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Abstract

This thesis will present work completed throughout the course of my doctoral studies. The

thesis primarily concerns developments in the theories of the M5-brane and systems of mul-

tiple M-branes in M-theory.

Theories of multiple M2-branes are currently well understood, with the BLG and ABJM

models providing a comprehensive and rich base from which to continue study of such ob-

jects. The M5-brane however remains shrouded in mystery. A basic multiplet for a single

M5-brane is known but scant else directly; it is believed that the six-dimensional (2, 0) model

describes the worldvolume theory for multiple M5-branes, however this theory is itself poorly

understood. There is therefore much work to be done to gain a deeper understanding of

these objects and how they interact. This thesis hopes to be a small part of that story.

In the first part of this thesis I provide an extended introduction, giving a broad background

to many of the topics discussed later in the text. This is intended to set the scene and

introduce the major players for what is to follow. I discuss the development of String

Theory and its basic results including the spectrum, dualities, and D-branes. Interspersed

are diversions into topics which are of relevance for the later work such as the notion of

Kaluza-Klein compactification, BPS states, and solitons. I then discuss how String Theory

leads inexorably to M-theory and discuss the basics of this new theory. Following this, I

dive deeper into a detailed discussion of the BLG theory describing pairs of M2-branes.

Next, I move into more recent and tentative models of multiple M-branes which emerge

from attempts to extend the (2, 0) algebra to a non-abelian generalisation. This typically

involves the addition of non-dynamical form fields into the model which allow for various

different brane configuration interpretations.

I then begin describing the novel systems which constitute my contribution to the field.

Firstly, I show how the non-abelian extended (2, 0) theory has a natural sector within it

which describes ‘null’ M2-branes. This system is analysed and is shown to reduce to mo-

tion on the moduli space of solutions to the Hitchin system. From this I then find an

action for this system which provides a concrete example of a maximally symmetric non-

Lorentzian field theory. Another such lagrangian is also found which comes from another

extended (2, 0) system.

Finally, I discuss a system of M5-branes wrapped on the multi-Taub-NUT geometry. This



system has a natural string theory interpretation of intersecting D4 and D6-branes. Such

a brane configuration is known to contain chiral fermions which propagate along the inter-

section and which arise due to the open strings stretching between the branes. This picture

has been previously poorly understood from the M-theory perspective; this work shows the

M-theory origin of the chiral states and argues that they are described by a Wess-Zumino-

Witten-like model.
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Chapter 1

Introduction

Physicists have long sought to develop a theory with the potential to fully describe

all that we see around us in the natural world in a simple, elegant fashion. The

Ancient Greeks, attempting to systematise nature into invisible elemental atoms,

began the search which leads through Newton and the scientific revolutions of the

18th and 19th Centuries, and into the early 20th Century and Einstein’s well known

attempts to unify physical laws. This thesis will examine the most promising lead for

this age old question: String Theory, or in its modern inception: M-Theory. String

Theory began in the 1960s as a model developed to describe hadrons and the strong

force more broadly, its genesis was a paper by Veneziano [1] who found a scattering

amplitude which was hoped to describe the interactions of these particles. It soon

became clear that this model was not likely to be successful for its intended purpose,

indeed the strong force would soon after be understood within the framework of

Quantum Chromodynamics, however after some work, Veneziano’s model was re-

understood as a theory of string interactions [2, 3, 4]. Furthermore, the model seemed

particularly exciting because of one particular feature—it included a massless spin-

two state which could be identified with the graviton, the gauge boson for gravity

[5, 6]. This had been a long standing problem in high energy physics—gravity,

formulated as a quantum field theory, was known to be non-renormalisable [7] so

how could it be united with the other fundamental forces of nature? Principally,

string theory provided a solution to this by giving a quantum theory which explicitly

and necessarily included a graviton and which, in simple perturbation theory, consists

of amplitudes with no UV divergences [8].
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Chapter 1. Introduction

Over time string theory developed into a broad, rich theory with many offshoots

and has left an enormous footprint on today’s landscape of theoretical physics. In

particular its aim to provide a theory of everything has been distilled and understood

in a modern context within a new idea, that of M-theory, the study of which will

constitute the main part of this thesis.

This thesis aims to provide an overview of the subject and report on recent work

conducted by myself, in conjunction with my supervisor and other collaborators, over

the course of my studies.

The thesis is arranged as follows: In Chapter 1 I begin with a broad introduction

to the topic, suitable for a wide audience to follow. This discussion will portray

the journey from the idea of strings to its fruition in the modern understanding

of M-theory. Along the way, key concepts to be employed later will be reviewed

and it is hoped that the reader obtains an appreciation for the scope of the theory

and its fundamental ideas. In Chapter 2 a more detailed review of the primary

objects of study in this thesis—M-branes—will be conducted. The motivation for

their existence and basic properties will be discussed in addition to an overview of

our current understanding of their dynamics. The theories discussed in this section

will prove essential for later chapters. In Chapter 3 I discuss work which concerns

a special case of a system introduced in the preceding chapter and find a novel

system of so called “null” M-branes. This work was published in October 2017 in

the Journal of High Energy Physics (JHEP) in collaboration with my supervisor,

Prof. N. Lambert and colleague Dr. P Kucharski [9]. In Chapter 4 I study two

systems: one discussed in Chapter 2 and another from Chapter 3; I show them to be

examples of novel, maximally supersymmetric non-Lorentzian theories. This work

was published in JHEP in October 2018 in collaboration with my supervisor [10]. In

Chapter 5 I change focus and discuss work which looks for the M-theory origin of

certain chiral states which are well understood from the string theory perspective.

This work was completed in collaboration with my supervisor and was published in

JHEP in April 2018 [11]. Finally, in Chapter 6 I provide a conclusion to the work in

this thesis.

I proceed now to discuss the background and context for the work in this thesis;

I begin with an overview of string theory, followed by a discussion of its development

into M-theory with some elementary results presented. For much of the material

covered in this chapter I owe a great debt to numerous review articles and books.
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Chapter 1. Introduction

In particular the following works provide a comprehensive overview of, and heavily

influenced, the fundamentals of String Theory and M-Theory presented here [8, 12,

13, 14, 15, 16].

1.1 String Theory

The basic idea embodied by String Theory is eponymous; we presume that the

fundamental matter of the universe is made up of propagating (1 + 1)-dimensional

objects, referred to as strings. Initial treatments focused on a bosonic formulation,

still seen in introductory textbooks and courses, however this is inadequate on its

own due to the presence of tachyonic states in the spectrum of the theory. A selection

of references for this initial bosonic treatment are provided here [17, 18, 19, 20, 21,

22, 23, 24]; throughout this section the references provided will aim to give a broad

historical overview of the literature and are not intended to be comprehensive. To

remove the tachyonic states an extra symmetry was added to the theory, known as

supersymmetry, this had the effect of removing the tachyon and also, famously, fixing

the number of dimensions in which the theory must live to ten [25, 26, 27, 28, 29,

30, 31, 32, 33, 34].

Strings can come in two different varieties, open and closed, with most theories

of strings consisting of closed strings; open strings, as will be seen, generally imply

the existence of extra objects in the theory. A spectrum for supersymmetric strings

can be identified by looking at the lowest energy excitations and, at a perturbative

level, scattering amplitudes can be computed [8]. As in quantum field theory, these

amplitudes are governed by some coupling which is small in the perturbative limit

but with some strong coupling regime where perturbation theory breaks down. The

coupling in String Theory is interesting because it is dynamically determined by the

theory. Because of this remarkable fact, one finds that there is only one fundamental

parameter in the theory, that of the string length scale, denoted as ls, which in turn

is used to set the tension for the fundamental string, typically one has [15]

T =
1

2πl2s
. (1.1.1)

The string scale is considered very small when compared to our current theories and

experiments so massive modes in the theory, whose masses are set by the inverse of
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Chapter 1. Introduction

the length scale, take a vast amount of energy to excite. This means that, while the

massive modes are of course very important to the theory, the massless modes in

the theory are the ones of interest for phenomenology and for first forays into the

subject. Therefore when giving an overview of the contents of various string theories

later, the massless modes will be of primary interest.

From a phenomenological perspective, the dimensional constraint leads to one of

string theory’s biggest difficulties: the landscape problem. The naive intuition of our

merely four-dimensional spacetime naturally contradicts the string theory prediction

of ten dimensions and so the question occurs: how should the two be reconciled? The

answer appears in the process of compactification; the idea being that the deficit six

dimensions form a compact space with small volume so that they are unseen at

the scales with which we are experienced [35]. However, at small scales, of order

the string scale, these dimensions become consequential. A similar idea had been

considered by Kaluza in 1921 [36] and refined by Klein and others into what is now

known as Kaluza-Klein theory. The original goal of the construction was to unify

electromagnetism with gravity by supposing the existence of a fifth dimension in

spacetime. This was ultimately unsuccessful at describing a realistic theory but the

methodology and language resulting from this remains a part of the current lexicon.

I will briefly discuss the technique here as it will be useful for later.

1.1.1 Kaluza-Klein Theory

This is a rather standard argument but I loosely follow the treatment in [15] here. In

the classic formulation one begins with a five-dimensional space of topology R1,3×S1.

I will consider pure gravity and write down coordinates as xM , M,N = 0, 1, 2, 3, 4

with x4 = x4 + 2πR periodic; R characterises the radius of the circular S1 direction.

Then, write down the natural action for gravity in five dimensions as

S5D =

∫ √
−G(5)R(5)d5x. (1.1.2)

Here, R is the Ricci scalar and G the determinant of the metric. Throughout, such

bracketed indices, as seen above, indicate the dimension in which the object lives—

in this case it indicates that the objects are five-dimensional quantities. I will show

that after compactifying and reducing on the S1, this leads to theories which describe

gravity unified with electromagnetism.

12



Chapter 1. Introduction

Perform a split in the indices; µ, ν = 0, 1, 2, 3 and x4 separate; one then de-

fines four-dimensional quantities G(4), Aµ, and φ such that the field content splits,

schematically, to

G(4)
µν ∼ G(5)

µν , Aµ ∼ G
(5)
µ4 , e2φ ∼ G

(5)
44 , (1.1.3)

where Aµ is a new U(1) gauge field, and φ a scalar known as the dilaton. The idea

is then that on scales much larger than R, so that it is small, the theory should look

effectively four-dimensional and, in the limit of R→ 0, should be independent of x4;

this condition will be looked at more carefully below. One can show that under this

choice of periodic coordinate the Ricci scalar reduces to:

R(5) = R(4) − 2e−φ∇2eφ − 1

4
e2φFµνF

µν , (1.1.4)

which implies that the action for the four-dimensional theory is given by

S4D =

∫
d4x
√
−G(4)

[
R(4) − ∂µφ∂µφ−

1

4
e2φFµνF

µν

]
. (1.1.5)

Thus the pure gravity theory in five-dimensions has split to four-dimensional gravity,

coupled to a U(1) electromagnetic gauge field, with a new scalar known as the dilaton

which acts to dynamically set the coupling of the gauge field. Later it will be argued

that string theory generates its own coupling in precisely the same way.

Thus Kaluza-Klein theory demonstrates the rich possibilities that come from

proposing additional dimensions in the theory. Simple theories in higher dimen-

sions reduce down to more complex theories in lower dimensions. Another way to

look at the decomposition which makes clear what happens here is to consider the

compactification of one field only.

Take the scalar in five dimensions with full coordinate dependence and fourier

expand in the periodic coordinate

φ(xM) =
∑
n∈Z

φn(xµ)eip4x
4

=
∑
n∈Z

φn(xµ)e
inx4

R . (1.1.6)

I assume here that the scalar obeys the Klein-Gordon equation and have immedi-

ately identified the quantised momentum p4 = n
R

for n ∈ Z to enforce the correct

periodicity of x4. Substituting this expansion into the five-dimensional massless

13



Chapter 1. Introduction

Klein-Gordon equation of motion, ∂M∂
Mφ = 0 one finds

∂µ∂
µφn −

n2

R2
φn = 0. (1.1.7)

Thus the compactification on S1 induces a massless five-dimensional scalar field on

the theory which, from the four-dimensional perspective, constitutes an infinite tower

of scalar fields labelled by integers n with mass Mn = n
R

. These are often referred

to as Kaluza-Klein (KK) modes and we see that the lowest energy n = 0 state

corresponds precisely to the massless scalar dilaton found in equation (1.1.5) with

the higher mode states becoming heavy for very small R. At small R then such states

take large amounts of energy to excite which implies by the usual QFT arguments

that they will drop out of the theory at low energy.

Later it will be described how D0-branes arise in string theory from a completely

analogous process of dimensional reduction on the M-theory circle; in fact compacti-

fications akin to this arise frequently in the study of M-theory [16]. Furthermore this

is the basic idea behind the phenomenological realisation of string and M-Theory.

While this compactification is only in one dimension, the hope for string theory is

that there is a six-dimensional compact space which, when reduced down from ten-

dimensions, can replicate the complexity and chaos of the Standard Model. Such

hopes are proving difficult to verify due to the astronomical number of such spaces—

possibly as large as 10100 [37]—and so efforts have focused primarily on increasing

our understanding of the fundamental theory, in the hope that this may shed further

light on the phenomenological question, or provide hints for other theories which

may one day furnish a description of the world around us.

I now move on to discuss superstring theory in more depth.

1.1.2 Supersymmetric Strings

String theory developed quickly throughout the 80s and 90s under the first and

second superstring revolutions. With the addition of supersymmetry, the so called

superstring was quickly analysed and its properties derived [32, 33, 34]. The resulting

spectrum was found to be tachyon free, due to the GSO projection [31], but after

this the analysis became more complicated. Five superstring theories emerged; two,

labelled type IIA and IIB come simply from considering a bosonic string with super-
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Chapter 1. Introduction

symetry imposed and contain in the massless bosonic spectrum a dilaton, a graviton,

and a two-form gauge field; collectively known as the NS-NS [38] sector of the theory.

The dilaton here is a scalar field, φ, which dynamically generates the string theory

coupling, gs = eφ, it will be seen later how this dilaton is in turn generated from

a Kaluza-Klein process as described in the previous section. In addition is the R-R

[25] sector in which the massless spectrum contains p-form fields with p = 1, 3 in the

IIA theory and p = 0, 2, 4 for the IIB theory. In the type IIB case the four-form has

a special property in that its field strength is self dual, this is necessary to match

the number of fermionic and bosonic degrees of freedom as supersymetry requires

[16]. NS and R stand for ’Neveu-Schwarz’ [38] and ’Ramond’ [25] respectively and

simply indicate different choices of boundary conditions for the fermionic modes on

the string. The fermionic content of both theories consists of a pair of dilatinos and

a pair of gravitinos leading to maximal N = 2 supersymmetry, i.e. 32 supercharges.

What differentiates the two theories is both the R-R sector, which will be discussed

later in the discussion on D-branes, and the chirality of the fermionic sector. In the

type IIA theory the gravitinos are of opposite chirality, thus giving a non-chiral (1, 1)

theory; whereas in the IIB case the gravitinos have the same chirality so one finds

a chiral (2, 0) theory. The bulk type II string theories are theories of closed strings

however it will be seen later that open strings do exist in the theory with their end

points constrained to end on new objects known as D-branes.

The remaining string theories will be less important for the remainder of this

thesis but I will discuss them briefly here to complete the picture and to motivate

the shift later into M-theory. The type I theory is best understood as arising from

a projection of type IIB onto states invariant under world sheet parity [16]. This

transformation maps the spatial string world sheet coordinate, σ as

Ω : σ → −σ. (1.1.8)

Such a transformation swaps the left and right moving modes around the string, and

so is a symmetry of type IIB but not type IIA since only in the IIB case do the left

and right moving fermions carry the same chirality. One projects onto a particular

choice, Ω = +1 say, and this has the result of projecting out half of the states, in

particular one of the gravitinos disappears. The resultant type I theory now has

N = 1 supersymmetry and a coupled SO(32) Yang-Mills theory which is necessary

for appropriate anomaly cancellation in the theory. The type IIA, IIB, and I string
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Chapter 1. Introduction

theories were all outlined, and their spectrum described by Green and Schwarz in

[32, 33, 34].

The final two string theories discovered are known as the Heterotic theories [39,

40, 35] and are obtained by a slightly odd prescription of enforcing supersymmetry

in the left moving string modes while not enforcing such supersymmetry in the right

moving modes. This unorthodox setup actually leads to two interesting N = 1

supersymmetric theories of closed strings. The content of such theories is extremely

attractive phenomenologically speaking as they contain non-abelian gauge symmetry

and chiral fermions; both key components necessary in the standard model. The

gauge symmetries distinguish the two theories with one having an SO(32) gauge

symmetry and the other E8 × E8. Given their similarity with features found in the

standard model the two heterotic theories were the subject of much focus soon after

their discovery, eclipsing the other theories; it was later on, after certain dualities

had been discovered, that all theories started to look equally interesting.

These disparate theories, it is now believed, are all unified by the encompassing

M-theory as will be discussed below. However, the story is not quite finished, at

least for the type II theories as previously alluded to. The form fields found in the

R-R sector give rise to new dynamical objects in the theory known as D-branes. It

is with the intention of understanding this phenomenon that I now proceed.

1.1.3 Dualities in String Theory

With five kinds of string theory categorised, the natural question is whether they are

related to one another at all. This section will discuss the dualities which unite the

theories. Some time and effort will be spent on T-duality as it will lead to objects

highly relevant for this thesis, while other dualities will be mentioned more briefly

in Section 1.2.

T-Duality

The first and most instructive duality for the purposes of this thesis is T-duality.

This was first discussed explicitly in [41] and developed in [42, 43]. Reviews are

commonplace and can be found in any of the textbooks listed earlier, in particular,

[15] and [16]. Both of these have inspired the following treatment.
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Chapter 1. Introduction

The idea of T-duality is to consider string theory where we compactify one di-

mension onto a circle. I will provide here the argument for the bosonic modes of the

closed type II string only, leaving the fermions to one side. I take X9(τ, σ) to be the

spacetime coordinate compactified on a circle of radius R so that one should have

periodic boundary conditions for this coordinate

X9(τ, σ + π) = X9(τ, σ) + 2πRw. (1.1.9)

Here I take the circumference of the string to be π, and allow for the possibility that

the closed string wraps the dimension multiple times, with w being this winding

number.

The appropriate expansion for this coordinate, which respects the boundary con-

ditions is then

X9(τ, σ) = x9 + 2l2sp
9τ + 2Rwσ + . . .

= x9 + 2l2s
n

R
τ + 2Rwσ + . . . . (1.1.10)

Here, x9 is the centre of mass position of the string, p9 the corresponding momentum

and the ellipsis hides the higher oscillatory modes. In addition I have identified

the quantised momentum in the second equality using the same argument as in the

Kaluza-Klein setup discussed in Section 1.1.1. One can now split this expression into

left and right moving modes, X9
L(τ + σ) and X9

R(τ − σ)

X9
R(τ − σ) =

1

2
(x9 − x̃9) + (l2s

n

R
− wR)(τ − σ) + . . .

X9
L(τ + σ) =

1

2
(x9 + x̃9) + (l2s

n

R
+ wR)(τ + σ) + . . . (1.1.11)

where x̃9 is a dummy variable for now, the interpretation of which will become clear

below.

This allows, with certain other constraints on the Virasoro generators, a deriva-

tion for an expression of the mass of states in such a situation:

M2 =
n2

R2
+
w2R2

l4s
+ . . . (1.1.12)

The ellipsis in this case indicates terms which measure the excitation of left and
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right moving modes respectively—these are the terms that allowed for the analysis

of the spectrum seen in Section 1.1.2. Of import here though is the behaviour of the

first two terms; referred to as the KK modes and the winding modes respectively.

One sees that a few curious features emerge. As R → ∞ the winding modes get

progressively heavier; consequently less accessible, and thus drop out of the theory.

Conversely, the gaps between the KK tower of states get progressively thinner so

as to approach a continuum; in the limit R → ∞ then, as intuition suggests, the

compactified dimension unravels and one finds the usual uncompactified theory.

Now, as R→ 0 the usual KK analysis would follow Section 1.1.1 where the second

term is not present and the KK modes become extremely heavy so drop out the theory

entirely and we have a full dimensional reduction. However, the stringy aspects of

the theory are paramount here and the winding modes are included. Thus as R→ 0

the winding modes approach a continuum as it is very easy to excite them around

a shrinking circle. This then implies the re-emergence of a large uncompactified

dimension. To state this another way, in either case, when R goes to zero or infinity,

a large uncompactified dimension emerges; this is initially very unintuitive.

Symmetry of equation (1.1.12) shows the origin of this; under a transformation

n↔ w and simultaneous R→ R̃ ≡ l2s
R

it is seen that (1.1.12) is invariant. Thus, this

T-duality is relating a theory compactified on a circle of radius R to another theory

compactified on radius ∼ 1
R

.

To relate this back to the type II string theories I first refer back to the left and

right moving mode expansion from (1.1.11) and see that the symmetry transforma-

tion described above is equivalent to the transformation

XL → XL, XR → −XR (1.1.13)

where under T-duality the x9 coordinate is now considered dummy and the x̃9 is the

centre of mass position. In other words

X̃9(τ, σ) =X9
L(τσ)−X9

R(τσ)

= x̃9 + 2l2s
n

R
σ + 2Rwτ + . . . . (1.1.14)

It is clear that in this case the KK modes wrapping the T-dualised circle, comparing
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to (1.1.10), have conjugate momentum given by

p9 =
Rw

l2s
=
w

R̃
. (1.1.15)

And thus one sees that T-duality really is relating a theory with KK momentum

running round a circle of radius R with winding modes to a theory with momentum

now characterised by the original winding modes, running round a dual circle of

radius 1/R, and winding now characterised by the original KK integer n. This is

how T-duality manifests itself for closed strings, how it behaves with open strings

will lead to interesting results.

Open Strings

I now provide a brief discussion of how T-duality affects open strings in type II string

theory. Even though such strings do not exist in the bulk spacetime of the theory this

analysis will provide the bedrock for the discussion of the following section concerning

the conditions under which open strings can be found. The argument follows much

of that in [16].

The natural action for a free bosonic string is known as, in one form, the Nambu-

Goto action [19] and is constructed by analogy with a particle where the action is

taken to be proportional to a particle’s geometric worldline. In another formulation

this action is known as the Polyakov action [44, 24]. Taking this action, gauge fixing

it and then varying yields:

S =− 1

2πl2s

∫
dτdσηαβ∂αX

µ∂βX
ν

δS =− 1

πl2s

∫
dτ∂σXµδX

µ|σ=π
σ=0 . (1.1.16)

Here, α, β are the worldsheet coordinates τ, σ; and µ, ν are ten-dimensional spacetime

coordinates characterising the embedding of the string into the bulk.

For an open string one can impose two kinds of boundary condition, Neumann and

Dirichlet. Neumann boundary conditions are those where ∂σXµ|σ=π
σ=0 = 0 is enforced

on each coordinate, and Dirichlet are those where δXµ|σ=π
σ=0 = 0 is imposed on each

coordinate. In order to maintain Lorentz invariance, typically one would pick the

Neumann conditions for each coordinate and leave it at that. Thus the perturbative

spectrum of type II string theory contains only closed strings generically [8]. T-
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duality will be shown to change this analysis.

The setup is as follows, place an open string with Neumann boundary conditions

on all coordinates in the theory where X9 is compactified to a circle so that it

obeys appropriate periodicity conditions as seen in Section 1.1.3. Then solve for this

coordinate from the action above, impose the boundary conditions and split into

right and left moving modes to find an expansion for the coordinate as

X9
R(τ − σ) =

1

2
(x9 − x̃9) + l2sp

9(τ − σ) +
ils
2

∑ 1

n
αne

−in(τ−σ)

X9
L(τ + σ) =

1

2
(x9 + x̃9) + l2sp

9(τ + σ) +
ils
2

∑ 1

n
αne

−in(τ+σ) (1.1.17)

where the oscillatory modes have now been left in.

If one sums these, the linear sigma terms cancel, the exponentials form a cosine

function, cosnσ and thus, since this cosine contains all the remaining σ depen-

dence, one sees that the Neumann boundary conditions are currently enforced—i.e.

∂σ cos(nσ)|σ=π
σ=0 = 0 . Now T-dualise; the dual coordinate is X̃9 = X9

L −X9
R and one

sees that the exponentials now combine to form sinnσ. This corresponds to a shift

in the boundary conditions obeyed by the coordinate—the T-dual direction now has

fixed, hence Dirichlet, boundary conditions.

Explicitly, one can calculate the boundary conditions obtained to be

X̃9(τ, 0) = x̃9, X̃9(τ, π) = x̃9 + 2l2s
n

R
π = x̃9 + 2nR̃π (1.1.18)

where the momentum has been quantised and the duality relationship utilised. Such

expressions show how an open string can wrap around the compact dimension n

times in a topologically stable way since the string cannot unwrap itself given fixed

end points [15].

One also sees that the reverse to that presented here would also be true; one

could T-dualise a coordinate initially with Dirichlet boundary conditions to obtain

Neumann boundary conditions on the dual circle. Thus a T-duality transformation

on an open string simply switches the boundary conditions imposed on that direction.

There is more to say on the T-duality of open strings but that will be left for Section,

1.1.4.

One of the key results from this T-duality found in the type II theories comes
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from the behaviour of XL and XR under the transformation. Since the right moving

modes change sign under the transformation and since type IIA string theory is a

non-chiral theory with opposite chirality gravitinos, one sees that the transformation

acts to switch the chirality of one gravitino and thus the theory becomes a chiral

theory exactly like type IIB string theory. The converse is also clearly true. Up to

the R-R form fields then it seems like T-duality transformations relate type IIA and

IIB string theories together—they are one theory viewed in a different way. The

discussion of how the forms are reconciled will await the next section but for now it

will suffice to simply state that T-duality really is a valid duality relationship which

can be shown to hold order by order in perturbation theory [45].

Finally, before leaving the discussion about T-duality for a time, I remark that

a similar result holds between the two heterotic theories [46]—implying that these

two are simply different aspects of the same theory. The details for how this comes

about are different as in the type II case and will not be of concern for this work.

1.1.4 D-branes

As discussed above, both the type IIA and IIB string theories contain various p-form

gauge fields from the R-R sector of the massless field content; for IIA, p = 1, 3, for

IIB, p = 0, 2, 4. T-duality has suggested that these two theories are one and the

same however I have yet to show how these forms relate to one another.

To see the significance of these forms first consider the usual electromagnetic

theory, described by a one-form A = Aµdx
µ. Such a field naturally couples to a

manifold by the action

S = e

∫
A = e

∫
dtAµ

dXµ

dt
(1.1.19)

where one considers the manifold to be a point particle of electric charge e, moving

only in a time direction. All this describes is the pull back of the bulk gauge field,

A, onto the worldline of a particle. Such a worldline is referred to as a zero-brane

where zero indicates the number of spatial dimensions associated to the manifold.

The natural generalisation to (p + 1)-forms coupling to p-branes is given by the

corresponding pullback of bulk coordinates X onto the brane parametrised by σ as

S = µp

∫
A = µp

∫
dp+1σAµ1...µp+1ε

σ1...σp+1
∂Xµ1

∂σ1

. . .
∂Xµp+1

∂σp+1

(1.1.20)
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for some electric-like charge µp and with ε denoting the totally antisymmetric tensor,

defined by ε01... = +1.

The take away is that (p + 1)-form gauge fields naturally couple to (p + 1)-

dimensional manifolds labelled as p-branes. Such branes have a natural charge as-

sociated to them; considering the electromagnetism example once more, the electric

and magnetic charge on a particle can be computed, from the field strength F = dA,

and corresponding hodge dual, ?F = 1
2
εµνρσFµνdx

ρdxσ as

e =

∫
S2

?F g =

∫
S2

F (1.1.21)

where one integrates over a space enclosing the point particle, i.e the manifold to

which the gauge field is naturally associated; in this case, a 2-sphere. g should be

thought of as the magnetic charge associated to a point like magnetic source.

These come from the integral over all space of Maxwell’s equations with sources

dF = ?Jm d ? F = ?Je (1.1.22)

and by using Stokes’ theorem. The current one-forms are defined by the charge and

current densities, J = (ρ,~j), and the existence of magnetic monopoles is assumed by

the existence of a corresponding Jm.

The final point to note, which I will not derive here, is the Dirac quantisation

condition [47] on the electric and magnetic charges which constrains one to the other

as

eg ∈ 2πZ. (1.1.23)

Such a constraint follows naturally from gauge invariance on systems of electric

charges and magnetic monopoles interacting.

p-branes are a simple extension of this model to sources of higher dimension.

One takes the associated form-field, Ap+1, finds the corresponding field strength,

Fp+2, computes the hodge dual to this and thus obtains values for the charges. Note

that the field strength is a (p + 2)-form and hodge dual is given by a (10 − p −
2) = (8 − p)-form. This assumes a bulk ten dimensional theory. These give the

sphere dimensions over which one should integrate to find the respective charges;

geometrically these are the particular n-spheres which can surround a p-brane in ten
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dimensions.

µp =

∫
S8−p

?Fp+2 µ6−p =

∫
Sp+2

Fp+2. (1.1.24)

The labelling of the second charge may seem odd here; the hodge dual operation is

in fact more meaningful than a simple mathematical trick. If one imagines the hodge

dual form as being the field strength of a new form-field, dB7−p = ?Fp+2 then this

new field should be interpreted as being associated to another brane object, in this

case a (6− p)-brane. This is the origin of the labelling convention above.

These charges also obey a generalised Dirac quantisation condition [48, 49, 50],

so that one has

µpµ6−p ∈ 2πZ. (1.1.25)

Certain systems or objects can exhibit multiple charges, such constructions are typ-

ically interpreted to be bound states of the individual p-branes.

Thus, given a theory with a (p + 1)-form field the existence of two additional

objects in the theory should be inferred, one being a p-brane, and the other its

magnetic dual, a (6− p)-brane [15].

Turning back to the type II string theories, the various R-R sector form fields

present in the spectrum, using the arguments described above, imply the existence

of extended branes in the theory known as Dp-branes. Such branes had first been

seen in [51, 52] but the key paper linking D-branes to the R-R charges was from

Polchinski [53]. In type IIA string theory, with the one-form and three-form R-R

fields, one should expect the presence of D0, D2, D4, and D6-branes. Similarly, in

the IIB theory, given the zero-form, two-form, and four-form R-R fields, one should

expect the presence of D1, D3, D5, and D7-branes as well as naively a D(-1)-brane

due to the zero-form field. This object should be interpreted as a D-instanton [54], an

object which is totally localised in both space and time. It is worth noting that in the

IIB theory the four-form, as mentioned earlier, has a self dual field strength—thus

the D3 brane is both electrically and magnetically charged under this field. Finally,

the fundamental string can be re-interpreted using similar arguments [16]. The two-

form NS-NS sector field found in both type II string theories should be considered as

giving rise to the fundamental string. Additionally, there is a corresponding magnetic

dual to this known as the NS5-brane. All these objects have tensions which can be

computed to be [55]
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TF1 =
2π

(2πls)2
TNS5 =

2π

g2
s(2πls)

6
TDp =

2π

gs(2πls)p+1
. (1.1.26)

Notice that the D-branes are inherently non-perturbative objects in string theory

given their inverse relationship with the string coupling—they are very heavy and

thus largely rigid at weak coupling, becoming light only in the strong coupling limit.

This is why, when considering only the massless modes and perturbation theory,

there is no trace of these objects in the theory.

One might then ask how do D-branes behave under T-duality transformations.

The answer is precisely as described in the discussion of Section 1.1.3. It was de-

scribed there that under T-duality transformations open strings change their bound-

ary conditions along the coordinate which is T-dualised and Dirichlet boundary con-

ditions describe open strings whose end points are fixed along some direction. This is

the alternative motivation for these D(irichlet)-branes; one should think of D-branes

as being objects on which open strings end—D-branes are precisely the fixed point

of the boundary conditions [16]. So how do such objects behave under T-duality? If

one takes a D4-brane for example, and T-dualises along a direction parallel to the

brane, then this parallel direction was previously a free direction of motion for the

open string, as the open string is fixed to the brane but can move along it. The

T-duality now fixes the position of the string along this direction and so the string

has one less coordinate to move in thus the D4-brane has effectively become a D3-

brane with a dual circle transverse to the brane. If one T-dualises the original D4

brane in a direction transverse to the brane then the open string unlocks a previ-

ously fixed direction of motion on this new dual circle and the D4-brane becomes a

D5-brane. Thus one sees that under a T-duality transformation all odd Dp-branes

become even, and all even become odd. Hence T-duality really does transform type

IIA string theory into type IIB as was asserted earlier [45].

What should not be unappreciated in this is that D-branes are dynamical objects

in their own right. For example they interact and couple to bulk fields like the

graviton and form fields, as described above, and so have tensions and charges [15].

They are objects existing in the bulk which allow open strings to stretch between

them. Due to the Dirichlet boundary conditions imposed on these objects they clearly

break Lorentz invariance in the string theory vacuum to SO(1, 9) → SO(1, p) ×
SO(9−p), i.e Lorentz invariance on the brane and rotational symmetry in the space

transverse to the brane. Supersymmetry of the bulk theory is also broken [15]. One

24



Chapter 1. Introduction

way to see this is that closed type II strings have two gravitinos which generate

the supersymmetry, one can think of these as being left moving and right moving

currents around the closed string which add to 32 supercharges. For an open string

there are not two distinct modes on the string, only one. On a classical string this

is because the single mode is reflected off each end-point and hence travels back and

forth. Thus the open string carries only one gravitino and the D-branes conserve

half the supersymmetry of the bulk [56]. This makes D-branes, and later M-branes,

1/2 BPS states of the theory (often just referred to as BPS states). This is often

seen as conditions imposed on the parameters of supersymmetry transformations like

Γ01...pε = ε. Being a BPS state is extremely valuable for these objects as quantities

associated with such objects, for example the tension of the brane, are fixed to not

vary for all couplings in the theory by supersymmetry [57]. That is, one can trust

such results for generic coupling in the theory. In particular therefore the tension

can be calculated at weak coupling and one should not expect any corrections to be

needed when extrapolating to strong coupling.

The concept of BPS states recurs throughout string theory and will do so in this

thesis so I take a moment here to clarify what is meant. This discussion will lead

on to another related topic—solitons—which I will also overview before returning to

the main story.

BPS States

BPS states were first discovered classically as lower bounds for the energy of Yang-

Mills magnetic monopole solutions, thus they are vacuum conditions on these the-

ories. Much of this discussion is inspired by that in [58]. The classic case comes

from the Georgi-Glashow model [59], an SO(3) gauge theory coupled to a Higgs field

described by the lagrangian

L = −1

4
F a
µνF

µν
a +

1

2
DµφaD

µφa − V (φ). (1.1.27)

Lower latin indices represent the SO(3) gauge indices, and fields are in the adjoint

representation. The potential is the standard Higgs potential

V (φ) =
1

4
λ(φ2 − a2)2. (1.1.28)
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Such a model has electric and magnetic fields given by Ei = F0i, and Bi = 1
2
εijkFjk

as well as a conjugate momentum for the Higgs field Πa = D0φa. The theory then

admits an energy density function of the form

H =
1

2
Ea
i E

a
i +

1

2
Ba
i B

a
i +

1

2
ΠaΠa +

1

2
Diφ

aDiφ
a + V (φ). (1.1.29)

The system presented here describes the t’Hooft Polyakov monopole [60, 61], a

set of smooth static topological magnetic monopoles. The Bogomol’nyi-Prasad-

Sommerfield (BPS) bound [62, 63] describes the smallest possible mass for such a

monopole. It is calculated using a standard trick where one recognises that all terms

in the energy density function are positive-semi-definite and constructs an inequality

accordingly. I work in the centre of mass frame so all the energy is centred in the

mass. A bound can be placed on the mass initially by dropping the momentum and

potential terms and thus observing

M ≥1

2

∫
R3

E2
i +B2

i + (Diφ)2

=
1

2

∫
R3

(Ei −Diφ sin θ)2 + (Bi −Diφ cos θ)2 + 2 sin θEa
iDiφa + 2 cos θBa

iDiφa

≥
∫
R3

sin θEa
iDiφa + cos θBa

iDiφa (1.1.30)

Where an angular parameter, θ was introduced and positive definite terms were

dropped in the final inequality. The last two terms can then be written as total

derivatives by the Bianchi identity and hence contribute only a surface term at

infinity. However, this surface term gives precisely the electric and magnetic charges

of the monopole, given in (1.1.24). In addition, since I integrate over the sphere at

infinity, the Higgs field should be in its vacuum state, so φ→ a. Thus a BPS bound

is obtained

M ≥ ag cos θ + aq sin θ. (1.1.31)

This bound is maximised when the right hand side is maximised which implies tan θ =
q
g

which implies the stricter BPS bound

M ≥ a
√
q2 + g2. (1.1.32)

To saturate this bound, the condition to define classical BPS states, one should first

ensure that the initial terms dropped are set to zero. This implies static solutions
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where the timelike component of the gauge field is zero and there is no time depen-

dence so that D0 = 0. The static condition implies that Ei = 0; thus sin θ = 0. Next

one demands that the positive semi-definite terms in (1.1.30) are zero which leads to

the Bogomol’nyi equation [62]

Bi = ±Diφ (1.1.33)

with ± allowing for either solution to sin θ = 0. One final feature is that in order

to guarantee the potential vanishing over all space whilst maintaining a non-zero

magnetic charge the constant λ must be zero [63].

Further analysis of this theory implies that the gauge boson has mass Mg = aq

with q units of electric charge only, while the monopoles have Mm = ag with g units

of magnetic charge only [58]. This observation will be useful later when discussing

S-duality.

Thus far I have considered only a non-supersymmetric theory and found the

existence of a bound on the model. I will not review here the construction of super-

symmetry, though it will be extremely important for the remainder of this thesis.

Introductions can be found in [64, 65]. In [57] an N = 2 supersymmetric version

of the above described theory was constructed which has the effect of finding an

equivalent BPS condition in such a theory. Such a theory can also be found from

dimensional reduction of six-dimensional N = 1 supersymmetric Yang-Mills [66].

The BPS bound found in these extended supersymmetry theories can be shown to

be totally equivalent to that presented above and arises from a similar argument

[67, 57]. In general, theories with extended supersymmetry contain a notion of a

BPS state that arises algebraically from the supersymmetry algebra, I review this

construction briefly below. In an extended supersymmetry multiplet the algebra

takes the following schematic form [65]:

{Q,Q} = 2Q2 ∼M + Z (1.1.34)

where the Z are the central charges and M is the mass, as I work in the centre of

mass frame. Consider an expectation value of this equation within generic states,

then one sees

〈ψ|Q2|ψ〉 ∼ (M + z)〈ψ|ψ〉 (1.1.35)

with z an eigenvalue of Z. The left hand side is positive definite so the right hand

side must be also, this implies M & −z. Since the central charge matrix in full
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generality must be traceless (it is antisymmetric), then each positive eigenvalue has

a corresponding negative eigenvalue implying

M & |z| (1.1.36)

This is the BPS bound in supersymmetry. It being saturated is equivalent to

Q|ψ〉 = 0; i.e. a state preserves some fraction, typically 1/2, of the supersym-

metries. As mentioned above, one can show, though it will not be fruitful to do so

here, that this definition of BPS state is totally equivalent to the definition above

[67, 57]. In supersymmetric theories a saturated BPS bound then leads to zeroes

in the supersymmetry algebra, this implies that the algebra has smaller than usual

representations and so one obtains so-called short multiplets, more details are found

in [65].

The conclusion is that BPS states in supersymmetric theories are solutions to

the action which maintain some fraction of the original supersymmetry. Much of the

analysis conducted later in this work will be with such states. Studying the BPS

states for certain theories leads to topologically interesting solutions which have a

wide range of novel properties; these are known as solitons and are the topic of the

next section.

Solitons

Solitons are non-perturbative objects which arise in Yang-Mills gauge theories due

to the non-trivial topological nature of the bulk spacetime. They manifest in differ-

ent forms; as instantons, monopoles, vortices, and domain walls, depending on the

dimension and field content of the theory. I will consider a simple soliton initially for

illustrative purposes and then show how it relates to monopoles and other systems.

Much of the discussion here will follow that from [68].

I work with (4 + 1)-dimensional SU(N) Yang-Mills theory which can be thought

of as an instanton with time dependence. The energy functional is given by

H =
1

2g2

∫
R4

d4xTrFMNF
MN . (1.1.37)

for M,N = 0, 1, 2, 3, 4. It will be useful for the moment to consider static configura-
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tions with F0µ = 0 for µ, ν = 1, 2, 3, 4 which implies an energy functional

H =
1

2g2

∫
R4

d4xTrFµνF
µν . (1.1.38)

It will turn out that the quantities of interest here are the BPS states of the system.

With this in mind I run the argument of the previous section in a very similar way,

this was seen in [69]. By splitting Fµν into itself and its hodge dual where I now

think in terms of the four spatial dimensions

H =
1

4g2

∫
R4

d4xTr (Fµν ∓ ?Fµν)2 ± 2Fµν ? F
µν

≥ ± 1

2g2

∫
R4

εµνρσ∂µ

(
AνFρσ +

2i

3
AνAρAσ

)
, (1.1.39)

where the inequality comes by dropping the positive definite term on the first line

and expanding the second.

It will be interesting to see how this behaves on the boundary of space; to do this

notice that a finite path integral of such a theory requires that Fµν be zero at spatial

infinity. This restricts that the gauge field, Aµ, should become pure gauge as r →∞
so

Aµ → ig−1∂µg (1.1.40)

for g an element of the Lie-algebra of SU(N) so that Aµ ∈ SU(N). This requirement

specifies a map from the boundary of space to the group SU(N); such maps are

specified by the homotopy of the manifold—maps are distinguished from one another

by whether then can be continuously deformed into one another. For the group

here, SU(N), the relevant homotopy group is given by Z. Thus integers k ∈ Z,

characterising how many times the map wraps over spatial infinity, will split the

instanton solutions into different sectors which are totally topologically distinct. For

a given map, this integer can be calculated from the Chern Class

k =
1

24π2

∫
S3
∞

dΩµε
µνρσg−1∂νgg

−1∂ρgg
−1∂σg (1.1.41)

with Ω denoting the remaining coordinates at spatial infinity. For a discussion on

Chern Classes and homotopy maps see e.g. [70]. Notice that the bound of equation
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(1.1.39) becomes, on the boundary of space

H ≥ 8π2

g2
|k|. (1.1.42)

The bound is then satisfied, in the same sense as before, when the manifestly positive

definite terms ignored before are zero, namely when

F = ± ? F (1.1.43)

with plus or minus determined by k. This equation is the instanton equation [69];

one thus sees that instantons are states in the theory which arise from (anti)-self-dual

gauge field strengths. Since, by construction, solutions to this equation minimise the

action in a certain topological sector it is clear that instantons satisfy the equations

of motion of the action for free. Indeed this is easy to see because

Dµ(?F )µν = DµF
µν = 0 (1.1.44)

where the first equation is the equation of motion from the action, the first equality

follows from the instanton equation, and the final equality follows from the Bianchi

identity.

Finding solutions to instanton equations is an interesting process. It turns out

that solutions to these equations depend on a number of extra parameters which

distinguish disparate solutions. It is common to consider these parameters to be new

coordinates describing a space of solutions. Such a space is in fact a manifold known

as the Moduli Space, M, with the parameters known as collective coordinates or

moduli. Typically for SU(N) gauge theories in the k’th sector of the theory the

dimension of such a space is given by [68]

|M| = 4kN. (1.1.45)

How should one think about this dimension? The dimension corresponds to the num-

ber of collective coordinates of the solution. A brief example is given by k = 1 SU(2)

solutions where the collective coordinates can be intuited. Imagine the soliton as be-

ing a physical object in spacetime. Then there are eight parameters which describe a

solution; four parameters for the translation invariance of its location, one parameter

describing its scale size (how ‘big’ it is), and three parameters corresponding to the
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three generators of SU(2) and determining its embedding into the group. Thus such

an instanton has eight parameters as the equation above suggests.

The moduli space, as a manifold, has a metric which can be inherited from the

field theory. The idea is that given a solution to the instanton equations, one should

seek the moduli coordinates to find other nearby solutions. To do this first recognise

that that any nearby solution will be accessible by a perturbation, called a zero

mode, which itself must satisfy the linearised self-duality equation, A→ A+ δA

DµδAν −DνδAµ = εµνρσD
ρδAσ (1.1.46)

Zero modes are really solutions to the instanton equations which are now allowed to

depend on the moduli space parameters Aµ = Aµ(xµ,mα) for mα the coordinates on

the moduli space. They are defined as

δαAµ =
∂Aµ
∂mα

+Dµωα (1.1.47)

with the second term allowing for gauge invariance of the mode. This gauge is picked

by demanding that the zero mode is orthogonal to all other gauge transformations∫
R4

TrDµΛδαAµ = 0 ∀Λ. (1.1.48)

This implies that the gauge fixed solution satisfies Dµ (δαAµ) = 0 after integrating

by parts. Once such a gauge is fixed the metric can be seen to readily be the induced

metric on the moduli space from the construction above

gαβ =
1

2g2

∫
d4xTr (δαAµ) (δβAµ) . (1.1.49)

Moduli space metrics, for the examples which will be pertinent to this thesis, have

various properties which also prove useful; they are Hyper-Kahler spaces with re-

duced holonomy which naturally inherit certain symmetries from the field theory.

They are extremely valuable in assessing solitonic solutions and provides a complete

description of the solitonic information in a geometric way which is often easier to

compute than explicit solutions [68].

Additionally, one can now go back to the original (4 + 1)-dimensional description

of the theory and consider how some time dependence on the solitons will affect this
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moduli space. Consider motion on the moduli space as where one takes the moduli

to now have time dependence mα = mα(t) which generate the motion on the space.

This procedure was first described by Manton in [71] and can be though of as letting

fields have the following dependence φ = φ(mα(t)) so that this should provide a

good approximation for slowly moving solitons. The motion is well described by

computing geodesics on the following action

S =
1

2

∫
dt gαβṁ

αṁβ. (1.1.50)

This approximation will be seen again and used explicitly in Chapter 3.

Thus far I have focused on instantons in the discussion of solitons however there

are further systems which follow similar properties. By adding extra fields to the

system more complex phenomena can be deduced, an example is the Georgi-Glashow

model described in the previous section which described magnetic monopoles and has

similarly interesting phenomena associated to it with an equivalent topological nature

and moduli space [68]. One way to see this relationship is to notice that the different

solitonic objects can be seen by dimensionally reducing the instanton. The argument

is as follows.

Begin with the instanton equation in four dimensions and split the indices µ, ν =

0, 1, 2, 3→ i, j = 0, 1, 2 and 3 alone. Then A splits to

Aµ → Ai, X3 ≡ A3 (1.1.51)

for a scalar X4. This leads to the equation of motion, from the instanton equation

Fij = εijkF
k4

= εijkDkX
4. (1.1.52)

This is precisely the Bogomol’nyi equation given above in (1.1.33); thus one sees that

dimensionally reduced instantons lead to monopoles.

Further, one can reduce again; perform a split i, j = 0, 1, 2 → α, β = 0, 1 and 2

and 3 distinct, so that Ai splits to

Ai → Aα, X2 ≡ A2, X3 ≡ A3. (1.1.53)
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Then the Bogomol’nyi equation becomes

F01 = [X2, X3], D0X
2 = −D1X

3, D0X
3 = D1X

2. (1.1.54)

Which is a system of equations known as a Hitchins [72] system, the latter two

equations really just enforce holomorphic conditions on a complexified system where

Z = X2 + iX3 and z = x0 + ix1. Such a construction will be seen clearly in Chapter

3.

Finally, one can reduce for a final time, in precisely the same manner to obtain

D0X
1 = [X2, X3], D0X

2 = −[X1, X3], D0X
3 = [X1, X2]. (1.1.55)

These are known as Nahm equations [73, 74] and are well known as appearing in

descriptions of monopoles and other solitoninc objects.

All the solitons studied here have strong links to D-branes and this is well fleshed

out in the literature; see [75] for a review. In particular there exists a construction,

known as the ADHM construction [76] which highlights an explicit link between

D-branes and solitons. The ADHM construction however is of primary importance

because it allows for a systematic way to algebraically construct solutions to the

instanton equations. The construction, from the string theory perspective [77, 78, 79],

arises as one considers the bound state of Dp-branes inside D(p+ 4)-branes. Indeed

instantons living in D(p+4)-branes are found to be precisely equivalent to Dp-branes.

A completely analogous analysis also holds for magnetic monopoles and is known as

the Nahm construction [80, 81]. It will not serve to relate this entire procedure here

but a review is given in [68].

Gauge Theories and Systems of D-Branes

To summarise after this diversion, one should think of type II string theory as having

two parts, the weakly coupled vacuum bulk theory is described by the interaction of

closed string modes while the soliton like D-branes are described by fluctuations of

open strings whose ends are fixed to the branes.

Going further, one can associate Lie-algebra factors to the end points of stretched

open strings, in the fundamental on one end and the anti-fundamental on the other

to preserve orientation. These Chan-Paton factors [82, 83, 84] allow the string to gen-
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erate non-abelian gauge symmetries on D-brane worldvolumes with stacks of parallel

branes. When a collection of N parallel D-branes are all non-coincident the string

acts as a source for a U(1) gauge symmetry on the branes on which it ends [16]. If

two become coincident then the U(1) factors enhance to a U(2) symmetry on the

brane worldvolume. In the limit as one has N coincident D-branes then one finds a

U(N) gauge theory living on the worldvolume of D-branes [85], in addition the rep-

resentation of this gauge theory is shifted to the adjoint for coincident branes. Thus

supersymmetric (p+ 1)-dimensional Yang-Mills gauge theories are typically the low

energy worldvolume field theory for Dp-branes [15].

On the brane worldvolume itself one expects to find a collection of 9 − p scalar

fields to account for the transverse directions in spacetime. In the static gauge which

will be generally used throughout, where one rotates the brane to coincide with p+1

of the bulk spacetime coordinates, then these will manifest simply as a collection XI

for I = p + 1, . . . 10 showing explicitly the remaining SO(9 − p) R-symmetry from

the worldvolume perspective.

D-branes have been much studied since their discovery in string theory and many

systems of multiple branes are routinely considered. Of use later will be the system

of N D4-branes intersecting k separated D6-branes. This system can be seen clearly

in the following way

N D4 : 0 1 2 3 4

k D6 : 0 1 5 6 7 8 9 (1.1.56)

where the notation makes clear that the branes intersect along the x1 direction. This

system is well studied and indeed it is well known that the open strings which stretch

between the D4 and D6-branes manifest as chiral fermions found on the intersection

[86]. More will be said on this topic in Chapter 5.

Having completed a brief survey of string theory including some pertinent features

it is time to discuss the more modern aspirations for the theory. T-duality has been

described above as providing hints at relations between the theories, this can be

extended to allow for a potential unification within M-theory.
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1.2 M Theory

T-duality has related the two type II string theories with one another [45]. It was also

mentioned above that a similar duality exists between the heterotic strings [16], and

that type I string theory can be obtained from type II via a particular projection

of states [16]. One might hope then that some relation between the type II and

heterotic theories might be found to tie all these disparate theories together. Such a

hope will lead us to M-theory.

1.2.1 S-Duality

S-duality falls under a family of previously studied dualities in relating theories with

coupling g to theories with coupling 1/g. A classic example of this is given by electric-

magnetic duality [87] by Montonen and Olive which builds on the analysis presented

when discussing BPS states. One can readily see that Maxwell’s equations in terms

of differential forms are invariant under

F → ?F ? F → −F je → −jm jm → je. (1.2.1)

Similarly, it was noted when discussing the Georgi-Glashow model that the

monopoles and gauge boson have masses and charges as seen in table 1.1.

Object Mass Charge
Magnetic Monopole ag ±g
Gauge Boson aq ±q

Table 1.1: Masses and charges for particles in the Georgi-Glashow Model

One sees a symmetry in both the above examples where states in the theory

are invariant under the interchange of electric and magnetic charge. Under this

transformation a dual description of the Georgi-Glashow model consists of gauge

bosons coming from BPS magnetic monopoles, and electric monopoles.

In both cases the Dirac quantisation condition holds and so in a theory with

weakly coupled, i.e. small, q, one must have a strongly coupled, i.e. big, g. Thus

the duality relates a theory with weak coupling to one with strong coupling. In

the particular formulation presented above in Section 1.1.4 the theory is ill defined

because of possible renormalisation corrections to the BPS masses at high energy.
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Supersymmetry averts this issue by fixing such quantities for all values of the coupling

thus the context where this duality holds true is in N = 2 supersymmetric Yang-Mills

theories for which a broad literature exists, particularly around so called Seiberg-

Witten theory [88, 89] with richer symmetry transformations than the simple Z2

presented here.

Such weak-strong dualities arise in string theory as well and are referred to gen-

erally as S-dualities. It will not serve to fill in all the details here but as a flavour,

the heterotic string is shown dual to the type I in [90, 91]. Additionally the type IIB

theory is shown to be self dual in an S-dual sense in [92]. A complex web of such

dualities has arisen over the years tying the various string theories together and into

the subject of the next section—M-theory. These dualities are conjectures, but they

are conjectures for which there is good reason to believe that they are true dualities.

Reviews of this web can be found in [93, 94].

With this in place, one might start to seriously wonder at the extent to which we

should think of the supposedly disparate string theories as being the same. M-theory

now takes centre stage as a unifying theory to encapsulate these string theories; one

key insight demonstrating this comes from the relationships between supergravities

in ten and eleven dimensions.

1.2.2 Supergravity and M-Theory

Thus far in describing type IIA and IIB string theory the states considered have

been the lowest energy excitations of the theory. This is a good approximation for

the theory at weak coupling where we consider ls small or equivalently large string

tension. This weak coupling field content is also known as type IIA supergravity;

a well studied theory in its own right first obtained by the dimensional reduction

related below [95]. An equivalent statement can be made about type IIB string theory

having low energy field content of type IIB supergravity [96, 97, 98]. Together these

constitute the maximally supersymmetric supergravity theories in ten dimensions.

In eleven dimensions there is only one possible supergravity theory with maximal

supersymmetry [99]; indeed eleven dimensions is the maximal number of dimensions

in which a supergravity is realised without any fields of spin greater than 2 [100].

This is typically believed to act as a cut off for realistic theories as those with higher

spin fields have inherent pathologies, though there is ongoing study to see if there
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is any remedy for this. The field content for eleven-dimensional supergravity is very

simple, it contains a graviton, GMN , a corresponding spin 3/2 fermionic gravitino,

ΨM , and, as can be deduced from matching degrees of freedom, a three-form field,

A3 with corresponding field strength F4 = dA3. The bosonic action takes the form

[99]

S =
1

16πG11

[∫ √
−G

(
R(11) − 1

2 · 4!
FMNPQFMNPQ

)
− 1

6

∫
A3 ∧ F4 ∧ F4

]
,

(1.2.2)

with G11 the eleven-dimensional gravitational constant and R(11) the Ricci scalar

as before. Throughout, conventions are used where M,N, . . . represent eleven-

dimensional indices while µ, ν . . . represent ten-dimensional indices. The action is

invariant under supersymmetry, general coordinate transformations, and a three-

form gauge symmetry δA3 = dΛ2. A key feature of this model is the implication,

following previous analysis, that the theory contains extended p-brane like objects

due to the presence of the three-form [101, 102]. In this case the three-form generates

electrically an object known as an M2-brane and magnetically an M5-brane, these

both saturate BPS bounds on their tensions and satisfy the equations of motion for

the theory. Thus they are stable brane solutions to eleven-dimensional supergravity

which, generically, preserve half the supersymmetry. Their tensions can be calcu-

lated by imposing suitable symmetry and dimensional constraints, the results are

found to depend only on the eleven-dimensional Planck length, the only parameter

in the theory, and are given by [55]

TM2 =
2π

(2πlp)3
TM5 =

2π

(2πlp)6
. (1.2.3)

The key idea which will extend our thinking from string theory to M-theory is in

the relation between this theory and its ten-dimensional reduction. One follows the

standard Kaluza-Klein prescription laid out earlier where we take x10 ∼ x10+2πR, so

that the eleven-dimensional graviton splits to a ten-dimensional graviton, a one-form

gauge field, and a dilaton. In addition we have an eleven-dimensional three-form field

which in this case splits to

C(10)
µνρ = A(11)

µνρ Bµν = A
(11)
µν10. (1.2.4)

One also sees that the gauge symmetry acting on the three-form in eleven dimensions
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translates to impose a gauge symmetry on the induced forms in ten dimensions.

This means that the full bosonic field content of the dimensionally reduced theory

is given by a graviton, a two-form gauge field, a dilaton, a one-form gauge field, and

a three-form gauge field. This is precisely the massless bosonic spectrum of type

IIA string theory, or equivalently of ten-dimensional type IIA supergravity. The

supersymmetry in eleven-dimensional supergravity consists of a single 32 component

Majorana spinor. Upon reduction this can be decomposed into two Weyl spinors of

opposite chirality, this is precisely the fermionic content described for type IIA string

theory earlier. The reduction of the graviton allows one to relate the Planck length

in eleven dimensions to the string coupling constant, dynamically generated by the

dilaton, and the string length scale. The radius of compactification is also set by

these quantities so that in total [16]

lp = lsg
1/3
s R = lsgs. (1.2.5)

From this, some conclusions can be drawn. Eleven dimensional supergravity admits

a dimensional reduction to type IIA supergravity. Type IIA supergravity is itself

the low energy effective action of type IIA string theory, obtained by considering the

theory at small gs, or equivalently just taking the lowest level, massless excitations

of the string spectrum. Thus it’s clear from the ten-dimensional perspective that

the supergravity theory has a full UV completion given by type IIA string theory.

M-theory can be phrased as the proposition that there exists a well defined strong

coupling limit of eleven-dimensional supergravity whose dimensional reduction is

type IIA string theory, and to which we attach the mysterious name of M-theory.

This argument, that type IIA string theory becomes eleven-dimensional at strong

coupling was originally made by Townsend and Witten in [103, 90, 104]

One might be concerned at this point about the brane content of M-theory. The

branes are all BPS objects and so one does not expect them to change in character

at strong coupling, yet we find only the M2 and M5-brane in M-theory where type

IIA string theory has a wide selection of even Dp-branes. The resolution here is to

consider how the compactification of the M-theory circle interacts with the branes

[103, 90, 104, 105]. If the circle is aligned along either brane, this direction on the

brane becomes very small, and ultimately disappears in the full string theory limit;

thus the M-branes become an F1 fundamental string and a D4-brane respectively.

Similarly, if the M-branes are perpendicular to the circular compactification then
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they are unaffected by the reduction and so reduce simply to a D2 and the NS5

brane. By performing a simple calculation one can see that the tension of the M2

and M5-brane in these cases reduce precisely to the corresponding D-brane and

F1/NS5 tensions given earlier [55]. One might worry that the F1 and NS5 branes

cannot have their tensions analysed in this way as they are potentially changed in

the strong coupling M-theory regime. A result in [106] ensures that, due to them

being maximally supersymmetric, their tensions are not changed at strong coupling

so that the M-theory matching is legitimate. This is a key non-perturbative result

suggesting the M-theory conjecture is correct. Thus one sees that the M-theory

branes can reproduce the fundamental string, NS5-brane, D2-brane, and D4-brane

simply. This leaves the D0 and D6-branes to explain.

In any Kaluza-Klein compactification there are the KK modes arising from mo-

mentum running around the circle. These states have mass given by M = N
R

as

described earlier. In the M-theory compactification R is determined by the string

length and coupling (1.2.5) so that the first excited KK mode has mass, or tension,

T =
1

lsgs
(1.2.6)

this is precisely the tension of the D0-brane, implying that D0-branes arise simply

from the KK momentum running around the M-theory circle.

The D6-brane arises as the magnetic dual to the D0-brane in string theory and

is thus magnetically charged under the U(1) one-form gauge field which electrically

couples to the D0-brane. Thus one seeks to understand the geometry which gives

rise to this magnetic coupling. This is a well known problem whose solution amounts

to finding a metric describing a Kaluza-Klein magnetic monopole [107, 108]. The

geometry which produces such a monopole is known as a Taub-NUT space [109], it

is constructed as a circle fibration over a warped 3 dimensional space with metric

ds2
TN = H(~x)d~x · d~x+

1

H(~x)

(
dy + ~A · d~x

)2

. (1.2.7)

~x defines a 3 component vector, A is a vector potential for a magnetic monopole,
~B = ∇× ~A, y is a periodic coordinate, and H is a harmonic function constrained by
~B = −∇H.

Given the choice of harmonic function
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H(~x) = 1 +
R

2r
(1.2.8)

for r the natural radius on the R3, this leads to a magnetic field

| ~B| ∼ 1

r2
(1.2.9)

as one would expect for a magnetic monopole solution. The Taub-NUT metric is

everywhere smooth, even near the soliton core at r → 0, this is ensured by the

periodicity of the y coordinate. One can perform a simple calculation to compute

the energy density of this space to find that it agrees precisely with the tension for

a D6-brane [55]. Thus the interpretation is that one takes this space and embeds

it into M-theory so that the total geometry is given by TN × R1,6 and this soliton

geometry then acts as the source for string theory D6-branes [15].

The Taub-NUT geometry is interesting in its own right as a solution to eleven-

dimensional supergravity and for its properties as describing magnetic monopoles.

It can also be extended to a multi Taub-NUT space describing a collection of N

monopoles with various centres, which will be seen in Chapter 5.

It has now been shown that there exists a correspondence between the objects

of M-theory and those of type IIA string theory. Furthermore I have intimated a

collection of dualities which link the various string theories together. From this point

it is natural to realise that from any string theory one can, by some chain of dualities,

arrive at the type IIA theory and lift to M-theory.

Furthermore one doesn’t even need to dualise to type IIA to reach the M-theory

limit. For example, from T-duality, one can consider the type IIB theory to be simply

M-theory defined on a torus. In addition there are well studied distinct lifts to M-

theory which can be made directly from the heterotic theories without any reference

to type IIA; one simply finds that in a particular limit the heterotic theory exhibits

an extra dimension with appropriate properties to be identified as the same M-theory

[110, 84]. Thus, the proposal is that the string theories are all manifestations of the

same underlying eleven-dimensional theory which is known as M-theory.

The proposed relationship between M-theory and string theory is now well estab-

lished and studied. One of the key challenges in the contemporary study of M-theory

is in describing how the two objects which live in the theory, the M2-brane and M5-

brane, interact. In particular one would like to understand better how to build
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models of multiple branes, this subject has matured for the M2-brane but is largely

unknown for the M5-brane; this will be the subject of the next chapter.
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Chapter 2

Non-Abelian Theories of M2 and

M5-branes

In this chapter I will review some modern developments of M-branes in M-theory.

Developing a greater understanding of how these objects arise and interact in the

full theory is a topic of intense study and this thesis aims to add to the discussion

in some part.

As described above, M-theory is a proposed realisation of the unification of the five

distinct string theories into one overarching theory. At weak coupling it reduces to the

well studied eleven-dimensional supergravity but at strong coupling its formulation

is highly mysterious, even after years of work. In addition we can infer the existence

of two key objects in the theory: the M2-brane and its magnetic dual, the M5-brane.

Like the D-branes of string theory, these branes can be well studied by looking

at the theories which are found on their worldvolume. This process is relatively

straightforward for M2-branes as the fields which are present are well understood and

there are correspondingly well developed theories to describe these worldvolumes. In

the M5-brane case things are more complicated because the presence of a self-dual

field strength on the worldvolume means that an action cannot be simply written

down.

This chapter will be structured in the following way; in the first section I will

provide an overview of our modern understanding of M2-branes, starting with the

BLG theory describing a pair of M2-branes which I discuss in depth. I will then,

for completeness, briefly mention the ABJM theory which acts as an extension to
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BLG for systems of N M2-branes. The ABJM model however is not necessary for

the work in later chapters so I do not dwell long on its construction. In the second

section I provide an overview of the current state of work in understanding M5-

branes. The worldvolume of multiple M5-branes is believed to be described by the

six-dimensional (2, 0) theory, however this is still poorly understood apart from in

the free abelian case describing a single M5-brane. In the final section I consider

extensions of the abelian six-dimensional (2, 0) multiplet where non-abelian gauge

symmetry is introduced. This process is a relatively recent area of study and can

lead to interesting configurations of M2 and M5-branes.

2.1 M2-branes

M2-branes are one of two extended solitonic objects found in the full eleven-dimensional

theory. They can be seen as giving rise to either the fundamental string or D2-branes

from the ten-dimensional string theory perspective, depending on their orientation

with respect to the M-theory circle. Writing down an action for a single M2-brane is

a relatively straightforward procedure. Setting the three-form of eleven-dimensional

supergravity to zero for simplicity, and taking the static case where the first three

spacetime brane coordinates, Xµ for µ = 0, 1, 2, coincide with the worldvolume co-

ordinates along the brane xµ, one finds the simple action for a single M2-brane as

[111]

S = −TM2

∫
d3x

√
−det

(
ηµν +

1

TM2

∂µXI∂νXI

)
. (2.1.1)

The convention is that I, J,= 3, . . . 10 represent the transverse coordinates off the

brane.

This construction is very simple and has been understood for a long time. Moving

forward to describe multiple branes proved trickier, one reason is that a system of N

M2-branes, being the strong coupling limit of a system of N D2-branes, should be

expected to be some fixed point of a U(N) maximally supersymmetric Yang-Mills

theory. For the case of relating a single M2-brane to a single D2-brane one can

consider the appropriate DBI action [52] for the D2-brane and take the coupling

gYM → ∞; upon doing this the M2-action above is recovered exactly as expected

and thus justifying (2.1.1). A similar process for a system of N D2-branes implies a

non-abelian Yang-Mills theory whose strong coupling limit is harder to discern. This

43



Chapter 2. Non-Abelian Theories of M2 and M5-branes

is precisely the action sought in this section and once obtained, it will be justified

by arguing that it reduces to the appropriate non-abelian theory for D2-branes.

Progress was made in seeking such an M2-action by studying systems of brane

intersections in string theory and using dualities to lift to their M-theory counter-

parts. An example of such early progress is given by the work of Basu and Harvey

[112]. They began with the well understood system of a D1 brane intersecting a

D3 brane in type IIB string theory. This system can be roughly viewed as a D3-

brane with a fuzzy soliton like spike intersecting it, or equivalently a D1-brane with

a fuzzy sphere in the theory. The system is described by the solitonic Nahm equa-

tions. Furthermore, this system is intimately related to a similar setup in M-theory;

if one T-dualises off the branes, one obtains the D2-D4 system in IIA, then lifting

to M-theory in a direction along the D4 but not the D2, one finds a system with an

M2-brane intersecting an M5-brane [113]. This fact allows one to intuit some fea-

tures necessary in the construction of a generalised theory and indeed the equations

governing this system are found to resemble those in the initial system where we now

think of the M5-brane has having a kind of fuzzy solitonic ridge on its worldvolume

corresponding to the M2-brane. This generalisation also necessitated a new kind of

triple product, an addition that would find itself entrenched into the description of

M2-branes with the BLG theory.

2.1.1 BLG Theory

The BLG theory was the first theory to provide a consistent description for a pair

of M2-branes. It was developed in [114, 115, 116, 117] by Bagger, Lambert, and

Gustavsson. I will review the construction in detail as it forms the basis for modern

thinking about M2-branes and many features developed here will be seen later in

this work. Much of the analysis presented here will follow that in [55] which provides

a comprehensive review of systems of multiple M2-branes.

The M2-brane is a solitonic like BPS object and as such preserves half of the 32

spacetime supersymmetries. This implies that one should look for N = 8, (2 + 1)-

dimensional worldvolume theories. It is also clear a priori that M2-branes will break

the spacetime Lorentz symmetry SO(1, 10)→ SO(1, 2)×SO(8). The SO(8) will be

visible as a collection of 8 scalar fields corresponding to the spacetime embedding of

the brane.

44



Chapter 2. Non-Abelian Theories of M2 and M5-branes

The supersymmetry is characterised by a parameter ε which I take as a 32 com-

ponent Majorana spinor, the BPS condition on the brane enforces the following

condition

Γ012ε = ε. (2.1.2)

I work with full eleven-dimensional Majorana spinors rather than the usual 2 com-

ponent spinors as would typically be done for (2 + 1)-dimensional theories.

The simplest possible choice of multiplet for the theory thus contains 8 scalar

modes as described above, denoted XI , I = 3, . . . , 10 and a fermion Ψ which has

32 components, halved to 16 on-shell by the Dirac equation, and which are really

Goldstino modes of the supersymmetry breaking and thus satisfy

Γ012Ψ = −Ψ. (2.1.3)

This reduces further the number of on-shell components to 8. This matching of

fermioninc and bosonic degrees of freedom implies a full supersymmetry multiplet.

It does not however exclude the possibility of non-dynamical modes in the theory, in

particular gauge modes.

I will derive out the BLG model from this basis. Place the fields in some algebra

with generators

XI = XI
AT

A

Ψ = ΨAT
A (2.1.4)

A natural choice will turn out to be that A = 1, 2, 3, 4. Then one can guess su-

persymmetry conditions acting on the fields which will generate some dynamical

behaviour

δXI
D = iε̄ΓIΨD

δΨD = ∂µX
I
DΓµΓIε− 1

3!
fABCDX

I
AX

J
BX

K
C ΓIJKε. (2.1.5)

The first term in each transformation is the standard supersymmetry transformation.

Greek characters µ, ν = 0, 1, 2 represent coordinates along the brane since I work in

static gauge. The second term in the fermion variation is introduced to induce

interactions in the simplest possible way. The variations must satisfy the chirality
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conditions (2.1.2), and (2.1.3); thus, since the conditions have opposite sign, such a

cubic term is the simplest possible choice. The fABCD are structure constants of the

algebra which are totally anti-symmetric in the first three indices. I pause here to

briefly discuss this new structure.

It is natural to consider this relation as a generalisation of a typical Lie-algebra

so that one defines a triple product to be

[TA, TB, TC ] = fABCDT
D. (2.1.6)

This new structure is referred to as a Lie 3-algebra, or 3-algebra for short. Such

structures have been studied in the mathematical literature extensively but this is

one of the first times the structure has been employed in physics. Recent discussions

of their properties are given in numerous publications, see [118, 119, 120]. Like a

Lie-algebra, one can think of the Lie 3-algebra as a vector space, V , with canonical

product

[·, ·, ·] : V × V × V → V (2.1.7)

which is linear in all entries and satisfies an extension of the Jacobi identity

[U, V, [X, Y, Z]] = [[U, V,X], Y, Z] + [X, [U, V, Y ], Z] + [X, Y, [U, V, Z]] , (2.1.8)

called the fundamental identity which ensures that the algebra is closed. In terms of

the structure constants, this condition reads

f [ABC
Ef

D]EF
G = 0. (2.1.9)

There also exists an inner product on this space, needed to construct actions, given

by

〈X, Y 〉 = hABXAYB (2.1.10)

with h acting as a metric on the structure so that

fABCD = hDEfABCE. (2.1.11)

In this form the structure constant is totally antisymmetric in all indices, fABCD =

f [ABCD]. Throughout this thesis the inner product will be defined by hAB = δAB.

Additionally, there exists a 3-algebra analogue of the adjoint action which gen-
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erates a Lie-algebra, G, as ϕUV (X) = [U, V,X] for all U, V ∈ V . On this Lie-algebra

then one finds another inner product (·, ·) which acts as

(T, ϕUV ) = 〈T (U), V 〉 (2.1.12)

for T ∈ G and U, V ∈ V . This formulation will be seen explicitly in Chapter 4.

With such a structure in place one can check for the closure of the supersymmetry

algebra (2.1.5). On the scalars one finds the usual translation term with an extra,

coordinate dependent term. Since this term has coordinate dependence, it must

represent an additional gauge symmetry. A symmetry acting on a parameter in the

3-algebra must be a two index object as δX = [A,B,X]. Thus one introduces a

gauge field, Ãµ
A
B, to generate this symmetry in a covariant derivative

DµX
I
B = ∂µX

I
B − ÃµABXI

A. (2.1.13)

Notice that in the language of the above, this gauge field is an element of the Lie-

algebra, G, and so one could rephrase (2.1.12) very explicitly as

(A, [U, V, ·]) = 〈A(U), V 〉 . (2.1.14)

The derivative is gauge covariant if

δÃµ
A
B = DµΛA

B (2.1.15)

with ΛA
B an infinitesimal gauge symmetry parameter. That this parameter is an-

tisymmetric in its indices, and that there are four indices, implies that the gauge

symmetry found here is SO(4) ' SU(2)× SU(2).

The field strength tensor associated to this can be constructed by taking

F̃µν = −[Dµ, Dν ] (2.1.16)

as usual. I note here that the gauge structure described above is precisely the same

as found for an ordinary gauge theory under a Lie-algebra with the gauge field in

the adjoint represetation.

The supersymmetry transformation of the gauge field can be guessed based on

canonical dimensions and index structure to give the following set of final supersym-
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metry transformations

δXI
D = iε̄ΓIΨD

δΨD = ∂µX
I
DΓµΓIε− 1

3!
fABCDX

I
AX

J
BX

K
C ΓIJKε

δÃµ
A
B = iε̄fCDABX

I
CΓµΓIΨD. (2.1.17)

One finds that demanding these transformations close completely is extremely pre-

scriptive and in fact totally specifies the equations of motion for the system

0 = DµD
µXI − i

2
[Ψ̄, XJ ,ΓIJΨ] +

1

2
[XJ , XK , [XI , XJ , XK ]]

0 = F̃µν(·) + εµνρ

(
[XI , DρXI , ·] +

i

2
[Ψ̄,ΓρΨ, ·]

)
0 = ΓµDµΨ +

1

2
[XI , XJ ,ΓIJΨ]. (2.1.18)

The dot in the gauge field equation of motion is simply indicating that the field

strength naturally acts on 3-algebra valued fields and so can be defined on any such

field. In the limit where the interactions are zero, i.e. the 3-brackets are set to

zero, these equations reduce to the massless Klein-Gordon equation, the free Dirac

equation, and a flat connection. That we obtain a flat connection rather than the

equation of motion for a Yang-Mills field is a consequence of the fact that this gauge

field is non-dynamical. This is good news since the scalars and fermions constitute

a full supersymmetry multiplet on their own.

Next I wish to write down an appropriate action for this system. Since the gauge

field reduces to a flat connection, one should not expect a typical Yang-Mills term for

the gauge field but, rather, the gauge field should enter through a Chern-Simons-like

term.

Chern-Simons theories [121] are (2+1)-dimensional topological quantum field the-

ories so called because their actions are given by integrals over the three-dimensional

Chern-Simons form which is an important object in the theory of characteristic

classes of gauge fields [70]. They are defined for a gauge field A by the action

S =
k

4π

∫
A ∧ dA+

2

3
A ∧ A ∧ A. (2.1.19)

The level integer k is quantised [122] since the action is not invariant under large
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gauge transformations—those which are homotopic to the identity. This is seen

because under such gauge transformations the action changes, at least for SU(N)

gauge groups, as S → S + 2πkw where w ∈ Z is known as the winding number of

the gauge transformation. Roughly, it measures how many times the gauge transfor-

mation wraps the space. Since in the full quantum theory one really cares about the

path integral, requiring that exp(iS) is invariant fixes the level k ∈ Z. Chern-Simons

theories can be coupled to matter and generally imply chiral sectors of theories be-

cause of the parity breaking cubic term. In particular, pure Chern-Simons theory,

when defined on a manifold with boundary [123], gives rise to the so called Wess-

Zumino-Witten (WZW) theory [124] which will be an important part of the analysis

in Chapter 5.

With this in mind I now write down the full BLG lagrangian [117]

L = −1

2

〈
DµX

I , DµXI
〉

+
i

2

〈
Ψ̄,ΓµDµΨ

〉
+
i

4
〈Ψ̄,ΓIJ [XI , XJ ,Ψ]〉−V +LCS (2.1.20)

with

V =
1

2 · 3!

〈
[XI , XJ , XK ], [XI , XJ , XK ]

〉
(2.1.21)

and

LCS =
1

2
εµνρ Tr

(
fABCDAµAB∂νAρCD +

2

3
fCDAGf

EFGBAµABAν CDAρEF

)
(2.1.22)

where Ãµ
A
B = AµCDf

CDA
B has been introduced for convenience in the “twisted”

Chern-Simons lagrangian. One can check that this lagrangian is supersymmetric

under the transformations (2.1.17) up to a total derivative. One can also see plainly

that the required spacetime symmetries, SO(1, 2)×SO(8) are satisfied, and by suit-

able definitions on the parity transformations of the fields, the lagrangian can be

made totally parity invariant.

Note that the whole lagrangian has no free parameters aside from the normalisa-

tion of the structure constants. One should therefore expect that different choices of

solutions for the structure constants should modulate the theory between different

M2 configurations and in particular we should expect these choices to be quantised

by the Chern-Simons argument above.

However, the amount of supersymmetry in the system is highly constraining and

indeed the requirement that the inner product on the 3-algebra be positive definite—
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thus that energies are positive definite—enforces a fixed solution on the structure

constants [125, 126, 127], namely

fABCD =
2π

k
εABCD with hAB = δAB. (2.1.23)

This fix means that the BLG system does not describe arbitrary systems of M2-

branes, instead it must describe a subset. To summarise, I have reviewed the exis-

tence of a supersymmetric SU(2)× SU(2), (2 + 1)-dimensional theory which has all

the expected symmetry properties for M2-branes and is totally fixed up to a level

integer k.

This split of the gauge field as SO(4) ' SU(2)×SU(2) is made manifest by split-

ting the gauge field into self and anti-self dual components; one can then introduce

pauli matrices for each SU(2) piece to reduce the Chern-Simons lagrangian to

LCS =
k

4π
εµνρ

[(
ALµ∂νA

L
ρ −

2i

3
ALµA

L
νA

L
ρ

)
−
(
ARµ∂νA

R
ρ −

2i

3
ARµA

R
ν A

R
ρ

)]
, (2.1.24)

i.e. the difference of two standard Chern-Simons lagrangians. A particular choice

of parity action on the structure constants, as mentioned above, enforces that under

parity the lagrangian is invariant as R↔ L [128, 129].

It remains to understand the interpretation of this theory as describing a pair of

M2-branes. One way to see this was first given in [130]; I will outline the procedure

here. The setup is to consider the Higgs mechanism for the theory and show that this

reduces the model to describing a pair of D2-branes. To begin I take one of the scalar

fields to acquire a vacuum expectation value (vev), and then use the SO(4) rotational

symmetry to rotate this to act only in one component of the internal algebra. Thus

one can take, say
〈
XI=8A=4

〉
= v, where this will cause a split in the SO(4) index to

A = 1, 2, 3 and 4 alone. This choice will not break any supersymmetry as one can see

from (2.1.17). In all 3-algebra equations then the epsilon tensor will naturally split

to εABC4 = εABC which essentially reduces terms to usual Lie-algebra terms. For

example if one does this to the potential then one finds that the remaining scalars

X i, i = 1, . . . 7 reduce to

V → 1

2
v2
〈
[X i, Xj], [X i, Xj]

〉
(2.1.25)

which is precisely the quartic interaction for maximally supersymmetric (2 + 1)-
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dimensional SU(2) Yang-Mills theory [55]. A similar result holds in that the fermion-

scalar coupling in BLG reduces to the usual Yukawa coupling under this vev.

The initial difficulty appears to be, how to recover the Yang-Mills kinetic term

from a theory with a non-dynamical gauge field entering only through a Chern-

Simons term. This is resolved through the splitting of the gauge field. Under this

Higgs setup the gauge field AABµ splits to AAµ and BA
µ as

AA4
µ ≡ AAµ and

1

2
εABCA

BC
µ ≡ BA

µ . (2.1.26)

One defines a natural covariant derivative and field strength based on the Aµ field

and subsequently finds that the Bµ field has no derivative terms and so acts as a

constraint field only. Upon solving the equations of motion for this field one finds

that

Bµ ∼ εµ
νρFνρ + . . . (2.1.27)

with F the natural field strength associated to the new Aµ field and the ellipsis hiding

extra terms which are important but not worth making explicit here. A miracle then

occurs because the lagrangian contains a BµB
µ term, which produces the required

Yang-Mills field strength. In total, after some work and rescaling, one obtains the

following lagrangian [130]

L = LSU(2) + LU(1) (2.1.28)

where

LU(1) = −1

2
∂µX

I 4∂µXI
4 +

i

2
Ψ̄4Γµ∂µΨ4 (2.1.29)

gives an additional U(1) symmetry to the theory and

LSU(2) =
1

v2

[
−1

4
〈Fµν , F µν〉 − 1

2

〈
DµX

i, DµX i
〉

+
1

4

〈
[X i, Xj], [X i, Xj]

〉
+
i

2

〈
Ψ̄,ΓµDµΨ

〉
+
i

2

〈
Ψ̄, [X i,ΓiΨ]

〉]
+O

(
1

v3

)
. (2.1.30)

The part proportional to 1/v2 is precisely (2 + 1)-dimensional SU(2) maximally

supersymmetric Yang-Mills theory—the low energy theory describing a pair of D2-

branes. As v → ∞ then in the interacting theory only this part survives and v can

be identified v = gYM , with the coupling of the Yang-Mills theory. At weak coupling

this theory describes a pair of D2-branes; it is expected that at strong coupling this
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should lift to a pair of M2-branes. It is for this reason that the BLG theory presented

above is interpreted as describing a pair of M2-branes [130, 55].

Finally it is worth pointing out how this result was achieved. The Higgs mecha-

nism broke the SO(4) symmetry of the original theory to SO(3) ' SU(2) with the

scalar modes X8A left over to promote the gauge field to a dynamical gauge field.

There are also a set of scalars XI 4 which give the seven-dimensional centre of mass

position of the D2-branes, and the additional U(1) field. Thus the system found here

has full gauge group SU(2)× U(1).

There is a natural extension to the BLG theory presented above. It was discovered

by Aharony, Bergman, Jafferis, and Maldacena in [131], and is commonly referred

to as ABJM theory. The trick to extending the previous analysis lies in recalling

that BLG could only describe a pair of M2-branes because the theory was highly

constrained by the requirements imposed on it. So a natural guess is to relax some

of the stringent requirements. The route taken to obtain the ABJM model is to

reduce amount of supersymmetry in the theory. In particular, the ABJM model has

only N = 6 supersymmetry. With this change the construction is quite similar and

a U(N)× U(N) theory with level number k is found. The physical interpretation is

found to be systems of N M2-branes on a C4/Zk orbifold. The ABJM theory reduces

to BLG in the cases where N = 2 and k = 1; this provides another check on the

argument that BLG theory describes a pair of M2-branes. A thorough review of this

theory can be found in [55]. The ABJM model will not be necessary for the work

discussed later in this thesis and so I will not describe it in any more depth here.

There are however more recent systems which have been found to describe M2-

branes; such systems arise from the six-dimensional (2, 0) theory and are important

for the rest of this work. They are discussed in Section 2.3. Principally however the

(2, 0) theory is thought to describe the worldvolume theory for multiple M5-branes

and it is this perspective which the next section will discuss.

2.2 M5-branes

The other BPS extended object found in M-theory is the M5-brane [101]. The

worldvolume arising on such a brane is far more mysterious than for that on the

M2-brane, though the basic components of the worldvolume theory can be guessed
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relatively simply. It should include five scalar fields (by analogy with the M2’s eight)

which arise as the embedding transverse coordinates of the brane. In this section

and the next, lower case latin characters will be used for coordinates off the brane in

anticipation for the discussion of Chapter 3 so X i for i = 6, 7, 8, 9, 10. In addition, the

fact that D-branes in string theory provide the end point of fundamental strings is of

importance here; in particular that F1 strings end on D4-branes. This is seen in the

worldvolume field theory as a one-form gauge field which carries away the associated

flux from the string. The M-theory realisation of this fact is that M2-branes can

end on M5-branes and in this context it is therefore natural to expect a two-form

gauge field, B2, on the M5-brane worldvolume which carries away the associated flux

[16]. Thus, one would expect the bosonic content of the M5-brane worldvolume to

consist of five scalar fields and a two-form gauge field. Counting degrees of freedom

then implies that this two-form should have a self dual field strength, H = ?H with

H = dB, so that in total there are eight on-shell bosonic degrees of freedom to match

the eight on-shell fermionic degrees of freedom (which arise from the same argument

in Section 2.1.1). This self duality is also seen due to the existence of a self-dual

string soliton, sourced by this field, living on the worldvolume of the theory, this was

first seen in [132] and further studied in [113, 133].

One reason why M5-branes are considered far more mysterious than M2-branes is

that M5-branes do not admit an obvious lagrangian description [134]. The primary

cause of this difficulty is the presence of the self dual three-form on the worldvolume.

In any theory with such a self dual form the kinetic term is ill defined—this is because

a kinetic term for such a field must be of the form

S ∼
∫
H ∧ ?H =

∫
H ∧H = 0 (2.2.1)

where the vanishing is due to the anti-symmetry properties of the wedge product

acting on three-forms: A3∧B3 = −B3∧A3. One can find various actions for theories

with self dual forms, where self-duality is imposed by the introduction of an auxiliary

scalar field however these lagrangians are not manifestly Lorentz invariant and a path

integral quantisation of such theories is not clear [135, 136, 137, 138, 139].

In lieu of this difficulty typically one works directly with the equations of mo-

tion and supersymmetry transformations of the theory. For a single M5-brane the

dynamical equations have been known for some time [140, 135, 141, 137], as a six-
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dimensional abelian tensor multiplet. At lowest order, in the decoupling limit, this

reduces to a free field theory in flat space:

∂2X i = 0

iΓµ∂µΨ = 0

Hµνρ =
1

3!
εµνρσλτHσλτ (2.2.2)

with supersymmetry transformations

δX i = iε̄ΓiΨ

δBµν = iε̄ΓµνΨ

δΨ = ∂µX
iΓµΓiε+

1

2 · 3!
ΓµνρHµνρε. (2.2.3)

In this case µ, ν = 0, 1, 2, 3, 4, 5 are coordinates along the M5-brane and i, j =

6, 7, 8, 9, 10 are coordinates transverse to the brane. Additionally, the fermions sat-

isfy appropriate chirality conditions corresponding to the brane breaking half the

supersymmetry: Γ012345ε = ε and Γ012345Ψ = −Ψ, and as usual I work with full 32

component spinors. One can recast the equation only in terms of the three-form field

strength in which case these equations are equivalent to

0 = ∂2X i

0 = iΓµ∂µΨ

0 = ∂[µHνρλ]

Hµνρ =
1

3!
εµνρσλτHσλτ (2.2.4)

and

δX i = iε̄ΓiΨ

δHµνλ = 3iε̄Γ[µν∂λ]Ψ

δΨ = ∂µX
iΓµΓiε+

1

2 · 3!
ΓµνρHµνρε. (2.2.5)

For N M5-branes there exists an interacting CFT in six-dimensions, dubbed the (2, 0)

theory, that captures their low energy dynamics, decoupled from gravity [132, 142].

This theory can be approached by attempting to construct non-abelian generalisa-
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tions of the above abelian theory. There are various propositions for this process but

a reliable description for multiple M5-branes has thus far proved elusive. In fact it

is believed that there is no six-dimensional diffeomorphism invariant action for such

a theory [134].

However, the reduction of M5-branes is well known to describe D4-branes; from

this perspective indirect studies of the M5-brane can be attempted. Although the

(2, 0) theory is poorly understood, it is known that when reduced on a circle of

radius R = g2
YM/4π

2 the (2, 0) theory reduces to five-dimensional maximally super-

symmetric Yang-Mills with gauge group U(N) and coupling gYM , the low energy

theory on N D4-branes [143]. Since this theory is perturbatively non-renormalizable

the six-dimensional (2, 0) CFT provides a UV-completion with an enhanced Lorentz

symmetry. It is therefore of great interest to try to understand in detail the rela-

tion of the (2, 0) theory to five-dimensional maximally supersymmetric Yang-Mills.

In particular one would like to know what additional states or degrees of freedom

arise in the (2, 0) theory that are needed to UV complete five-dimensional maximally

supersymmetric Yang-Mills. It has been suggested that all such states are already

present in the five-dimensional theory non-perturbatively [144, 143] and that it is in

fact well-defined without new degrees of freedom. This discussion will be pertinent

in Chapter 5 where M5-branes wrapped on a specific geometry are studied by re-

ducing the six-dimensional abelian theory on S1, and then finding the non-abelian

generalisation of this theory.

There are further uses of six-dimensional (2, 0) theories which have been studied.

In particular one can take the abelian (2, 0) multiplet and construct a non-abelian

generalisation by the introduction of various non-dynamical form fields. This setup

leads to various interesting systems of M-branes; it will be described in the next

section, and forms the basis of Chapters 3 and 4.

2.3 More Brane Systems

In this section I provide an overview of various extensions to the (2, 0) theory which

lead to novel descriptions of multiple M2 and M5-branes.
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2.3.1 A Non-Abelian Extension of (2, 0)

In [145] a system was presented which generalises the abelian six-dimensional (2, 0)

multiplet to a non-abelian theory; I will briefly review the construction of this theory

below.

The primary goal is to construct a non-abelian generalisation which may admit

a description of multiple M5-branes, to this end one starts with the abelian system

(2.2.4), and places all fields in a vector space as X i = X i
AT

A, just as in Section 2.1.1.

In order to facilitate this, one also introduces a covariant derivative with gauge field

ABµ A acting on fields as

DµX
i
A = ∂µX

i
A − ABµ AX i

B. (2.3.1)

The argument is then that upon a circle reduction, this theory should reduce to

five-dimensional super Yang-Mills theory as discussed above. The supersymmetry

transformations in five-dimensional super Yang-Mills contain a term in the fermion

variation which goes like

δΨ ∼ [X i, X i]ΓijΓ5ε. (2.3.2)

To recover such a term, the non-abelian (2, 0) multiplet must have extra terms present

which include another gamma matrix to contract with a new field along the brane.

It is also clear that the theory will have triple-product like structures. In [145] this

is enforced and the demand that the supersymmetry transformations close implies

equations of motion and fixes the 3-algebra structure to be the same as discovered

in Section 2.1.1. In total this system is then given by

0 = D2X i − i

2
[Y µ, Ψ̄,ΓµΓiΨ]− [Y µ, Xj, [Yµ, X

j, X i]]

0 = D[µHνλρ] +
1

4
εµνλρστ [Y

σ, X i, DτX i] +
i

8
εµνλρστ [Y

σ, Ψ̄,ΓτΨ]

0 = ΓµDµΨ + ΓµΓi[Yµ, X
i,Ψ]

0 = Fµν(·)− [Y λ, Hµνλ, ·]

0 = DµY
ν = [Y µ, Y ν , ·] = [Y µ, Dµ(·), ·] (2.3.3)
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with supersymmetry transformations

δX i = iε̄ΓiΨ

δY µ = 0

δΨ = ΓµΓiDµX
i +

1

2 · 3!
HµνρΓ

µνρε− 1

2
ΓµΓij[Y µ, X i, Xj]ε

δHµνρ = 3iε̄Γ[µνDρ]Ψ + iε̄ΓiΓµνρλ[Y
λ, X i,Ψ]

δAµ(·) = iε̄Γµν [Y
ν ,Ψ, ·]. (2.3.4)

In this system Y µ is the new auxilliary field which is added to enforce the correct

reduction. To get the correct scaling one finds that this field has scaling dimension

[Y ] = −1 so should be considered as a length. I note also that the spinors satisfy

the same (anti)-chirality relations as described in the abelian (2, 0) multiplet above.

The system has various interpretations in terms of branes depending on how one

turns on the Y field. For a simple choice of structure constant and metric for the

3-algebra, fABCD = 2π
k
εABCD and hAB = δAB then Yµ can be fixed to lie only in

one direction on the 3-algebra and so Y µ
A = V µδ4

A. From here the system reduces

considerably, all the triple-products contain this field so they either reduce naturally

to Lie brackets or they vanish. In the latter case, where one takes the A = 4

component of each equation, one recovers a decoupled abelian six-dimensional (2, 0)

tensor multiplet corresponding to a centre of mass.

When A 6= 4 consider that the constraints found in (2.3.3) imply that all fields

must be independent of those coordinates which lie parallel to V µ—this is why we

should consider V µ turned on only in particular directions. There are three cases of

interest discussed in [145].

Firstly, if V 5 6= 0 only then one reduces simply to five-dimensional maximally

supersymmetric Yang-Mills theory with gauge group SU(2); this makes sense for a

pair of M5-branes reducing to a pair of D4-branes. If the choice is instead timelike,

V 0 6= 0 only, then the same system is recovered except with euclidean signature.

The final case is a null direction, V + 6= 0 only (see the appendix for a suitable

definition of a null x+ coordinate). This case was described fully in [146] and will

be seen again in Section 4.3. Under such a choice one finds that the self-duality of

the three-form implies that the field strength, defined only on the remaining four

spacelike directions, is self dual. Therefore one can use the ADHM construction to
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solve for the remaining fields on the instanton moduli space. In the construction x−

takes the role of time, quantisation can occur, and the system reduces completely to

quantum mechanics acting on the instanton moduli space [146]. These systems are

all of interest for describing multiple M5-branes.

2.3.2 A Further Extension

One can generalise this theory further. In [147] an extension was considered where

an abelian three-form was added to the theory. This particular addition was chosen

because, by analogy with the system of Section 2.3.1, the three-form will fix three

non-dynamical directions in the theory; this leaves three remaining directions which

makes it a good candidate for describing systems of M2-branes. This will be realised

below.

The conventions are exactly as in Section 2.3.1 and I introduce an abelian three-

form, Cµνρ, into the algebra as described in [147]. One demands closure of this

new extended supersymmetry algebra which turns out to be very prescriptive, the

equations of motion are found to be

0 = D2X i − i

2
[Y σ, Ψ̄,ΓσΓiΨ] + [Y σ, Xj, [Yσ, X

j, X i]]

+
i

2 · 3!
Cστω[Ψ̄,ΓστωΓijΨ, Xj] +

1

2 · 3!
CστωCστω[[X i, Xj, Xk], Xj, Xk]

0 = D[λHµνρ] +
1

4
εµνλρστ [Y

σ, X i, DτX i]− 1

2
(?C)[µνλ[X

i, Xj, [Yρ], X
i, Xj]]

+
i

8
εµνλρστ [Y

σ, Ψ̄,ΓτΨ]− i

2
(?C)[µνλ[X

i, Ψ̄,Γρ]Γ
iΨ]

0 = ΓρDρΨ + ΓρΓ
i[Y ρ, X i,Ψ] +

1

2 · 3!
ΓρστC

ρστΓij[X i, Xj,Ψ] , (2.3.5)
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with the following constraint equations

0 = Fµν(·)− [Y λ, Hµνλ, · ] + (?C)µνλ[X
i, DλX i, · ] +

i

2
(?C)µνλ[Ψ̄,Γ

λΨ, · ]

0 = DνY
µ − 1

2
CµλρHνλρ

0 = CµνσDσ(·) + [Y µ, Y ν , · ]

0 = [Y ν , Dν · , ·′ ] +
1

3!
Cστω[Hστω, · , ·′ ]

0 = C ∧ Y

0 = C[µν
ρCλ]ρ

σ . (2.3.6)

The three-form Hµνρ is of course still required to be self-dual

Hµνρ =
1

3!
εµνρσλτHρσλ. (2.3.7)

The supersymmetry transformations are given by

δX i = iε̄ΓiΨ

δY µ =
i

2
ε̄ΓλρC

µλρΨ

δΨ = ΓµΓiDµX
iε+

1

2 · 3!
HµνλΓ

µνλε

− 1

2
ΓµΓij[Y µ, X i, Xj]ε+

1

3!2
CµνλΓ

µνλΓijk[X i, Xj, Xk]ε

δHµνλ = 3iε̄Γ[µνDλ]Ψ + iε̄ΓiΓµνλρ[Y
ρ, X i,Ψ]

+
i

2
ε̄(?C)µνλΓ

ij[X i, Xj,Ψ] +
3i

4
ε̄Γ[µν|ρσC

ρσ
λ]Γ

ij[X i, Xj,Ψ]

δAµ(·) = iε̄Γµν [Y
ν ,Ψ, · ]− i

3!
ε̄CνλρΓµνλρΓ

i[X i,Ψ, · ] . (2.3.8)

One can check that for C = 0 this system reduces to that in Section 2.3.1. In

addition demanding appropriate scaling dimensions in the theory implies that C has

dimension [C] = −3.

In the same way as before, one can now consider what happens when different

components of the three-form are turned on. There are two choices discussed in [147].

The first choice is C012 = l3 only, for some length l. In this case one sees manifestly

that the SO(1, 5) symmetry breaks to SO(1, 2) × SO(3), however it turns out that

this new SO(3) then enhances with the five transverse coordinates to an SO(8), so
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that the total symmetry of the theory is given by SO(1, 2)×SO(8). This is precisely

as expected for M2-branes; in fact it can be shown that the model which this choice

lands on is the BLG model of Section 2.1.1.

Another choice to make is that of C345 = l3 only. This comes from a wick

rotation of the above and so describes a euclidean three-dimensional theory which

can be shown to contain a SO(2, 6) R-symmetry. This is similar to as found in [148]

in describing euclidean M2-branes.

This concludes the discussions of this chapter. I have presented a summary of

key systems and ideas in our understanding of non-abelian M2 and M5-branes. The

following chapters will use the machinery developed here to explore various novel

results which constitute the original research conducted during my studies.
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Chapter 3

Extended Systems of Null

M2-branes

In this chapter I extend the background material of Chapter 2 to describe a novel

system describing multiple null M-branes. What is meant by null will be discussed

later, but essentially it is simply a statement that one of the directions along the

brane is taken to have undergone an infinite boost. This work was published in

JHEP [9] with Neil Lambert and Piotr Kucharski.

3.1 Introduction

As described in Section 2.3, a closed system of equations for various six-dimensional

fields was found in [145, 147] that are invariant under the (2, 0) superalgebra which

is associated to the worldvolume of M5-branes embedded in an eleven-dimensional

spacetime. The fields take values in a 3-algebra, except for the gauge field that takes

values in the Lie-algebra (specifically su(2) ⊕ su(2) for the case at hand) that acts

on the 3-algebra. The system can be thought of as a set of dynamical equations for

the scalars, fermions and self-dual three-form as well as constraints for the additional

gauge and vector fields that it contains. In addition the system depends on a choice of

abelian three-form Cµνλ. For Cµνλ = 0 it reproduces various descriptions of two M5-

branes [145, 146, 149]. For Cµνλ spacelike the constraints reduce it to the equations

for two M2-branes [147]. In this chapter I will explore the system for a null choice of

Cµνλ. It will be seen that this leads to a novel supersymmetric system of equations
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on R2 times a null direction R+. Alternatively, via an M-theory version of T-duality,

we can think of this system as describing intersecting M2-branes which are tangent

to a null direction.

A similar system of equations, but defined on R4 times a null direction R+, was

obtained in [145] (and is therefore also a solution to the constraints of [147]). These

were analysed in [146] where it was shown they reduce to dynamics on the instanton

moduli space with the null direction playing the role of ‘time’. From the origin of

these equations in the (2, 0) superalgebra it is clear that the resulting system describes

two M5-branes compactified on a null circle with corresponding null momentum given

by the instanton number. This is in agreement with the DLCQ prescription of [150,

151]. One similarly expects that the system described in this section corresponds to

two M5-branes compactified on T2 and carrying momentum along the null direction.

I show that the system reduces to quantum mechanics on the Hitchin moduli space

and provides a description of intersecting null M2-branes. There is a similar DLCQ

description of four-dimensional maximally supersymmetric SU(N) Yang-Mills with

null momentum K which is also based on quantum mechanics on Hitchin moduli

space [152, 153]. It will be argued that this construction is related to the system

presented here by U-duality.

The rest of this chapter is organised as follows. In Section 3.2 I work from the

system of [147], which was described in Section 2.3.2 and examine it for the case of

a null background three-form C3. In Section 3.3 this new system is analysed and in

particular it is shown how, for a particular choice of fields, the system reduces to

supersymmetric dynamics on the moduli space of solutions to Hitchin’s equations.

In Section 3.4 I provide a physical interpretation of the system in terms of inter-

secting M2-branes. Section 3.5 contains a summary and comments on the results.

Conventions used throughout this chapter, where not given in the text, can be found

in the appendix.

3.2 The System

In this chapter I work from the system described in section 2.3.2 with the following

choice of the background three-form, C:

C34+ = l3, (3.2.1)
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where

x+ =
x5 + x0

√
2

x− =
x5 − x0

√
2

. (3.2.2)

In particular I will show that the solution of the constraints leads to fields that

only depend on x+, x1, x2. Although the system initially has an SOL(1, 5)× SOR(5)

symmetry turning on C+34 breaks the Lorentz group SOL(1, 5) to an SOL(2) that

acts as rotations in the (x1, x2)-plane along with an SOR(2) that acts as rotations in

the (x3, x4)-plane and which is now viewed as an R-symmetry. Somewhat surprisingly

one finds that there is an enhancement of the original SOR(5) R-symmetry to SOR(6)

so that the final system has an SOL(2)× SOR(2)× SOR(6) symmetry.

To exhibit this symmetry on the fermions it is useful to introduce a new repre-

sentation of the Spin(1, 10) Clifford algebra:

Γ̂0 = Γ0534

Γ̂1,2 = Γ0Γ1,2

Γ̂3,4 = Γ05Γ4,3

Γ̂5 = Γ0Γ34

Γ̂i = Γ0Γi ,

which satisfy {Γ̂m, Γ̂n} = 2ηmn, m,n = 0, 1, 2, .., 10. However in what follows I will

only be interested in the Spin(10) subalgebra which is broken to Spin(2)×Spin(2)×
Spin(6). I also decompose any spinor χ as χ = χ+ + χ− where

Γ05χ± = Γ̂034χ± = ±χ± . (3.2.3)

3.2.1 Solving the Constraints and Equations of Motion

The first task is to solve the constraints. From the last constraint in (2.3.6) one sees

that only Y −, Y 3, Y 4 are non-vanishing. The third and fourth equations in (2.3.6)

can be reduced to algebraic equations if one takes ∂−, ∂3, ∂4 to vanish. Thus all fields

are functions of x+, x1, x2. Solving the resulting algebraic equations from the third

and fourth equations in (2.3.6) one finds that
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A− =
1

l3
[
Y 3, Y 4, ·

]
A3 =

1

l3
[
Y 4, Y −, ·

]
A4 = − 1

l3
[
Y 3, Y −, ·

]
. (3.2.4)

Next one can use the second equation in (2.3.6) to determine the components of

Hµνλ. Using self-duality one finds

H34− = H12− = − 1

l6
[
Y 3, Y 4, Y −

]
H34+ = −H12+ =

1

l3
D+Y

−

H3−+ = H124 = − 1

l3
D+Y

4

H4−+ = −H123 =
1

l3
D+Y

3

H134 = −H2−+ =
1

l3
D1Y

−

H234 = H1−+ =
1

l3
D2Y

−

− 1

l3
D1Y

4 = H13− = −H24− = − 1

l3
D2Y

3

1

l3
D1Y

3 = H14− = H23− = − 1

l3
D2Y

4 . (3.2.5)

To proceed it is useful to introduce the complex coordinates and fields

z = x1 + ix2 z̄ = x1 − ix2

Z = Y 4 + iY 3 Z̄ = Y 4 − iY 3 . (3.2.6)

Here, and in what follows, a bar denotes complex conjugation and not the Dirac

conjugate. In addition I introduce an SO(6) multiplet of scalar fields XI , I =

5, 6, ..., 10, defined by

X5 = l−3Y − XI = X i I = 6, ..., 10 . (3.2.7)
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First note that there is one independent component of Hµνλ that is not determined

from the constraints above and so I define

H = H+z3 = iH+z4 . (3.2.8)

One then finds that the self-dual conditions H13− = −H24− and H14− = H23− are

equivalent to

D̄Z = 0 . (3.2.9)

The remaining constraints can now be evaluated to give

F+z(·) = il3
[
XI , DXI , ·

]
− i [Z,H, · ]− l3

2

([
ΨT

+, Γ̂zΨ−, ·
]

+
[
ΨT
−, Γ̂zΨ+, ·

])
Fzz̄(·) = − i

4l3
([
Z,D+Z̄, ·

]
+
[
Z̄,D+Z, ·

])
− 1

4

[
XI ,

[
Z, Z̄,XI

]
, ·
]
− l3

2
√

2

[
ΨT

+,Ψ+, ·
]
.

(3.2.10)

The last job is to evaluate the equations of motion. The scalar equation becomes

0 = 2(DD̄ + D̄D)XI +
i

2l3
[D+Z, Z̄,X

I ] +
i

2l3
[Z,D+Z̄,X

I ] +
i

l3
[Z, Z̄,D+X

I ]

+
1

2

[
Z,XJ , [Z̄,XJ , XI ]

]
+

1

2

[
Z̄,XJ , [Z,XJ , XI ]

]
− l3
√

2
[
ΨT

+, Γ̂ZZ̄Γ̂IJΨ+, X
J
]

+
i

2

([
Z,ΨT

+, Γ̂ZΓ̂IΨ−

]
−
[
Z,ΨT

−, Γ̂ZΓ̂IΨ+

]
+
[
Z̄,ΨT

+, Γ̂Z̄Γ̂IΨ−

]
−
[
Z̄,ΨT

−, Γ̂Z̄Γ̂IΨ+

])
,

(3.2.11)

where the I = 5 component actually arises from the (DH)zz̄+− equation. The only

other new equation that arises from the (DH)µνλ equation comes from the (DH)zz̄+3

and (DH)zz̄+4 terms and gives

0 = D2
+Z + il3[Z,XI , D+X

I ]− l6

2
[XI , XJ , [XI , XJ , Z]] + 4l3DH̄

+
l3√
2

[
Z,ΨT

−,Ψ−
]

+ il6
([

ΨT
+, Γ̂Z̄Γ̂IΨ−, X

I
]
−
[
ΨT
−, Γ̂Z̄Γ̂IΨ+, X

I
])
, (3.2.12)

The fermion equations are

0 = D+Ψ+ +
√

2Γ̂zD̄Ψ− +
√

2Γ̂z̄DΨ− + il3Γ̂ZZ̄Γ̂IJ
[
XI , XJ ,Ψ+

]
+

1√
2

Γ̂I Γ̂Z
[
Z,XI ,Ψ−

]
+

1√
2

Γ̂I Γ̂Z̄
[
Z̄,XI ,Ψ−

]
. (3.2.13)
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and

0 =
√

2Γ̂zD̄Ψ+ +
√

2Γ̂z̄DΨ+ −
i

2l3
[
Z, Z̄,Ψ−

]
− 1√

2
Γ̂I Γ̂Z

[
Z,XI ,Ψ+

]
− 1√

2
Γ̂I Γ̂Z̄

[
Z̄,XI ,Ψ+

]
. (3.2.14)

Here one sees that the equations of motion have a natural SOL(2)×SOR(2)×SOR(6)

symmetry. In particular the field Y − has enhanced the original SOR(5) to SOR(6).

3.2.2 Supersymmetry

The supersymmetry transformations can also be expressed as

δXI =iεT+Γ̂IΨ− + iεT−Γ̂IΨ+

δZ =2
√

2l3εT+Γ̂Z̄Ψ+

δZ̄ =− 2
√

2l3εT+Γ̂ZΨ+

δAz =
√

2l3εT+Γ̂I Γ̂z[X
I ,Ψ+, ·] + iεT−Γ̂zΓ̂Z̄

[
Z̄,Ψ+, ·

]
− iεT+Γ̂zΓ̂Z [Z,Ψ−, ·]

δAz̄ =−
√

2l3εT+Γ̂I Γ̂z̄[X
I ,Ψ+, ·] + iεT−Γ̂z̄Γ̂Z [Z,Ψ+, ·]− iεT+Γ̂z̄Γ̂Z̄

[
Z̄,Ψ−, ·

]
δA+ =

√
2iεT−Γ̂Z [Z,Ψ−, ·] +

√
2iεT−Γ̂Z̄

[
Z̄,Ψ−, ·

]
+ 2l3εT−Γ̂ZZ̄Γ̂I

[
XI ,Ψ+, ·

]
− 2l3εT+Γ̂ZZ̄Γ̂I

[
XI ,Ψ−, ·

]
(3.2.15)
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for the bosons, and as

δΨ+ =
i√
2l3

Γ̂I
[
Z, Z̄,XI

]
ε− −

i

l3

(
Γ̂ZD+Z − Γ̂Z̄D+Z̄

)
ε+

− 1

2

(
Γ̂ZΓ̂IJ

[
Z,XI , XJ

]
+ Γ̂Z̄Γ̂IJ

[
Z̄,XI , XJ

])
ε+

+ 2
(

Γ̂z̄Γ̂
IDXI + Γ̂zΓ̂

ID̄XI
)
ε+

+

√
2i

l3

(
Γ̂z̄Γ̂ZDZ − Γ̂zΓ̂Z̄D̄Z̄

)
ε−

δΨ− =−
√

2Γ̂ID+X
Iε+ −

√
2il3

3
Γ̂ZZ̄Γ̂IJK

[
XI , XJ , XK

]
ε+

+
1

2

(
Γ̂ZΓ̂IJ

[
Z,XI , XJ

]
+ Γ̂Z̄Γ̂IJ

[
Z̄,XI , XJ

])
ε−

− i

l3

(
Γ̂ZD+Z − Γ̂Z̄D+Z̄

)
ε−

+ 2
(

Γ̂z̄Γ̂
IDXI + Γ̂zΓ̂

ID̄XI
)
ε−

+ 2
√

2i
(

Γ̂z̄Γ̂Z̄H − Γ̂zΓ̂ZH̄
)
ε+ (3.2.16)

for the fermions. The variation of H = H+z3 requires special attention as self-duality

implies that H = iH+z4. Evaluating these gives

δH+z3 =
√

2εT−

(
Γ̂Z − Γ̂Z̄

)
DΨ− + εT+Γ̂zΓ̂ZD+Ψ− + εT−Γ̂zΓ̂Z̄D+Ψ+

+
i

2
l3εT−Γ̂zΓ̂Z̄Γ̂IJ

[
XI , XJ ,Ψ+

]
+
i

2
l3εT+Γ̂zΓ̂ZΓ̂IJ

[
XI , XJ ,Ψ−

]
+
√

2εT−Γ̂zΓ̂ZZ̄Γ̂I [Z + Z̄,XI ,Ψ−]

iδH+z4 =
√

2εT−

(
Γ̂Z + Γ̂Z̄

)
DΨ− + εT+Γ̂zΓ̂ZD+Ψ− − εT−Γ̂zΓ̂Z̄D+Ψ+

− i

2
l3εT−Γ̂zΓ̂Z̄Γ̂IJ

[
XI , XJ ,Ψ+

]
+
i

2
l3εT+Γ̂zΓ̂ZΓ̂IJ

[
XI , XJ ,Ψ−

]
−
√

2εT−Γ̂zΓ̂ZZ̄Γ̂I [Z − Z̄,XI ,Ψ−] . (3.2.17)

Demanding that these are equal gives the condition

εT−

(√
2Γ̂Z̄DΨ− − Γ̂zΓ̂Z̄D+Ψ+ −

i

2
l3Γ̂zΓ̂Z̄Γ̂IJ

[
XI , XJ ,Ψ+

]
+
√

2Γ̂zΓ̂ZZ̄Γ̂I [Z,XI ,Ψ−]

)
= 0

(3.2.18)
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As required this vanishes as a consequence of the fermion equation (3.2.12). As a

result I find

δH =
√

2εT−Γ̂ZDΨ− + εT+Γ̂zΓ̂ZD+Ψ−

+
i

2
l3εT+Γ̂zΓ̂ZΓ̂IJ

[
XI , XJ ,Ψ−

]
+
√

2εT−Γ̂zΓ̂ZZ̄Γ̂I [Z̄,XI ,Ψ−] . (3.2.19)

It is worth commenting that the identification H+z3 = iH+z4 maps the SOR(2) action

as rotation by θ on x3, x4 to the U(1) action H → eiθH.

I also note that a rescaling of l can be absorbed by a rescaling of x+ and H.

Henceforth I simply take l = 1.

3.2.3 Energy-Momentum and Superalgebra

The general form for the supercurrent and energy-momentum tensor were given in

[147] as:

Sµ =− 2πi〈DνX
i,ΓνΓiΓµΨ〉+

πi

3!
〈Hστω,Γ

στωΓµΨ〉 − πi〈[Yν , X i, Xj],ΓνΓijΓµΨ〉

+
πi

3 · 3!
Cστω〈[X i, Xj, Xk],ΓijkΓστωΓµΨ〉 , (3.2.20)

and1

Tµν =2π〈DµX
i, DνX

i〉 − πηµν〈DλX
i, DλX i〉+ π〈[X i, Xj, Yµ], [X i, Xj, Yν ]〉

−π
2
ηµν〈[X i, Xj, Yλ], [X

i, Xj, Y λ]〉+
π

2
〈Hµλρ, H

λρ
ν 〉

−iπ〈Ψ̄,ΓµDνΨ〉+ iπηµν〈Ψ̄,ΓλDλΨ〉 − iπηµν〈[Ψ̄, Y λ, X i],ΓλΓ
iΨ〉

+
π

3!
〈[X i, Xj, Xk], [X i, Xj, Xk]〉(CµτωC τω

ν − 1

3!
ηµνC

2)

+
π

3!
Cµλρ(?C)ν

λρ〈[X i, Xj, Xk], [X i, Xj, Xk]〉 − iπ

3!
ηµνC

στω〈[Ψ̄,ΓστωΓijΨ, X i], Xj〉 .

(3.2.21)

1This corrects a misprint in the fermion kinetic term contribution to Tµν that appears in [147].
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Setting the fermions to zero I find that in the case at hand

T−− = 2π〈DZ, D̄Z̄〉 − π

2
〈[Z, Z̄,XI ], [Z, Z̄,XI ]〉

= π∂〈Z, D̄Z̄〉+ π∂̄〈Z̄,DZ〉

T−+ = −4π〈DXI , D̄X̄I〉 − π

2
〈[Z,XI , XJ ], [Z̄,XI , XJ ]〉 − π〈D+Z,D+Z̄〉

= −2π∂
(
〈XI , D̄XI〉+ 〈Z̄, H̄〉

)
− 2π∂̄

(
〈XI , DXI〉+ 〈Z,H〉

)
− π

2
∂+

(
〈Z,D+Z̄〉+ 〈Z̄,D+Z〉

)
T−z = −π∂〈Z,D+Z̄〉 . (3.2.22)

In the system here the role of time is played by x+ so define

P+ = V3

∫
dzdz̄ T−+

Pz = V3

∫
dzdz̄ T−z

Q± = V3

∫
dzdz̄ S+

± , (3.2.23)

as well as the topological term

W = V3

∫
dzdz̄ T−− . (3.2.24)

Here V3 is a three-dimensional volume factor that arises from the fact that Tµν , as

defined above, has dimension six as appropriate for a six-dimensional theory. Given

that there is only one length scale in the system it is natural to take V3 = l3.
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After some calculations one finds that the superalgebra takes the form

{Q−,Q−} =2
√

2W

{Q+,Q−} =− 4PzΓ̂z̄ − 4Pz̄Γ̂z
+ 4ZIZΓ̂Z̄Γ̂I + 4ZIZ̄Γ̂ZΓ̂I

+
1

2!
ZIJz̄ Γ̂zΓ̂

IJ +
1

2!
ZIJz Γ̂z̄Γ̂

IJ

+
1

3!
ZIJKZ̄ Γ̂ZΓ̂IJK +

1

3!
ZIJKZ Γ̂Z̄Γ̂IJK

{Q+,Q+} =− 2
√

2P+

+
1

2!
ZIJzz̄ Γ̂zz̄Γ̂

IJ +
1

2!
ZIJZZ̄Γ̂ZZ̄Γ̂IJ

+
1

3!
ZIJKZ̄z Γ̂Zz̄Γ̂

IJK +
1

3!
ZIJKZ̄z̄ Γ̂ZzΓ̂

IJK

+
1

3!
ZIJKZz Γ̂Z̄z̄Γ̂

IJK +
1

3!
ZIJKZz̄ Γ̂Z̄zΓ̂

IJK +
1

4!
ZIJKLΓ̂IJKL . (3.2.25)
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The central charges are given by

ZIZ = 2πiV3

∫
dzdz̄∂〈XI , D̄Z̄〉

ZIZ̄ =− 2πiV3

∫
dzdz̄∂̄〈XI , DZ〉

ZIJz̄ = 4πiV3

∫
dzdz̄

(
〈D̄Z̄,

[
Z,XI , XJ

]
〉 − 2〈D̄XI ,

[
Z, Z̄,XJ

]
〉
)

ZIJz =− 4πiV3

∫
dzdz̄

(
〈DZ,

[
Z̄,XI , XJ

]
〉+ 2〈DXI ,

[
Z, Z̄,XJ

]
〉
)

ZIJKZ̄ = 6iπV3

∫
dzdz̄〈

[
Z,XI , XJ

]
,
[
Z, Z̄,XK

]
〉

ZIJKZ = 6iπV3

∫
dzdz̄〈

[
Z̄,XI , XJ

]
,
[
Z, Z̄,XK

]
〉

ZIJzz̄ =− 32
√

2πV3

∫
dzdz̄〈DXI , D̄XJ〉

ZIJZZ̄ = 4
√

2πV3

∫
dzdz̄

(
2〈
[
Z,XI , XK

]
,
[
Z̄,XJ , XK

]
〉

+i〈
[
Z,XI , XJ

]
, D+Z̄〉+ i〈

[
Z̄,XI , XJ

]
, D+Z〉

)
ZIJKZ̄z = 24

√
2πV3

∫
dzdz̄〈

[
Z,XI , XJ

]
, DXK〉

ZIJKZ̄z̄ = 24
√

2πV3

∫
dzdz̄〈

[
Z,XI , XJ

]
, D̄XK〉

ZIJKZz = 24
√

2πV3

∫
dzdz̄〈

[
Z̄,XI , XJ

]
, DXK〉

ZIJKZz̄ = 24
√

2πV3

∫
dzdz̄〈

[
Z̄,XI , XJ

]
, D̄XK〉

ZIJKL =− 12
√

2πV3

∫
dzdz̄〈

[
Z,XI , XJ

]
,
[
Z̄,XK , XL

]
〉 , (3.2.26)

where anti-symmetrization on all free I, J,K, L indices is understood.

3.3 Reduction to Dynamics on Moduli Space

I now turn to an analysis of the dynamical equations that were found above. I view

x+ as ‘time’ and take the Hamiltonian to be −P+. The equations found are a novel

system of differential equations for a set of 3-algebra valued fields (XI , Z,H,Ψ+,Ψ−)

along with a Lie-algebra valued gauge field (A+, Az, Az̄) all of which depend on two

space and one null direction (z, z̄, x+) and are invariant under 16 supersymmetries
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generated by Q+ and Q−.

3.3.1 Abelian Case

To gain some insight it is helpful to first solve the abelian case where the triple

product vanishes and the gauge fields are set to zero. The equations of motion are

simply

∂+Ψ+ +
√

2Γ̂z∂̄Ψ− +
√

2Γ̂z̄∂Ψ− = 0
√

2Γ̂z∂̄Ψ+ +
√

2Γ̂z̄∂Ψ+ = 0

∂̄Z = 0

∂̄∂XI = 0

∂2
+Z̄ + 4∂̄H = 0 . (3.3.1)

The solutions to these equations are readily seen to be given by taking Z to be an

arbitrary x+ dependent holomorphic function of z, and XI can be taken to be the

real part of an arbitrary x+ dependent holomorphic function. For H we find

H = h− 1

4

∫ z̄

0

∂2
+Z̄(z̄′)dz̄′ . (3.3.2)

where h is a holomorphic function which also has an arbitrary dependence on x+.

Looking at the fermions one finds

Ψ+ = η+ + η̄+

Ψ− = η− + η̄− −
1√
2

∫ z

0

Γ̂z∂+η+(z′)dz′ − 1√
2

∫ z̄

0

Γ̂z̄∂+η̄+(z̄′)dz̄′ , (3.3.3)

where η± are spinors which satisfy

Γ̂z̄η± = 0 . (3.3.4)

and which are also holomorphic functions with some x+ dependence.

Thus the solution space is a set of holomorphic functions with arbitrary x+dependence.

To recover some physics I note that for generic solutions the energy P+ will diverge

due to the poles in the holomorphic functions. Thus on physical grounds one should
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take all holomorphic functions to be constant. In this case P+ will still diverge due

to the integral over z however one could imagine putting the theory on a torus and

reducing the system to a quantum mechanical model. In that case global consistency

requires that

∂+Ψ+ = 0 ∂2
+Z = 0 . (3.3.5)

In this way one sees the recovery of the familiar free-dynamics of Ψ+ and Z, although

the x+ dependence of XI , H and Ψ− remain unconstrained. Looking at the on-shell

supersymmetry in this case one sees that

δΨ+ = −i(Γ̂Z∂+Z − ¯̂
ΓZ̄∂+Z̄)ε+

δΨ− =
i

l3

(
Γ̂Z∂+Z − Γ̂Z̄∂+Z̄

)
ε− + 2

√
2i
(

Γ̂z̄Γ̂Z̄H − Γ̂zΓ̂ZH̄
)
ε+

δZ = 2
√

2εT+Γ̂Z̄Ψ+

δXI = iεT+Γ̂IΨ− + iεT−Γ̂IΨ+

δH = εT+Γ̂zΓ̂Z∂+Ψ− . (3.3.6)

Thus under Q+ (Z,Ψ+) and (XI , H,Ψ−) form separate multiplets whereas under

Q− (Z,Ψ+) and H are invariant but (XI ,Ψ−) transform into in (Ψ+, Z).

Even in the non-abelian case one sees that there are no standard kinetic terms

for XI , H and Ψ−. Indeed there are no D+ derivatives on H or Ψ− and D+ only

appears linearly on XI and within a triple product. Thus I will interpret XI , H and

Ψ− as, possibly x+-dependent, background fields. Given a particular choice of these

fields as functions of z and x+ the equations of motion then determine the behaviour

of Z and Ψ+.

3.3.2 Vacua of the Non-Abelian System

Next I consider the form of the supersymmetry algebra. Here one sees that Q− is

broken unless

W = 0 . (3.3.7)
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However this implies that DZ = 0 and hence Fzz̄(Z) = 0. This effectively reduces

the system back to the abelian case. Thus in what follows I assume that Q− is broken

and set ε− = 0. Then examine the system where only Q+ acts dynamically. The role

of Q− can then be thought of as mapping between different backgrounds defined by

choices of XI , H and Ψ−.

In this work I will only consider backgrounds which preserve all of the Q+ super-

symmetries. In particular for a generic ε+ one sees that such backgrounds are of the

form Ψ− = 0, H = 0 with D+X
I = 0 and [XI , XJ , XK ] = 0. Henceforth I will only

consider such solutions. In this case the gauge fields are also invariant under Q+.

Therefore the dynamical fields are Z and Ψ+. For simplicity I will also set Ψ+ = 0

with the understanding that their dynamics can be recovered by applying the Q+

supersymmetry to the bosonic equations.

To begin I note that the ground states with P+ = 0 correspond to

DXI = 0 [Z,XI , XJ ] = 0 D+Z = 0 , (3.3.8)

and such states are indeed invariant under Q+ and can have a non-vanishing W .

The equations of motion reduce to simply

D̄Z = 0

Fzz̄(·) = −1

4

[
XI ,

[
Z, Z̄,XI

]
, ·
]
. (3.3.9)

Since the XI are covariantly constant: DXI = D̄XI = 0 this equation is essentially

just that of a Hitchin system [72] but in a three-algebra format as I now detail.

To continue I consider the specific case of a positive-definite 3-algebra with gen-

erators TA, A = 1, 2, 3, 4 whose inner-product is 〈TA, TB〉 = δAB and triple product

[TA, TB, TC ] =
2π

k
εABCDTD , (3.3.10)

where k is a constant (usually taken to be integer). The gauge field takes values in

so(4) = su(2)⊕ su(2) and the fields XI and Z are in the vector of SO(4). Solutions

for XI that satisfy [XI , XJ , XK ] = 0 can be expanded in terms of two constant
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SO(6) vectors uI , vI :

XI = uIT 3 + vIT 4 . (3.3.11)

For generic choices of uI and vI the gauge group is completely broken and the vacuum

equations have no non-trivial solutions. In particular Z is also restricted to lie in

the T 3 and T 4 directions of the 3-algebra and the gauge field is locally flat. As

with the abelian case above all the non-zero components of the fields are given by

holomorphic functions. However demanding that W and P+ be finite requires that

these holomorphic functions are constant and space is compactified.

However if one takes all the XI to be aligned in the 3-algebra, say XI = vIT 4 then

there is an unbroken SO(3). If one expands Z =
∑
ZAT

A then DXI = D̄XI = 0

implies ∂vI = ∂̄vI = 0 and Az4
b = Aza

4 = 0, a, b,= 1, 2, 3. The solutions are then

given by

D̄Z = 0

Fzz̄ = −π
2|v|2

k2
[Z, Z̄] , (3.3.12)

where a bold face indicates that the components are orthogonal to T 4 in the three-

algebra and re-expressed as elements of the SO(3) Lie-algebra: (Z)ab = εcabZc,

DZ = ∂Z− [A,Z]. Furthermore [ , ] is the usual Lie-bracket.2 In other words bold-

faced fields can be viewed as taking values in the unbroken su(2) Lie-algebra. This

is precisely the Hitchin system for gauge algebra su(2) [72]. The equations of motion

allow for Z4 to be any holomorphic function but demanding that W is finite implies

that Z4 is constant. Thus the vacuum solutions are in a one-to-one correspondence

with solutions to the Hitchin system for su(2).

It is useful to recall here that the Hitchin system itself is the dimensional reduction

of the the four-dimensional self-duality equations to two-dimensions. In particular,

define

A3 =
2π|v|
k

Z− Z̄

2i
A4 =

2π|v|
k

Z + Z̄

2
. (3.3.13)

2Note that the conventions for matrix multiplication are somewhat unusual here: (MN)ABXA =
MC

BN
A
CXA
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Equation (3.3.12) can then be written as (recall that z = x1 + ix2)

F13 = −F24

F23 = F14

F12 = F34 , (3.3.14)

which are indeed the self-duality conditions and W is the dimensional reduction of

instanton number and as such is no longer integer.

3.3.3 Dynamical Evolution

Next, allow for x+ dependence and allow Z to be dynamical, although I continue

to restrict to the Q+ invariant sector: D+X
I = H = [XI , XJ , XK ] = Ψ− = 0. For

simplicity, also set Ψ+ = 0 with the understanding its dynamics can be restored

using the Q+ supersymmetry. Keeping XI = vIT 4 and Z4 = w this requires that

∂+v
I = 0 and Aa+4 = −A4

+a = 0. It is helpful then to rewrite the equations for the

various remaining fields which I now express in their su(2)-valued form.

To begin observe that (B)bc = εabcA
a
z4 is not necessarily zero since DXI need not

vanish. This implies that the holomorphic constraint D̄Z = 0 leads to the equations

∂̄w +
1

2
tr(B̄Z) = 0

D̄Z + B̄w = 0 , (3.3.15)

for the A = 4 and A = a components respectively. Thus a non-zero w and B lead to

change in the holomorphic constraint on Z.

Next I recall that the Hitchin equation (3.3.12) which arose from the (C,D) =

(c, d) component of the Fzz̄ equation now becomes

Fzz̄ = −π
2|v|2

k2
[Z, Z̄] + [B, B̄] +

i

4

(
2π

k

)
(wD+Z̄ + w̄D+Z− Z̄∂+w − Z∂+w̄) ,

(3.3.16)

where

Fzz̄ = ∂Ā− ∂̄A− [A, Ā] . (3.3.17)
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If one examines the (C,D) = (c, 4) component of the Fzz̄ equation one finds

DB̄− D̄B = − i
4

(
2π

k

)(
[Z,D+Z̄] + [Z̄,D+Z]

)
. (3.3.18)

From the F+z equation one learns that

D+B = 0

∂+A−DA+ = −2πi

k
|v|2B , (3.3.19)

due to the (C,D) = (c, d) and (C,D) = (c, 4) components respectively. From the

(DD̄ + D̄D)XI equation I find

∂∂̄vI +
1

2
tr(B̄B)vI = 0

(DB̄ + D̄B)vI + 2B∂̄vI + 2B̄∂vI =
i

4

(
2π

k

)(
[Z,D+Z̄]− [Z̄,D+Z]

)
vI , (3.3.20)

arising from the A = 4 and A = a components respectively. Lastly I also simply find

D2
+Z = 0 ∂2

+w = 0 . (3.3.21)

One sees that non-vanishing B and w lead to a z-dependent vI and hence to a

modification of Hitchin’s system.

Our approach here is to treat XI and hence vI as a background field. Elementary

manipulations of the first equation in (3.3.20) shows that∮
vIdvI =

∫
1

2
tr(B†B)|v|2 +

∫
|∂vI |2 + |∂̄vI |2 ≥ 0 . (3.3.22)

Thus if one is interested in solutions for which vI approaches a non-zero constant

value at infinity plus subleading terms then the left hand side vanishes. Therefore

B = 0 and vI is constant. I first consider the case when w = 0. In this case one sees

that Hitchin’s equation is preserved for all time. Thus any dynamical motion can

only take place on the moduli space of solutions to Hitchin’s system. In addition the

remaining dynamical equations are

[Z,D+Z̄] = 0, ∂+A = DA+ , D2
+Z = 0 . (3.3.23)
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To understand these equations I recall that (A,Z) are required to solve the

Hitchin equations for all x+. Thus motion can only take place on the moduli space

of solutions so that under x+ → x+ + ε,

δA = ∂+Aε δZ = ∂+Zε , (3.3.24)

where δA and δZ are fluctuations of the solution to Hitchin’s equations: i.e. solutions

to the linearised Hitchin equations. In particular these linearised equations are

D∂+Ā− D̄∂+A = −π
2

k2
|v|2

(
[∂+Z, Z̄] + [Z, ∂+Z̄]

)
D̄∂+Z− [∂+Ā,Z] = 0 . (3.3.25)

Using the second equation in (3.3.23) one sees that

D∂+Ā− D̄∂+A = (DD̄− D̄D)A+

= −[Fzz̄,A+]

=
π2

k2
|v|2[[Z, Z̄],A+]

= −π
2

k2
|v|2([[A+,Z], Z̄] + [Z, [A+, Z̄]])

= −π
2

k2
|v|2

(
[∂+Z, Z̄] + [Z, ∂+Z̄]

)
, (3.3.26)

where in the last line I used the first equation in (3.3.23). Thus (3.3.23) imply the

first equation in (3.3.25). Using (3.3.23) the second equation in (3.3.25) becomes

simply

D̄D+Z = 0 . (3.3.27)

Thus the dynamical equations (3.3.23) along with (3.3.27) describe motion on the

Hitchin moduli space.

To continue I note that we do not want to consider motion that arises from gauge

transformations: δA = Dω, δZ = [ω,Z]. Therefore I impose that the fluctuations
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are orthogonal to gauge transformations3:

− 1

2
tr

∫
dzdz̄

[
2D̄ωδA + 2DωδĀ +

2π2

k2
|v|2

(
[ω, Z̄]δZ + [ω,Z]δZ̄]

)]
= 0 . (3.3.28)

Integrating by parts and demanding that ω is arbitrary gives the condition

DδĀ + D̄δA =
π2

k2
|v|2

(
[Z, δZ̄] + [Z̄, δZ]

)
. (3.3.29)

Identifying δA = ∂+Aε, δZ = ∂+Zε and combining with the first equation in (3.3.25)

gives the gauge fixing condition:

D̄∂+A =
π2

k2
|v|2[Z, ∂+Z̄] , (3.3.30)

or equivalently using (3.3.23)

D̄DA+ =
π2

k2
|v|2[Z, [A+, Z̄]] . (3.3.31)

Thus for the background XI = vIT 4, Z4 = 0 the whole dynamical system is

reduced to motion on the moduli space of solutions to Hitchin’s equations with

the dynamical equations (3.3.23), (3.3.27) and gauge fixing condition (3.3.31). The

Hamiltonian is given by H = −P+ which in turn is simply that of a σ-model on the

3This is just the reduction of the standard instanton moduli space gauge fixing condition
tr
∫
A1δA1 + ...+A4δA4 for the four-dimensional gauge field defined in (3.3.13).
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moduli space:

H = π

∫
dzdz̄〈D+Z,D+Z̄〉

= −π
2

tr

∫
dzdz̄

(
(∂+Z− [A+,Z])(∂+Z̄− [A+, Z̄])

)
= −π

2
tr

∫
dzdz̄

(
∂+Z∂+Z̄−A+[Z̄, ∂+Z]−A+[Z, ∂+Z̄] + A+[Z, [A+, Z̄]]

)
= −π

2
tr

∫
dzdz̄

(
∂+Z∂+Z̄−

1

2
A+[Z̄, [A+,Z]]− 1

2
A+[Z, [A+, Z̄]]

)
= −π

2

∫
dzdz̄

(
∂+Z∂+Z̄−

k2

2π2|v|2
A+DD̄A+ −

k2

2π2|v|2
A+D̄DA+

)
= − k2

2π|v|2
tr

∫
dzdz̄

(
π2|v|2

k2
∂+Z∂+Z̄ + ∂+A∂+Ā

)
=

k2

2π|v|2
gmn∂+ξ

m∂+ξ
n , (3.3.32)

where I have used the relations [Z, ∂+Z̄] = [Z, [A+, Z̄]], D̄∂+A = π2

k2
|v|2[Z, ∂+Z̄] and

∂+A = DA+. Furthermore ξm are the moduli space coordinates and

gmn = −1

2
tr

∫
dzdz̄ (δmA1δnA1 + δmA2δnA2 + δmA3δnA3 + δmA4δnA4) ,

(3.3.33)

is the natural metric on the moduli space. As shown by Hitchin [72] this space is

hyper-Kahler and therefore, by standard arguments, the dynamics can be extended

to include fermions in such a way as to preserve the 8 supersymmetries generated by

Q+.

Next I can consider the effect of a non-zero w but still keeping vI constant and

hence B = 0. One sees that for static solutions with ∂+ = A+ = 0 one still reduces to

Hitchin’s system however for A+, ∂+ 6= 0 there is a modifcation. To see what happens
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one can differentiate (3.3.16) with respect to ∂+ to find (recall that D2
+Z = ∂2

+w = 0):

D∂+Ā− D̄∂+A = −π
2|v|2

k2

(
[∂+Z, Z̄] + [Z, ∂+Z̄]

)
+
i

4

(
2π

k

)
(w∂+D+Z̄ + w̄∂+D+Z− ∂+w[A+, Z̄]− ∂+w̄[A+,Z])

=
π2

k2
|v|2[[Z, Z̄],A+]

− i

4

(
2π

k

)
[wD+Z̄ + w̄D+Z− ∂+wZ̄− ∂+w̄Z,A+] . (3.3.34)

This generalises the first equation in (3.3.25) and the rest of the analysis continues

as before. One sees that the analysis in (3.3.26) still goes through and one still finds

that (3.3.23) imply the first equation in (3.3.25). However (3.3.31) is now modified

to

D̄DA+ =
π2

k2
|v|2[Z, [A+, Z̄]]

− i

8

(
2π

k

)
[wD+Z̄ + w̄D+Z− wZ̄− w̄Z,A+] . (3.3.35)

The rest of the equations remain unchanged. In particular the Hamiltonian is the

same except for an additional term in P+:

π

∫
D+Z4D+Z̄4 = π

∫
dzdz̄∂+w∂+w̄ . (3.3.36)

This will diverge unless ∂+w = 0 as w is holomorphic (although it would be finite

for constant w if placed on a compact Riemann surface).

Lastly one can quantize the system in a natural way by considering wavefunctions

ψ(ξm) and replacing

∂+ξ
m → −i ∂ψ

∂ξm
. (3.3.37)

Thus the dynamics reduces to quantum mechanics on the Hitchin moduli space.
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3.4 Physical Interpretation

So far in this chapter I have solved the constraints of the (2, 0) superalgebra of [147]

for a particular choice of three-form C = l3dx3 ∧ dx4 ∧ dx+. I showed that the

resulting system of equations had vacuum configurations consisting of solutions to

the Hitchin system on R2. I also showed that the dynamical evolution consisted of

motion on the moduli space HK(su(2),R2) of such solutions. Here Hn(g,Σ) denotes

the moduli space of the charge n Hitchin system with gauge algebra g on a Riemann

surface Σ. Therefore it is of interest to see how this construction fits in with other

known descriptions of M-branes.

To begin with recall that to solve the constraints of the original (2, 0) algebra it

was necessary to dimensionally reduce the full six-dimensional system on x3, x4 and

x−. However it is clear from the subsequent analysis that the resulting system still

carries information about the momentum around x− in the form of the topological

term W ∼
∫
T−−. Thus one should view the system as two M5-branes compactified

on T2 × S1
− but with a fixed null momentum P− ∼ W .

One can view a null compactification as a limit of a boosted spacelike compacti-

fication where x5 is taken to be compact with a radius that vanishes so that in the

limit of a null boost the radius R− remains finite. Therefore I review the case where

C = l3dx3 ∧ dx4 ∧ dx5 is spacelike and the constraints imply that the fields have no

dependence on x3, x4, x5. It was shown in [147] that the (2, 0) superalgebra reduces

to the description of two M2-branes with a transverse R8. From a brane perspective

one can think of this as a toroidal compactification on x3, x4, x5, sending all the radii

to zero, accompanied by a U-duality transformation which decompactifies the dual

torus. This can be thought of as an M-theory version of T-duality that takes N

M5-branes wrapped on T3 to N M2-branes which are transverse to a dual T̂3.4 In

particular the U-duality required consists of reducing to string theory on x5, leading

to N D4-branes wrapped on a T2 with a coupling g2
YM ∼ R5, and then performing

T-dualities along x3 and x4 to find N D2-branes with a transverse T̂2×R5 where the

radii are R̂3 = α′/R3 and R̂4 = α′/R4 and the coupling constant is ĝ2
YM ∼ R5/R3R4.

If one now shrinks the original radii to zero one obtains the strong coupling limit of

N D2-branes in a transverse R7 or equivalently N M2-branes in a transverse R8.

4For the sake of generality here I have considered an arbitrary number of M-branes whereas the
results found above only concern the case of N = 2.
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M5: 0 1 2 3 4 5

  P :                5

M2 : 0 1 2            

      M2 : 0       3 4          

D4: 0 1 2 3   5

 P :               5

D3: 0 1 2       5

  P:                5

D2 : 0 1 2            

      D2 : 0       3 4          

            D4 : 0 1 2 3 4      
D0 : 0                               

T3T3,4

IIA4IIA5

M5

Figure 3.1: U-dualities of an M5 with momentum. IIAn indicates reduction to string
theory along xn, Tn T-duality along xn and Mn lift to M-theory along xn.
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Now repeat these steps with K units of momentum along x5. In addition to

the N D4-branes one also finds the momentum modes becoming K D0-branes as

described in Section 1.2. After T-duality these become K D2-branes along x3, x4.

Taking all the radii to zero leads to N M2-branes along x0, x1, x2 and K M2-branes

along x0, x3, x4. The Hitchin system can then be thought of as the BPS condition for

K M2-branes intersecting the original N M2-branes, generalising the familiar abelian

holomorphic condition ∂̄Z = 0 for intersecting branes. One also sees that there will

be an SOL(2)× SOR(2)× SOR(6) symmetry from rotations in the (x1, x2), (x3, x4)

and (x5, ..., x10) planes respectively.

Lastly one needs to perform the light-like boost along x5 which is transverse to

all the M2-branes. In terms of static gauge this corresponds to replacing X5 with

−vx0+X5 and taking the limit v → 1. For v 6= 0 this will break the SOR(6) symmetry

of the total transverse space to SO(5). However one can see that the breaking only

occurs through the time derivative kinetic terms. The spatial gradient terms will

remain invariant under SOR(6). The interaction terms also remain invariant since

X5 → −vx0 + X5 is a shift by the centre of mass degree of freedom which is non-

interacting5. If one takes the limit v → 1 then the M2-brane tension vanishes,

the kinetic terms diverge and we are forced to set them to zero. Thus the SOR(6)

symmetry is restored. In addition one can allow the moduli to evolve such that

∂0ξ
m ∼ O(

√
1− v2). In this case the SOR(6) symmetry remains unbroken as these

moduli are invariant under rotations of the total transverse space. In the limit that

v → 1 the Manton approximation of slow motion on the moduli space of solutions

becomes exact and the dynamics reduces exactly to motion on HK(su(2),R2).

This agrees with the results found in the previous section. Stated somewhat

differently boosting the intersecting M2-branes leads to ‘fast’ modes corresponding

to the over-all transverse scalars XI (what were called the background fields before)

and ‘slow’ modes corresponding to the moduli ξm. Time evolution of the ‘fast’ modes

breaks SOR(6) to SO(5) but time evolution of the ‘slow’ modes does not. Thus the

(2, 0) system obtained above can be viewed as describing the ‘slow’ modes, with the

‘fast’ modes frozen or integrated out (i.e. set to their expectation values).

I now comment on a separate but related description of N M5-branes on T2×S1
−.

In particular if one first compactifies on T2. As is well known, reduction of the

5This is clear for D2-branes where the centre of mass degree of freedom is given by the identity
matrix and all interactions are through commutators. This degree of freedom can be somewhat
subtle in interacting M2-brane models but ultimately one expects this statement to remain true.
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AN−1 (2, 0) theory on a torus of vanishing area (but fixed shape) leads to maximally

supersymmetric U(N) Yang-Mills. More precisely one can reduce to string theory

on x4 to obtain N D4-branes with coupling g2
YM ∼ R4 and then T-dualise along x3

to find N D3-branes with finite coupling g2 ∼ R4/R3. Lastly, introduce K units

of null momentum along x5 which leaves a manifest SO(2)× SO(6) symmetry that

arises from rotations in the (x1, x2) and (x3, x6, x7, x8, x9, x10) planes respectively.

This is the set-up for a DLCQ construction of four-dimensional maximally super-

symmetric Yang-Mills. This was given in [153] in terms of the quantum mechanics

on HN(u(K), T̂2) where T̂2 is an auxiliary two-torus. Various details of this system

have been studied in detail more recently in [154] and see also [152] for an alternative

description.

These two descriptions differ by a T-duality along x4 as well as a U-duality

corresponding to the choice of M-theory direction (a ‘9− 11 flip’ that swaps x4 with

x5). However it is also possible that the two descriptions involve different choices

of ‘fast’ and ‘slow’ modes. In the case of D3-branes there is a manifest SO(2) ×
SO(6) symmetry that comes from rotations in the (x1, x2) and (x3, x6, x7, x8, x9, x10)

planes respectively. In the case of M2-branes I showed that there is an SO(2) ×
SO(2) × SO(6) symmetry corresponding to rotations in the (x1, x2) and (x3, x4)

and (x5, x6, x7, x8, x9, x10) planes respectively. This enhancement of the R-symmetry

from SO(2)× SO(6) to SO(2)× SO(2)× SO(6) presumably comes from taking the

strong coupling limit corresponding to the lift to M-theory. Therefore one expects it

to be present in the strong coupling DLCQ description of D3-branes but only in the

case where R3 = R4.

Perhaps a more direct relation between the two descriptions can been seen as

follows. One is free to compactify R2 to a torus T2
12. This M2-brane description then

becomes motion on HK(su(N),T2
12) and the SOL(2)× SOR(2)× SOR(6) symmetry

is broken to SOR(2) × SOR(6). If one reduces to string theory on x5 one again

obtains the intersecting D2-branes discussed above but one can now T-dualise along

x1, x2, x3, x4 and then lift back to M2-branes. This has the effect of simply swapping

the original N M2-branes that were tangent to x0, x1, x2 with the K intersecting

M2-branes that were tangent to x0, x3, x4. The result is motion on HN(su(K), T̂2
12)

where T̂2
12 is the T-dual torus to T2

12. This is almost in agreement with the DLCQ

description if we identify T̂2 with T̂2
12. However there is one caveat: here only the

su(K) Lie-algebra and not u(K) is seen. One assumes that this came about because

85



Chapter 3. Extended Systems of Null M2-branes

of the gauge group of the three-algebra associated with maximal supersymmetry is

su(2) ⊕ su(2) rather than u(N) ⊕ u(N) that arises in the ABJM model. Thus it

would seem that the T-duality and U-duality discussed above manifest themselves

as a rank-charge duality in the quantum mechanics on the Hitchin moduli space.

Lastly I examine the formula forW in the case that was considered in Section 3.3.3

and propose an interpretation for it as the M5-brane momentum P−. It is known that

there are no finite action regular solutions to the Hitchin system on R2 [155] (more

recently see [156]) but here I will make a proposal on how to interpret certain multi-

valued solutions. Restoring the factor of l, identifying 〈A,B〉 = −1
2
tr(AB) (valid in

the case considered in Section 3.3.3) and replacing the integral over x3, x4, x− by the

volume factor V3 = (2π)3R3R4R− that would be obtained by taking x3, x4, x− to be

periodic one has

W =
π

2l6
V3
i

2

∫
dtr(Z̄DZdz)− dtr(ZD̄Z̄dz̄) . (3.4.1)

For a smooth solution the integral is only over the sphere at infinity. I assume that

for large z one can treat Z as abelian and ignore A (which can either be subleading

or simply commuting with Z). Then up to a gauge transformation one can expand

Z = −iaJ3 ln z + C + . . . , (3.4.2)

where J3 is a real anti-hermitian generator of so(3) normalised to tr(J2
3) = −2 and

the ellipsis denotes subleading terms. I have assumed this asymptotic form so that

W 6= 0. Even so the expression for W is problematic as there is a divergence:

W =− πi

4l6
V3

[∮
2|a|2 ln z̄

z
dz + itr(aJ3C̄)

∮
1

z
dz

]
+ c.c. . (3.4.3)

However if one cuts-off the divergent terms at some large by finite r = |z| they
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become

W∞ = − πi
4l6

V3a|2
∮

ln z̄

z
dz + c.c.

= − πi
4l6

V3|a|2
∮

ln z̄d ln z + c.c.

= − πi
4l6

V3|a|2
∫ ln r+iπ

ln r−iπ
w̄dw + c.c.

=
π

4l6
V3|a|2

∫ π

−π
(ln r − iθ)dθ + c.c.

=
π2

l6
V3|a|2 ln r , (3.4.4)

where I have introduced a branch cut for ln z that runs along the negative real axis

and written w = ln r + iθ. Therefore I find

W =W∞ +
π2i

2l6
V3 tr(J3(aC̄− āC)) . (3.4.5)

Next observe that Z is not single valued: under a rotation z → e2πiz one sees

that Z ∼= Z + 2πaJ3. Recall that Z = Y4 + iY3 where Y4 and Y3 are real anti-

symmetric matrices. These have imaginary eigenvalues y4 and y3 respectively which,

after multiplication by i, can be thought of as positions of the two M5-branes along

x4, x3 directions. The above identification then implies that y4 ∼= y4 + 2πRea and

y3 ∼= y3 + 2πIma. One learns from this that Y 3 and Y 4 must be treated as periodic

and hence I identify a = R4 + iR3.

This means that the divergent term only depends on R3, R4, R−. Unfortunately

a physical interpretation for this divergence is unclear, it would be interesting to find

one. However in this discussion I only want to consider solutions that correspond to

fixed radii and so I will simply ignore the divergence and consider instead

Wfinite =
π2i

l6
V3 tr(J3(aC̄− āC)) . (3.4.6)

I write C = cJ3 + ... where the ellipsis denotes terms that are orthogonal to J3. Thus

Wfinite = −2π2i

l6
V3(ac̄− āc) . (3.4.7)

The multivalued nature of Z also means that in the space of solutions, those which
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differ by c→ c+ 2πa must be identified with each other. Therefore if one writes

c = 2πR4n4 + 2πiR3n3 , (3.4.8)

then solutions that differ by (n3, n4)→ (n3 +1, n4 +1) are identified with each other.

As a result I have

Wfinite =
8π3

l6
V3R3R4(n4 − n3)

=

(
V3

l3

)2
n4 − n3

R−
. (3.4.9)

This suggests that one should identify l3 = V3 = (2π)3R3R4R− and so recover the

KK spectrum of a null compactification on x−, provided that n4 − n3 is an integer.

Putting this another way: in order to arrive at the interpretation of this model

as describing a null compactification of M5-branes one should assume (Y 3, Y 4) are

periodic and impose on the Hitchin system the boundary condition Z ∼ −i(R4 +

iR3)J3lnz + 2π(R4n4 + iR3n3)J3 where n4− n3 is an integer. Lastly I mention that,

according to the previous discussion, one is ultimately required to let R3, R4, R5 → 0.

However when viewed as the limit of a null boost, the spacelike radius is sent to zero

in such that a way that R− is fixed. In this case Wfinite remains finite.

3.5 Summary and Comments

In this chapter I presented a solution to the constraints of the (2, 0) system derived in

[147]. The result was a system of equations for 3-algebra valued fields Z,H,XI ,Ψ±,

along with an associated gauge field one-form A, that is defined on a plane R2

times a null direction R+ which is used as ‘time’. I showed that for choices of

the fields XI , H,Ψ− that preserve the Q+ supersymmetries the system reduced to

supersymmetric dynamics (with supersymmetry generator Q+) on the moduli space

of an SO(3) Hitchin system. I also gave a physical interpretation of the resulting

system as a re-formulation of the M5-brane on T2×S1
− to intersecting null M2-branes

or alternatively a DLCQ of four-dimensional maximally supersymmetric Yang-Mills.

The original Hitchin system arises in this system for one particular choice of

background. In addition these equations admit generalisations such as a non-zero

Z4 and non-constant XI . It would be interesting to examine these backgrounds
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and their associated dynamics. It is also possible to include impurities given by

sources in the Hitchin equations as done in [152, 153]. One would also expect that

these results can be naturally extended to a Lorentzian 3-algebra and hence to an

arbitrary gauge group. Finally I also note that Hitchin’s system has also appeared

before in conjunction with ‘so-called’ class-S theories derived from the M5-brane

[157, 158, 159, 160, 161].

In the next chapter this system will be studied in conjunction with that described

in Section 2.3.1 describing M5-branes along a null direction. Actions will be found

for these systems.
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Chapter 4

Systems of M-branes and

Maximally Supersymmetric Non

Lorentzian Theories

In this chapter I present gauge theories in (2 + 1) and (4 + 1) dimensions with 16

supersymmetries which are invariant under rotations and translations but not boosts.

These non-Lorentzian, Galilean invariant theories come from the realisation that

the system of null M2-branes from the previous chapter, and the system described

in Section 2.3.1 have supersymmetric actions associated to them. This work was

conducted with Neil Lambert and was published in JHEP in October 2018 [11].

4.1 Introduction

As discussed earlier, of particular interest of study is the elusive six-dimensional

(2, 0) theory of N M5-branes [132, 142]. For a variety of reasons it is believed that

there is no six-dimensional diffeomorphism invariant lagrangian formulation of the

(2, 0) theory (see, for example, [134]). However there are a myriad of lagrangians

that are associated to lower-dimensional compactifications that can capture some,

or even all, of the (2, 0) theory dynamics. In particular when reduced on a circle

of radius R the (2, 0)-Theory becomes five-dimensional maximally supersymmetric

Yang-Mills theory with gauge group U(N) and coupling g2
YM = 4π2R. Alternatively

one can think of the (2, 0) theory as providing a strong coupling, UV completion of
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the perturbatively non-renormalizable five-dimensional Yang-Mills theory [162].

As discussed in Section 2.3.1 and 2.3.2 a non-abelian system of equations was for-

mulated which provide a representation of the six-dimensional (2, 0) superalgebra.

The system involves a set of dynamical equations as well as some constraint equa-

tions. Solving the constraints in different ways leads to maximally supersymmetric

Chern-Simons theory in (2 + 1) dimensions, BLG theory, or maximally supersym-

metric Yang-Mills in (4+1) dimensions, corresponding to M2-branes and M5-branes

on S1 respectively.

Owing to the manifest Lorentz symmetry of the system there is also the possibility

to construct limits of M2-branes and M5-branes which have been infinitely boosted

along some direction (off the brane for M2’s but on the brane for M5’s). These

equations were analysed in [9, 146] for M2-branes and M5-branes respectively and

shown to reduce to motion on a moduli space of solitons. In the latter case this

reproduces the DLCQ description of the (2, 0) theory as motion on the moduli space

of self-dual gauge fields [150, 151].

The main goal of this chapter is to show that for these null cases one can construct

lagrangians for the dynamics. The results are novel field theories in (2+1) and (4+1)

dimensions with 16 supersymmetries, translations and spatial rotations but which

are not invariant under boosts. However the field content includes non-dynamical

lagrange multiplier fields which restrict the dynamics to motion on a moduli space

of solitons. These appear to be a new type of maximally supersymmetric lagrangian.

In Section 4.2 I will study the M2-brane example of Chapter 3. This is a field

theory in (2 + 1) dimensions with maximal supersymmetry, an SO(2) rotational

symmetry and an SO(6) R-symmetry. In Section 4.3 I construct the M5-brane

example from Section 2.3.1 which is a field theory in (4+1) dimensions with maximal

supersymmetry, an SO(4) rotational symmetry and SO(5) R-symmetry. I also briefly

explore the dimensional reduction of these theories. In Section 4.4 I comment on how

the 8 supersymmetries that arise in the moduli space dynamics are enhanced to 16

supersymmetries in the field theory. In the final section I give a summary and

comments.
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4.2 An Action for the Null M2

In Chapter 3 a novel system of equations was derived from the system of Section

2.3.2.

Following this analysis one can employ some trial and error to see that the equa-

tions of motion, (3.2.11), (3.2.12), (3.2.13), and (3.2.14) arise from the action1

SM2 = Sscalar + SCS + Sfermion , (4.2.1)

where

Sscalar =

∫
d2xdx+

[
〈D+Z,D+Z̄〉 − 〈DXI , D̄XI〉+ 〈DZ̄, H̄〉+ 〈D̄Z,H〉

−i〈D+X
I , [Z, Z̄,XI ]〉 − 1

2
〈[XI , XJ , Z][XI , XJ , Z̄]〉

]
SCS = i

∫
d2xdx+

[
1

2
(A+, Fzz̄) +

1

2
(Az, Fz̄+) +

1

2
(Az̄, F+z) +

1

2
(A+, [Az, Az̄])

]
Sfermion =

∫
d2xdx+

[
i

2
√

2
〈ΨT

+, D+Ψ+〉+ i〈ΨT
+, Γ̂zD̄Ψ− + Γ̂z̄DΨ−〉

− 1

2
√

2
〈ΨT

+, Γ̂ZZ̄Γ̂IJ
[
XI , XJ ,Ψ+

]
〉+

1√
2
〈ΨT
−,
[
Z, Z̄,Ψ−

]
〉

+i〈ΨT
+, Γ̂

I Γ̂Z
[
Z,XI ,Ψ−

]
〉+ i〈ΨT

+, Γ̂
I Γ̂Z̄

[
Z̄,XI ,Ψ−

]
〉
]
. (4.2.2)

I explicitly note that the fermions, Ψ±, satisfy

Γ̂+12Ψ± = −Ψ± Γ̂+34Ψ± = ±Ψ± . (4.2.3)

where Γ̂+, Γ̂1, ..., Γ̂10 form a real basis of the Spin(1, 10) Clifford algebra.

This action is invariant under the relevant supersymmetries derived in the previ-

1Note that compared to Chapter 3 I have rescaled XI → l−3/2XI , Z → 2l3/2Z,H →
1
2 l

−3/2H,Ψ± → l−3/2Ψ± so that the fields have canonical scaling dimensions.
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ous chapter, for completeness I include them below in the new normalisation

δXI =iεT+Γ̂IΨ− + iεT−Γ̂IΨ+

δZ =
√

2εT+Γ̂Z̄Ψ+

δZ̄ =−
√

2εT+Γ̂ZΨ+

δAz( · ) =
√

2εT+Γ̂I Γ̂z[X
I ,Ψ+, · ] + 2iεT−Γ̂zΓ̂Z̄

[
Z̄,Ψ+, ·

]
− 2iεT+Γ̂zΓ̂Z [Z,Ψ−, · ]

δAz̄ =−
√

2εT+Γ̂I Γ̂z̄[X
I ,Ψ+, ·] + 2iεT−Γ̂z̄Γ̂Z [Z,Ψ+, · ]− 2iεT+Γ̂z̄Γ̂Z̄

[
Z̄,Ψ−, ·

]
δA+( · ) =2

√
2iεT−Γ̂Z [Z,Ψ−, · ] + 2

√
2iεT−Γ̂Z̄

[
Z̄,Ψ−, ·

]
+ 2εT−Γ̂ZZ̄Γ̂I

[
XI ,Ψ+, ·

]
− 2εT+Γ̂ZZ̄Γ̂I

[
XI ,Ψ−, ·

]
δΨ+ =2i

√
2Γ̂I

[
Z, Z̄,XI

]
ε− − 2i

(
Γ̂ZD+Z − Γ̂Z̄D+Z̄

)
ε+

−
(

Γ̂ZΓ̂IJ
[
Z,XI , XJ

]
+ Γ̂Z̄Γ̂IJ

[
Z̄,XI , XJ

])
ε+

+ 2
(

Γ̂z̄Γ̂
IDXI + Γ̂zΓ̂

ID̄XI
)
ε+

+ 2
√

2i
(

Γ̂z̄Γ̂ZDZ − Γ̂zΓ̂Z̄D̄Z̄
)
ε−

δΨ− =−
√

2Γ̂ID+X
Iε+ −

√
2i

3
Γ̂ZZ̄Γ̂IJK

[
XI , XJ , XK

]
ε+

+
(

Γ̂ZΓ̂IJ
[
Z,XI , XJ

]
+ Γ̂Z̄Γ̂IJ

[
Z̄,XI , XJ

])
ε−

+ 2
(

Γ̂z̄Γ̂
IDXI + Γ̂zΓ̂

ID̄XI
)
ε−

− 2i
(

Γ̂ZD+Z − Γ̂Z̄D+Z̄
)
ε− +

√
2i
(

Γ̂z̄Γ̂Z̄H − Γ̂zΓ̂ZH̄
)
ε+ .

δH =2
√

2εT−Γ̂ZDΨ− + 2εT+Γ̂zΓ̂ZD+Ψ−

+ iεT+Γ̂zΓ̂ZΓ̂IJ
[
XI , XJ ,Ψ−

]
− 2
√

2εT−Γ̂zΓ̂
I [Z̄,XI ,Ψ−] , (4.2.4)

where

Γ̂+12ε± = ε± Γ̂+34ε± = ±ε± . (4.2.5)

While examining the cubic fermion terms that arise in δS it is helpful to observe

that they take the same form as the cubic fermion terms that arise in the case of the

maximally supersymmetric Lorentzian M2-brane theory (see the appendix).

The action (4.2.1) has some non-standard features. Firstly although the scalars

Z have canonical kinetic terms they do not have gradient terms. The scalars XI

have the opposite: no kinetic terms but canonical gradient terms. Furthermore there
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is a term which is linear in the XI time-derivative.

One sees that the field H imposes the holomorphic constraint

D̄Z = 0 . (4.2.6)

One also has the Gauss law constraint arising from the A+ equation of motion:

Fzz̄(·) = −i
([
Z,D+Z̄, ·

]
+
[
Z̄,D+Z, ·

])
−
[
XI ,

[
Z, Z̄,XI

]
, ·
]
− 1

2
√

2

[
ΨT

+,Ψ+, ·
]
.

(4.2.7)

For static bosonic configurations these constraints reduce to a 3-algebra form of the

Hitchin System:

D̄Z = 0

Fzz̄(·) = −
[
XI ,

[
Z, Z̄,XI

]
, ·
]
. (4.2.8)

As described before these arise as BPS solutions to the M2-brane [163]. It was

shown that allowing for time evolution the dynamical evolution is still restricted to

the Hitchin moduli space (at least for a class of configurations). Furthermore this

system was identified as describing intersecting M2-branes along the x1, x2 and x3, x4

directions, in the limit of an infinite boost along x5.

4.3 Null M5-branes

I now turn attention to a similar construction that represents M5-branes which arises

from a null reduction of the model in Section 2.3.1, described in [146]. Although the

system is also derived from the 3-algebra construction of [145] it turns out that the

resulting dynamical equations can be extended to any gauge group (for example

by considering a non-positive definite three-algebra). In particular the field content

consists of five scalars XI (where now I = 6, 7, 8, 9, 10), a gauge field one-form

(A+, Ai), i = 1, 2, 3, 4 and fermions Ψ all taking values in some Lie-algebra. There
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is also an anti-self-dual tensor Gij. I consider the action

SM5 =
1

g2
tr

∫
d4xdx+

(
1

2
F+iF+i −

1

2
DiX

IDiX
I +

1

2
FijGij

+
i

2
Ψ̄Γ−D+Ψ +

i

2
Ψ̄ΓiDiΨ−

1

2
Ψ̄[XI ,Γ−ΓIΨ]

)
, (4.3.1)

where Ψ̄ = ΨTΓ+. Here the fermions satisfy Γ+12345Ψ = −Ψ and I define

Γ± =
1√
2

(Γ5 ± Γ0) . (4.3.2)

Again Γ+,Γ1, ...,Γ10 are a real representation of the Spin(1, 10) Clifford algebra.

Note that, unlike the gauge field strength Fij, Gij does not satisfy a Bianchi identity.

The equations of motion arising from this action agree with those found in [146]2.

There it was interpreted as the limit of an infinite boost of M5-branes along x5. In

particular one sees that Gij acts as a Lagrange multiplier imposing self-duality of

the spatial components of the gauge field strength; Fij = 1
2
εijklFkl. Thus the on-shell

condition reduces to motion on the moduli space of self-dual gauge fields. In partic-

ular the action reduces to a sigma-model on ADHM moduli space which includes a

potential and background gauge field that arise from the vacuum expectation values

of XI and A0 respectively [146].

The on-shell supersymmetries of the system are:

δXI = iε̄ΓIΨ

δAi = iε̄ΓiΓ−Ψ

δA+ = iε̄Γ+−Ψ

δΨ = Γ−ΓID+X
Iε+ ΓiΓ

IDiX
Iε+ ΓiΓ+−F+iε−

1

4
Γ+ΓijFijε

−1

4
Γ−ΓijGijε−

i

2
Γ−ΓIJ [XI , XJ ]ε

δGij = iε̄ΓijD+Ψ + 2iε̄Γ+Γ[iDj]Ψ− ε̄ΓijΓ+−ΓI [XI ,Ψ] , (4.3.3)

where Γ+12345ε = ε. These transformations close on-shell and one can check that

they leave the action invariant. When checking the vanishing of the cubic fermion

terms in δS is it helpful to observe that they have a similar structure to those that

2Here we have rescaled the fields from those of reference [145] to their canonical form and also
switched the roles of x+ and x−.
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arise in maximally supersymmetric five-dimensional Yang-Mills (see the appendix).

However one should be careful to ensure that δGij is anti-self-dual off-shell. To

achieve this I note that the transformations (4.3.3) require some modification. First

observe that we are free to modify δGij by

δGij → δGij + iε̄ΞΓijkDkΨ , (4.3.4)

for any choice of Ξ, because the Bianchi identity of Fij ensures that the change in

δS is a boundary term. In particular taking Ξ = 3
2
Γ+ I find that

δGij + ?δGij = 2ε̄Γ+ΓijEΨ , (4.3.5)

where

EΨ = iΓ−D+Ψ + iΓkDkΨ− Γ−ΓI [XI ,Ψ] . (4.3.6)

is the fermion equation of motion. One can correct this by making the following shift

in the supersymmetry transformations:

δGij → δGij − ε̄Γ+ΓijEΨ

δΨ̄→ δΨ̄ +
1

2
ε̄Γ+ΓijFij , (4.3.7)

so that the action remains invariant but now δGij is anti-self dual off-shell.

Thus one concludes that the action (4.3.1) is invariant under the following super-

symmetry

δXI = iε̄ΓIΨ

δAi = iε̄ΓiΓ−Ψ

δA+ = iε̄Γ+−Ψ

δΨ = Γ−ΓID+X
Iε+ ΓiΓ

IDiX
Iε+ ΓiΓ+−F+iε+

1

4
Γ+ΓijFijε

−1

4
Γ−ΓijGijε−

i

2
Γ−ΓIJ [XI , XJ ]ε

δGij = − i
2
ε̄Γ−ΓijΓ+D+Ψ− 1

2
ε̄Γ−ΓijΓ+ΓI [XI ,Ψ] . (4.3.8)
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Lastly I note that one is always free to add an FijFij term into the action:

S → S − ξ

4g2

∫
d4xdt FijFij , (4.3.9)

for any choice of ξ. This will not change the equations of motion since DiFij = 0 as

a result of the self-dual condition imposed by Gij along with the Bianchi identity of

Fij. Furthermore, to preserve supersymmetry, simply shift the variation δGij to

δGij → δGij + 2iξε̄Γ−Γ[iDj]Ψ , (4.3.10)

so as to ensure δS = 0. However in the rest of this chapter I will set ξ = 0 since

on-shell ξ 6= 0 leads to infinite contributions to S arising from the integral over time

of a constant instanton number.

4.3.1 Dimensional Reduction

The action (4.3.1) provides a non-Lorentz invariant field theory in (4+1) dimensions

which is invariant under sixteen supersymmetries, an ISO(4) Euclidean group and

an SO(5) R-symmetry. Its on-shell conditions reduce to motion on the moduli space

of self-dual gauge fields on R4 with x+ playing the role of time.

Clearly one can dimensionally reduce this action to obtain similar ones in (d+ 1)

dimensions with d < 4. Following the usual rules of dimensional reduction over 4−d
dimensions the bosonic field content is now

(A+, Ai) (Xa = Ad+1, .., A4) (XI) (Gij, Gia, Gab) , (4.3.11)

where now the i index has been reduced to i = 1, .., d with a = d + 1, .., 4 and

as before I have I = 6, 7, 8, 9, 10. Note also that anti-self-duality implies that the

various components (Gij, Gia, Gab) are not independent. In all these cases the on-

shell conditions imply that the dynamics corresponds to motion on the moduli space

of self-dual connections reduced to R4−d.

One readily sees from (4.3.1) that scalars Xa will have kinetic terms but XI will

not. Furthermore there will be a potential of the form

V ∼ −tr([Xa, XI ][Xa, XI ]) , (4.3.12)

97



Chapter 4. Systems of M-branes and Maximally Supersymmetric Non Lorentzian
Theories

but no potential terms with only XI or Xa. Thus, unlike the dimensional reduction

of Lorentzian maximally supersymmetric Yang-Mills theories, the R-Symmetry is

not enhanced to SO(9 − d). Rather, upon reduction to d + 1 dimensions, one finds

a maximally super-symmetric field theory with ISO(d) Euclidean symmetry and a

SO(4− d)× SO(5) R-symmetry.

For the sake of completeness I list the dimensional reductions.

Reduction to 3+1 Dimensions

Reduction to 3+1 dimensions one has (i, j = 1, 2, 3)

(A+, Ai) (X4 ≡ A4) (XI) (Gij, Gi4) . (4.3.13)

However, since G is anti-self-dual one has the relationship

Gij = −εijkGk4 . (4.3.14)

Thus the action becomes

S3+1 =
1

g2

∫
d3xdx+

[
1

2
F+iF+i +

1

2
D+X

4D+X
4 +

1

2
Gij

(
Fij − εijkDkX

4
)

− 1

2
DiX

IDiX
I +

1

2
[X4, XI ][X4, XI ]

+
i

2
Ψ̄Γ−D+Ψ +

i

2
Ψ̄ΓiDiΨ +

1

2
Ψ̄Γ4[X4,Ψ]− 1

2
Ψ̄[XI ,Γ−ΓIΨ]

]
.

(4.3.15)

Reduction to 2+1

Next I look at the reduction to (2 + 1) dimensions and compare the result with

the M2-action of Section 4.2. The field content is given by (i = 1, 2, a = 3, 4)

(A+, Ai) (Xa ≡ Aa) (XI) (Gij, Gab, Gia) , (4.3.16)

but due to anti-self-duality the components Gij and Gab are related as are the various

components of Gia. I introduce the complex coordinates

z = x1 + ix2 Z = X4 + iX3 , (4.3.17)
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and

D =
1

2
(D1 − iD2) ΓZ =

1

2
(Γ4 − iΓ3) . (4.3.18)

I also re-express the independent components of the Lagrange multiplier field as

G = G12 = −G34 H = G14 − iG13 . (4.3.19)

With these definitions one can write the reduced action as

S2+1 =
1

g2
tr

∫
d2xdx+

(
1

2
F+zF+z̄ +

1

2
D+ZD+Z̄ + H̄DZ̄ +HD̄Z

−DXID̄XI +
1

2
[Z,XI ][Z̄,XI ]− 2iG

(
Fzz̄ −

1

4
[Z, Z̄]

)
+
i

2
Ψ̄Γ−D+Ψ + iΨ̄(Γz̄DΨ + ΓzD̄Ψ) +

1

2
Ψ̄ΓZ [Z,Ψ] +

1

2
Ψ̄ΓZ̄ [Z̄,XI ]

−1

2
Ψ̄[XI ,Γ−ΓIΨ]

)
. (4.3.20)

The on-shell conditions now reduce to motion on the moduli space of solutions

to the Hitchin System, this time for any gauge group. However, although it has

the same number of supersymmetries as the M2-brane case discussed above it only

has SO(2) × SO(5) R-symmetry, not SO(2) × SO(6). It is natural to postulate

that, just as the Lorentzian M2-brane theory is the strong coupling limit of (2 +

1)-dimensional maximally supersymmetric Yang-Mills (which can be viewed as the

dimensional reduction of the M5-brane), the null M2-brane theory (4.2.1) is the

strong coupling fixed point of the null M5-brane action (4.3.20) in the case of an

SU(2) gauge group.

Reduction to 1+1 Dimensions

Next I consider the reduction to 1+1 Dimensions. Here the bosonic fields are

(a = 2, 3, 4)

(A+, A1) (Xa ≡ Aa) (XI) (Gab, Ba = G1a) . (4.3.21)

However, I am taking that G is anti self-dual so one has the relationship

Gab = −εabcBc . (4.3.22)
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The action can be written now as

S1+1 =
1

g2

∫
dxdx+

[
1

2
F+1F+1 +

1

2
D+X

aD+X
a − 1

2
D1X

ID1X
I +

1

2
[Xa, XI ][Xa, XI ]

−1

2
Gab(εabcD1X

c + i[Xa, Xb])

+
i

2
Ψ̄Γ−D+Ψ +

i

2
Ψ̄Γ1D1Ψ +

1

2
Ψ̄Γa[X

a,Ψ]− 1

2
Ψ̄[XI ,Γ−ΓIΨ]

]
.

(4.3.23)

Here one sees that the Lagrange multiplier reduces the theory to motion on the

moduli space of Nahm’s equations.

Reduction to 0+1 Dimensions

Lastly one can consider the case of a reduction to 0+1 dimensions. The bosonic

fields are (a = 1, 2, 3, 4)

(A+) (Xa ≡ Aa) (XI) (Gab) , (4.3.24)

and now Gab is anti-self-dual. The action becomes

S0+1 =
1

g2

∫
dx+

[
1

2
D+X

aD+X
a +

1

2
[Xa, XI ][Xa, XI ]− i

2
Gab[X

a, Xb]

+
i

2
Ψ̄Γ−D+Ψ +

1

2
Ψ̄Γa[X

a,Ψ]− 1

2
Ψ̄[XI ,Γ−ΓIΨ]

]
. (4.3.25)

This is itself a quantum mechanical model whose on-shell equations of motion reduce

it to a sigma model on the moduli space of matrices that satisfy

[Xa, Xb] =
1

2
εabcd[Xc, Xd] . (4.3.26)

However there are no finite dimensional non-trivial solutions to this system. To see

this one observes that the expression

V = −tr([Xa, Xb][Xa, Xb]) (4.3.27)

is positive definite but when evaluated on (4.3.26) we find

V =
1

2
εabcdtr(Xa[Xb, [Xc, Xd]]) , (4.3.28)
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which vanishes by the Jacobi identity and hence [Xa, Xb] = 0. Nevertheless it might

be interesting to explore any applications for this model in terms of the Matrix theory

approach to M-theory.

4.4 Eight vs Sixteen Supersymmetries

In the examples above I have constructed field theories in a variety of dimensions

which are invariant under sixteen supersymmetries. However the on-shell condi-

tions reduce the dynamics to one-dimensional motion on a finite-dimensional moduli

space of BPS configurations (self-dual gauge fields and their various dimensional

reductions). However these moduli spaces are hyper-Kähler and as such the one-

dimensional sigma-models describing their dynamics possess only 8 supersymmetries.

What has happened?

To resolve this paradox observe that the the sixteen supersymmetries split into

(Q+,Q−) and their algebra takes the form [9, 146], described above

{Q+,Q+} ∼ P+

{Q+,Q−} ∼ P

{Q−,Q−} ∼ P− . (4.4.1)

Here P+ is the energy arising from the lagrangians above, P denote the spatial

momenta and P− is a topological index, such as the instanton number. In particular

this index is, up to an overall scale, integer P− ∼ n ∈ Z and the moduli space of

BPS solutions M is graded by n:

M = ⊕n∈ZMn . (4.4.2)

Within each component Mn (apart from n = 0) one sees that {Q−,Q−} 6= 0 and

hence theQ− supersymmetries are broken. Thus the resulting moduli space dynamics

are only invariant under the eight Q+ supersymmetries. For n = 0 the moduli space

is flat and all sixteen supersymmetries are again realised. Thus by embedding these

one-dimensional sigma model dynamics in to a field theory it is possible to realise

the full 16 supersymmetries and also make their higher-dimensional interpretation

more transparent.
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4.5 Summary and Comments

In this chapter I have presented non-abelian actions in (2+1) and (4+1) dimensions

(along with the dimensional reduction of the latter) without boost invariance. In

particular some fields lack kinetic terms. As such one might be concerned that there

is nothing to suppress them and the resulting theory will be pathological. However

there are also Lagrange multiplier fields that restrict the dynamics to a moduli space

of BPS configurations. As a result the kinetic energy of all the fields is controlled and

the actions can be reduced to one-dimensional motion on the moduli space. This

last step then breaks half of the supersymmetry. One could state this result the

other way around: I have embedded one-dimensional moduli space dynamics into

a field theory and thereby doubled the supersymmetry and clarified the spacetime

interpretation.

The sigma-models that result from these actions are certainly not new. For

example for the case of the M5-brane they have appeared as a DLCQ prescription for

the M5-brane (2, 0) theory [150, 151]. Indeed this result provides another perspective

on how this model relates to the (2, 0) theory. The AdS dual to these and similar

DLCQ models was studied in [164, 165, 166] and it would be interesting to make

contact with this analysis.

These actions have been derived by solving the constraints of the (2, 0) system

of [145, 147] in the special null cases that were studied in [146, 9]. As such they

are expected to describe limits of M2-branes and M5-branes where the branes have

been infinitely boosted so that their worldvolume time coordinate becomes light-

like. In other words in this construction these actions arise as a limit of an infinite

boost of static M2-branes and M5-branes, aka null M2-branes and M5-branes. Such

embeddings were discussed in [167] for the case of single branes. It is amusing to

observe that the Lagrange multiplier fields H and Gij which appear in our non-

Lorentian actions both arise as components of the self-dual three-form of the six-

dimensional (2, 0) supermultiplet.

102



Chapter 5

Chiral Modes From M5-branes

In this chapter I shift focus from the previous two chapters. The D4-D6 system is a

well studied and understood system in string theory. A key feature of this configura-

tion is the existence of chiral modes arising along the one dimensional intersection;

equivalently this is interpreted as arising from the open strings stretched between

the D4 and D6-branes. How these states arise from the M-theory perspective is

mysterious as the M-theory equivalent configuration is an M5-brane wrapped on the

everywhere smooth multi Taub-NUT space and is thus described by the little under-

stood (2, 0) theory. The next chapter will demonstrate a way to understand these

chiral modes from M-theory by circumnavigating our difficulties with the M5-branes

worldvolume theory. This work was published in JHEP [10] with Neil Lambert in

April 2018.

5.1 Introduction

One case where the degrees of freedom of M5-branes seem particularly mysterious

is when the (2, 0) theory is considered as wrapped on a multi-centred Taub-NUT

space MmTN . This is a completely smooth four-dimensional manifold which is the

generalisation to multiple cores of the geometry of equation (1.2.7). One expects

that the (2, 0) theory on R1,1 ×MmTN is locally the same as on R1,5. On the other

hand reducing on the S1 fibration leads to a string theory picture of N D4-branes

intersecting with D6-branes which are localised at the zeros of the U(1) Killing vector

of multi-centred Taub-NUT space. From standard D-brane dynamics one finds that
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there are stretched D4-D6 strings which are localised at these zeros. In particular

these are so-called ‘DN = 8 strings’ whose ground state consists of chiral fermions

which propagate along R1,1 and lie in the bi-fundamental of U(N) × U(NI) where

NI is the number of coincident D6-branes located at the Ith zero. These fermions

have been studied in [86] and [168]. Similar states have also appeared in [169] in the

case of M5-branes wrapped on cycles in elliptic Calabi-Yau compactifications. The

main question addressed in this chapter is how do such charged states arise from the

(2, 0) theory?

This question arises even in the case of a single M5-brane, corresponding toN = 1,

where the M5-brane equations are known. However there is still a puzzle: The chiral

fermions are charged under the worldvolume gauge field but none of the fields in

the M5-brane theory have a minimal coupling so that their quanta can support a

charge. This follows from the fact that for a single M5-brane all the fields have an

interpretation as Goldstone modes [170] and hence, by Goldstones theorem, they

only have derivative interactions. It will be shown that the resolution of this puzzle

is that the chiral fermions arise as soliton states on the M5-brane and Goldstone’s

theorem does not apply to solitons, i.e. Goldstone modes can have non-derivative

couplings with solitons [171]. Aspects of this case have appeared in [172] and in

Section 5.2 I review this along with some unpublished notes [173].

Thus the chiral modes arise from the same sort of mechanism that appeared in

[174]. There the chiral modes of the Heterotic string worldsheet in a T3 compactifi-

cation were obtained from zero-modes of the two-form gauge potential obtained in

Kaluza-Klein reduction of an M5-brane on K3. However there is a key difference

here in that there is a gauge field under which the chiral modes are charged.

In the non-abelian case of N M5-branes it was argued in [168] that the D4-D6

strings give rise to an U(N) WZWN model. The main result in this chapter is to

derive these states and the associated WZWN model from the (2, 0)-theory alone,

without appealing to a D-brane construction using open strings. In particular I will

use a variation of five-dimensional maximally supersymmetric Yang-Mills that was

constructed in [175, 176] as the natural non-abelian extension of the abelian (2, 0)

theory reduced on the circle fibration of MmTN . I present these solitons in Section

5.3 and obtain the WZWN model in Section 5.4. Finally I provide a summary in 5.5.
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5.2 The Abelian Case

I start by recalling the linearized equations of motion of a single M5-brane from

Section 2.2 which is just that of a six-dimensional abelian tensor multiplet [177].

Since this chapter uses the work of [175] closely, I will work in their notation:

∇2φαβ = 0

iΓm∇mψ
α = 0

Hmnp =
1

3!
εmnpqrsH

qrs . (5.2.1)

Here m,n, p = 0, 1, 2, 3, 4, 5, Hmnp = 3∂[mBnp] and ε012345 = 1. In addition α, β =

1, 2, 3, 4 denote indices of the fundamental 4 representation of the R-symmetry

group USp(4) which are raised (lowered) with the invariant tensor Mαβ (Mαβ) and

φ(αβ) = Mαβφ
αβ = 0. These equations are invariant under the supersymmetry trans-

formations

δφαβ = −iε̄[αψβ]

δBmn = −iε̄αΓmnψα

δψα = ∇mφ
α
βΓmεβ +

1

2 · 3!
ΓmnpHmnpε

α , (5.2.2)

provided that εα is a chiral Killing spinor on the M5-brane worldvolume: ∇µε
α = 0,

Γ012345ε
α = εα and subject to a reality condition.

In the configuration considered here the M5-brane worldvolume is R1,1×MmTN

with metric

ds2
6 = −(dx0)2 + (dx1)2 + ds2

mTN . (5.2.3)

Here MmTN is the n-centred multi-centred Taub-NUT space [178]:

ds2
mTN = H−1(dx5 + θ)2 +Hd~x · d~x , (5.2.4)

where

H = 1 +
n∑
I=1

hI , θ =
n∑
I=1

θI , (5.2.5)

and

hI =
R

2

NI

|~x− ~xI |
, dθI = ?3dhI . (5.2.6)
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For NI = 1 the metric is smooth everywhere provided that one makes the identifi-

cation x5 ∼ x5 + 2πR. I have introduced the integer NI to allow for NI coincident

D6-branes at a given pole ~xI in the x7, x8, x9 plane. For NI > 1 this induces a conical

singularity at the poles. Asymptotically this metric takes the form

ds2
mTN =

(
1 +

ND6R

2r

)−1(
dx5 +

1

2
ND6R cos θdφ

)2

+

(
1 +

ND6R

2r

)(
dr2 + r2dθ2 + r2 sin2 θdφ2

)
, (5.2.7)

where ND6 = N1 + ... + Nn is the total number of D6-branes. In this case, or for

any other manifold M with self-dual curvature there exists a Killing spinor εα that

satisfies

Γ2345ε
α = −εα (5.2.8)

Which is equivalent to the condition Γ01ε
α = −εα.

Next I look for bosonic solutions to the equations of motion which preserve all of

these remaining 8 supersymmetries. One cannot impose any more conditions on the

Killing spinor and so it must be that ∂mφ
α
β = 0. Hence without loss of generality

take φαβ = 0. Introducing light cone coordinates

x− =
x1 − x0

√
2

x+ =
x1 + x0

√
2

, (5.2.9)

one sees that

δψα =
1

4
Γ−ijH−ijε

α +
1

4
Γ+ijH+ijε

α +
1

2
Γ+−iH+−iε

α +
1

3!
ΓijkHijkε

α = 0 , (5.2.10)

where i, j = 2, 3, 4, 5. Since Γ−ε
α = Γ+εα = 0, and demanding the remaining 8

supersymmetries be preserved, I find that H−ij = Hijk = H+−i = 0 so the solutions

to the linearized equation of motion which preserve the (0, 8) supersymmetries are

simply

H =
n∑
I=1

νI+dx
+ ∧ ωI . (5.2.11)

Furthermore self-duality and closure of H implies that the ωI are self-dual harmonic

two-forms on MmTN whereas the νI+ are arbitrary functions of x+.

Indeed one can explicitly construct n self-dual two-forms on multi-centred Taub-
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NUT as in [179]

ωI =
1

4π2R
dξI , ξI = H−1hI(dx

5 + θ)− θI , (5.2.12)

where I introduce a useful normalisation to ensure that the ωI are dimensionless and

which will be justified later. These forms are smooth everywhere (at least in the case

NI = 1) and satisfy ∫
ωI ∧ ωJ =

∫
ωI ∧ ?ωJ =

NI

4π2
δIJ . (5.2.13)

One can also see that there are no fermion zero-modes. In particular imposing

∂−ψ
α = 0 one sees that the fermion equation is simply Γi∇iψ

α = 0 and it is a

well-known result that there are no solutions to the Dirac equation which vanish at

infinity. Thus the solitons are non-degenerate and do not form an enhanced multiplet

of the Lorentz group.

For vanishing scalars and fermions the energy-momentum tensor is simply [180]

Tmn =
π

2

√
−gHmpqHn

pq . (5.2.14)

In which case only T++ is non-vanishing and I define

P+ =

∫
d5xT++

=
1

4π

∑
NI

∫
dx+νI+(x+)νI+(x+) . (5.2.15)

In particular the abelian (2, 0)-theory contains the conserved current (the coefficient

is chosen for future convenience)

Jm(Λ) = 2π
√
−gHmnp∂

nΛp , (5.2.16)

for any choice of one-form Λ inherited from the gauge symmetry B → B + dΛ.

On-shell the associated charge is a total derivative:

Q(Λ) =

∫
R×MmTN

J+(Λ)d4xdx+

= 2π

∮
R×S1×S2

∞

H+rµΛµ r2dΩ2dx
+dx5 , (5.2.17)
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where S1 × S2
∞ is the asymptotic form of MmTN , r the radial direction, and Ω2 the

metric on a 2-sphere. Taking only Λ5 non-vanishing I find

Q(Λ5(∞)) =
1

2πR
tr
∑
I

∮
R×S2

∞

dΩ2dx
+

[
H∂r

(
hI
H

)
+ εrjkθj∂k

(
hI
H

)]
νI+Λ5(∞)

= −2πR
∑
I

NI

∫
dx+νI+(x+)Λ5(∞) , (5.2.18)

where the second term in the first line arises as Λi = gi5Λ5 6= 0. Upon reduction on

the S1 parameterized by x5 the D4-brane U(1) gauge field is Aµ = 4π2RBµ5 [149]

and the U(1) gauge symmetry is Aµ → Aµ + 4π2R∂µΛ5. Thus Q(Λ5(∞)) is the

corresponding electric charge that one expects and each νI+ carries NI units of its

charge.

5.3 The Non-Abelian Case

In general there is no satisfactory formulation of the M5-brane in the non-abelian

case. Nevertheless the M5-brane on a circle of radius R gives, at least at low energy,

five-dimensional maximally supersymmetric Yang-Mills. Therefore one can reduce

the abelian theory on the S1 fibration inMmTN and then find the appropriate non-

abelian generalisation. This was done in [175, 176]. I first give their result. Reducing

on x5 leads to the five-dimensional metric

ds2
5 = −(dx0)2 + (dx1)2 +Hd~x · d~x . (5.3.1)

For the discussion here I need the gauge field action which is1

SF =
1

8π2R

∫
d5x
√
Htr(F ∧ ?F ) + θ ∧ tr(F ∧ F ) , (5.3.2)

where µ, ν = 0, 1, 2, 3, 4. For computing the energy-momentum tensor I will also

need the scalar action which is

Sφ = − 1

8π2R
tr

∫
d5x
√
−g
(√

HDµφαβD
µφαβ +

1

4

1

H5/2
∂iH∂iHφαβφ

αβ

−
√
H[φαβ, φβ

δ][φδγ, φ
γ
α]
)
. (5.3.3)

1I use a convention where 1
8π2 tr

∫
F ∧ F ∈ Z.
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Note that I could introduce an alternative form for the gauge part of the action:

S ′F =
1

8π2R

∫
d5x
√
Htr(F ∧ ?F ) + F ∧ CS , (5.3.4)

where

CS = tr

(
Aµ∂νAλ +

2

3
AµAνAλ

)
dxµ ∧ dxν ∧ dxλ . (5.3.5)

These two actions differ by whether the topological term is taken to be θ∧ tr(F ∧ F )

or F ∧ CS. In turn these choices differ by boundary terms arising from the poles

of H and infinity and hence have the same equations of motion. The first choice

preserves all gauge symmetries of the action but depends upon the choice of θ and

hence is not diffeomorphism invariant. Whereas the second form is diffeomorphism

invariant but at the expense of introducing potential violations of worldvolume gauge

symmetries. I will mainly be interested in the first case, however in Section 5.4 some

of the physical differences that arise from the second will be explored, and which rule

it out as the correct one. Indeed part of the motivation of this work is to explore

such subtleties.

5.3.1 D4-D6 Strings as Solitons

I work from results in [175] which give the five-dimensional theory resulting after

reduction over x5. The prescription for the decomposition from six dimensions to five

dimensions is given in the paper and I thus denote the decomposed five-dimensional

gamma matrices by γ, and the five-dimensional Killing spinor by ε. One then finds

that equation (5.2.8) reduces, after the decomposition, to the condition

iγ234ε
α = εα , (5.3.6)

equivalently

γ01εα = εα . (5.3.7)

The fermionic supersymmetry variation from [175] is given by

δψα =
1

2
Fµνγ

µνεα + 2i
√
HMβγDµ

(
1√
H
φαβ
)
γµεγ

− 1√
H
Mβγφ

αβFµνγµνεγ + 2MβγMδλ[φ
αβ, φγδ]ελ , (5.3.8)
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with F = dθ and I recall that the six-dimensional two-form, Bµν , is reduced to a

U(1) gauge field as Aµ = Bµ5 with corresponding field strength

Fµν = ∇µAν −∇νAµ + [Aµ, Aν ] , (5.3.9)

and thus a gauge covariant derivative defined by

Dµχ = ∇µχ+ [Aµ, χ] , (5.3.10)

where χ is some field transforming in the adjoint of the gauge group.

I seek bosonic, BPS states of the configuration to find those maximally supersym-

metric states. This is equivalent to setting equation (5.3.8) to zero. Using the Killing

spinor conditions above and after changing to the light cone coordinates introduced

in the abelian case, I find that the BPS conditions for this system are

Fij = F+− = Fi− = 0 , (5.3.11)

where from now on i, j = 2, 3, 4 and also

Di

(√
Hφαβ

)
= D−φ

α
β = 0, [φαβ, φ

β
γ] = 0 . (5.3.12)

In addition one can compute the equation of motion from the action (5.3.4) and

obtain
√
−gDσ

(√
HF σλ

)
+

1

4
FµνFρσεµνρσλ = 0 . (5.3.13)

Upon enforcing the BPS conditions above this equation of motion reduces to

∂iF+i + [Ai, F+i] + 2∂iHF+i = 0 . (5.3.14)

First, looking at (5.3.11), choose to set Ai = A− = 0, then I have that A+ =

A+(x+, xi) solves these conditions.

Now turning to (5.3.12), notice that a solution is given by the ansatz φαβ =
1√
H
φα0 β(x+) with the understanding that [φα0 β, φ

β
0 γ] = 0.

To solve the equation of motion (5.3.14) I start by noting that the general solution

110



Chapter 5. Chiral Modes From M5-branes

to the BPS conditions Fij = Fi− = 0 is given by

Ai = g∂ig
−1 A− = g∂−g

−1 , (5.3.15)

for a arbitrary element g of the unbroken gauge group. Similarly the solution to BPS

condition F+− = 0 implies that

A+ = g′∂+g
′−1 A− = g′∂−g

′−1 , (5.3.16)

for some other element g′ of the unbroken gauge group. Consistency of these two

expressions for A− implies that g′−1g∂−(g−1g′) = 0 and hence

g′ = gk with ∂−k = 0 . (5.3.17)

Thus one sees that the generic solution to the BPS equation is simply a gauge

transformation by g of the configuration A+ = k∂+k
−1, A− = Ai = 0, corresponding

to Fi+ = ∂iA+.

To continue, fix the gauge A− = Ai = 0 and pick an ansatz for A+ of the form

A+ = K(~x)ν+(x+) for some K(~x); this means that the equation of motion becomes

∂i∂iK +
2

H
∂iK∂iH = 0 . (5.3.18)

Solutions to this equation are of the form

K =
h

H
, (5.3.19)

where h is any harmonic function: ∂i∂ih = 0. However, one wishes to look for

solutions with finite energy. To achieve this, any pole in h must be cancelled by a

pole in H (see the expressions below for the energy-momentum tensor) and therefore

the solutions are

KI =
hI
H

=
hI

1 +
∑

J hJ
. (5.3.20)

One might worry that there is another finite energy solution K0 corresponding

to h = 1. However one sees that∑
I

KI =
H − 1

H
= 1−K0 . (5.3.21)
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Rearranging this one see that the solution

A+ = K0ν
0
+ +

∑
I

KIν
I
+ = ν0

+ + ν1
+ + ...+ νn+ , (5.3.22)

is pure gauge. Therefore I conclude that the most general finite-energy soliton solu-

tion is

A+ =
n∑
I=1

KI(~x)νI+(x+) , (5.3.23)

where νI+ is an arbitrary x+-dependent element of the unbroken gauge algebra. Of

course one can indeed check that these functions KI also appear in the self-dual

two-forms constructed above as KI = ξI5. In particular these solutions are

F =
∑
I

νI+(x+)∂iKIdx
+ ∧ dxi

= 4π2R
∑
I

νI+(x+)ωIi5dx
+ ∧ dxi , (5.3.24)

which corresponds to a simple embedding of the abelian solution into the non-abelian

theory by promoting νI+ to a element of the unbroken M5-brane gauge algebra and

identifying

Fµν = 4π2RHµν5 , (5.3.25)

in agreement with [149], explaining the normalization in (5.2.14).

One can also see that there are no fermionic zero-modes. The fermionic equation

is [175]

i
√
HγµDµψ

α − 1

8
Fµνγµνψα = 0 . (5.3.26)

Imposing ∂−ψ
α = 0 and expanding around the solitons one finds that this splits into

two chiral equations

−
√

2γ0H
1
2D+ψ

α
+ + ~γ · ~∇ψα− +

1

4
H−

1
2~γ · ~∇Hψα− = 0

~γ · ~∇ψα+ −
1

4
H−

1
2~γ · ~∇Hψα+ = 0 . (5.3.27)

Note that the only appearance of the non-abelian gauge field is through the D+

term in the first equation. The second equation is simply the Dirac equation for

ψ̂α+ = e−
1
2
H1/2

ψα+, i.e. ~γ · ~∇ψ̂α+ = 0. As with the abelian case there are no solutions
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which vanish at infinity and hence ψα+ = 0. In this case the first equation becomes

the Dirac equation ~γ · ~∇ψ̂α− = 0 where ψ̂α− = e
1
2
H1/2

ψα− and one again concludes that

ψα− = 0. Thus the solitons do not form enhanced representations of the Lorentz

group.

It is useful to note that, in terms of the group element k defined by A+ = k∂+k
−1,

one has

k−1 = Pexp

(∑
I

KI(~x)

∫ x+

0

νI+(y+)dy+

)
. (5.3.28)

Furthermore observe that KI(~xJ) = δIJ and hence

A+(~xI) = k(~xI)∂+k
−1(~xI) = νI+(x+) . (5.3.29)

Thus although the gauge fields are spread-out over the whole of the multi-centred

Taub-NUT space there is a sense in which the chiral mode νI+ is associated to the

I-th pole in H. Furthermore far from the poles the field strength falls-off as 1/|~x|2 as

expected for a massless charged particle in 4 + 1 dimensions. However it is amusing

to observe that near a pole ~xI the gauge field

A+ ∼
RNI/2

RNI/2 + |~x− ~xI |
νI+(x+) , (5.3.30)

is finite [173]. In particular for |~x−~xI | >> R the solution can be written terms of an

infinite expansion of perturbative g2 = 4π2R corrections to the familiar g2/4π2|~x−~xI |
Coloumb potential.

The energy-momentum tensor, Tµν = −2√
−g

δL
δgµν

, is readily found to be

Tµν =
1

8π2R
tr
[
2
√
HDµφαβDνφ

αβ +
1

2H3/2
∂µH∂νHφαβφ

αβ + 2
√
HFµρFν

ρ

−gµν
(√

HDρφαβD
ρφαβ +

1

4

1

H5/2
∂iH∂iHφαβφ

αβ +

√
H

2
FρσF

ρσ

−
√
H[φαβ, φβλ][φ

λρ, φρα]
)]

. (5.3.31)
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So that on the discovered solution

T++ =
1

4π2R

1√
H

(
D+φ0αβD+φ

αβ
0 +

∑
IJ

∂iKI∂iKJν
I(x+)νJ(x+)

)
T+− = − 1

32π2R

1

H7/2
∂iH∂iHφ0αβφ

αβ
0

Ti+ = − 1

8π2R

1

H3/2
∂iHφ0αβD+φ

αβ
0 . (5.3.32)

Finiteness of the energy-momentum tensor implies that D+φ
α
0 β = 0. This is satisfied

easily by demanding φα0 β be a constant, in particular I choose φα0 β = 0 so that the

unbroken gauge algebra is u(N). With this extra step the energy momentum tensor

again reduces to a very simple form where only T++ is non-zero and is given by

T++ =
1

4π2R

1√
H

tr
∑
IJ

∂iKI∂iKJν
I(x+)νJ(x+) . (5.3.33)

I then proceed to explicitly compute the integral over the internal R3 to find

P+ =

∫
d3xdx+

√
−g T++

=
1

4π

∑
I

NItr

∫
dx+νI(x+)νI(x+) . (5.3.34)

This agrees with the abelian case above. Furthermore one sees that (5.3.34) cor-

responds precisely to n copies, where n is the number of centres of MmTN , of a

WZWN model each at level NI . However given that the value of NI can be different

for each I, one can’t simply use a standard WZWN model on a three-manifold with

n boundaries. I will return to this issue in the next section.

Next, consider at the gauge charges. For the first form of the action (5.3.2) I find

Jσ(Λ) =
1

8π2R
tr
[
−2
√
−g
√
HF σλDλΛ + εµνρσλθµFνρDλΛ

]
=

1

4π2R
∂λtr

(√
−g
√
HF λσΛ +

1

2
εµνρσλθµFνρΛ

)
− 1

4π2R
tr

(√
−gDλ

(√
HF λσ

)
+

1

4
εµνρλσFµνFρλ

)
, (5.3.35)
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where the last line vanishes on-shell. The associated charges are

Q(Λ(∞)) =
1

4π2R
tr
∑
I

∮
dΩ2dx

+
[
H∂rKI + εrjkθj∂kKI

]
νI+Λ(∞)

= − 1

2π
tr
∑
I

NI

∫
dx+ νI+Λ(∞) , (5.3.36)

where Λ(∞) is any element of the unbroken gauge algebra. These charges only receive

contributions from infinity and as such do not depend on the choice of θ. One sees

that they are the natural non-abelian extension of (5.2.18) with the identification

Λ = 4π2RΛ5.

5.4 Gauge Symmetries and a WZWN-like Action

As mentioned above there are two choices for the five-dimensional action. The results

in the previous section correspond to the first choice (5.3.2). In this section I explore

some physical consequences of the other choice of the action (5.3.4). I will then use

this analysis to motivate a WZWN-like model as the effective action for the chiral

soliton modes found above.

5.4.1 Physical ‘Gauge’ Transformations

The main difference between the two-forms for the action can be seen from their

gauge symmetry. While the first form is gauge invariant the second is not. In

particular the second form of the action (5.3.4) transforms as (assuming boundary

conditions that allow us to ignore boundary terms in x+)

δΛS = − 1

4π
ND6

∫
d2xtr ((∂+A−(∞)− ∂−A+(∞))Λ(∞))

+
1

4π

∑
I

NI

∫
d2xtr ((∂+A−(~xI)− ∂−A+(~xI))Λ(~xI)) .(5.4.1)

One can make the first line vanish by imposing a suitable boundary condition at

infinity. However for the other terms it seems more natural to restrict the gauge

symmetry so that

Λ(~xI) = 0 . (5.4.2)
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As will be seen this has the effect of introducing additional degrees of freedom that

live at the poles ~xI . These arise because there are now transformations of the soliton

solution generated by Λ(~xI) which lead to physically distinct states.

To continue I evaluate the action (5.3.4) on the full space of BPS solutions,

including dependence of g on x+, x−, ~x. The first term of the action is still vanishing.

However substituting the general ansatz (5.3.15)-(5.3.17) into the second form of the

action (5.3.4) I find

SBPS =
1

8π2R
tr

∫
F ∧ (A ∧ dA+

2

3
A ∧ A ∧ A)

=
1

8π2R

∫
∂iH(CS)+−idx

+dx−d3x . (5.4.3)

Evaluating the action on our BPS sector gives

SBPS =
1

8π2R
tr

∫
∂iH(∂i(A+A−) + Ai∂+A− − A−∂+Ai)dx

+dx−d3x ,(5.4.4)

where I have used the fact that Fi− = 0 and assumed boundary conditions along x−

that allow one to drop boundary terms in x−.

There are two ways to proceed. The first is analogous to the classic construction

of [123]. In that treatment one integrates over the A+ gauge field which imposes the

constraint F−i = 0. Here I do not integrate over A+. Rather I have imposed the BPS

conditions, which includes the constraint F−i = 0, and evaluated the action. To this

end I integrate the first term in (5.4.4) by parts and, observing that

∂i∂iH = −2π
∑

NIRδ
3(~x− ~xI) , (5.4.5)

I find a contribution

SBPS =
1

4π

∑
I

NItr

∫
dx+dx−A+(~xI)A−(~xI) + ... . (5.4.6)

To continue in analogy with [123] I assume a boundary condition such that A+(xI) =
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0 for each I. With this condition the full action reduces to:

SBPS = −
∑
I

NI

4π
tr

∫
dx+dx− g(~xI)∂+g

−1(~xI)g(~xI)∂−g
−1(~xI)

+
1

8π2R
tr

∫
d5x ∂iH[g−1∂−g, g

−1∂+g] g−1∂ig . (5.4.7)

This is essentially a WZWN model with n two-dimensional ‘boundaries’ located at

the poles of H each with level NI (although we recall that only NI = 1 corresponds

to a completely smooth multi-centred Taub-NUT space). The difference with a tra-

ditional WZWN model is that in this case the topological term is five-dimensional

and the two-dimensional ‘boundary’ contributions arise from the poles of H. Never-

theless it plays the same role as the familiar three-dimensional term. In particular

the associated equation of motion is restricted to the poles and is given by

∂+(g(~xI)∂−g
−1(~xI)) = 0 , (5.4.8)

for each I. I thus obtain a theory of n independent two-dimensional group-valued

fields g(~xI). The solution to this is simply

g(~xI) = `I(x
−)rI(x

+) . (5.4.9)

for arbitrary group elements `I(x
−) and rI(x

+). However one must ensure that the

boundary condition A+(xI) = 0 is satisfied. One finds that this implies

rI = k−1(~xI) , (5.4.10)

and hence

g(~xI) = `I(x
−)k−1(~xI) . (5.4.11)

Thus one is left with a single independent group element `I(x
−) in addition to the

original solution k−1(~xI)

The second approach is to include the ‘boundary’ term (5.4.6) into the action

which I again evaluate on the BPS solutions, i.e. I do not impose any conditions on
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A+ at the poles. In this case I find

SBPS =
∑
I

NI

4π
tr

∫
dx+dx− k(~xI)∂+k

−1(~xI)∂−g
−1(~xI)g(~xI)

+
1

8π2R
tr

∫
d5x ∂iH[g−1∂−g, g

−1∂+g] g−1∂ig . (5.4.12)

Here the standard quadratic kinetic term for g has been removed and replaced by

a linear term coupled to the background field k. The associated equation of motion

still only receives contributions from the poles but has a less familiar form:

0 = ∂−gk(~xI)∂+k
−1(~xI)g

−1 + gk(~xI)∂+k
−1(~xI)∂−g

−1

+g∂+g
−1g∂−g

−1 − g∂−g−1g∂+g
−1 , (5.4.13)

for each I. To solve this one can write

g(~xI) = `I(x
+, x−)k−1(~xI) , (5.4.14)

for some `I that is now allowed to depend on both x− and x+. Substituting this into

(5.4.13) I simply find, for each I,

[
`I∂+`

−1
I , `I∂−`

−1
I

]
= 0 . (5.4.15)

There are essentially two ways to satisfy this equation. Firstly, if `I∂−`
−1
I = 0 then

one has `I = `I(x
+). This means that g = `Ik

−1(~xI) is a function only of x+

and hence `I can be absorbed into a redefinition of νI(x
+). The second solution is to

demand `I∂+`
−1
I = 0 so one has `I = `I(x

−). In this case I recover the same solutions

seen above by imposing the vanishing of A+(~xI).

In summary I find that with the second choice of action (5.3.4) there are some

gauge modes which are physical. In particular I find that the solution space includes

the modes `I(x
−) that arises from the broken gauge modes. Hence one can think of it

as a physical Goldstone mode and the WZWN-like model as its low energy effective

action. However I do not expect such modes to arise from the D-brane analysis and

hence I conclude that (5.3.4) is the wrong choice of action.
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5.4.2 An Action for the Soliton Modes

I now return to the original action (5.3.2). Here I can simply adapt the argument

above. It has been shown that the D4-D6 strings can be realised in the non-Abelian

theory as solitons. I have evaluated their energy and momentum and shown that

they agree with that of a chiral half of a WZWN model. To capture the effective

dynamics of these solitons I therefore propose that the action (5.4.7) can be used

with a slightly modified interpretation. In particular, recall that the solution to the

equations of motion can be written as

g(~xI) = `I(x
−)rI(x

+) , (5.4.16)

for arbitrary left and right moving modes `I and rI . To make contact with the

discovered solitons, first set `I to the identity and identify

νI+(x+) = rI(x
+)∂+r

−1
I (x+) . (5.4.17)

i.e. rI(x
+) = k(~xI) in (5.3.29). One also sees that taking a non-trivial `I(x

−) can

be viewed as performing the gauge transformation: A+(~xI) = `k∂+(k−1`−1) and

A−(~xI) = `∂−`
−1. Therefore I consider the other chiral half to be pure gauge and

simply discard it. This is consistent with the discussion above where such gauge

modes were physical and therefore not discarded.

5.5 Summary and Comments

In this chapter I have studied how the charged D4-D6 strings which arise from a

D4-brane intersecting with a D6-brane are realised in the M5-brane worldvolume

theory. In particular it was shown that there are smooth soliton solutions of the

five-dimensional Yang-Mills gauge theory arising from the M5-brane reduced on the

circle fibration of multi-centred Taub-NUT space that have the right charges to

be identified with the D4-D6 strings. I also considered the physical consequences

of the two choices of action and how the second choice leads to additional physical

soliton zero-modes which do not match the string theory analysis. Lastly I obtained a

WZWN-like model for the solitons but where the topological term is five-dimensional.

I thus conclude that five-dimensional maximally supersymmetric Yang-Mills contains
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the charged states predicted from the D-brane construction, albeit as solitons.

I briefly mention some bulk eleven-dimensional aspects of our solutions. The

states which have been identified arise as stretched D4-D6-strings. In the string

theory picture these states are localized to the intersection. In M-theory they lift to

M2-branes that wrap the M-theory circle. Since the M-theory circle shrinks to zero

at the poles of H the M2-brane worldvolume theory develops a potential V ∝ H−1/2

and so the energy is minimized by sticking to the poles ~xI , in agreement with the

microscopic string theory picture.

The solutions presented here are given in terms of harmonic forms which can also

be associated to the existence of non-trivial two-cycles in multi-centred Taub-NUT.

These two-cycles are caused by the shrinking of the circle fibration at the poles of

H and so can be thought of as connecting two distinct poles. M2-branes wrapping

these cycles are in bi-fundamental representations of U(1) × U(1) subgroups of a

U(1)ND6−1 gauge group whose bulk gauge field arises from a Kaluza-Klein reduction

of the M-theory three-form C ∼
∑
CI ∧ ωI (here one is thinking of multi-centred

Taub-NUT as compact, or replacing it by a similar compact space). When all the

D6-branes coalesce this group is enhanced and the wrapped M2-branes provide the

additional gauge bosons to form the adjoint of SU(ND6). However the states found

here are different. One reason is simply that for single centred Taub-NUT there is

a harmonic two-form but no non-trivial two-cycle. More generally one sees that the

soliton profile is A+ ∼
∑
KIν

I
+ and 0 ≤ KI ≤ 1 with KI = 1 iff ~x = ~xI . Thus

the I-th soliton is peaked at the I-th pole and furthermore vanishes at all the other

poles. This means that the states found here do not correspond to M2-branes which

are wrapped on the non-trivial two-cycles. Rather these states are trapped at the

poles, as discussed above. As such they are naturally associated to fundamental

representations of the bulk enhanced gauge group, providing charged states of the

bulk SU(ND6) gauge group. From the point of view of the M2-brane worldvolume

theory the wrapped M2-brane states arise as kink-like solitons, interpolating between

pairs of poles as in [181].
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Conclusions

In this thesis I have presented a discussion of the history, background, and modern

understanding of M-theory. This work cannot hope to be comprehensive, the field

has expanded exponentially from its earliest days and at this time one is as likely

to meet pure mathematicians and condensed matter physicists at a String Theory

conference as those with a simple interest in analysing M-theory. I hope however

to have provided a coherent narrative which outlines the necessary background and

conceptual understanding of the work which I have undertaken as a part of my

studies. I hope also to have presented this work clearly and intelligibly. I now

provide a summary of the results and themes contained in this thesis.

In Chapter 2 I provided a discussion on the BLG theory description of M2-branes.

I showed how the theory arises, how it is formulated, and justified its interpretation

as describing a pair of M2-branes. I also explained how its N = 8 supersymme-

try requirement is ultimately too restrictive for the model to provide a generalised

description of multiple M2-branes. The ABJM model was briefly introduced and I

described how, by reducing the supersymmetry to N = 6, this new U(N) × U(N)

with level k model can describe N M2-branes on a C4/Zk orbifold. I also clarified that

the BLG theory is contained within the ABJM theory as the limit where N = 2 and

k = 1. From this point I discussed M5-branes and our current difficulties with their

description. In particular the supposed worldvolume six-dimensional (2, 0) theory is

not well understood and it is believed that no manifestly Lorentz invariant lagrangian

exists for the theory. Finally I spent some time discussing non-abelian extensions to

the (2, 0) theory. The hope with such models is that they could provide insights into
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novel brane configurations which may elucidate features of the (2, 0) theory which

we do not as yet understand. They also provide an interesting arena for generating

new systems of M2 and M5-branes for study.

In Chapter 3, I discussed the case of an extended system of the (2, 0) theory

in which the non-dynamical three-form from the extension is turned on in a null

direction. The resulting system was found to have an SO(2) × SO(2) × SO(6)

symmetry and led to a vacuum configuration with dynamics consisting of quantum

mechanics acting on the Hitchin moduli space. It was argued that this system has a

number of different brane interpretations. In one sense it can be viewed as two M5-

branes compactified on T2×S1
− with S1

− denoting a null circle with a null momentum

fixed by the topological charge. The other interpretation of this system was argued

to be a pair of null M2-branes on R+×R2—branes which have had a light-like boost

along a transverse direction to both branes. These interpretations were argued to be

related to one another using various string and M-theory dualities.

In Chapter 4, I extended the analysis of this system and presented an action for

the system. This is an interesting result as the action in question is a maximally

supersymmetric non-Lorentzian (2 + 1)-dimensional field theory. A similar construc-

tion for the case of the theory in [146] was also presented. In this case a correspond-

ing maximally supersymmetric non-Lorentzian (4 + 1)-dimensional field theory was

found. For both these actions the BPS moduli space dynamics which are expected to

classify the system are enforced through the presence of Lagrange multiplier fields.

It would be interesting to derive these actions by taking a non-Lorentzian scaling

limit, perhaps something like a mixture of Carrollian and Galilean limits in the sense

of [182], directly within the parent Lorentzian field theory without embedding the

branes into eleven dimensions. Indeed one may expect that many supersymmetric

field theories admit non-Lorentzian limits of this type which preserve all the super-

symmetries and whose on-shell dynamics reduce to motion on a moduli space. Such

a limit makes the Manton approximation, where the dynamics are described by slow

motion on a soliton moduli space, exact. It also raises the question of what is the

classification of all field theories with 16 supersymmetries if one does not impose

the condition of Lorentz invariance. It would also be interesting to see whether one

could obtain the M2-action of this chapter from ABJM; such a construction should

be possible and it would be interesting to shed light on the connection between these

descriptions.
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Finally, in Chapter 5 I described how the chiral modes found in string theory along

the D4-D6 brane intersection are realised from the M-theory perspective. I provided

a discussion of this both in the abelian (single M5-brane case) and non-abelian (mul-

tiple M5-brane case) systems. I argued that from the M-theory perspective the chiral

states arise as soliton modes—thus evading Goldstones theorem—and demonstrated

a way for such states to arise from the M5-brane. I recalled that the system of

N stacked D4-branes intersecting separated D6-branes has an M-theory equivalent

of N M5-branes wrapped on the multi-Taub-NUT space. I then argued that after

reduction on the Taub-NUT fibration, and the construction of a non-abelian general-

isation of the resulting theory, BPS states can be found which naturally correspond

to the chiral modes sought. These were shown to be manifested as a WZWN like

model with a five-dimensional topological term. The chiral modes were shown to

have the correct properties for identification with the corresponding string theory

D4-D6 strings.

M-theory has proven time and time again to be a subject which will not reveal its

secrets easily. There are many outstanding problems and results which are, as yet,

simply not understood. It may be that in 20 years time the subject is completely

changed after new hints push it in unanticipated directions. Throughout though,

many more researchers will toil long and hard to keep travelling along this road; to

witness its surprising twists and turns in the hope that one day it will answer that

age old question raised at the outset. This thesis, I hope, constitutes a small part of

this journey.
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Appendix A

Conventions in the Text

Throughout the work I use the mostly positive metric

η = (−+ . . .+) (A.0.1)

In addition the totally anti-symmetric tensor is defined to be

ε01...(d−1) = +1 (A.0.2)

The hodge dual for p-forms in D dimensions is defined as

(?F )µ1µ2...µD−p =
1

p!

√
−g εµ1µ2...µD−pν1ν2...νpFν1ν2...νp (A.0.3)

Unless specified, the following lightcone coordinates will be used

x+ =
x5 + x0

√
2

x− =
x5 − x0

√
2

. (A.0.4)

In these coordinates

η+− = η−+ = 1

ε1234+− = ε+−1234 = −1 . (A.0.5)

The following is of primary relevance for Chapter 3 but similar conventions are used

elsewhere where appropriate. For spinors it will be useful to introduce the following
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conventions:

Γ± =
Γ5 ± Γ0√

2

Γ05 = Γ+− . (A.0.6)

So that

Γ−χ = Γ−χ+ = −
√

2Γ0χ+

Γ+χ = Γ+χ− =
√

2Γ0χ−

Γ±χ± = 0

Γ−Γ+χ = 2χ−

Γ+Γ−χ = 2χ+ . (A.0.7)

Complex coordinates are introduces as

z = x1 + ix2 , (A.0.8)

so that

gzz̄ =
1

2
ε−+zz̄34 =

i

2

D ≡ Dz =
1

2
(D1 − iD2) D̄ ≡ Dz̄ =

1

2
(D1 + iD2) . (A.0.9)

I also define

Γ̂z =
1

2
(Γ̂1 − iΓ̂2) =

1

2
(Γ01 − iΓ02)

Γ̂z̄ =
1

2
(Γ̂1 + iΓ̂2) =

1

2
(Γ01 + iΓ02) . (A.0.10)

There is also a complex scalar introduced as

Z = Y 4 + iY 3 , (A.0.11)
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which implies the following gamma matrix definitions

Γ̂Z =
1

2
(Γ̂3 − iΓ̂4) =

1

2
(Γ054 − iΓ053)

Γ̂Z̄ =
1

2
(Γ̂3 + iΓ̂4) =

1

2
(Γ054 + iΓ053) . (A.0.12)
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Useful Fierz Identities

Here I list some Fierz identitities which prove useful in proving supersymmetry of

the actions under discussion in Chapter 4. In Section 4.2 I utilise the following:

0 = 〈ΨT
+, [X

I , (εT−Γ̂ZZ̄Γ̂IΨ+),Ψ+]〉+ 〈ΨT
+, [X

I , (εT−Γ̂JΨ+), Γ̂ZZ̄Γ̂IJΨ+]〉

0 = 〈ΨT
+, [X

I , (εT+Γ̂I Γ̂z̄Ψ+), Γ̂zΨ−]〉 − 〈ΨT
+, [X

I , (εT+Γ̂I Γ̂zΨ+), Γ̂z̄Ψ−]〉

+ 〈ΨT
+, [X

I , (εT+Γ̂I Γ̂ZΨ+), Γ̂I Γ̂Z̄Ψ−]〉 − 〈ΨT
+, [X

I , (εT+Γ̂I Γ̂Z̄Ψ+), Γ̂I Γ̂ZΨ−]〉

0 = 〈ΨT
+, [Z, (ε

T
−Γ̂ZΨ−),Ψ+]〉+ 2〈ΨT

+, [Z, (ε
T
−Γ̂z̄ZΨ+), Γ̂zΨ−]〉

− 〈ΨT
+, [Z, (ε

T
−Γ̂IΨ+), Γ̂I Γ̂ZΨ−]〉

0 = 〈ΨT
−, [Z, (ε

T
+Γ̂ZΨ+),Ψ−]〉+ 2〈ΨT

−, [Z, (ε
T
+Γ̂zZΨ−), Γ̂z̄Ψ+]〉

− 〈ΨT
+, [Z, (ε

T
+Γ̂IΨ−), Γ̂I Γ̂ZΨ+]〉 . (B.0.1)

There are also similar identities where Z → Z̄. These can be derived from the van-

ishing of the cubic fermion terms that arise in δS for the maximally supersymmetric

M2-brane theory and then splitting-up the fields into their various components, e.g.

Ψ = Ψ+ + Ψ−, ε = ε+ + ε−, XI → XI , Z, Z̄, where the sign indicates their chirality

with respect to Γ̂034.

In Section 4.3 the following Fierz identities arise:

0 = tr
(
ΨT
−[(εT−Γ0Ψ+),Ψ−]

)
+ tr

(
ΨT

+[(εT−ΓmΨ−),Γ0ΓmΨ+]
)

+ tr
(
ΨT
−[(εT−ΓmΨ−),Γ0ΓmΨ+]

)
+ tr

(
ΨT
−[(εT−Γ0ΓmΨ+),ΓmΨ−]

)
0 = tr

(
ΨT
−[(εT+Γ0Ψ−),Ψ−]

)
− tr

(
ΨT
−[(εT+Γ0ΓmΨ−),ΓmΨ−]

)
, (B.0.2)
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where m = 1, 2, 3, 4, 6, 7..., 10 (i.e. m 6= 5). These can be derived from the van-

ishing of the cubic fermion terms that arise in δS in five-dimensional maximally

supersymmetric Yang-Mills theory and then splitting-up the fields into their various

components, e.g. Ψ = Ψ+ + Ψ−, ε = ε+ + ε− where the sign indicates their chirality

with respect to Γ05.
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