
This electronic thesis or dissertation has been

downloaded from the King’s Research Portal at

https://kclpure.kcl.ac.uk/portal/

Take down policy

If you believe that this document breaches copyright please contact librarypure@kcl.ac.uk providing

details, and we will remove access to the work immediately and investigate your claim.

END USER LICENCE AGREEMENT

Unless another licence is stated on the immediately following page this work is licensed

under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International

licence. https://creativecommons.org/licenses/by-nc-nd/4.0/

You are free to copy, distribute and transmit the work

Under the following conditions:

 Attribution: You must attribute the work in the manner specified by the author (but not in any
way that suggests that they endorse you or your use of the work).

 Non Commercial: You may not use this work for commercial purposes.

 No Derivative Works - You may not alter, transform, or build upon this work.

Any of these conditions can be waived if you receive permission from the author. Your fair dealings and

other rights are in no way affected by the above.

The copyright of this thesis rests with the author and no quotation from it or information derived from it

may be published without proper acknowledgement.

Avoided Words, Overabundant Words, Maximal Palindromes and Applicatons

Gao, Jia

Awarding institution:
King's College London

Download date: 13. Jan. 2025

Avoided Words, Overabundant Words,
Maximal Palindromes and

Applications

Jia Gao

Department of Informatics

King’s College London

This dissertation is submitted for the degree of

Doctor of Philosophy

Natural & Mathematical
Sciences

September 2017

Abstract

The study of string algorithms is essential for computer science and computational

molecular biology. Recently, a number of algorithms on strings appear in many fields,

such as pattern matching, combinatorics on words, string processing and automata the-

ory, because of their magnitude advances in applications and theories. These advances

have made to develop faster algorithms and to deal with certain natural problems.

In this thesis, we focus on computing certain structures in biological sequences

using different algorithmic methods. Firstly, we study the computation of avoided

words and overabundant words in biological sequences. The observed frequency of

the longest proper prefix, the longest proper suffix, and the longest infix of a word in

a given sequence can be used for classifying that word as avoided or overabundant.

This concept is particularly useful in DNA linguistic analysis. The definitions used for

the expectation and deviation of the word in this statistical model were described and

biologically justified by Brendel et al. [19]. We present some algorithms that can be

used effectively for computing such words. Furthermore, experimental results, using

both real and synthetic data, which further highlight the effectiveness of this model,

show the efficiency and applicability of our implementation in biological sequence

analysis.

iii

Secondly, we consider a special type of uncertain sequence called weighted string.

In a weighted string every position contains a subset of the alphabet and every letter

of the alphabet is associated with a probability of occurrence such that the sum of

probabilities at each position equals 1. We generalize Alatabbi et al.’s [2] solution for

standard strings to compute maximal palindromes of a weighted string. We provide

some efficient algorithms to compute maximal palindromes in weighted strings. Last

but not least, we make available an implementation of our algorithms, using synthetic

data, show the efficiency of our implementation.

Acknowledgements

I would like to dedicate this thesis to my loving parents who allowed me to make

the realization of this thesis possible. Also, I would like to thank my family for their

continuing support during these years.

I owe a great debt of gratitude to Professor Costas S. Iliopoulous and Professor

Maxime Crochemore for their invaluable guidance and their teaching throughout these

four years.

I am grateful to Dr. Solon Pissis and Dr. Manal Mohammed for introducing me

to the field of their research and for their collaboration. Also, I wish to thank all the

co-authors of my papers for their excellent cooperation.

I would like to thank all my colleagues and friends, who make my life as a Ph.D.

student joyful.

Last but not least, thanks to my examiners, Dr. Dominique Revuz and Professor

Prudence Wong for an intellectually stimulating and enjoyable viva.

Declaration

I hereby declare that except where explicitly stated otherwise in the text, this doctoral

thesis was composed by myself and that the work contained therein is my own. The

following articles were published during my period of research. Certain material and

concepts from these publications will necessarily be presented within the body of this

work.

1. Almirantis, Y., Charalampopoulos, P., Gao, J., Iliopoulos, C. S., Mohamed, M.,

Pissis, S. P., & Polychronopoulos, D. (2017). On avoided words, absent words, and

their application to biological sequence analysis. Algorithms for Molecular Biology,

12(1), 5.

2. Almirantis, Y., Charalampopoulos, P., Gao, J., Iliopoulos, C. S., Mohamed,

M., Pissis, S. P., & Polychronopoulos, D. (2018). On overabundant words and their

application to biological sequence analysis. Theoretical Computer Science.

3. Almirantis, Y., Charalampopoulos, P., Gao, J., Iliopoulos, C. S., Mohamed,

M., Pissis, S. P., & Polychronopoulos, D. (2016, August). Optimal computation of

avoided words. Algorithms in Bioinformatics: 16th International Workshop, WABI

2016, Aarhus, Denmark, August 22-24, 2016. Proceedings. Frith, M. & Storm Pedersen,

N. C. (eds.). Springer International Publishing Switzerland, p. 1-13.

vi

4. Almirantis, Y., Charalampopoulos, P., Gao, J., Iliopoulos, C. S., Mohamed, M.,

Pissis, S. P., & Polychronopoulos, D. (2017). Optimal Computation of Overabundant

Words. 17th International Workshop on Algorithms in Bioinformatics (WABI 2017).

Schwartz, R. & Reinert, K. (eds.). Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-

Zentrum fuer Informatik, Vol. 88, p. 4:1-4:14 (Leibniz International Proceedings in

Informatics (LIPIcs)).

5. Alzamel, M., Gao, J., Iliopoulos, C. S., Liu, C., & Pissis, S. P. (2017, August).

Efficient computation of palindromes in sequences with uncertainties. Engineering

Applications of Neural Networks: 18th International Conference, EANN 2017, Athens,

Greece, August 25–27, 2017, Proceedings. Boracchi, G., Iliadis, L., Jayne, C. & Likas,

A. (eds.). Cham: Springer International Publishing Switzerland, Vol. 744, p. 620-629.

Jia Gao

September 2017

Table of contents

List of figures x

List of tables xiii

1 Introduction 1

2 Basic Concepts 6

2.1 Strings . 6

2.2 Finite Automata . 7

2.3 Suffix Trie . 9

2.4 Suffix Automation . 11

2.5 Suffix Trees . 11

2.6 Minimal Absent Words . 17

2.7 Indexing Weighted Sequences . 22

2.8 Molecular biology . 27

3 Avoided words and Overabundant words 30

3.1 Background and Contributions . 31

3.1.1 Background . 31

Table of contents viii

3.1.2 Contributions . 34

3.2 Preliminaries . 37

3.2.1 Definitions and Notations 37

3.2.2 Tight Asymptotic Bounds on Minimal Absent Words 39

3.2.3 Useful Properties of Avoided Words 42

3.2.4 Useful Properties of Overabundant Words 44

3.3 Algorithms . 51

3.3.1 Computation of Avoided words 51

3.3.2 Computation of All ρ-Avoided Words 58

3.3.3 Computation of All ρ-Overabundant words 64

3.4 Implementation and Experiments . 68

3.4.1 Avoided words . 68

3.4.2 Overabundant words . 79

3.5 Conclusion . 86

4 Maximal Palindromes 87

4.1 Background and Contributions . 88

4.1.1 Background . 88

4.1.2 Contributions . 91

4.2 Preliminaries . 92

4.2.1 Definitions and Notations 92

4.2.2 Useful Properties of Maximal Palindromes 97

4.3 Algorithms . 99

4.3.1 Computation of Smallest Maximal z-Palindromic Factorization 99

Table of contents ix

4.3.2 Computation of Longest z-Palindromic Array 111

4.4 Implementation and Experiments . 115

4.4.1 Smallest Maximal z-Palindromic Factorization 115

4.4.2 Longest z-Palindromic Array 116

4.5 Conclusion . 120

5 Conclusions and Future work 121

References 123

Appendix A Constructing the special-weighted strings 131

List of figures

2.1 The transition diagram of a DFA accepting all strings over Σ = {0,1}

that have substring 01. [36] . 8

2.2 Suffix trie of the string ababbb, T (Su f f (ababbb)). With each final

state (double circled) is associtated an output which is the location of

the suffix in the string ababbb [22] 10

2.3 The suffix automaton, S(ababbb), minimal automaton accepting the

suffixes of the string ababbb [22] . 11

2.4 The suffix tree T(x) for x = AGCGCGACGTCTGTGT. Double-lined nodes

represent terminal nodes labelled with the associated indices. The

suffix-links for non-root internal nodes are dashed. 16

2.5 RNA stem-loops.(a) A schematic overview of an RNA stem-loop de-

picting the important parameters for the role of such a hairpin RNA.

(b) The SECIS stem-loop structure element controlling selenoprotein

synthesis. Right: A consensus of a secondary structure of a SECIS

element. Left: A specific example of the SECIS element in Homo

sapiens. [57] . 29

List of figures xi

3.1 The above figures illustrate the nodes (implicit or explicit) considered

in a step (lines 6-36) of Algorithm OVERABUNDANTWORDS. The

figure on the left presents the case where CHILD(v,α) is an internal

node, while the right one the case that it is a leaf. Black nodes represent

implicit nodes along the edge (v,q) that we have to consider as potential

wp, and the red dotted line joins them with the respective (white) explicit

node that represents the longest suffix of this wp, i.e. wi. 65

3.2 Experiment I. Elapsed time and peak memory usage of Algorithm

AVOIDEDWORDS using synthetic DNA (σ = 4) and proteins (σ = 20)

data of length 1MB for variable k. 74

3.3 Experiment I. Elapsed time and peak memory usage of Algorithm

AVOIDEDWORDS using synthetic DNA (σ = 4) and proteins (σ = 20)

data of length 1MB for variable ρ . 75

3.4 Experiment II. Elapsed time and peak memory usage of Algorithm

AVOIDEDWORDS using synthetic DNA (σ = 4) and proteins (σ = 20)

data of length 1Mbp to 128Mbp. 76

3.5 Experiment III. Elapsed time and peak memory usage of Algorithm

AVOIDEDWORDS using all chromosomes of the human genome. . . . 77

3.6 Elapsed time of Algorithm OVERABUNDANTWORDS using synthetic

DNA (σ = 4) and proteins (σ = 20) sequences of length 1M to 128M. 83

4.1 Hairpins that are common to a set of closely-related sequences can be

represented compactly as weighted strings. 90

List of figures xii

4.2 Suffix tree of x#xR$ = abaab#baaba$; double-lined nodes represent

terminal nodes labeled with the associated indices. 98

4.3 The WI for X and 1/z shown in Example 4.3.1 (labels of edges to

terminal nodes are appended with a letter $ /∈ Σ for convenience). . . . 101

4.4 The graph GX for X and 1/z shown in Example 4.3.2. 110

4.5 PA for X and 1/z, this graph shown in Example 4.3.3. 114

4.6 Experiment 1. Elapsed time and maximal memory usage of Algorithm

SMALLEST MAXIMAL Z-PALINDROMIC FACTORIZATION using syn-

thetic DNA (σ = 4) data of length 1MB for variable z. 117

4.7 Experiment 2. Elapsed time and maximal memory usage of Algorithm

SMALLEST MAXIMAL Z-PALINDROMIC FACTORIZATION using syn-

thetic DNA (σ = 4) data of length 250KB to 4000KB. 118

4.8 Experiment 3. Elapsed time and maximal memory usage of Algo-

rithm LONGEST Z-PALINDROMIC ARRAY using synthetic DNA (σ =

4) data of length 250KB to 4000KB. 119

A.1 The WI for X and 1/z in Example A.0.1 (labels of edges to terminal

nodes are appended with a letter for convenience). 133

List of tables

3.1 The number of avoided words, for k = 10 and ρ = −2, for each con-

catenate of surrogates (Row 1); the number of avoided words of the

corresponding CNE dataset (Row 2); and their ratio (Row 3). 78

3.2 The number of avoided words, for k > 2 and ρ = −2, for each con-

catenate of surrogates (Row 1); the number of avoided words of the

corresponding CNE dataset (Row 2); and their ratio (Row 3). 78

3.3 The deviation of the randomly generated inserted word w, as well as

the word wmax with the maximum deviation. The length of each of the

25 randomly generated sequences over Σ = {A,C,G,T} was n = 80,000,

the length of w was m = 6, and ρ = 0.000001. In green are the cases

when the word with the maximum deviation was w itself or one of its

factors. 84

3.4 Number of overabundant words for k = 10 and ρ = 3. 85

3.5 Number of overabundant words for k > 2 and ρ = 3. 85

4.1 Computing odd-length maximal palindromes of x = abaab using the

suffix tree of x#xR$= abaab#baaba$. 97

List of tables xiv

4.2 Computing even-length maximal palindromes of x = abaab using the

suffix tree of x#xR$= abaab#baaba$. 98

4.3 Computing F and U from MP(X ,z) for X and 1/z shown in Exam-

ple 4.3.2. 110

4.4 Computing F, U and PA from MP(X ,z) for X and 1/z shown in

Example 4.3.3. 114

Chapter 1

Introduction

The study of string algorithms is essential for computer science and computational

molecular biology. Recently, a number of algorithms on strings appear in many fields,

such as pattern matching, combinatorics on words, string processing and automata the-

ory, because of their magnitude advances in applications and theories. These advances

have made to develop faster algorithms and to deal with certain natural problems. In this

thesis, we focus on computing certain structures in biological sequences using different

algorithmic methods.

The observed frequency of the longest proper prefix, the longest proper suffix, and

the longest infix of a word w in a given sequence x can be used for classifying w as

avoided or overabundant. This concept is particularly useful in DNA linguistic analysis.

The definitions used for the expectation and deviation of w in this statistical model were

described and biologically justified by Brendel et al. [19]. The value of the deviation of

w, denoted by dev(w). A word w of length k > 2 is a ρ-avoided word in x if dev(w)≤ ρ

for a given threshold ρ < 0, or a ρ-overabundant word in x if dev(w)≥ ρ for a given

2

threshold ρ > 0. Notice that such a word may be completely absent from x. Hence,

computing all such words naïvely can be a very time-consuming procedure, in particular

for large k.

We provide an O(n)-time and O(n)-space algorithm to compute all ρ-avoided words

of length k in a sequence of length n over a fixed-sized alphabet. For integer alphabets,

our algorithm runs in time O(σn) and is optimal for a sufficiently large alphabet of size

σ . We also provide a time-optimal O(σn)-time algorithm to compute all ρ-avoided

words (of any length) in a sequence of length n over an integer alphabet. Moreover, we

provide a tight asymptotic upper bound for the number of ρ-avoided words over an

integer alphabet and the expected length of the longest one. In the process, we show

that the known asymptotic upper bound on the number of minimal absent words of a

sequence is tight for integer alphabets. We also show that the same asymptotic bound

is tight for the number of minimal absent words of a fixed length if the alphabet is

sufficiently large.

We extend this study by presenting an O(n)-time and O(n)-space algorithm for

computing all overabundant words in a sequence x of length n over an integer alphabet.

Our main result is based on a new non-trivial combinatorial property of the suffix tree

T of x: the number of distinct factors of x whose longest infix is the label of an explicit

node (which is the internal node of T holds more than one child node) of T is no more

than 3n−4. We further show that the presented algorithm is time-optimal by proving

that O(n) is a tight upper bound for the number of overabundant words.

In Chapter 4, we consider a special type of uncertain sequence called weighted

string. In a weighted string every position contains a subset of the alphabet and every

3

letter of the alphabet is associated with a probability of occurrence such that the sum of

probabilities at each position equals 1. Usually a cumulative weight threshold 1/z is

specified, and one considers only strings that match the weighted string with probability

at least 1/z. We generalize Alatabbi et al.’s [2] solution for standard strings to compute

maximal palindromes of a weighted string.

We provide an O(nz)-time and O(nz)-space algorithm, where n is the length of

the weighted string and 1/z is the given threshold, to compute a smallest maximal

z-palindromic factorization of a weighted string. Along the way, we provide an O(nz)-

time and O(nz)-space algorithm to compute all maximal z-palindromes in weighted

strings. We also provide an O(nz)-time and O(nz)-space algorithm to compute a longest

z-palindromes array, which presents the longest length of a maximal palindrome ending

at each position.

4

Thesis Structure

In Chapter 2 we specify several basic concepts and notations on strings that are

utilized to represent most definitions and problems on strings. And then, we introduce

the finite automata, suffix trie, suffix automation, also we introduce the specific data

structure called suffix trees that is useful to design string algorithms and analyze their

performance. At last, we introduce the minimal absent words and indexing weighted

sequences, also the background of molecular biology.

In Chapter 3 we study the computation of avoided words and overabundant words

in biological sequences. We present some algorithms that can be used effectively for

computing such words, for instance, we present an O(n)-time and O(n)-space algorithm

to compute all ρ-avoided words of length k in a given sequence of length n over a fixed-

sized alphabet, we also present an O(n)-time and O(n)-space algorithm to compute all

overabundant words in a sequence x of length n over an integer alphabet. Furthermore,

experimental results, using both real and synthetic data, which further highlight the

effectiveness of this model, show the efficiency and applicability of our implementation

in biological sequence analysis.

In Chapter 4 we consider a special type of uncertain sequence called weighted

string. We provide an O(nz)-time and O(nz)-space algorithm, where n is the length

of the weighted string and 1/z is the given threshold, to compute a smallest maximal

z-palindromic factorization of a weighted string. Along the way, we provide an O(nz)-

time and O(nz)-space algorithm to compute all maximal z-palindromes in weighted

5

strings. Moreover, we provide an O(nz)-time and O(nz)-space algorithm to compute a

longest z-palindromes array in weighted strings. Last but not least, we make available

an implementation of our algorithms, using synthetic data, show the efficiency of our

implementation.

The final chapter (Chapter 5) concludes the thesis.

Chapter 2

Basic Concepts

In this chapter, firstly, we specify several basic concepts and notations on strings that are

utilized to represent most definitions and problems on strings. And next, we introduce

the finite automata, suffix trie, suffix automation, also we introduce the specific data

structure called suffix trees that is useful to design string algorithms and analyze their

performance. We will specify most definitions at the point where they are encountered,

but several concepts and notation are so basic that we specify them at this chapter. And

then, we provide a introduction to the minimal absent words and indexing weighted

sequences, and a brief introduction to the molecular biology, as an attempt to acquaint

ourselves with the most basic concepts.

2.1 Strings

We begin with basic definitions and notations generally following [22]. A finite,

nonempty set of symbols is called an alphabet, that is denoted by Σ. Also those

symbols are called letters. And the size of alphabet Σ is denoted by σ = |Σ|. A string

2.2 Finite Automata 7

(sometimes called word) over Σ is a finite sequence of letters of an ordered alphabet

Σ. The length of a finite string x = x[0]x[1] . .x[n−1] is denoted by n = |x|. Note that

the zero length string (or word) is called empty string (sometimes called empty word),

and it is denoted by ε . In what follows we assume without loss of generality that

Σ = {0,1, . . . ,σ −1}. We also define Σx to be the alphabet of word x and σx = |Σx|.

For two positions i and j on x, we denote by x[i . . j] = x[i] . .x[j], and the factor of

x that starts at position i and ends at position j (it is empty if j < i). We call that a

prefix of x is a factor that starts at position 0 (x[0 . . j]) and a suffix is a factor that ends

at position n−1 (x[i . .n−1]), and that a factor of x is a proper factor if it is not x itself.

A factor of x that is neither a prefix nor a suffix of x is called an infix of x.

Let w be a word of length m, 0 < m≤ n. We say that there exists an occurrence of

w in x, or, more simply, that w occurs in x, when w is a factor of x. Every occurrence

of w can be characterised by a starting position in x. Thus we say that w occurs at the

starting position i in x when w = x[i . . i+m−1].

2.2 Finite Automata

A deterministic finite automaton, (DFA), is of the fundamental potential models of

calculation. [36] That can be considered as acceptor, in other words, given strings as

input and are either rejected or accepted.

A DFA starts in an initial state, and after reading the input that state can be in one

of a finite number of states. On account of the symbols of string w, the DFA takes

as input a string w. The symbols read in order from left to right, and the DFA moves

from state to state. After reading all the symbols of string w, and then, if the DFA is in

2.2 Finite Automata 8

a important state, namely an accepting state, or more commonly, final state, then we

consider that string is accepted; otherwise, that string is rejected. The DFA accept the

language which is the set of all accepted strings.

A directed graph could represent a DFA, namely a transition diagram. The new

state of the machine can be indicated by a directed edge labeled with a letter when we

read the given letter. Accordingly, the initial state can be drawn with an unlabeled arrow

accessing the state, and double circles draw accepting states .

For example, a DFA is presented in Fig 2.1, that presents the transition diagram of a

DFA accepting all string over Σ = {0,1} with a substring 01.

Fig. 2.1 The transition diagram of a DFA accepting all strings over Σ = {0,1} that
have substring 01. [36]

More formally, a DFA can be represented as a 5-tuple

M = (Q,Σ,δ ,q0,F)

where

Q is a finite set of states,

Σ is the finite input alphabet,

δ : Q×Σ→ Q is the transition function,

q0 ∈ Q is the initial state,

F ⊆ Q is the set of accepting states.

2.3 Suffix Trie 9

Note that a DFA is supposed to be complete, δ is denoted for all pairs in its range. for

the sake of formally denote acceptance by a DFA, we should to increase the domain of δ

to Q×Σ∗. First, we denote δ (q,ε) = q for all q ∈Q, and denote δ (q,ba) = δ (δ (q,b,a)

for all q ∈ Q, b ∈ Σ∗, and a ∈ Σ. Then L(M), that M accept the language, denote to be

L(M) = {w ∈ Σ∗ : δ (q0,w) ∈ F}

We name a state q of a DFA reachable if there exists b ∈ Σ∗ such that δ (q0,b) = q,

and unreachable otherwise. Obviously, unreachable states could be deleted without

altering the language accepted by a DFA.

2.3 Suffix Trie

The suffix trie of a string is the deterministic automaton, that cognises the set of suffixes

of the string, where two distinct paths of the same source frequently have clear ends.

Consequently, the underlying graph structure of the automaton is a tree, and letters label

the tree’s arcs. [22]

Regarding a tree shows that the recognized language’s strings one to one map the

tree’s terminal or final states. If its language is finite, then the tree is so. As a result, an

algorithm interests the explicit representation of that tree only for finite languages. [22]

At times one assesses trees, on external nodes of tree or leaves, to only have final

states. For this reason, if no suitable prefix of a string of L is in L, and then a tree

represents a language L. It brings about this statement that if x is a nonempty string,

only Su f f (x)\{ε} is expressible by a tree keeping this property, and this only occurs

when the x’s last letter appears only once in x. This is the real reason why one adds a

particular letter at the end of the string at whiles. We appoint an output to nodes of the

2.3 Suffix Trie 10

trie that matches better with the automaton’s concept. Terminal nodes consider some

nodes whose output is denoted. [22]

The suffix trie’s nodes are the factors of x, ε is the initial state, and the suffixes of

x are the final states. If ua is a factor of x and a ∈ A, and then δ (u,a) = ua denote the

transition function δ of T (Su f f (x)). The output of a final state, which is then a suffix,

is the location of this suffix in x. Accordingly, the string’s length allocate the initial

state or the root as output. Fig 2.2 shows an example of automaton. [22]

Fig. 2.2 Suffix trie of the string ababbb, T (Su f f (ababbb)). With each final state
(double circled) is associtated an output which is the location of the suffix in the string
ababbb [22]

2.4 Suffix Automation 11

2.4 Suffix Automation

The suffix automaton of a string X , denoted by S(x). That is the minimal automaton

which accepts the set of suffixes of x. The most astonishing property is that automaton

is, in the length of x, that its size is linear, although the number of factors of x could be

quadratic. On a fixed alphabet, the construction of that automaton holds a linear time.

Fig 2.3 exhibits a case of such automaton. [22]

Fig. 2.3 The suffix automaton, S(ababbb), minimal automaton accepting the suffixes of
the string ababbb [22]

2.5 Suffix Trees

In our algorithms, suffix trees are used extensively as computational tools. For a general

introduction to suffix trees, see [22].

The suffix tree T(x) of a non-empty word x of length n is a compact trie representing

all suffixes of x. The nodes of the trie which become nodes of the suffix tree are called

explicit nodes, while the other nodes are called implicit. Each edge of the suffix tree can

be viewed as an upward maximal path of implicit nodes starting with an explicit node.

Moreover, each node belongs to a unique path of that kind. Then, each node of the trie

2.5 Suffix Trees 12

can be represented in the suffix tree by the edge it belongs to and an index within the

corresponding path.

We use L(v) to denote the path-label of a node v, i.e., the concatenation of the

edge labels along the path from the root to v. We say that v is path-labelled L(v).

Additionally, D(v) = |L(v)| is used to denote the word-depth of node v. Node v is a

terminal node, if and only if, L(v) = x[i . .n−1], 0≤ i < n; here v is also labelled with

index i. It should be clear that each occurring word w in x is uniquely represented by

either an explicit or an implicit node of T(x). The suffix-link of a node v with path-label

L(v) = αw is a pointer to the node path-labelled w, where α ∈ Σ is a single letter and w

is a word. The suffix-link of v exists if v is a non-root internal node of T(x). We denote

by CHILD(v,α) the explicit node that is obtained from v by traversing the outgoing

edge whose label starts with α ∈ Σ. It is well-known that the suffix tree of x including

the suffix-links can be computed in time and space O(n) [26]. Then all occurrences

of a pattern of length m can be found in time O(m+Occ), where Occ is the number

of occurrences [33]. It can also be preprocessed in time and space O(n) so that lowest

common ancestor (LCA) queries for any pair of explicit nodes can be answered in O(1)

time per query [18].

In any standard implementation of the suffix tree, we assume that each node of

the suffix tree is able to access its parent. Note that once T(x) is constructed, it can

be traversed in a depth-first manner to compute the word-depth D(v) for each node v.

Let u be the parent of v. Then the word-depth D(v) is computed by adding D(u) to

the length of the label of edge (u,v). If v is the root then D(v) = 0. Additionally, a

depth-first traversal of T(x) allows us to count, for each node v, the number of terminal

2.5 Suffix Trees 13

nodes in the subtree rooted at v, denoted by C(v), as follows. When internal node v is

visited, C(v) is computed by adding up C(u) of all the nodes u, such that u is a child of

v, and then C(v) is incremented by 1 if v itself is a terminal node. If a node v is a leaf

then C(v) = 1.

We assume that the terminal nodes of T(x) have suffix-links as well. We can

either store them while building T(x) or just traverse it once and construct an ar-

ray node[0 . .n− 1] such that node[i] = v if L(v) = x[i . .n− 1]. We further denote by

PARENT(v) the parent of a node v in T(x) and by CHILD(v,α) the explicit node that is

obtained from v by traversing the outgoing edge whose label starts with α ∈ Σ.

Example 2.5.1. Consider the word AGCGCGACGTCTGTGT. Fig. 2.4 represents the suffix

tree T(x). Note that word GCG is represented by the explicit node v; whereas word TCT

is represented by the implicit node along the edge connecting the node labelled 15 and

the node labelled 9. Consider node v in T(x); we have that L(v) = GCG, D(v) = 3, and

C(v) = 2.

Theorem 2.5.1 ([22]). The operation SUFFIX-TREE(x,n), that produces T(x), takes a

time O(n×log card A) in the comparison model.

2.5 Suffix Trees 14

1 Algorithm SUFFIX-TREE(x,n) [22]

2 M← NEW-AUTOMATON();
3 sℓ[initial[M]]← initial[M];
4 (f ork,k)← (initial[M],0);

5 for i← 0 to n−1
6 k← max{k, i};

7 if sℓ[f ork] = NIL

8 t←parent of f ork;

9 Interval[proxa][0 . .σ −1]← 0;

10 if t = initial[M]

11 ℓ← ℓ−1;

12 sℓ← FAST-FIND(sℓ[t],k− ℓ,k);

13 (f ork,k)← SLOW-FIND(sℓ[f ork],k);

14 if k < n

15 q← NEW-STATE();

16 Succ[f ork]← Succ[f ork]∪{((k,n− k),q)};

17 else q← f ork;

18 out put[q]← i;

19 out put[initial[M]]← n;

20 return M;

2.5 Suffix Trees 15

1 Algorithm SLOW-FIND(p,n) [22]

2 while k < n and TARGET(p,x[k]) ̸= NIL

3 q← TARGET(p,x[k]);

4 (j, ℓ)← label(p,q);

5 i← j;

6 do i← i+1;

7 k← k+1;

8 while i < j+ ℓ and k < n and x[i] = x[k];

9 if i < j+ ℓ;

10 Succ[p]← Succ[p]\{((j, ℓ),q)};

11 r← NEW-STATE;

12 Succ[p]← Succ[p]\{((j, i− j),r)};

13 Succ[r]← Succ[r]\{((i, ℓ− i− j),q)};

14 return(r,k);

15 p← q;

16 return(p,k);

1 Algorithm FAST-FIND(r, j,k) [22]

2 ▷ Computation of δ (r,x[j . .k−1]);

3 if j ≥ k;

4 return r;

5 else q← TARGET(r,x[j]);

6 if j+ ℓ≤ k;

7 return FAST-FIND(q, j+ ℓ,k);

8 else Succ[r]← Succ[r]\{((j
′
, ℓ),q)};

9 p← NEW-STATE();

10 Succ[r]← Succ[r]\{((j
′
,k− j), p)};

11 Succ[p]← Succ[p]\{((j
′
+ k− j, ℓ− k+ j),q)};

12 return p;

2.5 Suffix Trees 16

6

CG
TC

..
.

0

GC
GC

..
.

A

4

AC
GT

..
.

2

CG
AC

..
.

7

TC
TC

..
.

G

10

TG
TG

T

C

5

AC
GT

..
.

v

3

AC
GT

..
.

1

CG
AC

..
.

CG

14

8

CT
GT

GT

12GT

T

G

15

9

CT
GT

GT

13 11

GT

GT

T

Fi
g.

2.
4

Th
e

su
ffi

x
tr

ee
T
(x
)

fo
rx

=
AG

CG
CG

AC
GT

CT
GT

GT
.D

ou
bl

e-
lin

ed
no

de
sr

ep
re

se
nt

te
rm

in
al

no
de

s
la

be
lle

d
w

ith
th

e
as

so
ci

at
ed

in
di

ce
s.

Th
e

su
ffi

x-
lin

ks
fo

r
no

n-
ro

ot
in

te
rn

al
no

de
s

ar
e

da
sh

ed
.

2.6 Minimal Absent Words 17

2.6 Minimal Absent Words

We define that the word w with length m is an absent word of string x with length n if it

does not appear in string x. The absent word w, the length of such word is more than 2,

of x is minimal if and only if all its proper factors appear in x. We also define by SA

the suffix array of x, that is the array of length |x| of the starting locations of all sorted

suffixes of x, for all 1≤ r < n, we hold x[SA[r−1] . .n−1]< x[SA[r] . .n−1] [44]. And

LCP(r,s) define the length of the longest common prefix of the words x[SA[r] . .n−1]

and x[SA[s] . .n− 1], for all 0 ≤ r, s < n, and 0 otherwise. We define by LCP the

longest common prefix array of x denoted by LCP[r] = lcp(r−1,r), for all 1≤ r < n,

and LCP[0] = 0. The inverse iSA of the array SA is denoted by iSA[SA[r]] = r, for

all 0 ≤ r < n. SA [49], iSA, and LCP [28] of x can be calculated in linear time and

space. [10]

MINIMALABSENTWORDS

Input: A word x on Σ of length n

Output: For every minimal absent word w of x, one tuple < a,(i, j)>, such that w

is defined by w[0] = a, a ∈ Σ, and w[1 . .m−1] = x[i . . j], m≥ 2.

Now we present MAW algorithm [10], which is a linear time and space algorithm

for finding all minimal absent words in a word of length n using arrays SA and LCP.

The idea of algorithm MAW is to see at the occurrences of a factor w
′
of x, and at

the letters that precede and follow these occurrences. If a couple (a,b), a,b ∈ Σ, can be

2.6 Minimal Absent Words 18

found, such that aw
′

and w
′
b appear in x, but aw

′
b does not appear in x, then we can

think that aw
′
b is a minimal absent word of x.

A minimal absent words w[0 . .m−1] of a word x[0 . .n−1] is an absent word whose

proper factors all appear in x. And then, w1 = w[1 . .m− 1] and w2 = w[1 . .m− 2] =

w1[0 . . |w1| − 2] appear in x; we now consider these two factors to characterise the

minimal absent words. We focus each occurrence of w1 and w2, and create the sets of

letters that appear just before:

B1(w1) = {x[j−1] : j is the starting position of an occurrence of w1}

B2(w1) = {x[j−1] : j is the starting position of an occurrence of w1[0 . . |w1|−2]}

Lemma 2.6.1 ([10]). Let w and x be two words. Then w is a minimal absent word of x

if w[0] is an element of B2(w1) and not of B1(w1), with x1 = x[1 . .m−1].

Lemma 2.6.2 ([10]). Let w be a minimal absent word of length m of word x of length

n. Then there exists an integer i ∈ [0 : n−1] such that x[SA[i] . .SA[i]+LCP[i]] = w1 or

x[SA[i] . .SA[i]+LCP[i+1]] = w1, where w1 = w[1 . .m−1].

By Lemma 2.6.2, we can find all minimal absent words of x by checking only the

factors S2i = x[SA[i] . .SA[i]+LCP[i]] and S2i+1 = x[SA[i] . .SA[i]+LCP[i+1]], for all

i in [0 : n− 1]. We create the sets B1(S2i), B2(S2i) and B1(S2i+1), B2(S2i+1), where

B1(S j) (resp. B2(S j)) is the set of letters that directly precede an occurrence of the

factor S j (resp. the longest proper prefix of S j), for all j in [0 : 2n−1]. And then, by

Lemma 2.6.1, the difference between B2(S j) and B1(S j), for all j in [0 : 2n−1], shows

us all the minimal absent words of x. [10]

Consequently, the crucial computational step is to find these sets of letters efficiently.

Now we visit twice arrays SA and LCP utilizing another array defined by B1 (resp.

2.6 Minimal Absent Words 19

B2) to hold set B1(S j) (resp. B2(S j)), for all j in [0 : 2n− 1]. Bothe arrays B1 and

B2 compose of 2n elements, where each element is a bit vector of length σ , the size

of the alphabet, according to one bit per alphabet letter. While iteration over arrays

SA and LCP, we keep another array defined by Interval, such that, at the end of each

iteration i, the ℓth element of Interval holds the set of letters we have met before the

prefix of length ℓ of x[SA[i] . .n−1]. Array Interval composes of maxi∈[0:n−1]LCP[i]+1

elements, where each element is a bit vector of length σ . [10]

In the first pass, we go arrays SA and LCP from top to bottom. For each i∈ [0 : n−1],

we hold in locations 2i and 2i+1 of B1 (resp. B2) the set of letters that directly precede

occurrences of S2i and S2i+1 (resp. their longest proper prefixes) whose starting locations

occur before location i in SA. In the second pass, we visit bottom up to accomplish the

sets, which are already stored, with the letters preceding the occurrences whose starting

locations occur after location i in SA. For be efficient, we keep a structure of stack,

defined by Li f oLCP, to keep the LCP values of the factors that are prefixes of the one

we are visiting at the moment. [10]

Theorem 2.6.3 ([10]). Algorithm MAW solves Problem MINIMALABSENTWORDS

in time and space O(n).

2.6 Minimal Absent Words 20

1 Algorithm Top-Down-Pass(x,n,SA,LCP,B1,B2,σ) [10]

2 Interval[0 . .maxi∈[0:n−1]LCP[i]][0 . .σ −1]← 0;

3 Li f oLCP.push(0);
4 foreach i ∈ [0 : n−1] do
5 if i > 0 and LCP[i]< LCP[i−1]
6 while Li f oLCP.top()> LCP[i]

7 proxa← Li f oLCP.pop();

8 Interval[proxa][0 . .σ −1]← 0;

9 if Li f oLCP.top()< LCP[i]

10 Interval[LCP[i]]← Interval[proxa];

11 B1[2i−1]← Interval[proxa];

12 B2[2i−1]← Interval[LCP[i]];

13 if SA[i]> 0
14 u← x[SA[i]−1];

15 value← Li f oLCP.top();

16 while Interval[value][u] = 0
17 Interval[value][u]← 1;

18 value← Li f oLCP.next();

19 Interval[LCP[i]][u]← 1;

20 B1[2i][u]← 1;

21 B1[2i+1][u]← 1;

22 B2[2i][u]← 1;

23 B2[2i+1][u]← 1;

24 if i > 0 and LCP[i]> 0 and SA[i−1]> 0
25 v← x[SA[i−1]−1];

26 Interval[LCP[i]][v]← 1;

27 B2[2i]← Interval[LCP[i]];

28 if Li f oLCP.top() ̸= LCP[i]

29 Li f oLCP.push(LCP[i]);

2.6 Minimal Absent Words 21

1 Algorithm Bottom-Up-Pass(n,SA,LCP,B1,B2,Σ,σ) [10]

2 Interval[0 . .maxi∈[0:n−1]LCP[i]][0 . .σ −1]← 0;

3 Li f oLCP.push(0);
4 foreach i ∈ [0 : n−1] do

5 proxa← LCP[i]+1;

6 proxb← 1;

7 if i < n−1 and LCP[i]< LCP[i+1]
8 while Li f oLCP.top()> LCP[i]

9 proxa← Li f oLCP.pop();

10 Li f oRem.push(proxa);

11 if Li f oLCP.top()< LCP[i]

12 Interval[LCP[i]]← Interval[proxa];

13 foreach k ∈ Σ : B1[2i][k] = 1 do

14 value← Li f oLCP.top();

15 while Interval[value][k] = 0
16 Interval[value[k]]← 1;

17 value← Li f oLCP.next();

18 Interval[LCP[i]][k]← 1;

19 B2[2i]← B2[2i] bit-or Interval[LCP[i]];

20 B2[2i+1]← B2[2i+1] bit-or Interval[LCP[i+1]];

21 B1[2i+1]← B1[2i+1] bit-or Interval[proxb];

22 proxb← proxa;

23 B1[2i]← B1[2i] bit-or Interval[proxa];

24 while Li f oRem not empty
25 value← Li f oRem.pop();

26 Interval[value][0 . .σ −1]← 0;

27 if Li f oLCP.top() ̸= LCP[i]

28 Li f oLCP.push(LCP[i]);

2.7 Indexing Weighted Sequences 22

2.7 Indexing Weighted Sequences

A string P appears at position i in string S if P = S[i . . i+ |P|− 1]. A property ∏ of

S is a inheritable collection of integer intervals included in {1, ...,n}. We describe

every property ∏ with an array π[1 . . |S|] such that the longest interval I ∈∏ starting

at location i is {i, ...,π[i]}. And π can be an arbitrary array contenting π[i] ∈ {i−

1, ...,n} and π[1]≤ π[2]≤ ...≤ π[n]. By Occπ(P,S), for a string P we define the set of

occurrences i of P in S such that i+ |P|−1≤ π[i]. [12]

PROPERTY INDEXING

Input: A string S of length n over an alphabet Σ and an array π representing a

property ∏.

Output: For a given pattern string P of length m, compute |Occπ(P,S)| or report all

elements of Occπ(P,S).

Let us take an indexed family S = (S j,π j)
k
j=1 of strings S j with properties π j into

consideration. For a string P and an index i, by CountS(P, i) = |{ j : i ∈ Occπ j(P,S j)}|,

we define the total number of occurrences of P at the location i in the strings S1, ...,Sk

that respect the properties. [12]

A weighted sequence X = x1x2...xn of length |X | = n over an alphabet Σ is a

sequence of sets of pairs of the form Xi = {(c, p(X)
i (c)) : c ∈ Σ}. We denote p(X)

i (c)

is the occurrence probability of the letter c at the location i ∈ {1, ...,n}. For a given i,

these values are non-negative and sum up to 1. [12]

2.7 Indexing Weighted Sequences 23

The probability of matching of a string P at location i of a weighted sequence X

equals ProbX(P, i) =
|P|
∏
j=1

p(X)
i+ j−1(P[j]). If ProbX(P, i) ≥ 1

z , a string P appears in X at

location i. We denote that P is a solid factor of X (staring, occurring) at location i. By

Occ 1
z
(P,X), we define the set of all locations where P appears in X . [12]

WEIGHTED INDEXING

Input: A weighted sequence X of length n over an alphabet Σ and a threshold 1
z .

Output: For a given pattern string p of length m, check if Occ 1
z
(P,X) ̸=∅ (decision

query), compute |Occ 1
z
(P,X)| (counting query), or report all elements of Occ 1

z
(P,X)

(reporting query).

Definition 2.7.1 ([12]). We say that an indexed family S = (S j,π j)
⌊z⌋
j=1 containing

strings S j of length n is a z-estimation of a weighted sequence X of length n if and only

if, for every string P and position i ∈ {1, ...,n}, CountS(P, i) = ⌊ProbX(P, i)z⌋.

Observation 2.7.1 ([12]). A family S = (S j,π j)
⌊z⌋
j=1 is a z-estimation of X if and only

if for each position i, every string P is a prefix of exactly ti(P) strings S j[i . .π j[i].

Lemma 2.7.2 ([12]). There exists a unique multiset Mi such that each string P is prefix

of exactly ti(P) strings in Mi.

2.7 Indexing Weighted Sequences 24

Definition 2.7.2 ([12]). We say that P ∈Mi is compatible with Q ∈Mi+1 if P = ε or

P = cQ
′
for some character c ∈ Σ and a prefix Q

′
of Q.

Lemma 2.7.3 ([12]). For every 1 ≤ i ≤ n− 1, there is a one-to-one correspondence

from Mi+1 into Mi such that each Q ∈Mi+1 is matched with a compatible P ∈Mi.

Theorem 2.7.4 ([12]). Each weighted sequence X has a z-estimation.

We begin with Mn+1, which composes of ⌊z⌋ copies of ε , and then we iterate over

locations i = n, ...,1 transforming Mi+1 to Mi so that each Pj,i+1 ∈Mi+1 is exchanged

with a compatible string Pj,i ∈Mi. In the meantime, we create the z-estimation S =

(S j,π j)
⌊z⌋
j=1. In addition, we place Π j[i] to i+ |Pj,i|−1 and S j[i] to the leading character

of Pj,i, or an arbitrary character if Pj,i = ε . [12]

As well known, a trie is a rooted tree where each node represents a string, and the

string corresponding to node u namyly the label of u, is defined L(u). The root holds

label ε , and the node u’ parent with L(u) = Pc for c ∈ Σ is the node v with L(v) = P,

and c label the edge from P to Pc. The family of solid factors appearing at location i

(i.e., strings P such that ti(P)> 0) is closed with respect to prefixes. [12]

We hold Mi utilizing tokens in Ti: each Pj,i ∈ Mi is described by a token (with

identifier j) posted at the node u ∈ Ti with L(u) = Pj,i. For each token j, we hold the

node u ∈ Ti with L(u) = Pj,i and the probability ProbX(Pj,i, i). And the number of

tokens at the node u is mi(L(u)) and the number of tokens in the subtree rooted at u is

ti(L(u)). Now, we define mi(u) = mi(L(u)) and ti(u) = ti(L(u)). [12]

2.7 Indexing Weighted Sequences 25

Observation 2.7.5 ([12]). The trie Ti contains ⌊z⌋ tokens in total and every leaf contains

tokens.

Observation 2.7.6 ([12]). If u ∈ Ti has a non-empty label, L(u) = cP, for some c ∈ Σ,

then Ti+1 contains a node v with label L(v) = P.

For each index i, we transform the solid factor trie Ti+1 to Ti and turn the tokens so

that Mi+1 is transformed to Mi. Each non-root node u ∈ Ti has a corresponding node

v ∈ Ti+1. At times, we apply v as u, otherwise, we make u as a copy of v. We identify a

heavy letter h ∈ Σ maximising probability P(X)
i (c) over c ∈ Σ. we apply v if L(u) begins

with h and make a copy of v otherwise. [12]

This method is implemented as follows. First, we make the root of Ti and connect

Ti+1 to the new root utilizing an edge with label h. We define the resulting subtree as

Ti,h, which includes all tokens show in Ti+1 and may include nodes v with ti(v) = 0.

And then, we think all the rest of letters c ∈ Σ \ {h}. For each such letter we will

create a subtree Ti,c describing solid factors appearing at location i and beginning with

character c. At the same time, we create and traverse Ti,c: we build the children of

a node u whereas visiting u for the first time. Meanwhile, at node u with L(u) = cP,

we keep the probability ProbX(cP, i) and a pointer to the corresponding node v ∈ Ti,h

such that L(v) = hP. To build the children of u, we calculate ti(cPc
′
) for each c

′ ∈ Σ.

Furthermore, we make mi(cP) and set mi(cP) token requests at node v, declaring that

mi(cP) tokens are needed at u. [12]

2.7 Indexing Weighted Sequences 26

At last, we turn the tokens and trim the redundant nodes of Ti,h. We deal the tokens

in an arbitrary order. For a token posted at node v of Ti,h with L(v) = hQ, and that

token would describe Q ∈ Mi+1. We traverse the line from from v towards the root

of Ti holding the probability ProbX(L(v
′
), i) at the currently visited node v

′
. First, we

review if there is any token request at v
′
. If so, we subscribe with the request, remove

it, and finish the traversal. Otherwise, we calculate mi(v
′
) utilizing the probability. If

v
′

includes less than mi(v
′
) already dealt tokens, we set our token at v

′
and end the

traversal. Otherwise, we dealt to the v
′
parent. If v

′
is a leaf and dose not include any

tokens, we remove v
′

from Ti,h. If the traversal reaches the Ti’s root, we set the token at

the root. [12]

Theorem 2.7.7 ([12]). For a weighted sequence X of length n over a constant-sized

alphabet, one can construct a z-estimation in O(nz) time.

2.8 Molecular biology 27

2.8 Molecular biology

Molecular biology is a branch of biology involving the molecular foundation of biologi-

cal process between biomolecules in the all kinds of systems of a cell. [42] The cell is

the essential unit of living organisms. Cells can be divided into two major categories:

prokaryotic cells and eukaryotic cells. Bacterial and archaeal organisms are composed

of prokaryotic cells. Protozoa, fungi, plants, and animals are composed of eukaryotic

cells. Cells comprise biomolecules, which are a general term for molecules naturally

present in organisms, including macromolecules such as proteins, carbohydrates, lipids,

and nucleic acids, as well as small molecules such as metabolites, secondary metabolites,

and natural products.

A nucleoside is a molecule produced from connecting a nucleobase to a deoxyribose

ring or ribose, including adenosine (A), thymidine (T), cytidine (C), guanosine (G),

uridine (U) and inosine (I). Nucleosides can be phosphorylated by particular kinases in

cells to make nucleotides. DNA utilizes deoxynucleotides A, T , C, and G, while RNA

utilizes ribonucleotides (with additional hydroxyl (OH) groups on the pentose ring) A,

C, G and U .

Each DNA molecule is composed of four different nucleotides and may be con-

sidered as a sequence of four letters A, C, G, and T representing the four nucleotide

bases: adenine, cytosine, guanine and thymine. The Human Genome; for example, is

the genetic code - the entire list of three billion letters - required to create a human

being. It is quite common, to refer to DNA as the genetic “language” and to A, C, G and

T as the “alphabet” of this language. In one sense, a DNA molecule is nothing more

2.8 Molecular biology 28

than a sequence formed by concatenating those letters; like T T GAAGCATA..., which

has a certain biological meaning or function.

We will now briefly describe the structure of hairpin, which is the primary motivation

of studying maximal palindromes at biological sequence analysis. In RNA or single-

stranded DNA, there exists a particular sequence as Stem-loop intramolecular base

pairing, called hairpin or hairpin loop. It appears when two regions of the same strand

read in opposite directions, frequently complementary in nucleotide sequence, base-pair

to form a double helix that ends in an unpaired loop. The finishing structure is an

important making module of numerous RNA secondary structures. As an essential

secondary structure of RNA, it can guide RNA folding, supply recognition sites for

RNA binding proteins, assist structural stability for messenger RNA (mRNA), and act

as a substrate for enzymatic reactions. [57] (Fig. 2.5)

2.8 Molecular biology 29

(a)

(b)

Fig. 2.5 RNA stem-loops.(a) A schematic overview of an RNA stem-loop depicting
the important parameters for the role of such a hairpin RNA. (b) The SECIS stem-
loop structure element controlling selenoprotein synthesis. Right: A consensus of a
secondary structure of a SECIS element. Left: A specific example of the SECIS element
in Homo sapiens. [57]

Chapter 3

Avoided words and Overabundant

words

In this chapter, we study the avoided words and overabundant words, and then, we

present some efficient algorithms on those words. Moreover, we exhibit some applica-

tions of avoided and overabundant words.

This chapter is organised as follows.

In Section 3.1 we introduce the background and contributions of avoided words and

overabundant words, that show the motivation and most recent work on avoided words

and overabundant words.

In Section 3.2 we present the preliminaries, and give the definition and useful

properties of avoided words and overabundant words.

In Section 3.3.1 we provide an O(n)-time and O(n)-space algorithm to compute all

ρ-avoided words of length k in a given sequence of length n over a fixed-sized alphabet.

3.1 Background and Contributions 31

In Section 3.3.2 we provide a time-optimal O(σn)-time algorithm to compute all

ρ-avoided words (of any length) in a sequence of length n over an integer alphabet of

size σ .

In Section 3.3.3 we provide an O(n)-time and O(n)-space algorithm for computing

all overabundant words in a sequence x of length n over an integer alphabet.

In Section 3.4 we make available an implementation of our algorithms. Experimental

results, using both real and synthetic data, which further highlight the effectiveness of

this model, show the efficiency and applicability of our implementation in biological

sequence analysis.

Finally, in Section 3.5, we give the conclusion of avoided words and overabundant

words.

3.1 Background and Contributions

3.1.1 Background

The one-to-one mapping of a DNA molecule to a sequence of letters suggests that

DNA analysis can be modelled within the framework of formal language theory [56].

For example, a region within a DNA sequence can be considered as a “word” on a

fixed-sized alphabet in which some of its natural aspects can be described by means of

certain types of automata or grammars. However, a linguistic analysis of the DNA needs

to take into account many distinctive physical and biological characteristics of such

sequences: The genome consists of coding regions that encode for polypeptide chains

associated with biological functions as well as a plethora of regulatory and potentially

3.1 Background and Contributions 32

functional non-coding regions, identified through multiple alignment of genomes of

several organisms, and termed conserved non-coding elements (CNEs). In addition,

it contains large non-coding regions most of which are not linked to any particular

function. All these genomic components appear to have many statistical features in

common with natural languages [45].

A computational tool oriented towards the systematic search for avoided words

is particularly useful for in silico genomic research analyses. The search for absent

words is already undertaken in the recent past and several results exist on the appli-

cation and computation of such words [1? ? ?]. However, words which may be

present in a genome or in genomic sequences of a specific role (e.g., protein coding

segments, regulatory elements, conserved non-coding elements etc) but they are strongly

underrepresented—as we can estimate on the basis of the frequency of occurrence of

their longest proper factors—may be of particular importance. They can be words of

nucleotides which are hardly tolerated because they negatively influence the stability

of the chromatin or, more generally, the functional genomic conformation; they can

represent targets of restriction endonucleases which may be found in bacterial and viral

genomes; or, more generally, they may be short genomic regions whose presence in

wide parts of the genome are not tolerated for less known reasons. The understanding

of such avoidances is becoming an interesting line of research [17, 55].

On the other hand, short words of nucleotides may be systematically avoided in

large genomic regions or whole genomes for entirely different reasons, i.e. just because

they play important signaling roles which confine their appearance only in specific

positions: consensus sequences for the initiation of gene transcription and of DNA

3.1 Background and Contributions 33

replication are well-known such oligonucleotides. Other such cases may be insulators,

sequences anchoring the chromatin on the nuclear envelope like lamina-associated

domains, short sequences like dinucleotide repeat motifs with enhancer activity, and

several other cases. Again, we cannot exclude that this area of research could lead to

the identification of short sequences of regulatory activities still unknown.

Brendel et al. in [19] initiated research into the linguistics of nucleotide sequences

that focuses on the concept of words in continuous languages—languages devoid of

blanks—and introduced an operational definition of words. The authors suggested a

method to measure, for each possible word w of length k, the deviation of its observed

frequency from the expected frequency in a given sequence. The values of the deviation,

denoted by dev(w), were then used to identify words that are avoided among all possible

words of length k. The typical length of avoided (or of overabundant) words of the

nucleotide language was found to range from 3 to 5 (tri- to pentamers). The statistical

significance of the avoided words was shown to reflect their biological importance. This

work, however, was based on the very limited sequence data available at the time: only

DNA sequences from two viral and one bacterial genomes were considered. Also note

that k might change when considering eukaryotic genomes, the complex dynamics and

function of which might impose a more demanding analysis. The authors in [6, 7, 9]

studied a similar notion of unusual words—based on different definitions than the ones

Brendel et al. use for expectation and deviation—focusing on the factors of a sequence;

based on Brendel et al.’s definitions, we focus on any word over the alphabet. More

recently, space-efficient detection of unusual words has also been considered [17]; such

avoidances is becoming an interesting line of research [55].

3.1 Background and Contributions 34

Moreover, we extend this study on overabundant words. The motivation comes

from molecular biology. Genome dynamics, i.e. the molecular mechanisms generating

random mutations in the evolving genome, are quite complex, often presenting self-

enhancing features. Thus, it is expected to often give rise to words of nucleotides which

will be overabundant, i.e. being present at higher amounts than expected on the basis

of their longest proper prefix, longest proper suffix, and longest infix frequencies. One

specific such mechanism, which might generate overabundant words, is the following:

it is well-known that in a genomic sequence of an initially random composition, the

existing relatively long homonucleotide tracts present a higher frequency of further

elongation than the frequency expected on the basis of single nucleotide mutations [41];

that is, they present a sort of autocatalytic self-elongation. This feature, in combination

with the much higher frequency of transition vs. transversion mutation events, generates

overabundant words which are homopurinic or homopurimidinic tracts. It is also

anticipated that the overabundance of homonucleotide tracts will strongly differentiate

between conserved and non-conserved parts of the genome. While this phenomenon is

largely free to act within the non-conserved genomic regions, and thus it is expected

to generate there large amounts of overabundant words, it is hindered in the conserved

genomic regions due to selective constraints.

3.1.2 Contributions

The computational problems can be described as follows. First, given a sequence x of

length n, an integer k, and a real number ρ < 0, compute the set of ρ-avoided words

of length k, i.e. all words w of length k for which dev(w) ≤ ρ . We call this set the

3.1 Background and Contributions 35

ρ-avoided words of length k in x. Brendel et al. did not provide an efficient solution

for this computation [19]. Moreover, such a word may be completely absent from x.

Consequently, the set of ρ-avoided words can be naïvely computed by considering all

possible σ k words, where σ is the size of the alphabet. Second, given a sequence x of

length n and a real number ρ > 0, compute the set of ρ-overabundant words, i.e. all

words w for which std(w)≥ ρ .

Firstly, we present an O(n)-time and O(n)-space algorithm for computing all ρ-

avoided words of length k in a sequence of length n over a fixed-sized alphabet. For

words over an integer alphabet of size σ , the algorithm requires time O(σn), which is

optimal for sufficiently large σ . We also present a time-optimal O(σn)-time algorithm

to compute all ρ-avoided words (of any length) in a sequence of length n over an

integer alphabet of size σ . We provide a tight asymptotic upper bound for the number

of ρ-avoided words over an integer alphabet and the expected length of the longest

one. We also prove that the same asymptotic upper bound is tight for the number of

ρ-avoided words of fixed length when the alphabet is sufficiently large.

As shown subsequently, the set of absent ρ-avoided words is a subset of the set of

minimal absent words of a word. Hence the tight asymptotic bounds for ρ-avoided

words are based on the proof we provide for the tightness of the known asymptotic

bound on minimal absent words and the tightness of this bound for minimal absent

words of fixed length over sufficiently large alphabets.

Secondly, we present an O(n)-time and O(n)-space algorithm for computing all

ρ-overabundant words (of any length) in a sequence x of length n over an integer

alphabet. This result is based on a combinatorial property of the suffix tree T of x

3.1 Background and Contributions 36

that we prove here: the number of distinct factors of x whose longest infix is the label

of an explicit node of T is no more than 3n− 4. We further show that the presented

algorithm is time-optimal by proving that O(n) is a tight upper bound for the number of

ρ-overabundant words. We further show that the presented algorithm is time-optimal

by proving that O(n) is a tight upper bound for the number of ρ-overabundant words.

Finally, we pose an open question of combinatorial nature on the maximum number

of overabundant words that a sequence of length n over an alphabet of size σ > 1 can

contain.

Analogously to avoided words [3, 19, 31], many different models and algorithms

exist for identifying words that are in abundance in a given sequence; see for in-

stance [20, 24]. In this chapter, we make use of the biologically justified model by

proving non-trivial combinatorial properties, we show that it admits efficient computa-

tion for overabundant words as well.

We make available an open-source implementation of our algorithm. Experimental

results, using both real and synthetic data, which further highlight the effectiveness

of this model, show its efficiency and applicability. Specifically, using our method

we confirm that restriction endonucleases which target self-complementary sites are

not found in eukaryotic sequences [55]. In addition, we apply our algorithm in the

case of CNEs, which are classes of sequences whose functions in our genomes remain

largely enigmatic [34, 51]. We observe interesting patterns of occurring avoided words

within CNEs compared to CNE-like sequences (surrogates) that are in accordance with

their distinct sequence characteristics which classify them from other non-functional

sequences [50, 52].

3.2 Preliminaries 37

3.2 Preliminaries

3.2.1 Definitions and Notations

We begin with basic definitions and notation generally following [22]. We denote the

reverse word of x by rev(x), i.e. rev(x) = x[n−1]x[n−2] . . .x[1]x[0]. We say that x is

a power of a word y if there exists a positive integer k, k > 1, such that x is expressed

as k consecutive concatenations of y; we denote that by x = yk. Let f (w) denote the

observed frequency, that is, the number of occurrences of a non-empty word w in word

x. If f (w) = 0 for some word w, then w is called absent (which is denoted by w ̸⪯ x),

otherwise, w is called occurring.

By f (wp), f (ws), and f (wi) we denote the observed frequency of the longest proper

prefix wp, suffix ws, and infix wi of w in x, respectively. We can now define the expected

frequency of word w, |w|> 2, in x as in Brendel et al. [19]:

E(w) =
f (wp)× f (ws)

f (wi)
, if f (wi)> 0; else E(w) = 0. (3.1)

The above definition can be explained intuitively as follows. Suppose we are given

f (wp), f (ws), and f (wi). Given an occurrence of wi in x, the probability of it being

preceded by w[0] is f (wp)
f (wi)

as w[0] precedes exactly f (wp) of the f (wi) occurrences of

wi. Similarly, this occurrence of wi is also an occurrence of ws with probability f (ws)
f (wi)

.

Although these two events are not always independent, the product f (wp)
f (wi)
× f (ws)

f (wi)
gives a

good approximation of the probability that an occurrence of wi at position j implies an

occurrence of w at position j−1. It can be seen then that by multiplying this product by

3.2 Preliminaries 38

the number of occurrences of wi we get the above formula for the expected frequency

of w.

Moreover, to measure the deviation of the observed frequency of a word w from its

expected frequency in x, we define the deviation (χ2 test) of w as:

dev(w) =
f (w)−E(w)

max{
√

E(w),1}
. (3.2)

For more details on the biological justification of these definitions see [19].

Using the above definitions and two given thresholds, we can classify a word w as

either avoided, common, or overabundant in x. In particular, for two given thresholds

ρ1 < 0 and ρ2 > 0, a word w is called ρ1-avoided if std(w)≤ ρ1, ρ2-overabundant if

std(w)≥ ρ2, and (ρ1,ρ2)-common otherwise. In this chapter, we consider the following

computational problems.

AVOIDEDWORDSCOMPUTATION

Input: A word x of length n, an integer k > 2, and a real number ρ < 0

Output: All ρ-avoided words of length k in x

ALLAVOIDEDWORDSCOMPUTATION

Input: A word x of length n and a real number ρ < 0

Output: All ρ-avoided words in x

3.2 Preliminaries 39

ALLOVERABUNDANTWORDSCOMPUTATION

Input: A word x of length n and a real number ρ > 0

Output: All ρ-overabundant words in x

3.2.2 Tight Asymptotic Bounds on Minimal Absent Words

In this section, we provide a tight asymptotic upper bound for the number of ρ-avoided

words over an integer alphabet and the expected length of the longest one. We also

prove that the same asymptotic upper bound is tight for the number of ρ-avoided words

of fixed length when the alphabet is sufficiently large.

Definition 3.2.1 ([?]). An absent word w of x is minimal if and only if all proper

factors of w occur in x.

We first show that the known asymptotic upper bound on the number of minimal

absent words of a word is tight.

Lemma 3.2.1 ([21]). The asymptotic upper bound O(σn) on the number of minimal

absent words of a word of length n over an alphabet of size σ is tight if 2≤ σ ≤ n.

Proof. To prove that the bound is tight it suffices to construct a word with these many

minimal absent words asymptotically.

3.2 Preliminaries 40

Let Σ = {a1,a2}, i.e. σ = 2, and consider the word x = a2an−2
1 a2 of length n. All

words of the form a2ak
1a2 for 0≤ k ≤ n−3 are minimal absent words in x. Hence x has

at least n−2 = Ω(n) minimal absent words.

Let Σ= {a1,a2,a3, . . . ,aσ}with 3≤σ ≤ n and consider the word x= a2ak
1a3ak

1a4ak
1

. . .aiak
1ai+1 . . .aσ ak

1am
1 , where k = ⌊ n

σ−1⌋−1 and m = n− (σ −1)(k+1). Note that x

is of length n. Further note that aia
j
1 is a factor of x, for all 2 ≤ i ≤ σ and 0 ≤ j ≤ k.

Similarly, a j
1al is a factor of x, for all 3 ≤ l ≤ σ and 0 ≤ j ≤ k. Thus all proper

factors of all the words in the set S = {aia
j
1al | 0 ≤ j ≤ k, 2 ≤ i ≤ σ , 3 ≤ l ≤ σ}

occur in x. However, the only words in S that occur in x are the ones of the form

aiak
1ai+1, for 2 ≤ i < σ . Hence x has at least (σ − 1)(σ − 2)(k + 1)− (σ − 2) =

(σ −1)(σ −2)⌊ n
σ−1⌋− (σ −2) = Ω(σn) minimal absent words.

In the following lemma we show that, for sufficiently large alphabets, O(σn) is a

tight asymptotic bound for the number of minimal absent words of fixed length.

Lemma 3.2.2. The asymptotic upper bound O(σn) on the number of minimal absent

words of fixed length of a word of length n over an alphabet of size σ is tight if

√
n+1≤ σ ≤ n.

Proof. Let Σ = {a1,a2,a3, . . . ,aσ} be an alphabet of size σ . We will show that we can

construct words of any length n, with σ ≤ n ≤ σ(σ − 1), that have Ω(σn) minimal

absent words of length 3.

We first construct the strings (blocks) Bi = ai+1aiai+2ai . . .ai+ jai . . .aσ ai, for 1≤

i ≤ σ − 1. Note that |Bi| = 2(σ − i) and that a letter ai occurs in B j if and only

3.2 Preliminaries 41

if j ≤ i. We then consider the word x = B1B2 . . .Bi . . .Bσ−1 which has length |x| =

∑
σ−1
i=1 2(σ − i) = σ(σ −1).

Now consider any prefix y of x with |y|> 2(σ−1). Then y = B1B2...B j−1B j, where

B j is a prefix of B j for some j > 1. For any i< j the words of length 3 with ai as the mid-

letter that occur in y are the ones in the set Ui = {aℓaiaℓ | 1≤ ℓ≤ i−2}∪{akaiak+1 |

i+1≤ k ≤ σ −1}∪{ai−2aiai−1}∪{aσ aiai+2}, with the last singleton not included if

i = j−1 and B j = ε . We thus have |Ui| ≤ σ .

We notice that the strings of the form akai for all k ∈ Pi = {1,2, . . . ,σ}\{i−1, i}

occur in y and similarly the strings of the form aiaℓ for all ℓ ∈ Si = {1,2, . . . ,σ}\{i, i+

1} occur in y. Hence, all proper factors of all strings in Vi = {akaiaℓ | k ∈ Pi, ℓ ∈ Si}

occur in y and |Vi|= (σ −2)2. Then all the words in Mi =Vi \Ui are minimal absent

words of y of length 3 with mid-letter ai and they are at least (σ −2)2−σ . Now, since

|Bi|< 2σ for all i, we have that j > |y|
2σ

. Hence ∑
j−1
i=1 |Mi| ≥ ((σ −2)2−σ)× |y|2σ

. Since

the sets Mi are pairwise disjoint it then follows that y has Ω(σ |y|) minimal absent words

of length 3.

Hence, given an alphabet of size σ we can construct words of any length n, such

that 2σ < n≤ σ(σ −1), that have Ω(σn) minimal absent words of length 3.

Note that when σ ≤ n≤ 2σ the example of y = a1a2a3 . . .aσ (possibly padded with

aσ ’s) gives the desired result as at most σ out of the σ2 possible combinations aia j (of

length 2) occur in y, while all proper factors of all such combinations occur in y.

3.2 Preliminaries 42

3.2.3 Useful Properties of Avoided Words

In this section, we provide some useful insights of combinatorial nature which were not

considered by Brendel et al. [19]. By the definition of ρ-avoided words it follows that a

word w may be ρ-avoided even if it is absent from x. In other words, dev(w)≤ ρ may

hold for either f (w)> 0 (occurring) or f (w) = 0 (absent).

Example 3.2.1. Consider again the word x = AGCGCGACGTCTGTGT, k = 3, and ρ =

−0.4.

• word w1 = CGT, at position 7 of x, is an occurring ρ-avoided word:

E(w1) = 3×3/6 = 1.5, dev(w1) = (1−1.5)/
√

1.5 =−0.408248.

• word w2 = AGT is an absent ρ-avoided word:

E(w2) = 1×3/6 = 0.5, dev(w2) = (0−0.5)/1 =−0.5.

This means that a naïve computation should consider all possible σ k words. Then

for each possible word w, the value of dev(w) can be computed via pattern matching on

the suffix tree of x. In particular, we can search for the occurrences of w, wp, ws, and

wi in x in time O(k) [22]. In order to avoid this inefficient computation, we exploit the

following crucial lemmas.

3.2 Preliminaries 43

Lemma 3.2.3. Any absent ρ-avoided word w in x is a minimal absent word of x.

Proof. For w to be a ρ-avoided word it must hold that

dev(w) =
f (w)−E(w)

max{
√

E(w),1}
≤ ρ < 0.

This implies that f (w)−E(w)< 0, which in turn implies that E(w)> 0 since f (w) = 0.

From E(w) = f (wp)× f (ws)
f (wi)

> 0, we conclude that f (wp)> 0 and f (ws)> 0 must hold.

Since f (w) = 0, f (wp)> 0, and f (ws)> 0, w is a minimal absent word of x: all proper

factors of w occur in x.

Lemma 3.2.4. Let w be a word occurring in x and T(x) be the suffix tree of x. Then, if

wp is a path-label of an implicit node of T(x), dev(w)≥ 0.

Proof. According f (wp), f (ws), and f (wi) denote the observed frequency of the longest

proper prefix wp, suffix ws, and infix wi of w in x, respectively. For any w that occurs

in x it holds that f (wi) ≥ f (ws), which implies that f (wp) ≥
f (wp)× f (ws)

f (wi)
= E(w).

Furthermore, by the definition of the suffix tree, if w occurs in x and wp is a path-

label of an implicit node then f (wp) = f (w). It thus follows that f (w)−E(w) =

f (wp)−E(w)≥ 0, and since max{1,
√

E(w)}> 0, the claim holds.

Lemma 3.2.5. The number of ρ-avoided words of length k > 2 in a word of length

n over an alphabet of size σ is O(σn); in particular, this number is no more than

(σ +1)n− k+1. The asymptotic upper bound O(σn) is tight if
√

n+1≤ σ ≤ n.

3.2 Preliminaries 44

Proof. By Lemma 3.2.3, every ρ-avoided word is either occurring or a minimal absent

word. It is known that the number of minimal absent words in a word of length n is

smaller than or equal to σn [47]. Clearly, the occurring ρ-avoided words in a word of

length n are at most n−k+1. Therefore the number of ρ-avoided words of length k are

no more than (σ +1)n− k+1. This implies that O(σn) is an asymptotic upper bound.

In the case of an alphabet of size
√

n+1≤ σ ≤ n, it follows from Lemma 3.2.2 that

there exist words with Ω(σn) minimal absent words of a fixed length k > 2. Consider

such a word x, the respective k, and some ρ ≥−1
n . Let w be any minimal absent word

of x. We have that f (wp)≥ 1, f (ws)≥ 1, and f (wi)≤ n; and hence E(w)≥ 1
n . Since

f (w) = 0, it follows that dev(w)≤−1
n ≤ ρ . Thus, every minimal absent word of x is

ρ-avoided, and since there are Ω(σn) of them of length k, we conclude that O(σn) is a

tight asymptotic bound in this case.

3.2.4 Useful Properties of Overabundant Words

In this section, we prove some properties that are useful for designing the time-optimal

algorithm presented in the next section.

Fact 3.2.6. Given a word x of length n over an alphabet of size σ , the number of words

w for which dev(w) is defined is O((σn)2).

Proof. For a word w over Σ, dev(w) is only defined if wi ⪯ x. Hence the words w for

which dev(w) is defined are of the form aub for some non-empty u ⪯ x and a,b ∈ Σ.

3.2 Preliminaries 45

For each distinct factor u ̸= ε of x there are σ2 words of the form aub, a,b ∈ Σ. Since

there are O(n2) distinct factors in a word of length n, the fact follows.

Fact 3.2.7. Every word w that does not occur in x and for which dev(w) is defined has

dev(w)≤ 0.

Proof. For such a word we have that E(w)≥ 0 and that f (w) = 0 and hence dev(w) =

f (w)−E(w)
max{
√

E(w),1}
≤ 0.

Naïve algorithm. By using Fact 3.2.7, we can compute dev(w), for each factor w of

x, thus solving Problem ALLOVERABUNDANTWORDSCOMPUTATION. There are

O(n2) such factors, however, which make this computation inefficient. The overall time

complexity of this naïve algorithm can be more than O(n3).

Fact 3.2.8. Given a factor w of a word x, if wi corresponds to an implicit node in the

suffix tree T(x), then so does wp.

Proof. A factor w′ of x corresponds to an implicit node T(x) if and only if every

occurrence of it in x is followed by the same unique letter b ∈ Σ. Hence, since wp = awi

for some a ∈ Σ, if wi is always followed by, say, b ∈ Σ, every occurrence of wp in x must

also always be followed by b. Thus wp corresponds to an implicit node as well.

Lemma 3.2.9. If w is a factor of a word x and wi corresponds to an implicit node in

T(x), then dev(w) = 0.

3.2 Preliminaries 46

Proof. If a word w′ ⪯ x corresponds to an implicit node along the edge (u,v) in T(x)

and L(v) = w then the number of occurrences of w′ in x is equal to that of w.

If wi corresponds to an implicit node on edge (u,v) it follows immediately that

f (wi) = f (ws), as either ws also corresponds to an implicit node in the same edge or

ws = L(v). In addition, from Fact 3.2.8 we have that wp is an implicit node as well and

it similarly follows that f (wp) = f (w). We thus have E(w) = f (wp)× f (ws)
f (wi)

= f (w) and

hence dev(w) = f (w)−E(w)
max{
√

E(w),1}
= 0.

Based on these properties, the aim of the algorithm in the next section is to find the

factors of x whose longest infix corresponds to an explicit node and check if they are

ρ-overabundant. More specifically, for each explicit node v in T(x), such that L(v) = y,

we aim at identifying the factors of x that have y as their longest infix (i.e. factors of the

form ayb, a,b ∈ Σ). We will do that by identifying the factors of x that have y as their

longest proper suffix (i.e. factors of the form ay, a ∈ Σ) and then checking for each of

these the different letters that succeed it in x. Then we can check in time O(1) if each

of these words is ρ-overabundant.

Note that the algorithm presented in Section 3.3.3 is fundamentally different and in

a sense more involved than the one presented in [3] for the computation of occurring

ρ-avoided words (note that a ρ-avoided word can be absent). This is due to the fact that

for occurring ρ-avoided words we have the stronger property that wp must correspond

to an explicit node.

3.2 Preliminaries 47

Theorem 3.2.10. Given a word x of length n, the number of distinct factors of x of the

form ayb, where a,b ∈ Σ and y ̸= ε is the label of an explicit node of T(x), is no more

than 3n−2−2σx.

Proof. Let S be the set of all explicit or implicit nodes in T(x) of the form yb such that

y is represented by an explicit node other than the root. We have at most 2n−2−σx of

them; there are at most 2n−2 edges in T(x), but σx of them are outgoing from the root.

For such a word yb, the number of factors of x of the form ayb is equal to the degree of

the node representing rev(yb) in T(rev(x)).

For every node in S, we obtain a distinct node in T(rev(x)). Let us suppose that

k1 of these nodes are non-root internal explicit nodes, k2 are leaves, and the rest

2n−2−σx− k1− k2 are implicit nodes. Each internal explicit node u contributes at

most deg(u) factors, where deg(u) is the number of outgoing edges of node u, each leaf

contributes 0 factors, and each implicit node contributes at most 1 factor.

Hence the number of such factors would be maximised if we obtained all the non-

root internal explicit nodes and no leaves in T(rev(x)). Let T(rev(x)) have m non-root

internal explicit nodes. The resulting upper bound then is ∑u∈T(rev(x))\{root} deg(u)+

(2n−2−σx−m)≤ n+m−σx +(2n−2−σx−m) = 3n−2−2σx.

Note that ∑u∈T(rev(x))\{root} deg(u) ≤ n+m−σx since there are at most n edges

from explicit internal nodes to leaves and m edges to other internal nodes; σx of these

are outgoing from the root.

Corollary 3.2.1. The number of ρ-overabundant words in a word x of length n is at

most 3n−2−2σx.

3.2 Preliminaries 48

Proof. By Fact 3.2.7, Lemma 3.2.9, and symmetry, it follows that the ρ-overabundant

words in x are factors of x of the form ayb, where a,b∈ Σ, such that y ̸= ε is represented

by an explicit node in T(x) and rev(y) represented by an explicit node in T(rev(x)).

Hence they are a subset of the set of words considered in Theorem 3.2.10.

Lemma 3.2.11. The number of ρ-overabundant words in a word x of length n over a

binary alphabet (e.g. Σ = {a,b}) is no more than 2n−4.

Proof. For every internal explicit node u of T(x), other than the root, let deg′(u) be

deg(u)+ 1 if node u is terminal and deg(u) otherwise. The sum of deg′(u) over the

internal explicit non-root nodes of T(x) is no more than 2n−4 (ignoring the case when

x = αn,α ∈ Σ). We will show that, for each such node, the number of ρ-overabundant

words with wi = L(u) as their longest proper infix is at most deg′(u).

• Case I: deg′(u) = 2.

– Subcase 1: deg(u) = 1. Node u is terminal and it has an edge with label α .

We can then have at most 2 ρ-overabundant words with wi as their longest

proper infix: awiα and bwiα .

– Subcase 2: deg(u) = 2. Node u is not terminal and it has an edge with label

a and an edge with label b. If only one of awi and bwi occurs in x we are

done. If both of them occur in x we argue as follows (irrespective of whether

wi is also a prefix of x):

If awia is ρ-overabundant, then

f (awia)− f (awi)× f (wia)/ f (wi)≥ ρ > 0⇒

3.2 Preliminaries 49

f (awia)/ f (awi)> f (wia)/ f (wi)⇔

1− f (awia)/ f (awi)< 1− f (wia)/ f (wi)⇔

f (awib)/ f (awi)< f (wib)/ f (wi)⇔

f (awib)− f (awi)× f (wib)/ f (wi)< 0

and hence awib is not ρ-overabundant.

(Similarly for bwia and bwib.)

• Case II: deg′(u) = 3. Node u is terminal and it has an edge with label a and an

edge with label b. If only one of awi and bwi occurs in x or if both of them occur

in x, but wi is not a prefix of x, we can have at most 2 ρ-overabundant words with

wi as the proper longest infix; this can be seen by looking at the node representing

rev(wi) in T(rev(x)), which falls in Case I.

So we only have to consider the case where both awi and bwi occur in x and wi

is a prefix of x. For this case, we assume without loss of generality that awi is a

suffix of x. If awia is ρ-overabundant, then

f (awia)− f (awi)× f (wia)/ f (wi)≥ ρ > 0⇒

f (awia)/ f (awi)> f (wia)/ f (wi)⇔

1− f (awia)/ f (awi)< 1− f (wia)/ f (wi)⇔

(f (awib)+1)/ f (awi)< (f (wib)+1)/ f (wi)⇒

f (awib)/ f (awi)< (f (wib)/ f (wi)⇔

f (awib)− f (awi)× f (wib)/ f (wi)< 0

and hence awib is not ρ-overabundant.

Thus in this case we can have at most 3 = deg′(u) ρ-overabundant words.

3.2 Preliminaries 50

We can thus have at most deg′(u) ρ-overabundant words for each internal explicit

non-root node of T(x). This concludes the proof.

Lemma 3.2.12. The number of ρ-overabundant words in a word of length n is O(n)

and this asymptotic bound is tight. There exists a word over the binary alphabet with

2n−6 ρ-overabundant words.

Proof. The asymptotic bound follows directly from Corollary 3.2.1. The tightness of

the asymptotic bound can be seen by considering word x = ban−2b, a,b ∈ Σ, of length

n and some ρ such that 0 < ρ < 1/n. Then for every prefix w of x of the form bak and

for every suffix w′ of x of the form akb, 2≤ k≤ n−2, we have that f (wp) = f (w′s) = 1,

f (ws) = f (w′p) = n− k− 1, and f (wi) = f (w′i) = n− k. Hence for any w we have

std(w) = 1− 1×(n−k−1)
n−k = 1

n−k > ρ . For instance, for w = ban−2, we have std(w) = 1/2.

There are 2n−6 = Ω(n) such factors and hence at least these many ρ-overabundant

words.

Corollary 3.2.2. The number of (ρ1,ρ2)-common words in a word of length n over an

alphabet of size σ is O((σn)2).

Proof. By Fact 3.2.6 we know that std(w) is defined for O((σn)2) words. The ρ1-

avoided ones are O(σn) [3], while the ρ2-overabundant are O(n) by Corollary 3.2.1.

Hence the number of (ρ1,ρ2)-common words is O((σn)2).

3.3 Algorithms 51

3.3 Algorithms

3.3.1 Computation of Avoided words

In this section, we present Algorithm AVOIDEDWORDS for computing all ρ-avoided

words of length k in a given word x. The algorithm builds the suffix tree T(x) for word

x, and then prepares T(x) to allow constant-time observed frequency queries. This is

mainly achieved by counting the terminal nodes in the subtree rooted at node v for every

node v of T(x). Additionally during this pre-processing, the algorithm computes the

word-depth of v for every node v of T(x). By Lemma 3.2.3, ρ-avoided words are classi-

fied as either occurring or (minimal) absent, therefore Algorithm AVOIDEDWORDS calls

Routines ABSENTAVOIDEDWORDS and OCCURRINGAVOIDEDWORDS to compute

both classes of ρ-avoided words in x. The outline of Algorithm AVOIDEDWORDS is as

follows.

AVOIDEDWORDS(x,k,ρ)

1 T(x)← SUFFIXTREE(x)

2 for each node v ∈ T(x) do

3 D(v)← word-depth of v

4 C(v)← number of terminal nodes in the subtree rooted at v

5 ABSENTAVOIDEDWORDS(x,k,ρ)

6 OCCURRINGAVOIDEDWORDS(x,k,ρ)

3.3 Algorithms 52

Computing Absent Avoided Words

In Lemma 3.2.3, we showed that each absent ρ-avoided word is a minimal absent word.

Thus, Routine ABSENTAVOIDEDWORDS starts by computing all minimal absent words

in x; this can be done in time and space O(n) for a fixed-sized alphabet or in time O(σn)

for integer alphabets [? ?]. Let < (i, j),α > be a tuple representing a minimal absent

word in x, where for some minimal absent word w of length |w| > 2, w = x[i . . j]α ,

α ∈ Σ; this representation is clearly unique.

Intuitively, the idea is to check the length of every minimal absent word. If a tuple

< (i, j),α > represents a minimal absent word w of length k = j− i+2, then the value

of dev(w) is computed to determine whether w is an absent ρ-avoided word. Note

that, if w = x[i . . j]α is a minimal absent word, then wp = x[i . . j], wi = x[i+1 . . j], and

ws = x[i+ 1 . . j]α occur in x by Definition 3.2.1. Thus, there are three (implicit or

explicit) nodes in T(x) path-labelled wp, wi, and ws, respectively.

The observed frequencies of wp, wi, and ws are already computed during the pre-

processing of T(x). For an explicit node v of T(x), path-labelled w′ = x[i′ . . j′], the

value C(v), which is the number of terminal nodes in the subtree rooted at v, is equal

to the number of occurrences (observed frequency) of w′ in x. For an implicit node

along the edge (u,v) path-labelled w′′, the number of occurrences of w′′ is equal

to C(v) (and not C(u)). The implementation of this procedure is given in Routine

ABSENTAVOIDEDWORDS.

3.3 Algorithms 53

ABSENTAVOIDEDWORDS(x,k,ρ)

1 A←MINIMALABSENTWORDS(x)

2 for each tuple < (i, j),α >∈A such that k = j− i+2 do

3 up← NODE(i, j)

4 if ISIMPLICIT(up) then

5 (u,v)← EDGE(up)

6 fp← C(v)

7 else fp← C(up)

8 ui← NODE(i+1, j)

9 if ISIMPLICIT(ui) then

10 (u,v)← EDGE(ui)

11 fi← fs← C(v)

12 else fi← C(ui)

13 us← CHILD(ui,α)

14 fs← C(us)

15 E← fp× fs/ fi

16 if (0−E)/(max{1,
√

E})≤ ρ then

17 REPORT(x[i . . j]α)

3.3 Algorithms 54

Computing Occurring Avoided Words

For a ρ-avoided word to be an occurring one, it has to occur at least once in x. Thus,

the idea of Routine OCCURRINGAVOIDEDWORDS is to traverse T(x). For each node v

such that the word-depth of v, D(v) = k, and its path-label, L(v) = w, the procedure

computes dev(w) and determines whether w is an occurring ρ-avoided word accordingly.

The routine computes the expected frequencies of w, wp, wi, and ws in a similar way as

in Routine ABSENTAVOIDEDWORDS.

The main difference is that once node v path-labelled w, such that |w| = k, is

reached during the traversal of T(x), then its parent node vp path-labelled wp, such

that |wp| = k− 1, is considered. Then, the suffix-link of vp is followed to node vi

path-labelled wi, such that |wi|= k−2. Finally, the child vs of vi, such that the label of

edge (vi,vs) starts with the same letter as edge (vp,v) is considered; here the path-label

of vs is ws and |ws|= k−1. The implementation of this procedure is given in Routine

OCCURRINGAVOIDEDWORDS.

Lemma 3.2.4 suggests that for each occurring ρ-avoided word w, wp is a path-label

of an explicit node v of T(x). Thus, for each internal node v such that D(v) = k−1 and

L(v) = wp, Routine OCCURRINGAVOIDEDWORDS computes dev(w), where w = wpα ,

α ∈ Σ, is a path-label of a child (explicit or implicit) node of v. Note that if wp is a

path-label of an explicit node v then wi is a path-label of an explicit node u of T(x); node

u is well-defined and it is the node pointed at by the suffix-link of v. The implementation

of this procedure is given in Routine OCCURRINGAVOIDEDWORDS.

3.3 Algorithms 55

OCCURRINGAVOIDEDWORDS(x,k,ρ)

1 N← an empty stack

2 PUSH(N,root(T(x)))

3 while N is not empty do

4 u← POP(N)

5 for each edge (u,v) of T(x) do

6 if D(v)< k−1 then

7 PUSH(N,v)

8 elseif D(v) = k−1 then

9 fp← C(v)

10 fi← C(suffix-link[v])

11 for each v′ = CHILD(v,α), α ∈ Σ do

12 fw← C(v′)

13 fs← C(CHILD(suffix-link[v],α))

14 E← fp× fs/ fi

15 if (fw−E)/(max{1,
√

E})≤ ρ then

16 REPORT(L(v′)[0 . .k−1])

3.3 Algorithms 56

Analysis of the Algorithm

Lemma 3.3.1. Given a word x, an integer k > 2, and a real number ρ < 0, Algorithm

AVOIDEDWORDS computes all ρ-avoided words of length k in x.

Proof. By definition, a ρ-avoided word w is either an absent ρ-avoided word or an

occurring one. Hence, the proof of correctness relies on Lemma 3.2.3 and Lemma 3.2.4.

First, Lemma 3.2.3 indicates that an absent ρ-avoided word in x is necessarily

a minimal absent word. Routine ABSENTAVOIDEDWORDS considers each minimal

absent word w and verifies if w is a ρ-avoided word of length k.

Second, Lemma 3.2.4 indicates that for each occurring ρ-avoided word w, wp is

a path-label of an explicit node v of T(x). Routine OCCURRINGAVOIDEDWORDS

considers every child of each such node of word-depth k, and verifies if its path-label is

a ρ-avoided word.

Lemma 3.3.2. Given a word x of length n over a fixed-sized alphabet, an integer k > 2,

and a real number ρ < 0, Algorithm AVOIDEDWORDS requires time and space O(n);

for integer alphabets, it requires time O(σn).

Proof. Constructing the suffix tree T(x) of the input word x takes time and space

O(n) for a word over a fixed-sized alphabet [22]. Once the suffix tree is constructed,

computing arrays D and C by traversing T(x) requires time and space O(n). Note that

the path-labels of the nodes of T(x) can by implemented in time and space O(n) as

follows: traverse the suffix tree to compute for each node v the smallest index i of the

terminal nodes of the subtree rooted at v. Then L(v) = x[i . . i+D(v)−1].

3.3 Algorithms 57

Next, Routine ABSENTAVOIDEDWORDS requires time O(n). It starts by computing

all minimal absent words of x, which can be achieved in time and space O(n) over a

fixed-sized alphabet [? ?]. The rest of the procedure deals with checking each of

the O(n) minimal absent words of length k. Checking each minimal absent word w

to determine whether it is a ρ-avoided word or not requires time O(1). In particular,

an O(n)-time pre-processing of T(x) allows the retrieval of the (implicit or explicit)

node in T(x) corresponding to the longest proper prefix of w in time O(1) [30]. Finally,

Routine OCCURRINGAVOIDEDWORDS requires time O(n). It traverses the suffix tree

T(x) to consider all explicit nodes of word-depth k−1. Then for each such node, the

procedure checks every (explicit or implicit) child of word-depth k. The total number of

these children is at most n− k+1. For every child node, the procedure checks whether

its path-label is a ρ-avoided word in time O(1) via the use of suffix-links.

For integer alphabets, the suffix tree can be constructed in time O(n) [26] and

all minimal absent words can be computed in time O(σn) [? ?]. The efficiency

of Algorithm AVOIDEDWORDS is then limited by the total number of words to be

considered, which, by Lemma 3.2.5, is O(σn). We denote q as implicit node or explicit

node on suffix tree. And q = CHILD(v,α) means, between node v and node Child(v,α),

every implicit node which along this edge that correspond to words (potential wp’s)

whose proper longest suffix (the respective wi) is represented by an explicit node in T(x),

and also q = CHILD(v,α) considers node Child(v,α). Note that for integers alphabets,

a batch of q CHILD(v,α) queries can be answered off-line in time O(n+q) with the aid

of radix sort (in Routine ABSENTAVOIDEDWORDS) or on-line in time O(q logσ) (in

Routine OCCURRINGAVOIDEDWORDS).

3.3 Algorithms 58

Theorem 3.3.3. Algorithm AVOIDEDWORDS solves Problem AVOIDEDWORDSCOM-

PUTATION in time and space O(n). For integer alphabets, the algorithm solves the

problem in time O(σn); this is asymptotically time-optimal if
√

n+1≤ σ ≤ n.

3.3.2 Computation of All ρ-Avoided Words

Although the biological motivation is yet to be shown for this, we present here how we

can modify Algorithm AVOIDEDWORDS so that it computes all ρ-avoided words (of all

lengths) in a given word x of length n over an integer alphabet of size σ in time O(σn).

We further show that this algorithm (ALLAVOIDEDWORDS) is in fact time-optimal.

Based on Lemma 3.2.1 and similarly to the proof of Lemma 3.2.5 we obtain the

following result.

The implementation of this procedure is given in Routine ALLAVOIDEDWORDS.

Lemma 3.3.4. The number of ρ-avoided words in a word of length n over an alphabet

of size 2≤ σ ≤ n is O(σn) and this bound is tight.

Proof. By Lemma 3.2.3, every ρ-avoided word is either occurring or a minimal absent

word. The set of occurring ρ-avoided words in x can be injected to the set of explicit

nodes of T(x) by Lemma 3.2.4 and it is well known that the number of explicit nodes

of T(x) is no more than 2n [22]. Moreover the number of minimal absent words of a

word of length n over an alphabet of size σ is smaller than or equal to σn [47]. Hence

the number of ρ-avoided words is bounded from above by (σ +2)n. This implies that

asymptotically they are O(σn).

3.3 Algorithms 59

Further, based on Lemma 3.2.1, we know that for any alphabet of size 2≤ σ ≤ n

there exist words with Ω(σn) minimal absent words. Consider such a word x and some

ρ ≥−1
n . Then, similarly to the proof of Lemma 3.2.5, any minimal absent word w of

x is ρ-avoided since E(w)≥ 1
n and f (w) = 0 and hence std(w)≤−1

n ≤ ρ . It follows

that the bound is tight for alphabets of size 2≤ σ ≤ n.

It is clear that if we just remove the condition on the length of each minimal absent

word in Line 2 of ABSENTAVOIDEDWORDS we then compute all absent ρ-avoided

words in time O(σn). In order to compute all occurring ρ-avoided words in x it suffices

by Lemma 3.2.4 to investigate the children of explicit nodes. We can thus traverse the

suffix tree T(x) and for each explicit internal node, check for all of its children (explicit

or implicit) whether their path-label is a ρ-avoided word. We can do this in O(1) time

as described. The total number of these children is at most 2n−1, as this is the bound

on the number of edges of T(x) [22]. This modified algorithm is clearly time-optimal

for fixed-sized alphabets as it then runs in time O(n). The time optimality for integer

alphabets follows directly from Lemma 3.3.4.

Theorem 3.3.5. Algorithm ALLAVOIDEDWORDS solves Problem ALLAVOIDED-

WORDSCOMPUTATION in time O(σn). This is time-optimal if 2≤ σ ≤ n.

Remark 3.3.1. In [29], it is shown that all |A| minimal absent words of a word x of

length n over an integer alphabet can be computed in time O(n+ |A|) and space O(n).

3.3 Algorithms 60

Computing minimal absent words and checking for each of them if it is an avoided

word is the bottleneck for algorithms AVOIDEDWORDS and ALLAVOIDEDWORDS.

The result of [29] implies that for a word x of length n over an integer alphabet we can

make both algorithms to require time O(n+ |A|) and space O(n). We can do that by

checking for each minimal absent word output by the algorithm whether it is avoided,

instead of storing a representation of them and then making the check.

Remark 3.3.2. As the complexity of algorithms AVOIDEDWORDS and ALLAVOIDED-

WORDS does not depend on the value of ρ , one can use a negative ρ close to 0, sort the

output ρ-avoided words with respect to dev(w), and consider the extreme ones.

Lemma 3.3.6. The expected length of the longest ρ-avoided word in a word x of length

n over an alphabet Σ of size σ > 1 is O(logσ n) when the letters are independent and

identically distributed random variables uniformly distributed over Σ.

Proof. By Lemma 3.2.4 the length of the longest occurring word is bounded above by

the word-depth of the deepest internal explicit node in T(x) incremented by 1. We note

that the greatest word-depth of an internal node corresponds to the longest repeated

factor in word x. Moreover, for a word w to be a minimal absent word, wi must appear

at least twice in x (in the occurrences of wp and ws). Hence the length of the longest

ρ-avoided word is bounded by the length of the longest repeated factor in x incremented

by 2. The expected length of the longest repeated factor in a word is known to be

O(logσ n) [44] and hence the lemma follows.

3.3 Algorithms 61

ALLAVOIDEDWORDS(x,ρ)

1 T(x)← SUFFIXTREE(x)

2 for each node v ∈ T(x) do

3 D(v)← word-depth of v

4 C(v)← number of terminal nodes in the subtree rooted at v

5 ALLABSENTAVOIDEDWORDS(x,ρ)

6 ALLOCCURRINGAVOIDEDWORDS(x,ρ)

3.3 Algorithms 62

ALLABSENTAVOIDEDWORDS(x,ρ)

1 A←MINIMALABSENTWORDS(x)

2 for each tuple < (i, j),α >∈A do

3 up← NODE(i, j)

4 if ISIMPLICIT(up) then

5 (u,v)← EDGE(up)

6 fp← C(v)

7 else fp← C(up)

8 ui← NODE(i+1, j)

9 if ISIMPLICIT(ui) then

10 (u,v)← EDGE(ui)

11 fi← fs← C(v)

12 else fi← C(ui)

13 us← CHILD(ui,α)

14 fs← C(us)

15 E← fp× fs/ fi

16 if (0−E)/(max{1,
√

E})≤ ρ then

17 REPORT(x[i . . j]α)

3.3 Algorithms 63

ALLOCCURRINGAVOIDEDWORDS(x,ρ)

1 N← an empty stack

2 PUSH(N,root(T(x)))

3 while N is not empty do

4 u← POP(N)

5 for each edge (u,v) of T(x) do

6 PUSH(N,v)

7 fp← C(v)

8 fi← C(suffix-link[v])

9 for each v′ = CHILD(v,α), α ∈ Σ do

10 fw← C(v′)

11 fs← C(CHILD(suffix-link[v],α))

12 E← fp× fs/ fi

13 if (fw−E)/(max{1,
√

E})≤ ρ then

14 REPORT(L(v′)[0 . .n−1])

3.3 Algorithms 64

3.3.3 Computation of All ρ-Overabundant words

Based on Fact 3.2.7 and Lemma 3.2.9 all ρ-overabundant words of a word x are factors

of x of the form ayb, where a,b ∈ Σ and y is the label of an explicit node of T(x). It thus

suffices to consider these words and check for each of them whether it is ρ-overabundant.

We can find the ones that have their longest proper prefix represented by an explicit

node in T(x) easily, by taking the suffix-link from that node during a traversal of the tree.

To find the ones that have their longest proper prefix represented by an implicit node we

use the following fact, which follows directly from the definition of the suffix-links of

the suffix tree.

Fact 3.3.7. Suppose aw, where a ∈ Σ and w ∈ Σ∗, is a factor of a word x and that w is

represented by an explicit node v in T(x), while aw by an implicit node along the edge

(u1,u2) in T(x). The suffix-link from u2 points to a node in the subtree of T(x) rooted

at v.

The algorithm first builds the suffix tree of word x, which can be done in time and

space O(n) for words over an integer alphabet [26]. It is also easy to compute D(v)

and C(v), for each node v of T(x), within the same time complexity (lines 1− 4 in

Algorithm OVERABUNDANTWORDS).

The algorithm then performs a traversal of T(x). When it first reaches a node

v, it considers L(v) as a potential longest proper prefix of ρ-overabundant words—

i.e. L(v) = wp = awi, where a ∈ Σ. By following the suffix-link to node u, which

represents the respective wi, and based on the first letter of the label of each outgoing

3.3 Algorithms 65

edge (v,q) from v, it computes the deviation for all possible factors of x of the form wpb,

where b ∈ Σ. (Note that we can answer all the CHILD(u,α) queries off-line in time

O(n) in total for integer alphabets.) It is clear that this procedure can be implemented

in time O(n) in total (lines 6−19).

Then, while on node v and based on Fact 3.3.7, the algorithm considers for every

outgoing edge (v,q), the implicit nodes along this edge that correspond to words

(potential wp’s) whose proper longest suffix (the respective wi) is represented by an

explicit node in T(x).

node v u = suffix-link[v]

q = CHILD(v,α) z = suffix-link[q]

node v u = suffix-link[v]

q = CHILD(v,α), label[q] = i label[z] = i+1

Fig. 3.1 The above figures illustrate the nodes (implicit or explicit) considered in a step
(lines 6-36) of Algorithm OVERABUNDANTWORDS. The figure on the left presents
the case where CHILD(v,α) is an internal node, while the right one the case that it
is a leaf. Black nodes represent implicit nodes along the edge (v,q) that we have to
consider as potential wp, and the red dotted line joins them with the respective (white)
explicit node that represents the longest suffix of this wp, i.e. wi.

Hence, when D(q)−D(v) > 1 the algorithm follows the suffix-link from node

q to node z. It then checks whether PARENT(z) = u. If not, then the word L(q)[0 . .

D(PARENT(z))] is represented by an implicit node along the edge (v,q) and hence

L(q)[0 . .D(PARENT(z))+ 1] has to be checked as a potential ρ-overabundant word.

3.3 Algorithms 66

After the check is completed, the algorithm sets z = PARENT(z) and iterates until

PARENT(z) = u. This is illustrated in Figure 3.1. By Theorem 3.2.10, the PARENT(z) =

u check will fail O(n) times in total. All other operations take time O(1) and hence this

procedure takes time O(n) in total (lines 20−36).

We formalise this procedure in Algorithm OVERABUNDANTWORDS, where we

assume that the suffix tree of x$ is built, where $ is a special letter, $ /∈ Σ. This forces all

terminal nodes in T(x) to be leaf nodes. We thus obtain the following result; optimality

follows directly from Lemma 3.2.12.

Theorem 3.3.8. Algorithm OVERABUNDANTWORDS solves problem ALLOVER-

ABUNDANTWORDSCOMPUTATION in time and space O(n), and this is time-optimal.

3.3 Algorithms 67

OVERABUNDANTWORDS(x,ρ)
1 T(x)← BUILDSUFFIXTREE(x)
2 for each node v ∈ T(x) do
3 D(v)← word-depth of v
4 C(v)← number of terminal nodes in the subtree rooted at v
5 for each node v ∈ T(x) (prefix node) do
6 ▷ Report ρ-overabundant words w such that wp is explicit
7 u← suffix-link[v] (infix node)
8 if D(v)> 1 and ISINTERNAL(v) then
9 fp← C(v)

10 fi← C(u)
11 if fi > fp and u ̸= ROOT(T(x)) then
12 for each child y of node v do
13 if not(ISTERMINAL(y) and D(y) =D(v)+1) then
14 fw← C(y)
15 α ← L(y)[D(v)+1]
16 fs← C(CHILD(u,α))
17 E← fp× fs/ fi

18 if (fw−E)/(max{1,
√

E})≥ ρ then
19 REPORT(L(y)[0 . .D(v)])
20 ▷ Report ρ-overabundant words w such that wp is implicit
21 for each child y of node v do
22 if D(y)>D(v)+1 then
23 if ISINTERNAL(y) then
24 z← suffix-link[y]
25 else i← label[y] (y is a terminal node)
26 z← node[i+1]
27 if D(z) =D(PARENT(z))+1 then
28 z← PARENT(z)
29 fw← fp← C(y)
30 while PARENT(z) ̸= u do
31 fi← C(PARENT(z))
32 fs← C(z)
33 E← fp× fs/ fi

34 if (fw−E)/(max{1,
√

E})≥ ρ then
35 REPORT(L(y)[0 . .D(PARENT(z))+1])
36 z← PARENT(z)

3.4 Implementation and Experiments 68

3.4 Implementation and Experiments

3.4.1 Avoided words

Algorithm AVOIDEDWORDS was implemented as a program to compute the ρ-avoided

words of length k in one or more input sequences; there is an option to run Algorithm

ALLAVOIDEDWORDS instead. The program was implemented in the C++ programming

language and developed under GNU/Linux operating system. Our program makes use of

the implementation of the compressed suffix tree available in the Succinct Data Structure

Library [32]. The input parameters are a (Multi)FASTA file with the input sequence(s),

an integer k > 2, and a real number ρ < 0. The output is a file with the set of ρ-avoided

words of length k per input sequence. The implementation is distributed under the

GNU General Public License, and it is available at http://github.com/solonas13/aw. The

experiments were conducted on a Desktop PC using one core of Intel Core i5-4690

CPU at 3.50GHz under GNU/Linux. The program was compiled with g++ version

4.8.4 at optimisation level 3 (-O3). We also implemented a brute-force approach for

the computation of ρ-avoided words. We mainly used it to confirm the correctness of

our implementation. Here we do not plot the results of the brute-force approach as it is

easily understood that it is orders of magnitude slower than our approach.

Experiment I. To evaluate the time performance of our implementation, synthetic

DNA (σ = 4) and protein (σ = 20) data were used. The input sequences were generated

using a randomised script. In the first experiment, our task was to establish that the

performance of the program does not essentially depend on k and ρ; i.e., the elapsed

time of the program remains unchanged up to some constant with increasing values of

http://github.com/solonas13/aw

3.4 Implementation and Experiments 69

k and decreasing values of ρ . As input datasets, for this experiment, we used a DNA

and a protein sequence both of length 1M (1 Million letters). For each sequence we

used different values of k and ρ . The results, for elapsed time are plotted in Fig. 3.3.

It becomes evident from the results that the time performance of the program remains

unchanged up to some constant. The longer time required for the protein sequences for

some value of k is explained by the increased number of branching nodes in this depth

in the corresponding suffix tree due to the size of the alphabet (σ = 20). To confirm this

we counted the number of nodes considered by the algorithm to compute the ρ-avoided

words for k = 4 and ρ =−10 for both sequences. The number of considered nodes for

the DNA sequence was 260 whereas for the protein sequence it was 1,585,510. Notice

that the suffix tree of a word of length n possesses between n+1 and 2n nodes.

Experiment II. In the second experiment, our task was to establish the fact that the

elapsed time and memory usage of the program grow linearly with n, the length of the

input sequence. As input datasets, for this experiment, we used synthetic DNA and

proteins sequences ranging from 1 to 128 M. For each sequence we used constant values

for k and ρ : k = 8 and ρ =−10. The results, for elapsed time and peak memory usage,

are plotted in Fig. 3.6. It becomes evident from the results that the elapsed time and

memory usage of the program grow linearly with n. The longer time required for the

protein sequences compared to the DNA sequences for increasing n is explained by the

increased number of branching nodes in this depth (k = 8) in the corresponding suffix

tree due to the size of the alphabet (σ = 20). To confirm this we counted the number of

nodes considered by the algorithm to compute the ρ-avoided words for n = 64M for

3.4 Implementation and Experiments 70

both the DNA and the protein sequence. The number of nodes for the DNA sequence

was 69,392 whereas for the protein sequence it was 43,423,082.

Experiment III. In the next experiment, our task was to evaluate the time and memory

performance of our implementation with real data. As input datasets, for this experiment,

we used all chromosomes of the human genome. Their lengths range from around 46M

(chromosome 21) to around 249M (chromosome 1). For each sequence we used k = 8

and ρ = −10. The results, for elapsed time and peak memory usage, are plotted in

Fig. 3.5. The results with real data confirm that the elapsed time and memory usage of

the program grow linearly with n.

Experiment IV. In an experiment with a prokaryote, we computed the set of avoided

words for k = 6 (hexamers) and ρ = −10 in the complete genome of E. coli and

sorted the output in increasing order of their deviation. The most avoided words were

extremely enriched in self-complementary (palindromic) hexamers. In particular, within

the output of 28 avoided words, 23 were self-complementary; and the 17 most avoided

ones were all self-complementary. For comparison, we computed the set of avoided

words for k = 6 and ρ =−10 from an eukaryotic sequence: a segment of the human

chromosome 21 (its leftmost segment devoid of N’s) equal to the length of the E. coli

genome. In the output of 10 avoided words, no self-complementary hexamer was found.

Our results confirm that the restriction endonucleases which target self-complementary

sites are not found in eukaryotic sequences [55].

Experiment V. Then, we proceeded to the examination of several collections of

CNEs obtained through multiple sequence alignment between the human and other

genomes. The detailed description of how those CNEs were identified could be found

3.4 Implementation and Experiments 71

in [52]. For each CNE of these datasets, a sequence stretch (surrogate sequence) of

non-coding DNA of equal length and equal GC content was taken at random from the

repeat-masked human genome. The CNEs of each collection were concatenated into

a single long sequence and the same procedure was followed for the corresponding

surrogates. Seven CNEs concatenates and the corresponding surrogate datasets have

been formed and used in this experiment. We have determined through the proposed

algorithm the avoided words for k = 10 (decamers) and ρ = −2 for these fourteen

datasets and the results are presented in Table 3.1. In Table 3.2, we show likewise for

k > 2 (all avoided words) and ρ =−2.

The first five CNEs collections have been composed through multiple sequence

alignment of the same set of genomes and they differ only in the thresholds of se-

quence similarity applied between the considered genomes: from 75-80 (the least

conserved CNEs, which thus are expected to serve less demanding functional roles)

to 95-100 which represent the extremely conserved non-coding elements (UCNEs or

CNEs 95-100) [52]. The remaining two collections have been composed under dif-

ferent constraints and have been derived after alignment of genomes belonging to the

Mammalian and Amniotic groups. In Tables 3.1 and 3.2, the last line shows the ratios

formed by the numbers of avoided words of each concatenate of surrogates divided by

the numbers of avoided words of the corresponding CNE dataset.

Two immediate results stem from inspection of Tables 3.1 and 3.2:

1. In all cases, the number of avoided words from the non-functional (surrogate)

concatenate of sequences far exceeds the corresponding number derived from the

corresponding CNE dataset.

3.4 Implementation and Experiments 72

2. In the case of datasets with increasing degree of similarity between aligned

genomes (from 75-80 to 95-100) the ratios of the numbers of avoided words show

a clear increasing trend.

Both these findings can be understood on the basis of the difference in functionality,

and thus tolerance to mutations, between CNE and surrogate datasets. One particularly

frequent source of mutations is the slippage error during DNA replication; see e.g.

reference [35]. Within a genomic sequence, this phenomenon causes the generation

and increase in length, during evolutionary time, of polypyrimidine and polypurine

nucleotide tracts. The expansion of those tracts is impeded at a considerable degree

in the case of sequences which serve a functional role (as CNEs do) due to several

constraints. On the other hand, in non-functional regions (as our surrogates mostly

are) this procedure ceases to be tolerated only when it reaches to the formation of

a polypyrimidine/polypurine tract with length affecting the proper folding or other

structural features of the chromatin. Then, selection eliminates it, while its longer proper

factors are tolerated in sufficient numbers within the sequence, thus resulting to an

avoided word. In support of this explanation is the observation that all lists of avoided

words found by our algorithm in concatenates of surrogates exhibit a considerable

enrichment in oligopurines and oligopyrimidines. Taking at random some examples,

for k = 10, we notice: AAAAAAAAAT, AAAAAACCAC, ACAAAAAAAA, CTCCTCTTTT, etc.

Our second observation, i.e. the positive correlation between (i) the paucity of

avoided decamers in CNEs collections and (ii) the similarity thresholds used for their

identification comes in accordance with the above argument. CNEs extracted under

a stricter requirement of sequence similarity between evolutionary distant species are

3.4 Implementation and Experiments 73

CNEs whose functionality is less tolerant to alterations due to random mutations in

general. Hence, they also tolerate less the propagation within their sequence of parasite

polypyrimidine/polypurine tracts too.

3.4 Implementation and Experiments 74

 0

 1

 2

 3

 4

 5

 6

 7

 8

 4 6 8 10 12 14 16 18

T
im

e
 [

s
]

Fixed Length k [bp]

DNA
Proteins

(a) Time for n = 1Mbp and ρ =−10

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 4 6 8 10 12 14 16 18

M
e

m
o

ry
 [

k
b

]

Fixed Length k [bp]

DNA
Proteins

(b) Memory for n = 1Mbp and ρ =−10

Fig. 3.2 Experiment I. Elapsed time and peak memory usage of Algorithm
AVOIDEDWORDS using synthetic DNA (σ = 4) and proteins (σ = 20) data of length
1MB for variable k.

3.4 Implementation and Experiments 75

 0

 1

 2

 3

 4

 5

-20-15-10-5 0

T
im

e
 [

s
]

Threshold [-]

DNA
Proteins

(a) Time for n = 1Mbp and k = 8

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

-20-15-10-5 0

M
e

m
o

ry
 [

k
b

]

Threshold [-]

DNA
Proteins

(b) Memory for n = 1Mbp and k = 8

Fig. 3.3 Experiment I. Elapsed time and peak memory usage of Algorithm
AVOIDEDWORDS using synthetic DNA (σ = 4) and proteins (σ = 20) data of length
1MB for variable ρ .

3.4 Implementation and Experiments 76

 0

 200

 400

 600

 800

 1000

 1200

 2e+07 4e+07 6e+07 8e+07 1e+08 1.2e+08

T
im

e
 [

s
]

Length n [bp]

DNA
Proteins

(a) Time for k = 8 and ρ =−10

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2e+07 4e+07 6e+07 8e+07 1e+08 1.2e+08

M
e

m
o

ry
 [

k
b

]

Length n [bp]

DNA
Proteins

(b) Memory for k = 8 and ρ =−10

Fig. 3.4 Experiment II. Elapsed time and peak memory usage of Algorithm
AVOIDEDWORDS using synthetic DNA (σ = 4) and proteins (σ = 20) data of length
1Mbp to 128Mbp.

3.4 Implementation and Experiments 77

 0

 20

 40

 60

 80

 100

 5e+07 1e+08 1.5e+08 2e+08 2.5e+08

T
im

e
 [

s
]

Length n [bp]

Human Genome

(a) Time for k = 8 and ρ =−10

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 4e+06

 5e+07 1e+08 1.5e+08 2e+08 2.5e+08

M
e

m
o

ry
 [

k
b

]

Length n [bp]

Human Genome

(b) Memory for k = 8 and ρ =−10

Fig. 3.5 Experiment III. Elapsed time and peak memory usage of Algorithm
AVOIDEDWORDS using all chromosomes of the human genome.

3.4 Implementation and Experiments 78

C
N

E
s

75
-8

0
C

N
E

s
80

-8
5

C
N

E
s

85
-9

0
C

N
E

s
90

-9
5

C
N

E
s

95
-1

00
M

am
m

al
ia

n
A

m
ni

ot
ic

Su
rr

.
1,

65
8

81
0

44
5

25
6

42
9

29
,6

77
6,

04
3

C
N

E
51

4
15

3
51

40
45

2,
82

1
62

3
R

at
io

3.
23

5.
29

8.
73

6.
40

9.
53

10
.5

2
9.

70

Ta
bl

e
3.

1
Th

e
nu

m
be

r
of

av
oi

de
d

w
or

ds
,f

or
k
=

10
an

d
ρ
=
−

2,
fo

r
ea

ch
co

nc
at

en
at

e
of

su
rr

og
at

es
(R

ow
1)

;t
he

nu
m

be
r

of
av

oi
de

d
w

or
ds

of
th

e
co

rr
es

po
nd

in
g

C
N

E
da

ta
se

t
(R

ow
2)

;a
nd

th
ei

r
ra

tio
(R

ow
3)

.

C
N

E
s

75
-8

0
C

N
E

s
80

-8
5

C
N

E
s

85
-9

0
C

N
E

s
90

-9
5

C
N

E
s

95
-1

00
M

am
m

al
ia

n
A

m
ni

ot
ic

Su
rr

.
10

,7
34

7,
20

2
5,

35
1

3,
84

9
4,

54
0

11
2,

18
1

22
,5

95
C

N
E

3,
20

7
1,

84
7

1,
29

6
1,

04
3

1,
03

0
17

,6
85

3,
63

5
R

at
io

3.
35

3.
90

4.
13

3.
69

4.
41

6.
34

6.
22

Ta
bl

e
3.

2
Th

e
nu

m
be

r
of

av
oi

de
d

w
or

ds
,f

or
k
>

2
an

d
ρ
=
−

2,
fo

r
ea

ch
co

nc
at

en
at

e
of

su
rr

og
at

es
(R

ow
1)

;t
he

nu
m

be
r

of
av

oi
de

d
w

or
ds

of
th

e
co

rr
es

po
nd

in
g

C
N

E
da

ta
se

t
(R

ow
2)

;a
nd

th
ei

r
ra

tio
(R

ow
3)

.

3.4 Implementation and Experiments 79

3.4.2 Overabundant words

Algorithm OVERABUNDANTWORDS was implemented as a program to compute the

ρ-overabundant words in one or more input sequences. The program was implemented

in the C++ programming language and developed under GNU/Linux operating system.

Our program makes use of the implementation of the compressed suffix tree available in

the Succinct Data Structure Library [32]. The input parameters are a (Multi)FASTA file

with the input sequence(s) and a real number ρ > 0. The output is a file with the set

of ρ-overabundant words per input sequence. The implementation is distributed under

the GNU General Public License, and it is available at http://github.com/solonas13/aw.

The experiments were conducted on a Desktop PC using one core of Intel Core i5-4690

CPU at 3.50GHz under GNU/Linux. The program was compiled with g++ version

4.8.4 at optimisation level 3 (-O3). We also implemented a brute-force approach to

confirm the correctness of our implementation. Here we do not plot the results of the

brute-force approach as it is easily understood that it is orders of magnitude slower than

our linear-time approach.

Experiment I. (Effectiveness) In the first experiment, our task was to establish

the effectiveness of the statistical model in identifying overabundant words. To this

end, we generated 25 random sequences of length n = 80,000 over the DNA alphabet

Σ = {A,C,G,T} (uniform distribution). Then for each of these sequences, we inserted a

random word w of length m = 6 in t random positions. We varied the value of t based on

the fact that in a random sequence of length n over an alphabet of size σ = |Σ|, where

letters are independent, identically uniformly distributed random variables, a specific

word of length m is expected to occur roughly r = n/σm times. We hence considered t

http://github.com/solonas13/aw

3.4 Implementation and Experiments 80

equal to r, 2r, 4r, 8r, and 16r. We then ran our program for each resulting sequence

to identify the ρ-overabundant words with ρ = 0.000001, and output the deviation

of the inserted word w, as well as the word wmax with the maximum deviation. The

inserted word w was reported as a ρ-overabundant word in all cases. Furthermore,

in many cases the word with the maximum deviation was w itself and in many other

cases one of its factors; this was true in all cases for t ≥ 80≈ 4r. Hence, the model is

effective in identifying words that are overabundant. The full results of this experiment

are presented in Table 3.3.

Experiment II. (Efficiency) Our task here was to establish the fact that the elapsed

time of the implementation grows linearly with n, the length of the input sequence.

As input datasets, for this experiment, we used synthetic DNA (σ = 4) and proteins

(σ = 20) sequences ranging from 1 to 128 M (Million letters). For each sequence we

used a constant value of ρ = 10. The results are plotted in Fig. 3.6. It becomes evident

from the results that the elapsed time of the program grows linearly with n. The longer

time required for the proteins sequences compared to the DNA sequences for increasing

n is explained by the dependence of the time required to answer queries of the form

CHILD(v,α) on the size of the alphabet (σ = 20 vs. σ = 4) in the implementation of

the compressed suffix tree we used.

Experiment III. (Real Application) Here we proceed to the examination of seven

collections of Conserved Non-coding Elements (CNEs) obtained through multiple

sequence alignment between the human and other genomes. Despite being located at

the non-coding part of genomes, CNEs can be extremely conserved on the sequence

level across organisms. Their genesis, functions and evolutionary dynamics still remain

3.4 Implementation and Experiments 81

enigmatic [34, 51]. The detailed description of how those CNEs were identified can be

found in [?]. For each CNE of these datasets, a sequence stretch (surrogate sequence)

of non-coding DNA of equal length and equal GC content was taken at random from

the repeat-masked human genome. The CNEs of each collection were concatenated

into a single long sequence and the same procedure was followed for the corresponding

surrogates. We have determined through the proposed algorithm the overabundant

words for k = 10 (decamers) and ρ = 3 for these fourteen datasets and the results

are presented in Table 3.4. Likewise, in Table 3.5, we show all overabundant words

(i.e. k > 2) for ρ = 3.

The first five CNE collections have been composed through multiple sequence

alignment of the same set of genomes (human vs. chicken; mapped on the human

genome) and they differ only in the thresholds of sequence similarity applied between

the considered genomes: from 75% to 80% (the least conserved CNEs, which thus

are expected to serve less demanding functional roles) to 95–100% which represent

the extremely conserved non-coding elements (UCNEs or CNEs 95–100) [?]. The

remaining two collections have been composed under different constraints and have

been derived after alignment of Mammalian and Amniotic genomes. In Tables 3.4

and 3.5, the last line shows the ratios formed by the numbers of overabundant words of

each concatenate of surrogates divided by the numbers of overabundant words of the

corresponding CNE dataset.

Inspecting data contained in Tables 3.4 and 3.5, first we observe in all cases that

absolute numbers of overabundant words drop from low- to high-conserved CNE

concatenates. This feature is shared by the corresponding concatenates of surrogate

3.4 Implementation and Experiments 82

sequences as evidenced along table rows from CNEs 75-80 to CNEs 95-100. This is

due to the considerable decrease in absolute numbers of the corresponding elements in

the human genome, which is reflected to the length of their concatenates. Note that in

genomic sequences, extreme conservation is always clearly less frequent than medium

conservation. As the studied sequences decrease in length, the numbers of overabundant

words also drop in each category (CNEs or surrogates). Consequently, the important

quantity is the ratio of these numbers between CNE and surrogate dataset. As amniotic

and mammalian CNEs are classes characterized by different conservation thresholds

(the former being much more conserved), they also present disparate overabundant

word numbers, again the corresponding ratios being the relevant quantities.

Two results directly related to our analysis stem from inspection of Tables 3.4

and 3.5:

1. In all cases, the number of overabundant words from the surrogate concatenate of

sequences far exceeds the corresponding number derived from the CNE dataset.

2. In the case of datasets with increasing degree of similarity between aligned

genomes (from 75-80 to 95-100), the ratios of the numbers of overabundant

words show a clear, increasing trend.

Both these findings can be understood on the basis of the difference in functionality

between CNE and surrogate datasets. As we briefly describe in the introduction, this

systematic difference (finding 1 above) is expected on the basis of the self-enhancing

elongation of relatively long homonucleotide tracts [41?], which occurs mainly in

the non-constrained parts of the genome, here the surrogate datasets. Therefore, we

expect and we do find that CNE datasets always have less overabundant words than their

3.4 Implementation and Experiments 83

corresponding surrogate. Moreover, finding 2 corroborates the proposed mechanism of

overabundance, as in CNE datasets 1-5 depletion in overabundant words quantitatively

follows the degree of sequence conservation. Inspection of the individual overabundant

words found in the surrogate datasets verifies that they largely consist of short repeats

of the types described in [?] and in [41]. There is an analogy of this finding with a

corresponding one, concerning the occurrence of avoided words in the same sequence

sets, which is described in [3].

 0

 500

 1000

 1500

 2000

 2x10
7

 4x10
7

 6x10
7

 8x10
7

 1x10
8

 1.2x10
8

T
im

e
 [

s
]

Length n

DNA
Proteins

Fig. 3.6 Elapsed time of Algorithm OVERABUNDANTWORDS using synthetic DNA
(σ = 4) and proteins (σ = 20) sequences of length 1M to 128M.

3.4 Implementation and Experiments 84

Ti
m

es
to

fi
ns

er
tin

g
w

20
40

80
16

0
32

0
w

TT
AC

AA
GT

GC
CC

CA
CT

TT
AG

TT
AC

AA
AC

AG
st

d(
w
)

2.
23

33
13

4.
14

30
15

5.
62

36
15

6.
01

03
27

5.
67

42
20

w
m

ax
CT

CC
TA

TG
GT

GC
CC

CA
CT

TT
AG

TT
A

AC
AG

st
d(

w
m

ax
)

3.
35

41
02

4.
14

30
15

5.
62

36
15

6.
90

07
40

9.
61

78
03

w
AA

TC
TG

AG
TC

GA
GA

AG
TC

TA
TC

TT
CA

AA
AA

st
d(

w
)

2.
03

42
33

2.
88

85
29

4.
45

64
68

5.
07

38
60

11
.0

71
17

0
w

m
ax

AT
TG

GG
G

TC
TG

TA
TG

GA
AG

TC
AT

CT
T

CA
AA

AA
st

d(
w

m
ax
)

3.
26

56
09

3.
27

27
27

4.
45

64
68

6.
11

56
12

11
.0

71
17

0
w

GT
AC

CA
GG

CG
TG

AA
GG

AT
GG

GT
CC

TT
CC

GG
st

d(
w
)

2.
18

71
70

3.
65

80
60

4.
42

81
89

5.
46

72
96

5.
25

64
09

w
m

ax
TC

TG
TG

CG
AC

GA
TA

CC
AA

GG
AT

GG
TC

C
TT

CC
G

st
d(

w
m

ax
)

3.
54

89
77

4.
00

00
00

4.
42

81
89

6.
78

77
71

9.
10

50
09

w
CC

AT
AG

GT
TG

AT
TG

AG
CG

AC
AT

TT
CT

TG
TA

st
d(

w
)

2.
47

06
81

2.
46

78
58

4.
21

45
44

5.
75

54
75

5.
36

24
35

w
m

ax
CA

GT
GG

TC
TT

TT
CC

T
TG

AG
C

AC
AT

T
TT

GT
A

st
d(

w
m

ax
)

3.
33

33
33

3.
36

82
26

5.
07

29
68

6.
37

62
77

9.
46

71
10

w
TC

GA
CA

CG
CT

TT
TA

CA
AC

TA
TT

AG
TG

AG
AT

st
d(

w
)

1.
53

10
83

2.
78

92
20

3.
55

29
02

4.
95

99
26

5.
12

49
76

w
m

ax
CT

TT
GC

T
AT

TA
CC

AC
AA

C
AT

TA
G

GA
CA

T
st

d(
w

m
ax
)

3.
30

81
95

3.
32

21
63

5.
65

34
79

6.
83

76
28

10
.0

12
31

6

Ta
bl

e
3.

3
Th

e
de

vi
at

io
n

of
th

e
ra

nd
om

ly
ge

ne
ra

te
d

in
se

rt
ed

w
or

d
w

,a
s

w
el

la
s

th
e

w
or

d
w

m
ax

w
ith

th
e

m
ax

im
um

de
vi

at
io

n.
Th

e
le

ng
th

of
ea

ch
of

th
e

25
ra

nd
om

ly
ge

ne
ra

te
d

se
qu

en
ce

s
ov

er
Σ
=
{A

,C
,G
,T
}

w
as

n
=

80
,0

00
,

th
e

le
ng

th
of

w
w

as
m

=
6,

an
d

ρ
=

0.
00

00
01

.I
n

gr
ee

n
ar

e
th

e
ca

se
s

w
he

n
th

e
w

or
d

w
ith

th
e

m
ax

im
um

de
vi

at
io

n
w

as
w

its
el

fo
r

on
e

of
its

fa
ct

or
s.

3.4 Implementation and Experiments 85

k
=

10
,

C
N

E
s

C
N

E
s

C
N

E
s

C
N

E
s

C
N

E
s

M
am

m
al

ia
n

A
m

ni
ot

ic
ρ
=

3
75

-8
0

80
-8

5
85

-9
0

90
-9

5
95

-1
00

Su
rr

1,
14

4
71

8
47

3
29

7
46

9
15

,4
70

2,
87

4
C

N
E

s
33

1
18

1
10

0
59

71
49

1
14

9
R

at
io

3.
46

3.
97

4.
73

5.
03

6.
61

31
.5

1
19

.2
9

Ta
bl

e
3.

4
N

um
be

r
of

ov
er

ab
un

da
nt

w
or

ds
fo

r
k
=

10
an

d
ρ
=

3.

k
>

2,
C

N
E

s
C

N
E

s
C

N
E

s
C

N
E

s
C

N
E

s
M

am
m

al
ia

n
A

m
ni

ot
ic

ρ
=

3
75

-8
0

80
-8

5
85

-9
0

90
-9

5
95

-1
00

Su
rr

5,
92

5
3,

79
8

2,
77

0
1,

94
8

2,
40

5
69

,0
22

12
,9

13
C

N
E

s
1,

37
3

77
8

51
2

39
0

40
3

7,
54

9
1,

40
1

R
at

io
4.

32
4.

88
5.

41
4.

99
5.

97
9.

14
9.

22

Ta
bl

e
3.

5
N

um
be

r
of

ov
er

ab
un

da
nt

w
or

ds
fo

r
k
>

2
an

d
ρ
=

3.

3.5 Conclusion 86

3.5 Conclusion

In this section we present a summary of what has been achieved. The systematic search

for avoided words is particularly useful for biological sequence analysis. We presented a

linear-time and linear-space algorithm for the computation of avoided words of length k

in a given sequence x. We suggested a modification to this algorithm so that it computes

all avoided words of x, irrespective of their length, within the same time complexity. We

also presented combinatorial results with regards to avoided words and absent words.

Moreover, we presented an O(n)-time and O(n)-space algorithm for computing all

overabundant words in a sequence x of length n over an integer alphabet. Our main

result is based on a new non-trivial combinatorial property of the suffix tree T of x: the

number of distinct factors of x whose longest infix is the label of an explicit node of T

is no more than 3n−4. We further show that the presented algorithm is time-optimal

by proving that O(n) is a tight upper bound for the number of overabundant words.

At last, we made available an implementation of our algorithm. Experimental results,

using both real and synthetic data, show its effectiveness and efficiency in biological

sequence analysis.

Chapter 4

Maximal Palindromes

In this chapter, we consider a special type of uncertain sequence called weighted string.

In a weighted string every position contains a subset of the alphabet and every letter

of the alphabet is associated with a probability of occurrence such that the sum of

probabilities at each position equals 1. Usually a cumulative weight threshold 1/z is

specified, and one considers only strings that match the weighted string with probability

at least 1/z. We generalize Alatabbi et al.’s solution for standard strings [2] to compute

maximal palindromes of a weighted string.

This chapter is organised as follows.

In Section 4.1 we introduce the background and contributions of maximal palin-

dromes, that show the motivation and most recent work on maximal palindromes.

In Section 4.2 we present the preliminaries, and give the definition and useful

properties of maximal palindromes.

In Section 4.3.1 we provide an O(nz)-time and O(nz)-space algorithm, where n

is the length of the weighted string and 1/z is the given threshold, to compute a

4.1 Background and Contributions 88

smallest maximal z-palindromic factorization of a weighted string. This factorization

has applications in hairpin structure prediction in a set of closely-related DNA or RNA

sequences. Along the way, we provide an O(nz)-time and O(nz)-space algorithm to

compute all maximal z-palindromes in weighted strings.

In Section 4.3.2 we provide an O(nz)-time and O(nz)-space algorithm to compute a

longest z-palindromes array in weighted strings.

In Section 4.4 we make available an implementation of our algorithm, using syn-

thetic data, show the efficiency of our implementation.

Finally, in Section 4.5, we give the conclusion of maximal palindromes.

4.1 Background and Contributions

4.1.1 Background

A palindrome is a sequence that reads the same from left to right and from right to

left. Detection of palindromic factors in texts is a classical and well-studied problem

in algorithms on strings and combinatorics on words with a lot of variants arising

out of different practical scenarios [8] [46] [53] [43] [25]. In molecular biology, for

instance, palindromic sequences are extensively studied: they are often distributed

around promoters, introns, and untranslated regions, playing important roles in gene

regulation and other cell processes (see e.g. [3]). In particular these are strings of the

form ss̄R, also known as complemented palindromes, occurring in single-stranded DNA

or, more commonly, in RNA, where s is a string and s̄R is the reverse complement of s.

In DNA, C-G are complements and A-T are complements; in RNA, C-G are complements

4.1 Background and Contributions 89

and A-U are complements. For example, AGTACTTCATGA is a standard palindrome and

TAGTCGACTA is a complemented palindrome.

A string x = x[0]x[1] . . .x[n−1] is said to have an initial palindrome of length k if its

prefix of length k is a palindrome. Manacher first discovered an on-line algorithm that

finds all initial palindromes in a string [43]. Later Apostolico et al observed that the

algorithm given by Manacher is able to find all maximal palindromic factors in the string

in O(n) time [8]. Gusfield gave an off-line linear-time algorithm to find all maximal

palindromes in a string and also discussed the relation between biological sequences and

gapped palindromes (i.e. strings of the form svs̄R where the complemented palindromes

are separated by v) [33]. Searching for gapped palindromes has also been considered

and efficient algorithms for this computation are known [40].

The problem that gained significant attention recently is the factorization of a

string x of length n into a sequence of palindromes. We say that x1,x2, . . . ,xℓ is a

(maximal) palindromic factorization of string x, if every xi is a (maximal) palindrome,

x = x1x2 . . .xℓ, and ℓ is minimal, which means the number of xi is minimal. In biological

applications we need to factorise a sequence into palindromes in order to identify

hairpins, patterns that occur in single-stranded DNA or, more commonly, in RNA.

Alatabbi et al. gave an off-line O(n)-time algorithm for finding a maximal palindromic

factorization of x [2]. Fici et al. presented an on-line O(n logn)-time algorithm for

computing a palindromic factorization of x [27]; a similar algorithm was presented by I

et al. [37]. In addition, Rubinchik and Shur [54] devised an O(n)-sized data structure

that helps locating palindromes in x; they also showed how it can be used to compute a

palindromic factorization of x in O(n logn) time.

4.1 Background and Contributions 90

(a) Hairpins common to Malvastrum yellow vein virus, Cotton leaf curl Multan virus isolate,
and Bhendi yellow vein India virus; figure taken from [48].

(b) Hairpin represented as a weighted string: C[(A,0.5),(G,0.5)]ACC (top) and
GTT[(G,0.5),(T,0.5)] G (bottom).

Fig. 4.1 Hairpins that are common to a set of closely-related sequences can be repre-
sented compactly as weighted strings.

4.1 Background and Contributions 91

In this work, we consider a special type of uncertain sequence called weighted string

(also known as position weight matrix or PWM). In a weighted string X every position

contains a subset of the alphabet and every letter of the alphabet is associated with a

probability of occurrence such that the sum of probabilities at each position equals 1.

For example, we write X = a[(a,0.5),(b,0.5)] . . . to denote that the probability of

occurrence of a at the first position is 1 while at the second one is 1/2, and so on. X

thus represents many different strings, each with probability of occurrence equal to

the product of probabilities of its letters at subsequent positions of X . A great deal of

research has been conducted on weighted strings for indexing [13, 38], for alignments [5,

23], for pattern matching [14, 15, 39], and for finding regularities [11, 16].

4.1.2 Contributions

Muhire et al. [48] showed how a set of virus species can be clustered using multiple

sequence alignment (MSA) to obtain subsets of viruses that have common hairpin

structure (see Fig. 4.1(a)). A more compact representation of an MSA can be trivially

obtained using weighted strings (see Fig. 4.1(b)). The non-trivial computational problem

thus arising is how to factorize a weighted string in a sequence of palindromes.

Usually a cumulative weight threshold 1/z is specified, and one considers only

strings that match the weighted string with probability at least 1/z. We generalize

Alatabbi et al.’s solution for standard strings [2] to compute maximal palindromes of a

weighted string. In particular, we provide an O(nz)-time and O(nz)-space algorithm,

where n is the length of the weighted string and 1/z is the given threshold. Along the

way, we provide an O(nz)-time and O(nz)-space algorithm for computing all maximal

4.2 Preliminaries 92

palindromes in weighted strings. Moreover, we provide an O(nz)-time and O(nz)-space

algorithm to compute a longest z-palindromes array in weighted strings.

4.2 Preliminaries

4.2.1 Definitions and Notations

We denote the reversal of x by string xR, i.e. xR = x[n−1]x[n−2] . . .x[0]. The concate-

nation of two strings x and y is the string of the letters of x followed by the letters of y.

It is denoted by x.y or, more simply, by xy.

A string w is said to be a palindrome if and only if w = wR. If factor x[i . . j],

0≤ i≤ j ≤ n−1, of string x[0 . .n−1] is a palindrome, then i+ j
2 is the center of x[i . . j]

in x and j−i+1
2 is the radius of x[i . . j]. Moreover, x[i . . j] is called a palindromic factor.

It is said to be a maximal palindrome if there is no other palindrome in w with center i+ j
2

and larger radius. A maximal palindrome w can be encoded as a pair (c,r), where c is

the center of w and r is the radius of w. By MP(x), we denote the set of center-distinct

maximal palindromes of string x. The sequence x1,x2, . . . ,xℓ of ℓ non-empty strings

is a (maximal) palindromic factorization of a string x if all strings xi are (maximal)

palindromes, x = x1x2 . . .xℓ, and ℓ is minimal. Note that any single letter is a palindrome

and, hence, every string can always be factorized into palindromes. However, not every

string can be factorized into maximal palindromes; e.g. consider x = abaca, we could

not find any maximal palindrome factorization on abaca.

Example 4.2.1. Given a string x = abacbabcbb of length 10, a maximal palindromic

factorization of x is x[0 . .2],x[3 . .7],x[8 . .9] = aba,cbabc,bb.

4.2 Preliminaries 93

Definition 4.2.1. A weighted string X on an alphabet Σ is a finite sequence of n sets.

Every X [i], for all 0 ≤ i < n, is a set of ordered pairs (s j,πi(s j)), where s j ∈ Σ and

πi(s j) is the probability of having letter s j at position i. Formally, X [i]={(s j,πi(s j)) |

s j ̸= sl for j ̸= l, and Σπi(s j) = 1}. A letter s j occurs at position i of X if and only if

the occurrence probability of letter s j at position i,πi(s j), is greater than 0.

Note that for clarity we use upper case letters for weighted strings, e.g. X , and lower

case letters, e.g. x, for standard strings.

Definition 4.2.2. A string u of length m is a factor of a weighted string X if and only if

it occurs at starting position i with cumulative probability ∏
m−1
j=0 πi+ j(u[j])> 0. Given

a cumulative weight threshold 1/z ∈ (0,1], we say factor u is z-valid, if it occurs at

position i with cumulative probability ∏
m−1
j=0 πi+ j(u[j])≥ 1/z.

Example 4.2.2. Let X = ab[(a,0.5),(b,0.5)][(a,0.5),(b,0.5)]bab and 1/z =

1/8. String u = baaba is a z-valid factor of X since u occurs at position 1 with

cumulative probability 1/4≥ 1/z = 1/8.

Definition 4.2.3. Given a cumulative weight threshold 1/z ∈ (0,1], a weighted string

X of length m is a z-palindrome if and only if there exists at least one z-valid factor u of

X of length m which is a palindrome.

4.2 Preliminaries 94

Example 4.2.3. Let X = a[(a,0.5),(b,0.5)]bab[(a,0.4),(b,0.6)]a of length

m = 7 and 1/z = 1/8. u = abbabba is a z-valid factor of X of length 7 and u is a

palindrome. Hence we say X is a z-palindrome.

If the weighted string X [i . . j] is a z-palindrome, we analogously define the number

i+ j
2 as the center of X [i . . j] in X and j−i+1

2 as the radius of X [i . . j].

Definition 4.2.4. Let X be a weighted string of length n, 1/z ∈ (0,1] a cumulative

weight threshold, and X [i . . j], where 0≤ i≤ j ≤ n−1, a z-palindrome. Then X [i . . j]

is a maximal z-palindrome if there is no other z-palindrome in X with center i+ j
2 and

larger radius.

A maximal z-palindrome can thus also be encoded as a pair (c,r).

Definition 4.2.5. Let X be a weighted string of length n, 1/z ∈ (0,1] a cumulative

weight threshold, and X [i . . j], where 0≤ i≤ j ≤ n−1, a z-palindrome. Then X [i . . j] is

a longest z-palindrome if there is no other longer z-palindrome in X ending at position

j.

We study the following computational problems.

4.2 Preliminaries 95

SMALLEST MAXIMAL z-PALINDROMIC FACTORIZATION

Input: A weighted string X of length n and a cumulative weight threshold 1/z ∈

(0,1]

Output: X1, X2, . . . , Xℓ, if any, such that X = X1X2 . . .Xℓ, Xi, for all 1≤ i≤ ℓ, is a

maximal z-palindrome, and ℓ is minimal.

We call this output sequence X1, X2, . . . , Xℓ, i.e. when ℓ is minimal, a smallest

maximal z-palindromic factorization of X .

Example 4.2.4. Given a weighted string

X = a[(a,0.5),(b,0.5)]bacc[(a,0.3),(b,0.7)][(a,0.6),(b,0.4)]ba,

and a cumulative weight threshold 1/z = 1/5, a smallest maximal z-palindromic factor-

ization of X is

a[(a,0.5),(b,0.5)]ba,c,c,[(a,0.3),(b,0.7)],[(a,0.6),(b,0.4)]ba.

4.2 Preliminaries 96

LONGEST z-PALINDROMIC ARRAY

Input: A weighted string X of length n and a cumulative weight threshold 1/z ∈

(0,1]

Output: Longest z-palindromic array of X, X [i . . j] where 0≤ i≤ j ≤ n−1, such

that X [0], X [i . .1], X [i . .2], X [i . .3],..., X [i . .n−1], for 0≤ j ≤ n−1, each X [i . . j]

is a longest z-palindrome in X ending at position j.

Example 4.2.5. Given the weighted string X =

a[(a,0.5),(b,0.5)][(b,0.5),(c,0.5)]ba[(a,0.5),(b,0.5)]c[(a,0.5),(c,0.5)]aa

of length n = 10 and a cumulative weight threshold 1/z = 1/4, a longest z-palindromic

array of X is as follows:

X [0] = a,

X [0 . .1] = a[(a,0.5),(b,0.5)],

X [1 . .2] = [(a,0.5),(b,0.5)][(b,0.5),(c,0.5)],

X [1 . .3] = (a,0.5),(b,0.5)][(b,0.5),(c,0.5)]b,

X [0 . .4] = a[(a,0.5),(b,0.5)][(b,0.5),(c,0.5)]ba,

X [3 . .5] = ba[(a,0.5),(b,0.5)],

X [2 . .6] = [(b,0.5),(c,0.5)]ba[(a,0.5),(b,0.5)]c,

X [5 . .7] = [(a,0.5),(b,0.5)]c[(a,0.5),(c,0.5)],

X [4 . .8] = a[(a,0.5),(b,0.5)]c[(a,0.5),(c,0.5)]a,

X [7 . .9] = [(a,0.5),(c,0.5)]aa.

4.2 Preliminaries 97

4.2.2 Useful Properties of Maximal Palindromes

Fact 4.2.1 ([33]). Given a string x, MP(x) can be computed in time O(|x|).

Example 4.2.6. Given string x = abaab, we construct string x#xR$= abaab#baaba$.

All maximal palindromes can be computed using the suffix tree of x#xR$ (See Fig-

ure 4.2). Table 4.1 shows all odd-length palindromes and Table 4.2 shows all even-length

palindromes, where lcp(i, j) denotes the longest common prefix of the suffixes starting

at positions i and j of x#xR$.

Index i Index j lcp(i, j) Palindrome Center Length

0 10 a a 0 1
1 9 ba aba 1 3
2 8 a a 2 1
3 7 a a 3 1
4 6 b b 4 1

Table 4.1 Computing odd-length maximal palindromes of x = abaab using the suffix
tree of x#xR$= abaab#baaba$.

4.2 Preliminaries 98

Index i Index j lcp(i, j) Palindrome Center Length

1 10 ε 0.5 0
2 9 ε 1.5 0
3 8 ab baab 2.5 4
4 7 ε 3.5 0

Table 4.2 Computing even-length maximal palindromes of x = abaab using the suffix
tree of x#xR$= abaab#baaba$.

7

a$

2

#baaba$

ab

8

$

0

ab#baaba$

a

3

#baaba$

b

10

$

a

11

$

5

#baaba$

6

a$

1

#baaba$

ab

9

$

a

4

#baaba$

b

Fig. 4.2 Suffix tree of x#xR$= abaab#baaba$; double-lined nodes represent terminal
nodes labeled with the associated indices.

4.3 Algorithms 99

4.3 Algorithms

4.3.1 Computation of Smallest Maximal z-Palindromic Factoriza-

tion

In this section, we present an algorithm to compute a smallest maximal z-palindromic

factorization of a given weighted string X of length n for a given cumulative thresh-

old 1/z ∈ (0,1]. Our algorithm follows the one of Alatabbi et al. for computing a

smallest maximal palindromic factorization of standard strings [2] with some crucial

modifications.

Why the algorithm of Alatabbi et al. cannot be applied for weighted strings.

Odd-length maximal palindromes centered at position i of a standard string x can

be computed by finding the longest common prefix of suffixes x[i . .n−1] and xR[n−

i−1 . .n−1]. The longest common prefix of two suffixes can be found in O(1) time

after O(n)-time pre-processing of the suffix tree of x#xR$, where #,$ /∈ Σ, using LCA

queries; using a similar computation, we can find all even-length maximal palindromes

[33].

The length of the longest common z-valid prefix of any two suffixes of our weighted

string X can be computed in time O(z) after O(nz)-time pre-processing using the suffix-

tree-based Weighted Index (WI) of [13] (inspect also Figure 4.3). However, this does

not guarantee that the two corresponding common z-valid prefixes shall form a maximal

z-palindrome: the two prefixes are z-valid by definition of the WI but their concatenation

that forms a palindrome may not be z-valid because its occurrence probability may

drops below 1/z.

4.3 Algorithms 100

We hence proceed as follows. By MP(X ,z), we denote the set of center-distinct

maximal z-palindromes of our weighted string X . Recall that we can represent a z-

palindrome with center c and radius r by (c,r). For each position of X we define the

heaviest letter as the letter with the maximum probability (breaking ties arbitrarily). We

consider the string obtained from X by choosing at each position the heaviest letter. We

call this the heavy string of X .

We define a collection ZX of z SPECIAL-WEIGHTED STRINGS of X , denoted by Zk,

0≤ k < z. Each Zk is of length n and it has the following properties. Each position j in

Zk contains at most one letter with positive probability and it corresponds to position j

in X . If f is a z-valid factor occurring at position j of X , then f occurs at position j in

some of the Zk’s. The combinatorial observation telling us that this is possible is due to

Barton et al [12]. For clarity of presentation we write Zk’s as standard strings.

4.3 Algorithms 101

9 4
5

6

7

2
4

0
2

0

2
2

8 3
4

5 1
3

1
1

1
3

4
0

0

3

a

$

a

a
aba$

ba$
ba$

b

a

$
a

aaba$

ba$

b a
$

aba$
b$

b aaaba
$

baaba
$

b

a

$
a

a
aba$

ba$
ba$

b a

a
aaba$

ba$
baaba$

b aaaba
$

baaba
$

b

a

a

aba$

ba$

b a$

b$

baaba$

Fi
g.

4.
3

Th
e

W
I

fo
r

X
an

d
1/

z
sh

ow
n

in
E

xa
m

pl
e

4.
3.

1
(l

ab
el

s
of

ed
ge

s
to

te
rm

in
al

no
de

s
ar

e
ap

pe
nd

ed
w

ith
a

le
tte

r
$
/∈

Σ
fo

r
co

nv
en

ie
nc

e)
.

4.3 Algorithms 102

Example 4.3.1. Given the weighted string

X = [(a,0.5),(b,0.5)]bab[(a,0.5),(b,0.5)][(a,0.5),(b,0.5)]aaba

and a cumulative weight threshold 1/z = 1/4, we have:

ZX = {Z0,Z1,Z2,Z3}= {ababaaaaba,ababbaaaba,bbababaaba,bbabbbaaba}.

Lemma 4.3.1 ([12]). Given a weighted string X of length n and a cumulative weight

threshold 1/z ∈ (0,1], the z SPECIAL-WEIGHTED STRINGS of X can be constructed in

time and space O(nz).

Proof. We first construct the WI of X in time and space O(nz) [13]. We begin from

all the leaf nodes labelled with index 0 and initiate z/p strings for each node with a

path-label having an occurrence probability 1/p (inspect also Figure 4.3).

1. Say we are considering leaf node u with index 0. We read the depth D(u) and the

path-label L(u). We set Zu[0 . .D(u)−1] = L(u).

2. We follow the suffix-link of the parent of u.

3. We find the node u′ such that L(u′) = Zu[1 . .D(u)−1] by progressing down the

edges in the tree, reading only the first letter of each edge, and keeping track of

the current depth until the desired depth is reached.

4. Finally, we continue by spelling letters downwards the tree until we reach a leaf

node v with the next index 1. At the same time, we append these letters to Zu. In

4.3 Algorithms 103

order to decide which path to take at explicit nodes for a certain Zu, we check that

the occurrence probability of the factor starting at position 1 is at least 1/z; and

we have only σ = O(1) letters to check. This is easy to maintain by accessing

the associated occurrence probabilities in X .

5. When we arrive at node v, we follow the suffix-link of the parent of v, and repeat

Steps 3-5, until we have that |Zu|= n.

Let us analyse the time complexity of this procedure. It is clear that the total time

required for Steps 1, 2, 4, and 5 for constructing one special-weighted string Zu is

bounded by O(n). Step 3 takes time proportional to the number of nodes we skip at

each iteration; this is variable in each step but amortizes over the entire string giving

us a total of O(n) for this step and therefore for the whole process. It suffices to note

that the number of distinct leafs with the same index i in WI are at most z [13]. This is

because there exist at most z right-maximal z-valid factors starting at any position i of

X [4]. We thus obtain the result.

Fact 4.3.2. Given a weighted string X of length n and a cumulative weight threshold

1/z ∈ (0,1], we have that MP(X ,z)⊆MP(Z0,z)∪MP(Z1,z)∪ . . .∪MP(Zz−1,z).

Proof. Suppose U = X [i . . j] is a maximal z-palindrome of center c = i+ j
2 and radius

r = j−i+1
2 . By definition of U there must exist a z-valid palindromic factor u of U of

radius r. Therefore, by definition of the SPECIAL-WEIGHTED STRINGS of X , u must be

a z-valid factor of some Zk and thus (c,r) ∈MP(Zk,z).

4.3 Algorithms 104

There are two steps for the correct computation of MP(X ,z). First, we compute the

set Ak of all maximal palindromes of the heavy string of Zk, for all 0 ≤ k < z, using

Fact 4.2.1. We then need to adjust the radius of each reported palindrome for Zk to

ensure that it is z-valid in X (the center should not change). To achieve this, we compute

an array Rk, for each Zk, such that Rk[2c] stores the radius of the longest factor at center

c in Zk which is a z-valid factor of X at center c, e.g. Rk[2c] = j−i+1
2 , c = (i+ j)/2, if

Zk[i . . j] is a z-valid factor of X centered at c, and Zk[i−1 . . j+1] is not a z-valid factor

of X . By Fact 4.3.2, we cannot guarantee that all (c,r) in MP(Zk,z) are necessarily in

MP(X ,z). Hence, the second step is to compute MP(X ,z) from MP(Zk,z) by taking

the maximum radius per center and filtering out everything else.

Lemma 4.3.3. Given a weighted string X of length n, a cumulative weight threshold

1/z ∈ (0,1], and the SPECIAL-WEIGHTED STRINGS ZX of X , each Rk, 0≤ k < z, can

be computed in time O(n).

Proof. By < i,c, j >, where 0 ≤ i ≤ c ≤ j ≤ n− 1, we denote a factor of Zk that

has starting position i, ending position j and center c = (i+ j)/2. We further denote

the occurrence probability of < i,c, j > in Zk by Π<i,c, j> = ∏
j
q=i πq(Zk[q]). A factor

< i,c, j > of Zk is called a special maximal z-valid factor of Zk if Π<i,c, j> ≥ 1/z and

Π<i−1,c, j+1> < 1/z.

For each Zk, we compute Rk from left to right. If we have Π<0,0,0> ≥ 1/z, we set

Rk[0] = 1
2 . If not, we go to the next position until we find a valid letter, say at position ℓ;

then we have Rk[0] = · · ·= Rk[2ℓ−1] = 0 and Rk[2ℓ] = 1
2 . Note that this corresponds

to the first special maximal z-valid factor. Suppose we have a special maximal z-valid

4.3 Algorithms 105

factor < i,c, j > and Rk[2c] = j−i+1
2 , we show how to compute Rk[2c+ 1], which

is the length of the special maximal z-valid factor at center c′ = 2c+1
2 . We add the

letter after < i,c, j >, so we have < i,c′, j+ 1 >. We compute Π<i,c′, j+1>, which is

simply Π<i,c, j>×π j+1(Zk[j+ 1]). If Π<i,c′, j+1> ≥ 1/z, the special maximal z-valid

factor at center c′ should be < i,c′, j + 1 > and Rk[2c + 1] = Rk[2c] + 1
2 = j−i+2

2 .

Factor < i−1,c′, j+2 > cannot be z-valid, since if Π<i−1,c′, j+2> ≥ 1/z, we must have

Π<i−1,c, j+1> ≥ Π<i−1,c′, j+2> ≥ 1/z, which gives a longest special maximal z-valid

at center c, namely < i− 1,c, j + 1 >, a contradiction. For Π<i,c′, j+1> < 1/z, the

special maximal z-valid factor at center c′ is < i+1,c′, j > since it always holds that

Π<i+1,c′, j> ≥Π<i,c, j> ≥ 1/z. Therefore Rk[2c+1] = Rk[2c]− 1
2 = j−i

2 .

Each center needs only to be considered once and there exist 2n−1 distinct centers

in each Zk. Therefore each Rk can be computed in O(n) time.

Fact 4.3.4 (Trivial). Let x[i . . j] be a palindrome of string x with center c and let u,

|u|< j− i+1, be a factor of x with center c. Then u is also a palindrome.

After computing Ak and Rk, we perform the following check for each palindrome

(c,r) ∈Ak. If r > Rk[2c], the palindrome with radius r is not z-valid but the factor with

radius Rk[2c] is z-valid and maximal (by definition) and palindromic (by Fact 4.3.4); if

r ≤ Rk[2c], the palindrome with radius ri must be z-valid and it is maximal. Therefore

we set (c,r) ∈MP(Zk,z), such that r = min{r,Rk[2c]}, 0≤ 2c≤ 2n−2, and r ≥ 1/2.

4.3 Algorithms 106

To go from MP(Zk,z) to MP(X ,z) we need to take the maximum radius for each

center. Therefore for each center c/2, 0≤ c≤ 2n−2, we set (c/2,r) ∈MP(X ,z), such

that r = max{rk|(c/2,rk) ∈MP(Zk,z),0≤ k < z}.

Theorem 4.3.5. Given a weighted string X of length n and a cumulative weight thresh-

old 1/z ∈ (0,1], all maximal z-palindromes in X can be computed in time and space

O(nz).

After the computation of MP(X ,z), we are in a position to apply the algorithm by

Alatabbi et al [2] to find a smallest maximal z-palindromic factorization. We define a list

F such that F[i], 0≤ i≤ n−1, stores the set of the lengths of all maximal z-palindromes

ending at position i in X . We also define a list U such that U[i], 0≤ i≤ n−1, stores the

set of positions j, such that j+1 is the starting position of a maximal z-palindrome in X

and i is the ending position of this z-palindrome. Thus for a given F[i] = {ℓ0, ℓ1, . . . , ℓq},

we have that U[i] = {i−ℓ0, i−ℓ1, . . . , i−ℓq}. Note that U[i] can contain a “−1” element

if there exists a maximal z-palindrome starting at position 0 and ending at position i.

Note that the number of elements in MP(X ,z) is at most 2n−1, and, hence, F and U

can contain at most 2n−1 elements. The lists F and U can be computed trivially from

MP(X ,z).

Finally, we define a directed graph GX = (V,E), where V = {i | −1 ≤ i ≤ n− 1}

and E= {(i, j) | j ∈ U[i]}. Note that (i, j) is a directed edge from i to j. We do a breath

first search on GX assuming the vertex n−1 as the source and identify the shortest path

from n−1 to −1, which gives a factorization.

4.3 Algorithms 107

We formally present the above as Algorithm SMPF for computing a smallest

maximal z-palindromic factorization and obtain the following result.

Theorem 4.3.6. Given a weighted string X of length n and a cumulative weight thresh-

old 1/z ∈ (0,1], Algorithm SMPF correctly solves the problem SMALLEST MAXIMAL

z-PALINDROMIC FACTORIZATION in time and space O(nz).

Proof. The correctness follows from Theorem 4.3.5 for computing MP(X ,z) and from

the correctness of the algorithm in [2] for computing a smallest maximal palindromic

factorization.

By Lemma 4.3.1, the construction of the SPECIAL-WEIGHTED STRINGS can be

done in time and space O(nz). Computing Ak and Rk, for all 0≤ k < z, can be done in

total time O(nz) by Fact 4.2.1 and Lemma 4.3.3, respectively. From there on, computing

MP(X ,z) can be done in time O(nz). The lists F and U can be computed in time O(n)

since the size of MP(X ,z) is no more than 2n−1. There exist in total n+1 vertices in

GX . The number of edges E depends on U, which contains no more than 2n elements;

we have E= O(n). Therefore, the construction of GX and the breadth first search can

be done in time O(V+E) = O(n). The identification of the desired path can also be

done easily if we do some simple bookkeeping during the breadth first search. The total

running time of Algorithm SMPF is thus O(nz) and the space required is O(nz).

4.3 Algorithms 108

1 Algorithm SMPF(X ,n,1/z)

2 Construct the set ZX of SPECIAL-WEIGHTED STRINGS of X ;
3 foreach Zk ∈ ZX do
4 Ak← maximal palindromes of the heavy string of Zk;
5 Compute Rk for Zk;
6 MP(Zk,z)← EMPTYLIST();
7 foreach (c,r) ∈Ak do
8 r←min{r,Rk[2c]};
9 if r ≥ 1

2 Insert (c,r) in MP(Zk,z);

10 MP(X ,z)← EMPTYLIST();
11 foreach c ∈ [0,2n−2] do
12 r←max{rk|(c/2,rk) ∈MP(Zk,z),0≤ k < ⌊z⌋};
13 Insert (c/2,r) in MP(X ,z);

14 F← EMPTYLIST();
15 U← EMPTYLIST();
16 foreach (c,r) ∈MP(X ,z) do
17 j← ⌊c+ r⌋;
18 Insert 2r in F[j];
19 Insert c− r in U[j];

20 Construct directed graph GX = (V,E), where
V= {i | −1≤ i≤ n−1}, E= {(i, j) | j ∈ U[i]} and (i, j) is a
directed edge from i to j;

21 Breadth first search on GX assuming the vertex n−1 as the source;
22 Identify the shortest path

P≡ ⟨n−1 = pℓ, pℓ−1, . . . , p2, p1, p0 =−1⟩;
23 Return X [0 . . p1],X [p1 +1 . . p2], . . . ,X [pℓ−1 +1 . . pℓ];

4.3 Algorithms 109

Example 4.3.2. Given the weighted string X =

a[(a,0.5),(b,0.5)][(b,0.5),(c,0.5)]ba[(a,0.5),(b,0.5)]c[(a,0.5),(c,0.5)]aa

of length n = 10 and a cumulative weight threshold 1/z = 1/4, we proceed as follows.

First, we construct the SPECIAL-WEIGHTED STRINGS of X : ZX = {Z0,Z1,Z2,Z3}=

{aabbaacaaa,aacbaaccaa,abbbabcaaa,abcbabccaa} (see Appendix A for the con-

struction using the WI). Second, we compute Ak and Rk, and then we compute

MP(Zk,z), 0 ≤ k < ⌊z⌋. From MP(Zk,z), we compute MP(X ,z), F, and U (see

Table 4.3). Finally, the graph GX is constructed from U; and the shortest path P =

⟨9,6,1,−1⟩ is found (see Fig. 4.4; corresponding edges are shown as dashed edges).

The output sequence is thus X [0 . .1],X [2 . .6],X [7 . .9] = a[(a,0.5),(b,0.5)],

[(b,0.5),(c,0.5)]ba[(a,0.5),(b,0.5)]c, [(a,0.5),(c,0.5)]aa.

4.3 Algorithms 110

Index MP(X ,z) j F[j] U[j]

0 (0, 0.5) 0 {1} {−1}
1 (0.5, 1)
2 (1, 0.5) 1 {1,2} {0,−1}
3 (1.5, 1)
4 (2, 2.5) 2 {2} {0}
5 (2.5, 2)
6 (3, 0.5) 3 {0,1} {3,2}
7 (3.5, 0)
8 (4, 2.5) 4 {4,5} {0,−1}
9 (4.5, 1)

10 (5, 0.5) 5 {0,1,2} {5,4,3}
11 (5.5, 0)
12 (6, 2.5) 6 {5} {1}
13 (6.5, 3)
14 (7, 0.5) 7 {1} {6}
15 (7.5, 1)
16 (8, 1.5) 8 {2,5} {6,3}
17 (8.5, 1)
18 (9, 0.5) 9 {1,2,3} {8,7,6}

Table 4.3 Computing F and U from MP(X ,z) for X and 1/z shown in Example 4.3.2.

9 8 7 6 5 4 3 2 1 0 -1

Fig. 4.4 The graph GX for X and 1/z shown in Example 4.3.2.

4.3 Algorithms 111

4.3.2 Computation of Longest z-Palindromic Array

By Theorem 4.3.5, given a weighted string X of length n and a cumulative weight

threshold 1/z ∈ (0,1], all maximal z-palindromes in X can be computed in time and

space O(nz). Now we present the Algorithm LPA for computing longest z-palindromic

array. We also define a list PA such that PA[j], 0 ≤ j ≤ n−1, stores the position i
′
,

such that i
′
+1 (or PA[j]+ 1) is the starting position of a longest z-palindrome in X

and j is the ending position of this z-palindrome. Note that PA[j] is either a position

which holds a maximal palindrome starting at position i
′
+1 and ending at position j,

or a position PA[j+1]+1 which presents the longest sub-palindrome of a palindrome

ending at position j+ 1 with the same center. As wll known, if X [i− 1 . . j+ 1], for

j− i > 0, is a palindrome, and then X [i . . j] must be a palindrome.

Theorem 4.3.7. Given a weighted string X of length n and a cumulative weight

threshold 1/z ∈ (0,1], Algorithm LPA correctly solves the problem LONGEST z-

PALINDROMIC ARRAY in time and space O(nz).

4.3 Algorithms 112

1 Algorithm LPA(X ,n,1/z)

2 Construct the set ZX of SPECIAL-WEIGHTED STRINGS of X ;
3 foreach Zk ∈ ZX do
4 Ak← maximal palindromes of the heavy string of Zk;
5 Compute Rk for Zk;
6 MP(Zk,z)← EMPTYLIST();
7 foreach (c,r) ∈Ak do
8 r←min{r,Rk[2c]};
9 if r ≥ 1

2 Insert (c,r) in MP(Zk,z);

10 MP(X ,z)← EMPTYLIST();
11 foreach c ∈ [0,2n−2] do
12 r←max{rk|(c/2,rk) ∈MP(Zk,z),0≤ k < ⌊z⌋};
13 Insert (c/2,r) in MP(X ,z);

14 F← EMPTYLIST();
15 U← EMPTYLIST();
16 PA← EMPTYLIST();
17 foreach (c,r) ∈MP(X ,z) do
18 j← ⌊c+ r⌋;
19 Insert 2r in F[j];
20 Insert c− r in U[j];

21 PA[n−1]←min{U[n−1]};
22 foreach j ∈ [n−2,0] do
23 PA[j]←min{PA[j+1]+1,U[j]};

24 Return X [0],X [(PA[1]+1) . .1],X [(PA[2]+1) . .2],X [(PA[3]+
1) . .3], . . ,X [(PA[n−1]+1) . .n−1];

4.3 Algorithms 113

Example 4.3.3. Given the weighted string X =

a[(a,0.5),(b,0.5)][(b,0.5),(c,0.5)]ba[(a,0.5),(b,0.5)]c[(a,0.5),(c,0.5)]aa

of length n = 10 and a cumulative weight threshold 1/z = 1/4, we proceed as follows.

First, we construct the SPECIAL-WEIGHTED STRINGS of X : ZX = {Z0,Z1,Z2,Z3}=

{aabbaacaaa,aacbaaccaa,abbbabcaaa,abcbabccaa} (see Appendix A for the con-

struction using the WI). Second, we compute Ak and Rk, and then we compute

MP(Zk,z), 0 ≤ k < ⌊z⌋. From MP(Zk,z), we compute MP(X ,z), F, U, and PA

(see Table 4.4). Finally, the longest z-Palindromic array of X is found (see Fig. 4.5).

The output sequence is thus:

X [0] = a,

X [0 . .1] = a[(a,0.5),(b,0.5)],

X [1 . .2] = [(a,0.5),(b,0.5)][(b,0.5),(c,0.5)],

X [1 . .3] = (a,0.5),(b,0.5)][(b,0.5),(c,0.5)]b,

X [0 . .4] = a[(a,0.5),(b,0.5)][(b,0.5),(c,0.5)]ba,

X [3 . .5] = ba[(a,0.5),(b,0.5)],

X [2 . .6] = [(b,0.5),(c,0.5)]ba[(a,0.5),(b,0.5)]c,

X [5 . .7] = [(a,0.5),(b,0.5)]c[(a,0.5),(c,0.5)],

X [4 . .8] = a[(a,0.5),(b,0.5)]c[(a,0.5),(c,0.5)]a,

X [7 . .9] = [(a,0.5),(c,0.5)]aa.

4.3 Algorithms 114

Index MP(X ,z) j F[j] U[j] PA[j]

0 (0, 0.5) 0 {1} {−1} −1
1 (0.5, 1)
2 (1, 0.5) 1 {1,2} {0,−1} −1
3 (1.5, 1)
4 (2, 2.5) 2 {2} {0} 0
5 (2.5, 2)
6 (3, 0.5) 3 {0,1} {3,2} 0
7 (3.5, 0)
8 (4, 2.5) 4 {4,5} {0,−1} −1
9 (4.5, 1)

10 (5, 0.5) 5 {0,1,2} {5,4,3} 2
11 (5.5, 0)
12 (6, 2.5) 6 {5} {1} 1
13 (6.5, 3)
14 (7, 0.5) 7 {1} {6} 4
15 (7.5, 1)
16 (8, 1.5) 8 {2,5} {6,3} 3
17 (8.5, 1)
18 (9, 0.5) 9 {1,2,3} {8,7,6} 6

Table 4.4 Computing F, U and PA from MP(X ,z) for X and 1/z shown in Exam-
ple 4.3.3.

9 8 7 6 5 4 3 2 1 0 -1

Fig. 4.5 PA for X and 1/z, this graph shown in Example 4.3.3.

4.4 Implementation and Experiments 115

4.4 Implementation and Experiments

The program was implemented in the C++ programming language and developed under

GNU/Linux operating system. The input parameters are a (Multi)FASTA file with

the input sequence(s), an integer z > 1. The output is a file with the set of maximal

palindromes per input sequence. The experiments were conducted on a Desktop PC

using one core of Intel Core i5-4690 CPU at 3.50GHz under GNU/Linux. The program

was compiled with g++ version 4.8.4 at optimisation level 3 (-O3).

4.4.1 Smallest Maximal z-Palindromic Factorization

Algorithm SMALLEST MAXIMAL Z-PALINDROMIC FACTORIZATION was implemented

as a program to compute the smallest maximal z-palindromic factorization in one or

more input sequences.

Experiment 1. In the first experiment, our task was to establish the fact that the

elapsed time and memory usage of the program grow linearly with z. As input datasets,

for this experiment, we used synthetic DNA sequence of length 1MB. For this sequence

we used different values of z. The results, for elapsed time and maximal memory usage,

are plotted in Fig. 4.6. It becomes evident from the results that the elapsed time and

memory usage of the program grow linearly with z.

Experiment 2. In the second experiment, our task was to establish the fact that the

elapsed time and memory usage of the program grow linearly with n, the length of

the input sequence. As input datasets, for this experiment, we used synthetic DNA

sequences ranging from 250KB to 4000KB. For each sequence we used constant values

for z = 8. The results, for elapsed time and maximal memory usage, are plotted in

4.4 Implementation and Experiments 116

Fig. 4.7. It becomes evident from the results that the elapsed time and memory usage of

the program grow linearly with n.

4.4.2 Longest z-Palindromic Array

Algorithm LONGEST Z-PALINDROMIC ARRAY was implemented as a program to com-

pute the longest z-palindromic Array in one or more input sequences.

Experiment 3. In this experiment, our task was to establish the fact that the elapsed

time and memory usage of the program grow linearly with n, the length of the input

sequence. As input datasets, for this experiment, we used synthetic DNA ranging from

250KB to 4000KB. For each sequence we used constant values for z = 8. The results,

for elapsed time and maximal memory usage, are plotted in Fig. 4.8. It becomes evident

from the results that the elapsed time and memory usage of the program grow linearly

with n.

4.4 Implementation and Experiments 117

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

4 8 16 32 64

T
im

e
[m

s]

Cumulative weight threshold z

(a) Time for n = 1MB

 0

 500

 1000

 1500

 2000

 2500

 3000

4 8 16 32 64

M
ax

im
al

 m
em

o
ry

 u
sa

g
e

[M
B

]

Cumulative weight threshold z

(b) Memory for n = 1MB

Fig. 4.6 Experiment 1. Elapsed time and maximal memory usage of Al-
gorithm SMALLEST MAXIMAL Z-PALINDROMIC FACTORIZATION using synthetic
DNA (σ = 4) data of length 1MB for variable z.

4.4 Implementation and Experiments 118

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 0 500 1000 1500 2000 2500 3000 3500 4000

T
im

e
[m

s]

String length [KB]

(a) Time for z = 8

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0 500 1000 1500 2000 2500 3000 3500 4000

M
ax

im
al

 m
em

o
ry

 u
sa

g
e

[M
B

]

String length [KB]

(b) Memory for z = 8

Fig. 4.7 Experiment 2. Elapsed time and maximal memory usage of Al-
gorithm SMALLEST MAXIMAL Z-PALINDROMIC FACTORIZATION using synthetic
DNA (σ = 4) data of length 250KB to 4000KB.

4.4 Implementation and Experiments 119

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 0 500 1000 1500 2000 2500 3000 3500 4000

T
im

e
[m

s]

String length [KB]

(a) Time for z = 8

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0 500 1000 1500 2000 2500 3000 3500 4000

M
ax

im
al

 m
em

o
ry

 u
sa

g
e

[M
B

]

String length [KB]

(b) Memory for z = 8

Fig. 4.8 Experiment 3. Elapsed time and maximal memory usage of Algorithm
LONGEST Z-PALINDROMIC ARRAY using synthetic DNA (σ = 4) data of length
250KB to 4000KB.

4.5 Conclusion 120

4.5 Conclusion

In this chapter, we presented an O(nz)-time and O(nz)-space algorithm, where n is the

length of the weighted string and 1/z is the given threshold, to compute a smallest

maximal z-palindromic factorization of a weighted string. Moreover, we provide

an O(nz)-time and O(nz)-space algorithm to compute all maximal z-palindromes in

weighted strings.

We also presented an O(nz)-time and O(nz)-space algorithm to compute a longest

z-palindromes array in weighted strings.

Finally, we made available an implementation of our algorithm, using synthetic data,

show its efficiency in biological sequence analysis.

Chapter 5

Conclusions and Future work

In this thesis, we focused on computing certain structures in biological sequences using

different algorithmic methods. Firstly, we addressed the problem of the computation

of avoided words and overabundant words in biological sequences. One of the major

contributions of our work is to present some algorithms that can be used effectively

for computing such words, for instance, we presented an O(n)-time and O(n)-space

algorithm to compute all ρ-avoided words of length k in a given sequence of length n

over a fixed-sized alphabet, we also presented an O(n)-time and O(n)-space algorithm

to compute all overabundant words in a sequence x of length n over an integer alphabet.

Furthermore, experimental results, using both real and synthetic data, which further

highlight the effectiveness of this model, show the efficiency and applicability of our

implementation in biological sequence analysis.

Secondly, we considered a special type of uncertain sequence called weighted

string. One of the primary contributions of our work is to provide an O(nz)-time and

O(nz)-space algorithm, where n is the length of the weighted string and 1/z is the given

122

threshold, to compute a smallest maximal z-palindromic factorization of a weighted

string. Moreover, we provided an O(nz)-time and O(nz)-space algorithm to compute all

maximal z-palindromes in weighted strings. And then, we provided an O(nz)-time and

O(nz)-space algorithm to compute a longest z-palindromes array in weighted strings.

Last but not least, we made available an implementation of our algorithms, using

synthetic data, show the efficiency of our implementation.

Many experiments have been left for the future due to lack of proper real data. One

of the principal future work is to find the proper real data in weighted strings, and then

to concern the analysis of the computation of all maximal z-palindromes in weighted

strings, and also to concern the analysis of the longest z-palindromes array computation

in weighted strings.

References

[1] Acquisti, C., Poste, G., Curtiss, D., and Kumar, S. (2007). Nullomers: really a

matter of natural selection? PLoS One, 2(10):e1022.

[2] Alatabbi, A., Iliopoulos, C. S., and Rahman, M. S. (2013). Maximal palindromic

factorization. In Stringology, pages 70–77.

[3] Almirantis, Y., Charalampopoulos, P., Gao, J., Iliopoulos, C. S., Mohamed, M.,

Pissis, S. P., and Polychronopoulos, D. (2017). On avoided words, absent words, and

their application to biological sequence analysis. Algorithms for Molecular Biology,

12(1):5.

[4] Amir, A., Chencinski, E., Iliopoulos, C., Kopelowitz, T., and Zhang, H. (2008).

Property matching and weighted matching. Theoretical Computer Science, 395(2-

3):298–310.

[5] Amir, A., Gotthilf, Z., and Shalom, B. R. (2010). Weighted LCS. Journal of

Discrete Algorithms, 8(3):273–281.

[6] Apostolico, A., Bock, M. E., and Lonardi, S. (2003). Monotony of surprise and

large-scale quest for unusual words. Journal of Computational Biology, 10(3-4):283–

311.

References 124

[7] Apostolico, A., Bock, M. E., Lonardi, S., and Xu, X. (2000). Efficient detection of

unusual words. Journal of Computational Biology, 7(1-2):71–94.

[8] Apostolico, A., Breslauer, D., and Galil, Z. (1995). Parallel detection of all palin-

dromes in a string. Theoretical Computer Science, 141(1):163–173.

[9] Apostolico, A., Gong, F.-C., and Lonardi, S. (2004). Verbumculus and the discovery

of unusual words. Journal of Computer Science and Technology, 19(1):22–41.

[10] Barton, C., Heliou, A., Mouchard, L., and Pissis, S. P. (2014a). Linear-time

computation of minimal absent words using suffix array. BMC Bioinformatics,

15(1):1.

[11] Barton, C., Iliopoulos, C. S., and Pissis, S. P. (2014b). Optimal computation of all

tandem repeats in a weighted sequence. Algorithms for Molecular Biology, 9(21).

[12] Barton, C., Kociumaka, T., Liu, C., Pissis, S. P., and Radoszewski, J. (2017).

Indexing Weighted Sequences: Neat and Efficient. CoRR, abs/1704.07625.

[13] Barton, C., Kociumaka, T., Pissis, S. P., and Radoszewski, J. (2016a). Efficient

Index for Weighted Sequences. In Combinatorial Pattern Matching, volume 54 of

LIPIcs, pages 4:1–4:13. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[14] Barton, C., Liu, C., and Pissis, S. P. (2016b). Linear-time computation of prefix

table for weighted strings & applications. Theoretical Computer Science, 656:160–

172.

[15] Barton, C., Liu, C., and Pissis, S. P. (2016c). On-line pattern matching on

uncertain sequences and applications. In International Conference on Combinatorial

References 125

Optimization and Applications, volume 10043 of LNCS, pages 547–562. Springer

International Publishing.

[16] Barton, C. and Pissis, S. P. (2017). Crochemore’s partitioning on weighted strings

and applications. Algorithmica, 80(2):496–514.

[17] Belazzougui, D. and Cunial, F. (2015). Space-efficient detection of unusual words.

In International Symposium on String Processing and Information Retrieval, volume

9309 of LNCS, pages 222–233. Springer.

[18] Bender, M. A. and Farach-Colton, M. (2000). The LCA problem revisited. In

Latin American Symposium on Theoretical Informatics, volume 1776 of LNCS, pages

88–94. Springer-Verlag.

[19] Brendel, V., Beckmann, J. S., and Trifonov, E. N. (1986). Linguistics of nucleotide

sequences: morphology and comparison of vocabularies. Journal of Biomolecular

Structure and Dynamics, 4(1):11–21.

[20] Burge, C., Campbello, A. M., and Karlin, S. (1992). Over- and under-

representation of short oligonucleotides in DNA sequences. Proceedings of the

National Academy of Sciences, 89(4):1358–1362.

[21] Charalampopoulos, P., Crochemore, M., Fici, G., Mercaş, R., and Pissis, S. P.

(2018). Alignment-free sequence comparison using absent words. Information and

Computation.

[22] Crochemore, M., Hancart, C., and Lecroq, T. (2007). Algorithms on strings.

Cambridge University Press.

References 126

[23] Cygan, M., Kubica, M., Radoszewski, J., Rytter, W., and Walen, T. (2016).

Polynomial-time approximation algorithms for weighted LCS problem. Discrete

Applied Mathematics, 204:38–48.

[24] Denise, A., Régnier, M., and Vandenbogaert, M. (2001). Assessing the statistical

significance of overrepresented oligonucleotides. In WABI, volume 2149 of LNCS,

pages 85–97. Springer Berlin Heidelberg.

[25] Droubay, X. (1995). Palindromes in the Fibonacci word. Information Processing

Letters, 55(4):217–221.

[26] Farach, M. (1997). Optimal suffix tree construction with large alphabets. In

Foundations of Computer Science, 1997. Proceedings., 38th Annual Symposium on,

pages 137–143. IEEE.

[27] Fici, G., Gagie, T., Kärkkäinen, J., and Kempa, D. (2014). A subquadratic

algorithm for minimum palindromic factorization. Journal of Discrete Algorithms,

28:41–48.

[28] Fischer, J. (2011). Inducing the lcp-array. In Workshop on Algorithms and Data

Structures, pages 374–385. Springer.

[29] Fujishige, Y., Tsujimaru, Y., Inenaga, S., Bannai, H., and Takeda, M. (2016). Com-

puting DAWGs and Minimal Absent Words in Linear Time for Integer Alphabets. In

Faliszewski, P., Muscholl, A., and Niedermeier, R., editors, 41st International Sym-

posium on Mathematical Foundations of Computer Science (MFCS 2016), volume 58

of Leibniz International Proceedings in Informatics (LIPIcs), pages 1–14.

References 127

[30] Gawrychowski, P., Lewenstein, M., and Nicholson, P. K. (2014). Weighted

ancestors in suffix trees. In European Symposium on Algorithms, pages 455–466.

Springer.

[31] Gelfand, M. S. and Koonin, E. V. (1997). Avoidance of palindromic words in

bacterial and archaeal genomes: a close connection with restriction enzymes. Nucleic

Acids Research, 25(12):2430–2439.

[32] Gog, S., Beller, T., Moffat, A., and Petri, M. (2014). From theory to practice: Plug

and play with succinct data structures. In International Symposium on Experimental

Algorithms, pages 326–337. Springer.

[33] Gusfield, D. (1997). Algorithms on Strings, Trees, and Sequences: Computer

Science and Computational Biology. Cambridge University Press, New York, NY,

USA.

[34] Harmston, N., Barešić, A., and Lenhard, B. (2013). The mystery of extreme

non-coding conservation. Philosophical Transactions of the Royal Society B,

368(1632):20130021.

[35] Hile, S. E. and Eckert, K. A. (2004). Positive correlation between DNA polymerase

α-primase pausing and mutagenesis within polypyrimidine/polypurine microsatellite

sequences. Journal of molecular biology, 335(3):745–759.

[36] Hopcroft, J. E., Motwani, R., and Ullman, J. D. (2001). Introduction to automata

theory, languages, and computation. Acm Sigact News, 32(1):60–65.

References 128

[37] I, T., Sugimoto, S., Inenaga, S., Bannai, H., and Takeda, M. (2014). Computing

palindromic factorizations and palindromic covers on-line. In Combinatorial Pattern

Matching, volume 8486 of LNCS, pages 150–161. Springer International Publishing.

[38] Iliopoulos, C. S., Makris, C., Panagis, Y., Perdikuri, K., Theodoridis, E., and

Tsakalidis, A. (2006). The weighted suffix tree: an efficient data structure for han-

dling molecular weighted sequences and its applications. Fundamenta Informaticae,

71(2, 3):259–277.

[39] Kociumaka, T., Pissis, S. P., and Radoszewski, J. (2016). Pattern Matching

and Consensus Problems on Weighted Sequences and Profiles. In International

Symposium on Algorithms and Computation, volume 64 of LIPIcs, pages 46:1–46:12.

Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[40] Kolpakov, R. and Kucherov, G. (2009). Searching for gapped palindromes. Theo-

retical Computer Science, 410(51):5365–5373.

[41] Levinson, G. and Gutman, G. A. (1987). Slipped-strand mispairing: a major

mechanism for DNA sequence evolution. Molecular Biology and Evolution, 4(3):203–

221.

[42] Lodish, H., Berk, A., Darnell, J. E., Kaiser, C. A., Krieger, M., Scott, M. P.,

Bretscher, A., Ploegh, H., Matsudaira, P., et al. (2008). Molecular cell biology.

Macmillan.

[43] Manacher, G. (1975). A new linear-time “on-line” algorithm for finding the

smallest initial palindrome of a string. Journal of the ACM, 22(3):346–351.

References 129

[44] Manber, U. and Myers, G. (1993). Suffix arrays: a new method for on-line string

searches. SIAM Journal on Computing, 22(5):935–948.

[45] Mantegna, R. N., Buldyrev, S. V., Goldberger, A. L., Havlin, S., Peng, C.-K.,

Simons, M., and Stanley, H. E. (1994). Linguistic features of noncoding DNA

sequences. Physical Review Letters, 73(23):3169.

[46] Matsubara, W., Inenaga, S., Ishino, A., Shinohara, A., Nakamura, T., and

Hashimoto, K. (2009). Efficient algorithms to compute compressed longest common

substrings and compressed palindromes. Theoretical Computer Science, 410(8):900–

913.

[47] Mignosi, F., Restivo, A., and Sciortino, M. (2002). Words and forbidden factors.

Theoretical Computer Science, 273(1):99–117.

[48] Muhire, B. M., Golden, M., Murrell, B., Lefeuvre, P., Lett, J.-M., Gray, A.,

Poon, A. Y., Ngandu, N. K., Semegni, Y., Tanov, E. P., et al. (2014). Evidence

of pervasive biologically functional secondary structures within the genomes of

eukaryotic single-stranded DNA viruses. Journal of Virology, 88(4):1972–1989.

[49] Nong, G., Zhang, S., and Chan, W. H. (2009). Linear suffix array construction

by almost pure induced-sorting. In Data Compression Conference, 2009. DCC’09.,

pages 193–202. IEEE.

[50] Polychronopoulos, D., Krithara, A., Nikolaou, C., Paliouras, G., Almirantis, Y.,

and Giannakopoulos, G. (2014a). Analysis and Classification of Constrained DNA

Elements with n-gram Graphs and Genomic Signatures, pages 220–234. Springer

International Publishing, Cham.

References 130

[51] Polychronopoulos, D., Sellis, D., and Almirantis, Y. (2014b). Conserved noncod-

ing elements follow power-law-like distributions in several genomes as a result of

genome dynamics. PloS one, 9(5):e95437.

[52] Polychronopoulos, D., Weitschek, E., Dimitrieva, S., Bucher, P., Felici, G., and

Almirantis, Y. (2014c). Classification of selectively constrained DNA elements using

feature vectors and rule-based classifiers. Genomics, 104(2):79–86.

[53] Porto, A. H. and Barbosa, V. C. (2002). Finding approximate palindromes in

strings. Pattern Recognition, 35(11):2581–2591.

[54] Rubinchik, M. and Shur, A. M. (2016). Eertree: An efficient data structure for

processing palindromes in strings. In International Workshop on Combinatorial Al-

gorithms, volume 9538 of LNCS, pages 321–333. Springer International Publishing.

[55] Rusinov, I., Ershova, A., Karyagina, A., Spirin, S., and Alexeevski, A. (2015).

Lifespan of restriction-modification systems critically affects avoidance of their

recognition sites in host genomes. BMC genomics, 16(1):1.

[56] Searls, D. B. (1992). The linguistics of DNA. American Scientist, 80(6):579–591.

[57] Svoboda, P. and Cara, A. D. (2006). Hairpin rna: a secondary structure of primary

importance. Cellular and Molecular Life Sciences CMLS, 63(7-8):901–908.

Appendix A

Constructing the special-weighted

strings

Example A.0.1. Given the weighted string X=

a[(a,0.5),(b,0.5)][(b,0.5),(c,0.5)]ba[(a,0.5),(b,0.5)]c[(a,0.5),(c,0.5)]aa

of length n = 10 and a cumulative weight threshold 1/z = 1/4, we proceed as follows.

Figure A.1 shows the WI for X . The red path on the figure shows how we construct

one of the special-weighted strings. We begin from a leaf node with index 0, read

the path-label and have Z0 = aabba. Then we follow the suffix link of its parent and

progress down to find the node with path-label abba, which is a leaf node with index

1. We cannot append any letters to Z0 from this node so we follow the suffix link of

its parent and find the next node with path-label bba. Since this is not a leaf node, we

continue by spelling letters downwards the tree to the leaf node with index 2. We append

132

the letters to Z0 and have Z0 = aabbaac. Then we follow the suffix link, find the next

node with path-label baac, and spell downwards. Finally we have Z0 = aabbaacaaa.

Similarly, by following the yellow nodes we have Z1 = aacbaaccaa. By fol-

lowing the green nodes we have Z2 = abbbabcaaa and by following the gray nodes

we have Z3 = abcbabccaa. Therefore, the special-weighted strings of X : ZX =

{Z0,Z1,Z2,Z3}= {aabbaacaaa,aacbaaccaa,abbbabcaaa,abcbabccaa}. Note that

although we described the special-weighted strings construction one by one, we do not

construct them separately. We begin from all the leaf nodes with index 0 and construct

all special-weighted strings together. In some cases, we may reach the same node when

extending two or more special-weighted strings. For example, if we follow both red

and green nodes in Figure A.1, we reach the explicit node with path-label bba (colored

by both red and green), which has two branches ac$ and bc$. In this case, we check

the occurrence probability for each branch, and since both branches are z-valid, we

associate these two branches to two special-weighted strings respectively. As a result,

we append ac to the one (red) and bc to the other (green).

133

9

8
7

0 4
0

4

1
0

4
0

45
1

5

3
3

3
3

2
2

1
5

1
5

7
6

2
2

6

a

$
a

$
abba

c

aaa$

ba$
caa$

b

b

a$b
a$

c aaa$

ba$
caa$

c

aaa$

ba$
caa$

b

a

ac

aaa$c
aa$

bc

aaa$c
aa$

b

a
ac$b

c$
ba$

c

aaa$

ba$
caa$

c

aa

a

ba ac$

bc$
ca
a$

Fi
g.

A
.1

Th
e

W
If

or
X

an
d

1/
z

in
E

xa
m

pl
e

A
.0

.1
(l

ab
el

s
of

ed
ge

s
to

te
rm

in
al

no
de

s
ar

e
ap

pe
nd

ed
w

ith
a

le
tte

r
fo

r
co

nv
en

ie
nc

e)
.

	Table of contents
	List of figures
	List of tables
	1 Introduction
	2 Basic Concepts
	2.1 Strings
	2.2 Finite Automata
	2.3 Suffix Trie
	2.4 Suffix Automation
	2.5 Suffix Trees
	2.6 Minimal Absent Words
	2.7 Indexing Weighted Sequences
	2.8 Molecular biology

	3 Avoided words and Overabundant words
	3.1 Background and Contributions
	3.1.1 Background
	3.1.2 Contributions

	3.2 Preliminaries
	3.2.1 Definitions and Notations
	3.2.2 Tight Asymptotic Bounds on Minimal Absent Words
	3.2.3 Useful Properties of Avoided Words
	3.2.4 Useful Properties of Overabundant Words

	3.3 Algorithms
	3.3.1 Computation of Avoided words
	3.3.2 Computation of All -Avoided Words
	3.3.3 Computation of All -Overabundant words

	3.4 Implementation and Experiments
	3.4.1 Avoided words
	3.4.2 Overabundant words

	3.5 Conclusion

	4 Maximal Palindromes
	4.1 Background and Contributions
	4.1.1 Background
	4.1.2 Contributions

	4.2 Preliminaries
	4.2.1 Definitions and Notations
	4.2.2 Useful Properties of Maximal Palindromes

	4.3 Algorithms
	4.3.1 Computation of Smallest Maximal z-Palindromic Factorization
	4.3.2 Computation of Longest z-Palindromic Array

	4.4 Implementation and Experiments
	4.4.1 Smallest Maximal z-Palindromic Factorization
	4.4.2 Longest z-Palindromic Array

	4.5 Conclusion

	5 Conclusions and Future work
	References
	Appendix A Constructing the special-weighted strings

