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Abstract— Kinetic parameter values, such as myocardial 

perfusion, can be quantified from dynamic contrast enhanced 

(DCE-) magnetic resonance imaging (MRI) data using tracer-

kinetic modelling. However, respiratory motion affects the 

accuracy of this process. Motion compensation of the image series 

is difficult due to the rapid local signal enhancement caused by the 

passing of the gadolinium-based contrast agent. This contrast 

enhancement invalidates the assumptions of the (global) cost 

functions traditionally used in intensity-based registrations. The 

algorithms are unable to distinguish whether the differences in 

signal intensity between frames are caused by spatial motion 

artefacts or the local contrast enhancement. In order to address 

this problem, a fully-automated motion compensation scheme is 

proposed which consists of two stages. The first of which uses 

robust principal component analysis (RPCA) to separate the local 

signal enhancement from the baseline signal, before a refinement 

stage which uses traditional PCA to construct a synthetic reference 

series that is free from motion but preserves the signal 

enhancement. Validation is performed on 18 subjects acquired in 

free-breathing and 5 clinical subjects acquired with a breath-hold. 

The validation assesses visual quality, temporal smoothness of 

tissue curves and the clinically relevant quantitative perfusion 

values. The expert observers score of visual quality increased by a 

mean of 1.58/5 after motion compensation and improvement over 

previously published methods. The proposed motion 

compensation scheme also leads to the improved quantitative 

performance of motion compensated free-breathing image series 

(30% reduction in the coefficient of variation across quantitative 

perfusion maps, 53% reduction in temporal variations (p<0.001)). 

 
Index Terms— Image registration, Myocardial perfusion MRI, 

Respiratory motion compensation, RPCA, Tracer-kinetic 

modelling 

I. INTRODUCTION 

IRST-pass myocardial stress perfusion cardiovascular 

magnetic resonance (CMR) has become one of the tools of 

choice for the non-invasive diagnosis of myocardial ischaemia 

[1]–[3]. In current clinical practice, stress perfusion CMR is 
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assessed visually; however, this requires extensive training and 

the diagnostic accuracy depends strongly on the operator [4]. 

As was first suggested more than 20 years ago, it is possible to 

quantitatively analyse myocardial perfusion in units of 𝑚𝑙 ∙
𝑚𝑖𝑛−1 ∙ 𝑔−1  using CMR [5], [6] through the application of the 

indicator-dilution theory [7], [8]. As yet, quantitative analysis 

of perfusion CMR remains primarily a research tool but its 

clinical translation would be advantageous as it can be 

automated [9], [10], enabling accurate and user-independent 

assessment of myocardial perfusion [6]. Our group has also 

recently demonstrated the independent prognostic value of 

quantitative stress perfusion CMR [11]. 

The fully automated compensation of respiratory motion is a 

key milestone in the process of the clinical translation of the 

quantitative analysis as the inter-frame misalignment caused by 

this respiratory motion can hamper the accuracy of the analysis. 

In particular, voxel-wise quantification of perfusion is desirable 

in order to take advantage of the high spatial resolution of MRI 

and to enable the accurate detection of sub-endocardial 

perfusion defects [12]. Such an approach assumes that a voxel 

represents the same anatomical location in each frame of the 

image series - i.e. that there is no inter-frame misalignment. 

When voxel-wise quantification is used, even misalignments as 

small as one voxel can result in significant errors in the 

quantitative values. 

Current clinical protocols involve acquiring dynamic image 

series which last 50-90 seconds [13]. Breath-holds can only 

effectively prevent respiratory motion during a limited time 

frame of 15-25 seconds, usually during the first-pass of the 

bolus of contrast agent across the left ventricle (LV) cavity and 

the LV myocardium. Hence, even when breath-holds are 

performed, it frequently leads to poor image quality due to the 

residual motion [14]. This can be worsened by incorrect timing 

of the breath-hold, resulting in it not coinciding with the 

passage of the contrast agent in the LV cavity and by the fact 

that patients with coronary artery disease often struggle to hold 

their breath properly, especially under the effects of the 

vasodilator drug. 

More recently, some authors [10], [15], [16] have proposed 

to acquire perfusion images in free-breathing and to apply 

retrospective motion compensation. This approach has the 

advantage of being more tolerable for patients and, with good 

motion compensation, to enable automatically generating 

accurate voxel-wise perfusion maps without requiring manual 

segmentation and manual correction of the position of the heart. 

Furthermore, acquisitions in free-breathing (FB) are more 

robust when compared to breath-hold (BH) acquisitions when a 

motion compensation algorithm is used. Shallow free-breathing 

encourages smooth in-plane motion that aides motion 
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compensation, whereas breath-holds can lead to deep 

inspiration/expiration and sudden motion both in-plane and 

through-plane. Additionally, breath-hold scans can also be 

difficult to retrospectively correct due to the changes in the 

volumes of the ventricles associated with deep inspiration and 

expiration [17]. 

II. BACKGROUND 

The problem of motion compensation can be formulated as 

an image registration problem. The difficulty in the application 

of image registration to the motion compensation of myocardial 

perfusion images is due to the rapidly changing signal 

intensities caused by the arrival and wash-out of the contrast 

agent in the region of interest. In the case of non-rigid 

registrations with vastly different signal intensity profiles, it 

cannot be guaranteed to not introduce unnatural anatomical 

deformations [18], [19]. The cost functions that are optimised 

in the image registrations are global measures [20], they assume 

that the mapping between tissue and image intensity is constant. 

This underlying assumption is violated by the local intensity 

changes. As a result, the cost functions cannot distinguish 

between the intensity variations that are due to spatial motion 

artefacts and those that are due to the contrast enhancement. For 

example, when trying to register a frame with contrast 

enhancement only in the right ventricle to a frame with contrast 

enhancement only in the left ventricle, the algorithm will likely 

try to match the left ventricle to the right ventricle. One possible 

solution to this problem is to only register successive frames in 

the image series so that the contrast enhancement should be 

relatively similar. However, this has the effect of propagating 

the errors from each registration to every subsequent 

registration. Also, particularly during the passage of contrast 

agent from the right ventricle to the left ventricle, the intensity 

change is fast relative to the temporal sampling rate of the 

image series, leading to vastly differing contrast between 

successive frames and the potential for failed registrations. 

A. State-of-the-art 

Several methods to compensate for motion in myocardial 

perfusion MRI data already exist. Adluru et al. [21], [22] 

proposed the use of tracer-kinetic models to create synthetic 

reference images. However, this work only considered rigid 

registration with breath-hold acquisitions and the more general 

applicability of the method is unclear. In particular, the model-

fitting is likely to be difficult with free-breathing acquisitions. 

The method of Melbourne et al. [23] proposed to progressively 

remove motion in the sequence using principal component 

analysis (PCA). The original sequence can hence be motion 

compensated by progressively registering to a motionless 

synthetic image series reconstructed from only early PCs. This 

is equivalent to an iterative spatio-temporal denoising.  

However, this theory breaks down if the acquisition is free-

breathing or there is large amounts of motion, such as a deep 

inspiration, present. This is because the non-random effects of 

the structured motion biases the PCA decomposition. This 

results in the motion manifesting itself in the early PCs. Hence, 

registration to the synthetic PCA-based reference image cannot 

remove the motion. Wollny et al. [15], [24] built on the work of 

Milles et al. [25] and proposed to use independent component 

analysis (ICA) to separate the motion from the image series to 

create synthetic reference images. However, differentiating 

between the independent components and hence removing the 

motion is difficult.  

More recently, Benovoy et al. and Xue et al. proposed 

methods, based on optical flow, that are now components of 

larger software packages for automated quantitative perfusion 

analysis [16], [26]. These methods however do not explicitly 

account for the locally-varying contrast enhancement. As 

demonstrated in Fig. 1, there can be vastly differing contrast 

profiles between frames. Lingala et al. [27] proposed 

deformation corrected compressed sensing (DC-CS) which 

embeds the motion compensation within an iterative 

reconstruction scheme.  The algorithm iterates a reconstruction 

step with registration to a spatio-temporal denoised reference. 

However, it is not clear if it is always possible to create a 

denoised version with no motion but the same contrast profile 

as the original image series in this way. The technique also 

requires many iterations of these steps, the main limitations of 

doing so are the unwanted smoothing of the images caused by 

iterative registrations and the time complexity of such an 

approach. This work will be compared extensively to the 

method proposed in this paper. The review paper of Pontre et 

al. [28] compared many of the aforementioned techniques but 

no clear conclusion was reached. 

B. Our Contribution 

In this study, we propose a robust fully-automated, image-

based approach to the motion compensation of free-breathing 

perfusion MRI image series using a matrix decomposition 

technique, robust principal component analysis (RPCA) [29] 

and non-rigid image registration. This approach is based on the 

observation that RPCA allows the separation of the dynamic 

contrast enhancement from the baseline signal in a myocardial 

perfusion CMR images series. Hence, the deformation fields 

required to eradicate the respiratory motion can be computed in 

the absence of the locally-varying contrast enhancement and 

then applied to the original image series to render it motionless. 

Hamy et al. [30] demonstrated that RPCA allowed motion 

compensation of data from liver, small bowel and prostate 

DCE-MRI. In this work, it is shown that RPCA also facilitates 

the motion compensation of myocardial perfusion MRI data.  

This extension is non-trivial due to the fact the images do not 

just have one enhancing tissue but rather the enhancing tissue 

is surrounded by the two more intensely enhancing blood pools. 

Furthermore, the use of a group-wise registration scheme 

negates the difficulty of choosing a reference frame. The 

motion compensation is conducted in a two-stage approach, the 

first stage uses RPCA, as described above, to account for the 

bulk motion and the second stage is a refinement stage in which 

the image series is registered to a separate motionless synthetic 

image series created using PCA [23] (analogous to the spatio- 

temporal denoising used in DC-CS). The idea is that such a 

denoising will be much more efficient after the first bulk motion 



 
compensation step. The validation is conducted with its clinical 

applicability in mind, which is achieved through an assessment 

of the accuracy of myocardial blood flow quantification and by 

the scoring of expert readers. 

III. THEORY 

A. RPCA 

RPCA is a generalisation of traditional principal component 

analysis which, as its name suggests, attempts to make the 

algorithm more robust to corrupt data points [29]. It takes 

advantage of the fact that, in many applications, the data (𝑀) 

can be modelled as a combination of a low-rank component 

(𝐿0) and a sparse component (𝑆0) such that: 𝑀 = 𝐿0 + 𝑆0. 

Mathematically this can be formulated as the solution of: 

 

argmin𝐿,𝑆 ||𝐿||∗ + 𝜆 ||𝑆||1  s. t.   𝐿 + 𝑆 = 𝑀            (1) 

 

where || ∙ ||∗ is the nuclear norm and is defined as the sum of 

the singular values of the matrix. 𝜆 > 0 is a trade-off parameter 

that balances the constraint on the rank of 𝐿 and the sparsity of 

𝑆. Large values of 𝜆 lead to 𝐿 having higher rank and 𝑆 being 

more sparse (𝜆 → ∞ gives 𝐿 = 𝑀 and 𝑆 = 0) and conversely 

smaller values of 𝜆 lead to 𝐿 having lower rank and 𝑆 being less 

sparse (𝜆 → 0 gives 𝐿 = 0 and 𝑆 = 𝑀). The solution of (1) can 

be obtained through an augmented Lagrangian multiplier 

method using an alternating directions approach [31].  

B. Motion Compensation 

Motion compensation was conducted in two stages, this 

scheme followed from the observation that it is difficult to 

optimise the parameters of the image registration algorithms to 

correct for both large and small deformations simultaneously. 

In stage 1, it is attempted to correct for the bulk motion caused 

by the respiration and stage 2 is a refinement step which 

attempts to account for any remaining fine misalignments. The 

analysis is performed on image series that have been cropped 

around the region of interest [32], which vastly reduces the time 

taken for all processing steps. The full scheme is illustrated in 

Fig. 2. 

  

C. Stage 1: bulk motion compensation 

As was shown by Hamy et al. [30], when RPCA is applied to 

a DCE-MRI image series the low-rank component 𝐿 well 

models the baseline signal and the sparse component 𝑆 captures 

the contrast enhancement. This decomposition is shown for two 

example frames in Fig. 3, with videos provided in the 

supplementary material. With a suitable choice of  𝜆, typically 

taken to be 𝜆 = 1/√𝑁𝑝  where 𝑁𝑝 is the number of pixels in an 

image [29], it is therefore possible to obtain a low-rank image 

series 𝐿 which has  a similar motion profile as the original image 

series but without dynamic contrast enhancement. Traditional 

image registration techniques can be easily applied to this low-

rank series as the contrast is similar in each frame. Thereafter, 

the deformation fields which are computed from 𝐿 can then be 

applied to the original image series to eliminate motion.  

 

 
Bulk motion is corrected for using a rigid registration scheme 

which optimises the mutual information cost function [33].   

The registration is applied in a group-wise manner, where all 

frames are registered to the mean frame in an iterative 

framework, with the mean frame being updated on each 

iteration (for a total of 3 iterations). This approach performs 

well as it uses all information at each stage of the registration 

as opposed to considering only two frames at a time. It also 

avoids the uncertainties and errors caused by either developing 

an algorithm to choose a reference frame or doing so in a 

random manner. The iterative refinement of the reference frame 

also avoids the complication of registering two frames which 

 
Fig. 1.  Two pairs of successive frames from a myocardial perfusion MRI 

image series. The first pair ( (a) and (b) ) are during the arrival of contrast 

agent in the right ventricle and the second pair ( (c) and (d) ) are during the 
arrival of contrast agent in the left ventricle. This serves to show that the 

contrast profile is not necessary similar between two successive frames.  

 

 
Fig. 2.  A flow chart of the proposed motion compensation scheme. 
  

 
Fig. 3.  The RPCA based separation of the example images from the original 
image series (M) into its low-rank (L) and sparse components (S). As 

discussed, the local signal enhancement is represented in S with no 

dynamically changing contrast present in L.  



are far apart; this could lead to unwanted deformations of the 

anatomy. 

D. Stage 2: refinement 

After this first bulk motion compensation, it is observed that 

the remaining motion appears to be jittery and noise-like. 

Hence, in the second stage, the frames are registered to a 

synthetic image series which is created using a PCA 

decomposition to remove the noise-like motion, as was first 

proposed by Melbourne et al. [23]. Fig. 4 shows an example 

frame expressed as a linear combination of the three principal 

eigen-images, a video of such an example series is provided in 

the supplementary material. Each frame from the image series 

resulting from stage one is hence registered to the 

corresponding frame from the motionless PCA-based synthetic 

image series. The motion profile for this synthetic image series 

is shown in Fig. 5. The registrations are performed using free-

form deformations [34] which optimises the residual 

complexity cost function [35] and is performed using a 

Gaussian image pyramid scheme [36]. This step refines the 

original motion compensation, and as such is performed on a 

fine grid of control points (grid spacing (ℎ) of 4 pixels) with 

relatively weak regularisation (𝜅 = 5). These parameters are 

similar to the optimal combination for this application found by 

Wollny et al. [20] (ℎ = 5, 𝜅 = 15). As compared to these 

values, this method uses a finer grid as it is only being used in 

the second stage and thus only correcting fine misalignments. 

This work also uses less regularisation as after the first stage the 

images are already close to being aligned and thus required less 

protection against local optima. All processing steps were 

implemented in Matlab (The MathWorks, Natick, MA, USA) 

using the Medical Image Registration Toolbox for Matlab [37]. 

  

 
 

 

IV. METHODS 

A. Study population and image acquisition  

Dynamic perfusion series were prospectively acquired in 

patients referred for cardiac MRI at the School of Biomedical 

Engineering and Imaging Sciences, King’s College London. 

Image acquisition was carried out at 3.0T (Philips Achieva-TX, 

Philips Medical Systems) using standard acquisition protocols 

[13]. Datasets were acquired either in free-breathing or during 

breath-holds. There was 16 free-breathing rest acquisitions, 2 

free-breathing stress acquisitions and 5 breath-hold stress 

acquisitions in total. Images were acquired in 3 short axis views 

using a turbo field echo gradient echo pulse sequence (typical 

acquisition parameters TR/TE/flip angle/saturation prepulse 

delay were 2.5 ms/1.25 ms/15° /100 ms) with a typical spatial 

resolution of 1.34 x 1.34 x 10 mm. The acquisition of the 

images was synchronised to the cardiac cycle using a vector 

electrocardiogram trace. The dynamic image series were 

acquired during first-pass injection of 0.075 mmol/kg 

Gadobutrol (Gadovist, Schering, Germany) at 4 ml/s followed 

by a 20 ml saline flush. A dual bolus contrast agent scheme was 

used to correct for signal saturation of the AIF, as previously 

described [38]. All patients consented to the CMR scan and to 

the inclusion in the study (ethics approval number 15/NS/0030). 

The study was conducted in accordance with the Declaration of 

Helsinki. 

Image series acquired during a breath-hold can contain 

significant and sudden motion, whereas images acquired in 

free-breathing contain a smooth, almost periodic breathing 

pattern [15] due to the encouraged shallow breathing. The 

motion profile is visualised for an example free-breathing 

image series in Fig. 6 which shows the vertical (Fig. 6 (a)) and 

horizontal (Fig. 6 (b)) motion. 

 

 

B. Evaluation  

The method was evaluated in both a qualitative and 

quantitative manner. All metrics were computed for 48 

individual free-breathing rest image series (16 subjects with 3 

slices each), 15 breath-hold stress image series and 6 free-

breathing stress image series. All subjects were free from 

ischaemia and scar. Although quantification of myocardial 

perfusion is routinely done in research settings, it is likely that 

 
Fig. 4. An example image from the image series which can be expressed as a 

linear combination of its 3 principal eigen-images. 
 

 

 

 

 
Fig. 5. The motion profile of the synthetic reference. This is constructed by 

taking the centre column (a) and row (b) from each image in the series and 
stacking them left to right (a) and top to bottom (b). (a) shows the vertical 

motion (anterior to inferior) and (b) shows the horizontal motion (septal to 

lateral). This figure indicates a complete absence of motion. 
 

 

 
Fig. 6. The motion profile of a free-breathing image series that was created for 

the same image series as shown in Fig. 5. The motion is represented as the 

oscillating pattern and is quite severe in this case. As expected, there is strong 
vertical motion. There is less horizontal motion but it is still present. 

 

 

 



visual assessment will remain a part of clinical protocol for the 

near future. With this in mind, the qualitative facet of the 

evaluation involved the grading by expert observers. This 

qualitative assessment compares the original image series to the 

equivalent image series compensated with both the proposed 

framework and the DC-CS method [27].  The quantitative 

assessment involved assessing the temporal smoothness of 

time-intensity curves while also focusing on the spatial 

smoothness of the clinically relevant myocardial perfusion 

values. In the absence of motion, the time-intensity curves 

should be smooth and the quantitative perfusion maps should 

be relatively uniform. The quantitative assessment again 

compares the original image series with the two equivalent 

motion corrected image series.  This follows the recent 

validation paper of Jansen et al. [39]. 

The quality of the motion compensation was assessed by two 

expert observers, blinded to the motion compensation status of 

the image series, with level III CMR accreditation according to 

the guidelines of the Society for Cardiovascular Magnetic 

Resonance (SCMR). The observers (AC and ADMV) viewed 

the image series and graded each of them on a five point scale. 

1=Poor Quality; unnatural deformations, 2=Mediocre Quality; 

significant motion, 3=Acceptable Quality; some motion, 

4=Good Quality; only some unimportant motion, 5=Excellent 

Quality;  no visible motion. The grades from the two observers 

were deemed to be in agreement if they differed by less than 

two, otherwise, a consensus grade was reached. The average 

score from the two observers was then used for assessment.  

In the absence of motion, the only change in voxel-intensity 

is the contrast enhancement. These changes should be smooth 

and slowly-varying. This assumption is violated in the presence 

of motion as voxels can represent different anatomical features 

in consecutive frames. To analyse this temporal smoothness, 

the standard deviation (SD) of the second derivative of the 

voxel-wise time-intensity curves was computed and the mean 

value of this was recorded for each slice. Time-intensity curves 

were smoothed using a Gaussian filter with 𝜎 = 1 (time frame) 

in order to reduce the effect of noise. This smoothing was 

performed in all cases to ensure fair comparison. Only the part 

of the curve relating to the first-pass of the contrast agent is 

assessed. 

Myocardial perfusion is quantified through the relationship: 

𝐶𝑚𝑦𝑜(𝑡) =  𝑅𝐹(𝑡) ∗ 𝐶𝐴𝐼𝐹(𝑡) where 𝑅𝐹, the residue function, is 

constrained by the Fermi function [5], [6]:      

         𝑅𝐹(𝑡) = 𝐹 ∙ [
1

1+exp[(𝑡−𝜏0−𝜏𝑑)∙𝑘]
] ∙ 𝜃(𝑡 − 𝜏𝑑)                (2)    

𝐶𝐴𝐼𝐹(𝑡) is the arterial input function and 𝐶𝑚𝑦𝑜(𝑡) is the 

concentration of contrast agent in the tissue. An estimate of 

myocardial blood flow 𝐹 can hence be obtained by 

deconvolving the observed tissue curve with the AIF.  

The fitting is done with a Levenberg-Marquardt nonlinear 

least square fitting algorithm. 𝜃(𝑡) is the unit step function. The 

algorithm fits for the variables 𝐹, 𝑘 and 𝜏0 and uses a pre-

defined 𝜏𝑑. The fitted value of 𝐹 is taken as the estimate of 

myocardial blood flow, whereas 𝑘 and 𝜏0 define the shape of 

the residue function. Signal-intensity curves are converted to 

concentration of gadolinium by assuming a linear relationship 

(this can be assumed due to the dual-bolus acquisition) [40]. 

Since the image series were acquired from healthy patients, 

relatively uniform perfusion would be expected through-out the 

myocardium as there is no stress-induced ischaemia and no 

scarred tissue, based on the late gadolinium enhancement 

images. However, this will not be the case in the free-breathing 

acquisitions due to motion artefacts in the time intensity curves, 

demonstrated in Fig. 7. Image series were therefore quantified 

with a previously validated in-house software [41], with the aim 

of showing that it is possible to obtain more homogenous 

perfusion maps after motion compensation. In order to make 

this assessment, the SD of each perfusion map was recorded. 

 

V. RESULTS 

A. Qualitative Assessment 

The expert observers scored the 69 image series with three 

different motion compensation statuses (no motion 

compensation, the DC-CS method and the RPCA-based method 

proposed in this work), leading to 207 individual scores. The 

two expert observers assigned identical scores to the image 

series in 63% of the cases. A difference of more than one point 

was only observed in 4/207 cases and in all of these cases a 

consensus score was agreed on. This corresponds to an inter-

observer Spearman’s rank correlation coefficient of 0.80.  

The mean grades (SD) after averaging the grades from each 

observer for the rest image series were 2.1 (0.3), 3.71 (0.64), 

and 4.10 (0.62) for the original free-breathing image series, the 

DC-CS corrected image series, and the RPCA corrected image 

series. The equivalent scores for the stress image series were 

2.76 (0.53), 3.19 (0.66) and 3.57 (0.66). The Wilcoxon signed 

rank test showed that there is a significant (Bonferroni-

corrected) difference between all pairs of populations except 

the stress DC-CS and stress RPCA corrected images (p=0.07). 

Although in this case the trend suggests that the RPCA 

correction works better. This shows that not only does motion 

compensation improve the image quality of free-breathing 

image series, but also that our proposed two-step approach 

gives better results than the previously published  method [27]. 

There are no cases in which the non-motion compensated image 

series scored higher than an equivalent motion compensated 

image series. There was a positive difference in the score 

between the RPCA and DC-CS methods in 48% of the image 

series with a mean improvement of 0.39. Both observers 

confirmed that they would be satisfied to report on the free-

breathing image series in 100% of the cases. Before and after 

 
Fig. 7. Voxel-wise time-intensity curves which were extracted from the 
myocardial segmentation, before and after motion compensation. On the left 

the motion causes the segmentation of the myocardium to be contaminated by 
the left ventricle during the upslope of myocardial signal. After motion 

compensation (right) this effect is corrected and the curves look as expected.  

 



motion compensation videos are provided in the supplementary 

materials.  

B. Quantitative Assessment 

In order to assess the temporal smoothness of the time-

intensity curves, the second derivatives of the voxel-wise time-

intensity curves are examined. The SD of this is then computed 

for each curve and the mean value is computed over all curves 

from an individual slice. The median (interquartile range) 

values were 0.28 (0.14), 0.16 (0.06) and 0.13 (0.06) at rest and 

0.14 (0.14), 0.11 (0.09), and 0.09 (0.08) at stress for the non-

motion compensated, DC-CS, and RPCA data respectively. 

Lower values indicate that the change in intensity between two 

successive images in the series is smooth and hence indicates a 

likely reduction in the amount of motion. Fig. 8 shows the 

distribution of these values. The Wilcoxon signed rank test 

shows that the values for the RPCA-based method differ 

significantly from the DC-CS method both at rest (p = 0.013) 

and at stress (p = 0.024). The two motion compensation 

schemes are significantly better than no motion compensation 

both at rest and at stress.  

 The mean (SD) quantitative perfusion values for the original 

image series the DC-CS corrected image series, and the RPCA 

corrected image series are  0.93 (0.33), 0.94(0.40), and 

0.83 (0.26) 𝑚𝑙 ∙ 𝑚𝑖𝑛−1 ∙ 𝑔−1 at rest and 4.02 (0.91), 4.15 

(0.84), and 3.21 (0.73) 𝑚𝑙 ∙ 𝑚𝑖𝑛−1 ∙ 𝑔−1 at stress respectively. 

As expected the means are very similar and in line with what 

we would expect to see [42], the reduction in perfusion after 

motion compensation is due to the lack of artefacts in the 

intensity curves. However, what is more telling is that at rest 

the SD accounts for 73%, 53% and 43% of the mean 

respectively. Due to motion artefacts both the non-motion 

compensated free-breathing have a higher SD than the motion 

compensated image series. The median values of the SD of 

quantitative perfusion value in each slice for the original, DC-

CS corrected and RPCA corrected image series are 0.16, 0.13, 

and 0.14 at rest and 0.61, 0.69 and 0.45 at stress, respectively. 

The distribution of these values is visualised, in Fig. 9.  

 

   
 The Wilcoxon signed rank test shows that the values for the 

image series do not differ significantly to those of the two 

motion compensation schemes, though the trend is clearly 

visible. The homogeneity of the perfusion maps is improved 

particularly with the RPCA based method. Furthermore, the 

homogeneity of the maps at stress for the RPCA corrected 

image series is significantly improved over the DC-CS 

corrected image series for both the free-breathing (p=0.001) and 

breath-hold (p=0.009) image series. 

 

VI. DISCUSSION 

In this study, we introduced a novel method for robust and 

fully-automated, image-based motion compensation of free-

breathing perfusion CMR image series. This method was 

validated both qualitatively and quantitatively. The quality of 

the motion compensation of both rest and stress free-breathing 

and stress breath-hold image series was graded by two expert 

observers in comparison with a previously established method. 

The quantitative assessment compared free-breathing image 

series that had subsequently been motion compensated to the 

original image series and also image series acquired with a 

breath-hold before and after motion compensation. This 

evaluation focused on the clinically relevant quantitative 

perfusion values. The results show an improvement in all 

metrics for the free-breathing image series that have been 

motion compensated using the proposed method as compared 

to the  original image series (30% reduction in the coefficient 

of variation across quantitative perfusion maps, 55% reduction 

in temporal variations (p<0.001)). The uniformity of the motion 

compensated free-breathing stress maps is comparable with the 

breath-hold stress maps. It follows that it may be possible to 

omit the breath-hold from the clinical protocol, making the 

procedure easier for both the patient and the scan operator, 

encouraging smoother respiratory motion which is easier to 

correct and reducing the potential for large gasps and through-

plane motion. 

A. Qualitative Assessment 

There was a reasonable agreement between observers, with 

both observers consistently scoring the image series that had 

been corrected with the RPCA-based method higher than those 

corrected with DC-CS and those with no motion compensation. 

Fig. 10 shows the tMIP of each of the three slices for one patient 

(stress free-breathing) for the three different motion 

compensation statuses, the increased sharpness of the image 

 
Fig. 8. The values for the mean standard deviation of the 2nd derivative of 
myocardial time-intensity curves. This indicates the temporal smoothness of 

the image series. The smoother the transition between successive images in 

the series the less motion that is present. 
 

 

 

 
Fig. 9. The values for the standard deviation of perfusion values in each map. 
Lower standard deviations indicate more homogenous perfusion maps and 

hence less motion. 

 

 



series corrected with and the RPCA based approach (column 3) 

indicates that there is little residual motion remaining.  

 

 

B. Quantitative Assessment 

The temporal variations of the free-breathing (both rest and 

stress) image series were significantly reduced (by 55%) 

compared to that of the original image series. This indicates that 

the motion compensation is indeed enforcing smooth changes 

between successive images in the series which in turn indicates 

the eradication of motion. The temporal smoothness of an 

example free-breathing image series is visualised through its 

motion profile in Fig. 11. This is the equivalent image series to 

Fig. 6. In Fig. 12, the deep inspiration and expiration caused by 

the breath-hold are obvious. After the breath-hold, large 

amounts of motion can occur due to the subject being out of 

breath and gasping for air. However, in general, this motion in 

the BH image series does not significantly affect the clinically 

relevant quantitative perfusion values. The Fermi 

deconvolution only uses the part of the time intensity curves 

that relate to the first-pass of the contrast agent and this is when 

the breath-hold takes place. However, the BH image series can 

still produce less uniform perfusion maps in the case of 

mistiming or failure of the breath-hold. 

This leads naturally to a comparison of the quantitative 

perfusion values obtained in each case. As previously 

remarked, due to the patients’ status there will be no stress-

induced ischaemia and therefore relatively uniform perfusion 

would be expected throughout the myocardium. In the presence 

of motion this will not be the case due to the motion artefacts in 

the time intensity curves, which impacts the deconvolution. As 

such, the mean standard deviation of the quantitative maps is 

lower after motion compensation with a reduced variability. 

This effect is more pronounced under stressed conditions. 

Breath-hold acquisitions are not robust, mistakes by the 

operator, failed breath-holds by the patient or differences in 

cardiac output between individuals can adversely impact on the 

synchronisation of the acquisition. Hence, there can still be 

significant motion and mistiming during the first-pass of the 

contrast across the left ventricle and the left ventricular 

myocardium in the BH image series. At stress, the quantitative 

maps computed with the motion corrected FB image series are 

more homogenous than the maps computed with the BH image 

series. 

 

 

 
 

A further consideration that contributes to the improved 

uniformity of the motion corrected perfusion maps as compared 

to the BH perfusion maps is the through-plane motion. The 

“gasp” or period of deep breathing following a breath-hold can 

cause significant through-plane motion and cannot be 

retrospectively compensated for using 2D registrations.  

The reported results improve on those obtained with 

previously established methods [27]. Further to the improved 

results, the proposed method is beneficial as it is faster (3.5 

minutes versus 12 minutes on average). From the point of view 

of timing, it is potentially advantageous that the motion 

compensation is achieved in two steps rather than in the many 

iterations of an iterative procedure.  

The bulk compensation step can also deal with structured 

motion (such as periodic motion and large inspiration) better 

 
Fig. 10. The temporal maximum intensity projection of the three slices from a 

free-breathing stress acquisition. The increase in sharpness in the RPCA 

corrected series indicates a lack of motion. The blurring artefacts as a result of 
motion are shown with yellow arrows.  

 

 

 
Fig. 11. The equivalent motion profile for the same image series as shown in 

Fig. 6 after motion compensation. The smooth transition between frames 

indicates the near-total eradication of motion.  
 

 

 

 
Fig. 12. The equivalent motion profile as shown in Fig. 6 for a breath-hold 

acquisition. In this image series there is a period of free-breathing followed by 

a breath-hold during the passage of the main bolus and then another period of 
free-breathing. The breath-hold is short relative to the passage of the contrast 

agent, this will impact the tissue curves from the myocardium and 

subsequently the quantitative perfusion values.  
 

 

 
 

 



than the iterative denoising. When compared to directly using 

the PCA-based approach [23], this approach is deemed to be 

more applicable to myocardial perfusion imaging. This is 

because the bulk motion compensation step removes the non-

random effects in the data which then allows the successful 

application of PCA. This leads to better results with both free-

breathing and breath-hold data (the clinical standard). Videos 

which demonstrate the effect of the non-random motion in free-

breathing acquisitions on the PCA-based approach are provided 

in the supplementary material.  

The benefits of the proposed approach are that there is no 

assumptions made on the acquisition system and parameters or 

even the imaging modality. The resulting motion compensated 

image series were of higher visual quality. The quantitative 

information was shown to be preserved after motion 

compensation, with more robust estimate of myocardial blood 

flow due to reduced motion artefacts in the signal intensity 

curves.   

C. Limitations 

There is a lack of a ground-truth to validate this method. We 

have attempted to account for this by conducting the evaluation 

in a multitude of different manners. 

To date, the method has only been validated with one set of 

acquisition parameters. Although we believe there is no reason 

the acquisition parameters should influence this method, it 

would be desirable to demonstrate this on further datasets.  

Despite the fact this is a 2D compensation for the 3D motion 

of the heart, image series acquired in the short-axis view with 

shallow breathing will have predominantly in-plane motion. In 

our datasets, it is not possible to correct through-plane motion 

in due to the large slice thickness, large distance between slices 

and the limited sampling of the left ventricular myocardium.  

VII. CONCLUSION 

We have demonstrated the feasibility of a robust fully-

automated, image-based approach to the motion compensation 

of free-breathing perfusion CMR images using the matrix 

decomposition technique, robust principal component analysis 

(RPCA) and non-rigid image registration and shown its efficacy 

using clinical data. With the use of motion compensation 

algorithms, the evidence presented in this study suggests that a 

breath-hold protocol for the acquisition of first-pass myocardial 

perfusion MRI data may be no longer necessary. Motion 

compensated free-breathing acquisitions led to significantly 

more uniform quantitative perfusion maps than the original 

images. The variation of motion corrected free-breathing 

perfusion maps is equivalent to breath-hold clinical 

acquisitions. Our method performs well in comparison with the 

established methods in the literature. Additionally, both expert 

observers noted that the motion compensated free-breathing 

image series were all of satisfactory quality for visual 

assessment. In summary, in addition to the increased 

convenience of free-breathing acquisition, our motion 

compensation scheme produces image series of high visual 

quality and allows the robust quantification of myocardial 

perfusion.    

 

REFERENCES 

[1] E. Nagel, C. Klein, I. Paetsch, S. Hettwer, B. Schnackenburg, K. 

Wegscheider, and E. Fleck, “Magnetic resonance perfusion 

measurements for the noninvasive detection of coronary artery 

disease,” Circulation, vol. 108, no. 4, pp. 432–437, 2003. 

[2] A. Chiribiri, N. Bettencourt, and E. Nagel, “Cardiac Magnetic 
Resonance Stress Testing: Results and Prognosis,” Curr. Cardiol. 

Rep., vol. 11, no. 1, pp. 54–60, 2009. 

[3] C. Jaarsma, T. Leiner, S. C. Bekkers, H. J. Crijns, J. E. Wildberger, 
E. Nagel, P. J. Nelemans, and S. Schalla, “Diagnostic performance 

of noninvasive myocardial perfusion imaging using single-photon 

emission computed tomography, cardiac magnetic resonance, and 
positron emission tomography imaging for the detection of 

obstructive coronary artery disease: A meta-anal,” J. Am. Coll. 

Cardiol., vol. 59, no. 19, pp. 1719–1728, 2012. 
[4] A. Villa, L. Corsinovi, I. Ntalas, X. Milidonis, C. M. Scannell, G. Di 

Giovine, N. J. A. Child, C. Ferreira, M. S. Nazir, J. Karády, E. 

Eshja, V. De Francesco, N. Bettencourt, A. Schuster, T. F. Ismail, 
R. Razavi, and A. Chiribiri, “Importance of operator training and 

rest perfusion on the accuracy of stress perfusion cardiovascular 

magnetic resonance,” J. Cardiovasc. Magn. Reson., 2018. 

[5] N. Wilke, M. Jerosch-Herold, Y. Wang, Y. Huang, B. V 

Christensen, A. E. Stillman, K. Ugurbil, K. McDonald, and R. F. 

Wilson, “Myocardial perfusion reserve: assessment with 
multisection, quantitative, first-pass MR imaging.,” Radiology, vol. 

204, no. 2, pp. 373–84, Aug. 1997. 

[6] M. Jerosch-Herold,  a E. Stillman, and N. Wilke, “Magnetic 
resonance quantification of the myocardial perfusion reserve with a 

Fermi function model for constrained deconvolution.,” Med. Phys., 

vol. 25, no. 1, pp. 73–84, 1998. 
[7] K. L. Zierler, “Theoretical Basis of Indicator-Dilution Methods For 

Measuring Flow and Volume,” Circ. Res., vol. 10, no. 3, pp. 393–

407, 1962. 
[8] S. P. Sourbron and D. L. Buckley, “Tracer kinetic modelling in 

MRI: estimating perfusion and capillary permeability,” Phys. Med. 

Biol., vol. 57, no. 2, pp. R1–R33, 2011. 
[9] L.-Y. Hsu, M. Jacobs, M. Benovoy, A. D. Ta, H. M. Conn, S. 

Winkler, A. M. Greve, M. Y. Chen, S. M. Shanbhag, W. P. 

Bandettini, and A. E. Arai, “Diagnostic Performance of Fully 

Automated Pixel-Wise Quantitative Myocardial Perfusion Imaging 

by Cardiovascular Magnetic Resonance,” JACC Cardiovasc. 

Imaging, pp. 1–11, 2018. 
[10] P. Kellman, M. S. Hansen, S. Nielles-Vallespin, J. Nickander, R. 

Themudo, M. Ugander, and H. Xue, “Myocardial perfusion 

cardiovascular magnetic resonance: optimized dual sequence and 
reconstruction for quantification,” J. Cardiovasc. Magn. Reson., vol. 

19, no. 1, p. 43, 2017. 

[11] E. C. Sammut, A. D. M. Villa, G. Di Giovine, L. Dancy, F. Bosio, 
T. Gibbs, S. Jeyabraba, S. Schwenke, S. E. Williams, M. Marber, K. 

Alfakih, T. F. Ismail, R. Razavi, and A. Chiribiri, “Prognostic Value 

of Quantitative Stress Perfusion Cardiac Magnetic Resonance,” 
JACC Cardiovasc. Imaging, 2017. 

[12] N. Zarinabad, A. Chiribiri, G. L. T. F. Hautvast, M. Breeuwer, and 
E. Nagel, “Influence of spatial resolution on the accuracy of 

quantitative myocardial perfusion in first pass stress perfusion 

CMR,” Magn. Reson. Med., vol. 73, no. 4, pp. 1623–1631, 2015. 
[13] C. M. Kramer, J. Barkhausen, S. D. Flamm, R. J. Kim, and E. 

Nagel, “Standardized cardiovascular magnetic resonance (CMR) 

protocols 2013 update,” J. Cardiovasc. Magn. Reson., vol. 15, no. 1, 
pp. 1–10, 2013. 

[14] E. Sammut, N. Zarinabad, R. Wesolowski, G. Morton, Z. Chen, M. 

Sohal, G. Carr-White, R. Razavi, and A. Chiribiri, “Feasibility of 
high-resolution quantitative perfusion analysis in patients with heart 

failure.,” J. Cardiovasc. Magn. Reson., vol. 17, p. 13, 2015. 

[15] G. Wollny, P. Kellman, A. Santos, and M. J. Ledesma, “Nonrigid 
motion compensation of free breathing acquired myocardial 

perfusion data,” Med. Image Anal., vol. 16, no. 5, pp. 84–88, 2012. 

[16] M. Benovoy, M. Jacobs, F. Cheriet, N. Dahdah, A. E. Arai, and L. 
Y. Hsu, “Robust universal nonrigid motion correction framework 

for first-pass cardiac MR perfusion imaging,” J. Magn. Reson. 

Imaging, vol. 46, no. 4, pp. 1060–1072, 2017. 
[17] J. R. Levick, An introduction to cardiovascular physiology. 

Butterworths, 1991. 

[18] C. Tanner, J. A. Schnabel, D. L. G. Hill, D. J. Hawkes, A. 



Degenhard, M. O. Leach, D. R. Hose, M. A. Hall-Craggs, and S. I. 

Usiskin, “Quantitative evaluation of free-form deformation 
registration for dynamic contrast-enhanced MR mammography,” 

Med. Phys., vol. 34, no. 4, pp. 1221–1233, Mar. 2007. 

[19] T. Rohlfing, C. R. Maurer, D. A. Bluemke, and M. A. Jacobs, 
“Volume-preserving nonrigid registration of MR breast images 

using free-form deformation with an incompressibility constraint,” 

IEEE Trans. Med. Imaging, vol. 22, no. 6, pp. 730–741, Jun. 2003. 
[20] G. Wollny, M. J. Ledesma-Carbayo, P. Kellman, and A. Santos, 

“Exploiting Quasiperiodicity in Motion Correction of Free-

Breathing Myocardial Perfusion MRI,” IEEE Trans. Med. Imaging, 
vol. 29, no. 8, pp. 1516–1527, 2010. 

[21] G. Adluru, E. V. R. DiBella, and M. C. Schabel, “Model-based 

registration for dynamic cardiac perfusion MRI,” J. Magn. Reson. 
Imaging, vol. 24, no. 5, pp. 1062–1070, 2006. 

[22] D. Likhite, G. Adluru, and E. DiBella, “Deformable and Rigid 

Model-Based Image Registration for Quantitative Cardiac 
Perfusion,” Springer, Cham, 2015, pp. 41–50. 

[23] A. Melbourne, D. Atkinson, M. White, D. Collins, M. Leach, and D. 

Hawkes, “Registration of dynamic contrast-enhanced MRI using a 
progressive principal component registration (PPCR),” Phys. Med. 

Biol., vol. 52, p. 5147–5156 PHYSICS, 2007. 

[24] G. Wollny and M.-J. Ledesma-Carbayo, “Comparison of Linear and 
Non-linear 2D+T Registration Methods for DE-MRI Cardiac 

Perfusion Studies,” Springer, Cham, 2015, pp. 21–31. 

[25] J. Milles, R. J. Van Der Geest, M. Jerosch-herold, J. H. C. Reiber, 
and B. P. F. Lelieveldt, “Fully Automated Motion Correction in 

First-Pass Myocardial Perfusion MR Image Sequences,” IEEE 
Trans. Med. Imaging, vol. 27, no. 11, pp. 1611–1621, 2008. 

[26] H. Xue, S. Zuehlsdorff, P. Kellman, A. Arai, S. Nielles-Vallespin, 

C. Chefd’hotel, C. H. Lorenz, and J. Guehring, “Unsupervised 
Inline Analysis of Cardiac Perfusion MRI,” Proc. Med. Image 

Comput. Comput. Interv. (MICCAI)., 2009. 

[27] S. G. Lingala, E. DiBella, and M. Jacob, “( DC-CS ): A Novel 
Framework for Accelerated Dynamic MRI,” IEEE Trans Med 

Imaging, vol. 34, no. 1, pp. 72–85, 2015. 

[28] B. Pontre, B. R. Cowan, E. DiBella, S. Kulaseharan, D. Likhite, N. 
Noorman, L. Tautz, N. Tustison, G. Wollny, A. A. Young, and A. 

Suinesiaputra, “An Open Benchmark Challenge for Motion 

Correction of Myocardial Perfusion MRI,” IEEE J. Biomed. Heal. 
Informatics, vol. 2194, no. c, pp. 1–1, 2016. 

[29] E. . Candes, X. Li, Y. Mia, and J. Wright, “Robust principal 

component analysis?,” Neural Comput., vol. 21, no. 11, pp. 3179–
3213, 2009. 

[30] V. Hamy, N. Dikaios, S. Punwani, A. Melbourne, A. Latifoltojar, J. 

Makanyanga, M. Chouhan, E. Helbren, A. Menys, S. Taylor, and D. 
Atkinson, “Respiratory motion correction in dynamic MRI using 

robust data decomposition registration - Application to DCE-MRI,” 

Med. Image Anal., vol. 18, no. 2, pp. 301–313, 2014. 
[31] Z. Lin, R. Liu, and Z. Su, “Linearized Alternating Direction Method 

with Adaptive Penalty for Low-Rank Representation,” in NIPS, 

2011. 
[32] L. Tautz, O. Friman, A. Hennemuth, A. Seeger, and H. O. Peitgen, 

“Automatic detection of a heart ROI in perfusion MRI images,” 

Inform. aktuell, pp. 259–263, 2011. 
[33] P. Viola and W. M. Wells, “Alignment by maximization of mutual 

information,” Proc. IEEE Int. Conf. Comput. Vis., vol. 24, no. 2, pp. 

16–23, 1997. 

[34] D. Rueckert and L. I. Sonoda, “Nonrigid registration using free-

form deformations: Application to breast MR images,” IEEE Trans. 

Med. Imaging, vol. 18, no. 8, pp. 712–21, 1999. 
[35] A. Myronenko and X. Song, “Intensity-based image registration by 

minimizing residual complexity,” IEEE Trans. Med. Imaging, vol. 

29, no. 11, pp. 1882–1891, 2010. 
[36] P. Burt and E. Adelson, “The Laplacian pyramid as a compact 

image code,” IEEE Trans. Commun., vol. 31(4), no. 4, pp. 532–540, 

1983. 
[37] A. Myronenko, “Medical Image Registration Toolbox,” 2009. 

[Online]. Available: 

https://sites.google.com/site/myronenko/research/mirt. [Accessed: 
14-Aug-2017]. 

[38] M. Ishida, A. Schuster, G. Morton, A. Chiribiri, S. Hussain, M. 

Paul, N. Merkle, H. Steen, D. Lossnitzer, B. Schnackenburg, K. 
Alfakih, S. Plein, and E. Nagel, “Development of a universal dual-

bolus injection scheme for the quantitative assessment of 

myocardial perfusion cardiovascular magnetic resonance.,” J. 

Cardiovasc. Magn. Reson., vol. 13, p. 28, 2011. 
[39] M. J. A. Jansen, W. B. Veldhuis, M. S. van Leeuwen, and J. P. W. 

Pluim, “Evaluation of motion correction of dynamic contrast 

enhanced MRI of the liver,” p. 101331T, 2017. 
[40] N. Dikaios, D. Atkinson, C. Tudisca, P. Purpura, M. Forster, H. 

Ahmed, T. Beale, M. Emberton, and S. Punwani, “A comparison of 

Bayesian and non-linear regression methods for robust estimation of 
pharmacokinetics in DCE-MRI and how it affects cancer 

diagnosis,” Comput. Med. Imaging Graph., vol. 56, pp. 1–10, 2017. 

[41] N. Zarinabad, A. Chiribiri, G. L. T. F. Hautvast, M. Ishida, A. 
Schuster, Z. Cvetkovic, P. G. Batchelor, and E. Nagel, “Voxel-wise 

quantification of myocardial perfusion by cardiac magnetic 

resonance. Feasibility and methods comparison,” Magn. Reson. 
Med., vol. 68, no. 6, pp. 1994–2004, 2012. 

[42] D. A. Broadbent, J. D. Biglands, A. Larghat, S. P. Sourbron, A. 

Radjenovic, J. P. Greenwood, S. Plein, and D. L. Buckley, 
“Myocardial blood flow at rest and stress measured with dynamic 

contrast-enhanced MRI: Comparison of a distributed parameter 

model with a fermi function model,” Magn. Reson. Med., vol. 70, 
no. 6, pp. 1591–1597, 2013. 

 

 

  


