
This electronic thesis or dissertation has been

downloaded from the King’s Research Portal at

https://kclpure.kcl.ac.uk/portal/

Take down policy

If you believe that this document breaches copyright please contact librarypure@kcl.ac.uk providing

details, and we will remove access to the work immediately and investigate your claim.

END USER LICENCE AGREEMENT

Unless another licence is stated on the immediately following page this work is licensed

under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International

licence. https://creativecommons.org/licenses/by-nc-nd/4.0/

You are free to copy, distribute and transmit the work

Under the following conditions:

 Attribution: You must attribute the work in the manner specified by the author (but not in any
way that suggests that they endorse you or your use of the work).

 Non Commercial: You may not use this work for commercial purposes.

 No Derivative Works - You may not alter, transform, or build upon this work.

Any of these conditions can be waived if you receive permission from the author. Your fair dealings and

other rights are in no way affected by the above.

The copyright of this thesis rests with the author and no quotation from it or information derived from it

may be published without proper acknowledgement.

Automated Collation and Digital Editions
From Theory to Practice

Nury, Elisa Laure

Awarding institution:
King's College London

Download date: 04. Jan. 2025

AUTOMATED COLLATION

and

DIGITAL EDITIONS

From Theory to Practice

By Elisa Nury

Submitted in fulfillment of the requirements

for the degree of Doctor of Philosophy

in the

Department of Digital Humanities

School of Arts and Humanities

King’s College London, University of London

December 2018

Supervisors:

Prof. Elena Pierazzo

Department of Digital Humanities, King’s College London

Laboratoire Universitaire Histoire Cultures Italie Europe, Université

Grenoble-Alpes

Dr Victoria Moul

Department of Classics, King’s College London

Acknowledgements

FIRSTLY, my deepest gratitude goes to my supervisors, Prof. Elena Pierazzo and

Dr Victoria Moul. I could never thank enough Prof. Pierazzo for her guidance

through the ups and down of the past four years, her encouragements and her

always constructive advice. I am also grateful to Dr Victoria Moul, my second

supervisor, for the interesting discussions with a fresh point of view. This work has

much benefited from her careful proofreading. Thanks are also due to Prof. Tara

Andrews and Dr Hugh Houghton, who kindly accepted to be members of my thesis

jury.

A special word of thanks to Prof. Danielle Van Mal-Maeder, who introduced me

to the world of Roman Declamations, Dr Aris Xanthos, and Lavinia Galli-Milić.

Without them, I would not have been able to start this PhD in the first place.

I was incredibly lucky to meet some amazing friends and colleagues at King’s

College: Gabby, Ginestra, Debby, Tuomo, Silke, Valeria and Simona. You have made

my time in London such an enjoyable experience! I miss the fun lunchtimes, the

dinosaurs, and our ‘coffee and cake’ breaks.

Many other people from different institutions have provided their advice and gener-

ous support. I am grateful to the team at the Zentrum für Informationsmodellierung

in Karl-Franzen Universität, Graz: to Dr Walter Scholger who organised my stay in

the centre in 2016, and also to Dr Roman Bleier and to Prof. Georg Vögeler for their

insights and comments. Chapter 4 is greatly indebted to them.

Thanks to Prof. Michael Winterbottom, who discussed the tradition of Calpurnius

Flaccus with me and helped me refine the collation visualisation of Chapter 8. I’m

indebted to Prof. Andrea Balbo, who kindly tested the various interfaces of PyCoviz

and gave me valuable feedback. Thanks to Prof. Hayim Lapin, who shared with me

his work on the Digital Mishnah and collation visualisation. I am also grateful to all

who took the time to help me with several automated collation tools, in particular

2

Ronald Dekker and Gregor Middell, Ilse de Vos and Anna Jordanous, Stefan Hagel,

Marcus Pöckelmann. To everyone who patiently responded to my emails with

endless questions, thank you!

Finally, I would like to thank my family, and especially Anurag, my LATEX wizard,

who never stopped believing in me.

n

This research was made possible by the funding received from the Fondation

Butticaz in Lausanne, and from the Swiss National Foundation for Science (SNSF)

under project P1SKP1 155121.

3

Contents

Contents 4

List of Figures 7

List of Tables 11

General Introduction 12

THEORY

1 Collation 20

1.1 Definition 20

1.2 Historical Context 21

1.3 Purpose of Collation 23

1.4 Issues of Collation 28

2 The Theory of Automated Collation 44

2.1 Automatisation of Collation 44

2.2 Collation algorithms 49

2.3 The Evolution of Automated Collation 60

2.4 Methodology of Automated Collation 67

2.5 Advantages of Computers and Black Box Issue 87

2.6 Comparing collation tools 91

2.7 Conclusion 109

3 Transcription: a Prerequisite for Automated Collation 111

3.1 Theory of Transcription 111

3.2 Transcription and Collation: a Common Model? 117

3.3 Transcription Issues Related to Automated Collation 127

3.4 Conclusion 135

4

Contents

4 Readings and Variants 137

4.1 Readings in Context 140

4.2 Modelling a Reading 144

4.3 Digital Representation: from Reading to Token 150

4.4 Comparing Tokens in Different Contexts 154

4.5 Conclusion 157

PRACTICE

5 Test Case: the Declamations of Calpurnius Flaccus 163

5.1 The Tradition of Calpurnius Flaccus 163

5.2 Method: Automated Collation Applied to a Classical Text 178

6 XML Transcriptions 182

6.1 Transcription platforms 182

6.2 Description of the TEI Encoding 187

7 Automated Collation in Practice 205

7.1 CollateX 206

7.2 Juxta 221

7.3 Classical Text Editor 231

7.4 Conclusion 238

8 Collation Visualisation 240

8.1 Assessing Scholarly Needs 240

8.2 Table format: fixed visualisation 246

8.3 Interactive interfaces 254

8.4 PyCoviz: A Python Interactive Interface 263

8.5 PyCoviz Applied to Calpurnius Flaccus 283

8.6 Discussion 290

8.7 Conclusion 295

General Conclusion 300

5

Contents

APPENDICES

A Theory 305

A.1 List of tools — Automated Collation 305

A.2 Collation Model 317

B Practice 319

B.1 XML Transcriptions 319

B.2 XSLT Tranformation 320

B.3 JSON Collation Results 321

B.4 HTML Tables 322

B.5 PyCoviz Jupyter Notebook 323

Bibliography 327

6

List of Figures

1.1 Lendle’s notation method of collation. 36

1.2 Manual collation in Excel 1. 37

1.3 Manual collation in Excel 2. 38

2.1 Optical text collation with the Oxford Traherne. 46

2.2 A collation algorithm in natural language. 47

2.3 A collation algorithm in flowchart. 47

2.4 Dekker algorithm, alignment matrix. 56

2.5 Examples of alignments from iAligner. 58

2.6 Diff example. 59

2.7 Collate — base text collation vs. parallel segmentation. 72

2.8 Parallel segmentation of a text. 73

2.9 Variant graph: Colwell and Tune (1964). 74

2.10 Variant graph: Schmidt and Colomb (2009). 75

2.11 Variant graph: CollateX. 76

2.12 Tokenisation with markup context. 79

2.13 Examples of incorrect alignment. 80

2.14 Normalised and non-normalised texts. 81

2.15 Comparing exact matches first. 85

2.16 Homonyms and transpositions in CollateX. 86

2.17 Example of a punched card. 97

2.18 OCR with ABBYY FineReader. 99

2.19 Example of early collation output. 105

2.20 A collation visualisation in histogram. 106

2.21 Different highlightings in Juxta’s Heat Map. 107

2.22 Variant graph: Stemmaweb. 108

2.23 Variant graph: TRAViz. 108

3.1 Summary of the transcription model. 116

3.2 Transcription model and individual readings. 122

7

List of Figures

3.3 Collation model: without variant. 124

3.4 Collation model: with variant. 124

3.5 Deletion and addition in Juxta Commons. 131

4.1 Readings. 138

4.2 Readings, differences and variants. 141

4.3 Sahle’s wheel of text model. 145

4.4 Model for readings. 149

4.5 Every difference is a variant. 155

4.6 Non-orthographic differences are variants. 156

4.7 Orthographic differences are variants. 156

5.1 The incipit of manuscript A. 168

5.2 Manuscript C, folio 84r, line 38. 169

5.3 Additions in the margin of manuscript B. 170

5.4 Additions in manuscript B. 170

5.5 Manuscript M, folio 18v, lines 20-25. 171

5.6 Manuscript N, folio 246r, line 13. 172

5.7 Manuscript N, folio 259v, line 24. 172

5.8 Manuscript N, folio 254r, lines 19-22. 172

5.9 Comparison of corrections in manuscripts B and N. 173

5.10 Manuscript M, folio 5v, line 18 174

5.11 Calpurnius Flaccus stemma. 177

6.1 Transcription platform: TextGridLab. 183

6.2 Transcription platform: the Transcription Editor. 184

6.3 Transcription platform: T-Pen. 185

6.4 Transcription platform: HumEdit. 186

6.5 Transcription platform: Transkribus. 187

6.6 Unknown abbreviation in manuscripts B and C. 194

6.7 Pithoeus apparatus. 201

7.1 CollateX command line usage. 207

7.2 CollateX JSON input format. 212

7.3 Sample 1 from the XSLT transformation. 216

7.4 Sample 2 from the XSLT transformation. 218

7.5 Sample 3 from the XSLT transformation. 218

7.6 CollateX JSON input and XML TEI output. 221

7.7 Juxta Desktop interface. 222

7.8 Juxta XML parsing template. 223

8

List of Figures

7.9 Juxta Commons interface. 225

7.10 Juxta Commons, Versioning Machine visualisation. 226

7.11 Example of erroneous alignment in Juxta Commons. 227

7.12 The interface of Juxta Editions. 228

7.13 Classical Text Editor interface. 232

7.14 The Collation dialog box (CTE). 234

7.15 Issues of alignment with CTE algorithm. 235

7.16 Updates to the algorithm of CTE provided by Hagel. 236

8.1 An example of a CollateX Collation table. 246

8.2 A collation table form the Digital Mishnah project. 247

8.3 A collation table from the Beckett Archive Project. 248

8.4 An example of a Compare collation table. 248

8.5 A collation table from iAligner. 249

8.6 Example of a collation table in Stemmaweb’s Stexaminer. 250

8.7 A collation table for Calpurnius Flaccus. 251

8.8 Javascript for expanding or hiding paragraphs. 254

8.9 Stemmaweb interface. 256

8.10 Stemmaweb graph example. 256

8.11 Modifying collation results with the Collation Editor. 258

8.12 Example of a TRAViz graph interface. 258

8.13 Example of interface with widgets. 260

8.14 Structure of CollateX JSON results. 264

8.15 Widgets for the selection of a table extract. 267

8.16 Summary of modifications available in PyCoviz. 269

8.17 Move one token down. 270

8.18 An alignment that needs to be updated. 271

8.19 Adding a note to a token. 271

8.20 The Agreements widget. 275

8.21 PyCoviz [4] - compare multiple cells. 277

8.22 PyCoviz [6] - compare witnesses. 277

8.23 The comparison of normalised forms ignores word separation. 278

8.24 M compared to BCN and P1594. 279

8.25 The Search widget. 280

8.26 The Clarify widget. 281

8.27 PyCoviz [11] - print info. 281

8.28 PyCoviz [5] - Find agreements. 282

8.29 PyCoviz [7] - View variants. 282

8.30 PyCoviz [10] - A short passage in text format. 283

9

List of Figures

8.31 Example of corrected alignment. 284

8.32 Pithoeus and B against CMN. 286

8.33 Pithoeus and C against BMN. 287

8.34 Pithoeus and N against BCM. 287

8.35 Four readings are maybe exchanged between B and N. 289

8.36 The reading liniamentis in the collation results. 291

8.37 Joint vs. separated tokens outputs. 292

8.38 Example of a collation table from a Digital Mishnah sample. 293

B.2 Example from the XSLT transformation files. 321

B.3 Example of CollateX JSON output. 325

B.4 HTML collation table visualised in the browser. 325

B.5 Sample of javascript code for the HTML collation table. 325

B.6 Agreements widget. 326

B.7 Code that select variant readings for the Agreement widget. 326

10

List of Tables

2.1 Incorrect progressive alignment. 55

2.2 Correct non-progressive alignments. 55

2.3 Preference for substitution over addition and omission. 84

2.4 The issue of aligning homonyms. 85

8.1 Relations of B2 with M, N, and P1594. 289

11

General Introduction

THE purpose of the dissertation is to investigate from a theoretical and method-

ological perspective the different tools that allow automated collation, and

study the application of such tools to the creation of a digital critical edition in

the context of Classical literature. By doing so, the dissertation examines many

foundational but often neglected components of the philological method, such as

the definition and wider implication of transcription, reading, and variant.

The goal is to provide a reflection on automated collation and the theoretical as well

as practical challenges it poses: what is automated collation? How is it performed,

and what are the main differences with manual collation? What are the benefits

of automated collation? Why has it not been widely adopted yet, despite the fact

that it was developed to help scholars? How to process the results of collation

programmes? As a case study, a Classical Latin text has been used to test automated

collation and to compare the various existing tools.

The method I follow in this dissertation is to apply automated collation to a selected

text, the Declamations of Calpurnius Flaccus. To this purpose, the manuscript tra-

dition, as well as the editio princeps, have been entirely transcribed. Afterwards, the

transcriptions have been collated with different collation programmes. The results

of the collation with different programmes have been examined and compared,

as well as the possibilities offered to scholarly editors for visualising and further

processing those results.

The content of the thesis is divided into two distinct parts, from theory to practice:

a first part discusses the relevance of collation in the broader context of critical

editing, introduces automated collation and its various issues, as well as the impli-

cations of automated collation for key concepts such as ‘witnesses’, ‘readings’ and

‘variants’; the second part of the thesis will describe the practical work on the text

of Calpurnius Flaccus with automated collation programmes and the visualisation

tool that was created to examine the collation results. Each part comprises a short

12

introduction and conclusion which summarises its content and its outcome.

n

In the process of editing a text, the collation of manuscripts and previous scholarly

editions is a necessary and fundamental step. The work leading to the production

of a critical edition is divided into two phases: the recension of witnesses, followed

by the constitution of the text (Chiesa 2002). The editor, therefore, starts with the

recension by gathering all the witnesses, manuscripts or editions, bearing a version

of the edited text. Collation is the next step: comparing those witnesses to find

the differences (or variants) between the versions. Finally, the editor analyses the

variants in order to determine the genealogical relationships of the witnesses, if

possible, and present those relationships in the form of a stemma codicum. The

stemma’s purpose is to help the editor produce a text ‘as close as possible to the

original’ (Maas 1958, 1), and decide which variants are accepted as authorial and

which variants are rejected as errors that got included in the tradition by the copyists

of the manuscripts. After the recension, the editor prepares a critical text, selecting

variant readings and making emendations when necessary.

Collation is important because it is one of the first stages in the editing process and

the data gathered during collation forms the basis upon which the editor will later

make critical decisions (Whittaker 1991). Collation is performed because witnesses

of a text always contain variant readings, and the editor needs to be in possession

of all the alternatives in order to establish the text. As complete collations are not

usually published, this represents a regrettable loss of information, especially given

the amount of time and effort invested in collation by the editors (West 1973, 63).

While collation is an essential part of textual criticism, collation is also a long,

tedious and error-prone activity and needs to be checked more than once. For this

reason, a new method was created: automated collation, which takes advantage of

computers in order to compare texts and find variant readings. Scholars have been

developing collation tools since the 1960s, but with limited success at first: what

was considered a fairly mechanical process turned out to be more sophisticated

than expected (Hockey 2000, 125). Since the pioneering work of Dearing (1962)

and Froger (1968), automated collation has been studied for decades and has been

constantly improved. In the past 50 years, close to thirty tools have been devised

in order to obtain a collation with the support of increasingly complex algorithms.

13

How does automated collation work? To simplify, the tools for automated collation

take, as an input, a transcription of each witness that needs to be compared. The

transcriptions are then aligned with each other through an alignment algorithm.

The task of collation seems to highly benefit from the application of computing

methods. The advantages offered by computing methods are various: consistency

in the comparison, possibility to reuse the material in order to add new manuscripts

to the collation, a common format to share collation data with other scholars. The

results of automated collation can also be formatted for further processing, such as

building a stemma with a different program or creating a digital scholarly edition.

However, automated collation is not completely accepted by the community of

scholars, nor is its method fully understood. In 1973, at the beginning of automated

collation, scepticism was understandable because of the many restrictions of early

tools such as the small number of witnesses collated, or the limitation to comparing

lines of poetry. Faced with those limitations, West (1973, 71) stated that ‘the time

has not yet come when manuscripts can be collated automatically’. Forty years

later, in spite of huge technical improvements, opinions have not really changed,

to the point that Reeve declared that he was not convinced by computer methods,

especially for large manuscript traditions (Reeve 2011, 393). But the computer is

indeed supposed to be better at handling large amounts of data, and with more

consistency than a human being. In fact, when dealing with large traditions, it is

not always possible to sort out the relationships between manuscripts and draw a

stemma by hand, yet editors are not keen on turning to electronic methods.

Some of the obstacles to the wide adoption of automated collation seem connected

to a general misunderstanding. There is a fear that somehow the computer will

eventually be replacing the editor, and that editors will lose their right to apply

their individual judgement to the texts. Greetham (2007, 23) regrets, for instance,

that the role of individual, subjective evaluation ‘has not always been recognised,

especially by those wishing to emphasise the “scientific” aspects of the field’. The

importance of individual judgement, and the role of the editor compared to the

role of the computer, can be closely related to the black box issue (Sculley and

Pasanek 2008): if scholars do not understand what a piece of software does, how

can they trust that the programme did not deprive them of making certain choices

or applying their own judgement?

In the course of my PhD I had several exchanges with colleagues in the field of Clas-

sics which have highlighted several underlying misunderstandings on either side.

14

For instance I was once told in an email that ‘automated collation is impossible,

because computers cannot read manuscripts’. This statement does not recognise,

for instance, the fact that computers are collating from transcriptions made by

scholars. From this point of view, transcription and collation are strictly connected

activities. This statement, however, illustrates perfectly the main tension between

traditional, manual collation and automated collation: the difference of methodol-

ogy. The confusion arises here because the full transcription of manuscripts is not

a part of the traditional heuristics in textual criticism.

A generalised lack of tools and guidelines for the production of digital scholarly

editions may also explain why automated collation is not the solution of choice.

As yet, there is still no clear consensus regarding digital critical editions and their

definition (‘what they should be’), which results in a lack of widely applicable tools

(Andrews 2012). The scarcity of user-friendly tools for Humanities scholars is also

noted by Robinson (2005, §13) and Monella (2014b), whereas Cayless (2015) men-

tions the absence of precise guidelines and orientation among the many options

available. In fact, there is no lack of collation tools, but still little literature offers

criticism to help scholars evaluate their growing number. Furthermore, collation

is not the final goal but only one step in the course of editing. The results of auto-

mated collation are not easily manageable by scholars: they need to be analysed

and manipulated to be fully understood. However there are not many options to

do so with the current collation tools.

n

In light of this discussion, it appears that many aspects of collation and automated

collation need to be discussed. It is the purpose of this dissertation to address

concerns expressed by Classicists while clarifying the misunderstandings which can

hamper the adoption of automated collation. Ultimately, the aim of the dissertation

is to show how the flexible results of automated collation can support scholars in

their work. The disciplinary background of the thesis is thus primarily in Classics,

but it will also explore practices in the wider domain of textual criticism.

Chapter 1 presents traditional collation and its method, which is necessary in order

to understand what changes with the adoption of a new automated method. Chap-

ter 2 is dedicated to the history and methodology of automated collation. Since an

accurate transcription is the crucial first step to achieve in order to undertake an au-

15

tomated collation, the dissertation devotes two chapters to transcription: Chapter 3

for theoretical aspects, and Chapter 6 to describe the transcription of Calpurnius’

Declamations. Transcription also represents a major change in methodology, and

the implications of the differences in heuristics will be explored further on in the

first part of the dissertation, especially in Chapter 2 and Chapter 3.

The content of collation is determined by what editors consider a variant worthy of

being recorded: therefore the definition of a variant, especially a significant variant,

is crucial (Orlandi 2010, 115). Every editor has a different sensitivity about what

constitutes a significant variant. Two editors will not produce the same edition

of the same text. Moreover, what is significant for a historical linguist is not the

same as what is relevant to the medievalist or the stemmatology specialist. This

dissertation will therefore provide a reflection on what is a reading, a variant, a

significant variant, and how these definitions may change according to the editor’s

field of study and perspective on the text (Chapter 4).

Since many collation tools are available and new ones are regularly created, there

is a growing need for scholars to compare different tools and assess which one will

be best suited to their needs. Chapter 2 provides a theoretical framework of tool

criticism for automated collation with several criteria, and Chapter 7 applies those

criteria to the comparison of three tools in practice. As a result of this comparison,

it was possible to identify the need for a tool that would help scholars to manipulate

collation results in a way that supports traditional textual criticism, which led to

the development of a tool for this purpose.

In Chapter 8, I will describe the tool that I have created to visualise collation results

and show how its application can support editors in applying their own judgement

to the text, and also make their conclusions reproducible by others. While the

collation tool does not make any judgement regarding the correctness of the text,

scholars should nevertheless be aware of how the collation results format can affect

the visualisation of variant readings and ultimately of the critical apparatus.

The shift from the traditional manual comparison of manuscripts to a transcription

followed by an automated collation represents an important change in heuristics.

What does this change implies for the understanding of what scholars do when

they collate? This dissertation ultimately argues that the transition to computing

methodology for textual scholarship has a profound impact on the understanding

of the edited text, its variation and its meaning.

16

PART I

THEORY

Introduction

THE first part of this dissertation is focused on the theoretical aspects of collation.

The purpose of this section is to give a theoretical framework of collation that

will bring together the various issues of collation, whether manual or automated

collation, and examine how they have been addressed.

In this part of the thesis, I will start in Chapter 1 by introducing the concept of

collation and the purpose as well as the historical context for this critical activity

which has been performed by scholars over the centuries. The different steps of

collation and their issues will be reviewed, as well as the content of collation. The

next chapters will then focus on automated collation and the theoretical issues

surrounding this new digital method:

• Automated Collation: Chapter 2 presents a comprehensive discussion of the

theory of automated collation. The chapter reviews not only the evolution

of the name, definition and methodology of automated collation, but it

also highlights the major issues related to each step of the process. As new

tools continue to emerge, it seems necessary to establish criteria in order

to compare collation tools and to help scholars select the most useful one

depending on their needs.

• Transcription: in Chapter 3, I will compare transcription and collation.

Thanks to the model of transcription by Huitfeldt, Marcoux, and Sperberg-

McQueen (2008), I will highlight how the two activities are not so different

from one another. However, I will also examine how the change from a

manual collation to a digital transcription followed by automated collation

forces scholars to think more deeply about the notion of witnesses, and the

division of the text into units of comparison (i.e. readings, or tokens).

• Reading and Variants: finally, in Chapter 4, I will consider more closely these

18

units of comparison, and propose a model for representing readings into

digital tokens, inspired by one of CollateX’s formats.

This first part of the dissertation aims not only at providing the context necessary

to the second part, but also at examining what the change of method implies for

our scholarly understanding of collation. In this context, it is especially important

to discuss definitions, as well as the purpose and methodology of collation. Al-

though automated collation is a relatively recent approach that started only a few

decades ago, it has evolved since its beginning in the 1960s: its name and definition,

its purpose and methodology have changed not only in parallel to technological

improvements, but also according to scholarly practices and their understanding

of automated collation. It is likely still changing, with a trend towards ‘alignment’

instead of ‘collation’.

Theoretical issues are not a strong focus in the literature of automated collation.

For instance the Gothenburg model, which formalises the process of automated

collation, is not discussed in detail in a scholarly publication. The discussion is

often oriented towards practical aspects: how is automated collation performed?

What can be achieved thanks to automated collation? How many texts can be

collated? What is the percentage of errors in the results? However, automated

collation also needs to be discussed with regard to the implications for editors: how

is the digital method influencing collation? What decisions must be made during

the transcription? What transformations are texts going through as they are first

transcribed, then collated and analysed, and what are the consequences?

19

1Collation

1.1 Definition

THE term collation etymologically means to ‘collect and combine (text, infor-

mation or data)’ (Oxford Dictionaries), from the Latin conferre, ‘to gather,

compare’. In philology, collation is commonly described as the operation of com-

paring each witness of a text with one another, so as to reveal their differences and

with the aim of creating a critical edition (Chiesa 2002, 48-49)1. The term ‘collation’

may refer both to the action of comparing texts and to the result of this comparison.

The following examples illustrate how the term ‘collation’ can be used to refer to the

result of a comparison: ‘collations may sometimes be used by other people’ (Macé

et al. 2015, 331); ‘the digital edition gives many more collations’ (Robinson 2007a,

4); ‘The most obvious procedure would be to collate against [the manuscript] M

[. . .] taking Vitelli’s collation as the standard against which all other manuscripts

were to be judged’ (Dawe 1964, 15). In those examples, collation does not refer

to the action of comparing texts, but carries the concrete meaning of something

that can be used by, or given to, interested scholars. Nevertheless definitions do

not usually distinguish between collation as an act and collation as a result, but

rather focus on the process or action of comparing texts, word by word, character

by character2. Non-textual elements, such as decorations, calendars or diagrams,

and the issues of their comparison are not discussed in relation to philology or

textual criticism. However, historians of Greek, Arabic or Egyptian mathematics

have acknowledged the need to collate and critically edit mathematical diagrams

instead of simply providing corrected figures to fit modern standards3.

1‘La seconda operazione che porta all’edizione critica, successiva alla ricognizione dei testimoni,
è la loro collazione. Essa consiste nel confronto (così etimologicamente: collatio, dal latino confero)
di ciascun testimone con gli altri, al fine di rilevarne le differenze’ (Chiesa 2002, 48-49). For definitions
specific to book-related disciplines, such as codicology, bookbinding or analytical bibliography, see
for instance ‘Collation’ in the Online Dictionary for Library and Information Science (Reitz 2013).

2For more definitions, see the Lexicon of Scholarly Editing, s.v. collation: http://uahost.
uantwerpen.be/lse/index.php/lexicon/collation/ (Accessed July 15, 2015).

3For more information, see De Young (2009).

20

http://uahost.uantwerpen.be/lse/index.php/lexicon/collation/
http://uahost.uantwerpen.be/lse/index.php/lexicon/collation/

1.2. Historical Context

In this chapter I have mainly surveyed sources which are discussing ancient texts,

mostly Greek and Latin Classics. However, other disciplines with different practices

are also relevant to the thesis, in particular New Testament studies which have

worked extensively with automated collation.

A general definition such as the one provided by Chiesa is hardly satisfying. What

do we do, precisely? How do we compare texts? From which type of support:

manuscripts, printed photographs, microfilms, digital images? How does the use of

manuscript or facsimiles of varying format and quality influence the results? There

is an infinity of differences between two documents, how do we determine what is

worth recording? According to Reeve ([1989] 2011) physical features (which could

be considered codicological, such as damage, misbinding, and ‘quirks of layout’)4,

as well as textual evidence, must be considered, but how? Is establishing a critical

edition the only purpose of collation? Has it always been the case?

1.2 Historical Context

Collation, that is comparing texts with each other, is an activity as old as writing,

for ‘at the very moment in each culture that documents begin to preserve the

records of that culture, the issues familiar to textual scholars will appear’ including

textual variation (Greetham 2013, 17). Among the first known textual critics were

Zenodotus, Aristophanes and Aristarchus, working in the Alexandrian library where

they gathered multiple copies of the same work. According to Zetzel (1981, 16)

however, the critical marks used by Aristarchus pertain more to a commentary

than a critical apparatus or collation5. Such marks did not always refer to actual

textual variation in the manuscripts but rather to what he considered to be not

authentic material and should be rejected. Montanari (2002, 127 ff.), on the other

hand, showed that when working on an ekdosis (edition), Alexandrian scholars

performed a combination of both methods of textual criticism performed later by

Humanist scholars: providing personal conjectures and collating documentary

sources, the equivalents for emendatio ope ingenii and emendatio ope codicum (see

p. 22 below). The introduction of the obelos by Zenodotus to mark suspicious, non-

Homeric readings represents a ‘crucial intellectual step’, the shift from ‘correcting a

4‘Physical evidence is any peculiarity of a witness other than its readings that accounts for an
innovation in another witness’ (Reeve [1989] 2011, 152). Reeve builds upon Timpanaro’s discussion
on the "prove ‘materiali’" (Timpanaro 1985, 170 ff.). Timpanaro himself was discussing Maas (1958,
4), paragraph 8a, regarding the eliminatio codicum descriptorum based on ‘the external state of the
text’. See also West (1973, 33, note 4).

5Critical signs (σηµει̃α) were invented by Alexandrian scholars. The signs included obelos, a
short line placed in the margin of the text, asteriskos, sigma, diples etc. For more information
regarding the shape and meaning of those signs, see for instance Schironi (2012).

21

1.2. Historical Context

single copy’ to ‘editing a text’ (Montanari 2015, 40). In addition, Montanari raises

the question of the number of manuscripts involved in the comparison: can it be

called a collation when only a very small number of manuscripts are compared?

‘Or was it sufficient to compare a few, to detect variants when the tradition was not

univocal, and then address the problem of which text was correct and which ones

were wrong?’ (Montanari 2015, 43).

The interests of early Latin critics were also clearly in identifying and compiling

lists of manuscripts in an effort to establish chronology and authenticity. Even

later, when their aim was to ‘recover or explain the text, not to suggest what it

should have been’ (Zetzel 1981, 74), they ‘paid little attention either to diplomatic

evidence or to the stylistic character of the authors, two criteria which are basic

to any modern textual argument’ (Zetzel 1981, 206). The subscriptions written

in various manuscripts do not suggest that collation was performed on a wide

number of copies. On the contrary, it seems that ‘one copy was corrected, and it

was corrected against only one other copy, which may well have been the exemplar

from which it was itself transcribed’ (Zetzel 1981, 228). The variants recorded

reflected personal interests, not the will to ‘improve the text for posterity’ (Zetzel

1981, 230). Educated readers, not professional critics, were responsible for most

of the textual scholarship from Antiquity that survives in our manuscripts, and it

could be misleading to assume that their methods and purposes were those of a

modern scholar.

A major change occurred during the fifteenth century, when Politian laid the foun-

dations of modern textual criticism. Until then editors used to follow a vulgate text,

later transmitted from the editio princeps which was based on recent manuscripts.

The vulgate was corrected either by conjecture (emendatio ope ingenii) or by colla-

tion of manuscripts (emendatio ope codicum), but only when it was not satisfactory.

Politian was the first to understand that the collation had to remain separate from

the emendation of the text (Rizzo 1973, 178), and that ‘the manuscripts [. . .] had

to be collated not occasionally but systematically, registering all the readings that

diverged from the vulgate text’ (Timpanaro 2005, 48) because he was aware that

ancient manuscripts could provide variants closer to the ‘truth’ (see Rizzo 1973,

245)6. While humanists were noting down variants only when they seemed correct

or at least worthy of consideration, modern editors would subsequently follow

Politian’s method and ‘signal every difference in the collation exemplar (whether or

6The notion of a fixed, true original text, representing without doubt the author’s intentions, has
been challenged in the last decades (Chiesa 2002, 120).

22

1.3. Purpose of Collation

not they will be printed in the apparatus)’ (Pasquali 1952, 62)7. The aim for com-

pleteness makes the difference between humanists and modern editors: ‘among

modern editors, several are collators as inexperienced or careless as the humanists,

although unlike them, they usually seek to be as complete as possible’ (Pasquali

1952, 73)8.

1.3 Purpose of Collation

Collation is therefore prompted by a strong ‘mistrust of texts’, as Vinaver (1939,

352) famously formulated it, a mistrust coming both from the editors and their

audience. The editors do not blindly rely on any witnesses but critically compare

them in order to gather as much evidence as possible in their quest to recover what

the author wrote9. On the other hand, the audience needs an apparatus of variants

so as to question in turn the text (and possibly to contest the editor’s decisions).

This ‘mistrust’ is well exemplified by West when he explains why it is imperative

to collate at least the most important manuscripts. The main reason for collation

is because the data needed to edit the text and recover as much as possible the

original, if it exists, is not trustworthy. Even when a previous collation is available, it

will contain mistakes: ‘no one ever checks anybody else’s collations (or his own, for

that matter) without finding mistakes in them’ (West 1973, 63). However, collations

are not usually published, except in the incomplete form of a critical apparatus.

The apparatus is only a selection from the variants used by the editor to establish

the text, which are themselves only a selection among all the differences recorded

during the collation. As West (1973, 63) noted, ‘it is very likely that no complete

collations have been published, only selected variants, and [the editor] will want to

make his own selection from the complete evidence’. Previous collations are thus

unreliable because they are erroneous and incomplete. West was concerned with

editions of Greek and Latin texts. There is however some diversity in practice among

the different domains of textual criticism: collations of one or more manuscripts

were published for the New Testament, for instance by Scrivener in the nineteenth

7‘[I]l metodo che seguiamo per lo più noi collazionatori moderni, di segnare nell’esemplare di
collazione ogni divergenza (tranne poi a introdurla o no nell’apparato a stampa), ma che è rarissimo
nei collazionatori del Rinascimento, anche tardo, che segnavano soltanto le varianti che parevano a
loro giuste o almeno degne di considerazione’ (Pasquali 1952, 62).

8‘[. . .] tra gli editori moderni parecchi sono collazionatori altrettanto poco pratici o poco dili-
genti quanto gli umanisti, se pure, differentemente da questi, essi sogliono ricercare la maggiore
completezza possibile’ (Pasquali 1952, 73).

9It must be noted that the origin of a text is not always a written one, but an oral source which
may not have been produced by a single author (for instance Homer’s poems or the Sanskrit epic
Mahabharata).

23

1.3. Purpose of Collation

century (Parker 2008, 196-197).

The apparatus is recognised to give critical editions their scientific value (Boschetti

2007, 2). Its absence is often regretted in print: Kaster (1996, 85) for instance

criticises Sussman (1994) for the absence of apparatus in his edition of Calpurnius.

Parker (2012, 105-106) describes the components of a critical edition, among which

the critical apparatus and critical text are universally agreed. However, editions of

the New Testament without an apparatus, such as Westcott and Hort, may still be

considered critical editions.

The absence of apparatus from otherwise good electronic editions is considered a

major shortcoming for academic and pedagogical usage (Tissoni 2004, 74; 2008,

141-142). Electronic editions run the risk of being trusted more than they deserve

because of the lack of editorial control and responsibility because anyone can

upload anything online (Reeve 2000, 200), by giving the false impression that they

represent the one and only true version of the text (Pierazzo 2015, 151-152), or by

obliterating linguistic or stylistic phenomena (Boschetti 2007, 1).

Though provided so that readers do not depend on a potentially fallible editor

(West 1973, 9), the apparatus is, nevertheless, subject to criticism. One of the

reasons why the apparatus is criticised is its subjectivity by Flores (1998) and Cozzo

(2006), two Italian scholars of Greek and Latin philology. Cozzo (2006) considers

that the apparatus is subjective, and does not allow readers to make decisions

independently of the editor. According to Cozzo (2006, 255), the presence of the

apparatus gives the reader the illusion of being in possession of all the material in

order to judge the editor’s choices. Cozzo (2006) states that if the apparatus is based

on a restricted selection of variants, it is impossible to recreate each witness, and

the precise context for each variant is lost10.

For Flores (1998), this absence of precise context may be quite misleading, for

instance when a manuscript with usually poor readings is quoted only in the very

few cases where it yields plausible alternatives; the manuscript thus would convey

a positive impression, albeit being altogether of an inferior quality (Flores 1998,

45-46). Flores states that the variants are not selected randomly but according to

the stemma codicum, which makes it virtually impossible to produce a stemma

different from the published one: the variants selected to appear in the apparatus

10Other scholars have underlined the issue of incomplete apparatuses, highlighting the impreci-
sions, errors and ambiguities contained in an apparatus (Dahlström 2000; Wiering 2010; Andrews
and Macé 2013; Monella 2014b).

24

1.3. Purpose of Collation

will reflect precisely the stemma, and according to him the variants in the apparatus

only allow reconstitution of this particular stemma (Flores 1998, 43).

In addition, bias towards the edited text may be unavoidable, since it is much easier

to accept the editor’s reading text rather than attempting to reconstruct a text from

variants scattered in an apparatus (Sperberg-McQueen 2009, 37, note 4). Those

variants that have been rejected by the editor and placed in the apparatus may

be perceived negatively because they represent the ‘wrong thing’ (Shillingsburg

1996, 118). This negative impression is emphasised by the apparatus position at

the bottom of the page, smaller and less visible than the reading text (Cozzo 2006,

255; Epp 2007, 275). The variants are even less accessible when the apparatus is

separated from the reading text and placed at the end of the edition (Sperberg-

McQueen 2009, 33).

Machan (2002) raises another problem regarding the apparatus in an edition of

Chaucer: it obscures the fact that ‘Chaucer’s putatively original reading (repre-

sented by the lemma) is a matter of speculation — informed speculation, to be

sure, but speculation none the less’. That is, the apparatus does not always make it

explicit when a variant has been preferred over others on the basis of speculation,

without offering conclusive arguments, because it is simply impossible to ascertain

which reading was the original one. When a doubt arises between different readings

that the stemma cannot dissipate, Stussi (1994, 133) recommends first to apply the

criterion of usus scribendi, to choose the reading which corresponds best to the

style and language of the author (see also West 1973, 48). Then, the editor should

prefer the lectio difficilior, or conjecture a lectio difficilior which accounts for the

readings present in the tradition. The quality of a manuscript should serve as a

criterion only when no other criteria can help judge between plausible variants

(West 1973, 50). Stussi (1994, 152) also insists that when the editor does not know

which reading to chose, they must signal it.

In his edition of Calpurnius Flaccus, Håkanson (1978) describes in the preface the

variants he used to establish the stemma. Next to a few variants he expresses doubt

with interrogation marks (in eo est (?) page VI, gemitum miseri (?) page VII, etc.),

but it is difficult to extrapolate why these particular readings are dubious or what

influenced his choice. Moreover, these interrogations are not reported inside the

critical text. This leads to the question of whether Håkanson had doubts regarding

variants not listed in the preface. On the other hand, another editor of Calpurnius,

Lehnert (1903), did not show any hesitation for the same readings. Does that mean

he was certain of his decisions, and if so, what were his motivations?

25

1.3. Purpose of Collation

Commentaries or ancillary articles can give a better appreciation of the editor’s

reasoning, personal interpretation, or hesitations only hinted at in the apparatus

through expressions such as fort. recte, dubitanter, etc. Cozzo (2006, 256) states

that ’[i]n no part of the critical edition can the reader find reasons that led the

editor to adopt one reading over another’ 11. Cozzo’s statement may be too radical,

since editions can contain a philological commentary or a detailed introduction

to justify the editor’s choices, but it is not a standard practice to explain each

decision regarding the choice among variants in the major published series of

classical literature such as the Bibliotheca Teubneriana, the Collection Budé, or the

Oxford Classical Texts. Parker (2012, 106) believes that a true critical edition should

also offer a justification for each and every editorial decision; although such an

edition does not exist yet for the New Testament, Parker (2012) thinks that it is now

achievable.

1.3.1 Collation and Critical Apparatus: Summary

Vanhoutte (2011) summarises the objective of a critical apparatus, or a ‘record of

variants’, in four points:

First, it is a documentation of the variation between all of the extant

versions of a text which allows for the reconstruction of these versions.

In pre-digital times this was the only affordable way to represent the

genetic and transmissional history of texts. Second, it provides the

account of the emendation of the base text and the constitution of

the reading text. Third, it provides the user with control data which

allows for the repeatability of the criticism performed on the text. Four,

it functions as a research data base. It is in the record of variants

that scholarly editors expose themselves and are explicit about their

choices.

It is interesting to consider those four points and see if indeed they apply to critical

apparatuses. First, an apparatus is not always complete enough to reconstruct the

different versions of the text (see Section 1.3 above). The third point is debatable:

as we have seen above, the apparatus will generally only allow confirmation of

the editor’s criticism and as a result fails in its primary purpose, which is to avoid

dependence on the editor’s judgement (West 1973, 9). The last sentence of Van-

houtte’s statement as well as the second point could be challenged: apparatuses do

11‘In nessuna parte dell’edizione critica il lettore trova spiegazione delle ragioni che hanno indotto
il filologo a dare come testo una lezione piuttosto che un’altra’ (Cozzo 2006, 256).

26

1.3. Purpose of Collation

not necessarily provide a complete account of the ‘constitution of the reading text’,

and are not always explicit about the editor’s choices. Even when the editor inserts

comments, the cramped format of the apparatus does not allow for detailed expla-

nations. In addition, those explanations are sometimes ambiguous and susceptible

to being misunderstood (see for instance Winterbottom 1995, 41). Although not

all fulfilled, the four objectives listed by Vanhoutte represent what scholars desire

from a record of variants. These objectives are also useful to determine the purpose

of collation, what scholars want to achieve with collation: a research database

documenting versions of a text.

Collation provides data which are used to understand the articulation of the manu-

script tradition (Stussi 1994, 124) and determine the witnesses’ genealogical rela-

tionships, i.e., the stemma codicum (Driscoll 2000, 86). In fact, the simple act of

collating, reading the manuscripts one by one, may be helpful to build a mental

stemma and develop a sense of the manuscript tradition. West (1973, 65) recom-

mends not to ‘put off the question of the interrelationships of the manuscripts till

[the investigator] has finished collating them, forming and modifying hypotheses

all the time’. De Strycker (1975, 359) reveals that after a certain number of collated

manuscripts, he was often able to situate a new manuscript precisely in the stemma

within a few minutes12. Collation and stemmatology are so closely associated that

the difference is not always clearly expressed. Kline (1998, 270), for instance, de-

fines collation as the ‘process by which editors isolate patterns of error that indicate

transcriptional descent, to determine whether one or more texts is a copy made

from an earlier and thus more reliable copy’, thereby blending the function of the

collation and of the stemma constitution. The stemma then leads the editor to

the eliminatio codicum descriptorum, the decision to disregard manuscripts which

are not considered useful for the constitution of the text, because they derive from

preserved witnesses. Flores (1998, 43-44) underlines the influence of collation in

this regard; a good collation is necessary to avoid eliminating an important witness.

Collation also provides the list of readings to be analysed during the constitution of

the text. For this reason, Lendle (1968, 4) advocates two collations: first a collation

of short samples (or loci critici) to determine the stemma and choose the useful

manuscripts, and a second complete collation of the chosen witnesses. Recording

differences — or variants — should not only serve to determine as closely as possi-

ble the original state of the text, along with its history and transmission, but also

12‘Assez rapidement on acquerra en ce genre une sagacité basée davantage sur l’expérience et
sur la connaissance des variantes que sur des règles théoriques. Arrivé au quarantième manuscrit
du Protévangile, je pouvais presque toujours décider en moins d’un quart d’heure à quelle famille,
groupe et sous-groupe un nouveau témoin appartenait’ (De Strycker 1975, 359).

27

1.4. Issues of Collation

ideally provide a justification, in the form of an apparatus, for the editor’s choices

to be evaluated by future scholars and readers.

In summary, the main goals of collation are to understand the manuscript tradition

and visualise it in a stemma, establish a critical text and a critical apparatus (Macé

et al. 2015, 332). These three elements, stemma, text and apparatus, are all part

of the critical edition which would be the final purpose of the editor. However,

scholars may decide to undertake a collation for other purposes, for example to

study and reconstruct the manuscript tradition. Or again, a collation may also

be taken on in order to check another scholar’s conclusions, the validity of their

procedures and the reliability of their work (Trovato 2014, 278; Dawe 1964, 16-17,

note). In this latter case, Trovato and Dawe both advise to collate in addition a

random selection of manuscripts which were not collated by the scholar whose

work is under scrutiny, in order to ensure that they have correctly analysed the

result of their collation and that they have not discarded good manuscripts13.

1.4 Issues of Collation

The issues of collation are admittedly neglected in modern classical scholarship,

whether because they are considered too obvious to be discussed (Whittaker 1991,

121; Robinson 2004), or because collation is unjustly not regarded as a genuinely

scholarly activity but an inevitable and tedious preliminary to textual criticism

which ‘truly begins only once all variants have been gathered’ (Shillingsburg 1996,

140). Froger (1968, 230) also compares collation to accounting (‘comptabilité’),

easily left to a machine acting like a secretary; Lendle (1968, 53) refers to a ‘technical,

philologically sterile’ work; Shillingsburg (1996, 134) again describes collation as

‘idiot work’ because it has ‘a tendency to render workers raving madmen’. However,

it must be strongly stressed that collation is already a critical activity, as it involves

subjective choices from the editor. Decisions whether or not to collate a manuscript,

whether or not to record a difference, will affect the establishment of the text and are

an integral part of textual criticism. Since collation takes place at the very beginning

of critical editing, its importance must not be underestimated. An incomplete or

unclear collation will affect the quality of the final edition: ‘the application of

stemmatic theory, the elimination of codices descripti, the classification of variants,

13‘[I]f, for example, one wished to to follow up Turyn’s researches on the manuscript tradition of
Sophocles or Euripides, it would not be enough to collate the manuscripts which he thinks important,
and then see if the results support his stemmatic conclusions. One would have in addition to collate
a random selection of manuscripts which he did not think important, and then see if their exclusion
was justified. If one wishes to check the validity of a scholar’s conclusions in a particular field of
research, it is not enough to go only to that particular corner of the field where the scholar tells us all
the rich ground lies’ (Dawe 1964, 16-17, note).

28

1.4. Issues of Collation

the whole panoply of textual criticism, stand or fall according to the quality of the

collations upon which they build’ (Whittaker 1991, 121).

For these reasons, some scholars have given advice on how to accomplish an effec-

tive collation. The guiding instructions can be divided into two categories: first, the

issue of how to collate, how to increase accuracy and how to represent the variants

in a useful format; second, what is to be included in the collation, that is, what

is a variant. Unfortunately, practical recommendations are mostly driven by the

medium, the layout and formatting, instead of focusing on a scholarly method.

The techniques described are heavily dependant on practical exigencies inherent

to a hand-made collation on paper14. As a consequence, such instructions are

becoming less and less relevant with the adoption of computers in the scholarly

editing workflow. However, Parker (2008) and Macé et al. (2015) for instance also in-

clude instructions for collating in electronic files. In fact for New Testament studies,

paper collation is not the preferred method anymore, it has now been superseded

by an electronic transcription which can be collated automatically Parker (2008,

95). A survey of the scholarly literature on manual collations is still relevant to this

dissertation, because it provides the necessary context to understand how collation

has changed with the advent of automated collation tools. In addition, manual

collation practices reveal methodological concerns which still need to be addressed

in computational methods, such as the content or visualisation of the collation

results.

Paper used to be omnipresent during collation, whether it is the paper of the base

text, which should be clearly printed and wide-spaced for legibility (Whittaker

1991, 122), or the paper where the collation is written down. If the collation is to be

handwritten within an existing printed edition, such edition should have spacious

margins and ink-proof paper for Stählin (1914, 31), who describes a procedure to

prevent paper from blotting by dipping it into a mixture of glue and water15. If the

collation is to be written on paper sheets, the recommendations of De Strycker

will help scholars organise their collation to the millimeter: ‘In-quarto squared

paper will be used (27 x 21 cm) with squares of 5 x 5 mm. [. . .] The variants

are left aligned one square away from the line number’ (De Strycker 1975, 351)16.

14‘La technique que je vais décrire trouve son origine, tout comme celle de M. Lendle, dans des
exigences pratiques’ (De Strycker 1975, 346).

15‘Aber nicht alle Drucke eignen sich für das Eintragen von Varianten. Ältere Ausgaben sind oft
auf Löschpapier gedruckt, auf dem man nicht mit Tinte schreiben kann. Ein derartiges Papier kann
aber der Buchbinden durch ein einfaches Verfahren zum Schreiben brauchbar machen; er taucht es
in Leimwasser und glättet es nachher; dann wird es tintenfest’ (Stählin 1914, 31).

16‘On utilisera du papier quadrillé de format in-quarto (27 x 21 cm) avec des carreaux de 5 x 5 mm.

29

1.4. Issues of Collation

Today, few scholars are likely to worry about rain washing away their collation,

which seems otherwise a very compelling worry for West (1973, 66) who cautions

that ‘collation should always be in ink. If washable ink is used, beware of rain’,

or coffee . . . Nowadays they worry about keeping backups on different devices

and synchronising them via cloud storage solutions, for instance especially in the

context of collaborative work (see Pierazzo 2008, §41; Chaudhuri 2015, 60).

The second aspect concerns more theoretical issues: what to collate? How to choose

the witnesses of a text, how to decide what is a variant worth being recorded? Here

also, the influence of print and a paper-based workflow affects the editor: ‘a com-

plete critical edition [. . .] should keep from the manuscript tradition everything

that can be printed and noted with marks and characters’ (Dain 1964, 175)17. De-

spite being more relevant to develop a scholarly collation method, the choice of

what to include in the collation is often left to the appreciation of the editor, since

it ‘depends on the importance of each manuscript and the purpose of the collation’

(Stählin 1914, 33) and the purpose of the edition prepared18. As a result, a variant is

rarely defined by the scholars who describe a collation technique, leaving discon-

nected how and what to collate. The following sections contain an overview of the

scholarly recommendations and opinions about the practical aspects of collation.

Most sources quoted in the sections below are manuals with advice on how to edit

Greek or Latin texts from classical antiquity (Stählin 1914; Willis 1972; West 1973;

Chiesa 2002). Stussi (1994) presents an introduction to Italian philology which

covers not only antiquity but also later periods. Whittaker (1991) gives general

advice for manual collation based on his experience as an editor of classical texts.

Other editors explain the method they have followed for a particular edition: Lendle

(1968) provides an account of editing Gregorius Nyssenus’ Encomium in Sanctum

Stephanum Protomartyrem19. De Strycker (1975), inspired by Lendle, shares the

method he devised for collating a Greek hagiography with rich manuscript tra-

dition. Although Froger (1968) introduces automated collation, the first part of

[. . .] Les variantes s’alignent sur la gauche à un carré de distance du chiffre désignant la ligne’ (De
Strycker 1975, 351).

17‘En réalité, la proportion de détails qu’on doit relever dans une collation de manuscrits varie
avec le type d’édition auquel on la destine. Une édition critique complète, et voulant être définitive,
devrait garder de la tradition manuscrite tout ce qui peut s’imprimer et être noté par des signes et
caractères’ (Dain 1964, 175).

18‘Eine allgemeine Regel lässt sich aber auch hier nicht geben; wieviel in der Kollation berück-
sichtigt werden muss, hängt von der Bedeutung der Handschrift und dem Zweck der Kollation ab’
(Stählin 1914, 33).

19Gregorius Nyssenus (Gregory, bishop of Nyssa c. 335 – c. 395) was a theologian of the fourth
century AD and one of the Fathers of the Eastern Church.

30

1.4. Issues of Collation

his monograph is an initiation to textual criticism, aimed especially at scholars

from a scientific background who are not familiar with the discipline. In addition,

other domains of textual criticism are represented, such as New Testament studies

(Parker 2008), oriental manuscript studies (Macé et al. 2015) or medieval litterature

(Bourgain and Vielliard 2002).

1.4.1 How to Collate?

1.4.1.1 Choice of a Base Text

The first step is to choose a single base text (also called reference text or collation

exemplar) against which every other witnesses will be collated. The base text must

remain the same throughout the entire collation, otherwise the comparison of every

witnesses with each other is in practice impossible. In principle, any manuscript or

edition arbitrarily chosen could serve as a base text (Froger 1968, 81)20. Although

Chiesa (2002, 49) does not pronounce himself on a general rule, he recognises

that convenience is most important21. Hence a good base text will maximise the

collator’s physical comfort and minimise the amount of variants to record, in order

to prevent errors during the collation.

To limit the strain on the eyes already solicited by a very meticulous attention to

detail, a base text should be above all clearly printed and easy to read. If necessary,

it should even be typed again in ‘the largest and clearest script available’ (Whittaker

1991, 122). This advice applies only for a paper-based workflow, but is unlikely to

be relevant to present concerns when changing font-size or layout in electronic

texts takes only a matter of seconds.

In addition, Pasquali (1952, 62), West (1973, 66), Whittaker (1991, 122) and Bourgain

and Vielliard (2002, 49) all underline the necessity for the base text to differ as little

as possible from the other witnesses. Indeed, experience teaches us that the higher

the number of variants to be recorded, the more likely some of them will escape the

collator’s attention (Pasquali 1952, 62)22. In this condition, a critical edition is not

always the most practical choice for a base text since it will contain emendations

and conjectures, despite Stählin’s advice to select ‘the best text available’ (Stählin

20‘Bien que dans un problème réel on choisisse comme exemplaire de référence un manuscrit
commode, bien lisible, sans lacunes, etc., on peut en principe prendre n’importe lequel, arbitraire-
ment’ (Froger 1968, 81).

21‘Una regola generale non si può dare, se non quella della comodità : l’esemplare di collazione
dev’essere quello che a priori sembra permettere all’editore di lavorare meglio’ (Chiesa 2002, 49).

22‘Quante meno differenze presenta il codice collazionato rispetto all’esemplare di collazione,
tanto più probabile è che la collazione sia giusta e completa, come al contrario quante più discrepanze
si devono segnare, tanto più facile è che qualcuna ne sfugga’ (Pasquali 1952, 62).

31

1.4. Issues of Collation

1914, 33). On the other hand, a critical edition would likely have the advantage

to be available in digital format or to be easily scannable (Macé et al. 2015, 332).

The lack of space on the margins is an argument against collating directly inside a

printed edition (West 1973, 66). The scholar who would nevertheless collate in an

edition may have then to worry about the quality of the edition’s paper and size of

the margins (Stählin 1914, 31). Chiesa (2002, 49-50) underlines the psychological

influence of the base text: if the base text is a manuscript or unedited text, the editor

may tend to overvalue its readings; on the other hand, the editor may underestimate

an edition, even unconsciously, in order to distance themselves from the work of

another scholar23. In the end, it seems, the choice of the base text will have a fairly

limited impact on the result of the collation (Macé et al. 2015, 332).

1.4.1.2 Material Support of the Sources

Before the advent of photographic or microfilm reproductions, scholars were forced

to travel across Europe in order to access and read manuscripts held in libraries.

Due to the costs in time and funding of such travels, it was difficult to consult

more than a handful manuscripts when preparing an edition, with the tempta-

tion to choose manuscripts based on their accessibility rather than their value

(Stählin 1914, 29). Thanks to photographs and microfilms, much more material

became available to the editor, for a more reasonable price. Although a facsim-

ile cannot replace the original, it offers advantages such as independence from

libraries’ schedules, easy access conditions, as well as the opportunity to check the

photograph or microfilm whenever a doubt arises. Parker (2008, 89) notes that ‘it is

reasonable to use a surrogate as much as possible’.

To consult microfilms a specialised equipment is needed. Working with microfilm-

readers is not convenient, but tiring and uncomfortable, as amply discussed. Bülow-

Jacobsen (1979) provides a review of the shortcomings that affect the quality of

medieval manuscript microfilms; Macé et al. (2015, 330) also lists the disadvantages

of other reproductions made from those microfilms. Microfilms are more difficult

to compare to each other or annotate. ‘Occasionally, things become clearer with

photographs’ (West 1973, 65) since they can be held against the light to examine

the places where ink has faded away in order to accentuate the contrast between

23‘Il vero problema nell’uso dell’esemplare di collazione è di ordine psicologico; se l’edizione cui
si sta attendendo riguarda un testo fino a quel momento inedito, lo studioso sarà poi facilmente
portato a pensare che il suo testo-base (che sarà inevitabilmente la trascrizione di un codice) sia
per qualche ragione più importante, perché è la norma che viene continuamente confrontata; se
vice-versa si tratta di un testo già pubblicato, e il testo-base è una precedente edizione, lo studioso
può essere portato a pensare che essa sbagli più di quanto effettivamente non faccia, perché vuole, in
qualche misura, prenderne le distanze’ (Chiesa 2002, 49-50).

32

1.4. Issues of Collation

ink and paper (De Strycker 1975, 348)24. Although black and white reproductions

will not show differences in ink as well as the original, other features such as hand-

writing, erasures or corrections are easy to discern (Harkins 1958, 163). Similarly to

microfilms, photographic reproductions can also suffer from poor quality. Lendle

(1968, 99) for example admits that for some manuscripts, photographs were in-

complete. After collating with photographic copies, it is advised to carry out an

examination of the manuscripts in the libraries, the ‘autopsy’, to clarify passages

of uncertainty. Those passages may contain in particular damaged folia, a text

with many corrections, or involving more than one copyist. Other codicological

features of the manuscript are absent from reproductions, such as the gatherings

organisation, bindings, etc. It is thus methodologically unsound to rely solely on

facsimiles, regardless of their quality.

Despite Dain’s claim that the technical material had reached perfection with pho-

tographs, and that everything possible had been implemented (Dain 1964, 178)25,

digital images constitute a significant progress. The price of production is consider-

ably lower, although storage costs to maintain digital facsimiles accessible online

are superior to microfilms storage costs. Digital copies provide colour images which

can be zoomed in or out at will, and be manipulated on the computer in order

to emphasise some aspects or render erased letters legible again. For instance,

palimpsests such as the Archimedes Palimpsest would not be readable without

digital image processing26. The processing techniques of manuscript restoration

can depend heavily on editorial decisions and should be documented to avoid mis-

leading results (Craig-McFeely 2008)27. Flüeler and Porter (2015) argues that digital

manuscripts are more than a simple reproduction: digital manuscripts should

be conceived as critical editions that can be enriched with high-quality images,

metadata, text transcriptions, and links to other manuscripts for a broader context.

24‘Si l’on se sert de photographies, on constatera qu’il y a avantage à les regarder par transparence
aux endroits où l’encre est assez effacée’ (De Strycker 1975, 348).

25‘[L]a technique de l’édition, en dépit des erreurs encore commises de nos jours, est arrivée à son
point de perfection. Je ne parle ici que de ce qui touche l’usage des manuscrits. Et d’abord, notons le
degré de perfection du matériel technique : reproductions photographiques sur films ou rotographs,
usage de la photoscopie, lecture aux rayons ultra-violets, tout a été mis en oeuvre’ (Dain 1964, 178).

26‘What you see when you open the Archimedes palimpsest therefore, is not a mathematical text,
nor even a piece of Greek oratory, but a prayer book. Only occasionally can one just discern, at right
angles to the prayer book text, the erased writings that the current project is attempting to recover.’
http://archimedespalimpsest.org/about/ (accessed August 5, 2015).

27For considerations on quality issues with digital facsimiles, see Craig-McFeely (2008).

33

1.4. Issues of Collation

1.4.1.3 Comparison Process

Collation demands a sharp focus on details, a focus which can easily be lost in

the constant gaze switching between the base text and the collated exemplar. As

Pasquali (1952) points out, when reading first the base text edition and then switch-

ing to the manuscripts, there is a risk to replace unconsciously the manuscript

reading with the one of the base text and thus miss a variant:

We too modern philologists, when we collate a ms. with a printed

edition, we usually read every sentence first in the edition and then in

the ms. We do not do the opposite, because the edition proves to be

easier, and yet we should realise that this is the source of an infinite

number of errors: having the printed text in mind, or so to speak in the

eyes, we often unconsciously substitute it to the text of the manuscript

(Pasquali 1952, 63)28.

Willis (1972, 32) recommends to proceed phrase by phrase or sentence by sentence,

ideally with an assistant reading the reference text aloud for an increased accuracy.

While the collator may not have an assistant at their disposal, reading aloud is

an effective way of improving concentration and therefore reducing errors. The

‘bisensory method’, combining sight and hearing, was already described by Harkins

(1958) who worked with classical and patristic authors. Harkins (1958) recorded

himself reading the base text on a tape, to avoid the issues of shifting gaze from one

text to the other: loss of time, loss of accuracy and loss of his place in the text. The

technique might involve the risk that, while listening to the tape, the collator passes

through difficult passages hastily and misses important details (Lendle 1968, 50).

Furthermore, Harkins’ method does not take in account spelling variation which

cannot be distinguished by pronunciation. When a kind of spelling error has been

safely identified as a typical spelling for a group of manuscripts, Harkins (1958,

165) suggests that this can be safely ignored. In this case, orthographic spelling

would still need to be collated for a portion of text, until the editor can decide that a

spelling error is consistent. During collation, it may be indeed helpful to read aloud

the manuscript while silently surveying the print edition. The production effort of

reading aloud facilitates the memorisation of words compared to silent reading. It

28‘Anche noi filologi moderni, quando collazionamo un ms. con una stampa, sogliamo leggere
ogni proposizione prima nella stampa e poi nel ms., e non viceversa, perchè la stampa riesce pur
sempre più agevole: eppure dovremmo accorgerci che questa è la fonte di un’infinità di errori,
perchè noi, avendo il testo della stampa in mente e si potrebbe dire nelli occhi, lo sostituiamo spesso
inconsciamente a quello del ms’ (Pasquali 1952, 63).

34

1.4. Issues of Collation

seems that reading aloud has two positive effects: we read better (making fewer

mistakes), and memorise better 29. Keeping an index finger on both texts is another

way to track the position and avoid missing a word or a line while shifting the gaze

back and forth between the manuscript and the base text: this method is referred

to as th ‘Wimbledon method’ by a few scholars (see Smith 2000, 131). While this

method may be applicable to modern materials, it may not be appropriate in all

circumstances and would not be allowed in manuscripts reading rooms.

The order in which witnesses are collated is in theory immaterial. However, starting

with the oldest witnesses would be helpful to sort out a rich manuscript tradition

and facilitate the eliminatio codicum descriptorum, for every later witness is usu-

ally related to a more ancient manuscript. It may also be worthwhile to take into

account the resemblance between witnesses and collate successively the witnesses

which are most similar (De Strycker 1975, 349-350). It is worth noting here that,

while maybe trivial for a handmade collation, the order of witnesses can signifi-

cantly influence the results of a computer-supported collation, as it will be seen in

Section 2.2.

1.4.1.4 Recording and Visualising Variation

Recording and representing the collation results in a convenient format is a chal-

lenging task. Great care must be taken to avoid ambiguity in the collation. The base

text must be clearly indicated and lines numbered; it is important to keep track of

the manuscripts foliation in order to recover easily a reading and check the collation

accuracy. Stählin (1914, 30) suggests recording the collation in the base text edition

with the use of different coloured inks to distinguish different manuscripts and

avoid confusion. He is nevertheless aware of the method’s shortcomings, i.e. that it

is efficient only up to six manuscripts collated30. Collating directly in the edition is

not a good solution due to the lack of space (West 1973, 66), and an interleaved copy

annotated with coloured inks will be illegible in the end, having ‘transmogrified

itself into a baffling multicoloured jungle’ (Whittaker 1991, 124).

The alternative is to write down the collation on separate sheets of paper or note-

books. Lendle (1968, 53) applies a system of table where the rows record variant

readings, and each column represent the base text and the manuscripts. At each

point of variation in the text, the concurrent variant readings are recorded on the

29For more information on the benefit of reading aloud, see for instance Forrin, Jonker, and
MacLeod (2014).

30For more than 6 witnesses, it is necessary to collate in several copies of the edition, and to gather
the variant readings after collation is finished.

35

1.4. Issues of Collation

Figure 1.1: Lendle’s notation method of collation with crosses (Lendle 1968, 53).

left with an identification number, and Lendle adds a cross in a manuscript column

where the corresponding variant appears (see figure 1.1). The purpose of Lendle’s

method is to visualise easily the witness relationships. The combinations of crosses

may show groups of witnesses which have variant readings in common against

other witnesses, which is important for editors following Lachmann’s method (see

Chapter 8). However, the cross system is prone to confusion and space-consuming:

one variant appearing in only one manuscript occupies an entire line. Moreover, a

cross is not enough: the collation often requires a careful description and clarifica-

tion of the manuscript reading (Whittaker 1991).

Very similar to Lendle’s notation system, Trovato (2014) describes a collation of

Dante recorded in Microsoft Excel, where crosses are replaced by zeros and ones.

In figure 1.2, variant locations are given a reference number in the first column,

and the variants are recorded in column C: the first readings highlighted in a darker

background are the readings from the base text. The next columns represent the

witnesses, which receive a number ‘1’ if the witness has the same reading as the

base text. If the witness’ reading is different from the base text, a zero is noted for

the base text. As for Lendle’s method, Trovato’s visualisation aims at helping the

editor to find the genealogical relationships of witnesses: the same sequence of 0

and 1 in different columns indicate that the witnesses of these columns are related

(Trovato 2014, 244).

De Strycker (1975, 351) devised a different notation method, in which he gives a

number to each witness (preferably the number representing their order of colla-

tion). He indicates for each variant the numbers of the witnesses presenting the

variant, and distinguished different notation systems, positive or negative, accord-

ing to the kind of variants (De Strycker 1975, 352-357)31. De Strycker (1975, 358)

also suggests to establish concordances of agreements and disagreements between

presumably related manuscripts, in parallel to the collation.

31‘La pratique de la collation fait voir assez rapidement que la méthode positive de notation des
sigles n’est pas indiquée au même titre pour toutes les variantes’ (De Strycker 1975, 355).

36

1.4. Issues of Collation

Figure 1.2: Manual collation recorded in a Microso� Excel spreadsheet (Trovato 2014, 245).

Froger (1968, 82) adopts a collation in form of a table: in the first two columns are

recorded the base text reading and the list of witnesses which present the reading.

The next pair of columns display respectively a variant reading and the witnesses

attesting it. Stussi (1994, 123) prefers, on the contrary, to write on the first line of a

sheet a segment of the base text, and record variant readings of the other witnesses

each on a different line below the base text. When the correspondence between the

base text and a witness is perfect, the line is left blank. However, this method has

the disadvantage that it would be difficult to know in advance if enough space is

left for additions in the witnesses, which are longer than the base text. Bourgain

and Vielliard (2002, 49) note that this method is only convenient for up to six or

seven witnesses. Bourgain and Vielliard (2002) also propose to record variants as

footnotes in a digital document, to imitate a traditional critical apparatus. The

delimitation of a variant location is the main issue of this method: it is difficult to

know where a variant will end, before all the witnesses are collated. In addition, the

apparatus format is not the most practical to study the textual tradition. For that

purpose, Bourgain and Vielliard (2002) prefer a list of variants, such as the example

above from Trovato (figure 1.2). For the Greek New Testament, on the other hand,

Parker (2008, 96) describes a collation in apparatus in this form: `reading of base

text] reading of witness'. Parker (2008) advises to keep the variation units as short

as possible in the collation.

The structure recommended by Macé et al. (2015, 332-333) is very similar to Stussi’s,

37

1.4. Issues of Collation

Figure 1.3: Manual collation recorded in a Microso� Excel spreadsheet (Macé et al. 2015, 333).

even if updated by the use of the computer: the base text is added word-by-word in

the first column of a MS Excel spreadsheet, and each other column contains the

variants of one witness with a blank space where the witness is the same as the base

text (see figure 1.3).

Willis (1972, 33-34) deals with the space issue with record cards. Each card records

all the variants from the base text at one location in the text. The location would

be indicated either with page and line numbers, or verse number. In the top-right

corner the witnesses which have the same text as the collation exemplar. The result

is a positive account of all variants, which eliminates hesitations arising from the

absence of a manuscript’s siglum in the collation: was the reading altogether absent

from the manuscript, did the reading coincide with the base text, or did the collator

miss a variant in a moment of inattention? With Willis’ cards system, there should

be no doubt when a witness’ text is the same as the reference text. Willis considered

it the best and only way to significantly lessen collation errors while improving

precision.

The problem of space is common to all the above methods that record collation

on paper. This problem is often difficult to manage, but has become irrelevant to

collations now recorded in electronic format, since new material can be added at

any point without worrying about leaving blank spaces. Another way to save space

38

1.4. Issues of Collation

and help with the collation is to give each manuscript a siglum, either following

established conventions (see Macé et al. 2015, 331) or using numbers (De Strycker

1975, 350-351).

Whittaker (1991, 126-128) criticises the above methods, regretting that individual

characters of scribes and manuscripts are getting lost in the process:

One fundamental misconception underlies all these methods, namely

their common assumption that the collation of a plurality of manu-

scripts is nothing more than the accumulation of all their variant read-

ings upon the same sheet of paper. This assumption is based in turn

upon the illusory expectation that readings so accumulated will consti-

tute a synoptic vision of the evidence — a sort of totum simul in which,

like God, we will see and embrace in the twinkling of an eye all the

ramifications of a complex textual tradition.

Whittaker rather collates each manuscript in a separate notebook and correlates

his results through an inventory of omissions completed by an electronic register

of variants that will help to amend the errors inevitably present in the collation,

and a profile of each copyist. The inventory of omissions ‘will provide the skeletal

outline of one’s stemma. In this process minor omission may well turn out to

be the most significant, since they are the most likely category of error to have

escaped correction through contamination or scribal conjecture’ (Whittaker 1991,

128). Whittaker’s method has a considerable amount of redundancy, with the same

information appearing both in notebooks and electronic inventories. The same

criticism applies to De Strycker’s concordances.

1.4.2 What to Collate?

The advice from most sources presented here on collation methods is centred on

the procedure rather than the content. The choice of a base text and the form

collation should take — the ordering of variants on a paper sheet, a notebook,

cards, or an excel spreadsheet — seem to be the major concerns expressed. More

precisions can be found with the COMST handbook (Macé et al. 2015), with Parker

(2008) and Bourgain and Vielliard (2002).

Macé et al. (2015, 331) assert that collation should contain ‘not only all variations,

including orthographical ones, but also punctuation, abbreviations (and numbers)’.

However, when editing the Florilegium Coislinianum, ‘punctuation and purely

39

1.4. Issues of Collation

phonetic differences of no morphological significance’ were disregarded (Macé, De

Vos, and Geuten 2012, 113). Bourgain and Vielliard (2002, 50) list five items which

should appear in the content of a collation: (1) titles, chapters and subdivisions

of the text, which will be useful to classify the witnesses; (2) variant readings, i.e.,

additions, omissions and transpositions; (3) the different states of the text, that

is readings before and after correction by different scribes (exceptions are made

for corrections made by the copyist while writing); (4) punctuation, at least if

it indicates a different interpretation; (5) graphical variants in some cases (see

discussion p. 42 below).

Parker (2008, 96-97) recommends to decide before collating what kind of differences

will be recorded, and to remain consistent. The collator should record corrections

from the first or later hands, lacunae, damages to the document. Superscriptions,

subscriptions and colophons must also be recorded. Among the differences that

might not be worth writing down, Parker lists punctuation, accentuation, itacisms

and other spelling variations, movable nu, various abbreviations, and diaereseis.

However, this list is not fixed, it will depend on the context: Greek accents may be

useful when editing Byzantine texts but not in the case of the New Testament.

Stählin (1914, 33) advises to record every minor detail (“Kleinigkeiten“) in order

to establish relationships between witnesses, because it is impossible to know in

advance what will prove significant. These details cover orthographical variants,

accents and breathings, and even interpunction in some circumstances. However,

he quickly admits that there can be no general rule. What to include in the collation

will depend on the manuscript value and the purpose of the collation, without

explicitly giving examples of other purposes32.

De Strycker reflects on when to record orthographica, orthographic differences,

accents etc. He does not give any fixed rule but to rely on experience in order to

learn ‘which orthographic irregularities deserve to be considered as variants’ (De

Strycker 1975, 364)33. Stussi (1994, 124) gives an example of collation with ortho-

32‘Bei der Kollation selbst sind in der Regel auch Orthographica, Spiritus, Akzente u. dgl. (unter
Umständen auch die Interpunktion) zu notieren, obwohl sie nicht in den Apparat kommen, weil sie
für die Erklärung von Korruptelen oder für das Erkennen des Handschriftenverhältnissen wichtig
sein können. Eine allgemeine Regel lässt sich aber auch hier nicht geben; wieviel in der Kollation
berücksichtigt werden muss, hängt von der Bedeutung der Handschrift und dem Zweck der Kollation
ab. Nimmt man von einer Handschrift eine Probe, um daran das Verhältnis anderer Handschriften
festzustellen, dann wird man jede geringste Kleinigkeit verzeichnen, weil man nicht im voraus
weiss, ob nicht vielleicht eine solche Kleinigkeit die Frage nach dem Verhältnis der Handschriften
entscheiden kann’ (Stählin 1914, 33).

33‘L’expérience seule apprendra quelles irrégularités orthographiques méritent d’être considérées

40

1.4. Issues of Collation

graphic differences (‘graphical variants’), but without word division differences.

The orthographic, phonetic or morphological variants are important to assign the

right linguistic colouring to the text, except in the case of Latin Classics where

the timespan between the oldest manuscripts and the author is so long that the

problem is solved by standardising the graphical and phonetic aspects (Stussi 1994,

139-140).

For Willis (1972, 13), on the other hand, orthographical variation is not a neces-

sary part of the collation: ‘to collate a manuscript so that its affiliation may be

determined [. . .] involves the recording of every variant other than the purely ortho-

graphical’. Although Dain (1964, 174-175) does not describe a collation method, he

supports Willis as to the orthographica or form variants: ‘orthographical variants,

when they are indifferent, accents, punctuation, everything which is not a part of

the tradition, can usually be ignored, since they are only evidence of the writing

style at a particular period of time, and often in a given milieu’ (Dain 1964, 175)34.

This does not apply for critical editions meant to be complete and definitive: in this

case everything should be included in the collation (Dain 1964, 175). Abbreviations

are also part of any exhaustive collation: ‘I know one [student] who wished to note

in his apparatus, as it is done and must be done in a complete collation, the differ-

ence between syllables fully spelled out and syllables abbreviated per compendium

or per arctationem, distinguishing with different signs between the two categories’

(Dain 1964, 174)35.

The purpose of collation for Chiesa (2002, 48) is to gather differences, but his discus-

sion on collation does not refer to its actual content and is not explicitly connected

to the other aspects of textual criticism. Whittaker only gives untheoretical sug-

gestions for a successful collation, but describes the collator’s work as recording

‘each instance in which his manuscripts diverge from the base text’ (Whittaker 1991,

122). Finally, Lendle seems not to be interested in the definition of difference or

variants, but in the practical aspect of how to write down differences on paper in

the most helpful way: ‘the technical process can be divided in two phases, first the

comme des variantes’ (De Strycker 1975, 364).
34‘Donc, sauf dans les éditions de type spécial, la règle sera de relever comme variantes de

manuscrit les leçons de texte seulement, et non la manière dont on écrit ces leçons. Notamment,
les variantes d’orthographe, quand elles sont indifférentes, l’accentuation, la ponctuation, toutes
choses qui ne font pas partie de la tradition, pourront d’ordinaire être négligées, comme ne marquant
qu’une manière d’écrire à une certaine époque, et souvent dans un milieu donné’ (Dain 1964, 175).

35‘J’en sais un qui voulait noter dans son apparat critique, comme on le fait et doit le faire
dans une collation complète, la différence entre syllabes écrites en toutes lettres et celles écrites
per compendium ou per arctationem en distinguant d’ailleurs par des signes différents ces deux
catégories d’abbréviations’ (Dain 1964, 174).

41

1.4. Issues of Collation

actual comparison of manuscripts with the base text, and then the recording of the

differences thus identified along with other observations. [. . .] the second phase

leads us to the question of the most appropriate notation method’ (Lendle 1968,

51)36.

In summary, there are no fixed rules (Stählin 1914, 33; De Strycker 1975, 363),

but the question of the orthographica divides opinion. The orthographica include

abbreviations, punctuation, as well as accents and breathings in Greek manuscripts.

They are absolutely necessary for Macé et al. (2015) and Stählin (1914) who argue

that anything can become a significant variant in order to build a stemma. On

the other hand orthographica are useless to Willis (1972). Stussi (1994) offers a

more nuanced judgement, concluding that they are not important in the case of

Classical languages because of the time-lapse between the author and the first

manuscripts. They cannot help characterise the author’s language but rather the

scribe’s language (Dain 1964, 174-175). Bourgain and Vielliard (2002) also state

that Latin spelling was more unified than for romance languages, and regional or

chronological variants less likely, because Latin was taught in school. They argue

that for this reason, Latin spelling variants have only a limited linguistic interest,

and cannot be used to reconstruct the original (Bourgain and Vielliard 2002, 50).

However, it is also true that an orthographic difference, if misunderstood by a later

copyist, can lead to a real textual variant that changes the meaning of the text. In

addition, the difference between a textual variant and a mere spelling difference

may not be evident at first sight. As a result, it is better to be cautious and record as

much as possible in the collation, and sort out the variants at a later stage.

There seems also to be an agreement that ‘what to collate’ can vary, depending

on the purpose of the collation or edition (Stählin 1914; Dain 1964). Moreover,

the field of study can influence collation and its content: ‘the notion of “variant"

changes according to the academic discipline within which it is being defined’

(Winters 1991, 133). Thus, the term ‘variant’ needs to be defined precisely and

will be discussed further on in the dissertation (see Chapter 4). The next chapter

will introduce automated collation, and how it differs from the manual collation

process described in this chapter. Naturally, many concerns related to ‘how to

collate’ do not apply anymore in the context of automated collation, for instance

regarding the comparison process or the notation method of the variants on paper.

36‘Mann kann [der technische Ablauf] ebenfalls in zwei Phasen untergliedern, das eigentliche
Kollationieren, d.i. Vergleiche der Handschriften mit dem Kollationsexemplar, und das Notieren der
dabei ermittelten Abweichungen und sonstigen Beobachtungen. Während die erste Phase im ganzen
als unproblematisch gelten darf, führt die zweite (jedenfalls bei vielen Zeugen) notwendig zu der
Frage nach der zweckmässigsten Notierungsmethode’ (Lendle 1968, 51).

42

1.4. Issues of Collation

On the other hand, the choice of a base text will be discussed as one of the major

differences between the two methods, and further issues will be raised, such as the

need for the transcription of witnesses.

43

2The Theory of Automated Collation

AUTOMATED collation involves some form of help, from a machine or a com-

puter, to the person who is collating a text. Mechanical devices have been

developed since the 1940s to facilitate collation, and the name and definition of the

practice have evolved as researchers worked on collation and on its automatisation.

The progress of automated collation may have in turn influenced the definitions

of collation itself (see Andrews 2017). From ‘automatic collation’ to ‘computer-

supported collation’, scholars became more cautious with respect to the name of

the process, as they realised that collation was not a perfectly mechanical activity

and that computers still needed a significant amount of manual input to guide and

correct collation tools.

In this chapter, and in the thesis in general, I will use the terms ‘automated collation’,

drawing attention to how much thought and effort has gone (and is still going) into

how scholars automate the collation process1. ‘Automated’ here concentrates on

the automatisation effort, whether or not collation is fully automatic, and whether

or not it is successful.

2.1 Automatisation of Collation

2.1.1 Optical Collation

The first successful documented attempt to use a machine to alleviate the bulk of

collation work dates from the 1940s. Charlton Hinman is known as the inventor

of the ‘Hinman Collator’, a machine which let him compare different versions of

the First Folio of Shakespeare’s plays. During the printing process of Shakespeare’s

1There is a very slight difference of nuance between automatic and automated: ‘automated’ is
passive, a process which has been automated (maybe to a certain extent only) and ‘automatic’ is
active, a process which works by itself (with little or no human control). Froger makes the same
nuance when he says that textual criticism cannot be fully automatic but rather partially automated
(‘la critique textuelle ne peut être entièrement ‘automatique’, mais seulement ‘automatisée’ de façon
partielle’, Froger 1968, 218).

44

2.1. Automatisation of Collation

editions, many differences in punctuation or orthography would be introduced

so that the first printed book would be different from the last printed book of the

same edition2. The Hinman Collator was designed to compare only printed books,

and moreover copies printed from the same edition, with the same typesetting.

The machine merges the images of two folios superimposed, via a set of mirrors.

When the two images have been properly aligned by the user, a system of projected

lights illuminates the folios alternatively: ‘if the pages are identical, they more

or less appear as one; if they are not identical, the points of difference are called

to the operator’s eye by appearing to dance or wiggle about’ (Smith 2000, 131).

The Hinman Collator would perform what was called ‘mechanical collation’ or

‘optical collation’ (Smith 2002). The former, ‘mechanical collation’, was not exactly

appropriate, since the collation performed with this machine was more optical

than mechanical. Although collation is made easier to perform with the help of a

device, collation is actually still performed by a scholar who will manually align the

images of the pages and locate variations in the text. For this reason, this method is

not considered a part of automated collation in the context of this thesis. However,

optical collation was already considered part of automated collation for Dearing

(1962, 3), because it made use of a mechanical device to speed up the collation

process.

Optical collation suffered from several issues (see Smith 2000, 141)3. For instance,

the collator would often block the light from the projectors while getting closer

and trying to spot minute differences. In addition, it could be difficult to obtain

proper images, photocopies or microfilms, that would fit into the device. Images

could be distorted by a curvature effect, and variations in images size would also

be problematic (Guffey 1968). Similar machines were later created to compare

page images of editions, such as the Lindstrand Mark I Comparator (Lindstrand

1971), Hailey’s Comet or McLeod’s Portable Collator (see Smith 2002). The optical

collation method with analogue devices was popular until the end of the 1960s,

when automated collation with digital computers and algorithms started to grow

in importance and took over optical collation. However, while automated collation

is a good solution for comparing medieval manuscripts, optical collation cannot

be discarded completely. The preparation of accurate transcriptions, for pages

with the same typesetting, is difficult enough that optical collation remains a valid

option. As a matter of fact, several tools for optical collation with a computer have

2These corrections are called stop-press corrections.
3For a cheap way of addressing these issues, it is possible to train oneself to do a sight comparison,

by eye-crossing (to become a ‘Human Hinman’, see a 2008 blog post by Wesley Raabe, where he
shares Randall McLeod’s method: https://wraabe.wordpress.com/2008/05/13/how-to-be-a-human-
hinman-collator/, Accessed May 4, 2017).

45

https://wraabe.wordpress.com/2008/05/13/how-to-be-a-human-hinman-collator/
https://wraabe.wordpress.com/2008/05/13/how-to-be-a-human-hinman-collator/

2.1. Automatisation of Collation

Figure 2.1: Optical text collation with the Oxford Traherne. Retrieved from http://oxfordtraherne.
org/traherne-digital-collator/ (May 5, 2017).

been recently created, such as the Oxford Traherne Digital Collator4, or Paragon5 at

the University of South Carolina.

2.1.2 ‘Algorithmic’ Collation

The difference between optical collation and the tools developed later is the use of

algorithms to align texts. An algorithm is ‘a process or set of rules to be followed in

calculations or other problem-solving operations, especially by a computer’ (Oxford

Dictionary). In practice, an algorithm is a precise sequence of instructions for the

computer to perform, in a specific order, until a result is achieved. Algorithms

can be expressed in various notations: for example, Dearing (1970, 258) gives a

collation algorithm in natural language, describing each steps of the program in a

list (figure 2.2). On the other hand, Froger (1966, 153) shows the collation algorithm

in a flowchart (see figure 2.3).

The alignment of texts is not done manually any more, as it was in optical collation.

Instead, this task is now delegated to the computer: the algorithm is applied to

electronic transcriptions until the desired result is achieved. In the case of Froger,

for instance, the desired result was a list of variant readings similar to an apparatus.

4http://oxfordtraherne.org/traherne-digital-collator/ (accessed May 05, 2017).
5http://tundra.csd.sc.edu/paragon (accessed May 05, 2017).

46

http://oxfordtraherne.org/traherne-digital-collator/
http://oxfordtraherne.org/traherne-digital-collator/
http://oxfordtraherne.org/traherne-digital-collator/
http://tundra.csd.sc.edu/paragon

2.1. Automatisation of Collation

Figure 2.2: A collation algorithm in natural language (Dearing 1970, 258).

Figure 2.3: A collation algorithm in flowchart (Froger 1966, 153).

47

2.1. Automatisation of Collation

Computers were already used as early as the 1950s for textual criticism in biblical

studies (Kraft 1995). Recording and manipulating variant readings is one of the

main areas of interest, according to Kraft (1995, 268-269), along with statistical

analysis of manuscripts relationships and the production of critical edition with

apparatuses. It may be difficult to pinpoint the precise moment when the concept of

automated collation was invented. The earliest known attempts were some versions

of ‘diff’ algorithms and used word processing tools (Marín 1991). Diff algorithms

are used to compare two files — two electronic documents — line by line, and to

signal the lines where the two files differ. Diff is an essential tool for computer

scientists to check their code files and quickly find where and how they have been

updated. Diff algorithms, however, are hardly a practical solution for collation,

since the algorithms can compare only two files at the same time. On the other

hand, collation usually involves more than two witnesses, sometimes hundreds of

them. In addition, collation needs to be more precise than just indicating that a line

was modified. Rather, collation must be precise at the word level at least, or even at

the character level. Although some diff algorithms are more powerful, such as the

file comparison of the oXygen editor which can compare up to three documents and

highlight word differences in each line6, diff is still a limited solution to collation.

See for instance a blog post by Laiacona (2007), for more details about the issues of

adapting diff algorithms to collation.

2.1.3 Automated Collation

When Dom Froger published his thesis on automating textual criticism in 1968,

he spoke of ‘automatic collation’, a term still in use today (Pierazzo 2015; Andrews

2017; Jänicke and Wrisley 2017)7. Early terms used for naming the process of

automated collation also included: ‘computer collation’ (Hockey 2000; Robinson

1989a; Shillingsburg 1996), or ‘computerized collation’ (Robinson 1989a, 1989b),

which are equivalent to the French ‘collation par ordinateur’ (Froger 1968, 230).

These names may suggest that at the time, the difference of method between

automated and manual collation had not been discussed in depth: computer

collation works like a manual collation, except done with the help of a computer.

For instance, Froger (1968, 233) explains that the machine proceeds in the same

way as the philologist, by comparing each manuscript to a base text, and then

gathering together all the variant readings which were identified8. Cannon also

6https://www.oxygenxml.com/doc/versions/19.0/ug-author/topics/file-comparison.html (Ac-
cessed July 28, 2017).

7‘Collation automatique’ in French (Froger 1968, 243).
8‘La machine, comme le philologue, procède à la collation en comparant d’abord chacun des

48

https://www.oxygenxml.com/doc/versions/19.0/ug-author/topics/file-comparison.html

2.2. Collation algorithms

stated that ‘automatic collation should proceed as it would be performed manually’

(Cannon 1976, 33), and Hockey explains that ‘the machine is used to simulate a

series of human operations’ (Hockey 1980, 145).

This discussion about how the machine proceeds refers in fact to the algorithm

behind the collation tool. The next section is dedicated to the collation algorithms

and their evolution.

2.2 Collation algorithms

2.2.1 Early algorithms

The algorithm of Froger’s program would compare two texts word by word, the base

text and a comparison text. The algorithm compares one word from the base text

to one word from the comparison text, until it finds a difference. When it finds a

difference, it takes two words from each text and compares them together, a total

of four comparisons. The algorithm may recognise that one word has been added

or omitted in the comparison text, or that a word in the base text was substituted to

another word in the comparison text (which would be expressed as a combination

of one addition and one omission), or that two words were transposed. If none of

these options correspond to the situation, and the algorithm does not find words

that are matching in that section of two words, then longer sections of text will

be compared: first a section of five words, and eventually a section of twenty-five

words. In each case, every word of the base text is compared to every word of the

comparison text (see Froger 1966, 153-156).

This technique of collating text with a computer was common to many of the

early programs. Schmidt (2009) refers to it as the ‘sliding window’ technique. The

‘window’, or the length of the section of text compared, would ‘slide’ from one word

to the next, after a match has been found. The maximum size of the window would

vary among the programs, getting larger as the computer’s memory capacities were

improved: the shortest is probably a section of 25 words (Froger 1966), while the

longest may be a three hundred word window (Gibson and Petty 1970). Cabaniss

(1970) lets users decide the length of the windows through parameters. Cabaniss’

program also includes a coarse scan, in which every tenth word from the base text

is compared to the comparison text. The use of parameters offers more flexibility

to the user than other tools (Hockey 1980, 151). If the window is too short, it may

manuscrits à l’exemplaire de référence, et rassemble ensuite les variantes’ (Froger 1968, 233). It can
be noted, however, that previously Froger (1966, 157) remarked that the computer does not proceed
like a philologist.

49

2.2. Collation algorithms

miss a match that occurs outside the section of text under examination. But if the

window is too long, the risk becomes greater that two words will be mismatched

because of a repetition (Raben 1979, 259).

There were two main issues with this window technique. The first one is that it

is easy to obtain a mismatch. Some usual words, which are often recurring in a

text, can confuse the algorithm because it looks like the texts are matching when

there are actually two different instances of the same word. For example, the

two-words Latin expressions id est, potest esse, or in English ‘to the’, ‘of a’ and so

on, can be frequently repeated over a short portion of text and would lead to a

wrong alignment (Gilbert 1974). There have been several attempts to offset this

issue, by using either a small window of text to compare, as Gilbert has done in

COLLATE (Gilbert 1973, 110), or by creating an exclusion list of words to ignore

during collation because they are not significant (Cabaniss 1970, 6). The ‘stop

words’ to ignore include usually very common content words (such as ‘want’, ‘do’,

etc.) or function words, which have little lexical meaning and are often repeated

(such as articles, prepositions or pronouns). On the other hand, Gilbert (1974, 112)

did not provide an exclusion list because she estimates that the choice should be

left to the scholar who is collating. Nevertheless, after a variant has been located, it

remains very difficult for the algorithm to find the place where the two witnesses

are matching again, especially in prose texts.

The second problem of this technique is that the algorithm functions with exact

matching. As a result, two words with an orthographic difference would not be

considered as matching. For instance republica and re publica would not be con-

sidered matching. Some tools require that the transcription already be normalised

(Roelli 2014), other tools make use of a list of orthographic regularisations (Robin-

son 1989a, 1994) or a fuzzy matching function (Robinson 1989a). Gibson and Petty

(1970, 283) have opted to keep all differences, letting the elimination of insignificant

variant happen at a later stage: it is easier to include all differences and then select

the ones to be ignored, rather than omitting them in the transcription and realise

afterwards that there was in fact a significant difference (it would mean that new

transcriptions must be prepared). Froger (1966) and Gilbert (1974, 112) also leave

to the scholar the decision to eliminate insignificant variant after the collation has

been performed. In addition to those two issues, the ‘sliding window’ technique

would not recognise transpositions, and would fail to match correctly omissions

or additions which are longer than the section of text compared in the window

(Schmidt 2009).

50

2.2. Collation algorithms

The method of these early collation algorithms was also criticised by computer

scientists. Raben (1979) remarks that this technique follows too closely the method

of manual collation, instead of fully taking advantage of the computer’s capacities.

Raben uses the analogy of haystacks and needles, where texts are the haystacks, and

significant variants are the needles, and argues that the computer should be used

as a ‘magnet’ to find variants quickly, instead of going through the whole haystack

of texts word by word to sort out what is only hay, and what is a needle. Raben

proposes a method that would first find the major differences between two texts,

such as large omissions, and then align the smaller differences such as punctuation

variations.

Cannon (1976) also criticised the existing algorithms for their redundancy. Due

to the ‘sliding window’ technique, which gradually compares larger sections of

text, many comparisons are in fact done twice or more. Cannon compares the

three algorithms of Gilbert, Cabaniss, and Petty and Gibson, and analysed how

many comparisons must be made between two texts of 100 words each in order to

decide that the two texts cannot be aligned. He concludes that Cabaniss’ algorithm

reaches a conclusion sooner thanks to the coarse scan option, but that the decision

is not based on enough data. On the other hand Gilbert’s algorithm reaches the

right conclusion after too many comparisons.

Cannon proposed a new algorithm called OPCOL (for ‘optimal collation’), which

stores tokens from the base text and comparison text in tables, in order to avoid

redundant comparisons. This algorithm is ‘optimal’ in the sense that it is not

possible for any algorithm to collate two texts with a lesser number of comparisons,

and still produce a valid output with any possible input. OPCOL is built on the

assumption that the two texts collated have in fact tokens in common and not only

differences. Hockey (1980, 155) objects to Cannon’s approach because it was not

tested on a real text, and did not explain how to deal with a total mismatch. Hockey

was concerned that Cannon was only interested in the problem from a computer

science point of view, but that the solution proposed would not be applicable by

literary scholars to real textual traditions. However, Cannon’s algorithm was based

on a concept that would prove later very useful in automated collation: the edit

distance.

2.2.2 Edit distance

In computer science, the edit distance quantifies the difference between two strings

of characters by counting the number of operations required to transform one string

into the other. For instance, the distance between ‘London’ and ‘Lisbon’ is three,

51

2.2. Collation algorithms

because it requires the substitution of three letters ‘ond’ into ‘isb’ to transform

‘London’ into ‘Lisbon’. There are four types of operations performed to transform

strings: insertion, deletion, substitution and transposition9. These operations are

very familiar to textual scholars, as they are similar to the operations performed by

scribes to alter the text of a manuscript.

There are different definitions of edit distance. For instance, the longest common

subsequence (LCS) allows for insertions and deletions only, in which case the

distance between ‘London’ and ‘Lisbon’ is actually six (three deletions and three

insertions). On the other hand, the Levenshtein distance allows for insertions,

deletions and substitutions, while the Damerau-Levenshtein distance allows for

the four operations. There can be costs associated with each operation to refine

the alignment, and a higher cost results in a larger distance.

Vladimir Levenshtein is the Russian scientist who is credited with the invention of

the edit distance in 1965. Levenshtein was working on information theory and in

particular on an algorithm to correct errors in texts10. However, the first algorithm

to find the minimum edit distance between two strings of text was implemented

by Frederick Damerau (1964). Damerau was a scientist at IBM working on natural

language processing, and he published a paper titled ‘A technique for computer

detection and correction of spelling errors’ (Damerau 1964). The concept of edit

distance has proved very useful for solving problems involving the comparison of

strings of characters. In computer science, the edit distance is used for instance to

provide automatic spelling corrections, such as the corrections proposed by search

engines, or to correct OCR errors. In bioinformatics, the edit distance is used to

compare strings of DNA sequences (see Section 2.4.3). The various applications of

the edit distance shows the method’s usefulness for automated collation (Horton

1994, 90).

Cannon (1976) used the LCS edit distance in OPCOL for comparing two texts. When

the algorithm reaches a point where the two texts start to differ, the tokens of each

text are stored in a matrix that calculates the longest common subsequence of

words matching between the texts. Tokens are added little by little to the matrix

until the distance between the two texts starts decreasing, which indicates that

tokens match again together. One problem identified with the OPCOL algorithm

is how it deals with mismatches (Hockey 1980). Horton (1994, 97) points out

9A substitution can be simplified as a pair of insertion and deletion, and a transposition can be
simplified as a pair of substitutions.

10He published in Russian the 1965 article ‘Binary codes capable of correcting deletions, insertions,
and reversals’, which was translated to English (Levenshtein 1966).

52

2.2. Collation algorithms

that OPCOL does not recognise so easily the end of a variant location. Horton

(1994, 98-99) describes a simpler approach to decide when two texts are matching

again. Horton’s method also stores the texts in a matrix. However, when an exact

match is found between two tokens, the algorithm goes backwards to compare the

previous tokens and see if there is a match: taking the two strings ‘ABCDEFG’ and

‘XYZCWABC’ for instance, the C in the first string will match the C after XYZ in the

second string, but the previous tokens do not match. On the other hand, the C in

the first string will also match the second C of XYZCWABC, and the previous tokens

AB match in both strings. Therefore, the algorithm will successfully conclude that

‘XYZCW’ was inserted in the second string.

In addition, Horton (1994) uses the edit distance to find near matching tokens,

and thus recognise spelling variants. Horton considers a Levenshtein distance

function which will return a value of 1 for two tokens matching exactly, and a value

of 0 for two tokens which have nothing in common11. The algorithm is then able

to determine that two tokens with a value close to one are likely orthographic

differences and should be considered as matching tokens. Horton decided for

a similarity threshold (match threshold) of 0.8, so that the tokens own/owne or

point/poynt are considered equivalent. Furthermore, a query threshold lets users

decide interactively whether some pairs of tokens with a value slightly lower than 0.8

should also be considered spelling variants (such as sences/senses or lockt/lokt). The

use of parameters can further refine the algorithm. For instance, some operations

may receive a lower cost: the substitution of d and t can have a lower cost (Horton

1994, 95), so that the two words search’d and searcht would be closer to each

other than for instance said and laid: between said and laid there is also only one

substitution of the letters s and l, but these are two different words.

Until now, we have discussed algorithms which compare only two texts at a time.

This is called pairwise alignment, but there are other approaches, namely progres-

sive and non-progressive multiple alignment. In the next section, we will see what

are the issues of pairwise alignments, and see how those issues can be addressed

with multiple alignment.

2.2.3 Multiple Alignment

One of the advantages of automated collation is that its results may be reused

for further purposes, such as the creation of a stemma. However, Spencer and

11Although this seems contradictory, the reason is that the distance is expressed as a fraction of
the maximum possible distance between two strings (Horton 1994, 99). The reason for that choice is
to obtain an output analogous to another function investigated by Horton, the ‘Proximity function’.

53

2.2. Collation algorithms

Howe (2004) argue that a pairwise alignment does not provide ideal results for

calculating a stemma codicum of relationships between witnesses. The issue of

pairwise alignment is that all texts are compared to a base text only, and therefore

some data is missing from the results, because the differences between all witnesses

are not recorded. For instance, in a place where only one witness is different from

the base text, the result will not indicate that this witness is also different from the

others (Spencer and Howe 2004, 257).

Since neither pairwise alignment was a suitable option, Spencer and Howe turned

to progressive multiple alignment. In progressive multiple alignment, the algorithm

starts collating first the most similar witnesses, and gradually adds witnesses which

are more and more different (Spencer and Howe 2004, 257). This method was

developed by Hogeweg and Hesper (1984), and is widely used in bioinformatics for

aligning sequences of DNA or proteins (Pirovano and Heringa 2008). Spencer and

Howe (2004) adapted this technique to the collation of textual witnesses. There are

three steps in the process:

1. Perform a pairwise collation to determine the distances between all wit-

nesses.

2. Build a ‘guide tree’, which is the equivalent of an unrooted stemma (i.e. a

stemma where the ‘root’ or archetype has not been selected among the

nodes).

3. Collate progressively the witnesses from the most similar (with a smaller

distance) to the most different (with a larger distance).

The advantage of a progressive method is that the insertion of gaps to align the

witnesses is easier: if the witnesses collated are very similar, the location of a

gap is more certain (Spencer and Howe 2004). The issue, on the other hand, is

that it takes a long time, especially the first step: to calculate the best order in

which to collate the witnesses is the most difficult part (Spencer and Howe 2004,

263). In addition, if a mistake is introduced early in the process of the actual

collation (the third step), it is impossible to correct it later: ‘once a gap, always a

gap’ (Pirovano and Heringa 2008, 146; Spencer and Howe 2004, 265). Finally, there

is a problem of circularity: an optimal collation requires that the witnesses are

compared in the right order, which means that some inferences must be made

regarding the witnesses’ relationships; but then to make inferences about the

witnesses’ relationships, collation is needed. This issue was also highlighted for

54

2.2. Collation algorithms

W1 a b c d F g h i ! K ! q r s t
W2 a b c d F g h i ! q r s t
W3 a b c d E g h i ! q r s t

Table 2.1: Incorrect progressive alignment.

W1 a b c d F g h i ! K ! q r s t
W2 a b c d F g h i ! q r s t
W3 a b c d E g h i ! q r s t

W1 a b c d F g h i ! K ! q r s t
W2 a b c d F g h i ! q r s t
W3 a b c d E g h i ! q r s t

Table 2.2: Correct non-progressive alignments.

the construction of phylogenetic trees in bioinformatics by Hogeweg and Hesper

(1984), who argue that alignment and the creation of a tree must not be treated

separately, but as a single problem. The solution proposed by Hogeweg and Hesper

(1984) is an iterative process: the alignment and guide tree are built in parallel, and

improve each other in turns. The guide tree helps improve the alignment, which in

turn helps correcting the guide tree. Another solution to the issues of progressive

alignment is ‘non-progressive multiple alignment’, such as PicXAA (Probabilistic

MaXimum Accuracy Alignment, see Sahraeian and Yoon 2011).

The main difference between progressive and non progressive alignment is the de-

pendence on order in which witnesses are collated: non-progressive alignment has

less dependence on collation order, but does not always produce the same results

if a different order is used (Spadini 2016, 136-137). In addition, non-progressive

alignment may be more efficient in certain situations. Tables 2.1 and 2.2 show an

example where progressive alignment is less accurate than the non-progressive

alignment (Ronald Dekker, private correspondence). The wrong alignment in pro-

gressive alignment is caused by the longest common sequence (LCS) between W3

on the one hand, and the alignment of W1 and W2: after W1 and W2 are aligned,

the sequence ‘!qrst’ becomes the new longest common sequence with W3.

In CollateX, no guide tree is created in order to determine the best order of collation,

as was the case in Spencer and Howe (2004). Although the developers of CollateX

did not witness a dependence order while testing the program, it could have been

an issue in some circumstances (Dekker et al. 2015, 10). Since version 1.7, CollateX

55

2.2. Collation algorithms

(a) (b) (c)

Figure 2.4: Dekker algorithm, alignment matrix (Dekker et al. 2015).

implements a non-progressive alignment algorithm. There are three possible

algorithms available in CollateX:

• Needleman-Wunsch is an algorithm widely used in bioinformatics to align

sequences of proteins or nucleids (Needleman and Wunsch 1970). According

to the CollateX documentation, it does not take into account transpsitions.

• MEDITE is an algorithm that was specifically created to align sequences of

textual transcriptions. It was created in France, in collaboration between

genetic critics at ITEM (Institut des Textes et Manuscrits Modernes) and Arti-

ficial Intelligence specialists from LIP6 (Laboratoire d’informatique de Paris

6 - Université Pierre et Marie Curie) (Ganascia 2014). The implementation of

this algorithm in CollateX is still experimental (The Interedition Development

Group 2013).

• The Dekker algorithm created by Ronald Haetjens Dekker is the ‘most ma-

ture algorithm offered by CollateX thus far’ (The Interedition Development

Group 2013).

The Dekker algorithm takes into account the reader’s common sense to find the

most natural alignment: given a matrix of two documents’ text, the best alignment

is the one that is closest to a diagonal from the upper left corner to the bottom right

corner, which represent a natural way for readers to read through the text (Dekker

et al. 2015). Figure 2.4(b) shows a more natural alignment than figure 2.4(c).

56

2.2. Collation algorithms

To evaluate recent collation algorithms, Dekker et al. (2015) focus on three crite-

ria: transposition detection, support for flexible token matching (such as fuzzy

matching, described above), and influence of the base text or comparison order on

the final collation result. This set of criteria provides a first basis to compare the

various collation algorithms, and is thus useful to analyse the newest collation tools

regarding their algorithm implementation. This was particularly useful to evaluate

the Classical Text Editor (CTE) collation algorithm. Since CTE is a commercial tool

under license, its algorithm is not described. However, CTE’s creator Stefan Hagel

was willing to explain broadly the strengths and weaknesses of his algorithm with

respect to these three criteria: the main advantage of CTE’s algorithm would be its

use of the Levenshtein distance in order to correctly align texts with many ortho-

graphic variants. On the other hand, CTE does not deal well with transpositions

of long segments of texts, and as it performs a pairwise alignment with a base text,

the order in which witnesses are compared will influence the collation result.

The tool iAligner applies a modified version of the Needleman-Wunsch algorithm,

which reduces the number of comparisons: instead of comparing each token from

one witness m to each token of another witness n, each token in m is compared

with ten tokens of n, thus limiting the amount of comparisons needed (Yousef

and Palladino 2016). In addition, the Levenshtein distance may be used to deter-

mine a matching threshold and make the alignment more flexible for texts with

orthographic variation (Yousef and Palladino 2016). The algorithm of iAligner is

‘syntax-based’ because it takes into account the order of words in a sentence. How-

ever, it does not use lexical information such as part-of-speech tagging (Yousef,

Palladino, and Crane 2017). Figure 2.5 shows three examples of alignment with

iAligner, created with the online demo12. The second example figure 2.5(b), which

uses the Levenshtein distance, is more efficient than figure 2.5(a): the three words

erit, egit and agit are aligned together. On the other hand, pater and pauper are still

not properly aligned. iAligner does not recognise transpositions (they are visually

analysed by the user), and the developers do not mention any effect of the collation

order on the results. Figure 2.5(c) shows that, by inverting the second and the third

witnesses, the resulting alignment will be different, and pater and pauper are then

correctly aligned. However, this is an early demonstration tool, and as iAligner is

further developed, the alignment may improve (Yousef, Palladino, and Crane 2017).

12The demo seems to be most efficient with Greek and English texts: http://www.dh.uni-leipzig.
de/tools/Alignment/multiple.php (Accessed July 17, 2017).

57

http://www.dh.uni-leipzig.de/tools/Alignment/multiple.php
http://www.dh.uni-leipzig.de/tools/Alignment/multiple.php

2.2. Collation algorithms

(a)

(b)

(c)

Figure 2.5: Examples of alignments from iAligner. Created with iAligner’s online demo http://www.
dh.uni-leipzig.de/tools/Alignment/multiple.php (July 17, 2017).

58

http://www.dh.uni-leipzig.de/tools/Alignment/multiple.php
http://www.dh.uni-leipzig.de/tools/Alignment/multiple.php

2.2. Collation algorithms

Figure 2.6: Di� example. Retrieved from CollateX’s Github repository https://github.com/
interedition/collatex (Octobre 6, 2017).

2.2.4 Di� Algorithms

While several collation algorithms were inspired from research in the field of bioin-

formatics, other collation tools have adapted algorithms from the field of computer

science. As we have seen above, diff algorithms are designed to compare two digital

files, most often two different versions of the same file of code, and to signal the

lines where the two versions are different (see figure 2.6). In practice, it means that

with a diff algorithm, text files are tokenised at carriage return characters.

This is enough for comparing short lines of code and quickly finding where the

code has been modified. On the other hand, diff is not precise enough for collation,

especially of prose texts where carriage returns are not predictable and are used

to separate entire paragraphs (Laiacona 2007). The two main issues are that diff

compares only two texts, and that the comparison is not precise enough.

However, diff algorithms can be adapted for the purpose of textual collation, with a

pairwise comparison. Juxta’s collation algorithm, for instance, has implemented

the diff algorithm by Myers (1986). One important change was to use words and

punctuation marks as tokens instead of lines. The precision of the diff algorithm

was also improved by a multi-pass approach: some areas of text where a change

has occurred are compared a second time, in order to solve ambiguities (Laiacona

2007). Myers diff was also used to collate witnesses in the Dravyasamuddeśa project

(Li 2017), and the collation algorithm developed for Petrus Alfonsus was adapted

from a diff algorithm as well (Roelli 2014). Creating a diff algorithm was the aim of

the project eComparatio, however it was not without difficulties: they needed to

trade off speed for efficiency (eComparatio Github page).

The multi-pass approach essentially repeats twice the alignment step of the Gothen-

burg model, and in some cases the tokenisation step as well. For instance in

Prahbed, there are two stages of ‘gross collation’, at chapter and paragraph levels,

and then a ‘fine collation’ at the word level (Chaudhuri 2015). The tools LERA

and LAKomp also operate on two stages of tokenisation and alignment, first for

59

https://github.com/interedition/collatex
https://github.com/interedition/collatex

2.3. The Evolution of Automated Collation

larger segments, and then another comparison of those segments at the word

level, although the algorithm is not based on diff but on the Levenshtein distance

(Pöckelmann, private correspondence).

2.3 The Evolution of Automated Collation

The work of Froger (1968) is often listed as the pioneer in automated collation

(Gilbert 1973; Hockey 1980; Schmidt 2009)13. When he started to work on a collation

program in 1960, no such program existed yet (Froger 1966, 135). However, between

the moment when Froger started to work and his well-known essay of 1968, a

few publications appeared which report on the creation of automated collation

programs. Vinton Dearing published a paper delivered at a Seminar on Bibliography

in May 1962, where he describes what is now considered the first collation program

(Dearing 1962, 18-19). The contributions from Zarri certainly also provided crucial

groundwork in the developments of automated collation, (for instance Maretti and

Zarri 1967). In addition, Andrews (2014b) describes TUSTEP as ‘one of the first

successful computer programs for the scholarly processing of texts. . . [including] a

limited facility for the automatic comparison of text’ (Andrews 2014b, 182). TUSTEP

was thus one of the first collation tools which was not limited to a specific project,

but was used with success to edit multiple texts14.

Froger, like some of his successors, was rather optimistic regarding the possibility

of automating the collation process with a computer: ‘the collation of manuscripts

is an operation similar to accounting, it may very well be performed by a computer’

(Froger 1968, 230)15. Robert Marichal, Froger’s advisor who wrote the preface to

the essay, considered that automated collation, although possible in theory, was

unachievable in practice, independently of technical progress (Froger 1968, X)16.

Marichal thought that a computer would never be able to make a difference be-

tween substantial variants and accidentals, so that collation would hide the few

significant differences among the many trivial ones. Kraft (1995) also describes

pessimistic attitudes towards the use of computers in the 1970s, but for differ-

13The early history of automated collation can be found in particular in Gilbert (1973), Hockey
(1980) and Marín (1991), whereas more recent progress is described by Andrews (2014b).

14According to the International TUSTEP User Group (ITUG), more than 900 critical editions have
been produced with the help of TUSTEP since the first one in 1972 http://www.itug.de/Geschichte.
html (Accessed May 19, 2017).

15‘La collation des manuscrits est une opération qui relève en quelque sorte de la comptabilité: la
machine peut fort bien l’exécuter’ (Froger 1968, 230).

16‘Collation: en principe, aucune difficulté ; la machine le fera impeccablement’, but in practice,
on the matter of collation, ‘l’emploi d’une machine est impraticable et le sera probablement toujours’
(R. Marichal, preface to La critique des textes et son automatisation 1968, pages VIII and IX).

60

http://www.itug.de/Geschichte.html
http://www.itug.de/Geschichte.html

2.3. The Evolution of Automated Collation

ent reasons. In New Testament studies, the use of computers would require vast

amounts of work to prepare electronic resources.

Nevertheless, the idea that collation was an activity perfectly suited for computer

processing was accepted in the scholarly community, and many scholars followed

Froger’s path: at least nine collation tools were published between 1968 and 1973,

such as Vinton Dearing’s program to edit Dryden (Dearing 1970), the OCCULT

project (Gibson and Petty 1970), Gilbert’s COLLATE (1973) and TUSTEP (1972). In

1980, Susan Hockey was claiming that collation is a mechanical process, easily

implemented with a computer: ‘provided that there is no doubt about the readings

in the manuscripts, the collation of manuscripts is a purely mechanical process,

consisting of merely identifying places where two or more texts do not match’

(Hockey 2000, 144-145). However, Hockey later revised her opinion when it became

clear that fully automated collation was not yet possible, and that collation tools

were still facing thorny issues: ‘It was initially thought that collation was a fairly

mechanical process which could be simulated by computer. However, the kinds

of comparisons needed for complex text are much more sophisticated than those

provided by standard software for comparing computer files’ (Hockey 2000, 125).

The shift between the two points of view seems to have taken place in the late 1980s,

at the time when Robinson published about a new collation program, Collate, that

he developed while collating and editing forty-four manuscripts of two Old Norse

poems (Robinson 1989a, 1989b). In fact, the late 1970s and the 1980s were a produc-

tive period for collation tools: no fewer than six programs were implemented, such

as Miriam and Peter Shillingsburg’s PC-CASE (Shillingsburg 1978; Shillingsburg

1980), the Donne Variorum Collation Program DV-COLL (Stringer and Vilberg 1987)

or URICA!, User Response Interactive Collation Assistant (Cannon and Oakman

1989). This intense scholarly attention on automated collation, therefore, likely

helped to refine the concept. While working on a second version of URICA!, Hilton

(1992) attempts one of the first definitions of automated collation. He distinguishes

between ‘fully automated collation’, and ‘interactive collation’, where the computer

program may need the help of the editor to correctly recognise variant readings:

There are two basic strategies for collating texts by computer: fully

automated, batch collation and interactive, computer-assisted colla-

tion. The first strategy, fully automated collation, has received the

lion’s share of attention. Its goal is to find and record all textual variants

without human interaction. [. . .]

The second strategy, interactive collation, [. . .] provid[es] the com-

61

2.3. The Evolution of Automated Collation

puter with human assistance whenever necessary (Hilton 1992, 139-

140).

The issue of automated collation, according to Hilton, is that computers have

trouble locating the end of a variant reading. The program would therefore locate

the start of a variant, and let the editor decide where the variant would end. The

interactions between the editor and the program would thus make collation easier

and faster than a fully automated collation, which requires a large amount of

corrections in the output. Robinson’s Collate program, similarly, may be interrupted

by the editor at any moment during the collation process in order to correct the

results or enter additional information such as regularised orthographic forms

(Robinson 1994). Based on his experience with automated collation, Robinson

devised seven principles of computer collation, of which the third stated that ‘there

should be interactive collation’ (Robinson 1994, 35). The reason for this principle

is that there would always be some difficult passage which would require the

judgement of an editor, no matter how efficient the collation algorithm.

Collate had already evolved between 1989 and 1994. The first version, which

Robinson called ‘Collate 0’, was a command-line tool used only by himself during

his doctoral thesis (Robinson 2007b). The program was then developed for a wider

audience and a more general purpose, with a complete rewriting and the addition

of a Graphical User Interface. This new version, ‘Collate 1’, was first released in

1991 (Robinson 2007b). Later, Collate went again through a ‘drastic reshaping and

enlargement’, to such an extent that Robinson came to think of it as ‘Collate 2’

(Robinson 2007b). Collate 2 was released in 1996. A key difference between Collate

1 and 2 was a change of purpose: Collate 2 was oriented towards the creation of

electronic editions, instead of printed editions (Robinson 2007b). There were other

differences, such as the abandon of the base text for instance (see also Section 2.4.2

below). Collate 2 was maintained until 2007, when a change in the Macintosh

operating system meant that Collate needed to be rewritten again.

In the early 1990s, Manuscript was developed by Morrill and Lewis for collators

of the International Greek New Testament Project, inspired by Collate (Parker

2008, 103). At the time, TUSTEP was not adapted to the demands of the New

Testament (Kraft 1995, 271). Collate, although promising, required the creation of

transcriptions which were not yet available. Manuscript was ‘aimed at facilitating

the entry of data, as well as their organization and their ultimate presentation’

(Kraft 1995, 272).

62

2.3. The Evolution of Automated Collation

While Robinson was setting out the design of Collate’s successor, Juxta was devel-

oped by the Applied Research in Patacriticism (ARP) group at the University of

Virginia in 2005. Juxta was first released as a desktop application (Wheeles and

Jensen 2014). The project was then taken up by the scholarly organisation NINES17

and the company Performant Software. Juxta was transformed into a web ser-

vice with the web interface Juxta Commons (Wheeles and Jensen 2014). Another

interface, Juxta Editions, was built on top of the web service and released in 2015.

By 2015, CollateX, the successor of Collate, was then available. In 2007, Robinson

had decided to collaborate on the development of Collate with colleagues from the

Hague: he shared with them a series of blog posts in which he outlined his ideas for

the future design of Collate (Robinson 2014). Some features from Collate would be

retained, such as its ability to compare ‘word objects’ and not strings of characters

(Robinson 2014). Word objects for a distinction between the original word of the

text and a normalised form (see below p. 79 on normalisation, and also Chapters 4

and 7). New features of Collate would include for instance the possibility to handle

XML input, and a better division of the different stages of alignment. Robinson

(2014) identified four stages: alignment, storage and adjustment of the result, and

finally the identification of variants.

The division of the collation stages was formalised with the Gothenburg model in

2009. A workshop organised in the context of Interedition gathered in Gothenburg

the developers of Juxta, CollateX, and Text::TEI::Collate, who discussed the vari-

ous issues they were facing with automated collation18. The Gothenburg model

thus emerged from the discussions between experts of automated collation, both

software developers and scholarly editors who were using digital tools (Dekker

et al. 2015).

The Gothenburg model divides the process of collation into five basic successive

tasks, a separation of concerns that would improve the flexibility of collation tools19:

1. Tokenisation: division of the text in segments called tokens;

17See http://www.nines.org (Accessed May 19, 2017).
18Interedition is a COST Action that aimed to promote the interoperability of the tools and

methodology used in the field of digital scholarly editing: http://www.interedition.eu/ (Accessed May
05, 2017).

19Although (Dekker et al. 2015) gives only four successive tasks, with normalisation a part of the
first tokenisation step, CollateX documentation divides tokenisation and normalisation as separate
steps.

63

http://www.nines.org
http://www.interedition.eu/

2.3. The Evolution of Automated Collation

2. Normalisation: considering some tokens as identical for collation purposes,

for instance by transforming all tokens to lower case;

3. Alignment: identifying similarities and differences among the tokens in vari-

ous versions;

4. Analysis: interpretation of the result;

5. Output: format and visualisation of the result.

This modular approach of automated collation was not a new idea. In 1973, Gilbert

already adopted a modular design and highlighted the advantages of this approach

over other existing tools (Gilbert 1973, 147). TUSTEP, as well, lets the user ‘solve

complex problems in small and controllable steps’ (Ott 1991, 435). Actually, col-

lation programs such as the one from TUSTEP were not created in isolation, but

rather as a part of a bigger infrastructure aiming at automating the whole scholarly

editing process, from gathering and collating variant forms of a work, to printing

and publishing the edited text and the critical apparatus (Hockey 1980; Shillings-

burg 1996). For instance, UNITE was part of an integrated system for producing

critical editions (Marín 1991, 109), as well as Shillingsburg’s Computer Assistant PC-

CASE; Collate also refers to a suite of twenty-five programs that Peter Robinson used

to transcribe, collate and edit manuscripts (Robinson 1989a, 99). When creating

Collate, Peter Robinson’s first goal was to feed transcriptions to the computer and

extract a critical apparatus at the end (Robinson 1989a, 99). DV-COLL was intended

to ‘computerize the work’ of editing Donne’s Variorum (Stringer and Vilberg 1987).

The purpose was to implement a workflow that would imitate the manual process

of text editing, and this was done by isolating specific differences between texts,

namely the variants (Stringer and Vilberg 1987; Hilton 1992).

Collation was only one aspect of those editing systems, but it was an important and

complex one. The importance of collation is reflected partly in the names of those

tools: both Robinson’s and Gilbert’s tool were called COLLATE. In addition, Gilbert

defines the purpose of her tool, the creation of a critical editions with a computer, as

an activity centred on collation: ‘computer-aided critical editions, i.e., the use of the

computer to compare texts or manuscripts and to indicate variants’ (Gilbert 1973,

139)20. This definition of a computer-aided critical edition is in fact quite close to a

definition of collation itself. Since collation was a very difficult step to implement

in a digital, automated workflow for the creation of critical editions, it was a natural

20In a later publication, Gilbert updated her definition: ‘Automatic text collation—the use of the
computer to locate variant readings in manuscript copies of a text’ (Gilbert 1973, 106).

64

2.3. The Evolution of Automated Collation

evolution to further break down collation into smaller and simpler tasks. The next

generation of collation tools, such as Juxta and CollateX, thus usually follows the

Gothenburg model of collation.

2.3.1 The Terms Used in the Context of Automated Collation

’Automatic collation’ was disregarded by the scholars who authored the two main

publications on CollateX (Dekker and Middell 2011; Dekker et al. 2015): they pre-

ferred the term ‘computer-supported collation’, which is more accurate since it

does not imply that collation is fully automated. However, computer-supported

is a rather vague term which could refer to any kind of use of a computer, even

to a collation done manually but recorded in a digital format such as a spread-

sheet or a Microsoft Word document. The term of ‘semi-automatic collation’ is

therefore another suitable alternative, and seems to gain weight in the scholarly

community (Gabler 2008; Dekker et al. 2015; Spadini 2015; Yousef and Palladino

2016). Semi-automatic collation may refer in particular to the third stage in the

Gothenburg model: the analysis. Analysis requires some additional input from the

editor to interpret the results from the program or to adjust some parameters, and

that interpretation can be fed again to the collation algorithm, in order to improve

the next output produced by the program. Such an interpretation may be to recog-

nise that two or more words have been inverted in the text as one intervention,

instead of being two unrelated actions (one addition and one deletion). In prac-

tice, however, this analysis step is rarely implemented, since it requires additional

coding capacities. The most important step in the Gothenburg model is in fact

the alignment phase. During the alignment, the different witnesses are compared

to one another, to determine which segments of text are equivalent, and which

segments are different. The importance of alignment is also evident in the name of

the most recent collation tools. TRAViz (2015) stands for ‘Text Re-use Alignment

Visualization’, and iAligner (2016) is presented as a tool for ‘text alignment’ which

can facilitate several degrees of textual comparison, including text reuse (Yousef

and Palladino 2016). Robinson (2014) envisioned that the successor of Collate

should be able to deal not only with collation, but also with other situations such

as plagiarism and intertextuality; thus the purpose of CollateX is ‘text comparison’

in general (Dekker et al. 2015)21.

This survey of the different names given to the process can shed light on the evolu-

tion of the scholarly understanding of this practice. While technology was improv-

ing, scholars seemed sometimes less inclined to speak of automatic or automated

21‘[T]ext comparison is pivotal to any kind of textual scholarship’ (Dekker et al. 2015, 2). For
Andrews (2017), this is their definition of automated collation.

65

2.3. The Evolution of Automated Collation

collation, but adopted new terms such as ‘interactive’ or ‘computer-supported’ col-

lation, which would take into account the manual input required to make a proper

use of automated collation tools. There are four terms that have been used more of-

ten than others: automatic, semi-automatic, interactive, and computer-supported

collation. ‘Interactive collation’ is a term that was specifically applied to tools such

as URICA! (Cannon and Oakman 1989; Hilton 1992) or Collate (Robinson 1994),

where the user intervenes directly during the collation process. The three other

terms conjure up different nuances, although it is impossible to know in retrospect

if these nuances were intended by prior scholars. In summary, the most generic

term is computer-supported, and in theory it could refer to any kind of collation in-

volving the use of a computer. It is a term broad enough to cover all tools discussed

in this chapter, including interactive collation. The term ‘semi-automatic collation’

might apply to tools with an even higher degree of automatisation than interactive

collation: here the user intervenes in the collation algorithm by tweaking param-

eters or adding a level of interpretation to the collation, but without necessarily

interrupting the process. Finally, fully ‘automated’ or ‘automatic collation’ could

apply to tools such as Juxta and CollateX, when there is no user intervention in the

algorithm. However, some users who need to do intensive correction of collation

results may rather define the process as semi-automatic instead of automatic.

The purpose of automated collation evolved as well, as this complex task was

divided into smaller steps: while the first collation tools were focused on replicating

the manual workflow of an editor with the aim of getting a print critical edition at

the end of the process, the next generation of collation tools was more concerned

with an accurate text alignment than the creation of a critical apparatus. The

important point for collation tools became to offer a good alignment in various

output formats which can be used so as to satisfy different needs, such as preparing

a critical apparatus for instance, but also grouping witnesses into families and

establishing a stemma codicum, or identifying instances of text reuse.

The method of automated collation needs to be discussed as well. As Andrews

pointed out in a contribution during the European Society for Textual Scholarship

(ESTS) in 2016, it is necessary to understand what automated collation means for

scholars from different backgrounds, Humanities researchers or software devel-

opers, in order to allow for an effective collaboration (Andrews 2017). In the next

section, I will discuss the methodology of automated collation and especially its

differences with respect to manual collation, as well as the Gothenburg model of

automated collation.

66

2.4. Methodology of Automated Collation

2.4 Methodology of Automated Collation

The methodology of automated collation differs from the methodology of manual

collation on two main points: the base text, or absence thereof, and more impor-

tantly the need to first transcribe the full text from the witnesses in a digital format

before letting a computer program do the comparison (see Macé et al. 2015, 333 ff.).

The latter is a particularly relevant issue, since transcribing manuscripts is one of

the main arguments against automated collation from literary scholars, especially

classicists22.

2.4.1 Transcription versus Collation

As we have seen previously, there is no transcription step in a manual collation:

variant readings are recorded while comparing the base text and another witness.

However, the collator needs to write down each variant reading, whether in an

existing critical edition, a notebook or a digital document. In effect, this means

that a transcription must occur, but it is a very partial transcription of a few words

scattered across the complete text of the witness. Only variant readings deemed sig-

nificant, or potentially significant, are transcribed. The collation and transcription

are thus combined and the two activities can hardly be separated in the traditional

method. On the other hand, automated collation requires full transcriptions of

the witnesses to be collated by a computer (Andrews 2014b, 177). Transcription

remains the most laborious part of the work in a digital workflow (Andrews 2012;

Roelli 2014) and yet a very important one, since the success of the next steps, such

as collation, will depend on an accurate transcription (Mordenti 2001).

This change in methodology has not always been welcomed by scholars for sev-

eral reasons. First, a transcription is considered by many to be much more time-

consuming than a traditional collation: Reeve argues that even complete collation

of the 215 witnesses of Geoffrey of Monmouth’s Historia regum Britanniae would

have been unrealistic, let alone complete transcriptions, especially since not all of

the 215 manuscripts have editorial value (Reeve 2011, 389). Manual collation was

also deemed faster than full transcriptions in editing the Florilegium Coislinianum,

a Medieval Greek anthology (Macé, De Vos, and Geuten 2012, 113, note 11).

In addition, Whittaker considers that a transcription is not only longer but also

more difficult than a traditional collation because the transcription represents

22See for instance a discussion of September 2015 about ‘Supporting MS collation’ in
the Digital Classicist mailing list: https://www.jiscmail.ac.uk/cgi-bin/webadmin?A1=ind1509&L=
digitalclassicist#17 (Accessed July 31, 2017).

67

https://www.jiscmail.ac.uk/cgi-bin/webadmin?A1=ind1509&L=digitalclassicist#17
https://www.jiscmail.ac.uk/cgi-bin/webadmin?A1=ind1509&L=digitalclassicist#17

2.4. Methodology of Automated Collation

actually a diplomatic edition: ‘a diplomatic edition without the support of a base

text is a more lengthy and indeed risky task of potentially monumental intricacy

and minimal utility’ (Whittaker 1991, 128, note 1). Fischer (2012) also seems to

equate the transcription with a diplomatic edition. However, a diplomatic edition

is more than a transcription, and it includes line breaks, page breaks, abbreviations

and differentiated letter shapes (Pierazzo 2011, 463-464). Here lies perhaps the

greatest difference between the approach of literary editors like Whittaker and

Reeve on the one hand, and digital humanists like Andrews and Robinson on the

other.

Both Andrews and Robinson have argued that a transcription is not any more

difficult or time-consuming than a collation, if the editor proceeds this way: first

identify a witness already transcribed that is similar to the one that needs transcrip-

tion, and then alter the transcription of the first witness to match the text of the

new witness (Robinson 1989a; Andrews 2012). Indeed, according to Robinson, the

separation between transcription and collation made the task ‘both less exacting

and more accurate’ than if he had done it in a traditional way (Robinson 1989a,

100). Moreover, they have highlighted advantages of transcription over traditional

collation. A transcription file may be easier to correct against a manuscript, since

it contains only one text and not several in parallel (Andrews 2014b, 178). It also

prevents the editor from being tempted to ignore a detail which is considered irrel-

evant at the time of collation, but might actually become important later. Robinson

gives as an example the hyphenation of two particular words, a phenomenon that

is usually not noted, but which turned out to be crucial to distinguish a family of

manuscripts (Robinson 1989a, 101). The issue is that editors often decide while

they are collating what is significant; however, it is difficult to make such decisions

without having read through every witness, and two editors might well make dif-

ferent decisions (even the same editor might make different decisions at different

times).

Some scholars may argue against full transcriptions of the witnesses, because it

is often the case that merely a few sections of a witness must be collated in order

to evaluate its editorial value. In practice, when dealing with a large manuscript

tradition, only a few witnesses will be fully collated, i.e., the ones selected as the

most relevant to edit the text. However, a transcription of extracts, combined with

their automated collation, could also be adopted (Roelli and Bachmann 2010).

A manual collation would be helpful to see the pattern of manuscript groups

emerging, and could be a good way to grasp a complicated tradition. However, it

could happen that during collation, an editor will get an impression, and then tend

68

2.4. Methodology of Automated Collation

to interpret evidence so that it will confirm the first impression. Transcription may

also enable the scholar to discover patterns within the tradition, but likely to a lesser

extent: although similarities between witnesses may be noted during transcription,

groups of shared variant readings will only become apparent after collation. It may

be argued then that the combination of transcription plus automated collation

gives less room for the editor to rely on intuitions built during collation. Therefore,

transcription samples could be done the same way as collation samples are done.

This solution would still prevent the editor overlooking a small yet significant

variant, and it would also limit the possibilities of editorial bias in collation.

It is worth noting here that manual collation is not only combined with transcrip-

tion, but also with spelling regularisation. On the other hand, diplomatic transcrip-

tions record primarily non-normalised spelling, and the recording of normalised

orthographic forms in the transcription may be necessary in order to facilitate the

automated collation (for instance in the context of medieval traditions with many

spelling variations) or to help select significant variants in the collation results

and minimise the influence of trivial differences (Roelli and Bachmann 2010). It

would of course be possible to transcribe directly a regularised the text instead of

a diplomatic version, as Roelli and Bachmann did while working on the tradition

of Petrus Alfonsi, but in general it is not a recommended practice (Robinson and

Solopova 1993, 33; Macé et al. 2015, 333).

Boschetti (2007, 3) raised the issue of transcribing entire documents. According to

(Boschetti 2007), it is not always possible to transcribe a full witness: an important

indirect tradition (secondary sources quoting extracts from the edited text), or a

rich secondary literature with many conjectures are examples where a transcription

of a full witness may not be feasible because the context is missing. For instance,

modern readers of ancient commentaries (scholia) would not be able to know from

which manuscript the commentator was reading the extracts that are quoted in

the scholia. Conjectures as well can lack a context, since it is not always possible to

know with which edition a scholar was working when they proposed a conjecture.

Boschetti (2007) considered that since those incomplete witnesses could not be

fully transcribed, therefore they could be collated with automated collation tools.

However, incomplete witnesses do not prevent automated collation in practice.

This issue was avoided in the Digital Mishnah project by creating special documents

for readings from incomplete secondary sources (Lapin 2013, 449).

In summary, Parker (2008, 101) highlights several advantages of transcription: it

can be reused, so that the next scholars will not have to do again the same work

69

2.4. Methodology of Automated Collation

from scratch; information relevant to other than just text critics can be encoded in

the transcription; it facilitates collaboration; and transcriptions are easier to correct

with minimal risk of adding more errors.

2.4.2 Base text

According to Macé et al. (2015), the absence of a base text is one of the core princi-

ples of automated collation: ‘rather than choosing a base text (or reference text)

against which all subsequent texts should be compared, the scholar refrains from

any selection or comparison at all’ (Macé et al. 2015, 333). However, this was not al-

ways the case in automated collation. As we have seen above p. 48, the first scholars

to attempt automated collation, such as Froger, would follow closely the method of

manual collation. In manual collation, the choice of a base text is one of the first

step during the collation process, and an indispensable one (see Section 1.4.1.1

above, p. 31). As a result, the early collation programs would also make use of a

base text. One text is chosen as the base against which all the other witnesses are

compared consecutively, and the variants are gathered at the end.

Froger prefers to call the base text ‘reference text’ (texte de référence) to avoid

confusion with the text chosen as a base for editing by scholars who follow Bédier’s

‘best text’ method (Froger 1966, 139). The base text is also called sometimes ‘master

text’ (Cannon and Oakman 1989; Robinson 1989a). As for manual collation, in

an automated procedure the choice of a base text is mostly dictated by practical

reasons: scholars are recommended to avoid difficulties such as many corrections

by a second hand or lacunae (Froger 1966, 139). Dearing (1962, 14) as well advises

to choose the longest text. Gibson and Petty (1970, 285) on the other hand selected

the shorter text as a base text, which may not be the best methodology according

to Hockey (1980, 150). The presence of lacunae in the base text can be particularly

problematic, because it means that collation programs cannot find variants among

the other witnesses in the portion of text that is missing from the base text (Andrews

2014b, 182). Since each witness is compared to the base text only, and not to all the

other witnesses, the portion of text absent from the base text will not be compared

in the other witnesses. In order to address this issue, Robinson’s Collate would also

compare all witnesses to each other at the points where there is a difference from

the base text (Robinson 1989a, 99).

The base text is often thought of as a kind of clothesline for hanging up the variants

of the other witnesses (Robinson 1989a, 102; Reeve 2000, 197). For Robinson, the

best results can be obtained from Collate when the base text is split into minimal

units of sense. For example, the old Norse manuscripts that Robinson was collating

70

2.4. Methodology of Automated Collation

have the following readings: Mimameidr, Munameidir, in various combinations

of Mima/Muna and meidr/meidir (either in one or two words). If the base text has

the reading Mimameidr, the collation results will make it difficult to see at a glance

which manuscripts agree in the first part of the compound and read Mima, and on

the contrary which manuscripts read Muna. On the other hand, this information

becomes much more obvious if the base text divides Mimameidr into two readings,

Mima and meidr. In this case, the base text is not an existing witness, but an

artificial creation to support the need of the researcher during collation: ‘the final

master was worthless as a text—but it provided a splendid series of pegs on which

the variants might hang’ (Robinson 1989a, 102).

Despite the issues related to the base text with automated collation, some literary

scholars expressed their concerns regarding the possibility to collate without a base

text: Whittaker (1991) was arguing that transcription, without the support of a base

text would be even more difficult (see p. 67). On the contrary for Robinson, the base

text is the ‘greatest weakness’ of editors of medieval texts for one reason: collating

with help of a base text let scholars make decision about the (in)significance of

some differences before they have surveyed the complete manuscript evidence. As

a result, the editor might omit to record an orthographic variant that seems trivial

at the time of collation, but would appear significant at a later stage (see Robinson

1989a; 1991, 86, note 22). Nevertheless, even recent collation programs such as the

one implemented in the Classical Text Editor (CTE) in 2015 still make use of a base

text. The reason is likely to be that CTE was designed to support the traditional

editing workflow, and therefore followed the manual collation process closely.

While Collate was still working with a base text, the shift to a real ‘baseless’ auto-

mated collation process seems to have happened around 1998 (Robinson 2007b).

At the time, Robinson was working on Collate 2, attempting in particular to apply

phylogenetic methods to the creation of a stemma from Collate’s collation results.

Phylogenetics is a field of biology concerned with studying the evolution of living

organisms. Scientists who study DNA mutations face similar issues to textual crit-

ics. DNA is a molecule made of amino-acid sequences (indicated by a sequence

of letters), which contains genetic information: by comparing the sequences of

acids from the DNA of different organisms, scientists can determine how these

organisms are related to each other and how they evolved. In a similar manner, the

textual critic compares texts (a sequence of characters such as letters, spaces and

punctuation marks) from witnesses in order to understand how those witnesses

are related and how the text evolved through successive copies. Robinson’s collabo-

ration with evolutionary biologists on the one hand (see Barbrook et al. 1998), and

71

2.4. Methodology of Automated Collation

(a) Base text collation.
(b) Parallel segmentation.

Figure 2.7: Collate — base text collation vs. parallel segmentation (Robinson 2004).

with the editors of the New Testament in Münster on the other hand (Wachtel 2000;

Parker 2006), led to improvements in Collate regarding the collation process: the

base text was abandoned in favour of a new procedure called ‘parallel segmentation

collation’.

The parallel segmentation method was created to deal with three problems of the

base text. The main issue of the base text, as used at first by Collate, was that this

artificially constructed text was taking too much importance (Robinson 2004). The

base text was neither an existing witness, nor did it represent editorial decisions

about the text. However, the base text was the main access to the collated text and

the variant readings for readers, who could be biased in favour of the base text. An-

other issue of the base text was that it made it difficult to analyse the relationships

between witnesses when using phylogenetic methods (Robinson 2004). The colla-

tion results, with a base text, divides overlapping variants into several apparatus

units: this prevents the text of all witnesses from being automatically recreated at

each point of variation, which was required in order to apply phylogenetic methods.

For instance in figure 2.7(a), the apparatus has five separate entries for the reading

‘wedded newe a’ in Chaucer’s Miller’s Tale, line 35, when using the base text method

of collation. On the other hand, the parallel segmentation method would group all

the readings under one apparatus entry (figure 2.7(b)).

In figure 2.7, the base text apparatus on the left is problematic because it is dif-

ficult to reconstruct the text of each witness based on single apparatus entries

(figure 2.7(a). For instance, there is no indication that the two apparatus entries

‘wedded’ and ‘wedded newe’ represent twice the same ‘wedded’ and not two differ-

ent instances of the word. Consider the entry which says that one manuscript has

‘newe wedded’ instead of ‘wedded newe’: from this particular entry, it is impossible

to derive automatically that another witness reads ‘E wedded newe’ instead of

‘wedded newe’ because this information can only be accessed from the previous

apparatus entry. Finally, the base text was seriously limiting the display possibilities.

72

2.4. Methodology of Automated Collation

Figure 2.8: Parallel segmentation of a text.

The collation can only be displayed in relation to the base text, and not in relation

to a witness chosen by the user (Parker 2000, 34).

The solution to those issues was to remove overlapping variation, by grouping all

variants together under a single lemma (see figure 2.7(b)). The advantage is that

the base text is not necessary anymore in the output, and the same collation may

serve several purposes, such as creating a stemma with phylogenetics methods

or creating a variant database (Robinson 2004). Although the base text has been

removed from the output, Robinson (2014) indicates that the base text was still

used during collation, for the identification of variants.

2.4.3 The Variant Graph Data Model

The parallel segmentation mentioned above makes a very useful representation of

textual variation. This representation divides the text into segments as in figure 2.8,

so that variant readings from different witnesses can be represented in parallel.

Parallel segmentation is one of the underlying data models for the encoding of the

critical apparatus in a scholarly edition produced following the TEI Guidelines, P5

version (TEI Consortium eds. 2017c, §12.2.3). Peter Robinson was not the first to

propose this kind of data model. Colwell and Tune (1964), two scholars working

on the International Greek New Testament Project during the 1960s, have offered a

very similar representation of variation in a diagram (or scheme) where variants

are grouped into variation-units, as shown in figure 2.9. In fact, Colwell and Tune

anticipated that computers would become necessary tools to deal with the New

Testament tradition, and they expected that their model would be easily translated

into a mathematical format suited to electronic manipulation (Colwell and Tune

1964, 256). However, their contribution remained largely unknown in the wider

scholarly community and the variant graph did not appear as such until the end of

the 2000s, with a publication of Schmidt and Colomb (2009).

Another attempt at a graph was proposed by Sperberg-McQueen (1989), using the

metaphor of a river’s delta to illustrate how texts can separate at a variant location

73

2.4. Methodology of Automated Collation

Figure 2.9: An early version of the variant graph (Colwell and Tune 1964, 254).

and then merge back together like a stream. Sperberg-McQueen (1989) outlines

that his graph, the Rhine Delta structure, would not be biased towards a specific

base text. The difficulty is to represent such data structure with markup. Markup is

not well suited to deal with the overlapping hierarchies of textual variation: markup

such as XML enforces a strict hierarchical division of the text in a structure of

ordered elements which can be nested but cannot overlap, following the OHCO

model (Ordered Hierarchy of Content Objects) elaborated by DeRose et al. (1990). It

happens often that textual variants are not best represented in well-defined parallel

segments, but rather overlap with other variants and textual features such as the

division into paragraphs, lines, etc.

Schmidt and Colomb (2009) were interested in a data structure that would represent

efficiently overlapping hierarchies. They describe a graph model for representing

multi-variant texts that is directly inspired by the developments in the field of

bioinformatics and more precisely phylogenetics. In fact, there have been several

attempts to adapt phylogenetic methods from evolutionary biology in order to cre-

ate stemmata for textual traditions (Barbrook et al. 1998; Roos and Zou 2011). The

similarities between textual criticism and bioinformatics led Schmidt and Colomb

(2009) to adapt the ‘partial order alignment’ graph structure of Lee, Grasso, and

Sharlow (2002) for the representation of variant texts (see figure 2.10). Partial order

alignment graphs had a few characters that were not suited to textual variations,

such as multiple beginnings and endings, or redundancy. Therefore, they were

combined with a different structure, the PERT graph, which describes a workflow

of tasks for project management.

Finally, the variant graph was adopted as data model for CollateX, with a slight

modification (Dekker and Middell 2011). A graph is a structure made of nodes — or

vertices — and edges that link the nodes together. The variant graph of Schmidt

and Colomb places the text of the witnesses along with their sigla on the edges of

the graph, whereas CollateX’s graph places the text of the witnesses on the nodes of

74

2.4. Methodology of Automated Collation

Figure 2.10: The variant graph by Schmidt and Colomb (2009, 502).

the graph, and the sigla on the edges (figure 2.11). One reason for this modification

is that it makes it easier to implement in CollateX the separation of concerns of the

Gothenburg model (see Section 2.4.4 below). In addition, the CollateX graph model

is easily transformed into other visualisations such as a variant table (see CollateX

Documentation). To have the text on the nodes of the graph instead of the edges

also improves readability (Jänicke, Büchler, and Scheuermann 2014). However,

both versions of the variant graph share common characteristics:

• The graph is directed: the edges that link nodes have a precise direction,

which follow the order of the text. By following the edges associated with the

siglum of one witness, it is possible to obtain again the text as it was present

in this witness. See for instance in figure 2.11, the text of witness W2 can be

retrieved by following the edges labeled W2 and highlighted in red. A path

that goes from start to end of a directed graph is called a traversal.

• The graph is acyclic: it is not possible to loop back at a previous point in the

graph, it must be followed from start to end. If loops were allowed, it would

introduce repetitions of words that were non-existent into a witness.

• There is a start and an end node, which have no textual content. They serve

as a marker for the beginning and end of the text, but must allow for the

addition of more text between the source and the first node of text (in case a

new witness has text at the beginning or end which was not present in the

previously collated witnesses).

• Transpositions are represented with dashed lines that have no label. The

transposition’s edges cannot be followed while retrieving the text of a wit-

ness, otherwise it would introduce cycles into the graph, which is forbidden

(Schmidt and Colomb 2009, 501). According to CollateX Documentation,

transpositions are superimposed on the graph but do not integrate well with

the graph, i.e., transpositions are rather considered as an added layer to the

graph than a part of it.

75

2.4. Methodology of Automated Collation

Figure 2.11: Example of a CollateX variant graph. Created with CollateX’s online demo http://
collatex.net/demo (June 5, 2017).

The variant graph of Schmidt and Colomb is implemented in the collation tool

nmerge (later renamed Compare) and the Multi-Variant Document format, while

the modified graph of Dekker and Middell is implemented in CollateX and TRAViz,

as well as Stemmaweb, but it does not seem to have been used in other collation

tools23. Andrews and van Zundert (2014) have argued that the variant graph could

serve as the interface of a scholarly digital edition, replacing the traditional critical

apparatus of a printed edition. The idea was implemented to prepare a digital

critical edition in the form of a graph database, for the Chronicle of Matthew of

Edessa, an Armenian priest of the 12th century (Safaryan, Kaufmann, and Andrews

2016).

2.4.4 The Gothenburg Model

The Gothenburg model is now the standard accepted model of an automated col-

lation workflow, and a discussion of the methodology must therefore include a

discussion about this model. As said before, the Gothenburg model reflects a sepa-

ration of concerns: automated collation is divided into smaller tasks, which make

the whole process more manageable. These tasks were namely: tokenisation, align-

ment, analysis, and output (or visualisation). An additional step of normalisation

may also be performed, during or after the tokenisation stage.

The description of the Gothenburg model is available in Dekker et al. (2015) and in

CollateX’s online documentation24. A workshop on automated collation, organised

in November 2016 in Amsterdam by members of the DiXiT Network, provided

participants with comprehensive materials which are available online as well: it

includes a detailed explanation of the model and the issues related to each stages

23Stemmaweb is an interface to analyse textual variation and stemma hypotheses from collated
texts: https://stemmaweb.net/ (Accessed November 5, 2016).

24https://collatex.net/doc/ (Accessed May 12, 2017). A similar description is available in the TEI
Wiki website: https://wiki.tei-c.org/index.php/Textual_Variance#The_.E2.80.9CGothenburg_model.
E2.80.9D:_A_modular_architecture_for_computer-aided_collation (Accessed May 12, 2017).

76

http://collatex.net/demo
http://collatex.net/demo
https://stemmaweb.net/
https://collatex.net/doc/
https://wiki.tei-c.org/index.php/Textual_Variance#The_.E2.80.9CGothenburg_model.E2.80.9D:_A_modular_architecture_for_computer-aided_collation
https://wiki.tei-c.org/index.php/Textual_Variance#The_.E2.80.9CGothenburg_model.E2.80.9D:_A_modular_architecture_for_computer-aided_collation

2.4. Methodology of Automated Collation

(Bleeker and Spadini 2016)25. The examples in this section will mostly focus on

CollateX and Juxta, since these are the two programs from which the Gothenburg

model was conceived.

2.4.4.1 Tokenisation

The first task is to split the entire text of each witness into smaller units, called to-

kens, to be compared. Tokens are commonly used for lexical analysis in computer

science: a sequence of characters with an identified meaning is converted into a

sequence of tokens. Those tokens are then further processed by other programs,

such as a parsers, for syntactic analysis. In the Gothenburg model, a text is divided

into a list of tokens which are textual units (a sequence of characters). According

to Dekker et al. (2015, 4), a token is a textual unit at ‘any level of granularity, for

instance, on the level of syllables, words, lines, phrases, verses, paragraphs, text

nodes in a normalised XML DOM instance, or any other unit suitable to the texts at

hand’. The CollateX documentation more explicitly considers a token as a textual

unit that ideally carries meaning, thus above the character level. At letter level, phe-

nomena such as transposition are much more frequent and reduce the efficiency

of the alignment algorithm. For this reason, collation is preferably performed at

a higher level, rather than at character level. Gibson and Petty (1970) have tried

to use the sentence level as collation unit. However, they realised that it was very

complex to recognise sentence boundaries automatically, and opted instead for

a segment of twelve words (Gibson and Petty 1970, 285). Difficulties would arise

from ambiguities, such as the presence of punctuation marks inside a sentence (for

instance after abbreviations such as ‘Mr.’ or ‘Mrs.’).

Tokenisation is usually performed by a computer script, the ‘tokenizer’, and can be

achieved in different ways. First, plain text can be split into words at whitespace.

The main issue here is that white spaces are not always valid word separators. For

instance, texts may be written in scriptio continua, without white spaces, or with

an inconsistent word division. This is often the case in Latin: even when words

are divided, it is very frequent that word division is not consistent across witnesses.

For instance, the words res publica (the state) might indifferently be written as

two separate words or as one respublica. Elements of punctuation can also raise

questions. In French, aujourd’hui (today) is one word containing an apostrophe

inside; on the other hand, the same apostrophe becomes a word separator in j’ai

(I have). Enclitic particles may be problematic as well. These are particles which

are appended at the end of the preceding word. The English possessive ‘s is an

25http://nbviewer.jupyter.org/github/DiXiT-eu/collatex-tutorial/blob/master/unit4/Theory_of_
collation.ipynb (Accessed May 12, 2017).

77

http://nbviewer.jupyter.org/github/DiXiT-eu/collatex-tutorial/blob/master/unit4/Theory_of_collation.ipynb
http://nbviewer.jupyter.org/github/DiXiT-eu/collatex-tutorial/blob/master/unit4/Theory_of_collation.ipynb

2.4. Methodology of Automated Collation

example. In Latin, the enclitic -que, which means ‘and’, is attached to a word so that

respublicaque is equivalent to et respublica or even to et res publica (and the state).

Should these examples be treated as one token only for the purpose of collation?

Should punctuation marks be counted as tokens? Researchers need to consider

those theoretical questions and make their own decisions.

Another way to perform tokenisation is to select a list of nodes from an XML docu-

ment, with an XPath expression26. For instance, the XPath expression /TEI/text/-

body//w would select every ‘word’ element (<w>) of a TEI encoded text. In this

case, the <w> elements are likely added manually, which means that tokenisation

is actually prepared by editors who can have full control over the division of the text

into tokens. The issue of markup encoding is that it may interfere in the comparison

process. For instance, let us consider two sentences, one of which is in roman font,

and the other one has been encoded as italics:

Her tanned face turned black at the sound

<i>Her tanned face turned white at the sound</i>

A plain text comparison between these strings would return not only the variant

between white and black, but also the ones between Her and <i>Her, sound and

sound</i> (Shillingsburg 2014). Here <i> and </i> are elements of markup

which interfere in the comparison of the text. For this reason, markup must be

removed from the text for collation purposes. However, it may also be valuable

to keep the markup context of each words, either for a possible usage during

the comparison or for displaying the results in the final visualisation stage. In

addition, some markup may convey textual information, such as the presence of

an abbreviation or of a correction. Therefore, a tokeniser could take into account

the markup context of each word: in figure 2.12, tokens (the letters a, b, c and d)

keep attached to them the list of the elements in which they are wrapped. Token ‘c’

is wrapped in an element e2 which is itself nested in element e1. As a consequence,

after the tokenisation ‘c’ will keep as a feature its markup context (elements e1 and

e2). Tpen2tei, a collection of tools to work with the transcription platform T-PEN,

retains the markup context of XML elements when tokenising a transcription for

collation with CollateX27.

Finally, if none of the solutions described above are satisfying, researchers should

26XPath is a language used to navigate through elements and attributes in an XML document.
27See the update of September 19, 2017 ‘overhaul of XML literal and XML context data in tokens’

https://github.com/DHUniWien/tpen2tei/commit/81c92195967f90a14f287dbc7e85eafe87c5f666#
di�-1009�b46f7d4bc3cd106481ea6�a44 (Accessed October 10, 2018). The transcription tool T-PEN,
and tpen2tei, are discussed in Chapter 6.

78

https://github.com/DHUniWien/tpen2tei/commit/81c92195967f90a14f287dbc7e85eafe87c5f666#diff-1009ffb46f7d4bc3cd106481ea6ffa44
https://github.com/DHUniWien/tpen2tei/commit/81c92195967f90a14f287dbc7e85eafe87c5f666#diff-1009ffb46f7d4bc3cd106481ea6ffa44

2.4. Methodology of Automated Collation

Figure 2.12: Tokenisation with markup context. Retrieved from http://collatex.net/doc/ (May 12,
2017).

also be able to provide a pre-tokenised instance of their texts according to their

needs instead of adopting the tokenisation provided by the tool they are using.

In theory, anything could become a token, even non-textual elements (such as

diagrams, illustrations, and so on), and could be compared with an appropriate

equivalence function: the equivalence function determines when two tokens are

considered equivalent for collation purposes. As a basic example, in order to

compare drawings instead of words, one could define an equivalence function that

compares shape and color instead of letters. If one token has the features ‘color: red’

and ‘shape: square’, while a second token has the features ‘color: blue’ and ‘shape:

circle’, they are not equivalent and should probably not be aligned together. Such

equivalence functions are yet to be created, and only text comparison is possible

with most current collation tools. In the case of CollateX, it is possible to collate

strings of characters, which could represent a more complex structure than a single

word. If the Gothenburg model is followed, however, and tasks are properly divided,

the modular structure makes it easier to adapt the collation tools to new functions.

2.4.4.2 Normalisation

In digital format, the most basic form of a token is a simple string of characters, a

linear sequence of one or more symbols representing letters, but with no linguistic

interpretation attached to them. However, the issues discussed in the tokenisation

section p. 77 above show that a single string of characters is not necessarily a perfect

representation of a token. Tokens may need to include other features, such as a

markup context for instance.

In addition, a normalisation feature may be helpful. Collation tools usually offer to

normalise tokens in order to minimise what is perceived as insignificant variation:

typically, normalisation makes it possible to remove upper case, punctuation or

other aspects (such as, for instance, hyphenation or line breaks in Juxta, white space

79

http://collatex.net/doc/

2.4. Methodology of Automated Collation

(a) Hyphenation. (b) Whitespace.

Figure 2.13: Examples of incorrect alignments due to hyphenation and whitespace. Created with
CollateX’s online demo http://collatex.net/demo (May 12, 2017).

characters in CollateX) from the tokens that will be compared, so that these would

not be considered differences. The first reason to add a normalised form to the

original token is to help the collation algorithm to produce an accurate alignment.

The two simple examples in figure 2.13 show how whitespace or hyphenation can

lead to what a scholar would regard as a wrong alignment: here the program sees

that re-publica or re publica, in witness W2 on the middle line, is different from

both witness W1 and W3, from republica in witness W1 as well as De and Republica

in witness W3. With normalisation, on the other hand, it is possible to declare that

republica, re-publica and Republica are equivalent, and consequently the three

forms of the word would be correctly aligned.

The second reason to include a normalised form is to allow for a better visualisation

of significant variants. Significant variants are commonly understood to be the

ones which impact the meaning of the text, whereas accidental variations such as

orthographic differences, word division and abbreviations for instance, are often

neglected for the purpose of a critical edition. However, the transcriptions which

serve as an input to collation tools usually contain a diplomatic representation of

the witnesses, and not a normalised version of the text. As a result, when variants

are displayed in the visualisation, there is no way to distinguish between what is

a substantial variation, and what is accidental. Figure 2.14 shows an example of

how normalisation would impact the visualisation: the text is Catullus’ second

poem, transcribed from three manuscripts, and collated with Juxta. On the right,

the collation shows a normalised text, while on the left side, orthographic variations

and abbreviations were included. In this visualisation called ‘heat map’, the variant

locations are highlighted blue, and a darker shade of blue indicates a stronger

disagreement between the text displayed and the other witnesses. It is already

difficult with only three witnesses to locate significant variants in the right-side

80

http://collatex.net/demo

2.4. Methodology of Automated Collation

(a) Normalised. (b) Non-normalised.

Figure 2.14: Normalised and non-normalised texts. Created with Juxta Desktop application (May 2,
2016).

example where the text is not normalised. If there were many more witnesses

collated, the text could become entirely blue, and the visualisation would not

be helpful at all. This is especially the case for medieval traditions which have

countless orthographic variants.

In traditions with a very large amount of orthographic differences, it may be desir-

able to normalise the words to their root form (or lemma) instead of normalising

words to an inflected form. This process is called stemming. It is also possible

to normalise words to their part-of-speech category (POS) or to a combination of

lemma and part-of-speech. There are tools called lemmatisers which are designed

to do this automatically, such as the Classical Language Toolkit (CLTK)28 or Tree-

Tagger29. For instance, the words in the following sentence can be normalised to

their lemmas with CLTK:

Original: quae terras frugiferentis concelebras30;

Normalised: qui1 terra frugiferens concelebro.

Researchers using collation tools must therefore make important decisions regard-

ing normalisation, so as to obtain a good alignment and a useful visualisation.

It should be noted as well that the normalisation intended for a good alignment

may be different from the normalisation intended for a useful visualisation. The

advantage of tokens having both an original and a normalised form is that it is

28http://docs.cltk.org/en/latest/about.html (Accessed May 15, 2017).
29http://www.cis.uni-muenchen.de/~schmid/tools/TreeTagger/ (Accessed May 15, 2017).
30‘[Venus, you] who make the fruitful earth teem with life’ Lucretius, De Rerum Natura I.3-4,

translated by Englert (2003).

81

http://docs.cltk.org/en/latest/about.html
http://www.cis.uni-muenchen.de/~schmid/tools/TreeTagger/

2.4. Methodology of Automated Collation

possible to hide insignificant variants without a loss of information: the original

form is always available, should it be needed. The preparation of tokens that in-

clude both original and normalised forms is discussed more in detail in Chapter 4

and Chapter 7: for instance original and normalised forms may be encoded with

markup elements such as <orig> and <reg> in TEI. Normalised forms can also

be created automatically, for instance by transforming upper case characters in

lower case. In Section 8.4, I will explain how the collation results can be filtered in

practice, to ignore insignificant variants.

2.4.4.3 Alignment

Alignment is the core of a collation program, and also one of the most complex

parts. During the alignment stage, the sequences of tokens from the witnesses are

first compared in order to find the equivalences (or matching tokens). Tokens are

exactly matching when they share the exact same sequence of characters (letters

and/or punctuation marks). Then, gaps are inserted in between matching tokens to

obtain the best possible alignment. For example, let us consider the three following

witnesses:

W1 The brown fox
W2 The brown quick fox
W3 The quick brown fox

When the first two witnesses are aligned, the tool recognises that the words ‘The’,

‘brown’ and ‘fox’ are equivalent because they share the exact same sequence of

characters. The three words must be aligned, but ‘quick’ in W2 is not matching

any token of W1. Therefore, a gap is inserted in W1 between ‘brown’ and ‘fox’. The

alignment is now as follow, and the gap is rendered as a dash:

W1 The brown - fox
W2 The brown quick fox

Then the third witness W3 is compared to the first two. ‘The’ and ‘fox’ are aligned

with ‘The’ and ‘fox’ in W1 and W2; ‘quick’ is aligned with ‘quick’ in W2 and with the

gap in W1, and a gap is inserted in W3 between ‘The’ and ‘quick’. Now, ‘brown’ in

W3 is matching ‘brown’ in W1 and W2, but to align them would mean to change the

word order of W3 and place ‘brown’ before ‘quick’. It is not possible to change the

word order at this stage31, and since ‘brown’ does not match any other tokens in

31It is not a good idea to change the order of tokens, because it would change the word order of

82

2.4. Methodology of Automated Collation

either W1 or W2, gaps are inserted again in W1 and W2. The new alignment would

look like this:

W1 The brown - - fox
W2 The brown quick - fox
W3 The - quick brown fox

It must be noted that at this point, the program does not make any assumption

about the transmission of the text: the collation tool cannot recognise whether

‘quick’ was omitted from W1, or whether it was added in W2 and W3. The transposi-

tion is not recognised either, but for now it is considered as two distinct operations:

the addition or omission of ‘brown’, first before ‘quick’, and then again after ‘quick’.

There are different ways to perform the alignment, with different algorithms. The

witnesses can be compared in a ‘paiwise alignment’ such that each witness is

compared to one witness that is selected as the base text. The variants are then

gathered at the end. Another way to compare witnesses is to compare each witness

to all other witnesses. The alignment could also proceed by layers, just as we have

just seen: each time a new witness is compared, the alignment of the previous

witnesses is updated to take into account the new witness. This is called a ‘multiple

alignment’, or more precisely a ‘progressive multiple alignment’. Although pairwise

alignment is easier to implement than multiple alignment, its main issue is the

collation order: depending on the order in which witnesses are collated, the results

of the alignment may be affected. The issues and differences between the various

approaches will be discussed in the section about collation algorithms.

Finally, there are two notions central to the alignment stage: the use of a heuristic

method, and the scoring system. Collation, the comparison of multiple textual

witnesses, is a complex task to implement on a computer. In theory, each token

of each witness needs to be compared to one another, so as to consider every

possible alignment and find the perfect alignment. However, this involves a lot of

computations which make the whole process very long, and the computer is not

always able to decide which solution is the best one. For this reason, collation tools

operate with heuristic algorithms. Heuristics ‘provide a simple means of indicating

which among several courses of action is to be preferred’ (Pearl 1984, 4). Even if

heuristics do not guarantee that the best course of action will be preferred, they

will do it sufficiently often (Pearl 1984). Heuristic algorithms can solve complex

the text and thus its meaning. A text is an ordered list of words, and it matters in which order they are
written.

83

2.4. Methodology of Automated Collation

problems fast and efficiently, by sacrificing other aspects such as accuracy. ‘Heuris-

tic algorithms are most often employed when approximate solutions are sufficient

and exact solutions are necessarily computationally expensive’ (Kenny, Nathal, and

Saldana 2014). Therefore, the collation program does not need to find all possible

alignments, but rather only one that is considered good enough. This makes it pos-

sible to reduce the collation process to a reasonable amount of time. The scoring

system is provided in order to implement this heuristic algorithm, and to help the

program select a good alignment. When different options for the alignment are

present, the scoring system gives more weight to one of the options. An exact match

between tokens is the best option, and therefore it receives the highest score. A

substitution ranks higher than an addition or omission and therefore would receive

a higher score. This ensures for instance that in the two witnesses of table 2.3,

‘quick’ and ‘brown’ are aligned as a substitution, and not as a series of addition and

omission. The parameters of the scoring system have thus a very important role to

play in the heuristic alignment, and changing the scoring system may result in very

different alignments.

W1 The brown fox The brown - fox
W2 The quick fox The - quick fox

Table 2.3: Preference for substitution over addition and omission.

Sometimes, ambiguities arise when the tokens do not match exactly, and the pro-

gram makes an arbitrary decision. This was the case in our example of figure 2.13

above, when re-publica in W2 was not considered equivalent to the other tokens in

W1 and W3. Therefore, it was arbitrarily aligned to the first token De, even though

an editor would obviously have aligned it with republica. Transpositions and repe-

titions as well may lead to ambiguities. If ambiguities cannot be solved with the

help of normalised forms, then it is possible to refine the alignment thanks to the

analysis stage.

2.4.4.4 Analysis and Feedback

The heuristic approach and the scoring system we have seen above do not always

yield a good enough alignment, and the analysis stage gives the opportunity to

improve the result obtained from the alignment stage. It can be improved either

manually by the user or automatically. It is possible to change the parameters of

the scoring system, and give more or less weight to some phenomena. Or the user

may predetermine the alignment of some tokens prior to collating the witnesses,

which may help the program to align correctly incomplete witnesses, for instance.

84

2.4. Methodology of Automated Collation

Figure 2.15: Comparing exact matches first can result in a wrong alignment. Created with Colla-
teX’s online demo from the sample ‘I bought this glass, because it matches those dinner plates.’
https://collatex.net/demo/ (October 10, 2018).

A feedback cycle is introduced when additional knowledge is submitted by a user

back to the program in order to obtain better results with the next collation.

’Fuzzy matching’ is a good example of improvement to the alignment. Fuzzy

matching — or ‘near matching’ — is a technique used to detect if two tokens

which do not match exactly are similar enough to be considered equivalent (for

instance re-publica and republica, or any kind of orthographic variant). If fuzzy

matching had to be applied to each token, the cost in terms of computations would

be too high during the alignment stage. For this reason, it is more effective to

compare first exact matches with the heuristic alignment (it is quicker); and later

in the analysis stage, fuzzy matching can be applied only to tokens that were not

matching previously. However this does not always provide the correct result: in

figure 2.15, for example, ‘those glasses’ is aligned with ‘those dinner plates’ instead

of ‘this glass’. Fuzzy matching may require the use of a parameter in order to decide

the threshold of token equivalence: when can two tokens be considered similar

enough to be equivalent? When should they be considered as non-matching?

Finally, in the analysis stage, the program may interpret some combination of

additions and deletions as transpositions: the author or copyist of a text has moved

a portion of the text in one witness from one place to another in a new witness

so that the copy has a different word order from its exemplar. Transposition can

be a very hard phenomenon to detect for a computer, especially when the text

involves repetitions. Transpositions can at best be suggested by the program, and

the editor’s judgement may be necessary to decide what happened in the text

(Dekker et al. 2015). Example of a problematic case for a computer (Spadini 2016,

123):

W1 this dear boy has paid -
W2 this - boy has paid dear

Table 2.4: The issue of aligning homonyms.

85

https://collatex.net/demo/

2.4. Methodology of Automated Collation

Figure 2.16: Homonyms and transpositions in CollateX. Created with CollateX’s online demo https:
//collatex.net/demo/ (May 12, 2017).

In figure 2.16, the homonyms ‘dear’ (an adjective in W1, and an adverb in W2),

may be interpreted as a transposition. It is actually how CollateX interprets the

relationship between the two tokens, and the transposition is represented as a line

of grey dashes. However, since the tokens are different part of speech, a combina-

tion of addition and omission may be a better interpretation. In order to make a

correct interpretation, the program would need more indications, such as the part

of speech of each token.

The analysis stage was included in the Gothenburg model explicitly in recognition

that ambiguities cannot always be solved by computing means, and that the inter-

vention of an editor may be needed at some point (Dekker et al. 2015). In this sense,

collation is only semi-automatic and not fully automatic.

2.4.4.5 Output Format and Visualisation

The last step in the model is concerned with the form that the result of collation

will take. The program may offer various options of output format (XML TEI,

JSON, GraphML, etc.) and visualisations in a human readable form (such as a

side-by-side display of witnesses in columns, a collation table, a text with critical

apparatus, a variant graph, or a heat map with a single text and variant locations

highlighted in colour). In this chapter we have already seen examples of visualisa-

tions: the collation table (figure 2.13), the heat map (figure 2.14) and the variant

graph (figure 2.16). Different collation tools will attach more or less importance

to visualisation in human form. On the other hand, some tools which do not per-

form automated collation will focus on visualisation only, such as the Versioning

Machine32 or CATview33 for instance. Again, the modular approach of automated

collation should facilitate the integration of collation tools with visualisation tools:

for instance, Juxta implements a visualisation with the Versioning Machine in the

web interface Juxta Commons.

32http://v-machine.org/ (Accessed May 19, 2017).
33http://catview.uzi.uni-halle.de/ (Accessed May 19, 2017).

86

https://collatex.net/demo/
https://collatex.net/demo/
http://v-machine.org/
http://catview.uzi.uni-halle.de/

2.5. Advantages of Computers and Black Box Issue

The main issue with collation visualisations is their often fixed nature. A static

visualisation may tend to convey an undeserved impression of correctness or

authority (Andrews and van Zundert 2013). The results of the collation tool cannot

be challenged or refined, despite the fact that the program sometimes resolves

ambiguities by choosing arbitrarily one option, which may not be the best one

for a scholar. Therefore, it is important that users do not place too much trust in

collation results, but evaluate them critically. The solution to this issue is to provide

an interactive interface for a user to inspect, manipulate and eventually modify

collation results. According to Andrews and van Zundert (2013), the essential

interactions proposed to a user should include at least the following:

• Annotating variants with information on their relationship.

• Combine or split tokens into readings, for a better representation of the

variation.

• Update the alignment where tokens are not correctly aligned.

In summary, there are two sides of using a computer to automate the process of

collation: it may be advantageous in some aspects (such as rapidity or consistency),

but it can be very difficult to understand the alignment algorithms and how they

work to produce a specific output. In the following section, we will explore more

in detail the reasons why scholars have adopted the computer for the collation

process and the issue related to trusting a computer’s output, especially when the

processes that led to such results are not directly available to the user, as if hidden

in a black box.

2.5 Advantages of Computers and Black Box Issue

2.5.1 Benefits

It is a common trope, among scholars adopting automated collation, to describe

collation as a boring or tedious, and error-prone activity in order to highlight

the benefits of working with computers (Gibson and Petty 1970; Shillingsburg

1978; Robinson 1989a; Hilton 1992; Dekker and Middell 2011; Andrews 2012).

Automated collation should in particular relieve editors from mechanical and

repetitive tasks, thus saving time and efforts which may be better spent in critical

activities which the computer cannot perform such as choosing a reading among

variants (Robinson 1989a; Marín 1991; Shillingsburg 1996). Computers are also

praised for their rapidity and their reliability: computers work faster than human

87

2.5. Advantages of Computers and Black Box Issue

beings, are more accurate and more consistent (Froger 1968, 218; Hilton 1992,

140; Reeve 2000, 196). However, as we have seen above in Chapter 1, collation

is already a critical activity that involves important decisions. In addition, the

change of methodology, from manual collation to full transcriptions of witnesses,

may not involve a lesser amount of work for an editor. Transcription may be as

time-consuming and error-prone as manual collation.

When computers were first adopted in textual criticism, the machine was con-

sidered merely as a slave at the editor’s service, an effective research assistant

(Shillingsburg 1996, 141; Vanhoutte 2010, 121; Pierazzo 2015). In the context of

automated collation, the computer can compare texts more quickly and efficiently

than the graduate students who used to collate (Gibson and Petty 1970, 280). How-

ever, scholars should not limit themselves to replicating manual methods on a

computer, but embrace the new possibilities offered by computing methods be-

cause it will ultimately reduce the time and efforts needed (Raben 1979, 256). Raben

also showed how the adoption of computing methods can improve the task of auto-

mated collation (see p. 50 below).

As Father Roberto Busa noted, ‘the use of computers in the humanities has as its

principal aim the enhancement of the quality, depth and extension of research

and not merely the lessening of human effort and time’ (Busa 1980, 89). Therefore

computers should not be considered only as time and labour saving devices, but

also as problem solving (Reeve 2011, 364). Fischer (1970, 300-301) warns that until

1970, Humanities scholar have "let the scope of their questions be arranged by the

capacities of the computer rather than use the new possibilities it affords to enlarge

their horizons and ask questions which hitherto could not be answered". For

Fischer (1970, 304), computers are especially useful in the field of textual criticism.

In particular, the computer allows to work with the complete material available and

not only a selection, an important fact also highlighted by Fischer (1970) and Parker

(2012). Fischer (1970, 308) also cite as advantages the fact that we can investigate

orthographical differences or ignore them, and the fact that we can see how often

groupings of manuscripts can be found.

In addition, the computer encourages scholars to be more precise, and more sys-

tematic (Busa 1980, 89; Marín 1991, 103). Parker (2006, 26) and Dubuisson and

Macé (2006, 27) list a series of advantages of computer methods for collation, in-

cluding among others, being able to reuse the material in various ways (such as

adding new witnesses, altering the base text, analysing the relationships of wit-

nesses, selecting the most important witnesses and preparing a critical edition),

88

2.5. Advantages of Computers and Black Box Issue

collaborating efficiently, and presenting the data according to the editor’s need in

different visualisations. Collaboration between different projects may be greatly

enhanced by a shared methodology (Parker 2006), and data exchange may be easier

with a shared format (Dubuisson and Macé 2006).

2.5.2 Challenges

Although these benefits make automated collation worthwhile, it would be risky

to trust the results of algorithms and tools because the computer is considered as

more objective and thus reliable than a human editor, as Marín (1991) suggested.

On the contrary, human biases are built into the tools used by scholars, but hidden

by the ‘black box’ that is a computer program (ter Braake et al. 2016): Robinson

(1994) experienced this when he tried to use his first collation tool Collate with data

from other projects (see p. 100 below). Sculley and Pasanek (2008) have shown that

using three different algorithms for data mining to interpret a text could lead to

different and contradictory conclusions. Even a simple function such as a word

count may yield different results according to different tools (van Ossenbruggen

2015). For this reason, it is important to always be critical of results obtained with

computational methods, and not draw hasty conclusions based on those results,

but rather compare the outputs of different methods.

Another issue related to hiding the research process behind the black box of a

computer is that research is not reproducible (Marwick 2015). If a scholar’s results

cannot be recreated by someone else, how can these results be reliable? The

problem is that much of the process that led to a specific result is kept private,

while only the end result is publicly available. The main objections to publishing

the research process are first the time necessary to clean up the files and prepare

an appropriate documentation, and second receiving credit for this work (Marwick

2015). There has been some effort, especially in the scientific community, to open

up the research process to other scholars. For instance platforms such as Figshare

allow for citing the outputs from various stages of research that happen before

the final publications. However, these platforms are not yet widely adopted or

recognised, especially in the field of the Humanities34.

2.5.3 The Black Box Issue

Black box refers to a device or a tool for which the exact functioning is unknown: a

collation program, for instance, takes transcriptions as an input and generates an

34Figshare is an online repository for sharing all kind of research outputs, which can be cited by
others https://figshare.com/ (accessed May 22, 2017).

89

https://figshare.com/

2.5. Advantages of Computers and Black Box Issue

output, but the algorithm that produced the output, its implementation, is hidden

from the user. It can be argued that manual collation is already a kind of black

box, since collation is not often published, and the exact procedure followed by the

scholar is rarely explained: there are few descriptions of manual collation proce-

dure, especially regarding what to include in the collation (see Chapter 1). Andrews

(2017) argues that automated collation tools are a different kind of black box than

(for instance) tools used to create a stemma with algorithms, because the collation

tool does not make any judgement about the correctness of the alignment. This

decision is left to the editor, who should review the alignment and correct it when

necessary. However, scholars should be aware that different tools and algorithms

will produce different alignments: for instance CollateX may be a good solution

to deal with transpositions, but the Classical Text Editor may be a good solution

to deal with widespread orthographic variation. This issue becomes especially

important if the collation results are used as an input to a phylogenetic program in

order to create a stemma, since different alignments can in turn generate different

stemmata.

The best way to counter the black box issue may be to document very accurately

what is done. For example, Reeve (2011) complains that Viré (1986) does not give

enough information about her procedure and reasons in classifying Hyginus manu-

scripts, so that it is difficult to evaluate some parts of her work. Sculley and Pasanek

(2008) recommend a set of best practice for data mining which can be expanded to

any field adopting computational methods: to always make assumptions explicit,

use multiple methodologies, report failed trials, since they can bring valuable infor-

mation, and to engage in peer-review of computational methodology. Chambers

et al. (2017) also highlight the need for a detailed documentation on how to use

tools and their functionalities. If this information is absent, it may be difficult for

users to trust the results obtained through a tool, and its usefulness with regard to

solving a specific problem.

Collation tools and algorithms have been described in various levels of detail, and

several criteria to evaluate them have arisen. In the next section, we will examine

how to assess the various collation tools which have been created. As we will see,

the progress between early collation programs and the latest tools means that in

practice, different criteria might apply to the programs across different periods of

time.

90

2.6. Comparing collation tools

2.6 Comparing collation tools

In this section, I will present the criteria which will serve as a framework to evaluate

collation tools, instead of describing those tools and how they work one by one.

Indeed, many of the programs listed in the appendix are now obsolete; even the

most up-to-date tools such as Juxta or CollateX are still under development, and

may further evolve in the near future, while the latest tools created may not yet

be available. However, a set of criteria would not only be helpful for scholars to

find the software most convenient for their needs, but it would also facilitate the

comparison of potential new tools against already existing solutions. As noted by

Siemens (1994), when comparing three collation tools for PC machines, there may

not be one universal solution for automated collation. The best tool to choose will

depend on the kind of text to collate, specific problems related to a textual tradition,

and the purpose of the collation project. Consequently, this section must be set in

the broader context of tool criticism.

Tool criticism is emerging as an answer to the concerns about the growing use

of tools in the field of Digital Humanities (Gibbs and Owens 2012; Chambers et

al. 2017). While more and more scholars adopt digital tools and methods in their

workflow, there is a lack of communication between the production side (docu-

mentation about the tools’ functioning and purpose) and the side of users (who

uses the tools, to do what, how efficient is the tool). As a result, tool criticism is

meant to provide a framework to analyse and evaluate tools, and develop critical

thinking about tools. To this end, several sets of guidelines and criteria have been

proposed both for developers to prepare better tools (and for funding bodies to

support better tools), and users to select the most appropriate tools according to

their need (ter Braake et al. 2016; Chambers et al. 2017). It must be noted here that

there is no clear distinction between developers and users, as it is possible that the

same person is both developer of a tool and user of their own tool or other tools.

The criteria proposed by Chambers et al. include four broad categories: usability

(user experience, interface), documentation (all information pertaining to how the

tool work, its purpose and target audience, the algorithms implemented), mainte-

nance (integration of user feedback in the tool development) and flexibility (extent

of application). ter Braake et al. (2016) attempt to equip historians with a set of cri-

teria to help them assess the values of the tools that they use for research purposes.

They focus on questions such as understanding the barriers that digital methods

introduce between scholars and primary data, discovering assumptions built into

tools that are necessary to interpret the results, verifying the tool’s results by repro-

91

2.6. Comparing collation tools

ducing its results, and so on. Data appears as an important aspect in tool criticism.

The format of data may influence a scholar’s choice for a particular tool (Chambers

et al. 2017), and on the other hand, researchers should consider if the data they are

using are best suited to answer the question at hand (ter Braake et al. 2016).

Regarding collation software, little has been done to formalise criteria for com-

parison and evaluation of the tools. However, several contributions have been

published, which compare various collation tools (Gilbert 1973; Hockey 1980;

Siemens 1994). In addition, Hans Walter Gabler’s Remarks on Collation (2008)

reflects upon the fundamental requirements of collation tools: the paper explores

requirements according to different groups of users, such as the textual critic, the

editor, and the literary critic. From a textual critic’s point of view, the tool should

help users to provide accurate input (i.e. the tool should make it possible for users

to correct errors introduced in the transcription), persistence of coordination and

intelligence of coordination, that is, the algorithm should be efficient enough to

perform a good alignment, albeit always providing users with the possibility to

interactively correct the alignment output. The editor would require additional

features, such as a critical apparatus presentation, and being able to locate variant

readings in their broader context (i.e. a parallel text presentation). Building on

Gabler’s remarks, a survey was carried out for the Modernist Versions Project, which

compared several automated collation tools according to a set of criteria, in order

to adopt a tool for collation in their own workflow (Huculak and Richardson 2013).

Having identified the different activities involved in collation, Huculak and Richard-

son devised a series of nineteen questions to ask when testing a tool: for instance,

they ask if the program is open source, what are the input and output formats, what

algorithms are used to align texts, or what are the manipulations and visualisations

available after processing. Regarding collation algorithms, Dekker et al. (2015) have

proposed criteria to evaluate existing algorithms, and useful considerations about

the assumptions built into CollateX’s code can be found in van Zundert and Dekker

(2017).

In addition to tool criticism, van Zundert and Dekker (2017) highlight the need

for code criticism in the Humanities, in order to evaluate the scholarship nature

of code and software. van Zundert and Dekker (2017) define code criticism as

asking ‘What does this code do?’ They argue that the key to revealing the scholarly

nature of code is the difference between ‘enabling’ and ‘performing’ a scholarly

activity. To demonstrate this, van Zundert and Dekker (2017) compare two tools:

eLaborate and CollateX. On the one hand, eLaborate enables, and even facilitate,

transcription, but this activity is still performed by a scholar. On the other hand

92

2.6. Comparing collation tools

CollateX makes decisions about textual alignment during collation, and in that

sense CollateX performs a scholarly activity. However, van Zundert and Dekker

(2017) recognise that it can be difficult to ascertain whether scholarly decisions

are indeed delegated to code: code can be hard to read, assumptions are usually

tacit, and it may be impossible to deduce the conceptual model by looking at the

code alone (van Zundert and Dekker 2017, 128). Code is not always available for

collation tools, and it would be difficult to interpret assumptions built into the

tools without discussing with their creators. Furthermore, the capability of ‘reading’

code is limited to those that can read code, which is a small number with respect

to those that need to evaluate code. For these reasons, I have decided to focus on

broader criteria to compare and evaluate collation tools, and help scholars choose

the tool that is best suited to their needs. Those criteria can broadly be divided into

four categories:

1. Interface

2. Data preparation

3. Collation process

4. Analysis of the results

I will now consider the issues related to each category, and how the various collation

tools have dealt with those issues. Since collation algorithms are central to collation

tools, and yet very complex, I will examine them in a separate section (below).

2.6.1 Interface

The first contact of a user with the collation tool is the interface. There are several

issues related to the interface, such as the degree of user-friendliness: what is

the level of technical knowledge required to use the tool? Is there an appropriate

documentation? What are the installation requirements, in terms of the equipment

needed or difficulty to install the tool? On which platform(s) is it available: PC, Mac,

Linux, or as a web-based application? What is the programming language, and

does it have an influence? Is it open source, or under a commercial license? etc.

It is difficult to evaluate the interfaces of early collation tools, since they are no

longer available. From Peter Shillingsburg, we learn for instance that UNITE was

the most user-friendly program of those available at the time (Shillingsburg 1996,

140). The developers of the Donne Variorum program, DV-COLL, recognise that

93

2.6. Comparing collation tools

humanist scholars can be ‘downright technophobic’ and therefore devoted special

efforts to make their program user-friendly (Stringer and Vilberg 1987, 89). The

URICA! II system was presented as a simple and easy to use tool for collation of

modern texts, as opposed to Robinson’s Collate whose complex user interface was

designed for rich medieval traditions (Hilton 1992, 143). Stringer and Vilberg (1987,

86) also argued that a multiplatform tool was a highly desirable feature. However

as for now, the DV-COLL program is available only on Windows machines, while

most of the other tools currently available are platform independent. In this regard,

Juxta is the tool which offers the most possibilities, with a desktop application for

Macintosh, Windows and Unix, a web service and two web interfaces.

While web interfaces require no installation, other tools involve a more complex

process: TEI Comparator was in particular noted for its difficult installation re-

quirements including a database and a web server (Huculak and Richardson 2013).

Although CollateX requires only the installation of Java in order to be used (CollateX

Documentation), it is not in reality so simple: Wesley Raabe, a scholar at Kent

State University working on modern texts such as Uncle Tom’s Cabin, describes

in a couple of blog posts his experience with installing CollateX on a Macintosh,

and the various issues related to updates of both the Mac Operating System and

of CollateX itself (Raabe 2014, 2015). The experience shows the issues faced by a

literary scholar who is working on his own. It contrasts also with the opinions of

Huculak and Richardson (2013), who included a computer scientist in the group

that reviewed collation tools: Huculak and Richardson underlined the exception-

ally clear documentation of CollateX, while Raabe (2015) speaks of a ‘technical

hellscape’ and reflected on the need to attend a CollateX workshop in order to make

CollateX work properly.

The choice of a programming language was discussed in the context of several tools.

Dearing (1962, 257) argues that the best choice for a programming language, at

least for beginners, is the one most familiar to the staff of the computer center on

their campus, because it will be taught free of charge and advice will be easy to

obtain. On the other hand, Dearing also recognises that it may be better to choose

a language well established in the wider academic community to share a program

with other scholars. Later on, Petty and Gibson as well as Peter Robinson chose

the SNOBOL language to develop their programs because of its capacity to handle

text and perform pattern matching or string concatenation (Robinson 1989a, 101;

Gibson and Petty 1970, 281). In addition, SNOBOL was taught in Oxford at the time

when Robinson was working on his program, while Petty and Gibson received the

advice from programmers at Princeton University who were developing Snobol

94

2.6. Comparing collation tools

4. Twenty years later, Andrews (2009, 43) turned to the language Perl for the same

reason: it was the best programming language at the time to perform text processing

operations. Perl was also supported by a wide user community, and many modules

of code were already freely available on the Comprehensive Perl Archive Network

(CPAN)35, so that it was not necessary to write the whole program when a problem

could be solved by an existing module.

The TUSTEP modules were written partly in SIMULA and partly in assembly lan-

guage36. It requires users to learn a scripting language to execute the program,

TUSCRIPT, which is quite complex and necessitates training (Huculak and Richard-

son 2013). In addition, the documentation is available only in German, a factor that

can discourage non-German speaking users, despite efforts to translate the docu-

mentation and some commands to English37. For these reasons, the developers

of TUSTEP implemented a new front-end interface to the program called TXSTEP.

The new interface makes TUSTEP available from an XML editor such as Oxygen,

which is a familiar interface for many scholars working in the field of digital schol-

arly editing. Some annotations and instructions are available in English as well.

However, TXSTEP is not yet successful in its goal to help overcome the language

barrier and provide a self-teaching environment (Huculak and Richardson 2013).

As Robinson’s program Collate evolved, so did the choice of programming language:

while the first iteration of the program was used by Robinson himself only as

a command-line tool, the next version Collate was meant for a wider use and

needed a proper graphical user interface (GUI). So the programming language C

was chosen, among other reasons, because it was highly compatible with Macintosh

operating systems, which provided the best user interfaces in the 1990s (Robinson

1994, 37). Although C may have permitted to port Collate to another operating

system, the program remained available on Macintosh only. When the Macintosh

systems switched from ‘Classic’ to ‘OS X’ in 2001, the task of porting Collate to the

new version did not seem worth the effort (Robinson 2007b). Instead, the new

program CollateX was designed and Robinson turned to Java for its availability on

multiple platforms with complex graphical interfaces, its text and string-handling

features, and its popularity among developers of XML (see Robinson 2007b). Since

2014, the development of CollateX continues in Python, which is a relatively easy

programming language to learn and is gaining popularity in the Digital Humanities

35https://www.cpan.org/ (Accessed June 06, 2017).
36http://www.txstep.de/prot/prot19.html (Accessed June 06, 2017).
37The documentation was first translated to English in 1989, but is now out of date (Nyhan and

Flinn 2016), and later in 1991 TUSTEP commands and messages were also translated to English (Ott
1991).

95

https://www.cpan.org/
http://www.txstep.de/prot/prot19.html

2.6. Comparing collation tools

community (Dekker 2014).

Almost every collation tool created since 2000 is open source or freely available. One

notable exception is the Classical Text Editor (CTE), which is under a commercial

license for individual scholars or institutions. A yearly subscription is available

as well as a free 30-day demo version. One of the Juxta web interfaces, Juxta

Editions, offers subscriptions plans with additional features such as web publishing

and collaboration with other users38. Other collation tools have not been made

publicly available: LERA and LAKomp, Prabhed, or the Collator program in the

Multi-Variant Editor for Documents (MVED). The reason why LERA/LAKomp have

not been made open source is that a high level of technical knowledge is required

to install and maintain the tools; however both tools can be made available on

demand (Markus Pöckelmann, private email). The collation program created by

Roelli and Bachmann was not published, but is also available from Philipp Roelli

upon request. Among the latest tools, iAligner’s code is available on Github39, and

although eComparatio is not yet ready for use, it will be made available as a free

online service for researchers (Schubert et al. 2016).

Finally, the interface issues may seem secondary compared to the other features of a

collation tool (such as the amount of data preparation, the efficiency of the collation

process, or the output obtained). However, the interface may be the decisive

argument to choose one tool over another. For instance, Huculak and Richardson

(2013) recommended the use of Juxta over Collatex, despite the fact that CollateX

offered more choices of algorithms. The reason for preferring Juxta was in particular

the user-friendly interface for beginners, while CollateX required more technical

knowledge to operate. Siemens (2009) notes that one of the most successful tool

for editing the Henry VIII Manuscript and the Devonshire Manuscript was the

Versioning Machine: although it does not perform automated collation in itself, it

is an open source tool which does not require the installation of any plug-in.

2.6.2 Data preparation

What is the input to a collation program? Any text to be collated with a computer

needs to be prepared in a digital format in some way. As we will see, OCR is still

difficult for manuscript documents which need to be transcribed, and even a

printed text which has been scanned and optically recognised would need to be

corrected. Moreover, the text may need to be tagged according to some scheme,

such as the TEI for instance. Finally, a normalisation may be performed on the text,

38http://www.juxtaeditions.com/plans (Accessed June 07, 2017).
39https://github.com/OpenGreekAndLatin/intra-language-alignment (Accessed June 07, 2017).

96

http://www.juxtaeditions.com/plans
https://github.com/OpenGreekAndLatin/intra-language-alignment

2.6. Comparing collation tools

Figure 2.17: Example of a punched card (Froger 1966, 143)

to unify orthographic variation, which could result in a loss of information if the

original form is not recorded alongside. For the earlier programs, the amount of

data that computers were able to process would require further preparation, in

order to divide the material into manageable units of text.

The computer program needs to receive the texts to be compared in a proper

format, that is a machine-readable format. For the first generation of collation

tools, it meant that texts had to be transcribed on punched cards. Punched cards

are paper cards which contain information encoded by the presence or absence

of holes perforated in specific places on the card. Computers treat every piece of

data as bits, i.e. sequences of zeros and ones, and the absence or presence of a hole

in the card is how data is translated into zeros and ones so that the computer can

read and understand it. In figure 2.17, you can see an example of a punched card.

The line at the top of the card shows in plain text what is actually encoded in the

punched card, for a human reader to check it. Then the card is read by a machine,

column by column. The combination of holes in various lines of a column translates

as a letter, and the absence of any hole translates as a blank space. In addition, only

a restricted set of characters were available: Froger could not distinguish between

upper or lower case letters for instance, and any special characters such as accents

or punctuation marks would need to be encoded as a pre-defined combination of

letters, arabic numbers and full stop (Froger 1966, 144). Cabaniss had more symbols

available on larger punched cards, but needed for instance to use the dollar sign

before a word to indicate that it would start with a capital letter (Cabaniss 1970, 3).

97

2.6. Comparing collation tools

One card can encode the text of one witness, and only a limited portion of the text:

for instance Froger could encode only forty-eight characters on each card (Froger

1968, 232). Strategies were needed to know when a word is split between two cards

or not: Froger represented this with a blank space at the end of the card if the word

is entire; the absence of a blank space at the end meant that the word was divided

between this card and the next. As a result, a very large quantity of cards were

needed to encode the full text of many witnesses, which could make transcription

a very long and complicated process. Even when magnetic tapes started to replace

punched cards as an input method, scholars would still prefer punched cards for a

variety of reasons: punched cards were easier to check and correct (Dearing 1970,

264), more durable and less expensive (Widmann 1971b, 57), or better suited to

a repeated usage during testing phases (Gibson and Petty 1970, 281). The whole

process of transcribing texts into punched cards was so cumbersome that input was

actually considered the major issue of early collation programs, and more generally

of the use of computers in the humanities (Gibson and Petty 1970, 300). In fact

for a long time, automated collation was considered possible but not practical, in

particular because of the input issue and high costs associated with it (Oakman

1972, 345; Robinson 1994, 33).

However, the appearance of user-friendly personal computers and progress in

input methods later encouraged again scholars to engage in automated colla-

tion (Shillingsburg 1978; Robinson 1994). Two options were available to create a

machine-readable input: scanning pages with an Optical Character Recognition

device (OCR), or typing the texts by hand on a keyboard. The possibility that a

computer could scan a page and recognise the text automatically has raised the

hopes of may scholars (Andrews 2014b). Despite the optimism of Robinson (1994,

33) who suggested that transcription could soon become unnecessary, even for

manuscript handwriting, OCR has faced many issues.

Froger (1968, 277) remarked already that handwritten manuscripts were too ir-

regular for a scanner to recognise the text, due to abbreviations and ligatures for

instance. OCR would fail especially when corrections or erased words would occur,

which are the most interesting features for an editor. Handwriting recognition

has not been solved yet (Andrews 2014b, 178), but the problem is being actively

addressed (Fischer et al. 2009; Naji and Savoy 2011; Arvanitopoulos Darginis and

Süsstrunk 2014). It seems that the recognition of handwritten medieval manu-

scripts may be a simpler task than for modern handwriting (Fischer et al. 2009,

142).

98

2.6. Comparing collation tools

Figure 2.18: OCR with ABBYY FineReader. Created in Juxta Editions (June 10, 2017).

In the case of early printed texts, the OCR option would not prove practical either:

scanners would not deal well with the irregularities of older printed editions, which

are the primary sources of many scholars (Shillingsburg 1996, 137). Shillingsburg

notes as well that scans may be more helpful when correcting the transcription,

because scanner’s errors are in general ‘goof’ nonsense that are easier to spot than

the errors of a typist. Recent efforts in improving OCR accuracy for critical editions

of Classical texts (Boschetti et al. 2009) may have proved more successful: the

tool iAligner has been used to compare good OCR outputs and to correct them

(Yousef, Palladino, and Crane 2017). Juxta Editions, in its free account, offers the

possibility to apply an OCR tool to a limited number of pages. The OCR tool used

is ABBYY FineReader, an industrial leader in the field40. However, the example

below shows that ABBY FineReader was far from perfect for Calpurnius. The first

page of Calpurnius’ editio princeps was scanned with ABBYY FineReader in Juxta

Editions, and the result was not really usable. For instance, many letters are not

properly recognised, especially the long s, or the diphthongs ae and oe, and the

last five lines are barely readable. The words are not well separated with blank

spaces, the tail of an upper case Q in line 6 was transcribed as an underscore, a

mark in the margin was transcribed as a slash / in line 24, and so on. In fact, so

many corrections were needed that it seemed more practical to transcribe the page

by hand directly instead of correcting the OCR output (see figure 2.18). Another

tool, Transkribus, uses ABB FineReader to provide handwritten text recognition

services, when enough material has been transcribed by hand (see Chapter 6).

Several collation programs have been criticised for their rigid input format require-

ments (Gilbert 1973; Robinson 1991). For instance, Widmann’s program would

40https://www.abbyy.com/en-eu/finereader/ (Accessed June 09, 2017).

99

https://www.abbyy.com/en-eu/finereader/

2.6. Comparing collation tools

require a precise line numbering system, so that each line of Shakespeare can be

compared in 60 editions. In practice, it means that an initial collation must be

done by hand, in order to correctly pre-align the editions (Hockey 1980, 148). While

it may be a good solution for the text of Shakespeare’s play Midsummer Night’s

Dream, it would not be practical for a medieval prose text: ‘the task of pre-editing

alone might require nearly as much time as traditional methods’ (Gilbert 1973,

142). The problem of rigid input format was not limited to Widmann’s program.

UNITE and DV-COLL were both criticised by Peter Robinson for the same reason

(Robinson 1991, 85, note 20; 1994, 44, note 7). UNITE did not require ‘pre-editing’

with the addition of tags or labels, and could cope with any transcription format

according to Marín (1991, 109). However, each file containing an encoded text must

be formatted in a specific way, with text identifiers at the beginning of each file, and

stanzas of maximum 5 lines must be separated by a blank line, and so on. The exact

requirements are described in Marín (1991, 110). The system of stanzas makes it

difficult to use UNITE for any other kind of text. Prose texts cannot be collated at

all, and even poetry would be difficult in the case when the text is not divided into

stanzas, such as Chaucer’s Canterbury Tales. DV-COLL requires as well that input

files follow a strict format, containing five items: a header with metadata, the title

of the poem, the poem written line-by-line, a potential subscription, and finally a

footer to record particular features of the transcription (Stringer and Vilberg 1987,

84).

When Robinson tried to use his first program Collate on other texts than an Old

Norse saga, the results were not as good as expected (Robinson 1994, 36). The

reason was that many assumptions about the text, its content and its structure,

were incorporated into the program. If the input files did not comply to specific

requirements, it would affect the collation results. Consequently, when Robinson

designed Collate, he included as a main principle of automated collation the fact

that ‘texts for collation must not be rigidly formatted, but can be richly marked

up’ (Robinson 1994, 36). This would leave as much liberty as possible to scholars,

and ensure that Collate could deal with many different kind of texts. A markup

scheme was designed for Collate, of which only one element is mandatory: an

identifier of a block, so that the text is divided in blocks to be collated together. The

length of these blocks is not pre-defined, and can vary from 1 to 32,768 characters.

Other markup tags are available to indicate a page break, abbreviations, or add an

editorial comment (Robinson 1994, 38-39).

Recent programs have become more flexible in terms of input format, but not all of

them offer more than one option. The most common input formats are plain text

100

2.6. Comparing collation tools

and XML. For instance, the TEI Comparator works only with XML input. On the

other hand, Philipp Roelli’s program takes plain text where the orthography should

be normalised already (in order to find significant differences only), and the text

should start with the witness’ siglum followed by eight blank spaces and a vertical

bar |. TRAViz also has a fixed input format in the form of an array in JSON format41:

each item in the array is an edition, which contains both an identifier (or siglum),

and a plain text version of the witness. The Classical Text Editor accepts plain text

input and XML as well. Nmerge can deal with plain text, XML (especially the TEI

XML encoding), HTML (including EPUB) and some custom formats42. According

to Yousef, Palladino, and Crane (2017), iAligner allows for input in plain text or in a

tabular format, but not in XML. The tabular format can be a CSV file, where each

witness is in a separate column, and each line represent a specific block of text (in

which case, the witnesses need to be pre-aligned before collation)43.

In TUSTEP it is possible to enter plain text directly into the program, or to import

data from a different format. TUSTEP Handbook does not make it very clear which

format can be imported and how the data will be treated, in the case of an XML input

for instance. The documentation seems to focus rather on the encoding scheme

(ASCII, ISO, utf-8, etc.) and how to transform it into TUSTEP data44. According to

TUSTEP Wiki, it should be possible to import files in XML, HTML and Microsoft

Word documents45.

Regarding the input format, Juxta seems to be, again, the tool which offers the most

options: plain text in several formats (typing directly in Juxta, simple text files, rich

text files, Word or OpenOffice documents, pdf and epub documents), HTML files

or links to a Wikipedia web page are all valid inputs in Juxta Commons46. In the

desktop application, it is possible to add plain text or XML documents, whereas in

the new interface Juxta Editions, it is possible to transcribe directly in the TEI Lite

format, with a limited set of tags, or to import an XML document.

Both nCritic (Andrews 2009) and CollateX take three different input formats: plain

text, XML TEI and JSON. The JSON format of CollateX comes in two different

41JavaScript OBject Notation (JSON) is a lightweight data-interchange format. It will be described
in detail later in the thesis (Section 7.1.2sec:collation-json-structure).

42See the Ecdosis website: http://ecdosis.net/main/node/14 (Accessed June 13, 2017).
43An example can be found on iAligner Github code: https://github.com/OpenGreekAndLatin/

ILA_python/tree/master/examples/data (Accessed June 13, 2017)
44See the manual on the #UMWANDLE command, p. 236: http://www.tustep.uni-tuebingen.de/

pdf/handbuch.pdf (Accessed June 13, 2017)
45http://tustep.wikispaces.com/Grundlagen+Import+-+Export (Accessed June 13, 2017).
46A link to a Wikipedia page lets users see the different revisions of this page collated together.

101

http://ecdosis.net/main/node/14
https://github.com/OpenGreekAndLatin/ILA_python/tree/master/examples/data
https://github.com/OpenGreekAndLatin/ILA_python/tree/master/examples/data
http://www.tustep.uni-tuebingen.de/pdf/handbuch.pdf
http://www.tustep.uni-tuebingen.de/pdf/handbuch.pdf
http://tustep.wikispaces.com/Grundlagen+Import+-+Export

2.6. Comparing collation tools

versions: the whole texts of the witnesses may be included in a JSON array, which is

the same structure described above for TRAViz. Or, the second option is to provide

a text that is already divided into tokens. The advantage of this input format is that

each token can receive a number of additional properties which will be ignored

during collation, but will still be available in the output. While XML files collated

are usually stripped from all kind of markup, the pre-tokenisation in JSON offered

by CollateX allows for retaining information about a token and its context. This is a

useful feature, as we have seen in the tokenisation section of the Gothenburg Model

(p. 77 above). For instance, a token may include a property that saves the XPath

to an XML node. It is also possible to attach all kinds of information to a token,

which can be extremely useful when analysing and visualising the output, such as

its location in the witness, or a link to a digital facsimile, and so on (see Chapter 4

and more specifically Section 7.1.3 in Chapter 7). This option of input format is

a decisive advantage of CollateX over other tools, and it was adopted in various

projects such as the Beckett Digital Manuscript Project, the International Greek

New Testament Project, and the Digital Mishnah Project, as well as the preferred

collation method in this dissertation.

2.6.3 Collation

The issues regarding the collation process may include: a possible limitation to one

kind of text such as poetry, the number of texts that can be processed together by

the software, the duration of the process (is it sustainable?), and how the process

is performed: can it be interrupted? How to deal with mistakes in the collation?

Does the whole process need to be started all over again if there is a mistake? Is it

part of a modular infrastructure? What is the algorithm behind the alignment, is it

pairwise, or a multiple alignment?

Shillingsburg (1996, 135) stresses that ‘every stage in the process must be inter-

ruptible, reviewable, revisable, and, if necessary, re-doable’. Indeed, an issue of

the early collation tools was that they did not store the results of collation. If an

error occurred during the process, it was necessary to start again. This requirement

came at the time when interactive collation was considered to be the best option

(Hilton 1992, see; Robinson 1994). However, interrupting the collation process is

not necessary anymore.

Poetry is easier to collate with computer programs than prose, for obvious reasons:

the structure of lines allows for short, well-defined units of text to be compared.

This is not the case in prose text, where paragraphs are randomly divided in lines,

which are different in each witness. The first two programs created to deal with

102

2.6. Comparing collation tools

prose were both published in 1970, by Petty and Gibson, and by Cabaniss. However,

until the end of the 1980s, tools limited to poetry were still prepared, such as DV-

COLL (1987) or UNITE (1989). Limitation to poetry is not the only issue: many

programs were built to edit a specific textual tradition, and thus are not flexible

enough to be adopted by other scholars. In fact, few collation tools have been

reused later for other projects. The first tool to be successfully adopted for multiple

projects is TUSTEP: according to the International TUSTEP User Group, over nine

hundred editions have been prepared with TUSTEP47. URICA! was installed in

a number of machines according to Hilton (1992). Peter Robinson’s Collate has

been used in very different textual traditions, from Chaucer to Dante, the Greek

New Testament or Old French and Sanskrit texts (see Robinson 2009). Collate was

replaced by its successor CollateX for the edition of the International Greek New

Testament Project in Birmingham (Houghton 2013). CollateX is also implemented

in the Beckett Archive project, the Digital Mishnah Project and a series of editions

which make use of the Virtual Manuscript Room Research Environment48: CollateX

seems to be adopted by big projects with support from professional developers.

Juxta, on the other hand, seems to be more popular for classroom use: a number of

blog posts describe how Juxta was used in classroom context (Wheeles 2013; Poulos

2014; Ravy 2015; Jakacki and Faull 2015). The Classical Text Editor (CTE) has been

successfully used to prepare critical editions, however it is impossible to know to

what extent these editions make use of the automated collation solution provided

in CTE49.

The number of texts collated was highlighted by Hockey (2000, 125) as a major

issue of automated collation. Some programs were limited to collating two texts at

a time (Gibson and Petty 1970; Cabaniss 1970), sometimes with an added facility

to merge — or ‘conflate’ — the variants obtained through pairwise comparisons

(Hilton 1992; Shillingsburg 1996). From 6 witnesses in UNITE (Marín 1991) to up

to a hundred in DV-COLL (Siemens 1994, 210), the number of texts processed at

the same time could vary widely from one tool to the next. In more recent tools,

that number may still be limited: Juxta Commons can handle only up to fifteen

witnesses50. For instance this was an issue for Zeevaert (2015) who needed to collate

sixty-three witnesses, a number far exceeding what Juxta allows. On the other hand,

Robinson’s Collate had to dramatically increase the number of texts handled in

47A list of critical editions prepared with the help of TUSTEP can be found here: http://www.
tustep.uni-tuebingen.de/ed_eng.html (Accessed July 13, 2017).

48http://vmrcre.org/ (Accessed July 13, 2017).
49See here a list of editions created with CTE: http://cte.oeaw.ac.at//?id0=pub (Accessed July 13,

2017).
50According to the user guide: http://juxtacommons.org/guide (Accessed July 14, 2017).

103

http://www.tustep.uni-tuebingen.de/ed_eng.html
http://www.tustep.uni-tuebingen.de/ed_eng.html
http://vmrcre.org/
http://cte.oeaw.ac.at//?id0=pub
http://juxtacommons.org/guide

2.6. Comparing collation tools

order to collate near to two hundred witnesses (Wachtel 2000, 47) and later over a

thousand transcriptions for the Greek New Testament (Parker 2006). CollateX may

be able to process virtually any number of texts with blocks of paragraph-sized text,

but the speed of collation degrades with larger blocks (Dekker et al. 2015).

To compare various algorithms and judge their effectiveness, it was a common

practice to translate the algorithms into the same programming language (Cannon

1976), and then evaluate how well they performed in terms of speed, quantity of

text processed and percentage of correct matching (Gilbert 1973; Hockey 1980).

For instance, Gibson and Petty (1970, 287) claim that over ninety percent of match-

ing sequences of text can be aligned with OCCULT. However, Hockey (1980, 150)

shows that it may be an overestimation: many short variants could still result in a

long matching sequence, hence preventing OCCULT from discovering two lines

as variants of each other. Now the best practice would be use benchmarking, i.e.,

assessing the algorithm’s performance against a text that has already been correctly

aligned. A corpus of benchmark collated text is a recognised need for further testing

and improvement of algorithms (Dekker et al. 2015).

2.6.4 Correction, analysis and visualisation of the results

The possibility to correct, analyse or process the output in any suitable way is

highly dependant on the output format. What kind(s) of output is available from

the software? How readable is it? How much correction does it need? What are the

reuse options, that is, what can can be done next with the output: visualisations,

establishment of a stemma, displaying a critical apparatus for a print edition? Is

the output compatible with other tools?

The first programs’ outputs were not saved for further reuse on a computer, but

printed on paper to imitate a printed critical apparatus, or a manual collation.

The need for a practical and readable format was therefore so important that the

desired output influenced the comparison process (Dearing 1970, 257; Widmann

1971b, 58). Gilbert (1973) and Hockey (1980) show a few examples from those early

programs and discuss their respective advantages and problems. Some outputs

were particularly difficult to read: for instance Froger’s approximation of a critical

apparatus needs to be interpreted according to conventions (Froger 1966, 169). A

system of reference numbers, allocated to each token and each gap inserted during

collation, makes it difficult to find back the reading in the base text (Gilbert 1973,

140). The least practical output was the one from Cabaniss, because the variants

were not gathered together. Each pairwise comparison would produce one output:

for a tradition of twenty-five witnesses, this represents twenty-four pages printed

104

2.6. Comparing collation tools

Figure 2.19: Example of early collation output (Widmann 1971b, 61).

for each line of text (Gilbert 1973, 143). In practice, this means that the variants

must be gathered by hand, and manual collation may thus be preferable given the

amount of data preparation for an automated procedure.

On the other hand, Widmann’s program output was considered the most useful and

elegant, even though it was meant for poetry (Gilbert 1973, 142). Widmann’s output

would print the entire line of the base text, and the variant readings would be

printed underneath, similar to a collation table or a manual collation (figure 2.19).

The collation table visualisation will be discussed in detail in Chapter 8. The

output from OCCULT was also a good solution for prose texts (Hockey 1980, 151).

The first program to store variants on the computer for further manipulation was

Gilbert’s program (Hockey 1980, 154). The variants could be reused for instance

to correct the variant readings (Gilbert 1973) or to print a critical apparatus along

the text (Gilbert 1979). The critical apparatus display, or at least an approximation

of a critical apparatus, has remained popular for a long time. It is available in

many programs such as TUSTEP, Collate, PC-CASE, UNITE, Juxta (as a prototype

visualisation), and the Classical Text Editor. CollateX also provides an XML output

in TEI which encodes readings and their variant forms in <app> elements that can

be later displayed as a critical apparatus.

However the critical apparatus format may not be the most practical, to analyse the

witnesses relationship and create a stemma. Robinson (1989b) created a database

of variant readings to compare (see also Section 8.3.2.1). In Collate, the output can

be reused with phylogenetic software to create a stemma: a single collation serves

therefore several purposes (Robinson 2004). Other collation tools let users create a

105

2.6. Comparing collation tools

Figure 2.20: A collation visualisation in histogram (Monroy et al. 2002).

stemma by reusing the collation results as input to another program: for instance

CollateX’s results may be reused in Stemmaweb, and Philipp Roelli’s program is

used in conjunction with the phylogenetic software Phylip. Ecdosis, the interface

which implements the collation tool Compare, offers a ‘tree view’ as well created

with Phylip.

The first innovation, in terms of a visualisation in human readable form, seems to

come from the Cervantes Project (Urbina et al. 2002; Monroy et al. 2002). Instead

of displaying textual content, the visualisation shows the location of variants in

a text compared to a base text, and the length of those variants represented by

vertical bars. For instance in figure 2.20, a group of short vertical bars in the top left

corner represent a series of short variants in chapter 1 (first vertical column) of the

edition number 5 (first horizontal line). This kind of visualisation in histogram was

adopted by Juxta as well as by the tool CATview. This visualisation makes it possible

to get an overview of the places in the text which have variants, and to see if there

are smaller or larger variants.

Another innovative visualisation, the Heat Map, was adopted by Juxta. The principle

is similar to the histogram, except that it includes the textual content as well. A

witness is chosen as a base text, and the readings of this base text are highlighted

in blue when a variant reading is available in one or several other witnesses. If

the reading is highlighted in light blue, it means that the other witnesses are very

106

2.6. Comparing collation tools

(a) Base text — B1.

(b) Base text — P1594.

Figure 2.21: Di�erent highlightings in Juxta’s Heat Map, from the same text sample. Created in
Juxta Commons (June 10, 2017).

similar to the base text at this point. On the other hand, if the text is highlighted

in dark blue, it means that there are many witnesses which disagree with the base

text at this point. However, a dark highlight does not mean that there are many

different variant readings: if all the witnesses are different from the base text but

they all share the same reading, this will be displayed as a dark highlight, even if

there are only two competing variants. This may become even more confusing

when the base text is changed, because that variant will then be highlighted in light

blue instead of dark blue. Figure 2.21 shows two extracts from the same collation

sample of Calpurnius Flaccus, but with two different base texts and two different

patterns of highlighted readings. In the first extract of figure 2.21(a), where witness

B1 is the base text, the word tyrannida (line 2) is in very dark blue, and occiderit

(line 5) is in light blue. On the other hand, the corresponding readings tyrannicida

and occidere have a different highlighting intensity in the second extract, where the

base text is witness P1594 (figure 2.21(b)).

A popular visualisation is to show texts in parallel columns, side by side. In Juxta

it is possible to view either two texts side by side, or several texts thanks to the

integration of the Versioning Machine visualisation. The side by side view is also

available from Ecdosis, and in TUSTEP. The advantage of Ecdosis is that the parallel

versions are always synchronised when a user scrolls down one version. This is

107

2.6. Comparing collation tools

Figure 2.22: Stemmaweb example of a graph. Retrieved from https://stemmaweb.net/stemmaweb/
relation/E7D1901A-AB49-11E1-9EA5-EEF06FF5D3E7 (July 5, 2017).

Figure 2.23: TRAViz example of a graph (Jänicke et al. 2015, 90).

not the case in TUSTEP, and it may be slightly difficult in Juxta when one version is

significantly shorter than the other.

Collation may also be visualised as a variant graph: although this is not a common

way to visualise texts, it is still the best visualisation for transpositions. We have

seen above examples of CollateX variant graph (figure 2.11 p. 76, or figure 2.16

p. 86). CollateX’s output may as well be visualised as a graph within Stemmaweb

(figure 2.22). TRAViz proposes four new features which are meant to improve the

graph visualisation: the removal of the circle shapes around tokens, the addition

of colours to differentiate witnesses instead of labels on the edges of the graph,

the linear arrangement of the text, and the resizing of tokens to reflect how many

witnesses actually have these tokens present (Jänicke et al. 2015). The graph vi-

sualisation is further discussed in Section 8.3. If many witnesses have a reading,

this reading will appear bigger, and vice-versa (see figure 2.23). The collation table

visualisations, available from CollateX, nmerge and iAligner, will be discussed in

Section 8.2.

As we have seen above, a fixed visualisation can be problematic. A few interfaces

offer to correct the alignment. This is the case for TRAViz, stemmaweb, and the

collation editor (as well as a future visualisation for the Digital Mishnah project).

The common aspect of these three visualisations is the use of a ‘drag-and-drop’

feature, which let users select a token and drag it to its correct place in the alignment.

Special care must be taken to prevent users from altering the order of tokens in

108

https://stemmaweb.net/stemmaweb/relation/E7D1901A-AB49-11E1-9EA5-EEF06FF5D3E7
https://stemmaweb.net/stemmaweb/relation/E7D1901A-AB49-11E1-9EA5-EEF06FF5D3E7

2.7. Conclusion

a witness. In addition to corrections, Stemmaweb also provide the possibility to

annotate two readings with information about how the readings are related (if the

difference is grammatical, lexical, and so on), and about the significance of the

variant with respect to the stemma (would a scribe correct the first reading to the

second? Is it a likely polygenetic error? And so on). The collation editor offers

also a drag-and-drop feature to regularise one reading to another (Houghton and

Smith 2016). TRAViz lets users modify the relative edit distance, so as to decide if all

differences should be displayed in the graph, or if orthographic differences should

be ignored from the visualisation (Jänicke et al. 2015).

In this dissertation I have preferred the collation table visualisation, and I have

worked on how a simple table format can be enhanced with additional information

(see Section 8.2.2). However, the table format is not well suited to represent trans-

positions: in this case, a graph format such as the one in Stemmaweb or TRAViz

may be better suited.

2.7 Conclusion

Comparing collation tools is not as straightforward as it seems: it can be difficult to

judge the efficiency of different algorithms, and there are many aspects to take into

account besides the accuracy of the results, such as the level of technical knowledge

required, the use or not of a base text, the ability to adapt the algorithm, or the

available outputs and visualisations. There is no universal solution, but a diversity

of options: although I have preferred CollateX for this thesis, in other circumstances

another tool may be more suited. For instance Huculak and Richardson (2013)

chose Juxta for its user-friendly interface, while other scholars felt the need to create

new collation tools to fit their needs.

The reason why new tools were created can provide insights to the issues of auto-

mated collation tools, and the criteria defined above can serve as a useful frame-

work to analyse those issues. For the SaDa projects, two new programmes LERA

and LAKomp were created in response to issues of interface and of the collation

process: TUSTEP was not user-friendly enough, and required considerable effort

to master. On the other hand Juxta was a base text comparison, while CollateX’s

algorithm was difficult to adapt and faced trouble with larger texts (Pöckelmann,

private correspondence). In the case of iAligner, the issues were related to interface

again, and to visualisation: while the algorithm of CollateX was satisfying in theory,

a more user-friendly interface was needed, as well as better collation tables for

visualisation purposes (Palladino, private correspondence).

The list of all collation tools that were discussed in this chapter can be found
109

2.7. Conclusion

in Appendix A.1, in chronological order. In the next chapter, I will discuss the

theoretical problems related to the data preparation, that is the transcription of

the witnesses in digital format. I will argue that transcription is not so much of a

change compared to manual collation, but there are specific issues that will arise in

the context of transcription for the purpose of automated collation.

110

3Transcription: a Prerequisite for Automated
Collation

AS we have seen in Chapter 2, transcription of witnesses in digital format is a

prerequisite for automated collation. This chapter deals with transcription,

more precisely from the point of view of automated collation. There are different

reasons for transcribing manuscripts and printed editions, and collation is only one

amongst many. In a first section, I will review the theory of transcription, in partic-

ular the three aspects which are covered by this term: the act of transcription, the

transcription document resulting from the act, and the relationship of a document

being a transcription from another one. The next section studies how transcription

and collation are related, and how the two activities may be formalised under a

common model. Finally, I will review the issues related to transcription for the

purpose of automated collation, and how different scholars have dealt with those

issues.

3.1 Theory of Transcription

3.1.1 Defining Transcription

Transcription is a ‘written or printed version of something’ (Oxford Dictionary).

Transcription involves the translation from one system of signs to another system

(Robinson and Solopova 1993). Transcription takes different forms in various

disciplines: in genetics, transcription is the copy of a DNA sequence into RNA so

that information stored into an organism’s DNA can be expressed in an observable

trait; in music, transcription is the adaptation of a score for a specific instrument or

ensemble (for instance the adaptation of Beethoven’s symphonies for piano solo

by Liszt); in linguistics transcription is the representation of language into written

form, either from a speech or signing, or from a text into another writing system. In

scholarly editing, transcription refers to the latter, the translation of one text and

its writing system into a new text, a new document. As collation may refer both to

the act of comparing witnesses, and to the result of this comparison (Chapter 1),

111

3.1. Theory of Transcription

transcription as well refers both to the act of translating a text from one source

document (or exemplar) to another and to the new document obtained as a result

of this act of translation. In addition, transcription may denote the relationship

between two documents: one document is a transcription of another (Huitfeldt,

Marcoux, and Sperberg-McQueen 2008).

3.1.1.1 Transcription - Act

The act, or process, of transcription would be very difficult to formalise (Huitfeldt,

Marcoux, and Sperberg-McQueen 2008). It follows loosely defined rules which are

not always applicable, and draws from external sources of information such as the

context, or the transcriber’s knowledge. Nevertheless, the act of transcription is

generally divided into two different stages: the first stage is decoding, or decipher-

ing, the source document; the second stage is the encoding, or transposition, of

the source text into a new document (Robinson and Solopova 1993; de Biasi 2004).

In the context of automated collation, more precisely, the new document must be

in electronic format and machine readable form, i.e. the sequence of characters,

spaces and punctuation which constitutes the text must be readable by a computer

and therefore it cannot be an image of the text (pdf or other image format such as

jpg).

3.1.1.2 Transcription - Document

The result of this act of transcription is a new document, which is also called

‘transcription’. A transcription is never a perfect representation of the original

source document, but rather a selection of a set of features among an infinity of

features: it is impossible to record everything in a transcription (Lavagnino 2006). In

that sense a transcription is a simplification of the source document and therefore

a model of the source document (McCarty 2004). Transcription documents are

often described in reference to the number of features they retain from the source

document: the different levels of transcription form a spectrum ranging from very

faithful diplomatic transcriptions, which retain as many features from the original

as possible, to modernised transcriptions which select a limited number of features

to record, the features considered most significant (Driscoll 2006). The selection

of features depends on the purpose of the transcription, and the need to balance

the tension between an accurate representation of the source document and the

readability of the transcription for untrained readers (Burnard 2014a).

Different levels have been identified in the spectrum of transcriptions, depend-

ing on how ‘accidental features’ are treated, such as letter shapes, abbreviations,

112

3.1. Theory of Transcription

capitalisation, punctuation, structure or layout of the text on the page (including

page, line, and even word division), scribal errors or misspelling (Driscoll 2006).

The different levels are namely:

• Ultra-diplomatic: the main difference with facsimile is the use of typo-

graphic characters (D’Iorio 2010, 52). The ultra-diplomatic transcription

aims at reproducing the layout of the document, and not only the text. This

level seems to correspond to the ‘graphic’ level of Robinson and Solopova

(1993).

• Diplomatic: a transcription which retains as many features as ‘may reason-

ably be reproduced in print’ (Driscoll 2006). This includes all the accidentals

listed above. The diplomatic level of Driscoll (2006) is equivalent to the

‘graphetic’ level of Robinson and Solopova (1993).

• Semi-diplomatic, semi-normalised (Driscoll 2006), or ‘graphemic’ (Robin-

son and Solopova 1993): in this intermediary level, some but not all of the

accidental features are kept in the transcription. For Robinson and Solopova

(1993), the graphemic level retain the original spelling, but not the original

letter forms of the source document.

• Modernised (Driscoll 2006) or regularised (Robinson and Solopova 1993):

every accidental feature is normalised for modern readers (Driscoll 2006).

In practice, however, transcriptions do not always clearly belong to one level, but

may borrow aspects from another level (Robinson and Solopova 1993). The con-

tent included in a transcription will depend on its purpose. Pierazzo (2011) has

discussed a set of criteria and parameters to help editors with this decision. The

criteria to take into account include the needs of editors as well as the needs of the

intended audience, the nature of the documents, the publishing technology and

the costs associated with this work (Pierazzo 2011, 468).

When transcribing for the purpose of automated collation, editors must decide

which level of transcription is aimed for. The modernised level of transcription is

not recommended in practice (Robinson and Solopova 1993, 23; Macé et al. 2015,

331). Although normalisation is needed in order to prioritise substantial variants

in the visualisation, Robinson and Solopova (1993) have found it advantageous

to postpone the introduction of normalised forms: it would prevent ignoring an

accidental variant which might be in fact significant, and it increases the speed of

transcription since there is no need to choose a normalised form for each word.

113

3.1. Theory of Transcription

As we have seen in Section 1.4.2, there is no clear consensus about the inclusion

of accidentals in collation, such as orthographic differences. Some scholars, such

as Willis (1972), have judged the accidentals to be irrelevant for establishing the

relationships between witnesses: ‘Accidental variants, i.e. those which are purely

matters of spelling or punctuation, are so unpredictable in the pre-1800 period as to

have little value as evidence for the descent of texts. Editors, as a rule, do not even

bother to record them’ (Love 1984, 52). Robinson (1991, 85) dismisses accidentals

in medieval traditions as non genetic, since they are the product of differing scribal

habits. Others have argued that accidentals are not relevant especially in the case

of Classical texts (Stussi 1994; Bourgain and Vielliard 2002). Reeve (2011, 364), for

instance, agrees with Viré’s decision to ignore spelling differences while analysing

Hyginus’ tradition.

Accidental features, such as scribal errors, can nevertheless be of importance to

analyse the manuscript tradition. Abbreviations as well can be a source of error,

and may therefore be useful in order to understand the relationship between wit-

nesses (West 1973, 27; Macé et al. 2015, 331). A different punctuation may change

the meaning of a sentence. Regarding letter forms, Robinson (1989a) created a

special font to imitate the shapes of letters in Norse manuscripts, but this was

for the purpose of easing the correction of transcription errors against the source

document. And accidentals may also be useful to clarify the relationships between

closely related witnesses (West 1973, 66; Robinson and Solopova 1993, 24).

In more recent studies in stemmatology, scholars have attempted to assess the

actual importance of accidentals, using digital tools to challenge the assumption

that accidentals are not relevant (Spencer et al. 2004; Schmid 2004). For instance,

Andrews (2014a) has concluded that variation deemed insignificant ‘was surpris-

ingly likely to follow text-genealogical transmission patterns in both artificial text

traditions and genuine traditions’. Blake and Thaisen (2004) have shown how the

study of spelling differences can help editors to detect if a scribe used more than

one exemplar while copying Chaucer’s Canterbury Tales, which is relevant to the

text’s stemma. Cardelle de Hartmann, Senekovic, and Ziegler (2014) have remarked

that accidentals in the tradition of Petrus Alfonsi would confirm the groupings

obtained with substantive variants. Lapin (2013) has also experienced with the

creation of stemmata for the Mishnah, both with and without orthographic differ-

ences, for which phylogenetic tools did produce different results. However, Lapin

(2013, 454) concluded that orthographic variation was noise that needed to be

filtered out.

114

3.1. Theory of Transcription

In conclusion, accidentals may not be as relevant to the creation of the stemma as

substantive variants, due to the ‘noise’ from scribal habits. However, accidentals

can be used at least for confirming groupings from more substantive variants, or

clarify relationships of closely related witnesses, since they are likely to follow the

same genealogical patterns of a textual tradition.

3.1.1.3 Transcription - Relationship

Finally, transcription can describe the relationship between two documents, one of

which is a transcription of the other. Huitfeldt, Marcoux, and Sperberg-McQueen

(2008) have provided a detailed model which attempts to formalise this relationship,

and answer the question ‘is this document a transcription of that other document?’

Huitfeldt, Marcoux, and Sperberg-McQueen (2008) do not attempt to model the act

of transcription, nor the result of transcription, but only the relationship between

two documents.

The transcription model was created in the context of scholarly editing and in the

creation of digital resources. The premise is the following:

In general, one document (the transcription, T) is said to be a tran-

scription of another document (the exemplar, E) if T was copied out

from E with the intent, successfully achieved, of providing a faithful

representation of a text as witnessed in E (Huitfeldt, Marcoux, and

Sperberg-McQueen 2008, 296).

Thus the text of the transcription must be similar to the text of the exemplar, since

the transcription has successfully represented the exemplar’s text. If two documents

have a similar enough text, according to the model, one is a transcription of the

other. Therefore the model must provide a framework to compare texts and judge

their similarity.

Here a few definitions of key terms are necessary to understand the transcription

model: document, mark, token, type and reading. A document is a physical object

which contain marks, that is ‘perceptible features’ (such as lines drawn in ink, or

dots embossed in paper for the braille writing system) which can be interpreted

as text. Although ‘text’ is a debated concept (see for instance Caton 2013), in

the transcription model a text is a sequence of graphemes such as letters, spaces,

punctuation marks, and other symbols.

115

3.1. Theory of Transcription

Figure 3.1: Summary of the transcriptionmodel (Caton 2014). Retrieved from https://fr.slideshare.
net/PaulCaton/dh2014-slides (July 21, 2017).

A document is an object that contains at least one mark interpreted as text. Marks

are identified as tokens if they can be mapped to a type1. While a type is an abstrac-

tion of a letter, a word, and so on, the token is a concrete physical representation of

a type, and therefore unique. On the other hand, marks which cannot be mapped to

a type are not tokens. Finally, it is worth noting that the ‘distinction among marks,

tokens and types may be applied at various levels: letters, words, sentences, and

texts’ (Huitfeldt, Marcoux, and Sperberg-McQueen 2008, 297). Tokens and types are

mapped by ‘readings’, which is the interpretation of a human reader. For instance

the token pȩnȩ can be interpreted as the type poenae or paene, depending on the

reader.

Figure 3.1 shows a representation of the model, which describes the relationship

between two documents E (exemplar) and T (transcription). The model seeks to

answer the question ‘when is a document T considered a transcription of document

E’? A document T is considered a valid transcription of an exemplar E if they are

similar enough, i.e., if they have the same sequence of types2.

The model is formalised with the alloy language created by Jackson (2006). The

alloy files of the model are available from the Markup Language for Complex Doc-

uments web server3. Some issues remain to be addressed by the model, such as

1The distinction between tokens and types was introduced by Peirce (1906, 505-506), as means
of distinguishing the abstract word and its written representation.

2In practice this means that a document is similar to itself, although a document can hardly be
considered a valid transcription of itself.

3Markup Language for Complex Document (MLCD) is a project led by Claus Huitfeldt. The

116

https://fr.slideshare.net/PaulCaton/dh2014-slides
https://fr.slideshare.net/PaulCaton/dh2014-slides

3.2. Transcription and Collation: a Common Model?

the formalisation of abbreviations, of material omitted from a transcription such as

drawings, or material added to the transcription such as line numbers for instance

(Huitfeldt, Marcoux, and Sperberg-McQueen 2008). Despite these limitations, the

model is still very useful as a way to formalise the relationship of a transcription to

its exemplar .

3.2 Transcription and Collation: a CommonModel?

In the previous chapter, we have examined the principal differences of methodol-

ogy between manual and automated collation (Section 2.4). In particular, the fact

that witnesses must be transcribed as a prerequisite to automated collation was

highlighted as a major change of method, which was often advanced as an argu-

ment against the use of automated collation. However, I will argue in this section

that manual collation and transcription are in fact very closely related activities.

In order to make this point, I will explore the possibility to adapt the transcription

model in order to represent the activity of manual collation as well. The argument

for adapting the model is that manual collation is a form of transcription, however

selective.

In Chapter 1, we have examined the methodology of manual collation and identified

several steps, which include (1) the selection of a base text, (2) the comparison of

other witnesses to this base text, and (3) recording the differences in parallel to

the comparison. While comparing a witness (the comparison text) to the base text

word by word, the collator stops each time there is a significant difference between

the witness and the base text, and record this difference by transcribing it into

another document.

To summarise, if the base text and the comparison text collated do not share the

same reading, then the fact is recorded by transcribing the reading in the collation.

On the other hand, if the base text and the manuscript share the same reading, then

nothing is actually transcribed; the absence of transcription implies that at this

point, the witness collated is considered similar to the base text. In other words,

the base text is considered a valid transcription of the comparison text.

project ‘aims to provide a notation, a data structure and a constraint language which as far as possible
is compatible with and retains the strengths of XML-based markup, yet solves the problems with
representation and processing of complex structures’. See http://mlcd.blackmesatech.com/mlcd/
About.html (Accessed July 19, 2017). The first file contains the formalisation of tokens, types, and
documents http://mlcd.blackmesatech.com/mlcd/2008/Papers/gs.als (Accessed July 19, 2017). The
second file contains the additional formalisation of readings which map tokens to types

117

http://mlcd.blackmesatech.com/mlcd/About.html
http://mlcd.blackmesatech.com/mlcd/About.html
http://mlcd.blackmesatech.com/mlcd/2008/Papers/gs.als

3.2. Transcription and Collation: a Common Model?

It is therefore important to underline the difference between an actual transcription,

when a variant reading is recorded, or a ‘virtual’ (silent) transcription, when nothing

is recorded because the two texts are considered similar. Many details can be ‘lost in

transcription’ during the collation. Features which are not usually collated, such as

orthographic differences, are ignored in the comparison text, but can be recorded

at the points of textual variation when the exemplar is actually transcribed.

For instance in Håkanson’s edition of Calpurnius Flaccus, in declamation fifty-two,

the variant reading conditio is recorded in the apparatus for the word condicione in

the critical text (Håkanson 1978, 39.20). If all witnesses had had either condicione

or conditione, this reading would not have been recorded and therefore the ortho-

graphic difference of c/t would have been unnoticeable unless a reader decided to

check the manuscripts.

On the other hand, not all orthographic differences may thus be recorded in colla-

tion. Abbreviations or special characters may not be reported in a critical apparatus.

Again, examples can easily be found in Håkanson’s edition: in declamation four, the

reading Aestimate iudices adopted by Håkanson is a conjecture of Pithoeus, while

the manuscripts read aestima aliud (Håkanson 1978, 5.1). In fact, Pithoeus’ critical

text reads Aestimate iud., which is an interesting interpretation of how the text may

have been corrupted in the manuscripts, but this is not reported in Håkanson’s

apparatus4.

The last step in manual collation, recording the differences, involves the tran-

scription of the variant readings from the comparison text into a document. That

document may be the same document that contains the base text, such as the criti-

cal edition which serves as a base text (Stählin 1914), or a Microsoft document such

as an Excel spreadsheet (Macé et al. 2015). The variants may also be recorded in a

different document (for instance Lendle 1968, Willis 1972, De Strycker 1975, Whit-

taker 1991). See Section 1.4.1 for a description of the notation methods adopted by

various scholars when collating.

Since collation is actually in fact a partial transcription of several witnesses, could

it be modelled as such, with the support of the transcription model? The next

sections will first consider preliminary remarks, and then propose two examples of

a first model: far from perfect, this first model rather provides a starting point to

bridge the difference between manual and automated collation.

4See Pithoeus’ text here: http://www.e-rara.ch/gep_g/content/pageview/1098917 (Accessed July
24, 2017).

118

http://www.e-rara.ch/gep_g/content/pageview/1098917

3.2. Transcription and Collation: a Common Model?

3.2.1 Preliminary remarks

The first question to address is the purpose of the collation model. In the tran-

scription model, the purpose was to model one aspect of transcription, that is the

relationship between two documents but not transcription as an act or a document

(see Section 3.1 above). The purpose of the transcription model is to answer this

question: given two documents E and T, can it be said that one is a transcription

of the other? Similarly, the purpose of a collation model will be to describe the

relationships between several documents.

As for transcription, the word ‘collation’ may refer as well to various aspects: colla-

tion can be either the act of comparing witnesses and recording the differences, or

the result of this act, i.e. the document where the differences are recorded. Some

parallels can be drawn between the act of transcription and the act of collation.

Transcribing is divided into two stages, decoding an exemplar and re-encoding the

exemplar’s textual content in a new document called ‘transcription’ (Robinson and

Solopova 1993, 21). Collating may similarly be divided into several stages: decoding

a base text, decoding a comparison text, making a decision about the similarity

of those two documents. If the decision was negative and the two documents are

considered different, a last stage is to transcribe the difference: re-encoding the

comparison text in a new document called ‘collation’.

The act of collating is therefore different from transcribing, but it also shares stages

in common, the decoding and re-encoding acts are still performed. Since this

collation model is based on the transcription model of Huitfeldt, Marcoux, and

Sperberg-McQueen (2008), it will not attempt to model the act of collation, but

rather the relationships between several documents: given three documents D1, D2,

D3, is it possible to determine that one document D1 is a collation of a comparison

text D2 against a base text D3?

The model should also take into account the fact that two editors may not produce

the same collation from the same witnesses, just as two scholars may not produce

the same transcription from the same document. For that purpose, the objects

of tokens, types and readings are necessary. Readings are the interpretation of a

collator that a token is an instance of a type. For example, two words that differ only

in orthography can instantiate the same type for an editor who will not record this

difference in the collation, or different types for another editor who will therefore

record the difference in the collation.

Here it is also essential to make explicit some assumptions of the model. The

119

3.2. Transcription and Collation: a Common Model?

transcription model assumes that a transcription is a perfect representation of

the original, it does not account for mistakes, scribal corrections, or any sort of

modifications that alter the transcription. In the collation model, it is also assumed

that the collator does not make any mistakes while collating, and does not miss any

difference (the collator records all significant variation). In the transcription model,

the comparison between two documents does not require that it be made between

two distinct documents, i.e. a document can be considered a valid transcription

of itself. What are the implications for a collation model? Should it be possible to

consider that a document is a valid collation of itself against itself? It seems contra-

dictory at first glance: if a collation records differences between two documents,

and a document is similar to itself, therefore a collation should be empty. On the

other hand, we have postulated that when the collator does not record anything, it

is because the base text is a valid transcription of the comparison text, and there-

fore a base text is valid collation of itself. It would seem best as well to not impose

additional constraints, and to keep the model as general as possible. However, it is

simpler for a first example to treat collation as a separate document from the base

text and other witnesses collated, in order to have a clearer understanding of how

the various documents relate to each other. Then a second example attempts to

remove this condition.

3.2.2 Collation model

For the collation model, I have kept the transcription model described in Huitfeldt,

Marcoux, and Sperberg-McQueen (2008), extended with new functions for collation.

The class of objects from the transcription model are also relevant: documents, to-

kens, types and readings. Documents are the objects which we are comparing. Base

text, comparison text, and collation results are all instances of the class ‘Document’.

With respect to the transcription model of Huitfeldt, Marcoux, and Sperberg-

McQueen (2008), the collation model innovates in three ways: the first is a cor-

rection to the transcription model which was provided by M. Sperberg-McQueen.

The second innovation is related to the meaning of reading, and the last one is the

addition of two predicates.

3.2.2.1 A Correction to the Transcription Model

For consistency in the transcription model, ‘a token is associated with a document

if and only if it appears in the sequence of tokens identified by some reading of that

document (Huitfeldt, Marcoux, and Sperberg-McQueen 2008, 304). This constraint

on tokens is expressed by the following code scrap (number 17, page 305):

120

3.2. Transcription and Collation: a Common Model?

All r : Reading |

this in elems [r.tokenseq]

i� r.doc = d

However, the constraint was too strong, and allowed for tokens to exist while not

being mapped to a type, which should not happen. To correct the issue, Sperberg-

McQueen has proposed to add the following constraints on tokens elements5:

some r : Reading | this in elems[r.tokenseq]

all r : Reading | this in elems[r.tokenseq] implies r.doc = d

The first line states that a given token must be part of a reading’s sequence of

tokens. The second line states that a token is in a document D only if every reading

including the token in its token sequence (tokenseq) is also a reading of the same

document (r.doc = d). Finally, a last constraint states that in the reading-to-type

mapping of tokens (rtt), a reading can map to a type only if this token maps to the

same type in the reading’s mapping of token to type (r.tt):

all r: Reading | all t: Type | r->t in rtt i� this->t in r.tt

Otherwise, the collation model takes the same four signatures as were present in

the transcription model: Document, Token, Type and Reading. The transcription

predicate t_similar is still valid, that is two documents are similar if their sequence

of Tokens generates the same sequence of Types for two different Readings6.

3.2.2.2 The Meaning of ‘Reading’

The scope of the term ‘reading’ must be clarified, as it can be understood in two

different ways. In the transcription model, a ‘reading’ is a reading of the entire

document, form start to finish. On the other hand, in the context of textual criticism

a reading is commonly understood as ‘the form or content of the text in a given

place’ (Froger 1968, 9). In the common sense of the term reading, a document

contains a sequence of ‘individual readings’7, while in the transcription model

there should be only one reading per document. These two views may seem

incompatible, but in fact both can be nuanced.

5Sperberg-McQueen sent me the correction in a private email (2014), after I pointed out the
error.

6In the context of logic and formalisation, a predicate is ‘a statement proclaiming that certain
variables satisfy a property’ (Cunningham 2012, 29), so that the statement is either true or false. The
predicate t_similar takes two documents as argument, and will be evaluated as ‘true’ if one document
can be described as a transcription of the other.

7‘Individual readings’ as opposed to readings of a whole document.

121

3.2. Transcription and Collation: a Common Model?

Figure 3.2: An instance of the transcription model with possible individual readings.

Parker (2008, 4) argues that variant readings should be defined as ‘the entire text

as it is present in a particular copy’. According to Parker (2008), the reason why

variant readings are usually defined as a part in the text (and not the whole text) is

for simplification purposes:

Because two copies of a text will have wording in common between

them, in practice a variant reading describes the places where the

common text ceases, and each has its own form. ‘Variant reading’ is

in fact a simple tool for breaking down the differences between two or

more copies into manageable units Parker (2008, 4).

It could be argued that readings, and not only variant readings, are broken down

into manageable units for practical reasons. The transcription model is based

on the concept of similarity of readings, in order to decide if a document T is a

transcription of an exemplar E. However, in a collation model, we would need to

distinguish between variant and non-variant parts of the text in order to decide if a

document is a collation of a witness against a base text. For this we need readings

to denote parts of the text, and not the entire text.

In addition, the transcription model may also be flexible. Huitfeldt, Marcoux, and

Sperberg-McQueen (2008) intended reading objects as the words of a given witness,

from beginning to end. However the Alloy model does not seem to make it explicit

that the token sequence of a reading corresponds to the entire token sequence of a

document. As a result, reading objects could be used to denote ‘individual reading’

as well as the reading of the whole document.

122

3.2. Transcription and Collation: a Common Model?

In figure 3.2, a valid instance of the model shows a document with two tokens

(Token0 and Token1), and two different readings (Reading0 and Reading1) mapping

each token to a different type: Reading0 maps Token0 to Type1; and Reading1 maps

Token1 to Type0. This instance can be interpreted in two different ways. The

first is to consider that the readings represent the whole document. In that case,

Reading0 does not interpret the marks of Token1 as significant, and Reading1

ignores Token0. The second interpretation is that Reading0 and Reading1 are two

individual readings in the document. Reading0 is a reading of the first token (for

instance the first word), and Reading1 is a reading of the second token.

Because of this flexibility of interpretation, the transcription model seems to be

suitable to expand for modelling collation. Thus the collation model is based on

the assumption that ‘reading’ means ‘individual reading’. As argued above, the

distinction between variant readings and non-variant readings is necessary for the

collation model.

3.2.2.3 New Predicates

To model collation, a predicate is needed in order to state that two Readings are

similar, instead of whole documents. Here is a predicate r_similar (‘reading similar-

ity’), that is evaluated as true if two readings’ sequence of Token maps to the same

sequence of Type:

pred r_similar (r1, r2: Reading) {

r1.typeseq = r2.typeseq

}

In the collation model, a collation C, a base text B, and an exemplar E are three

separate documents. There are two possible situations. Firstly, the base text B and

the exemplar E have a similar reading: the predicate r_similar is evaluated as true.

In that case there is no variant to record, and the collation C is an empty document.

The base text B is a valid transcription of the exemplar E: both B and E are t_similar

(see figure 3.3).

On the other hand, the base text B and the exemplar E may have different read-

ings, that is readings which do not generate the same sequence of type (predicate

r_similar is evaluated as false). In that second case, a variant is recorded in the col-

lation C, which has the same reading as the exemplar E. It implies that the collation

C is a valid transcription of the exemplar E: both documents C and E are t_similar

(see figure 3.4).

123

3.2. Transcription and Collation: a Common Model?

Figure 3.3: The exemplar and the base text have a similar reading.

Figure 3.4: The base text and the exemplar have a variant reading which is recorded in the colla-
tion.

The predicate for collation is the following:

1 { pred c o l l a t i o n (d i s j b , e , c : Document) {

2 some r1 , r2 , r3 : Reading | {

3 // reading 1 i s in the base t e x t

4 r1 . doc=b

5 // reading 2 i s in the exemplar

6 r2 . doc=e

7 not r \ _similar [r1 , r2] implies

8 { r3 . doc=c and r \ _similar [r2 , r3] and t \ _similar [c , e] }

9 else no r : Reading | r . doc=c and t \ _similar [b , e]

10 }

11 } }

This simple example illustrates the relationship between the three documents of

base text, exemplar and collation, and how a transcription and a collation can be

related. However, there are many limitations to this basic model. This is a model for

collating only one reading, of one exemplar. What happens when more witnesses

are collated, and other variant readings are added to the collation document? How

to deal with additions and omissions, instead of only substitutions? Is this an

124

3.2. Transcription and Collation: a Common Model?

accurate representation of collation? For instance, let us consider an example of a

base text B, and an exemplar E:

B: A man petted a small dog

E: A man ate a hot dog

For each pair of corresponding tokens, either B and E are similar and nothing is

written in the collation, or there is a difference and the reading of E is transcribed

in the collation. The collation, according to the model would look like this:

C: 0 0 ate 0 hot 0

The zeros would serve here as an indication that at this point in C there is nothing,

and as an indication of how many readings have been compared. Adding more

witnesses to this collation would require some form of alignment, and those zero

tokens are very similar to the ‘gaps’ added by collation algorithms in order to

provide such an alignment (see Section 2.4.4.3).

But is this a good representation of what scholars actually do? It seems that it is not

entirely satisfying. Let us consider a discussion from the 3rd of September 2015 on

the Digital Classicist mailing list, in which researchers debates which tools to use to

support the collation of manuscripts:

I saw CollateX and also Juxta (and TUSTEP) and they seem to be

great where you have transcribed manuscripts. But traditional collation

doesn’t transcribe entire MSS but only notes the differences. If I can put

it this way, those collation packages operate on a ‘diff’ basis, whereas

traditional collation works on a ‘patch’ basis. [. . .] So I’m wondering

if there is anything more in the line of supporting traditional textual

criticism (Ruffell 2015).

This scholar is aware that the difference between transcription and collation is

about the scope: a transcription of an entire manuscript versus the transcription

of only variant readings. Nevertheless, they did not feel that transcription and

alignment of witnesses were supporting traditional textual criticism. Instead, they

were considering using a SQL database to analyse the collation and the manuscripts

relationships: “I’m currently thinking SQL data[b]ase of choice and custom queries

as needed" (Ruffell 2015).

Indeed a database model of collation may correspond to manually prepared colla-

125

3.2. Transcription and Collation: a Common Model?

tions examined in Section 1.4.1, such as the card system of Willis (1972) or Whit-

taker’s register of variants. From this point of view, the database of variant is enough,

in conjunction with a base text, to generate an acceptable transcription of each

witness. Therefore, it maybe it is more appropriate to think of manual collation as a

database and to model it as ‘set of entries’ instead of as a sequence of tokens and

‘gaps’. A further development of the model could include:

1. A collation contains a set of entries.

2. Each entry points at one location of the base text.

3. Each entry gives one or more alternate reading(s) for that location and an

indication of the witness in which that reading appears.

The manual collations examined in Section 1.4.1.4 mostly follow a similar structure.

For instance, the cards of Willis’ collation correspond to the collation entries. Each

card points at a location of the base text, which is expressed by a number (page and

line, or verse number) and the base text reading. Each card also lists the alternative

readings, followed by the siglum of the witness where they appear (Willis 1972,

33). There are no cards for the readings of the base text which have no variant in

other witnesses. Similarly, the tables in Lendle (1968) function like a set of collation

entries: each entry contains an identification number, the base text reading and the

variant readings. There is always an indication of the witness in which the readings

appear, thanks to the crosses system (see p. 36 above).

3.2.3 Conclusion

Although it is not perfect, the alloy model of collation can help to understand

how manual and automated collation are related through transcription. While

transcription happens during manual collation, it must be done entirely before

automated collation. Transcription of witnesses is only partial for manual collation,

while it should be complete for automated collation. As a consequence, if it is

acceptable to transcribe only variant readings during manual collation, then it

must also be a valid solution to modify a digital base text in order to adapt it for

each witness and collate those transcriptions with digital tools, as proposed by

Robinson (1989a) and Andrews (2012) (Section 2.4.1, p. 68 above).

However, the discussion above may have revealed a more subtle, conceptual differ-

ence between how scholars think about collation (as a kind of database), and the

126

3.3. Transcription Issues Related to Automated Collation

alignment of witnesses with algorithms. As a result, scholars may avoid automated

collation because they do not see how it can support their work of textual criti-

cism. In Chapter 8, I will argue that the results of automated collation can perfectly

support scholarly work, with the example of Calpurnius Flaccus.

For the rest of this chapter, I will examine the implications of the change of scope

in transcription that takes place when moving from manual collation to automated

collation. The next section reviews some issues specifically related to transcription

prepared for the purpose of automated collation and how various projects have

dealt with those issues.

3.3 Transcription Issues Related to Automated Collation

In the context of automated collation, a scholar preparing transcriptions needs

to take into account how the texts will be processed by the collation tool: since

a collation tool needs as input the transcription of each witness that must be

collated, what makes a witness? How is the tool going to deal with corrections and

modifications by different scribes in the same document? How is the text going to

be tokenised, and is the tokenisation satisfying? Does the editor need to provide a

pre-tokenised text? If so, does the transcription allow for transformation into the

desired pre-tokenised format?

The purpose of the collation tool also needs to be taken into account: is the collation

result obtained with the tool meant as a visualisation for readers of the edition, or

is it a result that the editor will work with in order to produce a critical edition? In

that case, what information will be necessary to the editor while working with the

collation results? What level of detail should be encoded in the transcriptions? And

what will happen to the details encoded in transcription, once the transcription

data is transformed to a format accepted by a collation tool? In which format should

the transcriptions be prepared? These are examples of specific issues related to

transcription in the context of automated collation, which will be discussed in this

section with illustrations from projects which have adopted automated collation in

their workflow.

3.3.1 Transcription Format

In the previous chapter, we have already discussed the various input formats ac-

cepted by automated collation tools (see Section 2.6.2). The two most common

formats were plain text and XML. Although some tools accept other formats, such

as HTML, these are usually transformed into plain text for collation.

127

3.3. Transcription Issues Related to Automated Collation

Plain text is a very limited format to record a transcription. As it will be discussed in

Chapter 8, the collation must include paratextual elements beside the text, such as

folio numbers or comments (see also Whittaker 1991). Plain text is not a convenient

format to record those elements, since they will appear as variant readings in the

collation results, and it will significantly increase the difficulty in visualising real

textual variants. In addition, plain text transcription is difficult to adapt for other

purposes, such as preparing different input formats for other tools, publication as

a diplomatic edition, or displaying the text to different audiences with different

interests or qualifications (Zeevaert 2015). On the other hand, an XML input is

more flexible: it will allow for the encoding of paratextual elements, but can also

make collation easier, by letting scholars choose the exact elements to be collated

(see for instance the usage of Juxta, in Section 7.2). However, XML is such a flexible

format that it is preferable to follow a standard markup scheme in order to facilitate

the interchange of data.

The Text Encoding Initiative (TEI) has become the standard XML format to record

transcriptions in the Humanities. It is a very flexible format: the same textual

features can be recorded in many different ways (Pierazzo 2016). The TEI provides

a rich vocabulary to describe the meaning of the text instead of its appearance

(Burnard 2014a). It provides a tool to add meaningful information derived from

the appearance of the text (for instance the fact that a segment text is in bold and

centred is interpreted as a title). The TEI is not dependant on a specific platform

or software environment, and it was designed by the scholarly community with

extensive guidelines and instructions, which makes it an ideal encoding format

(Burnard 2014a).

3.3.2 Witnesses

A witness is usually defined as a written document, either handwritten or printed,

which bears a textual copy of a work (Stussi 1994, 89)8. This definition does not

give any indication regarding the different hands which may have influenced one

particular document. It is often the case that a text in a medieval manuscript has

not been written by a single scribe. On the other hand, it is a very common situation

to find that one scribe is responsible for the major part of the text, and that this

same scribe or other scribes made corrections to the text, added variants in the

margin, and so on. It is also possible that one scribe started the transcription,

which was continued later by a different scribe, possibly using a different exemplar.

Scribes cannot always be identified, and the more general term of ‘hand’ is used to

8See more definitions in the Lexicon of Scholarly Editing, s.v. witness: http://uahost.uantwerpen.
be/lse/index.php/lexicon/witness/ (Accessed July 27, 2017).

128

http://uahost.uantwerpen.be/lse/index.php/lexicon/witness/
http://uahost.uantwerpen.be/lse/index.php/lexicon/witness/

3.3. Transcription Issues Related to Automated Collation

refer to the various agents involved in the text of one document. Are those different

hands representing different witnesses of the text? In modern manuscripts which

show the genesis of a text, there may be only one hand (the author’s hand), however

the question of what constitutes a witness is still valid. Several layers of revisions

can be identified, as the author worked on the draft and modified the text. Should

these different layers represent different witnesses?

At a conceptual level, it seems that different hands are not considered as differ-

ent witnesses, although the corrections of a second hand in a manuscript can

sometimes be traced back to another witness: for instance in Calpurnius Flaccus,

Håkanson identified a relationship between the second hand of the codex Bernensis

149 (N) and another manuscript, the codex Monacensis Latinus 309 (B) (see Chap-

ter 6 and Section 8.5). Witnesses are defined as documents, and a hand is not a

document. At a practical level, however, it is necessary to separate each hand as

an individual witness for automated collation, in order to visualise the corrections

of different hands as variant readings of the first hand. Therefore it may be more

accurate to say that we collate ‘texts’ rather than witnesses.

As we have seen above, the result of a manual collation can be regarded as a set

of entries that record variant readings, and each entry is associated to the corre-

sponding reading of a base text. In that situation, it is relatively easy to include in

the entries reading from different hands without having to decide if they represent

a new witness. It is also easy to include editorial conjectures or emendations, for

instance, even when these are proposed in a scholarly article (see also Section 2.4.1

for the problem of witnesses that do not represent a complete instance of the text).

With automated collation, on the contrary, each instance of the text to compare

must be transcribed in full, but this does not prevent the collation of lacunose text.

To overcome the issue of editorial conjectures, the Digital Mishnah editor prepared

special transcription documents to collect readings from secondary sources which

do not contain the whole text of the Mishnah (Lapin 2013, 449). Lacunose witnesses

of the New Testament are collated as well9.

There are few collation tools that let users visualise properly the different hands or

textual layers, if those are not encoded as separate witnesses. In Juxta for instance

it is possible to switch between different hands encoded in XML thanks to the ‘Edit

9The collation Editor has some guidelines on how to prepare lacunose texts for collation: https:
//github.com/itsee-birmingham/collation_editor (Accessed October 21, 2018).

129

https://github.com/itsee-birmingham/collation_editor
https://github.com/itsee-birmingham/collation_editor

3.3. Transcription Issues Related to Automated Collation

Document Parsing Template’ feature (see also Section 7.2)10. This feature in Juxta

lets users choose the XML tags from which the plain text is extracted for collation,

but there are limitations and the result will be different depending on the encoding

adopted.

Let us consider a simple example from a short extract of Catullus from manuscript

Bodmer 47, folio 1v: the first word of the fourth line has been corrected from

Credo to Corde by a second hand11. In a TEI transcription, the correction could be

encoded as such:

<subst>

<del hand=`#h2'>Credo

<add hand=`#h2'>Corde</add>

</subst>

The word Credo was deleted by the second hand (h2) and substituted with the word

Corde. In Juxta, the tag selector lets users decide to ignore either the tags

or the <add> tags, so that it is possible to switch between Credo and Corde, but

not to see the two words in parallel as variant readings. In fact, if both and

<add> tags are selected, the two words will appear as two consecutive words in the

stream of text (see figure 3.5). In addition, the tag selector cannot be fine tuned to

select specific attributes, which makes it impossible to switch between more than

two hands or more than two layers of text. On the other hand, if the same extract

is encoded with the critical apparatus tags for parallel segmentation in TEI (TEI

Consortium eds. 2017c, §12.2.3), Juxta will automatically recognise each hand as a

separate witness:

<app>

<rdg wit=`#Bodmer47-hand1'>Credo</rdg>

<rdg wit=`#Bodmer47-hand2'>Corde</rdg>

</app>

However, this encoding is actually defining each hands as separate witnesses.

The issue of including many hands as witnesses, while using automated collation,

is to visualise the results which may become very large and contain large blocks

of identical text (for instance if a later hand has made a very small amount of

10In the Juxta desktop application, this feature is available in the menu Edit>Edit Document
Parsing Template. In Juxta Commons, the same feature is available when an XML witness is selected
in the middle column in the first half of the screen, and by selecting ‘XML View’ under the witness
name in the bottom half of the screen.

11See the digital facsimile on E-codices: http://www.e-codices.unifr.ch/fr/fmb/cb-0047/1v/0/
Sequence-807 (Accessed July 27, 2017).

130

http://www.e-codices.unifr.ch/fr/fmb/cb-0047/1v/0/Sequence-807
http://www.e-codices.unifr.ch/fr/fmb/cb-0047/1v/0/Sequence-807

3.3. Transcription Issues Related to Automated Collation

Figure 3.5: Deletion and addition appearing both in the text (Juxta Commons). Retrieved frommy
personal account (July 27, 2017) .

corrections to the text of the first hand). However, it may be useful to visualise

among the witnesses a hand which has made many corrections, or which can be

related to another manuscript. Therefore, the transcription encoding should be

prepared with those issues in mind. The transcriber needs to decide what must be

considered a witness for collation purposes: should each hand become a separate

witness? How will it be encoded: as a fragmentary witness, or by completing the

gaps with the text from the first hand, at the risk of creating a pseudo-witness that

never existed? This issue was also raised for other incomplete witnesses, such as

scholia or editorial conjectures (see Section 2.4.1). And then, this must be balanced

with the need for a convenient visualisation. If only one correction in the entire text

can be attributed to a particular hand, is it worth creating a new witness that may

add confusion to the results? The transcriber should also be aware that the encoding

of scribal corrections with different tags in TEI P5 may affect the visualisation of

the collation results, as demonstrated with Juxta.

3.3.3 Tokens

When the transcriptions of witnesses are passed to a collation tool in order to be

compared, the transcriptions are transformed as they are processed through each

step of the Gothenburg model (Section 2.4.4). Even the simplest plain text transcrip-

tions will be divided in a series of tokens, which will be eventually normalised, and

finally will be returned in a completely different output format from the original

transcription input. Here again, it is very important to understand the implications

of these transformations, in order to prepare adequate transcriptions.

131

3.3. Transcription Issues Related to Automated Collation

3.3.3.1 Tokenisation Process

The first issue concerning tokenisation is how the process is performed by the

collation tool. What characters are used to delimit words boundaries: whitespace

characters, punctuation marks? If this is not satisfying, what are the options avail-

able to make sure that the witnesses will be tokenised correctly according to the

editor’s need? There are two approaches to influence the tokenisation process.

The first approach is to interact directly with the collation tool and to modify

the tokeniser function. For instance, the participants of the Code and Collation

workshop in Amsterdam learnt to modify CollateX’s tokeniser function. The default

behavior of CollateX is to divide the text into tokens at whitespace characters and

to treat punctuation marks as separate tokens. However, this is not always the best

solution: the contraction A’dam (for Amsterdam) would become three different

tokens (A / ‘ / dam). Therefore, the tokenisation was modified with the help of

regular expressions so that only final punctuation marks would become tokens, but

not the punctuation marks followed by other letters. As a result, the contraction

A’dam would become one single token. This approach may be efficient, but it is

not always possible to apply: the collation tools do not always let users modify

the tokenising process, and in some cases users need to have sufficient coding

knowledge in order to be able to do it.

The second approach is to mark directly the word boundaries in the transcription,

for instance with the tags <w> or <seg> available in the TEI. This approach is

particularly useful in the case when the same transcription generates different

outputs. For instance if there are tags for abbreviations or for choices between

an original form and a regularised one for the same word: the transcription can

be used to generate both the original form and the regularised form for the same

token, so that the same word needs to be processed twice in parallel. The same

word may also be processed twice (or more) if it contains additions or deletions, so

that different witnesses can be extracted from the same word for different hands or

different layers of text. In that case, it may be useful, or even necessary to mark up

the token’s boundaries directly in the transcription.

3.3.3.2 Loss of Context

The second issue of tokenisation is the loss of context and information that arises

when markup is removed or ignored during collation. While collation tools may

accept various input formats such as XML, HTML, JSON, Microsoft Word or PDF

documents, and so on (see Section 2.6.2), these input documents will be processed

132

3.3. Transcription Issues Related to Automated Collation

in order to extract plain text tokens. After the witnesses have been processed

to extract plain text tokens, the information that had been carefully encoded in

transcriptions is no longer connected to the collation results. When preparing

transcriptions, editors may thus need to consider what elements they will need

to access in addition to the textual tokens, and how to to access those elements

again after the collation has been performed. Several solutions have been applied

to work around this issue:

Juxta In the Juxta Commons interface, the link between transcription, witnesses

and collation is visible in the top half of the screen. The witnesses present in a

collation set, and the transcription from which the witnesses are extracted are all

highlighted in yellow. It is possible to visualise the page breaks and line numbers if

those have been encoded in transcription. However, when examining the result of

collation, there is no way in Juxta Commons to select one specific token and see

it in its transcription. The user needs to go back to the right transcription file and

search for that particular token. In Juxta Desktop interface, on the other hand, it is

possible to see the transcription by clicking on a token (see also Section 7.2).

JSON format Another way to create a link between the collation result and the

transcription is to use a system of identification. The projects which have imple-

mented a system of identification have done so with the CollateX JSON input. For

instance, in the Digital Mishnah project, each token receives a unique identifier

when the transcription is transformed into JSON, so that the identifier is still avail-

able in the collation results and can be used to trace a particular token back to

its exact location in the transcription file. The JSON input of the IGNTP project

also has a detailed system of identification for each token, with properties such as

‘index’, ‘siglum’, ‘verse’ and ‘reading’.

It is also possible to take advantage of CollateX’s JSON input to keep some elements

of markup associated with a token. For instance, Birnbaum (2012) has explained

how to track XML markup information during collation12. In this tutorial, Birn-

baum describes the Python code which transforms an XML transcription into

CollateX’s JSON input so that the internal markup of a word does not affect how

it is collated: for instance, both words ‘maint’ and mai<abbrev>n</abbrev>t

should be matching when only the string of characters are compared and markup is

12The material was prepared for a workshop on CollateX at the Digital Humanities conference
2015 in Sydney. It is available from Birnbaum website: http://collatex.obdurodon.org/xml-json-
conversion.xhtml (Accessed July 30, 2017).

133

http://collatex.obdurodon.org/xml-json-conversion.xhtml
http://collatex.obdurodon.org/xml-json-conversion.xhtml

3.3. Transcription Issues Related to Automated Collation

ignored13. The fact that one version contains an abbreviation should not influence

the final alignment. Therefore the transcription generates two properties for a

token with markup: a property with the original token that include markup as well,

and a normalised property where markup has been stripped. As a result, the XML

markup is still present in the collation output, and can be used to display the tokens

according to an editorial standard: the abbreviation can be displayed in italics,

‘maint’, or in parenthesis, ‘mai(n)t’.

A similar workaround is to include the XML markup elements directly into CollateX

JSON format. The elements that the editor wishes to retain are transformed into

token properties: for instance, the page numbers and line numbers encoded in

the elements <pb> and <lb> may be transformed into a location property (see

Chapters 4 and 8). It should be noted here that the decision to keep or to ignore

a set of markup elements is a critical decision, and that it should be kept in mind

when analysing the collation results. As Elli Bleeker has argued in her dissertation,

the preprocessing from XML to JSON involves an additional layer of interpretation

(Bleeker 2017, 147). In her thesis, Bleeker explores different options to retain

markup for draft manuscripts which contain many layers of revisions and are

therefore heavily encoded, such as standoff properties in Multi-Version Documents

(Schmidt 2009) and ‘Native XML Collation’.

Standoff Markup Schmidt (2009) has proposed the Multi-Version Document for-

mat to deal with automated collation (see Section 2.4.3). In principle, the MVD

‘encodes all the complex overlapping structures of a set of versions, [so that] the

markup of an individual version can be much simpler’ (Schmidt 2010, 351). This

simple markup is then transformed into standoff properties to link a fragment of

plain text to the corresponding attribute: for instance, the text encoded within <l>

elements would have a standoff property ‘line’ (Schmidt and Eggert 2015). However,

Schmidt was more concerned with issues such as overlapping hierarchies in en-

coding than the problem of a loss of context that arises when transcription markup

is ignored during collation. In his view, markup should be as simple as possible,

and the identification of relationships between versions (‘what is a variant of what’)

should be computed automatically (Schmidt 2010). In fact, the Charles Harpur

Critical Archive, which make use of the MVD format, does not seem to provide

examples of how these standoff properties may be used, for instance in collation

visualisation. Admittedly, only few texts do have more than one version (Schmidt,

private correspondence). And in tables visualisation, while some witnesses are

13This encoding example is from the electronic edition of Partonopeus de Blois (Eley et al. 2005).
The XML tag <abbrev> is not part of the TEI set of elements.

134

3.4. Conclusion

divided into several layers, it is not clear to what exactly those layers correspond

to (see Section 8.2 for an example of MVD collation table). For Bleeker (2017), the

MVD format is not sufficient to keep track of markup context for complex genetic

editions, where transcriptions encode valuable editorial information necessary to

create an informative collation output (Bleeker 2017, 108).

Native XML Collation Bleeker (2017, 130-145) proposes a new approach to col-

lation that would not necessitate to remove any markup encoding. Still at an

experimental stage, the approach called ‘Native XML collation’ was proposed in

order to satisfy the need of genetic textual criticism, for which there are many

layers of text in a single manuscript. These layers are carefully analysed during

transcription, in order to retrace the creative process of the writer. As such, those

transcriptions contain essential information for the editor, who must be able to

access when studying the collation results. The idea behind Native XML Collation

is to collate entire XML transcription documents, including the markup added by

editors.

The technique has two advantages: it reduces the amount of processing and inter-

pretation that the editor must perform when removing markup from transcription,

and it takes into account all the editorial analysis expressed in markup encoding,

such as the organisation of the consecutive layers of variation present into a single

witness. In practice, Native XML collation divides the transcription between text

and markup tokens (see for instance Section 2.4.4.1 or Chapter 4 on the topic of to-

kenisation). The collation result is transformed back into XML with added markup

to indicate differences. The distinction between the original transcription markup

and the new collation markup is expressed with the help of a namespace14. At the

moment, the Native XML Collation is a promising approach, but still in a prototype

format, and users require sufficient XML skills to be able to interpret the collation

output (Bleeker 2017, 141)15.

3.4 Conclusion

Until Native XML Collation becomes a fully robust solution to collation, a means

of transforming transcriptions into a valid collation format will still be required.

Therefore, editors should be aware of those transformations applied to their tran-

14‘A namespace is a way of labelling a group of elements’ (Burnard 2014b). In this case, the group
of new XML markup are labelled with the prefix ‘CX’, which represent the result of collation with
CollateX.

15The prototype is available on Github: https://github.com/bleekere/xml_collation (Accessed July
30, 2017).

135

https://github.com/bleekere/xml_collation

3.4. Conclusion

scription, and how those transformations might influence the way they decide to

encode the transcriptions so that the collation results are satisfying. In particular,

editors need to decide which elements they wish to keep during collation so that

they are still available in the results. Editors need to consider as well how to encode

those elements so that they can transform the transcriptions into collation format

as easily as possible.

The issues of witnesses and tokenisation imply that decisions need to be made a

priori at the transcription stage, which will directly impact on how the collation is

performed, and the quality of the collation results for further analysis. In the next

chapter, the question of tokens and readings are considered more in detail, based

on the examples of tokens which include more properties: I will propose a model

to represent textual readings, and I will show how it can be implemented with the

JSON input of CollateX.

136

4Readings and Variants

THIS chapter presents the material of an article that I submitted following a

presentation at the symposium ‘Versioning Cultural Objects: Concepts, Struc-

tures, and Expressions’ organised by Roman Bleier and Vinayak Gupta at Maynooth

University, in December 2016. The article is titled ‘Towards a Model of (Variant)

Readings’ and will be published in 2018. The symposium was focused on versions,

in the very large sense of cultural objects which are compared and may exhibit

differences. The symposium’s organisers were interested in defining versions, from

the point of view of various area of studies, such as textual studies and collation,

manuscript studies and archiving, but also other fields such as musicology, film

studies and oral history, and so forth. Electronic modelling of versions and their

representation in a digital format were the two other main concerns of the sympo-

sium.

In the context of this symposium, I have considered the modelling of readings, an

essential component of textual versions, and the representation of readings in a

digital format. Although the term ‘version’ may describe a major rewriting of a

work, possibly by the author themselves, here I refer to version as one instance of

a text that is compared during collation. As we have seen previously (Chapter 3),

it may not be entirely accurate to say that witnesses are collated, since it is often

the case that one single witness contains more than one textual version (either

because of the intervention of different hands, or a succession of revision layers by

the author).

Each version to be collated contains readings, i.e., the particular word or words

found at a given point in the text. A version is determined, amongst other character-

istics, by the differences in the words found in the text, or variant readings. Variant

readings are important since they provide valuable information regarding how

versions are related to each other and how the text evolved through transmission.

We have seen in Chapter 1 that variant readings need to be precisely defined (see

p. 42).

137

Readings and Variants

Figure 4.1: Readings.

This chapter will focus on the modelling of ‘readings’, arguing that formalising this

concept is necessary in order to define, and model, the concept of ‘variant readings’.

We will show how reading was a technical term that was used quite consistently

through the ages, until it was defined with precision. Then we will establish the

basis for a model by selecting important features of textual readings according to

the previously examined definitions. These features, such as the textual content

(or absence thereof), its size, and location in the text, will be discussed, raising

various issues. This chapter will also address digital representation of a reading by

focusing on one implementation: the JSON data format used in conjunction with

collation programs such as CollateX (see Section 2.6.2). As we will see, the concept

of a variant reading may depend on the tradition of the text in consideration, and

a variant in Homeric epic is different from a variant in a medieval tradition. The

concept of variant is also dependent on the purpose of the comparison: a scholar

attempting to reconstruct a stemma or a linguist may need to examine different

variants. Therefore, a model of a reading should make it possible to distinguish

different sets of variants depending on the context, and we will examine how the

JSON implementation makes it possible with a few examples.

Let us consider the example of figure 4.1, where four versions of a sentence are

aligned. When comparing the sentences of A, B, C, and D, some readings can be

considered equivalent in all four sentences, such as The or upon; other readings

are different and change the meaning of the sentence: the absence of the adjective

bright in sentence B, the triplet star/sun/stars, and the verbs with different tense

(shines and shone). Finally, some readings are different, but may not alter the

sense of the sentence (such as world and worlde or sun and sunne). Readings

are thus divided between equivalent readings and different readings, and among

the different readings a certain number may be considered variant readings (see

figure 4.2). Other approaches reject altogether the concept of variant because it

implies a deviation from an invariant text (see below p. 143).

In the short collation extract of figure 4.1, there are four places where differences

138

Readings and Variants

appear in the text. However, not all differences between the readings are necessarily

considered variant readings in any possible context. Scholarly opinions on this

point range widely: from the view that every difference is a variant (Andrews 2012),

to considering only a limited number of ‘significant’ differences to be variants, for

instance, in the context of New Testament criticism, and therefore it is not enough

to define a variant simply as a difference:

The common or surface assumption is that any textual reading that

differs in any way from another reading in the same unit of text is a

‘textual variant’, but this simplistic definition will not suffice. Actually,

in NT textual criticism the term ‘textual variant’ really means - and

must mean – ‘significant’ or ‘meaningful textual variant’ (Epp 1993, 48).

In fact, the concept of the variant has evolved with time and according to several

theories. Since the nineteenth century, many scholars contributed to the devel-

opment of a method for the establishment of genealogical relationships between

manuscripts: the so-called Lachmann method. Maas (1958) in particular focused

on a specific category of differences: shared errors, or indicative errors, can be

used as a guide in order to assess the witnesses of the text and determine their

relationships into a stemma codicum, or genealogical tree of textual witnesses. Greg

(1950) separated variant readings between accidental and substantial, following

the idea that some differences (substantials) have more importance than others

(accidentals):

[W]e need to draw a distinction between the significant, or as I

shall call them “substantive”, readings of the text, those namely that

affect the author’s meaning or the essence of his expression, and others,

such in general as spelling, punctuation, word-division, and the like,

affecting mainly its formal presentation, which may be regarded as the

accidents, or as I shall call them “accidentals”, of the text’ (Greg 1950,

21).

In the twenty-first century, scholars started to compare textual variants to DNA

mutations and applied concepts from evolutionary biology and phylogenetics to

textual criticism (Barbrook et al. 1998; Salemans 2000; Heikkilä 2014). Lastly, in

opposition to the distinction between accidental and substantial variants, Andrews

(2012) suggested a big data approach where every difference is a variant.

139

4.1. Readings in Context

With the introduction of Lachmann’s method, shared errors became the object of

scholarly attention, and much work was done on the description and classification

of the kind of errors committed by scribes who were copying manuscripts by hand.

The cause of the error, as well as its conscious or unconscious character, is generally

taken into account. Since the conscious modifications of scribal corrections were

often attempts at improving or restoring the text, the terms innovations and sec-

ondary readings are frequently preferred to errors. One of the most comprehensive

review of errors and innovations was published by Havet (1911), but other scholars

have proposed variant typologies (Petti 1977; Love 1984; Reynolds and Wilson 1991).

These typologies often divide errors into four types: additions, omissions, substi-

tutions and transpositions (Petti 1977). When the scribe is consciously modifying

the text, Petti (1977, 28-29) refers to scribal corrections as insertions, deletions and

alterations instead of additions, omissions and substitutions.

In parallel, many fields of study have offered their own definitions for variants

according to their needs. From oral traditions such as Homeric epic to early printing,

from medieval traditions to genetic criticism, from linguistics to phylogenetics,

variants take many forms depending on the context: multiformity (Nagy 2010),

early or late states (Dane 2003), variants at the sentence level (Cerquiglini 1989),

open or alternative variants (Gadda 1983), type-2 variants (Salemans 2000), and so

on.

The task of proposing a model for variant readings, which would be suitable in any

of the possible contexts, seems at best challenging, if not impossible. Rather than

dealing directly with variants, I will focus on modelling readings, especially textual

readings. Not all readings are variant readings, but variants are always readings

which differ in some respect from one another (see figure 4.2). Once readings have

been modelled, variant readings could be more easily modelled as a set of readings,

with various criteria according to each discipline (V1, V2, V3). However, modelling

those subsets will not be in the scope of this dissertation. In order to propose a

model for readings, we will first review the origins and usage of the term as well as

its definitions in Section 4.1. The analysis of definitions will provide a first outline

for a model, which will be discussed in Section 4.2.

4.1 Readings in Context

Reading is a technical term that has long been used in the context of textual criti-

cism and philology. It was already attested with Alexandrian critics: terminology

included graphe (what is written), and anagnosis (what is read, a reading). The

140

4.1. Readings in Context

Figure 4.2: Readings, di�erences and variants.

Latin equivalents are scriptura and the most common lectio (Montanari 2015, 26).

The terms used by scholars of Antiquity imply a distinction between the words that

are actually written on the page as opposed to the interpretation of the text. In

English as well, a reading implies a form of interpretation; it could be read in more

than one way. Here are a couple of examples where the words scriptura and lectio

are used to qualify textual variation:

Obolus, id est, virgula iacens, adponitur in verbis vel sententiis su-

perflue iteratis, sive in his locis, ubi lectio aliqua falsitate notata est, ut

quasi sagitta iugulet supervacua atque falsa confodiat. Isid. 1.21.31.

The obelus, that is, a horizontal stroke, is placed next to words or

sentences repeated unnecessarily, or by places where some passage

is marked as false, so that like an arrow it slays the superfluous and

pierces the false (Barney et al. 2006).

Et idcirco inportunissime inquit fecerunt, qui in plerisque Sallusti ex-

emplaribus scripturam istam sincerissimam corruperunt. Gell. 20.6.142.

’And therefore,’ said he, ‘those have acted most arbitrarily who in

many copies of Sallust have corrupted a thoroughly sound reading’

(Rolfe 1927).

Here the nouns scriptura and lectio have been emphasised, as well as the terms

1Isidore, Bishop of Seville (c.560–636), is the author of the Etymologies, an etymological encyclo-
pedia compiled in the early 7th century.

2Aulus Gellius (c. 125 – after 180 AD) is a grammarian and author of the Attic Nights, a collection
of notes on many topics such as grammar, philosophy, or history.

141

4.1. Readings in Context

which qualify them. As it is shown, during Antiquity, there was a strong focus

on whether a reading is corrupt or sound. When producing a new literary book,

Hellenistic scholars used to correct a single copy of a work, instead of comparing

as many copies as possible as modern editors do. This practice led Hellenistic

scholars to become correctors of a specific work, and some experts compared them

to editors (Montanari 2015). Therefore, the need to distinguish between authentic

and spurious readings arose, which may have motivated the dichotomy between

sound versus corrupt readings, true versus false. The concept of variant reading,

however, appeared much later during the Renaissance.

In the Renaissance, Humanist scholars who were rediscovering and editing classical

texts of Latin and Greek literature started to deploy technical terms that would

become the base of the language of textual criticism. Silvia Rizzo’s Lessico Filo-

logico degli Umanisti 1973 provides invaluable information about the vocabulary

in use amongst famous Humanists in the fourteenth and fifteenth centuries. By

analysing their correspondence and publications, Rizzo was able to extract global

definitions and explain what they meant when they used a given word. During the

Renaissance, as Rizzo (1973, 209-213) shows, lectio and scriptura continued to be

used as synonyms in much the same way as in Antiquity, for a passage of a text that

can be read in a manuscript or an edition. Renaissance scholars would apply the

terms to readings from manuscripts as well as conjectures by other Humanists, and

would mostly describe those readings as either correct (recta, sincera) or incorrect

(corrupta, mendosa) according to their judgement.

At the same time, the concept of ‘variant reading’ started to be used more precisely

with varietas (diversity) and in expressions where lectio or scriptura were used in

connection with the adjective varius. Lorenzo Valla and Girolamo Avanzi have both

used varia lectio and varia scriptura to describe a portion of text with different

possible readings, as reported by Rizzo (1973, 213)3. Valla was accused by Poggio

Bracciolini of having presumptuously corrected a verse from Sallustius’ first Elegy.

Valla replied to Poggio that he did not emend Sallustius but merely chose one

reading in a passage that varies (varia scriptura), even though the reading was

attested only in very few manuscripts4. Another scholar, Avanzi, was asked for his

3Lorenzo Valla (1407 – 1457) and Girolamo Avanzi (1493 – 15..) were Italian Humanists of the
fifteenth and sixteenth century.

4‘Nam quomodo videri possum emendare Sallustium, qui, incertum est, an sic scriptum reliquerit,
ut me tu ais emendare voluisse ? Ego tantum ex varia scriptura, quid mihi satis videatur, pronuncio.
At cur praeponis, inquies, illam scripturam, quae in paucioribus codicibus est ? Praepono, non ut
Sallustius emendem, sed ut admoneam sequendum, quod plurimorum confirmat authoritas.’ (Valla
1540, 263). The discussion can be found in Valla’s Antidoti in Pogium, book I, in the section on
Sallustius.

142

4.1. Readings in Context

opinion on a difficult passage from Catullus I, 9. He offers no solution of his own to

emend the corrupted text, but he sends to his correspondent a list of conjectures

(varia lectio) proposed by others5.

The usage of lectio and scriptura illustrates two contrasting approaches on readings

and variant readings. Usually, a reading becomes a variant only when compared

to another reading (Froger 1968, 80); variant also implies a deviation from a norm

(Colwell and Tune 1964, 253)6. On the other hand, a variant can be one among

multiple possible alternatives, in a place where at least two witnesses disagree as

to what the text is. Consequently, Colwell and Tune (1964) decided to refer not to

variants, but to variation-units. This approach is shared by genetic criticism, which

reject the existence of an invariant final text, against which variant readings are

compared (de Biasi 2000).

In the twentieth century, formal definitions of reading can be found for instance

in editing manuals, dictionaries or lexicons7. Stussi (1994) defines a reading as ‘a

passage from a transmitted text as it appears in a given witness’8. In 1968, Froger

describes one of the first collation software and gives a very precise definition for a

reading:

The form or content of the text in a given place is a ‘reading’, that

is to say what we read at this location. Any manuscript, for instance

the original, can be considered regarding its content as a collection or

set of readings, which are the text elements at various levels: chapter,

paragraph, sentence, word, syllable, letter, and even punctuation or

accents (Froger 1968, 9)9.

5‘non meam, sed variam lectionem accipies illius versus in primo carmine Catulli’ (Avanzi 1495,
f. a5v).

6Colwell and Tune explain that the ‘norm’ against which variant readings are compared may
be different depending on editors : ‘So what is commonly done in practice? Some particular text is
chosen — often at random — for the norm. Either we use a printed text such as the Textus Receptus,
sometimes an edition by Tischendorf, Westcott-Hort, or Nestle; or, we may use the text of a particular
MS whose textual affinities are already known, e. g., Vaticanus or Alexandrinus’ (Colwell and Tune
1964, 253).

7A series of definitions can be found in the Lexicon of Scholarly Editing: http://uahost.
uantwerpen.be/lse/index.php/lexicon/reading-variant/ (Accessed October 31, 2016).

8Con lezione di un determinato testimone si designa un passo del testo tramandato così come
compare in tale testimone (Stussi 1994, 89).

9La forme ou teneur du texte en un lieu donné est une ‘leçon’, c’est-à-dire ce qu’on lit à cet
endroit. Un manuscrit quelconque, par exemple l’original, peut donc être considéré, quant à sa
teneur, comme une collection ou un ensemble de leçons, qui sont les éléments du texte à différentes
échelles : celle du chapitre, du paragraphe, de la phrase, du mot, de la syllabe, de la lettre, et même

143

http://uahost.uantwerpen.be/lse/index.php/lexicon/reading-variant/
http://uahost.uantwerpen.be/lse/index.php/lexicon/reading-variant/

4.2. Modelling a Reading

This definition adds more precision: a reading is a textual element (‘what is read’),

and it can be of various scope, from the smallest punctuation marks to whole

chapters. How can these definitions of a reading lead to a first example of a reading

model?

4.2 Modelling a Reading

The purpose of data modelling in the Humanities is to describe and structure

information about real-world or digital objects in a formal way, and so that this

information becomes computable (Flanders and Jannidis 2016, 229-230), and that

it can be manipulated and queried with the help of a computer in order to answer

questions. Ultimately, the purpose of modelling readings is to help determine

if two given readings may be considered variant readings in a specific context.

Flanders and Jannidis (2016, 234) suggest modelling textual variants in a scholarly

edition by classifying variants according to some scheme, such as accidental versus

substantial, or orthographical versus lexical, which corresponds to a consensus

within the community.

As we have seen, however, variants can represent something very different depend-

ing on the approach (stemmatics, linguistics, etc.) and textual traditions (oral,

medieval, early printing, and so on); therefore readings need to be modelled inde-

pendently of their function in textual criticism, but with enough information to

decide what is a variant in those distinct contexts. It may be helpful to consider

the distinction between readings and variants in the framework of Sahle’s wheel

of text model (Sahle 2013, 45-49). According to Sahle’s model, there are several

perspectives on the text which are closely related. Different criteria help determine

if texts are identical or not according to the perspective adopted. For instance when

text is considered as a language, the English and French translations of Calpurnius

are considered different (Sussman 1994; Aizpurua 2005). On the other hand, if

text is considered as a work, both translations represent the same work and are

identical. These perspectives are equal and not in a hierarchical relationship, which

is why they are represented as a wheel (figure 4.3).

In Sahle’s model, readings can be considered as a part of the text as Document

(TextD), whereas variants are part of the text as Version (TextF). The text as Version is

further divided into subcategories, such as TextK, a canonical representation of the

text which aims at identifying the best (true) text among the different versions. With

this framework in mind, the characterisation of readings as authentic or corrupt

du signe de ponctuation ou des accents’ (Froger 1968, 9).

144

4.2. Modelling a Reading

Figure 4.3: Sahle’s wheel of text model (Sahle 2013, 47).

does not make a good model for readings, since it represents rather variants than

readings. Therefore, the more recent definitions of readings may provide a better

starting point to the model than the true/false distinction previously applied to

readings.

Models are simplified representations of an object of study, a selection of features

among all available (Pierazzo 2015, 44-45). From the overview of the term reading

provided in the previous section, in particular the definition of Froger (1968) and

Stussi (1994), features which apply to a reading can be inferred, namely that a

reading:

• conveys textual content;

• has a precise location in the text (also referred to as locus);

• can occur at any level of the text, and thus have various sizes;

• is transmitted by a witness.

4.2.1 Issues

These features need to be discussed in more detail. For instance, is it too restric-

tive to limit a reading to textual content? What about decorations, mathematical

diagrams and other non-textual elements? Historians of Greek, Arabic or Egyptian

mathematics have acknowledged the need to collate and critically edit mathemati-

cal diagrams instead of simply providing corrected figures to fit modern standards.

Raynaud (2014) created a stemma for the Epistle on the Shape of the Eclipse by

Ibn al-Haytham, a mathematical treatise from the eleventh century, using the

mathematical diagrams present in the text. In order to collate diagrams and apply

145

4.2. Modelling a Reading

Lachmann’s method of shared errors, Raynaud had to select ‘characters’ from the

diagrams, which could be regarded as an equivalent for readings. This suggests that

it is possible to define and model readings for mathematical diagrams. It would be

different from textual readings, but as important for the comparison of versions

from traditions of mathematical texts. Other types of content could include, and

are not limited to, ‘visual content’ such as decorations, illuminations, or an artist’s

sketches. Musical compositions need as well to be collated and critically edited,

however readings and variants are quite different from textual readings and vari-

ants: pitch and metrical values are significant features of a musical note to compare,

for instance (Broude 1991).

Let us focus here on readings as textual content. Other issues arise with gaps,

and lacunae for instance. Can the absence of text, such as an omission, a so-

called lacuna, be considered a ‘reading’ as well? It would seem that the absence

of text is by definition not a reading. It cannot be read in the witness, even if it

can often be defined by the other features listed above (the size of the missing

text may be difficult to evaluate in some cases). However, a missing reading may

be significant for the manuscript tradition: since a missing passage is difficult

to restore by conjecture, a lacuna can often be used as a significant error during

the stemma construction (Reynolds and Wilson 1991, 213). A lacuna that helps

in grouping manuscripts and building the stemma therefore needs to appear in

the collation. How should the absence of text be modelled? As a special kind of

reading, or separately? In this model, lacunae were included as readings without

any content if there is a physical evidence in the document, and lacunae without

evidence but which may appear after collation are considered as an absence of

reading.

Conjectures — reconstructed readings proposed by scholars, which are not present

in any witness — seem to qualify as readings according to the features listed above.

However, one may ask if conjectures are indeed transmitted by a witness. Con-

jectures are obviously constituted of textual content of a certain size, meant to be

read at a certain location; can they nevertheless be considered as ‘transmitted by

a witness’, where they are published in a scholarly article instead of an edition?

According to Greetham (1994) a conjecture ‘is involved only when an editor recon-

structs or creates a reading which is not extant in any of the witnesses’ (Greetham

1994). A conjecture is thus a new reading, with no prior witness evidence, but with

an established origin that can be traced to a particular scholar or scribe. In this

sense conjectures are considered as part of the reading model.

146

4.2. Modelling a Reading

The location of a reading in the text is not as easy to formulate as it seems. It would

not be enough, for instance, to number each word, since the count would then

be different for every witnesses. Even a reference system such as the canonical

citations for classical texts can have limitations, when it comes to precision at the

word level. Citations such as Pliny nat. 11.4.11 or Vergil ecl. 10.69 refer respectively

to the Natural History of Pliny the Elder, Book 11, Chapter 4, paragraph 11, or Vergil’s

Eclogues 10, verse 69. The minimal text unit here is the paragraph or the verse,

not the word, and at some point in the text, there will be chapters or verses with

different word numbers. The location in the text can only be accurately expressed

after collation has happened and readings have been aligned with each other.

Canonical citations have been formalised in digital formats such as DET (Robinson

2017) or the Canonical Text Services (CTS) Data Model (Crane et al. 2014).

Text can be seen as both a conceptual (immaterial) sequence of words and punctu-

ation from which a reader derives meaning, and as a material sequence of marks

on a document. Readings are also made of marks recorded on a physical document,

besides being part of the immaterial text, thus a reading has a both a location in

the text and a location in the document where it appears. The document location

may be rendered with varying degrees of precision: for instance with folio or page

number of the witness in which it appears, with an additional line number, or with

a very precise set of coordinates for a two dimensional surface on the page10.

Finally, it is worth asking if different levels of reading (letter, words, sentences and

so on) call for different models and how those levels relate to other existing models.

For example, how would the letter level relate to the model used by the DigiPal

framework Stokes (2012) to describe letters from a palaeographical point of view?

How would the sentence level relate to the treebank model (Haug 2015) used to

annotate textual corpora? How would the different levels be linked together, if the

purpose of the scholar is to collate at different levels? Monella (2014a), for instance,

decided to collate a text from the Latin Anthology at three different levels, which

are called graphical (letters, punctuation), alphabetic (the abstract representation

of a letter in a particular alphabet) and linguistic (word) levels. The different levels

may certainly be characterised by additional features of their own. Readings at the

word level may also have morphological features, such as lemma or part-of-speech

properties or even a phonetic transcription. These linguistic annotations could

be useful when comparing readings during collation. For instance, words that

do not share gender, number, case, and lemma, could be considered variants. In

10See for instance the TEI P5 Guidelines chapter 11 for representation of primary sources, in
particular the section on digital facsimiles (TEI Consortium eds. 2017b, §11.1).

147

4.2. Modelling a Reading

the case of oral sources, a different pronunciation may be considered a variant.

Layout could also be significant in some contexts: the same word written in bold,

or italics or in colour could signal a variation. For instance, Caton (2009) argues

that a transcription loses information when a word originally written in italics,

to denote emphasis, is transcribed into roman font. At the line level in poetry,

metrical patterns would be an important feature. At the sentence level, syntactic

information about the subject, object, verb and other elements of the sentence

may be an important feature. This information could be particularly interesting

for the comparison of versions translated in a different language from the original

(see Spencer and Howe 2004, 266). In principle, the comparison happens always

with readings at the same level: letters are not compared to words, or words to

paragraphs.

It is worth noting, however, that even if the word level is used during collation, it

may be that in the result, words will be grouped together to form a new reading at a

different level than the word level (a variation unit that falls between the word and

sentence levels). Considering the sentences from the fictive witnesses in figure 4.1,

the groups of words ‘sun shines’, ‘star shines’ and ‘stars shone’ may be considered

as one reading only, for the purpose of studying the collation results. When there

are many variations close to each other, it may be difficult to decide how to group

words into readings, if they should be grouped at all, and the readings may be

different according to different editors. One could decide to group words instead

as ‘bright star’, ‘sun’ and ‘bright stars’, with the verb as a separate reading.

4.2.2 Model

In summary, the model could be expressed as in figure 4.4: readings can either have

content or not. In both cases, the reading has the general properties outlined above,

such as the witness in which it is found, a position both in the text and the docu-

ment, or a level of precision such as the word level. When the content is present, it

can be textual content or another type of content such as diagrams or illustrations.

The textual content has a second layer of properties: syntax, morphology, phonetic,

layout, and so on. Depending on the level of the textual content, features may differ.

At the sentence level, it is possible to describe the relationships between words or

group of words: ‘The bright star’ is the subject of the verb phrase ‘shines upon you’,

a relationship which is more difficult to represent at a word level. The other types

of content would have their own properties, such as the characters in diagrams

described by Raynaud (2014).

On the other hand, readings without content cannot be described with those

148

4.2. Modelling a Reading

Figure 4.4: Model for readings.

additional features. There are other concerns regarding an absence of content,

or lacuna. First, there are different reasons behind the presence of a lacuna. The

missing text could have been present in the manuscript but is no longer readable

by scholars, due to damage or to missing pages. In other cases, the copyist marked

a lacuna explicitly, with a series of dots for instance, because the text was already

missing in the witness serving as the exemplar. The scribe may also have left a blank

space to be filled later, and which was never completed. In medieval manuscripts,

this would happen easily for material such as titles, initials or coloured text, which

were added later often by a different person than the copyist of the main text. Even

if the text is absent from every witness, the presence of a lacuna can be indicated

by inconsistencies in the meaning, for metrical or grammatical reasons, or by an

incomplete content (such as a missing plural ‘s’). In addition, Dillen (2015) has

demonstrated the importance of distinguishing between several types of lacunae in

Beckett’s draft manuscripts, such as authorial lacunae as opposed to editorial ones.

Lastly, the lacuna may not be perceptible, unless the witnesses are collated. The

collation result could then expose in a witness the absence of a reading which was

present in at least one other witness. In figure 4.4, the absence of ‘bright’ in witness

B would have gone unnoticed unless exposed by the collation against the readings

in sentences A and C. The reading may be absent because the scribe did not copy it,

whether voluntarily or not, or because it was absent altogether from the exemplar.

This kind of lacuna does not belong to the reading model, but only to the variant

model: a variant arises either if two readings are considered different, or if a reading

is compared against an absence of reading. It is then important to distinguish

between the reasons behind a lacuna: is the text present but no longer accessible?

Is there a mark indicating that the text was already illegible to the copyist? Or is

there no evidence?

149

4.3. Digital Representation: from Reading to Token

4.2.3 Selecting Sets of Variant Readings

Given two or more readings at a place of variation, the comparison of the reading’s

features could help to identify in what aspect the readings differ (Monroy et al. 2002;

Smith and Lindeborg 2016). This comparison could then lead to decide when

those readings become variant readings. Let us consider pairs of readings from

the sentences in figure 4.1: comparing the features of stars and star would show

a difference in number, plural and singular, but the lemma would indicate that

they represent the same word. It would thus be a grammatical difference. The

readings sun and star have a different lemma, and therefore represent a lexical

difference. Two words which share all features (lemma, part of speech and so on)

and show no other difference than their original written form would represent

an orthographical difference, or graphical difference for languages which have no

standardised orthography. In different scholarly contexts, the features of readings

could be used to define criteria which are then applied to isolate the relevant set of

variant readings11.

Let us consider three different contexts. First, if all differences are considered

variants, then readings which display any difference among their features will be

considered variants. On the other hand, orthographical differences and other

accidentals are often not considered variants while editing a text (Reynolds and

Wilson 1991; Love 1984), therefore the distinction between non-orthographical

or orthographical differences allows to select the set of readings which represent

grammatical or lexical differences, and ignore spelling variants. Finally, it would

be possible to examine splling variants only. Linguists would be able to select only

spelling variants only, particularly significant for the study of language evolution

(Vierros and Henriksson 2016).

These three contexts will be further examined in Section 4.4 below, using a practical

example. The next section will first deal with the representation of a reading in

digital format.

4.3 Digital Representation: from Reading to Token

To translate the concept of a reading, as defined by centuries of textual scholarship,

into digital representation, it seems there is already a counterpart in computational

linguistic terminology: the token. Tokens are commonly used for lexical analysis in

computer science, as a sequence of characters with an identified ‘meaning’ is con-

11These criteria would not necessarily be applied at the time of recording variants, but also after
variants are recorded, to identify only the variants relevant to a specific context.

150

4.3. Digital Representation: from Reading to Token

verted into a token. If manual collation is the comparison of readings, automated

collation is the comparison of tokens. Automated collation is the application of

computing methods to the comparison of textual witnesses: instead of comparing

manually the existing versions of a text, digital transcriptions are collated with the

help of an alignment algorithm. The concept of tokens was already introduced in

Section 2.4.4, as they are the unit of textual comparison in the Gothenburg model of

automated collation. Tokens were also discussed in Chapter 3: tokens are marks on

a document that can be interpreted as text. In the collation model, a token becomes

a reading when it is read and interpreted by someone, whereas in the Gothenburg

model, readings (sequences of characters) are transformed into digital tokens.

The parallel between Froger’s reading definition (p. 143 above) and a token is clear.

In the Gothenburg model, a text is divided into a list of tokens which are textual

units (a sequence of characters) at a chosen level. This is also how Froger described

a text, as a collection of readings, which are made of the text’s content taken at a

particular level. As such, the tokens share the same features as readings: the textual

content of a witness, with a precise location in the text determined by its position

in the full list of tokens, and at a specific level.

According to Dekker et al. (2015), a token is a textual unit at ‘any level of granularity,

for instance, on the level of syllables, words, lines, phrases, verses, paragraphs, text

nodes in a normalised XML DOM instance, or any other unit suitable to the texts at

hand’. The CollateX documentation more explicitly considers a token as a textual

unit that ideally carries meaning, thus above the character level (see Section 3.3.3).

At letter level, phenomena such as transposition are much more frequent and

reduce the efficiency of the alignment algorithm. For this reason, collation is prefer-

ably performed at a higher level, rather than at character level. However useful for

the collation process, this restriction does not apply in palaeography where letters

are the comparison units. Projects such as Monella’s 2014 also require analysis at

character level. From a theoretical and modelling perspective, it is thus necessary

not to make assumptions about the meaning of a token. The transcription model

of Huitfeldt, Marcoux, and Sperberg-McQueen (2008) provides a more adapted

description for a token, since they do not make a distinction between tokens as

characters, as words, or as other levels12.

In digital format, the most basic form of a token is a simple string of characters, a

12See also p. 115. The transcription model is ‘agnostic about whether the [tokens] it is concerned
with are those at the character level or those at the level of words and lexical items’ (Huitfeldt, Marcoux,
and Sperberg-McQueen 2008, 298).

151

4.3. Digital Representation: from Reading to Token

linear sequence of one or more symbols representing letters, but with no linguistic

interpretation attached to them. Nevertheless, collation tools usually offer to

normalise tokens in order to minimise what is perceived as insignificant variation:

typically, normalisation permits the removal of upper case, punctuation or other

aspects (such as, for instance, hyphenation or line breaks in Juxta, white space

characters in CollateX) from the tokens that will be compared, so that these would

not be considered differences: the and The would be treated as the same word for

the purpose of aligning the versions together. However, if this normalised form

is not explicitly included in the token, it will not be available in the results of the

collation. For example, in the case when accidental differences are not significant,

the pair of readings sun/sunne and world/worlde may be considered as irrelevant

differences and thus should be ignored when searching for semantic variants.

However, given only the string of characters it is impossible to discriminate between

a significant variant such as shines/shone and other variants such as sun/sunne. On

the other hand, if the reading sunne also includes a normalised form sun, it is then

possible to compare the normalised form of sunne and decide that it is equivalent

to the reading sun. As a consequence, it could be extremely difficult to distinguish

between orthographical or non-orthographical differences without normalised

forms, when analysing collation results.

4.3.1 Token Format in CollateX

CollateX makes it possible to distinguish between the original token and a nor-

malised form provided by the user thanks to its JSON input format, where tokens

can be represented with various properties (see also Section 7.1.3 and Section 8.4.1).

These properties include:

t the textual content in its original form.

n a normalised form of the same textual content.

The property t is mandatory for CollateX. The normalised form n, if provided, is

used to align the texts as accurately as possible. In addition to these two properties,

users are free to add as many others as they need.

The input format of CollateX is thus a very effective way to represent readings

involving textual content. However, readings without content are problematic,

since a token must always have at least a property t with a positive value. As a result,

152

4.3. Digital Representation: from Reading to Token

it is not possible to collate empty tokens, which can be a limitation since lacunae

are considered readings in this model and need to be represented as tokens as well.

I have represented lacunae present in the text due to damage, or explicitly marked

by the copyist, as tokens with the textual content t as ‘. . . ’, and the normalised form

n as ‘lacuna’, a combination that does not appear elsewhere in the witnesses and

therefore cannot be confused with another reading (see Section 6.2.3.5). Lacunae

which are revealed by the collation, because a portion of text was omitted by a

scribe, are not represented by a token. Instead, CollateX inserts empty tokens in

the collation to compensate for the absence of text (Dekker et al. 2015).

As CollateX is used in several projects, their encoding choices may provide further

ideas about the representation of readings as tokens. As an example, the Collation

Editor, a tool prepared for the collation of the Greek New Testament with CollateX,

provides a description of the token’s properties13. The Collation Editor provides

two layers of normalisation and regularisation: the original token is normalised in

a first step into t, with operations such as setting the words in lower case. Then,

the token t may be regularised again into n according to rules defined by the user,

which are provided through a rule_match feature.

Besides t and n, any additional properties can be provided to the token object, and

will be ignored during collation. Nevertheless, these additional properties would

still be available in the results for further processing. For tokens at the word level,

such properties could also include:

Identification Identification refers to a way to identify and locate the token in

the document where it appears, with a reference to page and line numbers for

instance. The location may also help to situate the token in the text (with a reference

system, such as canonical citations for classical texts mentioned above). A unique

identifier could also serve to link the collation result to the transcription, where

other properties of the token are encoded and could be retrieved. The Collation

Editor includes properties such as index, siglum, verse and reading in order to

provide identification for each token.

Markup XML transcriptions of the witnesses are often used within collation pro-

grammes. Since a lot of valuable information is already encoded in the transcrip-

13The collation Editor is a tool produced by The Institute for Textual Scholarship and Electronic
Editing (ITSEE) at the University of Birmingham. It is an open source tool available on Github:
https://github.com/itsee-birmingham/collation_editor (Accessed February 1, 2017).

153

https://github.com/itsee-birmingham/collation_editor

4.4. Comparing Tokens in Different Contexts

tions, including layout information, several projects have decided to keep the

markup in the token properties. It could be exploited during the collation process:

for instance a word marked as bold could be considered as different from the same

word in italics. This approach was adopted for instance by the editors of Willem

Frederik Hermans, a Dutch writer14. The inclusion of markup could also serve

to display and visualise tokens with more precision. The Beckett Digital Manu-

scripts project, for instance, displays additions and deletions thanks to this markup

property15.

Facsimile A reference to a digital image, for instance in the form of a link, could

be helpful to visualise the original reading in context and assess the transcription

accuracy (see Section 8.2.2).

Linguistic properties Those properties could be expressed with a standardised

format of detailed linguistic annotation, such as part-of-speech, and morphology.

Although Crane (2014) argues that morpho-syntactic analysis is one major feature

of a digital edition, Monella (2014a, 184) recognises that the additional workload

may be an issue for the encoder. The use of semi-automatic annotation methods is

a solution to explore in further research. Smith and Lindeborg (2016) propose to

use a ‘dictionary form’ to recognise identical lexical readings, and metrical units to

compare the rhythm of Iliadic verses. The use of lemma, synonyms and part-of-

speech tagging is also planned to be implemented in collation with the tool iAligner

(Yousef and Palladino 2016).

Lacunae If lacunae are represented as tokens, a description of the lacuna’s length

and reason (such as damage, or missing page) could be added. In the Collation

Editor, lacunae are not represented as tokens, but are included in the properties of

the preceding token: Gap_after, a boolean variable set to true, records the presence

of lacuna after a given token. Another property, Gap_detail, gives information

about the length of the lacuna.

4.4 Comparing Tokens in Di�erent Contexts

So far, I have attempted to define a reading, and to provide a digital representation

that can help to satisfy the needs of various scholars. In this last section, I would

14Bleeker (2017, 122) describes of their use of CollateX JSON format to store information about
the layout of tokens, such as ‘italic’ or ‘bold’. The digital edition is available here: http://www.
wfhermansvolledigewerken.nl/?lang=en (Accessed July 31, 2017).

15See the update from September 17, 2014 here: http://www.beckettarchive.org/news.jsp (Ac-
cessed October 31, 2016).

154

http://www.wfhermansvolledigewerken.nl/?lang=en
http://www.wfhermansvolledigewerken.nl/?lang=en
http://www.beckettarchive.org/news.jsp

4.4. Comparing Tokens in Different Contexts

like to explore how the properties t and n can be used to select the relevant variants

according to the edition, its cultural context, its tradition, or its audience.

As described above in Section 4.2, tokens can be compared to find variant readings

according to a specific context. Three possible situations were taken into account:

(a) every difference is a variant, (b) only lexical differences are variants, and (c) only

non-lexical differences, such as spelling, are variants (see above p. 150). In these

situations, the properties t and n of tokens already make it possible to distinguish

variants for these three different contexts. Let us consider again the example of a

collated sentence in figure 4.1. The readings would be transformed into tokens with

t properties, and the two readings sunne and worlde would be given normalised

forms n (respectively sun and world).

In the first situation, all differences are variant readings. Therefore, in each columns,

the tokens are compared on the basis of their property t: in the first column, all

tokens have the same property t, The, and thus there is no variant. In the second

column, the absence of bright in witness B is a variant, and so on. When each

reading has been examined, the following figure 4.5 highlights every variant.

Figure 4.5: Every di�erence is a variant.

In the second scenario, differences which do not change the meaning of the sen-

tence are considered irrelevant. In order to find the relevant variant readings, the

tokens must then be compared on their normalised property n, so that differences

appearing in property t are ignored. In our example, this means that the last col-

umn will not show a variant, because witnesses C and D will have the word you as a

normalised form: when comparing this normalised form to the tokens in witnesses

A and B, there will be no difference. The two tokens show a spelling difference

(in property t) but are in fact considered the same reading (they share the same

property n). Figure 4.6 shows the locations of non-orthographic variants.

Finally, orthographic variants can be isolated when searching for tokens which

share the same normalised form n, but not the same original form t. In our example,

there are thus two columns which contain an orthographic variant (see figure 4.7).

155

4.4. Comparing Tokens in Different Contexts

Figure 4.6: Non-orthographic di�erences are variants.

The table could then be reduced to a list of orthographic variants, so that repeated

orthographic variation is shown only once:

• sun (B) - sunne (D)

• world (ABC) - worlde (D)

Figure 4.7: Orthographic di�erences are variants.

These three simple examples are of course generalisations: in reality, the principles

of collation may be far more complex. For example, spelling differences may

be ignored, except in proper nouns (Love 1984, 52). In some cases, it may be

difficult to distinguish between a spelling difference or a morphological one. Some

variants could also combine several aspects: for instance felix (adjective) and

foeliciter (adverb) would be a lexical variant, but show also a spelling difference.

The search for spelling variants as shown here is limited to spelling variants aligned

in a collation table, but spelling differences could also be present elsewhere such as

in the same witness (if the scribe has been inconsistent).

In addition, different readers may give diverse interpretations for certain words or

sentences, as it is the case with annotated treebanks (Bamman and Crane 2011).

The uncertainty and multiple interpretations thus needs to be represented. How-

ever, if the tokens contain more detailed information, it may help to bring more

precision when deciding which readings are variant readings.

156

4.5. Conclusion

4.5 Conclusion

Different versions of a text are characterised in part by their variant readings. To

represent variant readings in digital format, it may then be helpful to precisely

define and formalise the concept. What is a variant reading, however, is highly

dependent on the tradition in question (oral, medieval, early printing, etc.) and

on the scholarly point of view on the text (stemmatics, linguistics, and so on). As

a result, the set of differences present in a textual tradition are not all considered

significant in every situation: variant readings are only a subset of all the differences,

and different contexts call for different sets of variant readings, as we have seen in

the last section.

A first step in formalising variant readings may be to model and formalise readings,

in such a way that later, those readings can be compared efficiently in order to

define which readings are variant readings in a given context. The definitions of

the term reading thus provided a series of features which could be used to create

a model of a reading. Those features raised a few issues regarding their content,

their position in the text as well as in the document, and their relationship between

different levels of reading (from characters to words, sentences, and so on). The

translation of readings to tokens, with CollateX input format, showed how the use

of a simple normalised form could allow to find different sets of variants according

to three different contexts. However, as more information is encoded within the

features of readings, it could be possible to define variant readings even more

precisely. The interest of the model is to represent readings independently of

their function in textual criticism, but with enough information so as to decide

when a difference becomes a variant. Considering other sorts of content, such

as mathematical diagrams, images or music, the model could be extended in the

future to allow for collation and comparison of non-textual content as well.

157

Conclusion

AS underlined in Chapter 1, collation is not a mechanical and tedious preliminary

to textual criticism, but a genuinely scholarly activity that involves critical

decisions. The adoption of automated collation only increases the number of

critical decisions that must be consciously taken.

Chapter 1 summarised the definition, purpose and issues of manual collation,

while Chapter 2 introduced automated collation and offered an extensive overview

of the whole process and its relationship to manual collation. Relying on the recent

development of tool criticism, I have prepared a series of criteria which may be

useful to compare existing collation tools, as well as understand and assess new

tools.

A more tangible result of this theoretical research is that I have added over a hundred

definitions to the Lexicon of Scholarly Editing (Dillen and Van Hulle 2013–). These

definitions have in turn enabled more research: for instance, a paper presented at

the ESTS-DiXiT conference in Antwerp (Andrews 2017) examines the definitions

of the term ‘collation’ in the Lexicon, most of which were added by myself while

working on the first part of the thesis.

Chapters 3 and 4 focused on the decisions that must be made before starting a

transcription and automated collation: scholars have to clearly identify the wit-

nesses and the textual features that need to be collated (such as scribal corrections,

abbreviations, etc.), and whether plain text will be sufficient or if aspects of the

context also need to be incorporated into the tokens (such as paratextual elements

or editorial comments). The concept of variant readings is central to automated

collation, but as noted in Chapter 4, it is difficult to provide a model that is valid for

every kind of textual tradition. The solution was to propose a model of readings

that allow for a flexible definition of variant, according to the context, and that

could be adapted for instance to ignore or include orthographic variation.

158

PART II

PRACTICE

Introduction

THE purpose of the dissertation is to study the application of automated collation

tools to the creation of a digital critical edition in the context of Classical

literature. While the first part of this thesis was devoted to theoretical issues, the

second part will deal with the practical aspects of automated collation. To this end,

a text was chosen as a test case and was collated with different automated collation

tools.

In this part of the thesis, I will start in Chapter 5 by describing the material of the

textual tradition that was selected as a test case, the Declamations of Calpurnius

Flaccus. I will review the extant manuscripts and the editors of the text, as well as

how the various witnesses are related into a stemma. This introductory chapter will

also present the reasons for working with Calpurnius, and describe the workflow

that was applied to the text of Calpurnius, from transcription to the analysis of the

collation results. Each of the remaining chapters will focus on a particular step in

this workflow:

• Transcription: Chapter 6 will concentrate on the practical aspects of tran-

scription, such as the choice of a transcription platform, and the encoding of

the witnesses with the XML TEI standard.

• Collation: Chapter 7 details the automated collation of the Declamations

with three different tools. This chapter compares the various issues and

advantages related to each tool, relying especially on the four criteria for

collation tool criticism identified in Chapter 2 (interface, data preparation,

collation process and analysis of the results). The outcome of this comparison

is the selection of one tool and one collation output, which was adopted for

further exploration of visualisations that can help scholars to make use of

automated collation in the context of producing a digital critical edition.

• Visualisation: in Chapter 8, I will consider existing visualisations, and pro-

160

pose enhancements to the collation table visualisation. I will also describe

a tool that I have created in order to analyse the results of automated colla-

tion while applying the traditional Lachmann method for establishing the

relationships between witnesses.

The purpose of this part is to put automated collation into practice, considering

issues raised in the part on Theory: the division of manuscripts into witnesses, or

the transcription and representation of readings as tokens in digital format. How

are these issues dealt with in a practical example? What affects the results from

the collation tools? The purpose is also to survey what can tools do to collate and

visualise the results, and identify which tool is best suited to the task as well as

eventual needs from editors to which the current tools would not respond.

The practice of automated collation dates back to over fifty years ago, as we have

seen in Chapter 2, and digital scholarly editions have been discussed since the

early days of hypertext technology (Franzini, Terras, and Mahony 2016). How many

digital critical editions have in fact been produced with the help of automated

collation? Catalogues of digital editions such as the ones created by Sahle (2017)

and Franzini, Terras, and Mahony (2016) can give us approximative numbers.

For instance, a search through catalogues of digital editions reveals only two edi-

tions for Antiquity: the edition of the Greek New Testament, Digital Nestle-Aland,

and the Hebrew text of the Digital Mishnah (Franzini, Terras, and Mahony 2016;

Sahle 2017). To these can be added a series of seven projects using the Virtual

Manuscript Room (VMR) framework16. It can be noted that in the fields of Classics,

digital critical editions are less numerous than in other fields (Dahlström 2000;

Monella 2014b; Franzini, Terras, and Mahony 2016).

For the Middle Ages, the Catalog of Digital Editions (Franzini, Terras, and Mahony

2016) returns the editions of the Codex Suprasliensis (Birnbaum 2012), the Chron-

icles of Matthew of Edessa (Andrews 2009), and Dante’s Commedia (Shaw 2010).

To these can be added the other texts published by Scholarly Digital Editions, a

publishing company founded by Peter Robinson and Barbara Bordalejo, as well

as the edition of Petrus Alfonsus (Cardelle de Hartmann, Senekovic, and Ziegler

2014) for which part of the text was collated automatically. Although there are more

examples for medieval traditions than for classical texts from Antiquity, the digital

editions that make use of automated collation represent only a small percentage of

16http://vmrcre.org/ (Accessed January 25, 2018).

161

http://vmrcre.org/

the total. It is worth noting that most of the examples here make use of CollateX, or

its predecessor Collate in the case of publications by Scholarly Digital Editions.

To understand why, several explanations can be advanced. The first is to call into

question the usefulness of automated collation. For instance, it may be that full

transcriptions of witnesses is not adapted to Classical traditions. Instead of starting

new critical editions from scratch, Damon (2016) suggests that making use of the

work carried out by previous scholars is a more sustainable approach. To digitise

old critical edition with OCR technology is the approach of the Open Greek and

Latin project, which has resulted for instance in editions of fragmentary texts such

as the Digital Athenaeus (Berti, Almas, and Crane 2016).

A lack of user-friendly tools or guidelines may also be a cause, as well as a lack of

consensus regarding digital editions (see the General Introduction p. 15). There

is no lack of tools to perform automated collation, and new tools are constantly

developed. However there is still little information for users to compare and choose

amongst all the available options.

The case study of Calpurnius Flaccus is an opportunity to provide a set of guidelines

for the application of automated collation and to implement the framework for

tool criticism. Through the creation of a visualisation tool for textual editors, this

dissertation also demonstrates how automated collation and its results in a flexible

digital format can help in the creation of a digital critical edition.

162

5Test Case: the Declamations of Calpurnius
Flaccus

THIS chapter serves as an introduction to the second part of the dissertation: it

presents the Declamations of Calpurnius Flaccus that was used as a test case,

as well as the method which was applied to the text in order to study the potential

of automated collation for Classical literary texts.

The first section of this chapter is dedicated to the tradition of the Declamations

of Calpurnius Flaccus. The section will discuss the text and what is known about

the author, the witnesses, and the stemma. It will include a description of the

five known manuscripts which bear a version of the Declamations as well as the

editio princeps, and discuss how they are related to each other. The second section

will describe the methodology that was adopted for this research: transcription,

automated collation, and visualisation of the results.

5.1 The Tradition of Calpurnius Flaccus

5.1.1 The Text and the Author

The text that was chosen as case study during this dissertation is the Declamations

of Calpurnius Flaccus. Declamations were exercises that were taught at the end of

the school curriculum in the Greek and Roman world. Declamation was originally

a Greek practice, which is attested in papyri dating to the third century BC (Russell

1983, 4), and was adopted in the Roman world as well. Quintilian1 wrote about the

entire education of a good orator in the Institutiones Oratoriae, a textbook in twelve

volumes describing the two stages of Roman school curriculum: first the students

learnt to speak, read and write properly with the grammaticus (see for instance

Quint. Inst. 1. 4. 1 and 1. 9. 1-2), and later they studied with a rhetor the principles

of rhetoric. The declamation was the last and most difficult exercise practised at

1Marcus Fabius Quintilianus, Roman rhetorician from the first century (c. 35 - c. 100 AD).

163

5.1. The Tradition of Calpurnius Flaccus

the rhetor’s school (Quint. Inst. 2. 4). Declamations could be of the type either

deliberative or judiciary. In the deliberative suasoriae, the speaker had to give an

exhortation to a fictive or historical character, while the controversiae were legal

speeches for fictitious court cases (Sussman 2013). Given a situation of conflict

(the theme) and a set of laws, the students had to play the part of a lawyer and

learn to defend both parties. Here is an example of such a controversial situation in

Calpurnius, Decl. 4, titled ‘the parricide who sues for imprisonment’:

Law: A person convicted of parricide shall be kept in custody for a year.

Theme: A certain man was convicted of parricide during the ascendancy of a

stepmother in the household. His father wants to keep him in custody at home.

The son sues to be kept in the state prison (translation by Sussman 1994, 31).

This situation is followed first by the discourse in favour of the son, and then by

a second discourse defending the father’s point of view. The declaimer had to be

able to interpret the same situation from different point of views and different

arguments: the point of view adopted is a color (see Montefusco 2003), constructed

from the law, the elements present in the theme and the personality of the charac-

ters involved. The characters portrayed in declamations are everyday members of

society: fathers and sons, stepmothers, young women and rapists, rich and poor

enemies, deserters and war heroes, tyrants, pirates and so on. Each of these generic

characters could have a positive personality attached to them, such as the hero and

tyrannicide, or a negative one (for instance stepmother, tyrant, deserter), and some

characters were neutral (father, son). The purpose of the declamation exercise is

then to build a convincing plea with the help of witty traits, the sententiae. Decla-

mations were practised in the school curriculum throughout the Roman Empire

(Kaster 2001), but they also evolved in a literary genre of its own, with performances

from well-known rhetors for the public entertainment (Sussman 1994; Bloomer

2007; van Mal-Maeder 2007). Four corpora of Roman declamations have been

transmitted to us, mostly in the form of excerpts:

• Fragments of 74 controversiae in ten books and 7 suasoriae in one book,

gathered by Seneca the Elder for his sons.

• 19 declamationes maiores, falsely ascribed to Quintilian. These declamations

are the only ones which preserve entire discourses, hence the qualification of

‘major’.

• 145 declamationes minores, surviving from an original corpus of 388, also

ascribed to Quintilian.

164

5.1. The Tradition of Calpurnius Flaccus

• 53 excerpts of declamations by Calpurnius Flaccus.

The Declamations of Calpurnius Flaccus is a collection of fifty-three controversiae

extracts: besides the titles, laws and themes, we do not possess complete speeches

but only the most noteworthy sententiae of the author as selected by the scribe who

excerpted the text.

Very little is known about the author Calpurnius Flaccus. He has been sometimes

identified as a certain M. Calpurnius, consul suffectus in 96 AD, or as the recipient

of a letter by Pliny the Younger, Epistula 5.2 (see Sussman 1994, 6-7). Both men

lived in the first century AD, but stylistic elements of Calpurnius suggest that the

Declamations were rather written in the second century (Sussman 1994, 6). A

posthumous publication by Håkanson in particular seems to indicate a dating to

the second half of the 2nd century, based on the analysis of sentence rhythms — an

important aspect of rhetorical art (Håkanson 2014, 130)2.

The incipits of several manuscripts introduce Calpurnius as one of the ten mi-

nor rhetors. Those ten rhetors could also have included Antonius Julianus who

is associated with the Minor Declamations, Seneca and Calpurnius in the corre-

spondence of the Italian Humanist Campano (see Section 5.1.2.1 below). However,

Huelsenbeck (2016) is not convinced by the existence of a corpus of ten minor

rhetors, but is inclined to think that this number refers rather to the ten books of

Declamations by Seneca, each introduced by a preface that presents a different

declaimer (Huelsenbeck 2016, 366, note 41). Pithoeus also made the link between

the mention of ten rhetors in Calpurnius with the ten books of Seneca (see p. 175).

5.1.2 The Manuscripts and the First Edition

The text is transmitted by five manuscripts. The older surviving manuscript is codex

Montepessulanus H 126 (A). A lost manuscript (X) appears in the correspondence

of Humanist scholars: this lost manuscript is likely the source of two manuscripts

from the fifteenth century, codex Monacensis Latinus 309 (B) and codex Chigianus

Latinus H VIII 261 (C). The tradition is completed by two other manuscripts from

the sixteenth century, codex Monacensis Latinus 316 (M) and Bernensis Latinus

149 (N). Also in the sixteenth century, the French scholar Pierre Pithou [Petrus

Pithoeus]3 published the editio princeps in 1580, which was reprinted fourteen

2See for instance Cic. Orat. 207-226, or Quint. Inst. 9. 4. 60-111 for ancient sources about the
importance of rhythm in rhetoric.

3French lawyer, historian, humanist and scholar (1539-1596).

165

5.1. The Tradition of Calpurnius Flaccus

years later in 1594. The following sections provide a brief description of each

manuscript and of the editio princeps. References to particular locations in the

manuscripts are quoted with a folio number, followed by a line number (e.g., f.

15v:9).

5.1.2.1 A (Montepessulanus H 126)

Manuscript A is kept in the Bibliothèque Universitaire de Médecine in Montpellier,

France. The Codex Montepessulanus is written in a caroline minuscule script

on parchment, on a total of 116 folia (185 x 245 mm). It is considered our best

witness, although it is severely damaged. Manuscript A is incomplete both at the

beginning and at the end, and the text is of the first and last folio is darkened. The

text of Calpurnius, in particular, has suffered from these damages: it stops after

only one folio (f. 116) at the sixth declamation out of fifty-three. Six to eight folia

are estimated to be missing at the end of the codex. The last folio is missing the

bottom right corner as well and the ink is faded. In an early attempt to make it

more readable, a chemical was spread on the last folio and stained it so that it is

now impossible to read in several places.

The manuscript contains the Declamationes Minores 244 to 388 (ff. 1-88), followed

by the declamations of Seneca the Elder (ff. 89-115) and finally the beginning

of Calpurnius Flaccus. The text is occasionally corrected by a second hand (A2),

different from the first hand of the scribe who wrote the major part of the text.

Dating from the late ninth century (Cortesi 1994) or the tenth century (Håkanson

1978), manuscript A is the earliest known witness of Calpurnius Flaccus. The manu-

script was likely written by Hincmar, archbishop of Reims since 845, and annotated

by Heiric of Auxerre (van Büren, private correspondance). It remained unknown

until the sixteenth century when Pithoeus received it from Claude Fauchet and

published the editio princeps of Calpurnius in 1580 (see Section 5.1.2.6 below).

The name P. Pithou is still visible in the top right corner of folio 116v. In addition,

Lehnert (1903) describes two notes which can be read in manuscript A: the first

note is dated to the thirteenth century and reads ‘Liber Sancti Theodori auferenti

anathema sit’. Sancti Theodori likely indicates the abbaye of Saint-Thierry near

Reims as the place where the manuscript originated or was once kept. The words

anathema sit are added by another hand in rasura (see Lehnert 1903, V). Another

note in a more recent hand reads ex libris collegii oratorii Trecensis, from the books

of the College of the Oratorium in Troyes. When Pithoeus died, his library passed to

his brother François, who in turn willed the library to the city of Troyes. The College

166

5.1. The Tradition of Calpurnius Flaccus

of the Oratorium was subsequently created and it inherited the Pithoeus library4.

A note describes a lost manuscript similar to Montepessulanus H 126 in a letter

from Giovanni Antonio Campano5 to Francesco Todeschini Piccolomini, then

Cardinal of Siena. The letter, Censura in Quintiliani Declamationes, was published

by Michele Ferno in 1495 in Venice, along with the other writings of Campano6.

The date of the letter is estimated to be around 1470, when Campano was working

on an edition of Quintilian’s Institutiones Oratoriae, of which he published the

editio princeps in 1470. At that time, Piccolomini was sent a manuscript found in

Germany containing the Minor Declamations ascribed to Quintilian, followed by

Seneca and Calpurnius’ Declamations, and finally excerpts from Antonius Julianus.

The presence of Antonius Julianus, a rhetor known to Aulus Gellius, would suggest

a similar date for Calpurnius Flaccus, according to Winterbottom (1984, XXI, note

10)7.

Here is the extract from the letter, with the complete observations of Campano

on this unknown manuscript, and the passage concerning Calpurnius has been

highlighted in bold. Omnia Campani Opera (1495), Censura in Quintiliani Decla-

mationes, ff. LXIIIv-LXIIIIr, corrected according to Mencke 17078.

4See the notice of the Catalogue Collectif de France (CCFr) about the ‘collège de L’Oratoire’: http:
//ccfr.bnf.fr/portailccfr/jsp/index_view_direct_anonymous.jsp?record=rnbcd_fonds:FONDS:3060 (Ac-
cessed August 18, 2017).

5Italian humanist (1429-1477), see his complete biography here: http://www.treccani.it/
enciclopedia/giovanni-antonio-campano_(Dizionario-Biografico)/ (Accessed February 20, 2016).
He is called ‘Giannatori Campano’ by (Sussman 1994, 19, note 64). Since I can find no record of
a scholar named Giannatori Campano, I take this to be an error. Giovanni Antonio is sometimes
contracted to Giannantonio, which could then have been misspelled by Sussman.

6(Lemaire 1825, 9) calls this letter Campani Praefatio ad Cardinalem Senensem. Censura in
Quintiliani Declamationes and dates it from 1470, as well as another letter from Campano to the
Cardinal of Siena, Ciceronis et Quintiliani Comparatio. Francesco Todeschini Piccolomini was named
a legate of the pope in Germany in 1471, and received the manuscript shortly after according to
Sabbadini (1905, 142). In any case, the letter was written before Campano’s death in 1477.

7Gellius (123 - c. 165 AD) refers to Antonius Julianus in Chapter 15 of the Noctes Atticae (Gel.
15.1).

8Both pages are available on the Gallica website: http://gallica.bnf.fr/ark:/12148/bpt6k603528/
f128.item (LXIIIv) and http://gallica.bnf.fr/ark:/12148/bpt6k603528/f129.item (LXIIIIr) (Accessed
February 20, 2016).

167

http://ccfr.bnf.fr/portailccfr/jsp/index_view_direct_anonymous.jsp?record=rnbcd_fonds:FONDS:3060
http://ccfr.bnf.fr/portailccfr/jsp/index_view_direct_anonymous.jsp?record=rnbcd_fonds:FONDS:3060
http://www.treccani.it/enciclopedia/giovanni-antonio-campano_(Dizionario-Biografico)/
http://www.treccani.it/enciclopedia/giovanni-antonio-campano_(Dizionario-Biografico)/
http://gallica.bnf.fr/ark:/12148/bpt6k603528/f128.item
http://gallica.bnf.fr/ark:/12148/bpt6k603528/f128.item
http://gallica.bnf.fr/ark:/12148/bpt6k603528/f129.item

5.1. The Tradition of Calpurnius Flaccus

The name Calfurnii in Campano’s letter is corrected to Calpurnii by Mencke, and

all subsequent editors have assumed without hesitation that this referred to Cal-

purnius Flaccus. The incipit of manuscript A is shown in figure 5.1, and the name

of Calpurnius has a ligature between P and V. In addition it must be noted that in

manuscript M, the name of Calpurnius was corrected to ‘Calphurnius’ by a later

hand who added the letter h above the line (see Section 5.1.2.4 below).

The similarity of content between Campano’s description of the lost manuscript (X)

and manuscript A suggests that they depended on a common archetype. The lost

Figure 5.1: The incipit of manuscript A, f. 116r (Incipit ex Calpurnio Flacco excerptae, excerpta X
rethorumminorum).

168

5.1. The Tradition of Calpurnius Flaccus

manuscript was likely the source of two fifteenth-century manuscripts, B and C

which both have Pseudo-Quintilian’s Minor Declamations from number 252 to 388,

preceding the text of Calpurnius Flaccus. This makes a total of 137 declamations,

although declamation 253 is the first to be numbered: the text starts in the middle

of declamation 252 (excutiamus), which may explain Campano’s count of one

hundred and thirty-six. According to Sussman, C is directly copied from the lost

manuscript and B through one intermediary (Sussman 1994, 19).

5.1.2.2 C (Vaticanus Latinus Chigianus H VIII 261)

The second most valuable witness is Chigianus H VIII 261, kept in the Vatican

Library. Manuscript C is written on paper. It contains the Minor Declamations

ascribed to Quintilian (ff. 1-81v) and is the only manuscript to transmit all fifty-

three declamations of Calpurnius Flaccus (ff. 81v-90). The incipit is Incipiunt

ex Calpurnio Flacco excerptȩ, excerpta x Rhetorum minorum, and the explicit is

Explicitȩ ex Calpurnio Flacco excerptȩ. Little is known about the manuscript’s

provenance and history. Two watermarks refer to the years 1465 and 1480 (Cortesi

1994, 84).

There are two portions of text present in manuscript C which are missing in the

other manuscripts. First, the text at the end of declamation 31 and beginning of

declamation 32 is absent from other manuscripts. As a result, declamations 31 and

32 are combined into only one declamation in B, M and N, as well as in Pithoeus’

edition. Second, declamation 45 is altogether absent from B, M, N and Pithoeus.

The two lacunae explain why C has a total of fifty-three declamations, as opposed

to fifty-one in the other witnesses. Manuscript C is more complete than the other

witnesses, which places it closer to the archetype in the stemma.

Abbreviations are numerous, but corrections on the other hand are relatively few,

with 28 occurrences. The corrector of C has likely made conjectures of his own

according to Håkanson (1973, IV). In a few places, the copyist of C has left dots to

mark a place where text is missing (see figure 5.2).

Figure 5.2: Manuscript C, folio 84r, line 38.

169

5.1. The Tradition of Calpurnius Flaccus

(a) Manuscript B, folio 148v, line 11.

(b) Manuscript B, folio 151r, lines 6-10.

Figure 5.3: Additions in the margin of B, similar to the ones found in N.

(a) Folio 151v, line 16. (b) Folio 149v, line 21.
(c) Folio 153r, line 23.

Figure 5.4: Additions in manuscript B.

5.1.2.3 B (BSB Clm 309)

Closely related to manuscript C is the Codex Latinus Monacensis 309 held in the

Bayerische Staatsbibliothek in Munich, Germany. The manuscript is written on

paper and contains the Minor Declamations 252 to 388 (ff. 1r-146v), Calpurnius

Flaccus (ff. 147r-160v) and the Twelve Latin Panegyrics (ff. 161r-324). The incipit

of the text is Incipiunt ex Calpurnio Flacco excerptȩ. Excerpta Decem Rhetorum

minorum, and the explicit is Explicitȩ ex Calpurnio Flacco excerptȩ. Manuscript B is

dated from the end of the fifteenth century, but was written before it was used as a

witness by Taddeo Ugoletti in Parma, for the editio princeps of Pseudo-Quintilian’s

Minor Declamations published in 1494 (Cortesi 1994). The text in italic strongly

suggests an Italian origin.

Manuscript B is the most heavily corrected, with close to 200 corrections by the

first or second hand. The corrections by B2 seem to indicate that they have been

added from N according to Håkanson (1978, XII). These annotations are from a

more recent hand. The signs for additions in the margins resemble closely the one

found in N (see Section 5.1.2.5). Here are some examples of additions in B (see

figure 5.3). In some cases, the caret ˆ sign for an addition is topped by another sign

such as a cross or a dot (see figure 5.4). Manuscript B is also the most abbreviated

one, since there are over five hundred abbreviated words.

170

5.1. The Tradition of Calpurnius Flaccus

Figure 5.5: Sun-like decorations and a deletion in M, folio 18v, lines 20-25.

5.1.2.4 M (BSB Clm 316)

The codex Monacensis 316 (manuscript M), also in the Bayerische Staatsbibliothek,

contains only the Declamations of Calpurnius (ff. 1-20). A brief description in the

Catalogus codicum latinorum Bibliothecae Regiae Monacensis (1868, 80) lists only

19 folia. The reason is that the foliation on folio six is missing, and all the following

folia have thus been misnumbered. The incipit of the text is Incipiunt ex Calphurnio

Flacco excerptae, with the letter ‘h’ added later above the name Calpurnio, and the

explicit is Finis. Explicitae ex Calpurnio Flacco excerptae. The text is written on

paper, in an italic script, which could be the sign of an Italian origin. Two bookplates

indicates that it was in the library of the Duke of Bavaria Maximilian I, and the first

of these bookplates is dated to 1618. There is no other information regarding the

history of this manuscript.

The declamations are numbered in manuscript M, and before each discourse there

is an indication about whom the declaimer is going to defend or accuse (e.g. pro

oratore, see figure 5.5). Corrections by the first or second hand are minimal and

occur only eighteen times. In some cases, a deleted word is completely blackened

and illegible, except for f. 15v:9 where tenet can be read beneath the dark ink. In

addition, sun-like decorations appear on folio 18v, lines 22 and 24 (see figure 5.5).

These decorations could indicate a lacuna or damage of some sort in the copy

exemplar, since the text at this point is marked as corrupted by Håkanson (1978,

36).

5.1.2.5 N (codex Bernensis 149)

The codex Bernensis 149 A (manuscript N) is held at the Burgerbibliothek Bern,

in Switzerland. It contains various alchemical, medical and juridical texts, bound

together in one manuscript. Calpurnius Flaccus is item number nine (ff. 244r-259v),

and is preceded by the second of the Major Declamations ascribed to Quintilian.

171

5.1. The Tradition of Calpurnius Flaccus

Figure 5.6: Correction by a second hand in manuscript N, folio 246r, line 13.

Figure 5.7: Correction likely added by N1 in manuscript N, folio 259v, line 24.

Figure 5.8: Corrections possibly by a third hand in manuscript N, folio 254r, lines 19-22.

The incipit of N is Incipiunt ex Calpurnio Flacco excerptae, and the explicit is

Finis. The text is written on paper, in an italics that could imply an Italian origin.

The manuscript is dated to the sixteenth century, but not with more precision.

Previously, manuscript N belonged to the library of Jacques Bongars (1554-1612), a

French diplomat and Humanist. Through marriage and inheritance, his collection

of manuscripts and printed editions came to the Burgerbibliothek of Bern in 1632.

The declamations are also numbered in manuscript N, and the indications pro or

contra are included as well. N contains 32 corrections by either the first or second

hand. Håkanson (1978, V) notes that interventions from the second hand are ‘rare’.

In fact, the only correction that Håkanson (1978, 6) attributes to a second hand

N2 in his apparatus is indicare in f. 246r:13, a correction which is very clearly by a

different hand from the main text (see figure 5.6). The other marginal corrections

in N may have been added by the same scribe who copied the text N1 (figure 5.7)

or possibly by a third hand, although Håkanson attributes all those corrections

to N1 as well (see for instance figure 5.8). Håkanson (1978, IX-X) attributed those

corrections in N’s margin partly to conjecture and partly to a source outside the

known manuscript tradition, which is marked as Y in the stemma p. 177 below.

In addition, it is worth noting that the addition marks are similar to those used in

manuscript B, and the hands look similar in both manuscripts. See the shapes of &,

b, e, p, s or x, for instance, in figure 5.9.

172

5.1. The Tradition of Calpurnius Flaccus

(a) B, folio 153r, line 12.
(b) N, folio 252v, line 3.

(c) N, folio 254r, line 22.

(d) N, folio 253r, line 4.

(e) B folio 149v, line 21. (f) B, folio 154r, line 4.

(g) N, folio 250r, line
21.

Figure 5.9: Comparison of the corrections appearing in the margin of manuscripts B and N.

Both M and N are often considered very close manuscripts (Håkanson 1978, V;

Winterbottom 2017). The two codices have in common declamation numbers,

and pro/contra indications, as noted above. In addition, they share the presence

of diples (») in the left-hand margins. Diples are citation marks which signalled

a quotation borrowed from another text, often though not exclusively a biblical

text (McGurk 1961). In Greek literature, it had also been used as a generic ‘nota

bene’ which may refer to a commentary (Schironi 2012). In the text of Calpurnius,

there are 34 passages marked with diples. However, these passages do not seem to

represent quotations from the Bible, or any other Latin text that can be searched in

the database LLT-A (Library of Latin Texts). They do not distinguish either direct

or indirect discourse, that can be isolated from the rest of the text. Instead, the

most likely explanation is that a reader marked sententiae of personal interest in a

manuscript, and that the diples were present in the exemplar of M and N.

All the diples mark the same passages both in M and N, with the exception of two

passages absent in N. Despite a few unclear situations, in most cases the diples

highlight a coherent and complete sententia corroborated by text common to M

and N, such as:

173

5.1. The Tradition of Calpurnius Flaccus

Figure 5.10: Example of diples in the margins of manuscript M, folio 5v, line 18.

• inquieta res est homo cui iam in deterius nihil superest (a man to whom

nothing worse can happen is a restless thing), in Declamation 6.

• nullum impatientius malum quam invidia cum calamitate (there is no ill

more unbearable than indignation combined with disaster), in Declamation

10.

• dolere integre non potest qui urgetur irasci (one cannot grieve properly, when

forced to be angry), in Declamation 11.

The presence of diples, at the same points in the text, reinforces the proximity of

the two manuscripts MN in the stemma. It is possible that M and N were copied

from the same exemplar.

5.1.2.6 P1594 (editio princeps by Pithoeus)

Pithoeus published the first edition of Calpurnius Flaccus in 1580, in Paris, printed

by Robert Estienne in the workshop of Mamert Patisson. The editio princeps was

preceded by the Minor Declamations and followed by the Dialogus de Oratoribus. It

was then reprinted in 1594 in Geneva by Jérôme Commelin [Ieronymus Commeli-

nus], a German printer based in Heidelberg. The reprinted edition was used here

in the collation because it was already digitised when I started transcribing and

more easily available. Nevertheless, the two versions of 1580 and 1594 have been

compared and three important differences, other than abbreviations, were noted:

in Declamation 21, possem was replaced with posse Pithoeus (1594, 400:16) , in

Declamation 23, es was replaced by est (Pithoeus 1594, 403:9), and in Declamation

34, medius was replaced with melius (Pithoeus 1594, 409:27). Now the 1580 edition

is available online as well9.

In his apparatus, Pithoeus explains that he based his text on a very ancient but

damaged manuscript which he received from Claude Fauchet10, and that he sup-

9http://digital.onb.ac.at/OnbViewer/viewer.faces?doc=ABO_%2BZ18038450X (Accessed August
10, 2017). The text of Calpurnius starts on page 383 in the book, which is page 417 of 520 in the digital
facsimile.

10French magistrate and historian (1530-1602).

174

http://digital.onb.ac.at/OnbViewer/viewer.faces?doc=ABO_%2BZ18038450X

5.1. The Tradition of Calpurnius Flaccus

plemented it with a more recent Italian manuscript. This note comments on the

subscription at the end of the Minor Declamations11:

The abbreviation S.T.R. may be expanded to ‘Sancti Theodorici Remensis’, the abbey

of Saint-Thierry located near the city of Reims in France. Indeed there is a note in

manuscript A which mentions Saint-Thierry (see the description of A above). In the

dedication, Pithoeus conjectures that the extracts of Calpurnius Flaccus serve as a

comparison with Seneca’s ten books of Minor Declamations, which are placed just

before Calpurnius in the manuscript, and which are each introduced by a portrait

of a declaimer.

From this description, manuscript A is clearly identified as the vetistissimum et

optimum exemplar. First of all, the name of Pithoeus is inscribed in manuscript

A (see above). The contents of the manuscript listed by Pithoeus correspond to

the contents of manuscript A. The damage described by Pithoeus corresponds

as well to the state of the codex Montepessulanus, and a few readings quoted by

Pithoeus corroborate the identification, such as hispaniae (folio 116r:14), miraris

(116r:18), livor (116r:25), crede (116r:32), or the title of declamation four, parricida

carcerem petens (only the first two words are still visible on folio 116r:37). However,

it seems that Pithoeus is misquoting the inscription of A in the note above since he

omitted the second excerpta, before the X rhetorum minorum (see the incipit of A

in Section 5.1.2.1 above).

The editio princeps of Pithoeus is therefore based in part on manuscript A, but since

it is damaged and incomplete, Pithoeus had to rely mostly on another manuscript

11The note is available here : http://www.e-rara.ch/gep_g/content/pageview/1099004 (Accessed
January 5, 2016).

175

http://www.e-rara.ch/gep_g/content/pageview/1099004

5.1. The Tradition of Calpurnius Flaccus

which he referred to as the ‘Italian exemplar’. Pithoeus does not give much detail

about this codex, but the only manuscript that we know for certain to have been in

Italy is manuscript C, now held in the Vatican Library. However, both M and N are

written in italics, an indication of a potential Italian origin. In addition, Pithoeus’

edition shares in common with M and N the numbering of declamations, and the

pro/contra indications at the beginning of each discourse. Håkanson argues that N

was the Italian manuscript (see p. 177 below).

5.1.3 The Editors and the Stemma

After Pithoeus, the Declamations of Calpurnius Flaccus were edited again several

times, and emendations were proposed by various scholars. Some of these old

editions are digitised and available online. Here is a list of Calpurnius’ editors:

1665 Gronovius.

1698 U. Obrecht.

1720 Burman. Lemaire (1824) has also published an edition with Burman’s text,

reporting notes from Gronovius, Schulting and other scholars.

1903 Lehnert.

1978 Håkanson, who quotes also emendations by Dessauer and Klotz (see the

preface, page XIV).

Håkanson’s edition is still the standard reference for Calpurnius Flaccus (Sussman

1994, 22; Winterbottom 2017). Other suggested emendations to the text can be

found in articles by Håkanson himself (1972; 1974; 1976), in Jones (1985),Watt

(1996), Winterbottom (1999), and Balbo (2012). In addition, two translations have

been published in English with a commentary (Sussman 1994) and in French

(Aizpurua 2005). Both translations are presented in parallel to a Latin text without

critical apparatus, and they rely heavily on Håkanson’s edition although with slight

differences (Sussman 1994, 21-22; Aizpurua 2005, 25-26). A new critical edition

is in preparation for the French series of the Belles-Lettres by Andrea Balbo and

Catherine Schneider. For more on the editors of Calpurnius Flaccus, an in-depth

discussion is provided by Winterbottom (2017).

Lehnert’s edition is the first to make use of all known manuscripts (Håkanson 1978,

XIV). Lehnert’s edition also took advantage of the progress of textual criticism in the

176

5.1. The Tradition of Calpurnius Flaccus

Figure 5.11: Calpurnius Flaccus stemma (Håkanson 1978, X).

nineteenth century, with the adoption of the Lachmannian method: he proposed

the first stemma for Calpurnius Flaccus (Lehnert 1903, X). This stemma was then

confirmed by Håkanson (1978, V), who did not make major changes to Lehnert’s

hypothesis. The only notable addition is the hypothetical witness Y, which may

have introduced interpolations into the hyparchetype of M and N (see Håkanson’s

stemma in figure 5.11).

In his preface to the Declamations, Håkanson describes in detail the reasoning

process behind the stemma construction. He gives a practical example of the ap-

plication of Lachmann’s method to a Latin literary text. Here is a summary of how

Håkanson established his stemma. Håkanson shows first that all five manuscripts

descend from a common archetype, since they share a few errors (Håkanson 1978,

VI). He postulates then that A and X, the lost hyparchetype of BCMN, form two

distinct branches of the stemma. However, the text of Calpurnius is too short in

manuscript A to prove this point. Instead, Håkanson relies on other texts transmit-

ted in the manuscripts A, B, and C.

Next, Håkanson proceeds to analyse relationships between BCMN: BMN have some

errors in common which are absent from C. Therefore, the stemma is divided again

in two branches stemming from X, with C on one side and BMN on the other side

(Håkanson 1978, VII-VIII). Manuscripts M and N are separated from B by errors

that they have in common (Håkanson 1978, VIII), and interpolations which have

been introduced in their exemplar by an unknown witness Y (Håkanson 1978, IX).

Furthermore, there was an exchange of readings between manuscripts B and N. A

few readings from N have been added in the margins of B by a second hand (B2):

vel (22.4), remittitur (24.11) and in vita liberis (25.17) (see Håkanson 1978, XII).

177

5.2. Method: Automated Collation Applied to a Classical Text

Håkanson examines how the editio princeps is related to the manuscripts. Håkan-

son argues for N to be the Italian manuscript mentioned by Pithoeus, because

readings unique to N were adopted by Pithoeus:

• 7.19 inquit erant

• 19.4 scio me

• 20.11 quacumque

• 22.4 vel

• 22.20 es

• 24.11 dicit and remittitur

• 25.17 in vita liberis

• 31.2 pauper

Furthermore, Jacques Bongars, the last owner of manuscript N before its acquisition

by the Bern Burgerbibliothek, was in close contact with Pithoeus (Banderier 2009,

397). Bongars could have shared the manuscript with Pithoeus. The relationship

between Pithoeus’ edition and the other manuscripts will be further examined in

Chapter 8, which introduces a visualisation tool for the collation results, and shows

how the conclusions of Håkanson can be reproduced.

5.2 Method: Automated Collation Applied to a Classical Text

This section describes the methodology that was applied to the tradition of Cal-

purnius Flaccus in order to study automated collation. The first step was in fact

to choose a text for the application of automated collation, and there were several

reasons for choosing the Declamations of Calpurnius Flaccus as a case study. First,

it is a relatively limited manuscript tradition, with only five manuscripts: the tran-

scription of the entire tradition represents a manageable amount of work for this

dissertation, while leaving sufficient time to perform collation with various tools

and to investigate visualisation options.

A second reason is that the texts of declamations have long been ignored in the con-

text of literary studies, as they were considered as little more than schoolboy work

instead of true literary productions (for instance Bloomer 1997). However, since

178

5.2. Method: Automated Collation Applied to a Classical Text

the 2000s, there has been a growing interest in Roman declamations (Gunderson

2003; van Mal-Maeder 2007; Bernstein 2013; Dinter, Guérin, and Martinho 2017),

and a new critical edition of Calpurnius is currently underway.

Finally, the stemma of Calpurnius is rather well defined, and both Lehnert and

Håkanson give a detailed account of the process of creating the stemma, with lists

of variant readings to support their analysis. For this reason, the text of Calpurnius

makes a good candidate to compare the results of traditional versus digital method-

ology, and to understand how the output of an automated collation tool can help

editors.

The various steps, from the transcription, to automated collation and visualisation

of the results, will be briefly described here. The next chapters will provide more

details for each aspect of the method.

5.2.1 Transcription

As we have seen in Chapter 3, the witnesses need to be transcribed in order to be

collated with a digital method. Decisions were made regarding which witnesses to

transcribe, and how to represent second hands. I have transcribed all five manu-

scripts, as well as the editio princeps of Pithoeus and the critical edition of Håkanson.

Håkanson’s text is still the best critical edition available, complete with a compre-

hensive critical apparatus, and his edition serves as a reference point. The reason

to include the edition of Pithoeus is that its relationship with the manuscripts had

become a subject of enquiry during this dissertation and I wanted to compare

his text to the other manuscripts. The other editions either are not critical edi-

tions complete with an apparatus (Sussman 1994; Aizpurua 2005), or are outdated

(Lehnert 1903) and therefore do not present the text as accepted by the scholarly

community.

It is worth noting the particularities of Calpurnius Flaccus: this is a small manu-

script tradition, with few transpositions limited to at most three or four words, and

a limited amount of orthographic variation (certainly less than in a medieval tradi-

tion, for instance). There is only one fragmentary witness. For each manuscript,

the text of the first hand and the corrections by a second hand were represented

as two different witnesses. However, as we have seen above, there are some cases

when it could be argued that a third hand may have altered the text. I did not create

separate witnesses for those third hands or for corrections by the first hand itself, to

limit the number of artificially created witnesses with very little difference between

them. I have preferred the use of notes to indicate such readings in the collation

179

5.2. Method: Automated Collation Applied to a Classical Text

results. Although the creation of witnesses for each layer of correction makes more

sense from a strictly methodological point of view, this was a practical decision to

restrict redundant witnesses that would otherwise make the collation results more

confusing (see Section 3.3.2).

The transcriptions have been done in the XML format, following the Text Encoding

Initiative guidelines, P5 version (see Chapter 3). This choice was motivated not

only because the TEI has become the standard format for manuscript transcription

in the Humanities, but also because this would make it easier to produce different

input formats, such as plain text or JSON, needed in order to experiment with the

various collation tools.

5.2.2 Automated Collation

In total, there were ten witnesses in the final collation: eight witnesses for the first

and second hands in the four manuscripts BCMN, and the two editions of Pithoeus

and Håkanson. The damaged and lacunose manuscript A, which was transcribed

and collated during the experiment, was ultimately left out of the final collation.

This is not because it was impossible or too difficult to collate this manuscript,

but rather because there were specific issues related to the visualisation of this

manuscript which I have not had the opportunity to deal with (see Section 8.6.4).

The transcriptions were used as input to different collation tools. In Chapter 7, I

describe in detail the use of three collation tools: CollateX, Juxta and the Classical

Text Editor. There are many collation tools, as we have seen in Chapter 2, and

although many do not exist anymore, about a dozen tools are still available or

under active development (see the complete list in Appendix A.1). While I tried

many of those, I decided to focus on the well-established tools that I considered

would be most useful for editors, either because of the input and output formats

(CollateX), the algorithm’s efficiency (CollateX, Juxta), the user-friendly interface

(Juxta, CTE) or the potential for creating directly a digital critical edition (CTE).

I renounced other tools such as TUSTEP or Compare for practical reasons (see

Chapter 7), and to tools such as LERA and Lakomp, iAligner, and eComparatio,

because they were still in early or experimental stage. In Chapter 7, I will also

explain why CollateX was ultimately the preferred tool for this dissertation.

5.2.3 Visualisation of Collation Results

There are several ways to process collation results: for instance to create a stemma,

or a digital critical edition, or to visualise the results in a way that help scholars to

180

5.2. Method: Automated Collation Applied to a Classical Text

work with the collation results. In this dissertation, visualisation of the collation

results has become a major area of interest. The options to not only visualise

collation results, but also interact with those in order to edit the text, are still

limited. Focusing on editors’ needs, I have created a tool to visualise and process

collation results, which will be described in detail in Chapter 8.

181

6XML Transcriptions

THIS chapter describes the TEI encoding applied to the transcriptions of Cal-

purnius Flaccus manuscripts and editions. A first section briefly reviews some

of the transcription platforms available at the time of transcription and discusses

their advantages and inconvenients. I have chosen to do the transcriptions within

the oXygen editor and TextGrid Lab, and the reason behind that choice is explained

in this section. The next section focuses on the exact encoding that I have applied

to the manuscripts of Calpurnius Flaccus. The description first follows the struc-

ture of the documents (organisation in folios, lines, words). Then I will focus on

the content, such as the issues of encoding scribal corrections, damages, special

characters, and so on.

6.1 Transcription platforms

6.1.1 TextGridLab and oXygen

As my personal computer is a laptop with a small screen, it was important for me

to work on a transcription platform with a form of cloud storage, so that I could

access the transcription files from other computers with a larger screen and keep

all the files synchronised. I also needed to have an environment which would

facilitate encoding complex documents in TEI XML, such as oXygen. For these

reasons I have transcribed mostly within the TextGrid framework, and the oXygen

XML Editor. TextGrid is an open-source tool that supports scholarly research

and especially digital editing1. Notably, TextGrid has a Laboratory component

TexGridLab that incorporates an XML editor with useful functionalities such as

associating a schema to a document and validating against that schema, as well as

debugging2. TextGridLab is also linked to a digital repository, TextGridRep, where

the transcriptions as well as manuscript facsimiles are stored and can be accessed

1https://textgrid.de/ (Accessed August 22, 2017).
2The XML Editor features are described here : https://wiki.de.dariah.eu/display/TextGrid/

Features+of+the+XML+Editor (Accessed August 22, 2017).

182

https://textgrid.de/
https://wiki.de.dariah.eu/display/TextGrid/Features+of+the+XML+Editor
https://wiki.de.dariah.eu/display/TextGrid/Features+of+the+XML+Editor

6.1. Transcription platforms

Figure 6.1: TextGridLab working environment. Retrieved from https://textgrid.de/arbeiten-mit-
verknupfungen (August 23, 2017).

from different computers3. In addition, TextGridLab provides a text-image linking

facility. Since 2015, the technological components of TextGrid have migrated to

DARIAH-DE. TextGrid integrates a version of CollateX, but with limited options:

currently only plain text can be collated4.

6.1.2 Transcription Editor

The Transcription Editor was developed for the Workspace of Collaborative Editing,

a joint project between the IGNTP project and the Institut für Neutestamentliche

Textforschung in Münster (INTF) which also includes the Collation Editor (Houghton

and Smith 2016). The Transcription Editor may have been a very practical solution,

with an intuitive online interface and the possibility to make use of a large set of TEI

elements. However, I did not know about it until the Digital Humanities conference

in the summer of 2014, when I was already well advanced in my transcription

work. Therefore I did not use the Transcription Editor for the transcription of Cal-

3https://textgridrep.org/ (Accessed August 22, 2017).
4See https://wiki.de.dariah.eu/display/TextGrid/Collating+Texts (Accessed August 23, 2017).

There is also a normalisation tool.

183

https://textgrid.de/arbeiten-mit-verknupfungen
https://textgrid.de/arbeiten-mit-verknupfungen
https://textgridrep.org/
https://wiki.de.dariah.eu/display/TextGrid/Collating+Texts

6.1. Transcription platforms

Figure 6.2: The Transcription Editor for the IGNTP project. Retrieved from http://www.birmingham.
ac.uk/research/activity/itsee/projects/workspace.aspx (August 22, 2017).

purnius, but I would certainly choose this tool if I had to start a new transcription

and collation project. Although both TextGrid and the Transcription Editor can

be used in conjunction with CollateX, the Collation Editor of the Workplace for

Collaborative Editing offers more options to change the algorithm’s parameters,

to correct the collation results and to visualise them. For that reason it is a more

attractive solution than TextGrid.

6.1.3 Transcription for Paleographical and Editorial Notation (T-PEN)

I have also experimented with the tool T-PEN, a project developed by the Center

for Digital Theology at Saint Louis University (SLU)5. T-PEN divides the manuscript

images into columns and lines, and then lets users do the transcription line-by-line.

I experienced several issues with the first manuscript transcribed, the Montepes-

sulanus H 126. The first issue was that the lines in manuscript A were not straight,

which made the line division difficult. There may be solutions to this problem

for experienced scholars. In a blog post about her use of T-PEN for transcription,

Andrews (2015) explains that she has used the tool ImageMagick to de-skew the

manuscript images6. However at the time of transcription, it did not seem worth

spending too long on this issue given that it was only one among others. Another

issue was a difficulty to zoom enough on the image in order to see the difficult

passages in manuscript A. In addition, T-PEN does not facilitate TEI encoding,

5http://t-pen.org/TPEN/ (Accessed August 22, 2017).
6https://www.imagemagick.org/script/index.php (Accessed August 22, 2017).

184

http://www.birmingham.ac.uk/research/activity/itsee/projects/workspace.aspx
http://www.birmingham.ac.uk/research/activity/itsee/projects/workspace.aspx
http://t-pen.org/TPEN/
https://www.imagemagick.org/script/index.php

6.1. Transcription platforms

Figure 6.3: T-Pen transcription interface. Retrieved frommy personal account (August 23, 2017).

although users can manually write XML tags in their transcription. Finally, there is

no TEI XML export option. The available options, such as HTML or XML/Plaintext,

must be updated to in order to create a valid TEI file. For that purpose Andrews

(2015) created a python script, tpen2tei, which transforms the raw JSON data of

T-PEN into valid TEI XML, and also tokenizes the text directly for use with CollateX7.

Apart from these issues, the interface is very comfortable to work with, and since

version 2.8 it provides new features to enhance the manuscript images, such as

controls for brightness and contrast.

6.1.4 Juxta Editions: HumEdit Editor

During the spring of 2014, I was also part of the user group who tested the alpha ver-

sion of Juxta Editions. In this platform there is some support for TEI XML encoding

with the HumEdit Editor, as well as XML export of the transcription file. However,

the set of elements available is limited to the TEI Lite version8, and other elements

have to be included manually. I have found that the amount of space on the screen,

reserved to the image of a manuscript and to the transcription, is rather small and

less practical than the display of T-PEN, especially on a personal laptop (compare

figure 6.3 and figure 6.4). The area need to be scrolled constantly as soon as the

transcription is several lines long. However it may be a convenient transcription

platform for projects of transcription with the aim of collating witnesses with Juxta,

in particular when the elements available in TEI Lite are considered sufficient.

Thanks to the collaboration option, it is possible to have multiple persons working

7https://github.com/DHUniWien/tpen2tei (Accessed August 23, 2017).
8http://www.tei-c.org/Guidelines/Customization/Lite/ (Accessed August 23, 2017).

185

https://github.com/DHUniWien/tpen2tei
http://www.tei-c.org/Guidelines/Customization/Lite/

6.1. Transcription platforms

Figure 6.4: Transcription interface HumEdit in Juxta Editions. Retrieved frommy personal account
(August 23, 2017).

on the same transcription project. The Moravian Church Archive, for instance, uses

Juxta Editions as a crowdsourcing transcription platform9.

6.1.5 Transkribus

Finally, it is worth mentioning the tool Transkribus10, although I have not tran-

scribed within this platform. Transkribus is supported by the project READ11, and

is hosted at the University of Innsbruck in Austria. Although the transcription is

not done directly in XML, it can be exported in various formats including TEI (Tran-

skribus website). A Handwritten Text Recognition (HTR) engine is also available:

after a certain amount of transcription has been done manually, the engine learns

from this user-provided data to automatically recognise handwritten text. The

HTR engine requires at least a hundred pages of manual transcription (or 20’000

words) in order to be efficient (Transkribus Wiki)12. The tool is quite successful

and has performed well at the ICFHR2016 Competition on the Classification of

Medieval Handwritings in Latin Script (Kestemont and Stutzmann 2017; Cloppet

et al. 2016). The text of Calpurnius Flaccus consists of roughly thirty pages (or

7’000 words) in each manuscript, which does not make it a good candidate for the

Handwritten Text Recognition. However, the transcriptions that I have prepared

could be reused if needed in order to apply the HTR to other texts present in the

9http://www.moravianchurcharchives.org/online-transcription-project/ (Accessed August 30,
2017).

10https://transkribus.eu/Transkribus/ (Accessed August 23, 2017).
11https://read.transkribus.eu/ (Accessed August 23, 2017).
12See https://transkribus.eu/wiki/index.php/Handwritten_Text_Recognition_Workflow (Accessed

August 23, 2017).

186

http://www.moravianchurcharchives.org/online-transcription-project/
https://transkribus.eu/Transkribus/
https://read.transkribus.eu/
https://transkribus.eu/wiki/index.php/Handwritten_Text_Recognition_Workflow

6.2. Description of the TEI Encoding

Figure 6.5: Transkribus interface. Retrieved from https://transkribus.eu/wiki/index.php/Main_
Page#mediaviewer/File:Transkribus_interface.png (August 23, 2017).

same manuscripts, such as the Minor Declamations in manuscripts B and C for

which there are hundreds of pages.

In conclusion, the choice of a transcription tool, as for collation tools, would benefit

from tool criticism, to help users choose the most adequate tool. In this case I have

chosen a tool that allowed for handling complex XML documents, and provided

an online repository accessible from different computers. However, other users

may have different requirements. The choice of a transcription tool may depend

on the purpose of the transcription, the need for text-image linking, or on the data

(for instance a very large amount of data would benefit from the Transkribus HTR

engine). The list of transcription tools above is only a small sample of the tools

available.

6.2 Description of the TEI Encoding

The transcriptions were created in the order in which I received the manuscripts

facsimile from the libraries. The first was manuscript A, followed by B and M. I

reused the two latter transcriptions and adapted them to match respectively C and

N. Finally, Pithoeus’ edition was transcribed last and from scratch in a new file.

The bulk of transcription was carried out first within the TextGrid XML editor (see

p. 182 above) and later on I switched to oXygen for the corrections and for the XSLT

transformation into a format suitable for the collation tools (Section 7.1.3).

187

https://transkribus.eu/wiki/index.php/Main_Page#mediaviewer/File:Transkribus_interface.png
https://transkribus.eu/wiki/index.php/Main_Page#mediaviewer/File:Transkribus_interface.png

6.2. Description of the TEI Encoding

According to the levels of transcription listed in Chapter 3, this is a semi-diplomatic

— or graphemic — transcription because the manuscript spelling is preserved but

not the shape of letters, which belongs to the diplomatic — or graphetic — level

(Robinson and Solopova 1993, 22). Some features of a regularised transcription are

present as well, such as the regularisation of the letters i/j and u/v or the expansion

of abbreviations to a standard form13.

I did not try to expand abbreviations to match the scribe’s style because identifying

the scribe’s style correctly can prove delicate (see Section 6.2.3.1 below). I did not

keep track of the abbreviation markers either, such as the tildes that indicate a

letter m or n. The letter v is consistently used at the beginning of words, while

u is used in the middle of words, except for capitalized text of declamation titles

where the letter V is always present. Therefore the letters u/v were regularised to

the conventional spelling (e.g. uirum and iuuenes, in manuscript B f. 147r and

148v, were regularised to virum and iuvenes). The letter j, which appears only as

the second letter in a doublet of ij, was regularised to i (e.g. adulterij or iudicij, in B

f. 147v, were regularised to adulterii and iudicii).

The following sections describe the TEI encoding of Calpurnius Flaccus, which is

divided between a <teiHeader> and a <text> section. The description of the text

encoding is further divided between the encoding of the structure (such as pages,

lines, and words), and the encoding of the textual content, including abbreviations,

regularisation of spelling, scribal corrections, and so on. The transcription of

Pithoeus text is the only one that has an additional<back> section, which encodes

the critical apparatus at the end of Pithoeus’ critical edition.

6.2.1 TEI Header

Metadata about each transcription file is encoded in the file Description of TEI

Header, such as a title statement and a publication statement: the documents are

under the Creative Commons Attribution 4.0 International License (CC BY 4.0),

which gives permission to share and adapt the material freely, even for commercial

purposes.

The TEI Header also includes a manuscript description following the chapter ten of

the TEI Guidelines P5 (TEI Consortium eds. 2017a, §10). Among the items encoded

in the Header, some are used during collation: the witness siglum is encoded as the

@xml:id attribute of msIdenti�er. The handDesc and handNote elements provide

13It is also common in diplomatic transcriptions of Middle English to expand abbreviations into a
standard form (Robinson and Solopova 1993, 22).

188

6.2. Description of the TEI Encoding

details about the different hands, and the handNote is used to create a different

witness for each hand. It is also in the Header that special characters are encoded,

such as the e caudata (ȩ) for instance, as glyphs with two possible mappings, a

diplomatic mapping or a more precise unicode mapping (see Section 6.2.3.1 below).

6.2.2 Structure

6.2.2.1 Pages

The start of each page is encoded in a <pb> element with folio or page number.

The @break attribute is present when a page break separates a word into two parts.

A link to a facsimile page is provided for manuscripts B, C and M, and the edition

P1594, for which digital images are available online. Examples:

<pb n=`244r'/> (N).

<pb n=`252r' break=`no'/> (N).

<pb n=`383' facs=`http://www.e-rara.ch/gep_g/content/pageview/1098914’/>
(P1594).

6.2.2.2 Forme works

The <fw> element may contain running headers, or gathering signatures and

catchwords at the bottom of the page. These forme works appear mainly in manu-

script M (39 occurrences) and in Pithoeus’ edition (49 occurrences). Examples:

1. Head

<fw type=`head' place=`top-left'>

<hi rend=`uppercase'>calp <pc>.</pc> �acci</hi></fw>

(P1594, 384).

2. Signature

<fw type=`sig' place=`bot-right'>a.1.</fw> (N, 244r).

3. Catchword

<fw type=`catchword' place=`bot-right'>travit.</fw> (N, 251v).

6.2.2.3 Declamations

Each declamation is contained in an <ab> element and numbered according

to the total number of fifty-three declamations. As we have seen, there are two

declamations missing from B, M, N, and P1594 (see Section 5.1.2.2). For instance

the declamation 32 is combined with declamation 31 because of a lacuna (the

end of declamation 31 and the beginning of declamation 32 are missing). I have

189

http://www.e-rara.ch/gep_g/content/pageview/1098914'/

6.2. Description of the TEI Encoding

still marked the block of text in an <ab> element to indicate that it belongs to

declamation 32. The incipit and explicit are also included in an <ab> element,

with number 0 and 54 respectively. Examples:

<ab n=`32' type=`decl'/>

<ab n=`0' type=`incipit'>

In the witnesses M, N, and P1594, declamations are numbered. This is encoded in a

<num> tag. The declamation numbers are located in the margins of manuscripts

M and N, and as a result they are encoded in a <note> of @type ‘marginalia’. This

avoid the issue of separating a word <w> in two with a number <num>, which is

not allowed in the TEI14. Example:

<w>puni<note type=`marginalia'><num>I</num></note>

<lb n=`5' break=`no'/>antur</w> (N, 244r:4-5).

6.2.2.4 Lines

Each line starts with an <lb> element. The element includes line number, and

@break attribute to indicate if a line break separates a word in two. If @break has

the value “no", it means that the element <lb> is not word-breaking. Example:

tyrannici

<lb n=`25' break=`no'/>dium (B, 147r:24-25).

6.2.2.5 Words

Each word is encoded in a <w> element. This decision was taken at a later stage

of transcription: after the <choice> element (see below) was added to encode

different possible outputs, either for the e caudata or for regularisation purpose,

a marker was needed to indicate the beginning and end of the word in order

to generate both the original and regularised reading. For instance familiȩ (in

manuscript C, folio 81v, line 22) is encoded as:

<w>famili<choice>

<orig><g ref=`#eogon'/></orig>

<reg>ae</reg>

</choice></w>

This encoding allows for generating both the original familiȩ and the regularised

form familiae. For this reason I decided to add <w> tags to every word. Examples:

14See the description of the <w> element here: http://www.tei-c.org/release/doc/tei-p5-doc/en/
html/ref-w.html (Accessed January 20, 2018).

190

http://www.tei-c.org/release/doc/tei-p5-doc/en/html/ref-w.html
http://www.tei-c.org/release/doc/tei-p5-doc/en/html/ref-w.html

6.2. Description of the TEI Encoding

<w>adhuc</w>

<w>ad<choice><orig>o</orig><reg>u</reg></choice>lescens</w>

In other projects, different approaches can be found: the IGNTP guidelines and

the Chronicle of Matthew both tag words, but the Textual Communities guidelines

do not mention it. The Digital Mishnah project does not tag words either and the

Beckett project rather tags segments at the sentence level.

Although the word tagging was necessary, it generated a problem of overlap with

other tags, especially in manuscript B, where there are many corrections spanning

sometimes letters across more than one word. There are the eight places in B and

one in C with an overlap problem:

1. (B) 148v:6-7 verberantibus corrected to verbera cibus

2. (B) 150r:16 L anni to danni

3. (B) 156r:20 et torquere to extorquere

4. (B) 156v:22 adulteravit to adultera vivit

5. (B) 156v:28 id idem to itidem

6. (B) 157v:26 eius to me ius

7. (B) 158v:16 necesse to nec esse

8. (B) 159r:11 postremo to post reum

9. (C) 83v:25 quid est to quidem

The issue here is that it is difficult to encode words in <w> tags to process them

for collation, while simultaneously encoding precisely which letters were deleted

or added. As a result, the solution was to provide two different segment elements

<seg>: one segment with the @type ‘tokenization’ to encode the words for the

purpose of collation, and one segment with the @type ‘transcription’ to encode a

more accurate transcription. Example:

• Tokenization segment

<seg type=`tokenization'><subst hand=`#h2'>

<w>adulteravit</w>

191

6.2. Description of the TEI Encoding

<add hand=`#h2'><w>adultera</w> <w>vivit</w></add>

</subst> </seg> (B, 156v:22).

• Transcription segment

<seg type=`transcription'> adultera<add hand=`#h2' place=`above'>

vi</add>vit</seg> (B, 156v:22).

6.2.3 Content

6.2.3.1 Abbreviations and special characters

Abbreviated letters are supplied in <ex> elements. There is no indication of the

abbreviation type (by suspension or contraction) or marking. The character entity

& is used for &. Examples:

<w>carcere<ex>m</ex></w> (C, 82v:7).

<w>dem&</w> (C, 86v:7).

<w><ex>e</ex>n<ex>im</ex></w> (B, 152r:23).

There are arguments for encoding more precisely the abbreviation markers so that

the reader knows accurately what is present in the manuscript (Driscoll 2009), or

for linguistic analysis purposes (Honkapohja 2013). Although the transcription

of Calpurnius Flaccus does not record the exact abbreviation markers, it ensures

that nothing is silently expanded. Every letter supplied by the transcriber that

is part of an expansion but that does not actually appears on the manuscript is

marked as such by the <ex> element. The practice of silent expansion can be

criticised for several reasons. It contributes to ‘linguistic hybridity’, and masks the

complex relationship between the grapheme sequence and the abbreviated word

they represent (Honkapohja 2013, §5.1). Moreover abbreviations can help date and

localise a manuscript (Honkapohja 2013, §1), and could possibly help to establish

the text transmission if a variant originated as a copying error from an abbreviation.

Expanding abbreviations is not as straightforward as it seems. According to Driscoll

(2009, 19), ‘it is standard practice when expanding abbreviations to do so in keeping

with the normal orthographic practice of the scribe in question’. However, it is

not always possible to know with certitude what the scribe would have written,

since scribes are not always consistent. Consider manuscript B, whose scribe

usually wrote unquam (148r:24, 152v:20, 153r:1, 155r:3 and 157r:5), nunquam

(149v:2, 151v:22, 153r:5), etc, but once nonnumquam (147v:7). How should the only

occurrence of nāque (153r:26) be then expanded, nanque or namque? When a word

is always abbreviated, it becomes even more difficult to guess the scribe’s practice.

For instance, quamvis is always abbreviated in C (82r:14, 85r:16, 89r:3), so that it

192

6.2. Description of the TEI Encoding

is difficult to know whether the scribe meant quanvis or quamvis. In addition, it

may be difficult to make inferences about the scribe’s practice when only a limited

portion of text has been transcribed (the text of Calpurnius represents only a small

fraction of manuscripts A, B and C, and of Pithoeus edition).

The regularisation of the e caudata is faced with the same kind of choices: for

instance fȩmina in manuscript B (147r:28 and 148r:14-15). Should it be foemina,

because the e caudata stands for either ‘ae’ or ‘oe’? The scribe of C, in particular, is

not consistent in the distinction between ‘e’ and ‘ȩ’: while writing cȩpit for coepit,

the scribe has also produced excȩpit for excepit (86r:28) or percȩpit for percepit

(84v:6). The word pȩnȩ can mean once poenae (B 155r:23, C 86v:24) and then paene

(B 155v:8, C 89v:11) a few lines later.

The expansion to a non-regular form, such as foemina or quanvis, means that it

must be further regularised for collation purposes. Therefore, I have decided to

expand abbreviations or e caudata directly to the regularised form. I have declared

a <g> element in <charDecl>, which can be regularised through a <choice>:

natur<choice><orig><g ref=`#eogon'/></orig><reg>ae</reg></choice>

In a couple of cases, the same e caudata is regularised differently after a correction

of a second hand. For instance in manuscript B, the form quȩ (folio 151v:18), seems

to indicate that quae was corrected to quem. The other instance is in manuscript C,

the form al[t]erȩ (folio 89v:16) shows that alterae was corrected into alere. In both

cases the scribe changed the meaning of the e caudata without actually modifying

the letter. Here is an example of encoding:

<w>alter<choice>

<orig><g ref="#eogon"/></orig><reg>ae</reg>

</choice></w>

<add hand="#h2" place="overwrite"><w>aler<choice>

<orig><g ref="#eogon"/></orig><reg>e</reg>

</choice></w></add>

Because of the inconsistencies in the use of the letter e caudata, it may be par-

ticularly interesting to keep track of the original form in the collation, especially

when different interpretations result in variant readings15. For instance, Håkanson

interprets once quȩri as queri (manuscript C, folio 83v:40) and later he interprets

15Beneš (2003, 2) notes that scribes were not consistent with regard to the change from the
diphthong ae to ȩ which ‘proved perplexing to contemporary and later scribes, who often hyper-
corrected their texts in instances where the diphthong did not appear at all’.

193

6.2. Description of the TEI Encoding

(a) B, folio 148r, line 8.

(b) C, folio 82r, line 18.

Figure 6.6: Unknown abbreviation in manuscripts B and C.

quȩritur as quaeritur (C, folio 87r:13). Therefore it is useful to keep the original

form of the word as well as the regularised form for collation purposes.

One abbreviation in manuscripts B and C remains obscure (see figure 6.6). The first

abbreviation signs stands for the Latin letters ‘con’ followed by a ‘o’, and the word

was interpreted as contra by Lehnert (1903). It has been suggested that the scribe

has written the abbreviation this way instead as ‘co’ with a tilde on top to avoid

the confusion with ‘con’ and to represent graphically the opposition of ‘contra’

by flipping the letter C (Mike Kestemont, private email). This would also avoid a

possible confusion with the similar abbreviation CD (contradicit), which is present

on the same page in both manuscripts.

In the TEI Header, glyphs such as the e caudata, or the reverse C of the abbreviation

above are mapped to both a diplomatic transcription and their equivalent character

in the Medieval Unicode Font Initiative (MUFI)16. The abbreviation in manuscript B

is mapped to the ‘LATIN ABBREVIATION SIGN CAPITAL CON’ C(MUFI 2183), and

the one in manuscript C is mapped to the ‘LATIN CAPITAL LETTER CON’ (MUFI

A76E). However, the character for MUFI A76E is available only in a limited number

of fonts17, which is why the diplomatic transcription of this character is rendered

with the character Cin both manuscripts. The other special characters encoded in

glyphs are the diples of manuscript MN (see p. 172), and the punctuation marks for

punctus interrogativus (Section 6.2.3.7).

16http://folk.uib.no/hnooh/mufi/ (Accessed August 17, 2017)
17See http://www.fileformat.info/info/unicode/char/a76e/fontsupport.htm (Accessed November

16, 2015).

194

http://folk.uib.no/hnooh/mufi/
http://www.fileformat.info/info/unicode/char/a76e/fontsupport.htm

6.2. Description of the TEI Encoding

Example:

<char xml:id=`eogon'>

<charName>LATIN SMALL LETTER E WITH OGONEK</charName>

<desc>The character �e (e caudata) has no standard mapping.

The �e can be resolved in `ae' in most cases, but also in `oe' or `e'.</desc>

<mapping type=`diplomatic'>�e</mapping>

<mapping type=`MUFI'>0119</mapping>

</char>

6.2.3.2 Orthographic Normalisation

One purpose of encoding orthographic normalisations is to be able to separate

variants deemed significant from the variants which are considered less significant

(see the discussion about normalisation in the Gothenburg model, Section 2.4.4.2).

Orthographic variants are often considered less significant because they reflect the

practice of the scribe who wrote the manuscript, instead of the authorial practice.

However, there are still challenges related to the visualisation of orthographic

variants (see Section 8.6.4).

For the transcription of Calpurnius, I have encoded a regularised spelling along

the original spelling with a <choice> element. When a second hand decided to

correct the spelling of a word, I did not regularise it because I wanted to be able to

see those corrections as variants in the collation results. Examples:

1. Normalisation

<w>ad<choice><orig>o</orig><reg>u</reg></choice>lescens</w>

2. Without normalisation

<w>daeniq<ex>ue</ex></w> (N, 252r:15).

The issue of normalisation is that it needs to be done after collation, because it may

not be a good practice to make a decision without considering the entire manuscript

evidence (Robinson 1989a), and it may be difficult to decide on a regularisation and

stay consistent throughout the whole transcription process. The Collation Editor

for the IGNTP project, for instance, includes a regularisation tool to correct the

collation results (Houghton and Smith 2016), as well as the CollateX interface in

TextGrid (see Section 6.1.1). I have also proceeded similarly, by examining the first

collation results that I obtained with CollateX, to find the orthographic differences

which needed to be regularised. The problem of this method is that for each

195

6.2. Description of the TEI Encoding

orthographic difference spotted, I had to go back to the transcription and add the

regularised form in every manuscript. This is rather tedious, and it shows how

useful it would be to have the transcriptions and collation results linked, so that a

correction in the collation would be reflected in the transcription (and vice-versa, a

correction in the transcription would be reflected in the collation).

Another aspect of orthographic regularisation is related to inconsistent word divi-

sion across witnesses. It is a fairly common phenomenon in Latin, since texts used

to be written in the scriptio (or scriptura) continua style, without word division. This

happens in words with two components, such as res publica or contra dixit, and it

happens especially often in conjunctions or adverbs, such as postquam, etsi, ante-

quam, priusquam, iamdudum, iampridem, quamdiu, vixdum, and so on. There

were so many instances that it became difficult to regularise this phenomenon,

since after several iterations of examining the correction results and encoding the

regularisations, I would still find examples. In addition, it would generate issues of

encoding overlap. However, when studying the collation results, it is easy to ignore

whitespace characters, so that these differences in word division do not appear

among the significant variants (see Section 8.4.2.3). For these reasons, I have not

encoded the regularisation of word division directly into the transcription files.

The usage of letters u/v i/j is fairly consistent throughout a manuscript. V appears

in uppercase text in manuscript A, and in later manuscripts in lowercase when at

the start of a word. J is used only for the last i of a series (for instance filij, or in a

number such as xiiij). In modern editions, the practice seems to vary from one

school to the other. The French tradition makes a distinction between u/v and i/j

as can be seen in the Gaffiot dictionary, whereas the Oxford Latin Dictionary prints

neither v nor j. I have followed the usage of the Teubner collection and regularised

u/v to a standard form for a better readability (vt is regularised to ut, for instance,

or iuuenis to iuvenis). For i/j, I have kept only the letter i and not the longer form j.

6.2.3.3 Scribal Corrections

Corrections are encoded as additions <add>, or deletions . The encoding

of these may depend on how the manuscripts are divided into witnesses (see

Section 3.3.2). Each layer of text, such as the text of the first hand and the corrections

of a second must be clearly identified in order to be collated. However this can

be difficult to achieve: for instance, it may be impossible to know with certainty

which scribe deleted a word, the first hand or a later hand? For additions as well,

scholars may disagree about which hand actually added a word (see for instance the

discussion about the corrections in manuscript N, Section 5.1.2.5). I have decided

196

6.2. Description of the TEI Encoding

to avoid creating many artificial witnesses with very similar texts, and so I have

not separated the manuscripts into two witnesses for the text of the first hand

and the corrections by the first hand itself. I have also decided against separating

manuscript N into more than two hands. Instead, I have divided each manuscript

in two witnesses, one for the text of the first hand, and the other for the corrections

by the first hand or later ones. I have included comments on words to indicate

if a correction seemed to have been made by the first hand itself or to indicate a

possible third hand in manuscript N.

Deletions There are only three exceptions where it seems clear that the first hand

deleted a word or letter because it was a mistake. In manuscript M (4v:19), for in-

stance, the letters ‘dene’ are crossed and then followed by the word dementiae. This

deletion is encoded with an attribute@type ‘corrigendum’ to denote a mistake, and

an attribute @hand ‘h1’. The two other cases are located in manuscript B (151v:20

and 154v:14). These mistakes were ignored during the collation. In manuscript N,

for only three letters, a correction by the second hand was deleted, possibly by a

third hand, or by the second hand itself: cruciarius was corrected to cruciariarius,

and then back to cruciarius (250v:15). This deletion has an attribute @hand ‘#h2’.

All the other elements have no attribute to indicate which hand made the

deletion. The text which was thus deleted is incorporated into the witnesses for the

first hands. Examples:

1. Corrigendum

<del hand=`#h1' type=`corrigendum'><w>dene</w>

(M, 4v:19).

2. Correction in N

<w>cruciar<del hand=`#h2'>

<add hand=`#h2' place=`above'>iar</add>

<note>-iar- added by N2 and then deleted by N2 or N3.</note>

ius</w> (N, 250v:15).

3. Normal deletion

<w>linquetur</w> (B, 148v:11).

Additions Addition elements<add> contain two attributes: @hand for the hand

which made the addition, and@place to indicate where it was written. The possible

values of @place are ‘margin’, ‘above’, ‘inline’ or ‘overwrite’. The @hand attribute

usually indicates the second hand ‘#h2’. In two cases the addition seemed likely to

197

6.2. Description of the TEI Encoding

be made by the first hand, and has no @hand attribute (it appears in manuscript B,

154v:14 and manuscript C, 88r:40). Examples:

1. First hand addition

<w>p<add place=`above'>o</add>stis

<note>-o- added, likely by C1.</note></w> (C, 82r:40).

2. Second hand addition

<w>indemnator<add hand=`#h2'

place=`above'><ex>um</ex></add></w> (C, 88v:38).

6.2.3.4 Unclear words or letter

When in doubt regarding transcription, I followed the text of Håkanson and I

encoded the unclear text in <unclear> with an attribute @resp that refers to the

edition of Håkanson (in a <bibl> element of the TEI header). I had doubts especially

in cases of a correction by a second hand where it is difficult to decide which is

the original text and which is the corrected text. This situation happens when the

correction overwrites the original text (for instance in manuscript B, f.150r:27, for

the readings decet and dicet). It happens also when the ink from one side of a folio

has bled through the paper and may render the text on the other side of the folio

difficult to decipher (for example in manuscript M, 18r:24 for the reading mutuo

fratres). The attribute @reason gives more precision such as ‘unknown order of

correction’. The content of the attribute @reason will serve the purpose of keeping

track of unclear words when examining the collation results (Section 6.2.3.8).

6.2.3.5 Gaps, spaces and supplied text

An illegible passage is noted as<gap/>, if possible with indication of length. Empty

lines in B and C are noted as <space/>, as well as spaces left between two words.

I have also added a description <desc> for the space in order to provide more

details: for instance the empty lines in B and C could have been left blank in order

to add a declamation title. In manuscript C, the title of declamation fourteen is

‘Calpurnius’ followed by seven dots, which might correspond to the author’s name

‘Flaccus’. Examples:

• Gap

<gap extent=`1' unit=`word'/> (M, 14v:15).

198

6.2. Description of the TEI Encoding

• Space

<space extent=`7' unit=`chars' rend=`dots'>

<desc> The seven dots could be for `�accus'.</desc></space>

(C, 84r:38).

I supplied missing letters which were too close to the spine fold and do not appear in

the reproduction image, as well as the initial of the first declamation in manuscript

B, that should probably have been added later by another scribe. Example:

<w><supplied>q</supplied>uinque</w> (B, 147r:23).

6.2.3.6 Highlights

Capitals, small capitals, larger initials as well as colour or italics are encoded in

<hi> elements, distinguishing between italics, roman, bold, uppercase and red18.

Where different sorts of highlighting were present in one word or sentence, I nested

several <hi> elements. Example:

<hi rend=`red'>

<hi rend=`underline'>incipiunt ex calpurnio �acco . . . </hi>

. . . uxor tyra<ex>n</ex>nicida</hi> (C, 81v:21).

6.2.3.7 Punctuation

I have encoded the punctuation for the complete text of both Pithoeus and Håkan-

son. In the case of the manuscripts, I have encoded punctuation only for the first

three declamations, as a short sample. Punctuation marks are encoded in <pc>

elements. While it is rather straightforward to encode punctuation of modern

editors, it can be more challenging for manuscripts. The black and white facsimile

reproductions make it harder to distinguish between actual punctuation marks

and mere specks of ink or dirt, and faded ink is difficult to spot. For an accurate

transcription of punctuation it would be best to check the manuscripts themselves.

In the manuscripts I have encountered mostly the following marks:

• punctus (. and · in B).

• comma (,).

• colon (:).

18The colour actually would need to be checked in the manuscripts to be certain, as I have only
black and white copies. A highlight in ‘red’ marks the fact that the shade of ink is obviously different.

199

6.2. Description of the TEI Encoding

• dashes (- BC and = MN) to mark hyphenation at the end of a line.

In addition, the punctus interrogativus is present in CMN, and the colon (;) appears

in M only for this short sample. The punctus interrogativus was encoded as a glyph

‘qm’, with a diplomatic mapping to the mark .

6.2.3.8 Editorial Notes

I have added <note> elements to encode a comment that I made during the

transcription and which I wanted to be able to see in the collation results. Some

examples have already been discussed, for instance in the section about scribal

corrections (Section 6.2.3.3). Other notes comment on doubts that I have had

during the transcription, which may become relevant during collation if there is a

variant reading at this point. Notes also record differences between the 1580 and

1594 editions of Pithoeus. Examples:

• Unknown abbreviation

<w>

<choice>

<orig><ex><g ref=`#condes'/>O</ex></orig>

<reg resp=`#Lehnert'>contra</reg>

</choice>

<note>Unknown abbreviation.</note>

</w> (C, 82r:18).

• Hesitation on the text

<w>accedere

<note>Is there an abbreviation mark? accendere(n)t?</note>

t</w> (C, 82v:19).

6.2.4 The Critical Apparatus of Pithoeus

The critical edition of Pithoeus is appended with an apparatus, where he quotes vari-

ant readings from the two manuscripts he had at his disposal (see Sections 5.1.2.6

and 8.5). The ancient manuscript (vetustius exemplar) identified with manuscript

A is referred to as vet., and the other manuscript (alterum exemplar), the Italian

exemplar, is referred to as al. in Pithoeus’ apparatus. In addition, Pithoeus pro-

poses a few conjectures, two of which were suggested to him by his nephew Pierre

Nevelet [Petrus Neveletus]. The apparatus is added in a section called variae lec-

200

6.2. Description of the TEI Encoding

Figure 6.7: The beginning of Pithoeus’ apparatus on Calpurnius Flaccus.

tiones (variant readings) at the end of the edition, and has no page numbers19. It

is worth noting that Pithoeus was not an academic, and that publications such

as the critical edition of Calpurnius were leisure activities (C. Dionisotti, private

email). The critical apparatus was a set of notes, not as elaborate as the main text,

for the purpose of presenting the interested public with documents (Dionisotti,

same email). This may explain the presence of imprecisions. Figure 6.7 shows an

extract of the apparatus.

I will refer to an apparatus entry with page and line number as they appear and

the number under which the entry is encoded in the transcription: 384:2(1) is

the first apparatus entry of Calpurnius Flaccus. Most entries have a few words

of the critical text to help the reader locate the text, followed by a parenthesis,

and then by a variant reading. In entry 384:7(3), for instance, illic eff. helps the

reader to locate the critical text (illic effusiora corpora, illic collectiora). This is

followed by the reading of the other exemplar al. which is illic offusciora corpora,

illic coloratiora. In some cases Pithoeus does not introduce the apparatus entry

with the corresponding critical text, such as for entry 384:17(5). It may also happen

that Pithoeus combines two variant readings which are close by in the text under

the same apparatus entry with the words & paulo post (and a little further), for

instance entry 403:29(43).

19The variant readings of Calpurnius’ text start here, and continue on the next two pages: http:
//www.e-rara.ch/gep_g/content/pageview/1099004 (Accessed August 21, 2017).

201

http://www.e-rara.ch/gep_g/content/pageview/1099004
http://www.e-rara.ch/gep_g/content/pageview/1099004

6.2. Description of the TEI Encoding

Regarding the imprecisions of the apparatus, it can be noted that line numbers

are not always referring to the correct line of the critical text. The text related to

apparatus entry 389:31(21) is actually located in lines 28-29 of the text in both

the 1580 and 1594 edition. Other examples include entries 390:9(22), 393:18(31)

402:16(42), and so on. In entry 490:13(23), the word paricida was misspelled,

although it is correctly written as parricida in the full critical text. In the apparatus

entry 386:3(10), Pithoeus quotes the reading miseriae nostrȩ aur. as the reading

from the Italian exemplar. However this reading is not present in any manuscript

at this point in the text. Whether this is an important mistake of Pithoeus or an

indication about the Italian exemplar is discussed later in the thesis (Section 8.5).

According to the apparatus entry 403:29(43), the critical text is sed mortis patris

genere, however the full text reads sed de mortis patris genere.

The apparatus entry 392:29(30) apparently quotes a reading from manuscript A

(vet.) at a point in the text that Pithoeus likely did not find in A. The text of manu-

script A is believed to have contained up to the six or seven first declamations of

Calpurnius. It is possible to read the beginning of the sixth declamation in the

last folio 116v, followed by ten illegible lines. However, the reading in Pithoeus

apparatus is located in declamation 11, which he could not have read unless he

had an additional folio at his disposal.

I have encoded the critical apparatus in the <back> element, with the location-

referenced method. Each apparatus entry is encoded in an <app> element with

a @loc attribute for the location in the text, an @n attribute and an @xml:id. The

corresponding words or punctuation marks in the critical text have an attribute

@corresp linking to the apparatus entry. Every apparatus entry has a <note>

element which encodes the exact text of the entry as printed. The <app> element

may also contain a lemma <lem> and the variant readings <rdg>, except when

there is more than one lemma discussed in the same apparatus entry. Because of

the inconsistencies and errors present in the apparatus, I have not attached a @wit

attribute to the <lem> and <rdg> elements.

Example:

1. Text

<w corresp=`#app8'>minari</w> <pc>.</pc>

2. Apparatus

<app n=`8' loc=`385 21' xml:id=`app8'>

202

6.2. Description of the TEI Encoding

<lem>minari</lem>

<rdg>mirari</rdg>

<note>21 minari)<hi rend=`italic'>vet.</hi>mirari</note>

</app>

6.2.5 Modern Editions Encoding

Modern editions have emendations, which are encoded differently from manu-

script witnesses, such as additions, deletions, the conjecture of a lacuna, or the

marking of a passage as locus desperatus with a crux. A locus desperatus (that is

‘hopeless passage’) is a passage of text that the editor considers corrupted, but for

which they are not able to offer an emendation. In the case of Calpurnius, the only

modern edition is the one of Håkanson.

A locus desperatus is encoded with the element <sic> and an @ana attribute which

gives the explanation ‘locus desperatus’. The crux symbol † is encoded with the

entity †. Example:

<sic ana=`locus desperatus.'><w>†mittit</w></sic> (LH, 2:9).

Additions and deletions by an editor are represented as a different phenomenon

than scribal corrections in manuscripts. In manuscripts, the <add> and

elements encode the action of different hands on the page, the actual addition or

deletion of a sequence of words or letters. In an edition, the <supplied> element

encodes the editorial decision of adding text that is not present in any witnesses.

Lacunae are often supplied by editors who suspect that some text is missing. On

the other hand, the<surplus> elements encode text that is present in all witnesses,

but that the editor judged to be superfluous. Examples:

1. Surplus text

<w>amavi<surplus>t</surplus></w> (LH, 2:12).

2. Supplied text

<w><supplied>in</supplied>feliciter</w> (LH, 2:23).

3. Supplied lacuna

<supplied><space extent=`unknown' unit=`length'/></supplied>

(LH, 2:8).

The text of Håkanson is available online at the Packard Humanities Institute (PHI)

203

6.2. Description of the TEI Encoding

website for Classical Latin Texts20. I have used this resource to point readings of

Håkanson to a digital facsimile. However, the PHI edition does not follow the pages

of the original Teubner text. Instead, each declamation is on a different webpage.

For this reason I have used the @facs attribute on <ab> elements instead of the

<pb> elements.

20http://latin.packhum.org/author/1100 (Accessed September 1, 2017).

204

http://latin.packhum.org/author/1100

7Automated Collation in Practice

THIS chapter focusses on the practice of automated collation with various tools

which were available during this research. The transcription files, described in

the previous chapter, were used to collate the Declamations of Calpurnius Flaccus

with three different tools: CollateX, Juxta and the Classical Text Editor (CTE). This

chapter describes the collation procedure to work with each of those tools, and

examines both the advantages and issues of each tool. The interface, the various

combinations of input and output formats, as well as the possible options for

influencing the collation algorithm were reviewed. In the case of CollateX and Juxta

especially, there is more than one interface to the collation algorithm, as the tools

evolved and new versions were created during the course of this thesis.

The set of collation tools available also evolved during the preparation of this

thesis, and resulted in some changes among the tools that were reviewed. At the

beginning of this dissertation in 2013, four of the main collation tools were selected

to collate the text of Calpurnius: CollateX, Juxta, Schmidt’s Compare (formerly

nmerge) and TXSTEP. Although Schmidt proposed to add the transcriptions of the

Declamations to the Ecdosis platform and to compare them with his collation tool,

this was not successful due to encoding incompatibilities. As it turned out, the TEI

encoding of line-breaks elements <lb> at the beginning of each line was causing

issues. Since the only straightforward solution was to wrap lines in <l> elements,

which is reserved for lines of poetry and would be contrary to the Guidelines

(TEI Consortium eds. 2017d, §3.12.1), this option was abandoned. I also explored

TUSTEP and TXSTEP, but it is incredibly complex to install and to operate1. TUSTEP

requires a long investment in time to peruse the 1400-page long user manual and for

a limited benefit, at least with regard to automated collation: a ‘[c]ollation algorithm

1TUSTEP ‘is highly complex and requires training for use’, and requires an advanced level of
technical expertise (Huculak and Richardson 2013). See also a discussion of May 2011 on the TEI-L
list: ‘Learning TUSTEP is not a walk in the park’. http://tei-l.970651.n3.nabble.com/TEI-gt-print-what-
solutions-for-a-neat-printed-version-of-a-critical-edition-td2891563.html (Accessed September 03,
2017).

205

http://tei-l.970651.n3.nabble.com/TEI-gt-print-what-solutions-for-a-neat-printed-version-of-a-critical-edition-td2891563.html
http://tei-l.970651.n3.nabble.com/TEI-gt-print-what-solutions-for-a-neat-printed-version-of-a-critical-edition-td2891563.html

7.1. CollateX

is present, although the documentation suggests it is outdated (in comparison to

newer languages)’ (Huculak and Richardson 2013). On the other hand, a series of

new collation tools have become available since 2015, such as iAligner, Traviz, or

CTE (see Chapter 2). The proliferation of new tools made TUSTEP a less attractive

solution. Of the newly available options, I have chosen to examine CTE because

it has a different purpose from other collation tools, and is similar to TUSTEP in

some regards: it is a popular editor for traditional printed editions, with a focus on

typesetting complex critical editions. In addition, the collation results from CTE

may also be used with Stemmaweb in order to automatically create a stemma.

The main focus will be on CollateX, since it was the preferred collation tool for this

research, especially for the purpose of visualisation and manipulation of the results.

The output from CollateX is particularly easy to process for further manipulation.

In Juxta for instance, once the collation is done and results are displayed, there

is little left to do apart from visualising and commenting on variants or variant

locations. However, scholars may need to filter out collation results in order to find

patterns that could indicate a relationship between witnesses, such as agreements

in error of a group of witnesses (see Chapter 8).

For each collation tool, this discussion will follow the criteria that were identified

previously in Section 2.6 for the assessment of automated collation tools, namely

the interface, the data preparation and input format, the process of collation and

options available to influence the algorithm, and finally the output obtained from

the tool. In addition, I will also consider the perspective of different kind of users:

are users scholars working on their own, or in collaboration? How does the users’

level of technical knowledge affect their experience with the tool? Who are the

intended users: editors aiming at preparing a critical edition, readers of the edition,

textual critics, or students? How does the tool integrate the entire collation workflow,

from transcription to analysis of results? Has the evolution of these tools in recent

years impacted upon any of these issues?

7.1 CollateX

The development of CollateX was centred on the alignment algorithm, and there-

fore no Graphical User Interface (GUI) was created, except for demo purposes only2.

There are three interfaces to CollateX, which will be briefly surveyed: the command

line tool and the RESTful web service which both run the Java version of CollateX,

and the Python version. The interface used in this project is the command line

2The demo version is available here: https://collatex.net/demo (Accessed August 23, 2017).

206

https://collatex.net/demo

7.1. CollateX

Figure 7.1: CollateX command line usage (CollateX Documentation).

tool, which is one of the simplest option for scholars working on their own. The

RESTful interface web service is most useful for integrating CollateX within a web

application. The Python version was not yet fully functional when I tried it (the

JSON output that I have been working with was implemented in July 2016).

7.1.1 CollateX Interfaces

7.1.1.1 Command Line Tool

The easiest way to start using CollateX is to download the command line tool. Col-

lateX can be executed from the command line with the keyword ‘collatex’ followed

by different options, and by the transcription files as input (see figure 7.1). Be-

tween the start of this research and the time of writing, the command line tool has

evolved from version 1.4 to version 1.7.1. The collation results which are examined

in Chapter 8, and available in Appendix B.3, were obtained with CollateX version

1.7.1.

The first attempts with CollateX 1.4 produced a lot of collation errors when attempt-

ing to collate more than a very small number of witnesses: for instance, when I

207

7.1. CollateX

added Pithoeus’ edition to the manuscripts B, M, and N, the readings of Pithoeus

were not properly aligned with the readings of the other witnesses. It was suggested

that the witnesses should be given to CollateX in order of similarity, from the wit-

nesses which were most alike to the ones which were most different, in order to

help the collation algorithm (Gregor Middell, Collation Workshop in Münster 2014).

However, the issue was resolved with the next version of CollateX 1.5, which has

been available since December 2013.

The procedure for installation and usage has also changed from version 1.4 to

version 1.7.1. In any case, the Java Runtime Environment (JRE) is necessary, since

this version of CollateX is written in the Java programming language. For version 1.4

and 1.5, CollateX came as a zip file which could be saved anywhere on the computer

and its content extracted. Since I was working on a Mac OS 10.6, I had to change

the PATH variable in order to access CollateX. The PATH variable is stored in a

special hidden file called ‘bash_profile’ which stores instructions for the command

line tool, such as a shortcut to CollateX so that the program can be accessed from

anywhere on the computer. See also Raabe (2014) for a blog post about installing

and running version 1.5 of CollateX. As Raabe’s experience shows, the installation

of CollateX can quickly become complex and could be offputting for someone with

a limited knowledge of computing.

The next versions of CollateX come as a Java archive (JAR), a file format which stores

many Java files and ‘allows to deploy an entire application [...] in one single request’

(Wikipedia)3. Unlike the previous zip file, the Java archive content is not extracted.

The JAR file is called via the command line as specified in CollateX download page:

java -jar collatex-tools-1.7.1.jar -h This command is the ‘help’ command that will

show how to use CollateX (see figure 7.1 above). Here is an example of a command

that was used to collate the witnesses of Calpurnius Flaccus:

java -jar -Xmx1g collatex-tools-1.7.1.jar -f json

-o calpurnius-nov2016-collated-norm-joint-BCMNPH.json

../json-tokenisations/nov2016-calpurnius-json-tokenized-BCMNPH.json

There are several elements to note in this command, namely:

1. -Xmx1g: it was necessary to add this parameter to the command, due to a

Java error (‘out of memory’ error). This parameter determines the maximum

memory that Java is allowed to use and the minimum value is usually 256MB.

3https://en.wikipedia.org/wiki/JAR_(file_format) (Accessed August 27, 2017).

208

https://en.wikipedia.org/wiki/JAR_(file_format)

7.1. CollateX

Setting the parameter to 1G allows CollateX to use enough memory in order

to finish the collation.

2. -f json: this is the desired output format for the collation results.

3. -o calpurnius-nov2016-collated-norm-joint-BCMNPH.json.

This is the name of the output file which will be created by CollateX, and

which will contain the collation results.

4. ../json-tokenisations/nov2016-calpurnius-json-tokenized-BCMNPH.json.

This is the path to the input file containing the transcriptions of witnesses.

The advantages of using the Java version of CollateX in the command line environ-

ment were first that it was rather easy to install and run. Second, at the time of

collation, the Java version was the most advanced version while the Python version

was still under development and had a few shortcomings. The most important

of those shortcomings was the absence of the JSON output which I was working

with in order to analyse the collation results. On the other hand, there is also some

inconvenience involved in collating with the command line: it means that the

workflow of collation is divided into separate steps which are not linked together.

First the transcription files are processed in oXygen with XSLT to obtain the input

for CollateX (see Section 7.1.3 below), then the collation is performed within the

command line, and finally the collation results are analysed with a Python script

(PyCoviz, a Jupyter notebook described in Chapter 8). This split workflow makes it

more difficult to achieve reproducible results, and to keep track of which transcrip-

tion files were collated with which version of CollateX, as well as which CollateX

results were processed with which version of the PyCoviz notebook.

7.1.1.2 RESTful Web Service

’Representational state transfer (REST) or RESTful web services is a way of pro-

viding interoperability between computer systems on the Internet’ (Wikipedia)4.

The RESTful web service lets online applications or websites access the Java version

of CollateX through the HTTP-based Javascript API. For instance, projects such

as the Workspace for Collaborative Editing (Houghton, Sievers, and Smith 2014),

the Digital Mishah, or the Beckett Digital Manuscript Project (BDMP), make use

of the RESTful service to provide on-the-fly collation in a web application: users

can select a passage of text and a number of witnesses, and receive the collation

results almost instantly. For instance in the BDMP, users send requests which are

4https://en.wikipedia.org/wiki/Representational_state_transfer (Accessed AUgust 24, 2017).

209

https://en.wikipedia.org/wiki/Representational_state_transfer

7.1. CollateX

transmitted to the Collatex server. CollateX performs the collation and sends back

an output which is transformed into HTML for users to visualise online in the

browser (Dekker et al. 2015).

The advantages of such an on-the-fly collation is that it prevents the server from

storing redundant data on the project’s server, since the collation results are not

stored but generated each time a users sends a collation request. The system also

gives users a relative freedom: the Digital Mishnah, for instance, was conceived as

a tool rather than a traditional critical edition, in the sense that the edition does

not commit to one theory of text presentation, but gives several options to the

user (Lapin 2013, 448). Users of the Digital Mishnah have to select the passage

of text they want to work with, then select the witnesses and the order in which

they are collated, and finally choose a visualisation option (collation table, text and

apparatus, or parallel texts in column). With collation via the RESTful web service,

it is also possible to have slightly more control over the collation process than from

the command line interface, since there is limited support to customise the token

equivalence function (see Section 2.4.4.1). The major inconvenience of this method

is that it is a very complex system to set up, and may require the help of a developer.

It is a good solution for a large project with appropriate support, but not the best

method for a single scholar who does not need to provide on-the-fly collation to

users over the web.

7.1.1.3 Python Version

The last way to access CollateX is via the Python version. It is a port from the Java

version to Python: the program is not only adapted to a new programming language,

but it also implements a new collation algorithm. Between its first release in June

2014 and the latest update in January 2017, the Python version was under active

development, and a number of bug fixes and new features were added over twenty-

six updates5. The Python version requires a small amount of of coding knowledge,

which may be problematic for Humanities scholars who have not received the

relevant training (see Raabe 2014, 2015).

The main issue with the Python version, for this project, was that the JSON out-

put did not include full token representation, which was needed for visualisation

purposes. This output was added in mid 2016 (in the 2.0.0orc20 release). For this

reason I did not collate with the Python version. However, as the Python version

of CollateX improves, it will become more attractive than the command line. In

5https://pypi.python.org/pypi/collatex/2.1.2 (Accessed August 28, 2017).

210

https://pypi.python.org/pypi/collatex/2.1.2

7.1. CollateX

particular, it makes it possible to combine the entire collation workflow directly in

Python. In addition, the Python version, as well as the RESTful web service, offers

more control over the collation process than the command line with the possibility

to change a wider range of parameters. As a matter of fact, the Python version of

CollateX is the one that is now taught to interested scholars during workshops, such

as the Code & Collation workshop (Bleeker and Spadini 2016), or the Make Your

Edition summer school in 20176.

7.1.2 CollateX Input Formats

There are three input formats accepted by CollateX: plain text, XML, and JSON.

Plain text and XML are in fact very similar, since plain text tokens are extracted

from a selection of XML elements. This input format implies a loss of context: there

is no connection to the XML markup context, or to the witnesses’ facsimile (with

information such as page number). In this case, the correction and analysis of the

collation output can be limited by this loss of context (se also Section 2.4.4.1 about

Tokenization and its issues). On the other hand the JSON input is more flexible.

JavaScript Object Notation (JSON) is a syntax for storing and exchanging data.

The format, comprising only the two data structures of objects and arrays, is easy

to understand (see p. 212 below). Because data is stored in a textual format, it

is language independent: it can be used by any programming language7. There

are two JSON input formats which are accepted by CollateX: the first one is a

plain text input, and the second one is a pretokenised input (see figure 7.2). The

difference between the two inputs is that CollateX will do the tokenization stage of

the Gothenburg Model with its own tokenization function on the plain text input,

while the other input has already been divided into tokens according to the user’s

need. In addition, the pretokenised JSON input includes additional properties

added by users which will be ignored during collation, but will still be available in

the results in order to improve the visualisation (see also Chapter 4, and Chapter 8

for examples of how these properties can be used).

In conclusion, the pretokenised JSON input appeared to be the best format for

collation, because it could retain information about the tokens, such as the position

in the text that would make it easier to check the results against the manuscripts,

or such as editorial comments made during the transcription that would be helpful

when analysing the collation results (see Section 8.1.1). Therefore the TEI transcrip-

6https://pittsburgh-neh-institute.github.io/Institute-Materials-2017/ (Accessed August 28, 2017).
7See http://www.json.org/ and https://www.w3schools.com/js/js_json_intro.asp (Accessed Au-

gust 28, 2017).

211

https://pittsburgh-neh-institute.github.io/Institute-Materials-2017/
http://www.json.org/
https://www.w3schools.com/js/js_json_intro.asp

7.1. CollateX

(a) Plain text.
(b) Pretokenised text.

Figure 7.2: CollateX JSON input format — plain text vs. pretokenised text.

tions needed to be transformed into CollateX JSON input format, with the help

of eXtensible Stylesheet Language Transformations (XSLT). This transformation

process is described in the next section.

7.1.3 From XML to JSON

In this section I will first describe the desired JSON input for CollateX, and then

the XSLT file which takes the transcriptions and transforms them into JSON for

collation. I have chosen several token properties to include in the JSON input

format. Some of these properties are present for every token, namely:

• Original token (t): this is the actual token that will be used by CollateX to align

the witnesses, unless a normalised form is also supplied. It is a mandatory

property of CollateX JSON tokens.

• Declamation number (decl): I have included the declamation number as an

identification property, in order to be able to study the collation results of

one declamation at a time. However, I have not used this property in the final

visualisation (see Chapter 8).

• Location in manuscript (locus): I have included the location of each token

in the form of folio or page number followed by the line number, in order

to easily find a token back in the transcription file or in the manuscript

facsimile. This property is particularly useful to correct errors that appear in

the collation or to check uncertain passages directly in the facsimiles.

212

7.1. CollateX

Other token properties are present only in a limited number of tokens and are

optional, namely:

• Normalised form (n): a normalised form of a token. When present, it is used

by CollateX algorithm instead of the original form (t) to align the witnesses.

• Editorial Note (note): these are comments that appear in the transcriptions

and which I expected to need while analysing the collation results.

• Link to a digital facsimile (link): when possible, I have included a link to a

digital facsimile available online.

In summary, the token objects contain all the information from the transcription

that I would like to see in the collation results. The tokens and their properties are

then translated into JSON objects.

7.1.3.1 Tokens - JSON objects

An object is composed of pairs of name and value, separated by a comma and

enclosed in curly brackets. I will also refer to these pairs as ‘properties’. Tokens are

represented as JSON objects, and the pairs of name and values are the properties of

tokens described above. Here is an example of a token in JSON format:

{`t' : `uxor', `decl' : `1', `locus' : `244r:3'}

This is a token in the form of a JSON object that contains three pairs of name and

value. First, the name ‘t’ has the value of ‘uxor’, the word as it appears originally in

the manuscript. The name ‘decl’ has a value of ‘1’, which means that this word is

part of the first declamation of Calpurnius. Finally, the name ‘locus’ has a value

of ‘244r:3’, which describes the location of the token in the manuscript N: the

token is located on the third line of folio 244r. These three items, original word (t),

declamation number (decl) and location of the token (locus) are always present

in a token object. Their order within the curly braces is not important. The other

optional properties can also be present in a token as pairs of name and values, such

as a normalised form (n), an editorial note (note) and a link to a digital facsimile

(link). Gaps and lacunae are rendered as special tokens with an original form of ‘. . . ’

and a normalised form ‘lacuna’. When possible, a note mentions the extent of the

missing text as well as the reason why the text is missing.

Here are a few examples of tokens to illustrate how their properties are encoded in

the JSON notation:

213

7.1. CollateX

1. Normalised form (n)

{`t' : `foemina', `n' : `femina', `decl' : `1', `locus' : `244r:11'} (Manuscript

N).

2. Editorial note (note)

{`t' : ` CO', `n' : `contra', `note' : `Unknown abbreviation. Normalised

form supplied by Lehnert.', `decl' : `3', `locus' : `82r:18'} (Manuscript C).

3. Link to facsimile (link)

{`t' : `tyranno', `link' : `http://daten.digitale-sammlungen.de/bsb00090859/
image_294', `decl' : `1', `locus' : `147r:23'} (Manuscript B).

4. Lacunae and gaps

{`t' : `. . . ', `n' : `lacuna', `note' : `lacuna (gap) of 1 word. Reason:

illegible.', `decl' : `30', `locus' : `14v:24'} (Manuscript M).

{`t' : `. . . ', `n' : `lacuna', `note' : `lacuna (space) of 1 lines.', `decl' : `4',

`locus' : `82r:29'} (Manuscript C).

7.1.3.2 Witnesses - JSON arrays

Besides objects, the second data structure in JSON is an array: an ordered list of

objects enclosed in square brackets. In the case of the collation input, the text of a

witness is an array containing an ordered list of tokens:

[{token 1}, {token 2}, ... {token n}]

Contrary to the order of properties within the token object, the order of tokens

within the array is important, because it follows the word order of the text. If the

word order is lost, it is not possible to collate anymore. Objects and arrays can be

nested to form complex structures, such as a witness. A witness is an object with

two pairs of name/value, a siglum (id) and an array of tokens (tokens):

{

'id' : `B1',

'tokens' : [token 1, token 2, ... token n]

}

As we have seen in figure 7.2 above, the CollateX JSON input requires an object with

the name ‘witnesses’ and a value which is an array that contains a list of witness

objects:

{`witnesses' : [wit-1, wit-2, wit-n]}

In summary, the JSON input for CollateX is a complex data structure of nested

214

http://daten.digitale-sammlungen.de/bsb00090859/image_294
http://daten.digitale-sammlungen.de/bsb00090859/image_294

7.1. CollateX

objects and arrays: the top object in the structure has a name ‘witnesses’ and a

value of an array (list) of witness objects. A witness object has two properties: an

‘id’ for its siglum, and a ‘token’ property which is an array of tokens. And finally, a

token object has several properties such as ‘t’, ‘n’, and so on.

n

I will now describe the transformation of the XML transcriptions into JSON, with

the file witnesses-to-json.xsl (see Appendix B.2). The transcription XML format

(see the previous Chapter 6) and CollateX JSON input format described above are

quite different, which means that the transformation from the former into the latter

is a complex task. In order to simplify the process, the XSLT transformation is done

in two phases. During the first phase, the XML transcription is converted to another

XML, closer to the JSON format needed as a collation input. In the second phase,

this XML is transformed into the JSON format of witnesses and tokens. Here is an

example of the new XML format for one witness:

<witness siglum=`B1'>

<token>. . . </token>

<token>. . . </token>

. . .

</witness> Once the witnesses are transformed into this new XML format, it be-

comes easier to transform this XML into the proper JSON input format for CollateX.

7.1.3.3 Witnesses

To obtain this new XML format, the XSLT transformation first checks how many

witnesses must be created from one transcription file. This information is located

in the handDesc of the TEI Header: for each handNote element, a new witness is

created. The witness siglum, which is the siglum @xml:id attribute of msIdenti�er,

will serve as the ‘id’ property of the JSON witness object. The siglum is combined

with the handNote number if there is more than one hand. For instance there are

two handNote elements in manuscript B, therefore there will be two witnesses

created (B1 for the first handNote and B2 for the second handNote). If there is only

one hand, as for the editors Håkanson and Pithoeus, the value of the siglum is the

msIdenti�er only, respectively LH and P1594.

For each witness created, the XSLT transformation goes through the complete

transcription file and select the word elements <w> which are written by the

215

7.1. CollateX

Figure 7.3: Sample 1 from the XSLT transformation: dealing with elements (Appendix B.2).

hand that is currently transformed. If the first hand of a manuscript is currently

tokenised, for instance, the words added by a second hand will be ignored, but

the words deleted by the second hand are included. Based on the encoding of

scribal corrections described in Section 6.2.3.3, it means in practice that the

elements with no attribute are included in the text of the first hand, but ignored

for the text of the second hand. On the other hand, the <add> elements with a

hand attribute of ‘#h2’ are ignored for the text of the first hand, but included in

the text of the second hand. The few mistakes of a first hand, encoded with

elements of type=`corrigendum', are ignored, while the one element in

manuscript N with a hand attribute h2 is included in the text of the second hand

(see Section 6.2.3.3 for more detail about this particular deletion).

Figure 7.3 shows an example of a template from the XSLT transformation file for

dealing with scribal deletions. When witnesses are tokenised, a variable that holds

the hand number (h1 or h2) is created and passed as a parameter ‘phand’ when

the templates are applied. When the transformation encounters a element

in the transcription, a variable ‘mss-hand’ is created: it will have a value of ‘h1’ if

there is no attribute to the element, and otherwise it will have a value of

‘h2’. The value corresponds to the hand which wrote the text in the element.

If the value of the ‘mss-hand’ variable corresponds to the hand that is tokenised

(the ‘phand’ parameter), then the text inside that element is processed to be

included in the tokens. Otherwise, the text inside the element is ignored.

7.1.3.4 Tokens

Tokens are created as the word elements <w> are processed. Here is the structure

of the most complete <token> elements in the new XML format that is created,

216

7.1. CollateX

when every property is included:

<token folio=`xxx' line=`yyy' decl=`zzz'>

<t>original word</t>

<n>regularised word</n>

<note>information from the transcription</note>

<link>link to facsimile</link>

</token>

For each <w> element, a <token> is created with three attributes: folio, line, and

decl. These attributes correspond to the two token properties ‘locus’ and ‘decl’

described above. If the <w> element in the transcription contains a <choice>

element, the word is first transformed with the content of <orig>, in order to

obtain the ‘t’ property of a token, and then it is transformed again with <reg> to

obtain the normalised form ‘n’. If the preceding <pb> element has a facs attribute

with a link to a digital facsimile, this is encoded in <link>. The note element in

the new XML is the most complex to create, because the content of a note may be

encoded in various places of the transcription. An editorial note maybe encoded

in a <note> element in a word <w>. However, the content of a note may also be

found in other places, such as the reason attribute of an <unclear> element, or

the resp attribute of <reg> or <supplied> elements.

Figure 7.4 shows the four templates that help to deal with original and regularised

forms of a token, when the <choice> element is present in a word <w>. There

are two modes, which makes it possible to choose the right template to apply. In

order to create the <t> property of a <token>, only the templates with the mode

‘attested’ are applied (for the form of the word which is attested in the manuscript.

In order to create the <n> property, only the templates with the mode ‘normal’ are

applied. In practice, it means that the <orig> element is ignored in ‘normal’ mode,

but processed for the ‘attested’ mode. On the other hand, the <reg> element is

ignored in ‘attested’ mode, but processed in ‘normal’ mode.

Since there are differences in the encoding of manuscripts and modern editions

(see Section 6.2.5), the XSLT transformation will also be slightly different. This is

done with modes again: the templates with ‘mss’ mode are applied to manuscripts

and to the old edition of Pithoeus, whereas the templates with ‘edd’ mode are

applied to modern editors (here it applies only to Håkanson, but it would also apply

for other editors such as Lehnert or Sussmann if their texts were to be added).

There are TEI elements which are absent from the modern editions, such as

217

7.1. CollateX

Figure 7.4: Sample 2 from the XSLT transformation: dealing with original<orig> and normalised
<reg> form of a token (Appendix B.2).

Figure 7.5: Sample 3 from the XSLT transformation: witness template (Appendix B.2).

and <add>, but their equivalent <surplus> and <supplied> must be processed.

The <w> elements for tokens are also treated differently within modern editions

because some properties are obtained from different elements. For instance, the

link to the digital facsimile of Håkanson’s edition points to the Packard Humanities

text, where the edition presents one declamation on each webpage. Therefore, the

<link> property is the facs attribute of <ab> and not of <pb>. The content of

notes is found in the ana attribute of <sic>, to indicate words that were considered

part of a locus desperatus by the editor and marked with a crux.

7.1.3.5 Final steps: JSON format

When the witnesses have been tokenised in the intermediary XML format, they

can be transformed into JSON with another set of two templates: one template

transforms a witness into JSON, and the second template transforms tokens into

JSON objects. Figure 7.5 shows the template that transform a witness into a JSON

object.

218

7.1. CollateX

The template dealing with tokens is more complex because it contains another

series of normalisations. The orthographical normalisations were directly encoded

in the transcription files with the help of a choice between <orig> and <reg>

elements, however the transformation into JSON adds more normalisation, namely:

• Replacing the symbol & with ‘et’;

• Replacing accented letters with their unaccented counterparts: for instance,

é, è, ê, and ë are all replaced with the letter ‘e’8;

• Removing non-literal symbols such as punctuation, whitespaces, square and

angle brackets, cruces symbols (†);

• Transforming all uppercase letters into lowercase.

All witnesses are then gathered in one single document with XInclude9, a mecha-

nism which merges XML documents automatically, and a transformation scenario

is applied to the master file so that each transcription file is processed by the XSLT

described above (see Appendix B.2).

7.1.4 CollateX Output Formats

CollateX’s command line offers various output formats: there is a JSON output,

two XML outputs, and two outputs in a graph format (dot and graphml), all of

which can be found in CollateX Documentation. The two XML outputs are either

a TEI XML output with <app> elements to encode variants, and an XML format

specific to CollateX that records the collation results as a collation table with rows

and cells (see Section 8.2). The CollateX XML format, although shown in CollateX

Documentation, could not be obtained from the command line interface. A CSV

output format is also proposed as an option in the command line. Similar output

options are available from the other interfaces: in addition to JSON and XML, one

more graph format SVG is available from the RESTful web service, and an HTML

table output is available from the Python version. The main issue related to CollateX

output is the fact that it cannot be reused as an input again, for instance to add a

new witness to an already collated set of witnesses.

The choice of an output format depends mainly on how the collation results will be

further processed, but also on the input format. For instance, not all outputs will

8Accented letters appear especially in Pithoeus’ edition, and in manuscripts M and N as well.
9https://www.w3.org/TR/xinclude/ (Accessed August 28, 2017).

219

https://www.w3.org/TR/xinclude/

7.1. CollateX

return results which keep the additional token properties that are included in the

JSON input: only the JSON output will return results where each token still has its

properties attached to it (normalised form, note, link, location and declamation

number).

The CSV, TEI, and dot formats provide results which only include the original form

(t) of a token, and the other properties are then lost. It should also be noted that

the pretokenised JSON input cannot be combined with output formats other than

JSON in some circumstances. For instance, the combination of a JSON input and a

TEI output can have surprising consequences: it shows the text of the tokens all

combined together with no whitespace separation (see figure 7.6(a)). The reason for

this issue comes from a conjunction of two aspects: the first is that the pretokenised

JSON input encodes only the letters which make up the words of the text, and not

the white space separations. The second aspect is related to CollateX’s output. The

output can either join together matching tokens into segments, or keep tokens

separated. In the example of figure 7.6(a), the text ‘Incipiunt ex Calpurnio Flacco

excerptae’ is a chunk of text which is matching together in the manuscripts and

Pithoeus, but is absent from Håkanson’s edition. Therefore this chunk of text is

combined into one reading element <rdg>. However, by requesting that Colla-

teX keep each token separated (with the parameter –tokenised or -t), the results

will not combine the tokens together and the output will be more accurate (see

figure 7.6(b)).

To examine the collation results, I have chosen the JSON output of CollateX, be-

cause it is the most complete output format that contains all token properties, and

because it is a format that is easily converted into data usable with other program-

ming languages (as opposed for instance to the XML output which would require

another XSLT transformation) (see Section 8.4.1). The analysis of CollateX’s results

will be discussed more in detail in Section 8.5.

7.1.5 Discussion

CollateX interfaces require more technical knowledge than Juxta or the CTE: at

least to be comfortable using the command line, or more advanced programming

capacities in Java or Python. There are multiple input and output formats, which

are not always well combined. The pretokenised JSON input, for instance, should

be combined with a JSON output, or a separated tokens output. The pretokenised

JSON input necessitates more preparation than the others, but it provides advan-

tages later in the visualisation of the results (Chapter 8). Although the collation

algorithm is the same across the various interfaces, there are minor differences in

220

7.2. Juxta

(a) Joint tokens.

(b) Separated tokens.

Figure 7.6: CollateX JSON input and XML TEI output (Command Line interface).

the level of control users have over the collation process. In the Python version,

there are more parameters available, and in the RESTful web service there is the

possibility to customise the token equivalence function. In conclusion, the choice

between the three interfaces depends on factors such as the technical knowledge

of CollateX’s users, the editing workflow or the purpose of the collation.

7.2 Juxta

Collating with Juxta is a very different experience from using CollateX. Whereas

CollateX requires users to have at least a small amount of prior computing knowl-

edge, at least being comfortable with the command line, Juxta offers an intuitive

Graphical User Interface (GUI). In fact, there are three different user interfaces: a

desktop application, and two web interfaces which are powered by the Juxta Web

Service API. Juxta proceeds similarly in each interface. The user uploads documents

to Juxta, which are transformed into witnesses, i.e., the documents are tokenised.

Then the user can form a comparison set by selecting witnesses to be compared.

Once the witnesses in the comparison set are collated, the user can visualise the

results in different ways. The following section examines the three interfaces and

their differences.

221

7.2. Juxta

Figure 7.7: Juxta Desktop interface. Retrieved from https://github.com/performant-so�ware/juxta-
desktop/wiki/UserInterface (August 29, 2017).

7.2.1 Juxta Interfaces

7.2.1.1 Juxta Desktop Application

Juxta Desktop is a legacy version of the software, which can be installed on any

operating system (Windows, Macintosh and Linux)10. Although the web interfaces

are more recent, the desktop application may still be a good solution for textual

collation. A detailed user manual is available on Github11. The version that was

used during this research is version 1.7.0. Figure 7.7 shows what the interface looks

like: there are four panels that contain (1) a toolbar, (2) the list of witnesses in a

comparison set, (3) the collation visualisation and (4) a secondary panel in the bot-

tom half which can display the source documents. A comparison set contains the

witness transcriptions which are all collated by default, unless otherwise specified.

Juxta Desktop accepts input in plain text or in XML. There are prepared templates

10Macintosh users with OS 10.7 or higher may encounter an installation issue. See the download
page here: http://www.juxtaso�ware.org/download/ (Accessed August 29, 2017).

11https://github.com/performant-so�ware/juxta-desktop/wiki/OnlineDocumentation (Accessed
August 29, 2017).

222

https://github.com/performant-software/juxta-desktop/wiki/UserInterface
https://github.com/performant-software/juxta-desktop/wiki/UserInterface
http://www.juxtasoftware.org/download/
https://github.com/performant-software/juxta-desktop/wiki/OnlineDocumentation

7.2. Juxta

Figure 7.8: Juxta XML parsing template (Juxta Desktop).

to parse XML from TEI documents or Juxta documents (with the extension .jxt),

but users may also create their own templates in order to parse texts encoded

in other XML formats. It is also possible to influence how Juxta transforms a

document into a witness by editing the parsing templates (see figure 7.8). The

dialogue box to edit the XML parsing templates offers several options to change

Juxta’s behaviour. Juxta can either INCLUDE, EXCLUDE or MAKE_NOTABLE each

XML tag. Including a tag means that its content will be collated, provided that all

other tags in the XML hierarchy are also included. For instance, to collate the text

of the <title> in the <titleStmt> of the <�leDesc> in the <teiHeader>, all of

these elements must be marked as included. The <note> elements, if included,

are not collated but appear as comments in the right margin. On the other hand,

excluding a tag means that its content and the content of its children elements

will be ignored for collation purposes, and will not be displayed in the collation

visualisations. Finally, MAKE_NOTABLE makes it possible to see changes in markup

encoding as variants. Assuming that the tag indicates bold text and <i>

italic text, if both tags are made notable, then the following words will appear as

variants in the collation results: word and<i>word</i>. However, this

feature is not extended to attributes, so that it is not possible to see the following as

variants: <hi rend=`bold'>word</hi> and<hi rend=`italics'>word</hi> (see

also Section 3.3.3). The last column ‘Newline?’ adds a line break after the content

of checked tags.

A dialog lets users decide if they want to change some settings in the collation

algorithm in order to filter out whitespace, punctuation or case from the collation

results. After the collation has been performed, users can analyse and comment on

the results. Individual variants can be annotated, and moved text (transpositions)

can be indicated. In the bottom half of the screen, the transcription of the source

223

7.2. Juxta

document is displayed: it can be corrected by users directly in Juxta, and then

saved as a new document. The corrections will then be automatically incorporated

in the collation. The corresponding text in the source document is very easily

accessible by clicking on the text of the collation results, which is an advantage

of Juxta Desktop. In addition, there is also a search text option, the possibility to

change the font, and to display location marks such as line breaks and page breaks.

The option to ‘toggle the revision view’ allows for dealing with <add> and

elements in the markup. By default, Juxta ignores additions and deletions marked

with those tags (Juxta Manual), but they can be incorporated to the collation either

in a case-by-case basis, or in bulk. Finally, it is possible to associate digital images

of the source to a transcription.

The visualisations available in Juxta Desktop include the heat map, two texts side-

by-side, and the histogram described in Section 2.6.4. It is also possible to generate

a critical apparatus in the form of an HTML file. The critical apparatus does not

include a base text alongside, which makes it difficult to work with outside of

Juxta. The collation results can be saved in the Juxta file format, or exported as a

comparison set to the web interface of Juxta Commons, where it can then be made

publicly visible and be shared with others.

7.2.1.2 Juxta Commons

Juxta Commons takes the functionalities of the desktop application, and makes

them available through a web interface that is accessed from a browser12. A short

user guide is also available for Juxta Commons13. Although the two interfaces are

very similar, there are some differences between Juxta Desktop and Juxta Com-

mons, which will be noted within the description of Juxta Commons. The interface

contains an upper panel with three sections: sources, witnesses, and comparison

sets (see figure 7.9). There is no way to organise sources or witnesses in groups of

texts for the different comparison sets, so that it may become confusing for users

with many sources and witnesses. The best solution is to have a consistent name

scheme, in order to sort the documents in a convenient way.

The bottom panel changes according to the document selected. For sources, it is

possible to edit and save the content of the document. For witnesses, it is possible to

either view the plain text content, with the option to visualise page and line breaks,

or to view the XML content in the case of XML sources. In this XML view, users can

select tags to include or exclude from the collation. However, the MAKE_NOTABLE

12http://juxtacommons.org (Accessed August 29, 2017).
13http://juxtacommons.org/guide (Accessed August 29, 2017).

224

http://juxtacommons.org
http://juxtacommons.org/guide

7.2. Juxta

Figure 7.9: Juxta Commons interface. Retrieved frommy personal account (August 29, 2017).

option is not available in Juxta Commons. For comparison sets, the bottom panel

displays the collation results and offers various visualisations.

While Juxta Desktop accepts only plain text and XML as input, Juxta Commons can

also take HTML files, Microsoft Word DOCX and Open Office documents, as well as

EPUB and PDF files which contain text (and not only images). Variant annotations

were only local in Juxta Desktop, i.e., attached to a single variant reading. Juxta

Commons allows for ‘regional’ annotations as well, that is annotations which apply

to a whole variant location. Again, it is possible to ignore punctuation and/or capi-

talisation, and set the desired hyphenation sensitivity. Kingsley (2014) remarked

that these settings still give room for imprecisions, for instance if the user wants to

view punctuation but is not interested in differences of spacing around punctuation

marks.

Visualisations in Juxta Commons include three more options, in addition to the

heat map, the side-by-side view of two witnesses and the histogram: the edition

starter kit, the Versioning Machine, and an XML TEI output. The edition starter kit

creates a basis for a critical edition, with both a text and a critical apparatus. The

apparatus of the edition starter is very much identical to the Classical Text Editor

(see Section 7.3.3 below). The CTE, however, has much more options for typesetting

the edition; consequently, if a traditional edition with a base text with and a critical

apparatus is the final goal, it is probably worth using the CTE instead of Juxta.

Thanks to the integration of the Versioning Machine visualisation, it is also possible

to view multiple witnesses side-by-side instead of only two. When clicking on a

225

7.2. Juxta

Figure 7.10: Juxta Commons, Versioning Machine visualisation.

variant in a witness, it will highlight the parallel variant readings in the text of every

witnesses.

Finally, it is possible to export the collation results in the TEI XML format with

variant readings encoded according to the parallel-segmentation method. This

output works best for plain text or basic XML encoding (User Guide). Original

markup of the source’s transcription may not be kept in the TEI XML output. In

fact, most of my original markup disappeared with the exception of linebreaks: for

instance, elements such as <hi> for highlighted text or <ex> for abbreviations

were not included in the TEI output.

A review of the TEI output from Juxta Commons shows that there are a few errors

in the alignment, which are not obvious directly from the other visualisations such

as the Heat Map. While variant locations are correctly highlighted in blue, the

alignment of readings within a variant location is sometimes incorrect, or at any

rate not satisfying for the editor. There are mistakes of alignment such as one

reading excerpta from the incipit aligned with the reading X, although excerpta

should be aligned with excerpta in other witnesses and X should be aligned with

decem. Differences in word division may become an issue, especially if there

is another variant nearby (see also Section 7.3.3 below for word division issues

with CTE). For instance, the readings verbera cibus and verberantibus are correctly

aligned; but the variant nescioquid/nescio quid immediately followed by the variant

diu/adhuc gives a mistake: one reading diu is not correctly aligned (see figure 7.11).

These are issues of alignment for the regularised texts. If the original tokens are

collated, the chance of having several variants in a row increases, and the mistakes

or imprecisions increase in the collation results.

These errors in the alignment can illustrate how the order in which witnesses are

collated can influence the results, in combination with the heuristic method. For

instance in figure 7.11, the witnesses are collated against LH (wit-28535) which

reads nescio quid adhuc. The next witness P1594 (wit-28536) reads nescioquid diu,

which does not match exactly the text of LH, and therefore the heuristic method

226

7.2. Juxta

Figure 7.11: Example of erroneous alignment in Juxta Commons.

produces the following alignment:

LH nescio quid adhuc
P1594 nescioquid diu

The witnesses subsequently collated read nescio quid diu, and therefore the read-

ings diu are properly aligned with adhuc, and P1594 is the only witness for which

diu is not correctly placed in the results.

Juxta Commons is advantageous for sharing the collation results on the web, or

having more options of input formats and visualisations. However, Juxta Desktop

may be better with regard to other aspects. For instance, Juxta Commons often

takes a long time to collate, while collation happens instantly in Juxta Desktop. The

desktop application also makes it easier to correct transcription errors spotted in

the collation results because the transcription appears below the collation and is

linked to it. In Juxta Commons, it is necessary to open the source document in a

new browser window (Kingsley 2014). Finally, the option to include source images

in Juxta Desktop is not available in Juxta Commons.

7.2.1.3 Juxta Editions

The latest interface for Juxta was released in 2015. It aims at providing a profes-

sional suite of tools for born digital critical editions, covering the entire editing

workflow from transcription to publication. As a result, this new interface brings

a bigger change than the transition between Juxta Desktop and Commons. The

new transcription interface HumEdit is introduced, and free or paid subscription

plans offer different ranges of options. The documentation, however, is limited

to the ‘features’ page and a series of eight short screencast videos which become

available once logged into a user account14. Some information is missing, such as

the number of witnesses which can be collated.

14http://www.juxtaeditions.com/features (Accessed August 30, 2017).

227

http://www.juxtaeditions.com/features

7.2. Juxta

(a) Top half.

(b) Bottom half.

Figure 7.12: The interface of Juxta Editions, edition page — top half and bottom half. Retrieved
frommy personal account (August 30, 2017).

The interface is considerably different from the previous versions of Juxta. The pur-

pose of Juxta Editions is explicitly to create scholarly editions, and this is reflected

in the presentation of the interface: the homepage is a ‘desk’ where users can access

‘editions’, which are limited in number from one (free account) to ten (premium

account). The edition contains a list of documents that are the witnesses, and a list

of comparisons corresponding to the Comparison sets.

In Juxta Editions, it is possible to transcribe documents directly in the HumEdit

transcription interface (see also Section 6.1.4). The transcriptions are done either

in plain text, or with XML TEI Lite tagging. It is also possible to upload XML files,

228

7.2. Juxta

however there is no indication in the documentation regarding the accepted XML

format. It is likely that only TEI Lite documents can be uploaded, because after

uploading one of Calpurnius transcription files, the result was rather deceiving: the

content of the word elements<w>were not separated by white spaces for instance,

even if the white spaces are actually present in the transcription file in between

<w> elements. On the other hand, <add>, and <unclear> elements

were properly recognised and colour coded in blue, red and grey respectively.

Juxta Editions also provides an integrated Optical Character Recognition (OCR)

solution for printed pages with ABBYY FineReader, a commercial OCR software

(see Section 2.6.2 for an example of Juxta Editions OCR with Pithoeus’ edition).

Images of the source can also be uploaded, and displayed side-by-side with the

transcription.

Visualisations in Juxta Editions are limited to the heat map and the side-by-side

view (at least in the free account). There is no support to choose which XML tags

should be included or excluded from collation, contrary to Juxta Desktop and

Commons. Among other features specific to Juxta Editions are collaboration and

web publishing, both requiring a subscription. Although collaboration is not free,

one single paying account can invite any user to collaborate on a project. Blessed

Damozel is an example of an edition prepared with Juxta Edition15. However, this

website does not show any collation results, so that it is difficult to evaluate the

editions created with this technology. There are few other examples of editions

online: The Melville Electronic Library has published two editions of Melville that

integrate with Juxta Editions, “Versions of Moby Dick: A Fluid-Text Edition” (2018),

and “Versions of Billy Budd: A Fluid-Text Edition” (2018). In 2017, both editions

were showing the side-by-side view of two witnesses, which is also available in the

other versions of Juxta. However this will probably evolve in the future, as the full

integration with Juxta Editions should be available in the Summer of 201816.

According to the video number 8, available to logged users, new features will be

added to Juxta Editions in the future, such as extended support for transcribing cor-

respondence, poetry and drama, customised collation, generating RDF metadata,

and institutional subscriptions.

7.2.2 Discussion

The comparison of the three different Juxta interfaces helps to understand the

benefits or drawbacks of each interface. Although the tools share a name, and

15http://sites.juxtaeditions.com/BlessedDamozel/ (Accessed August 30, 2017).
16https://mel.hofstra.edu/versions-of-moby-dick.html (Accessed February 20, 2018).

229

http://sites.juxtaeditions.com/BlessedDamozel/
https://mel.hofstra.edu/versions-of-moby-dick.html

7.2. Juxta

apply the same collation algorithm, the differences between the three may be

important enough as to influence the choice of a scholar who wishes to use Juxta

for a collation project. Juxta Desktop is much quicker to collate, and makes it easier

to switch between collation and transcription, to correct mistakes for instance.

Juxta Commons offers more choices of input and output formats, especially a TEI

XML compliant output which can be reused outside Juxta. Juxta Editions, on the

other hand, is more restrictive in terms of input formats and visualisations available.

Juxta Editions has no particular advantage with regard to collation itself, it has no

option yet for influencing the results by including or excluding XML elements.

The advantages of Juxta Editions lie rather with the collaboration option and the

transcription platform with source images, which allows together for crowdsourcing

transcriptions. Juxta Editions also provides an environment for the entire workflow

of editing, from transcription to online publication.

In the context of scholarly editing, the intuitive user interface makes Juxta an acces-

sible tool to Humanities scholars and students, even with little or no computing

knowledge. Juxta is useful in particular for transcription correction (Kingsley 2014).

The blue highlighting of the heat map visualisation is helpful to locate ‘false positive’

variants, that is text falsely marked as variant because of a transcription error. The

opposite ‘false negative’ variants, real variants which are not highlighted in blue,

are more difficult to spot. Juxta offers also interesting collation visualisations, to

display the final results of a critical edition with multiple witnesses. Otherwise, for

the steps between transcription and visualisation of the final results, Juxta does not

provide an environment for correcting the collation results, or choosing a lemma

among the variant readings to create a critical text (Kingsley 2014). The only solu-

tion at the moment is to duplicate one of the existing witnesses, and then modify

the source text of this new witness with readings selected by the editor. Another

desirable feature suggested by Kingsley (2014) would be a way to categorise variants

according to a typology (for instance between accidentals and substantives). The

issue with such a feature would be that there are many ways to categorise variant

readings, and it may be difficult to satisfy a majority of scholars (see Chapter 4).

I would also argue that editors need not only to categorise readings, but more

importantly to analyse the readings shared by group of witnesses, in order to study

the witnesses’ relationships (see Section 8.1.2). While Juxta is an excellent tool for

collation visualisation, it may not be a perfect philological tool for scholarly editors.

230

7.3. Classical Text Editor

7.3 Classical Text Editor

In contrast to Juxta, the Classical Text Editor (CTE) was designed first as a philo-

logical tool, for the purpose of helping editors create mainly print critical editions

and to a lesser extent also digital editions (Hagel 2007). The collation algorithm is a

recent addition from 2015 to a project that started twenty years ago in 1997. CTE

has been successfully used to publish over 170 editions, between 1999 and 201717.

It is worth examining how automated collation is integrated into a software that

is already widely used for preparing critical editions of Classical texts. We will see

how CTE performs automated collation, and how well it deals with orthographic

differences and word division, since this is supposed to be a major advantage of

the collation algorithm in CTE. Since the software is under commercial license, I

have used the free thirty-day trial version.

7.3.1 Interface

The CTE is a graphical word processor explicitly created for a manual workflow

of editing, and therefore it is centred on one document that contains the base

text. A series of documents are associated to the base text, for various notes and

references such as a critical apparatus, the list of manuscripts, an apparatus of

sources (apparatus fontium), or editorial notes (see figure 7.13). There are many

options and settings available, especially focused on setting references or cross-

references between those various documents, and formatting the layout of the final

output of the critical edition in PDF or in TEI XML format.

The Microsoft Word-like interface, familiar to Windows users, is meant to improve

the efficiency of editors by reducing the amount of time spent in secondary tasks.

Any sort of code or tagging is hidden from users to prevent distractions or con-

fusions. Therefore the CTE requires minimal technical expertise. In addition, it

provides a framework to the editorial workflow, so that a change at any step is

reflected in the final output without effort.

7.3.2 Input

The CTE lets users import plain text documents from Microsoft Word or in RTF

format, as well as XML documents. There are no guidelines however regarding the

XML format that documents should follow in order to be imported. The transcrip-

17http://cte.oeaw.ac.at//?id0=pub (Accessed August 31, 2017).

231

http://cte.oeaw.ac.at//?id0=pub

7.3. Classical Text Editor

Figure 7.13: Classical Text Editor interface.Retrieved from http://cte.oeaw.ac.at//?id0%
3Dsnapshots%26id1%3D0%26mo%3Dc_3 (August 31, 2017).

tion files of Calpurnius Flaccus were imported, however with only relative success18.

It seems that the text of each XML element was extracted except <note> elements.

Both additions and omissions alike were included, separated by semicolons, as

well as original and regularised spellings without distinctions. For instance, the

original word foeliciter, encoded with a regularised spelling feliciter, was imported

as foeeliciter. More problematic was the absence of whitespace separation between

words. The fact that everything code-related is hidden makes it difficult to under-

stand how the XML is processed by the CTE, and how to change the process for

better results.

To test the Classical Text Editor, I have therefore prepared plain text versions of the

transcription files by updating the XSLT transformation that was used to produce

CollateX JSON input (see above). The witnesses thus created are in a very basic

plain text format, without punctuation, line breaks or notes, for a first collation

attempt. It is also possible to transcribe directly in plain text format within a CTE

document, and to open images of manuscripts in a Graphic Viewer window in order

to create links between text and image. However, PDF images must be transformed

into an image format such as JPG to be opened in the Graphic Viewer.

18The first time the files were imported, the program ran into an error, and the developer of CTE
needed to examine the files in order to understand the problem. In a second attempt (without any
change to the transcriptions), the documents were imported into plain text.

232

http://cte.oeaw.ac.at//?id0%3Dsnapshots%26id1%3D0%26mo%3Dc_3
http://cte.oeaw.ac.at//?id0%3Dsnapshots%26id1%3D0%26mo%3Dc_3

7.3. Classical Text Editor

7.3.3 Collation

The collation process works with a base text and a pairwise algorithm (see Chap-

ter 2). Each witness is compared to the base text, and the results of the successive

comparisons are merged into an apparatus. As we have seen in Section 2.2, the

order in which the witnesses are collated can influence the results. The choice of

the base text also changes the collation results: in the case of Calpurnius Flaccus,

choosing Håkanson’s edition as a base text resulted in the fact that the incipit was

not collated because Håkanson did not print it in his critical text. This is a known

issue of a base text comparison process, and so it must be taken into account when

collating with the CTE (see Section 2.4.2).

Several steps must be followed in order to collate in CTE: the first step is to select

one witness as a base text, then give a unique siglum and unique number to each

witness, and finally collate the witnesses. Each of these steps is composed of a

precise series of actions. Since it is not a perfectly intuitive procedure, I will list

here the steps that I have been through to collate with the CTE. First, an apparatus

document must be created for the witness which was chosen as a base text:

1. Open the base text witness in CTE.

2. Open the menuFormat > Document > Templates: the template ‘Apparatus

1’ must be selected instead of the default value ‘Text’.

3. In the same dialog box where the ‘Apparatus 1’ template was selected, click

on Settings, and in the Style tab, check the box ‘is a critical apparatus’.

4. Finally, open the menu Windows > Apparatus: this opens a new apparatus

document.

The second step is to attribute a unique siglum and a unique manuscript number

to each witness. This should be done directly from within the base text, and not by

opening successively each witness:

1. Open the base text document.

2. Go to the menu Format > Sigla to open the dialog box where the sigla can

be created.

233

7.3. Classical Text Editor

Figure 7.14: The Collation dialog box (CTE).

3. Create sigla for all the witnesses. To add a new siglum, two fields must be

filled. The field ‘Text’ is the siglum of a witness (‘LH’ or ‘B1’ for instance) and

the field ‘Manuscripts’ is a unique number for this witness.

After the base text was selected, and the apparatus file and the witness sigla were

created, it is possible to collate. Again, this must be done from within the base text,

since the program is centred on the base text document. The option to collate is in

the menu File > Import > Collate. A dialog box opens and offers users to select

in which apparatus the collation should be saved (see figure 7.14). Users have to

select the siglum or number of the witness they wish to collate, and can then click

‘open and collate’ to open the CTE file corresponding to the witness that they want

to collate.

It is possible to specify a file with normalisations by checking the box ‘RegEx Nor-

malisation’ and uploading a file. This file should contain on each line a pair of

regular expressions separated by a tab. The first expression is the string of charac-

ters that needs to be replaced, and the second expression is the string of characters

that should replace the first. The CTE help manual gives the examples of normalisa-

tions for the German groups of letters ‘sz’ and ‘ß’ to ‘ss’. While it was indeed possible

to use similar expressions to ignore orthographic variants such as familiȩ/familiae,

it should be noted that this solution is not very satisfying on a large scale. In order

to have an efficient normalisation, we have seen that it is not possible to simply

normalise every ‘ȩ’ to ‘ae’, but it should be normalised case by case: familiȩ is

normalised to familiae, but cȩpit to coepit, and so on. It becomes more tricky for

pȩnȩ which is used in manuscripts B and C to stand for poenae once, and later

paene. For an efficient normalisation file, it means that the witnesses need to be

collated first in order to spot orthographic differences, then the normalisation file

must be created manually, and finally the witnesses are collated again. There is no

234

7.3. Classical Text Editor

(a) Word division issue.

(b) Transposition issue.

Figure 7.15: Issues of alignment with CTE algorithm.

option to ignore automatically other accidentals during collation, such as case or

punctuation. In fact, it may be more practical for users to collate without normali-

sation, and then to hide or delete the apparatus entries which contain insignificant

variants.

The collation algorithm of CTE was presented as very efficient to recognise ortho-

graphic variation and even word division difference, thanks to an implementation

of the Levenshtein distance (see Section 2.2). Upon examination of the collation

results, it seems that spelling differences did not cause any mistake. However,

the differences in word division clearly had an important impact on the collation

results. The collation extract in figure 7.15(a) shows how the variant etsi in witness

N1 was not recognised as a variant for et si in Håkanson’s text. As a result, the next

four readings were also misaligned. Similarly a few entries below, the omission of

the words in senatu in B2 and N1 resulted in a wrong collation (see figure 7.15(a)).

The algorithm recognised that the two-word transposition proximi familiae was a

variant of familiae proximae. For more complex transpositions, the CTE manual

warns that they will be treated as pairs of insertions and omissions. This was the

case for the three-word transposition of tertia orbitas spectatorem for spectatorem

tertia orbitas, which resulted in a meaningless apparatus entry (see figure 7.15(b)).

Hagel (2007, 78) has noted that a lack of feedback from users has limited the devel-

235

7.3. Classical Text Editor

(a) CTE update 1.

(b) CTE update 2.

Figure 7.16: Updates to the algorithm of CTE provided by Hagel.

opment of the digital aspects of the CTE. As I shared the results of the collation with

Hagel, he took notice of the issues and provided several updates to the algorithm, so

as to improve the collation results. After a first update (October 4, 2017), the word

division issue was partially solved, in cases when the base text had a single word

aligned with two in other witnesses. For instance legumlator is properly aligned

with legum lator, but satis fecimus was not aligned with satisfecimus (figure 7.16(a)).

A second update (October 5, 2017) fixed such errors of word division, but introduced

new issues in the alignment due to transpositions and lacunae. For instance in

figure 7.16(b), the algorithm is matching matris in the base text of LH with gloria

in B1, when actually matris is missing from B1 due to a lacuna, and gloria should

match the other Gloria four lines below in the base text.

A last update (October 6, 2017) seems to have eliminated the issues, although a few

imprecisions of alignment can still be found. The algorithm, therefore, needs a lot

of feedback to be fine tuned, and it may be difficult to reach a solution that will be

effective in all situations. As we can see from the examples above, fixing the issue of

word division resulted in errors in other parts of the text. The algorithm was made

less strict about the distance between two readings, so that it would also match

words separated by whitespace. This in turn led the algorithm to misalign words

such as gloria and matris.

236

7.3. Classical Text Editor

7.3.4 Output

The apparatus data can be exported for cladistic analysis with software such as

PHYLIP19 or CIPRES20, if the apparatus follows certain rules (CTE help manual).

With some reservations, the CTE output may also be imported in Stemmaweb. It is

very difficult to reconstruct the complete text of each witness from data prepared

for the purpose of a print critical apparatus (Hagel 2007, 83), which is a requirement

for Stemmaweb for instance. This demonstrates the potential significance of the

difference between a print apparatus and data prepared for stemmatic analysis.

It is an issue to prepare an apparatus for both printed and electronic editions.

Ultimately, the final output of the Classical Text Editor is a print critical edition in

PDF format, or a digital edition in TEI XML. Although an HTML export is available, it

is now outdated (Hagel 2007, 80). There are templates provided with CSS stylesheet

to visualise digital editions in a browser: for instance as synchronised texts in

different frames21, as a text and apparatus22, or as transcription with words linked to

a facsimile23. Hagel (2007, 79) argued that ‘every scholar able to make a print edition

with the CTE is at the same time able to make a digital edition’, but recognised that

‘if this editor does not set out for digital publication from the start, this affects of

course the preparation of the data. Above all, a machine-readable critical apparatus

will almost certainly not be maintained’ (Hagel 2007, 82).

Although CTE is dedicated to print editions, CTE’s TEI output can also provide an

option for publishing printed versions of digital scholarly editions. Schulz (2017) for

instance regrets that there are still limits to producing a decent printed output from

an XML encoded edition, and describes the editing workflow of the Capitularia

project where medieval capitularies are collated with CollateX and then prepared

for a printed output with CTE. Schulz highlights the issues of this workflow, as well

as the need for a better integration between print and digital for the future (Schulz

2017, 344).

7.3.5 Discussion

The primary purpose of Classical Text Editor is to ‘do the automatable work which

consumes so much time and energy, and let the scholar concentrate on scientific

issues’ (CTE website)24. The program is designed to assist scholars doing tradi-

19http://evolution.genetics.washington.edu/phylip.html (Accessed August 31, 2017).
20http://www.phylo.org/ (Accessed August 31, 2017).
21http://cte.oeaw.ac.at//tei/CBCat/ (Accessed September 1, 2017).
22http://cte.oeaw.ac.at//tei/en15/ (Accessed September 1, 2017).
23http://cte.oeaw.ac.at//tei/il9/Il_9.html (Accessed September 1, 2017).
24http://cte.oeaw.ac.at/?id0%3Dmain (Accessed September 1, 2017).

237

http://evolution.genetics.washington.edu/phylip.html
http://www.phylo.org/
http://cte.oeaw.ac.at//tei/CBCat/
http://cte.oeaw.ac.at//tei/en15/
http://cte.oeaw.ac.at//tei/il9/Il_9.html
http://cte.oeaw.ac.at/?id0%3Dmain

7.4. Conclusion

tional print editions, and the addition of a collation feature is one aspect of this

automatisation (see Section 2.5 regarding the debate between using the computer

as an assistant or as a research tool). As collation tool, the main interest of the

CTE depends on the collation’s purpose. If the purpose is to typeset and layout

a complex critical edition (with several apparatuses, cross-references, indexes)

especially a printed edition, then it may be worth investing the time to learn how

to work efficiently with the CTE interface and the collation output. In other regards,

CTE may not be the best collation tool. If visualising or printing a critical apparatus

is not the primary purpose of collation, such as in the Beckett Archive project or the

Digital Mishnah, then the CTE is not the best solution. In addition, the apparatus

visualisation is not necessarily the best one to analyse the witnesses’ relationships

(Robinson 1989b): CTE does not, for instance, make it possible to visualise readings

shared by a particular group of witnesses.

The fact that CTE is under an expensive commercial license can be an issue. Al-

though Stefan Hagel has kindly offered his help to solve many problems, including

updating the collation algorithm, this is unlikely to continue in the long term. After

the license expires, it will be difficult to read the CTE files. Because of the license,

the collation algorithm is also hidden, and users cannot tweak it for their needs.

There is less control over the collation process, with only a normalisation feature

that may require a lot of manual input. Users have no access to the underlying

data structures, but only to plain text files. Regarding the input data, the import of

XML documents is far from perfect and would benefit at least from documentation

about how it is processed. While the collation results are easily modified by hand, it

can break the original data structure and prevent from exporting the apparatus as

genealogical data for cladistic analysis, or to a TEI digital edition25.

7.4 Conclusion

In this chapter we have tested three collation tools with very different purposes.

The first one, CollateX, is focused on optimising the alignment algorithm. It has

flexible input and output formats, but it is the user’s responsibility to find or create a

visualisation interface. CollateX also requires users to have some coding capacities,

at least to be comfortable with the command line tool. The second tool, Juxta, is

more oriented towards visualisation and provides user-friendly intuitive interfaces.

The possibility of data reuse is more limited in Juxta than in CollateX. Juxta still lets

users have some control over the collation process by ignoring accidentals (case,

25For that reason, the CTE manual recommends to copy and paste the collation output to a new
document, before adding manual corrections.

238

7.4. Conclusion

whitespace, punctuation) or by choosing the XML elements to include or exclude

from collation. Finally, the Classical Text Editor is a tool designed for print critical

editions prepared from a base text, which means that the CTE may not be best

suited to the automated collation workflow (see Section 2.4).

The least precise collation results for Calpurnius Flaccus were the ones obtained

with the Classical Text Editor, although it must be noted that I collated only non-

regularised tokens, and the updates provided by Stefan Hagel did improve the

results considerably (see Section 7.3.3 above for the issues of word division and

transpositions). The collation results of Juxta were satisfying for the purpose of

visualisation in Heat Map format, and the collation from regularised texts was much

better than from original texts when looking at the XML output. However I have

found that CollateX results were ultimately more interesting, both for correcting

the results and for creating new visualisations, because of the JSON input and

output. In particular, the combination of a pretokenised JSON input and a JSON

output makes it possible to include useful information associated to a token, such

as normalised forms, or any other information that is of interest, such as the precise

location of a particular reading in a manuscript, links to digital images of the

manuscript, editorial notes or information about the markup context. There is no

limitation: any information that a scholar wishes to see in the collation result can

be passed as part of JSON. This information is ignored during the collation process

but will still be available for visualisation. In the next chapter, we will see how to

make use of CollateX JSON output for a visualisation with Python.

239

8Collation Visualisation

8.1 Assessing Scholarly Needs

THIS chapter focuses in more depth on collation visualisation. In Section 1.3,

the purpose of collation was discussed: whether the purpose of collation is to

create a critical edition, to check another scholar’s work or to assess a manuscript

tradition, collation is not the final goal. On the contrary, collation provides data

that will be used for further research, such as establishing a stemma codicum for

instance. Therefore, collation results from automated collation tools need to be

analysed and visualised in some way. There are different options when it comes to

analysing collation results: either an automated analysis with phylogenetic tools, or

a more traditional analysis such as the application of Lachmann’s method. In both

cases, a good visualisation of collation data is required, if only to check and correct

the results before submitting them to another tool for phylogenetic analysis.

What makes a good collation visualisation? How can it help the editor to assess

the witnesses, their relationship, and to prepare a critical text? What information

should be included in the visualisation? How should it be displayed? To answer

these questions, the first step is to assess the needs of editors and readers. It is

particularly important to take the perspective of literary scholars into account as it

may differ significantly from the perspective of the computer scientists who create

collation programs. For instance, the scientists may tend to think of variants as

either additions, omissions or substitutions, whereas literary scholars may need to

categorise variants as substantial or accidental, or distinguish between errors and

‘true’ readings (Hilton 1992, 142).

The rest of the chapter will be divided into two sections that describe two aspects

of collation visualisation: the first is a fixed visualisation in the form of a collation

table; the second is an interface that offers users the possibility of interacting with

the collation results. The purpose of these visualisations is to propose a solution

that takes into account the editorial needs which may not be covered in existing

240

8.1. Assessing Scholarly Needs

visualisations, such as viewing paratextual elements, or helping scholars to find

variant readings relevant to the application of Lachmann’s method.

8.1.1 Visualising Paratextual Elements

Collation is more than just a record of variant readings: it should incorporate as

well a number of ‘paratextual’ elements (Macé et al. 2015, 331). These elements

include, amongst others, the structure of the manuscript such as the start of folia

or pages, eventually the start of a new column, even the start of each line if one

needs that level of precision. The reason for recording at least the beginning folia

and pages is twofold (West 1973, 67). First, it may help during the analysis of the

relationship between the witnesses: if an omission in one manuscript corresponds

exactly to an opening of another manuscript, it may be a good indication that the

first manuscript is derived from the second (for instance if the scribe turned two

pages together and missed an opening while copying the exemplar). The second

reason is that such indication is also useful for checking purposes: if there is any

doubt that a mistake may have occurred during the collation, it will then be easier

to go back to the right place in the manuscript and check that the reading recorded

in the collation corresponds to the reading in the manuscript.

A change of hand or ink in the manuscript, if noticed, should be recorded as well: it

could be an indication that a different scribe has taken up the work of copying the

manuscript, and the new scribe may use a different exemplar than the first scribe.

The use of two different exemplars results in contamination, which is important

information that will help to understand the manuscript tradition and to create

a stemma. Any damage that impairs the editor’s capacity to read the text from

the manuscript should also be noted, such as holes, gaps or lacunae, missing

folia, illegible or difficult readings, or unclear abbreviations. Corrections, either

by the copyist or by another hand, are noted. Marginal notes may be recorded as

well. All these paratextual elements may require extensive comments and careful

description from the collator (Whittaker 1991, 125).

Visualising paratextual elements is therefore one important aspect of what a scholar

may need from a collation visualisation. Another aspect pertains to the analysis of

the collation results in order to detect the relationships between witnesses. Here we

will consider how collation results can support this analysis through the application

of Lachmann’s method.

241

8.1. Assessing Scholarly Needs

8.1.2 Applying Lachmann’s Method

To detect relationships between witnesses, many scholars follow the (Neo-) Lach-

mannian method of text editing (Trovato 2014). In this discussion, ‘Neo-Lachmannism’

refers to the improvements to Lachmann’s method brought by Pasquali and other

Italian scholars, who took Bédier’s criticism into account and incorporated the

study of the textual tradition and material documents (the manuscripts themselves)

to the creation of stemmata1.

Lachmann’s method focuses on identifying common errors shared by a group of

witnesses in order to postulate relationships between those witnesses: a group of

witnesses are likely to be related if they (1) agree together on readings that (2) they

do not share with the other witnesses, and especially (3) they agree in errors, i.e.,

they share readings that have no manuscript authority. A reading with manuscript

authority is ‘a reading that may have reached us through a continuous sequence

of accurate copies of what the author wrote back in antiquity and may therefore

be authentic and (by definition) right’ (Damon 2016, 202-203). The opposite of

an error, i.e. a reading with manuscript authority, is called here a ‘true’ reading2.

Errors and true readings are not definitive, but rather reflect the views of an editor

on the text.

In sum, witnesses are more likely to be related when they share readings that do not

represent the original text, and that are absent from other witnesses. Such shared

errors are conjunctive, that is errors which help to group related witnesses together.

On the other hand, separative errors are readings indicating that two witnesses are

not directly related and should appear on different branches of the stemma:

We can prove that a witness (B) is independent of another witness

1Bédier (1864-1938), a French Romance philologist, rejected the common-error method of
reconstructing a stemma, and decided it was best to edit one manuscript instead of publishing an
text that incorporates readings from various origins and therefore never actually existed (Bédier
1928). Pasquali (1885-1952) showed that the so-called ‘Lachmann’ method was in fact the result of
contributions from many scholars (Pasquali 1952).

2It seems that ‘true reading’ is often used technically as the opposite of ‘error’. The expression
‘true reading’ appears in Maas (1958, §38) (from the German das Wahre) and in articles by editors in
Classics such as Reeve (2000) and Courtney (1967). D’Avray (2012, 70) states that ‘the whole purpose
of a stemma is to distinguish between true readings and errors’. West (1973, 31) explains that the
evaluation of variants ‘involves deciding not only which variants are true and which false, but also
which are scribes’ emendations’. West refers again to the expression ‘true readings’ (pages 32, 39,
41, 43 etc.), but also to ‘good’, ‘correct’ or ‘right’ readings (for instance West 1973, 33 and 45). The
alternative ‘correct reading’ can be found as well in Trovato (2014, 252) and ‘genuine reading’ in Macé
et al. (2015, 416).

242

8.1. Assessing Scholarly Needs

(A) by finding in A as against B an error so constituted that our knowl-

edge of the state of conjectural criticism in the period between A and B

enables us to feel confident that it cannot have been removed by con-

jecture during that period. Errors of this kind may be called ‘separative

errors’ (errores separativi) (Maas 1958, 42).

Finally, other readings of interest in Lachmann’s method are ‘unique errors’, which

are errors found only in one witness. Those unique errors may help determine the

relationship of two related manuscripts, and decide which one is the descendant

of the other. Between two related witnesses A and B that share common errors, if

B has in addition unique errors that could not have been easily corrected, it can

be concluded that the witness B is a direct descendant of A (West 1973, 33). It

is important that those errors could not have been easily corrected, otherwise, A

could also be the direct descendant of B, since the scribe of A would have easily

corrected the mistakes in B.

In order to be significant, the errors considered in Lachmann’s method must also

be monogenetic, i.e., errors which could not have been produced independently

in two unrelated witnesses (see Trovato 2014, 55-56). Omissions are often useful

monogenetic errors for reconstructing the manuscript tradition, because it is diffi-

cult for a scribe to correct an omission and recover the missing text by conjecture

only. On the other hand, the omission occurring because of a saut du même au

même is not a monogenetic but a polygenetic error, which can happen indepen-

dently in several unrelated witnesses. In a saut, the copyist omits a section of text

between two instances of the same word which appear in close proximity on the

manuscript’s page. The saut du même au même is a common error among scribes

(Reynolds and Wilson 1991, 204), and therefore it is not an error that can be used to

infer relationships between witnesses.

In summary, the application of Lachmann’s method requires scholars to compare

witnesses in several ways: for instance comparing a group of witnesses to find

shared conjunctive errors, or comparing one witness against another to find separ-

ative errors, or finding readings unique to a single witness. In addition, scholars

could also benefit from help in distinguishing between actual errors and authentic

readings. Applying Lachmann’s method, the analysis of shared errors and unique

errors will result in conclusions regarding the textual tradition and in some cases

in a stemma. Those conclusions will in turn influence the selection of variants

to include in a critical text, and are important in the process of editing. There-

fore, scholars need to share their results with other scholars who should be able to

243

8.1. Assessing Scholarly Needs

confirm the conclusions by reproducing the steps of reasoning that led to them.

8.1.3 Sharing and Reproducing Research

The traditional way for scholars to share the conclusions of their textual editing is in

a critical edition, with introductory notes and apparatus; collations themselves are

not always published. However, there are shortcomings to the critical apparatus:

when it is a selection from the complete collation, it is an incomplete record of all

the evidence which was available to the editor (see Section 1.3).

In addition, the printed critical apparatus is not a convenient data format to facili-

tate the study of a particular relationship among witnesses. In Calpurnius Flaccus,

for example, the question was raised whether the editor Håkanson was right when

he claimed that Pithoeus based his edition on manuscript N, or if manuscript N

could have been copied from Pithoeus’ edition3. The question is worth examining,

since Pithoeus’ comments on the Italian exemplar that he used does not allow

us to identify a precise manuscript (see Section 5.1.2.6). In order to evaluate the

relationship between N and Pithoeus, it would be necessary to search the apparatus

for all instances where Pithoeus and N are in agreement in a reading which is not

found in the other witnesses. It would also be necessary to search the apparatus

for unique readings of both Pithoeus and N, in order to decide which one is the

descendant of the other.

As a consequence, editors and readers would benefit from collation results in a

format that can easily be shared, and enables scholars to follow and analyse one

another’s conclusions.

8.1.4 Summary

The editors who work with collated witnesses of a text have various needs. First,

the combination of variants, annotations and paratextual material produce a large

amount of complex collation data, which are difficult to read and to interpret. A

good visualisation should therefore offer a way to check the collation data against

the actual witnesses, whether they are manuscripts or printed editions, and to

visualise not only variant readings but also all the paratextual elements associated

with the readings. Second, being able to find common errors or unique errors in

the collation results would therefore be especially useful for scholars preparing

3The question was raised by the librarian responsible for the Bongars collection in the Bürgerbib-
liothek of Bern, as I was enquiring it they knew anything about the original provenance of manuscript
N.

244

8.1. Assessing Scholarly Needs

a critical edition. And finally, scholars need to share their conclusions and the

collation data that was used to reach those conclusions.

To this end, the editors should be able to interact with the collation to analyse

readings and variants according to their editing method. Here we have considered

the Neo-Lachmannian method of textual editing, which is still commonly followed

in the editing of Classical texts, especially in order to evaluate the stemmatic weight

of a witness. Collations could thus be filtered, so as to find patterns of agreements

or disagreements between those witnesses, which can indicate how they are related

to each other. Finally, scholars need to share their conclusions and make them

reproducible or eventually disputable by others (see Section 1.3). Traditionally this

is the purpose of the critical apparatus, however the apparatus may not always

be a complete selection of variants. In some cases, it has been argued that the

apparatus does not provide the full context for each witness, or is biased to confirm

the editor’s conclusions (see Section 1.3). But more importantly, a printed critical

apparatus makes it very difficult to find quickly where a group of witnesses agree.

Visualisation and manipulation of collation results are essential in order to use

collation for further research, such as studying the manuscript tradition and creat-

ing a stemma codicum. However, the existing visualisations are mostly linear: the

reader must follow the text word by word and it is difficult to select only variants of

interest, such as common readings or unique readings. Little is offered in terms of

searching a collation for groups of witnesses which agree, or to find unique errors.

A new perspective may be required in order to fulfil the needs of editors: the ability

to filter the collation, and select agreements of witnesses or unique readings. In

addition, the visualisations will usually show only plain text from the witnesses,

and omit the paratextual elements that could be useful to an editor.

Therefore I would like to describe in this chapter two examples of visualisation

in order to address those issues. In the next section, I will focus on the issue of

visualising paratextual elements in a collation table. I will describe a table format

developed to include more than only textual readings, using CollateX JSON input

and output (see Section 7.1). The last section of the chapter will be devoted to the

description of an interface that allows for scholars to interact with the collation

results in order to apply Lachmann’s method. In both the interface and the collation

tables that will be described below, I have used the property t and n of CollateX’s

JSON tokens, as described in Section 4.4, in order to visualise as variants only the

lexical differences, and to ignore the orthographic and word division differences.

In practice two tokens are not considered as variant if their original forms t are

245

8.2. Table format: fixed visualisation

Figure 8.1: An example of a CollateX Collation table. Created from the CollateX demo https://
collatex.net/demo/ (June 18, 2017).

different, but their normalised forms n are similar. The issue of normalisation is

discussed more in detail below in Section 8.6.

8.2 Table format: fixed visualisation

Previously, we have discussed the existing visualisations and outputs offered by the

various collation tools (see Section 2.6.4 and Chapter 7). While the earlier tools and

the Classical Text Editor would focus on getting an output that imitates a critical

apparatus, most recent tools prefer to show variant texts in parallel (Juxta, TUSTEP),

in the form of a graph (CollateX, TRAViz) or as a collation table (CollateX, iAligner).

Among the possible outputs from collation tools, I have chosen to focus on the

collation table format.

The collation table is a visualisation which is user-friendly even for scholars who

do not work with CollateX or any computer-supported collation program, and it

is quite similar to the format of a manual collation. Macé et al. (2015, 333) show

two examples of manual collations in table format, where each column represents

a different witness. Several examples of collation tables from CollateX were also

presented in Chapter 2. The table typically represents each witness on a separate

line or column, with their text aligned when it matches, and blank spaces inserted

where a part of the text is missing in a witness. In its most simple form, the table

will show only plain text from the witnesses. Enhancements have been proposed to

improve the basic table output of CollateX, for instance with colours to indicate the

places where a variation occurs: in CollateX online demo, the readings which are

part of a variant location are shown in grey, while the readings which are shared by

all witnesses are highlighted in green (see figure 8.1).

Taking in account the scholarly needs identified above, I will first review existing

examples of collation tables from various projects, and I will then show a new

246

https://collatex.net/demo/
https://collatex.net/demo/

8.2. Table format: fixed visualisation

Figure 8.2: A collation table form the Digital Mishnah project. Retrieved from the Digital Mishnah
Compare Witnesses demo www.digitalmishnah.umd.edu/compare (November 30, 2016).

collation table format for the text of Calpurnius Flaccus.

8.2.1 Examples of Collation Tables

8.2.1.1 CollateX - Digital Mishnah

The Digital Mishnah project has adopted a table visualisation similar to the one

of CollateX demo: variant locations are highlighted in grey, and readings shared

by all witnesses are left in white (see figure 8.2). However, the editors working

on the Digital Mishnah are preparing a new visualisation that would help to see

manuscripts grouped together according to orthographical similarity, with different

shades of brown highlights. The tokens of the Hebrew text are normalised to remove

elements such as vowel signs, and then compared: the witnesses which share the

same orthography for these normalised tokens are highlighted in the same shade

of brown.

8.2.1.2 CollateX - Beckett Digital Manuscript Project (BDMP)

The BDMP project also adopted a CollateX style table, but with several features

added to the basic table. Deletions are represented with strikethrough and ad-

ditions with superscript letters. Open variants, which are alternative readings

between which the author cannot decide (Gadda 1983), are also shown with two

readings in the same cell, a subscript and a superscript reading4.This is a very

interesting improvement to help genetic critics visualise the writing process of an

author.

8.2.1.3 Compare - Charles Harpur Critical Archive

Schmidt’s Multi-Version Documents can be viewed as collation tables in the Ecdosis

framework, which was adopted by the Charles Harpur Critical Archive (Schmidt

4See http://www.beckettarchive.org/news.jsp (Accessed June 22, 2017).

247

www.digitalmishnah.umd.edu/compare
http://www.beckettarchive.org/news.jsp

8.2. Table format: fixed visualisation

Figure 8.3: A collation table from the Beckett Archive Project (Van Hulle, Neyt, and Nixon 2014).

Figure 8.4: An example of a Compare collation table (Schmidt and Eggert 2015).

and Eggert 2015). Figure 8.4 shows an example from the Table view of Harpur’s ‘The

Creek of the Four Graves’.

Unlike the other collation tables, this visualisation depends on a base text, and vari-

ant readings are highlighted at the letter level, so that users can see at once where

the difference is located. The differences with respect to a base text (‘h080i/base’

on the fifth line) are highlighted in blue. The downside of this visualisation is that

words are often split in two or more columns because of the letter-level alignment

and highlighting. As a result, the word ‘Noiselessly’ here is separated across three

columns in several witnesses, which can make it difficult to read (see figure 8.4). The

Compare tables also include page numbers of manuscripts and editions, which ap-

pear as variants in the collation table, because the project requires the transcription

of page numbers as part of a witness’ text5.

5See the Ecdosis page about the transcription policy for pages, columns, and lines: http://ecdosis.
net/main/node/23 (Accessed September 4, 2017).

248

http://ecdosis.net/main/node/23
http://ecdosis.net/main/node/23

8.2. Table format: fixed visualisation

8.2.1.4 iAligner

iAligner also offers a collation table visualisation, containing additional informa-

tion embedded in the table with the help of colours. In the example of figure 8.5,

readings may be highlighted in red, dark green, and light green. The readings

highlighted in red represent the unique readings of a variant location. Light green

readings represent readings similar across several witnesses at a variant location

(Yousef, Palladino, and Crane 2017). This visualisation is an interesting progress

towards visualising groupings of witnesses and unique errors according to Lach-

mann’s method. However, the table may need to add more shades of green in

case there is a location with variants that are present in more than two groups of

manuscripts.

Figure 8.5: A collation table from iAligner (Yousef, Palladino, and Crane 2017, §5).

8.2.1.5 Stemmaweb

In Stemmaweb, the tool called Stexaminer makes it possible to examine variants

against a particular stemma. The Stexaminer’s purpose is to help scholars to de-

termine if the textual evidence supports the stemma. To this aim, the stemma is

accompanied by a collation table which displays the entire text, with colours to

indicate how well the variants fit the stemma. If a row of the collation table is in

green, this means that the variant readings are genealogically consistent, according

to the stemma. If the row is not green, it indicates a conflict. The colour red signals

a reading which must have originated independently from two or more witnesses;

the colour yellow indicates a possible reversion, that is a reading which may have

been corrected by scribal conjecture (Stexaminer Documentation)6. The collation

table of the Stexaminer therefore lets users test the validity of a stemma hypothesis.

8.2.1.6 Summary

Those examples of collation tables suggest that a basic table, such as the one of

the CollateX demo, is not the best solution for scholars to visualise their collated

6https://stemmaweb.net/stemmaweb/stexaminer/6C65C98E-B150-11E1-95DC-
A5115FAAC71C/help (Accessed November 23, 2017).

249

https://stemmaweb.net/stemmaweb/stexaminer/6C65C98E-B150-11E1-95DC-A5115FAAC71C/help
https://stemmaweb.net/stemmaweb/stexaminer/6C65C98E-B150-11E1-95DC-A5115FAAC71C/help

8.2. Table format: fixed visualisation

Figure 8.6: Example of a collation table in Stemmaweb’s Stexaminer. Retrieved from https:
//stemmaweb.net/stemmaweb/stexaminer/6AB3650E-12AA-11E2-8D75-ABBB4ACE906A/0 (Novem-
ber 23, 2017).

text. It is not enough to highlight the readings in a variant location, and for this

reason each of the projects examined has worked on improving the design of the

collation table according to their requirements. Some projects have incorporated

paratextual elements from the transcriptions, such as additions and deletions in

the BDMP project, or page numbers in Charles Harpur edition. Other projects have

focused on grouping manuscripts with the help of colours, for instance to gather

manuscripts according to a shared orthography in the Digital Mishnah project. The

tables from iAligner are the closest solution that would help scholars to find the

variants relevant to applying Lachmann’s method, and the tables from Stemmaweb

are useful to check a stemma hypothesis that has already been created (either

manually or with the help of genetic software).

However, other elements are still missing from those helpful visualisations. Most

of them include little, if any, of the paratextual elements described above such as

the changes of folia or columns and lines, and other types of editorial annotations.

There are no indications, for instance, of unclear readings in the witnesses. The

other issue of these tables is their linearity: users need to scroll through the entire

text in order to see all the variants, when they may need to see only a specific

selection of readings. In the next section, I explore how the table visualisation may

be improved.

250

https://stemmaweb.net/stemmaweb/stexaminer/6AB3650E-12AA-11E2-8D75-ABBB4ACE906A/0
https://stemmaweb.net/stemmaweb/stexaminer/6AB3650E-12AA-11E2-8D75-ABBB4ACE906A/0

8.2. Table format: fixed visualisation

Figure 8.7: A collation table for Calpurnius Flaccus, with additional information about readings.

8.2.2 Collation Tables for Calpurnius Flaccus

This section describes an example of a collation table for the Declamations of

Calpurnius Flaccus, which includes more elements such as folio and line numbers

for every reading, and editorial comments as well. The table also uses red and

green colours to organise readings, but not in the same way as in iAligner tables.

The colours are used here to separate errors from true readings, according to one

version of the text considered reliable (such as a critical edition). On the other hand,

the unique errors or groups of variants, which were in red and green in iAligner, are

discovered through an interactive interface described later in Section 8.4. Therefore,

the tables will not contain a sequence of text, but rather a selection of variant

readings, obtained with the interface.

8.2.2.1 Table visualisation

Figure 8.7 shows a collation table for Calpurnius Flaccus. I have created this table by

comparing the agreements of normalised readings among the different witnesses,

with the help of the Jupyter notebook described later (p. 263 below). The table of

figure 8.7 is thus only a selection of the complete collation table.

There are four manuscripts in this collation: B, C, M and N. Each manuscript is

divided into two witnesses according to the different hands which wrote the text.

For example, B1 is the first hand of manuscript B and B2 is the second hand who

made corrections to the text of the first hand. At the time, manuscript A was omitted

from this visualisation, because of its damaged and incomplete state (see p. 295

below).

There are also two editions in the collation. The editio princeps of Pierre Pithoeus, in

the reprinted version of 1594. The second edition is the critical edition of Calpurnius

Flaccus published by Lennart Håkanson in 1978. The last column, ID, represents

251

8.2. Table format: fixed visualisation

a way to identify rows in the table. The rows of the full table start from 0 (the

first words in the text) to 1338 (the last words of the explicit). The table shows

the list of variant readings shared by four witnesses (B1, B2, C1 and C2) against

five others (M1, M2, N1, N2, P1594). Since the table represents only a selection of

variant readings, the ID number gives an idea of where each reading appears in the

text, and how it is related to the other variants in the table. There are a few items

highlighted in the table of figure 8.7:

1. The (i) symbol next to a reading: on click, it can reveal or hide editorial

comments that were made during the transcription, especially regarding

problematic passages. Here the comment is related to an unknown abbrevia-

tion that was not resolved with certainty by the editors of Calpurnius.

2. The (
...) symbol in the ID column: on click, it will reveal or hide locations of

the readings for each witness in the row.

3. The location is in the form of ‘folio number:line number’. The unknown

abbreviation mentioned previously on p. 194 appears in folio 148r, line 8, of

manuscript B. Since there is a digital facsimile available for manuscript B, the

location will also link to the image of the page.

4. Green and red colours: the coloured lines next to a reading show agreement

(green) or disagreement (red) with the same reading of a base text, chosen

among the witnesses. Here the base text is the text printed in the edition of

Håkanson. As a result, the readings Håkanson rejected because he considered

them to be errors are shown in red, while the readings he accepted as true

are shown in green. The pattern of colours would of course be different

if another text, such as Pithoeus’s edition, had been selected as the base

text. The purpose of the colours is to detect relationships between witnesses,

according to the (Neo)-Lachmannian method of text editing.

The collation table is presented in a column format, instead of showing each witness

on a line, as in the other tables described above. The vertical visualisation has two

advantages: first, it makes it easier to read through a list of disconnected variants,

whereas the horizontal format seems to encourages a reader to read line by line,

each witness separately. In addition, the vertical format has turned out to be

interesting because it can represent texts both in Latin or in Hebrew. There is

no need to worry about the direction of writing (right-to-left or left-to-right) in

a vertical table. This can facilitate the adaptation of this table format to textual

traditions in other languages (see Section 8.6.2 below).

252

8.2. Table format: fixed visualisation

8.2.2.2 Code description

The HTML file containing this example of a collation table is included in a Github

repository with other digital materials (see also Appendix B.4). This HTML collation

table format was created with the help of my colleague Ginestra Ferraro, a designer

working for King’s Digital Lab (KDL). To be properly displayed, the HTML file should

be placed in the same directory as three other folders. One folder contains the

fonts: Font Awesome was used for the icons in the table, such as the (i) sign which

indicate a note7. Another folder contains the Cascading Style Sheets (CSS) to apply

to the HTML documents, and the last folder contains javascript instructions with

jQuery8.

The jQuery instructions are necessary to switch notes and folio numbers from hid-

den to visible. Each cell of the HTML table (<td>) contains at least one paragraph

<p>which is either empty or has a reading to display. In addition, each cell which is

not empty contains a second paragraph with the attribute class=`expandable-row

hidden more-info', where the information about page and line numbers are stored.

Some cells also have notes, which are stored in another paragraph with the attribute

class=`expandable hidden more-info'. Finally, the (i) and (
...) signs are included in a

link (so as to make them clickable) with respectively the attribute class=`expander

right' (for notes) and class=`expander-row right' (for folio numbers, which must

be expanded for the whole row). In the javascript file con�g.js, two functions will

remove hidden attributes from the class of the paragraphs or add it back if it was

absent from the class when the link was clicked.

For instance, the second function in figure 8.8 is binding the element with a class

expander-row (the
... symbols) to an action performed on click. The symbols are

within a paragraph, within a cell, within a row, so that on click of the symbol ($(this))

the function must go three steps up in the hierarchy to get to the whole row (this is

the role of the parent() functions). Then it must find all elements in the row which

have the attribute expandable-row (�nd(.expandable-row)) and apply two actions:

the first is the slideToggle() function which displays or hides the elements with a

sliding motion. The second is to remove the hidden class. The CSS is instructing

objects with a hidden class not to be displayed on screen. This prevents a large

table with many elements from being loaded too slowly in the browser. However,

7http://fontawesome.io/ (Accessed June 22, 2017). Font Awesome is an open source set of icons
which can be customised with CSS.

8jQuery is a fast, small, and feature-rich JavaScript library that makes it easier to process HTML
documents and to make those documents work across different browsers. https://jquery.com/
(Accessed June 22, 2017).

253

http://fontawesome.io/
https://jquery.com/

8.3. Interactive interfaces

Figure 8.8: Javascript for expanding or hiding paragraphs.

when the hidden class is removed, the object is then properly displayed on screen.

The behavior that adds the class back on click is determined by the toggleClass()

function, which in this case is located in the file jquery-2.2.1.min.js.

8.2.3 Conclusion

There is still scope for improving existing collation table formats, as we have seen

with the example of Calpurnius Flaccus. It is possible to integrate more information

into the collation easily not only with colours, but also with information such as the

location of a word in the manuscript, or editorial comments, that can be revealed

on a click. Those paratextual elements are important elements in text collation

and there is no reason to discard them in a visualisation that has been obtained

through automated collation tools such as CollateX. As shown in the collation

table, the use of a few symbols allows to make those elements easily available

without overcrowding the results or slowing the charging of the page in a browser.

Through the rest of the chapter, I will focus on the interface through which collation

results may be updated and manipulated: I will first compare existing interfaces

(Section 8.3), and then describe the tool that I have created in order to obtain

collation tables such as the one presented above (Section 8.4).

8.3 Interactive interfaces

Not all collation tools offer an interface for users to interact with collation results,

and the levels of interaction possible may vary. For instance, CollateX does not

provide any form of interface beside a limited online demo. In Juxta, the interac-

tions with the results are limited to adding comments, or switching the base text in

the heat map visualisation. In the Ecdosis framework, it is not possible to modify

the collation results, but only to search for readings in the text. Although adding

comments or searching for a reading can be considered as interactions, the colla-

tion data behind these visualisations is still static: the user has no direct control

over the collation results once the algorithm has been run on the transcriptions.

254

8.3. Interactive interfaces

The effect is to give users an impression of finality and correctness (Andrews and

van Zundert 2013), even though it is likely that users will need to correct and refine

the alignment (see Section 2.4.4.3).

As Andrews and van Zundert (2013) argue, a dynamic interface is necessary to

analyse collation results: it encourages scholars not to trust blindly the results of

an algorithm, but to apply their own judgement regarding the correctness of the

results; besides, it also encourages scholars to engage with collation results in order

to conduct further research. The interactions available should include at least four

options:

1. Annotating variants about their relationship;

2. Combining several readings into one reading;

3. Splitting one reading into several readings;

4. Correct or alter the alignment.

8.3.1 Examples

Andrews and van Zundert propose, as a solution to counter static visualisation, a

JavaScript library to implement dynamic interactions within a variant graph visuali-

sation. This library was adopted by the Institut für Neutestamentliche Textforschung

(INTF) to work the Editio Critica Maior of the Greek New Testament and by Stem-

maweb (Andrews and van Zundert 2013). Andrews and van Zundert’s recommen-

dations are also followed by TRAViz, with the possibility to split or merge the nodes

of the variant graph (Jänicke et al. 2015, i87), and by LERA (Bremer et al. 2015),

but without the option to comment on variant readings at the moment. However,

although every interface offers ‘splitting’ and ‘merging’ readings, it should be noted

that this means slightly different actions depending on each interface.

8.3.1.1 Stemmaweb

Stemmaweb’s interface offers logged users the ability to ‘view collation and edit re-

lationships’ for their own textual traditions. Regarding the annotation interactions,

there are several options. It is possible to set a variant as lemma, and annotate vari-

ant readings by creating a relationship of type orthographic, grammatical, lexical,

and so on (figure 8.9). These relationships are then visualised as coloured edges in

the graph. In addition, it is possible to give the scope of the relationship as local

255

8.3. Interactive interfaces

Figure 8.9: Stemmaweb interface for modifying and annotating collation results. Retrieved from
my personal account (November 20, 2017).

Figure 8.10: Stemmaweb graph example. Retrieved frommy personal account (November 21,
2017).

or global, and to mark a relationship as stemmatically significant, and to include a

comment in text format.

On the other hand, there are two options to modify the collation results: merging

or splitting nodes in the graph. Two nodes can be merged if they share the same

reading, for instance if a reading was not correctly aligned, or if two consecutive

nodes are traversed by the same witnesses. A node of the graph can be split in two

parallel readings, but not in two consecutive readings. For instance in figure 8.10, it

is possible to split the reading in vita in two nodes in order to detach witnesses: one

nodes for witnesses W1 and W2, and one node with witnesses W6 and W7. Then

the readings in vita bonis (W1, W2) can be merged in one node. However, it is not

possible to split the reading again, or to separate invitabo and nisi in two different

nodes.

256

8.3. Interactive interfaces

8.3.1.2 Collation Editor

The Greek New Testament edition project at the INTF became part of a larger col-

laboration with two other teams of researchers in Germany and in the UK: the In-

ternational Greek New Testament Project (IGNTP) and the Institut für Septuaginta-

und biblische Textforschung in Wuppertal (ISBTF). This international collabora-

tive project required the development of a shared online environment, called the

Workspace for Collaborative Editing, to edit the Editio Critica Maior of the Greek

New Testament (Smith 2015; Houghton and Smith 2016)9. The Workspace for

Collaborative Editing provides three interfaces, one of which is the Collation Editor.

The Collation Editor is designed for the purpose of collating the complex and

abundant material of the Greek New Testament. The are several stages to the

collation process: the first is to select a passage of text and a list of witnesses to

be collated, and set the parameters of the collation algorithm; the second stage

is to regularise the collation, for instance by removing insignificant orthographic

variations. At this stage of regularisation, any reading can be annotated with a

comment in plain text.

The next step is to ‘Set Variants’, and it is the stage when editors actually modify the

collation results, by merging or splitting variation units. Unlike the Stemmaweb

interface, the Collation Editor allows for a variation unit to be split into either

readings or words. The latest makes it possible to separate the reading invitabo nisi

into two separate words, invitabo and nisi. A variation unit split into readings can

then be further split to detach specific witnesses.

Although the Collation Editor is a very detailed interface, it does not facilitate the

visualisation of shared errors or the application of Lachmann’s method. First, this

interface is designed for preparing the collation data which will be analysed later,

once each verse has been correctly collated. Second, the material of the Greek

New Testament is too rich and complex to apply traditional editing methods, and

inconsistent or contradictory data prevent editors from working with shared errors

(Houghton and Smith 2016, 121).

8.3.1.3 TRAViz

Traviz proposed a new graph visualisation which is meant to improve the readability

of the collation results, compared to the graphs of Stemmaweb (see also p. 108

above in Section 2.6.4). In terms of interactions to modify the collation results,

9http://www.itsee.birmingham.ac.uk/ (Accessed November 20, 2017).

257

http://www.itsee.birmingham.ac.uk/

8.3. Interactive interfaces

Figure 8.11: Modifying collation results with the Collation Editor. Retrieved from http://www.itsee.
birmingham.ac.uk/collation/ (November 20, 2017).

Figure 8.12: Example of a TRAViz graph interface.

TRAViz allows for splitting and merging nodes of the graph. One node can be split

into parallel readings for each witness, as it was the case in Stemmaweb. Each node

represents one word only, which was tokenised at whitespace separation. Nodes

can be merged only if they are parallel readings at the same point of variation,

which means that it is not possible to merge two consecutive readings. For instance

the words rem publicam are divided in two nodes and cannot be merged. The

word rempublicam can be merged with either rem or publicam, but not with both

(figure 8.12).

In order to improve the graph and to hide orthographic variation such as rempubli-

cam versus rem publicam, the user has to play around with the relative edit distance

parameter in the JavaScript code, which will add fuzzy matching to the collation

258

http://www.itsee.birmingham.ac.uk/collation/
http://www.itsee.birmingham.ac.uk/collation/

8.3. Interactive interfaces

algorithm. In that sense, this is not an interaction with the results, but with the algo-

rithm, before collation results are displayed. For the small sample from Calpurnius,

a relative edit distance of 0.4 will merge publicam and rempublicam, hiding the

word division difference. It will also hide the difference between ante and apte, and

this can then be corrected by splitting the node in two. This situation illustrates the

issue of fuzzy matching: it may be very difficult to set the parameter correctly in

order to hide real orthographic variation (rem publicam versus rempublicam), but

not lexical variants (ante versus apte) as it was also the case with CTE’s algorithm

(see Section 7.3.3).

Hovering over a node in the graph highlights the witnesses passing through this

node, while hiding the other witnesses. In figure 8.12 above, the graph shows only

the witnesses passing through the node that contains the reading rempublicam.

The graph shows only the connections of those specific witnesses, which is meant to

help ‘investigate the graph distribution of a subset of potentially similar [witnesses]

and the exploration of the similarities and differences among them’ (Jänicke et

al. 2015, i88). Since this interaction happens when the mouse hovers over a node, its

scope is limited. As soon as the user needs to scroll to see more text, the highlights

will disappear. The visualisation is also limited for scholars who are looking for

shared errors: the graph shows readings common to some witnesses, but not

against others, and it makes it more difficult to recognise significant variants that

can help to establish the witnesses’ relationships.

8.3.1.4 Summary

These dynamic interfaces respond to the need to correct the collation results, and

to annotating variants. All three offer the possibility to ‘split and merge’ nodes on

the graph, although the range of actions available are different in each interface.

The most complete is the Collation Editor, in which the collation results can be

altered to fit exactly the need of editors. On the other hand, Stemmaweb provides

annotations to describe how variant readings are related to each other with a list of

categories.

However, it is possible still to add new interactions to a collation visualisation, and

to encourage scholars to engage even more with the collation results. For instance,

the application of Lachmann’s method is still difficult. In addition, a dynamic inter-

face could also solve the issue of linearity raised in the previous section. Instead of

displaying the complete collation results, the interface would let users select only

the variant locations relevant to their research question. This is what the interface

for Calpurnius Flaccus tries to implement: to help scholars engage with collation in

259

8.3. Interactive interfaces

Figure 8.13: Example of interface with widgets.

order to apply Lachmann’s method, and to make hypotheses about the witnesses

relationship by finding shared errors or unique errors.

8.3.2 Interface for Calpurnius Flaccus

The interface that I have created is named PyCoviz, for Python Collation Visual-

isation. PyCoviz is meant to help scholars answer questions such as: What are

the readings found in this group of witnesses, but not in that other group of wit-

nesses? What are the readings common to any two given witnesses? What readings

are unique to a particular witness? These questions are essential when trying to

establish the relationships between witnesses (Robinson 1989b, 175). However,

PyCoviz also integrates most of the necessary interactions discussed by Andrews

and van Zundert (2013).

Figure 8.13 shows the main view of PyCoviz, which gathers all the interactions

available in tabs: it is possible to view a collation extract, to modify and annotate

the collation results, to compare witnesses in order to find shared readings or

unique readings, to search for a particular reading, or to clarify a reading. Each one

of these interactions will be described more in detail in Section 8.4.2.

8.3.2.1 Early Stages of Development

PyCoviz was created in the format of a Jupyter Notebook (see Section 8.3.2.2 below),

but it was preceded by a couple of attempts that were ultimately discarded. It may

be useful to briefly present those first attempts and the reasons why they were not

adopted.

The first interface considered was a relational database. Relational databases

have already been used in other projects with the purpose of comparing variant

witnesses (Robinson 1989b; Dubuisson and Macé 2006). However, the relational

database is not the best model suited to the JSON output from CollateX. It would

260

8.3. Interactive interfaces

require the division of the collation results into a completely different structure

made of multiple tables linked together, in order to include all the paratextual

elements which appear in the JSON token objects. On the other hand, JSON is a

language that follows the conventional data structures of programming languages

such as Java, JavaScript, Python, etc. The JSON output from CollateX is therefore

more easily manipulated in one of those languages. As a result, I turned to the

Python programming language for a better way to handle the collation data and to

create an interface.

Python is a high-level programming language which aims to imitate as much as

possible natural English language. It is therefore a relatively easy to learn pro-

gramming language. There is a large user community which can provide help

on platforms such as stackoverflow10. There is also a large number of third-party

modules available, so that it is not necessary to code everything from scratch when

a module is already available11. In fact, CollateX is available as a module in Python,

which would make it possible to integrate PyCoviz in a collation workflow entirely

in Python12.

The second interface was a Python script to be executed from the command line.

The main issue of this command line interface was sharing it with other literary

scholars who are not digital humanists but are working with traditional methods of

editing. However, the purpose was to help such scholars apply the traditional Lach-

mannian method of editing to the results of automated collation tools. Sharing and

reproducing results were precisely part of the needs of editors identified previously

in this chapter.

For instance, I have collaborated with Andrea Balbo from the University of Turin

in Italy, who is working on a new edition of Calpurnius Flaccus for the French

collection of Classical texts Les Belles Lettres. This collaboration was fruitful as

it demonstrated the utility of automated collation to a scholar who had no prior

experience of digital humanities, and it helped me improve the interface of PyCoviz.

With the command line script, we experienced a range of issues related to the

operating system (Macintosh versus PC), such as the installation of Python and

execution of the script in the command line, as well as character encoding. In

addition, providing the adequate support from a distance was challenging, and I

needed to supply a complete documentation anticipating everything that could go

10Stackoverflow is a platform where users can ask coding-related question to the community of
developers: https://stackoverflow.com (Accessed June 22, 2017).

11https://www.python.org/about/ (Accessed June 22, 2017).
12https://pypi.python.org/pypi/collatex (Accessed June 22, 2017).

261

https://stackoverflow.com
https://www.python.org/about/
https://pypi.python.org/pypi/collatex

8.3. Interactive interfaces

wrong. The conclusion was that I needed a more intuitive graphical user interface.

Instead of creating one from scratch, I decided to use Jupyter Notebooks, which

provide ready-made GUI elements and a comprehensive documentation with

extensive support for installation on various operating systems.

8.3.2.2 Jupyter Notebook

A Jupyter Notebook is a document format that combines computer code with

prose descriptions, and is accessible through a web browser13. Notebooks are

especially designed to share or publish executable code, which makes it a well suited

format for sharing the python script developed for collation visualisation (Kluyver et

al. 2016; VanderPlas 2016). The combination of code and prose explanations should

help to make the notebook accessible to scholars with little knowledge of coding or

Python. Another advantage is that Jupyter Notebooks are well documented, with

detailed explanations for installation, and there is a user community from which

to get help. In addition, Jupyter Notebooks are becoming popular tools among

digital humanists: the notebooks were used for instance by Underwood and Sellers

(2015) to study the pace of change in literary standards14, by the organisers of

a CollateX workshop in November 201615, by van Zundert (2016) to experiment

with ‘Slow Programming and Close Reading’16, and by Karsdorp (2017) to teach an

introduction to Python17.

A Jupyter Notebook is made of a series of cells, stored in JSON format. There are

text cells which contain explanations for users, and code cells. The code cells are

numbered from one to thirty, in square brackets. When referring to code cells in the

rest of this chapter, I will therefore use the following format: PyCoviz [n]. When the

code cells are run and their code is executed more than once, that number might

increase. So it should be understood that the numbers quoted in this chapter are

the original numbers, before the code is executed more than once.

A Jupyter Notebook integrates elements of GUI with widgets. Widgets are compo-

nents of a user interface such as buttons, checkboxes or text areas, which allows

for user interactions. The JSON results from CollateX are uploaded in PyCoviz and

13The interface was previously called IPython notebook, but as many components were not
necessarily specific to the Python language, the project was renamed Jupyter since version 4.0 in
2015: https://blog.jupyter.org/2015/04/15/the-big-split/ (Accessed June 23, 2017).

14https://github.com/tedunderwood/paceofchange (Accessed June 23, 2017).
15http://nbviewer.jupyter.org/github/DiXiT-eu/collatex-tutorial/blob/master/INTRO.ipynb (Ac-

cessed June 23, 2017).
16https://github.com/jorisvanzundert/reynaert-as-graph (Accessed June 23, 2017).
17http://www.karsdorp.io/python-course/ (Accessed June 23, 2017).

262

https://blog.jupyter.org/2015/04/15/the-big-split/
https://github.com/tedunderwood/paceofchange
http://nbviewer.jupyter.org/github/DiXiT-eu/collatex-tutorial/blob/master/INTRO.ipynb
https://github.com/jorisvanzundert/reynaert-as-graph
http://www.karsdorp.io/python-course/

8.4. PyCoviz: A Python Interactive Interface

transformed into the Python data format. Then the collation data can be manipu-

lated through various interactions: first, a few functions allow to modify or correct

the collation, if the current alignment is not satisfying. Second, the collation can

be filtered in order to find agreements between a group of selected witnesses. It is

possible to search the collation results and to clarify a reading by displaying all its

properties. Finally, some functions let users save the new collation after it has been

modified, or save the tables obtained by filtering the collation for agreements. The

next section will review the precise description of these interactions.

8.4 PyCoviz: A Python Interactive Interface

In this section, I will describe the interface of PyCoviz in detail (see Appendix B.5 for

the files). This section will be divided into four parts: in the first part, the structure

of the JSON output from CollateX is outlined, since it may be helpful to understand

how it can be modified later with the widgets (Section 8.4.1).

The second part lists all possible interactions available to manipulate the collation

results (Section 8.4.2). The interactive aspect of the widgets, and how to use them,

as well as the code behind the interactions will both be examined. The code is im-

portant for several reasons. The first one is reproducibility, a topic already discussed

p. 244 above: as researchers from all kind of fields write code in order to create

research outputs, it is necessary for that code to be published, and understood by

other researchers (Kluyver et al. 2016). Another reason is that coding is part of a

researcher’s activities, and therefore it needs to be recognised as true scholarship

(van Zundert and Dekker 2017). For code to be criticised properly, it is not only

necessary to publish it, but also to comment it: it is not always straightforward

to understand what the code does just by reading it. Programmers need to make

explicit the assumptions built into code.

In the third part, the Notebook PyCoviz will be applied to actual research questions

about the text of Calpurnius Flaccus (Section 8.5). It will demonstrate how the

widgets can be used in practice to solve problems faced by editors. The fourth

part, finally, will discuss the issues of PyCoviz and its possible improvements (Sec-

tion 8.6).

PyCoviz was last updated and tested with version 3.6.7 of Python, as well as the

packages Jupyter Notebook v5.5.0 and Ipywidgets v7.2.1.

263

8.4. PyCoviz: A Python Interactive Interface

Figure 8.14: Structure of CollateX JSON results.

8.4.1 Understanding the Collation Data Structure

Before starting with the collation manipulation and visualisation, it may be helpful

to understand the structure of the data. CollateX output is in JSON format, because

this output would retain the additional properties of tokens included in the JSON

output (see Section 7.1.2). CollateX JSON results are a complex combination of two

simple data structures: arrays, and objects (see also Section 7.1.3)18. Arrays are an

ordered sequence of items: for instance a list of witness sigla. Objects are made of

pairs of name and value. For instance, the witness B1 is made of two pairs of name

and value: the ‘id’ with a value of ‘B1’, and a ‘text’ which value is a list of tokens.

In figure 8.14, the various elements of the collation results are emphasised: the

collation is a JSON object containing two items, (1) a list of witnesses and (2) a

list of rows which form the collation table of the aligned text versions. The list of

witnesses can be considered as the header for the table. In the case of Calpurnius,

the list of witnesses has ten items which are the sigla of each witness.

Each row of the collation table contains in turn a list of cells, one cell for each

witness present in the collation results. The cells are made of a list of tokens, a

list which can be empty if a witness does not have text that aligns with the other

witnesses’ text at this point in the collation. Depending on the CollateX output

format, tokens can be separated, or joined into segments (see also Section 7.1.4). If

tokens are separated, it means that initially there is only one token per cell (although

this can be changed in PyCoviz by moving tokens, see below Section 8.4.2.2). If

aligned tokens are joined into segments, there can be more than one token per cell.

The aligned tokens may be variant: for instance in figure 8.14 ‘Once upon a time’ (4

18In Python, arrays are called lists, and objects are called dictionaries.

264

8.4. PyCoviz: A Python Interactive Interface

tokens) is aligned with ‘Once’ (1 token) and ‘A long time ago’ (4 tokens). The aligned

tokens may be identical, such as ‘a king’ (2 tokens). However a cell can also contain

a very large passage of text with a high number of tokens such as an entire chapter,

either because there was no variant in this particular chapter, or because it was

missing from one witness.

Tokens are objects with a series of pairs of name and value, such as t (the exact

word from the manuscript), n (a normalised version), and so on. Here is the full

hierarchical structure of the collation table:

• the table is a list of rows;

– a row is a list of cells;

* a cell is a list of tokens;

· a token is an object with the following items:

t exact word as it appears in the witness;

n optional normalised version of the word;

locus optional exact location of the word in the manuscript or

edition, a folio or page number followed by a line number;

note optional comment;

decl optional declamation number;

link optional link to the page of a digital facsimile, where the

token appears.

The index is the position of an item in a list, starting from zero to n. For the list

of ten witnesses in the example of Calpurnius, witness B1 has index zero, while

witness P1594 has index nine. The two objects of the collation results, the list of

witnesses and the collation table, are not explicitly linked to each other. Instead,

witnesses are matched to their respective column of the collation table through

their index: the cells with index zero in the table correspond to the text of B1, while

the cells with index nine correspond to the text of Pithoeus’ edition. The table is

organised by rows instead of columns. This means that to access the text of witness

B1, it is necessary to go through each row of the table and select the first cell (the

cell with index zero).

The order of the rows is important, because it follows the order of the text. Row 0

has the first word(s) of the text, whereas the last row n has also the last word(s) of

265

8.4. PyCoviz: A Python Interactive Interface

the text. The row’s index will be called ID number, and will be used later for variant

location identification, for instance in order to add or delete rows in the table (it

is the same number which appears in the HTML collation table described p. 251

above).

8.4.1.1 PyCoviz Structure

The Jupyter Notebook is divided in three sections. The first section takes care of

importing the necessary Python modules (PyCoviz [1]) and loading the collation

data (PyCoviz [2]). There are a few modules which come automatically with a

Python distribution, and modules for the widgets which must be installed19. The

collation data is loaded in two variables: witnesses for the list of witnesses, and

collation for the collation table. In addition, the variable base_text is defined with

‘LH’, the siglum for Håkanson’s edition which is used to visualise errors and true

readings. The base text variable can be set as an empty string in case the user does

not wish to see errors and true readings. The next section, from PyCoviz [3] to [18],

regroups a series of functions which are needed for the last section, dedicated to

exploring the collation results with widgets. There are widgets for updating the

collation result, in PyCoviz [19] to [26], to find agreements among witnesses in

PyCoviz [27], to search for and clarify tokens, respectively in PyCoviz [28] and [29].

Finally, a last widget gathers all interactions at the end of the notebook in PyCoviz

[30]. We will now examine each widget and interaction available in the notebook.

8.4.2 Manipulating the Collation Results

The interactions available in PyCoviz are divided into five categories, as we have

seen in figure 8.13 above:

• View an extract from the collation table;

• Modify the collation results;

• Find agreements between witnesses in order to locate shared errors;

• Search for a reading;

• Clarify a reading.

Each of these interactions will be described in the following sections.

19https://ipywidgets.readthedocs.io/en/stable/user_install.html (Accessed June 23, 2017).

266

https://ipywidgets.readthedocs.io/en/stable/user_install.html

8.4. PyCoviz: A Python Interactive Interface

Figure 8.15: Widgets for the selection of a table extract.

8.4.2.1 View of a Collation Table Extract

Before analysing the collation results, it is necessary to visualise them first, and

check whether the alignment is accurate or if it must be adjusted. The first interac-

tion lets users select an extract from the collation table (figure 8.15.

Users can select the start and end of the extract by entering numbers in the two text

boxes ‘From’ and ‘To’, and the table will automatically be displayed. These numbers

are rows ID numbers, or index: for instance, requesting a table from 6 to 11 will

show the first sentence of the first Declamation from Calpurnius Flaccus. The cells

of the table are coloured in red and green again, according to their relationship to

the reading of the base text.

The collation table displayed here is simpler than the HTML table described above:

it shows only the original forms of tokens, but there are no hidden paratextual

elements. It would be complex to integrate customised CSS and Javascript styling

to the outputs displayed in a Jupyter notebook. However, this output is perfectly

valid for the purpose of checking the alignment. If needed, the additional elements

can be visualised with the widget to clarify a token (see Section 8.4.2.5 below).

Code The code executed to transform a collation table into HTML for display is

the function table_to_html in PyCoviz [8]. The code for the table extract selection

is located in Pycoviz [19]. Thanks to the interact function, the table is automatically

updated each time a new value is entered in one of the two text boxes ‘From’ and

‘To’. These boxes are widgets which can accept only a limited kind of input: they are

bounded to integer numbers. This means that some mechanism is already built

in the widget to prevent users from entering wrong values, such as letters or other

symbols. In addition, a minimum and maximum value are specified so that it is

not possible for users to request rows that do not exist. The maximum is not a fixed

number, but a flexible value which is dynamically calculated based on the length of

the collation table. This ensures that PyCoviz can be reused with a collation of any

267

8.4. PyCoviz: A Python Interactive Interface

given size. Finally, an error message will be displayed if the user selects a wrong

combination of ID numbers, e.g. if the second number ‘to’ is lower or equal to the

number ‘from’, which returns an empty table.

By visualising the collation results in the table extract, users can spot errors in the

alignment. In the example of figure 8.15 above, the reading of Håkanson (LH) in

row seven, proximi, is not correctly aligned with the other witnesses. It should

match proxime and proximae on row nine, and the subsequently empty row seven

should be deleted. In order to correct the alignment, other widgets can be used to

move tokens up or down in the collation table or to add and delete rows.

8.4.2.2 Modifications

Corrections and update to the collation table are likely to be necessary, because

the alignment algorithm is not perfect. As we have seen in a previous chapter,

the algorithm is based on a heuristic method which searches for an acceptable

alignment, even if it is not the best alignment (see Section 2.4.4.3). It means that

the algorithm makes sometimes arbitrary decisions which may not correspond to

what an editor would have chosen. This is why it is crucial to review the collation

result and eventually correct it, before starting to analyse it. In PyCoviz, there are

four types of interactions related to updating and correcting the collation data:

• Move tokens up or down;

• Add or delete rows;

• Add or delete notes;

• Save the new collation.

Figure 8.16 shows the summary of widgets related to the modification of the colla-

tion results. For each modification, the user must choose which part of the collation

will be affected, for instance by selecting a row ID or a witness siglum, and press a

button that will apply the modification.

n

268

8.4. PyCoviz: A Python Interactive Interface

Figure 8.16: Summary of modifications available in PyCoviz.

The next two widgets let users add or delete a row (see figure 8.16 for the ‘delete

row’ widget). The user should select a row by entering an ID number in the ‘ID’ text

box. Then it is possible to either delete the selected row or add a new empty row

after by clicking on a button20. The widget will only delete rows that are empty, as a

protection against inadvertently deleting the text of the witnesses.

Code The code for the widgets is in PyCoviz [21] and [22], for adding and deleting

rows respectively. The code executed to actually add or delete rows are the func-

tions add_row_after and delete_row in PyCoviz [14]. Unlike the collation extract

widget, the addition or deletion of a row is not performed automatically. Instead,

the argument __manual=True in the interact function ensures that users must

first click on a button before the code is executed. The button is created automati-

cally with the option __manual=True and cannot be modified: the button label

will always be “Run” followed by the name of the Python function.

n

The next two interactions let users move tokens in the collation table, up or down

to the same witness in the previous or next row.

Tokens can be moved only one at a time. In order to preserve the correct text

sequence of the witnesses, the last token in a cell can be moved to the first place

20Technically, it is not possible to add a row directly before the first row. If needed, the user should
add a row after row 0, and then move tokens down (instead of adding a row before and then moves
token up).

269

8.4. PyCoviz: A Python Interactive Interface

Figure 8.17: Move one token down.

in the next cell, or the first token in a cell can be moved to the last position of the

previous cell. This ensures that for instance in witness N1, familiae in row eight

cannot be moved below proximae of row nine, otherwise it would modify the word

order of N1 (see figure 8.15 above).

Code The widget in PyCoviz [23] is for moving tokens down, and in PyCoviz

[24] to move tokens up. The functions executed are move_token_down and

move_token_up in PyCoviz [13]. The code makes use of the index of the rows (row

ID) in order to move tokens up or down the next row (row ID plus or minus one).

For instance, the collation extract that we have seen in figure 8.15 above required

correction, in order to align the token proximi of LH with the other witnesses. To

correct the alignment of proximi in figure 8.15, a user need to select both the correct

ID number (here seven), and the witness in which the token appears (here LH) in the

widget shown in figure 8.17. Then clicking on the button ‘Run move_token_down’,

the reading proximi will be moved to row eight. However this problem is not

resolved, since proximi is now aligned with familiae in N1. Therefore, the user

needs to select again the ID number eight, witness LH, and move the token down a

second time so that it would be properly aligned with the reading proximae in the

other witnesses.

Here is another example to illustrate a situation when a user may wish to add a new

row, and move a token up. In figure 8.18 below, the editor might want to separate

the reading luxuriosum ob amorem in LH, row 913, into two separate readings:

ob amorem would be aligned with ab amore of the other witnesses, whereas the

conjecture luxuriosum adopted by (Håkanson 1978, 27.13) would not be aligned

with other readings in existing witnesses21.

A new row needs to be created before row 913. As we have seen above, a new empty

21The conjecture is actually proposed by Pithoeus in his critical apparatus, but he does not print
it in the text: http://www.e-rara.ch/gep_g/content/pageview/1099006 (Accessed June 23, 2017).

270

http://www.e-rara.ch/gep_g/content/pageview/1099006

8.4. PyCoviz: A Python Interactive Interface

Figure 8.18: An alignment that needs to be updated.

row will be inserted after the one selected. Therefore, to add a row before 913, the

user needs to add a new row after row 912. Then the new empty row will become

row 913, and the reading luxuriosum ob amorem will become row 914. When this is

done, it is possible to move one token up from row 914 to row 913 in witness LH.

n

Notes are editorial comments, which were made during the transcription of the

witnesses. These notes belong to the category of paratextual elements which are

recorded during the collation process (see Section 8.1.1 above) and which an editor

may need to have at hand while analysing the collation results. In PyCoviz, Notes

can also be added to a specific token or deleted in PyCoviz during the analysis of

the collation results, for instance to record comments arising from the comparison

of variant readings, or the reason for an editorial conjecture (see figure 8.19).

Figure 8.19: Adding a note to a token.

A note can only be attached to one token. As a consequence users must not only

indicate a witness and a row ID, but also the token position. The token position

is necessary so that if the same word appears twice in the cell, the note will be

attached to the right one. The position can be found using the ‘Clarify’ widget

(see p. 281). Clicking on the ‘Add note’ button will add the comment to the ‘note’

271

8.4. PyCoviz: A Python Interactive Interface

property of the token. If the token had already a note, the new note will be added

after the pre-existing one. On the other hand, clicking on the ‘Delete note’ button

will eliminate the ‘note’ property entirely, including any pre-existing note.

The reason why notes apply only to one token at a time is because of the structure

of the collation data: adding notes only inside a token respects the structure of

CollateX JSON data and therefore it allows for consistency across the collation

files which are loaded into the Jupyter Notebook. A comment could obviously be

applicable to several tokens. In this case the best solution for now is to repeat the

same note for each token concerned, although it is redundant. In Calpurnius, it is

often the case that the same note is repeated between the same tokens of the first

and second hand of a witness. For instance, the unknown abbreviation in B (f. 148r)

and C (f. 82r) (see Section 6.2.3.1) receives a note to explain that the abbreviation is

unknown and that the normalised form contra was supplied by the editor Lehnert.

This note is the same for this token in the four witnesses B1, B2, C1, and C2.

Code The widgets are created in PyCoviz [25], whereas the code executed to add

or delete notes are the functions add_note and del_note in PyCoviz [15]. The

add_note function let user add as many notes as needed to one token, by creating

the note feature, or appending the string of characters from the ‘Note’ text box to

an existing note. It is recommended to end each note with a dot, so as to separate

different notes. In PyCoviz, notes are only unstructured plain text which refer to

one token only, and users must add manually any detail needed, such as the editor

responsible for the note or the date when it was added. Ideally, the token to which

the note is attached should be chosen through an ID number instead of a string

of characters, as there could be twice the same word in a single cell. However, this

would make reuse more difficult, as an ID property is not mandatory in CollateX’s

tokens.

The conjecture proximi was proposed by Håkanson by comparing the text of Cal-

purnius to that of Cicero’s De Inventione, in paragraph 144 of the second book.

Since Cicero’s text support the conjecture of proximi, the reference can be added as

a note to this token to justify Håkanson’s choice.

The addition or deletion of notes show that indeed no part of the collation results

is definitively fixed by CollateX’s algorithm. On the contrary, the editor is free

to update any of the existing token properties, to add more information when

needed, and correct or refine the alignment according to their own judgement. It is

possible to correct any of the other token’s properties such as t and n, or to add new

272

8.4. PyCoviz: A Python Interactive Interface

properties. This was not implemented in PyCoviz, but new widgets could easily be

added. However, I decided to limit the number of updates available in widgets to

the essential ones, so that the notebook does not become too complex.

n

The Jupyter Notebook does not store any modification to the collation results. The

Python data must be transformed back into JSON data and saved in a file, or the

changes that were introduced in the collation will be lost once the Notebook is

closed, or reloaded. For this reason, there is a widget for saving the modifications

in the collation. It is the ‘Save JSON’ button which will save the Python data back in

a JSON file (see figure 8.16 above).

Code The save button is created in PyCoviz [26], and the code executed is the

functions save_json in PyCoviz [17]. When the button is clicked, a new JSON file

is created, the date and time is appended to the filename, so that each file has a

unique name and versions are available in chronological order. It is also possible to

set up a fixed path, and every time the button is clicked this would save the results

in the same file and overwrite the previous results. The advantage of overwriting the

results is that there is no need to constantly reload a new collation file (in PyCoviz

[2]) in order to have the most up-to-date results.

n

There are several issues related to the modifications described above, regarding the

Rows ID, moving tokens, and reproducing the modifications. In its current form,

the ID column is not a perfect solution to refer to rows in the table. The ID is simply

the position of the row in the table: row 0 is the first row, row 1 the next, and so

on. While it is useful to know the position of a row to add an empty row after, or

to move a token to the previous or next row, it also means that rows do not have a

fixed reference ID. For instance, the reading of proximi, which was moved to row

nine in the first example, would then be in row 8 after the elimination of the empty

row seven. This can lead to confusion after the collation table is updated, and the

ID number then changes for all following rows after an addition or a deletion. The

solution would be to add a fixed ID to each row of the table, in a new column. It

273

8.4. PyCoviz: A Python Interactive Interface

was not implemented in PyCoviz, because it would introduce a modification to the

CollateX output format, which could complicate the reuse of data.

Moving tokens one at a time is rather tedious, and even more so when many

modifications are needed. In this case, the solution could involve marking the

cells that needs a token moved up, for instance with checkboxes, and then apply

the move_token_up function to all marked cells. However, this solution was not

implemented with widgets in the notebook, because the HTML display of the

collation table does not allow checkboxes to be included inside at the time of

writing. However, from a coding point of view, it would be quite straightforward

to apply the function move_token_up to a list of cell defined by their row ID and

witness.

In addition, updating the collation results manually with the widgets is not a good

solution since it makes reproducibility more difficult (Marwick 2015). This currently

is an issue of PyCoviz, which could be improved for instance by creating a database

of all corrections to the collation results: actions would be recorded in a file every

time a button was pressed (which function was executed, with which arguments,

on which collation results and when).

After the collation has been corrected, and the alignment is now considered satisfy-

ing, users can start to study the collation to find groups of witnesses which agree

together in errors, or to find unique errors to a witness. This can be done with the

series of widgets described in the next section.

8.4.2.3 Find Agreements

The Agreements widget is central to PyCoviz. This widget lets users filter the colla-

tion results to find readings shared by a group of selected witness, and not by other

witnesses. There are five elements in the Agreements widget: (1) and (2) dropdown

menus to select witnesses, (3) the collation table, (4) a textbox and (5) a save button

(figure 8.20).

In the first menu (1), the user selects a list of witnesses to see where they agree

together. In the second menu (2), the user can select another list of witnesses.

The resulting collation table (3) will show readings where the first witnesses agree

together and not with the witnesses in the second list. By default, the second list

will contain all the witnesses that are not selected in the first list. The total number

of rows is displayed at the bottom of the table, so that it gives an approximation of

the number of variants. It is an approximation because transpositions, for instance,

274

8.4. PyCoviz: A Python Interactive Interface

Figure 8.20: The Agreements widget.

appear as two or more rows but usually are considered only one variant.

The collation table can be saved in the HTML format, along with a short description

(4), by clicking on the ‘save Table’ button (5). The description is necessary to

keep track of how the table was created. Without a description, it may be difficult

to remember which witnesses were selected for the comparison, and the HTML

table may become meaningless. When the button ‘Save Table’ is clicked, the basic

HTML table of the notebook is transformed into the more complex HTML format

described previously in this chapter (Section 8.2.2).

Code The Agreements widget is encoded in PyCoviz [27]. The code executed to

compare the witnesses is a series of functions: compare_witnesses in PyCoviz [6],

compare_multiple_cells_norm and compare_cell_norm in PyCoviz [4] which

is calling the function cell_to_string_norm in PyCoviz [3] to transform a list of

tokens into a string of characters.

Let us examine briefly these functions, starting from the most simple. In PyCoviz

[3], the two functions take as input a cell from the collation table, that is a list

of tokens, and transform it into a string of characters. Cell_to_string uses the

original form of the tokens, and cell_to_string_norm uses the normalised forms

n when available, or the original form t if there is no n. In addition, the function

does not introduce blank spaces in between tokens. In effect, this means that

word division is not taken into account when comparing normalised form. The

input of these function is a cell from the collation table, for instance this one from

manuscript C:

['decl': '24', 'locus': '86v:7', 't': 'eius', 'link': 'https://digi.vatlib.it/view/MSS_

275

https://digi.vatlib.it/view/MSS_Chig.H.VIII.261/0182
https://digi.vatlib.it/view/MSS_Chig.H.VIII.261/0182

8.4. PyCoviz: A Python Interactive Interface

Chig.H.VIII.261/0182', 'decl': '24', 'locus': '86v:7', 't': 'dem&', 'n': 'demet',

'link': 'https://digi.vatlib.it/view/MSS_Chig.H.VIII.261/0182']

When passed as input to the functions, the outputs will be the following:

Cell to string: eius dem&

Cell to string norm: eiusdemet

The next step in PyCoviz [4] is to compare two or more cells, by comparing their

strings of characters generated by the functions in PyCoviz [3]. The function returns

‘True’ if the strings of characters are equivalent, and ‘False’ if the strings are different.

Let us compare the previous cell of manuscript C with the cell of Håkanson’s edition

at the same place.

Input:

Cell 1 (C) eius dem& (original) � eiusdemet (normalised)

Cell 2 (LH) eiusdem et (original) � eiusdemet (normalised)

Output:

Compare cell: False

Compare cell norm: True

Their original forms are different because of the word division and the special

character ‘&’, so that the function compare_cell returns False. But their normalised

forms are equivalent: the special character was removed during the transformation

of the TEI to JSON (see Section 7.1.3), and the white spaces were removed by

the function cell_to_string_norm. Therefore, the function compare_cell_norm

returns True.

The functions compare_multiple_cells and compare_multiple_cells_norm are

very similar, except that they can compare more than two cells. These functions

compare each cells to the next in the list, until they find two cells that are different,

and return False. If the function reaches the end of the list without finding a

difference, then all cells are equivalent and it will return True. For instance, we

can compare all the cells in row 31 (figure 8.21. The normalised forms are all

equivalent, so that the function compare_multiple_cell_norm returns True. But

when comparing original forms, the function compare_multiple_cell will find a

difference between germaniȩ (C2) and Germaniae (LH). Therefore it will stop the

comparison and return False.

276

https://digi.vatlib.it/view/MSS_Chig.H.VIII.261/0182
https://digi.vatlib.it/view/MSS_Chig.H.VIII.261/0182
https://digi.vatlib.it/view/MSS_Chig.H.VIII.261/0182

8.4. PyCoviz: A Python Interactive Interface

Figure 8.21: PyCoviz [4] - compare multiple cells.

Figure 8.22: PyCoviz [6] - compare witnesses.

In PyCoviz [6] the function compare_witnesses goes through an entire collation

table and divides each row into two groups of cells. The first group corresponds to

witnesses that should agree together and have the same tokens, while the second

group corresponds to the other witnesses from the second dropdown menu (or

all others by default) which should all be different from the witnesses in the first

group. If the two conditions are met, the row is added to the filtered table that will

be displayed.

The function compare_witnesses takes as input three arguments: a collation table,

and two lists of witnesses. For instance, in Appendix B.4, the arguments are a

collation table which contains only the incipit of Calpurnius Flaccus (collation[0:4]),

and two groups of witnesses. The output is a filtered table. It contains only the

rows where the witnesses of the first group (B1 and B2) agree together against the

witnesses of the second group (N1 and N2).

The notebook’s setting is to compare normalised forms with this function com-

277

8.4. PyCoviz: A Python Interactive Interface

Figure 8.23: The comparison of normalised forms ignores word separation.

pare_witnesses so that orthographic variations and other accidentals are ignored.

As a result, the reading eius dem& in C is considered equivalent to the reading

eiusdem et of Håkanson, as we have seen above. This is the reason why it does not

appear as an error in red in figure 8.23. As we will see in Section 8.6, it may not be

as easy as it seems to compare orthographic variants.

Finally, the table can be saved in HTML format. The code executed is the func-

tion table_to_html_fancy in PyCoviz [9]. The table is saved in the folder called

alignment-tables, where the CSS and Javascript necessary to a proper display are

also stored (see Section 8.2.2 the description of the HTML tables). The code exe-

cuted to save a collation table into HTML is the function save_table in PyCoviz

[18]. The function will take a template prepared for storing results, template.html

located in the folder alignment-table. Then it will insert the HTML table and the

description in their predefined place with the help of regular expressions.

n

There are three different possible use of the Agreements widgets: to find unique

readings, to compare two witnesses, or to compare multiple witnesses.

Unique Readings First, selecting only one witness in the first dropdown menu

will show the unique readings of the witness in question, when all other witnesses

are different from it. Selecting only LH in the first widget would display the readings

that Håkanson chose to adopt and which have no manuscript evidence, i.e., conjec-

tures. Interestingly, this will also show a few silent orthographic emendations made

by Håkanson, because I have not normalised his readings in the transcription.

It is worth noting here the distinction between unique errors and unique readings.

When a manuscript is selected, for instance B1, it will be compared to the base text

of Håkanson’s edition. As a result, only unique errors according to Håkanson will be

displayed. However, another editor might disagree with Håkanson’s decisions. In

278

8.4. PyCoviz: A Python Interactive Interface

Figure 8.24: Comparison of manuscript M against the other manuscripts and Pithoeus.

order to see the unique readings of B1, it is necessary to compare B1 only to other

manuscripts by excluding the witness LH from the comparison (see Section 8.4.2.3

Comparison of Multiple Witnesses below).

Comparison of Two Witnesses The second way to use the Agreements widget

is for the comparison of two witnesses. In this case, the user can select only one

witness in each list. This will show the differences between the two witnesses:

selecting M1 in the first list and M2 in the second list, for instance, will display the

readings where the second hand corrected the first hand in manuscript M. M is

actually the manuscript with the smaller number of corrections, whereas B is the

manuscript with most corrections (see Section 5.1.2.3), and this can be visualised

thanks to the comparisons of first hands against second hands for each witness.

The table of M1 versus M2 has 21 rows, whereas B1 versus B2 returns a hundred

and ninety-five rows. In addition, it may also be interesting to compare different

editions, and see where editors disagree.

Comparison of Several Witnesses Finally, it is possible to select in the first list

a group of witnesses that agree together against another group of witnesses. The

witnesses in the second group do not necessarily agree together, they are merely

different from the witnesses in the first group.

Figure 8.24 shows the unique readings of manuscript M. The table has three rows

where both M1 and M2 have the same reading, and B1, B2, C1, C2, N1, N2, and

P1594 have a different reading. LH was omitted from the comparison in order to

show unique readings, and not only unique errors. It should also be noted that

this table shows the unique readings of both M1 and M2. In order to have a really

279

8.4. PyCoviz: A Python Interactive Interface

Figure 8.25: The Search widget.

complete picture of unique readings in manuscript M, the unique readings of M1,

and then of M2, should also be considered. Unless otherwise specified, the siglum

of a manuscript without a hand number refers to both hands (e.g., manuscript M

stands for both M1 and M2).

8.4.2.4 Search the Collation

It may happen that the user wishes to find a particular reading, but does not know in

which row of the collation it appears, especially since the row IDs change after rows

are added or deleted. PyCoviz provides a very simple search widget (figure 8.25).

The widget is located in PyCoviz [28]. The code executed to search the collation for a

string of characters is the function search in PyCoviz [16]. The widget takes a string

of character as input and will search through each cell of each row, for both original

or normalised readings. Since all the tokens of a cell are transformed into a string,

it means that a search for several words will be successful only if the entire string of

character is present in the same cell. If the words are divided into two cells, there

will be no result. Thus, searching for the string in vita bonis will not yield any result,

although it is present in the text (see Section 8.5.1 below). However, searching for

in vita will show a result of two rows, the second of which also contains the reading

invitabo that was aligned with in vita bonis. The search will return any row where

the words are present in at least one witness, independently of the other witnesses’

readings. If the text was not found, the function will print an error message.

8.4.2.5 Clarify a reading

The Jupyter notebook displays collation tables in basic HTML, which does not

include the hidden paratextual elements available in the collation table described

p. 251 above, such as notes or location in the manuscripts. In order to see this

information, as well as the normalised form of a token, it is possible to clarify a

reading by selecting a row ID and a witness. This will show all the properties of

each token in the cell, separated by a comma, and including the link to the digital

image when available.

280

8.4. PyCoviz: A Python Interactive Interface

Figure 8.26: The Clarify widget.

Figure 8.27: PyCoviz [11] - print info.

The widget is located in PyCoviz [29]. The code executed to display the tokens

features is the function print_info in PyCoviz [11]. This function takes as input a

cell from the collation table, that is expressed as a row ID and a witness. It prints

all the information attached to each token of the cell in a legible way. First, the

position of the token is printed, as it may be useful to add a note to this token. Then

each feature of the token is printed.

8.4.3 Non-Interactive Functions

In the course of preparing this visualisation in PyCoviz, I have created several more

functions, which have not been made interactive through the use of widgets, but

are nonetheless available to more advanced users. For instance, in PyCoviz [5] the

function �nd_agreements may be executed to find the agreements of a group of

witnesses, but not against another group. This function shows a table that include

the agreements of a group of witnesses when at least one of the other witnesses

is different, but it does not matter which one. The many rows where all witnesses

agree together are therefore not displayed.

For instance, in figure 8.28, the input is a collation table which contains only the

text of the third declamation, and a list of witnesses that agree together (B1, B2).

They agree together against all others in row 78, or only against P1594 in row 69, or

281

8.4. PyCoviz: A Python Interactive Interface

Figure 8.28: PyCoviz [5] - Find agreements.

Figure 8.29: PyCoviz [7] - View variants.

only against C1 and C2 in row 80. It would not be possible to obtain this table with

the function compare_witnesses.

In PyCoviz [7], the function view_variants returns a collation table with all rows

where there is at least one variant. The result is in fact the list of all variant locations

in the entire collation table. Figure 8.29 shows the list of all variants in declamation

3.

Finally, there is the function print_witnesses_text that shows an extract from the

collation table in a horizontal text format in PyCoviz [10] (figure 8.30).

The function get_pos in PyCoviz [12] is not really necessary for users who decide

to use only the interactive widgets. I had included this function in the early stage

of development, so that I could combine several collation tables: for instance I

experimented with comparing N1 OR N2 against P1594 (and not N1 AND N2). In

that case, I would need to combine three different tables:

282

8.5. PyCoviz Applied to Calpurnius Flaccus

Figure 8.30: PyCoviz [10] - A short passage in text format.

1. The agreement between N1 and P1594

2. The agreement between N2 and P1594

3. The agreement between N1N2 and P1594

Once the tables are combined, the function get_pos would be used as the key to

sort the final table according to the position of the row in the complete collation

table. As a result the rows appear from the lowest number to the highest, and keep

the order of the text. Here is a usage example:

print_collation(sorted(P1594_vs_N1orN2, key=get_pos))

where P1594_vs_N1orN2 would be the collation table that combines the three

listed above. Although this function is not currently used in the notebook, I left it

for more experienced users.

8.5 PyCoviz Applied to Calpurnius Flaccus

To illustrate how PyCoviz can help editors, the textual tradition of Calpurnius

Flaccus will be corrected and analysed with the widgets described above. First, the

modifications to the collation results will be described, and then we will see two

examples of analysis: we will analyse how the edition of Pithoeus relates to the

other manuscripts, then we will examine the corrections of manuscript B and see

how they may be related to manuscript N.

8.5.1 Updates in Calpurnius Flaccus

In some cases, the collation results from CollateX were clearly incorrect: for in-

stance, proximi, a conjecture by Håkanson (1978, 1.2), was not aligned with the

reading proximae present in the other witnesses. The token was thus moved in

283

8.5. PyCoviz Applied to Calpurnius Flaccus

Figure 8.31: Example of corrected alignment.

order to be at the right place. The alignment could also be refined, even if it is not ac-

tually wrong: the reading luxuriosum ob amorem in Håkanson (see Section 8.4.2.2

above) could not be considered as wrong from the point of view of the algorithm,

but is not entirely satisfying from the editor’s point of view.

Other situations are less obvious, and the final alignment might be debatable. For

instance, the reading invitabo nisi in witnesses B1 (f. 155v), C1 and C2 (f. 87r) is

closely related to in vita bonis found in M1 and M2 (f. 13v). The variant appears

to originate mainly from a word division issue: it seems thus that the readings

might belong to the same cell. However, witnesses N1, N2, B2 and LH read in vita

liberis. Therefore, bonis was ultimately aligned with liberis and nisi, even if that

means that the letters -bo in invitabo are not aligned anymore with bo- in bonis (see

figure 8.31). This alignment allows to show the agreement of the witnesses with the

reading in vita, however another user might decide that the whole group of words

should be aligned together: invitabo nisi aligned with in vita bonis and in vita

liberis. Although transpositions are usually considered as one variant and could

be merged in a single row, I chose to keep the original output so that it could be

turned again into a variant graph, which is a better visualisation for transpositions

than a table.

Within the Declamations of Calpurnius Flaccus, a total of 171 corrections have been

made to the alignment provided by CollateX: these corrections include moving 157

tokens, adding two rows and deleting twelve. Out of the 68,914 tokens from ten

witnesses, only 157 were not properly aligned by the algorithm, which represent

around 0.23 percent of the total number of tokens. Even considering that some

errors or mismatches in the alignment escaped correction, the percentage is un-

likely to get higher than 0.5. This low percentage may attest to CollateX’s efficiency.

However, the ten witnesses of this case study represent a small textual tradition, es-

pecially since four of the ten witnesses are actually artificially created by attributing

the status of witness to corrections of second hands and thus are very similar to

the first hand. In addition, there are few instances of transposition in Calpurnius,

and the transpositions that are found usually involve no more than two or three

284

8.5. PyCoviz Applied to Calpurnius Flaccus

words. Therefore it is likely that, for texts with a more complex tradition, a higher

percentage of errors may arise.

8.5.2 Compare witnesses

8.5.2.1 Editio Princeps vs. Manuscripts

As we have seen in Section 5.1.2.6, Pithoeus notes in his critical apparatus that

he has based his edition partly on the damaged manuscript A, and on another

manuscript from Italy. However, Pithoeus does not give more precision about this

Italian manuscript, and C is the only manuscript that is known to have been in

Italy. In addition, manuscripts B, M and N are written in italics, an indication of a

potential Italian origin. Pithoeus, M and N also have in common the numbering of

declamations, and the indications pro/contra which explain who the declamator is

defending or accusing in the discourse.

With the Agreements widget, we can compare how Pithoeus’ edition relates to each

manuscript by comparing them together against the other manuscripts. Pithoeus

is compared with subsequently B, C, M and N, against the others. We can then

see the readings P has in common with each manuscript, and especially if they

share common errors. If one witness has significantly more errors in common with

Pithoeus, it would be an indication that this may be Pithoeus’ Italian exemplar.

The first figure 8.32 shows the agreement of P1594 with manuscript B (that is B1

and B2), against C, M and N. P1594 and B have only two readings in common,

rutili and liberas, which are both considered the correct reading by Håkanson. The

comparison of P1594 and C against BMN yields four readings, of which only one is

an error according to Håkanson (figure 8.33). However, this reading appears at the

very beginning of the text: it is in row 2, which is part of the incipit. It is considered

an error only because Håkanson did not print the incipit in his critical text. In fact,

it is more likely that the error lies with M and N, which both omitted the second part

of the incipit that was also present in manuscript A: excerpta X (decem B) rhetorum

minorum, ‘extracts of the ten minor rhetors’). P1594 and M have no readings in

common.

On the other hand, P1594 and N have seven readings in common, four of which

are errors (the first four lines in figure 8.34 represent two transpositions). Since

Pithoeus has more readings in common with N against the other manuscripts,

Håkanson judged that N was the Italian manuscript of Pithoeus. However, it is

interesting to review the unique readings of N that Håkanson (1978, XIII) claims

285

8.5. PyCoviz Applied to Calpurnius Flaccus

Figure 8.32: Pithoeus and B against CMN.

Pithoeus has adopted:

• inquit erant (LH, 7:19)

• scio me (LH, 19:4)

• quacumque (LH, 20:11)

• vel (LH, 22:4)

• es (LH, 22:20)

• dicit and remittitur (LH, 24:11)

• in vita liberis (LH, 25:17)

• pauper (LH, 31:2)

Three of those readings are present in figure 8.34: inquit erant, scio me (two words

inversions of which only erant and me are visible in the table), and dicit. The

readings vel, remittitur and in vita liberis do not appear in figure 8.34 because

they are also present in B2, which can be explained by the fact that the readings

of B2 have likely been copied from N (see Section 8.5.2.2 below). The readings

pauper and quacumque are not present in figure 8.34 because they are also shared

by manuscript M.

In his list, Håkanson omits three unique readings of N which are actually adopted

by Pithoeus: huiusmodi, miserae and reddit. The last line of the table in figure 8.34

is a reading from the explicit, which makes more sense in context: N has the reading

finis, and P1594 has the reading explicit. This reading appears in a previous row

that is not in the table, because it is not an agreement of P1594 and N. However

both N and P1594 omit the last part of the explicit (explicitae ex Calpurnio Flacco

excerptae).

Although the analysis of the shared errors of Pithoeus’ edition shows that the closest

manuscript is N, it is worth checking the readings quoted by Håkanson. There are

286

8.5. PyCoviz Applied to Calpurnius Flaccus

Figure 8.33: Pithoeus and C against BMN.

Figure 8.34: Pithoeus and N against BCM.

small discrepancies between Håkanson’s list and the evidence from the witnesses.

The last step in this analysis is to consider if Pithoeus did in fact use N as an

exemplar, or if it is possible that manuscript N was copied from Pithoeus. In this

case, the unique errors from both witnesses must be examined.

To find unique errors, witnesses are selected only from the first dropdown menu.

There is one unique reading shared by N1 and N2, which could have been easily

corrected: at ego dico meus es (N) versus est in other witnesses (‘But I say, he is /

you are mine’). There is also only one unique error of N2: eris aevum instead of

eris in aevum (‘you will be for the rest of your life’). Again, this could easily have

been corrected. All unique errors of N1 have been corrected by N2, so that it is

difficult to draw any conclusion from these errors. However it can be noted that

one error of N1 tam malae (f. 247v:7) was corrected to male which is a reading

present in B, C1 and M but not in P1594. On the other hand, there are forty-two

unique errors in P1594. Six of these are word inversions; one is part of the explicit,

and is an error only because Håkanson did not print the explicit in his text; finally,

two are different readings from the 1580 first print of the Pithoeus’ edition, and

may have been misprinted in the 1594 edition. With this information at hand, it

seems more plausible that Pithoeus used N2 as his exemplar and corrected a few

errors. The copyist of N is less likely to have been able to correct all the errors (or

conjectures) introduced in P1594.

287

8.5. PyCoviz Applied to Calpurnius Flaccus

8.5.2.2 Corrections of the second hand in Manuscript B

As noted in Section 5.1.2.3 above, the corrections of the second hand in manuscript

B, B2, have been likely copied from manuscript N (Håkanson 1978, XI; Lehnert 1903,

XIII). In that case again, it is possible to use the Agreements widget to compare the

corrections of B2 against the other witnesses. First, comparing the readings of B1

against B2 will show the list of corrections by B2, a table with 197 rows: from this

we can see for instance that B2 has added the pro/contra notes that introduce most

discourses and which are present in M, N, and Pithoeus edition (see Section 5.1.2.4).

This means that either M, N, or Pithoeus, are the likely source of B2’s corrections.

In fact, the corrections in B2 share 135 readings with MNP1594 against C; but C and

B2 share only one reading against MNP1594.

Therefore, we need to analyse the corrections of B2 and see if it is possible to find

agreements with one particular witness. The large majority of B2’s corrections

are in fact also common to M, N and Pithoeus (comparing the readings that are

common to B2, M, N, P1594 against B1 shows a table of 175 rows). These variant

readings cannot help to decide which one is the source of B2’s correction, but we

can focus on the 22 other corrections of B2.

• Eight are unique readings of B2, some of which may have been misread from

N, e.g., inultam instead of multam (see Håkanson 1978, XII). It is also possible

that the correction of commenta into comuenta came from conventa in N,

especially since it is followed by est one of the four readings in figure 8.35.

• Four readings are common to B2, M and N1, where the correction of N2

correspond to B1 (see figure 8.35 below). Because of the reading patruo in

particular, and the absence of lacuna after calpurnius, it seems that there has

been an exchange of readings between B and N. Three of these four readings

are also shared by P1594.

• Four readings are common to B2, N and P1594, but not to M. Three of these

readings are errors which convinced Håkanson that M could not be the

source of B2’s corrections (see Håkanson 1978, XII).

• Two readings are common to B2, M and N, but not to P1594.

• Four are more isolated cases: the correction arcem (f. 151v:10) corresponds

to manuscript C but not to arce in M, N, and P1594; addictus (f. 151v:12)

corresponds to M, N2 and P1594, but not to N1 (which reads abdicatus); the

288

8.5. PyCoviz Applied to Calpurnius Flaccus

Figure 8.35: Four readings are maybe exchanged between B and N.

last ones are orthographic differences (immolanda on f. 158v:21, which is

written imolanda in M1 and ephebo on f. 158r:23 written ephoebo in M1).

The fact that the three witnesses M, N and P1594 are closely related makes it more

difficult to identify with certainty the source of B2’s corrections. From M, N and

P1594, there is not one witness which shares a correction with B2 and against all

the others. The examination of the 22 readings listed above shows that B2 has

slightly more in common with manuscript N: for instance there are twelve shared

readings, of which seven are errors (table 8.1 below). The three errors which are

absent from M, in particular, make B2 closer to N. This link between B2 and N is

reinforced by the likely exchange of readings (see figure 8.35, and Section 5.1.2.5 for

the comparison of the hands which made corrections in manuscript B and N).

M1 M2 N1 N2 P1594

B2 Shared Readings 7 (+2 orth.) 9 12 9 (+4)† 10

B2 Shared errors 2 4 7 5 (+2)† 4
† (when N2 is likely different only because copied from B1)

Table 8.1: Relations of B2 with M, N, and P1594.

8.5.3 Conclusion

The section demonstrated how it is possible to use the PyCoviz notebook for the

correction, analysis and visualisation of the collation results of Calpurnius Flaccus.

The JSON output from CollateX was corrected, using the widgets. Although most

errors of alignment were obvious, it was necessary also to make decisions regarding

more difficult cases such as for the variants invitabo nisi/in vita bonis/in vita liberis,

or to decide how to visualise transpositions.

Then the collation was analysed with the Agreements widget: we examined two

questions of the tradition, namely the relationship between the editio princeps of

Pithoeus with the other manuscripts, and the origin of the corrections in B2. We

289

8.6. Discussion

demonstrated how to make Håkanson’s research reproducible, using his edition as

a base text in order to examine shared errors. Although the tables produced with

the widgets did not bring a new conclusion regarding the tradition of Calpurnius

Flaccus, it made it possible to spot small errors in Håkanson’s argument. By choos-

ing to view shared readings instead of shared errors, users can make sure that they

have the full evidence for making a decision, instead of relying only on Håkanson’s

classification of errors and true readings.

8.6 Discussion

8.6.1 Issue of normalisation

The collation tables in PyCoviz are all made by comparing normalised forms of

tokens whenever possible. In practice, the orthographical differences are thus

excluded from the collation tables. However useful it may seem, the use of nor-

malised forms for the analysis of collation results may be problematic in certain

circumstances. Comparing only normalised forms may hide variant readings that

could be considered significant to an editor.

For instance, in folio 83r, manuscript C reads liniamentis, while the other witnesses

read lineamentis. This is a purely orthographic difference, and as such, does not

appear in the collation table as a place of variation since the comparison is done

on the normalised tokens. A user of the Jupyter Notebook, selecting witnesses

in order to find their (dis)agreements, would not see this row in the results for

any combination of groups of witnesses, as it does does not contain any other

variant. However, Håkanson (1978, 7) included this orthographic difference in his

critical apparatus. Håkanson therefore considered this difference to be somehow

significant, but in PyCoviz it would be nearly invisible. For this reason, the notebook

also provides a set of functions to compare readings in their original forms, i.e.,

using tokens (t) instead of their normalised forms (n).

Nevertheless, this approach is not a satisfying solution, because CollateX’s results

used here have consecutive matching tokens joined into segments. As a conse-

quence, some large chunks of texts are combined into a single cell of the table when

there is no difference between normalised forms. And if there is an orthographic

difference, it becomes hard to spot it in the middle of a long block of text: the

word liniamentis mentioned above appears in the middle of a 37-word reading

that shows other orthographic variations (figure 8.36). Comparing orthographic

differences is therefore difficult.

290

8.6. Discussion

Figure 8.36: The reading liniamentis in the collation results.

CollateX also provides results with consecutive matching tokens not joined into

segments (see Section 7.1). In this case, however, the information that some groups

of tokens should be considered together is lost, especially when one token of one

witness matches with several tokens in another witness. It is a fairly common situa-

tion in Latin, since texts used to be written in the scriptio continua style, without

word division (see Section 6.2.3.2). Inconsistencies in word division are quite fre-

quent in Calpurnius: rempublicam versus rem publicam, contradicit versus contra

dicit, and so on. Some cases are more complex than just difference in word division,

such as verberantibus in B1 corrected into verbera cibus by B2 (f. 148v), where one

word matches two different words of another witness. In fact, these situations were

so frequent that they were not normalised in the TEI transcriptions. Instead, it was

decided to compare normalised forms without spaces in between words, so that

word division would not be considered a variant: PyCoviz will consider for instance

that witnesses with the readings eius demet (BC) and eiusdem et (LH, P1594) agree

together.

There are so many instances of one-to-many matching tokens that correcting

CollateX results, when matching tokens are not joined into segments, would not be

worth the effort. The two examples of figure 8.37 show how the alignment of tokens

is more accurate when tokens are joined into segments (figure 8.37(a)) rather that

separated (figure 8.37(b)). There are two differences in word division, between

ante/apte and ad te, and between rempublicam and rem publicam. In the first

example, the tokens are correctly aligned. However, when the output has separated

tokens, the alignment is much less precise: instead or aligning ad te with ante, ad

is aligned with ante, and te is in the following row. The reading rempublicam is

misaligned with te, instead of either rem or publicam.

291

8.6. Discussion

(a) Joint Tokens.

(b) Separated Tokens.

Figure 8.37: Joint vs. separated tokens outputs.

Any attempt to toggle between the two results of CollateX, with and without joined

segments, is bound to be difficult because of these many places where there is

no one-to-one matching token. The solution would be to normalise tokens after

collation. However, this solution may require a lot of efforts for traditions with

countless orthographic variations, such as medieval texts for instance, for which

normalisation would precisely improve the collation results. One solution may be

an iterative process of collation and normalisation such as in the Collation Editor:

‘[t]he regularisation stage of the Workspace is iterative, with the editor making a

series of regularisation and then re-collating the text. The process of regularisation

often improves the results from CollateX and makes the remaining stages of the

editing process more straightforward’ (Houghton and Smith 2016, 120). In the case

of Calpurnius, I had included the normalisation directly into the transcriptions so

as to be able to test the different tools with both normalised and non-normalised

tokens. Since I needed to collate multiple times, the normalisations that I would

include into a CollateX output would be lost for other tools.

8.6.2 Reuse

The notebook was designed with reuse in mind. Consequently, it should be able

to run with any CollateX result that has at least tokens (t). All other features of

the tokens are optional. It is not necessary either to choose a base text and view

readings as errors or true readings. There is no limitation regarding the number of

witnesses present in the collation, however the number of witnesses that can be

comfortably visualised is limited by the size of the computer screen.

A sample of collation kindly provided by Hayim Lapin, the editor of the Digital

Mishnah project, was used to verify the possible reuse of PyCoviz with a different

CollateX output. The example of figure 8.38 shows a selection of agreements be-

tween some of the sixteen witnesses from the sample. No base text is selected,

and readings are not marked with green or red. Although the JSON sample has

a different format from my own JSON collation, and it does not contain notes,

292

8.6. Discussion

Figure 8.38: Example of a collation table from a Digital Mishnah sample.

location, links or declamation numbers, this does not prevent from using the in-

teractions available in PyCoviz. From this experience, it appeared that there is an

advantage to displaying witnesses in columns, instead of rows like all the other

table visualisations (see Section 8.2 above). The advantage is that there is no need

to worry about the direction of writing. A collation table organised in columns can

display both left-to-right (Latin) or right-to-left text (Hebrew).

In its current state, PyCoviz still requires users to be comfortable with a minimum of

code, in order to change some variables such as the input collation file or the base

text. It is also helpful to know about CollateX and its JSON output formats. If PyCoviz

was to become truly user-friendly for all scholars and not only Digital Humanists,

modifications could be implemented, for instance adding widgets for the choice of

input file and base text, and adapting button labels (‘Save JSON’ could be changed

to ‘Save corrections’). To be truly user-friendly for non DH users, however, and

avoid all mention of JSON altogether, it would mean a deeper transformation,

starting already from the stage when the transcription is transformed with XSLT. It

would also mean an integration with a user-friendly CollateX interface, such as the

Workspace for collaborative Editing. At this point it would probably not stay in a

Jupyter notebook, but it would become something entirely different.

8.6.3 Version Control and Reproducibility

The adoption of a Jupyter notebook has advantages: it provides a user interface

with interactive widgets, and explanations along with the code. It is a great tool to

share code and to make it available for other scholars to examine and review, and

eventually adapt it to their own needs. Nonetheless, there are a few inconvenient

aspects of coding with a Jupyter Notebook. Version control is notably challenging

because the Notebook is saved in JSON format, which is not practical for visualising

changes in the code or in the code’s output. The presentation of code in blocks,

without line numbers, can make it difficult to refer to a precise portion of code.

Finally, it may be complicated to keep track of which version of the code produced

which collation tables, based on which collation file (obtained from which version

of CollateX). For instance, there were overall not many mistakes in the CollateX

293

8.6. Discussion

alignment, but there were many more mistakes in previous collations obtained

with former versions of CollateX. It is not an issue related to Jupyter notebooks only,

but to any output obtained with computational method. This kind of information

is crucial for the reproducibility of materials obtained with computational methods,

as well as for quoting those results in publications. At the moment, there is no way

to record this information automatically in PyCoviz. However, a possible solution

to this issue could be to use a Python module such as ReciPy: every time a Python

script is run, ReciPy records in a database the input and output files, as well as the

version of the code22.

8.6.4 Further Improvements

In its current state, PyCoviz is still a prototype with limitations. This section sum-

marises the various improvements discussed in this chapter, and which could be

implemented in PyCoviz in the future. Some improvements are technical enhance-

ments, such as:

• Adding unique IDs to each row of the collation table;

• Moving large amounts of tokens at once;

• Improving the search results;

• Saving files via a dialog box;

• Using ReciPy to keep track of the input and output files, and the version of

the code.

Other improvements are related to the visualisation method, such as letting users

choose a lemma for each row in the table, or visualising uncertainty. Editors have

to choose, at each variant location, the reading that will be printed in the critical

text. However, this decision may be subject to doubt, often expressed in the critical

apparatus. Håkanson (1978) did so in several occasions, for instance with expres-

sions such as fortasse (‘maybe’, p. 9), lacunam suspicor (‘I suspect a lacuna’, p. 9),

fort. recte (‘perhaps rightly’, p. 26). Håkanson also expressed doubts in his preface

with question marks next to supposed true readings. Visualising uncertainty could

22https://github.com/recipy/recipy (Accessed September 4, 2017).

294

https://github.com/recipy/recipy

8.7. Conclusion

be achieved by introducing a new colour beside red and green, to distinguish a

different level of certainty23.

Dealing with incomplete witnesses, such as manuscript A in Calpurnius Flaccus, is

another issue that requires changes to the Agreements widget. The problem was

that the collation results did not make a difference between the different reasons

why the text is missing from the results: there are lacunae due to illegible text in A,

and there are lacunae due to missing folia. In other witnesses, there are empty cells

when the text is absent for this witness but not in others: for instance, declamation

45 is present only in manuscript C and in Håkanson’s edition, but not in other

witnesses, although there is no damage to the manuscript, and the text is perfectly

legible.

The lacunae in A were represented by empty cells in the collation table. However,

this would skew the results when looking for agreements. For instance, looking

for agreement between A and other witnesses would return the rows where A is

actually non-existent, and other witnesses happen to have an empty cell. The same

problem appears when comparing other witnesses against A: the search would

yield many results of agreements against A, when the witnesses agree together and

A has an empty cell. This does not mean that the text of A was really different. We

don’t know because the manuscript evidence simply does not exist for A at this

point of the text.

What should happen when a user is searching for agreements? Should the search

stop when the last token of A is reached? This would need an adaptation of the

Agreement widget and the collation results. First, the comparison process should

ignore a witness after its last token was reached. Secondly, the collation table should

also indicate explicitly the state of a witness, whether the manuscript is extant or

not.

8.7 Conclusion

In summary, we have identified three specific needs of editors and readers who wish

to study collation results: visualising paratextual elements, discovering common

errors or unique errors in order to apply Lachmann’s method, and sharing their

conclusions with others who should be able to reproduce the reasoning.

23Green and red were used for this demonstration, as they are colours commonly associated to
the idea of true or false. However, it may not be the best set of colours for an inclusive design that
should also take into account users with colour-blindness issues.

295

8.7. Conclusion

The visualisation of paratextual elements was implemented in the HTML collation

tables. Editorial notes or comments related to tokens can be displayed, as well

as the location of tokens in their respective witnesses. When available, a link to a

digital facsimile allows for others to check in the manuscripts if the transcription is

correct, or to see difficult passages such as lacunae directly in the source material.

Although these paratextual elements are not visible in the collation tables of the

Jupyter notebook, they are always accessible through the widget for clarifying a

reading.

The application of Lachmann’s method to the collation results is made possible

via the use of colours, and the Agreements widget. First, the use of red and green

colours serves to distinguish between errors and true readings, according to a

selected base text. In parallel, the use of the Agreements widget let users filter

the collation results in order to find readings common to a group of witnesses or

readings unique to one witness. These readings can then be analysed to make

inferences about the witnesses relationships. However, it is important to keep in

mind as well how the comparison is performed in the Notebook to find shared read-

ings, and how normalisation impacts the collation tables obtained when searching

for agreements of witnesses. The comparison of normalised forms, for instance,

means that only substantial differences will be displayed, but not orthographic

differences or changes in word division. Errors and true readings should also be

carefully considered as the product of an editor’s judgement on the text, in this case

the decisions of Håkanson.

In this case we have been able to reproduce Håkanson’s conclusions, but it is

possible that other editors will reach different conclusions. By sharing the JSON

collation file and using the PyCoviz notebook, users are able to share their results

and let other scholars reproduce the tables that stand behind their edition. However,

users need to be able to document which table is created from which collation file,

and with which version of the Python code. It should also be noted that critical

decisions are integrated into the code: for instance the decision about what makes

a significant variant and what can be ignored (such as word division), or the choice

of the base text which will generate the distinction between errors in red and true

readings in green. The code is more than just technical, it requires also the editor’s

point of view. As a critical edition is considered to be an argument about a text,

it is possible to view the PyCoviz interface and its code as an argument about the

process of editing. For instance, the inclusion of a base text in the comparison, even

as an optional parameter, makes an argument about how to edit the text: it may

be a valid argument for texts such as the Declamations, which are edited following

296

8.7. Conclusion

the Neo-Lachmannian method, but less so for texts studied from the perspective of

genetic criticism, such as Beckett’s works.

The case study of Calpurnius Flaccus was based on a particular collation format

obtained with an automated collation tool, CollateX. Nevertheless, the methodol-

ogy behind the creation of this visualisation is focusing on an editor’s needs, rather

than the method behind the creation of the collation file. Therefore, this kind of

visualisation should be applicable as well to collation prepared manually and in

different digital formats. For example, the same visualisations could be obtained

from an edition encoded in TEI P5 with <app> elements to encode variants.

297

Conclusion

IN this section, I wanted to test different collation tools, and determine which were

most useful in the creation of a digital critical edition. I transcribed the witnesses

of the Declamations of Calpurnius Flaccus, and used the XML transcriptions to

generate the inputs for automated collation in different formats. I then compared

the three tools CollateX, Juxta and the Classical Text Editor. The outcomes were

twofold: first, the selection of CollateX as the most convenient tool, and second,

the creation of a visualisation tool to help editors analyse the collation results.

While testing the different tools, it became apparent that there were many possible

combinations of input format, collation tool, algorithm options and output format,

all of which would influence the quality of the collation results with regard to accu-

racy, visualisation and ease of further processing. As a whole, CollateX and Juxta’s

results were similarly accurate, although a few combinations of input and output

formats could produce useless results in CollateX. CTE was less accurate at first,

but later modifications to the algorithm improved the results. Juxta’s visualisations

were the most user-friendly, and CTE’s results more suitable for the preparation

of a printed edition. CollateX’s results were more flexible for further processing,

which made it more interesting.

The conclusion of this comparison is that editors need to know in advance what they

wish to do in order to choose the best tool. However, this can be hampered by the

constant evolution of collation tools: all three tools evolved during this dissertation,

and at least five new tools became available between 2014 and 2017. This highlights

the need for tool criticism to help scholars select the most appropriate tool. The

framework proposed in Chapter 2 was therefore a useful guidance in order to

compare the three collation tools, and to better understand the potential of other

recent tools, such as LERA for instance.

Comparing the various output formats available, the CollateX JSON output was

chosen in order to create a new visualisation tool with Python: PyCoviz. The advan-

298

tage of CollateX’s JSON output was the possibility to include additional information

associated to words in the text (such as their position in the manuscript, or an edito-

rial comment), after the transformation of words into tokens. The JSON output was

also easily manipulated with the Python script, in order to filter the collation results

and visualise sets of variants particularly useful to editors, such as the agreements

of groups of witnesses in order to establish the relationships between witnesses.

299

General Conclusion

THE purpose of the thesis was to study the application of automated collation to

a Latin text, and examine both the theoretical and practical aspects. I set out

to answer questions such as: what is automated collation? How does it differ from

the traditional method? What may discourage scholars from adopting it? What are

the existing collation tools, and how are they different from each other? How can

their results help scholars in the creation of a digital critical edition?

n

In the first part of the thesis, I have approached the topic from a theoretical per-

spective. In Chapter 1, I started with a presentation of traditional manual collation:

its definition, purpose, and its methodology. The important point highlighted in

this chapter was that collation is a critical activity. Moreover, what is recorded in a

collation should not be dependent on the medium (paper versus electronic files).

Then in Chapter 2, I have presented automated collation in detail: how its name,

definition and purpose have evolved over time, as researchers distanced themselves

from the manual method and the goal of a printed edition, turning instead to the

alignment algorithms and output formats flexible enough for different purposes.

The methodology was also examined, especially with respect to the main differ-

ences between manual and automated collation, i.e., transcription and the use of a

base text.

A survey of collation tools revealed that researchers are still actively updating

existing tools and creating new ones. As a result, it appeared that users would

greatly benefit from a framework to compare and criticise tools, in order to choose

the most adapted to their own needs. Therefore I selected a set of criteria to

300

compare collation tools, inspired by the field of tool criticism (Chambers et al. 2017)

and previous surveys (such as Huculak and Richardson 2013). The purpose of these

criteria was not to make a definitive judgement about the tools, but to provide

the information necessary to select an appropriate tools in a given context. For

instance, I have chosen CollateX, but others have preferred a tool with a more

user-friendly interface, or wanted a different algorithm. In practice, these criteria

have proven useful to understand the new tools which were created in the years

after I started this dissertation, and to compare collation tools (see Chapter 7).

In Chapter 3, I have focused more particularly on the issues of transcription, which

is a necessary step for automated collation, but is also often advanced as an ar-

gument against it. The comparison of transcription with collation, thanks to an

extended model of transcription (Huitfeldt, Marcoux, and Sperberg-McQueen

2008), showed that transcription and manual collation are very similar activities.

It also highlighted a more subtle difference between how scholars think of ma-

nual collation (a database of variant readings) and automated collation (alignment

of texts with the insertion of gaps). This conceptual difference may drive some

scholars away from automated collation, as they do not believe it will respond to

their needs.The analysis of transcription issues also led to other questions such as

what makes a witness, and how text is processed into tokens, the units of textual

comparison.

Finally, inspired by my experience with CollateX, I have proposed to model read-

ings, a technical term of textual criticism which refers to the content of the text

at a given point, as tokens with various properties (Chapter 4). The purpose of

this model is to facilitate the selection of a relevant set of variants, depending on

the context of the textual tradition and the purpose of the edition. The properties

t and n of CollateX tokens are a promising mechanism to discriminate between

substantive and accidental variation for instance. As only simple theoretical ex-

amples were considered in this chapter, it would be interesting to test further the

application of this model on a real text and with additional properties besides t and

n. While I wanted to experiment with the text of Calpurnius Flaccus, I have faced

visualisation issues (see Chapter 8). Another question raised by this model was the

representation of tokens, and collation, for non-textual elements. The concept of

tokens could be applied in the future for instance to mathematical diagrams, as

the collation of diagrams is desirable to improve our knowledge of the traditions of

scientific texts (Saito 2006).

301

n

In the second part of the thesis, I took the text of the Latin author Calpurnius

Flaccus as a case study to test different collation tools and identify how their results

can concretely help creating a digital scholarly edition. In Chapter 5, I described

the tradition of the Declamations of Calpurnius, and the method I followed from

transcription to collation, and visualisation of the collation results.

The transcription encoding with TEI XML was described in Chapter 6, whereas

in Chapter 7, I compared the tools CollateX, Juxta and the Classical Text Editor

(CTE). The accuracy of the collation results was not significantly affected by the

three collation algorithms, except for the first test with CTE which was markedly

less accurate than the others. This chapter highlighted how each tool has evolved

even as I was working, which illustrates well the need to be able to compare tools

with the criteria proposed in Chapter 2. The workflow issue was also mentioned:

since the workflow can be divided between multiple tasks (such as transcription,

collation, visualisation) that must be performed with different tools, a seamless

workflow is important in the context of digital editing (Barabucci and Fischer 2017).

Each tool examined had different advantages: CTE would be more relevant to

scholars typesetting a printed edition, which was not the focus of this thesis. Juxta

had the most user-friendly graphical interface that provided great visualisations.

On the other hand, Juxta had some limitations for scholars in the process of editing

a text, since the collation results are not easily manipulated within Juxta. CollateX

was the preferred tool for this thesis, because of the flexibility of its input and

output. As a result, I have used CollateX JSON output to explore the collation of

Calpurnius Flaccus in the last chapter.

Scholars have expressed doubt about the ability of collation tools to support tradi-

tional textual criticism (see Chapter 3). In Chapter 8, I began by assessing the needs

of editors, and then I described a visualisation tool that I have created, showing

how CollateX’s results can help the analysis of Calpurnius Flaccus. It was used for

instance to explore the relationships between witnesses such as the editio princeps

and the manuscripts, or the origins of corrections by a second hand in manuscript B.

Although the case study did not yield new insights into the tradition of Calpurnius

Flaccus, it helped reproducing Håkanson’s conclusion. The purpose was not to

create a critical edition, but to exemplify how the digital visualisation can help

302

editors in their task.

Chapter 8 underlined the importance of taking into account the traditional Neo-

Lachmannian method in order to create dynamic visualisations. This chapter

also demonstrated how a digital methodology did not deprive editors from apply-

ing their individual judgement. However, users of computer programmes should

be aware of the implicit decisions which are embedded in the code of such pro-

grammes. Finally, the chapter also discussed the importance of good practices

for digital scholarship which should allow for sharing, reproducing, and reusing

research.

n

In conclusion, I would like to come back to the claim that automated collation

has changed our understanding of collation. As we have discussed previously,

the change from manual collation to automated collation led scholars to think of

collation not as a database of variants but more as the alignment of textual versions.

This has in turn broadened the scope of automated collation to include not only the

search for variant readings, but also instances of text reuse (Yousef and Palladino

2016). The new methodology of transcription followed by automated collation may

not imply less work than the traditional method, but its results provide much more

flexibility with reuse and visualisation options (Houghton and Smith 2016). This

was exemplified with the tool created for this dissertation.

303

PART III

APPENDICES

ATheory

THIS Appendix to the Theory part contains two items: a list of automated col-

lation tools, which was discussed especially in Chapter 2, and the file for the

collation model of Chapter 3.

A.1 List of tools — Automated Collation

Here is a list of all collation tools that I have found in scholarly literature, most of

which are discussed in Chapter 2. They are presented in chronological order, usually

according to the first available publication which describes a working program. For

some programs, it can be difficult to pinpoint a date of creation, such as for TUSTEP:

in this case I have chosen the date of publication of the first edition created with

the help of TUSTEP.

A list of sources is included, where other publications referring to the program may

appear. When available, the name of the program is also added, as well as short

history (who created the program, to edit which text, and so on). Finally, there may

be a comment on the program’s status, mentioning for instance if the program is

still in development, is open source or under a commercial license, and links to

pages where the program can be obtained for the most recent tools.

This list of automated collation tools already contains over 25 programs, created

between 1960 and 2016, and it is likely not exhaustive. At least eleven of these tools

are available today. Some programs have been much more successful than others,

as the sources can attest, but the continuous efforts from scholars all over the world

shows that, despite its issues and criticism, automated collation is an attractive

solution to the comparison of multiple textual witnesses during the critical editing

of a work.

305

A.1. List of tools — Automated Collation

1962 Dearing (1), Methods of Textual Editing.

Sources: Dearing 1962, Dearing 1970.

History: the program was created in the spring of 1962 by computer scientist

Ronald Bland, for an IBM 7090 (Dearing 1962, 1). He was helped by Dearing’s

friend Charles Hobb, and Dearing admits that neither was paid for their work

(Dearing 1962, 18). This is the first known description of a collation program

in a scholarly publication. It was created to collate the work of John Dryden,

an English poet and playwright of the 17th century.

1967 Maretti and Zarri, Collatio Codicum: An Exercise in COMIT Programming.

Sources: Maretti and Zarri 1967, Boretti 2009.

History: in this contribution, Maretti and Zarri (1967) do not give any expla-

nation on the program’s history. According to Boretti (2009, 11), a student of

the University of Pisa, Zarri used this program to collate a manuscript of the

Latin poet Catullus.

1968 Froger, La critique des textes et son automatisation.

Sources: Froger 1966, Froger 1968, Froger 1970, Gilbert 1973, Duplacy and

Huret 1977, Hockey 1980.

History: Froger started to work on automated collation in 1960 already. The

collation program was created by Ms. Renaud at the Company Bull G. E. and

was used to collate a short Latin text of the 6th Century AD (Froger 1966).

At the time, there was no other existing program for automated collation.

By 1966, however, technological progress had already rendered the program

obsolete (Froger 1966). While the 1968 essay is the most important contribu-

tion of Froger, his article of 1966 is much more detailed on how the program

actually works.

1968 Silva and Bellamy, Some Procedures and Programmes for Processing Lan-

guage Data.

Sources: Gilbert 1973, Hockey 1980, Schmidt 2013.

Name: EDIT.

1970 Dearing (2), Computer Aids to Editing the text of Dryden.

Sources: Dearing 1970, Gilbert 1973, Stringer and Vilberg 1987, Hockey 1980,

Shillingsburg 1996.

History: this is a new version of the program developed in 1962. Because of a

change in computer material on the campus of the University of California

where Dearing was working, a new version was required to accommodate the

new machines. It was written in Fortran by Richard Bandat (Dearing 1970,

260).

306

A.1. List of tools — Automated Collation

1970 Gibson and Petty, Project OCCULT: The Ordered Computer Collation of

Unprepared Literary Text.

Sources: Gibson and Petty 1970, Widmann 1971a, Gilbert 1973, Hockey 1980,

Marín 1991.

Name: OCCULT.

History: the work on a collation program started in 1964 to collate the works

from 19th century American writers with more accuracy than when it was

done by scholars, or more often by graduate students (Gibson and Petty 1970,

280). The program was designed to collate prose texts and was first tested

with two very different versions of Daisy Miller, a short novel by Henry James,

which served as an extreme case study to check the program’s accuracy. How-

ever, the results were not satisfying, in part because the communication

between literary scholars and computer programmers was not always suc-

cessful. In a second attempt, Petty wrote himself the program, to be make

sure that the decisions they made as textual scholars ‘would not be circum-

vented when they were translated into machine code’ (Gibson and Petty 1970,

288).

1970 Cabaniss, Using the Computer for Text Collation.

Sources: Cabaniss 1970, Widmann 1971a, Gilbert 1973, Hockey 1980, Marín

1991.

History: along with OCCULT (Gibson and Petty 1970), it was one of the first

program to propose full text collation without limitation of the text’s length,

and not only line-by-line collation as was done for poetry (Cabaniss 1970,

1). The program was not designed for a specific textual tradition, but it was

tested with extracts from the French translation of De Proprietatibus Rerum, a

Latin text written around 1230 by the Franciscan friar Bartholomeus Anglicus

and translated in French in 1372 (Cabaniss 1970, 10).

1971 Widmann, The computer in historical collation: use of the IBM360/75 in

collating multiple editions of A Midsummer Night’s Dream.

Sources: Widmann 1971a, Widmann 1971b, Gilbert 1973, Hockey 1980.

Name: FORMAT.

History: Widmann adopted an automated collation workflow in order to pre-

pare a new Variorum Edition of Shakespeare’s A Midsummer Night’s Dream,

and to compare 80 to 120 printed editions of the play (Widmann 1971b, 57).

1972 TUebingen System von TExtverarbeitungs-Programmen.

Sources: Ott 1989, Ott 1991, Kopp, Küster, and Ott 2000,Raabe 2008a, Boretti

2009, Huculak and Richardson 2013, Andrews 2014b, Nyhan and Flinn 2016

307

A.1. List of tools — Automated Collation

ITUG website1, TUSTEP website2.

Name: TUSTEP, TXSTEP.

Status: the program is still in development, and is available to download from

the TUSTEP website. At the time of writing, the latest versions are 2017 for

TUSTEP, and February 2017 for TXSTEP. Since 2011, TUSTEP is open source

and under a revised BSD license.

History: the Tübingen System of Text-Processing Programs was the result of

a series of projects carried out at in the University of Tübingen, Germany. Its

conception started shortly after the Zentrum für Datenverarbeitung (ZDV)

was created in 1966, and was further developed after a center for processing

literary documents (LDDV) was created in 1970 and lead by Wilhelm Ott

(Ott 1991). The first edition using TUSTEP was published in 1972, and the

program earned its surname ‘TUSTEP’ in 1978 (ITUG website). In 2010,

Tobias Ott presented a new XML version, TXSTEP, intended to make the

program more accessible to a wider audience through an English interface,

and the addition of XML files among the possible input formats (TUSTEP

website).

1973 Gilbert, Automatic Collation: A Technique for Medieval Texts.

Sources: Gilbert 1973, Gilbert 1974, Gilbert 1979, Hockey 1980, Marín 1991.

Name: COLLATE.

History: the program was designed to prepare a critical edition of a medieval

prose text with a limited manuscript tradition, the Quaestiones super libros

Metaphysicae of Johannes Buridanus, at the University of Manitoba (Gilbert

1973, 144). The program had to deal with a medieval commentary, which

raised specific challenges: in particular a technical and repetitive vocabulary,

and the recursive format of questions followed by answers (Gilbert 1973,

245). COLLATE was an entire editing system comprising several programs

in a modular structure, only part of which was dedicated to collation Gilbert

(1974).

1978 Shillingsburg, Computer Assistance to Scholarly Editing.

Sources: Shillingsburg 1978, Shillingsburg 1980, Marín 1991, Siemens 1994,

Shillingsburg 1996, Raabe 2008a.

Name: PC-CASE, MAC-CASE.

History: PC-CASE is an integrated system of editing with a computer, de-

signed for ‘very long prose texts for which there are up to eight variant texts’

(Shillingsburg 1996, 144). There was also a hypertext version for a Macintosh

1http://www.itug.de/ (Accessed May 24, 2017).
2http://www.tustep.uni-tuebingen.de/tustep_eng.html (Accessed May 24, 2017).

308

http://www.itug.de/
http://www.tustep.uni-tuebingen.de/tustep_eng.html

A.1. List of tools — Automated Collation

operating system, MAC-CASE (Shillingsburg 1996, 139). The program was

created by Susann Folett and Russel Kegley for the Thackeray edition at the

Mississippi State University (Shillingsburg 1978, 453).

1987 Stringer and Vilberg, The Donne Variorum Textual Collation Program.

Sources: Stringer and Vilberg 1987, Greetham 1994, Siemens 1994, Shillings-

burg 1996, Raabe 2008a, Huculak and Richardson 2013, Donne Variorum

website3.

Name: Coll60, DV-COLL.

Status: the program is still available to download from the Donne Variorum

website, but it runs on Windows operating systems up to Windows 7 only.

The software is freely available under the GNU General Public License.

History: the tool was originally created for the Donne Variorum project, by

the computer support personnel at The University of Southern Mississippi

and other consultants (Donne Variorum website). John Donne was an En-

glish poet of the seventeenth century, and his work has a large tradition:

about 87 manuscript sources and close to 400 print versions of individual

poems (Stringer and Vilberg 1987). Stringer and Vilberg benefited from the

work of Vinton Dearing and his colleagues, who shared with them the code

of two collation programs (Stringer and Vilberg 1987, 85). DV-COLL is the

most recent version of the program, which was adapted from its predecessor

Coll60 (see the Donne Variorum website for more details).

1989 Robinson, The Collation and Textual Criticism of Icelandic Manuscripts

(part 1 and 2).

Sources: Robinson 1989a, Robinson 1989b, Hilton 1992, Robinson 1994,

Hockey 2000, Reeve 2000, Robinson 2007b, Raabe 2008a, Boretti 2009, Robin-

son 2009, Andrews 2014b.

Name: Collate (0-1-2).

History: the history of Collate and its following developments are described

extensively in a blog post by Peter Robinson (2007b). The first version (Col-

late 0) was created to collate and edit forty-four manuscripts of an Old Norse

poem, the Svipdagsmal saga, as part of his PhD thesis (Robinson 1989a). This

first program was inspired by Gilbert’s work on collation and in particular

her use of the computer to further manipulate collation results (Robinson

1991, 87, note 24). Later Robinson updated the program to a new version

released in 1991 (Collate 1), with a graphical user interface that would make

the program available to other researchers (Robinson 1994). A new release

3http://donnevariorum.tamu.edu/toolsandresources/collation-so�ware/ (Accessed May 19,
2017).

309

http://donnevariorum.tamu.edu/toolsandresources/collation-software/

A.1. List of tools — Automated Collation

of Collate in 1996 was labeled ‘Collate 2’ (see also the history of collate in

Section 2.3). Chaucer’s Wife of Bath prologue from the Canterbury Tales

as well as Dante’s Monarchia, among other texts, were edited with Collate

(Robinson 2009). Robinson then started to design a new version that would

handle XML (Robinson 2007b), but this finally became a new collation tool,

CollateX, which will be described later.

1989 Cannon and Oakman, Interactive Collation on a Micro-Computer: the

URICA! Approach.

Sources: Cannon and Oakman 1989, Marín 1991, Hilton 1992, Shillingsburg

1996.

Name: URICA!, URICA! II.

History: the impulse to create a new collation tool was given by Father Green

at St. Bonaventure University (New York) in 1984, when he started a new

edition of Duns Scotus, a Scottish theologian of the 13th century. He had at

his disposal one printed text and ten manuscripts in Latin that needed to be

transcribed, and then collated, and he turned for help to the University of

South Carolina (Cannon and Oakman 1989). The URICA! System was then

adopted by other scholars and it was installed in thirty-five different sites

according to Hilton (1992). While the first version was available on PC, the

second one is designed for Macintosh and brings improvements on several

points such as the interface or the possibility to perform semi-automatic

collation with well integrated user interactions (Hilton 1992).

1989 Marín and García, Requisitos para la edición crítica informatizada: UNITE.

Conjunto de programas para la Unificación automática de Textos. Versión

para microoordenatores SUN.

Sources: Marín and García 1989, Marín 1991, Siemens 1994, Shillingsburg

1996.

Name: UNITE.

History: UNITE is a set of tools for editors to collate up to 6 versions of a text

(Marín 1991, 110). As a test case, it was used on the Libro de Alexandre, a

Castilian poem of the 13th century. However, UNITE was not designed for a

specific textual tradition (Marín 1991, 109).

1994 Horton, Sequence Comparison and Old-Spelling Texts.

Sources: Horton 1994.

History: Horton created two collation programs, in order to test algorithms.

Horton compared the efficiency of different algorithms, collating two version

of Shakespeare’s play Love’s Labours Lost.

310

A.1. List of tools — Automated Collation

2000 Salemans, Building Stemmas with the Computer in a Cladistic,

Neo-Lachmannian, way: the Case of Fourteen Text Versions of Lanseloet

van Denemerken.

Sources: Salemans 2000.

History: in the context of his PhD dissertation, Salemans created a suite of

tools to build a stemma for the text of Lanseloet van Denemerken. Among

these tools seems to have been a collation program. The tools are described

in appendix A on the CD-ROM which accompanies the thesis (Salemans 2000,

106).

2002 Urbina et al., Critical Editing in the Digital Age: Informatics and Humani-

ties Research.

Sources: Urbina et al. 2002, Monroy et al. 2002.

Name: Collator.

History: The Collator program was created at the Cervantes Project digital

library, for an electronic Variorum Edition of Don Quixote de la Mancha

(Urbina et al. 2002; Monroy et al. 2002). It is a part of a larger editing system

with several modules, the Multi-Variant Editor for Documents (MVED).

2005 Juxta.

Sources: Raabe 2008c, Raabe 2008a, Boretti 2009, Huculak and Richardson

2013, TEI Consortium eds. 2013, Prebor 2013, Kingsley 2014, Wheeles and

Jensen 2014, Zeevaert 2015, Yousef, Palladino, and Crane 2017, Juxta Software

website4, Juxta Commons website5, Juxta Editions website6.

Name: Juxta (desktop application), Juxta (Web Service), Juxta Commons,

Juxta Editions.

Status: the desktop application and web service on which Juxta Commons is

built are both open source on Github7.

History: Juxta was originally developed in 2005 as a desktop application

by the Applied Research in Patacriticism (ARP) group8 at the University of

Virginia (Wheeles and Jensen 2014). The project was then taken up by the

scholarly organisation NINES9 and the company Performant Software, and

in 2012 the Juxta Commons interface was released. In 2015, a new interface

4http://www.juxtaso�ware.org (Accessed May 19, 2017).
5http://juxtacommons.org/ (Accessed May 19, 2017).
6http://juxtaeditions.com/ (Accessed May 19, 2017).
7https://github.com/performant-so�ware/juxta-desktop and https://github.com/performant-

so�ware/juxta-service (Accessed May 19, 2017).
8ARP was a Digital Humanities lab run by Jerome McGann and Johanna Drucker at the University

of Virginia: https://en.wikipedia.org/wiki/Applied_Research_in_Patacriticism (Accessed May 14,
2017).

9See http://www.nines.org (Accessed May 19, 2017).

311

http://www.juxtasoftware.org
http://juxtacommons.org/
http://juxtaeditions.com/
https://github.com/performant-software/juxta-desktop
https://github.com/performant-software/juxta-service
https://github.com/performant-software/juxta-service
https://en.wikipedia.org/wiki/Applied_Research_in_Patacriticism
http://www.nines.org

A.1. List of tools — Automated Collation

called Juxta Editions was released, with different subscription plans (a basic

free account, or paid subscriptions).

2009 Andrews, Prolegomena to a critical edition of the Chronicle of Matthew

of Edessa, with a Discussion of Computer-Aided Methods Used to Edit the

Text.

Sources: Andrews 2009, Huculak and Richardson 2013.

Name: Encritic, ncritic, Text::TEI::Collate.

Status: open source and available on Github10, as well as a Perl CPAN mod-

ule11.

History: Andrews created the program Encritic for her PhD thesis, to edit an

Armenian medieval text (Andrews 2009).

2009 Schmidt and Colomb, A data structure for representing multi-version texts

online.

Sources: Schmidt and Colomb 2009, Schmidt 2009, Schmidt 2010, Dekker

and Middell 2011, Schmidt 2013, Schmidt and Eggert 2015, Jänicke et al. 2015,

Ecdosis website12.

Name: nmerge, Compare.

Status: available from a Google Code repository13. The code is also available

on the Ecdosis Github page14.

History: The tool was created especially in reaction to the use of embedded

markup such as XML TEI, which makes it difficult to deal with overlapping

hierarchies (Schmidt and Colomb 2009; Schmidt 2010). First created at the

Loyola University Chicago’s Center for Textual Studies and Digital Human-

ities, for the HRIT project (Huculak and Richardson 2013), nmerge is was

supported by the AustESE project and is now hosted on Ecdosis15. It was

used to create the Charles Harpur Critical Archive (Schmidt and Eggert 2015).

2009 TEI Comparator.

Sources: Cummings and Mittelbach 2011, Cummings 2013, Huculak and

Richardson 2013.

10https://github.com/tla/ncritic (Accessed May 22, 2017).
11https://metacpan.org/pod/Text::TEI::Collate (Accessed May 22, 2017).
12http://ecdosis.net/main/ (Accessed June 13, 2017).
13The last update dates back from July 2011. https://code.google.com/archive/p/

multiversiondocs/ (Accessed May 29, 2017).
14https://github.com/Ecdosis (Accessed May 27, 2017).
15See also: http://hritwiki.ctsdh.luc.edu/home for HRIT (Accessed May 29, 2017). AustESE

is the Australian Electronic Scholarly Editing: http://www.itee.uq.edu.au/eresearch/projects/
austese/(Accessed May 29, 2017). Ecdosis is ‘is a set of tools for digitising cultural heritage texts for
the Web and ebooks’: http://ecdosis.net/ (Accessed May 27, 2017).

312

https://github.com/tla/ncritic
https://metacpan.org/pod/Text::TEI::Collate
http://ecdosis.net/main/
https://code.google.com/archive/p/multiversiondocs/
https://code.google.com/archive/p/multiversiondocs/
https://github.com/Ecdosis
http://hritwiki.ctsdh.luc.edu/home
http://www.itee.uq.edu.au/eresearch/projects/austese/
http://www.itee.uq.edu.au/eresearch/projects/austese/
http://ecdosis.net/

A.1. List of tools — Automated Collation

Name: TEI Comparator.

Status: available from the TEI comparator website16, under GNU General

Public License version 3.0.

History: The TEI Comparator was developed at Oxford University by James

Cummings, Sebastian Rahtz, and Arno Mittelbach, for the Holinshed project.

The purpose was to compare two versions, encoded in XML TEI files, of the

Chronicles of England, Scotland, and Ireland, a collaborative work of histori-

ography published in 1577 and 1587 (Cummings 2013). The TEI-Comparator

was launched in 2009, and its primary goal was to create links between the

two texts at paragraph level (Cummings and Mittelbach 2011).

2010 Roelli and Bachmann, Petrus Alfonsi or On the mutual benefit of tradi-

tional and computerised Stemmatology.

Sources: Roelli and Bachmann 2010, Roelli 2014.

Status: unpublished. May be available from Philipp Roelli upon request.

History: it was developed for the edition of Petrus Alfonsi’s Dialogus, a me-

dieval text with a large manuscript tradition (Roelli and Bachmann 2010). The

program written in Perl is meant to be used directly with the phylogenetic

software Phylip, to create a stemma (Roelli, private correspondence).

2011 Dekker and Middell, Computer-Supported Collation with CollateX: Man-

aging Textual Variance in an Environment with Varying Requirements.

Sources: Dekker and Middell 2011, Raabe 2014, Dekker et al. 2015, Raabe

2015, Jänicke et al. 2015, Yousef, Palladino, and Crane 2017, CollateX web-

site17.

Name: CollateX.

Status: Open source, the code is available on Github under the licence GNU

General Public version 318. Still under development, CollateX is version 1.7.1

at the time of writing.

History: the project of creating a successor for Peter Robinson’s Collate started

in 2010 (CollateX website). CollateX development was led by Ronald Dekker

and Gregor Middell, and it was funded by Interedition, a COST Action promot-

ing the interoperability of tools in the the field of scholarly digital editing19.

Although the project started as rewriting a version for Collate, the new Col-

lateX took a different approach and is now a separate tool. Collate was a

complete system of scholarly editing, from collation of textual witnesses to

16http://tei-comparator.sourceforge.net/ (Accessed May 29, 2017).
17http://collatex.net (Accessed May 29, 2017).
18https://github.com/interedition/collatex/ (Accessed May 29, 2017).
19http://interedition.eu/ (Accessed May 29, 2017).

313

http://tei-comparator.sourceforge.net/
http://collatex.net
https://github.com/interedition/collatex/
http://interedition.eu/

A.1. List of tools — Automated Collation

the preparation of a critical text with apparatus, wrapped in a graphical user

interface. On the other hand, CollateX focusses rather on the alignment of

various versions of a text, and is built upon the interoperability principle, so

as to be embedded easily within other software systems and to be flexible

enough to deal with the challenges of different textual traditions (CollateX

website). The prototype of CollateX, a Java based application, was presented

in 2011 (Dekker and Middell 2011). In 2014, the first Python version was

released with a new collation algorithm20.

2015 Jänicke et al., TRAViz: A Visualization for Variant Graphs.

Sources: Jänicke, Geßner, and Marco 2014, Jänicke, Büchler, and Scheuer-

mann 2014, Jänicke et al. 2015, Yousef, Palladino, and Crane 2017, TRAViz

website21.

Name: Sentence Alignment Flows, TRAViz.

Status: open source, the code is available from Stefan Jänicke’s Github reopsi-

tory22. It is licensed under the Fair Academic License (FAL).

History: the first version of the tool, created within the Digital Humanities

project eTRACES, was called Sentence Alignment Flows, and it was designed

to improve the readability of graph visualisations such as the ones produced

by CollateX (Jänicke, Büchler, and Scheuermann 2014). According to TRAViz

website, the tool can align multiple editions of a text and generate an interac-

tive graph visualisation.

2015 Hagel, Classical Text Editor (CTE).

Sources: Hagel 2007, Boretti 2009, CTE help manual23, CTE website24.

Name: Classical Text Editor.

Status: under commercial license, a 30-day trial version can be downloaded.

Version 9.03 at the time of writing.

History: Originally a tool for text editing in which collation was done by

hand, version 9.0 of the CTE introduced the feature of automated collation

in February 2015. Little information is available about how the collation

works, since the software is under commercial license. Hagel declared that

his algorithm is not meant to deal with large scale transpositions (private

correspondence). On the other hand, ‘what may be more innovative is its ro-

bustness against orthographic variation, which [was] achieved by integrating

Levenshtein comparison with a longest-common-sequence comparison on

20https://pypi.python.org/pypi/collatex/2.1.2 (Accessed May 29, 2017).
21http://www.traviz.vizcovery.org/index.html (Accessed May 29, 2017).
22https://github.com/stjaenicke/TRAViz (Accessed May 29, 2017).
23The CTE help manual is accessible only from within the software.
24http://cte.oeaw.ac.at//?id0=main (Accessed May 29, 2017).

314

https://pypi.python.org/pypi/collatex/2.1.2
http://www.traviz.vizcovery.org/index.html
https://github.com/stjaenicke/TRAViz
http://cte.oeaw.ac.at//?id0=main

A.1. List of tools — Automated Collation

the level of words. In this way, it may even correctly compare texts where all

words show orthographical divergence (including different approaches to

word separation at places)’ (private email from Stefan Hagel, 2017).

2015 Chaudhuri et al., Collation: Prabhed and its Predecessors.

Sources: Chaudhuri 2015.

Name: Prabhed.

History: The work on this collation program actually started around 2007,

when Juxta was the most advanced program available. The development

of the two previous collation programs (Tafat and Pathantar), leading to

Prabhed, is described in Chaudhuri (2015). Prahbed and its predecessors

were used to collate works of the Indian poet Rabindranath Tagore (1861 -

1941). However, at the time when the the work started, no program offered a

proper handling for the non-Latin fonts of the Bengali language, the script

used by Tagore (Chaudhuri 2015, 99). The collation tool is integrated within

the digital critical edition Bichitra: Online Tagore Variorum25.

2015 SaDA—Semi-automatische Differenzanalyse von komplexen Textvarianten.

Sources: Bremer et al. 2015, né Gießler Medek et al. 2015, Schütz and Pöckel-

mann 2016, SaDa website26.

Names: LERA and LAKomp.

Status: demo versions available online for LERA27 and LAKomp28.

History: SaDa is a project carried out between 2012 and 2015 at the Martin

Luther University of Halle-Wittenberg. The aim of the project was the ana-

lysis of differences in texts with variants, and the visualisation and analysis

of the results. The project focused on two kinds of texts: medieval or early-

modern texts with a rich tradition not yet sorted out, or texts with complex

adaptations which resulted very different versions that may have each their

own reception and tradition (SaDa website). For these kinds of texts, two

collation tools were developed, LERA and LAKomp. The latter is specifically

designed for earlier languages (such as Early New High German) and provides

annotation facility for part-of-speech tagging prior to collation.

2016 Yousef and Palladino, iAligner: A tool for syntax-based intra-language text

alignment.

Sources: Yousef and Palladino 2016, Yousef, Palladino, and Crane 2017.

Name: iAligner.

25http://bichitra.jdvu.ac.in/bichitra_collation_guide.php (Accessed May 29, 2017).
26http://www.informatik.uni-halle.de/sada (Accessed August 1, 2017).
27https://lera.uzi.uni-halle.de/?lang=en (Accessed August 1, 2017).
28https://lakomp.uzi.uni-halle.de/ (Accessed August 1, 2017).

315

http://bichitra.jdvu.ac.in/bichitra_collation_guide.php
http://www.informatik.uni-halle.de/sada
https://lera.uzi.uni-halle.de/?lang=en
https://lakomp.uzi.uni-halle.de/

A.1. List of tools — Automated Collation

Status: the code is available on Github29, and a limited demo version is also

accessible online30.

History: this recent tool was presented as a poster at the fifth AIUCD Annual

Conference in Venice. It was developed at the Digital Humanities department

of the University of Leipzig. ‘The main aim of the tool is to facilitate various

degrees of textual comparison: in critical editorial practice, it allows the

detection of manuscript variants across several witnesses, including non-

literal variants in instances of textual re-use’ (Yousef and Palladino 2016).

2016 Schubert et al., eComparatio - Editionsvergleich.

Sources: Schubert et al. 2016, Yousef, Palladino, and Crane 2017.

Name: eComparatio.

History: presented at the DH2016 conference, this tool is designed to compare

various editions of ancient texts and create a born-digital critical apparatus.

It is primarily a tool for visualisation (Schubert et al. 2016). eComparatio is a

project developed in cooperation between the Chair for Ancient History of the

University of Leipzig and the ICE (Interdisciplinary Center of E-Humanities

in History and Social Sciences) at the University of Erfurt.

29https://github.com/OpenGreekAndLatin/ILA_python (Accessed December 10, 2017).
30http://www.dh.uni-leipzig.de/tools/Alignment/ (Accessed July 31, 2017).

316

https://github.com/OpenGreekAndLatin/ILA_python
http://www.dh.uni-leipzig.de/tools/Alignment/

A.2. Collation Model

A.2 Collation Model

Here is the Alloy file of the collation model presented in Chapter 3. The file was

used with the Alloy Analyser 4.231 to generate instances of the model. It is available

as well here: https://github.com/enury/phd-automated-collation/blob/master/
collation-model/collation.als.

1 module transcr ipt ion / c o l l a t i o n

2 open u t i l / r e l a t i o n as r e l a t i o n

3 //−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
4 //TYPE

5 s i g Type { }

6 //−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
7 //TOKEN

8 s i g Token {

9 r t t : Reading−>Type ,

10 d : one Document

11 } {

12 // changes to the i n i t i a l readings model

13 // to prevent tokens that are not mapped to a type

14 // every token i s a token in some reading of the document .

15 some r : Reading | t h i s in elems [r . tokenseq]

16

17 //A token i s in document D i f f every reading that includes that token

18 // i s a reading of document D.

19 a l l r : Reading | t h i s in elems [r . tokenseq] implies r . doc = d

20 a l l r : Reading | t h i s in elems [r . tokenseq] i f f r . doc = d

21 a l l r : Reading | a l l t : Type | r−>t in r t t i f f this−>t in r . t t

22 }

23 //−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
24 //DOCUMENT

25 s i g Document { }

26 //−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
27 //READING

28 s i g Reading {

29 // I added the "one"

30 doc : one Document,

31 tokenseq : seq Token ,

32 t t : Token−>Type ,

33 // t t : Token−>one Type // cf . Stackoverflow

34 typeseq : seq Type

35 } {

36 #tokenseq > 0

37 not (hasDups [tokenseq])

38 dom [t t] = elems [tokenseq]

39 function [t t , elems [tokenseq]]

31http://alloytools.org/ (Accessed November 3, 2017).

317

https://github.com/enury/phd-automated-collation/blob/master/collation-model/collation.als
https://github.com/enury/phd-automated-collation/blob/master/collation-model/collation.als
http://alloytools.org/

A.2. Collation Model

40 typeseq = tokenseq . t t

41 }

42 //−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
43 //TRANSCRIPTION

44 // s i m i l a r i t y of 2 documents

45 pred t _ s i m i l a r (e , t : Document) {

46 some r1 , r2 : Reading |

47 { r1 . doc=e

48 r2 . doc= t

49 r1 . typeseq = r2 . typeseq }

50 }

51 // s i m i l a r i t y of 2 readings (added to the i n i t i a l readings model)

52 pred r _ s i m i l a r (r1 , r2 : Reading) {

53 r1 . typeseq = r2 . typeseq

54 }

55 //−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
56 //COLLATION

57 /*A very simpli f ied model : we have 3 d i s t i n c t documents .

58 * A base−text , an exemplar being col lated against the base−text , and the c o l l a t i o n .

59 * I f the base−t e x t and the exemplar share the same reading , then we do not c o l l a t e .

60 * I f the base−t e x t and the exemplar have a d i f f e r e n t reading , then the exemplar ’ s

61 * reading i s transcribed

62 *
63 * So when do we have a s i t u a t i o n of a reading being col lated ?

64 * (1) i f a reading of the base−t e x t and exemplar are d i f f e r e n t

65 * (2) then the readings of the exemplar and c o l l a t i o n are the same

66 * (3) e lse nothing i s transcribed in the c o l l a t i o n document .

67 */

68 pred c o l l a t i o n (d i s j b , e , c : Document) {

69 some r1 , r2 , r3 : Reading |

70 {

71 // reading 1 i s in the base t e x t

72 r1 . doc=b

73

74 // reading 2 i s in the exemplar

75 r2 . doc=e

76

77 // reading 3 i s in transcribed in the c o l l a t i o n i f f r1 (base) and r2 (exemplar)

78 // are d i f f e r e n t

79 not r _ s i m i l a r [r1 , r2] implies { r3 . doc=c and r _ s i m i l a r [r2 , r3] and t _ s i m i l a r [c , e] }

80 else no r : Reading | r . doc=c and t _ s i m i l a r [b , e]

81 }

82 }

83 //−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
84 //COMMAND

85 run c o l l a t i o n

318

BPractice

THIS Appendix contains the electronic files discussed during the Practice part

of this dissertation. They are available both attached to the dissertation, and

online in a Github repository: https://github.com/enury/phd-automated-collation.

The files are divided into the different stages of collation with CollateX: (1) XML

transcriptions of the witnesses of Calpurnius Flaccus; (2) XSLT file that transforms

XML into JSON for input to CollateX; (3) corrected Collation results from CollateX;

(4) Python interface for the correction and study of collation results; (5) HTML

tables that were used for analysing the manuscript tradition of the Declamations.

This Appendix provides, for each file, a reference to the chapters where they are

discussed, a summary of the content of the files, and at least one sample figure.

B.1 XML Transcriptions

Reference The TEI XML transcriptions of Calpurnius Flaccus witnesses are de-

scribed in Chapter 6. The witnesses include five manuscripts, ABCMN, the editio

princeps by Pithoeus (1594), P1594, and the critical edition of Håkanson (1978), LH.

The seven files include transcriptions for the five manuscripts and two editions,

as well as a master file that gathers all witnesses: 1. A.xml; 2. B.xml; 3. C.xml;

4. M.xml; 5. N.xml; 6. LH.xml; 7. all_witnesses.xml. The XML files are available

at https://github.com/enury/phd-automated-collation/tree/master/XML.

Summary The description of the transcription files in Chapter 6 is divided into

structure and content. The structure is the division of the text in pages, decla-

mations, lines and words. The content refers to the manuscripts encoding of

abbreviations, orthographic regularisations, scribal corrections, unclear passages

or lacunae, editorial comments, and so on. In addition, the encoding of the critical

apparatus of Pithoeus and the encoding of the critical edition of Håkanson are

outlined.

319

https://github.com/enury/phd-automated-collation
https://github.com/enury/phd-automated-collation/tree/master/XML

B.2. XSLT Tranformation

(a) XML transcription of the incipit in Pithoeus (1954).

(b) Content of the master file that gathers all transcriptions.

Sample The Appendix B.1 shows two examples from the XML transcription files.

B.2 XSLT Tranformation

Reference The XSLT transformation is described in detail in Section 7.1.3, From

XML to JSON. The transformation scenario was performed in oXygen 1.7, with XSLT

and XPath 2.0, and the tranformation engine Saxon-PE 9.6.0.7. The file witnesses-

to-json.xml is available at: https://github.com/enury/phd-automated-collation/
tree/master/XSLT.

Summary The XSLT transformation takes the XML transcription files and trans-

forms them into the JSON input format for CollateX. The XSLT transforms each

witness word-by-word into JSON tokens, which include the original form of the

word, the location of the word in the witness and the number of the Declamation in

which the word appear. In addition, the tokens may also include an editorial note,

and a link to a digital facsimile. The transformation goes through two stages, first

the TEI XML is transformed into another XML format, which is again transformed

into JSON.

Sample The following figures show parts of the two stages in the XSLT code.

The first figure B.2(a) shows how a witness is first transformed into a <witness>

element. The second figure B.2(b) shows the template that transforms again a

<witness> element into JSON format.

320

https://github.com/enury/phd-automated-collation/tree/master/XSLT
https://github.com/enury/phd-automated-collation/tree/master/XSLT

B.3. JSON Collation Results

(a) XSLT witness template - first stage.

(b) XSLT witness template - second stage.

Figure B.2: Example from the XSLT transformation files.

B.3 JSON Collation Results

Reference The JSON output of CollateX is described in Chapter 8, the visuali-

sation of collation results, in Section 8.4.1 which describes the structure of Col-

lateX output. The file 2018-03-02-BCMNPH.json contains the corrected version

of Calpurnius’ collation, available at: https://github.com/enury/phd-automated-
collation/tree/master/pycoviz/json-collations.

Summary The JSON output of CollateX contains a list of witnesses, and a col-

lation table. The manuscript witnesses are divided into hands (B1 and B2, for

instance), and manuscript A was not included in this collation file. The collation

table is a complex structure of nested JSON objects and array. Each column of the

table represent the text of a witness, while each row represent the aligned readings

321

https://github.com/enury/phd-automated-collation/tree/master/pycoviz/json-collations
https://github.com/enury/phd-automated-collation/tree/master/pycoviz/json-collations

B.4. HTML Tables

at one point in the text. Here is the structure of the collation table :

• The table is a list of rows: [row 1, row 2, . . . row n].

• A row is a list of cells: [cell 1, cell 2, . . . cell n].

• A cell is a list of tokens: [token 1, token 2, . . . token n].

• A token is a dictionary with several entries, such as “t” or “n”, for instance: "t" :

"foemina", "n" : "femina", "decl" : "1", "locus" : "244r:11" (Manuscript

N).

Sample Figure B.3 shows the first cell of the first row in the table, which is part of

the incipit of Calpurnius Flaccus. This sample was formatted for a better visualisa-

tion. However, the JSON output of CollateX is not formatted, and is quite difficult

to study in JSON format. Instead, it should be visualised in some way, such as a

collation table in HTML.

B.4 HTML Tables

Reference The HTML collation table visualisation is discussed in Section 8.2.2.

The appendix also includes tables which were used as argument in Section 8.5

when analysing the tradition of Calpurnius Flaccus. The files include:

Template template.html is the file model for saving new tables created within

PyCoviz (see p. 278).

Example example.html contains a sample table with all the elements available in

the HTML tables of Calpurnius (see p. 251).

Collation and Variants the file complete-collation-html is the complete collation

table of Calpurnius Flaccus, while all-variants.html is the list of all variants

in the collation table.

Pithoeus Two files contain the tables that concern the relationship of Pithoeus

edition with the other manuscripts, P1594-vs-manuscripts.html and P1594-

N-unique-errors.html (see Section 8.5.2.1).

B2 Three files contain the tables about the origins of corrections by the second

hand B2: B2-vs-B1.html is the table of all corrections in B2; the corrections

322

B.5. PyCoviz Jupyter Notebook

are divided between those common to B2, M, N and Pithoeus (B2MNP-

vs-B1.html), and the other corrections are in B2-corrections.html (see Sec-

tion 8.5.2.2).

The tables are available at https://github.com/enury/phd-automated-collation/
tree/master/pycoviz/alignment-tables. In order to be viewed properly in the browser,

the HTML tables should be saved in the same directory as the three folders css,

fonts, and js.

Summary The HTML table is a visualisation of the JSON output from CollateX.

The originality of this particular table visualisation is the addition of paratextual

elements, such as notes or folio and line numbers, which can be shown or hidden

by clicking on symbols. To be properly displayed, the HTML tables need to be

stored in a the same directory as the three other folders which contain the fonts,

the CSS files for styling, and the javascript instructions that enable the display of

paratextual elements.

Sample Figure B.4 shows how the HTML collation table appears in the browser,

while figure B.5 shows a sample of javascript code which makes this visualisation

possible.

B.5 PyCoviz Jupyter Notebook

Reference The PyCoviz interface is extensively described in Section 8.4 PyCoviz:

A Python Interactive Interface. The actual file is a Jupyter Notebook available at:

https://github.com/enury/phd-automated-collation/blob/master/pycoviz/interactive-
collation.ipynb.

Summary PyCoviz content is divided into three different sections. The first sec-

tion imports the necessary Python modules and the JSON collation file to be visu-

alised. The second section contains various functions which are essential to the

interface, such as functions that compare tokens, or that transform the JSON into

HTML. The third section contains the widgets that let users interact directly with

the collation results, by correcting the alignment, selecting agreements between

witnesses, or searching for and clarifying a reading.

Sample The following figure B.6 shows the Agreement widget available in PyCoviz

Section 8.4.2.3). This widget lets users filter the collation results to find readings

shared by a group of selected witness, and not by other witnesses. There are five

323

https://github.com/enury/phd-automated-collation/tree/master/pycoviz/alignment-tables
https://github.com/enury/phd-automated-collation/tree/master/pycoviz/alignment-tables
https://github.com/enury/phd-automated-collation/blob/master/pycoviz/interactive-collation.ipynb
https://github.com/enury/phd-automated-collation/blob/master/pycoviz/interactive-collation.ipynb

B.5. PyCoviz Jupyter Notebook

elements in the Agreements widget: (1) and (2) dropdown menus to select witnesses,

(3) the collation table, (4) a textbox and (5) a save button. Figure B.7 shows the code

which is described in Section 8.4.2.3, and that is used to select variant readings for

the Agreement widget.

324

B.5. PyCoviz Jupyter Notebook

Figure B.3: Example of CollateX JSON output.

Figure B.4: HTML collation table visualised in the browser.

Figure B.5: Sample of javascript code for the HTML collation table.

325

B.5. PyCoviz Jupyter Notebook

Figure B.6: Agreements widget.

Figure B.7: Code that select variant readings for the Agreement widget.

326

Bibliography

Aizpurua, Paul, ed. 2005. Les plaidoyers imaginaires: extraits des déclamations.

Paris: Gallimard.

Andrews, Tara L. 2009. “Prolegomena to a Critical Edition of the Chronicle of

Matthew of Edessa, with a Discussion of Computer-Aided Methods Used to Edit

the Text”. PhD thesis, DPhil. University of Oxford.

– . 2012. “The Third Way: Philology and Critical Edition in the Digital Age”.

Variants 10:1–16.

– . 2014a. “Analysis of Variation Significance in Artificial Traditions Using

Stemmaweb”. Digital Scholarship in the Humanities: 1–17.

doi:10.1093/llc/fqu072.

– . 2014b. “Digital Techniques for Critical Edition”. In Armenian Philology in the

Moder Era: From Manuscript to Digital Text, ed. by Michael E. Stone and

Valentina Calzolari, 175–195. Leiden: Brill.

– . 2015. “Tools for Digital Philology: Transcription”. Visited on Apr. 29, 2015.

http://www.digitalbyzantinist.org/2015/04/transcribing-texts-with-t-pen.html.

– . 2017. “What We Talk About When We Talk About Collation”. In Advances in

Digital Scholarly Editing, ed. by Peter Boot et al., 231–234. Sidestone Press.

doi:10.1080/0950238042000260351.

Andrews, Tara L., and Caroline Macé. 2013. “Beyond the tree of texts: Building an

empirical model of scribal variation through graph analysis of texts and

stemmata”. Literary and Linguistic Computing 28 (4): 504–521.

doi:10.1093/llc/fqt032.

Andrews, Tara L., and Joris van Zundert. 2013. “An Interactive Interface for Text

Variant Graph Models”. Digital Humanities Conference DH2013, University of

Nebraska–Lincoln, 16-19 July 2013. Visited on May 24, 2017.

http://dh2013.unl.edu/abstracts/ab-379.html.

327

http://dx.doi.org/10.1093/llc/fqu072
http://www.digitalbyzantinist.org/2015/04/transcribing-texts-with-t-pen.html
http://dx.doi.org/10.1080/0950238042000260351
http://dx.doi.org/10.1093/llc/fqt032
http://dh2013.unl.edu/abstracts/ab-379.html

Bibliography

– . 2014. “Apparatus vs . Graph – an Interface as Scholarly Argument”. Visited on

Oct. 31, 2014. http://interfacecritique.net/joris-van-zundert-tara-andrews-
apparatus-vs-graph-an-interface-as-scholarly-argument/.

Arvanitopoulos Darginis, Nikolaos, and Sabine Süsstrunk. 2014. “Binarization-free

Text Line Extraction For Historical Manuscripts”. Digital Humanities Conference

DH2014, Lausanne, 7–12 July 2014. Visited on June 9, 2017.

http://dharchive.org/paper/DH2014/Paper-928.xml.

Avanzi, Girolamo. 1495. In Val. Catullum et in Priapeias emendationes. Venetiis: J.

de Cereto de Tridino.

Balbo, Andrea. 2012. “Applicazioni del fenomeno della parola-segnale ai

Declamationum excerpta di Calpurnio Flacco”. In Vestigia notitiai. Scritti in

memoria di Michelangelo Giusta, ed. by Edoardo Bona, Carlos Lévy, and

Giuseppina Magnaldi, 187–192. Alessandria: Edizioni dell’Orso.

Bamman, David, and Gregory Crane. 2011. “The Ancient Greek and Latin

Dependency Treebanks”. Language technology for cultural heritage: Selected

papers from the LaTeCH Workshop Series: 79–89.

Banderier, Gilles. 2009. “Bâle et la famille Pithou : contribution à l’étude des

rapports intellectuels entre Bâle et la France au XVIe siècle Bâle et la famille

Pithou”. Revue suisse d’histoire 59:387–409.

Barabucci, Gioele, and Franz Fischer. 2017. “The Formalization of textual criticism.

Bridging the gap between automated collation and edited critical texts”. In

Advances in Digital Scholarly Editing, ed. by Peter Boot et al., 47–53. Sidestone

Press.

Barbrook, Adrian C., et al. 1998. “The phylogeny of the Canterbury Tales”. Nature

394 (27 August): 839.

Barney, S. A., et al., eds. 2006. The Etymologies of Isidore of Seville. Cambridge

University Press.

Bédier, Joseph. 1928. “La tradition manuscrite du Lai de l’Ombre. Réflexion sur l’art

d’éditer les textes anciens”. Romania 54 (214): 161–196, 321–356.

Beneš, Carrie E. 2003. “The Appearance and Spread of the E-Cedilla in Latin

Bookhands”. Manuscripta. A Journal for Manuscript Research 43-44:1–44.

doi:https://doi.org/10.1484/J.MSS.2.300664.

Bernstein, Neil W. 2013. Ethics, Identity, and Community in Later Roman

Declamation. Oxford University Press.

Berti, Monica, Bridget Almas, and Gregory Crane. 2016. “The Leipzig Open

Fragmentary Texts Series (LOFTS)”. DHQ 10 (2).

328

http://interfacecritique.net/joris-van-zundert-tara-andrews-apparatus-vs-graph-an-interface-as-scholarly-argument/
http://interfacecritique.net/joris-van-zundert-tara-andrews-apparatus-vs-graph-an-interface-as-scholarly-argument/
http://dharchive.org/paper/DH2014/Paper-928.xml
http://dx.doi.org/https://doi.org/10.1484/J.MSS.2.300664

Bibliography

Birnbaum, David J. 2012. “Editorial principles”. Visited on Jan. 17, 2018.

http://suprasliensis.obdurodon.org/editorial-principles.html.

Blake, Norman, and Jacob Thaisen. 2004. “Spelling’s Significance for Textual

Studies”. Nordic Journal of English Studies 3 (1): 93–108.

Bleeker, Elli. 2017. “Mapping Invention in Writing: Digital Infrastructure and the

Role of the Genetic Editor”. PhD thesis, Universiteit Antwerpen.

Bleeker, Elli, and Elena Spadini. 2016. “Code and Collation: training textual

scholars”. Visited on Aug. 28, 2017. https://dixit.hypotheses.org/1127.

Bloomer, W. Martin. 1997. “Schooling in Persona: Imagination and Subordination

in Roman Education”. Classical Antiquity 16 (1): 57–78. doi:10.2307/25011054.

– . 2007. “Roman Declamation: The Elder Seneca and Quintilian”. In A Companion

to Roman Rhetoric, ed. by Jon Hall and William Dominik, 297–306. Blackwell

Reference Online. doi:10.1002/9780470996485.ch22.

Boretti, Margherita. 2009. “Teoria e prassi di filologia computazionale : aspetti,

problemi, sperimentazioni. L’edizione critica del Viage al Purgatory di Ramon de

Perellos per la produzione dell’edizione elettronica sul Web con PinakesText.”

PhD thesis, Università di Pisa.

Boschetti, Federico. 2007. “Methods to extend Greek and Latin corpora with

variants and conjectures : Mapping critical apparatuses onto reference text”. In

Proceedings of the Corpus Linguistics Conference (CL2007), 1–11.

Boschetti, Federico, et al. 2009. “Improving OCR Accuracy for Classical Critical

Editions”. In Research and Advanced Technology for Digital Libraries. 13th

European Conference, ECDL 2009, Corfu, Greece, September 27 - October 2, 2009.

Proceedings, ed. by Maristella Agosti et al., 156–167. Berlin, Heidelberg: Springer

Berlin Heidelberg.

Bourgain, Pascale, and Françoise Vielliard, eds. 2002. Conseils pour l’édition des

textes médiévaux. 3. Textes littéraires. Paris: École nationale des Chartes.

Bremer, Thomas, et al. 2015. “Zum Einsatz digitaler Methoden bei der Erstellung

und Nutzung genetischer Editionen gedruckter Texte mit verschiedenen

Fassungen”. editio 29:29–51.

Broude, R. 1991. “When Accidentals are Substantive: Applying Methodologies of

Textual Criticism to Scholarly Editions of Music”. Text: Transactions of the Society

for Textual Scholarship 5 (1991): 105–20.

Bryant, John, ed. 2018a. “Versions of Billy Budd: A Fluid-Text Edition”. Visited on

Feb. 10, 2018. https://mel.hofstra.edu/versions-of-billy-budd.html.

329

http://suprasliensis.obdurodon.org/editorial-principles.html
https://dixit.hypotheses.org/1127
http://dx.doi.org/10.2307/25011054
http://dx.doi.org/10.1002/9780470996485.ch22
https://mel.hofstra.edu/versions-of-billy-budd.html

Bibliography

– , ed. 2018b. “Versions of Moby Dick: A Fluid-Text Edition”. Visited on Feb. 10,

2018. https://mel.hofstra.edu/versions-of-moby-dick.html.

Bülow-Jacobsen, Adam. 1979. “Some Considerations on the Quality of Microfilms

of Manuscripts”. Cahiers de l’Institut du Moyen-Âge Grec et Latin 30:91–104.

Burman, Pieter, ed. 1720. Declamationes 19 Majores Et Quae Ex 388 Supersunt 145

Minores, Et Calpurnii Flacci Declamationes Cum Notis Doctorum Virorum. Du

Vivié, Johannes.

Burnard, Lou. 2014a. “Introduction”. In What is the Text Encoding Initiative? How

to add intelligent markup to digital resources. Marseille: OpenEdition Press.

– . 2014b. “The TEI and XML”. Chap. 1 in What is the Text Encoding Initiative? How

to add intelligent markup to digital resources. Marseille: OpenEdition Press.

Busa, R. 1980. “The annals of humanities computing: The index Thomisticus”.

Computers and the Humanities 14 (2): 83–90. doi:10.1007/BF02403798.

Cabaniss, Margaret Scanlon. 1970. “Using the Computer for Text Collation”.

Computer Studies in the Humanities and Verbal Behaviour 3:1–33.

Campano, Giannantonio. 1495. Omnia Campani opera. Ed. by Michele Ferno.

Venetiis: Bernardinum Vercellensem jussu domini Andreae Torresano de Assula.

– . 1707. Jo. Antonii Campani Epistolae et Poemata, una cum vita Auctoris. Ed. by

Johann Burkhard Mencke.

Cannon, Robert L. 1976. “OPCOL: An Optimal Text Collation Algorithm”.

Computers and the Humanities 10 (1): 33–40. doi:10.1007/BF02399140.

Cannon, Robert L., and Robert Oakman. 1989. “Interactive Collation on a

Micro-Computer. The URICA! Approach”. Computers and the Humanities

23:469–472.

Cardelle de Hartmann, Carmen, Darko Senekovic, and Thomas Ziegler. 2014.

“Modes of variability: the textual transmission of Petrus Alfonsi’s Dialogus”. In

Petrus Alfonsi and His Dialogus. Background – Context - Reception, ed. by

Carmen Cardelle de Hartmann and Philip Roelli, 227–248. Firenze: SISMEL - Ed.

del Galluzzo.

Caton, Paul. 2009. “Lost in Transcription: Types, Tokens, and Modality in

Document Representation”. In Digital Humanities 2009. Conference Abstracts.

University of Maryland, College Park June 22 – 25, 2009, 80–82. Maryland

Institute for Technology in the Humanities (MITH).

– . 2013. “On the term ’text’ in digital humanities”. Literary and Linguistic

Computing 28, no. 2 (): 209–220. doi:10.1093/llc/fqt001.

330

https://mel.hofstra.edu/versions-of-moby-dick.html
http://dx.doi.org/10.1007/BF02403798
http://dx.doi.org/10.1007/BF02399140
http://dx.doi.org/10.1093/llc/fqt001

Bibliography

Cayless, Hugh. 2015. “The TEI Critical Apparatus Module and Digital Critical

Editions, or Why Your Digital Edition Should Have a Data Model”. Visited on

Aug. 28, 2015. https://github.com/hcayless/appcrit/blob/master/docs/DLL-
seminar-paper.md.

Cerquiglini, Bernard. 1989. Éloge de la variante: Histoire critique de la philologie.

Aux travaux. Paris: Seuil.

Chambers, Sally, et al. 2017. “Towards a tool and data criticism framework. A

developer’s and user’s perspective”. In The abstracts of the DHBenelux 2017 -

Wednesday 5 July 2017, 72–74.

Chaudhuri, Sukanta, ed. 2015. Bichitra: The Making of an Online Tagore Variorum.

Springer.

Chiesa, Paolo. 2002. Elementi di critica testuale. Testi e manuali per l’insegnamento

universitario del latino. Bologna: Pàtron Editore.

Cloppet, Florence, et al. 2016. “ICFHR2016 competition on the classification of

medieval handwritings in Latin script”. Proceedings of International Conference

on Frontiers in Handwriting Recognition, ICFHR: 590–595.

doi:10.1109/ICFHR.2016.0113.

Colwell, Ernest Cadman, and Ernest W. Tune. 1964. “Variant readings :

classification and use”. Journal of Biblical Literature 83 (3): 253–261.

Cortesi, M. 1994. “Un nuovo testimone delle ‘Declamationes minores’

pseudoquintilianee”. In Immagini del Medioevo. Saggi di cultura mediolatina,

81–95. Spoleto.

Courtney, Edward. 1967. “The Transmission of Juvenal’s Text”. Bulletin of the

Institute of Classical Studies 14:38–50.

Cozzo, Andrea. 2006. La tribù degli antichisti. Un’etnografia ad opera di un suo

membro. Roma: Carocci.

Craig-McFeely, Julia. 2008. “Digital Image Archive of Medieval Music: The evolution

of a digital resource”. Digital Medievalist 3.

Crane, Gregory. 2014. “The Digital Loeb Classical Library - a view from Europe”.

Visited on Oct. 31, 2016. http://sites.tu�s.edu/perseusupdates/2014/09/22/the-
digital-loeb-classical-library-a-view-from-europe/.

Crane, Gregory, et al. 2014. “Cataloging for a Billion Word Library of Greek and

Latin”. Proceedings of the First International Conference on Digital Access to

Textual Cultural Heritage - DATeCH ’14: 83–88. doi:10.1145/2595188.2595190.

Cummings, James. 2013. “About the Project”. Visited on Aug. 2, 2017.

http://www.cems.ox.ac.uk/holinshed/about.shtml.

331

https://github.com/hcayless/appcrit/blob/master/docs/DLL-seminar-paper.md
https://github.com/hcayless/appcrit/blob/master/docs/DLL-seminar-paper.md
http://dx.doi.org/10.1109/ICFHR.2016.0113
http://sites.tufts.edu/perseusupdates/2014/09/22/the-digital-loeb-classical-library-a-view-from-europe/
http://sites.tufts.edu/perseusupdates/2014/09/22/the-digital-loeb-classical-library-a-view-from-europe/
http://dx.doi.org/10.1145/2595188.2595190
http://www.cems.ox.ac.uk/holinshed/about.shtml

Bibliography

Cummings, James, and Arno Mittelbach. 2011. “The Holinshed Project: Comparing

and linking two editions of Holinshed’s Chronicle”. International Journal of

Humanities and Arts Computing 4 (1-2): 39–53.

doi:https://doi.org/10.3366/ijhac.2011.0006.

D’Avray, David L. 2012. “Contamination, Stemmatics and the Editing of Medieval

Latin Texts”. In Ars Edendi Lecture Series, ed. by Alessandra Bucossi and

Erika Kihlman, 2:63–82. Stockholm: Stockholm University.

Dahlström, Mats. 2000. “Drowning by Versions”. Human IT 4:7–38.

Dain, Alphonse. 1964. Les Manuscrits. Paris: Les Belles Lettres.

Damerau, Fred J. 1964. “A technique for computer detection and correction of

spelling errors”. Communications of the ACM 7 (3): 171–176.

doi:10.1145/363958.363994.

Damon, Cynthia. 2016. “Beyond Variants: Some Digital Desiderata for the Critical

Apparatus of Ancient Greek and Latin Texts”. In Digital Scholarly Editing.

Theories and Practices, ed. by Matthew J. Driscoll and Elena Pierazzo, 201–218.

Open Book Publisher.

Dane, Joseph A. 2003. “The Notion of Variant and the Zen of Collation”. Chap. 4 in

The Myth of Print Culture: Essays on Evidence, Textuality and Bibliographical

Method, 88–113. University of Toronto Press.

Dawe, R. D. 1964. The Collation and Investigation of Manuscripts of Aeschylus.

Cambridge: Cambridge University Press.

De Strycker, Émile. 1975. “Suggestions pratiques pour la collation des manuscrits

d’un texte hagiographique grec à tradition riche”. In Corona gratiarum :

Miscellanea patristica, historica et liturgica Eligio Dekkers O.S.B. 12 lustra

complenti ablata. Ed. by Eligius Dekkers, 2:345–366. Brugge : Sint Pietersabdej.

De Young, Gregg. 2009. “Diagrams in ancient Egyptian geometry. Survey and

assessment”. Historia Mathematica 36 (4): 321–373.

doi:10.1016/j.hm.2009.02.004.

De Biasi, Pierre-Marc. 2000. La génétique des textes. Paris: Natan.

– . 2004. “Toward a science of literature: manuscript analysis and the genesis of the

work”. In Genetic Criticism: Texts and Avant-textes. Ed. by J. Jed Deppman,

D. Ferrer, and M. Groden, 36–68. Philadelphia: University of Pennsylvania Press.

Dearing, Vinton A. 1962. Methods of Textual Editing. A paper delivered by Vinton A.

Dearing at a Seminar on Bibliography held at the Clark Library, 12 May 1962. Los

Angeles: William Andrews Clark Memorial Library.

332

http://dx.doi.org/https://doi.org/10.3366/ijhac.2011.0006
http://dx.doi.org/10.1145/363958.363994
http://dx.doi.org/10.1016/j.hm.2009.02.004

Bibliography

– . 1970. “Computer Aids to Editing the Text of Dryden”. In Art and Error: Modern

Textual Editing. Essays compiled and edited by Ronald Gottesman and Scott

Bennett. 254–278. London: Methuen / Co. Ldt.

Dekker, Ronald Haentjens. 2014. “Computer automated collation with CollateX

and Python”. Presentation given at DH Benelux in The Hague, 12-13 June 2014.

Visited on Oct. 8, 2015. http://dhbenelux.org/wp-
content/uploads/2014/06/demo-haentjens-dekker.pdf.

Dekker, Ronald Haentjens, and Gregor Middell. 2011. “Computer-Supported

Collation with CollateX: Managing Textual Variance in an Environment with

Varying Requirements”. In Supporting Digital Humanities, Copenhagen 17-18

November 2011: Conference Proceedings. Copenhagen: Croatian National

Corpus.

Dekker, Ronald Haentjens, et al. 2015. “Computer-supported collation of modern

manuscripts: CollateX and the Beckett Digital Manuscript Project”. Literary and

Linguistic Computing 30 (3): 452–470.

DeRose, Stephen J., et al. 1990. “What is Text, Really”. Journal of Computing in

Higher Education I (2): 3–26.

Dillen, Wout. 2015. ““(Hiatus in Ms.)”. Towards a TEI compliant typology of textual

lacunae in Samuel Beckett’s manuscripts”. Manuscrítica. Revista de crítica

genética 28:65–73.

Dillen, Wout, and Dirk Van Hulle. 2013–. “Lexicon of Scholarly Editing”. Visited on

Oct. 31, 2016. uahost.uantwerpen.be/lse/index.php/lexicon/.

Dinter, Martin T., Charles Guérin, and Marcos Martinho, eds. 2017. Reading Roman

Declamation - Calpurnius Flaccus. De Gruyter.

Driscoll, Matthew J. 2000. “Encoding Old Norse / Icelandic Primary Sources using

TEI-Conformant SGML”. Literary and Linguistic Computing 15 (1): 81–91.

– . 2006. “Levels of transcription”. In Electronic Textual Editing, ed. by

Lou Burnard, Katherine O’Brien O’Keeffe, and John Unsworth, 254–261. New

York: Modern Language Association of America.

– . 2009. “Marking up abbreviations in Old Norse-Icelandic manuscripts”. In

Medieval texts – contemporary media: The art and science of editing in the digital

age, ed. by Maria Grazia Saibene and Marina Buzzoni, 13–34. Pavia: Ibis.

333

http://dhbenelux.org/wp-content/uploads/2014/06/demo-haentjens-dekker.pdf
http://dhbenelux.org/wp-content/uploads/2014/06/demo-haentjens-dekker.pdf
uahost.uantwerpen.be/lse/index.php/lexicon/

Bibliography

Dubuisson, Marc, and Caroline Macé. 2006. “Handling a Large Manuscript

Tradition with a Computer”. In The Evolution of Texts: Confronting

Stemmatological and Genetical Methods. Proceedings of the International

Workshop held in Louvain-la-Neuve on September 1–2, 2004, ed. by

Caroline Macé et al., 25–37. Pisa, Roma: Istituti Editoriali e Poligrafici

Internazionali.

Duplacy, Jean, and Éric Huret. 1977. “Classification des états d’un texte,

mathématiques et informatique: repères historiques et recherches

méthodologiques”. Revue d’histoire des textes 5 (1975): 249–309.

Eley, Penny, et al. 2005. “Partonopeus de Blois: transcriptions of all manuscripts

and fragments”. Visited on Feb. 6, 2018. http://purl.ox.ac.uk/ota/2499.

Englert, W. 2003. Lucretius: On the Nature of Things. Classical Library. Newbury:

Focus Publishing.

Epp, Eldon Jay. 1993. “Towards the Clarification of the Term ’Textual Variant’”. In

Studies in the Theory and Method of New Testament Textual Criticism, ed. by

Gordon D. Fee and Eldon Jay Epp, 47–61. Grand Rapids, Michigan: Eerdmans

Publishing.

– . 2007. “It’s All about Variants: A Variant-Conscious Approach to New Testament

Textual Criticism”. Harvard Theological Review 100 (3): 275–308.

doi:10.1017/S0017816007001599.

Fischer, Andreas, et al. 2009. “Automatic Transcription of Handwritten Medieval

Documents”. In Proceedings of the 15th International Conference on Virtual

Systems and Multimedia. 9-12 September 2009. Vienna, Austria. Ed. by

Robert Sablatnig, Martin Kampel, and Martin Lettner, 137–142. Los Alamitos, CA:

IEEE Computer Society. doi:10.1109/VSMM.2009.26.

Fischer, Bonifatius. 1970. “The Use of Computers in New Testament Studies, with

Special Reference to Textual Criticism”. Journal of Theological Studies 21 (2):

297–308.

Fischer, Franz. 2012. “All Texts are Equal, but... Textual Plurality and the Critical

Text in Digital Scholarly Editions”. Variants 10:77–92.

Flanders, Julia, and Fotis Jannidis. 2016. “Data Modeling”. In A New Companion to

Digital Humanities, ed. by Susan Schreibman, Ray Siemens, and John Unsworth,

229–237. John Wiley & Sons, Ltd. doi:10.1111/b.9781118680643.2016.00018.x.

Flores, Enrico. 1998. Elementa critici di critica del testo ed epistemologia. Napoli:

Loffredo.

334

http://purl.ox.ac.uk/ota/2499
http://dx.doi.org/10.1017/S0017816007001599
http://dx.doi.org/10.1109/VSMM.2009.26
http://dx.doi.org/10.1111/b.9781118680643.2016.00018.x

Bibliography

Flüeler, Christoph, and Dot Porter. 2015. “Digital Manuscripts as Critical Edition”.

Visited on Aug. 5, 2015. http://schoenberginstitute.org/2015/06/30/digital-
manuscripts-as-critical-edition/.

Forrin, Noah D, Tanya R Jonker, and Colin M MacLeod. 2014. “Production

improves memory equivalently following elaborative vs non-elaborative

processing.” Memory 22 (5): 470–80. doi:10.1080/09658211.2013.798417.

Franzini, Greta, Melissa Terras, and Simon Mahony. 2016. “A Catalogue of Digital

Editions”. In Digital Scholarly Editing. Theories and Practices, ed. by

Matthew J. Driscoll and Elena Pierazzo, 161–182. Open Book Publisher.

Froger, Jacques. 1966. “La collation des manuscrits à la machine électronique”.

Bulletin d’information de l’Institut de Recherche et d’Histoire des Textes

13:135–171. doi:10.3406/rht.1966.1035.

– . 1968. La critique des textes et son automatisation. Paris: Dunod.

– . 1970. “La critique des textes et l’ordinateur”. Vigiliae Christianae 24 (3):

210–217.

Gabler, Hans Walter. 2008. “Remarks on Collation”. Visited on Aug. 25, 2015.

https://www.academia.edu/167070/%7B%5C_%7DRemarks%7B%5C_
%7Don%7B%5C_%7DCollation%7B%5C_%7D.

Gadda, C. E. 1983. Racconto italiano di ignoto del novecento. Ed. by Dante Isella.

Torino: G. Einaudi.

Ganascia, Jean-Gabriel. 2014. “MEDITE”. Visited on July 17, 2017.

http://obvil.paris-sorbonne.fr/developpements/medite.

Gibbs, Fred, and Trevor Owens. 2012. “Building Better Digital Humanities Tools:

Toward broader audiences and user-centered designs”. Digital Humanities

Quarterly 6 (2).

Gibson, William M., and George R. Petty. 1970. “Project OCCULT: The Ordered

Computer Collation of Unprepared Literary Text”. In Art and Error: Modern

Textual Editing. Essays compiled and edited by Ronald Gottesman and Scott

Bennett. 279–300. London: Methuen / Co. Ldt.

Gilbert, Penny. 1973. “Automatic Collation: A Technique for Medieval Texts”.

Computers and the Humanities 7 (3): 139–147.

– . 1974. “Using the Computer to Collate Medieval Latin Manuscripts”. In The

Computer in Literary and Linguistic Studies, ed. by Alan Jones and

Robert F. Churchouse, 106–113. Cardiff: University of Wales Press.

335

http://schoenberginstitute.org/2015/06/30/digital-manuscripts-as-critical-edition/
http://schoenberginstitute.org/2015/06/30/digital-manuscripts-as-critical-edition/
http://dx.doi.org/10.1080/09658211.2013.798417
http://dx.doi.org/10.3406/rht.1966.1035
https://www.academia.edu/167070/%7B%5C_%7DRemarks%7B%5C_%7Don%7B%5C_%7DCollation%7B%5C_%7D
https://www.academia.edu/167070/%7B%5C_%7DRemarks%7B%5C_%7Don%7B%5C_%7DCollation%7B%5C_%7D
http://obvil.paris-sorbonne.fr/developpements/medite

Bibliography

– . 1979. “The Preparation of Prose-Text Editions with the COLLATE System”. In La

pratique des ordinateurs dans la critique des textes. Paris, 29-31 Mars 1978, ed. by

Jean Irigoin and G. P. Zarri, 245–254. Paris: Éditions du Centre National de la

Recherche Scientifique.

Greetham, David. 1994. Textual Scholarship: An Introduction. New York: Garland.

– . 2007. “What is Textual Scholarship?” In A Companion to the History of the Book,

ed. by Simon Eliot and Jonathan Rose, 21–32. Blackwell Reference Online.

doi:10.1111/b.9781405127653.2007.00003.x.

– . 2013. “A history of textual scholarship”. In The Cambridge Companion to

Textual Scholarship, ed. by Neil Fraistat and Julia Flanders, 16–41. Cambridge

University Press.

Greg, Walter W. 1950. “The Rationale of Copy-text”. Studies in Bibliography 3:19–36.

Gronovius, Johann Friedrich, ed. 1665. M. Fabii Quintiliani Institutionum

Oratoriarum Libri Duodecim : Accesserunt huic renovatae editioni Declamationes

... Cum Turnebi, Camerarii, Parei, Gronovii & Aliorum Notis ... Hackius.

Guffey, George Robert. 1968. “Standardization of Photographic Reproductions for

Mechanical Collation”. The Papers of the Bibliographical Society of America 62

(2): 237–240.

Gunderson, Erik. 2003. Declamation, Paternity, And Roman Identity. Authority And

The Rhetorical Self. Cambridge: Cambridge University Press.

Hagel, Stefan. 2007. “The Classical Text Editor. An attempt to provide for both

printed and digital editions”. In Digital Philology and Medieval Texts.

Proceedings of the Arezzo Seminar 2006, 19-21 January, ed. by Arianna Ciula and

Francesco Stella, 77–84. Pisa: Ospedaletto.

Håkanson, Lennart. 1972. “Some critical remarks on Calpurnius Flaccus”. Eranos

70:59–71.

– . 1974. “Some more critical remarks on Calpurnius Flaccus”. Eranos 72:53–64.

– . 1976. “On two passages in Calpurnius Flaccus”. Eranos 74:67–68.

– . 1978. Calpurnii Flacci Declamationum Excerpta. Stutgardiae: Teubner.

– . 2014. “Der Satzrhythmus des 19 Grösseren Deklamationen und des Calpurnius

Flaccus”. In Unveröffentlichte Schrifte. Band 1: Studien zu den

pseudoquintilianischen Declamationes maiores. Ed. by Biagio Santorelli, 47–130.

Berlin/Boston: De Gruyter.

Halm, Karl F., et al. 1868. Catalogus codicum latinorum Bibliothecae Regiae

Monacensis. Vol. I.1. Monachii : Bibliotheca regia.

doi:urn:nbn:de:bvb:12-bsb00008254-3.

336

http://dx.doi.org/10.1111/b.9781405127653.2007.00003.x
http://dx.doi.org/urn:nbn:de:bvb:12-bsb00008254-3

Bibliography

Harkins, P. W. 1958. “Bisensory collation of MSS. A modern method for collating

MSS.” Manuscripta 2:162–166. doi:https://doi.org/10.1484/J.MSS.3.81.

Haug, Dag. 2015. “Treebanks in historical linguistic research”. In Perspectives on

Historical Syntax, ed. by Carlotta Viti, 188–202. Amsterdam: Benjamins.

Havet, Louis. 1911. Manuel de critique verbale appliquée aux textes latins. Paris:

Librairie Hachette.

Heikkilä, Tuomas. 2014. “The Possibilities and challenges of computer-assisted

stemmatology: the example of Vita et miracula s. Symeonis Treverensis”. In The

Analysis of Ancient and Medieval Texts and Manuscripts: Digital Methods, ed. by

Tara Andrews and Caroline Macé, 19–42. Turnhout: Brepols.

Hilton, Michael L. 1992. “The URICA! II Interactive Collation System”. Computers

and the Humanities 26:139–144.

Hockey, Susan. 1980. A Guide to Computer Applications in the Humanities. London:

Duckworth.

– . 2000. Electronic Texts in the Humanities : Principles and Practice. Oxford:

Oxford University Press.

Hogeweg, P., and B. Hesper. 1984. “The alignment of sets of sequences and the

construction of phyletic trees: An integrated method”. Journal of Molecular

Evolution 20 (2): 175–186. doi:10.1007/BF02257378.

Honkapohja, Alpo. 2013. “Manuscript abbreviations in Latin and English: History,

typologies and how to tackle them in encoding”. Studies in Variation, Contacts

and Change in English 14.

Horton, Thomas B. 1994. “Sequence Comparison and Old-Spelling Texts”. In

Research in Humanities Computing 2, ed. by Susan Hockey and Nancy Ide,

89–110. Oxford.

Houghton, Hugh. 2013. “The Electronic Scriptorium: Markup for New Testament

Manuscripts”. In Digital Humanities in Biblical, Jewish and Early Christian

Studies, ed. by Claire Clivaz, A Gregory, and D Hamidovic, 31–60. Leiden: Brill.

Houghton, Hugh, Martin Sievers, and Catherine Smith. 2014. “The Workspace for

Collaborative Editing”. Digital Humanities Conference DH2014, Lausanne, 7–12

July 2014. Visited on Nov. 20, 2017.

http://dharchive.org/paper/DH2014/Paper-224.xml.

Houghton, Hugh, and Catherine Smith. 2016. “Digital Editing and the Greek New

Testament”. In Ancient Worlds in Digital Culture, ed. by Claire Clivaz, Paul Dilley,

and David Hamidovic, 110–127. Brill.

337

http://dx.doi.org/https://doi.org/10.1484/J.MSS.3.81
http://dx.doi.org/10.1007/BF02257378
http://dharchive.org/paper/DH2014/Paper-224.xml

Bibliography

Huculak, J. Matthew, and Ashlin Richardson. 2013. “White Paper : A Survey of

Current Collation Tools for The Modernist Versions”. Visited on Aug. 25, 2015.

http://web.uvic.ca/%7B%5C~%7B%7D%7Dmvp1922/wp-
content/uploads/2013/10/WhitepaperFINAL.pdf.

Huelsenbeck, Bart. 2016. “Annotations to a Corpus of Latin Declamations: History,

Function, and the Technique of Rhetorical Summary”. Lexis. Poetica, retorica e

comunicazione nella tradizione classica 34:357–382.

Huitfeldt, Claus, Yves Marcoux, and C. M. Sperberg-McQueen. 2008. “What is

transcription?” Literary and Linguistic Computing 23 (3): 295–310.

doi:10.1093/llc/fqn013.

The Interedition Development Group. 2013. “CollateX – Documentation”. Visited

on July 29, 2014. http://collatex.net/doc/.

Jackson, Daniel. 2006. Software Abstractions: Logic, Language, And Analysis.

Cambridge, Mass. ; London: MIT Press.

Jakacki, Diane, and Katherine Faull. 2015. “Building Bridges to – Where? The

Phenomenology of Undergraduate DH”. Innovations in Digital Humanities

Pedagogy: Local, National, International Training. A Mini-conference, and

Member Meeting Sponsored by the International Digital Humanities Training

Network. Visited on July 13, 2017.

http://dh2015.org/innovations-in-digital-humanities-pedagogy/.

Jänicke, Stefan, Marco Büchler, and Gerik Scheuermann. 2014. “Improving the

Layout for Text Variant Graphs”. In VisLR: Visualization as Added Value in the

Development, Use and Evaluation of Language Resources, 41–48.

Jänicke, Stefan, Annette Geßner, and B Marco. 2014. “5 Design Rules for Visualizing

Text Variant Graphs”. Digital Humanities Conference DH2014, Lausanne, 7–12

July 2014. Visited on Sept. 2, 2017.

http://dharchive.org/paper/DH2014/Paper-652.xml.

Jänicke, Stefan, and David Joseph Wrisley. 2017. “Visualizing Mouvance: Toward a

visual analysis of variant medieval text traditions”. Digital Scholarship in the

Humanities 32 (September): ii106–ii123.

Jänicke, Stefan, et al. 2015. “TRAViz: A Visualization for Variant Graphs”. Digital

Scholarship in the Humanities 30 (Issue suppl_1): i83–i99.

doi:https://doi.org/10.1093/llc/fqv049.

Jones, F. 1985. “Two notes on Calpurnius Flaccus”. Acta Classica 28:89–90.

Karsdorp, Folger. 2017. “Python Programming for the Humanities by Folgert

Karsdorp”. Visited on Feb. 1, 2018. http://www.karsdorp.io/python-course/.

338

http://web.uvic.ca/%7B%5C~%7B%7D%7Dmvp1922/wp-content/uploads/2013/10/WhitepaperFINAL.pdf
http://web.uvic.ca/%7B%5C~%7B%7D%7Dmvp1922/wp-content/uploads/2013/10/WhitepaperFINAL.pdf
http://dx.doi.org/10.1093/llc/fqn013
http://collatex.net/doc/
http://dh2015.org/innovations-in-digital-humanities-pedagogy/
http://dharchive.org/paper/DH2014/Paper-652.xml
http://dx.doi.org/https://doi.org/10.1093/llc/fqv049
http://www.karsdorp.io/python-course/

Bibliography

Kaster, Robert. 2001. “Controlling Reason: Declamation in Rhetorical Education at

Rome”. In Education in Greek and Roman Antiquity, ed. by Yun Lee Too, 317–337.

Brill.

Kaster, Robert A. 1996. “Review of Lewis A. Sussman, The Declamations of

Calpurnius Flaccus”. Classical Philology 91 (1): 84–89.

Kenny, Vincent, Matthew Nathal, and Spencer Saldana. 2014. “Heuristic

algorithms”. Visited on Oct. 20, 2018. https:
//optimization.mccormick.northwestern.edu/index.php/Heuristic_algorithms.

Kestemont, Mike, and Dominique Stutzmann. 2017. “Script Identification in

Medieval Latin Manuscripts Using Convolutional Neural Networks”. Digital

Humanities Conference DH2017, Montréal, Canada, 8-11 août 2017. Visited on

Aug. 23, 2017. https://dh2017.adho.org/abstracts/078/078.pdf.

Kingsley, Stephanie. 2014. “Work Flows and Wish Lists: Reflections on Juxta as an

Editorial Tool”. Visited on Apr. 10, 2017. http://www.juxtaso�ware.org/work-
flows-and-wish-lists-reflections-on-juxta-as-an-editorial-tool/.

Kline, Mary-Jo. 1998. A Guide to Documentary Editing. 2nd ed. Baltimore: Johns

Hopkins University Press.

Kluyver, Thomas, et al. 2016. “Jupyter Notebooks — a publishing format for

reproducible computational workflows”. In Positioning and Power in Academic

Publishing: Players, Agents and Agendas, ed. by F. Loizides and B. Schmidt, 87–90.

IOS Press.

Kopp, Matthias, Marc Wilhelm Küster, and Wilhelm Ott. 2000. “TUSTEP im

WWW-Zeitalter : Werkzeug für Anwender und Programmierer”. Historical Social

Research 25 (1): 143–151.

Kraft, Robert. 1995. “The Use of Computers in New Testament Studies, with Special

Reference to Textual Criticism”. In The New Testament in Contemporary

Research. Essays on the Status Quaestionis, First, ed. by Bart Ehrman and

Michael Holmes, 268–282. Grand Rapids: Eerdmans.

Laiacona, Nick. 2007. “The Difference Algorithm”. Visited on Feb. 28, 2014.

http://www.juxtaso�ware.org/the-di�erence-algorithm/.

Lapin, Hayim. 2013. “Towards a Digital Critical Edition of the Mishnah”. In

Envisioning Judaism: Studies in Honor of Peter Schäfer on the Occasion of his

Seventieth Birthday, ed. by Ra‘anan S. Boustan et al., 441–464. Tübingen: Mohr

Siebeck.

Lavagnino, John. 2006. “When Not to Use TEI”. In Electronic Textual Editing, ed. by

Lou Burnard, Katherine O’Brien O’Keeffe, and John Unsworth, 334–338. New

York: Modern Language Association of America.

339

https://optimization.mccormick.northwestern.edu/index.php/Heuristic_algorithms
https://optimization.mccormick.northwestern.edu/index.php/Heuristic_algorithms
https://dh2017.adho.org/abstracts/078/078.pdf
http://www.juxtasoftware.org/work-flows-and-wish-lists-reflections-on-juxta-as-an-editorial-tool/
http://www.juxtasoftware.org/work-flows-and-wish-lists-reflections-on-juxta-as-an-editorial-tool/
http://www.juxtasoftware.org/the-difference-algorithm/

Bibliography

Lee, Christopher, Catherine Grasso, and Mark F. Sharlow. 2002. “Multiple sequence

alignment using partial order graphs”. Bioinformatics 18 (3): 452–464.

doi:10.1093/bioinformatics/18.3.452.

Lehnert, Georges. 1903. Calpurnii Flacci declamationes. Stutgardiae: Teubner.

Lemaire, N. E., ed. 1824. “Calpurnii Flacci Excerptae Decem Rhetorum Minorum,

cum Pithoei, Gronovii, Schultingii, et aliorum notis, ex Recensione

Burmanniana”. Visited on Aug. 10, 2017. http://reader.digitale-
sammlungen.de/de/fs1/object/goToPage/bsb10247356.html?pageNo=531.

– , ed. 1825. De quorum operibus judicia testimoniaque omnia , item annales

Quintilianeos, editiones recensuit in tres indices absolutissimos, emendavit, auxit

N.-E. Lemaire... Volumen VII et ultimum.

Lendle, Otto. 1968. Gregorius Nyssenus. Encomium in Sanctum Stephanum

Protomartyrem. Leiden: Brill.

Levenshtein, Vladimir I. 1966. “Binary codes capable of correcting deletions,

insertions, and reversals”. Trans. by P. S. Novikov, 10 (8): 707–710.

Li, Charles. 2017. “Critical Diplomatic Editing. Applying text-critical principles as

algorithms”. In Advances in Digital Scholarly Editing, ed. by Peter Boot et al.,

305–310. Sidestone Press.

Library of Latin Texts – Series A. 2017. [Turnhout]: Brepols.

Lindstrand, Gordon. 1971. “Mechanized Textual Collation and Recent Designs”.

Studies in Bibliography 24:204–214.

Love, Harold. 1984. “The Ranking of Variants in the Analysis of Moderately

Contaminated Manuscript Traditions”. Studies in Bibliography 37:39–57.

Maas, Paul. 1958. Textual criticism. Trans. by Barbara Flower. Oxford: Clarendon

Press.

Macé, Caroline, Ilse De Vos, and Koen Geuten. 2012. “Comparing Stemmatological

and Phylogenetic Methods to Understand the transmission History of the

Florilegium Coislinianum”. In Ars Edendi Lecture Series, ed. by

Alessandra Bucossi and Erika Kihlman, 2:107–129. Stockholm: Stockholm

University.

Macé, Caroline, et al. 2015. “Textual criticism and text editing”. Chap. 3 in

Comparative Oriental Manuscript Studies: An Introduction, ed. by

Alessandro Bausi et al., 321–466. Hamburg: Tredition.

doi:10.5281/zenodo.46784.

Machan, Tim William. 2002. “Texts”. In A Companion to Chaucer, ed. by

Peter Brown. Blackwell Reference Online. doi:10.1002/9780470693469.ch26.

340

http://dx.doi.org/10.1093/bioinformatics/18.3.452
http://reader.digitale-sammlungen.de/de/fs1/object/goToPage/bsb10247356.html?pageNo=531
http://reader.digitale-sammlungen.de/de/fs1/object/goToPage/bsb10247356.html?pageNo=531
http://dx.doi.org/10.5281/zenodo.46784
http://dx.doi.org/10.1002/9780470693469.ch26

Bibliography

Maretti, E., and G. P. Zarri. 1967. “Collatio Codicum: An Exercise in COMIT

Programming”. La ricerca scientifica 37:608–611.

Marín, Francisco Marcos. 1991. “Computers and Text Editing: A Review of Tools, an

Introduction to UNITE and Some Observations Concerning its Application to

Old Spanish Texts”. Romance Philology 45 (1): 102–122.

Marín, Francisco Marcos, and Juan de Dios Godoy García. 1989. “Requisitos para la

edición crítica informatizada: UNITE. Conjunto de programas para la

Unificación automática de Textos. Versión para microoordenarores SUN”. AIH.

Actas X : 1227–1251.

Marwick, Ben. 2015. “How Computers Broke Science — and What We Can Do to

Fix It”. Visited on Nov. 10, 2015. gizmodo.com/how-computers-broke-science-
and-what-we-can-do-to-fix-i-1741649207.

McCarty, Willard. 2004. “Modeling: A Study in Words and Meanings”. Chap. 19 in A

Companion to Digital Humanities, ed. by Susan Schreibman, Ray Siemens, and

John Unsworth. Oxford: Blackwell.

McGurk, Patrick. 1961. “Citation marks in early Latin manuscripts. (With a list of

citation marks in manuscripts earlier than A. D. 800 in English and Irish

libraries)”. Scriptorium 15 (1): 3–13.

Monella, Paolo. 2014a. “Many witnesses , many layers : the digital scholarly edition

of the Iudicium coci et pistoris (Anth . Lat . 199 Riese)”. In Digital Humanities:

progetti italiani ed esperienze di convergenza multidisciplinare. Atti del convegno

annuale dell’Associazione per l’Informatica Umanistica e la Cultura Digitale

(AIUCD) Firenze, 13-14 dicembre 2012, ed. by Fabio Ciotti, 173–206. Quaderni

DigiLab.

– . 2014b. “Why are there no comprehensively digital scholarly editions of classical

texts ?” Visited on Apr. 12, 2016.

http://www1.unipa.it/paolo.monella/lincei/files/why/why_paper.pdf.

Monroy, Carlos, et al. 2002. “Visualization of Variants in Textual Collations to

Analyze the Evolution of Literary Works in the Cervantes Project”. In Research

and Advanced Technology for Digital Libraries. ECDL 2002. Lecture Notes in

Computer Science, ed. by M. Agosti and C. Thanos, 2458:638–653. Berlin,

Heidelberg: Springer. doi:http://dx.doi.org/10.1007/3-540-45747-X_48.

Montanari, Franco. 2002. “Alexandrian Homeric Philology. The Form of Ekdosis

and the Variae Lectiones”. In Epea Pteroenta. Beiträge zur Homerforschung,

Festschrift für Wolfgang Kullmann zum 75. Geburtstag, ed. by Michael Reichel

and Antonios Rengakos, 119–140. Stuttgart: Franz Steiner Verlag.

341

gizmodo.com/how-computers-broke-science-and-what-we-can-do-to-fix-i-1741649207
gizmodo.com/how-computers-broke-science-and-what-we-can-do-to-fix-i-1741649207
http://www1.unipa.it/paolo.monella/lincei/files/why/why_paper.pdf
http://dx.doi.org/http://dx.doi.org/10.1007/3-540-45747-X_48

Bibliography

– . 2015. “From Book to Edition: Philology in Ancient Greece”. In World Philology,

ed. by Sheldon Pollock, Benjamin A. Elman, and Ku-Ming Kevin Chang, 25–44.

Cambridge, Massachusetts; London, England: Harvard University Press.

Montefusco, Lucia. 2003. “Ductus and color: the right way to compose a suitable

speech”. Rhetorica: A Journal of the History of Rhetoric 21 (2): 113–131.

Mordenti, R. 2001. Informatica e critica dei testi. Rome: Bulzoni Editore.

Myers, Eugene W. 1986. “An O(ND) Difference Algorithm and Its Variations”.

Algorithmica 1 (1-4): 251–266.

Nagy, Gregory. 2010. “The Homer Multitext”. In Online Humanities Scholarship:

The Shape of Things to Come. Proceedings of the Mellon Foundation Online

Humanities Conference at the University of Virginia March 26-28, 2010, ed. by

Jerome McGann et al., 87–112. Rice University Press.

Naji, Nada, and Jacques Savoy. 2011. “Information Retrieval Strategies for Digitized

Handwritten Medieval Documents”. In Information Retrieval Technologies.

Proccedings of the 7th Asia Information Retrieval Societies Conference, AIRS 2011,

Dubai, United Arab Emirates, December 18-20, 2011, ed. by M.V.M. Salem et al.,

103–114. Berlin, Heidelberg: Springer.

né Gießler Medek, André, et al. 2015. “Differenzanalyse komplexer Textvarianten”.

Datenbank-Spektrum 15 (1): 25–31. doi:10.1007/s13222-014-0173-y.

Needleman, Saul B., and Christian D. Wunsch. 1970. “A general method applicable

to the search for similarities in the amino acid sequence of two proteins”.

Journal of Molecular Biology 48 (3): 443–453. doi:10.1016/0022-2836(70)90057-4.

Nyhan, Julianne, and Andrew Flinn. 2016. “The University Was Still Taking Account

of universitas scientiarum: Wilhelm Ott and Julianne Nyhan”. In Computation

and the Humanities. Towards an Oral History of Digital Humanities, 55–73.

Springer Series on Cultural Computing. Cham: Springer.

doi:https://doi.org/10.1007/978-3-319-20170-2_4.

Oakman, Robert. 1972. “The Present State of Computerized Collation”. Proof

2:319–345.

Orlandi, Tito. 2010. Informatica testuale. Teoria e prassi. Roma: Editori Laterza.

Ott, Wilhelm. 1989. “Vom Manuskript zur Edition. Das Programm SATZ als

Baustein in TUSTEP”. In Historische Edition und Computer, ed. by

Anton Schwob, Karin Kranich-Hofbauer, and Diethard Suntinger, 153–176. Graz:

Leykam.

342

http://dx.doi.org/10.1007/s13222-014-0173-y
http://dx.doi.org/10.1016/0022-2836(70)90057-4
http://dx.doi.org/https://doi.org/10.1007/978-3-319-20170-2_4

Bibliography

– . 1991. “TUSTEP”. In Computers in the humanities and the social sciences:

Achievements of the 1980s, prospects for the 1990s. Proceedings of the Cologne

Computer Conference 1988 uses of the computer in the humanities and social

sciences held at the University of Cologne, Sept, ed. by Heinrich Best, 432–437.

Köln: De Gruyter.

Parker, David C. 2000. “The Text of the New Testament and Computers: The

International Greek New Testament Project”. Literary and Linguistic Computing

15 (1): 27–41.

– . 2006. “Electronic religious texts : the Gospel of John”. In Electronic Textual

Editing, ed. by Lou Burnard, Katherine O’Brien O’Keeffe, and John Unsworth,

202–205. New York: Modern Language Association of America.

– . 2008. An Introduction to the New Testament Manuscripts and their Texts.

Cambridge: Cambridge University Press.

– . 2012. Textual Scholarship and the Making of the New Testament. Oxford: Oxford

University Press.

Pasquali, Giorgio. 1952. Storia della Tradizione e Critica del Testo. 2nd ed. Firenze:

Felice Le Monnier.

Pearl, Judea. 1984. Heuristics: Intelligent Search Strategies for Computer Problem

Solving. Reading, Mass.: Addison-Wesley.

Peirce, Charles Santiago Sanders. 1906. “Prolegomena to an apology for

pragmaticism”. The Monist 16 (4): 492–546.

Petti, Anthony E. 1977. English Literary Hands from Chaucer to Dryden. London:

Edward Arnold.

Pierazzo, Elena. 2008. “Editorial Teamwork in a Digital Environment : The Edition

of the Correspondence of Giacomo Puccini”. In Jahrbuch für

Computerphilologie, ed. by Malte Rehbein and S. Ryder, 91–110.

– . 2011. “A rationale of digital documentary editions”. Literary and Linguistic

Computing 26 (4): 463–477. doi:https://doi.org/10.1093/llc/fqr033.

– . 2015. Digital Scholarly Editing: Theories, Models and Methods. Farnham, Surrey,

UK; Burlington, VT: Ashgate.

– . 2016. “Textual Scholarship and Text Encoding”. In A New Companion to Digital

Humanities, ed. by Susan Schreibman, Raymond G Siemens, and J M Unsworth,

307–321. Wiley-Blackwell.

Pirovano, W., and J. Heringa. 2008. “Multiple sequence alignment.” In

Bioinformatics. Methods in Molecular Biology™, ed. by J. M. Keith, vol. 452.

Humana Press. doi:https://doi.org/10.1007/978-1-60327-159-2_7.

343

http://dx.doi.org/https://doi.org/10.1093/llc/fqr033
http://dx.doi.org/https://doi.org/10.1007/978-1-60327-159-2_7

Bibliography

Pithoeus, Petrus, ed. 1594. M. Fab. Quintiliani Declamationes, quae ex

CCCLXXXVIII. supersunt, CXLV. ex vetere exemplari restitutae. Calpurnii Flacci

excerptae X. Rhetorum minorum LI. nunc primum editae. Dialogus de oratoribus,

sive de caussis coruptae eloquientiae. Ex bibliotheca P. Heidelberg: Hieronymus

Commelinus. doi:http://dx.doi.org/10.3931/e-rara-3278.

Poulos, Alex. 2014. “Editing with Juxta and the CTE | The Poulos Blog”. Visited on

July 13, 2017. https://mapoulos.wordpress.com/2014/06/07/editing-with-juxta-
and-the-cte/.

Prebor, Gila. 2013. “New Technologies for the Collation of Hebrew Texts”. Zutot:

Perspectives on Jewish Culture 10:53–64. doi:10.1163/18750214-12341254.

Raabe, Wesley. 2008a. “Collation in Scholarly Editing: An Introduction”. Visited on

Aug. 25, 2015. http://wraabe.wordpress.com/2008/07/26/collation-in-scholarly-
editing-an-introduction-dra�/.

– . 2008b. “How to Be a Human Hinman Collator”. Visited on May 4, 2015. https:
//wraabe.wordpress.com/2008/05/13/how-to-be-a-human-hinman-collator/.

– . 2008c. “The Digital Archive and Literary Scholarship : Textual Collation for

Dummies”. Visited on Aug. 25, 2015.

https://wraabe.wordpress.com/2008/01/17/the-digital-archive-and-literary-
scholarship-textual-collation-for-dummies/.

– . 2014. “Running CollateX on your Macintosh OSX (Mavericks)”. Visited on

May 4, 2017. https://wraabe.wordpress.com/2014/10/07/running-collatex-on-
your-macintosh-osx-mavericks/.

– . 2015. “CollateX, Python, Anaconda, Oh My: Or, What Have I Done? (Week 3

Reflections)”. Visited on May 4, 2017.

https://wraabe.wordpress.com/2015/09/21/collatex-python-anaconda-oh-my-
or-what-have-i-done-week-3-reflections/.

Raben, Joseph. 1979. “De Acibus et Faeni Acervis: Text Comparison as a Means of

Collation”. In La pratique des ordinateurs dans la critique des textes. Paris, 29-31

Mars 1978, ed. by Jean Irigoin and G. P. Zarri, 256–261. Paris: Éditions du Centre

National de la Recherche Scientifique.

Ravy, Tawnya. 2015. “Juxta and Frankenstein | Studies In The Novel”. Visited on

July 13, 2017. https://studiesinthenovel.org/content/juxta-and-frankenstein.

Raynaud, Dominique. 2014. “Building the stemma codicum from geometric

diagrams”. Archive for History of Exact Sciences 68 (2): 207–239.

doi:https://doi.org/10.1007/s00407-013-0134-0.

Reeve, Michael. 2000. “"Cuius in Usum?" Recent and Future Editing”. The Journal

of Roman Studies (Roma) 90:196–206.

344

http://dx.doi.org/http://dx.doi.org/10.3931/e-rara-3278
https://mapoulos.wordpress.com/2014/06/07/editing-with-juxta-and-the-cte/
https://mapoulos.wordpress.com/2014/06/07/editing-with-juxta-and-the-cte/
http://dx.doi.org/10.1163/18750214-12341254
http://wraabe.wordpress.com/2008/07/26/collation-in-scholarly-editing-an-introduction-draft/
http://wraabe.wordpress.com/2008/07/26/collation-in-scholarly-editing-an-introduction-draft/
https://wraabe.wordpress.com/2008/05/13/how-to-be-a-human-hinman-collator/
https://wraabe.wordpress.com/2008/05/13/how-to-be-a-human-hinman-collator/
https://wraabe.wordpress.com/2008/01/17/the-digital-archive-and-literary-scholarship-textual-collation-for-dummies/
https://wraabe.wordpress.com/2008/01/17/the-digital-archive-and-literary-scholarship-textual-collation-for-dummies/
https://wraabe.wordpress.com/2014/10/07/running-collatex-on-your-macintosh-osx-mavericks/
https://wraabe.wordpress.com/2014/10/07/running-collatex-on-your-macintosh-osx-mavericks/
https://wraabe.wordpress.com/2015/09/21/collatex-python-anaconda-oh-my-or-what-have-i-done-week-3-reflections/
https://wraabe.wordpress.com/2015/09/21/collatex-python-anaconda-oh-my-or-what-have-i-done-week-3-reflections/
https://studiesinthenovel.org/content/juxta-and-frankenstein
http://dx.doi.org/https://doi.org/10.1007/s00407-013-0134-0

Bibliography

– . 2011. “Editing classical texts with a computer: Hyginus’s Astronomica”. In

Manuscripts and Methods: Essays on Editing and Transmission, 361–393. Roma:

Edizioni Di Storia e Letteratura.

– . (1989) 2011. “Eliminatio codicum descriptorum: A methodological problem”.

In Manuscripts and Methods: Essays on Editing and Transmission, ed. by

Michael Reeve, 145–174. Repr., Roma: Edizioni Di Storia e Letteratura.

Reitz, Joan M. 2013. “Collation”. Visited on Oct. 23, 2014.

http://www.abc-clio.com/ODLIS/odlis_c.aspx.

Reynolds, Leighton D., and Nigel G. Wilson. 1991. Scribes and scholars. A guide to

the transmission of Greek and Latin literature. 3rd ed. Oxford: Clarendon Press.

Rizzo, Silvia. 1973. Il lessico filologico degli umanisti. Roma: Edizioni di storia e

letteratura.

Robinson, Peter. 1989a. “The Collation and Textual Criticism of Icelandic

Manuscripts (1): Collation”. Literary and Linguistic Computing 4 (2): 99–105.

– . 1989b. “The Collation and Textual Criticism of Icelandic Manuscripts (2):

Textual Criticism”. Literary and Linguistic Computing 4 (3): 174–181.

– . 1991. “Collation, Textual Criticism, Publication, and the Computer”. Text

7:77–94.

– . 1994. “Collate: A Program For Interactive Collation of Large Textual Traditions”.

In Research in Humanities Computing 3, ed. by Susan Hockey and Nancy Ide,

32–45. Oxford: Oxford University Press.

– . 2004. “Rationale and Implementation of the Collation System Used on this

CD-ROM”. In The Miller’s Tale on CD-ROM. Leicester, UK: Scholarly Digital

Editions.

– . 2005. “Current issues in making digital editions of medieval texts - or, do

electronic scholarly editions have a future?” Digital Medievalist 1.

doi:ttp://doi.org/10.16995/dm.8.

– . 2007a. “Electronic Editions Which We Have Made and Which We Want to

Make”. In Digital Philology and Medieval Texts, ed. by Arianna Ciula and

Francesco Stella, 1–12. Pisa: Pacini.

– . 2007b. “The History of Collate”. Visited on June 9, 2014.

http://www.sd-editions.com/blog/?p=15.

345

http://www.abc-clio.com/ODLIS/odlis_c.aspx
http://dx.doi.org/ttp://doi.org/10.16995/dm.8
http://www.sd-editions.com/blog/?p=15

Bibliography

– . 2009. “Towards a Scholarly Editing System for the Next Decades Introduction :

A Short History”. In Sanskrit Computational Linguistics: First and Second

International Symposia Rocquencourt, France, October 29-31, 2007 Providence,

RI, USA, May 15-17, 2008, Revised Selected Papers, ed. by Gérard Huet,

Amba Kulkarni, and Peter Scharf, 346–357. Berlin, Heidelberg: Springer.

– . 2014. “Scholarly Digital Editions: Collate 2, and the design for its successor:

CollateXML (now, CollateX)”. Visited on Aug. 5, 2018.

http://scholarlydigitaleditions.blogspot.com/2014/09/collate-2-and-design-
for-its-successor.html.

– . 2017. “Some principles for making collaborative scholarly editions in digital

form”. Digital Humanities Quarterly 11 (2).

Robinson, Peter, and Elizabeth Solopova. 1993. “Guidelines for Transcription of the

Manuscripts of the Wife of Bath’s Prologue”. In The Canterbury Tales Project:

Occasional Papers, ed. by Norman F Blake and Peter Robinson, 19–52. Oxford:

Oxford University Computing Service.

Roelli, Philip. 2014. “Petrus Alfonsi or On the mutual benefit of traditional and

computerised stemmatology”. In Analysis of Ancient and Medieval Texts and

Manuscripts: Digital Approaches. Ed. by Tara Andrews and Caroline Macé, 43–68.

Turnhout: Brepols. doi:https://doi.org/10.1484/M.LECTIO-EB.5.102564.

Roelli, Philip, and Dieter Bachmann. 2010. “Towards generating a stemma of

complicated manuscript traditions: Petrus Alfonsi’s Dialogus”. Revue d’Histoire

des Textes 5:307–321.

Rolfe, John C. 1927. The Attic Nights of Aulus Gellius. With An English Translation.

Cambridge Mass. ; London: Harvard University Press.

Roos, Teemu, and Yuan Zou. 2011. “Analysis of textual variation by latent tree

structures”. Proceedings - IEEE International Conference on Data Mining,

December 11-14, Vancouver, 2011: 567–576. doi:10.1109/ICDM.2011.24.

Ruffell, Ian. 2015. “Supporting MS collation”. Digital Classicist Archives. Visited on

July 31, 2017. https://www.jiscmail.ac.uk/cgi-
bin/webadmin?A2=digitalclassicist;f8cb739e.1509.

Russell, D. A. 1983. Greek Declamation. Cambridge: Cambridge University Press.

Sabbadini, Remigio. 1905. Le scoperte dei codici latini e greci ne’secoli 14 e 15.

Firenze G.C. Sansoni.

Safaryan, Anahit, Sascha Kaufmann, and Tara L. Andrews. 2016. “Critical Edition as

Graph: The Chronicle of Matthew of Edessa Online”. Digital Humanities

Conference DH2016, Kraków, 11-16 July 2016. Visited on June 5, 2017.

http://dh2016.adho.org/abstracts/209.

346

http://scholarlydigitaleditions.blogspot.com/2014/09/collate-2-and-design-for-its-successor.html
http://scholarlydigitaleditions.blogspot.com/2014/09/collate-2-and-design-for-its-successor.html
http://dx.doi.org/https://doi.org/10.1484/M.LECTIO-EB.5.102564
http://dx.doi.org/10.1109/ICDM.2011.24
https://www.jiscmail.ac.uk/cgi-bin/webadmin?A2=digitalclassicist;f8cb739e.1509
https://www.jiscmail.ac.uk/cgi-bin/webadmin?A2=digitalclassicist;f8cb739e.1509
http://dh2016.adho.org/abstracts/209

Bibliography

Sahle, Patrick. 2013. Digitale Editionsformen. Zum Umgang mit der Überlieferung

unter den Bedingungen des Medienwandels. Teil 3: Textbegriffe und Recodierung.

Norderstedt: Books on Demand.

– . 2017. “A catalog of Digital Scholarly Editions v3.0”. Visited on Jan. 10, 2018.

http://www.digitale-edition.de/index.html.

Sahraeian, Sayed Mohammad Ebrahim, and Byung Jun Yoon. 2011. “PicXAA-Web:

a web-based platform for non-progressive maximum expected accuracy

alignment of multiple biological sequences”. Nucleic Acids Res 39 (April): W8–12.

doi:10.1093/nar/gkr244.

Saito, Ken. 2006. “A preliminary study in the critical assessment of diagrams in

Greek mathematical works”. Sciamvs 7:81–144.

Salemans, Benedictus Johannes Paulus. 2000. Building Stemmas with the Computer

in a Cladistic, Neo-Lachmannian, way. The Case of Fourteen Text Versions of

Lanseloet van Denemerken. Nijmegen: Katholieke Universiteit Nijmegen.

Schironi, Francesca. 2012. “The Ambiguity of Signs: Critical σηµει̃α from

Zenodotus to Origen”. In Homer and the Bible in the Eyes of Ancient Interpreters,

ed. by Maren R. Niehoff, 87–112. Leiden; Boston: Brill.

Schmid, Ulrich. 2004. “Genealogy by chance! On the significance of accidental

variation (parallelisms)”. In Studies in Stemmatology II, ed. by Pieter van Reenen,

August den Hollander, and Margot van Mulken, 127–144. Amsterdam: John

Benjamins Publishing Company.

Schmidt, Desmond. 2009. “Merging Multi-Version Texts: a Generic Solution to the

Overlap Problem”. In Proceedings of Balisage: The Markup Conference 2009.

August 11 - 14, 2009. Vol. 3. doi:10.4242/BalisageVol3.Schmidt01.

– . 2010. “The inadequacy of embedded markup for cultural heritage texts”.

Literary and Linguistic Computing 25 (3): 337–356. doi:10.1093/llc/fqq007.

– . 2013. “Collation on the Web”. Digital Humanities Conference DH2013,

University of Nebraska–Lincoln, 16-19 July 2013. Visited on May 14, 2017.

http://dh2013.unl.edu/abstracts/ab-108.html.

Schmidt, Desmond, and Robert Colomb. 2009. “A data structure for representing

multi-version texts online”. International Journal of Human-Computer Studies

67 (6): 497–514. doi:10.1016/j.ijhcs.2009.02.001.

Schmidt, Desmond, and Paul Eggert. 2015. “Technical Design”. Visited on May 30,

2017. http://charles-harpur.org/harpur/tabs?docid=english/harpur/about/
technical%7B%5C&%7Dmodule=para%7B%5C%%7D3Fdocid%7B%5C%
%7D3Denglish/harpur/about/technical%7B%5C&%7Dtabset=about.

347

http://www.digitale-edition.de/index.html
http://dx.doi.org/10.1093/nar/gkr244
http://dx.doi.org/10.4242/BalisageVol3.Schmidt01
http://dx.doi.org/10.1093/llc/fqq007
http://dh2013.unl.edu/abstracts/ab-108.html
http://dx.doi.org/10.1016/j.ijhcs.2009.02.001
http://charles-harpur.org/harpur/tabs?docid=english/harpur/about/technical%7B%5C&%7Dmodule=para%7B%5C%%7D3Fdocid%7B%5C%%7D3Denglish/harpur/about/technical%7B%5C&%7Dtabset=about
http://charles-harpur.org/harpur/tabs?docid=english/harpur/about/technical%7B%5C&%7Dmodule=para%7B%5C%%7D3Fdocid%7B%5C%%7D3Denglish/harpur/about/technical%7B%5C&%7Dtabset=about
http://charles-harpur.org/harpur/tabs?docid=english/harpur/about/technical%7B%5C&%7Dmodule=para%7B%5C%%7D3Fdocid%7B%5C%%7D3Denglish/harpur/about/technical%7B%5C&%7Dtabset=about

Bibliography

Schubert, Charlotte, et al. 2016. eComparatio - Editionsvergleich. Digital

Humanities Conference DH2016, Kraków, 11-16 July 2016.

Schulz, Daniela. 2017. “Of general and homemade encoding problems”. In

Advances in Digital Scholarly Editing, ed. by Peter Boot et al., 341–344. Sidestone

Press.

Schütz, Susanne, and Marcus Pöckelmann. 2016. “LERA - Explorative Analyse

komplexer Textvarianten in Editionsphilologie und Diskursanalyse”. In Vortrag

auf der 3. Jahrestagung der Digital Humanities im deutschsprachigen Raum, DHd

2016‚ Leipzig 07.-12.03.2016.

Sculley, David, and B. M. Pasanek. 2008. “Meaning and mining: the impact of

implicit assumptions in data mining for the humanities”. Literary and Linguistic

Computing 23 (4): 409–424. doi:10.1093/llc/fqn019.

Shaw, Prue, ed. 2010. Dante Alighieri: Commedia. A Digital Edition. Saskatoon:

Scholarly Digital Editions.

Shillingsburg, Miriam J. 1978. “Computer Assistance to Scholarly Editing”. Bulletin

of Research in the Humanities 81:448–473.

Shillingsburg, Peter. 1980. “The Computer as Research Assistant in Scholarly

Editing”. Literary Research Newsletter 5 (1): 31–45.

– . 1996. Scholarly editing in the computer age: theory and practice. 3rd ed. Ann

Arbor: University of Michigan Press.

– . 2014. “Development Principles for Virtual Archives and Editions”. Variants

11:11–28.

Siemens, Raymond. 1994. “Textual collation software for the PC. PC-CASE, UNITE,

and the Donne Variorum Collation Program”. Text Technology 4 (3): 209–222.

– . 2009. “Editing the Early Modern Miscellany: Modelling and Knowledge

[Re]Presentation as a Context for the Contemporary Editor”. In New Ways of

Looking at Old Texts IV: Papers of the Renaissance English Text Society, 2002–2006,

ed. by Michael Denbog, 115–130.

Smith, Catherine. 2015. “Developing a Scholarly Collation Editor for New

Testament Manuscripts”. DiXiT Convention 1: Technology, Software, Standards

for the Digital Scholarly Edition September 14-18, 2015. Visited on Nov. 20, 2017.

http://dixit.huygens.knaw.nl/?page%7B%5C_%7Did=138%7B%5C#%7Dsmith.

Smith, David Neel, and Sephanie Lindeborg. 2016. “Comparing Digital Scholarly

Editions”. Digital Humanities Conference DH2016, Kraków, 11-16 July 2016.

Visited on Apr. 21, 2017. http://dh2016.adho.org/abstracts/141.

348

http://dx.doi.org/10.1093/llc/fqn019
http://dixit.huygens.knaw.nl/?page%7B%5C_%7Did=138%7B%5C#%7Dsmith
http://dh2016.adho.org/abstracts/141

Bibliography

Smith, Steven Escar. 2000. “"The Eternal Verities Verified": Charlton Hinman and

the Roots of Mechanical Collation”. Bibliographical Society of the University of

Virginia 53:129–161.

– . 2002. “"Armadillos of Invention": A Census of Mechanical Collators”. Studies in

Bibliography 55:133–170.

Spadini, Elena. 2015. “Annotating Document Changes”. In Proceedings of the 3rd

International Workshop on (Document) Changes: modeling, detection, storage

and visualization Lausanne, Switzerland — September 08 - 08, 2015, 23–26.

– . 2016. “Studi sul Lancelot en prose”. PhD thesis, Sapienza Università di Roma.

Spencer, Matthew, and Christopher J. Howe. 2004. “Collating Texts Using

Progressive Multiple Alignment”. Computers 38 (3): 253–270.

Spencer, Matthew, et al. 2004. “The effects of weighting kinds of variants”. In

Studies in Stemmatology II, ed. by Pieter Van Reenen, August Den Hollander, and

Margot Van Mulken, 227–240. Studies in Stemmatology. Amsterdam: John

Benjamins Publishing Company.

Sperberg-McQueen, C. M. 1989. “A directed-graph data structure for text

manipulation”. http://cmsmcq.com/1989/rhine-delta-abstract.html.

– . 2009. “How to teach your edition how to swim”. Literary and Linguistic

Computing 24 (1): 27–39. doi:10.1093/llc/fqn034.

Stählin, Otto. 1914. Editionstechnik. London & Berlin: Teubner.

Stokes, Peter. 2012. “Modeling Medieval Handwriting: A New Approach to Digital

Palaeography | Digital Humanities 2012”. In DH2012 Book of Abstracts, ed. by

J.C. et al. Meister, 382–385. Hamburg: University of Hamburg.

Stringer, Gary A., and William R. Vilberg. 1987. “The Donne Variorum Textual

Collation Program”. Computers and the Humanities 21 (2): 83–89.

Stussi, Alfredo. 1994. Introduzione agli studi di filologia italiana. Manuali :

Filologia e critica letteraria. Bologna: Il Mulino.

Sussman, Lewis A. 1994. The Declamations of Calpurnius Flaccus: Text, Translation,

and Commentary. Ed. by Lewis A. Sussman. Mnemosyne Bibliotheca Classica

Batava. Leiden: New York: E.J. Brill.

– . 2013. “Controversiae”. In The Encyclopedia of Ancient History, First Edition.

Online version, ed. by Roger S. Bagnall et al. Blackwell Publishing Ltd.

doi:10.1002/9781444338386.wbeah13057.

TEI Consortium eds. 2013. “JuxtaCommons”. Visited on Apr. 10, 2017.

https://wiki.tei-c.org/index.php/JuxtaCommons.

349

http://cmsmcq.com/1989/rhine-delta-abstract.html
http://dx.doi.org/10.1093/llc/fqn034
http://dx.doi.org/10.1002/9781444338386.wbeah13057
https://wiki.tei-c.org/index.php/JuxtaCommons

Bibliography

– , ed. 2017a. “10 Manuscript Description”. Visited on Aug. 25, 2017.

http://www.tei-c.org/release/doc/tei-p5-doc/en/html/MS.html.

– . 2017b. “11.1 Digital Facsimiles”. Visited on Mar. 5, 2017.

http://www.tei-c.org/release/doc/tei-p5-doc/en/html/PH.html#PHFAX.

– . 2017c. “12.2.3 The Parallel Segmentation Method”. Visited on Jan. 31, 2017.

http://www.tei-c.org/release/doc/tei-p5-doc/en/html/TC.html#TCAPPS.

– . 2017d. “3.12.1 Core Tags for Verse”. Visited on Dec. 5, 2017.

http://www.tei-c.org/release/doc/tei-p5-doc/en/html/CO.html#COVE.

Ter Braake, S., et al. 2016. “Digital history: Towards new methodologies”. IFIP

Advances in Information and Communication Technology 482.

doi:10.1007/978-3-319-46224-0_3.

Timpanaro, S. 1985. “Recentiores e deteriores, codices descripti e codices inutiles”.

Filologia e critica 10:164–192.

– . 2005. The Genesis of Lachmann’s Method. Ed. and trans. by Glenn W Most.

Chicago and London: University of Chicago Press.

Tissoni, Francesco. 2004. “Testi latini on line ad accesso libero: una prima

valutazione”. ACME LV:43–79.

– . 2008. “Pubblicare testi latini on-line. Obiettivi, metodi e strategie”. In Prassi

Ecdotiche. Esperienze editoriali su tesi manoscritti et testi a stampa. Milano, 7

giugno e 31 ottobre 2007, ed. by Alberto Cadioli and Paolo Chiesa, 137–154.

Milano: Cisalpino, Istituto Editoriale Universitario.

Trovato, Paolo. 2014. Everything You Always Wanted to Know about Lachmann’s

Method. A Non-Standard Handbook of Genealogical Textual Criticism in the Age

of Post-Structuralism, Cladistics, and Copy-Text. Padova: libreriauniversitaria.it

edizioni.

Underwood, Ted, and Jordan Sellers. 2015. “How Quickly Do Literary Standards

Change?”: 1–37. doi:https://doi.org/10.6084/m9.figshare.1418394.v1.

Urbina, Eduardo, et al. 2002. “Critical Editing in the Digital Age: Informatics and

Humanities Research”. In The new Information Order and the Future of Archive.

Proceedings of a Conference held at Old College, the University of Edinburgh

(March 20-23, 2002), ed. by J. Frow. Edinburgh: University of Edinburgh.

Valla, Lorenzo. 1540. Laurentii Vallae Opera. Apud Henricum Petrum.

Van Hulle, Dirk, Vincent Neyt, and Mark Nixon. 2014. “Update: collation feature

now containing deletions and additions”. Visited on Feb. 1, 2018.

http://www.beckettarchive.org/news.jsp.

350

http://www.tei-c.org/release/doc/tei-p5-doc/en/html/MS.html
http://www.tei-c.org/release/doc/tei-p5-doc/en/html/PH.html#PHFAX
http://www.tei-c.org/release/doc/tei-p5-doc/en/html/TC.html#TCAPPS
http://www.tei-c.org/release/doc/tei-p5-doc/en/html/CO.html#COVE
http://dx.doi.org/10.1007/978-3-319-46224-0_3
http://dx.doi.org/https://doi.org/10.6084/m9.figshare.1418394.v1
http://www.beckettarchive.org/news.jsp

Bibliography

Van Mal-Maeder, Danielle. 2007. La Fiction Des Déclamations. Leiden: Boston:

Brill.

Van Ossenbruggen, Jacco. 2015. “The Nature of Digitally-Produced Data: Towards

Social-Scientific Tool Criticism”. Visited on July 10, 2017.

https://www.slideshare.net/jrvosse/the-nature-of-digitallyproduced-data-
towards-socialscientific-tool-crititism.

Van Zundert, Joris. 2016. Close Reading and Slow Programming — Computer Code

as Digital Scholarly Editions. Presentation given at the ESTS-DiXiT conference,

Antwerp, 5-7 October 2016.

Van Zundert, Joris, and Ronald Haentjens Dekker. 2017. “Code, scholarship, and

criticism: When is code scholarship and when is it not?” Digital Scholarship in

the Humanities 32 (suppl_1): i121–i133. doi:10.1093/llc/fqx006.

VanderPlas, Jake. 2016. Python Data Science Handbook. O’Reilly Media.

Vanhoutte, Edward. 2010. “Defining Electronic editions: A Historical and

Functional Perspective”. In Text and Genre in Reconstruction. Effects of

Digitalization on Ideas, Behaviours, Products and Institutions, ed. by

Willard McCarty, 119–144. Cambridge: Open Book Publisher.

– . 2011. “So You Think You Can Edit? The Masterchef Edition”. Visited on Aug. 14,

2014. http://edwardvanhoutte.blogspot.co.uk/2011/10/so-you-think-you-can-
edit-masterchef.html.

Vierros, Marja, and Erik Henriksson. 2016. “Preprocessing Greek Papyri for

Linguistic Annotation”. Episciences.org, 2017, Special Issue on Computer-Aided

Processing of Intertextuality in Ancient Languages. Visited on Dec. 5, 2016.

https://hal.archives-ouvertes.fr/hal-01279493v1.

Vinaver, Eugène. 1939. “Principles of Textual Emendation”. In Studies in French

Language and Mediaeval Literature. Presented to Professor Mildred K. Pope, by

Pupils, Colleagues, and Friends. 351–369. Manchester: Publications of the

University of Manchester.

Viré, Ghislaine. 1986. Informatique et classement des Manuscrits. Essai

méthodologique sur le de astronomia d’Hygin. Bruxelles: Editions de l’Université

de Bruxelles.

Wachtel, Klaus. 2000. “Editing the Greek New Testament on the Threshold of the

Twenty-First Century”. Literary and Linguistic Computing 15 (1): 43–50.

Watt, W. S. 1996. “Ten notes on Calpurnius Flaccus, Declamationum Excerpta”.

Eranos 94:123–127.

West, Martin L. 1973. Textual Criticism and Editorial Technique. Stuttgart: Teubner.

351

https://www.slideshare.net/jrvosse/the-nature-of-digitallyproduced-data-towards-socialscientific-tool-crititism
https://www.slideshare.net/jrvosse/the-nature-of-digitallyproduced-data-towards-socialscientific-tool-crititism
http://dx.doi.org/10.1093/llc/fqx006
http://edwardvanhoutte.blogspot.co.uk/2011/10/so-you-think-you-can-edit-masterchef.html
http://edwardvanhoutte.blogspot.co.uk/2011/10/so-you-think-you-can-edit-masterchef.html
https://hal.archives-ouvertes.fr/hal-01279493v1

Bibliography

Wheeles, Dana. 2013. “Using Juxta in the Classroom: Scholar’s Lab Presentation”.

Visited on Aug. 29, 2017. http://www.juxtaso�ware.org/using-juxta-in-the-
classroom-scholars-lab-presentation/.

Wheeles, Dana, and Kristen Jensen. 2014. “Juxta Commons”. Journal of Digital

Humanities 3 (1).

Whittaker, John. 1991. “The Practice of Manuscript Collation”. Text 5:121–130.

Widmann, R. L. 1971a. “Computers and Literary Scholarship”. Computers and the

Humanities 6 (1): 3–14.

– . 1971b. “The computer in historical collation: use of the IBM 360/75 in collating

multiple editions of A Midsummer Night’s Dream”. In The Computer in Literary

and Linguistic Research, ed. by R. A. Wisbey, 57–63. Cambridge: Cambridge

University Press.

Wiering, Frans. 2010. “Digital Critical Editions of Music: A Multidimensional

Model”. Chap. 3 in Modern Methods for Musicology, ed. by Gibson and Crawford,

23–45. Farnham, Surrey, UK; Burlington, VT: Ashgate.

Willis, James. 1972. Latin Textual Criticism. Illinois University Language and

Culture Series. Urbana, Chicago, London: University of Illinois Press.

Winterbottom, Michael. 1984. The minor declamations ascribed to Quintilian.

Berlin: De Gruyter.

– . 1995. “Review of L. A. Sussman ’The Declamations of Calpurnius Flaccus. Text,

Translation, and Commentary’”. The Classical Review 45 (01): 40–42.

doi:10.1017/S0009840X00292032.

– . 1999. “An Emendation in Calpurnius Flaccus”. The Classical Quarterly 49, no.

01 (): 338–339. doi:10.1093/cq/49.1.338.

– . 2017. “The Editors of Calpurnius Flaccus”. In Reading Roman Declamation -

Calpurnius Flaccus, ed. by Martin T. Dinter, Charles Guérin, and

Marcos Martinho, 143–162. Berlin, Germany ; Boston, Massachusetts: De

Gruyter.

Winters, Margaret E. 1991. “Manuscript Variation and Syntactic Change”. Text

5:131–144.

Yousef, Tariq, and Chiara Palladino. 2016. iAligner : A tool for syntax-based

intra-language text alignment.

Yousef, Tariq, Chiara Palladino, and Gregory Crane. 2017. Intra-language Text

Alignment Using iAligner.

352

http://www.juxtasoftware.org/using-juxta-in-the-classroom-scholars-lab-presentation/
http://www.juxtasoftware.org/using-juxta-in-the-classroom-scholars-lab-presentation/
http://dx.doi.org/10.1017/S0009840X00292032
http://dx.doi.org/10.1093/cq/49.1.338

Bibliography

Zeevaert, Ludger. 2015. “Easy tools to get to grips with linguistic variation in the

manuscripts of Njáls saga.” Digital Medievalist 10.

doi:http://doi.org/10.16995/dm.60.

Zetzel, James E. G. 1981. Latin Textual Criticism in Antiquity. New York: Arno Press.

353

http://dx.doi.org/http://doi.org/10.16995/dm.60

	Contents
	List of Figures
	List of Tables
	General Introduction
	Theory
	Collation
	Definition
	Historical Context
	Purpose of Collation
	Issues of Collation

	The Theory of Automated Collation
	Automatisation of Collation
	Collation algorithms
	The Evolution of Automated Collation
	Methodology of Automated Collation
	Advantages of Computers and Black Box Issue
	Comparing collation tools
	Conclusion

	Transcription: a Prerequisite for Automated Collation
	Theory of Transcription
	Transcription and Collation: a Common Model?
	Transcription Issues Related to Automated Collation
	Conclusion

	Readings and Variants
	Readings in Context
	Modelling a Reading
	Digital Representation: from Reading to Token
	Comparing Tokens in Different Contexts
	Conclusion

	Practice
	Test Case: the Declamations of Calpurnius Flaccus
	The Tradition of Calpurnius Flaccus
	Method: Automated Collation Applied to a Classical Text

	XML Transcriptions
	Transcription platforms
	Description of the TEI Encoding

	Automated Collation in Practice
	CollateX
	Juxta
	Classical Text Editor
	Conclusion

	Collation Visualisation
	Assessing Scholarly Needs
	Table format: fixed visualisation
	Interactive interfaces
	PyCoviz: A Python Interactive Interface
	PyCoviz Applied to Calpurnius Flaccus
	Discussion
	Conclusion

	General Conclusion
	Appendices
	Theory
	List of tools — Automated Collation
	Collation Model

	Practice
	XML Transcriptions
	XSLT Tranformation
	JSON Collation Results
	HTML Tables
	PyCoviz Jupyter Notebook

	Bibliography

