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ABSTRACT 35 

Purpose: To develop a new high-dimensionality undersampled patch-based reconstruction 36 

(HD-PROST) for highly accelerated two-dimensional (2D) and three-dimensional (3D) 37 

multi-contrast magnetic resonance (MR) imaging. 38 

Methods: HD-PROST jointly reconstructs multi-contrast MR images by exploiting the 39 

highly redundant information, on a local and non-local scale, and the strong correlation 40 

shared between the multiple contrast images. This is achieved by enforcing multi-41 

dimensional low-rank in the undersampled images. 2D magnetic resonance fingerprinting 42 

(MRF) phantom and in vivo brain acquisitions were performed to evaluate the performance 43 

of HD-PROST for highly-accelerated simultaneous T1 and T2 mapping. Additional in vivo 44 

experiments for reconstructing multiple undersampled 3D Magnetization Transfer (MT)-45 

weighted images were conducted to illustrate the impact of HD-PROST for high-resolution 46 

multi-contrast 3D imaging. 47 

Results: In the 2D MRF phantom study, HD-PROST provided accurate and precise 48 

estimation of the T1 and T2 values in comparison to gold standard spin echo acquisitions. 49 

HD-PROST achieved good quality maps for the in vivo 2D MRF experiments in 50 

comparison to conventional low-rank inversion reconstruction. T1 and T2 values of white 51 

matter and grey matter were in good agreement with those reported in the literature for 52 

MRF acquisitions with reduced number of time-point images (500 time-point images, 53 

~2.5sec scan time). For in vivo MT-weighted 3D acquisitions (6 different contrasts), HD-54 

PROST achieved similar image quality than the fully-sampled reference image for an 55 

undersampling factor of 6.5-fold.  56 

Conclusion: HD-PROST enables multi-contrast 2D and 3D MR images in a short 57 

acquisition time without compromising image quality. Ultimately, this technique may 58 

increase the potential of conventional parameter mapping. 59 

Keywords: multi-contrast MRI; MR fingerprinting; patch-based reconstruction; low-rank 60 

tensor decomposition; compressed-sensing, magnetization transfer contrast 61 



 

 

3 

  62 



 

 

4 

Introduction  63 

In Magnetic Resonance Imaging (MRI), multiple contrasts are exploited to extract 64 

clinically relevant tissue parameters and pathological tissue changes. These multiple 65 

contrasts are achieved using different imaging sequences and preparation pulses. Multi-66 

contrast acquisitions also find important applications in parameter mapping (e.g. T1 and T2 67 

mapping) and magnetic resonance fingerprinting (MRF) (1,2). However these acquisitions 68 

lead to long scan times since multiple images with different contrasts need to be acquired, 69 

making parameter imaging more sensitive to physiological motion (3–6). 70 

Parallel imaging (PI) (7–11), compressed sensing (CS) (12,13), as well as the combination 71 

of both undersampled reconstruction techniques (14,15) have been proposed to overcome 72 

the long scan times associated with multi-contrast imaging and parameter mapping. PI can 73 

accelerate multi-contrast imaging by undersampling each individual image and exploiting 74 

the information provided by multiple coil arrays, yet at a signal-to-noise ratio (SNR) 75 

penalty generally marked for high acceleration factors. Sparse CS alone has been shown to 76 

cope with the problem of undersampling through the use of random or pseudo-random 77 

sampling patterns and efficient regularized reconstructions which make the assumption that 78 

the multi-contrast images share common and sparse information in a specific domain (16–79 

21). Even though these strategies have achieved acceleration factors that have not 80 

previously been possible to attain with parallel imaging alone, CS-based techniques still 81 

suffer from residual aliasing artifacts for high acceleration factors, which compromise the 82 

diagnostic value of the reconstructed multi-contrast images. 83 

Recently, novel techniques that exploit the strong anatomical correlations observed in the 84 

contrast dimension (or parameter dimension) on a global or local scale have been proposed. 85 

Indeed, the nature of signal evolution in multi-contrast acquisitions exhibits a low-rank 86 

structure in the contrast dimension which can be exploited to further reduce scan times 87 

(17,22–24). These types of reconstruction techniques, also known as the globally (GLR) or 88 

locally low-rank (LLR) methods (25), have been efficiently used in many applications such 89 

as T2 mapping (26) or dynamic contrast enhanced MRI (27). More recently, high-order 90 
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tensor decomposition techniques, exploiting global correlation, have been efficiently 91 

employed to allow for highly accelerated multi-dimensional cardiac MRI acquisitions 92 

(28,29). While those techniques have shown promise for motion-resolved quantitative 93 

cardiac imaging by efficiently solving a global low-rank tensor decomposition, they do not 94 

exploit the strong non-local correlations between neighboring patches. 95 

Motivated by the LLR techniques which exploit localized correlations in the contrast 96 

dimension, patch-based image reconstructions exploiting non-local spatial redundancies 97 

and low-rank matrix structures have been introduced for single-contrast MRI reconstruction 98 

to lead to even sparser representation (30,31). By modeling the similarity of image patches 99 

through block-matching, low-rank representation and filtering, two-dimensional (2D) (32) 100 

and three-dimensional (3D) (33) patch-based reconstructions have been shown to 101 

outperform conventional CS reconstructions by recovering better image details and edges 102 

and exhibiting better overall image quality. 103 

In this study, we present a new reconstruction technique for highly accelerated 2D and 3D 104 

multi-channel multi-contrast MRI which combines the promising performances of patch-105 

based reconstructions and the potential of low-rank image reconstruction through higher-106 

order tensor decomposition. The proposed High-Dimensionality undersampled Patch-based 107 

RecOnSTruction (HD-PROST) technique is first applied to accelerated 2D radial MRF, for 108 

various acceleration factors, where a high degree of inherent redundancy can be exploited 109 

locally, non-locally and through the contrast dimension. In a second application, HD-110 

PROST is employed to acquire multiple undersampled high-resolution 3D Cartesian 111 

Magnetization Transfer Contrast (MTC) images with several MT weightings in a reduced 112 

scan time. 113 

 114 

Theory 115 

The framework presented hereafter jointly reconstructs multi-channel multi-contrast 116 

images from undersampled 2D or 3D MR acquisitions. This is achieved by generalizing 117 



 

 

6 

our previously proposed PROST technique (33) to high dimensional imaging. A description 118 

of the proposed HD-PROST reconstruction is presented, followed by the description of two 119 

multi-contrast applications (2D radial and 3D Cartesian) where high-dimensionality can be 120 

exploited to reduce acquisition time, which is often a key factor for clinical translation. 121 

High-Dimensionality undersampled Patch-based RecOnStrucTion (HD-PROST) 122 

Let 𝑋 ∈ ℂ𝑀𝑥×𝑀𝑦×𝑀𝑧×𝐿 be the multi-contrast complex images that we seek to reconstruct, 123 

where 𝑀𝑥, 𝑀𝑦 and 𝑀𝑧 are the number of voxels in the 𝑥, 𝑦 and 𝑧 spatial directions, and 𝐿 124 

is the number of contrast-weighted images. The corresponding complex receive-coil 125 

sensitivity maps for the 𝑁𝑐 channels are denoted as 𝑆 ∈ ℂ𝑀𝑥×𝑀𝑦×𝑀𝑧×𝑁𝑐. Let 𝑌 ∈ ℂ𝑍×𝐿×𝑁𝑐  126 

be the undersampled k-space data (with 𝑍 ≪ 𝑀𝑥 × 𝑀𝑦 × 𝑀𝑧). The joint multi-contrast 127 

undersampled reconstruction can be combined with parallel imaging and cast as the 128 

following inverse problem: 129 

argmin
𝑋

1

2
‖𝐴𝐹𝑆𝑋 − 𝑌‖𝐹

2         [1] 

where 𝐴 is the undersampling operator that acquires k-space data for each contrast-130 

weighted image, 𝐹 denotes the Fourier transform operator and ‖ ∙ ‖𝐹 is the Frobenius norm. 131 

Mathematically, this inverse problem is ill-posed, in the sense that the exact solution might 132 

not exist or not be unique, making precise recovery of 𝑋 hardly possible, and prior 133 

assumptions on the unknown solution 𝑋 have to be considered. 134 

The principle behind HD-PROST reconstruction assumes that a multi-contrast image 𝑋 can 135 

be expressed as a high-order low-rank representation on a patch scale, with respect to an 136 

appropriately chosen patch selection operator. The recovery problem can be formulated as 137 

the following constrained optimization on the high-order low-rank tensor 𝒯: 138 

argmin
𝑋

1

2
‖𝐴𝐹𝑆𝑋 − 𝑌‖𝐹

2 + ∑ 𝜆𝑝‖𝒯𝑝‖
∗

𝑝

      𝑠. 𝑡.     𝒯𝑝 = 𝑃𝑝(𝑋) [2] 
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where 𝜆𝑝 is the nonnegative sparsity-promoting regularization parameter and ‖∙‖∗ is the 139 

nuclear norm that enforces multi-dimensional low-rank on a multi-contrast patch scale. The 140 

patch selection operator 𝑃𝑝(∙) forms a 3D tensor from a patch centered at pixel p from a set 141 

of multi-contrast images (see optimization 2 below). Now considering the constraint 𝒯𝑝 =142 

𝑃𝑝(𝑋), and the encoding operator 𝐸 = 𝐴𝐹𝑆, we can form the unconstrained Lagrangian of 143 

Equation 2 by linearly combining the constraint and cost function (31,33): 144 

ℒ𝐻𝐷−𝑃𝑅𝑂𝑆𝑇(𝑋, 𝒯, 𝑏) ∶

= argmin
𝑋,𝒯,𝑏

1

2
‖𝐸𝑋 − 𝑌‖𝐹

2 + ∑ 𝜆𝑝‖𝒯𝑝‖
∗

𝑝

+
𝜇

2
∑ ‖𝒯𝑝 − 𝑃𝑝(𝑋) −

𝑏𝑝

𝜇
‖

𝐹

2

𝑝

 

[3] 

where 𝑏 is the Lagrange multiplier, and 𝜇 > 0 is the penalty parameter. Equation 3 can be 145 

efficiently solved through operator-splitting via alternating direction method of multipliers 146 

(ADMM) (34). ADMM simplifies the optimization process by alternating the minimization 147 

with respect to the multi-contrast set of images 𝑋 (optimization 1) and the high-order tensor 148 

𝒯 (optimization 2) followed by an update of the augmented multiplier 𝑏, and repeating 149 

these three steps until a convergence criterion is satisfied.  150 

Optimization 1: Joint MR reconstruction update 151 

The first sub-problem is a joint multi-contrast MR reconstruction that incorporates the 152 

denoised tensor 𝒯 (obtained at the end of optimization 2) as prior information in a parallel 153 

imaging fashion to obtain 𝑋: 154 

ℒ𝐽𝑜𝑖𝑛𝑡𝑅𝑒𝑐𝑜𝑛(𝑋) ∶= argmin
𝑋

1

2
‖𝐸𝑋 − 𝑌‖𝐹

2 +
𝜇

2
‖𝒯 − 𝑋 −

𝑏

𝜇
‖

𝐹

2

 [4] 

Equation 4 corresponds to a standard iterative SENSE reconstruction with Tikhonov 155 

regularization, where the solution 𝑋 can be efficiently computed using the Conjugate 156 

Gradient (35) algorithm. 157 
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Optimization 2: High Order Singular Value Decomposition (HOSVD)-based denoising  158 

Considering the variable 𝒯𝑝̃ = 𝑃𝑝(𝑋) +
𝑏𝑝

𝜇
, the second sub-problem minimizes with respect 159 

to the high-order tensor 𝒯 and is given by 160 

ℒ𝑇𝑒𝑛𝑠𝑜𝑟(𝒯) ∶= argmin
𝒯

∑
2𝜆𝑝

𝜇
‖𝒯𝑝‖

∗
𝑝

+ ∑‖𝒯𝑝 − 𝒯𝑝̃‖
𝐹

2

𝑝

        [5] 

𝑋 denotes multiple MR images with different contrasts. Several observations can be made 161 

about 𝑋: 1) on a local scale, voxels at a specific location for a given contrast exhibit similar 162 

intensity to their nearest neighbors (within a patch); 2) on a non-local scale, images for a 163 

given contrast contain self-repeating patterns (measured as patch similarity within a 164 

neighborhood); and 3) on a contrast scale, common structures and features are shared across 165 

multiple contrast images. Motivated by these observations, the proposed joint multi-166 

channel multi-contrast problem can be cast as a multi-dimensional low-rank reconstruction. 167 

Bearing this in mind, equation 5 can be solved on a multi-contrast patch level. The 168 

construction of the high-order tensor 𝒯 is performed as a three-step process: 169 

Step 1 – Similar overlapping patches in 𝑋 +
𝑏

𝜇
 are grouped together to form a third-order 170 

tensor: considering a 3𝐷 + 𝐿 reference patch of size 𝑁𝑥 × 𝑁𝑦 × 𝑁𝑧 × 𝐿, we build a high 171 

dimensional tensor 𝒯𝑝̃ ∈  ℂ𝑁×𝐾×𝐿 of 𝐾 − 1 similar 3𝐷 + 𝐿 patches, with 𝑁 =172 

𝑁𝑥 × 𝑁𝑦 × 𝑁𝑧  (see Figure 1 – ‘unfolding’ and ‘tensor stacking’). A fixed local window 173 

is used for the patch search while the contrast signature remains unchanged. Along this 174 

line, the proposed reconstruction can exploit as much of the contrast and spatial 175 

correlations as possible. 176 

Step 2 – The tensor 𝒯𝑝̃ exhibits a strong low multilinear rank structure and can therefore 177 

be compressed into a tensor of smaller size (i.e. the core tensor) through tensor 178 

decomposition (see Supporting Information Table S1 and Figure 1 – ‘High-Order 179 

Tensor Decomposition’). The dominant components of the core tensor can be extracted 180 

by computing a complex-valued higher-order singular value decomposition (HOSVD) 181 
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(36,37) and by only keeping the largest (given by the thresholding parameter 
2𝜆𝑝

𝜇
) 182 

multilinear singular vectors and high-order singular values. This step effectively acts as 183 

a high-order denoising process where the small discarded coefficients mainly reflect 184 

contributions from noise and noise-like artifacts. 185 

Step 3 – The denoised tensor 𝒯𝑝 is then rearranged to form the denoised patches. Steps 186 

1-3 are repeated over all patches in the image in a sliding window fashion. Since a single 187 

patch might belong to several groups in step 1, the final denoised multi-contrast 188 

complex-valued images 𝒯 are obtained by averaging (Figure 1 – ‘Aggregation’) the 189 

different estimates. 190 

The solution 𝒯 to this optimization problem is a denoised version of 𝒯̃ that is incorporated 191 

in the optimization 1 as prior knowledge, as described before. The Lagrangian multiplier 𝑏 192 

is then updated and optimizations 1 and 2 are processed iteratively to improve the quality 193 

of the reconstructed images. In the spirit of reproducible research, codes and examples for 194 

the proposed HD-PROST technique are made available at 195 

http://www.kclcardiacmr.com/downloads/. 196 

The generalized reconstruction framework described before considers 2D or 3D Cartesian 197 

multi-contrast acquisitions (as the 3D undersampled Cartesian multi MT-weighted 198 

acquisitions considered in this study).  Slight modifications in the reconstruction process 199 

are required for the accelerated non-Cartesian 2D MRF application considered in this study 200 

and will be described in the next section. 201 

HD-PROST for Accelerated 2D Radial Parameter Mapping with MRF 202 

MRF (1) is a novel quantitative MRI approach that allows the simultaneous acquisition of 203 

multi-parametric maps (e.g. T1, T2, M0) in a single efficient scan. Conventional MRF 204 

sequences acquire in the order of thousand highly-undersampled time-point images by 205 

pseudo-randomly collecting the MR data in a continuous fashion with time-varying 206 

acquisition parameters (e.g. repetition time, flip angle). The spatial and temporal 207 

incoherencies provide a unique signal evolution (or fingerprint) for each tissue. These 208 
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unique fingerprints can be matched, through pattern matching, to a pre-generated MRF 209 

dictionary representative of the MRF sequence, and whose atoms are composed of 210 

simulated signal evolution curves. This matching process is performed on a voxel-by-voxel 211 

basis to identify the underlying tissue properties and generate quantitative parameter maps. 212 

The highly-undersampled pseudo-random MRF acquisition results in a high level of noise 213 

and aliasing in the reconstructed time-point images. Several iterative techniques have been 214 

recently proposed to improve the reconstruction quality of each time-point image (38–42). 215 

Zhao et al. proposed to enforce low-rank and subspace modeling in the temporal dimension 216 

to reconstruct high-quality time-point images (38). Assländer et al. recently introduced a 217 

low-rank ADMM reconstruction technique to temporally compress the time-point images, 218 

resulting in a reduced number of singular value images. The reconstruction of the 219 

temporally compressed images is faster and better posed than reconstructing each time-220 

point image separately (39). This temporal compression operator 𝑈𝑟 is obtained through 221 

compression of the MRF dictionary at an appropriate rank 𝑟. Due to the multi-contrast 222 

nature of MRF, HD-PROST can be used to explicitly exploit the local, non-local and 223 

contrast information of the temporally compressed images by integrating the compression 224 

operator into the encoding operator in Equation 3 as follows: 225 

𝐸𝑀𝑅𝐹 = 𝐴𝑈𝑟𝐹𝑆        [6] 

Methods  226 

The proposed HD-PROST reconstruction was evaluated on accelerated radial 2D MRF 227 

phantom and in vivo brain acquisitions, and on accelerated Cartesian 3D magnetization 228 

transfer imaging with varying MT-weighting in in vivo brain data. The two applications are 229 

described in detail below along with imaging and reconstruction parameters. Written 230 

informed consent was obtained from all subjects before undergoing MRI scans and the 231 

study was approved by the Institutional Review Board. 232 

Accelerated 2D Magnetic Resonance Fingerprinting 233 
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MRF acquisitions were performed on a 1.5T Ingenia MR system (Philips, Best, The 234 

Netherlands) equipped with a 15-element head coil. 235 

Phantom and In Vivo Experiments 236 

A 2D MRF acquisition was performed on a standardized (T1MES) T1/T2 phantom 237 

containing nine agarose-based tubes with different T1 and T2 combinations (range, T1: 255 238 

ms to 1489 ms, T2: 44 ms to 243 ms) (43). Relevant scan parameters included: balanced 239 

steady-state free precession radial sequence, echo time (TE) = 2 ms, fixed repetition time 240 

(TR) = 4.4 ms, field-of-view (FOV) = 160x160 mm2, in-plane resolution = 1x1 mm2, slice 241 

thickness = 8 mm, bandwidth = 723.4 Hz/pixel. Only one radial spoke was acquired at each 242 

time-point (resulting in an acceleration factor of about 251 with respect to a fully-sampled 243 

radial acquisition). A total of 2000 time-points were acquired in 10 seconds. A flip angle 244 

(FA) pattern similar to the one proposed in (44) for optimized T1/T2 mapping was used, and 245 

is shown in Supporting Information Figure S1. This RF pattern, which has been shown to 246 

be optimal in a Cramér-Rao lower bound sense, consists of intrinsic repetitive loops which 247 

offers the advantage to lengthen the scan time by simple concatenation. The experiments 248 

consisted of undersampling the acquired data by keeping only [1: 𝑛] k-space radial spokes, 249 

with 𝑛 = [400: 100: 2000], resulting in scan time reductions up to a factor of 5 with respect 250 

to the 2000 time-points sequence. 251 

Reference T1 and T2 times for each vial were obtained from gold standard spin echo (SE) 252 

acquisitions. For T1 values, an inversion-recovery SE (IRSE) sequence was used with eight 253 

inversion times from 25 ms to 3200 ms with TR = 10s, TE = 14.75ms. For T2 values, the 254 

SE sequence was performed with eight TEs from 10 ms to 640 ms. T1 and T2 values were 255 

obtained by mono-exponential curve fitting. 256 

Single slice 2D MRF brain data were acquired in five healthy subjects (four men, mean 257 

age: 32 years; range: 28-37 years) using the same scan parameters as in the phantom 258 

experiments. 259 

Image Reconstruction 260 
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For both phantom and in vivo 2D MRF experiments, data was temporally compressed with 261 

𝑟 = 10, leading to only 10 singular value images to reconstruct (i.e. in this study, 𝐿 = 10 262 

and 𝑀𝑧 = 1). 263 

HD-PROST reconstruction was implemented using the algorithm described in Supporting 264 

Information Table S2 and performed offline on a workstation with a 16-core Dual Intel 265 

Xeon Processor (23 GHz, 256 GB RAM). The joint MR reconstruction step (optimization 266 

1) was implemented in Matlab (v7.1, MathWorks, Natick, MA) and the multi-contrast 267 

patch-based denoising step (optimization 2) in C++. Coil sensitivity maps were estimated 268 

using the eigenvalue-based approach ESPIRiT (45). 269 

The encoding operator 𝐸𝑀𝑅𝐹 was implemented using the nonuniform fast Fourier transform 270 

(46). The tolerance of the conjugate gradient was set to 𝐶𝐺𝑒𝑝𝑠 = 1𝑒−4 and a maximum 271 

number of 𝐶𝐺𝑖𝑡𝑒𝑟 = 15 iterations was chosen as stopping criterion. The regularization 272 

parameter 𝜇, which balances the contribution of the prior term (obtained at the end of 273 

optimization 2) and the data fidelity term, was set to 5𝑒−3. 274 

The proposed high-order patch-based denoising strategy was implemented as described in 275 

Supporting Information Table S1. The performance of the proposed strategy relies on the 276 

optimal selection of several parameters. The patch size, which controls the degree of local 277 

image features, was set to 𝑁 = 7 × 7. We set the search window radius around each pixel 278 

to 20 and restricted the number of similar patches selected to 𝐾 = 20 to form a third-order 279 

tensor 𝒯𝑝 of size 49 × 20 × 10. The 𝑙2 distance was chosen as measure of patch similarity 280 

and was defined as 𝑑(𝑝𝑎𝑡𝑐ℎ𝑟𝑒𝑓 , 𝑝𝑎𝑡𝑐ℎ𝑗) = ‖𝑝𝑎𝑡𝑐ℎ𝑟𝑒𝑓 − 𝑝𝑎𝑡𝑐ℎ𝑗‖
2
 for 𝑗 = 1, … , 𝐾 − 1. In 281 

order to save computational complexity, a sliding-window approach was performed with a 282 

patch offset of 3 pixels at each image dimension. The performance of HD-PROST was 283 

assessed on several data sets (not reported here) by comparing the quality of the 284 

reconstructions with several regularization parameters 𝜆 (the same 𝜆 was used for all 285 

patches: 𝜆𝑝 = 𝜆 for all p). The optimal value was shown to be proportional to the number 286 

of MRF measurements and was set to 𝜆 = −1𝑒−3 × 𝑛 + 0.4 for each decomposition, with 287 
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𝑛 being the number of MRF radial spokes. The joint MR reconstruction and denoising steps 288 

were iteratively interleaved and the reconstruction was terminated after five ADMM 289 

iterations. All parameters were empirically optimized on one dataset by visual inspection 290 

and the same values were used for all other subjects. 291 

The proposed HD-PROST reconstruction for 2D MRF was compared to the low-rank 292 

inversion (LRI) reconstruction (24,38) with 𝑟 = 10 and using 10 conjugate gradient 293 

iterations, which were seen to be enough for convergence. 294 

 295 

Dictionary generation and pattern recognition 296 

The MRF dictionary was generated using the Extended Phase Graphs (EPG) formalism 297 

(47). The dictionary was calculated for a T1 in the range of 298 

([50: 10: 1400, 1430: 30: 1600, 1700: 100: 2200, 2400: 200: 3000] ms) and T2 in the 299 

range of ([5: 2: 80, 85: 5: 150, 160: 10: 300, 330: 30: 600] ms). Slice profile was 300 

simulated for each RF pulse using 51 isochromats distributed along the slice selection 301 

direction and was included in the dictionary generation to correct for profile imperfections 302 

(48). Template matching between fingerprints and dictionary were performed using the 303 

inner product as in (1). 304 

Accelerated 3D Multi-Contrast Magnetization Transfer Imaging 305 

Acquisition 306 

A 3D accelerated MTC experiment was performed to evaluate the proposed HD-PROST 307 

reconstruction on 3D Cartesian acquisitions with multiple MT-weighted images. In vivo 308 

brain acquisitions were performed on three healthy subjects (one man, age range: 24-30 309 

years) on a 1.5T MR scanner (Magnetom Aera, Siemens Healthcare, Erlangen, Germany) 310 

equipped with a 20-channel head coil. Acquisitions consisted of one reference image 311 

without magnetization preparation, and five images with different MT preparations (i.e. in 312 

this study, 𝐿 = 6 and 𝑀𝑧 > 1). 313 
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A prototype 3D Cartesian variable-density trajectory was integrated in the sequence to 314 

allow for fast acquisition of multiple MT-weighted images. The Cartesian trajectory with 315 

spiral profile order (33,49) samples the 𝑘𝑦-𝑘𝑧 phase-encoding plane following approximate 316 

spiral interleaves on the Cartesian grid with variable density along each spiral arm and with 317 

two successive spiral interleaves being rotated by the golden ratio. A golden angle rotation 318 

between different contrast acquisitions was incorporated here (shifted VD-CASPR) to 319 

introduce incoherently distributed aliasing artifacts along the contrast dimension and noise-320 

like artifacts in the spatial dimension, which is beneficial from a CS and low-rank point of 321 

view (50). 322 

The MT weighting was achieved by applying a train of sinc-shaped, off-resonance RF 323 

pulses before image acquisition with the following parameters: MT off-resonance 324 

frequency (Δ𝐹) = 3 kHz, 20 MT pulse repetitions, MT bandwidth = 401 Hz/pixel. Relevant 325 

scan parameters included: 3D gradient echo sequence, axial orientation, FOV = 326 

230x230x160 mm3, nominal resolution 1x1x2 mm3, FA = 15, TE = 1.78 ms, TR = 4.06 327 

ms, receiver bandwidth = 925 Hz/pixel, 32 readouts per spiral interleave. Six measurements 328 

were acquired with different MT pulse flip angles (𝛼𝑀𝑇 =329 

[0°, 160°, 320°, 480°, 640°, 800°]) with five seconds pause between them. Acquisitions 330 

were performed with an acceleration factor of 6.5-fold for each weighted image. The total 331 

scan time to acquire the six measurements was 13:18 [min:sec]. A fully-sampled acquisition 332 

of the six measurements at this resolution would take more than one hour. Therefore, for 333 

comparison purposes, an additional fully-sampled acquisition was performed only for the 334 

reference image (𝛼𝑀𝑇 = 0°). The total scan time for this single-contrast fully-sampled 335 

acquisition was 12:57 [min:sec]. 336 

Reconstruction 337 

The following parameters were used for the 3D multi-MT reconstruction: patch size 𝑁 =338 

7 × 7 × 7, search window = 20 × 20 × 20, number of similar 3D patches selected 𝐾 = 30, 339 

patch offset = 3, ADMM iterations = 5, 𝐶𝐺𝑒𝑝𝑠 = 1𝑒−7, 𝐶𝐺𝑖𝑡𝑒𝑟 = 10. The threshold 340 

parameters 𝜆 and 𝜇 were empirically set to 0.1 and 5𝑒−3, respectively. Coil sensitivity maps 341 
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were estimated from the fully-sampled k-space center using the eigenvalue-based approach 342 

ESPIRiT. 343 

The proposed HD-PROST reconstruction was compared with two well-established state-344 

of-the-art reconstruction techniques. The first technique is LLR, proposed by T. Zhang (26) 345 

for accelerating MR parameter mapping. LLR exploits the redundancy in the contrast 346 

dimension on local image regions in an iterative low-rank framework. LLR was 347 

implemented using our ADMM framework by replacing the patch-based denoising step by 348 

the low-rank thresholding. This allows for fair comparisons since the same optimization 349 

was used and only the manner in which the denoising is performed was modified. The rank 350 

threshold 𝜆𝐿𝐿𝑅 was fixed and set to 5% of the highest singular value. Since the acquired 351 

MT-weighted data was fully-sampled in the read-out direction, the MR reconstruction step 352 

was accelerated for both LLR and HD-PROST reconstructions by computing a one-353 

dimensional inverse FFT and considering multiple separable 2D reconstruction problems 354 

independently. 355 

The second technique is an iterative CS reconstruction with spatial Wavelet sparsity 356 

constraint as described in (12) and implemented in the BART toolbox (51). CS 357 

reconstruction was performed for each contrast independently. The regularization 358 

parameter 𝜆𝐶𝑆 was optimized experimentally and set to 0.01. Visual assessment was 359 

performed between the different techniques and the fully-sampled acquisition. 360 

 361 

Results 362 

Accelerated 2D Magnetic Resonance Fingerprinting 363 

Phantom study 364 

Figure 2 shows T1 and T2 values for the 2D MRF phantom experiments with 2000, 1000 365 

and 500 time-points in comparison to the gold standard IRSE and SE acquisitions for both 366 

LRI and HD-PROST reconstructions. T1 values obtained from both strategies were in good 367 
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agreement with the IRSE acquisition even for reconstructions with 500 time-points, with 368 

an excellent linear relationship with the reference T1 values (goodness-to-fit  𝑅2 > 0.98). 369 

T2 accuracy was also preserved with the proposed reconstruction with a slight T2 370 

degradation observed for long T2 values and high acceleration for both reconstructions. 371 

Figure 3 depicts the precision of T1 and T2 values, as characterized by the standard deviation 372 

(aggregated based on the variance of each vial). An increase in precision was observed for 373 

both T1/T2 values using the proposed HD-PROST reconstruction compared with LRI even 374 

for reconstructions with 500 time-points, corresponding to 2.5s scan time. Corresponding 375 

T1 and T2 maps are shown in Supporting Information Figure S2. From the above analysis, 376 

it follows that 500 MRF time-points or less might be sufficient and suitable for accurate 377 

and precise in vivo T1/T2 maps acquisitions in less than 2.5 seconds. 378 

In vivo study 379 

Figure 4 depicts the first four 2D MRF singular images from the reference LRI and the 380 

proposed HD-PROST reconstruction for one representative subject reconstructed with 381 

1000 time-points. A clear superior image quality can be observed on the HD-PROST 382 

singular images with a sharp and clear delineation of the brain structures. A high level of 383 

streaking artifacts and noise can be seen on the last singular value components (e.g. singular 384 

images #3 and #4) with LRI, whereas HD-PROST not only produces images with 385 

considerably less noise but is also able to recover small structures that were lost below the 386 

noise level with LRI (Figure 4, yellow arrows). T1 and T2 maps are displayed in Figure 5 387 

and Figure 6 for two subjects and three different measurement lengths (2000, 1000 and 500 388 

time-points) for both LRI and HD-PROST reconstructions. 389 

The reconstructed maps from one additional subject are shown in Supporting Information 390 

Figure S3. A number of interesting observations can be made. Reducing the number of 391 

measurements tends to blur the T1 maps with LRI while the T2 maps suffer from noise 392 

amplification, showing an overall noisier appearance. Conversely, by enforcing low-rank 393 

in the local, non-local and contrast dimension, HD-PROST reconstruction delivers higher 394 

image quality, recovering sharpness for T1 and reducing the noise for T2. The improvement 395 
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is more pronounced for the 500 time-points acquisition (2.5s scan time).  In vivo T1 and T2 396 

relaxation times measured in regions of interest in the white and grey matters with LRI and 397 

the proposed HD-PROST are shown in Table 1. Both reconstructions converged to very 398 

comparable values that are in good agreement with values obtained from the literature for 399 

T1. Moreover, the proposed HD-PROST reconstruction tends to lower the standard 400 

deviations of T1 and T2 times, which is in accordance with the noise reduction seen in the 401 

quantitative maps. Note that the T2 relaxation times for both techniques are slightly biased 402 

and depart from the literature values. This may be partly explained by the fact that B1 403 

imperfections (52) as well as other sources of bias such as magnetization transfer (53) and 404 

diffusion-weighting (54) were not considered in the proposed study. The average 405 

reconstruction time for 2D MRF with HD-PROST was about 10 minutes per data set. 406 

Additional comparisons with single-contrast PROST reconstruction (i.e. reconstructing 407 

each singular image independently) and with a global low-rank tensor decomposition (in 408 

the spirit of cardiac multitasking (28,29)) are provided in Supporting Information Figure 409 

S4. 410 

 411 

Accelerated 3D Multi-Contrast Magnetization Transfer Imaging 412 

Figure 7 depicts four axial slices obtained with HD-PROST reconstruction of the 6.5-fold 413 

undersampled 3D MT-weighted images in a representative subject in comparison to the 414 

fully-sampled acquisition. Only the reference image obtained with 𝛼𝑀𝑇 = 0°, is shown 415 

here. Similar image quality is observed between the 6.5-fold accelerated HD-PROST 416 

approach and the fully-sampled scan. Line profiles going through a structure with sharp 417 

edges are shown in Figure 7c, showing excellent agreement between HD-PROST and the 418 

fully-sampled reference. Six different undersampled MT-weighted images were acquired 419 

in 13min 18s, whereas the fully-sampled acquisition of a single contrast took 12min 57s. 420 

Figure 8 compares HD-PROST to conventional CS reconstruction from a 6.5-fold 421 

acceleration. Comparisons with zero-filling and LLR reconstructions are provided in 422 

Supporting Information Figures S5 and S6. As expected, zero-filling exhibits a low image 423 
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quality with apparent aliasing artifacts and blurring. Exploiting contrast redundancy 424 

through local image regions with LLR improves the overall image quality and enables the 425 

recovery of small structures, particularly for low-contrast images (e.g. 𝛼𝑀𝑇 = 800°), while 426 

the apparent noise is still large. By contrast, CS reconstruction with spatial regularization 427 

is able to recover images with reduced level of noise but fails to recover small structures 428 

for low contrast images (see Figure 8, red arrows). Enforcing multi-dimensional low-rank 429 

and capturing 3D information of local and non-local 3D patches through the multiple MT-430 

weighted images with HD-PROST allows to recover small structures and reduced the level 431 

of apparent noise, resulting in high image quality for all different contrasts. Reconstructions 432 

from two other subjects can be seen in Supporting Information Figures S7 and S8. The 433 

average computation time for 3D HD-PROST reconstruction was about 27 minutes for all 434 

6 contrasts in the acquisitions performed in this study. 435 

 436 

Discussion 437 

HD-PROST reconstruction enables accelerated acquisition of 2D or 3D multi-contrast MR 438 

images by exploiting the high local and non-local redundancies, and the similarities 439 

between the multi-contrast images through a high-order low-rank tensor approximation. 440 

The proposed technique was applied to accelerated non-Cartesian 2D MRF and accelerated 441 

Cartesian 3D MTC imaging to enable undersampling factors that go beyond the limit of 442 

traditional PI and CS reconstructions (i.e. about 2.5 seconds acquisition for 2D MRF, and 443 

6.5-fold acceleration for 3D MTC), while removing residual aliasing artifacts. Phantom 444 

experiments in accelerated 2D MRF were carried out to investigate the impact of rapid 445 

acquisition (i.e. reduced number of time-point images) on accuracy and precision of T1 and 446 

T2 relaxation times. High agreement with reference T1/T2 values was observed using HD-447 

PROST, even for high accelerations, with increased precision compared to conventional 448 

LRI reconstruction. 449 
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For in vivo MRF, streaking artifacts and noise amplification often propagated in the T1 450 

maps with LRI reconstruction, while blurring was observed on the T2 maps for high 451 

acceleration factors. HD-PROST achieved improved sharpness and reduced noise level in 452 

comparison to the low-rank inversion reconstruction, especially for acquisitions with 453 

reduced number of time-points. Nevertheless, a systemic underestimation of the T2 values, 454 

previously reported in MRF literature, was observed in the in vivo study. This finding may 455 

be partly explained by the fact that B1 imperfections (52), magnetization transfer (53), and 456 

diffusion-weighting (54) were not considered in this MRF study and could lead to 457 

inaccurate T2 measurements. 458 

HD-PROST has a modular design, which allows for its straightforward extension to 3D or 459 

n-D imaging by simple patch vectorization. In line with the previous 2D MRF study, 460 

accelerated 3D MTC using HD-PROST showed improved image quality over conventional 461 

CS and low-rank reconstructions for an acceleration factor of 6.5, with visual quality 462 

comparable to the fully-sampled acquisition. High denoising performance was achieved 463 

due to the existence of multiple MT-weighted images of the same object with varying 464 

contrasts, leading to high redundancy which can be exploited by HD-PROST. The pseudo-465 

random sampling, given by the proposed shifted VD-CASPR, causes aliasing artifacts that 466 

spread incoherently in the contrast dimension and exhibits noise-like perturbations at the 467 

image scale, providing an excellent basis for HD-PROST reconstruction. This study was 468 

only performed on a small number of subjects and further evaluations on larger cohorts are 469 

needed. Nevertheless, this proof of concept suggests an opportunity for high-resolution 470 

quantitative magnetization transfer imaging in a clinically feasible scan time. 471 

The efficient multithreaded implementation of the high-order patch-based denoising 472 

allowed for fast image denoising of large data sets (e.g. in the order of 200 seconds for a 473 

3D data set with a matrix size of 200 × 256 × 104 × 6). Further speedups could be 474 

achieved to reach clinically acceptable runtimes by implementing the joint MR 475 

optimization step on multiple GPUs (55) and using coil compression algorithms (56). 476 
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HD-PROST imposes low-rank in the complex domain, and therefore captures the possible 477 

cross-correlation observed between the real and imaginary components, allowing for 478 

accurate and faithful reconstruction of both phase and magnitude. Our framework makes 479 

use of ADMM to decouple the main optimization problem into two simpler sub-problems 480 

that have straightforward solutions. Although most of the noise and undersampling artifacts 481 

can be efficiently removed after the first iteration, aliasing may still exist depending on the 482 

quality of the input images. This behavior mainly stems from the fact that corrupted images 483 

can negatively affect the block matching step, resulting in a sub-optimal grouping. Thus, 484 

several ADMM iterations (five in this study) are needed to achieve good image quality 485 

reconstructions. 486 

The technique proposed in this paper can potentially change conventional multi-contrast 487 

imaging by making efficient use of the rich and redundant information available locally and 488 

temporally. Two applications were introduced in this study, nonetheless HD-PROST stays 489 

generic and should be easily extendable to many MR applications where multiple contrasts 490 

are involved, such as conventional T1 and T2 mapping, perfusion imaging (57), 4D flow 491 

MRI (58) or low SNR applications such as arterial spin labeling (59). 492 

Conclusion 493 

We present a new framework, termed HD-PROST, for efficient reconstruction of 494 

undersampled multi-channel multi-contrast MR images. HD-PROST aims at achieving 495 

high image quality by exploiting the high local and non-local redundancies, and the 496 

similarities between the multi-contrast images through a high-dimensionality low-rank 497 

tensor decomposition. HD-PROST was validated in accelerated 2D MRF to generate 498 

precise T1 and T2 maps in about 2.5 seconds without affecting T1/T2 accuracy. For 499 

accelerated multiple 3D MT-weighted acquisitions, HD-PROST can recover high quality 500 

images, comparable to a fully-sampled acquisition, in a clinically reasonable timeframe. 501 

The straightforward, yet efficient, application of HD-PROST to 2D and 3D multi-contrast 502 

data sets, provides several opportunities for future research, particularly in areas where 503 

high-dimensionality is likely to increase in importance. 504 
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Figure Captions 709 

 710 

Figure 1: Flowchart of the optimization 2 of the proposed High-Dimensionality Patch-711 

based RecOnSTruction (HD-PROST). Denoising of multi-contrast images is performed 712 

using 2D (respectively 3D) block matching, which groups similar 2D (respectively 3D) 713 

patches in the multi-contrast images. Similar patches are then unfolded together in a simple 714 

2D matrix. A third-order tensor 𝒯 is formed by stacking the unfolded patches in the contrast 715 

dimension. The high-order tensor of size 𝑁 × 𝐾 × 𝐿 admits a low multilinear rank 716 

approximation and can be compressed, through tensor decomposition, by truncating the 717 

multilinear singular vectors that correspond to small multilinear singular values. The 718 

outputs of this step are the denoised multi-contrast images which are then used in the joint 719 

MR reconstruction process (optimization 1) as prior knowledge. An overview of the 720 

algorithm is provided in Supporting Information Table S1. 721 
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 722 

Figure 2: Phantom results for the 2D accelerated MRF using low-rank inversion (LRI) and 723 

the proposed HD-PROST reconstructions. Plots are comparing the mean T1 (a) and T2 (b) 724 

values derived from 2000, 1000 and 500 time-points, with conventional inversion-recovery 725 

spin-echo (IRSE) and spin-echo (SE) acquisitions (identity lines). T1 and T2 accuracies are 726 

preserved with the two strategies, with a slight bias observed for long T2s at high 727 

accelerations for both methods. The mean values were obtained from ROIs drawn around 728 

each phantom vial. Abbreviations – LRI: low-rank inversion, HD-PROST: high-729 

dimensionality undersampled patch-based reconstruction. 730 

 731 

Figure 3: Standard deviations of T1 (a) and T2 (b) relaxation times for the phantom study 732 

are shown for LRI and HD-PROST reconstructions for [400:200:2000] acquired time-point 733 

images. The precision, as indicated by the standard deviation, was considerably higher with 734 
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the proposed HD-PROST reconstruction, even for shorter acquisitions, while LRI resulted 735 

in systematic higher standard deviations. The standard deviations were obtained from ROIs 736 

drawn around each phantom vial. Abbreviations – LRI: low-rank inversion, HD-PROST: 737 

high-dimensionality undersampled patch-based reconstruction. 738 

 739 

Figure 4: Reconstructed first four MRF singular images with low-rank inversion (LRI) (a) 740 

and the proposed HD-PROST (b) in in vivo brain experiments in a representative subject 741 

acquired with 1000 time-points. A clear improvement in image quality and image sharpness 742 

can be observed on the HD-PROST reconstruction with considerable reduction of noise and 743 

streaking artifacts, particularly for the last singular images. 744 



 

 

33 

 745 

Figure 5: In vivo MRF-derived quantitative T1 (top) and T2 (bottom) maps for subject 1 746 

reconstructed with low-rank inversion (LRI) MRF and the proposed HD-PROST 747 

reconstruction with 2000, 1000 and 500 time-points. 748 

 749 
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Figure 6: T1 (top) and T2 (bottom) maps for subject 2 reconstructed with low-rank inversion 750 

(LRI) MRF and the proposed HD-PROST reconstruction with 2000, 1000 and 500 time-751 

points. The yellow and red rectangles on the top-left map indicate the regions of interest 752 

used to determine the T1 and T2 relaxation times (see Table 1). 753 

 754 

Figure 7: Three-dimensional reconstruction of a MT-weighted 6.5-fold undersampled 755 

brain data in a healthy subject (subject 1). HD-PROST reconstruction (B) is compared to 756 

the fully-sampled acquisition (A) for the reference image only (𝛼𝑀𝑇 = 0°). Line profiles 757 

going through a structure with sharp edges are shown in (C). HD-PROST is able to recover 758 

high fidelity 3D images and retrieve sharp edges in agreement with the fully-sampled 759 

acquisition. Six different undersampled MT-weighted images were acquired in 13min 18s, 760 

whereas the fully-sampled acquisition of a single contrast took 12min 57s. 761 

 762 
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Figure 8: 6.5-fold accelerated 3D MT-weighted images for 6 different contrasts from one 763 

representative subject (subject 1) reconstructed with compressed-sensing (CS), and the 764 

proposed HD-PROST reconstruction. Fine anatomical structures can be efficiently 765 

retrieved with HD-PROST as shown by the arrows. See Supporting Information Figure S5 766 

for the visualization of the whole axial images and Supporting Information Figure S6 for 767 

comparisons with zero-filling and locally low-rank reconstructions. 768 

 769 

 770 

  771 
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Table Captions 772 

Table 1: T1 and T2 relaxation times at 1.5T for low-rank inversion (LRI) and the proposed 773 

HD-PROST in regions of interest covering white and grey matters in the five healthy 774 

subjects (regions of interest are drawn in the maps in Figure 6). Values are shown for 775 

different MRF measurement lengths and compared with the corresponding literature values. 776 

 777 

 778 

 779 

 780 

 781 

 782 

 783 

 784 

  785 

   T1 (ms)   T2 (ms)  

 #Time points LRI HD-PROST Literature LRI HD-PROST Literature 

White 

Matter 

2000 737  61 743  37  45  5 45  4  

1000 718  63 732  36 608 – 756 47  6 46  4 54 – 81 

500 741  64 746  44  42  4 45  3  

Grey 

Matter 

2000 999  117 992  106  55  6 54  4  

1000 988  125 982  108 998 – 1034 57  6 56  4 78 – 98 

500 1059  151 1024  128  52  7 55  4  

Abbreviations – LRI: low-rank inversion, HD-PROST: high-dimensionality undersampled patch-based 

reconstruction. Values are expressed as mean ± SD 
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Supporting Information Figure Captions 786 

787 

Supporting Information Figure S1: Variable flip angle pattern used in the accelerated 2D 788 

MRF study. This pattern was described in Assländer et al. (44). 789 

790 

Supporting Information Figure S2: T1 map (A) and T2 map (B) of the 2D MRF phantom 791 

acquisition. The quantitative values for all phantom tubes are reported in Figure 2. 792 

Abbreviations – LRI: low-rank inversion, HD-PROST: high-dimensionality undersampled 793 

patch-based reconstruction. 794 
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 795 

Supporting Information Figure S3: T1 (top) and T2 (bottom) maps for subject 3 796 

reconstructed with low-rank inversion MRF and the proposed HD-PROST reconstruction 797 

with 2000, 1000 and 500 time-points. 798 
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 799 

Supporting Information Figure S4: 2D MRF singular images (A) and corresponding T1 800 

(top) and T2 (bottom) maps (B) for subject 2 reconstructed with low-rank inversion (LRI), 801 

PROST (i.e. reconstructing each MRF singular image independently), global low-rank 802 

tensor decomposition (global LR) and the proposed HD-PROST reconstruction. The white 803 

rectangle on the top-left map indicates the region of interest used to determine the T1 an T2 804 

relaxation times. By exploiting local, non-local and contrast redundancies, the proposed 805 

HD-PROST technique obtains better performance than the other techniques and 806 

reconstructs high-quality T1 and T2 maps with great noise-like artefacts reduction, contrast 807 
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preservation, as well as sharpness enhancement, with T1 and T2 accuracies similar to the 808 

unregularized LRI reconstruction. 809 

810 

Supporting Information Figure S5: 6.5-fold accelerated 3D MT-weighted images for 6 811 

different contrasts from subject 1 reconstructed with zero-filling, locally low-rank, 812 

compressed-sensing, and the proposed HD-PROST. 813 
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814 

Supporting Information Figure S6: 6.5-fold accelerated 3D MT-weighted images for 6 815 

different contrasts from one representative subject (subject 1) reconstructed with zero-816 

filling, locally low-rank (LLR), compressed-sensing (CS), and the proposed HD-PROST. 817 

Fine anatomical structures can be efficiently retrieved with HD-PROST as shown by the 818 

arrows. See Supporting Information Figure S5 for the visualization of the whole axial 819 

images. Note that slight residual motion can be observed on the sharp HD-PROST 820 

reconstruction, which is lost in blurring on the compressed sensing reconstruction (due to 821 

regularization) and in the noise of LLR reconstruction. 822 
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823 

Supporting Information Figure S7: 6.5-fold accelerated 3D MT-weighted images for 6 824 

different contrasts from subject 2 reconstructed with zero-filling, locally low-rank, 825 

compressed-sensing , and the proposed HD-PROST. 826 
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827 

Supporting Information Figure S8: Three-dimensional reconstruction of a MT-weighted 828 

6.5-fold undersampled brain data in a healthy subject (subject 3). HD-PROST 829 

reconstruction is compared to the fully-sampled acquisition for the reference image only 830 

(𝛼𝑀𝑇 = 0°). Six different undersampled MT-weighted images were acquired in 13min 18s, 831 

whereas the fully-sampled acquisition of a single contrast took 12min 57s.  832 
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Supporting Information Table Captions 833 

 834 

 835 
ALGORITHM I 836 

HIGH-ORDER TENSOR DECOMPOSITION ALGORITHM FOR HD-PROST RECONSTRUCTION 837 
 838 

 839 

INPUT: data tensor 𝒯 with dimensions (𝑁, 𝐾, 𝐿) and regularization parameter 𝜆 840 

ALGORITHM: 841 

(1) Unfold the tensor 𝒯 along its single modes: 842 

𝒯1: which reshapes 𝒯 into a 𝐿 × (𝑁 . 𝐾) complex matrix 843 

𝒯2: which reshapes 𝒯 into a 𝑁 × (𝐿 . 𝐾) complex matrix 844 

𝒯3: which reshapes 𝒯 into a 𝐾 × (𝐿 . 𝑁) complex matrix 845 

(2) Compute the complex SVD of 𝒯𝑛 and get the orthogonal matrices 𝑈(1), 𝑈(2), 𝑈(3) from the 846 

nth-mode signal subspace 847 

(3) Compute the complex core tensor 𝓢 related by 848 

𝒮 = 𝒯 ×1  𝑈(1)
𝐻 ×2 𝑈(2)

𝐻 ×3 𝑈(3)
𝐻  849 

Which is equivalent to its unfolding forms: 850 

𝒮𝑛 = 𝑈(𝑛)
𝐻  . 𝒯𝑛. [𝑈(𝑖) ⨂ 𝑈(𝑗)]   𝑤𝑖𝑡ℎ 1 ≤ 𝑛 ≤ 3 𝑎𝑛𝑑 𝑖 ≠ 𝑗 ≠ 𝑛 851 

In which ⊗ denotes the Kronecker product  852 

(4) Compute the high-order singular values truncation (hard-thresholding): 853 

𝒮(𝒮 < 𝜆) = 0 854 

(5) Construct back the filtered tensor 𝒯(𝑛)
𝑑𝑒𝑛: 855 

𝒯(𝑛)
𝑑𝑒𝑛 = 𝑈(𝑛) .  𝒮 . [𝑈(𝑖) ⨂ 𝑈(𝑗)]

𝐻
 𝑤𝑖𝑡ℎ 1 ≤ 𝑛 ≤ 3 𝑎𝑛𝑑 𝑖 ≠ 𝑗 ≠ 𝑛 856 

OUTPUT: The denoised tensor 𝒯𝑑𝑒𝑛 is obtained by folding 857 

 858 

  859 
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Supporting Information Table S1: Algorithm I: high-order tensor decomposition 860 

algorithm for HD-PROST reconstruction. 861 

 862 

 863 
ALGORITHM II 864 

HIGH-DIMENSIONALITY UNDERSAMPLED PATCH-BASED RECONSTRUCTION (HD-PROST) 865 

 866 

 867 

INPUT: undersampled multi-channel multi-contrast images 𝑋 868 

 parameters 𝜆𝑝, 𝜇, ADMM iterations 𝐴𝐷𝑀𝑀𝑖𝑡𝑒𝑟 869 

Encoding operator E (coil sensitivities 𝑆, sampling mask 𝐴) 870 

Compression operator 𝑈𝑟 (for MRF) 871 

INITIALIZATION:  872 

Solve optimization 1 (Eq. 4): Joint MR reconstruction without prior (𝜇 = 0) 873 

% Output: 𝑋(0) 874 

ALGORITHM: 875 

𝑓𝑜𝑟 𝑖 = 1, … , 𝐴𝐷𝑀𝑀𝑖𝑡𝑒𝑟 876 

 Solve optimization 2 (Eq. 5): HOSVD-based denoising (see Algorithm I)  877 

% Output: denoised tensor 𝒯(𝑖) 878 

Solve optimization 1 (Eq. 4): Joint MR reconstruction with prior  879 

% Output: reconstructed images X(𝑖) 880 

Update Lagrangian multiplier: 881 

 𝑏(𝑖) = 𝑏(𝑖−1) + 𝑋(𝑖) − 𝒯(𝑖)  882 

𝑒𝑛𝑑 𝑓𝑜𝑟 883 

OUTPUT: The multi-contrast images 𝑋 884 

 885 

 886 

Supporting Information Table S2: Algorithm II: high-dimensionality undersampled 887 

patch-based reconstruction (HD-PROST). 888 
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