showed	an	improved	latency	of	23%	in	reaching	the	platform,	compared	

to	 vehicle-treated	 Tau35	 mice.	 At	 this	 stage,	 the	 PBA-treated	 Tau35	 mice	

performed	similarly	to	WT	mice,	the	difference	between	these	genotypes	being	

only	~2	s	(Figure	4.6b,	treated,	P<0.05).	
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Figure	 4.6:	 Probe	 trials	 of	 Tau35	 and	 WT	 mice	 treated	 with	

phenylbutyrate	(PBA).	Morris	water	maze	probe	trial	latencies	in	the	target	

quadrant	of	PBA	and	vehicle-treated	Tau35	and	WT	mice.	(a)	Probe	trial	before	

(7.5	 months)	 and	 after	 (9	 months)	 treatment	 (b)	 Probe	 trial	 before	 (8.5	

months)	and	after	(10	months)	treatment.	Values	shown	are	mean	±	SEM.,	n=8	

for	each	genotype,	*P<0.05,	ANOVA.	

	

	

	

When	analysing	the	occupancy	of	the	different	quadrants	in	the	Morris	

water	maze	in	the	younger	cohorts	of	Tau35	and	WT	mice	after	PBA	or	vehicle	

treatment	 (i.e.	 mice	 aged	 9	 months),	 no	 statistically	 significant	 differences	

were	observed	between	any	of	the	groups	(Figure	4.7a).	However,	for	the	older	

cohort,	 PBA	 treated	 Tau35	 mice	 spend	 significantly	 longer	 in	 the	 target	

quadrant	36s	(+/-3.1)	compared	to	Tau35	mice	treated	with	vehicle	26s	(+/-

2.05)	at	10	months	of	age	(Figure	4.7b,	P<0.01).	WT	PBA	or	vehicle	treated	mice	

showed	 no	 difference	 in	 preference	 of	 target.	 This	 data	 indicates	 recued	

memory	consolidation	of	Tau35	mice	upon	PBA	treatment.	Similarly,	the	total	
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distance	 travelled	 by	 the	 younger	 cohorts	 of	mice	 at	 7.5	 (untreated)	 and	 9	

months	(treated),	also	did	not	show	any	significant	differences	(Figure	4.8a).	

When	analysing	the	total	distance	swum	the	younger	cohort	showed	no	

significant	difference	at	7.5	months	(untreated)	and	9	months	(treated).	Tau35	

and	WT	 groups	 did	 show	 a	 difference	 in	 total	 distance	 swum	 (Figure	 4.8a)	

which	has	been	previously	shown	in	section	3.2.2.10	The	distance	swum	in	the	

Morris	water	maze,	 but	 not	 swim	 speed,	 is	 increased	 in	Tau35	mice.	At	 8.5	

months	of	age	Tau35	and	WT	groups	exhibited	a	difference	in	swim	distance	

as	Tau35	are	impaired	by	this	age	as	previously	described	in	section	3.2.2.10	

The	distance	swum	in	the	Morris	water	maze,	but	not	swim	speed,	is	increased	

in	Tau35	mice	(Figure	4.8b,	untreated).	Following	a	6	week	dosing	period	with	

PBA,	the	total	distance	swum	of	the	older	cohort	of	Tau35	mice	increased	from	

a	mean	value	of	459cm	(+/-29)	at	8.5	months	to	388cm	(+/-23)	at	10	months,	

a	 decrease	 of	 18%,	whereas	 the	 swim	distance	 of	 Tau35	mice	 treated	with	

vehicle	 increased	 slightly,	 resulting	 in	 a	 statistically	 significant	 difference	

(P<0.005)	between	PBA	and	vehicle-treated	Tau35	mice.	In	contrast,	the	swim	

distance	of	WT	mice,	whether	treated	with	vehicle	or	PBA,	decreased	slightly	

during	 the	 same	period	 and	 did	 not	 show	 any	 significant	 differences	 under	

these	two	conditions	(Figure	4.3a,	P<0.001).	Swim	speed	was	not	influenced	by	

PBA	treatment	in	either	cohort	of	mice	(Figure	4.8c	and	d).	This	data	suggests	

that	 PBA	 has	 the	 ability	 to	 rescue	memory	 consolidation	with	 no	 effect	 on	

overall	swim	speed.	
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Figure	4.7:	%	Occupancy	of	Tau35	and	WT	after	treatment	with	PBA	and	

vehicle	 at	 9	 and	 10	months	 of	 age.	 (a)	Percentage	 occupancy	 of	WT	 and	

Tau35	vehicle	or	PBA	treated	mice	at	9	months	(b)	Percentage	occupancy	of	

WT	and	Tau35	vehicle	or	PBA	treated	mice	at	10	months.	Values	shown	are	

mean	±	SEM.,	n=8	mice	per	genotype,	**P<0.01,	ANOVA.	
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Figure	4.8:	Total	swim	distance	and	swim	speed	and	of	Tau35	and	WT	

before	 and	 after	 treatment	 with	 phenylbutyrate	 and	 vehicle.	 (a)	 Total	

distance	travelled	to	escape	platform	at	7.5	and	9	months	and	at	8.5	and	10	

months	of	age.	Tau35	mice	treated	with	PBA	incurred	a	reduced	swim	distance	

to	platform	than	vehicle-treated	mice	at	10	months	of	age	(b)	Total	distance	

travelled	to	escape	platform	at	7.5	and	9	months	and	8.5	and	10	months	of	age.	

Tau35	mice	treated	with	PBA	incurred	a	reduced	swim	distance	to	platform	

than	vehicle-treated	mice	at	10	months	of	age	(c)	Total	swim	speed	at	7.5	and	

9	months	of	 age.	 (c)	 Total	 swim	speed	at	8.5	 and	10	months	of	 age.	Values	

shown	are	mean	±	SEM,	n=8	mice	for	each	genotype,	**P<0.01,	ANOVA.	 	
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4.2.5	 Phenylbutyrate	 rescues	 phosphorylated	 tau	 and	

decreases	total	tau	

The	 brains	 of	 Tau35	 mice	 harbour	 highly	 phosphorylated	 tau	 at	 several	

different	epitopes	(3.2.3.1	Tau	is	phosphorylated	at	several	different	epitopes	

in	Tau35	mice	whereas	the	total	amount	of	tau	is	unchanged3.2.4.1	Tau35	mice	

exhibit	increased	phosphorylated	tau	immunoreactivity).	Tau	phosphorylation	

at	the	PHF1	epitope	(pS396/pS404)	is	a	well-studied	phosphorylation	site	and	

this	 antibody	 can	 be	 used	 as	 a	marker	 of	 AD	 pathology	 in	 human	 patients	

(Dickson	 et	 al.,	 1986).	 PBA	 has	 previously	 been	 shown	 to	 decrease	

phosphorylated	tau	at	epitope	Ser202/Thr205	(AT180)	in	the	hippocampus	of	

transgenic	 mice	 overexpressing	 mutant	 APP	 (Ricobaraza	 et	 al.,	 2009).	

Increased	 tau	phosphorylation	at	 the	PHF1	epitope	was	 identified	 in	Tau35	

mouse	hippocampus	between	the	ages	of	2	and	14	months	of	age.	As	AT180	did	

not	show	very	specific	labelling	in	Tau35,	PHF1	immunoreactivity	in	the	older	

group	of	Tau35	mice	was	examined	on	WB	and	IHC	after	administration	of	PBA	

or	vehicle.	The	WB	results	showed	that	PBA	caused	a	decrease	of	52%	in	the	

amount	of	phosphorylated	tau,	relative	to	total	tau,	in	the	hippocampal	regions	

of	Tau35	mice	compared	to	vehicle-treated	mice	aged	10	months	(Figure	4.9a,	

b,	P<0.001).	In	addition,	total	tau,	relative	to	β-actin,	was	also	reduced	by	18%	

in	the	older	PBA-treated	Tau35	mice	(Figure	4.9a,	c,	P<0.01).	 	
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Figure	4.9:	Phenylbutyrate	reduces	tau	phosphorylation	and	total	tau	in	

Tau35	mice.	(a)	Western	blots	of	hippocampal	extracts	of	the	older	cohort	of	

Tau35	mice	following	vehicle	or	PBA	treatment	for	6	weeks.	Mice	were	aged	

10	 months	 when	 examined.	 Blots	 were	 probed	 with	 antibodies	 to	

phosphorylated	tau	(PHF1),	total	tau,	and	β-actin.	Molecular	weight	markers	

are	shown	on	the	left.	Graphs	showing	the	amounts	of	(b)	phosphorylated	tau	

(PHF1),	 relative	 to	 total	 tau,	 and	 (c)	 total	 tau,	 relative	 to	 β-actin,	 in	 Tau35	

hippocampus.	Values	shown	are	mean	±	SEM.,	n=5	for	each	genotype,	**P<0.01,	

***P<0.001,	ANOVA.	
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Tau	 phosphorylation	 at	 the	 PHF1	 epitope	 was	 also	 examined	 by	

immunohistochemistry	 in	 the	 older	 Tau35	 mice	 following	 PBA	 or	 vehicle	

administration	(10	months).	Although	no	tangles	were	detectable	in	this	cohort	

of	vehicle-treated	Tau35	mice	at	this	age,	aggregated	tau	was	apparent	in	the	

mossy	fibres	 in	the	striatum	lucid	and	the	hilus,	and	this	was	not	present	 in	

PBA-treated	mice	(Figure	4.10,	arrows).	These	results	suggest	therefore	that	

treatment	with	PBA	removes	the	build-up	of	phosphorylated	cytoplasmic	tau	

in	the	hippocampal	regions	of	Tau35	mice.	However,	further	investigation	and	

additional	 phosphorylation-dependent	 tau	 antibodies	 are	 necessary	 to	 fully	

elucidate	 the	 mechanism	 underlying	 the	 action	 of	 PBA	 in	 reducing	 tau	

phosphorylation.	

	

	

	

Figure	4.10:	PHF1	immunoreactivity	in	Tau35	mice	treated	with	vehicle	

or	PBA.	Hilus	and	CA3	hippocampal	sections	of	Tau35	mice	at	10	months	of	

age	 following	 a	 6week	 treatment	 with	 vehicle	 (left	 panels)	 or	 PBA	 (right	

panels).	Sections	were	 labelled	with	antibody	to	phosphorylated	tau	(PHF1)	

and	 counterstained	 with	 haematoxylin.	 White	 arrow	 indicating	 perfusily	

stained	mossy	fibre	region	in	Tau35	vehicle	treated	mice.	n=3	per	treatment	

group.	Scale	bar=200µm.	 	
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4.2.6	Phenylbutyrate	partially	rescues	lysosomal	degradation	

	

The	results	shown	in	Chapter	3	implicate	autophagy,	and	the	involvement	of	

lysosomal	 degradation	 pathways,	 in	 the	 behavioural,	 biochemical	 and	

pathological	 changes	 observed	 in	 Tau35	 mice.	 The	 formation	 of	 the	

autophagosome	requires	two	key	proteins,	p62	and	LC3,	which	are	commonly	

used	as	autophagic	markers.	The	LC3-II	isoform	is	functionally	important	for	

elongation	of	autophagosome	membrane	 (Banduseela	et	al.,	2013),	whereas	

the	adaptor	protein	p62	 recognises	and	attaches	 to	ubiquitinated	misfolded	

proteins,	 prior	 to	 binding	 to	 LC3-II	 to	 generate	 an	 autophagosome	 (Figure	

1.11)	(Banduseela	et	al.,	2013).	Tau35	mice	show	increases	 in	both	p62	and	

LC3	(Figure	3.19),	implicating	abnormal	autophagosome	function	as	a	possible	

pathogenic	mechanism.	To	determine	whether	this	process	can	be	rescued	by	

PBA,	LC3	and	p62	were	assessed	 in	brain	homogenates	of	PBA	and	vehicle-

treated	mice	 aged	 10	months.	 Notably,	 PBA	 treatment	 had	 no	 effect	 on	 the	

elevated	LC3-I	and	LC3-II	observed	in	Tau35	mice	(Figure	4.11)	

	

	

	

Figure	4.11:	LC3-I	and	LC3-II	in	Tau35	mice	treated	with	phenylbutyrate.	

(a)	Western	blots	of	microtubule-associated	protein	1-light	chain	3	(LC3)-I	and	

LC3-II	 and	β-actin,	 in	PBA	and	vehicle-treated	Tau35	mice	aged	10	months.	

Graphs	show	quantitation	of	LC3-I	(b)	and	LC3-II	(c)	in	PBA	and	vehicle-treated	

mice.	Values	shown	are	mean	±	SEM,	n=5	per	genotype.	 	
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Western	blots	of	p62	 in	PBA	and	vehicle-treated	Tau35	mouse	brain	

showed	a	significant	reduction	of	57%	induced	by	PBA	(Figure	4.12,	P<0.05).	

Furthermore,	neither	PBA	nor	vehicle	affected	the	amount	of	p62	present	in	

WT	mice	(Figure	4.12).		

	

	

	

	

	

Figure	4.12:	p62	in	Tau35	and	WT	mice	treated	with	phenylbutyrate	or	

vehicle	Western	blot	showing	p62	in	Tau35	mice	(a)	or	WT	mice	(b)	following	

administration	of	either	PBA	or	vehicle	for	6	weeks.	Mice	were	aged	10	months	

when	examined.	(c)	Graphs	showing	the	amounts	of	p62,	relative	to	β-actin,	in	

Tau35	 (c)	 or	 WT	 (d)	 mice.	 Values	 shown	 are	 mean	 ±	 SEM,	 n=5	 for	 each	

genotype.	*P<0.05,	ANOVA.	
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Immunohistochemical	 analysis	 of	 Tau35	 mice	 using	 an	 antibody	

recognising	p62	showed	that,	whereas	vehicle-treated	mice	showed	increased	

p62	 immunoreactivity	 in	 the	pyramidal	cell	 layer	of	 the	CA1	and	CA3	of	 the	

hippocampus,	in	PBA-treated	mice	this	labelling	was	absent	(Figure	4.13).		

	

	

	

	

	

Figure	 4.13:	 p62	 labelling	 of	 Tau35	 hippocampus	 following	 treatment	

with	phenylbutyrate	or	vehicle.	Hippocampal	brains	sections	from	PBA	and	

vehicle-treated	Tau35	mice.	Positive	p62	 labelling	was	observed	 in	CA1	and	

CA3	 hippocampal	 regions	 in	 Tau35	 mice	 treated	 with	 vehicle,	 which	 was	

absent	from	Tau35	mice	treated	with	PBA.	n=3	mice	for	each	treatment	group,	

Scale	bar=200µm.	 	
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The	autophagolysosome	contains	acidic	proteases,	including	cathepsin	

family	 members	 that	 are	 responsible	 for	 the	 degradation	 of	 autophagic	

substrates.	Cathepsin	D	 is	 crucial	 for	 lysosomal	degradation	of	proteins	and	

reduced	 cathepsin	 D	 has	 previously	 been	 linked	 to	 impaired	 autophagic	

degradation	(Tatti	et	al.,	2012).	The	results	shown	in	section	3.2.3.4	Lysosomal	

degradation	markers	are	altered	in	Tau35	identified	reduced	mature	cathepsin	

D	 in	 Tau35	 mouse	 brain.	 Therefore,	 the	 effects	 of	 PBA	 administration	 on	

cathepsin	 D	 were	 examined	 on	 western	 blots	 of	 Tau35	 mouse	 brain.	 PBA	

caused	a	37%	increase	in	the	amount	of	mature	(active)	cathepsin	D	present	in	

Tau35	 mouse	 hippocampus,	 relative	 to	 β-actin	 (Figure	 4.14a,c,	 P<0.05),	

without	any	significant	effect	on	the	amount	of	pro-cathepsin	D	(Figure	4.14a,	

b,	P>0.05).	

	

	

	

	

Figure	4.14:	Cathepsin	D	in	Tau35	mice	treated	with	phenylbutyrate	or	

vehicle	 (a)	 Western	 blot	 showing	 pro-cathepsin	 D	 (Pro	 CatD)	 and	 mature	

(active)	cathepsin	D	in	PBA	and	vehicle-treated	Tau35	mice.	Graphs	showing	

the	 relative	 amounts	 of	mature	 cathepsin	D	 (b)	 and	 pro-cathepsin	D	 (c)	 in	

Tau35	mice	treated	with	PBA	or	vehicle.	Values	shown	are	mean	±	SEM,	n=5	

per	genotype,	*P<0.05,	ANOVA.	
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Tau35	 mouse	 brain	 also	 exhibits	 a	 significantly	 reduced	 amount	 of	

acetylated	tubulin,	indicating	that	there	may	be	a	decreased	ability	to	stabilise	

MTs	in	these	animals	(Figure	3.20).	To	determine	whether	PBA	treatment	can	

reverse	this	effect	on	tubulin	acetylation,	the	amounts	of	acetylated	and	total	

a-tubulin	were	assessed	in	hippocampal	homogenates	from	Tau35	mice	aged	

10	months	(Figure	4.15).	PBA	induced	a	2-fold	increase	in	acetylated	α-tubulin,	

relative	 to	 total	 α-tubulin	 in	 Tau35	mice	 (Figure	 4.15a,	 b,	 P<0.05),	without	

affecting	the	total	amount	of	α-tubulin,	relative	to	β-actin	(Figure	4.15a,	c).	

Taken	together,	these	results	indicate	that	PBA	has	the	ability	to	at	least	

partially	 restore	 some	of	 the	 abnormalities	 that	 lead	 to	 defective	 lysosomal	

degradation	in	Tau35	mice.	

	

	

	

Figure	 4.15:	 Acetylated	 tubulin	 and	 tubulin	 in	 phenylbutyrate	 treated	

Tau35	mice.	 (a)	Western	 blot	 showing	 acetylated	 tubulin	 (Ac-tubulin)	 and	

tubulin	 levels	 in	 Tau35	 mice	 treated	 with	 either	 phenylbutyrate	 (PBA)	 or	

vehicle.	Graphs	showing	the	amount	of	acetylated	α-tubulin,	relative	to	total	α-

tubulin	(b)	and	total	α-tubulin,	relative	to	β-actin	in	Tau35	mice	following	PBA	

treatment.	Values	shown	are	mean	±	SEM,	n=5	per	treatment	group,	*P<0.05,	

ANOVA.	 	
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4.2.7	Phenylbutyrate	rescues	synaptic	integrity	

	

Synapsin1,	but	not	 synaptophysin,	was	previously	 shown	 to	be	 significantly	

reduced	in	Tau35	compared	to	WT	mice	(section	3.2.3.5	Synaptic	proteins	in	

Tau35	mice).	To	assess	whether	PBA	could	reverse	this	potential	dysfunction	

in	synaptic	vesicle	release,	brain	hippocampal	homogenates	from	10	months	

old	Tau35	and	WT	mice	treated	with	either	PBA	or	vehicle	were	analysed	on	

western	 blots	 to	 determine	 the	 amounts	 of	 synapsin1	 and	 synaptophysin.	

Following	PBA	administration,	the	amount	of	synapsin1	increased	two-fold	in	

Tau35	 mouse	 brain	 (Figure	 4.16a,	 c,	 P<0.01),	 whereas	 synapsin1	 was	

unchanged	in	the	treated	WT	mice	(Figure	4.16b,	d).	In	contrast,	synaptophysin	

was	unaltered	in	Tau35	mice	treated	with	PBA	(Figure	4.16e).	This	finding	was	

not	surprising	because	the	amount	of	synaptophysin	was	also	not	altered	 in	

untreated	 Tau35	 mice	 at	 this	 age	 (Chapter	 3,	 Figure	 3.21b).	 These	 results	

indicate	 that	 PBA	 can	 potentially	 recover	 synaptic	 integrity	 in	 particular	

synaptic	vesicular	release	deficits.	However,	the	potential	beneficial	effect	of	

PBA	on	synaptic	health	requires	confirmation.		
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Figure	4.16:	Synapsin1	and	synaptophysin	in	Tau35	and	WT	mice	treated	

with	phenylbutyrate.	Western	blots	of	synapsin1	in	Tau35	(a)	and	WT	(b)	

mouse	hippocampus	treated	with	either	vehicle	or	PBA	at	10	months	of	age.	(c-

d)	Graphs	showing	quantification	of	 the	amount	of	 synapsin1,	 relative	 to	α-

tubulin.	 Synapsin1	was	 significantly	 increased	 in	Tau35	mice	 following	PBA	

treatment.	(e).	Western	blot	and	graph	showing	the	amount	of	synaptophysin	

in	Tau35	vehicle	and	PBA-treated	mice.	Values	shown	are	mean	±	SEM,	n=5	per	

treatment	group	and	genotype,	**P<0.01,	ANOVA.	
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4.3	Summary	and	Discussion	

	

The	purpose	of	this	study	was	to	examine	whether	the	tauopathy-like	deficits	

seen	 in	 Tau35	 mice	 could	 be	 reversed	 or	 rescued	 upon	 treatment	 with	 a	

therapeutic	compound.	HDAC	inhibitors	such	as	PBA	have	previously	shown	

promising	 results	 in	 animal	 models	 for:	 ALS	 (Del	 Signore	 et	 al.,	 2009),	 AD	

(Ricobaraza	et	al.,	2009),	Huntington’s	disease	(Ferrante	et	al.,	2003),	stroke	

(Qi,	 2004),	 Parkinson’s	 disease	 (Zhou	 et	 al.,	 2011)	 and	 dentatorubral-

pallidoluysian	 atrophy	 (a	 rare	 autosomal	 dominant	 neurodegenerative	

progressive	 disorder	 of	 ataxia,	 myoclonus,	 epilepsy,	 and	 progressive	

intellectual	 deterioration	 in	 children	 and	 ataxia,	 choreoathetosis,	 and	

dementia)	 (Ying	 et	 al.,	 2006).	 Due	 to	 previous	 findings	 and	 the	 pleiotropic	

properties	of	PBA,	this	compound	was	selected	to	treat	the	Tau35	mice.	

	

The	main	findings	of	this	chapter	are:	

	

1) PBA	did	not	alter	the	body	mass	of	Tau35	or	WT	mice.		

2) Progressive	neuromuscular	deterioration	in	Tau35	mice	was	rescued	upon	

treatment	with	PBA.	

3) Progressive	 spatial	 learning	 and	 hippocampal-dependent	 memory	 was	

rescued	 in	 8.5	 months	 treated	 Tau35	 mice,	 but	 did	 not	 prevent	 the	

development	of	these	impairments	in	Tau35	mice.		

4) The	 increase	 in	phosphorylated	 tau	 in	Tau35	mice	was	reversed	by	PBA	

treatment.	

5) Impaired	 lysosomal	degradation/autophagy	 in	Tau35	mice	was	partially	

restored	following	PBA	treatment.	

6) The	observed	 reduction	 in	 synapsin1	 in	Tau35	mice	was	 reversed	upon	

treatment	with	PBA.	

	

	 Taken	 together,	 these	 results	 show	 that	 treatment	with	 the	 clinically	

approved	 drug	 PBA,	 is	 able	 to	 partially	 rescue	 the	 key	 phenotypical	

characteristics	that	emulate	tauopathy	in	Tau35	mice	at	10months	of	age.	 	
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4.3.1	Phenylbutyrate	rescues	motor	deficits	in	Tau35	

	

PBA	has	contributed	to	therapy	for	spinal	muscular	atrophy	(SMA)	(Andreassi	

et	al.,	2004)	and	has	been	tested	in	clinical	trials	for	people	with	SMA	during	a	

7	day	pilot	study.	During	this	trial,	patients	showed	improved	motor	function	

compared	 to	 baseline	 measurements	 (Mercuri	 et	 al.,	 2004).	 In	 the	 present	

study,	motor	impairment	of	Tau35	mice	improved	with	increased	grip	strength	

evident	in	the	mice	at	9	and	10	months	of	age,	indicating	the	ability	of	PBA	to	

rescue	muscular	deficits	in	these	mice.	Muscle	atrophy	is	associated	with	aging	

and	neurodegenerative	diseases	 such	as	amyotrophic	 lateral	 sclerosis	 (ALS)	

and	it	can	occur	when	the	rate	of	protein	degradation	exceeds	that	of	protein	

synthesis	 (von	 Haehling	 et	 al.,	 2010).	 It	 is	 possible	 that	 PBA	 may	 act	 via	

rescuing	SMA	genes	or	via	the	two	major	protein	degradation	pathways	that	

are	 activated	 during	 muscle	 atrophy	 known	 as	 the	 autophagic	 lysosomal	

pathway	(also	dysfunctional	in	Tau35)	and	the	ubiquitin-proteasome	systems	

which	 variably	 contributes	 to	 the	 loss	 of	 muscle	 mass	 (Sandri,	 2013).	 The	

mechanistic	roles	PBA	may	have	on	the	rescue	of	motor	deficits	and	muscle	

pathology	is	further	discussed	in	CHAPTER	7.	

	

4.3.2	Phenylbutyrate	rescues	cognitive	deficits	in	Tau35	mice	

	

A	common	feature	of	memory	formation,	in	particular	long-term	memory	is	the	

requirement	 for	 changes	 in	 gene	 expression	 essential	 for	 memory	

consolidation	 (Bailey	 et	 al.,	 2004).	 HDAC	 inhibitors,	 such	 as	 PBA,	 have	 the	

ability	 to	alter	chromatin	structure	and	thereby	enhance	memory	 formation	

(Levenson	et	al.,	2004).	Previous	studies	have	shown	that	PBA	can	successfully	

reduce,	restore	and	recover	learning	and	memory	formation	(Ricobaraza	et	al.,	

2009).	The	current	study	also	identified	that	treatment	of	Tau35	mice	aged	8.5	

months	with	PBA,	for	a	duration	of	6	weeks,	reversed	and	rescued	spatial	and	

learning	memory	 deficits.	 Data	 from	 the	 present	work	 further	 supports	 the	

view	that	PBA	rescues	memory	deficits	apparent	in	Tau35	mice	in	the	Morris	

water	maze,	potentially	through	chromatin	remodelling	and/or	upregulation	

of	gene	transcription,	or	even	upregulation	of	synaptic	plasticity.		
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	 PBA	is	known	to	act	via	HDAC	inhibition	which	could	improve	protein	

remodelling	and	synaptic	plasticity	which	could	directly	influence	memory	and	

learning.	 Histone	 acetylation	 is	 a	 highly	 controlled	 process	 by	 two	 types	 of	

enzymes,	histone	transferases	(HATs)	and	HDACs,	which	in	turn	can	drive	gene	

expression	 (Guan	 et	 al.,	 2002;	 Soejima	 et	 al.,	 2004;	 Clayton	 et	 al.,	 2006).	

Previous	research	has	 implicated	histone	acetylation	and	 its	gene	activation	

properties	 in	memory	and	learning	and	increases	histone	acetylation	can	be	

observed	after	exposure	to	learning	paradigms	(Korzus	et	al.,	2004;	Levenson	

et	al.,	2004;	Chwang,	2006;	Chwang	et	al.,	2007;	Fischer	et	al.,	2007;	Mai	et	al.,	

2009;	 Peleg	 et	 al.,	 2010).	 PBA	 may	 therefore	 have	 an	 effect	 on	 epigenetic	

histone	 acetylation	 regulators	 which	 play	 a	 crucial	 role	 in	 neural	 gene	

expression	 involved	 in	 phenotypic	 and	 behavioural	 cognitive	 plasticity	

(Unterberger	et	al.,	2006).	In	addition,	PBA	enhances	the	expression	of	several	

cell	 chaperons	 via	 HDAC	 inhibition	 and	 therefore	 contribute	 to	 possible	

reduction	of	ER	stress	(Ricobaraza	et	al.,	2012).	Interestingly	PBA	was	not	able	

to	prevent	memory	deficits	when	mice	were	dosed	at	the	age	of	7.5	months,	

indicating	that	PBA	preferentially	acts	on	pre-existing	deficits	in	Tau35	mice	

and	 rescues	 these	 rather	 than	preventing	 the	onset	of	disease.	The	possible	

mechanistic	roles	of	PBA	on	memory	are	discussed	in	more	detail	in	CHAPTER	

7	

	

4.3.3	Phenylbutyrate	rescues	phosphorylated	tau	and	reduces	

total	tau	in	Tau35	mice	

	

Treatment	 of	 Tau35	 mice	 with	 PBA	 for	 six	 weeks	 resulted	 in	 a	 significant	

decrease	 in	 phosphorylated	 tau	 in	 the	 hippocampus	 in	 biochemical	

immunoblots	 and	 immunohistochemically-labelled	 hippocampal	 brain	

sections	(Figure	4.10)	There	was	no	detectable	labelling	of	either	inclusions	or	

mossy	fibres	in	PBA-treated	Tau35	mice	compared	to	those	receiving	vehicle,	

the	latter	of	which	exhibited	extensive	mossy	fibre	labelling	in	the	CA3	and	CA1	

regions	of	the	hippocampus.	PBA	exhibits	a	variety	of	metabolic	effects,	acting	

as	a	chaperone	molecule,	binding	and	masking	surface	exposed	hydrophobic	

segments	 of	 unfolded	 proteins,	 stabilising	 proteins	 in	 their	 native	
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conformation,	and	reducing	ER	stress	(Perlmutter,	2002;	Papp,	2006;	Yam	et	

al.,	 2007).	 Results	 from	 western	 blots	 and	 immunohistochemistry	 studies	

reported	 here,	 indicate	 that	 PBA	 treatment	 ameliorates	 the	 increase	 in	 tau	

phosphorylation	in	Tau35	mouse	hippocampus.	It	is	therefore	possible	that	the	

reduction	 of	 phosphorylated	 tau	 seen	 in	 PBA	 treated	 Tau35	mice	 is	 due	 to	

direct	stabilisation	of	tau	and	therefore	preventing	the	formation	of	oligomers,	

fibrils	 or	 other	 higher	 molecular	 tau	 species.	 Selenica	 and	 colleagues	 have	

proposed	that	spatial	navigation	was	improved	due	to	a	reduction	in	total	tau	

rather	than	aggregated	tau	(Selenica	et	al.,	2014).	Tau35	mice	also	showed	a	

decrease	in	total	tau	upon	treatment	with	PBA	indicating	that	the	reduction	in	

tau	may	be	linked	to	the	spatial	learning	improvement	seen	in	these	animals.	

Previous	 studies	 have	 identified	 that	 treating	 mouse	 models	 of	 AD	

(Tg2576	mice	expressing	mutant	APP)	or	SMA	(SMNΔ7	SMA	mice	lacking	exon	

7	 which	 develop	 extensive	 motor	 deficits)	 with	 PBA,	 increases	 Ser9	

phosphorylation	of	GSK3β,	reducing	GSK3	activity	in	the	hippocampus,	as	well	

as	decreasing	Akt	phosphorylation	(Ricobaraza	et	al.,	2009;	Butchbach	et	al.,	

2016).	As	Tau35	mice	exhibit	 increased	GSK3β	activity,	 the	reduction	 in	 tau	

phosphorylation	 caused	 by	 PBA,	may	 result	 in	 part	 from	 GSK3β	 inhibition.	

However,	the	present	study	described	here	did	not	investigate	levels	of	GSK3	

or	Akt	activity	in	PBA-treated	Tau35	mice.	Nevertheless,	PBA	modulation	of	the	

Akt/GSK3β	 pathway	 is	 one	 possible	 pathway	 that	 may	 contribute	 to	 the	

neuroprotective	effects	observed	in	PBA	treated	Tau35	mice.	

	

4.3.4	Phenylbutyrate	rescues	lysosomal	deficits	in	Tau35	mice	

	

The	present	study	demonstrates	the	ability	of	PBA,	which	has	several	different	

cellular	 actions,	 to	 partially	 diminish	 the	 impaired	 lysosomal	 degradation	

observed	in	Tau35	mice.	PBA	was	able	to	increase	the	activity	of	cathepsin	D,	

reduce	the	elevation	in	p62	and	increase	the	amount	of	acetylated	α-tubulin,	

without	apparently	affecting	LC3-I	or	LC3-II.	These	findings	indicate	improved	

lysosomal	autophagic	function	due	to	PBA	administration	in	Tau35	mice.	The	

molecular	 mechanisms	 underlying	 the	 protective	 effects	 of	 PBA	 on	 the	
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autophagic–lysosomal	system	are	not	known.	However,	it	is	well	known	that	

PBA	has	the	ability	to	improve	trafficking	of	the	serotonin	transporter	(SERT)	

(Fujiwara	et	 al.,	 2013)	by	decreasing	 the	protein	 folding	 load	 in	 the	ER	and	

preventing	protein	misfolding,	thereby	providing	protection	against	ER	stress	

mechanisms.	

Tau35	 mice	 also	 show	 Parkinson-like	 motor	 abnormalities,	 and	

accumulation	of	α-synuclein,	further	implicating	possible	ER	stress	in	disease	

pathogenesis,	 which	 could	 potentially	 be	 rescued	 by	 PBA.	 However,	 as	 ER	

stress	was	not	directly	measured	 in	 this	study,	 this	remains	speculative	and	

further	investigation	is	necessary	to	fully	evaluate	the	mechanisms	affected	by	

expression	of	Tau35.	

	

4.3.5	Phenylbutyrate	rescues	synaptic	deficits	in	Tau35	mice	

	

Synaptic	dysfunction	is	a	pathological	hallmark	that	features	in	several	human	

tauopathies,	it	is	also	the	major	correlate	of	cognitive	impairment	in	AD	(Terry	

et	al.,	1991).	Previous	findings	by	Ricobaraza	et	al.,	(2009)	showed	that	PBA	

increased	histone	acetylation,	 in	 turn	elevating	marker	of	synaptic	plasticity	

(Ricobaraza	 et	 al.,	 2009).	 The	 present	 study	 revealed	 that	 PBA	was	 able	 to	

rescue	synapsin1	deficits	in	Tau35	mice	aged	10	months.	This	finding	indicates	

that	inhibition	of	histone	deacetylation	can	potentially	lead	to	an	upregulation	

of	 proteins	 involved	 in	 synaptic	 plasticity	 in	 Tau35	 mice,	 which	 could	 be	

responsible	for	rescuing	impairment	of	synaptic	vesicle	release.		

Previous	studies	of	gene	expression	have	identified	several	genes	in	the	

formation	 of	 long-term	 memory,	 through	 the	 formation	 of	 new	 synaptic	

connections	and	interactions	(Tully	et	al.,	2003).	It	was	previously	determined	

that	 Tau35	mice	 have	 reduced	 synaptic	 vesicle	 release,	 leading	 to	 potential	

disruption	 of	 synaptic	 communication.	 Herein,	 the	 treatment	 with	 PBA	

alleviated	 this	 loss	 of	 synaptic	 disruption,	 which	 may	 be	 directly	 linked	 to	

memory	 formation.	However,	only	 two	pre-synaptic	markers	were	 tested	 in	

the	present	study,	and	hence	it	is	essential	to	examine	other	synaptic	markers,	

as	well	as	spine	number	and	spine	morphology,	in	order	to	fully	elucidate	the	

mechanism	involved.	
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Another	 possibility	 is	 that	 the	 chaperone	 action	 of	 PBA	 leads	 to	 a	

reduction	 in	 tau	 truncation	 and	 or	misfolding.	 Indeed,	 tau	 pathology	 in	 the	

mossy	fibres,	which	is	present	in	both	naive	and	vehicle-treated	Tau35	mice,	is	

absent	in	Tau35	mice	treated	with	PBA.	This	suggests	that	a	potential	action	of	

PBA	may	be	 to	 reduce	 the	accumulation	of	 tau	 in	 the	hippocampus	 in	 these	

animals.	It	is	well	established	that	phosphorylated	tau	is	an	integral	component	

of	 human	 tauopathies,	 particularly	 in	 pre-tangles	 and	 NFTs,	 leading	 to	

neuronal	 disruption.	 Therefore,	 it	 is	 possible	 that	 dysregulation	 of	 tau	

phosphorylation	in	the	hippocampus	could	translate	into	the	cognitive	deficits	

and	synaptic	dysfunction	seen	in	these	animals	and	this	may	be	rescued	upon	

treatment	with	PBA	(Arendt	et	al.,	2003).	

	

4.3.6	Conclusions	

	

Within	 this	 chapter	 it	 was	 clearly	 demonstrated	 that	 the	 disease	 course	 of	

Tau35	mice	was	modified	upon	treatment	with	PBA,	a	drug	currently	in	clinical	

use	for	the	treatment	of	a	variety	of	conditions,	including	neurodegenerative	

proteinopathies	 (Iannitti	 and	 Palmieri,	 2011).	 Interestingly	 PBA	 treatment	

showed	rescue	of	symptoms	when	administered	at	8.5	months	of	age	and	 it	

may	therefore	provide	efficacy	if	administered	after	diagnosis	in	people	with	

sporadic	tauopathies.	Our	results	provide	pre-clinical	evidence	for	a	beneficial	

role	for	PBA	in	Tau35	mice.	Moreover,	since	there	is	emerging	evidence	that	

tau	truncation	plays	a	role	in	many	neurodegenerative	disorders,	being	able	to	

rescue	these	effects	will	be	important	for	future	therapeutics.	 	
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CHAPTER	5	

	

The	 effect	 of	 strain	 background	 on	 the	 phenotype	 of	

Tau35	mice	

	

5.1	Introduction	

Tau35	 mice	 exhibit	 an	 array	 of	 behavioural,	 biochemical	 and	 pathological	

changes,	 several	 of	 which	 are	 rescued	 by	 PBA.	 However,	 previous	 disease	

modifying	 treatments	 for	 the	 human	 tauopathies	 have	 failed	 to	 alleviate	

symptoms	 or	 alter	 the	 disease	 course	 in	 clinical	 trials	 (Mangialasche	 et	 al.,	

2010).	This	is	partially	due	to	the	fact	that	preclinical	in	vivo	studies	often	use	

different	 strains	 of	 mice,	 which	 can	 impact	 on	 the	 disease	 phenotype	 at	

different	 stages	 and	 in	 different	 ways.	 For	 example,	 mouse	 strains	 exhibit	

variable	anxiety,	locomotor	activity,	visual	and	auditory	ability,	and	differential	

inflammation,	neurodegeneration	and	learning/memory	patterns,	all	of	which	

can	 impact	 on	 performance	 and	 measures	 of	 disease	 severity	 (Pugh	 et	 al.,	

2004).	Well-established	examples	of	these	differences	include,	mouse	strains	

129/Sv	and	DBA/2,	both	of	which	perform	less	well	in	the	Morris	water	maze	

than	 the	 C57BL/6	 strain.	 Furthermore,	 backcrossing	 mice	 on	 a	 mixed	

C57BL/6:129	background	onto	a	pure	129	mouse	strain	often	masks	cognitive	

deficits	 (Gerlai,	 1996;	Owen	et	 al.,	 1997;	Wolfer	 et	 al.,	 1997).	These	 reports	

highlight	a	potential	advantage	of	using	mice	on	a	hybrid	background,	which	

may	be	closer	to	the	situation	in	humans	where	genetic	variation	might	affect	

susceptibility	 to	 tauopathies	 and	 AD-related	 dysfunctions.	 However,	 these	

findings	also	show	the	importance	of	investigating	phenotypic	changes	in	pure	

inbred	genetic	backgrounds	for	comparison	with	mice	on	mixed	backgrounds.	

Furthermore,	 the	benefits	of	pure	genetic	 inbred	mouse	models	are	that	 the	

potential	 manipulation	 and	 interference	 from	 other	 genetic	 factors	 can	 be	

minimised.	The	C57BL/6	(WTBl/6)	mouse	is	the	most	commonly	used	mouse	

strain	 in	 neurodegeneration	 behavioural	 research	 and,	 although	 it	 is	 now	
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possible	 to	 generate	 gene-targeted	 mice	 using	 embryonic	 stem	 (ES)	 cells	

derived	from	C57BL/6	mice,	most	mouse	models	of	neurodegenerative	disease	

have	been	made	using	mouse	ES	cell	lines	derived	from	129	mouse	substrains	

(Simpson	et	al.,	1997;	Auerbach	et	al.,	2000).	As	described	in	2.1	Animals	and	

tissue	and	2.3.12.1	Animals.	Tau35	mice	were	generated	from	embryonic	stem	

cells	 derived	 from	 129/Ola	 mice	 and	 clones	 were	 injected	 into	 C57BL/6	

blastocysts.	A	further	cross	with	C57BL/6	mice	resulted	in	hybrid	Tau35Bl/6;129	

and	WTBl/6;129	mice	with	an	average	75%	BL/6;	25%	129/Ola.	To	investigate	

the	effect	of	mouse	background	strain	on	the	disease-relevant	phenotype,	and	

to	 attempt	 to	 reduce	 inter-animal	 variation,	 the	 Tau35Bl/6;129	 mice	 were	

backcrossed	 to	 pure	 C57BL/6	 mice	 over	 9	 generations	 and	 behavioural	

analyses	 were	 performed	 to	 determine	 whether	 the	 previously	 observed	

changes	were	preserved	in	the	new	Tau35	mice	on	a	pure	inbred	background	

(Tau35Bl/6	mice).	

5.2	Results	

	

Male	hemizygous	Tau35Bl/6	mice	(n=10)	were	used	 in	 these	experiments,	as	

had	been	done	previously	with	hybrid	Tau35Bl/6;129	mice	(CHAPTER	3).	This	

strategy	 (1)	 avoids	 the	 complications	 of	 the	 oestrous	 cycle	 during	 different	

stages	and	ages	of	mouse	behaviour	and	(2)	minimises	potential	inter-animal	

variation	due	to	X-linked	inactivation	in	female	mice.		

	

5.2.1	Breeding	profile	of	Tau35Bl/6	transgenic	mice	

	

The	Tau35Bl/6;129	original	 (N1)	 female	heterozygous	mice	were	crossed	with	

C57BL/6	male	mice	obtained	from	Charles	River	over	nine	generations	until	

N10	was	reached	(Figure	5.1,	Table	9).	These	mice	were	then	used	throughout	

all	the	behavioural	trials	described	here.	
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Figure	 5.1:	 Backcross	 breeding	 procedure	 to	 generate	 Tau35Bl/6	 male	

mice.	Heterozygous	original	N1	female	Tau35Bl/6;129	mice	were	crossed	9	times	

with	male	C57BL/6	mice	until	the	N10	generation	of	99.90%	Tau35Bl/6	mice	

was	obtained.	

	

	

	

Table	9:	Table	showing	the	increase	in	the	percentage	of	C57BL/6	

offspring	DNA	that	constitutes	the	genome	of	the	offspring	(Charles	River:	

http://www.criver.com/files/pdfs/gts/rm_gt_d_maxbax.aspx)	

	

Generation	 Recipient	genome	(C57BL/6)	

N1	(original	colony)	 75%		

N2	 87.5%	

N3	 93.75%	

N4	 96.88%	

N5	 98.44%	

N6	 99.22%	

N7	 99.61%	

N8	 99.82%	

N9	 99.90%	

N10	 99.90%	
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5.2.2	Body	mass	is	not	altered	in	Tau35Bl/6	mice	

	

It	was	previously	found	that	Tau35Bl/6;129	mice	did	not	display	any	difference	

in	body	mass	compared	to	WTBl/6;129	animals	between	the	ages	of	2-18	months	

(Figure	3.5).	When	comparing	WTBl/6	and	Tau35Bl/6	mice	aged	2-18	months,	

there	was	also	no	significant	difference	between	the	groups	at	any	age	(Figure	

5.2).	Interestingly	however,	both	the	Tau35Bl/6	and	WTBl/6	mice	appeared	to	be	

consistently	of	slightly	lower	body	mass	than	Tau35Bl/6;129	and	WTBl/6;129	mice	

at	comparable	ages,	although	these	differences	were	not	statistically	significant	

(Figure	5.2).	This	indicates	that	Tau35	expression	did	not	influence	body	mass	

in	these	mice	in	either	mixed	or	pure	C57BL/6	backgrounds.	

	

	

	

	

Figure	5.2:	Body	mass	of	Tau35	and	WT	mice	on	different	backgrounds.	

Graph	showing	the	body	weights	of	age-matched	WTBl/6,	Tau35Bl/6,	WTBl/6;129,	

and	Tau35Bl/6;129	mice	between	2-18	months	of	age.	Values	represent	mean	and	

±	SEM,	n=8-10	per	genotype.	
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5.2.3	Limb	clasping	in	Tau35Bl/6	mice	

	

To	assess	whether	Tau35Bl/6	mice	exhibited	a	similar	limb	clasping	phenotype	

to	the	Tau35Bl/6;129	mice,	animals	were	suspended	briefly	by	their	tails	and	limb	

clasping	was	assessed	as	before	(Figure	3.6).	Tau35Bl/6	mice	showed	distinct	

limb	clasping,	similar	to	the	Tau35Bl/6;129	hybrid	mice	(Figure	5.3).	However,	

whereas	 clasping	 of	 Tau35Bl/6;129	mice	was	 apparent	 from	 2	months	 of	 age,	

Tau35Bl/6	mice	exhibited	clasping	from	4	months	of	age.	By	10	months,	60%	of	

Tau35Bl/6	mice	were	clasping	and	by	18	months	of	age,	100%	of	Tau35Bl/6	mice	

showed	the	clasping	phenotype,	which	was	entirely	consistent	with	the	results	

previously	obtained	from	the	Tau35Bl/6;129	mice	(Figure	5.3b).	

	

	

	

Figure	5.3:	Limb	clasping	in	Tau35Bl/6	and	Tau35Bl/6;129	mice.	(a)	Tau35Bl/6	

mice	clasp	their	hind	limbs	and	forelimbs	from	an	early	age	during	brief	tail	

suspension	 (left,	WTBl/6;	 right,	Tau35Bl/6)	both	at	10	months	of	age.	(b)	The	

proportion	of	Tau35Bl/6	mice	exhibiting	clasping	was	determined	at	intervals	

between	2	and	18	months	of	age.	Clasping	was	not	observed	in	WTBl/6	mice	at	

any	age	examined.	Tau35Bl/6;129	data	are	shown	for	comparison	(grey).	Values	

show	the	percentage	of	total	mice	clasping	their	limbs,	n=10-40	per	genotype.	

	 	



	 215	

5.2.4	Locomotor	activity	is	not	altered	in	Tau35Bl/6	mice	

	

Locomotor	activity	was	assessed	in	Tau35Bl/6	mice	aged	8	months	to	test	for	

any	 patterns	 of	 anxiety	 or	 abnormal	 behaviour.	 Tau35Bl/6	 mice	 showed	 no	

significant	differences	in	either	the	time	spent	in	each	zone	(Figure	5.4a)	or	the	

total	 distance	 travelled	 during	 the	 monitoring	 period	 in	 the	 open	 field,	

compared	to	WTBl/6	mice	(Figure	5.4b).	These	results	show	that	similar	to	the	

Tau35Bl/6;129	mice,	Tau35Bl/6	mice	do	not	show	increased	anxiety.		

	

	

	

	

Figure	 5.4	 Locomotor	 activity	 in	 the	 open	 field	 test	 for	 WTBl/6	 and	

Tau35Bl/6	 mice.	 (a)	 Results	 are	 expressed	 as	 the	 time	 spent	 in	 the	 outer,	

middle	or	inner	zone	of	the	open	field	during	an	observation	period	of	30	min.	

(b)	Total	distance	travelled	in	the	30	min	spent	in	the	open	field	for	Tau35Bl/6	

and	WTBl/6	mice	 aged	 8	months.	 Values	 shown	 are	mean	 ±	 SEM.,	 n=10	 per	

genotype.	 	
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5.2.5	Assessment	of	motor	deficits	in	Tau35Bl/6	mice	

	

Motor	co-ordination	was	assessed	on	an	accelerating	Rotarod	in	Tau35Bl/6	mice	

aged	1-16	months.	Tau35Bl/6	mice	showed	a	significant	reduction	in	the	latency	

to	fall	from	the	Rotarod	compared	to	WTBl/6	mice.	Similar	to	the	Tau35Bl/6;129	

mice,	in	which	motor	impairment	was	apparent	from	1	month	of	age,	Tau35Bl/6	

showed	 early	 impaired	 motor	 ability	 from	 2	 months	 of	 age,	 which	

progressively	 deteriorated	 (Figure	 3.7).	 A	 comparison	 of	 the	 Rotarod	

performance	of	Tau35Bl/6	and	Tau35Bl/6;129	mice	showed	that	Tau35Bl/6	mice	

performed	marginally	better	than	Tau35Bl/6;129	mice	(although	this	difference	

was	 not	 statistically	 significant)	 with	 an	 increased	 latency	 to	 fall	 from	 the	

Rotarod	of	approximately	20s,	up	to	the	age	of	8	months	(Figure	5.5a).	By	14	

months	of	age,	there	was	no	difference	between	the	performance	of	Tau35Bl/6	

and	Tau35Bl/6;129	mice	on	the	Rotarod	(Figure	5.5b).	The	performance	of	the	

two	background	control	strains	of	mice	on	the	Rotarod	was	comparable	at	all	

ages	tested	and	 inter-animal	variation	was	also	similar	 for	both	background	

strains	(Figure	5.5b).	

Testing	for	motor	co-ordination	showed	that,	as	found	previously	in	the	

Tau35Bl/6;129	mice,	Tau35Bl/6	mice	have	a	reduced	motor	learning	ability,	which	

decreased	with	age,	 indicating	a	progressive	age-related	defect	 in	motor	co-

ordination.	
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Figure	5.5:	Motor	learning	performance	of	Tau35Bl6,	WTBl/6,	Tau35Bl/6;129	

and	WTBl/6;129	mice.	(a)	Mean	latency	to	fall	from	an	accelerating	Rotarod	for	

Tau35Bl/6	 and	 WTBl/6	 mice	 at	 2-16	 months	 of	 age.	 Tau35Bl/6	 mice	 show	 a	

significant	 impairment	compared	to	WTBl/6	mice	at	all	ages	tested.	(b)	Mean	

latency	 to	 fall	 from	 an	 accelerating	 Rotarod	 illustrating	 the	 comparison	

between	 the	 four	genotypes	of	Tau35Bl/6,	WTBl/6,	Tau35Bl/6;129	and	WTBl/6;129	

mice.	Values	shown	are	mean	±	SEM.,	n=8-10	per	genotype	*P<0.05,	**P<0.01,	

***P<0.001,	ANOVA.	 	
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5.2.6	Neuromuscular	deficits	in	Tau35Bl/6	mice	

	

Grip	 strength	was	assessed	 in	Tau35Bl/6	 and	WTBl/6	mice	aged	4-16	months.	

Similar	to	the	hybrid	Tau35Bl/6;129	mice,	Tau35Bl/6	mice	exhibited	reduced	grip	

strength,	 compared	 to	 WTBl/6;129	 mice	 from	 the	 age	 of	 6	 months,	 and	 this	

progressively	decreased	with	age	(Figure	5.6a).	Notably,	however,	at	8	months	

of	age	Tau35Bl/6	mice	were	scored	approximately	10g	lower	than	Tau35Bl/6;129	

mice	and	WTBl/6	scored	15g	lower	than	WTBl/6;129	mice,	 indicating	a	possible	

difference	in	the	grip	strength	in	the	WT	background	strains.	This	difference	

was	less	pronounced	between	Tau35Bl/6	and	Tau35Bl/6;129	at	the	ages	of	10,	12,	

14	and	16	months	of	age	with	all	mice	being	scored	approximately	50g	(Figure	

5.6b).	WTBl/6	mice	however,	did	show	a	reduction	of	approximately	10g	in	grip	

strength	at	the	ages	of	10	and	12	months,	compared	to	WTBl/6;129	mice,	although	

this	was	not	significantly	different,	and	was	less	apparent	in	mice	at	14	and	16	

months	 of	 age	 (Figure	 5.6b).	 Interestingly,	 the	 Tau35Bl/6	 and	 WTBl/6	 grip	

strength	data	appeared	to	show	less	variance	between	animals	than	had	been	

previously	 found	 for	 Tau35Bl/6;129	 and	 WTBl/6;129	 mice	 (Figure	 3.8).	 These	

results	show	a	progressive	deterioration	in	the	muscle	tone	of	Tau35Bl/6	mice	

from	an	early	age,	similar	to	that	determined	previously	for	Tau35Bl/6;129	mice.	

These	 results	 also	 show	 a	 slight	 strain	 difference	 particularly	 between	 the	

WTBl/6;129	 and	WTBl/6	mice,	with	WTBl/6	 performing	 less	well	 than	WTBl/6;129	

mice,	 which	 is	 not	 surprising	 given	 that	 there	 is	 often	 a	 difference	 in	

performance	between	different	background	strains.		 	
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Figure	5.6:	Grip	strength	of	Tau35Bl/6,	WTBl/6,	Tau35Bl/6;129	and	WTBl/6;129	

mice	(a)	Grip	strength	(all	limbs)	of	Tau35Bl/6	and	WTBl/6	mice	at	4-16	months	

of	age.	Tau35Bl/6	mice	show	a	significant	impairment	compared	to	WTBl/6	mice	

from	 6	 months.	 (b)	 Grip	 strength	 of	 Tau35Bl/6,	 WTBl/6,	 Tau35Bl/6;129	 and	

WTBl/6;129	mice	to	illustrate	the	differences	between	all	four	genotypes.	Values	

shown	are	mean	±	SEM.,	n=8-10	per	genotype,	*P<0.05,	***P<0.001,	ANOVA.	 	
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5.2.7	Spatial	learning	is	impaired	in	Tau35Bl/6	mice	

	

Previous	 results	 indicated	 that	 Tau35Bl/6;129	 mice	 show	 impaired	 spatial	

learning	 in	 the	 Morris	 water	 maze	 from	 8	 months	 of	 age	 (Figure	 3.11).	

Tau35Bl/6	mice	did	not	show	any	deficit	in	spatial	learning	at	6	or	8	months	of	

age	in	the	water	maze	(Figure	5.7a,	b)	but	they	did	show	an	impairment	on	day	

4	at	10	and	12	months	of	age	(Figure	5.7c,	d,	P<0.05).	The	ability	of	Tau35Bl/6	

mice	to	find	the	hidden	platform	deteriorated	further	at	14	and	16	months	of	

age,	 when	 both	 days	 3	 and	 4	 were	 significantly	 different	 from	WTBl/6	mice	

(Figure	5.7e,	f).	

	

	

	

Figure	 5.7	 Spatial	 learning	 in	 the	Morris	water	maze	 in	 Tau35Bl/6	 and	

WTBl/6	mice.	 (a-f)	Graphs	 showing	 the	 latency	 to	 reach	 the	platform	 in	 the	

Morris	water	maze	for	Tau35Bl/6	and	WTBl/6	mice	at	6-16	months	of	age,	during	

visible	platform	training	(VP)	on	days	1-4.	Values	represent	mean	±	SEM,	n=10	

per	genotype,	*P<0.05,	**P<0.01,	ANOVA.	 	
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A	 comparison	 of	 spatial	 learning	 in	 Tau35Bl/6	 and	 Tau35Bl/6;129	 mice	

showed	a	difference	in	the	onset	of	impairment	in	the	two	Tau35	mouse	strains	

(Figure	5.8a)	compared	to	their	WT	counterparts.	The	Tau35Bl/6	mice	showed	

a	 reduced	ability	 to	 find	 the	hidden	platform	 from	10	months	 (Figure	5.7c),	

whereas	this	deficit	was	apparent	two	months	earlier,	at	8	months	of	age,	in	

Tau35Bl/6;129	mice	(Figure	3.11d).		

For	 visible	 platform	 training,	 only	 the	 6	month	 time	 point	 showed	 a	

difference	 in	 performance	 between	 the	 background	 strains	 (Figure	 5.8a).	

Whereas	Tau35Bl/6	and	WTBl/6	mice	showed	an	escape	latency	of	approximately	

30s	at	this	age,	both	Tau35Bl/6;129	and	WTBl/6;129	mice	performed	much	better	

with	an	escape	latency	of	only	12s	(Figure	5.8a).	This	apparent	difference	may	

have	been	due	to	the	fact	that	Tau35Bl/6;129	and	WTBl/6;129	mice	had	previously	

been	tested	in	the	water	maze	at	the	age	of	4	months,	whereas	the	6	months	

time	 point	 represented	 the	 first	 time	 that	 the	 Tau35Bl/6	 and	 WTBl/6	 mice	

experienced	 the	 water	 maze.	 At	 the	 ages	 of	 8,	 10	 and	 12	 months,	 visible	

platform	training	was	similar	for	all	background	strains	(Figure	5.8b,	c	and	d).		

During	the	hidden	platform	trials,	the	pattern	of	learning	at	6	months	of	

age	was	similar	for	both	Tau35Bl/6	and	Tau35Bl/6;129	mice	between	days	1	and	

4	(Figure	5.8a).	The	only	difference	was	that	both	Tau35Bl/6;129	and	WTBl/6;129	

mice	had	a	reduced	latency	compared	Tau35Bl/6	and	WTBl/6	(Figure	5.8a).	At	8	

months	of	age,	WTBl/6;129	and	WTBl/6	mice	performed	similarly	to	each	other	

(Figure	5.8b).	Tau35Bl/6;129	mice	on	the	other	hand	performed	slightly	worse	

than	Tau35Bl/6mice	(Figure	5.8b).	By	10	months	of	age,	WTBl/6	mice	performed	

better	 in	 the	 hidden	 platform	 trial	 compared	 to	 WTBl/6;129	 mice,	 with	 a	

difference	 of	 approximately	 5-7s,	 whereas	 Tau35Bl/6;129	 and	 Tau35Bl/6	 mice	

performed	at	similar	latencies	at	this	age	(Figure	5.8c).	By	12	months	of	age,	

the	difference	between	WTBl/6	and	WTBl/6;129	mice	were	similar	until	days	3	and	

4	 when	WTBl/6;129	 mice	 performed	 better	 than	WTBl/6	 by	 approximately	 5s.	

Tau35Bl/6	mice	performed	better	than	Tau35Bl/6;129	mice	by	approximately	7s,	

indicating	 that	 mice	 were	 still	 impaired,	 but	 somewhat	 less	 so	 than	

Tau35Bl/6;129	mice	tested	at	the	same	age	(Figure	5.8d).	

At	the	ages	of	8,	10	and	12	months,	it	was	apparent	that	WTBl/6;129	mice	

were	 learning	 faster	 than	WTBl/6	mice	 during	 non-visible	 platform	 trials	 on	
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days	1-4,	which	was	perhaps	not	surprising	as	WTBl/6	show	to	have	a	reduced	

escape	latency	compared	to	the	hybrid	mice	(Figure	5.8b,	c	and	d).		

These	results	 indicate	that	there	 is	an	age-dependent	spatial	 learning	

impairment	 in	 Tau35Bl/6	 mice,	 which	 parallels	 the	 previous	 findings	 in	 the	

Tau35Bl/6;129	mice	(Chapter	3.2.2.8	Spatial	learning	and	memory	is	impaired	in	

Tau35	mice).	One	difference	between	the	two	transgenic	Tau35	mouse	strains	

is	that	this	impairment	commenced	2	months	later	in	the	Tau35Bl/6	mice	and	it	

progressed	slightly	slower,	possibly	due	to	the	different	background	strains	of	

the	animals.	

	

	

	

Figure	 5.8:	 Spatial	 learning	 in	 the	 Morris	 water	 maze	 comparing	

Tau35Bl/6,	WTBl/6,	Tau35Bl/6;129	and	WTBl/6;129	mice.	(a-f)	Graphs	showing	

the	time	taken	for	Tau35Bl/6,	WTBl/6,	Tau35Bl/6;129	and	WTBl/6;129	mice,	at	6,	8,	

10,	and	12,	months	of	age,	during	visible	platform	training	(VP)	and	latency	to	

reach	 the	 hidden	 platform	 in	 the	 Morris	 water	 maze	 on	 days	 1-4.	 Values	

represent	mean	and	±	SEM,	n=8-10	per	genotype.	 	
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5.2.8	 Hippocampal-dependent	 memory	 is	 impaired	 in	

Tau35Bl/6	mice	

	

A	 probe	 trial	 was	 performed	 in	 the	 Morris	 water	 maze	 24h	 after	 hidden	

platform	 training	 to	 assess	whether	 hippocampal-dependent	 impairment	 in	

Tau35Bl/6	 mice	 paralleled	 that	 noted	 earlier	 in	 Tau35Bl/6;129	 mice	 (Chapter	

3.2.2.9	Hippocampal	dependent	memory	is	impaired	in	Tau35	mice).	Tau35Bl/6	

mice	showed	a	progressive	reduction	in	hippocampal-dependent	memory	that	

commenced	at	10	months	of	age,	which	was	the	same	time	as	the	age	of	onset	

of	impaired	spatial	learning	in	these	animals	(Figure	5.9a,	P<0.05,).		

When	comparing	the	performance	of	the	different	background	strains,	

at	6	months	of	age,	all	groups	performed	with	a	similar	latency	in	the	target	

quadrant	 (Figure	 5.9b).	 At	 8	 months,	 Tau35Bl/6	 and	 Tau35Bl/6;129	 mice	

performed	with	a	similar	 latency	of	14s.	On	the	other	hand,	 the	WTBl/6	mice	

performed	 on	 average	 6s	 less	well	 than	 the	WTBl/6;129	mice,	 indicating	 that	

perhaps	 Tau35Bl/6	 and	 Tau35Bl/6;129	mice	 are	 equally	 impaired,	 but	 because	

WTBl/6	mice	performed	less	well	 than	WTBl/6;129	mice,	 the	difference	appears	

less	marked	for	the	WTBl/6	mice.	By	10	and	12	months	of	age,	the	latency	in	the	

target	quadrant	for	WTBl/6	mice	improved	and	was	similar	to	that	of	WTBl/6;129	

mice.	At	the	10	and	12	month	time	points,	both	Tau35Bl/6	and	Tau35Bl/6;129	mice	

appeared	to	be	equally	impaired	in	the	probe	trial	(Figure	5.9b).		
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Figure	 5.9:	 Morris	 water	 maze	 probe	 trial	 of	 Tau35Bl/6,	 WTBl/6,	

Tau35Bl/6;129	 and	WTBl/6;129	mice.	 (a)	Mean	 latency	 in	 target	 quadrant	 for	

Tau35Bl/6	and	WTBl/6	mice	at	6-16	months.	(b)	Comparison	of	mean	latency	in	

target	quadrant	of	Tau35Bl/6,	WTBl/6,	Tau35Bl/6;129	and	WTBl/6;129	mice	aged	6-

12	months	to	illustrate	the	differences	between	the	genotypes.	Values	shown	

are	mean	±	 SEM.,	 n=8-10	 for	 each	genotype,	 *P<0.05,	 **P<0.01,	 ***P<0.001,	

ANOVA.	 	
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To	 validate	 whether	 the	 hippocampal-dependent	 memory	 deficit	 in	

Tau35Bl/6	mice	was	related	to	a	reduced	ability	to	swim,	the	total	swim	distance	

to	the	hidden	platform	and	the	swim	speed	of	the	mice	were	determined.	At	the	

ages	 of	 6	 and	 8	 months,	 there	 were	 no	 significant	 differences	 in	 the	 total	

distances	 swum	 to	 reach	 the	 target	 platform	 by	 Tau35Bl/6	 and	WTBl/6	mice	

(Figure	5.10a).	At	10	months	of	age,	Tau35Bl/6	mice	swum	181cm	further	than	

WTBl/6	mice	to	reach	the	platform,	which	correlated	with	the	onset	of	impaired	

spatial	 learning	 and	 memory	 impairment	 in	 these	 animals	 (Figure	 5.10;	

P<0.05).	 By	 12-16	months	 of	 age,	 the	 distance	 swum	 in	 the	 probe	 trial	 by	

Tau35Bl/6	mice	increased	by	180-205cm,	compared	to	the	WTBl/6	mice	(Figure	

5.10a).	 In	 comparison,	 the	 Tau35Bl/6;129	 mouse	 data	 showed	 a	 very	 similar	

pattern	 with	 the	 exception	 of	 8	 months	 of	 age,	 which	 may	 be	 due	 to	 the	

apparent	 later	 onset	 of	memory	 impairment	 (Figure	 5.10a).	 Tau35Bl/6	mice	

showed	no	significant	difference	in	their	swim	speed	compared	to	WTBl/6	mice	

at	any	age	tested,	which	is	in	agreement	with	the	data	previously	obtained	for	

the	Tau35Bl/6;129	and	WTBl/6;129	mice	(Figure	5.10b).	
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Figure	5.10:	Total	distance	 swum	and	 swim	speed	 in	 the	Morris	water	

maze	 of	 Tau35Bl/6,	 WTBl/6,	 Tau35Bl/6;129	 and	 WTBl/6;129	 mice.	 (a)	 Total	

distance	 swum	at	 6-12	or	 16	months	 of	 age.	 (b)	 Swim	 speed	 at	 6-12	or	 16	

months	of	age.	Values	shown	are	mean	±	SEM.,	n=8-10	mice	for	each	genotype,	

*P<0.05,	ANOVA.		
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5.3	Summary	and	Discussion	

	

The	 main	 aim	 of	 this	 study	 was	 to	 characterise	 the	 behavioural	 profile	 of	

Tau35Bl/6	and	WTBl/6	mice	and	to	determine	how	well	these	changes	parallel	

those	previously	observed	in	the	hybrid	Tau35Bl/6;129	and	WTBl/6;129	mice.		

	

The	main	findings	of	this	work	are	that	Tau35Bl/6	mice	show:	

	

1) Age-related	 limb	 clasping,	 which	 was	 apparent	 2	 months	 later	 than	

observed	 in	 Tau35Bl/6;129	 hybrid	 mice	 and	 in	 the	 absence	 of	 any	 overt	

changes	in	body	weight.	

2) Progressive	 motor	 and	 neuromuscular	 deterioration	 assessed	 on	 the	

Rotarod,	paralleling	the	previous	findings	in	Tau35Bl/6;129	hybrid	mice.	

3) Progressive	 impairments	 in	spatial	 learning	and	hippocampal-dependent	

memory	 cognition	 assessed	 in	 the	 Morris	 water	 maze,	 commencing	 2	

months	later	than	in	the	Tau35Bl/6;129	hybrid	mice.	
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5.3.1	 Tau35Bl/6	 mice	 exhibit	 similar	 phenotypic	 patterns	 to	

Tau35Bl/6;129	mice.	

	

Previous	 studies	 have	 determined	 that	 several	 mouse	 lines	 have	 variable	

phenotypic	effects	caused	by	differences	in	the	backgrounds	used	to	generate	

these	 mice.	 The	 result	 of	 this	 can	 be	 that	 animals	 which	 contain	 the	 same	

genetic	background	exhibit	different	phenotypic	outcomes.	This	demonstrates	

that	genes	outside	the	target	area	may	be	involved	in	the	phenotypic	traits	seen	

and	 may	 be	 partially	 responsible	 for	 some	 of	 the	 unsuccessful	 clinical	

reproducibility	when	 translated	 to	 studies	 in	humans	 (Sigmund,	2000).	The	

most	common	strategy	used	to	generate	transgenic	mice,	which	was	also	used	

to	generate	Tau35	Bl/6;129	hybrid	mice,	is	to	create	mice	using	129-derived	ES	

cells	(ES	cell	lines	derived	from	different	129	backgrounds)	which	are	a	very	

reliable	and	robust	cell	type	for	gene	manipulation.	However,	mice	generated	

from	 these	 lines	 often	 exhibit	 poor	 reproductively	 (Wahlsten,	 1992).	

Therefore,	genetically	manipulated	mice	are	commonly	backcrossed	to	the	well	

characterised	BL/6	inbred	mouse	strain.	Backcrossing	in	this	way	reduces	the	

influence	 of	 the	 129-derived	 genome	 whilst	 still	 endowing	 the	

knocking/knockout	 strain	 with	 the	 benefits	 of	 the	 C57BL/6	 background.	

Nevertheless,	previous	studies	have	shown	 that	however	close	 to	 the	 target	

gene,	the	genetic	background	will	always	reflect	the	original	ES	strain	rather	

than	that	of	the	recipient	strain	(Hospital,	2001).	The	most	common	procedure	

to	obtain	a	pure	genetic	background	is	to	backcross	over	several	generations	

to	C57BL/6	mice	 to	generate	a	99%+	C57BL/6	background	and	 to	 facilitate	

phenotypic	analysis	and	increase	fertility.	Therefore,	Tau35BL/6;129	mice	were	

crossed	 over	 nine	 generations	 to	 generate	 Tau35Bl/6	 mice	 with	 an	 99.90%	

identical	 genetic	 background.	 It	 was	 then	 investigated	 whether	 inbred	

Tau35Bl/6	congenic	mice	exhibited	difference	in	phenotypic	patterns	compared	

to	Tau35Bl/6;129	hybrid	mice.	Neither	Tau35Bl/6;129	hybrid	or	Tau35Bl/6	congenic	

mice	showed	a	significant	difference	in	body	mass	compared	to	WT	mice.	

Several	strains	of	129	mice	have	shown	differences	in	phenotypic	traits,	

such	as	grooming,	activity,	habituation	in	the	open	field	and	anxiety,	compared	

to	C57BL/6	mice	(Crawley	et	al.,	1997;	Bolivar,	2000,	2001;	Bothe	et	al.,	2004;	
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Kalueff	 and	 Tuohimaa,	 2004;	 Ducottet	 and	 Belzung,	 2005).	 Interestingly,	

however,	the	Tau35BL/6	mice	aged	8	months	did	not	show	any	differences	in	

habituation	 in	 the	 open	 field	 or	 activity,	 indicating	 no	 overt	 abnormalities,	

equivalent	to	the	hybrid	Tau35Bl/6;129	mice.	

Tau35Bl/6	 mice	 showed	 a	 similar	 clasping	 phenotype	 to	 Tau35Bl/6;129	

hybrid	mice.	However,	 in	 the	Tau35Bl/6	mice,	 clasping	was	 apparent	 from	4	

months	of	 age	which	was	2	months	 after	Tau35Bl/6;129	 first	 showed	 signs	of	

clasping.	This	may	be	due	to	the	fact	that	the	number	of	animals	included	was	

lower	 for	 the	 Tau35Bl/6	 mice	 (n=10)	 as	 opposed	 to	 the	 Tau35Bl/6;129	 mice	

(n=40),	which	may	have	 reduced	 the	 test	 sensitivity	due	 to	variable	ages	of	

onset	of	limb	clasping	in	different	mice.	This	difference	could	also	be	due	to	the	

change	in	mouse	background	causing	a	later	onset	of	limb	clasping.	Questions	

have	 been	 raised	 previously	 regarding	 subtle	 behavioural	 and	 phenotypic	

deficits	 between	 different	 mouse	 lines,	 particularly	 in	 identifying	 whether	

changes	are	due	to	the	target	gene	itself	or	due	to	the	closely	linked	genes	from	

the	surrounding	129	background	(Zhou	et	al.,	2001).	In	future,	to	avoid	such	

issues	it	may	be	more	efficient	to	directly	target	genes	in	C57BL/6-derived	ES	

cells	and	then	to	maintain	these	mice	on	the	same	genetic	background	(Seong	

et	al.,	2004).		

	

5.3.2	Tau35Bl/6	mice	exhibit	motor	deficits	that	parallel	those	

seen	in	Tau35Bl/6;129	hybrid	mice	

	

As	Tau35Bl/6;129	hybrid	mice	showed	an	early	motor	deficit,	it	was	essential	to	

establish	whether	 Tau35BL/6	mice	 showed	 similar	 results.	 Tarantino	 (2000)	

and	 colleagues	 showed	 that	 C57BL/6	mice	 did	 not	 perform	 as	 well	 on	 the	

Rotarod	 compared	 to	129	 lines	 (Tarantino	 et	 al.,	 2000),	whereas	McFadyen	

(2003)	and	colleagues	showed	that	C57BL/6	mice	perform	significantly	better	

on	the	Rotarod	compared	to	129	lines	(McFadyen	et	al.,	2003).	In	the	present	

study,	Tau35BL/6	mice	performed	similarly	 to	Tau35BL/6;129	hybrid	mice	with	
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the	 hybrid	 mice	 performing	 only	 slightly	 worse	 at	 earlier	 ages,	 potentially	

indicating	minimal	differences	between	the	two	different	backgrounds.	

Previous	 findings	 have	 found	 that	 body	 size	 and	weight	 of	mice	 can	

influence	Rotarod	performance	(Cook	et	al.,	2002).	Tau35Bl/6;129	and	WTBl/6;129	

hybrid	mice	were	 slightly	 heavier	 than	Tau35Bl/6	 and	WTBl/6	mice,	 although	

these	differences	were	not	statistically	significant.	However,	different	mouse	

strains	 with	 similar	 body	 masses	 perform	 differently	 on	 the	 Rotarod	 and	

therefore	this	excludes	the	fact	that	this	slightly	difference	in	weight	may	have	

potentially	 influenced	 Rotarod	 performance	 of	 the	 Tau35Bl/6;129	 mice	

(McFadyen	et	al.,	2003).		

	

5.3.3	 Learning	 and	memory	 deficits	 are	 similar	 in	 Tau35Bl/6	

and	Tau35Bl/6;129	hybrid	mice	

As	 memory	 and	 learning	 difficulties	 are	 a	 major	 clinical	 component	 of	

tauopathies,	 it	 was	 important	 to	 establish	 whether	 the	 major	 behavioural	

deficits	previously	observed	in	Tau35Bl/6;129	hybrid	mice	were	also	apparent	in	

the	backcrossed	Tau35Bl/6	mice,	 rather	 than	being	due	 to	background	strain	

differences.	 Several	 129	mouse	 sub-strains	 exhibit	 behavioural	 deficits	 that	

differ	 from	 C57BL/6	 mouse	 behaviour,	 including	 differences	 in	 learning,	

contextual	fear	conditioning	and	memory	ability	(Crawley	et	al.,	1997;	Bothe	et	

al.,	2004).	Therefore,	it	was	important	to	determine	if	the	memory	deficits	seen	

in	hybrid	Tau35Bl/6;129	were	maintained	after	backcrossing,	and	to	determine	

whether	these	were	potentially	due	to	the	strain	background	or	to	expression	

of	the	Tau35	fragment.	Interestingly,	both	Tau35Bl/6;129	hybrid	and	Tau35Bl/6	

mice	showed	very	similar	 learning	and	memory	deficits.	The	only	difference	

was	that	Tau35Bl/6	had	a	slightly	later	onset	of	memory	impairment,	which	was	

largely	due	to	the	poorer	performance	of	WTBl/6	mice	compared	to	WTBl/6;129	

hybrid	mice.	 Previous	 reports	 have	 indicated	 conflicting	 data	 regarding	 the	

memory	abilities	of	129	and	C57BL/6	mice.	Whereas	some	studies	have	shown	

that	129	mice	exhibit	cognitive	impairment	(Gerlai,	1996),	others	have	shown	

that	this	performance	is	related	to	the	particular	mouse	sub-strain	being	tested	

(Montkowski	 et	 al.,	 1997;	 Owen	 et	 al.,	 1997).	 However,	 previous	 findings	



	 231	

showed	 that	C57BL/6	mice	exhibited	poorer	performance	compared	 to	129	

mice	in	the	Morris	water	maze	(Rogers	et	al.,	1999;	Võikar	et	al.,	2001).	This	

was	also	the	case	in	the	present	study	in	which	WTBl/6	mice	performed	less	well	

overall	 than	 hybrid	 WTBL/6;129	 mice	 in	 the	 Morris	 water	 maze.	 Moreover,	

learning	and	memory	in	the	Morris	water	maze	has	previously	been	shown	to	

be	impaired	by	stress	(Hölscher,	1999).	Reports	have	shown	that	C57Bl/6	mice	

exhibit	less	anxiety	behaviour	than	does	the	129	mouse	strain	(Homanics	et	al.,	

1999;	 Rogers	 et	 al.,	 1999).	 Although	 none	 of	 the	 mice	 in	 this	 experiment	

showed	 signs	 of	 stress,	 this	 is	 a	 paradigm	 that	 could	 be	 investigated	more	

comprehensively	by	testing	potential	hyperlocomotion	in	the	open	field	setup.		

	

5.3.4	Conclusion	

In	 summary,	 the	 findings	 presented	 here	 suggest	 that	 Tau35Bl/6	 mice	 with	

some	 further	 studies	 could	 potentially	 be	 an	 improved	 mouse	 model	 of	

tauopathy	 due	 to	 reduced	 variation	 in	 genetic	 background,	 whilst	 still	

exhibiting	 behavioural	 deficits.	 However,	 for	 a	 full	 conclusion	 to	 be	 made,	

further	investigations	into	the	biochemistry	and	pathological	deficits	in	these	

mice	remain	to	be	undertaken.	Taken	together,	 it	has	been	fundamental	and	

important	 to	show	that	 the	experimental	differences	observed	 in	 the	hybrid	

Tau35Bl/6;129	mice	were	also	apparent	in	the	backcrossed	Tau35Bl/6	mice.	With	

further	investigation	of	these	mice,	this	may	lead	to	a	more	robust	model	with	

less	inter-animal	variation	and	may	make	it	possible	in	future	experiments	to	

obtain	 reproducible	 data	with	 reduced	 sample	 sizes.	 For	 instance,	 it	 would	

simplify	breeding	of	the	Tau35Bl/6	mice	to	other	relevant	AD	models	such	as	

APP	or	htau	mice	on	BL/6	backgrounds	in	order	to	evaluate	the	effect	of	tau	

truncation	in	these	models.	 	
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CHAPTER	6	
	

Expression	 of	 Tau35	 in	 a	 cell	 line	 to	 investigate	 the	

effects	 of	 potentially	 therapeutic	 compounds	 on	 tau	

phosphorylation	

	

6.1	Introduction	

	

Tau,	 in	 particular	 its	 state	 of	 phosphorylation	 is	 increasingly	 becoming	 of	

interest	as	a	therapeutic	target	due	to	its	pathological	significance	to	disease	

status.	Prevention	or	reduction	of	 tau	phosphorylation	would	make	an	 ideal	

therapeutic	target	for	neurodegenerative	diseases.	Therefore,	it	is	important	to	

develop	 new	 high	 throughput	 cell	 based	 assays	 to	 test	 novel	 and	 existing	

compounds,	reducing	cost	and	time	associated	with	in	vivo	studies.	A	novel	cell	

based	assay	was	designed,	using	Tau35	stably	expressed	in	Chinese	hamster	

ovary	(CHO)	cells,	in	conjunction	with	phosphorylation	dependent	antibodies	

using	the	method	described	in	2.3.7	In-cell	western.	The	basis	of	this	assay	was	

an	 in-cell	 western	 (ICW)	 technique	 (Li-Cor	 Biosciences),	 which	 has	 been	

reported	previously	for	therapeutic	screening	and	evaluation	assays	(Hoffman	

et	al.,	2010).	The	principle	of	this	assay	was	to	seed	CHO	cells	stably	expressing	

Tau35	 (CHO-Tau35	 cells)	 onto	 a	 96-well	 plate,	 fix	 the	 cells	 followed	 by	

permeabilisation	 and	 then	 label	 them	 with	 appropriate	 antibodies.	 Finally,	

they	 were	 visualised	 in	 situ	 using	 near	 infra-red	 fluorescent	 secondary	

antibodies.	
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6.2	Results	

	

6.2.1	 In-cell	 western	 set	 up	 using	 a	 Chinese	 hamster	 ovary	

Tau35	cell	line	

	

This	study	used	a	CHO	cell	line,	stably	transfected	with	a	plasmid	expressing	

Tau35,	but	with	a	V5	tag	fused	to	the	C-terminus	of	tau	in	place	of	the	HA	tag	

expressed	in	Tau35	mice.	The	CHO	cell	line	was	previously	generated	in	this	

laboratory	 (CHO-Tau35	 cells,	 generated	 by	 Tong	 Guo,	 manuscript	 in	

preparation)	and	Tau35	expressed	in	these	cells	has	been	shown	to	be	highly	

phosphorylated	 (Guo	 et	 al.,	 manuscript	 in	 preparation).	 Initial	 experiments	

involved	plating	the	cells	at	a	density	of	either	10,000	(D1)	or	20,000	(D2)	cells	

per	well	of	a	96-well	plate	to	determine	the	optimum	density	for	ICW	assays.	

Cells	were	then	exposed	to	either	a	monoclonal	antibody	recognising	total	tau	

(Tau5)	and	a	polyclonal	phosphorylation-dependent	tau	antibody	(recognising	

either	pSer396	or	pSer422	in	tau),	or	a	polyclonal	antibody	to	total	tau	(Dako)	

and	a	monoclonal	phosphorylation-dependent	tau	antibody	(Tau-1	or	AT180),	

to	 establish	 the	most	 sensitive	 pair	 of	 antibodies	 with	 which	 to	 assess	 tau	

phosphorylation	changes	in	the	CHO-Tau35	cells.	Cells	in	parallel	wells	were	

labelled	with	an	antibody	to	β-actin	and	total	tau	to	establish	relative	levels	of	

total	tau	expression	under	each	condition	tested.	A	density	of	10,000	cells	(D1)	

was	used	over	20,000	cells	(D2)	as	this	number	was	sufficient	to	generate	a	

good	readout	without	overt	saturation	(Figure	6.1).	The	results	showed	that	

cells	 probed	 with	 the	 phosphorylation-dependent	 tau	 antibody	 recognising	

Ser396	 (Ser396),	 together	 with	 Tau5	 (recognising	 total	 tau)	 exhibited	 the	

highest	specificity.	Blanks	wells	lacking	primary	antibodies	were	used	to	test	

for	any	abnormal	signals	subtracted	from	results	in	analysis.	Therefore,	10,000	

cell	per	well,	and	the	combination	of	Ser396	and	Tau5	antibodies	were	used	for	

all	future	experiments	(Figure	6.1d).	 	
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Figure	 6.1:	 In	 Cell	 Western	 optimisation	 assay	 showing	 tau	

phosphorylation	at	serine	pSer396	and	pSer422	compared	to	total	tau	in	

transfected	 CHO-Tau35	 cells	 at	 two	 different	 cell	 densities.	 (a-b)	CHO-

Tau35	cells	at	two	different	densities	(D1:	10,000	cells	per	well	or	D2:	20,000	

cells	per	well)	probed	with	monoclonal	antibodies	against	phosphorylated	tau	

pSer396	 and	pSer422,	 polyclonal	 total	 tau	 (Dako),	 β-actin	 and	blanks.	 (c-e)	

Graphs	showing	analysis	of	phosphorylation	tau	antibodies	relative	total	tau,	

and	total	tau	relative	to	β-actin.	Values	represent	mean	and	±	SEM,	n=8.		 	
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Figure	 6.2:	 In	 Cell	 Western	 optimisation	 assay	 showing	 tau	

phosphorylation	at	serine	pSer396	and	pSer422	compared	to	total	tau	in	

transfected	 CHO-Tau35	 cells	 at	 two	 different	 cell	 densities.	 (a-b)	CHO-

Tau35	cells	at	two	different	densities	(D1:	10,000	cells	per	well	or	D2:	20,000	

cells	per	well)	probed	with	polyclonal	 antibodies	 against	phosphorylated	at	

Tau-1	 and	 AT180,	 monoclonal	 total	 tau	 (Tau5),	 β-actin	 and	 blanks.	 (c-e)	

Graphs	showing	analysis	of	phosphorylation	tau	antibodies	relative	total	tau,	

and	total	tau	relative	to	β-actin.	Values	represent	mean	and	±	SEM,	n=8.		 	
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6.2.2	 Lithium	 chloride	 and	 okadaic	 acid	 modulate	 tau	

phosphorylation	in	CHO-Tau35	cells		

	

Once	the	most	suitable	combination	of	tau	antibodies	had	been	established,	it	

was	essential	to	determine	the	effects	of	LiCl	and	okadaic	acid	as	positive	and	

negative	 controls,	 respectively,	 for	 inhibition	 and	 induction	 of	 tau	

phosphorylation.	LiCl	(10µM,	4h)	inhibits	GSK3	activity	and	thereby	reduces	

tau	 phosphorylation,	 whereas	 okadaic	 acid	 (100nM,	 4h)	 inhibits	 protein	

phosphatase	 2A	 and	 hence	 increases	 tau	 phosphorylation.	 CHO-Tau35	 cells	

were	incubated	with	these	control	compounds,	and	with	the	test	compounds	

for	4h.	The	cells	were	then	fixed	and	the	ICW	assay	was	used	to	determine	the	

extent	of	tau	phosphorylation	in	CHO-Tau35	cells.	The	results	showed	that,	as	

expected,	 LiCl	 treatment	 reduced	 tau	phosphorylation	by	16%	 (Figure	6.3a,	

P<0.01)	and	okadaic	acid	 increased	tau	phosphorylation	by	16%,	relative	 to	

total	tau,	 in	CHO-Tau35	cells	(Figure	6.3a,	P<0.001).	Under	these	conditions,	

the	total	amount	of	tau	was	unchanged	in	both	treatment	groups	(Figure	6.3b),	

indicating	that	LiCl	and	Ocadaic	acid	had	no	significant	effect	on	overall	total	

tau	levels.	
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Figure	6.3:	Tau	phosphorylation	in	CHO-Tau35	cells	is	modulated	by	LiCl	

and	okadaic	 acid	without	 affecting	 total	 tau.	CHO-Tau35	 cells	 untreated,	

treated	with	LiCl	(10mM)	or	okadaic	acid	(OA,	100mM)	for	4h.	(a)	Graph	show	

decrease	 phosphorylation	 at	 pSer396	 with	 LiCl	 and	 increase	 with	 OA	

normalised	to	total	tau	(Tau5)	(b),	Graph	showing	total	tau	levels	normalised	

to	β	actin.	Values	are	displayed	as	mean	±	SEM;	n	=	8,	**P<0.01,	***P<0.001.	

	

	

	

6.2.3	 CHO-Tau35	 show	 reduced	 phosphorylation	 upon	

treatment	with	PBA	

	

To	evaluate	the	effect	of	PBA	on	tau	phosphorylation,	CHO-Tau35	cells	were	

incubated	with	10µM	PBA	or	10µM	LiCl	for	4	h	and	cells	were	analysed	by	ICW	

using	ser396	and	total	tau	(Tau5)	antibodies.	Two	independent	experiments	

were	 performed,	 with	 8	 replicate	 wells	 included	 in	 each	 experiment.	 The	

results	 indicated	 that,	 under	 these	 conditions,	 PBA	 reduced	 tau	

phosphorylation	 by	 approximately	 36%	 and	 a	 reduction	 of	 22%	 with	 LiCl	

(positive	control)	treatment	(Figure	6.4a)	without	affecting	the	expression	of	

total	tau	relative	to	β-actin	(Figure	6.4b).	These	results	show	that	PBA	was	able	

to	 rescue	 tau	 phosphorylation	 in	 vitro,	 paralleling	 the	 results	 previously	

obtained	 with	 PBA	 with	 respect	 to	 tau	 phosphorylation	 in	 Tau35	 mice	

(CHAPTER	4).	
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Figure	6.4:	Tau	phosphorylation	 in	CHO-Tau35	cells	 is	 reduced	by	LiCl	

and	phenylbutyrate	without	affecting	total	tau.	CHO-Tau35	cells	untreated,	

treated	with	LiCl	 (10mM)	or	phenylbutyrate	 (PBA,	10µM)	 for	4h.	(a)	Graph	

show	decrease	phosphorylation	at	pSer396	with	LiCl	and	decrease	with	PBA	

normalised	to	total	tau	(Tau5)	(b),	Graph	showing	total	tau	levels	normalised	

to	β	actin.	Values	are	displayed	as	mean	±	SEM;	n	=	8,	*P<0.05.	

	

	

	

6.2.4	Tau	phosphorylation	 in	CHO-Tau35	cells	 is	successfully	

reduced	upon	treatment	with	several	pre-existing	therapeutic	

compounds	

	

To	 evaluate	 the	 effect	 of	 a	 range	 of	 different	 candidate	 compounds	 on	 tau	

phosphorylation,	 CHO-Tau35	 cells	 were	 incubated	 for	 4h	 with	 10µM	 of	

compounds	 C1-C70,	 C72-C84,	 PBA	 (83	 compounds	 in	 total)	 together	 with	

10µM	of	LiCl	(positive	control).	Each	compound,	was	tested	in	a	minimum	of	

two	independent	experiments.	Compounds	that	inhibited	tau	phosphorylation	

by	 15%	 or	 more,	 compared	 to	 the	 control	 (0.1%	 DMSO)	 were	 tested	 in	

additional	 experiments	 (up	 to	 4	 times).	 The	 results	 indicated	 that	 40	

compounds	(C39,	C40,	C42-C51,	C53-C70,	C72-C77,	C81,	C83	and	PBA),	were	

able	to	significantly	reduce	tau	phosphorylation	at	Ser396	in	CHO-Tau35	cells	

with	 above	 medium	 effect	 size	 (Table	 10,	 red,	 P<0.001,	 d>0.8)	 and	 were	

deemed	 a	 successful	 ‘hit’.	 Out	 of	 the	 40	 compounds	 that	 were	 deemed	 a	

successful	‘hit’	the	majority	did	not	significantly	affect	the	total	amount	of	tau,	

relative	 to	 β-actin.	 Most	 compounds	 increased	 total	 tau	 slightly	 (blue)	 and	
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several	 compounds	 reduced	 tau	 very	 slightly	 including	 C40,	 C60	 and	 PBA	

(Table	11,	green).	Compound	C73,	C74,	C62,	C47	did	significantly	increase	total	

tau	(Table	11,	P<0.05)	indicating	a	potential	detrimental	effect	to	tau.	Taken	

together	these	results	show	that	several	compounds	including	PBA	were	able	

to	significantly	rescue	tau	phosphorylation	in	vitro	with	a	high	effect	size.	These	

results	 also	 demonstrate	 the	 effective	 generation	 of	 a	 new	 cell	 based	 tau	

phosphorylation	assay	which	can	be	used	for	future	therapeutic	targets.	
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Table	 10:	 Table	 showing	 compound	 summary	 effect	 on	 tau	

phosphorylation	 after	 4h	 treatment	 at	 10µM	 concentration	 for	 all	

compounds	tested	in	ICW.	Compounds	are	ranked	in	order	of	increasing	tau	

phosphorylation,	 relative	 to	 total	 tau	 (percentage	 of	 control).	 Red	 data:	

compounds	 which	 showed	 =or	 <85%	 of	 mean	 from	 control	 and	 therefore	

deemed	a	‘hit”,	NS:	not	significant,	ND:	no	data.	
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Compound	 Mean	%	
control	

SEM	 n	 P	Value	 Effect	
size	(r)	

Compound	 Mean	%	
control	

SEM	 n	 Effect	
size	(r)	

P	Value	

Control	 100	 0.00	 6	 ND	 ND	 C38	 87	 5.64	 3	 3.82	 0.000	

LiCl	 78	 3.20	 3	 0.003	 1.80	 C80	 87	 4.18	 2	 ND	 NS	

C76	 71	 2.10	 3	 0.000	 6.49	 C35	 88	 8.71	 2	 2.87	 0.002	

C73	 72	 1.35	 3	 0.000	 5.89	 C12	 89	 ND	 1	 1.37	 NS	

C55	 73	 1.54	 3	 0.000	 3.53	 C13	 90	 ND	 1	 1.22	 NS	

C66	 73	 0.66	 2	 0.000	 5.86	 C29	 90	 ND	 1	 1.16	 NS	

C78	 73	 4.40	 3	 0.000	 5.75	 C31	 91	 	ND	 1	 1.54	 NS	

C74	 74	 0.69	 3	 0.002	 4.28	 C34	 91	 	ND	 1	 1.97	 NS	

C77	 75	 5.96	 3	 0.001	 4.51	 C84	 91	 ND	 1	 ND	 NS	

C64	 76	 3.23	 2	 0.000	 5.95	 C32	 91	 ND	 1	 ND	 NS	

C56	 77	 1.76	 3	 0.000	 3.67	 C9	 91	 ND	 1	 ND	 NS	

C75	 77	 1.28	 2	 0.000	 6.72	 C5	 91	 1.23	 2	 ND	 NS	

C59	 77	 5.22	 2	 0.000	 4.73	 C33	 92	 ND	 1	 1.42	 NS	

PBA	 77	 13.00	 2	 0.000	 1.92	 C10	 92	 ND	 1	 ND	 NS	

C48	 77	 0.61	 2	 0.000	 3.73	 C16	 92	 ND	 1	 ND	 NS	

C45	 77	 4.55	 3	 0.033	 3.04	 C36	 92	 4.14	 2	 1.85	 0.013	

C67	 78	 6.35	 3	 0.000	 2.64	 C6	 92	 1.40	 2	 ND	 NS	

C68	 78	 5.29	 3	 0.000	 3.37	 C30	 93	 ND	 1	 1.29	 NS	

C60	 79	 4.85	 3	 0.000	 2.01	 C14	 94	 ND	 1	 ND	 NS	

C61	 79	 7.32	 3	 0.000	 2.65	 C8	 94	 ND	 1	 D	 NS	

C62	 79	 6.56	 3	 0.000	 2.51	 C37	 95	 10.38	 3	 3.38	 0.000	

C49	 80	 1.24	 2	 0.000	 2.67	 C41	 96	 12.88	 3	 1.79	 0.011	

C72	 80	 2.44	 2	 0.001	 2.66	 C2	 96	 2.95	 2	 ND	 NS	

C44	 80	 2.01	 3	 0.000	 3.68	 C52	 96	 ND	 1	 ND	 NS	

C70	 80	 6.38	 2	 0.000	 2.38	 C3	 98	 8.59	 2	 1.26	 0.021	

C57	 81	 5.02	 3	 0.00	 2.91	 C4	 98	 10.98	 2	 ND	 NS	

C53	 81	 1.02	 2	 0.000	 3.71	 C20	 99	 ND	 1	 ND	 NS	

C63	 81	 6.18	 3	 0.000	 2.74	 C11	 99	 ND	 1	 ND	 NS	

C47	 82	 0.23	 2	 0.000	 3.04	 C7	 101	 4.83	 2	 ND	 NS	

C42	 82	 2.09	 3	 0.000	 3.49	 C17	 101	 ND	 1	 ND	 NS	

C81	 82	 5.29	 4	 0.000	 5.36	 C28	 102	 ND	 1	 ND	 NS	

C50	 82	 2.99	 2	 0.000	 4.09	 C1	 102	 3.37	 2	 ND	 NS	

C46	 82	 0.66	 2	 0.000	 3.34	 C21	 102	 ND	 1	 ND	 NS	

C51	 83	 3.68	 2	 0.000	 4.15	 C19	 104	 ND	 1	 ND	 NS	

C58	 83	 3.22	 3	 0.000	 2.94	 C22	 105	 ND	 1	 ND	 NS	

C43	 83	 4.85	 3	 0.000	 3.27	 C18	 105	 ND	 1	 ND	 NS	

C83	 83	 4.45	 3	 0.035	 2.50	 C15	 106	 ND	 1	 ND	 NS	

C54	 84	 9.50	 3	 0.001	 1.18	 C82	 107	 ND	 1	 ND	 NS	

C65	 84	 3.98	 3	 0.000	 3.04	 C23	 110	 ND	 1	 ND	 NS	

C69	 85	 4.43	 3	 0.001	 0.67	 C26	 113	 ND	 1	 -1.72	 NS	

C40	 85	 1.39	 2	 0.009	 2.15	 C24	 114	 ND	 1	 ND	 NS	

C39	 85	 1.76	 3	 0.000	 3.11	 C27	 115	 ND	 1	 -1.78	 NS	

C79	 86	 10.60	 3	 0.000	 4.70	 C25	 116	 ND	 1	 -1.70	 NS	



	 242	

	

Table	11:	Table	showing	compound	summary	effect	on	total	tau	relative	

to	β-actin	after	4h	treatment	at	10µM	concentration	for	all	compounds	

tested	in	ICW.	Blue	data:	indicates	“hit”	compounds	with	increased	total	tau	

levels,	Green	data:	indicates	“hit”	compounds	with	decreased	total	tau	levels,	

NS:	not	significant,	ND:	no	data.	
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Compound	 Mean	(%	
control)	

SEM	 N	 P	Value	 Compound	 Mean	(%	
control)	

SEM	 n	 P	Value	

Control	 100	 0	 6	 ND	 C38	 98	 17	 3	 NS	

LiCl	 91	 2	 3	 NS	 C80	 108	 14	 2	 NS	

C76	 136	 27	 3	 NS	 C35	 121	 23	 2	 NS	

C73	 156	 33	 3	 0.016	 C12	 51	 	ND	 1	 0.04	

C55	 107	 7	 3	 NS	 C13	 112	 	ND	 1	 NS	

C66	 107	 11	 2	 NS	 C29	 50	 	ND	 1	 0.039	

C78	 125	 18	 3	 NS	 C31	 128	 	ND	 1	 NS	

C74	 144	 24	 3	 0.032	 C34	 140	 	ND	 1	 0.016	

C77	 117	 17	 3	 NS	 C84	 197	 ND	 1	 0.012	

C64	 109	 10	 2	 NS	 C32	 102	 	ND	 1	 NS	

C56	 117	 32	 3	 NS	 C9	 45	 	ND	 1	 NS	

C75	 123	 24	 2	 NS	 C5	 105	 31	 2	 NS	

C59	 126	 1	 2	 NS	 C33	 159	 	ND	 1	 NS	

PBA	 96	 1	 2	 NS	 C10	 43	 	ND	 1	 0.001	

C48	 100	 16	 2	 NS	 C16	 67	 	ND	 1	 0.037	

C45	 131	 39	 3	 NS	 C36	 189	 98	 2	 0.014	

C67	 113	 16	 3	 NS	 C6	 102	 21	 2	 NS	

C68	 129	 17	 3	 NS	 C30	 60	 	ND	 1	 0.044	

C60	 87	 13	 3	 NS	 C14	 67	 	ND	 1	 0.048	

C61	 121	 18	 3	 NS	 C8	 53	 	ND	 1	 0.032	

C62	 142	 13	 3	 0.034	 C37	 138	 34	 3	 0.020	

C49	 127	 43	 2	 NS	 C41	 135	 31	 3	 NS	

C72	 113	 7	 2	 NS	 C2	 96	 35	 2	 NS	

C44	 133	 36	 3	 NS	 C52	 75	 	ND	 1	 NS	

C70	 121	 21	 2	 NS	 C3	 113	 7	 2	 NS	

C57	 102	 12	 3	 NS	 C4	 92	 18	 2	 NS	

C53	 113	 14	 2	 NS	 C20	 59	 	ND	 1	 0.024	

C63	 127	 21	 3	 NS	 C11	 67	 	ND	 1	 0.01	

C47	 161	 50	 2	 0.032	 C7	 105	 28	 2	 NS	

C42	 108	 20	 3	 NS	 C17	 62	 	ND	 1	 NS	

C81	 124	 10	 4	 NS	 C28	 56	 	ND	 1	 0.026	

C50	 112	 27	 2	 NS	 C1	 89	 29	 2	 0.002	

C46	 107	 19	 2	 NS	 C21	 63	 	ND	 1	 0.015	

C51	 107	 24	 2	 NS	 C19	 58	 	ND	 1	 NS	

C58	 120	 26	 3	 NS	 C22	 61	 	ND	 1	 0.018	

C43	 132	 44	 3	 NS	 C18	 52	 	ND	 1	 0.014	

C83	 107	 27	 3	 NS	 C15	 60	 	ND	 1	 0.015	

C54	 105	 24	 3	 NS	 C82	 128	 	ND	 1	 NS	

C65	 134	 25	 3	 NS	 C23	 51	 	ND	 1	 0.015	

C69	 105	 7	 3	 NS	 C26	 67	 	ND	 1	 0.023	

C40	 93	 15	 2	 NS	 C24	 59	 	ND	 1	 0.033	

C39	 118	 25	 3	 NS	 C27	 56	 	ND	 1	 NS	

C79	 127	 24	 3	 NS	 C25	 87	 	ND	 1	 NS	
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6.3	Summary	and	Discussion	

	

The	purpose	 of	 this	 study	was	 to	 establish	 a	 novel	 cell	 based	 assay	using	 a	

Tau35	CHO	cell	line.	

	

The	main	findings	of	this	chapter	are:	

	

1) Antibody	 for	 phosphorylated	 tau	 (pSer396)	 was	 an	 ideal	 candidate	 to	

establish	increase	and	decrease	of	compounds	upon	tau	phosphorylation.	

2) Okadaic	 acid	 and	 lithium	 chloride	 increased	 and	 reduced	 tau	

phosphorylation,	 respectively,	 in	 CHO-Tau35	 cells	 and	 these	 compounds	

were	therefore	ideal	controls.	

3) Phenylbutyrate	 reduced	 tau	 phosphorylation	 in	 the	 cell	 line	 which	

paralleled	the	changes	observed	in	Tau35	mice.	

4) Of	 the	 83	 candidate	 compounds	 tested,	 39	 compounds	 reduced	 tau	

phosphorylation	in	the	CHO-Tau35	cell	based	assay.	
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6.3.1	Tau35	transfected	CHO	cells:	A	novel	drug	screening	tool	

to	 test	 therapeutic	 compounds	 ability	 to	 reduce	 tau	

phosphorylation	

	

Phosphorylation	of	tau	at	the	Ser396	in	the	carboxy-terminal	region	of	tau	is	

an	early	event	in	AD,	occurring	prior	to	the	appearance	of	fibrillary	structures,	

and	is	therefore	a	potential	early	indicator	of	disease	progression	(Mondragón-

Rodríguez	et	al.,	2014).	The	ICW	experiments	showed	that	known	modulators	

of	 tau	phosphorylation,	LiCl	and	okadaic	acid,	are	capable	of	decreasing	and	

increasing	tau	phosphorylation,	respectively	(Hong	et	al.,	1997;	Tanaka	et	al.,	

1998).	 This	 indicates	 that	 CHO-Tau35	 cells	 together	 with	 antibodies	

recognising	 total	 and	phosphorylated	 (pSer396)	 tau	provide	 a	 suitable	 cell-

based	 assay	 for	 testing	 the	 potential	 of	 compounds	 to	 modulate	 tau	

phosphorylation.		

The	results	 from	ICW	analysis	of	CHO-Tau35	cells,	 revealed	 that	PBA	

was	able	to	rescue	Ser396	phosphorylation	of	tau.	PBA	has	not	previously	been	

shown	to	reduce	tau	phosphorylation	at	Ser396	in	cells,	making	this	the	first	

account	of	these	findings.	However,	 further	studies	of	phosphorylated	tau	in	

hippocampal	 regions	 of	 Tau35	 mice	 are	 required	 in	 order	 to	 determine	

whether	phosphorylation	at	this	site	is	also	reduced	in	Tau35	mice	treated	with	

PBA.	Furthermore	40	already	commercially	available	compounds	were	able	to	

successfully	 reduce	 tau	 phosphorylation	 at	 Ser396.	 However,	 some	

compounds	 did	 also	 have	 an	 effect	 on	 total	 tau	 and	 therefore	 further	

investigation	 into	 how	 these	 compounds	 interact	 with	 tau	 is	 necessary.	

Nevertheless,	the	data	obtained	in	this	study	indicate	that	this	is	a	robust	and	

reproducible	 assay	 in	 which	 to	 test	 new	 therapeutic	 compounds	 and	 to	

determine	the	effects	on	tau	phosphorylation.	
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6.3.2	Conclusions	

	

Within	this	chapter	it	was	clear	that	a	new	CHO-Tau35	cell	based	assay	was	

established	in	which	to	test	potential	therapeutic	targets	and	the	effect	these	

have	on	 tau	phosphorylation.	 PBA	 together	with	39	other	 compounds	were	

able	to	robustly	and	consistently	reduce	tau	phosphorylation	at	Ser396.	This	

novel	 cell-based	 assay	 together	 with	 other	 established	 tau	 and	 Aβ	 assays	

provides	an	excellent	resource	for	early	therapeutic	screening.	However,	these	

findings	are	still	very	preliminary	and	further	research	is	needed	to	validate	

and	further	establish	this	assay	as	well	as	establish	other	key	phosphorylation	

antibodies	which	could	be	used	as	part	of	the	assay.	
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CHAPTER	7	
	

Discussion	

	

The	main	aims	of	the	studies	reported	in	thesis	were	as	follows:	

	

1) To	investigate	the	behavioural,	biochemical	and	pathological	changes	in	a	

novel	 mouse	 model	 of	 the	 human	 brain-derived,	 35	 kDa	 tau	 fragment	

(Tau35),	which	is	expressed	in	the	absence	of	any	mutation	and	under	the	

control	of	the	human	tau	promoter.	

2) To	 test	 a	 potential	 therapeutic	 intervention	 in	 Tau35	 mice	 in	 order	 to	

alleviate	the	observed	neuropathological	and	behavioural	changes.	

3) To	 investigate	 whether	 the	 phenotypic	 and	 behavioural	 changes	 are	

preserved	when	Tau35	hybrid	mice	are	backcrossed	onto	a	pure	C57BL/6	

background.		

4) To	 establish	 a	 new	 cell	 based	 assay	 to	 test	 therapeutic	 targets	 for	

tauopathies	using	a	CHO	cell	line	stably	expressing	Tau35.		

	

In	summary,	the	primary	findings	of	this	thesis	are:		

	

N-terminal	 truncation	 of	 tau	 induces	 progressive	 phenotypic	

abnormalities	 and	 reduced	 lifespan,	 progressive	 motor	 and	 cognitive	

deficits	 in	Tau35	mice.	The	results	presented	here	support	 the	hypothesis	

that	 the	 Tau35	 truncated	 tau	 fragment	 can	 induce	 abnormal	 tau	

phosphorylation/aggregation	 and	 progressive	 motor	 and	 cognitive	

dysfunction,	 features	 which	 have	 previously	 been	 reported	 in	 tauopathies.	

Tau35	 is	 associated	 with	 increased	 accumulation	 of	 tau	 pathology	 in	 the	

hippocampus	 and	 associated	 cortex	 as	 well	 as	 increased	 ubiquitin	 and	

synuclein	pathology	in	the	hippocampus.	Moreover,	these	findings	suggest	the	

involvement	 of	 several	 pathways	 that	 result	 from	 tau	 truncation	 in	 4R	

tauopathies.	 In	 particular,	 N-terminal	 tau	 truncation	 causes	 abnormally	

phosphorylated	 tau,	 progressive	 cognitive	 and	 motor	 deficits,	 kyphosis,	
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clasping,	 autophagic/lysosomal	 dysfunction,	 kinase	 dysfunction,	 loss	 of	

synaptic	protein,	and	reduced	life-span	in	Tau35	mice.	Tau35	expression	is	also	

associated	 with	 reduced	 synapsin1	 and	 synaptotagmin,	 increased	 GSK3β	

activity	reduced	cathepsin	D,	increased	p62	and	LC3	protein	levels	and	reduced	

acetylated	 tubulin.	 This	 is	 the	 first	 report	 of	 low	 expression	 of	WT	 human	

truncated	 tau	 expressed	 in	 mice	 to	 elicit	 such	 disease-relevant	

pathophysiological	and	behavioural	changes.	

Treatment	 of	 Tau35	 mice	 with	 phenylbutyrate	 ameliorates	

neuromuscular	 and	 cognitive	deficits,	 tau	phosphorylation,	 autophagic	

deficits	and	synaptic	deficits.	

Importantly,	several	of	the	phenotypic	changes	in	Tau35	mice	were	alleviated	

upon	 treatment	 with	 PBA	 (Buphenyl®),	 possibly	 through	 chromatin	

remodelling	or	HDAC	inhibition.	PBA	is	used	to	treat	urea	cycle	disorders	and	

is	 currently	 in	 clinical	 trials	 for	 a	 range	 of	 neurodegenerative	 diseases	 (Qi,	

2004;	Gardian	et	 al.,	 2005;	Leng	and	Chuang,	2006;	Ying	et	 al.,	 2006;	Sadri-

Vakili	et	al.,	2007;	Chuang	et	al.,	2009).	PBA	rescued	grip	strength	and	spatial	

learning	and	hippocampal	dependent	memory	deficits	as	tested	in	the	Morris	

water	maze.	Treatment	with	PBA	also	reduced	tau	phosphorylation	and	p62,	

and	restored	acetylated	tubulin,	cathepsin	D	and	synpasin-1	in	Tau35	mice.	

	

Backcrossing	 Tau35	 mice	 onto	 a	 C57BL/6	 background	 retained	 the	

phenotypic	and	behavioral	abnormalities.	

The	 phenotypic	 and	 behavioural	 differences	 observed	 in	 the	 hybrid	 Tau35	

mice	 were	 conserved	 in	 mice	 backcrossed	 to	 generate	 a	 99.9%	 C57BL/6	

background.	 Tau35Bl/6	 mice	 maintained	 the	 abnormal	 patterns	 of	 clasping,	

motor	deficits	(grip	strength	and	Rotarod)	and	cognitive	deficits	(Morris	water	

maze).	This	finding	eliminates	the	possibility	of	the	phenotypic	abnormalities	

in	hybrid	Tau35	mice	being	attributed	to	a	specific	genetic	background.		 	
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CHO-Tau35	cells	exhibit	increased	tau	phosphorylation	and	can	be	used	

to	test	potential	therapeutic	compounds.	

CHO-Tau35	 cells	 showed	 increased	 tau	 phosphorylation	 at	 Ser396,	 which	

could	be	modulated	by	LiCl	and	OA.	A	CHO-Tau35	ICW	cell-based	assay	was	

successfully	established,	which	allowed	potential	therapeutic	compounds	to	be	

tested	and	their	ability	to	reduce	tau	phosphorylation	at	Ser396	evaluated	in	a	

high-throughput	format.	

Together,	 these	 findings	 suggest	 that	N-terminal	 tau	 truncation	 is	 an	

important	event	in	tauopathies	that	leads	to	extensive	behavioural	deficits	and	

the	 accumulation	 of	 hyperphosphorylated,	 conformational	 and	 aggregated	

species	of	tau	that	can	be	targeted	therapeutically.		

	

7.0	 Tau35Bl/6;129/Tau35Bl/6	 mice:	 a	 new	 improved	

mouse	model	of	human	tauopathy	

	

This	 thesis	 has	 evaluated	 a	 novel	mouse	model	 of	 human	 tauopathy,	which	

expresses	human	WT	tau	at	low	physiological	levels	comprising	only	<10%	of	

that	of	endogenously	expressed	 total	mouse	 tau.	The	major	 limitations	with	

regard	to	existing	tau	transgenic	mouse	models	have	been	(1)	the	generation	

of	mice	by	random	insertion	of	the	transgene	into	the	genome	and	therefore	

potential	unwanted	effects	due	to	the	insertion	site,	and	(b)	overexpression	of	

tau	 in	 order	 to	 elicit	 a	 phenotype	 and	 acceleration	 of	 tauopathy	within	 the	

relatively	short	lifetime	of	a	mouse.		

Several	 previous	 models	 have	 used	 various	 different	 promoters,	

examples	including	the	prion	promoter	(PrP)	which	drives	expression	widely	

in	the	nervous	system	(Hsiao	et	al.,	1996),	the	PDGF	promoter	which	promotes	

high	expression	in	the	central	nervous	system	and	drives	strong	expression	of	

exogenous	 transgenes	 in	 neurons	 (Games	 et	 al.,	 1995)	 and	 Thy	 promoters	

(Thy-1,	Thy1.2)	and	 inducible	CaMKII	promoters,	which	have	been	used	 for	

full-length	 tau	expression	 (Götz	et	 al.,	 1995).	However,	 these	promoters	are	

typically	not	the	promoters	of	the	native	gene	but	have	been	selected	because	



	 250	

of	 their	 strong	 gene	 expression.	 Such	 heterologous	 promoters	 often	 lead	 to	

higher	expression	of	the	transgene	with	pathology	in	regions	often	unrelated	

to	disease	pathogenesis,	than	would	be	observed	physiologically.	Furthermore,	

the	 transgene	 is	 usually	 expressed	 on	 top	 of	 the	 endogenous	 mouse	 gene,	

leading	to	further	overexpression	(Elder	et	al.,	2010).	Tau35	mice	employ	the	

human	tau	promoter,	the	same	as	used	previously	in	some	other	tau	transgenic	

mice	 (Dawson	 et	 al.,	 2007).	 Using	 this	 promoter,	 Dawson	 and	 colleagues	

(Dawson	et	al.,	2007)	showed	low	expression	of	mutant	forms	of	tau,	including	

the	 T-279	 mouse	 expressing	 the	 N279K	 and	 mice	 expressing	 the	 V337M	

mutation,	which	contributes	to	progressive	neurodegeneration	in	FTLD-tau.	In	

these	mice	multiple	copies	of	the	transgene	result	in	<10%	endogenous	mouse	

tau	 protein	 (Tanemura	 et	 al.,	 2001;	 Dawson	 et	 al.,	 2007).	 In	 contrast,	mice	

expressing	wild-type	 human	 tau	 at	 10%	more	 than	 endogenous	mouse	 tau	

(Tau264	mice)	do	not	develop	tau	pathology	(Umeda	et	al.,	2013).	However,	in	

both	 these	 models,	 tau	 is	 expressed	 as	 a	 mutant	 protein	 and	 since	 such	

mutations	occur	only	very	infrequently	in	human	tauopathy,	these	models	do	

not	 represent	 the	 most	 common	 forms	 of	 tauopathies,	 which	 are	 indeed	

sporadic.	Furthermore,	the	homologous	natural	rat	tau	promoter	has	also	been	

used	 to	 express	 human	 tau	 cDNA	with	 two	 FTLD-tau-associated	mutations,	

K257T/P301S,	in	which	expression	was	5-10%	of	endogenous	mouse	tau	and	

P301S	(expressing	the	P301S	mutant	form	of	human	MAPT).	(Rosenmann	et	

al.,	2008).	More	recently,	Sydow	and	colleagues	showed	that	hTau40AT	mice,	

which	 express	 full-length	 human	 tau	 carrying	 the	 mutation	 A152T	 at	 low	

physiological	levels,	under	the	control	of	the	murine	GFAP	promoter	for	glial	

expression,	exhibit	cognitive	impairment	and	neuroinflammation	(Sydow	et	al.,	

2016).	 These	 in	 vivo	models	 highlight	 the	 importance	 of	 using	 relevant	 tau	

promoters	to	express	pathophysiologically-relevant	amounts	of	tau.	

To	date	no	other	mice	expressing	low	level	WT	human	tau	have	been	

reported.	As	Tau35	mice	express	a	truncated	species	of	WT	human	tau	they	

therefore	 represent	 a	 novel	 and	 highly	 relevant	 animal	 model	 of	 sporadic	

tauopathy.	 Furthermore,	 Tau	 35	 accurately	 represents	 the	 spectrum	 of	

sporadic	 human	 tauopathies	 in	 the	 absence	 of	 significantly	 increased	 tau	

expression	or	the	presence	of	any	tau	mutation.	
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7.1	 Human	 N-terminal	 truncated	 tau	 induces	 4R	

tauopathy	 relevant	 phenotypic,	 behavioural,	

biochemical	and	pathological	deficits	in	mice	

	

7.1.1	 Potential	 role	 of	 N-terminal	 tau	 truncation	 in	 reduced	

lifespan	 clasping,	 motor	 deficits	 and	 early	 phosphorylation	

dependent	tau	

	

An	 important	 finding	 here	was	 the	 reduced	 lifespan	 and	 induction	 of	 early	

progressive	 phenotypic	 clasping	 and	 motor	 deficits	 in	 mice	 expressing	 N-

terminally	 truncated	 tau	 (Tau35).	 The	 reduction	 of	 lifespan	 in	 Tau35	mice	

somewhat	correlated	with	the	early	clasping	and	motor	deficits	measured	on	

the	 Rotarod,	 and	 also	with	 the	 onset	 of	 tau	 pathology	 (PHF1	 epitope)	 by	 2	

months	of	age.	PHF1	(pSer396/pSer404)	is	considered	to	be	a	robust	marker	

of	tau	pathology	(Santacruz	et	al.,	2005;	Spires	et	al.,	2006).	Interestingly,	 in	

line	 with	 human	 tauopathy	 studies	 in	 which	 phosphorylation	 of	 tau	 at	

Ser396/Ser404	is	reported	as	an	early	event	(Su	et	al.,	1996;	Uboga	and	Price,	

2000),	 Tau35	 mice	 also	 showed	 an	 early	 increase	 in	 phosphorylated	 tau,	

indicating	their	relevance	to	human	tauopathy.	In	addition,	because	the	motor	

deficits	are	seen	as	early	as	1	month	in	Tau35	mice,	it	is	plausible	to	assume	

that	the	progression	of	motor	deficits	may	be	causally	related	to	abnormal	tau	

phosphorylation.	 In	 AD,	 phosphorylation	 of	 PHF1	 was	 detected	 at	 higher	

density	in	early	AD	than	phosphorylation	at	AT8	(Mondragón-Rodríguez	et	al.,	

2014),	similar	to	observations	in	Tau35	mice.	Furthermore,	50%	of	the	total	

PHF1-containing	structures	in	AD	brain	were	found	as	early	phosphorylation	

tau	 aggregates	 with	 a	 well-preserved	 neuronal	 soma,	 which	 did	 not	 show	

fibrillary	 conformation	 (Mondragón-Rodríguez	 et	 al.,	 2014),	which	was	 also	

similar	to	Tau35	mice.	Indeed,	previous	research	has	shown	that	inhibition	of	

tau	 phosphorylation	 using	 a	 kinase	 inhibitor	 (K252a)	 was	 able	 to	 reverse	

motor	phenotypes	in	JNPL3	mice	(harbouring	the	P301L	mutation)	indicating	
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a	link	between	motor	deficits,	motor	deterioration	and	tau	phosphorylation	(Le	

Corre	et	al.,	2006).	

Reduced	 lifespan	 in	 Tau35	 mice	 was	 significantly	 shortened	 by	 a	

median	of	71	days	compared	to	WT	mice.	Previous	reports	in	rats	expressing	

truncated	tau	have	shown	a	direct	link	and	strong	dependency	between	human	

tau	 truncation,	 the	 onset	 of	 neurofibrillary	 pathology	 and	 reduced	 lifespan	

(Koson	et	al.,	2008).	Koson	and	colleagues	also	showed	that	 rats	expressing	

relatively	higher	levels	of	truncated	tau	(SHR72	rats,	which	express	residues	

151-391	at	7.5-fold	endogenous	rat	tau)	had	a	significant	decrease	in	median	

survival	of	223	days	compared	to	rats	expressing	lower	amounts	of	truncated	

tau	(SHR318	rats,	which	express	44%	less	transgene	than	SHR72),	which	had	

a	median	survival	of	295	days	compared	to	non-transgenic	rats.	This	group	also	

used	the	AT8	antibody	to	establish	neuronal	loss	and	NFT	load.	Interestingly	

they	found	no	difference	in	neuronal	loss	or	NFT	load	between	the	two	models	

at	end	stage	proposing	that	these	parameters	were	not	necessarily	dependent	

on	human	truncated	tau	(Koson	et	al.,	2008).	These	results,	together	with	the	

reduced	lifespan	of	Tau35	mice,	strongly	suggests	that	human	tau	truncation	

can	 reduce	 lifespan	 in	 mammalian	 models	 and	 therefore	 contribute	 the	

tauopathy	phenotypes	and	pathology	observed.	However	 just	 like	 in	 the	 rat	

models,	Tau35	also	did	not	show	extensive	NFTs	or	neuronal	loss	suggestive	of	

the	 fact	 that	 there	may	 be	 a	 ‘tangle	 threshold’	 in	 the	 brain	 of	 these	 animal	

models	 regulated	 by	 the	 limited	 number	 of	 neurons	 that	 can	 develop	NFTs	

(Koson	et	al.,	2008).	Interestingly	tau	truncation	and	modification	is	not	only	

restricted	 to	 transgenic	mice	expressing	 tau.	For	example,	mutant	APP	mice	

that	 exhibit	 cognitive	 and	 behavioural	 deficits	 exhibit	 ubiquitinated	 and	

physiologically	 acetylated	 tau	 species	 (Morris	 et	 al.,	 2015).	 Both	 WT	 and	

human	 APP	 (hAPP)	 mutant	 mice	 showed	 similar	 post	 translational	

modifications	 in	 tau,	 which	 further	 supports	 the	 hypothesis	 that	 dementia-

related	deficits	can	be	generated	from	physiological	forms	of	tau	(Morris	et	al.,	

2015).	 Furthermore,	 evidence	 shows	 that	 post-translational	modification	 of	

tau	accelerates	tau	polymerisation	and	correlates	with	the	severity	of	dementia	

seen	in	tauopathies	(Gamblin	et	al.,	2003;	Amadoro	et	al.,	2004;	Morris	et	al.,	

2015).		
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Tau35	mice	showed	extensive	muscle	pathology	and	internalised	nuclei	

induced	by	expression	of	truncated	tau.	Previous	findings	in	mice	expressing	

both	full-length	and	truncated	tau	species	(Δtau:	3R	tau151-421)	show	paralysis,	

severe	muscle	fibre	atrophy	and	internalised	nuclei,	whereas	mice	expressing	

full-length	3R,	full	length	4R,	or	full	length	only	tau	did	not	experience	these	

deficits	 (Ozcelik	 et	 al.,	 2016).	 This	 implies	 that	 muscle	 atrophy	 and	 motor	

deficits	may	 require	 the	 interaction	of	both	 full-length	 and	 truncated	 tau	 to	

elicit	 these	 phenotypes.	 Interestingly,	 in	 Tau35	 mice,	 it	 was	 evident	 from	

TP007	antibody	labelling,	that	truncated	tau	recruited	endogenous	mouse	tau	

into	 inclusions.	 Therefore,	 it	 is	 plausible	 that	 truncated	 tau	 in	 Tau35	 mice	

sequesters	 full-length	 tau	 to	 elicit	 motor	 phenotypes	 and	 muscle	 atrophy.	

However,	compared	to	the	results	obtained	by	Ozcelik	and	colleagues	(Ozcelik	

et	al.,	2016)	who	used	a	3R	tau	construct,	Tau35	mice	express	a	4R	truncated	

tau	fragment	and	therefore,	perhaps	the	muscle	disorder	in	Tau35	mice	was	

less	severe	due	to	4R	tau	expression.	Indeed,	it	is	difficult	to	fully	establish	the	

extent	the	Tau35	fragment	plays	in	muscle	pathology	as	N-terminal	cleavage	

sites	 on	 tau	 are	 poorly	 characterised,	 and	 only	 a	 few	 sites	 have	 been	

established,	these	being	located	primarily	at	the	beginning	of	the	acidic	region	

(Rohn	et	al.,	2002;	Horowitz,	2004;	Derisbourg	et	al.,	2015).		

	

7.1.2	 Potential	mechanism	 behind	 cognitive	 decline	 induced	

by	truncated	Tau35	in	mice	

	

Tau35Bl/6;129	and	Tau35Bl/6	mice	exhibited	significant	cognitive	decline	from	8	

and	10	months	of	age,	respectively.	Di	and	colleagues	(Di	et	al.,	2016)	generated	

an	 inducible	pseudo-phosphorylated	 tau	mouse	model	 to	 study	 the	effect	of	

conformationally	modified	 tau.	 Leakage	 of	 transgene	 expression	 resulted	 in	

lines	of	mice	expressing	either	low	or	high	levels	pseudo-phosphorylated	tau,	

compared	to	endogenous	mouse	tau	(4%	or	14%,	respectively)	(Di	et	al.,	2016).	

Interestingly,	in	the	higher	expressing	mice,	cognitive	impairment	appeared	to	

be	a	result	of	progressive	neuronal	loss,	whereas	in	the	low	expressing	mice,	

cognitive	 impairment	 was	 due	 to	 synaptic	 dysfunction	 (Di	 et	 al.,	 2016).	

Interestingly	the	cognitive	impairment	in	Tau35	mice	appears	not	to	be	as	a	
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result	 of	 progressive	 neuronal	 loss	 as	 this	 was	 not	 detected	 in	 these	mice.	

However,	 synaptic	 dysfunction	 was	 observed	 in	 Tau35	 mice,	 suggesting	 a	

potential	role	of	synaptic	integrity,	particularly	with	regard	to	synaptic	vesicle	

regulation.	Synaptic	integrity	and	dysregulation	has	previously	been	reported	

in	synaptic	compartments	of	a	rat	model	of	tau	truncation	(expressing	human	

N-	and	C-terminally	truncated	tau	encompassing	three	repeats	(aa	151–391;	

line	 SHR24	 (Filipcik	 et	 al.,	 2012)	 using	 a	 synaptic	 fractionation	 protocol	

(Jadhav	et	al.,	2015).	Jadhav	and	colleagues	(Jadhav	et	al.,	2015)	showed	that	

tau	protein	is	distributed	differently	in	control	and	transgenic	rats.	Whereas	in	

control	rats	the	amount	of	endogenous	tau	in	the	post-synaptic	fraction	was	

significantly	lower	than	in	the	pre-synaptic	fractions,	consistent	with	human	

brains,	in	transgenic	rats,	tau	was	predominantly	in	the	post-synaptic	density	

again	 consistent	with	 human	AD	 brains	 (Fein	 et	 al.,	 2008;	 Tai	 et	 al.,	 2012).	

Interestingly,	this	group	also	showed	that	the	synaptic	tau	proteome	exhibited	

different	 phosphorylation	 patterns	 in	 the	 pre-synaptic	 and	 post-synaptic	

fractions	of	 transgenic	 rats.	Truncated	 tau	 in	 the	pre-synaptic	 compartment	

was	heavily	phosphorylated	compared	to	the	post-synaptic	density	(Jadhav	et	

al.,	 2015).	 This	 indicates	 different	 phosphorylation	 patterns	 and	 potential	

attribution	 to	 NFTs	 in	 the	 different	 synaptic	 compartments.	 Furthermore,	

results	 show	 that	 the	 composition	 of	 truncated	 tau	 in	 different	 synaptic	

compartments	can	have	a	direct	effect	on	the	pattern	of	damage	observed	in	

transgenic	rats	(Jadhav	et	al.,	2015).	In	Tau35	mice,	the	synaptic	integrity	of	

pre-synaptic	proteins	(synapsin1	and	synaptobrevin)	was	altered	compared	to	

the	 post-synaptic	 marker	 PSD95,	 which	 was	 unchanged,	 indicating	 a	

potentially	predominant	dysregulation	of	pre-synaptic	proteins	in	Tau35	mice.	

However,	it	would	be	interesting	to	examine	different	synaptic	fractions	in	the	

Tau35	mice	to	evaluate	the	extent	of	endogenous	and	exogenous	tau	present	

in	these	in	the	synaptic	fractions.		
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7.1.3	 Potential	 mechanism	 underlying	 tau	 oligomeric	

pathology	and	phosphorylation	at	multiple	epitopes	 induced	

by	Tau35	expression	

	

Several	studies	have	implicated	truncated	species	of	tau	in	the	pathogenesis	of	

tauopathies	 (Canu	 et	 al.,	 1998;	 Gamblin	 et	 al.,	 2003;	 Rissman	 et	 al.,	 2004;	

Newman	 et	 al.,	 2005;	 Guillozet-Bongaarts	 et	 al.,	 2007;	 Wray	 et	 al.,	 2008).	

Biochemical	 and	 immunohistochemical	 analyses	 of	 neurofibrillary	

degeneration	induced	by	human	truncated	tau	was	most	prominently	labelled	

by	AT8,	which	effectively	 labelled	all	 stages	of	 tangle	pathology	(Zilka	et	al.,	

2006).	As	previously	mentioned,	Zilka	and	colleagues	found	that	the	higher	the	

expression	level	of	truncated	tau	the	earlier	the	onset	of	tangle	pathology	(Zilka	

et	al.,	2006).	Tau35	mice	showed	extensive	tau	pathology	upon	labelling	with	

AT8,	 indicating	 that	 tau	 tangle-like	development	 reflected	 the	 expression	of	

truncated	 tau.	 Therefore,	 it	 is	 possible	 that	 Tau35	 mice	 exhibit	 tangle-like	

pathology	only	at	a	late	stage	of	the	disease	due	to	low	expression	of	truncated	

tau	

Interestingly,	Gallyas	silver	and	Thioflavine	S	staining	were	absent	from	

the	brains	of	Tau35	mice	and	similar	findings	have	recently	been	reported	in	

tau	transgenic	mice	harbouring	the	mutation	A152T	(Maeda	et	al.,	2016).	This	

finding	 is	 consistent	with	 the	 development	 of	 tauopathy	 being	mediated,	 at	

least	partially,	by	soluble	and/or	oligomeric	 tau	species.	 It	 is	often	assumed	

that	abnormal	phosphorylation	of	tau	is	directly	related	to	its	aggregation	state	

(Avila,	 2006).	 However,	 observations	 in	 Tau35	 mice	 indicate	 that	 the	 link	

between	the	formation	of	such	biochemically	defined	abnormal	tau	species	and	

histologically	defined	NFTs	may	not	be	direct.	 For	 instance,	 tau	aggregation	

into	NFTs	and	Sarkosyl-insoluble	tau	were	not	observed	in	Tau35	mice	and,	

instead	 tangle-like	 structures	 were	 apparent.	 Tau	 aggregation,	 although	

considered	a	hallmark	of	tauopathies,	has	recently	been	proposed	to	not	be	the	

only	toxic	tau	species,	if	indeed	at	all	and	accumulating	evidence	suggests	early	

soluble	tau	oligomeric	precursors	to	be	the	main	driver	(Marx,	2007;	Brunden	

et	al.,	2008;	Lasagna-Reeves	et	al.,	2011).	Although	there	were	no	detectable	
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changes	in	soluble	tau	in	Tau35	mice,	they	did	exhibit	increased	oligomeric	tau	

pathology	in	the	hippocampus,	which	was	detectable	with	antibody	specific	to	

TOC1.	 These	 findings	 are	 in	 concordance	 with	 the	 idea	 that	 oligomeric,	

sarkosyl-soluble	 species	 may	 be	 essential	 for	 the	 pathogenesis	 of	 human	

tauopathies	(Lasagna-Reeves	et	al.,	2012;	Blair	et	al.,	2013;	Gerson	and	Kayed,	

2013),	including	AD	and	PSP	brain	(Maeda	et	al.,	2006;	Patterson	et	al.,	2011;	

Gerson	et	al.,	2014).	Furthermore,	accumulation	of	insoluble	tau	has	previously	

been	 reported	 in	 in	 vivo	 models	 expressing	 aggregation-prone	 tau	mutants	

such	as	V337M	and	ΔK280	tau	(Kraemer	et	al.,	2003;	Fatouros	et	al.,	2012).	

Furthermore,	 in	 htau	 transgenic	 mice,	 neuronal	 death	 also	 occurs	

independently	of	histologically	observed	NFTs	(Andorfer,	2005).	These	reports	

support	the	view	that	tau	species	other	than	highly	aggregated	tau	may	be	the	

primary	 toxic	 entity	 responsible	 for	 the	 behavioural	 manifestation	 of	

tauopathies.	

Surprisingly,	Tau35	showed	no	apparent	glial	pathology	at	late	stage	of	

the	disease	and	previous	human	post-mortem	studies	have	revealed	that	tau	

truncation	does	not	appear	to	occur	in	PSP	and	CBD	glia	as	part	of	the	disease	

process.	This	may	partially	explain	the	absence	of	glial	pathology	in	Tau35	mice	

as	appreciable	amounts	of	tau	are	not	normally	found	in	astrocytes	or	microglia	

and	may	therefore	not	be	as	directly	linked	as	previously	postulated	(Guillozet-

Bongaarts	et	al.,	2007).		
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7.2	N-terminal	truncation	deficits	in	Tau35	mice	can	be	

rescued	therapeutically		

	

7.2.1	 Potential	 mechanistic	 role	 of	 phenylbutyrate	 in	 the	

rescuing	behavioural	and	biochemical	deficits	in	Tau35	mice	

	

PBA	reduced	some	of	the	behavioural,	biochemical	and	pathological	deficits	in	

Tau35	mice.	 In	vivo,	PBA	 is	converted	to	phenylacetate,	which	conjugates	 to	

glutamine	 to	 form	phenylacetylglutamine,	which	 serves	 as	 an	 alternative	 to	

urea	 in	 ammonia	 excretion	 (James	 et	 al.,	 1972;	 Brusilow,	 1991).	 The	 main	

mechanistic	 ways	 by	 which	 PBA	 may	 act	 in	 Tau35	 are	 via	 chaperones	

stabilising	 the	 native	 structure	 of	 proteins,	 HDAC	 inhibition	 and	 potentially	

reduction	of	synuclein	(Zhou	et	al.,	2011).	Any	of	these	mechanisms,	either	in	

combination	or	individually,	could	act	to	alleviate	tauopathy-like	symptoms	in	

Tau35	mice	(Figure	7.1)	(Cuadrado-Tejedor	et	al.,	2011).	Chemical	chaperones	

prevent	 aggregation	 by	 promoting	 folding	 of	 mutant	 proteins,	 reducing	

misfolded	aggregates	of	proteins	and	having	an	indirect	effect	on	intracellular	

molecular	chaperone	capacity.	Therefore,	any	therapeutics	which	have	these	

functions	are	of	increasing	interest	(Kahali	et	al.,	2010;	Ong	and	Kelly,	2011;	

Kolb	et	al.,	2015).	PBA	is	an	example	of	these	chemical	chaperones	having	the	

ability	 to	 disrupt	 heat	 shock	 proteins	 (Hsps)	 and	 thereby	 increasing	 the	

exposure	 of	 hydrophobic	 surfaces	 which	 enhance	 Hsp	 chaperone	 activity	

(Hekmatimoghaddam	et	al.,	2016).	Chemical	chaperons	such	as	PBA	are	also	

responsible	 for	 preventing	 intermolecular	 interactions	 triggering	 chemical	

events	that	drive	unfolded	assembly	of	aggregates	(Choi	et	al.,	2008;	Ono	et	al.,	

2009;	 Kahali	 et	 al.,	 2010;	 Ong	 and	 Kelly,	 2011;	 Mimori	 et	 al.,	 2013).	

Interestingly,	 several	 chemical	 chaperones	 have	 previously	 been	 shown	 to	

reduce	 tau	 phosphorylation	 (Loy	 and	 Tariot,	 2002;	 Hoshino	 et	 al.,	 2007;	

Venkataramani	et	al.,	2010).	PBA	was	able	to	reduce	tau	phosphorylation	 in	

Tau35	mice,	suggesting	that	the	mechanism	through	which	PBA	acts	is	at	least	

partially	mediated	by	its	chaperone	action.	
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7.2.2	Mechanistic	 role	 of	 PBA	 in	 rescuing	motor	 deficits	 and	

muscle	pathology	in	Tau35	mice	

	

One	mechanism	proposed	 for	 the	 action	 of	 PBA	 in	 spinal	muscular	 atrophy	

(SMA)	is	increasing	gene	expression	by	preserving	the	function	of	the	survival	

motor	neuron	protein	(SMN).	Mutant	SMN	(harbouring	the	C>T	point	mutation	

in	exon	7)	mice	show	deficits	in	hindlimb	grip	strength	but	not	in	forelimb	grip	

strength	(Gladman	et	al.,	2010),	which	is	strikingly	similar	to	the	findings	 in	

Tau35	mice.	Therefore,	 it	 is	possible	that	Tau35	mice	harbour	dysfunctional	

SMN,	which	could	contribute	to	the	motor	dysfunction	seen	in	these	animals,	

although	 this	 was	 not	 assessed	 in	 this	 study.	 Future	 experiments	 should	

identify	if	the	SMN	complex	is	impaired,	and	therefore	might	contribute	to	the	

motor	impairment	seen	in	Tau35	mice.	

PBA	 alleviates	 the	 reduction	 in	 centralised	nuclei	 in	muscle	 fibres	 in	

Tau35	 mice.	 There	 are	 no	 reports	 in	 the	 current	 literature	 describing	 the	

rescue	 of	 centralised	 nuclei	 and/or	 degenerative	 muscle	 pathology	 in	 any	

animal	models	 or	 patients	 following	 PBA	 administration.	 However,	 the	 two	

major	protein	degradation	pathways	that	are	activated	during	muscle	atrophy	

and	pathological	 changes	 in	muscles	 are	 the	 autophagic	 lysosomal	 pathway	

and	the	ubiquitin-proteasome	systems,	which	variably	contribute	to	the	loss	of	

muscle	mass	(Sandri,	2013).	The	autophagy	pathway	is	involved	a	variety	of	

atrophy-related	genes,	which	are	controlled	by	specific	transcription	factors,	

such	 as	 FoxO3,	which	 is	 negatively	 regulated	 by	Akt,	 and	NF-κB.	One	 study	

showed	that	PBA	increases	expression	of	NF-κB	and	hence	could	reverse	or	at	

least	improve,	neurodegenerative	changes	(Del	Signore	et	al.,	2009).	NF-κB	is	

an	 inducible	 transcription	 factor	 that	 plays	 a	 role	 in	 the	 anti-apoptotic	

response	 in	 mammals	 (Wang	 et	 al.,	 1996a)	 and	 after	 translocation	 to	 the	

nucleus,	NF-κB	activates	gene	transcription.	PBA	can	enhance	the	ability	of	NF-

κB	to	bind	to	DNA	and	thereby	augment	gene	expression	(Chen	Lf	et	al.,	2001).	

Furthermore,	 induction	 of	 NF-κB	 also	 suppresses	 apoptosis	 by	 inhibiting	

caspase	expression	(Beg	and	Baltimore,	1996;	Wang	et	al.,	1996a).	Therefore,	

it	is	possible	that	in	Tau35	mice	treated	with	PBA,	NF-κB	may	play	a	role	in	the	

rescue	of	muscle	pathology	and,	due	to	the	pleotropic	effect	of	this	compound,	
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and	its	extensive	ability	to	activate	transcriptional	regulators,	it	is	possible	that	

PBA	activates	several	other	 transcription	 factors	associated	with	autophagy,	

which	 appears	 to	 be	 impaired	 in	 Tau35	mice.	 PBA	would	 therefore	 lead	 to	

increased	protein	synthesis	and	rescue	of	muscle	formation	and	regeneration.	

However,	none	of	 these	 factors	have	yet	been	examined	 in	Tau35	mice,	and	

therefore	this	remains	a	tentative	plausible	explanation	for	the	effects	of	PBA	

in	these	animals.	

Tau35	mice	also	exhibit	α-synuclein	accumulation	in	the	hippocampus,	

which	could	be	related	to	the	Parkinsonian-like	motor	deficits	in	these	mice.	

Previous	studies	have	shown	that	PBA	can	reduce	α-synuclein	aggregation	in	

mouse	brain	and	in	vitro	and	also	to	prevent	age-related	deterioration	in	motor	

and	cognitive	function	(Ono	et	al.,	2009;	Saleh	et	al.,	2015).	Zhou	and	colleagues	

found	that	in	a	N27	dopamine	cell	line,	PBA	increased	the	expression	of	DJ-1	

(associated	with	early-onset,	autosomal	recessive	Parkinson’s	disease,	PARK7)	

and	 rescued	 cells	 from	 oxidative	 stress	 and	 mutant	 α-synuclein	 toxicity.	

Furthermore,	 in	 another	 transgenic	 mouse	 expressing	 mutant	 Y39C	 α-

synuclein,	that	develops	Lewy	body-like	inclusions,	long	term	administration	

of	 PBA	 was	 able	 to	 alleviate	 α-synuclein	 aggregation	 as	 well	 as	 improving	

motor	and	cognitive	function	(Zhou	et	al.,	2011).	Therefore,	the	rescue	of	motor	

behaviour	deficits	in	Tau35	mice	could	be	attributed	to	a	potential	reduction	

of	α-synuclein	aggregation.		

	

7.2.3	Mechanistic	role	of	PBA	in	rescuing	cognitive	deficits	in	

Tau35	

	

PBA	reduced	spatial	learning	and	memory	deficits,	as	well	as	synaptic	function,	

in	 Tau35	 mice,	 implicating	 the	 ability	 to	 restore	 histone	 acetylation	 and	

therefore	restoring	LTP	memory.	Histone	acetylation	is	particularly	important	

in	terms	of	long-term	memory	(Peixoto	and	Abel,	2013),	the	primary	memory	

malfunction	 also	 seen	 in	 Tau35	 mice,	 which	 agrees	 with	 previous	 findings	

showing	 that	HDAC	 inhibitors	 rescue	 age-dependent	 associative	 and	 spatial	

memory	as	well	as	improving	consolidation	deficits	in	mouse	models	of	AD	and	

neurodegeneration	 (Fischer	 et	 al.,	 2007;	 Fontán-Lozano	 et	 al.,	 2008;	
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Ricobaraza	et	al.,	2009;	Kilgore	et	al.,	2010).	In	particularly	HDAC2	has	been	

suggested	to	play	a	putative	role	in	synaptic	plasticity	and	memory	formation,	

since	overexpression	of	HDAC2,	but	not	HDAC1,	decreases	spine	density	and	

impairs	memory	formation	in	mice	(Guan	et	al.,	2009).	HDAC3	is	also	linked	to	

cognitive	enhancement	and	is	a	negative	regulator	of	long	term	memory,	since	

administering	 selective	HDAC3	 inhibitors	 into	 the	hippocampus,	 accelerates	

long-term	memory	formation	(McQuown	et	al.,	2011).	Therefore,	PBA	may	act	

through	 histone	 acetylation,	 through	 either	 HDAC2	 or	 HDAC3,	 allowing	 the	

restoration	 of	 both	 long-term	memory	 and	 spatial	 learning	 in	 Tau35	mice.	

However,	HDACs	were	not	 analysed	as	part	of	 this	 study	and	 therefore	 this	

remains	 only	 a	 plausible	 mechanistic	 role	 which	 would	 be	 of	 interest	 to	

investigate	further.	

Previous	 studies	 have	 shown	 that	 PBA	 can	 successfully	 recover	 the	

pathological	hallmarks	of	AD	and	enhance	cognitive	decline	 in	Tg2576	mice	

overexpressing	mutant	APP	(Ricobaraza	et	al.,	2009;	Cuadrado-Tejedor	et	al.,	

2011).	 This	 finding	 was	 similar	 in	 the	 Tau35	 mice,	 in	 which	 both	

phosphorylated	 tau	 and	 cognitive	decline	were	 restored	by	PBA.	Therefore,	

PBA	 is	 a	 multifunctional	 compound	 with	 the	 ability	 to	 effectively	 reduce	

cognitive	 impairments	 associated	 with	 neurodegeneration.	 One	 drawback	

with	PBA	use	in	vivo	however,	is	the	fact	that	in	all	previous	studies,	the	doses	

required	 to	 alleviate	 these	 deficits	 have	 been	 relatively	 high	 (Cuadrado-

Tejedor	et	al.,	2011).	Furthermore,	it	has	been	proposed	that	PBA	can	enhance	

proteostasis	 of	 proteins	 by	 binding	 to	 and	 stabilising	 them,	 through	

pharmacological	chaperones	or	by	enhancing	the	capacity	of	the	proteaostasis	

network	 (Powers	 et	 al.,	 2009).	 Therefore,	 PBA	may	 potentially	 act	 through	

enhancing	tau	proteostasis.	

Notably,	PBA	was	not	able	to	prevent	memory	deficits	 in	Tau35	mice	

dosed	at	the	age	of	7.5	months,	indicating	that	PBA	preferentially	rescues	pre-

existing	 deficits	 in	 Tau35	 mice,	 rather	 than	 preventing	 disease	 onset.	 This	

could	be	partially	due	 to	 the	 slight	 variation	 seen	between	Tau35	mice	 and	

because	at	8	months	of	age	cognition	is	only	mildly	impaired	and	was	perhaps	

not	greatly	distinguishable	between	the	two	treatment	groups.	
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7.2.4	Mechanistic	 role	 of	 PBA	 in	 rescuing	motor	 deficits	 and	

muscle	pathology	in	Tau35	

	

PBA	was	able	to	partially	rescue	lysosomal	autophagic	dysfunction	in	Tau35	

mice.	Although	the	molecular	mechanisms	underlying	the	protective	effects	of	

PBA	on	the	autophagic–lysosomal	is	not	well	established,	it	is	possible	that	PBA	

may	act	through	an	ER	stress-related	mechanism	to	elicit	its	beneficial	actions.	

The	ER	is	an	organelle	that	is	highly	sensitive	to	metabolic	disturbance,	such	as	

aggregated	and	truncated	proteins	that	induce	oxidative	stress,	and	has	been	

widely	 studied	 in	 relation	 to	 AD	 (Selkoe,	 2001).	 ER	 stress,	 together	 with	

increased	levels	of	phosphorylated	tau	have	been	reported	in	the	hippocampus	

of	 patients	 with	 tauopathies,	 suggesting	 a	 relationship	 between	 these	 two	

parameters	 (Nijholt	 et	 al.,	 2012).	 Several	 studies	 have	 implicated	 PBA	 in	

reduction	 of	 ER	 stress	 by	 targeting	 ER	 stress	 markers	 such	 as	 CCAAT-

enhancer-binding	 protein	 homologous	 protein	 (CHOP)	 and	 binding	

immunoglobulin	protein	(BiP)	(Fonseca	et	al.,	2012).	PBA	can	also	alleviate	ER	

stress	by	acting	via	the	Pael	receptor,	which	is	thought	to	accumulate	in	people	

harbouring	mutations	in	the	gene	encoding	parkin	(PARK2),	which	results	in	

Parkinson’s	disease	(Kubota	et	al.,	2006).	PBA	has	the	capability	to	reduce	ER	

stress	in	animal	models	of	type	2	diabetes	(Ozcan,	2006),	in	in	vitro	models	of	

type	 2	 diabetes	 and	 lipotoxicity	 including	 reducing	 palmitate-induced	 ER	

stress	(Akerfeldt	et	al.,	2008;	Choi	et	al.,	2008;	Park	et	al.,	2015),	and	in	humans	

by	 ameliorating	 the	 insulin	 resistance	 and	 β-cell	 dysfunction	 induced	 by	

prolonged	 elevation	 of	 free	 fatty	 acids	 (Xiao	 et	 al.,	 2011).	 Therefore,	 it	 is	

possible	that,	in	Tau35	mice,	PBA	might	also	act	through	the	ER	stress	pathway,	

potentially	mediated	by	decreasing	 insulin	signalling	as	has	previously	been	

reported	(Castro	et	al.,	2013).	Reduction	of	lysosomal	markers	following	PBA	

treatment	of	Tau35	mice	could	indicate	improvement	in	the	ER	stress	response	

and	increased	clearance	of	misfolded	and	accumulated	proteins.	

The	proposed	mechanistic	actions	discussed	herein	and	in	Chapter	4	are	

summarised	in	Figure	7.1.		
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Figure	7.1:	Proposed	mechanism	of	phenylbutyrate-mediated	cognitive	

and	 motor	 improvement	 in	 Tau35.	 Phenylbutyrate	 (PBA)	 can	 act	 either	

through	 HDAC	 inhibition,	 reduction	 in	 α-synuclein	 and/or	 a	 chaperone-

mediated	action	to	prevent	tau	phosphorylation,	and	conformational	changes	

in	tau.	PBA	may	also	enhance	synaptic	and	neuronal	plasticity	and	hence	rescue	

and	 restore	 cognitive	 deficits	 (HDAC	 figure	 from	Kazantsev	 and	Thompson,	

2008;	image	adapted	from	Cuadrado-Tejedor	et	al.,	2011).	 	
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Taken	 together,	 although	 several	 proposed	 mechanistic	 of	 PBA	 are	

described,	it	is	extremely	difficult	to	establish	exactly	how	PBA	was	acting	in	

these	mice	without	doing	extensive	further	research	both	in	vivo	and	in	vitro	to	

look	at	these	different	pathways.	This	is	also	partially	to	do	with	the	fact	that	

PBA	 is	 a	 pleiotropic	 compound	 affected	 several	 alternative	 routes	 and	

mechanisms	chemically.	

	

7.3.	Targeting	tau	therapeutically		

	

The	World	Health	Organisation	 (WHO)	 has	 identified	AD	 as	 a	 public	 health	

priority	 (Wimo	 et	 al.,	 2013,	 WHO	 2015)	 and	 identifying	 new	 therapeutic	

targets	 is	 increasingly	 urgent.	 The	 diverse	 in	 vitro	 and	 in	 vivo	 models	 of	

tauopathy	have	allowed	the	identification	of	several	tau	targets	for	therapeutic	

intervention	to	alleviate	either	neurotoxic	gain	of	function,	or	loss	of	function,	

based	on	tau	pathology	(Figure	7.2).	It	is	essential	to	develop	strategies	to	delay	

onset	and/or	prevent	disease	progression,	since	current	treatments	only	focus	

on	 the	 symptoms	 rather	 than	 disease	 processes.	 One	 possible	 therapeutic	

strategy	would	be	to	reduce	the	amount	of	tau,	because	tau	knockdown	mice	

do	 not	 exhibit	 apparent	 pathological	 abnormalities	 and	 also	 reducing	 tau	

decreases	Aβ-dependent	neurotoxicity	 (Harada	et	 al.,	 1994;	Roberson	et	 al.,	

2007).	Potential	therapeutic	mechanisms	would	include	reducing	tau	via	small	

interfering	RNAs	 (siRNAs),	 antisense	oligonucleotides,	or	even	 transcription	

inhibitors	(DeVos	et	al.,	2013).	Another	potential	strategy	would	be	to	inhibit	

tau	 phosphorylation	 as	 it	 is	 likely	 to	 be	 a	 primary	 contributor	 to	 tau	

aggregation	and	therefore,	specific	kinase	inhibition	would	be	a	suitable	target.	

The	inhibition	of	kinases	such	as	GSK3	and	Cdk5	would	be	prime	candidates	as	

these	have	previously	been	shown	to	alleviate	tau	pathology	in	transgenic	mice	

(Noble	et	al.,	2005;	Selenica	et	al.,	2007;	Hinners	et	al.,	2008).		
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Figure	7.2:	Diagram	showing	potential	neuroprotective	strategies	to	

reduce	tau	aggregates.	Proposed	therapeutic	interventions	of	tau	based	

therapies	including	inhibition	of	tau	phosphorylation/proteolysis,	tau	

oligomer	clearance,	aggregation	inhibitors,	tau	clearance	and	microtubule	

stabilisation	(Šimić	et	al.,	2016).	

	

	

	

Furthermore,	 inhibition	 of	 GSK3	 and	 Cdk5	 have	 been	 shown	 to	 be	

neuroprotective	in	transgenic	animals	and	in	brain	slice	cultures	(Noble	et	al.,	

2005;	Selenica	et	al.,	2007;	Hinners	et	al.,	2008),	although	clinical	trials	using	

kinase	inhibitors	have	so	far	been	unsuccessful.	Given	that	evidence	indicates	

reciprocal	regulation	between	GSK3	and	Cdk5,	this	adds	a	level	of	complexity	

to	 targeting	 specific	 tau	 kinase	 inhibitors	 to	 treat	 AD	 (Plattner	 et	 al.,	 2006;	

Engmann,	 2009;	 Chow	 et	 al.,	 2014)	 and	might	 explain,	 at	 least	 in	 part,	 the	

failure	of	efficacy	in	human	trials	of	kinase	inhibitors.	Nevertheless,	Tideglusib,	

a	 specific	 GSK3β	 inhibitor,	 has	 been	 shown	 to	 alleviate	 brain	 atrophy	 in	

patients	 with	 PSP,	 but	 not	 in	 AD	 (Wischik	 et	 al.,	 2015).	 The	 difference	 in	

therapeutic	effect	may	be	due	to	the	presence	of	Aβ	pathology	in	AD,	but	not	in	



	 265	

PSP,	and	it	is	possible	that	Tideglusib	may	be	a	suitable	compound	for	use	only	

in	disorders	where	Aβ	is	absent.		

Targeting	 tau	 aggregation	 may	 be	 a	 more	 suitable	 target	 for	 the	

tauopathies	 and	early	prevention	of	 tau	 aggregation	may	alleviate	 cognitive	

symptoms.	Targeting	tau	aggregation,	however,	has	been	very	difficult	because	

most	 in	vitro	assays	for	tau	aggregation	are	based	on	fibril	 formation,	which	

require	 high	 concentrations	 of	 tau,	 and	 aggregation	 aids	 such	 as	 heparin	

(Ramachandran	and	Udgaonkar,	2011).	Even	if	aggregated	tau	is	disassociated,	

smaller	 oligomers	may	 still	 be	 toxic	 and	 detrimental	 to	 neurons	 and	 hence	

targeting	 tau	 oligomers	 may	 be	 a	 better	 approach	 for	 pharmacological	

therapies	 (Šimić	 et	 al.,	 2016).	 A	 further	 proposed	 mechanism	 that	 may	 be	

suitable	for	therapeutic	targeting	is	the	control	of	proteasomal	or	autophagic	

protein	degradation,	which	play	a	crucial	role	in	preventing	tau	toxic	species	

and	 aggregation	 (Blair	 et	 al.,	 2014;	 Karagöz	 et	 al.,	 2014).	With	 age,	 protein	

degradation	 is	 compromised,	 leading	 to	 the	 accumulation	 of	 truncated,	

phosphorylated	 and	 aggregated	 forms	 of	 tau.	 Rapamycin,	 which	 induces	

autophagy,	or	inhibitors	of	certain	Hsps,	such	as	Hsp90,	that	bind	to	misfolded	

proteins,	may	make	 ideal	 candidates	 to	 target	 tau	 clearance	 (Berger,	 2005;	

Ozcelik	et	al.,	2013).		

Finally,	 targeting	 tau	 proteolysis	 could	 be	 an	 important	 therapeutic	

target	because	normal	conformations	and	functions	of	tau	are	inevitably	lost	

once	it	becomes	truncated.	Not	only	do	truncated	and	aggregated	forms	of	tau	

make	an	ideal	early	diagnostic	target	for	tauopathies	(Wischik	et	al.,	2014),	but	

targeting	enzymatic	actions	on	tau	may	be	simpler	than	targeting	aggregated	

forms	 of	 tau.	 Cellular	 enzymes	 such	 as	 caspases,	 calpains,	 thrombin	 and	

cathepsins	may	also	be	of	therapeutic	interest,	providing	that	their	proteolytic	

activity	 can	 be	 shown	 to	 produce	 pathological	 and	 clinically	 critical	

manifestations.	 Furthermore,	 inhibiting	 tau	 truncation	 could	 potentially	

alleviate	 the	 transynaptic	 propagation	 of	 tau	 that	 results	 in	 disease	

progression.	
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7.4	Limitations	of	this	work	

	

Throughout	 this	project,	 efforts	were	made	 to	ensure	 that	 the	experimental	

work	carried	out	in	this	thesis	was	properly	designed,	planned	and	carefully	

controlled.	However,	 it	 is	 important	 to	highlight	some	of	 the	 limitations	and	

shortfalls	of	this	work	in	the	studies	presented	herein.		

The	 use	 of	 hippocampal	 tissue	 enabled	 valuable	 examination	 of	 the	

biochemical	and	neuropathological	profile	in	Tau35	mice.	However,	there	were	

some	limitations	associated	with	the	progression	of	disease	 in	these	tissues.	

The	 sample	 size	used	was	 relatively	 low	 (n=6)	but	 in	order	 to	 comply	with	

animal	welfare	the	number	of	mice	used	was	reduced	to	the	 lowest	number	

required	to	detect	any	changes,	without	compromising	the	experiments.		

In	 order	 to	 establish	 a	 comprehensive	 biochemical	 profile	 in	 Tau35	

mouse	brain,	it	would	have	been	essential	to	examine	more	brain	regions,	as	

pathological	 features	 may	 vary	 substantially,	 depending	 on	 the	 brain	 area	

investigated.	

Changes	 in	 Tau35	were	 observed	 in	 the	 synaptic	markers.	 However,	

synaptosomal	preparations	would	 allow	 the	 separation	of	 synaptic	proteins	

into	pre-synaptic	 and	post-synaptic	 fractions,	 allowing	 further	 evaluation	of	

the	effects	of	Tau35	at	synapses.	For	biochemical	analyses,	the	brains	of	Tau35	

mice	 aged	 14	 months	 were	 analysed.	 A	 wider	 age	 range	 would	 give	 more	

information	and	would	determine	whether	changes	occur	early	in	the	disease	

progress.		

As	pathology	was	only	very	mild	and	varied	between	animals	only	semi-

quantitative	 evaluations	were	made	 from	 immunohistochemical	 analyses.	 It	

would	be	of	interest	to	quantify	NFT	numbers	stereologically,	and	in	different	

brain	areas,	in	Tau35	mice.	

Several	 autophagy	 markers	 were	 investigated	 in	 Tau35	 mice	 on	

western	blots.	For	instance,	Tau35	showed	disruption	of	both	p62	and	LC3	and	

many	previous	 studies	measure	 autophagic	 activity	on	 the	 interpretation	of	

static	protein	levels	or	images	of	p62	and	LC3	levels.	However,	this	dynamic	is	

difficult	to	assess	as	static	scoring	is	an	incomplete	assessment	of	autophagy	
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without	fully	assessing	autophagic	flux.	In	vitro	flux	can	be	measured	through	

direct	 lysosomal	blockage,	or	 indirect	 interference	from	p62/SQTM1	decline	

(Bjørkøy	et	al.,	2006).	One	effective	way	to	demonstrate	the	role	of	autophagy	

would	be	to	knockdown	ATG7	or	inhibit	ATG5	(Gottlieb	et	al.,	2015).		

It	was	essential	to	study	behavioural	deficits	on	a	pure	inbred	C57BL/6	

background	of	Tau35	mice.	However,	due	to	the	time	constraint	and	the	time	

taken	for	eight	generations	it	was	only	possible	to	do	behavioural	analysis	on	

these	mice	and	not	biochemical	and	pathological	profile	of	these	mice.	This	is	

essential	 to	 do	 to	 further	 analyse	 and	 interpret	 how	well	 the	 inbred	 strain	

parallels	 the	 hybrid	 strain	 and	 this	 would	 be	 essential	 to	 do	 in	 future	

experiments.	

As	 previously	 described	 Tau35	 mice	 exhibit	 reduced	 GSK3β	 activity	

and,	 although	 GSK3	 activity	 was	 not	 measured	 in	 PBA-treated	 mice,	 it	 is	

possible	that	PBA	can	inhibit	GSK3	by	reducing	phosphorylated	tau,	as	shown	

previously	 in	 APP	 mice	 (Ricobaraza	 et	 al.,	 2009).	 The	 mechanistic	 actions	

remain	 unclear	 regarding	 the	 action	 of	 PBA	 inhibiting	 GSK3	 via	 chaperone	

activity	and/or	HDAC	inhibition,	therefore	it	would	be	informative	to	measure	

GSK3	activity	in	PBA	treated	mice	to	further	investigate	the	mechanistic	role	of	

PBA.	

The	CHO-Tau35	cell-based	ICW	high-throughput	assay	was	established	

and	 used	 successfully	 to	 measure	 changes	 in	 tau	 phosphorylation	 with	

potentially	therapeutic	compounds.	However,	this	assay	did	not	examine	the	

exact	 mechanism	 underlying	 the	 reduction	 in	 tau	 phosphorylation.	

Importantly,	CHO	cells	do	not	constitutively	express	tau	and	are	therefore	this	

model	 may	 be	 subject	 to	 potential	 artefacts.	 It	 would	 be	 of	 considerable	

interest	therefore	to	investigate	these	changes	in	neuronal	cells	derived	from	

Tau35	mice	to	examine	these	potential	therapeutic	compounds.	
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7.6	Summary	

	

In	summary,	the	findings	of	this	thesis	yield	some	interesting	and	important	

insights	 into	 the	 role	 of	 a	 human	 tauopathy-derived	 N-terminal	 truncated	

species	of	WT	tau	in	mice.	The	aim	of	this	project	was	to	investigate	molecular	

and	 behavioural	 phenotype	 observed	 in	 a	 new	 transgenic	 mouse	 model	 of	

tauopathy	 that	 expresses	 a	 human	 tau	 fragment,	 Tau35,	 first	 identified	 in	

human	 post-mortem	 brain.	 Investigation	 of	 Tau35	mice	 revealed	 extensive	

phenotypic	deficits	including	clasping,	reduced	lifespan	and	kyphosis	as	well	

as	 early	 motor	 deficits	 followed	 by	 cognitive	 decline.	 Interestingly,	 these	

behavioural	deficits	were	preserved	when	breeding	to	a	pure	inbred	C57BL/6	

background.	 Extensive	 molecular	 impairments	 were	 observed	 including	

reduced	 tau	 phosphorylation,	 conformation	 and	 oligomeric	 tau	 species,	

impaired	 lysosomal	 degradation,	 impaired	 synaptic	 plasticity	 reduced	

acetylated	tubulin	and	increased	GSK3β	activity,	as	summarised	in	Figure	7.3.	

Furthermore,	 a	 cell	 based	CHO-Tau35	 assay	was	 successfully	 established	 in	

which	to	test	new	potential	therapeutic	compounds.	

Taken	together,	 the	hypothesis	 that	 tau	aggregation,	mediated	by	 the	

generation	 of	 Tau35,	 drives	 tau	 phosphorylation	 and	 aggregation,	 and	

associated	behavioural	changes	that	mirror	those	present	in	the	tauopathies,	

was	observed	in	this	model.	To	our	knowledge,	 this	 is	the	first	report	that	a	

very	 low	amount	of	a	 fragment	of	WT	human	truncated	tau	in	mice	 leads	to	

behavioural,	 neuropathological	 and	 biochemical	 changes	 that	 closely	

recapitulate	human	disease.	The	data	further	supports	the	hypothesis	that	tau	

truncation	is	an	important	potentially	early	event	in	tauopathies.	As	the	deficits	

in	these	mice	can	be	reversed	by	PBA,	this	cascade	provides	potential	for	the	

treatment	of	several	tauopathies	and	related	neurodegenerative	diseases.	
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Figure	 7.3:	 Proposed	 mechanism	 of	 Tau35	 N-terminal	 fragment	 in	 vivo.	 Low	 expression	 of	 Tau35	 induces	 increased	 tau	

phosphorylation	at	epitopes:	Ser396/Ser404,	Thr212/Ser412,	Ser202/Thr205,	Thr181,	Thr231,	decrease	in	both	dephosphorylated	tau	

at	Ser199/Ser202/Thr205,	and	oligomeric	tau	species:	TOC1	and	conformational/phosphorylated	tau	species	at	Ser409	and	MC1.	Tau35	

mice	 also	 exhibited	 increased	 GSK3β,	 p62	 and	 LC3,	 decreased	 acetylated	 tubulin	 and	 cathepsin	 D	 activity,	 all	 leading	 to	 a	 potential	

decreased	activity	of	lysosomal	function	and	clearance	of	pathological	tau	species.	Tau35	mice	also	exhibited	reduced	synaptic	integrity:	

synapsin1	 and	 synaptobrevin	 as	 well	 as	 increased	 ubiquitin	 and	a-synuclein	 labelling.	 All	 which	 lead	 to	 proposed	 behavioural	 and	

pathological	deficits	seen	in	Tau35	mice.	Phenylbutyrate	(PBA)	was	able	to	rescue	many	of	the	deficits	observed	in	Tau35	mice	(red	stars).
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