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Abstract  

Background  

Pain is modulated by expectation. Event-related potential (ERP) studies of the influence of 

expectation on pain typically utilise laser heat stimulation to provide a controllable nociceptive-

specific stimulus. Short painful electric stimulation has a number of practical advantages, but is 

less nociceptive-specific.  We compared the modulation of electric versus laser-evoked pain by 

expectation, and their corresponding pain-evoked and anticipatory ERPs. 

New Method 

We developed understanding of recognised methods of laser and electric stimulation. We tested 

whether pain perception and neural activity induced by electric stimulation was modulated by 

expectation, whether this expectation elicited anticipatory neural correlates, and how these 

measures compared to those associated with laser stimulation. We elicited cue-evoked 

expectations of high and low pain and compared subjective ratings and corresponding ERPs in 

response to the delivery of laser and electric stimulation in a within-participant design.  

Results 

Despite sensory and affective differences between laser and electric pain, intensity ratings and 

pain-evoked potentials were modulated equivalently by expectation, though ERPs only 

correlated with pain ratings in the laser pain condition. Anticipatory correlates significantly 

differentiated pain intensity expectation to laser but not electric pain. 

Comparison with Existing Method 

Previous studies have consistently shown that laser- evoked potentials are modulated by 

expectation. We extend this by showing electric pain-evoked potentials are equally modulated 

by expectation, within the same participants. We also show a difference between the pain types 

in anticipation. 
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Conclusions 

Though laser-evoked potentials express a stronger relationship with pain perception, both laser 

and electric stimulation may be used to study the modulation of pain-evoked potentials by 

expectation. Anticipatory-evoked potentials are elicited by both pain types, but they may reflect 

different processes and did not correlate with pain perception. 

                Keywords  

Expectation; Pain; Evoked potential; Laser; Electric 

1.  Introduction 

Our experience of pain is profoundly influenced by what we expect to feel. Pain 

expectations can be experimentally manipulated through administration of a sham analgesic 

using a number experimental placebo procedures (Morton, Brown, Watson, El-Deredy, & Jones, 

2010b; Wager, 2004; Watson et al., 2009a) or by eliciting cue-evoked expectations and testing 

the resultant pain report (Atlas, Bolger, Lindquist, & Wager, 2010; Brown, Seymour, Boyle, El-

Deredy, & Jones, 2008a). The modulation of pain by expectation has received a significant 

amount of attention,  which is reflected in recent meta-analyses and reviews (Amanzio, 

Benedetti, Porro, Palermo, & Cauda, 2013; Atlas & Wager, 2012; Brown et al., 2011; Finniss, 

Kaptchuk, Miller, & Benedetti, 2010; Jones & Brown, 2017; Petersen et al., 2014; Price, Finniss, & 

Benedetti, 2008). Expectations also change pain-related neural activity (Wager et al., 2004). 

However, the modulation of nociceptive responses to different modality stimuli by expectation 

has not been quantified. 

ERPs1 are a useful tool to study nociceptive neural processing as they offer high 

temporal resolution and nociceptive specificity, allowing characterisation of instantaneous 

responses to pain. ERP studies have focused on the modulation of  LEPs1 by expectation (Colloca 

                                                           
1 ERP: Event-Related Potential; LEP: Laser-Evoked Potential; EEP: Electric-Evoked Potential; fMRI: Functional 
Magnetic Resonance Imaging; rACC: Rostral Anterior Cingulate Cortex; SPN: Stimulus-Preceding Negativity; 
VAS: Visual Analogue Score 
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et al., 2008; Lorenz et al., 2005; Lyby, Aslaksen, & Flaten, 2011; Martini, Lee, Valentini, & 

Iannetti, 2015; Morton, Brown, Watson, El-Deredy, & Jones, 2010b; Morton, Watson, El-Deredy, 

& Jones, 2009; Wager, Matre, & Casey, 2006; Watson et al., 2009b; Watson, El-Deredy, Vogt, & 

Jones, 2007). LEPs result from laser heat stimulation of nociceptive Aδ and c fibres (Iannetti et 

al., 2004; Iannetti, Zambreanu, & Tracey, 2006) and therefore have the advantage of being 

nociceptive-specific. LEPs are a well-validated method for assessing pain perception and its 

neural basis (Garcia-larrea, Frot, Valeriani, Bernard, & Lyon, 2003; Mobascher et al., 2009; 

Treede, Lorenz, & Baumgärtner, 2003).  

An alternative method of pain induction is transcutaneous electrical stimulation, which 

activates myelinated Aβ somatosensory fibres as well as Aδ nociceptive fibres and elicits an 

EEP1. Across studies, it has been shown that both EEPs and LEPs express the P2 component 

which is closely linked to activity in the operculum, SII and the cingulate cortex (Bentley, 

Derbyshire, Youell, & Jones, 2003; Christmann, Koeppe, Braus, Ruf, & Flor, 2007; Garcia-larrea 

et al., 2003). Some studies have shown modulation of electrically induced pain by expectation, 

chiefly behavioural studies (Colloca, Sigaudo, & Benedetti, 2008; Luana Colloca & Benedetti, 

2006, 2009b; Colloca, Petrovic, Wager, et al., 2010; De Pascalis, Chiaradia, & Carotenuto, 2002; 

Yeung, Colagiuri, Lovibond, et al., 2014), and fewer fMRI1 studies, showing modulation within 

the rACC1, insula and thalamus (Wager, 2004b), and ERP studies (Rütgen, Seidel, Riečanský, & 

Lamm, 2015). Laser and electric stimulation activate similar areas of the brain, sharing 

activation across key structures of the lateral and medial pain system. Expecting both types of 

stimulation modulates activity in areas such as the cingulate, insula, dorsolateral prefrontal 

cortices and thalamus (Amanzio et al., 2013; Bentley et al., 2003; Christmann et al., 2007; 

Wager, 2004b). As similar neural areas are activated by the two pain types, and as one would 

expect expectation to influence pain perception independent of the modality of pain stimulus, it 

is possible that expectation could modulate the ERP and intensity ratings of the two types of 

stimulation equivalently. We compare the effect of cue-evoked expectation on the P2 

component of EEPs and LEPs. 
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Awareness of imminent pain elicits an anticipatory slow-wave EEG correlate termed the 

SPN1 (Böcker, Baas, Kenemans, & Verbaten, 2001). A marker for anticipation is a useful tool for 

quantifying the processes underlying expectation. The SPN has been characterised in response 

to laser pain as a negative potential peaking at central electrodes and has been localised to the 

cingulate and anterior insula, which is implicated in affective processing (Brown, Seymour, El-

Deredy, & Jones, 2008a; Caria, Sitaram, Veit, Begliomini, & Birbaumer, 2010). The SPN in 

response to electric pain has been observed in posterior areas of the cortex (Berns et al., 2006; 

Hoflle, Pomper, Hauck, Engel, & Senkowski, 2013; Lin, Hsieh, Yeh, Lee, & Niddam, 2013), and 

centroparietal electrodes (Seidel et al., 2015); however, other studies have failed to show the 

SPN in electric compared to laser pain (Babiloni et al., 2003, 2007). Accordingly, the SPN to 

electric pain is yet to be reliably quantified. 

The paucity of research into the modulation of electric pain by expectation may be 

because electric stimulation activates Aβ somatosensory fibres alongside Aδ nociceptive fibres 

which could add sensory noise to the signal (Perchet et al., 2012), activating a larger number of 

thalamo-cortical units than laser stimulation, and resulting in higher-amplitudes and EEPs 

compared to LEPs (Garcia-larrea et al., 2003; Gingold, Greenspan, & Apkarian, 1991; Treede, 

Kenshalo, Gracely, & Jones, 1999). This has likely led to the concern that the representation of 

somatosensory processes by the resultant EEP could interfere with measurement of 

expectation-induced pain modulation, as activity related to innocuous somatosensory activity 

could increase the noise of the EEP.  Yet electrical stimulation has obvious advantages over laser 

stimulation, so it is important to understand whether we can study pain expectations with this 

technique. Laser stimulation can result in heating of the skin leading to sensitisation, which 

limits the number of trials in a study. Skin heating by the laser is also associated with the risk of 

skin lesions and therefore has additional ethical implications. The setup is expensive, may not 

be portable depending on the type of laser, requires operators to undertake substantial training, 

and requires the wearing of safety goggles which can be uncomfortable and distracting for 

participants. Transcutaneous electrical stimulation is arguably a more practical method of pain 
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assessment. It does not heat the skin so there is no limit to the number of trials. There are fewer 

ethical implications in using electric stimulation to elicit pain, as the activation is transient and 

there is no risk of skin damage. Electric stimulators are cheaper, portable and available 

commercially, and require no specific training to use so can be used more widely and potentially 

in conjunction with physiological phenotyping in clinical trials to identify placebo responders. If 

EEPs are modulated by expectation equivalently to LEPs, this would allow generalisation across 

the literature, and future studies could use electric stimulation. We investigated ERP and the 

anticipatory SPN, and intensity ratings of laser and electric pain within the same participants, 

and predicted that they would be equally modulated by cue-evoked expectation. 

2. Methods 

2.1. Design 

The study was a 2 (stimulator: laser/electric) x 2 (pain expectation: high/low) x 3 (pain 

intensity: high/low/medium) within-subjects design. 

2.2. Participants 

Twenty participants aged 18-35 (9 females, mean age 23 years) were recruited via 

newspaper and university advertisements and received £30 compensation for participation in 

the study. Participants had normal or corrected-to-normal vision. They had no history of 

neurological or psychiatric conditions, did not take medications which could affect their 

neurotransmitter levels, or take analgesics, and did not have a history of chronic pain. Ethical 

approval was granted by the University of Manchester, where the study took place. 

2.3. Apparatus 

Visual stimuli were presented on a desktop computer screen 1 metre from the 

participant. The laser stimuli were generated by a class 4 thulium laser (IPG Photonics 

Corporation, US/ TLR-30-2050, wavelength 2050nm/ 30 watt).  The laser stimuli were of 
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150ms duration and a beam diameter of 5 millimetres. Energy delivered at 50% intensity was 

2.25 joules. See table 1 for a summary of the energy densities of the laser stimulator. The 

electric stimuli were delivered by two silver/silver chloride cup electrodes attached to a TENS 

machine (maximum voltage 477 Volts; maximum current 81 milliamps) (Medical Physics, 

Salford Royal NHS Foundation Trust) and were of 230 to 300 microsecond duration. Maximum 

voltage was 477 volts; maximum current was 81 milliamps, and maximum output power 37 

watts. All pain stimuli were delivered by Matlab which interfaced with the laser via a program 

built in Labview (Medical Physics department, Salford Royal NHS Foundation Trust). 

Participants submitted their intensity ratings of the pain using a keypad. 

2.4. Procedure 

Participants underwent two blocks: the laser and the electric block. These two blocks 

differed only in the instrument used in stimulus administration, the location of the stimulation, 

and the fact participants wore safety goggles during the laser block of the experiment. Blocks 

were counterbalanced across participants. Stimulus timing was kept consistent between the 

two blocks. In the laser block, fibre laser stimuli were delivered to the dorsum of the 

participant’s right forearm. A 3cm by 4cm grid was drawn on the arm before beginning the 

study, and the laser stimulus was aimed at a new box in every trial, to reduce sensitisation or 

skin damage from the laser heat. In the electric block, electric stimuli were delivered to the 

middle phalanx of the right index finger. 

Before applying the EEG cap, participants underwent a psychophysics procedure to 

determine their subjective response to increasing stimulus intensities, separately for the laser 

and electric stimulation. The order was counterbalanced between participants. The first 

stimulus was very low, generally an intensity which would be below the threshold for pain in 

most people, and the intensity of the stimuli increased in a ramping procedure. We used a 0-10 

VAS1 for the pain response, where a level 3 was when the stimuli became painful, and level 7 



8 
 

was at the point where the participant did not wish to experience a higher level of stimulation in 

the experimental session. Consequently, we attained a ‘low’ pain level 3, a ‘medium’ pain level 5, 

and a ‘high’ pain level 7.  We repeated this procedure three times to determine the average 

intensities corresponding to these intensity ratings. We then ran a procedure where 

participants identified the intensity (low, medium or high) of 18 pulses to ensure that they were 

experiencing the pain stimuli as they had rated in the psychophysics procedure. If participants 

could not identify the intensity of at least 75% of the pulses, the ramping procedure was 

repeated until they performed above 75%. 

Trials were pseudorandomised. On each experimental trial, participants viewed a 

fixation cross for 500-750ms, and then a veridical probability cue which signalled the outcome 

likelihood and magnitude for that trial for 500ms. The cue, presented for 500ms, either 

signalled a 75% likelihood of high pain and a 25% likelihood of medium pain, or a 75% 

likelihood of low pain and a 25% likelihood of medium pain. This was followed by presentation 

of a blank screen for 1500ms, and then the stimulus was delivered, with the blank screen 

continuing for 1000ms. A screen was then presented which prompted participants to 

numerically rate their subjective pain intensity on a visual analogue scale (VAS) using a keypad. 

Inter-stimulus interval was maintained at a 10 second minimum. See figure 1 for a timeline for 

each trial. Over the experimental session, the 75% likelihood of high pain cue was followed by 

90 high pain intensity stimuli and 30 medium pain intensity stimuli. The 75% likelihood of low 

pain cue was followed by 90 low pain intensity stimuli and 30 medium pain intensity stimuli.  

This meant on the relatively rare trials in which a medium pain intensity stimulus was 

administered, participants were expecting a high probability of either high or low pain, 

depending on the cue, which was crucial to our research question.  At the end of every 7 minute 

block, participants rated the unpleasantness of the high, medium and low pain, on a 10-point 

VAS, following previous research (Pascalis, Chiaradia, & Carotenuto, 2002). In a subset of trials 

we presented a cue signalling 100% likelihood of receiving a medium pain, but these trials were 
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not included in the analysis. We did not analyse these trials as they were relevant to a different 

analysis. Participants had a 2 minute break every 7 minute block. 

2.5. EEG recording 

Continuous EEG recording was acquired at a sampling rate of 1000 Hertz (Hz) using a 

64 electrode Active-Two amplifier system (Biosemi, Amsterdam, Netherlands) with Biosemi 

acquisition software (BioSemi, Netherlands). An active and passive electrode replaces the 

ground electrode to create a feedback loop that drives the average potential of the subject (the 

common mode voltage) as close as possible to the analogue-to-digital converter reference 

voltage in the analogue-to-digital box. Impedances were kept at 20 KΩ or less. The experiment 

was conducted in a quiet room. 

2.6. Behavioural data analysis 

We firstly aimed to test for any psychophysical differences between the laser and 

electric pain stimulation. We conducted a t-test on the number of 5% stimulation intensity 

increases required to reach a VAS level seven pain rating per participant between laser and 

electric pain in the psychophysics procedure. A significant difference would indicate a 

difference in the increase of perceived pain per 5% increase in stimulation intensity between 

the two conditions. We also used Pearson’s correlation to test for correlations between average 

VAS rating and stimulation intensity across participants, where a significant correlation would 

indicate a consistent relationship between a 5% increase in intensity and a corresponding 

increase in VAS rating.  

Next we conducted two 2 (stimulator: laser/electric) x 2 (pain intensity: high/low) 

within-subjects ANOVA, one for the pain intensity ratings and one for the pain unpleasantness 

ratings. Additionally, we conducted a 2 (stimulator: laser/electric) x 2 (pain expectation: 

high/low) within-subjects ANOVA for the pain intensity ratings of medium pain trials. 
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Interactions were followed up with post-hoc Bonferroni-corrected t-tests. Finally, we conducted 

a linear mixed model in each laser and electric pain condition separately, with trial as a 

predictor variable, to test for any effect of time on VAS rating. Participant was treated as a 

random effect. 

2.7. EEG data analyses 

Four participants were removed from the analysis because there was not a clear N2-P2 

laser component, defined as a negative trough followed by a positive peak within 150-1000ms 

post-stimulus. One participant withdrew from the study, and one participant was detected as an 

outlier using Tukey’s method of outlier detection, which holds the advantage that it does not 

depend upon a mean or standard deviation, and so is resistant to extreme values in the data 

(Tukey, 1977). This participant was removed from the data.  The EEG signal for the remaining 

14 participants was preprocessed using SPM12 (Ashburner et al., 2013; Litvak et al., 2011). 

Separate pre-processing pipelines were carried out for the pre-stimulus SPN and post-stimulus 

P2. Extracted data were analysed using SPSS. 

SPN 

The signal was referenced to the mean of all scalp electrodes, downsampled to 200 Hz 

and filtered with a lowpass Butterworth filter (30 Hz). Data were not highpass filtered as this 

could remove low frequency slow-wave anticipatory potentials. Epochs were extracted 200ms 

before the presentation of the probability cue to 1000ms after delivery of the pain stimulus. An 

absence of a highpass filtering step could introduce noise into the data and lead to an 

unnecessarily high artefact rejection rate. To avoid this, artefact rejection with a threshold of 

60uV was applied to highpass (0.1Hz) filtered data to create a list of artefacts in the data. This 

artefact information was then applied to the actual data. In the laser pain conditions, the 

following trial numbers remained across participants: Cue low get low intensity pain (M=70.4, 

SD=13.5), cue low get medium intensity pain (M=24.9, SD=4), cue high get high intensity pain 
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(M=66.9, SD=13.9), cue high get medium intensity pain (M=23, SD=4.2). In the electric pain 

conditions, the following trial numbers remained across participants: Cue low get low intensity 

pain (M=70, SD=11.8), cue low get medium intensity pain (M=23.4, SD=4.1), cue high get high 

intensity pain (M=66.5, SD=14.4), cue high get medium intensity pain (M=24, SD=3.3). Averaged 

across conditions, the difference in number of remaining trials between laser versus electric 

pain conditions was less than one trial. Accordingly, we do not anticipate any influence of trial 

number on results.  Single-trial data were averaged separately for the eight conditions using the 

“robust averaging” method in SPM12b (Litvak et al., 2010). Based on previous research, data 

were extracted from the time-window 500ms to 0ms before pain delivery (Brown, Seymour, 

Boyle, et al., 2008a). We ran a 2 (stimulator: laser/electric) x 2 (pain expectation: high/low 

intensity) within-subjects on these data. We also used Pearson’s correlation to test for 

correlations between the average SPN and EEP amplitude, VAS and unpleasantness ratings 

across participants. Finally, we conducted a linear mixed model in each laser and electric pain 

condition separately, with trial as a predictor variable, to test for any effect of time on SPN 

amplitude. Participant was treated as a random effect. 

P2 

The re-referenced, downsampled signal was filtered with a Butterworth filter between 

0.5 and 30 Hz. Epochs were extracted 700ms before the pain delivery to 1000ms after. Data 

underwent artefact rejection at a threshold of 60uV. In the laser pain conditions, the following 

trial numbers remained across participants: Cue low get low intensity pain (M=74.2, SD=15.8), 

cue low get medium intensity pain (M=24.4, SD=4.2), cue high get high intensity pain (M=66.1, 

SD=15), cue high get medium intensity pain (M=23.1, SD=5.2). In the electric pain conditions, 

the following trial numbers remained across participants: Cue low get low intensity pain 

(M=71.5, SD=12.3), cue low get medium intensity pain (M=23.6, SD=4.1), cue high get high 

intensity pain (M=68.3, SD=11.8), cue high get medium intensity pain (M=22.9, SD=5.4). 

Averaged across conditions, the difference in number of remaining trials between laser versus 

http://www.jneurosci.org/content/33/19/8264.long#ref-15
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electric pain conditions was less than one trial. Accordingly, we do not anticipate any influence 

of trial number on results.   Single-trial data were averaged separately for the eight conditions 

using the “robust averaging” method in SPM12b (Litvak et al., 2010), and filtered with a lowpass 

Butterworth filter (30Hz) to remove high frequency noise introduced by robust averaging, in 

order to use individual average data files to identify pain-evoked P2 latencies and topographies. 

The latency of 50% of the maximum amplitude of the grand average across all conditions and 

participants was identified (Luck, 2005). This was 267-450ms post-stimulus for the EEP, and 

410-645ms for the LEP. Though the LEP latencies are late, similar latencies have been reported 

in previous studies in response to both CO2 (Brown, El-Deredy, & Jones, 2014) and thulium laser 

stimulation (Almarzouki, Brown, Brown, Leung, & Jones, 2017). Each participant’s maximum 

within this latency was identified, and ±40ms window was extracted around this, to include the 

peak of the maximum. See figure 2 for an illustration of the electrodes extracted in the analysis. 

The average amplitudes across this time window in each condition were analysed.  We 

conducted two within-subjects ANOVAs to examine the extracted data, one with the factors 2 

(stimulator: laser/electric) x 2 (pain intensity: high/low), and one with the factors 2 

(stimulator: laser/electric) x 2 (pain expectation: high/low intensity). Finally, we used 

Pearson’s correlation to test for correlations between the average P2 and VAS rating across 

participants. Finally, we conducted a linear mixed model in each laser and electric pain 

condition separately, with trial as a predictor variable, to test for any effect of time on ERP 

amplitude. Participant was treated as a random effect.  

3. Results 

3.1. Behavioural results 

We first tested for any psychophysical differences between the laser and electric pain 

stimulation. In the psychophysics procedure, a paired samples t-test showed that across 

conditions, the number of 5% intensity increases from the lowest stimulation intensity to an 

intensity which elicited a level seven pain response was significantly higher in response to 

http://www.jneurosci.org/content/33/19/8264.long#ref-15
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electric pain (M=8.33, SD=3.75) than to laser pain (M=5.4, SD=1.89) (t=-3.47, p=0.004, d=-

1.085). The fact that a greater number of 5% intensity increases were required to elicit a level 

seven VAS rating to electric pain suggests that participants were more sensitive to increases in 

laser stimulation than electric stimulation. VAS rating significantly correlated with stimulator 

intensity in response to both laser pain (r=.82, p<0.001, n=87) and electric pain, though here the 

correlation coefficient was smaller (r=.49, p<0.001, n=124). The larger correlation coefficient in 

the laser pain condition further suggests that VAS ratings more closely reflected the 5% 

intensity increases in the laser pain condition compared to the electric pain condition.  

We assessed the effects of pain intensity and stimulator on intensity rating. A 2 

(stimulator: laser/electric) x 2 (pain intensity: high/low) within-subjects ANOVA revealed a 

main effect of stimulator (laser>electric) (f(1, 13)=6.813, p=0.022, 2

P =.344) and a main effect 

of intensity (high>low pain) (f(1,13)=248.75, p<0.001, 2

P =.95), but no interaction 

(f(1,13)=.306, p=.59, 2

P =.023), suggesting VAS score was overall higher in response to laser 

pain, but there was no difference between laser and electric pain in terms of how pain 

intensities were differentiated (see figure 4). 

We next assessed the effects of pain cue and stimulator on intensity rating of the 

medium intensity pain trials. A 2 (stimulator: laser/electric) x 2 (pain expectation: high/low) 

within-subjects ANOVA revealed a main effect of stimulator (laser>electric) (f(1,13)=11.786, 

p=0.004, 2

P =.476) and a main effect of pain expectation (high>low pain cue) (f(1,13)=80.219, 

p<0.001, 2

P =.861), but no interaction (f(1,13)=78, p=.393, 2

P =.057), suggesting ratings were 

overall higher in response to laser pain, but that the high pain cue increased ratings equally 

compared to the low pain cue in both the laser and electric block (see figure 5). 

We assessed the effects of pain intensity and stimulator on unpleasantness rating.  A 2 

(stimulator: laser/electric) x 2 (pain intensity: high/low) within-subjects ANOVA revealed a 

main effect of stimulator (laser>electric) (f(1,13)=25.268, p<0.001, 
2

P =.66) and a main effect of 
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intensity (high>low pain) (f(1,13)=124.411, p<0.001, 2

P =.905), and an interaction 

(f(1,13)=13.686, p=0.003, 2

P =.513). We executed post-hoc Bonferroni-corrected t-tests with a 

significance criterion of p<0.0125. They showed the effect of intensity to be significant in both 

the laser (t=12.933, p<0.001, d=3.74) and electric (t=7.429, p<0.001, d=1.934) condition, and 

the effect of instrument to be significant at high (t=5.668, p<0.001, d=1.33) but not low 

intensities at the significance threshold (t=2.821, p=0.014, d=0.83). In other words, high 

intensity laser and electric pain were rated as more unpleasant than low intensity laser and 

electric pain. High intensity laser pain was rated as more unpleasant than high intensity electric 

pain, but ratings for low intensity laser and electric pain did not differ. 

Finally, we conducted a linear mixed model to test the effect of time on VAS rating 

within each condition, separately for laser and electric pain (table 2). In almost all conditions, 

there was a significant relationship between trial number and VAS rating. Beta values were 

positive across the laser pain conditions, indicating an increase in VAS ratings over time, and 

suggesting possible sensitisation. Beta values were negative in the electric pain conditions, 

indicating a decrease in VAS ratings over time, and suggesting possible habituation. In support 

of this, the average VAS rating across participants in significant trials increased from the first 

ten experimental trials to the final ten trials across laser conditions, and decreased from the 

first ten trials to the final ten trials across significant electric conditions (table 2). 

Electrophysiological results 

3.2.1. Stimulus-preceding negativity 

We subtracted the average response to the low pain expectation cue from the average 

response to the high pain expectation cue, and inspected the 500ms period preceding the pain 

stimulus in the average “difference” topography for each of the laser and electric stimulators. In 

the electric conditions we observed a negative difference across central-parietal electrodes 

which peaked at CP3 and CP5 (see figure 3), congruent with parietal anticipatory activity to 
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electric pain shown in previous work (Berns et al., 2006; Hoflle et al., 2013; Lin et al., 2013). 

This was supported by a negative potential across conditions at these same electrodes. In the 

laser condition we observed a negative difference at C2 and Cz (see figure 3). We therefore 

extracted amplitudes from electrodes CP3 and CP5 for the electric condition, and C2 and Cz for 

the laser condition.  A 2 (stimulator: laser/electric) x 2 (pain expectation: high/low) within-

subjects ANOVA revealed a main effect of stimulator (electric > laser) (f(1,13)=16.79, p=0.001, 

2

P =.56), a main effect of cue (high > low) (f(1,13)=12.17, p=0.004, 2

P =.48), and an interaction 

(f(1,13)=5.92, p=0.03, 2

P =.31) (see figure 3). Bonferroni-corrected paired samples t-tests with 

a significance criterion of p<0.025 showed the effect of cue to be significant in the laser (t=3.42, 

p=0.004, d=1.09) but not the electric pain condition (t=.81, p=0.43, d=0.22). These results 

suggest the amplitude of the electric SPN was overall more negative than the laser SPN, but the 

laser SPN differentiated pain intensity (cue low average amplitude was 4.41; cue high: 2.12), 

whilst although there was a numerical difference in the electric SPN, it was not significant (cue 

low average amplitude was -3.07; cue high: -3.4). SPN amplitude did not correlate with 

unpleasantness in either the laser (p=.84, r=-.041, n=28) or the electric condition (p=.61, r=-101,  

n=28), or with pain rating in either the laser (p=.26, r=-.152, n=56) or the electric 

condition (p=.08, r=-.24, n=56). The SPN did not correlate with ERP amplitude in either the laser 

(p=.33, r=-.133, n=56) or the electric condition (p=.89, r=.018, n=56).  

Finally, we conducted a linear mixed model to test the effect of trial on SPN amplitude 

within each condition, separately for laser and electric pain (table 3). Where results were 

significant in the laser pain condition, beta values were positive, suggesting SPN amplitude 

became less negative over time.  In support of this, the average SPN amplitude over participants 

in the significant conditions decreased from the first ten experimental trials to the final ten 

trials (table 3). 

Effects of delivered pain intensity 
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Here we report ERP results from the veridically cued pain conditions, where a high pain 

intensity cue was followed by a high pain stimulus, and a low pain intensity cue was followed by 

a low pain stimulus. Peak latency of the EEP was shorter than LEP. The average peak latency 

across participants was 303ms (min=235ms, max=355ms, SD=43.3) to 383ms (min=325ms, 

max=455ms, SD=43.3) for EEPs, compared to 464ms (min=395ms, max=580ms, SD=55.3) to 

544ms (min=475ms, max=660ms, SD=55.3) for LEPs. A 2 (stimulator: laser/electric) x 2 (pain 

intensity: high/low) within-subjects ANOVA on the voltages revealed a main effect of stimulator 

(electric>laser) (f(1,13)=24.69, p<0.001, 2

P =.66) and a main effect of intensity (high>low pain) 

(f(1,13)=43.23, p<0.001, 2

P =.77), but no interaction, (f(1,13)=1.97, p=0.18, 2

P =.13)  which 

indicates ERPs were higher in response to electric pain, but the effect of intensity was equal in 

response to both laser and electric pain (see figure 4). VAS ratings significantly correlated with 

ERP amplitude in the laser (r=.69, p<0.001, n=28) but not the electric condition (r=.31, p=.11, 

n=28). 

3.2.2. Effects of expectations on medium pain stimuli  

Here we report ERP results from the conditions where high and low pain intensity cues 

were followed by a medium intensity pain stimulus. A 2 (stimulator: laser/electric) x 2 (pain 

expectation: high/low) within-subjects  ANOVA on the medium stimulus intensity pain-evoked 

potentials revealed a main effect of stimulator (electric>laser) (f(1,13)=15.6, p=0.002, 2

P =.55) 

and a main effect of cue (high>low) (f(1,13)=5.71, p=0.033, 2

P =.31), but no interaction 

(f(1,13)=084, p<0.78, 2

P =.01), suggesting ERPs were higher in response to electric pain (as 

already noted in the section above), but the effect of cue was equal in response to both laser and 

electric pain (see figure 5). VAS rating did not correlate with ERP amplitude in either the laser 

(p=.26, r=.22, n=28) or the electric condition (p=.39, r=-.17, n=28). 

Finally, we conducted a linear mixed model to test the effect of trial on ERP amplitude 

within each condition, separately for laser and electric pain (table 4). In all conditions, there was 
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a significant relationship between trial number and EEP amplitude. Betas were negative in 

almost all conditions, suggesting both LEP and EEP amplitude reduced over time. In support of 

this, the average ERP amplitude over participants decreased from the first ten experimental 

trials to the final ten trials (table 4). 

4. Discussion 

Our results show that electric and laser stimulation elicits ERPs of different latencies 

and amplitudes, but these ERPs, and the corresponding subjective intensity ratings, were 

equally modulated by cue-evoked expectations. However, the intensity of the pain experience 

only correlated with the LEP and not the EEP.  We also show morphological and topographical 

differences in the anticipatory SPN between the two stimulation types. Although the SPN is 

expressed in response to both stimulation types, it only differentiates intensity expectation 

significantly in response to the laser but not the electric pain stimulus. 

4.2. Methodological discussion 

The EEP, the marker for electric pain, differed in several ways to that for laser pain LEP. 

These differences can be explained by the fact that electric stimulation activates large 

myelinated somatosensory Aβ fibres as well as nociceptive Aδ fibres. Firstly, EEPs showed much 

shorter latencies than LEPs, consistent with previous studies comparing intracutaneous 

electrical stimulation with laser stimulation (Babiloni et al., 2007; Inui, Tran, Hoshiyama, & 

Kakigi, 2002). This suggests the method we used, transcutaneous electric stimulation, elicits 

potentials to a similar latency to more invasive intracutaneous stimulation. The reduced latency 

of the EEP can be related to the fact that Aβ fibres have a faster conduction velocity of 69 metres 

per second, compared to a conduction velocity of 10 metres per second in Aδ fibres (Tran, Lam, 

Hoshiyama, & Kakigi, 2001). Secondly, EEPs were of a greater amplitude than LEPs, in line with 

intracutaneous electric pain research, because Aβ fibre stimulation activates a larger number of 

thalamo-cortical units (Babiloni et al., 2007; Garcia-larrea et al., 2003; Gingold et al., 1991; 

Treede et al., 1999). This effect emerged despite the laser pain being rated as more intense and 
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more unpleasant than EEPs. Related to this, when pain intensity was fully predicted by the cue, 

EEP amplitude did not correlate with intensity ratings, whereas LEP amplitude did. LEPs have 

been repeatedly shown to reflect intensity rating (Beydoun, Morrow, Shen, & Casey, 1993; 

Iannetti, Zambreanu, Cruccu, & Tracey, 2005; Ohara, Crone, Weiss, Treede, & Lenz, 2004), 

however, as EEPs reflect somatosensory Aβ fibre activity alongside Aδ fibre nociceptive activity, 

it is unsurprising that they did not correlate with perceived pain  intensity alone, as the ‘noise’ 

of the unrelated somatosensory related activity would prevent identification of a relationship; 

this replicates previous EEP research (Rütgen et al., 2015). In summary, we show 

transcutaneous EEPs are earlier, higher in amplitude and do not correlate with pain intensity 

perception, in contrast to LEPs.  

The laser pain stimulus was rated as more intense than the electric pain stimulus, 

despite participants undergoing a psychophysics procedure which was designed to calibrate 

stimulation to be equal between the two stimulator types. These differences in intensity rating 

are presumably due to changes between the psychophysics procedure and the main experiment, 

such as differing habituation rates and skin temperature changes associated with the two 

stimulators. 

LEPs and EEPs were modulated equally by participants’ cued expectations. We propose 

that it is feasible to use either laser or electric pain to study cued expectation and pain 

processing. We observed an anticipatory SPN with differing topography and morphology 

between laser and electric pain, which differentiated pain intensity expectation during laser 

pain only. In this study, the SPN response to the intensity cue appears to be less sensitive prior 

to electrical stimulation than to laser stimulation.  The differing topography, morphology and 

response to intensity of the SPN between conditions suggest they may originate from different 

neural generators.  

We tested for effects of time on all measures of the pain response. Though significant 

results were small (see tables 2, 3 and 4), we did observe some differences between the two 
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pain stimulation conditions. Laser pain perception increased over time, suggesting sensitisation 

to the stimulation, whereas electric pain perception reduced over time, suggesting habituation. 

ERPs in both conditions reduced over time, suggesting ERP habituation to the pain stimulus. 

SPM amplitude reduced over time in the laser but not the electric condition. 

4.3. Theoretical discussion 

Comparing evoked potentials and behavioural responses from the two stimulators 

alongside one another allows identification of any differences between the two stimulation 

types. LEPs and EEPs were modulated equally by participants’ cued expectation of the imminent 

intensity of pain, despite the higher subjective unpleasantness of the laser. Why did the higher 

affective impact of the laser pain not interact with the expectation cue? Emotion plays a 

significant role in pain; negative emotion and catastrophising increase perception of pain 

unpleasantness and intensity (Lin et al., 2013; Rainville, Bao, & Chrétien, 2005; Schupp, 

Berbaum, Berbaum, & Lang, 2005; Sullivan, Rouse, Bishop, & Johnston, 1997). The role of 

emotion in pain expectation is less clear, although studies suggest emotion plays a relevant role 

in expectation. For example, belief about the emotional impact of pain and confidence in the cue 

predicts the effect of expectation on pain (Brown, Seymour, El-Deredy, et al., 2008). Increased 

catastrophising also leads to higher engagement even with inaccurate cues,  possibly due to the 

increased threat status of the cue in high catastrophisers (Van Damme, Crombez, & Eccleston, 

2002). Placebo analgesia itself has been modelled as a reduction in pain-related anxiety (Flaten, 

Aslaksen, Lyby, & Bjørkedal, 2011; Morton et al., 2009). In our study expectations of pain 

intensity may have modulated the sensory-discriminative rather than the affective-motivational 

dimension of pain. Future work could manipulate the affective dimension of pain whilst 

maintaining a consistent intensity, to further disentangle these two closely related qualities.  

Analysis of the EEG sources, as in previous work, is likely to further clarify these issues (Brown, 

Seymour, Boyle, et al., 2008b). 
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The SPN expressed different topography and morphology between laser and electric 

pain, and differentiated between cue-evoked expectations of high and low laser but not electric 

pain. This finding adds to a somewhat inconsistent literature, where some studies show an SPN 

in response to laser but not electric pain, and others showing an SPN for electric pain (Babiloni 

et al., 2003, 2007; Seidel et al., 2015). The SPN for laser pain here differentiated between 

anticipation of high and low pain at central electrodes, as in previous studies showing sources in 

the anterior insula and cingulate in the laser pain SPN (Brown et al., 2008). However, the latter 

observations were only made for certain expectations and not for uncertain expectations. We 

observed an SPN to electric pain at centroparietal electrodes contralateral to the site of 

stimulation, in line with previous studies showing activity in the posterior insula and posterior 

cingulate during anticipation of electric pain (Berns et al., 2006; Hoflle et al., 2013; Lin et al., 

2013). The contralateral topography of the electric SPN suggests activity of the lateral sensory-

discriminatory somatosensory cortices, rather than a medial affective-motivational response.  

The differing topographies of the SPN across stimulators were accompanied by a 

difference in morphology, with a greater negative amplitude for electric rather than laser pain 

overall. This is surprising, as the anticipatory SPN should increase for events with greater 

impact, here the subjectively higher intensity and more unpleasant laser pain. Interestingly, the 

SPN amplitude did not correlate with unpleasantness ratings, in either condition. Our results 

suggest the SPN may, under certain conditions, reflect processes related to somatosensory 

components of pain processing. However, as we did not manipulate this, we cannot draw firm 

conclusions about this proposed role of the SPN, but it is a key direction for future work.   

There are some limitations to the comparison between laser and electric pain, because 

the two instruments require slightly different mode of stimulation, which could influence the 

results. First, the location of the laser stimulation was changed systematically between trials, 

but the location of the electric stimulation was kept constant. This is a variable which is 

inherent to laser pain studies (e.g. Lorenz et al., 2005; Morton et al., 2009; Watson et al., 2007). 
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The fact that a new area of skin was stimulated on each laser trial could influence participant’s 

ability to discriminate the pain, although trial randomisation avoids any systematic bias 

associated with stimulation site and is therefore unlikely to affect the main results that we 

reported. The changes in the location of the laser stimulation also implied that it was less 

predictable than the electric stimulation. We aimed to minimise any unpredictability by moving 

the laser in a systematic and predictable pattern across the skin. Further, the laser was visible to 

the participant so they were able to predict the position of the laser. It is also worth noting that 

the two instruments stimulated different locations in the body which could introduce 

differences between the two conditions. However, in terms of cortical topographic 

representation, the change in location is relatively small (Bingel et al., 2004; Saladin, 2012; 

Stippich et al., 1999), so is unlikely to influence the pain-evoked potential. It is also of note that 

participants were not instructed to attend specifically to either the location or the 

unpleasantness of the pain, and so this may have been a source of variability between 

participants. Attention to either of these aspects of pain can influence the neural networks 

responding to pain and this may be why we did not see any correlation between SPN amplitude 

and unpleasantness or intensity ratings (Kulkarni et al., 2005). Further, while the use of 

75/25% probability cues was justified in this study because the key research question was 

about pain modulation by positive and negative expectation, the relationship between SPN and 

ERP amplitude has been observed only in response to fully predictable pain intensity cues 

(Brown, Seymour, Boyle, et al., 2008b). Our results support these findings in that all cues 

contained an element of unpredictability and we did not observe a relationship between SPN 

and ERP amplitude.  This indicates that future studies should be designed with a fully 

predictable cue in order to examine the relationship between anticipatory SPN and pain-evoked 

potential amplitude.  

Responses to laser and electric pain were remarkably similar to one another, 

particularly in their modulation by cued expectation cues. When there is a reason to use many 

trials, our results suggest researchers should not hesitate to employ electric stimulation if 
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expectation is the effect of interest.  See table 2 for advantages of laser and electric stimulation.  

For future studies we recommend that the use of a 75/25 reinforcement schedule and a 

minimum of 30 trials recorded per condition are adequate to capture modulation of pain-

evoked potentials by expectation in either laser or electric pain. Further research is required to 

test whether this effect can be captured across laser and electric pain under different pain 

expectation manipulations, for example in a placebo analgesia manipulation. Larger anticipatory 

effect sizes may be obtained when employing a ‘countdown’ anticipation period (e.g. Brown, 

Seymour, Boyle, et al., 2008b). We also recommend that, as here, future studies limit the 

maximum number of delivered fibre laser pain stimuli, to avoid any skin heating or 

sensitisation. Finally, generally in pain expectation studies, it would be prudent to maximise the 

predictability of the pain stimulation location as we have done here. This minimises any 

confounding effect of location-related surprise on intensity expectation effects.  

We show that despite the absolute differences in intensity and unpleasantness ratings, 

and the latency and morphological differences of ERPs, intensity ratings and the marker for 

laser and electric pain (EEP and LEPs) are modulated equally by cue-evoked expectancies. 

Further studies are required to explore the potential of using the two techniques to access 

different aspects of the processing of pain anticipation.  In view of the powerful effects of 

placebo and nocebo effects,  which are substantially driven by negative and positive expectation 

(Amanzio et al., 2013; Atlas & Wager, 2012; Luana Colloca & Miller, 2011; Dodd, Dean, Vian, & 

Berk, 2017), both LEP and EEP methodologies have the potential to provide a physiological 

marker of individuals participating in clinical trials. EEPs provide a more practical method for 

larger-scale studies, and the results of this study provide motivation for exploring this further. 
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Tables 

 

                          Energy density in J/cm2 

                           
                         Low           Medium       High 

Mean 
Minimum 
Maximum 

0.2 0.32 0.47 
0.14 0.18 0.13 
0.31 0.46 0.75 

 

Table 1. 

 

Table 2. 

 

 

 

  

 

 

 

Stimulator 
type 

Cued 
pain 

intensity 

Delivered 
pain 

intensity 

R2 B Standard 
error 

p 95% 
Confidence 

interval 

Average (SD) 
VAS of first 

ten trials 

Average (SD) 
VAS of final 

ten trials 
Laser Low Low .05 .004 .004 <.001 .003 .004 2.85 (1.07) 3.59 (1.16) 

Medium .01 .002 .001 .01 .0004 .003 4.46 (.81) 4.72 (.71) 

High  High  .01 .001 .0004 <.001 .001 .002 6.56 (.91) 6.79 (.87) 
Medium .02 .002 .001 .003 .001 .004 5.82 (.91) 6.19 (1) 

Electric Low Low .01 -.01 .003 .01 -.001 -.0002 2.74 (.77) 2.52 (.73) 
Medium .01 -.001 .01 .05 -.003 .0002 3.94 (0.74) 3.76 (1.04) 

High  High  .04 -.002 .0003 <.001 -.003 -.002 6.4 (.87) 5.89 (1.49) 
Medium .04 -.004 .001 <.001 -.004 -.002 5.33 (.93) 4.83 (1.21) 
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Table 3.  

 

Stimulator 
type 

Cued pain 
intensity 

Delivered 
pain intensity 

R2 B SE p 95% 
Confidence 

interval 

Average 
(SD) ERP 

amplitude 
of first ten 

trials 

Average 
(SD) ERP 

amplitude 
of final ten 

trials 
Laser Low Low .01 -.02 .01 <.001 -.31 -.01 2.57 (3.16) .48 (2.04) 

Medium .06 -.15 .03 <.001 -.21 -.09 3.97 (3.53) 2.25 (1.7) 
High  High  .01 -.03 .01 <.001 -.05 -.02 3.93 (3.55) 1.7 (3.25) 

Medium .04 -.13 .03 <.001 -.18 -.06 4.48 (2.85) 3.06 (2.69) 
Electric Low Low .01 -.02 .01 <.001 -.03 -.01 6.71 (3.08) 5.68 (2.5) 

Medium .03 -.09 .03 <.001 -.14 -.04 7.61 (2.92) 6.34 (2.94) 
High  High  -02 -.02 .01 <.001 -.03 -.01 7.83 (2.49) 6.91 (2.34) 

Medium .11 -.13 .02 <.001 -.17 -.08 8.09 (2.95) 6.53 (2.45) 
 

Table 4. 

 

 

 

 

 

Stimulator 
type 

Cued 
pain 

intensity 

Delivered 
pain 

intensity 

R2 B SE p 95% 
Confidence 

interval 

Average (SD) 
SPN amplitude 

of first ten 
trials 

Average (SD) 
SPN 

amplitude of 
final ten trials 

Laser Low Low .001 .04 .02 .01 .01 .08 -5.54 (5.47) 3.03 (6.38) 
Medium .14 .16 .05 <.001 .07 .25 -17.12 (11.53) -8.07 (5.88) 

High  High  .001 .03 .02 .09 -.01 .07 6.99 (7.83) 23.66 (18.91) 
Medium .01 .13 .06 .04 .003 .25 4.14 (6.88) 5.66 (7.44) 

Electric Low Low -.0002 .01 .12 .48 -.02 .03 -3.88 (2.3) -1.9 (4.91) 
Medium .0001 .01 .02 .69 -.03 .04 -3.74 (2.64) -2.84 (2.48) 

High  High  .002 -.001 .01 .91 -.02 .02 -4.15 (3.68) -2.37 (4.04) 
Medium -.01 .03 .046 .48 -.06 .12 -4.07 (2.23) -3.06 (3.73) 
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Advantages of laser stimulation 
 

Advantages of electrical stimulation 

ERP is modulated by stimulation intensity (section 3.2.2) 
ERP is modulated by intensity expectation (section 3.2.3) 

P2 reflects pain perception when pain 
intensity is expected (3.2.2) 

Electric P2 amplitude is higher which may 
reduce statistical noise (figures 4 & 5) 

Stimulation is perceived as more intense 
(section 3.1)  

Stimulation is perceived as less unpleasant 
(section 3.1) 

Anticipatory SPN reflects intensity expectation 
(section 3.2.1) 

SPN does not habituate 
No possibility of skin lesions 

Potential for a higher trial number without the 
risk of skin damage 

Does not require the wearing of safety goggles 
Portable, available commercially & less 

training required 
 

Table 5.  
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Figure captions 

Table 1: Fluence. Energy density values expressed as fluence for each pain level. 

Table 2: Effect of trial on VAS. Results of the linear mixed model, showing a positive relationship 

between laser VAS rating and trial, and a negative relationship between electric VAS rating and 

trial. Non-significant results are italicised.  

Table 3: Effect of trial on SPN. Results of the linear mixed model, showing a positive relationship 

between SPN amplitude and trial. Non-significant results are italicised.  

Table 4: Effect of trial on ERP. Results of the linear mixed model, showing a negative relationship 

between LEP and EEP amplitude and trial. 

Table 5: Laser versus electric stimulation. A comparison of advantages of laser and electric 

stimulation  

Figure 1: Trial timeline. Participants viewed a fixation cross for 500-750ms, followed by a 

veridical probability cue signalling the probability of receiving low (light orange) or medium 

(grey) pain in the low pain expectation trials, and viewed the same cue signalling the probability 

of receiving high (dark orange) or medium pain (grey) in the high pain expectation trials, for 

500ms. After presentation of a blank screen for 1500ms, the painful stimulus was delivered, 

followed by presentation of a blank screen for 1000ms. Finally, participants were prompted to 

rate the VAS of the painful stimulus using a keypad. 

Figure 2: Electrodes. Electrodes expressing the P2 and selected for analysis for the electric (left) 

and laser condition. Electrodes extracted in the majority (at least 50%) of participants are 

highlighted yellow, and other electrodes extracted in blue. Across participants, the P2 peak was 

expressed at centroparietal electrodes, but more peripheral activation varied in topography 

between participants. 
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Figure 3: Anticipation. Stimulus-preceding negativity for high (red) and low (blue) pain cues for 

laser (upper plot) and electric (lower plot) pain. The probability cue was presented at -2000ms, 

and the pain stimulus delivered at 0ms. We analysed the signal from 500ms before pain 

stimulation (shaded grey). Topographic plots show topographies for the difference between 

high and low intensity pain expectation across the 500ms anticipatory period, scaled from -3 to 

3 microvolts. Data were baseline-corrected to 200ms before presentation of the visual cue. 

Figure 4: Intensity. Upper left panel: pain-evoked potentials for high (red) and low (blue) 

electric (dashed line) and laser (solid line) pain-evoked potentials at peak electrodes for each 

participant. The painful stimulus was delivered at 0ms. Bars show the window of analysis for 

each stimulator type. Upper right panel: average intensity VAS of the stimuli for the laser and 

electric pain. Red bars depict average VAS rating score for high intensity stimulation, and blue 

bars average VAS for low intensity stimulation. Error bars represent standard error of the mean. 

Lower panel: scatterplots showing correlations between EEP amplitude and VAS (left), and the 

LEP amplitude and VAS (right). 

Figure 5: Pain expectation effects on LEP’s. Upper left panel: effect of high (red) and low 

(blue) pain cue on medium electric (dashed line) and laser (solid line) pain-evoked potentials at 

peak electrodes for each participant. The painful stimulus which in this case was always of 

medium intensity was delivered at 0ms with low and high intensity cues.  Bars show the 

window of analysis for each stimulator type. Upper right panel: Average VAS intensity ratings of 

the stimuli for the laser and electric pain, high and low pain expectation. Error bars represent 

standard error of the mean. Lower panel: scatterplots showing the non-significant correlation 

between EEP amplitude and VAS (left), and LEP amplitude and VAS (right). 

 

 

 

 



34 
 

 

Figures 

 

 

 

Figure 1. 

 

 

 

 

 

 

 

 

 



35 
 

 

 

Figure 2. 



36 
 

 

Figure 3. 
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Figure 5.  


