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Abstract

We study conformal defects in two-dimensional conformal field theories (CFTs). These

are one-dimensional objects across which the difference between the holomorphic and

antiholomorphic parts of the stress-energy tensor is continuous. Such defects may exist

within a CFT as well as between two different CFTs. There are two subclasses of conformal

defects that are well-known: topological defects, which preserve the holomorphic and

antiholomorphic parts of the stress-energy tensor separately, and factorising defects, which

can be considered as products of conformal boundary conditions separating the theory

along the defect. In this thesis, we call conformal defects, which do not fall into either of

the aforementioned subclasses, non-trivial conformal defects.

The primary focus of this thesis is studying the non-trivial conformal defect present in

a unitary Virasoro minimal model which was first predicted by Kormos, Runkel, and Watts

[98]. As a first step, we calculate the reflection and transmission coefficients, which were

first defined in [91], of these defects using the leading-order perturbative calculation. We

then consider conformal defects in the tri-critical Ising model as a concrete example. We

revisit the construction of super-conformal defects proposed by Gang and Yamaguchi [94]

and give a more systematic construction of such defects using super W-algebras. In addition,

we propose a topological interface separating the super-conformal and bosonic theories,

from which conformal defects in the latter theory can be obtained from the former one.

Using the topological interfaces and superconformal defects, we obtain non-topological

and non-factorising defects in the bosonic tri-critical Ising model.
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Chapter 1

Introduction

Conformal field theory (CFT) is a quantum field theory (QFT) with conformal symmetry;

roughly speaking, it is a theory in which physical observables are invariant under coordi-

nate transformations that preserve local angles. In particular, conformal transformations

contain scale transformations, and therefore, CFTs have their applications in scale invariant

theories, for example, systems undergoing second order phase transitions and world-sheet

description of string theory.

In two dimensions, CFTs have many features that are not available in higher dimen-

sions. One of the most important differences is that the symmetry algebra becomes infinite

dimensional, and many quantities of a theory can be derived by considering conformal sym-

metry alone. Not only for CFTs, but usual power counting shows that any φn-interaction

with n ≥ 3 is renormalisable in two-dimensional QFTs, which allows us to have interest-

ing theories with higher spin conserved currents. From the mathematical point of view,

two-dimensional CFT is one of the most well understood QFTs. In certain 2d CFTs, con-

formal symmetry completely determines local operator algebras, and, in fact, Lagrangian

descriptions are less important in 2d CFTs.

History

Modern investigation of two-dimensional conformal fields theory was initiated by Belavin,

Polyakov, and Zamolodchikov in their seminal 1984 paper[4]. One of the important discov-

eries of their paper was the so-called Virasoro minimal models where operator contents

and their correlation functions can be calculated from representation theory of the Virasoro

algebra—the symmetry algebra of local conformal transformations in two dimensions. The

Virasoro minimal models exist for a certain range of the parameter c, which is called the

central charge as we shall explain in the next chapter, and they cover many interesting

2d CFTs, in fact, they correspond to the scaling limits of certain two-dimensional lattice

statistical models including the Ising model.

Extensions of conformal symmetry lead to 2d CFTs with extended symmetries. It was

pioneered by Zamolodchikov in his 1985 paper[11] in which theories with spin-3 symmetry

generators were considered. The extended conformal algebra with a spin-3 field is known

as the W3 algebra, and generalisations are called W-algebras. In general, W-algebras

are not necessarily Lie algebras, and this leads to many interesting phenomena. Some

W-algebras exist for generic values of the central charge c and such algebras are called

deformable, while so-called non-deformable W-algebras only exist at isolated points of c.

Similar to the Virasoro algebra case, some W-algebras admit minimal series in which CFTs

can be constructed from finite number of W-algebra representations. During the 90s, one

of the main motivations to study W-algebras was to classify 2d CFTs using W-algebras.
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Recently, there is renewed interest in W-algebras from the AdS/CFT correspondence[103].

From the physical perspective, it is interesting to study CFTs on surfaces with bound-

aries that describe surface critical behaviours. Boundary conformal field theory (BCFT)

was developed by Cardy in his 1984 paper[5] and subsequent publications. In string theory,

open strings that satisfy Dirichlet boundary conditions are attached to extended objects

known as the D-branes. Polchinski’s 1995 paper[53] showed that D-branes can be studied

from BCFT, which attracted interest in BCFT from the string community.

Defects and Interfaces

In two-dimensional conformal field theory, a conformal defect is a line of inhomogeneity

in a theory, across which the values of correlators may change or become singular. As

an example, conformal defects can be realised as continuum limits of lattice models with

defect lines. The concept of conformal defects generalises to interfaces between two

different CFTs. A class of conformal defects called topological defects have gained much

interest recently not only in condensed matter physics but also in string theory. Topological

defects implement internal symmetries of a CFT as well as order-disorder type dualities

[83] [89]. For another class of conformal defects called factorising defects, two CFTs

separated by a defect line decouple completely, and classification of such defects becomes

that of conformal boundaries in each of the CFTs. As we can view the bulk fields of a CFT as

the defect fields on the identity defect, which is also called the invisible defect, conformal

defects can be regarded as a natural generalisation of bulk CFTs, conformal boundaries,

and topological defects.

The so-called AGT correspondence of [99] relates two-dimensional CFTs and four-

dimensional supersymmetric gauge theories. While the original conjecture involves Liou-

ville CFTs in two-dimensions, there is a version of this relation which involves A-series

Virasoro minimal models [112]. From the AGT correspondence it is possible to relate cer-

tain quantities in two-dimensional CFTs and those of four-dimensional gauge theories. In

[101], it is shown that loop operators and domain wall operators in four-dimensionalN = 2

supersymmetric gauge theories correspond to topological defect operators in Liouville and

Toda CFTs in two-dimensions. Therefore, study of conformal defects in two-dimension is

also interesting from the perspective of four-dimensional supersymmetric gauge theories.

For topological defects in rational CFTs, there is a systematic way to study them in

many different theories. From the topological field theory (TFT) approach of [76] and

the sequels, it is possible to compute various important quantities involving topological

defects, which include correlation functions. On the other hand, there has not been found

a systematic way to approach general conformal defects.

One way to study conformal defects within a CFT is to ‘fold’ the theory along the defect

line, and consider the corresponding conformal boundary condition in the doubled theory.

As the central charge doubles after folding, studying the corresponding boundary theory

is difficult in general. Conformal defects in the Ising model are classified by identifying

the doubled theory as an orbifolded free boson theory in [59]. For the cases where the
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sums of central charges of two Virasoro minimal models are again minimal values—namely,

Lee–Yang × Lee–Yang, Lee–Yang × Ising, and Lee–Yang × M(2, 7)—conformal defects

are classified in [91] by identifying the partition functions of doubled theories. While

the paper uses methods from the TFT approach to identify the partition functions, one of

the important observations one can makes is that the folded theories have W(2, 2) symme-

tries—another spin-2 current other than the stress-energy tensor. In [94], a set of conformal

defects in the tri-critical Ising model is proposed by using the fact that the doubled theory

has the central charge which is minimal with respect to the N = 1 super-Virasoro algebra.

While this idea is very interesting, the analysis of superconformal boundary conditions in

the folded model and mapping to conformal defects in the tri-critical Ising model is not so

transparent, and we believe some important details are missing. One of the motivations of

this thesis is to revisit this idea and give a more systematic treatment.

Another way of obtaining conformal defects is by defect perturbations. Just like bulk or

boundary perturbations, we can consider perturbations of a topological defect by taking a

defect field and integrating it over the defect. As in the Ising model [59] and other A-series

Virasoro minimal models [98], defect flows may generate conformal defects that are not

topological nor factorising. While [98] predicts the presence of at least one such conformal

defect in a unitary Virasoro minimal model, much of their nature—such as exact defect

g-values, or reflection and transmission coefficients—remains unknown. In this thesis, we

calculate their reflection and transmission coefficients using the leading-order perturbation

calculation.

If two CFTs are related in some way, it may be possible to construct a conformal

interface between them. It has been done for some CFTs related by renormalisation group

(RG) flows. RG interfaces are constructed by Gaiotto for A-series Virasoro minimal models

in [106], for N = 1 super-Virasoro minimal models in [114], and for N = 2 super-

Virasoro minimal models in [93]. The defect entropy as well as reflection and transmission

coefficients of Gaiotto’s RG defect are calculated in [111] and [116].

Another relation between CFTs, which may be exploited to construct conformal inter-

faces, is extended conformal symmetries. In Chapter 5, we construct topological interfaces

between the c = 1
2 free fermion theory and the Ising model, which is taken as a bosonic

theory, and also between the bosonic and N = 1 super-Virasoro tri-critical Ising model at

c = 7
10 . For bosonic extended symmetries, topological interfaces can be constructed from

the TFT construction in [89]. Examples of these interfaces include those between A-series

and D-series Virasoro minimal models with the same central charges. The case for c = 4
5 ,

that is the interface between the tetra-critical Ising model and the three-state Potts model,

is discussed in Section 6 of [89].

Motivation and Summary

The main motivation of this thesis is to study the nature of non-topological and non-

factorising defect in the diagonal Virasoro minimal models predicted in [98]. In diagonal

Virasoro minimal models, conformal boundary conditions and topological defects are la-

belled by unique representations of the Virasoro algebra, and therefore we can use Kac
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labels (r, s) to denote them. The paper [98] considers perturbations of the topological

defect (1, 2) by a linear combination of chiral defect fields

λφ(x) + λ̄φ̄(x) , (1.1)

where φ and φ̄ are the chiral defect fields on the topological defect (1, 2) with the conformal

weights (h1,3, 0) and (0, h1,3), respectively. For a minimal model M(p, p + 1) with p > 3,

the endpoints of these flows are: the identity defect in the directions of λ = 0 and λ̄ < 0, or

λ < 0 and λ̄ = 0; the topological defect (2, 1) in the directions of λ = 0 and λ̄ > 0, or λ > 0

and λ̄ = 0; the linear combinations of factorising defects, denoted by F , in the direction of

λ = λ̄ < 0; a new conformal defect, denoted by C, in the direction of λ = λ̄ > 0.

One of the initial approaches we took to study these conformal defects was to apply

the lattice mean-field approach. In [104], the phase spaces of boundary flows for the Ising

model and the tri-critical Ising model were analysed by applying the mean-field theory to

the underlying classical square lattice models. In particular, it was shown that the number

and directions of relevant boundary flows for any given boundary condition of these models

can be obtained by this method.

Let us outline how this method works. One starts from a classical square lattice action

describing a system with a defect line, for example, the one given in (B.7). By substituting

some of the classical spin variables σi,j with mean magnetisation per site, which is defined

as

Mi,j = 〈σi,j〉 = σi,j − δσi,j , (1.2)

one obtains the mean-field action EMF, in which the local spins interact with neighbours

only through the mean-field. In mean-field theory, contributions from (δσ)2 are assumed to

be negligible, and this simplifies the matter greatly. Then, the mean-field partition function

ZMF =
∑
{σ}

e−βEMF (1.3)

can be written as the product of Zi,j , from which we can obtain the free energies per site

as

fi,j = − 1

β
logZi,j . (1.4)

Since the nearest neighbour couplings are different along the defect, we need to distinguish

defect free energies from bulk free energies. The magnetisation per site is given by

Mi,j = − ∂

∂h
fi,j , (1.5)

where h is the external magnetic field, therefore, we obtain the bulk and defect mean-

field consistency equations. The equations of motion can be obtained by inverting the

consistency equations, and the bulk and defect critical parameters can be determined. By

integrating the equations of motion, we may obtain the effective potentials. Analysing the

defect potential at and around the critical parameter values, it should be possible to obtain

some information on the phase space of defect flows.
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We have attempted to apply this method to the Ising model with a defect line, however,

it turned out that it is not straightforward to construct a lattice model, which captures

the properties of the Ising defects predicted from CFT and compatible with the mean-

field analysis. For example, we have not found an appropriate way of assigning coupling

constants and external magnetic fields at defect sites. As seen in Section B.2, in the Ising

model, marginal defect fields with scaling dimension ∆ = 1 are always present for all the

conformal defects. This may be posing some problems for the mean-field analysis.

One of the objectives of this thesis is to calculate the reflection and transmission

coefficients[91] of the new conformal defects. In the folded model, these coefficients can

be obtained from the quantity

ωD =
〈W ||D〉〉
〈0||D〉〉

, (1.6)

where ‖D〉〉 is the boundary state corresponding to the defect, and |W 〉 is the Virasoro

primary state with the conformal weight h = 2 corresponding to the generator of W(2, 2).

In addition, we emphasise that the topological and factorising defects correspond to the

boundary states that preserve the W(2, 2) symmetry.

Next, we calculate the reflection and transmission coefficients of the predicted con-

formal defects in minimal models using the leading-order perturbation calculation. This

provides a first insight into the nature of new conformal defects. We find the reflection

coefficient of the conformal defect C to be

R =
9π2y4

8
+O(y5) , (1.7)

where y := 1− h1,3. The transmission coefficient is given by T = 1−R.

We then focus on the tri-critical Ising model M(4, 5) which has c = 7
10 . We construct

topological interfaces between the N = 1 supersymmetric theory and the bosonic theory

at c = 7
10 . By using the topological interfaces, we obtain conformal defects in the bosonic

tri-critical Ising model from the supersymmetric theory. As a warm-up, we also give

topological interfaces between the free fermion theory and the Ising model.

We then study topological defects and conformal boundary conditions in N = 1 super-

Virasoro theories and construct a consistent theory of superconformal defects and bound-

aries at c = 7
10 . Unlike in most of the literature, we do not take the GSO projected boundary

states. As we shall explain later, we take fermionic theories that are local i.e. take the

Neveu–Schwarz sectors only and relax the requirement of modular invariant partition

functions.

In order to obtain conformal defects in the supersymmetric tri-critical Ising model, we

study superconformal boundary conditions of the doubled model, which has c = 7
5 . Our

construction of these boundary states differ from the one given in [94]. It turns out that

it is important to analyse carefully the embeddings of the super-Virasoro algebra SVir into

SVir ⊕ SVir in order to identify the boundaries with the defects. We also analyse the

boundary conditions and corresponding defects in terms of the super W-algebra SW(3
2 ,

3
2),

and discuss their fusion rules.
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Finally, using the topological interfaces, we obtain the entropies and transmission

coefficients of non-topological and non-factorising defects in the bosonic tri-critical Ising

model. The results suggest that there are two non-topological and non-factorising defects

that we denote DM(4,5)

t and DM(4,5)

f from which we can obtain the other defects by actions

of topological defects.

Outline

In Chapter 2, we summarise background materials in two-dimensional conformal fields

theories. These include the Virasoro and W-algebras, conformal boundary conditions,

and conformal defects. In Chapter 3, we discuss relation between conformal defects and

extended conformal symmetries in the folded theories, and explain the reflection and

transmission coefficients in terms of W-algebras. In Chapter 4, we calculate reflection and

transmission coefficients in the diagonal Virasoro minimal models using the leading-order

perturbation calculation. In Chapter 5, we construct topological interfaces for the free

fermion–Ising and bosonic–supersymmetric tri-critical Ising model cases. In Chapter 6,

we construct superconformal defects in the tri-critical Ising model and project these to the

bosonic theory.

The results presented in Chapter 4, 5, and 6 are published jointly with G. Watts as

[117] I. Makabe and G. M. T. Watts. “Defects in the Tri-critical Ising model”. In: Journal
of High Energy Physics 09 (2017), p. 013. arXiv: 1703.09148 [hep-th]

[118] I. Makabe and G. M. T. Watts. “The reflection coefficient for minimal model

conformal defects from perturbation theory”. In: (2017). arXiv: 1712.07234

[hep-th]

http://arxiv.org/abs/1703.09148
http://arxiv.org/abs/1712.07234
http://arxiv.org/abs/1712.07234
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Chapter 2

Background from Two-Dimensional

Conformal Field Theory

In this chapter, we present an introduction to two-dimensional conformal field theory

(CFT). This is meant to be a summary of material necessary for this thesis rather than an

exhaustive survey on the topic of CFT. Most discussions given in this chapter can be found

in the literature, and references are not always given explicitly in the main body of this

chapter.

Section 2.1 discusses conformal transformations in two-dimensional Euclidean spaces

without boundaries or defects, and their implications for correlation functions and the

field content of a theory. Discussions are based on the seminal paper by Belavin, Polyakov,

and Zamolodchikov[4]; review papers by Ginsparg[22] and by Alvarez-Gaumé, Sierra, and

Gomez[27]; and books by Di Francesco, Mathieu, and Sénéchal[56] and by Blumenhagen

and Plauschinn[96].

In Section 2.2, analysis of representations of the Virasoro algebra is based on the

book by Kac and Raina[20]. Presentation of W-algebras as meromorphic CFTs is based on

review papers by Bouwknegt and Schoutens[44] and by Watts[60] while some discussions

on chiral vertex operators are also based on the review paper by Gaberdiel[69]. We follow

Honecker’s paper[46] for the discussion on automorphisms of W-algebras while calculations

on automorphisms of SW(3
2 ,

3
2) are original. For systematic study of W- and super W-

algebras, we refer to [38] and [40] as well as [41] and [45] for their representation

theories. For SW(3
2 ,

3
2) at c = 7

5 , references are [35, 39, 42]. For various aspects of the

Ramond algebra we refer to [21, 72, 80] for representation theory, and to [47, 95] for

fusion rules.

2.1 Bulk Conformal Field Theories

As we shall see in this section, conformal symmetries fix the forms of two- and three-

point correlation functions. Together with the notion of operator product expansions

(OPEs), conformal symmetries are a very powerful tool to solve a theory for correlation

functions. Especially, in two-dimensions, the algebra of conformal symmetry becomes

infinite-dimensional, and a theory can be solved by considering the symmetries alone in

certain cases. In this section, we focus on conformal field theories without boundaries or

defects. For brevity, we call such theories bulk CFTs.
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2.1.1 Conformal Transformations

Consider a d-dimensional Euclidean space Ed with the metric gµν , which is not necessarily

flat. Under a coordinate change x 7→ x′, the metric transforms as

gµν(x) 7→ g′µν(x′) =
∂xα

∂x′µ
∂xβ

∂x′ν
gαβ(x) . (2.1)

A conformal transformation is a coordinate transformation which leaves the metric invari-

ant up to a scale factor Ω2, that is gµν(x) 7→ g′µν(x′) = Ω2(x)gµν(x).

Under an infinitesimal local coordinate transformation x 7→ x′ = x+ ε(x), the metric

transforms to g′µν(x′) = gµν(x) − (∂µεν + ∂νεµ). If this corresponds to a conformal trans-

formation, the second term must be proportional to gµν , and one can write ∂µεν + ∂νεµ =

f(x)gµν for some function f . Multiplying this by gµν , one obtains f(x) = 2d−1(∂ · ε). Thus,

for conformal transformations

∂µεν + ∂νεµ =
2

d
(∂ · ε)gµν and Ω2(x) = 1− 2

d
(∂ · ε) . (2.2)

Differentiating (2.2) by ∂µ and ∂ν , one obtains �(∂ · ε) = 0 unless d = 1. Furthermore, it

implies that ε is at most quadratic in x for d > 2. We can interpret the solutions of (2.2)

up to the quadratic order as the following:

• ε constant, which corresponds to

- translations εµ(x) = aµ,

• ε linear in x, which corresponds to

- rotations εµ(x) = ωµνx
ν (ω antisymmetric) or

- scale transformations (dilations) εµ(x) = λxµ,

• and ε quadratic in x, which corresponds to

- special conformal transformations εµ(x) = bµx2 − 2xµ(b · x).

Among the solutions above, special conformal transformations need a little explanation.

By considering a finite special conformal transformation

xµ 7→ x′µ =
xµ + bµx2

1 + 2(b · x) + b2x2
, (2.3)

we can understand this as an inversion xµ 7→ −xµ/x2 followed by a translation xµ 7→
xµ − bµ and another inversion. If bµ is non-zero, there is one point in Ed which is mapped

to infinity. Therefore, if we require finite special conformal transformations to be globally

defined, we need to compactify Ed by including one point at infinity.

From the solutions of (2.2), one can define the infinitesimal generators of conformal

transformations as

Pµ = −i∂µ (translations), (2.4)

Lµν = i(xµ∂ν − xν∂µ) (rotations), (2.5)

D = −i(x · ∂) (dilations), and (2.6)

Kµ = i(x2∂µ − 2xµ(x · ∂)) (special conformal transformations). (2.7)
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They form a basis of the Lie algebra of SO(1, d + 1) over R. Thus, it is straightforward

to deduce that the conformal group in a d-dimensional Euclidean space is isomorphic to

SO(1, d + 1) for d > 2. In a Minkowski space Rp,q, the conformal group is isomorphic to

SO(p+ 1, q + 1).

In two-dimensions, (2.2) still holds, however ε is no longer at most quadratic in x. We

can see this by introducing the complex coordinates1

z = x1 + ix2 and z̄ = x1− ix2 with ∂ =
1

2
(∂1− i∂2) and ∂̄ =

1

2
(∂1 + i∂2) . (2.8)

Then, (2.2) becomes the Cauchy–Riemann equations ∂̄ε = 0 and ∂ε̄ = 0, where ε = ε1+iε2

and ε̄ = ε1 − iε2. Therefore, ε(z) is a holomorphic function of z. In fact, any holomorphic

function with nowhere-vanishing derivative f : M → C, where M is an open subset of C,

is an orientation-preserving conformal transformation with Ω2 = |∂f |2.

Although z̄ is defined to be the complex conjugate of z, if we consider z̄ as an indepen-

dent coordinate2, we can treat ε̄(z̄) as a holomorphic function of z̄. Expanding ε(z) and

ε̄(z̄) in the Laurent series

ε(z) =
∑
n∈Z

εn(−zn+1) and ε̄(z̄) =
∑
n∈Z

ε̄n(−z̄n+1) , (2.9)

where εn, ε̄n ∈ C are constants, one obtains the sets of orthogonal solutions of ∂̄ε = 0

and ∂ε̄ = 0. For each εn and ε̄n, we can define the infinitesimal generators of conformal

transformations as

ln = −zn+1∂ and l̄n = −z̄n+1∂̄ . (2.10)

Their commutators satisfy

[ln, lm] = (n−m)ln+m , [l̄n, l̄m] = (n−m)l̄n+m , and [ln, l̄m] = 0 . (2.11)

Each of the sets {ln : n ∈ Z} and {l̄m : m ∈ Z} forms a basis of the infinite-dimensional

complex Lie algebra called the Witt algebra. It is isomorphic to the complexification of the

Lie algebra of real vector fields on the circle S1.

As we have seen before, we need to compactify R2 ' C in order to define finite

special conformal transformations globally. The resulting space is the Riemann sphere

CP1 = C ∪ {∞}. Even on CP1, not all the generators ln are globally defined. Considering

regularity at z = 0 and z = ∞, we see that the algebra of globally defined conformal

transformations is generated by {l−1, l0, l1}, whose commutation relations are that of

the complex Lie algebra3 sl(2). By imposing z̄ to be the complex conjugate of z, these

1. By ∂ or ∂z, we mean ∂/∂z where it is obvious. Sometimes, by abusing notation, we also use ∂ to denote
d/ dz.
2. It is customary to consider (z, z̄) ∈ C2 and impose z̄ to be the complex conjugate of z when necessary.
3. By sl(2) we denote the three-dimensional simple Lie algebra over C. In addition, sl(2) is the complexifica-
tion of the real Lie algebra su(2).
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generators can be understood as

P = l−1 , P̄ = l̄−1 (translations), (2.12)

L = i(l0 − l̄0) (rotation), (2.13)

D = l0 + l̄0 (dilation), and (2.14)

K = l1 , K̄ = l̄1 (special conformal transformations). (2.15)

Using (2.8), the generators above can be written in terms of the real coordinates. This

reminds ourselves that, in two-dimension, finite conformal transformations have six real

parameters that can be considered as three complex parameters. From the sl(2) generators,

finite conformal transformations can be written as

z 7→ z′ =
az + b

cz + d
, where

(
a b

c d

)
∈ SL(2,C)/Z2

∼= PSL(2,C) . (2.16)

Therefore, the conformal group of the Riemann sphere CP1 is the Möbius group PSL(2,C),

and we refer to the globally defined conformal transformations on CP1 as the Möbius trans-

formations. As we have seen before, Möbius transformations consist of the following global

transformations: translations, rotations, dilations, and special conformal transformations.

2.1.2 Transformations of Fields

In a conformal field theory, fields are classified by their local transformation properties

under a given conformal transformation. As before, we take the complex coordinates (2.8)

in two-dimension. If a field ϕ(z, z̄) transforms as

ϕ(z, z̄) 7→ ϕ′(w, w̄) =

(
∂w

∂z

)h(∂w̄
∂z̄

)h̄
ϕ(w, w̄) , (2.17)

under any local conformal transformations z 7→ w(z), then it is called a primary field.

If (2.17) only holds for Möbius transformations, it is called a quasiprimary field. By

considering a scale transformation w = λz and a rotation w = eiαz, where λ ∈ C and

α ∈ R, we find that ϕ(z, z̄) has scaling dimension ∆ = h+ h̄ and spin s = h− h̄. The two

real numbers h and h̄ are called the conformal dimensions of ϕ(z, z̄). In a conformal field

theory we consider in this thesis4, all the fields can be expressed as linear combinations of

quasiprimary fields and their derivatives. Derivatives of quasiprimary fields are no longer

quasiprimary and they are called secondary fields.

2.1.3 Forms of Correlation Functions

In a conformal field theory, correlation functions must be invariant under conformal trans-

formations. This means, for quasiprimary fields ϕI with conformal dimensions hI and h̄I ,

4. We only consider CFTs where L0 operators (see the section on the Virasoro algebra) are diagonalisable
and energies are bounded from below on a given representation space. This excludes so-called logarithmic
CFTs where L0 operators can be brought to the Jordan normal forms only.
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the following has to hold

〈ϕ1(z1, z̄1) . . . ϕn(zn, z̄n)〉 =
n∏
I=1

(
∂w

∂z

)hI
w=wI

(
∂w̄

∂z̄

)h̄I
w̄=w̄I

〈ϕ1(w1, w̄1) . . . ϕn(wn, w̄n)〉 ,

(2.18)

where z 7→ w(z) is a Möbius transformation. This equation determines two- and three-

point functions up to some constants, and four-point functions up to some functions.

From translation invariance, one-point functions must be constants. In addition, con-

sidering scale transformations, one-point functions have to vanish unless h = 0 and h̄ = 0.

Therefore, only the identity field has the non-vanishing one-point function. We assume

the bulk vacuum state is unique, and denote the identity field by 1. Since it is natural to

normalise the identity field to one, we take 〈1〉 = 1. If translation invariance is broken in

some direction by introduction of a boundary or a defect, one-point functions may acquire

position dependence. We will discuss this later.

For two-point functions, translation invariance and scale invariance determine their

functional forms. Furthermore, considering a special conformal transformation w = −1/z,

we obtain

〈ϕ1(z1, z̄1)ϕ2(z2, z̄2)〉 =
d12

(z1 − z2)h1+h2(z̄1 − z̄2)h̄1+h̄2
, (2.19)

where d12 = 0 if h1 6= h2 or h̄1 6= h̄2, and d12 is called a structure constant or the two-point

coupling of ϕ1 and ϕ2. For the bulk fields, we can take a basis of fields such that

dIJ = dIδJ,I+ , (2.20)

where the field ϕI+ is the charge conjugate5 of ϕI , and we have hI+ = hI and h̄I+ = h̄I .

Clearly, the identity field is self-conjugate as it is the only bulk field with h = 0 and h̄ = 0.

Abstractly, we can think of charge conjugation as an automorphism I 7→ I+ on the set of

labels of the bulk fields which leaves the conformal weights invariant.

Three-point functions can be analysed similarly. From translation invariance, they must

be the functions of zIJ := zI − zJ . Considering their scale invariance and the same special

conformal transformation as before, we obtain

〈ϕ1(z1, z̄1)ϕ2(z2, z̄2)ϕ3(z3, z̄3)〉 =
C123

z
h123
12 z

h231
23 z

h132
13 z̄

h̄123
12 z̄

h̄231
23 z̄

h̄132
13

, (2.21)

where

hIJK := hI + hJ − hK (2.22)

and the structure constant C123 is also called the three-point couplings of ϕ1, ϕ2, and ϕ3.

Calculations for four-point functions are slightly involved but the principles do not

change. Using Möbius transformations, we find

〈ϕ1(z1, z̄1) . . . ϕ4(z4, z̄4)〉 = f1234(η, η̄)
4∏

I<J

z
h/3−hI−hJ
IJ z̄

h̄/3−h̄I−h̄J
IJ , (2.23)

5. As we shall see later, a bulk field label can be regarded as I = (i, ī), where i and ī label representations
of the chiral algebra. Then, its conjugate means I+ = (i+, ī+), where i+ and ī+ labels the representations
conjugate to i and ī, respectively. In addition, we have (I+)+ = I, which comes from the fact that the charge
conjugation matrix squares to the identity matrix[51].



2.1 Bulk Conformal Field Theories | Radial Quantisation 19

where

η =
z12z34

z13z24
(2.24)

is called the cross ratio and h := h1 + h2 + h3 + h4. As we shall see later, it is useful to

define the function

G1234(z, z̄) := lim
z1,z̄1→∞

z
2h1
1 z̄

2h̄1
1 〈ϕ1(z1, z̄1)ϕ2(1, 1)ϕ3(z, z̄)ϕ4(0, 0)〉

= f1234(z, z̄) (1− z)h/3−h2−h3zh/3−h3−h4 (1− z̄)h̄/3−h̄2−h̄3 z̄h̄/3−h̄3−h̄4 , (2.25)

and work with G1234 rather than f1234.

In principle, any n-point functions can be reduced to one-point functions by operations

known as the operator product expansions (OPEs) which will be discussed in Subsection

2.1.7. In order to do this, one needs to determine the OPE constants involved in the

calculations. As we shall see later, this can be carried out by considering different ways of

expressing a four-point function in terms of OPEs.

2.1.4 Radial Quantisation

In two-dimensional conformal field theories, explicit forms of action functionals are not

as important as in other quantum field theories, and correlation functions are usually

calculated using the operator formalism rather than the path integral methods.

Consider the Riemann sphere with a coordinate z. In radial quantisation, we consider

compactified space, and equal-time surfaces are given by constant |z|. Then, time flows

along the radial direction, and z = 0 is taken to be the infinite past and z =∞ corresponds

to the infinite future. The space of states H contains the vacuum state |0〉, and for each

field operator ϕI(z, z̄), there is the corresponding state given by

|ϕI〉 = lim
z,z̄→0

ϕI(z, z̄)|0〉 . (2.26)

Conversely, we can think as, for each vector |ϕI〉 ∈ H, there is a map6 V : H × C × C →
End(H) and the local field is given by

V (|ϕI〉; z, z̄) := ϕI(z, z̄) , (2.27)

which satisfies (2.26). This is called the state-field correspondence. If we expand ϕI(z, z̄)

in terms of the modes as

ϕI(z, z̄) =
∑
n,n̄∈Z

(ϕI)n,n̄ z
−n−hI z̄−n̄−h̄I , (2.28)

then regularity of the limit (2.26) demands

(ϕI)n,n̄|0〉 = 0 for n > −hI or n̄ > −h̄I . (2.29)

6. This map has to satisfy certain conditions, for example V (|0〉; z, z̄) = idH and V (|v〉; z, z̄)|0〉|z=0,z̄=0 = |v〉
for any |v〉 ∈ H, which is know as the vacuum axiom. The definition of a vertex algebra can be found, for
example, in [58] and [82].
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We define the hermitian conjugate of ϕI(z, z̄) as

ϕ†I(z, z̄) := z̄−2hIz−2h̄IϕI+(z̄−1, z−1) , (2.30)

where we assume the basis of bulk fields in which (2.20) holds. In terms of the modes,

this definition of hermitian conjugation means

(ϕ†I)n,n̄ = (ϕI+)−n,−n̄ . (2.31)

Using hermitian conjugation, we can write the dual vector (|ϕI〉)† =: 〈ϕI | ∈ H∗ as

〈ϕI | = lim
z,z̄→0

〈0|ϕ†I(z, z̄) = lim
w,w̄→∞

w2hI w̄2h̄I 〈0|ϕI+(w, w̄) , (2.32)

where w = z̄−1. From (2.31), we find

〈0|(ϕI+)n,n̄ = 0 for n < hI or n̄ < h̄I , (2.33)

in order for (2.32) to be regular. Recalling that z = 0 is the infinite past and z = ∞ is

the infinite future in radial quantisation, we can view state vectors as “in-states” and their

duals as “out-states”.

In radial quantisation, time ordering becomes what is called radial ordering, which is

given by

R (ϕ1(z1, z̄1)ϕ2(z2, z̄2)) =

{
ϕ1(z1, z̄1)ϕ2(z2, z̄2) if |z1| > |z2| ,

ε12 ϕ2(z2, z̄2)ϕ1(z1, z̄1) if |z2| > |z1| ,
(2.34)

where ε12 = −1 if both ϕ1 and ϕ2 are fermions7, otherwise ε12 = 1. Operators must be

radially ordered within correlation functions to make any sense, and we can write

〈ϕ1(z1, z̄1) . . . ϕn(zn, z̄n)〉 = 〈0|ϕ1(z1, z̄1) . . . ϕn(zn, z̄n)|0〉 for |z1| > · · · > |zn| > 0 .

(2.35)

In this thesis, strings of operators like ϕ1(z1, z̄1) . . . ϕn(zn, z̄n) are understood to be radially

ordered, and the symbol R will not always be written explicitly.

2.1.5 Ward Identities

Consider a two-dimensional quantum field theory described by the action functional S[ϕ]

with local fields ϕi(xi), where x ∈ R2. One may define a symmetric stress-energy tensor

Tµν by

δS =
1

2

∫
δgµνTµν

√
|g|d2x , (2.36)

where gµν is the metric and g is its determinant. If conformal transformations are sym-

metries of this theory, classically we should have δS = 0 for such transformations. Taking

δgµν to be an infinitesimal conformal transformation (2.2), then δgµν = −(∂ · ε)gµν and

δS = 0 implies gµνTµν = 0, that is, the stress-energy tensor is traceless. Furthermore, we

7. In this thesis, we assume bulk fields have integer (bosons) or half-integer (fermions) spins.
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can also write δgµν = −(∂µεν + ∂νεµ) and using the fact that Tµν is symmetric, one can

define the classical conserved currents as jµ = ενTµν .

If the conformal symmetry is preserved at the quantum level, the Ward identities in-

volving jµ = ενTµν should hold. In particular, we have∫
〈∂µ(ενTµν(x))ϕ(y)〉 d2x = 〈δϕ(y)〉 . (2.37)

Since the classical conservation equation ∂µjµ = 0 holds away from the field insertion at

y, it suffices to evaluate the integral for a small disc Σ around y. Using Stokes’s theorem∫
Σ
∂µ(ενTµν) d2x = 	

∫
∂Σ

(
ενT1ν dx2 − ενT2ν dx1

)
(2.38)

and introducing the complex coordinates defined by (2.8), the Ward identity becomes

1

2πi
	
∫
w
ε(z)〈T (z)ϕ(w, w̄)〉 dz +

1

2πi
	
∫
w̄
ε̄(z̄)〈T (z̄)ϕ(w, w̄)〉 dz̄ = 〈δϕ(w, w̄)〉 , (2.39)

where T (z) = 2πTzz(z) and T (z̄) = 2πTz̄z̄(z̄). These contours are defined to encircle the

singularities only at z = w and z̄ = w̄. Since these contour integrations are around the field

insertion, the classical conservation equation ∂µjµ = 0 still holds, and this implies Tzz̄ =

Tz̄z = 0 and ∂̄Tzz = ∂Tz̄z̄ = 0. Therefore, for infinitesimal local conformal transformations,

we may treat transformations of ϕ(w, w̄) for w and w̄ separately, and write

1

2πi
	
∫
w
ε(z)〈T (z)ϕ(w, w̄)〉 dz = 〈δεϕ(w, w̄)〉 and

1

2πi
	
∫
w̄
ε̄(z̄)〈T (z̄)ϕ(w, w̄)〉 dz̄ = 〈δε̄ϕ(w, w̄)〉 . (2.40)

If ϕ(w, w̄) is a primary field, we can substitute w 7→ w + ε and w̄ 7→ w̄ + ε̄ into (2.17) and

write δϕ = ϕ′ − ϕ as

δεϕ(w, w̄) = (h(∂ε) + ε∂)ϕ(w, w̄) and δε̄ϕ(w, w̄) =
(
h̄(∂̄ε̄) + ε̄∂̄

)
ϕ(w, w̄) . (2.41)

Then, we can substitute these into the right hand sides of the Ward identities and use the

residue theorem to obtain the singular terms

T (z)ϕ(w, w̄) =
hϕ(w, w̄)

(z − w)2
+
∂ϕ(w, w̄)

z − w
+ reg. and

T (z̄)ϕ(w, w̄) =
h̄ϕ(w, w̄)

(z̄ − w̄)2
+
∂̄ϕ(w, w̄)

z̄ − w̄
+ reg. , (2.42)

where we have used the fact that ε(z) and ε̄(z̄) are non-singular as z → w and z̄ → w̄.

These equations are understood to hold inside correlators, and they can be viewed as a

way of expressing the product of two fields at (z, z̄) and (w, w̄) as a series of local fields at

(w, w̄). This is an example of operator product expansions. Another way of characterising

primary fields is that their OPEs with T and T are of the form (2.42).
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2.1.6 Virasoro Algebra

For an infinitesimal conformal transformation z 7→ z + ε(z), the corresponding chiral

conserved charge is given by

Q =
1

2πi
	
∫

0
ε(z)T (z) dz . (2.43)

Here, equal-time surfaces are given by constant |z| as we are working in radial quantisation.

By expanding T (z) in terms of the modes as

T (z) =
∑
n∈Z

Lnz
−n−2 and Ln =

1

2πi
	
∫

0
T (z) zn+1 dz , (2.44)

and using the mode expansion of ε(z) given in (2.9), we can write

Q =
∑
n∈Z
−εnLn . (2.45)

Thus, the modes of the stress-energy tensorLn can be viewed as the infinitesimal generators

of conformal transformations. Similarly, we can view L̄n as the infinitesimal generators of

transformations of the form z̄ 7→ z̄ + ε̄(z̄). Classically, these generators form two copies of

the Witt algebra (2.11), however, upon quantisation, they become the central extension

known as the Virasoro algebra, which satisfies

[Ln, Lm] = (n−m)Ln+m +
c

12
n(n2 − 1)δn+m,0 ,

[L̄n, L̄m] = (n−m)L̄n+m +
c̄

12
n(n2 − 1)δn+m,0 , and

[Ln, L̄m] = 0 , (2.46)

where c, c̄ ∈ C is called the central charge8. We denote the Virasoro algebra by Vir. By

convention, the form of the central terms in (2.46) is chosen to ensure the commutators

involving L−1, L0, and L1 do not yield central terms. As before, {L−1, L0, L1} generates

sl(2), which corresponds to the Möbius transformations. From the condition (2.29), these

generators annihilate the vacuum state as they should; the vacuum state is invariant under

global conformal transformations. Because of radial quantisation, scale transformations

are regarded as translations in time and rotations correspond to translations in space.

Therefore, the Hamiltonian and momentum operators on the plane are given by

H = L0 + L̄0 and P = i(L0 − L̄0) , (2.47)

respectively.

From the OPEs (2.42) involving the components of the stress-energy tensor and a

primary field ϕ(z, z̄) with conformal weights h and h̄, we can calculate

[Ln, ϕ(z, z̄)] =
(
h(n+ 1)zn + zn+1∂

)
ϕ(z, z̄) and

[L̄n, ϕ(z, z̄)] =
(
h̄(n+ 1)z̄n + z̄n+1∂̄

)
ϕ(z, z̄) . (2.48)

8. To be precise, the Virasoro algebra is the central extension of the Witt algebra by the one-dimensional
centre Cĉ, and it has the Cartan subalgebra spanned by L0 and ĉ. Therefore, a highest weight vector, which is
defined to be annihilated by the action of Ln for n > 0, is characterised by the L0- and ĉ-eigenvalues h and c
respectively. In a highest weight representation of the Virasoro algebra, ĉ can be treated as the number c.



2.1 Bulk Conformal Field Theories | Virasoro Algebra 23

In terms of the modes (2.28) of ϕ(z, z̄), these equations can be written as

[Ln, ϕm,m̄] = ((h− 1)n−m)ϕn+m,m̄ and

[L̄n, ϕm,m̄] =
(
(h̄− 1)n− m̄

)
ϕm,n+m̄ . (2.49)

Using these commutators together with the state-field correspondence (2.26) and (2.29),

we find actions of Ln and L̄n on |ϕ〉 as

Ln|ϕ〉 = 0 and L̄n|ϕ〉 = 0 for n > 0 , L0|ϕ〉 = h|ϕ〉 , L̄0|ϕ〉 = h̄|ϕ〉 ,

L−1|ϕ〉 = lim
z,z̄→0

∂ϕ(z, z̄)|0〉 , and L̄−1|ϕ〉 = lim
z,z̄→0

∂̄ϕ(z, z̄)|0〉 . (2.50)

These observations tell us that |ϕ〉 acts as a highest weight state for Ln and L̄n with the

weight (h, h̄). In addition, we see that the state L−1|ϕ〉 corresponds to the field ∂ϕ. Since

Ln and L̄n commute, we can think of |ϕ〉 as the highest weight vector of Hh ⊗Hh̄, where

Hh and Hh̄ are the irreducible highest weight modules of Vir and Vir with the highest

weights h and h̄, respectively. Then, other vectors in Hh ⊗Hh̄ are generated by repeated

actions of lowering operators, Ln and L̄n with n < 0, on the state |ϕ〉 modulo null vectors.

If |v〉 ∈ Hh ⊗ Hh̄ is one of these vectors, the corresponding field V (|v〉; z, z̄) is called a

descendant field.

It is important to note that the components of the stress-energy tensor T (z) and T (z̄) are

quasiprimary fields but they are not primary fields. Under local conformal transformations

z 7→ w, they transform as

T (z) =

(
∂w

∂z

)2

T (w) +
c

12
{w; z} , (2.51)

where

{w; z} :=
(∂zw)(∂3

zw)− 3
2(∂2

zw)2

(∂zw)2
(2.52)

is called the Schwarzian derivative. In addition, from the commutation relations (2.46),

we can calculate the TT OPE as

T (z)T (w) =
c/2

(z − w)4
+

2T (w)

(z − w)2
+
∂T (w)

z − w
+ reg. . (2.53)

For the antiholomorphic component T (z̄), the same equations hold with c, z, and w re-

placed by c̄, z̄, and w̄.

One of the classes of CFTs we consider in this thesis is the Virasoro minimal models.

One way to characterise a Virasoro minimal model is that it has a space of states H, which

decomposes into a finite number of tensor products of Vir and Vir irreducible modules.

We may label primary bulk fields—fields that are not on boundaries or defects—as ϕI(z, z̄)

where I = (i, ī) with i and ī labelling Vir and Vir irreducible modules, respectively. If there

is more than one bulk primary field carrying the same Virasoro representations, we need

to introduce multiplicity labels, say α, and write Iα = (i, ī;α) to distinguish these fields.

Then, the space of states for the bulk fields can be written as

H =
⊕
I∈S

Hi ⊗Hī , (2.54)
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where S is the set of labels for the bulk fields, which is also called the spectrum of the bulk

theory. A bulk spectrum is not completely arbitrary; it can be constrained by requiring

the torus partition function to be modular invariant. There is a generalisation of this idea

to arbitrary chiral algebras. Even if a theory is not minimal with respect to the Virasoro

algebra, it may be possible to write the space of states of the form (2.54) if we consider

representations of a larger chiral algebra, which contains Vir. Such theories are called

rational conformal field theories (RCFTs).

2.1.7 Operator Product Expansions

Operator product expansions can be regarded as ways of expanding two nearby fields in

terms of local fields at a point which is also close to these two fields. Since we are only

considering CFTs in which all the fields are quasiprimary fields and their derivatives, we

can assume OPEs of two primary fields involve primary fields and their descendants only.

Therefore, if we denote quasiprimary fields and their derivatives by ϕα(z, z̄), ϕβ(z, z̄) , . . . ,

OPEs can be expressed as

ϕα(z, z̄)ϕβ(w, w̄) =
∑
γ

Cγαβ(z − w)hγ−hα−hβ (z̄ − w̄)h̄γ−h̄α−h̄βϕγ(w, w̄) , (2.55)

where Cγαβ are structure constants, and the summation runs over the set of quasiprimary

fields and their derivatives.

If we specialise to the Virasoro case, the OPE of two primary fields ϕI and ϕJ can be

written as

ϕI(z, z̄)ϕJ(w, w̄) =
∑
P

∑
{k,k̄}

CP
IJ

β
P ,{k}
IJ β̄

P ,{k̄}
IJ ϕ

{k,k̄}
P (w, w̄)

(z − w)hIJP−K(z̄ − w̄)h̄IJP−K̄
, (2.56)

where ϕ{k,k̄}P is a descendant of the primary field ϕP and the multi-index {k, k̄} specifies

descendant fields by

ϕ
{k,k̄}
P (w, w̄) = V (|v〉;w, w̄) with |v〉 = L−k1

. . . L−knL̄−k̄1
. . . L̄−k̄n̄ |ϕP 〉 . (2.57)

In addition, K =
∑

i ki, K̄ =
∑

i k̄i, and hIJK is the same as in the three-point function

(2.21). The summation over descendant fields includes the primary field as well, and

denote it by ϕ{∅,∅}P := ϕP . Then, the couplings to descendant fields are normalised as

β
P ,{∅}
IJ = β̄

P ,{∅}
IJ = 1, so that CP

IJ gives the couplings between the primary fields. The

constants CP
IJ are also called OPE structure constants. The constants βP ,{k}IJ and β̄P ,{k̄}IJ can

be calculated from the Ward identities as given in Appendix B of [4] or Section 6.6.3 of

[56], but the OPE structure constants are yet to be determined. In general, couplings to

descendants are not completely fixed by chiral algebras alone which leads to, for example,

even and odd fusion rules of the N = 1 super-Virasoro algebra[16, 24].

OPE structure constants are related to two- and three-point couplings discussed in

Subsection 2.1.3. We can express a two-point function (2.19) of primary fields using the

OPE (2.56). Since one-point functions vanish except for the identity field, we obtain

C1
IJ = dIJ . (2.58)
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Moreover, from (2.20), C1

II+
= dI is the only non-zero coupling to the identity field. In

addition, we can calculate

〈ϕI |ϕI〉 = lim
w,w̄→∞

w2hI w̄2h̄I 〈0|ϕI+(w, w̄)ϕI(0, 0)|0〉 = dI . (2.59)

Therefore, the non-vanishing two-point couplings dI give the normalisation of fields and

corresponding state vectors. In order to relate three-point couplings and OPE structure

constants, consider the following correlator obtained from (2.21)

〈ϕI+ |ϕJ(z, z̄)|ϕK〉 = lim
w,w̄→∞

w2hI w̄2h̄I 〈ϕI(w, w̄)ϕJ(z, z̄)ϕK(0, 0)〉 =
CIJK

zhJKI z̄h̄JKI
. (2.60)

Comparing this with the result obtained by evaluating the OPEs

lim
w,w̄→∞

w2hI w̄2h̄I 〈ϕI(w, w̄)
(
ϕJ(z, z̄)ϕK(0, 0)

)
〉 =

∑
P

dIP C
P
JK

zhJKI z̄h̄JKI
, (2.61)

where we have used hP = hI and h̄P = h̄I , we find

CIJK =
∑
P

CP
IJ dPK . (2.62)

From (2.20), this simplifies to CIJK = CK+

IJ C1

K+K
. If we normalise all the bulk fields as

dI = 1, then CIJK = CK+

IJ . Furthermore, if all the bulk fields are self-conjugate, there is no

need to distinguish up-indices and down-indices; CIJK = CK
IJ .

In principle, we can obtain any correlation function by evaluating OPEs if the necessary

structure constants are known. So-called completely solvable theories are the ones in

which we can obtain all the OPE structure constants.

2.1.8 Crossing Constraints

By considering different ways of expressing a four-point function using OPEs, we can

obtain relations among OPE constants. Consider the four-point function G1234(z, z̄) given

in (2.25). Assuming 0 < |z| � 1, this can be rewritten as

G1234(z, z̄) = 〈ϕ1+ |ϕ2(1, 1)ϕ3(z, z̄)|ϕ4〉

=
∑
P

∑
{k,k̄}

CP
34

β
P ,{k}
34 β̄

P ,{k̄}
34

zh34P−K z̄h̄34P−K̄
〈ϕ1+ |ϕ2(1, 1)L−k1

. . . L−knL̄−k̄1
. . . L̄−k̄n̄ |ϕP 〉 ,

(2.63)

where we have used the OPE for ϕ3 and ϕ4. If we define

FP1+234(z) :=
1

zh34P

∑
{k}

zKβ
P ,{k}
34

〈ϕ1+ |ϕ2(1, 1)L−k1
. . . L−kn |ϕP 〉

〈ϕ1+ |ϕ2(1, 1)|ϕP 〉
and

FP1+234(z̄) :=
1

z̄h̄34P

∑
{k̄}

zK̄β̄
P ,{k̄}
34

〈ϕ1+ |ϕ2(1, 1)L̄−k̄1
. . . L̄−k̄n̄ |ϕP 〉

〈ϕ1+ |ϕ2(1, 1)|ϕP 〉
, (2.64)



2.2 Chiral Algebras 26

then, the four-point function simplifies to

G1234(z, z̄) =
∑
P

C12PC
P
34 F

P

1+234(z)FP1+234(z̄) . (2.65)

These functions FP1234(z) and FP1234(z̄) encoding coordinate dependence of G1234(z, z̄) are

called four-point conformal blocks. By convention, four-point blocks are normalised to

give

FP1234(z) =
1

zh34P
(1 +O(z)) (2.66)

when z → 0. In the Virasoro case, three-point blocks inside a four-point block are deter-

mined up to an overall constant, therefore we can normalise four-point blocks as above.

In general, this is not true in other chiral algebras, for example chiral three- and four-point

blocks of the W3 algebra are discussed in [48].

Under any Möbius transformation, the right hand side of (2.25) should be invariant.

If we consider a transformation z 7→ 1 − z, it exchanges the order of ϕ2 and ϕ4 in the

correlation function, and we obtain

G1234(z, z̄) = (−1)3∆1+∆2+∆3+∆4+4(s2s3+s2s4+s3s4)G1432(1− z, 1− z̄) , (2.67)

where the sign comes from the Jacobian factors and reordering of operators9 due to the

radial ordering (2.34) with εIJ = (−1)4sIsJ . In terms of the four-point conformal blocks

(2.64), this means that we are changing the bases of four-point blocks from the one with

z ∼ 0 to the other with 1− z ∼ 1. This linear transformation can be written as

F
p
ijkl(z) =

∑
q

Fpq
[
j k
i l

]
F
q
ilkj(1− z) , (2.68)

where F is called the fusing matrix10. As it is clear from the way four-point blocks are con-

structed in (2.64), the lower case Roman letters, i, j, k, . . . label Virasoro representations,

and the fusing matrices in (2.68) are for the Virasoro algebra cases. As we shall see later,

we can similarly define four-point blocks and fusing matrices for other chiral algebras.

2.2 Chiral Algebras

Chiral fields are fields that do not depend on the antiholomorphic coordinates. Other than

the identity field, there is at least one chiral field in any CFT with c 6= 0, which is the

component of the stress-energy tensor T (z). The set of chiral fields is closed under OPEs,

and the modes of chiral fields form what is called the chiral algebra, which we denote

by A. The chiral algebra A for the antiholomorphic coordinates is defined similarly. If a

9. In the most literature, this sign is missing, however this agrees with [42].
10.So far, we have used FP

IJKL(z) and FP
IJKL(z̄) to denote four-point blocks, however, since they are chiral

quantities, we may also write F
p
ijkl(z) := FP

IJKL(z) and F
p̄

īj̄k̄l̄
(z̄) := FP

IJKL(z̄), where it is understood I = (i, ī),
etc. We assume the same convention for other chiral quantities, for example, hi := hI and hī := h̄I . In
addition, by writing I = (i, ī), we are assuming that the bulk fields can be uniquely labelled by the chiral
algebra representation labels i and ī, and the fusion coefficients Nk

ij ∈ {0, 1}, which may not be always true.
In such cases, we may write Iα = (i, ī;α), where α is the multiplicity label, in order to avoid ambiguities.
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theory does not contain chiral fields other than T (z), then A = Vir. So-called W-algebras

are the extensions of the Virasoro algebra by chiral primary fields of integer or half-integer

conformal weights, and they describe extended symmetries of CFTs.

As we have seen in the previous section, the space of bulk states (2.54) consists of

tensor products ofA andA irreducible modules. Therefore, we are interested in irreducible

highest weight modules of A and operators acting on them.

2.2.1 Representations of Virasoro Algebra

In this subsection, we follow the book[20] by Kac and Raina for the analysis of representa-

tions of the Virasoro algebra.

A highest weight representation of the Virasoro algebra is a complex vector space H

with a non-zero vector |h〉, which is called the highest weight vector, and the representation

map ρ : Vir→ End(H). The highest weight vector satisfies

ρ(L0)|h〉 = h|h〉 and ρ(c)|h〉 = c|h〉 . (2.69)

Furthermore, H is the linear span of vectors of the form

ρ(Ln1
)ρ(Ln2

) · · · ρ(Lnk)|h〉 with n1 ≤ n2 ≤ · · · ≤ nk < 0 , (2.70)

which implies ρ(Ln)|h〉 = 0 for n > 0.

If all the vectors of the form (2.70) are linearly independent, the highest weight repre-

sentation is called a Verma representation. Verma modules can be constructed as universal

highest weight representations of Vir. The universal enveloping algebra U(Vir) of the Vira-

soro algebra is an associative algebra with unit, whose elements are formal power series in

the elements of Vir with the identification [x, y] = xy− yx for all x, y ∈ Vir. Let b denote a

Borel subalgebra of Vir given by

b :=
⊕
n∈Z≥0

CLn ⊕ Cc . (2.71)

Since U(Vir) is a bimodule of itself, it is a right U(b)-module as well. Then, we can

construct a left U(Vir)-module M as the induced module

M = IndVir
b (B) := U(Vir)⊗U(b) B , (2.72)

where B is a one-dimensional left U(b)-module constructed form the vector |h〉, which

satisfies

L0|h〉 = h|h〉 , and Ln|h〉 = 0 for all n > 0 . (2.73)

As a left U(Vir)-module, M is a representation of the Virasoro algebra, and it is spanned by

vectors of the form

Ln1
Ln2
· · ·Lnk |h〉 with n1 ≤ n2 ≤ · · · ≤ nk < 0 , (2.74)

that are linearly independent from the Poincaré–Birkhoff–Witt theorem. Therefore, M is

a Verma representation of the Virasoro algebra.
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Using Hermitian conjugation defined in (2.31), an “inner product”11 〈 · | · 〉 : M×M→
C on the Verma module M can be defined as

〈v|w〉 := 〈h|L−nk · · ·L−n1
Lm1
· · ·Lml |h〉 , (2.75)

where

v = Ln1
· · ·Lnk |h〉 , w = Lm1

· · ·Lml |h〉 ∈ M . (2.76)

If a highest weight module H is unitary, that is, 〈v|v〉 > 0 for all non-zero v ∈ H, then it is

irreducible; since every vector in H cannot be orthogonal to itself and repeated actions of

Ln with n < 0 on the highest weight vector |h〉 generate H, there is no non-trivial invariant

subspace of H.

Verma modules can be decomposed into the L0-eigenspaces as

M =
⊕

N∈Z≥0

MN , (2.77)

where MN is spanned by vectors of the form (2.74) with n1 + · · ·+nk = −N and it has the

L0-eigenvalue of h+N . These subspaces are mutually orthogonal with respect to the inner

product (2.75). From (2.74), the dimension of MN is given by the number p(N) of the

integer partitions of N . This decomposition is useful as each MN is a finite-dimensional

vector space even though M is infinite-dimensional.

One of the important properties of Verma modules is that, for a given weight (c, h),

the Verma representation is unique, and any other highest weight module with the same

highest weight can be obtained by a quotient of the Verma module. In addition, a Verma

module M is indecomposable, that is, there are no non-trivial submodules V and W such

that M = V ⊕W, and the Verma module has a unique maximal proper submodule J.

An irreducible highest weight module is given by the quotient H = M/J. Since M is

indecomposable, any v ∈ J must be orthogonal to every vector in M including v itself.

Such a vector v is called a null vector. From this observation, we can identify the maximal

proper submodule J as

J = ker 〈 · | · 〉 , (2.78)

where

ker 〈 · | · 〉 := {v ∈ M : 〈v|w〉 = 0 ∀w ∈ M} . (2.79)

Since L0-eigenspaces are mutually orthogonal, it suffices to consider the Gram matrix of a

subspace MN , whose elements are given by

(ΓN )ij := 〈vi|vj〉 , (2.80)

where vi, vj ∈ MN are the basis vectors of the form (2.74) and i, j ∈ {1, 2, . . . ,dim MN}.
If J is not trivial, det ΓN becomes zero at certain level N . For the first two levels, det ΓN

can be calculated as

det Γ1 = 2h and (2.81)

det Γ2 = 2h
(
(4h− 1)2 + (2h+ 1)(c− 1)

)
. (2.82)

11.This “inner product” is not necessarily positive-definite. To be mathematically precise, this should be called
an Hermitian form[20].
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Recall that h = 0 corresponds to the vacuum module, and the above calculations show that

the basis vector L−1|h〉 of M1 is null if h = 0, from which we recover sl(2) invariance of

the vacuum vector. If M has a null vector at level 2, we obtain a polynomial relation in h

and c, which constrains their values. In general, det ΓN is given by the Kac determinant

formula

det ΓN = KN

∏
r,s∈Z>0
rs≤N

(
h− hr,s

)p(N−rs)
, (2.83)

where hr,s is a function of c, and KN is a positive constant given by

KN =
∏
r,s≥1
rs≤N

((2r)ss!)p(N−rs)−p(l−r(s+1)) , (2.84)

which depends only on N . By analysing the explicit expression for hr,s, it can be shown

that Verma representations of the Virasoro algebra are unitary for c > 1 and h > 0, which

means they are irreducible for this range. In addition, irreducible highest weight modules

are unitary for c ≥ 1 and h ≥ 0. For c < 1, it is useful to introduce the parameters p, q ∈ Z
that are coprime and satisfy 1 < p < q, and write

c(p, q) = 1− 6(q − p)2

pq
and hr,s =

(qr − ps)2 − (q − p)2

4pq
, (2.85)

where 1 ≤ r ≤ p − 1 and 1 ≤ s ≤ q − 1. Then, for a given c = c(p, q), a Verma module

with h = hr,s has the first null vector at level N = rs, and therefore it is reducible. Unless

q = p+ 1, the irreducible quotients corresponding to the highest weights given in (2.85)

are not unitary. The Virasoro characters (A.1) of Verma modules and irreducible highest

weight modules encode their vector space structures, and they are discussed in Appendix

A.1.

The presence of null vectors in a Verma module gives rise to differential equations for

correlation functions. For example, consider the level 2 null vector in a Verma module with

h = h1,2. In general, an explicit expression for the level N = rs null vector |χr,s〉 can be

obtained by writing

|χr,s〉 =
(
(L−1)N + α1 L−2(L−1)N−2 + · · ·+ αk L−N

)
|hr,s〉 , (2.86)

where k = dim MN − 1, and solving Ln|χr,s〉 = 0 for 1 ≤ n ≤ N in order to determine the

coefficients. For this case, we get

|χ1,2〉 =

(
(L−1)2 − 2

3
(2h1,2 + 1)L−2

)
|h1,2〉 . (2.87)

Consider a three-point function (2.60) of bulk primary fields ϕI , ϕJ , and ϕK with hK = h1,2.

Then, the existence of the level 2 null vector gives

0 = 〈ϕI+ |ϕJ(z, z̄)

(
(L−1)2 − 2

3
(2h1,2 + 1)L−2

)
|ϕK〉

=

(
∂2 − 2

3
(2h1,2 + 1)(hJz

−2 − z−1∂)

)
〈ϕI+ |ϕJ(z, z̄)|ϕK〉 . (2.88)
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Substituting in (2.60), we obtain a constraint on hI and hJ for non-vanishing CIJK

hI =
1

6

(
1 + 6hJ + 2h1,2 ±

√
(1− 4h1,2)2 − 24hJ(1 + 2h1,2)

)
. (2.89)

If hJ = hr,s as in (2.85), the above equation determines hI to be hr,s−1 or hr,s+1. Since

CIJK has to be non-vanishing in order for CIJK to be non-zero, this result gives a fusion

rule

(r, s)⊗ (1, 2) = (r, s− 1)⊕ (r, s+ 1) , (2.90)

which can be interpreted as the OPE of two primary fields with holomorphic conformal

weights hr,s and h1,2 only involves the primary fields with hr,s−1 and hr,s+1, and their

descendants. Similarly considering other null vectors, the fusion rules for the Virasoro

primary fields with hr1,s1 and hr2,s2 are given by

(r1, s1)⊗ (r2, s2) =

r3 max⊕
r3=1+|r1−r2|
r1+r2+r3∈1+2Z

s3 max⊕
s3=1+|s1−s2|
s1+s2+s3∈1+2Z

(r3, s3) , (2.91)

where

r3 max = min(r1 + r2 − 1, 2p− 1− r1 − r2) and

s3 max = min(s1 + s2 − 1, 2q − 1− s1 − s2) . (2.92)

This shows that, for a given c = c(p, q), the set of bulk primary fields with h = hr,s and

h̄ = hr′,s′ , where the range of (r, s) and (r′, s′) is given by (2.85), is closed under fusion. A

theory constructed from the set of conformal weights hr,s given in (2.85) and the central

charge c = c(p, q) is called a Virasoro minimal model M(p, q). As the number of bulk

primary fields in M(p, q) is finite, it has the space of bulk states given by (2.54) wherein

the irreducible highest weight modules can be labelled by the Kac labels (r, s). Since

hr,s = hp−r,q−s, we have the identification (r, s) ∼ (p− r, q − s).
For four-point functions, consider a conformal block F

p
ijkl(z), which was defined in

(2.64). It can be non-zero ifN i
jpN

p
kl 6= 0, where the fusion coefficientNk

ij ∈ Z≥0 counts how

many times the representation labelled by k appear in the fusion rule for i⊗j. Furthermore,

if l = (r, s), we can use the null vector |χr,s〉 at level N = rs, and obtain an N -th order

homogeneous linear ordinary differential equation for Fpijkl(z). For example, if it involves

a null vector at level 2, we can solve the differential equation and express Fpijkl(z) in terms

of hypergeometric functions.

2.2.2 W-Algebras

Let W(2, h1, . . . , hN ) denote an extension of the Virasoro algebra by chiral Virasoro primary

fields W (i)(z) of integer or half-integer conformal weights hi. We are interested in various

OPEs involving T and W (i). Since W (i) is a Virasoro primary field, TW (i) OPEs are given

by

T (z)W (i)(w) =
hiW

(i)(w)

(z − w)2
+
∂W (i)(w)

z − w
+ reg. . (2.93)
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Using the mode expansion

W (i)(z) =
∑

n∈Z−hi

W
(i)
n z−n−hi and W

(i)
n =

1

2πi
	
∫

0
W (i)(z) zn+hi−1 dz , (2.94)

the OPE (2.93) is equivalent to the commutation relation

[Ln,W
(i)
m ] = (n(hi − 1)−m)W

(i)
n+m . (2.95)

Before working out the remaining OPEs, we need a few more ingredients.

The space of states HW
0 , on which T (z) and W (i) act, contains the vacuum vector |0〉,

and it is spanned by vectors of the form

W
(N)
−lc · · ·W

(N)
−l1 · · · · · ·W

(1)
−mb · · ·W

(1)
−m1

L−na · · ·L−n1
|0〉 (2.96)

with 2 ≤ n1 ≤ · · · ≤ na, h1 ≤ m1 ≤ · · · ≤ mb (or h1 ≤ m1 < · · · < mb if h1 is half-integer),

and so on. Since null fields decouple from a theory, HW
0 should be the vacuum irreducible

highest weight module of W(2, h1, . . . , hN ), however it is sometimes useful to keep the null

vectors and consider the Verma module MW
0 . From the level N subspace (MW

0 )N of the

Verma module, the subspace (HW
0 )N of the irreducible module can be obtained by taking

the maximal number of basis vectors (2.96) which makes the determinant of the Gram

matrix non-zero.

From the state-field correspondence, the vertex operator V : HW
0 × C → End(HW

0 )

maps a state |ψ〉 ∈ HW
0 to a field V (|ψ〉, z) := ψ(z). The vertex operator has to satisfy the

following conditions[44, 60]:

(1) V (|ψ〉, z)|0〉 = ezL−1 |ψ〉,

(2) 〈ψ1|V (|ψ〉, z)|ψ2〉 is a meromorphic function of z,

(3) 〈ψ1|V (|ψ〉, z)V (|χ〉, w)|ψ2〉 is a holomorphic function for |z| > |w|, and

(4) 〈ψ1|V (|ψ〉, z)V (|χ〉, w)|ψ2〉 = εψχ〈ψ1|V (|χ〉, w)V (|ψ〉, z)|ψ2〉 by analytic continuation.

(2.97)

Condition (1) tells us that L−1 is the infinitesimal translation operator, and we have

V (L−1|ψ〉, z) = ∂zV (|ψ〉, z). Using these axioms, one can derive the duality relation

V (|ψ〉, z)V (|φ〉, w) = V (V (|ψ〉, z − w)|φ〉, w) , (2.98)

from which we can obtain the operator product expansion. For a chiral field V (|ψ〉, z) =

ψ(z), its mode expansion12 is given by

ψ(z) =
∑

n∈Z−hψ

ψnz
−n−hψ and ψn =

1

2πi
	
∫

0
ψ(z) zn+hψ−1 dz . (2.99)

12.Since ψn ∈ End(HW
0 ), the vertex operator V ( · , z) is a map to the formal Laurent series End(HW

0 )Jz±1K.
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We also use the notation Vn(|ψ〉) = ψn. Then, using the duality relation (2.98) and the

mode expansion, the OPE of ψ(z) and φ(w) can be written as

ψ(z)φ(w) =
∑

n∈Z−hψ
n≤hφ

V (ψn|φ〉, w) (z − w)−n−hψ . (2.100)

The normal ordered product of ψ(z) and φ(w) is defined as the constant term in the OPE

(2.100), that is

(ψφ)(z) = V (ψ−hψ |φ〉, z) , (2.101)

whose modes are given13 by

(ψφ)n =
∑

m∈Z−hψ
m≤−hψ

ψmφn−m + εψφ
∑

m∈Z−hψ
m>−hψ

φn−mψm , (2.102)

where n ∈ Z − hψ − hφ. The supercommutator of the modes ψn and φm is related to the

OPE (2.100) since

[ψn, φm] := ψnφm − εψφ φmψn

=

(
	
∫

0

dz

2πi
	
∫

0

dw

2πi︸ ︷︷ ︸
|z|>|w|

− 	
∫

0

dw

2πi
	
∫

0

dz

2πi︸ ︷︷ ︸
|w|>|z|

)
zn+hψ−1wm+hφ−1ψ(z)φ(w)

= 	
∫

0

dw

2πi
	
∫
w

dz

2πi
zn+hψ−1wm+hφ−1ψ(z)φ(w) , (2.103)

where we have used the definition of modes (2.99) and deformed the contour for integra-

tion over z.

Using the form of OPEs given in (2.100), we can write the OPE of W (i)(z) and W (j)(w)

as

W (i)(z)W (j)(w) =
∑
n∈Z

n≤hi+hj

V (W
(i)
n−hiW

(j)
−hj |0〉, w) (z − w)−n , (2.104)

in which the terms with n ≤ 0 are regular as z − w → 0. Evaluating the contour integral

(2.103) with the OPE (2.104), the supercommutator of W (i)
n and W (j)

m is obtained as

[W
(i)
n ,W

(j)
m ] =

hi+hj∑
k=1

(
n+ hi − 1

n+ hi − k

)
Vn+m(W

(i)
k−hiW

(j)
−hj |0〉) . (2.105)

In order to determine the fields appearing in the OPE (2.104) and the supercommutator

(2.105), we need to express W (i)
n−hiW

(j)
−hj |0〉, where 1 ≤ n ≤ hi + hj , in terms of the basis

vectors (2.96). Since it has the conformal weight hi + hj − n, we only need the basis

vectors in the level N = hi + hj − n subspace (HW
0 )N where 0 ≤ N ≤ hi + hj − 1. Let

|l, N〉 ∈ (HW
0 )N be a basis vector of the form (2.96) and 1 ≤ l ≤ dim(HW

0 )N , and write

W
(i)
n−hiW

(j)
−hj |0〉 =

∑
l

αi,j;Nl |l, N〉 . (2.106)

13.This definition of normal ordering in terms of the modes results in normal ordered products that are not
necessary quasiprimary. There is a way to define ‘quasiprimary normal ordered products’ which can be found,
for example, in [38].
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We need to determine the coefficients αi,j;Nl . By taking the normalisation 〈0|0〉 = 1, the

coefficient at level 0 is given by

αi,j;01 = 〈0|W (i)
hj
W

(j)
−hj |0〉 , (2.107)

which vanishes for hi > hj . In addition, from symmetry or antisymmetry of the supercom-

mutator (2.105), this coefficient should vanish for hi < hj . Therefore, αi,j;01 is non-zero

only for hi = hj . Since αi,i;01 gives the normalisation of the field W (i)(z) and it is arbitrary,

we take αi,i;01 = d
W (i) = c

hi
by convention. In general, other coefficients can be determined

by acting Lm with 0 ≤ m ≤ N on the both sides of (2.106) and using the commutators

(2.95), by checking symmetry or antisymmetry of the supercommutator (2.105), and by

demanding the Jacobi identity to hold for the supercommutator. It turns out that these

conditions force some W-algebras to exist only for certain values of the central charges.

If a W-algebra has an outer automorphism Ω, it is possible to impose boundary condi-

tions on the generators W (i)(z) as

W (i)(e2πiz) = Ω(W (i)(z)) , (2.108)

which results in so-called twisted representations of the W-algebra. For simplicity, consider

W(2, δ) with the generator W (z) of conformal dimension δ ∈ 1
2Z>0 and the vanishing

self-coupling constant CW
WW = 0. In this case, the outer automorphism Ω is given by

Ω(T (z)) = T (z) and Ω(W (z)) = −W (z) , (2.109)

which is an involution. Due to the condition (2.108) and the automorphism (2.109), the

mode expansion of W (z) becomes

W (z) =
∑

n∈Z−δ+ 1
2

Wnz
−n−δ . (2.110)

Then, the OPE of W (z) with another chiral field φ(w) becomes

W (z)φ(w) =
∑

n∈Z+ 1
2

n≤δ+hφ

V (Wn−δ|φ〉, w) (z − w)−n , (2.111)

which picks up the phase factor of −1 when W (z) is rotated by 2π around w. Twisted

representations are constructed from the modes (2.110), and corresponding primary fields

are non-local with respect to W (z) as in (2.111). In general, an automorphism of the kind

(2.109) exists if and only if the self-coupling CW
WW vanishes[46]. If W (z) is fermionic, its

self-coupling vanishes due to the fermion number conservation, and the twisted sector is

called the Ramond sector.

For bosonic W(2, δ) algebras, the zero modes L0, W0, and ĉ form the Cartan subal-

gebra. Therefore, a highest weight vector is characterised by the L0-eigenvalue h and

W0-eigenvalue w, and it should satisfy

Ln|h,w〉 = 0 and Wn|h,w〉 = 0 for all n > 0 . (2.112)
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For Ramond sectors of fermionic W(2, δ) algebras, highest weight vectors are characterised

similarly while odd generators of a superalgebra cannot be included in its Cartan subalge-

bra in general14.

In the following, we summarise a few examples of W-algebras that are relevant to the

discussion of this thesis.

•W(2, 2)

In W(2, 2), there is the weight 2 chiral primary field W (z) in addition to the stress-energy

tensor T (z). Their modes satisfy

[Ln,Wm] = (n−m)Wn+m and

[Wn,Wm] =
1

2
CW
WW (n−m)Wn+m + (n−m)Ln+m +

c

12
n(n2 − 1)δn+m,0 (2.113)

as well as the usual Virasoro relations (2.46). In (2.113), CW
WW is a free parameter, and

W(2, 2) exists for generic values of c.

It is possible to express W(2, 2) as Vir⊕ Vir. Let

T (z) = T (1)(z) + T (2)(z) and W (z) = α

(√
c2

c1
T (1)(z)−

√
c1

c2
T (2)(z)

)
, (2.114)

where α = ±1 is arbitrary. Straightforward calculations show that W (z) is primary with

respect to T (z), and that they are normalised properly; dT = dW = c
2 where c = c1 + c2.

Using the definition given in (2.114), one can calculate that the modes Ln and Wn satisfy

the commutators (2.113) with

CW
WW = 2α

c2 − c1√
c1c2

. (2.115)

When c1 = c2, this self-coupling constant vanishes and there is an outer automorphism

given by (2.109), which gives rise to the twisted sector of W(2, 2).

• N = 1 Super-Virasoro Algebra

The N = 1 super-Virasoro algebra, which we denote by SVir, is the extension of the

Virasoro algebra by a chiral primary field G(z) of weight 3
2 . Together with the usual

bosonic stress-energy tensor T (z), G(z) forms the super-stress-energy tensor[9]

T(Z) =
1

2
G(z) + θT (z) , (2.116)

where Z := (z, θ) is a superspace coordinate with θ being a Grassmann variable. The

commutators and anticommutators involving the modes Gn are

[Ln, Gm] =
(n

2
−m

)
Gn+m and

{Gn, Gm} = 2Ln+m +
c

3

(
n2 − 1

4

)
δn+m,0 . (2.117)

14.On a Z2-graded representation space H = H0̄ ⊕H1̄, an odd operator can be regarded as an off-diagonal
matrix ( 0 A

B 0 ), where A ∈ Hom(H1̄,H0̄) and B ∈ Hom(H0̄,H1̄). Therefore, if an odd operator acts diagonally
on some representation space, then this space is not Z2-graded by fermion parity in general.
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The untwisted sector is also called the Neveu–Schwarz sector in which the modes Gn take

n ∈ Z + 1
2 . In the Ramond sector, Gn has integer n. In the Neveu–Schwarz sector, L0,

L±1, and G± 1
2

form the Lie superalgebra osp(1|2) which is a graded extension of sl(2) and

corresponds to the global superconformal group[9] on a supermanifold CP1|1.

A representation space H of SVir is Z2-graded, and it can be written as H = H0̄ ⊕H1̄,

where H0̄ is the subspace formed by bosonic states and H1̄ corresponds to fermionic states.

Note that the vacuum state |0〉 is defined to be bosonic. So-called the fermion parity

operator (−1)F is defined to act as 1 on H0̄ and −1 on H1̄, from which we can deduce

that (−1)F commutes with bosonic fields and anticommutes with fermionic fields. Using

the fermion parity operator, actions of the outer automorphism ΩF of SVir, under which

G(z) 7→ −G(z), can be written as

ρ(ΩF (x))|0〉 = (−1)Fρ(x)|0〉 , (2.118)

where x ∈ SVir and ρ : SVir→ End(H) is the representation map.

Similar to the Virasoro case, reducible Verma modules of the N = 1 super-Virasoro

algebra occur at values of c and h that can be parametrised15 as

c(p, q) =
3

2

(
1− 2(q − p)2

pq

)
and hr,s =

(qr − ps)2 − (q − p)2

8pq
+

1

32

(
1− (−1)r+s

)
,

(2.119)

where 1 < p < q should satisfy

p, q ∈ Z , p and q coprime , p+ q ∈ 2Z , or

p, q ∈ 2Z ,
p

2
and

q

2
coprime ,

p

2
+
q

2
/∈ 2Z , (2.120)

and we have 1 ≤ r ≤ p − 1 and 1 ≤ s ≤ q − 1. Note that p and q must be either both

odd or both even. For these ranges of r and s, we can form a table containing the values

of hr,s using (2.119) which is called the Kac table. Representations labelled by hr,s with

r + s ∈ 2Z are in the Neveu–Schwarz sector, and those with r + s ∈ 2Z + 1 are in the

Ramond sector. An N = 1 super-Virasoro minimal model SM (p, q) is constructed from

the representations with c = c(p, q) and h = hr,s given in (2.119). When q = p + 2, the

irreducible quotients of the highest weight representations with c(p, q) and hr,s are unitary.

As in the Virasoro cases, we have hr,s = hp−r,q−s which leads to the identification of Kac

labels (r, s) ∼ (p − r, q − s). Note that, unlike the Virasoro cases, it is possible to have

p, q ∈ 2Z in which case there is a representation labelled by the Kac label (p2 ,
q
2) which is

the fixed point of this identification. Moreover, this fixed point is in the Ramond sector and

has h = c
24 , which is the lowest in this sector.

Highest weight representations of SVir in the Neveu–Schwarz sector are very similar

to those of the Virasoro algebra. A highest weight vector |h〉 is characterised by its L0-

eigenvalue h and the fermion parity ε = ±1, that is (−1)F |h〉 = ε|h〉. For the values of

15.The formula for unitary cases can be found in [12]. The more general expression quoted here which
includes non-unitary cases can be found, for example, in [50].
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c and h parametrised by (2.119), Verma modules are reducible, and irreducible highest

weight modules can be obtained by taking their quotients. Their Virasoro characters are

given in Appendix A.1.

On the other hand, representations of SVir in the Ramond sector are more involved.

Since there is the zero mode G0, a highest weight vector can be taken as an eigenvector of

G0. From the SVir relations (2.117), we can write

(G0)2 = L0 −
c

24
. (2.121)

Therefore, if a highest weight vector has the G0-eigenvalue λ, then its L0-eigenvalue h is

given by

h = λ2 +
c

24
, (2.122)

and for a given value of h, there are two highest weight vectors |±λ〉 unless h = c
24 . In

addition, these highest weight vectors do not have definite fermion parities; since G0 and

(−1)F anticommute, (−1)F |λ〉 has the G0-eigenvalue −λ, and we can identify this vector

as

(−1)F |λ〉 = |−λ〉 . (2.123)

In a L0-eigensubspace of the Ramond Verma module generated from |λ〉, each of the basis

vectors of the form

L−ml · · ·L−m1
G−nk · · ·G−n1

|λ〉 , (2.124)

where 0 < m1 ≤ · · · ≤ ml and 0 < n1 < · · · < nk, is not necessarily an eigenvector of

G0, and one needs to change bases to obtain G0 eigenvectors. From the parametrisation

(2.119), we define

(λr,s)
2 = hr,s −

1

24
c(p, q) . (2.125)

Then, the highest weight state |λr,s〉 has the L0- and G0-eigenvalues hr,s and λr,s respec-

tively. For a given value of c, we may write Mλ to denote the Verma module constructed

from a highest weight state |λ〉.
So far, we are treating the fermion parity operator (−1)F as an operator defined on a

representation space, but we may treat this operator as a part of the algebra, and consider

the so-called extended Ramond algebra[21]. Then, L0 and (−1)F form the Cartan subalge-

bra of the extended Ramond algebra, and a highest weight vector |h〉 has definite fermion

parity ε = ±1 and clearly cannot be an eigenvector of G0. Then, there is another vector

G0|h〉, which has the opposite fermion parity −ε and thus orthogonal to |h〉, at the level

zero subspace of the Verma module. For the Verma module Mh of the extended Ramond

algebra constructed from |h〉, there are pairs of vectors of the form

L−ml · · ·L−m1
G−nk · · ·G−n1

|h〉 and L−ml · · ·L−m1
G−nk · · ·G−n1

G0|h〉 , (2.126)

where 0 < m1 ≤ · · · ≤ ml and 0 < n1 < · · · < nk, that have the same conformal

dimensions but opposite fermion parities. If h 6= c
24 , a Verma module Mh can be written as

the direct sum

Mh = Mλ ⊕M−λ , (2.127)
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where h and λ are related by (2.122). If Mλ and M−λ are irreducible, Mh is also irreducible

as a representation of the extended Ramond algebra. When h 6= c
24 , the vectors |h〉, G0|h〉,

and |±λ〉 are related by

{
|h〉 = a (|λ〉+ ε|−λ〉)

G0|h〉 = aλ (|λ〉 − ε|−λ〉)
↔


|λ〉 =

1

2a

(
|h〉+

1

λ
G0|h〉

)
|−λ〉 =

ε

2a

(
|h〉 − 1

λ
G0|h〉

) . (2.128)

where a ∈ C satisfies

dh = |a|2 2dλ (2.129)

in which dh := 〈h|h〉 and dλ := 〈±λ|±λ〉. Since the fermion parity operator acts diagonally

on a Verma module Mh, it is preferable to use Mh, rather than M±λ, as it is a Z2-graded

representation of a superalgebra.

When h = c
24 , we have (G0)2|h〉 = 0 from (2.121), and we can see that G0|h〉 is a null

vector which is also an eigenvector of G0 with the zero eigenvalue. Since it is a null vector,

we can set G0|h〉 = 0, then |h〉 becomes an eigenvector of G0 as well. If we write |λ0〉 as an

eigenvector of G0 with the eigenvalue λ0 = 0, then we cannot determine (−1)F |λ0〉 from

the action of G0 alone. Therefore, the level zero subspace of the irreducible module is one

dimensional when h = c
24 .

The Virasoro characters of Ramond Verma modules and irreducible modules are given

in Appendix A.1.

2.2.3 Super W-Algebras

• SW(3
2 ,

3
2)

A super W-algebra SW(3
2 , h1, . . . , hN ) is the extension of the N = 1 super-Virasoro algebra

by chiral primary superfields W(i)(Z) = W (i)(z) + θU (i)(z) of integer or half-integer con-

formal weights hi. The component fields W (i)(z) and U (i)(z) are Virasoro primary fields.

In order for W(i)(Z) to be a primary superfield, the following supercommutators involving

its component fields have to hold[40]

[Gn,W
(i)
m ] = C

Ui
GWi

U
(i)
n+m and [Gn, U

(i)
m ] =

C
Wi
GUi

2hi
(n(2hi − 1)−m)W

(i)
n+m . (2.130)

By taking the normalisation

d
W (i) = 〈0|W (i)

hi
W

(i)
−hi |0〉 =

c

hi
and d

U(i) = 〈0|U (i)
h′i
U

(i)
−h′i
|0〉 =

c

h′i
, (2.131)

where h′i := hi + 1
2 , structure constants in (2.130) are given by

(C
Ui
GWi

)2 = (−1)2hi+1(2hi + 1) and C
Ui
GWi

=
2hi + 1

2hi
(−1)2hi+1C

Wi
GUi

. (2.132)

Since U (i)(z) is the superdescendant of W (i)(z), their state vectors are related by

U
(i)
−h′i
|0〉 =

1

C
Ui
GWi

G− 1
2
W

(i)
−hi |0〉 . (2.133)
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The remaining supercommutators can be obtained by the same methods as for the W-

algebra cases.

In SW(3
2 ,

3
2), there are four chiral fields T (z), G(z), W (z), and U(z). The Virasoro

primary field W (z) has the conformal dimension 3/2, and its superdescendant U(z), which

is also a Virasoro primary field, has the conformal dimension 2. In addition to the SVir

relations, the modes of the generators satisfy

[Ln,Wm] =
(n

2
−m

)
Wn+m , [Ln, Um] = (n−m)Un+m ,

{Gn,Wm} = 2Un+m , [Gn, Um] =
(
n− m

2

)
Wn+m ,

{Wn,Wm} = CU
WW Un+m + 2Ln+m +

c

3

(
n2 − 1

4

)
δn+m,0 ,

[Wn, Um] =
(
n− m

2

)(2

3
CW
WU Wn+m +Gn+m

)
, and

[Un, Um] =
1

2
CU
UU(n−m)Un+m + (n−m)Ln+m +

c

12
n(n2 − 1)δn+m,0 ,

(2.134)

where

CU
WW = CU

UU and CW
WU =

3

4
CU
UU , (2.135)

and CU
UU is a free parameter. SW(3

2 ,
3
2) exists for generic values of c.

Similar to the non-supersymmetric case, it is possible to embed SW(3
2 ,

3
2) in SVir⊕SVir.

In (2.134), Ln and Un form the W(2, 2) subalgebra which suggests that we can take

G(z) = β1G
(1)(z) + β2G

(2)(z) , T (z) = T (1)(z) + T (2)(z)

W (z) = α

(√
c2

c1
β1G

(1)(z)−

√
c1

c2
β2G

(2)(z)

)
, and

U(z) = α

(√
c2

c1
T (1)(z)−

√
c1

c2
T (2)(z)

)
,

(2.136)

where α = ±1 and βi = ±1 are arbitrary constants. The chiral fields in (2.136) are

normalised according to (2.131); G(z), W (z), and U(z) are Virasoro primary with respect

to T (z); and W (z) is superprimary with respect to G(z). Modes of the chiral fields in

(2.136) satisfy the SW(3
2 ,

3
2) relations (2.134), and the free parameter is given by

CU
UU = 2α

c2 − c1√
c1c2

, (2.137)

where the relations (2.135) hold regardless of the values of βi. Therefore, different values

of βi are related by automorphisms of SW(3
2 ,

3
2).

Each SVir in SVir⊕ SVir has an outer automorphism ΩFi
: G(i)(z) 7→ −G(i)(z), under

which the other fields are invariant; at generic values of c, SW(3
2 ,

3
2) has a Z2×Z2 automor-

phism group coming from the Z2 automorphisms of the two copies of SVir whose actions

are equivalent to taking different values of βi. Considering SVir ⊂ SW(3
2 ,

3
2), the overall

fermionic automorphism of SW(3
2 ,

3
2) is given by

(ΩF1
,ΩF2

) : G(z) 7→ −G(z) , W (z) 7→ −W (z) , (2.138)
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which leaves the bosonic fields invariant. For brevity, denote ΩF := (ΩF1
,ΩF2

). This

automorphism can be used for the usual GSO projection, and is related to the usual Ramond

sector of SW(3
2 ,

3
2). If we define

G̃(z) = β1G
(1)(z)− β2G

(2)(z) and W̃ (z) = α

(√
c2

c1
β1G

(1)(z) +

√
c1

c2
β2G

(2)(z)

)
,

(2.139)

then, the other elements of this Z2 × Z2 automorphism group can be written as

(id1,ΩF2
) : G(z) 7→ G̃(z) , W (z) 7→ W̃ (z) , and (2.140)

(ΩF1
, id2) : G(z) 7→ −G̃(z) , W (z) 7→ −W̃ (z) . (2.141)

They leave the bosonic fields invariant. We may also denote them as ΩF1
:= (ΩF1

, id2) and

ΩF2
:= (id1,ΩF2

).

When c1 = c2, the self-coupling of U(z) vanishes, and there will be another Z2 outer

automorphism given by

ΩU : W (z) 7→ −W (z) , U(z) 7→ −U(z) , (2.142)

which leaves G(z) and T (z) invariant. In this case, we have

G̃(z) = αW (z) and W̃ (z) = αG(z) . (2.143)

We emphasis that α = ±1 is a constant determined by an embedding of SW(3
2 ,

3
2) in

SVir⊕SVir. Note that changing the sign of α swaps the actions of ΩF1
and ΩF2

. Combining

the fermionic automorphisms and ΩU , we get three more automorphisms

ΩF◦ΩU = ΩU◦ΩF : G(z) 7→ −G(z) , W (z) 7→ W (z) , U(z) 7→−U(z) , (2.144)

ΩF1
◦ΩU = ΩU◦ΩF2

: G(z) 7→−αW (z) , W (z) 7→ αG(z) , U(z) 7→−U(z) , (2.145)

ΩF2
◦ΩU = ΩU◦ΩF1

: G(z) 7→ αW (z) , W (z) 7→−αG(z) , U(z) 7→−U(z) . (2.146)

We denote them by Ω̃F := ΩF ◦ ΩU , Ω̃F1
:= ΩF1

◦ ΩU , and Ω̃F2
:= ΩF2

◦ ΩU . While Ω̃F

is an involution, that is, it is the inverse of itself, Ω̃F1
and Ω̃F2

square to ΩF . From this

information, we find that the set of outer automorphisms

{id, ΩF1
, ΩF2

, ΩF , ΩU , Ω̃F1
, Ω̃F2

, Ω̃F} (2.147)

forms a group which is isomorphic16 to the dihedral group D4. Conjugacy classes and

corresponding centralisers of this automorphism group are summarised in Table 2.1, in

which V4
∼= Z2 × Z2 denotes the Klein four group.

2.2.4 Intertwiners

In Subsection 2.2.2, we have encountered the vertex operator, which is defined as a map

V : HA0 ×C→ End(HA0 ) where HA0 is the vacuum irreducible module of a chiral algebra A

16.One way to identify with D4 = 〈x, a | a4 = x2 = e, xax−1 = a−1〉 is to let a = Ω̃F1
, a2 = ΩF , a3 = Ω̃F2

,
x = ΩU , ax = ΩF1

, a2x = Ω̃F , and a3x = ΩF2
.
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Conjugacy classes Centralisers

{id} All elements in D4

{ΩF} All elements in D4

{ΩU , Ω̃F} {id, ΩF , ΩU , Ω̃F} ∼= V4

{ΩF1
, ΩF2

} {id, ΩF , ΩF1
, ΩF2

} ∼= V4

{Ω̃F1
, Ω̃F2

} {id, ΩF , Ω̃F1
, Ω̃F2

} ∼= Z4

Table 2.1: Conjugacy classes and corresponding centralisers of the D4 outer automorphism group
of SW( 3

2 ,
3
2 ) when c1 = c2.

with a given value of the central charge c. We can generalise this concept to an intertwining

operator, which is defined as a map

V k
ij;α : Hi × C→ Hom(Hj ,Hk) , (2.148)

where Hi, Hj , and Hk are irreducible A-modules with the central charge c, and this map

is an intertwiner for A-representations. The dimension of the space of intertwiners V k
ij;α

is given by Nk
ij , and the multiplicity labels run α = 1, . . . , Nk

ij . An intertwining operator

exists when the fusion coefficient Nk
ij is non-zero. We can understand this operator in

several ways: for a given z ∈ C, we can view this as

V k
ij;α( · , z) : Hi ×Hj → Hk (2.149)

in the sense that

V k
ij;α(|ψi〉, z)|ψj〉 ∈ Hk , (2.150)

where |ψi〉 ∈ Hi and |ψj〉 ∈ Hj; equivalently, we can think of this as

V k
ij;α( · , z) : (Hk)

∗ ×Hi ×Hj → C (2.151)

given by

〈ψk|V k
ij;α(|ψi〉, z)|ψj〉 ∈ C , (2.152)

where 〈ψk| ∈ (Hk)
∗.

In order to see how V k
ij;α intertwines A-actions, we need a comultiplication ∆ : A →

A⊗A. For |ψi〉 ⊗ |ψj〉 ∈ Hi ⊗Hj and Wn ∈ A, where n ∈ Z − hW , the comultiplication

formula is given by

∆z,0(Wn)(|ψi〉 ⊗ |ψj〉) = 	
∫
C

dw

2πi
wn+hW−1 W (w)V k

ij;α(|ψi〉, z)|ψj〉 , (2.153)

where the contour C encircles z and 0, and we have assumed Hi and Hj are untwisted

representations. By deforming the contour C to the contours around z and 0, we can write

this as

	
∫
z

dw

2πi
wn+hW−1 W (w)V k

ij;α(|ψi〉, z)|ψj〉+ εWψi
	
∫

0

dw

2πi
wn+hW−1 V k

ij;α(|ψi〉, z)W (w)|ψj〉

= 	
∫
z

dw

2πi
wn+hW−1

∑
m≤hψi

(w−z)−m−hW V k
ij;α(Wm|ψi〉, z)|ψj〉+εWψi V

k
ij;α(|ψi〉, z)Wn|ψj〉 ,

(2.154)
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where m ∈ Z− hW . The phase factor εWψi ∈ C is defined by

W (w)V k
ij;α(|ψi〉, z) = εWψi V

k
ij;α(|ψi〉, z)W (w) , (2.155)

where |w| > |z| on the left hand side, and the right hand side is the clockwise analytic

continuation[57] from |w| < |z|. For untwisted representations, εWψi = ±1 is determined

by the fermion parities of W (w) and |ψi〉. By shifting w 7→ w + z, we can evaluate the

remaining integral, and obtain

∆z,0(Wn)(|ψi〉 ⊗ |ψj〉)

=
∞∑
k=0

(
n+ hW − 1

k

)
zn+hW−1−k V k

ij;α(W1+k−hW |ψi〉, z)|ψj〉+ εWψi V
k
ij;α(|ψi〉, z)Wn|ψj〉 .

(2.156)

Therefore, the comultiplication gives ∆z,0(Wn) ∈ A⊗A as

∆z,0(Wn) =

∞∑
k=0

(
n+ hW − 1

k

)
zn+hW−1−k W1+k−hW ⊗ 1 + εWψi 1⊗Wn . (2.157)

For given representation maps ρi : A → End(Hi) and ρj : A → End(Hj), the fusion

product

(ρi ⊗ ρj) ◦∆ : A → End(Hi ⊗Hj) (2.158)

defines an A-representation on Hi ⊗Hj . In general, the fusion product of two irreducible

representations is not irreducible, and it can be decomposed into irreducible representa-

tions as

Hi ⊗Hj =
⊕
k

Nk
ij Hk (2.159)

with maps ρk;α : A → End(Hk) that are the restrictions of (2.158). Using the fusion

product, the operator V k
ij;α can be understood as an intertwiner for A-representation

V k
ij;α : Hi ⊗Hj → Hk (2.160)

given by

ρk;α(Wn) V k
ij;α(|ψi〉 ⊗ |ψj〉) = V k

ij;α( (ρi ⊗ ρj) ◦∆(Wn)(|ψi〉 ⊗ |ψj〉) ) . (2.161)

This means that WnV
k
ij;α(|ψi〉, z)|ψj〉 is given by the right hand side of (2.156). In order

to calculate fusion products involving twisted representations, one needs to modify the

integral for ∆z,0(W̃n) where W̃n is a series in Wm. The comultiplication formula and fusion

products of twisted representations are given by Gaberdiel[57].

For the highest weight state |i〉 ∈ Hi with the conformal weight hi, the operator

V k
ij;α(|i〉, z) acts as a chiral primary field, that is

[Ln, V
k
ij;α(|i〉, z)] =

(
hi(n+ 1)zn + zn+1∂

)
V k
ij;α(|i〉, z) . (2.162)
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Intertwiners V k
ij;α are also called chiral vertex operators (CVOs), and they can be used to

construct chiral parts of correlation functions. For simplicity, consider A = Vir, in which

case Nk
ij ∈ {0, 1} and the multiplicity labels α are suppressed. Given the highest weight

vectors |i〉, |j〉, |k〉, and |l〉, a Virasoro four-point block (2.64) can be written as

F
p
ijkl(z) = 〈i|V i

jp(|j〉, 1)V p
kl(|k〉, z)|l〉 . (2.163)

By comparing (2.98) and (2.68), we see that the duality relation for CVOs gives rise to the

fusing matrix as

V i
jp(|j〉, 1)V p

kl(|k〉, z) =
∑
q

Fpq
[
j k
i l

]
V i
ql(V

q
jk(|j〉, 1− z)|k〉, z) . (2.164)

If we introduce a graphical notation17

V k
ij( · , z) =

i
jk

(z)

(2.166)

then, the relation (2.164) can be understood as

i
j
p

k
l

(1) (z)

=
∑
q

Fpq
[
j k
i l

]
i

j
q k

l
(z)

(1-z)
(2.167)

For intertwiners, Condition (4) of (2.97) becomes a relation

V i
jp(|j〉, z)V

p
kl(|k〉, w) =

∑
q

B
(ε)
pq

[
j k
i l

]
V i
kq(|k〉, w)V q

jl(|j〉, z) , (2.168)

where B is called the braiding matrix, and ε = ± specifies the direction of analytic contin-

uation. Note that B(−ε) is the inverse of B(ε), that is∑
t

B
(ε)
pt

[
j k
i l

]
B

(−ε)
tq

[
k j
i l

]
= δp,q , (2.169)

but B2 := B(ε)B(ε) is not necessarily the identity; B2 is the monodromy matrix for the

analytic continuation of z around w.

The matrices F and B satisfy various relations and identities—among them, the hexagon

identity for B resembles the Yang–Baxter equation, and the pentagon identity for F can be

used to prove the Verlinde formula—their details can be found, for example, in [30], [31],

[32], and [76]. For Virasoro minimal models, elements of the fusing matrices are given in

Appendix A.3.

17.Since V kij,α( · , z) ∈ Hom(Hi ⊗Hj ,Hk), one has to take care of the directions of lines. Using the notation
of [76], we can write

V kij,α( · , z) =

i j

k

α (2.165)

where the diagram is read from bottom to top.
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From the point of view of Moore and Seiberg[30, 31], we can picture V k
ij( · , z) as a

Riemann sphere with three punctures that are located at ∞, z, and 0 in some local co-

ordinates, and the representations Hk, Hi, and Hj labelling the punctures. In order to

distinguish the puncture labelled by k from the other two, we may introduce “orientations”

to the punctures18; they are represented by arrows around punctures in Figure 2.1. In this

picture, compositions of CVOs are understood as sewings of Riemann spheres. Conversely,

the relations (2.164) and (2.168) can be understood as the relations between the three

distinct ways of decomposing a Riemann sphere with four punctures into two Riemann

spheres with three punctures; they are called pants decompositions.

∞ 0

z

k j

i

Figure 2.1: V k
ij( · , z) as a Riemann sphere with three punctures

Writing the identity operator as a CVO, the Virasoro character (A.1) of a representation

Hi can be written as

χi(q) = Tri

(
V i

0i(|0〉, 1) qL0− c
24

)
=

i

0 (2.170)

where 0 denotes the vacuum representation. In this sense, Virasoro characters can be

viewed as zero-point functions on a torus. Then, the modular S transformation relates the

two distinct ways of sewing to obtain the torus as depicted in Figure 2.2. For Virasoro and

N = 1 super-Virasoro minimal models, elements of the modular S matrices are given in

Appendix A.2.

0

i

0

j

=
∑
j

Sij

Figure 2.2: The modular S transformation and the pants decompositions of a torus.

On an N = 1 super-Riemann surface, which is locally isomorphic to C1|1, there are two

kinds of punctures: Neveu–Schwarz (NS) punctures and Ramond (R) punctures. While

NS punctures can be inserted at any point on a surface, a Ramond puncture is a singularity

in the super-Riemann surface structure. As a consequence, we cannot assign fermionic

coordinates to R punctures. Moreover, it is possible to take local coordinates such that a

18.For example, in [88].
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Ramond puncture becomes a square-root branch point of fermions, that is θ → −θ for the

fermionic coordinate when the bosonic coordinate z is rotated around the R puncture by

2π. More details can be found, for example, in Witten’s notes[107].

On a compact super-Riemann surface, the number of Ramond punctures is always

even. Therefore, a super-Riemann sphere with three punctures can either have three NS

punctures or two R punctures and one NS puncture. This determines sectors of represen-

tations appearing in the labels of a CVO. In addition, it is only possible to glue punctures

in the same sector. We draw a line between two Ramond punctures representing a branch

cut of fermions[17, 43]. Then, the modular S transformation of a Ramond character into

NS supercharacters can be understood geometrically as shown in Figure 2.3. Here, the

numbered arrows correspond to: (1) sewing; (2) modular S transformation; and (3) pants

decomposition. On the resulting sphere, the branch cut encircles one of the NS punctures;

considering radial quantisation around this puncture and recalling the definition of a Vi-

rasoro supercharacter (A.7), we can associate the fermion parity operator (−1)F to the

branch cut of fermions.

R R

NS NS

R

NS

NS
NS NS

NS

(1)−→ (2)−→ (3)−→

Figure 2.3: The modular S transformation of a Ramond character

One of the remarkable features of CFT is that there is a relation between the modular

S matrix and the fusion rules, which is given by the Verlinde formula. From the fusion

coefficients Nk
ij , one can form a fusion matrix Ni which is defined by

(Ni)jk := Nk
ij . (2.171)

Some of their properties are apparent from those of the fusion coefficients. Since N j
0i = δji ,

the fusion matrix N0 is the identity. Using the fusion coefficient identities

Nk
ij = Nk

ji , Nk
ij = N j+

ik+ , Nk
ij = Nk+

i+j+ , and
∑
p∈I

N i
jpN

p
kl =

∑
q∈I

N i
qlN

q
jk , (2.172)

one can show NT
i = Ni+ and so on. The fusion matrices form the adjoint representation of

the fusion rule algebra, that is

Ni Nj =
∑
k∈I

Nk
ij Nk . (2.173)

Since elements of Ni are all non-negative integers, the set of fusion matrices is also called

a non-negative integer matrix representation (NIM-rep). Since the fusion algebra is com-

mutative, fusion matrices commute as well, and consequently they can be simultaneously

diagonalised. The Verlinde formula[25] (2.176) shows the modular S matrix diagonalises

the fusion matrices, that is

Ni = S Di S−1 , (2.174)
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where Di is a diagonal matrix given by

(Di)jk = δjk
Sij
S0j

. (2.175)

In terms of the components, the Verlinde formula can be written as

Nk
ij =

∑
l∈I

Sil Sjl S−1
lk

S0l
. (2.176)

Since the matrices Di are diagonal, their elements form one-dimensional representations

of the fusion algebra

(Di)nn(Dj)nn =
∑
k∈I

Nk
ij (Dk)nn , (2.177)

In particular, the quantity

Di = (Di)00 =
Si0
S00

(2.178)

is called the quantum dimension of a representation Hi, which is also the eigenvalue asso-

ciated with the Perron–Frobenius eigenvector of Ni. Quantum dimensions must satisfy[51]

Di ∈ {2 cos
(π
n

)
: n ∈ Z≥3} ∪ [2,∞) (2.179)

in which 1 is the smallest possible number. Note that D0 = 1, and if another representation

has Di = 1 then the fusion of i with some other representation contains only one repre-

sentation. Chiral primary fields associated to representations with quantum dimension

Di = 1 are called simple currents. Given a fusion rule, one can relate this to a polynomial

equation. For example, if we have a Lee-Yang type fusion rule ϕ ⊗ ϕ = 0 ⊕ ϕ, then by

writing Dϕ = x, we get x2 = 1 + x whose solutions are the golden ratio x = 1
2(1 ±

√
5).

Only the positive solution can be interpreted as the quantum dimension.

The Verlinde formula relates the fusion coefficients, that are algebraic in its nature, to

the modular S matrix which is of geometric origin, and it has far-reaching consequences.

The proofs of this formula are given in [23], [33], and [28].

2.2.5 Modular Invariant Partition Functions

A torus Tτ can be regarded as the quotient C/(Z + τZ) of the complex plane by a lattice

Z + τZ where τ ∈ C. This means that z ∈ C with the identifications

z ∼ z + n+mτ ∀n,m ∈ Z (2.180)

describes a coordinate on Tτ . As Riemann surfaces, Tτ with τ ∈ H, where H is the upper

half plane H := {τ ∈ C : Im τ > 0}, are conformally equivalent if they are related by the

modular group. The modular group PSL(2,Z) is the group of transformations of τ that

leave τ ∈ H, and this group is generated by the two elements

S : τ 7→ −1

τ
and T : τ 7→ τ + 1 . (2.181)

They are called the modular S and T transformations.
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In the basis of characters, modular S and T transformations are represented by the

matrices given in (A.16). For a bosonic chiral algebra, they should satisfy

S2 = C = (ST)3 , (2.182)

where C is the charge conjugation matrix given by Cij = δj,i+ . The equation above is

nothing but the defining relation of the modular group except for C is not necessarily the

identity matrix. This is due to the fact that S transformation exchanges two fundamental

cycles of a torus by S : (a, b) → (−b, a), and consequently S2 : (a, b) → (−a,−b) corre-

sponds to space and time reversal, which should result in charge conjugation. In addition,

S and T are unitary matrices and S is symmetric as well, that is

ST = S , S† = S−1 , and T† = T−1 . (2.183)

Complex conjugate of a S matrix element gives Sij = Si+j . For fermionic theories, especially

for N = 1 super-Virasoro minimal models, there are some subtleties involved in defining

the modular S and T matrices to obey the conditions above. They are discussed in Appendix

A.2.

In a CFT, we usually start from a complex plane with coordinate z and map it to

an infinite cylinder by z = e−2πiw. On the cylinder, w ∼ w + n for all n ∈ Z. Due to

radial quantisation on the plane, Imw and Rew correspond to ‘time’ and ‘space’ directions,

respectively. By introducing w = x+ iy, we can write the Hamiltonian on this cylinder as

Hcyl. =

∫ 1

0
T cyl.
yy dx . (2.184)

Using the transformation law (2.51), this can be written in terms of the Virasoro generators

on the plane as

Hcyl. = 2π
(
L0 + L̄0 −

c

12

)
. (2.185)

If we make the time direction periodic by choosing purely imaginary τ > 0 and imposing

w ∼ w+mτ for all m ∈ Z, then we obtain a theory defined on the torus Tτ . It is sometimes

useful to think this torus as the parallelogram with vertices at 0, 1, τ , and τ + 1 on the

w-plane. If we let τ = it where t ∈ R, the torus partition function is given by

Z = TrH e
−tHcyl. = TrH e

2πiτ(L0+L̄0− c
12) , (2.186)

where H is the space of states for the bulk fields. If H is given by (2.54), then the partition

function becomes

Z =
∑
I∈S

χi(q) χī(q̄) , (2.187)

where I = (i, ī) labels a bulk field, χi(q) is the Virasoro character (A.1) of an irreducible

module Hi with q := e2πiτ , and q̄ is the complex conjugate of q, that is q̄ = e−2πiτ̄ with

the complex conjugate τ̄ of τ . If we assume this theory has the same holomorphic and

antiholomorphic chiral algebras A ∼= A, then we can write

Z =
∑
i,j∈I

Mij χi(q) χj(q̄) , (2.188)



2.2 Chiral Algebras | Modular Invariant Partition Functions 47

where I is the indexing set for A irreducible representations, and the multiplicity matrix

M encodes the bulk spectrum S of the theory. In order for this theory to be defined on a

torus, its partition function must be invariant under modular transformations, in particular,

the modular S and T transformations. This means that the multiplicity matrix M has to

commute with the modular S and T matrices, that is

M = SMS−1 and M = TMT−1 . (2.189)

In addition, the vacuum state has to be unique, which imposes M00 = 1. The invariance

under T transformation restricts bulk fields to have integer spins, that is h − h̄ ∈ Z. For

fermionic theories, this condition is weakened to the invariance under T 2 only. There are

always two types of modular invariant partition functions possible: a diagonal invariant

Mij = δij and a charge conjugation invariant Mij = δij+ .

For ŝl(2)k-WZW[19], Virasoro[19] and super-Virasoro minimal models[18], modular in-

variant partition functions obeys the so-called A -D -E classification. In a ŝl(2)k-WZW

model at level k ∈ Z>0, primary fields correspond to the integrable highest weight rep-

resentations of ŝl(2)k, and they can be labelled by integers 1 ≤ i ≤ k + 1. The A -D -E

classification associates a simply-laced Dynkin diagram G with the (dual) Coxeter num-

ber19 g = k+2 to a ŝl(2)k-WZW model. When G is An, Deven, E6, or E8, the corresponding

modular invariant partition function consists of the characters χi with the representation

labels i appearing in the exponents of G. Properties of simply-laced Dynkin diagrams are

summarised in Table 2.2, and the modular invariant partition functions of ŝl(2)k-WZW

models are given in Table 2.3. Note that Deven invariants are related to the simple cur-

rent extension[36] by the primary field with label i = k + 1, and they have extended

conformal symmetries; the two primary fields with degenerate conformal dimensions are

distinguished by their W0 eigenvalues. In addition Deven invariants can be written as diag-

onal invariants for the extended chiral algebras. Dodd invariants are due to the action of

a non-trivial automorphism of the fusion algebra on the chiral half of the representations.

Among the exceptional invariants, E6 and E8 invariants can be understood in terms of

the conformal embeddings ŝl(2)10 ⊂ ŝp(4)1 and ŝl(2)28 ⊂ (Ĝ2)1, respectively. Note that

ŝp(4)1
∼= ŝo(5)1.

Modular invariant partition functions of Virasoro minimal models are constructed sim-

ilarly. For M(p, q), one associates a pair of simply-laced Dynkin diagrams (G,G′) where

they have the Coxeter numbers p and q respectively. Since p and q are coprime, one of

them should be an odd number. Then, one of the diagrams in (G,G′) must be An as they

are the only simply-laced Dynkin diagrams that can have odd Coxeter numbers. In our

notation, a pair (G,G′) is related to Kac labels (r, s) in this order. Note that (Ap−1, Aq−1)

corresponds to the diagonal modular invariant. If one of the diagrams in (G,G′), say G, is

not An, then the corresponding modular invariant is obtained by taking the summations

over r in the same form as the corresponding ŝl(2)k-WZW invariant. For example, (A4, D4)

19.For simply-laced Dynkin diagrams, they are the same.
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Name Diagram g Exponents

Ar≥2 1 2 3 r
r + 1 1, 2, . . . , r

Dr≥4
1 2 3 r - 2

r - 1

r

2r − 2 1, 3, . . . , 2r − 3, r − 1

E6

1 2 3 4 5

6

12 1, 4, 5, 7, 8, 11

E7

1 2 3 4 5 6

7

18 1, 5, 7, 9, 11, 13, 17

E8

1 2 3 4 5 6 7

8

30 1, 7, 11, 13, 17, 19, 23, 29

Table 2.2: Properties of simply-laced Dynkin diagrams with ranks r and Coxeter numbers g.

g = k + 2 G Partition function

g ≥ 2 Ag−1

g−1∑
i=1
|χi|2

g = 4ρ+ 2, ρ ≥ 1 D2ρ+2

2ρ−1∑
i=1

i∈2Z+1

|χi + χ4ρ+2−i|2 + 2|χ2ρ+1|2

g = 4ρ, ρ ≥ 2 D2ρ+1

4ρ−1∑
i=1

i∈2Z+1

|χi|2 + |χ2ρ|2 +
2ρ−2∑
i=2
i∈2Z

(χiχ̄4ρ−i + χ4ρ−iχ̄i)

g = 12 E6 |χ1 + χ7|2 + |χ4 + χ8|2 + |χ5 + χ11|2

g = 18 E7
|χ1 + χ17|2 + |χ5 + χ13|2 + |χ7 + χ11|2 + |χ9|2

+ (χ3 + χ15)χ̄9 + χ9(χ̄3 + χ̄15)

g = 30 E8 |χ1 + χ11 + χ19 + χ29|2 + |χ7 + χ13 + χ17 + χ23|2

Table 2.3: Modular invariant partition functions of ŝl(2)k-WZW models associated to simply-laced
Dynkin diagrams G.

invariant is given by

Z(A4,D4) =
1

2

4∑
r=1

(
|χr,1 + χr,5|2 + 2|χr,3|2

)
, (2.190)

where the factor of half is needed to compensate the overcounting due to the identification

(r, s) ∼ (p − r, q − s). The non-diagonal modular invariants of Virasoro minimal models

can be analysed similarly to the ŝl(2)k case. For example, in M(5, 6), the primary field with

h1,5 = 3 is a simple current, and (A4, D4) invariant corresponds to the W3 minimal model

with c = 4
5 .

The same principle applies to super-Virasoro minimal models while the possible types

of modular invariants are slightly different from the Virasoro case. Recall that p and q

in SM (p, q) are either both even or both odd; this results in (Ap−1, Aq−1) being the only

possibility for p ∈ 2Z + 1, and there are not only invariants of the form (A,A), (A,D),
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(D,A), (A,E), and (E,A) but also (D,E) and (E,D) are possible for p ∈ 2Z. Note that

(D,D) is equivalent to either of (A,D) or (D,A). More details can be found in [18].

It is important to note that fully modular invariant partition functions of fermionic

theories are necessarily GSO projected. The GSO projection is a projection of both Neveu–

Schwarz and Ramond sectors to the states that are invariant under the action of the fermion

parity operator (−1)F+F̄ . In a fermionic theory, the Neveu–Schwarz sector is only invariant

under S and T2, the Ramond sector is invariant under S2 and T, and TST intertwines these

two sectors. This kind of behaviour is not uncommon in theories with extended conformal

algebras: twisted sectors of bosonic W(2, δ) algebras are only invariant under T2 and TST

while untwisted sectors are fully modular invariant; modular invariant partition functions

are obtained by orbifolding with respect to outer automorphisms of W-algebras[46].

2.3 Conformal Boundaries

So far, we have been considering CFTs defined on closed surfaces but it is possible to

construct CFTs on surfaces with boundaries.

For concreteness, let us consider the closure of upper half plane H = {z ∈ C : Im z ≥ 0}
and construct a CFT with the boundary at the real axis z = z̄. Away from the boundary,

we can treat infinitesimal conformal transformations for z and z̄ independently, and thus

there are holomorphic and antiholomorphic copies of the Virasoro algebra, or its extension,

as usual. But the situation changes at the boundary; from the physical perspective, we

would like to have conformal transformations that preserve the boundary, and therefore

the transformations for z and z̄ are no longer independent. If the condition

T (z) = T (z̄) at z = z̄ ∈ R , (2.191)

holds, then this boundary is said to be conformal. This condition can be viewed as the

statement that there is no energy flow across the boundary. In addition, this restricts the

conformal group to PSL(2,R) which maps H to itself and, in particular, leaves the real axis

invariant. Note that the condition (2.191) implies we need c = c̄ in order for conformal

boundaries to exist.

If we perform radial quantization about the origin, this results in the single set of Vir

generators

L(UHP)
n = 	

∫
C+

dz

2πi
zn+1T (z)− 	

∫
C+

dz̄

2πi
z̄n+1T (z̄) , (2.192)

where the contour C+ is a semicircle on the upper half plane, which includes the real axis

and the origin. Since T (z) and T (z̄) are independent away from the boundary, we may

“unfold” the antiholomorphic part of the theory about the real axis to the lower half plane,

and define

T(z) :=

T (z) for Im z ≥ 0

T (z̄) for Im z < 0
, (2.193)

which can be regarded as the stress-tensor of the chiral theory which is defined on the

entire complex plane. Then, L(UHP)
n corresponds to the usual Laurent modes of T(z).
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For theories with extended conformal symmetries, we may impose boundary conditions

that preserve extra symmetries as well. Consider a theory with chiral algebras A ∼= A and

corresponding generators W (i)(z) and W (i)
(z̄). If the boundary at z = z̄ preserves A, then

we should also have

W (i)(z) = ΩW
(i)

(z̄) at z = z̄ ∈ R , (2.194)

where Ω is a local automorphism of A which leaves T (z̄) invariant. An automorphism Ω

induces a permutation ω of the labelling set forA representations given by the isomorphism

of representations

(ρi ◦ Ω , Hi) ∼= (ρω(i) , Hω(i)) , (2.195)

where ρi : A → Hi is a representation map. If Ω is an outer automorphism, then i and ω(i)

are inequivalent[109].

2.3.1 Boundary Fields

Using the definitions (2.193) and (2.192) of T(w) and L(UHP)
n , one can calculate its OPE

with a bulk primary field ϕI(z, z̄), and equivalently the commutator

[L(UHP)
n , ϕI(z, z̄)] =

(
hI(n+ 1)zn + zn+1∂

)
ϕI(z, z̄) +

(
h̄I(n+ 1)z̄n + z̄n+1∂̄

)
ϕI(z, z̄) .

(2.196)

We take I = (i, ī) for some A ∼= A representation labels i and ī. From the “unfolded”

point of view, the bulk field ϕI(z, z̄) behaves as two chiral fields φi(z) and φω(̄i)(z̄) in the

presence of a conformal boundary labelled by a = (α,Ω) at z = z̄. In this case, z̄ explicitly

means the complex conjugate of z, and the two chiral fields are located on the opposite

halves of the plane as depicted in Figure 2.4. Then, the one-point function of ϕI(z, z̄)

can be considered as the two-point function of φi(z) and φω(̄i) which should vanish unless

i+ = ω(̄i). Therefore, we can write

〈ϕI(z, z̄)〉a =
AaI

|z − z̄|hI+h̄I
, (2.197)

where AaI is some constant, which depends on the boundary condition a and vanishes

unless i+ = ω(̄i). Non-vanishing one-point functions depend on their distances from the

boundary; this is not surprising as translations in the imaginary direction are no longer

symmetries due to the boundary along the real axis.

We can view the gluing conditions for W generators (2.194) and the upper half plane

one-point functions (2.197) in another way. Instead of taking the usual[109] analytic

continuation W(i)(z) = ΩW
(i)

(z̄) for Im z < 0, we can simply set W(i)(z) = W
(i)

(z̄) on

the lower half plane but take the whole plane with a chiral topological defect Da at z = z̄

whose action implements the automorphism Ω. Then, the one-point function of ϕI(z, z̄)

is given by the two-point function of φi(z) and φī(z̄) with Da which corresponds to the

picture on the right side of Figure 2.4.

One-point functions (2.197) can become singular as they approach the boundary. Since

OPEs can be considered as a way of expressing singular behaviours of two-point functions,

we can view the singularity of (2.197) as an OPE of the two chiral fields resulting in fields
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ϕI(z, z̄)

(α,Ω)

φi(z)

φω(̄i)(z̄)

(α,Ω)

φi(z)

φī(z̄)

Da↔ ↔

Figure 2.4: Boundary CFT on the upper half plane and its analytic continuations to the whole plane.

on the boundary. By introducing boundary fields ψ(a)
i (x) that only live on the boundary, a

bulk–boundary OPE is given by

ϕI(z, z̄) =
∑
j

B
(a)
Ij |z − z̄|

hj−hI−h̄I
(
ψ

(a)
j (x) + · · ·

)
, (2.198)

where x = Re z and B(a)
Ij are called the bulk–boundary couplings. On the right hand side

of (2.198), omitted terms are descendants of the primary field ψ(a)
j . If a bulk field is close

to the boundary labelled by a, we can view it as boundary fields ψ(a)
i (x). By computing the

one-point functions of the both sides of (2.198), we obtain

B
(a)
I0 =

AaI
Aa1

, (2.199)

where ψ(a)
0 is the identity field on the boundary, and Aa1 = 〈1〉a is the one-point function

of the identity field which is not usually free to normalise it to one. Using (2.196) and

(2.198), one can derive

[L(UHP)
n , ψ

(a)
i (x)] =

(
hi(n+ 1)xn + xn+1 d

dx

)
ψ

(a)
i (x) , (2.200)

which implies that we can take i as a label for an irreducible representation of one copy

of Vir or its extension. For minimal theories, the state space of boundary fields living on a

boundary labelled by a can be written as

Ha =
⊕
i∈I

nai Hi , (2.201)

where nai ∈ Z≥0 counts multiplicities, and I is the indexing set for irreducible represen-

tations. If there is more than one boundary field carrying the same representation of

the chiral algebra, that is when nai > 1, these boundary fields must be distinguished by

introducing the multiplicity label α ∈ [1, nai ] and writing ψ(a)
i;α . We make multiplicity labels

implicit as long as they are not important, in order to avoid unnecessary cluttering of

notations. In addition, if the vacuum state is non-degenerate, that is na0 = 1, the boundary

condition a is said to be elementary.

As we can rewrite bulk two-point functions as boundary two-point functions using the

bulk–boundary OPEs (2.198), we can expect boundary OPEs of the form

ψ
(a)
i (x)ψ

(a)
j (y) =

∑
k

C
(a)k
ij (x− y)hk−hi−hj

(
ψ

(a)
k (y) + · · ·

)
, (2.202)

where C(a)k
ij are called boundary structure constants. This equation is understood to hold

for x > y. Since boundary fields are only defined on a boundary, analytic continuations
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of (2.202) to y > x are not unique in general. Therefore, C(a)k
ij and C(a)k

ji are not always

equal up to signs unlike bulk fields.

We may allow boundary conditions to change along boundaries. If the boundary

condition changes from a for x < 0 to b for x > 0, this gives rise to a boundary field ψ(ab)
i (x)

at the origin which is also called a boundary condition changing field. Since boundary

fields ψ(a)
i (x) can be considered as the boundary condition changing fields changing the

a-boundary to itself, we simply call both of them boundary fields. In this case, boundary

OPEs (2.202) generalise to

ψ
(ab)
i (x)ψ

(bc)
j (y) =

∑
k

C
(abc)k
ij (x− y)hk−hi−hj

(
ψ

(ac)
k (y) + · · ·

)
(2.203)

for x > y. In this case, the state space of boundary fields on a a–b boundary junction is

denoted by

Hab =
⊕
i∈I

niabHi , (2.204)

where niab ∈ Z≥0 as usual.

2.3.2 Boundary States

Consider mapping a boundary CFT on the upper half plane considered in the previous

subsection to the whole plane with the unit disk removed. If we use a contour encircling

the unit disk for radial quantisation, we can consider the boundary as a certain state in the

completion of bulk state space, which is called a boundary state.

On the upper half plane with coordinates z = x + iy, radial quantisation about the

origin gives |z| = constant as the equal-time surfaces. Then, the real axis can be regarded

as two portions of the spatial boundary with boundary conditions a for x < 0 and b for

x > 0. We can map the upper half plane to an infinite strip of width L ∈ R>0 by

w =
L

π
ln z . (2.205)

The spatial boundaries correspond to the parallel edges of the strip. If we make this strip

periodic in time by imposing

w ∼ w + nR ∀n ∈ Z , (2.206)

where R ∈ R>0 can be regarded as the length of a finite strip. Then, we can map this strip

to an annulus by

ζ = e−
2πi
R
w . (2.207)

The two circles of the annulus correspond to the boundaries as depicted in Figure 2.5. If

we swap the roles of time and space, and consider radial quantization about the origin

of the ζ-plane with contours defined on the annulus, the inner circle can be regarded as

a boundary state ‖b〉〉 and the outer circle corresponds to a “dual”20 boundary state 〈〈a‖.

20.As we shall see later, the usual inner product 〈〈a‖a〉〉 diverges. We will elaborate on in which sense 〈〈a‖ is
considered as a dual of ‖a〉〉.
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Using (2.51), the gluing condition (2.191) becomes(
Ln − L̄−n

)
‖b〉〉 = 0 . (2.208)

Since W (i)(z) is a chiral primary field with conformal weight hi, we can use (2.17) to

rewrite (2.194) as (
W

(i)
n − (−1)hi ΩW

(i)
−n

)
‖b〉〉 = 0 . (2.209)

As we shall see later, boundary states can be used to determine the spectra of boundary

fields as well as a consistent set of boundary conditions.

z=0
ba

z=− 1 z=1

z

→

b

a

w

w=0

w=iL

w=R

w=iL+R

→

ζ=1 ζ=e
2πL
R‖b〉〉〈〈a‖

ζ

→

↔
w = L

π ln z

↔ζ = e−
2πi
R
w

Figure 2.5: Mapping boundary CFT on the upper half plane to a cylinder, and then to an annulus.

From the condition (2.208) for n = 0, we see that a boundary state lives in a subspace

of the bulk state space with h = h̄. Moreover, (2.208) and (2.209) implies that a boundary

state ‖b〉〉 acts as an intertwiner for A irreducible representations, and from Schur’s lemma,

‖b〉〉must be composed of zero maps and isomorphisms. For each irreducible representation

Hi of the chiral algebra A, the Ishibashi state[29], 21 is given by

|i〉〉 =

∞∑
n=0

|i;n〉 ⊗ U |i;n〉 , (2.210)

where |i;n〉 is an orthonormal basis of Hi with |i; 0〉 being the highest weight state, and

the antiunitary22 operator U satisfies

UL̄n = L̄nU and U |i; 0〉 = |i+; 0〉 . (2.211)

21.We use |i〉〉 to denote an Ishibashi state, and ‖b〉〉 means a generic boundary state.
22.One has to be careful when using the Dirac notation with antiunitary operators. For some Hilbert space H
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For other generators of A, U satisfies

UW
(i)
n = (−1)hiW

(i)
n U for hi ∈ Z , and

UW
(i)
n = (−1)hiW

(i)
n U(−1)F̄ for hi ∈ Z +

1

2
. (2.212)

Then, the Ishibashi state |i〉〉 is a solution of (2.208) and (2.209) with Ω = id. The antiuni-

tary operator maps U : Hi → Hi+ , therefore |i〉〉 ∈ Hi ⊗Hi+ . Since Hi+ is isomorphic to

the dual space of Hi, we can view |i〉〉 as an intertwiner of the chiral algebra representations

Hi and Hi. Ishibashi states are unique up to overall normalisations.

Since a bulk one-point function (2.197) vanishes unless i+ = ω(̄i), we expect an

Ishibashi state |i〉〉Ω, which is a solution of (2.209) for non-trivial Ω, to be an element of

Hi ⊗Hω−1(i+). If we define a unitary operator

VΩ : Hi+ → Hω−1(i+) (2.213)

such that

ρω−1(i+)(Ωx) = VΩ ρi+(x) V −1
Ω ∀x ∈ A , (2.214)

then a twisted Ishibashi state |i〉〉Ω can be written as[109]

|i〉〉Ω = (1⊗ VΩ)|i〉〉 (2.215)

where |i〉〉 ∈ Hi ⊗Hi+ is given by (2.210).

We define a dual Ishibashi state as

〈〈i| =
∞∑
n=0

〈i;n| ⊗ 〈U(i;n)| , (2.216)

where 〈i;n| is the dual vector of |i;n〉 defined by 〈i;n|j;m〉 = δi,jδn,m. Since U is an

antiunitary operator, we can calculate

〈U(i;n)| U |j;m〉 = 〈j;m|i;n〉 = δj,iδm,n . (2.217)

In addition, we define

〈〈i|Ω = 〈〈i|(1⊗ V †Ω) . (2.218)

Recall that VΩ is a unitary operator.

As it is clear from the definitions (2.210) and (2.216), the norm of an Ishibashi state

|i〉〉 diverges if we use the usual inner product 〈〈i|i〉〉. It is not too surprising since boundary

states do not correspond to any local fields in the theory. Instead of 〈〈i|i〉〉, we may consider

〈〈i|q̃
1
2(L0+L̄0− c

12)|j〉〉 = 〈〈i|Ω q̃
1
2(L0+L̄0− c

12)|j〉〉Ω = δi,j χi(q̃) , (2.219)

with an inner product 〈· , ·〉, the Dirac notation is understood as 〈x|A|y〉 = 〈x,Ay〉, where x, y ∈ H andA is an
operator acting on H. IfA is a linear operator, we can use the definition of adjoint 〈Ax, y〉 = 〈x,A†y〉 and write
the “dual vector” as 〈Ax| = 〈x|A†. The problem is that antiunitary operators are antilinear; an antiunitary
operator U on H satisfies 〈Ux,Uy〉 = 〈x, y〉∗ = 〈y, x〉 and its adjoint is defined by 〈Ux, y〉 = 〈x, U†y〉∗ where
∗ means complex conjugation. Therefore, we cannot write a dual vector 〈Ux| using 〈x| and U†.
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where χi(q̃) is the Virasoro character of Hi, as an “inner product” for Ishibashi states. The

overlaps of Ishibashi states (2.219) converge for |q̃| < 1. As we shall see explicitly for the

N = 1 super-Virasoro case, overlaps of untwisted Ishibashi states with twisted ones may

produce certain “twisted” characters.

So far, Ishibashi states are given in terms of orthonormal bases of irreducible repre-

sentations. While they are convenient for deriving properties of Ishibashi states, we often

prefer them to be written in terms of basis vectors of the form

W
(N)
−lc · · ·W

(N)
−l1 · · · · · ·W

(1)
−mb · · ·W

(1)
−m1

L−na · · ·L−n1
|i〉 , (2.220)

where |i〉 is the highest weight vector of Hi, and the modes are ordered similar to (2.96) but

n1 > 0, m1 > 0, etc. in this case. It is simpler to implement Ishibashi states in a computer

program using vectors of the form (2.220) as we can start from the corresponding Verma

module and discard some basis vectors level by level to obtain a basis of the irreducible

module23. For an irreducible representation Hi of a given chiral algebra, let (Hi)N denote

the level N subspace with the L0-eigenvalue hi + N , and let |i;N, l〉 be a basis vector of

this subspace, which is given in the form (2.220) and labelled by 1 ≤ l ≤ dim(Hi)N . Since

it is an irreducible representation, the Gram matrix for this subspace is invertible. In this

basis, the Gram matrix is given by

(ΓN )lm = 〈i;N, l|i;N,m〉 . (2.221)

Then, the Ishibashi state corresponding to Hi can be written as

|i〉〉 =
∑
N=0

dim(Hi)N∑
l,m=1

(Γ−1
N )lm |i;N, l〉 ⊗ U |i;N,m〉 . (2.222)

Using (2.211) and (2.212), we can move U all the way to the right and act it on the

highest weight vector |i〉. Therefore, we can write

U |i;N,m〉 = uN,m|i+;N,m〉 , (2.223)

where uN,m ∈ C is a factor which depends on |i;N,m〉. Once we have obtained an Ishibashi

state |i〉〉, the corresponding dual Ishibashi state 〈〈i| can be constructed using (2.75) and

taking the complex conjugates of the coefficients.

Any boundary state can be written as a linear combination of Ishibashi states

‖b〉〉 =
∑
i∈IB

gib |i〉〉 if b = (β, id) , or

‖b〉〉 =
∑
i∈IΩ

B

gib |i〉〉Ω if b = (β,Ω) , (2.224)

where gib ∈ C. The indexing sets i ∈ IB and i ∈ IΩ
B are given by

IB = {i ∈ I : (i, i+) ∈ S} and i ∈ IΩ
B = {i ∈ I : (i, ω−1(i+)) ∈ S} , (2.225)

23.This procedure may not be unique in general but it will give a basis of the irreducible module since vectors
of the form (2.220) are linearly independent.
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where I is the indexing set for A irreducible representations, and S is the spectrum of bulk

fields. Similarly, dual boundary states can be written as

〈〈b‖ =
∑
i∈IB

〈〈i‖ ḡib if b = (β, id) , or

〈〈b‖ =
∑
i∈IΩ

B

〈〈i‖Ω ḡib if b = (β,Ω) , (2.226)

where ḡib is the complex conjugate of gib. In addition, we have[67, 109] ḡib = gi
+

b = gib+ , where

b+ is understood as a “charge conjugation”, or a certain involution on the labelling set for

boundary conditions, which is defined by this relation.

2.3.3 Cardy Constraints

Let us go back to the situation depicted in Figure 2.5. As before, we take the w-plane to be

periodic in the time direction with the condition (2.206). On this strip, we can write the

Hamiltonian as

Hstr. =
2π

L

(
L(UHP)

0 − c

24

)
. (2.227)

Using this Hamiltonian, the partition function on this strip is given by

Zab = TrHab e
−RHstr. = TrHab q

L
(UHP)
0 − c

24 , (2.228)

where q = e2πiτ with τ = iR
2L . Since the state space Hab can be written as (2.204), we

obtain

Zab =
∑
i∈I

niab χi(q) . (2.229)

If we swap the roles of space and time, we can view this strip as a cylinder with the

circumference R and the length L, which is equivalent to the annulus in Figure 2.5. Using

the Hamiltonian on this cylinder

Hcyl. =
2π

R

(
L0 + L̄0 −

c

12

)
, (2.230)

the amplitude between the two boundary states can be written as

〈〈b‖e−LHcyl.‖a〉〉 = 〈〈b‖q̃
1
2(L0+L̄0− c

12)‖a〉〉 =
∑
i∈IB

ḡib g
i
a χi(q̃) , (2.231)

where q̃ = e−2πi/τ , and we have used (2.219), (2.224), and (2.226) assuming the both

boundary states are untwisted. Since the two quantities (2.229) and (2.231) are related

by the modular S transformation, we obtain∑
i∈IB

∑
j∈I

ḡib g
i
a Sijχj(q) =

∑
i∈I

niab χi(q) , (2.232)

which is called the Cardy constraint[28]. Since niab ∈ Z≥0, if we calculate the overlap of

two boundary states, its modular S transformation should be interpretable as a sum of

Virasoro characters of A irreducible representations with non-negative integer coefficients.

In addition, if the boundary state coefficients gia are know for a given boundary, then the

spectrum of boundary fields niaa can be obtained from (2.232). In Boundary CFT, one of

the important tasks is to determine the maximal set of elementary boundary conditions

that satisfy the Cardy constraint from a given bulk partition function.
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2.3.4 A -D -E for Boundaries

For theories with charge conjugate modular invariant bulk partition functions, Cardy[28]

gave solutions to the constraint (2.232). For untwisted Ishibashi states, their indexing

set (2.225) is the same as that of the A representation, that is IB = I. In addition, the

labelling set B for boundaries is the same as I. Cardy’s solutions are

gia =
Sai√
S0i

, (2.233)

where Sai are the elements of modular S matrix. Then, the Cardy equation (2.232) gives

niab =
∑
j∈I

ḡjb g
j
a Sji =

∑
j∈I

gja g
j
b+

Sji+ =
∑
j∈I

Saj Sb+j S−1
ji+

S0j
= N i+

ab+ = N i
a+b , (2.234)

therefore the Cardy constraint is satisfied as the fusion coefficients are non-negative inte-

gers. In addition, these boundary states are elementary as we always have N0
a+a = 1. Note

that we have used properties of the modular S matrix (2.183) to show the Cardy constraint.

Boundary states with coefficients of the form (2.233) are called the Cardy boundaries.

In [67], boundary states satisfying the Cardy constraint are systematically constructed

for ŝl(2)k-WZW and Virasoro minimal models. As it will turn out to be convenient later, we

rewrite the boundary state coefficients as

gia =
ψia√
S0i

. (2.235)

Then, the Cardy equation (2.232) becomes

niab =
∑
j∈IB

ψja ψ̄
j
b

Sij
S0j

. (2.236)

where ψ̄ia is the complex conjugate of ψia, and they satisfy ψ̄ia = ψi
+

a = ψia+ . A labelling set

for boundary conditions B is called complete[55, 67] if∑
a∈B

ψia ψ̄
j
a = δi,j , (2.237)

which implies that the number of boundary states |B| is the same as that of Ishibashi states

|IB| or |IΩ
B |. If boundary states are complete, we can calculate∑
b∈B

niab n
j
bc =

∑
b∈B

∑
l,m∈IB

ψla ψ̄
l
b

Sil
S0l

ψmb ψ̄mc
Sjm
S0m

=
∑
l∈IB

ψla ψ̄
l
c

Sil Sjl
(S0l)

2

=
∑
l∈IB

ψla ψ̄
l
c

1

S0l

∑
m∈IB

δl,m
Sim Sjm

S0m

=
∑

l,m∈IB

∑
k∈I

ψla ψ̄
l
c

Skl
S0l

Sim SjmS−1
km

S0m
=
∑
k∈I

Nk
ij n

k
ac . (2.238)
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By defining |B| × |B| matrices (ni)ab = niab, we see that they form a NIM-rep of the fusion

algebra

ni nj =
∑
k∈I

Nk
ij nk . (2.239)

From (2.236), we have a relation niab = ni
+

ba = nib+a+ , and therefore the matrices satisfy

ni+ = nT
i . Furthermore, if the boundary states are orthonormal, that is, they satisfy∑

i∈IB

ψia ψ̄
i
b = δa,b , (2.240)

then n0 = 1 is the identity matrix. As a representation of the fusion algebra, the matrices

ni commute each other, and they can be simultaneously diagonalised. Using the diagonal

matrix Di defined in (2.175) and writing the boundary state coefficients as a matrix (ψ)ai =

ψia, the Cardy equation (2.236) can be written as[77]

ni = ψDi ψ
† , (2.241)

from which we see that ψ diagonalises ni, and therefore ψ can be constructed as a matrix

of eigenvectors of ni.

For ŝl(2)k-WZW theories, fusion rules are given by

(i)⊗ (j) =

min{i+j−1,2k−1−i−j}⊕
l=|i−j|+1

i+j+l=1 mod 2

(l) , (2.242)

where i, j, l ∈ [1, k + 1] label integrable highest weight representations of ŝl(2)k. Since

(2)⊗ (2) = (1)⊕ (3), it is possible to obtain fusion matrices Ni from the repeated actions

of N2 using the recursion relation

Ni+1 = N2 Ni −Ni−1 . (2.243)

This applies to the matrices ni as well, which means that we can obtain a set of boundary

states if we could find n2. As shown in [67], it turns out that n2 is an adjacency matrix of

A -D -E (and tadpole) diagrams by considering the eigenvalue matrix D2. In addition, the

indexing set IB for Ishibashi states is given by the set of exponents of the corresponding

diagram. For a given bulk partition function associated with a diagram G of A -D -E type,

boundary states satisfying the Cardy constraint can be obtained from an eigenvector matrix

of the adjacency matrix of G.

For a Virasoro minimal model M(p, q), one can use the fact[67] that the fusion matrices

can be written in terms of tensor (Kronecker) products of the ŝl(2)k fusion matrices at level

k = p− 2 and level k = q − 2. Denoting a ŝl(2)k fusion matrix by N
(k)
i , fusion matrices of

M(p, q) are given by

Nr,s = N(p−2)
r ⊗N(q−2)

s + N(p−2)

p−r ⊗N(q−2)

q−s . (2.244)

Since one of the diagrams denoting a bulk partition function is always ofAn type, it suffices

to consider an invariant of the form (Ap−1, G) for M(p, q). In this case, the matrices nr,s

can be written as

nr,s = N(p−2)
r ⊗ ns + N(p−2)

p−r ⊗ nq−s , (2.245)
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where ns, which is often referred to as a fused adjacency matrix, is constructed from n2,

the adjacency matrix of G. Boundary states are labelled by (r, a) where r and a are nodes

of Ap−1 and G Dynkin diagrams, respectively. When G is one of An, Dodd, or E6, there is

an identification of boundary states given by

(r, a) ∼ (p− r, γ(a)) , (2.246)

where γ is the Z2 automorphism of the Dynkin diagram. For other cases, we have

(r, a) ∼ (p− r, a) . (2.247)

The set of Ishibashi states is given by

IB = {(r, s) ∼ (p− r, q − s) : 1 ≤ r ≤ p− 1 and s ∈ E(G)} , (2.248)

where E(G) denotes the set of exponents of the G Dynkin diagram which can be found in

Table 2.2. The boundary state coefficients are given by

Ψ(r,s)

(r′,a)
=
√

2 S(p−2)

r′r ψ(G) s
a , (2.249)

where S(p−2)

r′r is an element of the ŝl(2)k modular S matrix

S(k)

ij =

√
2

k + 2
sin

(
πij

k + 2

)
(2.250)

with k = p − 2, and ψ(G) s
a is an eigenvector of the adjacency matrix of G whose explicit

expression can be found in [67]. Then, the boundary states corresponding to the (Ap−1, G)

bulk modular invariant can be written as

‖r′, a〉〉 =
∑

(r,s)∈IB

Ψ(r,s)

(r′,a)√
S(1,1)(r,s)

|r, s〉〉 , (2.251)

where S(1,1)(r,s) is an element of the modular S matrix of M(p, q) which is given in (A.18).

If we consider a unitary Virasoro minimal model, the modular S matrices of M(p, p + 1)

and ŝl(2)k are related by

S(r1,s1)(r2,s2) =
√

2(−1)(r1+s1)(r2+s2) S(p−2)
r1r2

S(p−1)
s1s2

, (2.252)

from which we can understand the factor of
√

2 in (2.249) since ψ
(Ap) s

a = S(p−1)
as .

2.4 Conformal Defects

Defects in two-dimensional CFTs are one-dimensional objects that can be considered as

inhomogeneities in a theory or interfaces between two CFTs.

As an example, let us consider a situation where the upper and lower half planes

correspond to, possibly different, CFTs separated by a defect along the real axis. We denote

the stress-energy tensors on the upper half plane by T (1)(z) and T (1)(z̄), and those on the
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lower half plane by T (2)(z) and T (2)(z̄). We may call these theories CFT1 and CFT2. For

the moment, we consider z̄ to be independent from z. If the condition

T (1)(z)− T (1)(z̄) = T (2)(z)− T (2)(z̄) at z = z̄ ∈ R (2.253)

holds, then this defects is said to be conformal. In the Cartesian coordinates z = x + iy,

this means T (1)
xy = T (2)

xy , that is, the total momentum is conserved across the defect. If we

use transformations

w =
1− iz
1 + iz

and w̄ =
1− iz̄
1 + iz̄

, (2.254)

then the real axis on the z-plane is mapped to the unit circle on the w-plane, and the upper

half plane is mapped to the exterior of the unit circle. Using (2.51), and considering radial

quantisation about the origin of the w-plane, the condition (2.253) becomes

(L(1)
n − L̄

(1)

−n)D = D(L(2)
n − L̄

(2)

−n) , (2.255)

where the defect operator D : H2 → H1 is a map from the bulk state space of CFT2 to that

of CFT1. By considering a map similar to (2.254), which sends the upper half plane to

the interior of the unit circle, we can obtain the operator of the orientation reversed defect

D† : H1 → H2 which satisfies the conformal condition (2.255) with the labels (1) and (2)

exchanged.

Going back to the z-plane, we can consider “folding”[54, 59] the whole theory about the

real axis, and obtain the product theory CFT1 × CFT2 which is defined only on the upper

half plane. By CFT2, we mean the holomorphic sector of CFT2 becomes a part of the

antiholomorphic sector of the product theory, and vice versa. For z and z̄ on the upper half

plane, the stress-energy tensors of the product theory are defined by

T (z) = T (1)(z) + T (2)(z∗) and T (z̄) = T (1)(z̄) + T (2)(z̄∗) , (2.256)

where ∗ means complex conjugation, and the quantities on the right hand sides are defined

on the whole plane as z and z∗ will correspond to the same point after folding. Then, the

condition (2.253) becomes

T (z) = T (z̄) at z = z̄ ∈ R , (2.257)

and we see that conformal defects correspond to conformal boundaries in the folded

theories. In this sense, defects satisfying the condition (2.253) are called conformal. From

the condition (2.257), the central charges have to satisfy c1 + c̄2 = c̄1 + c2 in order to

have conformal boundary conditions corresponding to conformal defects between the two

theories.

There are two obvious solutions to the equation (2.255). The first one is given by

(L(1)
n − L̄

(1)

−n)D = 0 and D(L(2)
n − L̄

(2)

−n) = 0 , (2.258)

and D acts as boundary states of CFT1 and CFT2. Such conformal defects are called

factorising defects, and their operators can be expressed as a sum of

D = ‖a〉〉〈〈b‖ , (2.259)
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where ‖a〉〉 and 〈〈b‖ are boundary states of CFT1 and CFT2 respectively. Since the two

theories need to have conformal boundaries, the requirement for factorising defects is

c1 = c̄1 and c2 = c̄2. The second solution is given by

L(1)
n D = DL(2)

n and L̄(1)
n D = DL̄(2)

n , (2.260)

and conformal defects satisfying this condition are called topological defects. They act as

intertwiners for each of holomorphic and antiholomorphic representations of the Virasoro

algebra, and therefore they can be moved freely without changing the values of correlators

as long as they do not cross field insertions or other defects. Topological defects only exist

for the cases when c1 = c2 and c̄1 = c̄2.

2.4.1 Topological Defects

From (2.260), we can view topological defects as interfaces relating two CFTs at the same

central charges. If they are described by the same modular invariant partition function,

topological defects can be considered as something internal to the theory. In the context

of two-dimensional CFT, topological defects were first studied in [74] and [75] from this

perspective. On the other hand, topological defects can relate theories with different

modular invariants. In [89], such topological defects were formulated in terms of the

topological field theory (TFT) approach to RCFT[76, 84, 85, 86, 87], where the topological

defects between the c = 4
5 CFTs, the tetra-critical Ising model and the three-states Potts

model, were constructed as an example. Topological defects between the free boson

CFTs with different compactification radii are studied in [90]. For rational CFTs, all the

correlators involving topological defects can be obtained by the TFT approach. In particular,

it gives the classifying algebra for topological defects[102], which is similar to the sewing

constraints for conformal boundaries. In the context of TFT approach, topological defects

were studied, for example, in [83] and [89].

Topological defects can exist within a CFT. In this case, the condition (2.260) becomes

[Ln, D] = 0 and [L̄n, D] = 0 . (2.261)

If the chiral algebras are larger than the Virasoro algebra, it is possible to take D to

commute or anticommute with the extra generators but, for now, let us consider Virasoro

minimal models. Then, the bulk state space can be written as

H =
⊕
i,̄i∈I

Mīi Hi ⊗Hī , (2.262)

where I is the indexing set for the Virasoro irreducible representations Hi, and non-

negative integers Mīi are the multiplicities. For brevity, let us denote

Hi ⊗Hī = H(α)

i,̄i
(2.263)

if Mīi 6= 0, and α ∈ [1,Mīi] distinguishes degenerate representations. Since topological

defects act as intertwiners for the irreducible representations (2.263), the operators D
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should consist of isomorphisms and zero maps for these subspaces of H. Degenerate

representations are isomorphic as vector spaces, and therefore we can introduce projectors

Pi,̄i;α,α′ : H(α′)
i,̄i
→ H(α)

i,̄i
(2.264)

that act as the identity maps of the vector spaces. We define

(Pi,̄i;α,α′)
† = Pi,̄i;α′,α , (2.265)

which can be regarded as a part of the orientation reversed topological defect. As projectors,

they satisfy

Pi,̄i;α,α′Pj,j̄;β,β′ = δi,j δī,j̄ δα′,β Pi,̄i;α,β′ . (2.266)

Then, we may write an operator satisfying (2.261) as

Da =
∑
i,̄i∈I

Mīi∑
α,α′=1

gi,̄i;α,α
′

a Pi,̄i;α,α′ , (2.267)

where gi,̄i;α,α
′

a ∈ C in general, and a labels distinct topological defects.

Similar to the conformal boundary case, we need to impose certain consistency condi-

tions on (2.267) in order to obtain the operators describing “sensible” topological defects.

One of the consistency conditions, which is discussed in [74], is similar to the Cardy con-

straints for conformal boundaries, and we will describe it in the next section. At least,

there is one operator which can be written down immediately: the identity operator on

the bulk state space H corresponds to the identity defect.

2.4.2 Cardy-type Constraint for Topological Defects

The Cardy-type constraint for topological defects can be obtained by considering compati-

bility with the modular S transformation of a torus.

Let us consider a torus specified by the modular parameter τ with two topological

defects a and b in the opposite directions along non-contractible circles. By mapping this

torus to an annulus in such a way that the defects are mapped to two concentric circles

about the origin, the torus partition function can be expressed as the trace over the bulk

state space H

TrH

(
D†a Db q̃

L0− c
24 ˜̄qL̄0− c

24

)
=
∑
i,̄i∈I

Mīi∑
α,α′=1

ḡi,̄i;α,α
′

a gi,̄i;α,α
′

b χi(q̃)χī(˜̄q) , (2.268)

where q̃ = e−2πi/τ and ˜̄q = e2πi/τ̄ . Here, we used

TrH

(
Pi,̄i;α,α′ q̃

L0− c
24 ˜̄qL̄0− c

24

)
= δα,α′ χi(q̃)χī(˜̄q) . (2.269)

This annulus is equivalent to the complex plane with punctures at the origin and the point

at infinity, which is depicted in Figure 2.7. On the other hand, it is possible to use another

map from the torus to an annulus, on which the defects are placed in the radial directions
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as in Figure 2.6. As a consequence, the space of states in radial quantisation is different

from the bulk state space H, and this state space is given by

Ha|b =
⊕
i,̄i∈I

N i,̄i
ab Hi ⊗Hī , (2.270)

where N i,̄i
ab ∈ Z≥0 are multiplicities. Then, the torus partition function is equivalently

written as

Za|b(q, q̄) = TrHa|b

(
qL0− c

24 q̄L̄0− c
24

)
=
∑
i,̄i∈I

N i,̄i
ab χi(q)χī(q̄) . (2.271)

where q = e2πiτ and q̄ = e−2πiτ̄ . Since (2.268) and (2.271) are related by the modular S

transformation, we obtain the consistency equation for topological defects[74]

∑
i,̄i∈I

∑
j,j̄∈I

Mīi∑
α,α′=1

ḡi,̄i;α,α
′

a gi,̄i;α,α
′

b SijSīj̄ χj(q)χj̄(q̄) =
∑
j,j̄∈I

N j,j̄
ab χj(q)χj̄(q̄) . (2.272)

Compare this with the Cardy constraint (2.232). Since N j,j̄
ab must be non-negative integers,

the equation (2.272) constrains possible values of ḡi,̄i;α,α
′

a and gi,̄i;α,α
′

b .

As in the boundary case, we rewrite the coefficients of topological defect operators as

gi,̄i;α,α
′

a =
ψi,̄i;α,α

′
a√
S0iS0̄i

, (2.273)

then the Cardy-type constraint (2.272) becomes

N i,̄i
ab =

∑
j,j̄∈I

Mjj̄∑
α,α′=1

ψ̄j,j̄;α,α
′

a ψj,j̄;α,α
′

b

SijSīj̄
S0jS0j̄

. (2.274)

If the set T of topological defects is complete, in the sense that∑
a∈T

ψi,̄i;α,α
′

a ψ̄j,j̄;β,β
′

a = δi,j δī,j̄ δα,β δα′,β′ (2.275)

holds, using (2.274), we can obtain∑
b∈T
N i,̄i
ab N

j,j̄
bc =

∑
k,k̄∈I

Nk
ijN

k̄
īj̄ N

k,k̄
ac . (2.276)

By introducing |T | × |T | matrices (Ni,̄i)ab = N i,̄i
ab , the above equation becomes

Ni,̄i Nj,j̄ =
∑
k,k̄∈I

Nk
ijN

k̄
īj̄ Nk,k̄ , (2.277)

from which we see that the matrices Ni,̄i form a NIM-rep of the “double” fusion algebra.

Their relation to Ocneanu’s double triangle algebra is studied in [75]. In the context of the

topological field theory (TFT) approach to RCFT, these “double NIM-reps” are discussed

in [76].
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If the bulk partition function is a charge conjugate modular invariant, a solution of

(2.272) is given by[74, 79]

gi,i
+

a =
Sai
S0i

(2.278)

and the indexing set T for topological defects is the same as that for the irreducible

representations I. In this case, elements of the matrices Ni,̄i are

N i,̄i
ab =

∑
k∈I

Nai
k Nkī

b . (2.279)

These topological defects are elementary in the sense that the vacuum representation is

unique, that is N 0,0
aa = 1. In general, the number of elementary topological defects is given

by[76] ∑
i,̄i∈I (Mīi)

2, which is |I| in this case.

2.4.3 Defect Fields and Disorder Fields

Let us consider the space of states in (2.270). The state space Ha|b is obtained by mapping

the torus to a complex plane, and considering radial quantisation about the origin. This

map is depicted in Figure 2.6. Since the topological defects labelled by a and b join at the

origin of the plane, this can be viewed as a defect changing field ψ(ab)

i,̄i;α
(z, z̄) inserted at the

origin. There may be more than one defect changing fields carrying the representations

(i, ī), and they are distinguished by multiplicity labels α ∈ [1,N i,̄i
ab ]. The state space Ha|b

corresponds to the defect changing fields ψ(ab)

i,̄i;α
(z, z̄). Similarly, if we consider a state space

Ha|a, this gives topological defect fields ψ(a)

i,̄i;α
(z, z̄) living on the topological defect labelled

by a. For brevity, we often call them defect fields. An important class of defect fields is

obtained by considering a state space Ha|0, where the label 0 corresponds to the identity

defect. The defect fields ψ(a0)

i,̄i;α
(z, z̄) join the defect a and the identity defect. In other words,

the topological defect a can end on a defect field ψ(a0)

i,̄i;α
(z, z̄). Such defect fields are called

disorder fields. From this perspective, bulk fields can be considered as the defect fields

living on the identity defect. Therefore, H0|0 = H.

a b

a b

a b
→ →

Figure 2.6: Mapping the torus to the complex plane with defect fields.

Since the consistency equation (2.272) relates the two ways of mapping the torus to

the complex plane depicted in Figure 2.6 and Figure 2.7, topological defect fields are also

related to the bulk fields with loops of topological defects around them. Given a bulk field

ϕI(z, z̄), the action of a topological defect loop a surrounding ϕI(z, z̄) clockwise is denoted
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by DaϕI(z, z̄), and the action of the loop surrounding ϕI(z, z̄) anticlockwise is denoted by

D†aϕI(z, z̄).

a b

a

b

a

b

→ →

Figure 2.7: Mapping the torus to the complex plane with defect loops.

Since topological defects can be moved freely without changing the values of correlators

as long as they do not cross field insertions, we can consider a situation where a bulk field

approaching a topological defect giving rise to a defect field, which is illustrated in Figure

2.8. In general, the results of two limits depicted in Figure 2.8 do not have to be the same.

In addition, not all of defect fields arise in this way as they may carry combinations of

holomorphic and antiholomorphic representation labels that are not available in the bulk

spectrum.

a

ϕI(z, z̄)

↓
→ a

ψ
(a)

i,̄i;α
(z′, z̄′)

a

ϕI(z, z̄)

↑
→ a

ψ
(a)

i,̄i;β
(z′, z̄′)

Figure 2.8: A bulk field ϕI(z, z̄) with I = (i, ī) approaching a topological defect labelled by a.

For a defect a along the real axis, it is possible to pick a basis of defect fields, and define

the bulk–defect OPE[110]

ϕI(z, z̄) =
∑

(j,j̄;α)

 C(a) j,j̄;α
I |y|hI−hj |y|h̄I−hj̄ ψ(a)

j,j̄;α
(x) for y > 0

C̃(a) j,j̄;α
I |y|hI−hj |y|h̄I−hj̄ ψ(a)

j,j̄;α
(x) for y < 0

, (2.280)

where z = x + iy. For topological defects, bulk–defect OPEs must be non-singular, and

therefore C(a) j,j̄;α
I = C̃(a) j,j̄;α

I = 0 unless hI = hj and h̄I = hj̄ .

2.4.4 Fusion of Topological Defects

As long as they do not cross field insertions, we can bring two topological defects arbitrarily

close, and consider them as another topological defect. This procedure is know as fusion

of topological defects. Given two topological defect operators24 Da and Db, their fusion is

24.So far we are assuming that topological defect operators characterise topological defects uniquely but this
may not be true in certain cases. See, for example, Section 4.5 and Appendix A of [90]. In general, one has to
calculate correlators involving defect fields in order to distinguish topological defects. We only consider the
cases where defect operators are unique for topological defects.
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given by the composition of operators DaDb. A priori, fusions of topological defects do not

have to be commutative.

If the bulk partition function is given by a charge conjugate modular invariant, we can

use the operators describing elementary topological defects given in (2.278), and obtain

the fusion rules for such defects

DaDb =
∑
c∈I

N c
ab Dc , (2.281)

where N c
ab are the usual fusion coefficients of the chiral algebra A. In this case, topological

defects are not only labelled by the irreducible representations of A but they also obey the

same fusion rules. As it is clear from (2.281), fusion products of elementary topological

defects are not necessarily elementary but decompose into elementary ones. In addition,

this implies that if Dc appears in the fusion rule of Da and Db, then we can form a junction

of such topological defects as depicted in Figure 2.9. Since the positions of such junctions

can be moved freely, corresponding junction fields necessarily have zero conformal weights.

a b =
∑
c,α

a b

c

α

Figure 2.9: Fusion of topological defects and junction fields.

Moreover, topological defects can act on conformal boundaries and change their bound-

ary conditions[79]. As before, let us consider a theory with a charge conjugate modular

invariant bulk partition function. Since elementary boundary conditions are given by

(2.233), we can use (2.278) and obtain

Da‖b〉〉 =
∑
c∈I

N c
ab‖c〉〉 , (2.282)

where ‖b〉〉 and ‖c〉〉 are Cardy boundary states. In addition, we can consider a situation

where Da acts only on a part of the boundary. Then, this can be viewed as the topological

defect Da ending on the boundary at the point where the boundary conditions change

form b to c. Thus, if b appears in the fusion rule of a and b, then a topological defect Da

can end on a boundary with the boundary condition b.

By sweeping a topological defect Da across a bulk field insertion, we obtain a disorder

field with the topological defect DaD
†
a as illustrated in Figure 2.10. The disorder field

and DaD
†
a may decompose into the sum of elementary topological defects with certain

disorder fields. In Figure 2.10, Dbaα denotes a linear map which assigns a disorder field

Dbaα(ϕI(z, z̄)) at the end of Db for a given bulk field ϕI(z, z̄) as a result of surrounding

it clockwise by a loop of Da with a Db tether. The junction between two Da and one Db

is labelled by a suitably normalised intertwiner[83, 89] α. Some of Dbaα(ϕI(z, z̄)) in the

expansion of Figure 2.10 may vanish; such ‘diagrams’ do not contribute to the expansion.
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ϕI

a

=
∑
b,α

a

a

b

Dbaα(ϕI)

α

Figure 2.10: Sweeping a topological defect across a bulk field.

If the bulk partition function is given by a charge conjugate modular invariant, the

spectrum of disorder fields associated with a topological defect Da is given by

N i,̄i
a0 =

∑
k∈I

Nk
aiN

0
kī = Na+

īi . (2.283)

That is, if a+ appears in the fusion rule of i and ī, then Da can end on a disorder field

ψ
(a0)

i,̄i;α
(z, z̄). In particular, we always have the disorder fields ψ(a0)

a+,0
(z) and ψ(a0)

0,a+(z̄), which

do not appear in the bulk spectrum.

In certain cases, it is possible to deduce the results of Figure 2.10 by a simple method.

If the bulk partition function is a charge conjugate modular invariant, we can use (2.278)

and (2.279). Let us consider sweeping a topological defect Da across a bulk field ϕI(z, z̄)

with I = (i, ī) assuming that we know the fusion rule DaD
†
a =

∑
bDb. If b = 0 is allowed

by the fusion rule and DaϕI(z, z̄) does not vanish, then this term appears in the expansion

of Figure 2.10. For other Db with b 6= 0, if the representation (i, ī) appears in H0|b, then

ψ
(b0)

i,̄i;α
(z, z̄) with topological defect Db appears in Figure 2.10. For this calculation, we can

use (2.283). For example, we can use these rules to understand the actions of topological

defects on the bulk fields in the Ising model given in Figure 3 of [83].

There are two special classes of topological defects that are of great importance. A

topological defect Da is called group-like if and only if D†aDa = D0, where D0 denotes the

identity defect. If we sweep a group-like defect across bulk fields as in Figure 2.10, the

resulting disorder fields are again bulk fields. Therefore, the set of group-like defects forms

a group and it describes internal symmetries of this CFT. A topological defect Da is called

a duality defect if and only if D†aDa is a sum of group-like defects. Duality defects describe

order-disorder dualities of the CFT[83, 89].

2.4.5 Defect Flows

Similar to bulk and boundary perturbations, it is possible to consider perturbations of

conformal defects by defect fields. In particular, we focus on perturbations of topological

defects.

Let us take a theory defined on the complex plane with a topological defect Da along

the real line x ∈ R. Then, a perturbation of Da by a defect field ψ(a)

i,̄i;α
(x) is given by adding

the action a term

Spert. = λ

∫
R
ψ

(a)

i,̄i;α
(x) dx , (2.284)

where λ ∈ C is a coupling constant. This modifies correlation functions and the perturbed

defect is denoted by Da(λψ
(a)

i,̄i;α
). If the perturbing defect field has the scaling dimension
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hi + hī < 1, then it is relevant. We are interested in the defect flows whose end points

correspond to non-topological and non-factorising conformal defects.

Consider perturbations of a topological defect Da by a chiral defect field ψ
(a)
i,0 (x). In

reality, existence of such defect fields depends on a model and Da, however let us assume

that the topological defect Da has chiral defect fields. Since λψ(a)
i,0 (x) commutes with all L̄n,

the end point of this flow corresponds a topological defect[81]. Furthermore, if hi < 1/2,

perturbations do not require UV regularisations[92]. Relevant perturbations by chiral defect

fields are studied in, for example, [65] and [92]. Truly marginal deformations by chiral

defect fields are studied in [90].

In certain cases, the end points of flows correspond to conformal but non-topological

defects. In particular, in a unitary Virasoro minimal model M(p, p + 1) with the diag-

onal modular invariant bulk partition function, perturbations of the topological defect

D(1,2), where the subscript denotes its Kac label, by a linear combination of chiral de-

fect fields λlψ(1,3),0 + λrψ0,(1,3) living on this defect give flows leading to four possible

endpoints[98]: another topological defect D(2,1), the identity defect, a factorising defect,

and a non-topological and non-factorising conformal defect.
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Chapter 3

Conformal Defects and W-Algebras

In this short chapter, we discuss the W(2, 2) symmetry of the product theory and their

relations to the boundary states associated with topological and factorising defects.

3.1 Product Theory and W(2, 2)

In the product theory CFT1×CFT2 defined on the upper half plane with the stress-energy

tensors (2.256), we can introduce the chiral primary fields

W (z) =

√
c̄2

c1
T (1)(z)−

√
c1

c̄2
T (2)(z∗) and W (z̄) =

√
c2

c̄1
T (1)(z̄)−

√
c̄1

c2
T (2)(z̄∗) . (3.1)

Therefore, the chiral algebras of CFT1 × CFT2 can be regarded as two copies of W(2, 2).

In addition to (2.257), if we have

W (z) = W (z̄) at z = z̄ ∈ R (3.2)

as well as c1 = c̄1 and c2 = c̄2, then this gives

T (1)(z) = T (1)(z̄) and T (2)(z) = T (2)(z̄) , (3.3)

which means this boundary condition corresponds to a factorising defect. If the central

charges satisfy c1 = c2 and c̄1 = c̄2, the two copies of W(2, 2) have the Z2 automorphisms

given by W (z) 7→ −W (z) and W (z̄) 7→ −W (z̄). Therefore, in addition to the untwisted

boundary condition (3.2), we can also impose the twisted boundary condition

W (z) = −W (z̄) at z = z̄ ∈ R , (3.4)

then this yields the conditions for a topological defect

T (1)(z) = T (2)(z) and T (1)(z̄) = T (2)(z̄) . (3.5)

Therefore we see that the factorising and topological defects correspond to W(2, 2) bound-

ary conditions in the folded theory.

If there is a conformal boundary state in the product theory which corresponds to a

non-topological and non-factorising conformal defect, it has to break the W(2, 2) symmetry

of the theory.

3.2 Reflection and Transmission Coefficients

The reflection and transmission coefficient of a conformal defect D was defined in [91]

using the matrix

Rij :=
〈0|L(i)

2 L̄
(j)

2 ‖D〉〉
〈0||D〉〉

, (3.6)
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where ‖D〉〉 is the boundary state in the folded model corresponding to the defect D. The

reflection coefficient R and the transmission coefficient T of D are given by

R =
2

c1 + c2
(R11 +R22) =

(c1)2 + 2c1c2ωD + (c2)2

(c1 + c2)2
and (3.7)

T =
2

c1 + c2
(R12 +R21) =

2c1c2(1− ωD)

(c1 + c2)2
(3.8)

where the quantity ωD can be expressed as

ωD =
2

c1 + c2

〈0|W2W 2‖D〉〉
〈0||D〉〉

(3.9)

using our definition of W(2, 2) generators given in (3.1).

In the folded theory, there is a diagonal Vir primary state defined by

|W 〉 :=
2

c1 + c2
W−2W−2|0〉 . (3.10)

Since the W(2, 2) generators are normalised as dW = c
2 , where c = c1 + c2, we have

〈W |W 〉 = 1. Using |W 〉, we can simplify (3.9) as

ωD =
〈W ||D〉〉
〈0||D〉〉

=
gWD
g0
D

, (3.11)

where g0
D and gWD are given by the expansion of ‖D〉〉 in terms of the Virasoro Ishibashi

states

‖D〉〉 = g0
D |0〉〉+ gWD |W 〉〉+ · · · . (3.12)

This means that it is straightforward to calculate the reflection and transmission coefficients

once we obtain the explicit expression for the boundary state corresponding to a conformal

defect.

Consider the W(2, 2) Ishibashi condition(
Wn − ε W−n

)
|h, ε〉〉 = 0 , (3.13)

where ε = 1 gives the untwisted sector, and ε = −1 corresponds to the twisted sector which

only appears when c1 = c2. If we focus on the Vacuum sector of W(2, 2), we can write the

corresponding Ishibashi state as

|0, ε〉〉 = |0〉〉+ ε |W 〉〉+ · · · . (3.14)

From (3.2) and (3.4), we know the factorising and topological defects correspond to

untwisted and twisted W(2, 2) boundary conditions, respectively. Therefore, using the

relation (3.11), we obtain

ωD = 1 for factorising defects, and (3.15)

ωD = −1 for topological defects, (3.16)

which is in agreement with [91].
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Chapter 4

Perturbative Calculation of Reflection Coefficients

In this chapter, we calculate the reflection and transmission coefficients of the conformal

defect C in diagonal Virasoro minimal models using the leading-order perturbation calcu-

lation. The defect C is the endpoint of a defect flow of the topological defect D(1,2) by the

combination of chiral defect fields, which was considered in [98]. One characteristic of a

conformal defect is its transmission coefficient T , or equivalently its reflection coefficient

R = 1 − T , which was defined in [91]. These take the values R = 0 for a topological

defect and R = 1 for a factorised defect, and 0 < R < 1 for a general conformal defect in

a unitary theory [115].

The aim of this chapter is to calculate the reflection coefficient of C perturbatively,

and compare the value for the tri-critical Ising model with the result obtained from our

construction in Chapter 6.

4.1 D(r,2) Defect and Its Perturbations

In this chapter, we focus on diagonal Virasoro minimal models M(p, q), also know as the

(Ap−1, Aq−1) invariant. Recall that the coprime integers satisfy 1 < p < q, and we shall take

p ≥ 2 and q ≥ 5. For M(p, q), there are (p−1)(q−1)/2 primary fields corresponding to the

Virasoro highest weight representations, and we use the Kac labels (r, s) ∼ (p− r, q− s) for

both of them. For the defect perturbations we consider in this chapter, we are going to be

especially interested in the representation (r, s) = (1, 3), and we denote the corresponding

conformal weight as

h := h1,3 =
2p

q
− 1 . (4.1)

As we discussed in Chapter 2, the elementary conformal boundaries and topological defects

in this model are also labelled by the Kac labels, and their properties are well-known.

In particular, we know the spectra of defects fields which can be calculated from the

multiplicity formula (2.279) and the fusion numbers Nk
ij .

From the formula (2.279), a general topological defect D(r,s) has (for s > 2 and q

large enough) one chiral defect field of weights (h, 0), another chiral defect field of weights

(0,h), and three defect fields of weights (h,h). A topological defect of type D(r,2) is special

in that it has one chiral defect field φ of conformal weights (h, 0), another chiral defect

field φ̄ of weights (0,h), but only a two dimensional space of defect fields {ϕα} of weights

(h,h).

Furthermore, the D(r,2) topological defect can be constructed as the fusion of D(r,1) and

D(1,2), and the operator product algebra of defect fields of type (h1,s, h1,s′) is unaffected by

this fusion, in exactly the same way that the action of topological defects on boundaries

leaves operator algebras invariant[79]. This means that when considering the algebra of
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defect fields generated by the set {1, φ, φ̄, ϕα}, we can restrict attention to just the D(1,2)

topological defect.

The fact that there is a two-dimensional space of fields {ϕa} on the D(r,2) topological

defects allows one to choose a canonical basis of these fields with special properties so that

the analysis of the sewing constraints is correspondingly simpler. These sewing constraints

have been solved in [110] for the D(1,2) topological defect in the non-unitary Lee-Yang

model, the (A1, A4) theory, in which D(1,2) is the only non-trivial defect and {1, φ, φ̄, ϕα}
are the only non-trivial primary defect fields. In this chapter, we extend this analysis to the

fields {1, φ, φ̄, ϕα} on defects of type D(r,2) in all the (Ap, Aq) models.

We are interested in the perturbations of the topological defect D(r,2) by a combination

of the fields φ and φ̄,

S =

∫ (
λφ(x) + λ̄φ̄(x)

)
dx . (4.2)

where the parameters λ and λ̄ are independent, and x is a coordinate on the defect. This

is a relevant perturbation if h < 1 which is the case if p < q.

One important question is that of the transformation properties of fields on a defect

under a conformal transformation. We will use the conventions of [100] which imply that

defect fields always transform with the absolute value of the derivative of the conformal

map, even if they are “chiral” defect fields. This is possible because the defect defines

a direction through the insertion point of the field (the tangent vector along the defect),

and so a defect field can pick up an extra phase under a conformal transformation: this is

chosen so that all defect fields transform with the absolute value of the derivative of the

conformal map. This has the advantage of making the perturbation well-defined on defects

that are closed loops and making the correlation function independent of the orientation of

the defect at the location of the defect field (as one would expect if the defect is genuinely

topological). The question remains whether this choice for the transformation law of

“chiral” defect fields is unique: the corresponding situation for a boundary and boundary

fields was considered by Runkel [71], and there seems no way to fix it a priori; we stick to

the conventions of [100] here for the good reasons cited above.

The expectation values in the perturbed defect D(r,2)(λ, λ̄) are formally given by

〈O 〉D(r,2)(λ,λ̄) = 〈O exp(−S) 〉D(r,2)
. (4.3)

This is only formal since there may be UV divergences in the integrals when the insertion

points of two fields φ or two fields φ̄ meet, and IR divergences from integration along

the whole real axis. This means that the general procedure of regularisation and renor-

malisation may be needed to give meaning to the expression (4.3). This is explained in

Affleck and Ludwig [37], and applied by Recknagel et al. in [70] to the case of boundary

perturbations of the unitary minimal models where q = p+ 1.

As explained in [98], when y := 1 − h is small and positive, the results of [70] can

immediately be applied to the case of defects with the perturbation (4.2), and we obtain

the prediction (from third order perturbation theory) of three conformal defects at the
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fixed points

(i) λ = λ∗, λ̄ = 0 (4.4)

(ii) λ = 0, λ̄ = λ∗ (4.5)

(iii) λ = λ̄ = λ∗ (4.6)

The fixed points (i) and (ii) can be identified as the topological defect D(2,1) (if r = 2) and

(more generally) the superposition D(r−1,1) ⊕D(r+1,1); the fixed point (iii) is a potential

new conformal defect, denoted by C in [98], in the case of the perturbation of the defect

D(1,2). The value of λ∗ is given (to first order in y) by

λ∗ =
y

Cφφφ
=

y

Cφφφdφφ
, (4.7)

where Cφφφ is the three point coupling of the fields φ. Note that λ∗ depends on the normali-

sation of φ, but this will cancel in any physical quantities.

4.1.1 Perturbative Calculation of Reflection and Transmission Coefficients

Previously, the reflection and transmission coefficients, (3.7) and (3.8), of a conformal

defect along the real axis were defined in terms of the matrix (3.6) but, for perturbative

calculations, it is more convenient to use the equivalent definition which was also given in

[91]:

R =
〈T 1T 1 + T 2T 2〉

〈(T 1 + T 2)(T 1 + T 2)〉
and T = 1−R , (4.8)

where T 1 and T 1 are inserted at the point iY on the upper half-plane, while T 2 and T 2 are

inserted at the point −iY . For the unperturbed topological defect,

〈 T 1T 1 〉 = 〈 T 2T 2 〉 = 0 and 〈 T 1T 2 〉 = 〈 T 1T 2 〉 =
c

32Y 4
, (4.9)

and so R = 0 and T = 1.

For the defect with perturbation (4.2), the expansion of the perturbed quantities using

(4.3) gives

〈 T 1T 1 〉 =
1

4
λ2λ̄2

∫
dx dx′ dy dy′〈 T (iY )T (iY )φ(x)φ(x′)φ̄(y)φ̄(y′) 〉

− 1

24
λ3λ̄2

∫
dx dx′ dx′′ dy dy′〈 T (iY )T (iY )φ(x)φ(x′)φ(x′′)φ̄(y)φ̄(y′) 〉

− 1

24
λ2λ̄3

∫
dx dx′ dy dy′ dy′′〈 T (iY )T (iY )φ(x)φ(x′)φ̄(y)φ̄(y′)φ̄(y′′) 〉

+O(λ6) , (4.10)

〈 T 1T 2 〉 =
c

32Y 4

+
1

2
λ2

∫
dx dx′〈 T (iY )T (−iY )φ(x)φ(x′) 〉

+
1

2
λ̄2

∫
dy dy′〈 T (iY )T (−iY ) φ̄(y)φ̄(y′) 〉+O(λ3) , (4.11)
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and in order to find the leading order term in R, we only need to calculate the first term

in 〈 T 1T 1 〉 and 〈 T 2T 2 〉. It turns out there are neither UV nor IR divergences in these

integrals; their dependence on Y is simply Y −4 and the reflection coefficient R (to leading

order) is indeed independent of Y as expected. We shall take Y = 1 from now on.

The consequence is that the only correlation function we need to evaluate is

〈 T (i)T (i)φ(x)φ(x′)φ̄(y)φ̄(y′) 〉 , (4.12)

where the insertion points can be in any order. This is equal to

〈 T (−i)T (−i)φ(−x)φ(−x′)φ̄(−y)φ̄(−y′) 〉 , (4.13)

by rotation through π. The analytic structure is simple,〈
T (i)T (i)φ(x)φ(x′)φ̄(y)φ̄(y′)

〉
= C (x′ − x)2−2h (y′ − y)2−2h

(i− x)2(i− x′)2(i+ y)2(i+ y′)2
, (4.14)

but the constant C depends on the order of the insertion points {x, x′, y, y′} and is de-

termined by the operator algebra structure constants. Therefore, we now turn to the

calculation of some of the structure constants of the local fields on the topological defect

D(r,2).

4.2 Structure Constants

In this section we will calculate some structure constants for the (r, 2) topological defect

in the diagonal Virasoro minimal models. These structure constants can be found in

terms of topological field theory data [86, 100] which is a general method allowing one

to find all the structure constants in the defect theory, but we will not use it here and

instead only use elementary properties of the conformal field theory to find the particular

structure constants we need for the perturbative calculation of the reflection coefficient in

the minimal models.

We note here that we will use the conventions of [100] so that the structure constant

Cγαβ is the coefficient of the field φγ appearing in the OPE of the fields φα(x) with φβ(y) on

the defect oriented opposite to the real line with x > y, which means that this coefficient

appears in the OPE of the fields φα with φβ as they appear along the defect. Rotating by π,

we obtain the picture in Figure 4.1.

φα φβ
=

∑
γ
Cγαβ φγ

Figure 4.1: The OPE of defect fields

4.2.1 Bulk Theory

The (Ap−1, Aq−1) Virasoro minimal model has (p−1)(q−1)/2 bulk primary fields, of which

we are especially interested in the bulk field ϕ of type (1, 3). If we set t := p/q, then
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h := h1,3 = 2t− 1 and h < 1 if t < 1, that is p < q. The fusion rules for this field are

[ϕ]⊗ [ϕ] = [1]⊕ [ϕ]⊕ [χ] , (4.15)

where χ is of type (1,5) and has conformal weights (h′,h′) with h′ := h1,5 = 6t− 2. Hence,

the OPE of ϕ with itself is

ϕ(z, z̄)ϕ(w, w̄) =
dϕϕ

|z − w|4h
+
Cϕϕϕ ϕ(w, w̄)

|z − w|2h
+
Cχϕϕ χ(w, w̄)

|z − w|4h−2h′
+ . . . . (4.16)

The structure constantCϕϕϕ clearly depends on the choice of dϕϕ (see eg [7, 66] for different

conventions) but the combination

(Cϕϕϕ)2

dϕϕ
= −(1− 2t)2 Γ(2− 3t)

Γ(3t− 1)

Γ(4t− 1)2

Γ(2− 4t)2

Γ(t)3

Γ(1− t)3

Γ(1− 2t)4

Γ(2t)4
, (4.17)

is independent of the normalisation. If h = 1− y then

(Cϕϕϕ)2

dϕϕ
=

16

3
− 16y +O(y)2 . (4.18)

4.2.2 Defect Theory

The defects of the (Ap−1, Aq−1) Virasoro models are not intrinsically oriented, but the

operator product of fields along the defect depends on the ordering of the fields, we

shall assume that we can define an orientation for the defects but that all results will be

independent of this orientation.

Since the space of defect fields {ϕα} of weights (h, h) is only two-dimensional for a

defect of type (r, 2), we can take as a basis the fields ϕL and ϕR which are the limits of the

bulk field ϕ as it approaches the defect from the left or the right respectively as one looks

along the defects — see Figure 4.2.

ϕ(x+ iy)

ϕL(x)

ϕ(x− iy)

ϕR(x)

Figure 4.2: The fields ϕL and ϕR defined as limits of the bulk field

Note that the operator product algebra of the defect fields {1, φ, φ̄, ϕL, ϕR} does not

close on these fields, other fields can arise as well, namely fields with weights (h, h′), (h′, h)

and (h′, h′) which we denote by ψ, ψ̄ and {χL, χR} (which again are the limits of the bulk

field χ(z, z̄) as it approaches the defect from the left and the right). Although we should

mention the existence of these fields and their occurrence in the operator products of some

of the fields {φ, φ̄, ϕα}, we will not need any of the structure constants including these

fields as they will not contribute to any of the sewing constraints considered later on.
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Φa ha h̄a

1 0 0

φ h 0

φ̄ 0 h

ϕα h h

ψ h′ h

ψ̄ h h′

χα h′ h′

Table 4.1: Some of the primary fields occurring on the defect (r, 2)

We use the generic labels {a, b, . . . } for all of these fields and the labels {α, β, . . . } for

the set {L,R}. The conformal weights of the field Φa are (ha, h̄a) as in table 4.1.

We now define the structure constants between these defect fields from their operator

product expansions (we show the possibility of fields {ψ, ψ̄, χα} appearing in an OPE by

placing the fields in square brackets [ ]).

If both fields are chiral, there are 8 structure constants {dφφ, dφ̄φ̄, C
φ
φφ, C

φ̄

φ̄φ̄
, Cα

φφ̄
, Cα

φ̄φ
}

appearing in the OPEs (recall here that x and y are ordered along the defect):

φ(x)φ(y) =
dφφ

|x− y|2h
+
Cφφφ φ(y)

|x− y|h
+ . . . , (4.19)

φ̄(x)φ̄(y) =
dφ̄φ̄

|x− y|2h
+
C φ̄
φ̄φ̄
φ̄(y)

|x− y|h
+ . . . , (4.20)

φ(x)φ̄(y) = CLφφ̄ ϕL(x, y) + CRφφ̄ ϕR(x, y) + . . . , (4.21)

φ̄(x)φ(y) = CLφ̄φ ϕL(y, x) + CRφ̄φ ϕR(y, x) + . . . . (4.22)

With one chiral field on the left, there are 12 structure constants {C φ̄φα, C
φ

φ̄α
, Cβφα, C

β

φ̄α
}

in the OPEs

φ(x)ϕα(z, z̄) =
C φ̄φα φ̄(z̄)

|x− z|2h
+
CLφα ϕL(z, z̄)

|x− z|h
+
CRφα ϕR(z, z̄)

|x− z|h
+ [ψ] + . . . , (4.23)

φ̄(x)ϕα(z, z̄) =
Cφ
φ̄α
φ(z)

|x− z̄|2h
+
CL
φ̄α
ϕL(z, z̄)

|x− z̄|h
+
CR
φ̄α
ϕR(z, z̄)

|x− z̄|h
+ [ψ̄] + . . . . (4.24)

Likewise there are 12 structure constants {C φ̄αφ, C
φ

αφ̄
, Cβαφ, C

β

αφ̄
} in the OPEs with one

chiral field on the right:

ϕα(z, z̄)φ(x) =
C φ̄αφ φ̄(z̄)

|z − x|2h
+
CLαφ ϕL(z, z̄)

|z − x|h
+
CRαφ ϕR(z, z̄)

|z − x|h
+ [ψ] + . . . , (4.25)

ϕα(z, z̄)φ̄(x) =
Cφ
αφ̄
φ(z)

|z̄ − x|2h
+
CL
αφ̄
ϕL(z, z̄)

|z̄ − x|h
+
CR
αφ̄
ϕR(z, z̄)

|z̄ − x|h
+ [ψ̄] + . . . . (4.26)

Finally there are 20 structure constants {dαβ, C
φ
αβ, C

φ̄
αβ, C

γ
αβ} in the OPEs involving no
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chiral fields:

ϕα(z, z̄)ϕβ(w, w̄) =
dαβ

|z − w|4h
+

Cφαβφ(w)

|z − w|h|z̄ − w̄|2h
+

C φ̄αβφ̄(w̄)

|z̄ − w̄|h|z − w|2h

+
CLαβϕL(w, w̄)

|z − w|2h
+
CRαβϕR(w, w̄)

|z − w|2h
+ [ψ, ψ̄, χα] + . . . . (4.27)

Having defined the fifty-two structure constants we need to calculate, we now set about

finding relations. The simplest come from the fact that the orientation of the defect is in

fact not physical.

4.2.3 Symmetry Relations

Since the defect is not intrinsically oriented, our labelling over-counts the structure con-

stants: sixteen constants are related by changing the orientation of the defect, as follows:

CLφφ̄ = CRφ̄φ , CRφφ̄ = CLφ̄φ , dLL = dRR , dLR = dRL , (4.28)

CLLL = CRRR , CRLL = CLRR , CLLR = CRRL , CLRL = CRLR , (4.29)

CRφR = CLLφ , CLφR = CRLφ , CRφL = CLRφ , CLφL = CRRφ , (4.30)

CRφ̄R = CLLφ̄ , CLφ̄R = CRLφ̄ , CRφ̄L = CLRφ̄ , CLφ̄L = CRRφ̄ . (4.31)

Bulk Field Relations

We can use the fact that ϕL and ϕR are the limits of bulk fields to find dLL, dLR, dRL, and

dRR, as well as CLLL, CRLL, CLRR, and CRRR.

In the bulk, we have (4.16). Bringing this OPE towards a defect from the left, we

obtain

dLL = dϕϕ , CLLL = Cϕϕϕ , CRLL = CφLL = C φ̄LL = 0 . (4.32)

We have also found that

C
χL
LL = Cχϕϕ , C

χR
LL = CψLL = Cψ̄LL = 0 , (4.33)

but these four constants are not of interest to us. Likewise, bringing the bulk OPE (4.16)

towards a defect from the right, we obtain

dRR = dϕϕ , CRRR = Cϕϕϕ , CLRR = CφRR = C φ̄RR = 0 . (4.34)

Finally, using the expression (2.267) for the topological defect operator in terms of

projectors, and the coefficients (2.278) for the Virasoro minimal model cases, we can write

D(r,2) =
∑
r′,s

S(r,2)(r′,s)

S(1,1)(r′,s)
Pr′,s , (4.35)

where S(rs)(r′s′) is the modular S-matrix given in (A.18). From this, we can obtain

dLR =
〈ϕ|D(r,2) |ϕ〉
〈0|D(r,2) |0〉

=
S(r,2)(1,3)/S(1,1)(1,3)

S(r,2)(1,1)/S(1,1)(1,1)

〈ϕ|ϕ〉
〈0|0〉

= (2 cos(2πt)− 1) dLL

= γ dLL , (4.36)
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where we define

γ = 2 cos(2πt)− 1 , (4.37)

which is independent of r, as expected.

4.2.4 Defect – Boundary Identification

We next use the fact that the OPE algebra of φ along the real axis is the same as that of

the boundary field on the (r, 2) boundary — we obtain this identification by bringing the

(r, 2) topological defect next to the identity boundary as considered in [79]. Likewise, the

algebra of φ̄ is also the same as the boundary algebra.

This means that

dφφ = dφ̄φ̄ , Cφφφ = C φ̄
φ̄φ̄
, (4.38)

and these values are are given by Runkel’s solution to the boundary algebra [66],

(Cφφφ)2

dφφ
=

Γ(2− 3t)Γ(t)Γ(1− 2t)3

Γ(2− 4t)2Γ(−1 + 2t)Γ(1− t)2
. (4.39)

If h = 1− y then
(Cφφφ)2

dφφ
=

8

3
− 4y +O(y2) . (4.40)

Note that the structure constant again does not depend on r.

Three-Point Function Constraints

We can express the three point function,

〈Φa(u)Φb(v)Φc(w)〉 , (4.41)

in two different ways—using the OPE of Φa with Φb first, or instead using the OPE of Φb

with Φc first—leading to the constraint∑
e

Ceabdec =
∑
f

dafC
f
bc . (4.42)

Taking a and c chiral, this gives the simple relations

C φ̄φRdφ̄φ̄ = Cφ
Rφ̄
dφφ , C φ̄φLdφ̄φ̄ = Cφ

Lφ̄
dφφ , (4.43)

Cφ
φ̄R
dφφ = C φ̄Rφdφ̄φ̄ , Cφ

φ̄L
dφφ = C φ̄Lφdφ̄φ̄ , (4.44)

which, using (4.38) become

C φ̄φR = Cφ
Rφ̄

, C φ̄φL = Cφ
Lφ̄

, Cφ
φ̄R

= C φ̄Rφ , Cφ
φ̄L

= C φ̄Lφ . (4.45)

Taking only a chiral and the two non-chiral fields equal, this gives the slightly more com-

plicated

CRφRdRR + CLφRdLR = CφRRdφφ= 0 , CRφ̄RdRR + CLφ̄RdLR= C φ̄RRdφ̄φ̄ = 0 , (4.46)

CRφLdRL + CLφLdLL = CφLLdφφ= 0 , CRφ̄LdRL + CLφ̄LdLL = C φ̄LLdφ̄φ̄ = 0 , (4.47)
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which using (4.36) become

CRφR = −γCLφR , CRφ̄R = −γCLφ̄R , CLφL = −γCRφL , CLφ̄L = −γCRφ̄L . (4.48)

Taking a chiral and the other two fields different, we get

CφLRdφφ = dLLC
L
Rφ + dLRC

R
Rφ , C φ̄LRdφ̄φ̄ = dLLC

L
Rφ̄ + dLRC

R
Rφ̄ , (4.49)

CφRLdφφ = dRRC
R
Rφ + dRLC

L
Rφ , C φ̄RLdφ̄φ̄ = dRRC

R
Rφ̄ + dRLC

L
Rφ̄ . (4.50)

Using dLR = γdϕϕ, these become

CφLR =
dϕϕ
dφφ

(CLRφ + γCRRφ) , C φ̄LR =
dϕϕ
dφφ

(CLRφ̄ + γCRRφ̄) , (4.51)

CφRL =
dϕϕ
dφφ

(CRLφ + γCLLφ) , C φ̄RL =
dϕϕ
dφφ

(CRLφ̄ + γCLLφ̄) . (4.52)

Finally, taking only b chiral, we get

C φ̄Rφdφ̄φ̄ = dRRC
R
φφ̄ + dRLC

L
φφ̄ , C φ̄Lφdφ̄φ̄ = dLRC

R
φφ̄ + dLLC

L
φφ̄ , (4.53)

Cφ
Rφ̄
dφφ = dRRC

R
φ̄φ + dRLC

L
φ̄φ , Cφ

Lφ̄
dφφ = dLRC

R
φ̄φ + dLLC

L
φ̄φ . (4.54)

Looking at the first of these, it becomes

C φ̄Rφ =
1

dφ̄φ̄
(dRRC

R
φφ̄ + dRLC

L
φφ̄)

=
dϕϕ
dφφ

(CRφφ̄ + γCLφφ̄)

=
dϕϕ
dφφ

(CRφφ̄ + γCRφ̄φ) . (4.55)

Likewise we get

C φ̄Lφ =
dϕϕ
dφφ

(γCRφφ̄ + CRφ̄φ) , Cφ
Rφ̄

=
dϕϕ
dφφ

(CRφ̄φ + γCRφφ̄) , Cφ
Lφ̄

=
dϕϕ
dφφ

(γCRφ̄φ + CRφφ̄) ,

(4.56)

which also imply

Cφ
Rφ̄

= C φ̄Lφ , Cφ
Lφ̄

= C φ̄Rφ . (4.57)

Bulk Field Expectation Operator Product

To find CRLR we use the inner product matrix dαβ of defect fields ϕL and ϕR and cyclicity

of the three point constant Cαβγ defined by

〈ϕα(u, ū)ϕβ(v, v̄)ϕγ(w, w̄)〉 = Cαβγ (|u− v||v − w||v − w|)−2h . (4.58)

Using Cγαβ = dγεCαβε and Cαβγ = Cγβα and the relations (4.32) and (4.34), we get

CRLR = dRRCLRR + dRLCLRL

= dRRCRRL + dRLCLLR

= dRR(dLLC
L
RR + dLRC

R
RR) + dRL(dRLC

L
LL + dRRC

R
LL)

= (dRRdLR + dRLdRL)Cϕϕϕ

= (dRR + dRL)dRLC
ϕ
ϕϕ . (4.59)
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With the inner-product matrix dαβ = 〈ϕα|ϕβ〉,

dαβ =

(
dLL dLR

dRL dRR

)
= dϕϕ

(
1 γ

γ 1

)
, (4.60)

and its inverse

dαβ =

(
dLL dLR

dRL dRR

)
=

1

dϕϕ(1− γ2)

(
1 −γ
−γ 1

)
, (4.61)

we obtain

CRLR =
γ

1 + γ
Cϕϕϕ . (4.62)

Likewise, we find all four of these structure constants are equal,

CRRL = CLLR = CLRL = CRLR =
γ

1 + γ
Cϕϕϕ . (4.63)

Continuity of Bulk Fields

We can relate the structure constants CbaL and CbL,a by moving the insertion point of the

field ϕL from the right of the field a to the left through the bulk. If the defect is oriented

along the x axis in the plane, then the field ϕL can be moved through the upper half plane,

as in Figure 4.3.

Φa(x) Φa(x) Φa(x)ϕL(x−1)

ϕ(x+ i)

ϕL(x+1)︸ ︷︷ ︸ ︸ ︷︷ ︸
CbLa CbaL

Figure 4.3: The relation between Cb
La and Cb

aL from continuity in the bulk.

Likewise, we can relate CbaR and CbR,a by moving the field ϕR through the lower half

plane.

Since the OPEs of the bulk field ϕ and the defect field ϕL with Φa are

φa(u, ū)ϕ(z, z̄) = CbaϕΦb(u, ū)(u− z)hb−ha−h(ū− z̄)h̄b−h̄a−h + . . . , (4.64)

φa(u, ū)ϕL(z, z̄) = CbaLΦb(u, ū)|u− z|hb−ha−h|ū− z̄|h̄b−h̄a−h + . . . , (4.65)

ϕL(z, z̄)φa(u, ū) = CbLaΦb(u, ū)|z − u|hb−ha−h|z̄ − ū|h̄b−h̄a−h + . . . , (4.66)

we get the relations

CbLa = exp(iπ(hb − h̄b − ha + h̄a))C
b
aL , (4.67)

CbRa = exp(−iπ(hb − h̄b − ha + h̄a))C
b
aR . (4.68)

We again list the cases according to the number of chiral fields involved:

• No chiral fields: we find identities consistent with Equation (4.63)

CRLR = CRRL , CLLR = CLRL . (4.69)
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• If Φb is chiral and Φa is not; with ζ = exp(iπh):

CφLα = ζCφαL , C φ̄Lα = ζ−1C φ̄αL , CφRα = ζ−1CφαR , C φ̄Rα = ζC φ̄αR , (4.70)

and hence

CφLL = C φ̄LL = CφRR = C φ̄RR = 0 , CφLR = ζCφRL , C φ̄LR = ζ−1C φ̄RL . (4.71)

where the first four structure constants were already found to be zero in Equations

(4.32) and (4.34).

• If Φa is chiral and Φb is not:

CLLφ = ζ−1CLφL , CRLφ = ζ−1CRφL , CLLφ̄ = ζCLφ̄L , CRLφ̄ = ζCRφ̄L , (4.72)

CLRφ = ζCLφR , CRRφ = ζCRφR , CLRφ̄ = ζ−1CLφ̄R , CRRφ̄ = ζ−1CRφ̄R , (4.73)

CφLR = ζCφRL , C φ̄LR = ζ−1C φ̄RL . (4.74)

• If both Φa and Φb are chiral:

C φ̄Lφ = ζ−2C φ̄φL , Cφ
Lφ̄

= ζ2Cφ
φ̄L

, C φ̄Rφ = ζ2C φ̄φR , Cφ
Rφ̄

= ζ−2Cφ
φ̄R

, (4.75)

4.2.5 Unknown Constants

We summarise the results so far, distinguishing the structure constants by the number of

chiral fields they involve.

No Chiral Fields

These are all known in terms of the bulk field data:

dRR = dLL = dϕϕ , dLR = dRL = γ dϕϕ , (4.76)

CLLL = CRRR= Cϕϕϕ , CRLL= CLRR = 0 , (4.77)

CRLR = CLLR = CRRL = CLRL = γ
1+γ C

ϕ
ϕϕ . (4.78)

Three Chiral Fields

These are also all known in terms of the boundary field theory data [66]:

C φ̄
φ̄φ̄

= Cφφφ , dφ̄φ̄ = dφφ , (4.79)

Cφ
φ̄φ̄

= C φ̄φφ = C φ̄
φφ̄

= C φ̄
φ̄φ

= Cφ
φφ̄

= Cφ
φ̄φ

= 0 . (4.80)
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Two Chiral Fields

The 24 structure constants involving two chiral fields can be written in terms of just two

of these, which we can take to be

CLφ̄φ and CLφφ̄ . (4.81)

Listing the remaining 22 structure constants:

CRφφ̄ = CLφ̄φ , CRφ̄φ = CLφφ̄ , (4.82)

C φ̄Rφ =
dϕϕ
dφφ

(CLφ̄φ + γCLφφ̄) , C φ̄Lφ =
dϕϕ
dφφ

(γCLφ̄φ + CLφφ̄) , (4.83)

Cφ
Rφ̄

=
dϕϕ
dφφ

(CLφφ̄ + γCLφ̄φ) , Cφ
Lφ̄

=
dϕϕ
dφφ

(γCLφφ̄ + CLφ̄φ) , (4.84)

C φ̄φR = ζ−2dϕϕ
dφφ

(CLφ̄φ + γCLφφ̄) , C φ̄φL = ζ2dϕϕ
dφφ

(γCLφ̄φ + CLφφ̄) , (4.85)

Cφ
φ̄R

= ζ2dϕϕ
dφφ

(CLφφ̄ + γCLφ̄φ) , Cφ
φ̄L

= ζ−2dϕϕ
dφφ

(γCLφφ̄ + CLφ̄φ) , (4.86)

CRφφ = CLφφ = CR
φ̄φ̄

= CL
φ̄φ̄

= 0 , (4.87)

CφRφ = CφLφ = C φ̄
Rφ̄

= C φ̄
Lφ̄

= 0 , (4.88)

CφφR = CφφL = C φ̄
φ̄R

= C φ̄
φ̄L

= 0 . (4.89)

It will be convenient to introduce κ and Γ to parametrise CL
φφ̄

and CL
φ̄φ

as

CLφφ̄ = κΓ , CLφ̄φ = κ−1Γ , CLφφ̄ = κ2CLφ̄φ . (4.90)

It will turn out that Γ is real and non-negative, and κ is a pure phase. We note that these

two structure constants can be found from the results in [100]—they are related to Cs

defined in [100]: Equation (2.19).

One Chiral Field

The twenty-four structure constants involving just one chiral field can, using the previous

identities, be written in terms of just four:

CRφL , CRφ̄L , CLφR , CLφ̄R . (4.91)
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We list the remaining twenty constants here for convenience:

CRLφ = ζ−1CRφL , CRLφ̄ = ζCRφ̄L , (4.92)

CLRφ = ζ−1CLφR , CLRφ̄ = ζCLφ̄R , (4.93)

CLφL = −γCRφL , CRφR = −γCLφR , (4.94)

CLφ̄L = −γCRφ̄L , CRφ̄R = −γCLφ̄R , (4.95)

CLLφ = ζ−1CLφL = −γζ−1CRφL , CLLφ̄ = ζCLφ̄L = −γζ CRφ̄L , (4.96)

CRRφ = ζ−1CRφR = −γζ−1CLφR , CRRφ̄ = ζCRφ̄R = −γζ CLφ̄R , (4.97)

CφLR =
1− γ2

ζ

dϕϕ
dφφ

CLφR , C φ̄LR = (1− γ2)
dϕϕ
dφφ

CRφ̄L , (4.98)

CφRL =
1− γ2

ζ2

dϕϕ
dφφ

CLφR , C φ̄RL = ζ (1− γ2)
dϕϕ
dφφ

CRφ̄L , (4.99)

CφLL = C φ̄LL = CφRR = C φ̄RR = 0 . (4.100)

4.2.6 Four-Point Function Sewing Constraints

We will use crossing relations for four point correlation functions to find sewing constraints

that will enable us to determined the remaining six structure constants {CL
φ̄φ
, CL

φφ̄
, CRφL,

CR
φ̄L
, CLφR, C

L
φ̄R
}.

The four-point function 〈ΦaΦbΦcΦd〉 of fields on a defect can be expressed in terms of

conformal blocks in two different ways, as illustrated in Figure 4.4.

a b

cd

e

f

d c

ba

k g

=
∑
ef

CeabC
f
cddef

(
hd

ha hb

hc
he

)(
h̄d

h̄a h̄b

h̄c
h̄e

)∗
δhe,hf δh̄e,h̄f

=
∑
kg

CgbcC
k
dadgk

hd
ha
hk

hb

hc


̄hd

h̄a
h̄k

h̄b

h̄c


∗

δhk,hgδh̄k,h̄g

Figure 4.4: Two ways of calculating a four-point defect field correlation function

The conformal blocks are functions which satisfy the crossing relations [66]

i

j
p
k

l
=
∑
q

F

[
j k

i l

]
pq

i

j k

l
q (4.101)

where the F-matrices are known constants, again given explicitly in [66]. Substituting

(4.101) into the expressions in Figure 4.4 leads to further sewing constraints that the

structure constants must satisfy.
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The simplest relations arise when there is only a single channel in both diagrams, i.e.

the sum is over a single pair of weights (he, h̄e) and a single pair of weights (hg, h̄g). Note

that since the space of fields with weights (h,h) is two-dimensional, this does not mean

that the OPE has to include only a single field. In all the cases where there is only a single

channel, the F -matrix is just the number 1 and so the sewing constraints become just∑
e,f

CeabC
f
cddef =

∑
g,k

CgbcC
k
dadgk . (4.102)

We now list all the non-zero cases in which the fields a, b, c and d are taken from

{φ, φ̄, ϕα} and for which there is only a single intermediate channel in both diagrams, and

state the corresponding equations. We will in fact only use the first eight of these, where

there is at most one field of weights (h, h) but we list them all for completeness. The eight

we use are:

&%
'$u u

uu
φ φ

φ̄φ̄

dφφ dφ̄φ̄ =
∑
α,β

Cαφφ̄C
β

φ̄φ
dαβ (4.103)

&%
'$u u

uu
φ φ̄

φφ̄

∑
α,β

Cαφφ̄C
β

φφ̄
dαβ =

∑
α,β

Cαφ̄φC
β

φ̄φ
dαβ (4.104)

&%
'$u u

uu
α φ̄

φφ

Cφ
αφ̄
Cφφφdφφ =

∑
β,γ

Cβ
φ̄φ
Cγφαdβγ (4.105)

&%
'$u u

uu
α φ

φ̄φ

∑
βγ

CβαφC
γ

φ̄φ
dβγ =

∑
β,γ

Cβ
φφ̄
Cγφαdβγ (4.106)

&%
'$u u

uu
α φ

φφ̄

∑
βγ

CβαφC
γ

φφ̄
dβγ = CφφφC

φ

φ̄α
dφφ (4.107)

&%
'$u u

uu
α φ

φ̄φ̄

C φ̄αφC
φ̄

φ̄φ̄
dφ̄φ̄ =

∑
β,γ

Cβ
φφ̄
Cγ
φ̄α
dβγ (4.108)
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&%
'$u u

uu
α φ̄

φφ̄

∑
βγ

Cβ
αφ̄
Cγ
φφ̄
dβγ =

∑
β,γ

Cβ
φ̄φ
Cγ
φ̄α
dβγ (4.109)

&%
'$u u

uu
α φ̄

φ̄φ

∑
βγ

Cβ
αφ̄
Cγ
φ̄φ
dβγ = C φ̄

φ̄φ̄
C φ̄φαdφ̄φ̄ (4.110)

The remaining three which include two fields of type ϕα but still only have a single

intermediate channel are:

&%
'$u u

uu
α β

φφ̄

∑
γε

CγαβC
ε
φφ̄dγε =

∑
γε

CγβφC
ε
φ̄αdγε (4.111)

&%
'$u u

uu
α β

φ̄φ

∑
γε

CγαβC
ε
φ̄φdγε =

∑
γε

Cγ
βφ̄
Cεφαdγε (4.112)

&%
'$u u

uu
α φ

βφ̄

∑
γε

CγαφC
ε
βφ̄dγε =

∑
γε

CγφβC
ε
φ̄αdγε (4.113)

4.2.7 Analysis of Sewing Constraints

We need to use only the first eight relations. We consider these in turn:

• Equation (4.103)

Written out in full, this is

dφφdφ̄φ̄ = CLφφ̄C
L
φ̄φdLL + CLφφ̄C

R
φ̄φdLR + CRφφ̄C

L
φ̄φdRL + CRφφ̄C

R
φ̄φdRR . (4.114)

Using CL
φφ̄

= CR
φ̄φ

= κΓ and CR
φφ̄

= CL
φ̄φ

= κ−1Γ, together with dLR = dRL = γdϕϕ,

and dφφ = dφ̄φ̄, this becomes

d2
φφ

dϕϕ
= Γ2(2 + γκ2 + γκ−2) , (4.115)

or

Γ =

√
d2
φφ

dϕϕ (2 + γκ2 + γκ−2)
. (4.116)
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• Equation (4.104)

This is

CLφφ̄C
L
φφ̄dLL + CLφφ̄C

R
φφ̄dLR + CRφφ̄C

L
φφ̄dRL + CRφφ̄C

R
φφ̄dRR

= CLφ̄φC
L
φ̄φdLL + CLφ̄φC

R
φ̄φdLR + CRφ̄φC

L
φ̄φdRL + CRφ̄φC

R
φ̄φdRR , (4.117)

which is satisfied identically.

• Equation (4.105)

This leads to two equations: for α = L:

Cφ
Lφ̄
Cφφφdφφ = CLφ̄φC

L
φLdLL + CLφ̄φC

R
φLdLR + CRφ̄φC

L
φLdRL + CRφ̄φC

R
φLdRR , (4.118)

and for α = R:

Cφ
Rφ̄
Cφφφdφφ = CLφ̄φC

L
φRdLL + CLφ̄φC

R
φRdLR + CRφ̄φC

L
φRdRL + CRφ̄φC

R
φRdRR . (4.119)

The first equation becomes:

(γCLφφ̄ + CLφ̄φ)Cφφφ = CRφLC
L
φφ̄

(
1− γ2

)
, (4.120)

or

CRφL =
1 + κ2γ

κ2(1− γ2)
Cφφφ . (4.121)

The second equation implies

CLφR =
κ2 + γ

(1− γ2)
Cφφφ . (4.122)

• Equation (4.106)

These two equations imply

κ2 = ζ = exp(iπh) . (4.123)

(We will not need to fix the sign of κ as only κ2 appears in our final answers.)

• Equation (4.107)

These equations imply (for α = L)

CRφL =
1 + κ2γ

ζ(1− γ2)
Cφφφ , (4.124)

and (for α = R)

CLφR =
ζ2

κ

γ + κ2

(1− γ2)
Cφφφ , (4.125)

which are consistent with the results so far.
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• Equation (4.108)

These two equations lead to (α = L):

CRφ̄L =
γ + κ2

1− γ2
Cφφφ , (4.126)

and (with α = R)

CLφ̄R =
1 + γκ2

κ2(1− γ2)
Cφφφ . (4.127)

Together, these imply

CRφ̄L = CLφR and CLφ̄R = CRφL . (4.128)

This completes the derivation of the structure constants. They agree with the specific

case in [110] (apart from a typo in [110], where it should ρ = exp(iπ/10)). The remaining

crossing relations (4.111) – (4.113) are not needed for the derivation of the structure

constants but we have checked that they hold.

4.3 Integrals

We want to calculate the leading term in the expansion (4.10), that is

I =
1

4
λ2λ̄2

∫
dx dx′ dy dy′〈 T (iY )T (iY )φ(x)φ(x′)φ̄(y)φ̄(y′) 〉 . (4.129)

The correlation function has the same functional form whatever the order of the fields, but

a different constant depending on the order of the insertions. We can restrict to x < x′ and

y < y′ to get

I = (λλ̄)2

〈
T (i)T̄ (i)

∫
x<x′ , y<y′

dx dx′ dy dy′ φ(x)φ(x′)φ̄(y)φ̄(y′)

〉
Dr2

. (4.130)

This correlation function is〈
T (i) T̄ (i)φ(x)φ(x′)φ̄(y)φ̄(y′)

〉
= ∆ h2 (x′ − x)2−2h (y′ − y)2−2h

(i− x)2(i− x′)2(i+ y)2(i+ y′)2
, (4.131)

where the constant ∆ depends on the order of the field insertions as in table 4.2. The

values ∆i are

∆1 =dφφ dφ̄φ̄ = (dφφ)2 , (4.132)

∆2 =dαβ C
α
φφ̄C

β

φφ̄
= (dφφ)2 2γ + κ2 + κ−2

2 + γκ2 + γκ−2
. (4.133)

We only need to evaluate three of these integrations, the other three being given by

complex conjugation. Furthermore, we only need the leading order term in y in the

correlation function,〈
T (i)T̄ (i)φ(x)φ(x′)φ̄(y)φ̄(y′)

〉
Dr2

=
∆

(i− x)2(i− x′)2(i+ y)2(i+ y′)2
+O(y) . (4.134)
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Integration region Order of fields Value of ∆

x < x′ < y < y′ φφφ̄φ̄ ∆1

x < y < x′ < y′ φφ̄φφ̄ ∆2

x < y < y′ < x′ φφ̄φ̄φ ∆1

y < x < x′ < y′ φ̄φφφ̄ ∆1

y < x < y′ < x′ φ̄φφ̄φ ∆2

y < y′ < x < x′ φ̄φ̄φφ ∆1

Table 4.2: The coefficient in the four-point function (4.131)

Integration region Order of fields Value of the integral

x < x′ < y < y′ φφφ̄φ̄ −3πi
16 ∆1

x < y < x′ < y′ φφ̄φφ̄ −π2+3πi
8 ∆2

x < y < y′ < x′ φφ̄φ̄φ π2

8 ∆1

y < x < x′ < y′ φ̄φφφ̄ π2

8 ∆1

y < x < y′ < x′ φ̄φφ̄φ −π2−3πi
8 ∆2

y < y′ < x < x′ φ̄φ̄φφ 3πi
16 ∆1

Table 4.3: The integrals

The results are given in table 4.3.

Adding all six together, we get

I = (λλ̄)2

∫ ∞
−∞

dx dx′ dy dy′
〈
T (i)T̄ (i)φ(x)φ(x′)φ̄(y)φ̄(y′)

〉
Dr2

= (λλ̄)2

[
π2

4
(∆1 −∆2) +O(y)

]
=
π2

4
(λλ̄)2 (dφφ)2

[
1−

[
2γ + κ2 + κ−2

2 + γκ2 + γκ−2

]
+O(y)

]
. (4.135)

4.4 Value of Reflection Coefficient for Defect C

We now put the various terms together to find the value of R at the fixed point (λ∗, λ∗),

R =
〈T 1T 1 + T 2T 2〉

〈(T 1 + T 2)(T 1 + T 2)〉
. (4.136)

The leading term in the numerator is 2I and leading term in the denominator is c/16.

We first give the expansion in y = 1− h of the various constants. With h = 2t− 1 we

get t = 1− y/2 and so

κ2 = ζ = exp(iπh) = −1 +O(y) , (4.137)

γ = 2 cos(2πt)− 1 = 1 +O(y2) , (4.138)

(Cφφφ)2

dφφ
=

8

3
+O(y) . (4.139)
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At the fixed point,

I =
π2

4
(λ∗)4 (dφφ)2

[
1−

[
2γ + κ2 + κ−2

2 + γκ2 + γκ−2

]
+O(y)

]
=

9π2y4

256
+O(y5) , (4.140)

and with c = 1 +O(y), we find

R =
29π2y4

256 +O(y5)

1/16 +O(y)
=

9π2y4

8
+O(y5) . (4.141)

We can now calculate this for the tri-critical Ising model. In this case, h = 3/5, y = 2/5

and we are far from the small y regime, but we calculate the leading correction and get

R ∼ 18π2

625
= 0.284... . (4.142)

Note that the corresponding transmission coefficients is T ∼ 0.715.... This can be compared

with the values[117] we find in (6.115) and (6.116) from Chapter 6, which are
√

3− 1

2
= 0.366... and

3−
√

3

2
= 0.633... . (4.143)

The latter value is close enough not to rule out that the conformal defect we found in

Chapter 6 is related to the one found by perturbation theory.
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Chapter 5

Interfaces Between Conformal Field Theories

In this chapter, we construct topological interfaces between the Ising model and the free

fermion theory at c = 1
2 , and the tri-critical Ising model considered as a bosonic theory and

as a N = 1 super-Virasoro minimal model at c = 7
10 . The aim of this chapter is to use the

latter interface and the superconformal defects we construct in the next chapter to obtain

conformal defects in the bosonic tri-critical Ising model. These also provide new examples

of topological interfaces between conformal field theories.

5.1 Ising Model and Free Fermion Theory

As a warm-up, we consider topological interfaces between the Ising model and the free

fermion theory. While the free fermion theory is not supersymmetric, the construction of

interfaces between the bosonic and fermionic theories can be generalised to the tri-critical

Ising model case.

5.1.1 Bulk Fields in Free Fermion Theory

A single free massless Majorana fermion theory on the complex plane has the action

S =
1

2π

∫
d2z

(
ψ∂̄ψ + ψ̄∂ψ̄

)
, (5.1)

where ψ(z) and ψ̄(z̄) are the holomorphic and antiholomorphic components of the free

fermion. The equations of motion imply ψ and ψ̄ are independent on the full complex

plane, and the chiral components of the free fermion have conformal dimensions hψ = 1
2

and h̄ψ̄ = 1
2 . This theory has the holomorphic and antiholomorphic stress-energy tensors

given by the normal ordered products

T (z) = −1

2
(ψ∂ψ)(z) and T̄ (z̄) = −1

2
(ψ̄∂̄ψ̄)(z̄) . (5.2)

Mode expansions of ψ(z) and ψ̄(z̄) are given by

ψ(z) =
∑

n∈Z+ 1
2

ψn z
−n− 1

2 and ψ̄(z̄) =
∑

n∈Z+ 1
2

ψ̄n z̄
−n− 1

2 , (5.3)

and they satisfy the anticommutation relations

{ψn, ψm} = δn+m,0 , {ψ̄n, ψ̄m} = δn+m,0 , and {ψn, ψ̄m} = 0 . (5.4)

These modes define the untwisted representation, which is called the Neveu–Schwarz

sector, of the free fermion algebra. The chiral representation HNS is the Fock space spanned

by vectors of the form

ψn1
ψn2
· · ·ψnk |0〉 with n1 < n2 < · · · < nk < 0 , (5.5)
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where |0〉 is the unique vacuum state. Since ψ(z) and ψ̄(z̄) are real, we have ψ†n = ψ−n

and ψ̄†n = ψ̄−n.

From the anticommutation relations and the form of stress-energy tensors, we can

see there is an automorphism of the algebra given by ψ(z) 7→ −ψ(z). Therefore, we can

impose a twisted boundary condition

ψ(e2πiz) = −ψ(z) . (5.6)

As a consequence, mode expansions of ψ(z) becomes

ψ(z) =
∑
n∈Z

ψn z
−n− 1

2 . (5.7)

They define the twisted representation of the free fermion algebra, which is called the

Ramond sector. As we have seen in (2.111), such representations correspond to non-local

fields. The ground states of the bulk theory in the Ramond sector corresponds to the spin

fields σ(z, z̄) and µ(z, z̄) that are discussed in Appendix C.

Roughly speaking, spin structures on a Riemann surface are determined by the period-

icities of fermions around homotopically inequivalent uncontractible loops. For a Riemann

surface of genus g, there are 22g spin structures: the circle S1 has two inequivalent spin

structures that are called Neveu–Schwarz and Ramond, and for genus 1, four spin struc-

tures are called NS–NS, NS–R, R–NS, and R–R. For a more general definition of spin

structures on Riemannian manifolds in terms of principle fibre bundles, see, for example,

[1].

We take the bulk sector to be the theory of local fermion fields ψ(z) and ψ̄(z̄) in the

Neveu–Schwarz sector. Therefore, the bulk state space is given by

Hf.f. = HNS ⊗HNS = (H0 ⊕H 1
2
)⊗ (H0 ⊕H 1

2
) , (5.8)

where Hh on the right hand side is the irreducible Virasoro representation with c = 1
2 and

the conformal weight h. The corresponding torus partition function can be written as

Zf.f. = TrHf.f.

(
qL0− 1

48 q̄L̄0− 1
48

)
= |χNS(q)|2 , (5.9)

where q = e2πiτ and χNS(q) is given by (C.4). This partition function is invariant under

S : τ 7→ −1/τ and T2 : τ 7→ τ + 2 but under T : τ 7→ τ + 1, it becomes

T : |χNS(q)|2 7→ |χ̃NS(q)|2 , (5.10)

where the supercharacter χ̃NS(q) is given in (C.5).

5.1.2 Topological Defects in Free Fermion Theory

We consider topological defects Dε,ε̄ that preserve the free fermion algebra up to automor-

phisms. Then the defect operators must satisfy

ψn Dε,ε̄ = ε Dε,ε̄ ψn and ψ̄n Dε,ε̄ = ε̄ Dε,ε̄ ψ̄n , (5.11)
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where ε = ± and ε̄ = ±. As we can write the Virasoro generators as (C.1), if a defect

operator satisfies (5.11), then it satisfies the topological condition (2.261) as well. There

are operators 1, (−1)F , (−1)F̄ , and (−1)F+F̄ acting on the space Hf.f., and the condition

(5.11) determines the topological defect operators as

D++ = a++1 , D−+ = a−+(−1)F , D+− = a+−(−1)F̄ , D−− = a−−(−1)F+F̄ (5.12)

up to some normalisation aε,ε̄. We determine aε,ε̄ from the Cardy-type constraint (2.272)

and the topological defect fusion rules (2.281).

The torus partition functions with one defect inserted are

TrHf.f.

(
D++ q̃

L0− 1
48 ˜̄qL̄0− 1

48

)
= a++|χNS(q̃)|2 = a++|χNS(q)|2 , (5.13)

TrHf.f.

(
D−+ q̃

L0− 1
48 ˜̄qL̄0− 1

48

)
= a−+χ̃NS(q̃)χNS(˜̄q) =

√
2a−+χR(q)χNS(q̄) , (5.14)

TrHf.f.

(
D+− q̃

L0− 1
48 ˜̄qL̄0− 1

48

)
= a+−χNS(q̃)χ̃NS(˜̄q) =

√
2a+−χNS(q)χR(q̄) , (5.15)

TrHf.f.

(
D−− q̃

L0− 1
48 ˜̄qL̄0− 1

48

)
= a−−|χ̃NS(q̃)|2 = 2a−−|χR(q)|2 , (5.16)

where q̃ = e−2πi/τ . From these we see a++, a−− ∈ Z>0, and a+− and a−+ must be positive

integer multiples of
√

2 or 1/
√

2. Compositions of topological defect operators give

Dε1,ε̄1
Dε2,ε̄2

=
aε1,ε̄1aε2,ε̄2
aε1ε2,ε̄1ε̄2

Dε1ε2,ε̄1ε̄2
, (5.17)

which rules out a−+ and a+− being multiples of 1/
√

2. Therefore, the smallest solutions

are

a++ = a−− = 1 and a−+ = a+− =
√

2 . (5.18)

The space of disorder fields for these topological defects are summarised in Table 5.1.

Notations and conventions for various fields and state spaces used in this table are sum-

marised in Appendix C. Note that i in iψψ̄(z, z̄) is introduced to make its two-point function

positive.

D ZD|0(q, q̄) HD|0 Vir primary disorder fields

bosons fermions

D++ = 1 Zf.f. = |χNS(q)|2 Hf.f 1, iψψ̄(z, z̄) ψ(z), ψ̄(z̄)

D−+ =
√

2(−1)F 2χR(q)χNS(q̄) HR ⊗HNS σ(z), µψ̄(z, z̄) µ(z), σψ̄(z, z̄)

D+− =
√

2(−1)F̄ 2χNS(q)χR(q̄) HNS ⊗HR σ̄(z̄), ψµ̄(z, z̄) µ̄(z̄), ψσ̄(z, z̄)

D−− = (−1)F+F̄ 2|χR(q)|2 HR σ(z, z̄) µ(z, z̄)

Table 5.1: Disorder fields of free fermion topological defects.

In this picture of local free fermions with topological defects, the spin fields σ(z, z̄) and

µ(z, z̄) corresponding to the non-chiral Ramond ground states arise as the disorder fields

of the topological defect D−− which gives the branch cut for all fermions ψ(z) and ψ̄(z̄).

5.1.3 Conformal Boundaries in Free Fermion Theory

From the condition (2.209), if a boundary state ‖b〉〉 preserves the free fermion algebra, it

must satisfy (
ψn − iεψ̄−n

)
‖b〉〉 = 0 , (5.19)
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where ε = 1 corresponds to untwisted boundary states and boundary states with ε = −1

are twisted by the automorphism of the free fermion algebra ψ̄(z̄) 7→ −ψ̄(z̄). Again, from

(C.1), if a boundary state satisfies (5.19), then it satisfies the conformal boundary condition

(2.208) as well.

In fermionic theories, sectors of boundary conditions are determined by whether the

gluing conditions for the fermionic generators change at z = 0 on the upper half plane or

not[109]. In this case, if a boundary along the real axis on the upper half plane satisfies

ψ(z) = εψ̄(z̄) for z = z̄ ∈ R , (5.20)

then this boundary condition is in the Neveu–Schwarz sector. If the gluing condition for

z = z̄ is specified by

ψ(x) =

 εψ̄(x̄) for x < 0

−εψ̄(x̄) for x > 0
, (5.21)

where x ∈ R, then this boundary condition is in the Ramond sector. For Ramond boundary

conditions, change in the gluing conditions imply existence of boundary fields carrying

Ramond representations inserted at the origin.

Since Ishibashi states live in the completion of the bulk state space, we only consider

boundary states in the Neveu–Schwarz sector. Nevertheless, we will see that the Ramond

boundary states arise in the modular S transformed picture of the boundary theory.

The Ishibashi states in the NS sector can be written as[105]

|NS, ε〉〉 =
∞∏
n=0

e
iεψ−n− 1

2
ψ̄−n− 1

2 |0〉 (5.22)

that are solutions of (5.19) with corresponding ε. Their overlaps can be calculated as

〈〈NS,±|q̃
1
2(L0+L̄0− 1

24)|NS,±〉〉 = χNS(q̃) = χNS(q) and (5.23)

〈〈NS,±|q̃
1
2(L0+L̄0− 1

24)|NS,∓〉〉 = χ̃NS(q̃) =
√

2χR(q) . (5.24)

We define the boundary state of the free fermion theory as

‖free〉〉 = |NS,+〉〉 and ‖fixed〉〉 =
√

2|NS,−〉〉 . (5.25)

These “free” and “fixed” boundary states are different from the usual Ising boundary states

with the same names; we have defined the free and fixed boundary conditions for free

fermions in the sense of [52] and [49] where the boundary conditions associated to the

upper half plane gluing condition (5.20) with ε = 1 is called “free” and ε = −1 is called

“fixed”. The overlaps of these boundary states are given by

〈〈free‖q̃
1
2(L0+L̄0− 1

24)‖free〉〉 = χNS(q̃) = χNS(q) ,

〈〈free‖q̃
1
2(L0+L̄0− 1

24)‖fixed〉〉 =
√

2χ̃NS(q̃) = 2χR(q) , and

〈〈fixed‖q̃
1
2(L0+L̄0− 1

24)‖fixed〉〉 = 2χNS(q̃) = 2χNS(q) . (5.26)

Recalling the Cardy constraint (2.232) and its geometric meaning illustrated in Figure 2.5,

we can analyse the spectra of boundary fields from the overlaps (5.26).
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5.1.4 Topological Defects in Ising Model

For c = 1
2 , there are three irreducible unitary representations of the Virasoro algebra. We

denote their Kac labels as (1, 1) = (2, 3) = 1, (1, 2) = (2, 2) = σ, and (1, 3) = (2, 1) = ε. In

addition, we introduce the indexing set, which is denoted by I = {1, σ, ε}. The conformal

weights of the representations are h1 = 0, hσ = 1
16 , and hε = 1

2 . For the Ising model, the

fusion rules (2.91) are given by

σ ⊗ σ = 1⊕ ε , σ ⊗ ε = σ , ε⊗ ε = 1 . (5.27)

In addition, the modular S-matrix of the Ising model is given by

S =

S11 S1ε S1σ

Sε1 Sεε Sεσ

Sσ1 Sσε Sσσ

 =


1
2

1
2

1√
2

1
2

1
2 − 1√

2
1√
2
− 1√

2
0

 . (5.28)

For the Ising model, there are three elementary topological defects D1, Dσ, and Dε.

From (2.278) and using (A.18), the corresponding defect operators are given by

D1 = P0P 0 + P 1
2
P 1

2
+ P 1

16
P 1

16
,

Dε = P0P 0 + P 1
2
P 1

2
− P 1

16
P 1

16
,

Dσ =
√

2(P0P 0 − P 1
2
P 1

2
) . (5.29)

From (2.270) and (2.279), the state spaces of defect fields living on these topological

defects are

H1|1 = Hbulk = (1,1)⊕ (σ, σ)⊕ (ε, ε) ,

Hσ|σ = (1,1)⊕ 2(σ, σ)⊕ (ε, ε)⊕ (1, ε)⊕ (ε,1) ,

Hε|ε = (1,1)⊕ (σ, σ)⊕ (ε, ε) , (5.30)

where (i, j) is a short-hand for Hi ⊗Hj for i, j ∈ I.

As it is clear from the fusion rules (5.27), Dε is a group-like defect. From (5.29), we

see that this defect flips the sign of the bulk field with label σ, which is often called the

spin field. As a consequence, the defect fields on Dε are again the bulk fields, which can

be seen in (5.30). Also, recall that the partition function of defect fields on Dε is the same

as the torus partition function with two Dε inserted with the opposite orientations as in

Figure 2.6. In this case, two Dε on the torus fuse to give the identity defect, therefore the

partition function is the same as the bulk one.

Using (2.283), we can calculated the state spaces of disorder fields

Hσ|1 = (σ,1)⊕ (1, σ)⊕ (σ, ε)⊕ (ε, σ) ,

Hε|1 = (ε,1)⊕ (1, ε)⊕ (σ, σ) . (5.31)

The disorder field of Dε with the representation (σ, σ) is not the same as the bulk spin field

σ. This is what we usually call the disorder field µ(z, z̄) of the Ising model. In addition,
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the disorder fields of Dε with the representations (ε,1) and (1, ε) are related to the free

fermions ψ(z) and ψ̄(z̄).

Since Dε and D1 are group-like defects, the fusion rules (5.27) indicate that Dσ is a

duality defect. As discussed in [83], Dσ implements the order-disorder duality, which is

know as the Kramers-Wannier duality, of the Ising model.

In addition, the state space of defect changing fields is

Hσ|ε = (σ,1)⊕ (1, σ)⊕ (σ, ε)⊕ (ε, σ) . (5.32)

This is the same as Hσ|1 since, by folding this defect about a defect changing field, the

defect field becomes a disorder field at the end of the topological defectDσDε = Dσ. Using

the same argument, we can understandHσ|σ ∼= H1|1⊕Hε|1 as a result ofDσDσ = D1+Dε.

5.1.5 Factorising Defects in Ising Model

Since a factorising defect acts as conformal boundaries to the both sides of the defect, the

defect operator Fab : Hbulk → Hbulk of a factorising defect with the left boundary condition

a and the right boundary condition b can be written as

Fab = ‖a〉〉〈〈b‖ , (5.33)

where ‖a〉〉 and ‖b〉〉 are the corresponding boundary states. For the Ising model, there are

three Cardy boundary states

‖+〉〉 =
1√
2
|0〉〉+

1√
2
|12〉〉+

1
4
√

2
| 1
16〉〉 ,

‖−〉〉 =
1√
2
|0〉〉+

1√
2
|12〉〉 −

1
4
√

2
| 1
16〉〉 ,

‖f〉〉 = |0〉〉 − |12〉〉 . (5.34)

In this notation + = 1, − = ε, and f = σ. The space of defect fields living on a factorising

defect Fab is

HFab = Haa ⊗Hbb , (5.35)

where Haa is the space of boundary fields ψ(αα)
i living on a boundary (2.201). Here, the

bar indicates the boundary has the opposite orientation.

As we shall see later, we often need to consider the space of defect fields on Fab ∪ Fa′b′ .
In this case, we have the following boundary configurations:

ψ(aa)

a

a

ψ(bb)

b

b

and

ψ(a′a′)

a′

a′

ψ(b′b′)

b′

b′

,

in addition to
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ψ(a′a)

a′

a

ψ(bb′)

b′

b

and

ψ(aa′)

a

a′

ψ(b′b)

b

b′

.

Therefore, the space of defect fields is

HFab∪Fa′b′ =
(
Haa ⊗Hbb

)
⊕
(
Ha′a′ ⊗Hb′b′

)
⊕ 2

(
Haa′ ⊗Hbb′

)
. (5.36)

For the Ising model, we can calculate (2.204) and obtain

H++ = H−− = (1) ,

H+f = H−f = (σ) ,

H+− = (ε) ,

Hff = (1)⊕ (ε) .

For the purpose of the next section, we note the following state spaces of factorising defect

fields:

HF++∪F−− = 2(1,1)⊕ 2(ε, ε) ,

HFff = (1,1)⊕ (1, ε)⊕ (ε,1)⊕ (ε, ε) ,

HF−+∪F+−
= 2(1,1)⊕ 2(ε, ε) ,

HFf+∪Ff− = 2(1,1)⊕ 2(1, ε)⊕ 2(ε,1)⊕ 2(ε, ε) ,

HF+f∪F−f = 2(1,1)⊕ 2(1, ε)⊕ 2(ε,1)⊕ 2(ε, ε) . (5.37)

5.1.6 Interfaces Between Ising Model and Free Fermion Theory

If there exists a topological interface between the Ising model and the free fermion theory

constructed in the previous sections, the corresponding operator I should be a map from

the bulk state space Hf.f. of the free fermion theory to that of the Ising model HIs.. The

operator I† corresponds to the orientation reversed interface, and it is a map from HIs. to

Hf.f.. In order for this interface to be topological, the operator I has to satisfy

I LNS
n = Ln I and I L̄NS

n = L̄n I , (5.38)

where LNS
n is given by (C.1) and Ln acts on HIs.. Then, the operator I should consist of

projectors on the Virasoro representations. In terms of the c = 1
2 irreducible Virasoro

representations Hh with conformal weights h = 0, 1
2 ,

1
16 , the bulk state spaces can be

expressed as

HIs. = (H0 ⊗H0)⊕ (H 1
2
⊗H 1

2
)⊕ (H 1

16
⊗H 1

16
) and (5.39)

Hf.f. = (H0 ⊕H 1
2
)⊗ (H0 ⊕H 1

2
) . (5.40)
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By writing the projector onto Hh ⊗Hh′ as PhP h′ , the interface operator I should project

Hf.f. onto the subspace which is common with HIs.

Iα,β = α P0P 0 + β P 1
2
P 1

2
. (5.41)

We are going to determine the allowed coefficients α and β for the interfaces Iα,β by

evaluating their fusion rules with topological defects, boundary states, and interfaces.

By considering the fusion of an interface Iα,β with a topological defect Da, which is

parallel to Iα,β, in either theory, we demand the compositions of operators

DIs.
a Iα,β =

∑
(α′,β′)

Ñ (α′,β′)
a (α,β) Iα′,β′ and Iα,β D

f.f.
a =

∑
(α′,β′)

N (α′,β′)
(α,β) a Iα′,β′ (5.42)

have non-negative integer coefficients Ñ (α′,β′)
a (α,β) and N (α′,β′)

(α,β) a . Conformal defects in the Ising

model have been studied before[54, 59], and they are summarised in Appendix B. In partic-

ular, topological defect operators in the Ising model can be written as

D1 = P0P 0 + P 1
2
P 1

2
+ P 1

16
P 1

16
,

Dε = P0P 0 + P 1
2
P 1

2
− P 1

16
P 1

16
,

Dσ =
√

2(P0P 0 − P 1
2
P 1

2
) . (5.43)

Similarly, topological defect operators in the free fermion theory summarised in Table 5.1

can be expressed as

D++ = (P0 + P 1
2
)(P 0 + P 1

2
) ,

D−+ =
√

2(P0 − P 1
2
)(P 0 + P 1

2
) ,

D+− =
√

2(P0 + P 1
2
)(P 0 − P 1

2
) ,

D−− = (P0 − P 1
2
)(P 0 − P 1

2
) . (5.44)

Using these expressions, we can calculate

D1 Iα,β = Iα,β , Dε Iα,β = Iα,β , Dσ Iα,β =
√

2Iα,−β ,

Iα,β D++ = Iα,β , Iα,β D−+ =
√

2Iα,−β , Iα,β D+− =
√

2Iα,−β , Iα,β D−− = Iα,β .

(5.45)

Next, we consider the action of topological interfaces on the boundary states. We

demand interfaces to map boundary states of one theory to those of the other theory as

Iα,β‖a〉〉f.f. =
∑
b∈BIs.

N b
(α,β) a‖b〉〉Is. and I†α,β‖a〉〉Is. =

∑
b∈Bf.f.

Ñ b
(α,β) a‖b〉〉f.f. (5.46)

with non-negative integer coefficients N b
(α,β) a and Ñ b

(α,β) a. Using the Ising boundary states

(5.34) and

|NS,±〉〉 = |0〉〉 ± |12〉〉 , (5.47)
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we obtain the action of interfaces on the free fermion boundary states as

Iα,β‖free〉〉 =
α+ β

2
√

2
(‖+〉〉+ ‖−〉〉) +

α− β
2
‖f〉〉 and

Iα,β‖fixed〉〉 =
α− β

2
(‖+〉〉+ ‖−〉〉) +

α+ β√
2
‖f〉〉 . (5.48)

The action of orientation reversed interfaces on the Ising boundary states are

I†α,β‖+〉〉 =
α+ β

2
√

2
‖free〉〉+

α− β
4
‖fixed〉〉 ,

I†α,β‖−〉〉 =
α+ β

2
√

2
‖free〉〉+

α− β
4
‖fixed〉〉 ,

I†α,β‖f〉〉 =
α− β

2
‖free〉〉+

α+ β

2
√

2
‖fixed〉〉 . (5.49)

From these, we obtain the condition α =
√

2m+ 2n and β =
√

2m− 2n for m,n ∈ Z.

Finally, we consider fusions of interfaces with orientation reversed interfaces. We

require the compositions of interface operators

Iα,β I
†
α′,β′ =

∑
a∈TIs.

Ña
(α,β)(α′,β′) D

Is.
a and I†α,β Iα′,β′ =

∑
a∈Tf.f.

Na
(α,β)(α′,β′) D

f.f.
a (5.50)

to have non-negative integer coefficients Ña
(α,β)(α′,β′) and Na

(α,β)(α′,β′). Using (5.43) and

(5.44), we can calculate

Iα,β I
†
α′,β′ =

αα′ + ββ′

4
(D1 +Dε) +

αα′ − ββ′

2
√

2
Dσ and

I†α,β Iα′,β′ =
αα′ + ββ′

4
(D++ +D−−) +

αα′ − ββ′

4
√

2
(D−+ +D+−) . (5.51)

These observations above suggest that there are two elementary interfaces I and I ′

given by

I := I√2,
√

2 =
√

2(P0P 0 + P 1
2
P 1

2
) and

I ′ := I2,−2 = 2(P0P 0 − P 1
2
P 1

2
) . (5.52)

Then, the non-trivial fusions of interfaces and topological defects in (5.45) become

Dσ I = I ′ , I D+− = I D−+ = I ′ ,

Dσ I
′ = 2I , I ′ D+− = I ′ D−+= 2I . (5.53)

The action of interfaces on the free fermion boundary states (5.48) and on the Ising

boundary states (5.49) becomes

I‖free〉〉 = ‖+〉〉+ ‖−〉〉 , I†‖+〉〉 = I†‖−〉〉 = ‖free〉〉 ,

I‖fixed〉〉 = 2‖f〉〉 , I†‖f〉〉 = ‖fixed〉〉 ,

I ′‖free〉〉 = 2‖f〉〉 , I ′†‖+〉〉= I ′†‖−〉〉 = ‖fixed〉〉 ,

I ′‖fixed〉〉 = 2(‖+〉〉+ ‖−〉〉) , I ′†‖f〉〉 = 2‖free〉〉 . (5.54)

Finally, the fusions of interfaces with orientation reversed ones (5.51) become

I I† = D1 +Dε , I I ′† = 2Dσ ,

I† I = D++ +D−− , I ′† I = D−+ +D+− . (5.55)
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5.1.7 Consistency of Interfaces

Since they are topological, we can consider sweeping an interface across bulk fields in one

theory to obtain corresponding disorder fields in the other theory as in Figure 2.10. The

action of topological interfaces does not change conformal weights of fields, and therefore

we can identify the resulting disorder fields by their conformal weights in this case.

Ising Model Free fermion

I

ψ(z)
I

I

α

Dε

Ising Model Free fermion

I

Space of zero weight functions α
Dε

I

I

is one dimensional.

Figure 5.1: Moving the interface I across the field ψ(z) in the free fermion theory, and the junction
between I and Dε.

Let us consider sweeping the interface I across the bulk fields of the free fermion theory.

From (5.55), the resulting fields must be either bulk fields of the Ising model or disorder

fields of the topological defect Dε. We also need to check the existence of a weight zero

field at the three-legged junction between the interface and a topological defect as depicted

in Figure 5.1. Denoting the space of fields at the junction between the interface I and a

topological defect Di as HII†Di , we can calculate

TrH
II†Dε

(
qL0− c

24 q̄L̄0− c
24

)
= TrHIs.

(
II†Dε q̃

L0− c
24 ˜̄qL̄0− c

24

)
= TrHIs.

(
(D1 +Dε) q̃

L0− c
24 ˜̄qL̄0− c

24

)
= 2|χ0(q̃)|2 + 2|χ 1

2
(q̃)|2 = |χ0(q) + χ 1

2
(q)|2 + 2|χ 1

16
(q)|2 ,

(5.56)

where χh(q) is the character of the Virasoro representation with a highest weight h and

c = 1
2 . Therefore, we see that there is a one-dimensional space of weight zero field at the

three-legged junction between I and Dε. Since II†Dε = II† = II†D1, the same is true for

the three-legged junction between I and D1. As there are no chiral bulk fields in the Ising

model, ψ(z) and ψ̄(z̄) become disorder fields of Dε while iψψ̄(z, z̄) corresponds to the bulk

field ε(z, z̄). In addition, we assume the weight zero field α at the three-legged junction

between I and Dε only couples to fermions. In terms of Figure 2.10, this means that the

linear map DεIα is zero for bosons in the free fermion theory.

We can also consider sweeping an interface across disorder fields attached to topological

defects. For example, we can fuse the bottom half of the interface I with the topological
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defect D−−. From the fusion rules (5.45), a disorder field of D−− becomes a defect field

on I. Then, by moving the interface, these fields become disorder fields of D1 or Dε in the

Ising model. As in Table 5.1, the disorder fields σ(z, z̄) and µ(z, z̄) of D−− have the same

conformal weights but opposite fermion parities. As we have assumed the junction field α

between I and Dε only couples to fermions, σ(z, z̄) becomes a bulk field of the Ising model

and µ(z, z̄) becomes a disorder field of Dε.

I

ψ(z) /
ψ̄(z̄)

↔

I

α
ε

( 1
2
,0) /

(0, 1
2

)

I

iψψ̄(z, z̄)
↔

I

ε(z, z̄)

I

D−−

σ(z, z̄)
↔

I

σ(z, z̄)

I

D−−

µ(z, z̄)
↔

I

α
ε

( 1
16 ,

1
16)

I

D−+

µψ̄(z,z̄) /
σ(z)

↔

I

β0̄

D−+ σ
( 1

16
, 1
2

) /

( 1
16
,0)

I

D−+

σψ̄(z,z̄) /
µ(z)

↔

I

β1̄

D−+ σ
( 1

16
, 1
2

) /

( 1
16
,0)

I

D+−

ψµ̄(z,z̄) /
σ̄(z̄)

↔

I

β0̄

D+− σ
( 1

2
, 1
16

) /

(0, 1
16

)

I

D+−

ψσ̄(z,z̄) /
µ̄(z̄)

↔

I

β1̄

D+− σ
( 1

2
, 1
16

) /

(0, 1
16

)

Figure 5.2: Correspondence between bulk and disorder fields of the free fermion theory and the
Ising model.

Since ID−+ = I ′ and II ′† = 2Dσ, if we move the interface I across a disorder field

at the end of D−+ defect, it will become a disorder field of Dσ in two possible ways. We

can check this by calculating the number of weight zero fields at the four-legged junction

between I, D−+ and Dσ. Denoting the space of fields at this junction by HID−+I
†Dσ

, we
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can calculate

TrH
ID−+I

†Dσ

(
qL0− c

24 q̄L̄0− c
24

)
= TrHIs.

(
ID−+I

†Dσ q̃
L0− c

24 ˜̄qL̄0− c
24

)
= TrHIs.

(
2(D1 +Dε) q̃

L0− c
24 ˜̄qL̄0− c

24

)
= 4|χ0(q̃)|2 + 4|χ 1

2
(q̃)|2 = 2|χ0(q) + χ 1

2
(q)|2 + 4|χ 1

16
(q)|2 ,
(5.57)

and therefore there is a two-dimensional space of weight zero fields at the junction. We

label these two weight zero fields by β0̄ and β1̄ and assume the former only couples to

bosons and the latter only couples to fermions in the free fermion theory. As in Table 5.1,

disorder fields of D−+ come in pairs in which the fields have the same conformal weights

but with opposite fermion parities; by specifying β0̄ and β1̄ in this way, we can have unique

maps from the space of D−+ disorder fields to that of Dσ disorder fields. By looking at

(5.31), one can see that the half of Dσ disorder fields correspond to those of D−+. Using

the same argument, we find the other half of Dσ disorder fields come from D+− disorder

fields.

We have obtained the linear maps from the spaces of bulk fields and disorder fields of

the free fermion theory to those of the Ising model. These results are summarised in Figure

5.2. As we can invert these linear maps, we see that the bulk and disorder fields of the two

theories have unique correspondence. Together with the fusion rules (5.53), (5.54), and

(5.55), we conclude the topological interfaces (5.52) are consistent.

5.2 N = 1 Superconformal Field Theory

InN = 1 superconformal field theories (SCFTs), we often employ the superspace formalism

in which the theories are defined on super-Riemann surfaces. Coordinates on super-

Riemann surfaces are denoted by Z = (z, θ) where θ is a Grassmann variable which

satisfies θ1θ2 = −θ2θ1 and θ2 = 0. In the superspace formalism, bulk fields of an SCFT are

given by Neveu–Schwarz superfields[15]

ΦI(Z,Z) = ϕI(z, z̄) + θψI(z, z̄) + θ̄ψ̄I(z, z̄) + θθ̄ϕ̃I(z, z̄) . (5.58)

The component ϕI(z, z̄) of a superfield is called a superprimary field if the corresponding

state

|ϕI〉 = lim
z,z̄→0

ϕI(z, z̄)|0〉 (5.59)

is a highest weight state for holomorphic and antiholomorphic copies of the N = 1 super-

Virasoro algebra, that is

Gn|ϕI〉 = 0 , Ln|ϕI〉 = 0 , Ḡn|ϕI〉 = 0 , L̄n|ϕI〉 = 0 for n > 0 , (5.60)

and

L0|ϕI〉 = hI |ϕI〉 and L̄0|ϕI〉 = h̄I |ϕI〉 . (5.61)
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Then, the other components are obtained as the superdescendant states

|ψI〉 = G− 1
2
|ϕI〉 , |ψ̄I〉 = Ḡ− 1

2
|ϕI〉 , and |ϕ̃I〉 = G− 1

2
Ḡ− 1

2
|ϕI〉 . (5.62)

Using the SVir relations (2.117), one can show that these superdescendant fields are

Virasoro primary fields.

5.2.1 Bosonic Tri-Critical Ising Model

The unitary Virasoro minimal model M(4, 5) has c = 7
10 , and there are six representations

that are summarised in Table 5.2. Our choice of labels comes from the fusion rules of

M(4, 5), which can be considered as (Lee-Yang)× (Ising). The fields labelled by 1, ε, and

σ obey the Ising fusion rules

ε⊗ ε = 1 , ε⊗ σ = σ , and σ ⊗ σ = 1⊕ ε , (5.63)

and 1 and 1̂ satisfy the Lee-Yang fusion rule

1̂⊗ 1̂ = 1⊕ 1̂ . (5.64)

In general, we can write

x⊗ ŷ = (x̂⊗ y) and x̂⊗ ŷ = (x⊗ y)⊕ (x̂⊗ y) , (5.65)

where x, y ∈ {1, ε, σ}.

Label i 1 ε σ 1̂ ε̂ σ̂

Kac label (r, s)
(1, 1)

= (3, 4)

(3, 1)

= (1, 4)

(2, 1)

= (2, 4)

(1, 3)

= (3, 2)

(1, 2)

= (3, 3)

(2, 2)

= (2, 3)

Weight hi 0 3
2

7
16

3
5

1
10

3
80

Quantum dimension Di 1 1
√

2 1+
√

5
2

1+
√

5
2

1+
√

5√
2

Boundary entropy g0
i

(
5−
√

5
40

) 1
4

(
5−
√

5
40

) 1
4

(
5−
√

5
10

) 1
4

(
5+2
√

5
20

) 1
4

(
5+2
√

5
20

) 1
4

(
5+2
√

5
5

) 1
4

Table 5.2: Virasoro representations of M(4, 5).

Since there is only one modular invariant bulk partition function at c = 7
10 , the theory

defined by the diagonal modular invariant for the Virasoro algebra is also denoted by

M(4, 5). As a diagonal theory, M(4, 5) has six elementary boundary conditions and six

elementary topological defects that are labelled by the Virasoro representations. Their

explicit expressions are summarised in Table 5.3 and 5.4. One of the important quantities

characterising conformal boundaries and topological defects are their entropies. They are

defined as the coefficients of the vacuum Ishibashi state or those of the vacuum projector.

The entropy of the conformal defect labelled by a representation i is the same as the

quantum dimension (2.178) of i in the diagonal theories. They are also summarised in

Table 5.2.

In terms of the Vir representation labels at c = 7
10

I = {1, ε, σ, 1̂, ε̂, σ̂} , (5.66)
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the modular S matrix of M(4, 5) is given by

S =
1√
5



s2 s2

√
2s2 s1 s1

√
2s1

s2 s2 −
√

2s2 s1 s1 −
√

2s1√
2s2 −

√
2s2 0

√
2s1 −

√
2s1 0

s1 s1

√
2s1 −s2 −s2 −

√
2s2

s1 s1 −
√

2s1 −s2 −s2

√
2s2√

2s1 −
√

2s1 0 −
√

2s2

√
2s2 0


(5.67)

where s1 = sin(2π
5 ) and s2 = sin(4π

5 ). Therefore the Cardy boundary states of M(4, 5) are

given by

‖a〉〉 =
∑
i∈I

gia |i〉〉 , where gia =
Sai√
S0i

. (5.68)

These boundary state coefficients are given in Table 5.3.

‖a〉〉 \ |hi〉〉 |0〉〉 |32〉〉 | 7
16〉〉 |35〉〉 | 1

10〉〉 | 3
80〉〉

‖1〉〉
(

5−
√

5
40

) 1
4

(
5−
√

5
40

) 1
4

(
5−
√

5
20

) 1
4

(
5+
√

5
40

) 1
4

(
5+
√

5
40

) 1
4

(
5+
√

5
20

) 1
4

‖ε〉〉
(

5−
√

5
40

) 1
4

(
5−
√

5
40

) 1
4 −

(
5−
√

5
20

) 1
4

(
5+
√

5
40

) 1
4

(
5+
√

5
40

) 1
4 −

(
5+
√

5
20

) 1
4

‖σ〉〉
(

5−
√

5
10

) 1
4 −

(
5−
√

5
10

) 1
4

0
(

5+
√

5
10

) 1
4 −

(
5+
√

5
10

) 1
4

0

‖1̂〉〉
(

5+2
√

5
20

) 1
4

(
5+2
√

5
20

) 1
4

(
5+2
√

5
10

) 1
4 −

(
5−2
√

5
20

) 1
4 −

(
5−2
√

5
20

) 1
4 −

(
5−2
√

5
10

) 1
4

‖ε̂〉〉
(

5+2
√

5
20

) 1
4

(
5+2
√

5
20

) 1
4 −

(
5+2
√

5
10

) 1
4 −

(
5−2
√

5
20

) 1
4 −

(
5−2
√

5
20

) 1
4

(
5−2
√

5
10

) 1
4

‖σ̂〉〉
(

5+2
√

5
5

) 1
4 −

(
5+2
√

5
5

) 1
4

0 −
(

5−2
√

5
5

) 1
4

(
5−2
√

5
5

) 1
4

0

Table 5.3: Boundary state coefficients gia for M(4, 5).

The elementary topological defect operators of M(4, 5) are given by

Da =
∑
i∈I

gi,ia PiP i , where gi,ia =
Sai
S0i

. (5.69)

These topological defect operator coefficients are summarised in Table 5.4.

Da \ PhiP hi P0P 0 P 3
2
P 3

2
P 7

16
P 7

16
P 3

5
P 3

5
P 1

10
P 1

10
P 3

80
P 3

80

D1 1 1 1 1 1 1

Dε 1 1 −1 1 1 −1

Dσ

√
2 −

√
2 0

√
2 −

√
2 0

D1̂
1+
√

5
2

1+
√

5
2

1+
√

5
2

1−
√

5
2

1−
√

5
2

1−
√

5
2

Dε̂
1+
√

5
2

1+
√

5
2 −1+

√
5

2
1−
√

5
2

1−
√

5
2 −1−

√
5

2

Dσ̂
1+
√

5√
2

−1+
√

5√
2

0 1−
√

5√
2

−1−
√

5√
2

0

Table 5.4: Topological defect operator coefficients gi,ia for M(4, 5).

5.2.2 Supersymmetric Tri-Critical Ising Model

In M(4, 5), the Virasoro representation labelled by ε is a simple current with the conformal

weight 3
2 . The unitary super-Virasoro minimal model SM (3, 5), which also has c = 7

10 , can
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be regarded as the fermionic extension of M(4, 5) by the simple current ε. In SM (3, 5),

there are four representations of the super-Virasoro algebra: two of which are in the Neveu–

Schwarz sector and the other two are in the Ramond sector. They are summarised in Table

5.5. The fusion rules of SM (3, 5) are given by[8, 6, 16, 24, 47, 50, 57]

1A ⊗ 1B = a 1C and ϕA ⊗ ϕB = a(1C ⊕ ϕC) , (5.70)

where the subscripts and coefficients obey

A B C a

NS NS NS 1

NS R R 1

R NS R 1

R R NS 2

(5.71)

In the fusion rules of two Ramond representations, NS representations appear twice due

to the fact that the even and odd fusion rules are the same for these cases[24].

Label i 1NS ϕR ϕNS 1R

Kac label (r, s)
(1, 1)

= (2, 4)

(1, 2)

= (2, 3)

(1, 3)

= (2, 2)

(1, 4)

= (2, 1)

Weight hi 0 3
80

1
10

7
16

Table 5.5: Super-Virasoro representations of SM (4, 5).

As in the free fermion theory, we take the bulk sector to be the theory of local NS

superfields. Therefore, the bulk state space is given by

HNS = (HNS
0 ⊗HNS

0 )⊕ (HNS
1
10
⊗HNS

1
10

)

= (H0 ⊕H 3
2
)⊗ (H0 ⊕H 3

2
)⊕ (H 1

10
⊕H 3

5
)⊗ (H 1

10
⊕H 3

5
) , (5.72)

where HNS
h and Hh are the super-Virasoro and Virasoro representations with c = 7

10 the

conformal weight h respectively. We take the highest weight states of HNS
1
10

and HNS
1
10

to be

fermionic, which means

(−1)F | 1
10〉 = −| 1

10〉 and (−1)F̄ | 1
10〉 = −| 1

10〉 (5.73)

for the highest weight states | 1
10〉 ∈ HNS

1
10

and | 1
10〉 ∈ HNS

1
10

. The corresponding bulk superpri-

mary field is still bosonic as it commutes with (−1)F+F̄ . The bulk partition function can be

expressed in terms of the characters χNS
h (q) of SVir, which is given by (A.9), and χh(q) of

Vir as

ZNS = TrHNS

(
qL0− c

24 q̄L̄0− c
24

)
= |χNS

0 (q)|2 + |χNS
1
10

(q)|2

= |χ0(q) + χ 3
2
(q)|2 + |χ 1

10
(q) + χ 3

5
(q)|2 . (5.74)

This partition function is invariant under modular S and T2 transformations but the T

transformation changes |χNS
h (q)|2 to |χ̃NS

h (q)|2.

The theory defined by the diagonal bulk partition function (5.74) is also denoted by

SM (3, 5). As we saw in the free fermion case, the Ramond fields arise as disorder fields of

topological defects.
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5.2.3 Topological Defects in SM (3, 5)

We call a topological defect superconformal if it also preserves the N = 1 super-Virasoro

algebra up to automorphisms. Therefore, the operator D of a topological defect in super-

symmetric theories satisfies

Gn Dε,ε̄ = ε Dε,ε̄ Gn and Ḡn Dε,ε̄ = ε̄ Dε,ε̄ Ḡn , (5.75)

where ε = ±1 and ε̄ = ±1. Using the anticommutation relation in (2.117), one can show

that the condition above implies the Virasoro condition (2.261) as well. Recalling (5.73),

a topological defect operator satisfying (5.75) can be written as

Dε,ε̄ = a(P0 + ε P 3
2
)(P 0 + ε̄ P 3

2
) + b(ε P 1

10
+ P 3

5
)(ε̄ P 1

10
+ P 3

5
) , (5.76)

where a and b are constants, and PhP h′ is the projector onto the Virasoro representations

Hh ⊗Hh′ .

The identity defect operator has a, b = 1 and ε, ε̄ = 1 in (5.76). Using the same

argument as the free fermion case, the other topological defect operators with the same

a and b that are related by the automorphisms of SVir can be obtained by composing it

with
√

2(−1)F ,
√

2(−1)F̄ , and (−1)F+F̄ . Since the NS sector is closed under fusion and the

bulk partition function is diagonal, we can use (2.278) to obtain the other solution for the

coefficients a and b. Then, the topological defect operators with ε = 1 and ε̄ = 1 are given

by

D1 = (P0 + P 3
2
)(P 0 + P 3

2
) + (P 1

10
+ P 3

5
)(P 1

10
+ P 3

5
) and (5.77)

Dϕ =
S[NS,NS]

ϕ1

S[NS,NS]

11

PNS
0 PNS

0 +
S[NS,NS]
ϕϕ

S[NS,NS]

1ϕ

PNS
1
10
PNS

1
10

=
1 +
√

5

2
(P0 + P 3

2
)(P 0 + P 3

2
) +

1−
√

5

2
(P 1

10
+ P 3

5
)(P 1

10
+ P 3

5
) , (5.78)

where S[NS,NS]

ij is an element of the SVir modular S matrix given by (A.42), and PNS
h PNS

h′ is

the projector onto the super-Virasoro representations HNS
h ⊗HNS

h′ . In this way, we find a

complete set of eight elementary topological defects

T = {D1, Dϕ,
√

2(−1)FD1,
√

2(−1)FDϕ,
√

2(−1)F̄D1,
√

2(−1)F̄Dϕ, (−1)F+F̄D1, (−1)F+F̄Dϕ} . (5.79)

The identity defect D1 in the supersymmetric theory is also denoted by DNS
1 in order to

distinguish it from the identity defect in the non-supersymmetric theory. Compositions of

these topological defect operators satisfy an algebra with non-negative integer structure

constants. In addition to the usual compositions of fermion parity operators, we have

Dϕ Dϕ = D1 +Dϕ . (5.80)
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The torus partition function with one defect inserted are

TrHNS

(
D1 q̃

L0− 7
240 ˜̄qL̄0− 7

240

)
= |χNS

0 (q)|2 + |χNS
1
10

(q)|2 , (5.81)

TrHNS

(√
2(−1)FD1 q̃

L0− 7
240 ˜̄qL̄0− 7

240

)
= 2χR

7
16

(q)χNS
0 (q̄) + 2χR

3
80

(q)χNS
1
10

(q̄) , (5.82)

TrHNS

(√
2(−1)F̄D1 q̃

L0− 7
240 ˜̄qL̄0− 7

240

)
= 2χNS

0 (q)χR
7
16

(q̄) + 2χNS
1
10

(q)χR
3
80

(q̄) , (5.83)

TrHNS

(
(−1)F+F̄D1 q̃

L0− 7
240 ˜̄qL̄0− 7

240

)
= 2|χR

3
80

(q)|2 + 2|χR
7
16

(q)|2 , (5.84)

TrHNS

(
Dϕ q̃

L0− 7
240 ˜̄qL̄0− 7

240

)
= |χNS

1
10

(q)|2+χNS
0 (q)χNS

1
10

(q̄)+χNS
1
10

(q)χNS
0 (q̄) , (5.85)

TrHNS

(√
2(−1)FDϕ q̃

L0− 7
240 ˜̄qL̄0− 7

240

)
= 2χR

3
80

(q)
(
χNS

0 (q̄)+χNS
1
10

(q̄)
)

+2χR
7
16

(q)χNS
1
10

(q̄) ,

(5.86)

TrHNS

(√
2(−1)F̄Dϕ q̃

L0− 7
240 ˜̄qL̄0− 7

240

)
= 2

(
χNS

0 (q)+χNS
1
10

(q)
)
χR

3
80

(q̄)+2χNS
1
10

(q)χR
7
16

(q̄) ,

(5.87)

TrHNS

(
(−1)F+F̄Dϕ q̃

L0− 7
240 ˜̄qL̄0− 7

240

)
= 2|χR

3
80

(q)|2+2χR
3
80

(q)χR
7
16

(q̄)+2χR
7
16

(q)χR
3
80

(q̄) ,

(5.88)

where χR
h(q) is the character of the unextended Ramond algebra representation1 with

c = 7
10 and the conformal weight h whose explicit expression is given by (A.13).

D HD|0 Vir primary disorder fields

bosons fermions

D1 HNS

1, GḠ(z, z̄), G(z), Ḡ(z̄),

ϕϕ(z, z̄), ϕ̃ϕ(z, z̄) ψbϕ(z, z̄), ψ̄bϕ(z, z̄)

√
2(−1)FD1 (HR

7
16
⊗HNS

0 )⊕ (HR
3
80
⊗HNS

1
10

)
σ1(z), µ1Ḡ(z, z̄), µ1(z), σ1Ḡ(z, z̄)

σϕψ̄ϕ(z, z̄), µϕφ̄ϕ(z, z̄) µϕψ̄ϕ(z, z̄), σϕφ̄ϕ(z, z̄)

√
2(−1)F̄D1 (HNS

0 ⊗HR
7
16

)⊕ (HNS
1
10
⊗HR

3
80

)
σ1(z), µ1Ḡ(z, z̄), µ1(z), σ1Ḡ(z, z̄)

σϕψ̄ϕ(z, z̄), µϕφ̄ϕ(z, z̄) µϕψ̄ϕ(z, z̄), σϕφ̄ϕ(z, z̄)

(−1)F+F̄D1 HR = HR
3
80
⊕HR

7
16

σb1(z, z̄), σbϕ(z, z̄) µb1(z, z̄), µbϕ(z, z̄)

Dϕ

(HNS
1
10
⊗HNS

1
10

)⊕ (HNS
0 ⊗HNS

1
10

) ...
...

⊕(HNS
1
10
⊗HNS

0 )

√
2(−1)FDϕ

(HR
3
80
⊗HNS

0 )⊕ (HR
3
80
⊗HNS

1
10

)

⊕(HR
7
16
⊗HNS

1
10

)

√
2(−1)F̄Dϕ

(HNS
0 ⊗HR

3
80

)⊕ (HNS
1
10
⊗HR

3
80

)

⊕(HNS
1
10
⊗HR

7
16

)

(−1)F+F̄Dϕ HR
3
80
⊕HR

3
80 ,

7
16
⊕HR

7
16 ,

3
80

Table 5.6: Disorder fields of SM (3, 5) topological defects.

1. Since two unextended Ramond modules with λ and −λ have the same characters, we use h = λ2 + c
24

to
label characters.
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5.2.4 Conformal Boundaries in SM (3, 5)

For the N = 1 super-Virasoro algebra, the Ishibashi condition (2.209) becomes

(Gn + iεḠ−n)‖b〉〉 = 0 , (5.89)

where ε = ±1 is the gluing condition with ε = 1 corresponding to the identity automor-

phism of SVir. As in the free fermion case, we only consider Ishibashi states in the NS

sector since the bulk state space entirely consists of the NS representations. There are two

NS representations at c = 7
10 , and two possible gluing conditions give four Ishibashi states

|h, ε〉〉 that are given by

|0,±〉〉 = |0〉 ∓ i

2c/3
G− 3

2
Ḡ− 3

2
|0〉+

1

c/2
L−2L̄−2|0〉+ · · · ,

| 1
10 ,±〉〉 = | 1

10〉 ∓
i

1/5
G− 1

2
Ḡ− 1

2
| 1
10〉+

1

1/5
L−1L̄−1| 1

10〉+ · · · . (5.90)

They are solutions of (5.89) with corresponding ε. Their normalisation is given by

〈〈h,±|q̃
1
2(L0+L̄0− c

12)|h′,±〉〉 = δh,h′ χ
NS
h (q̃) , (5.91)

〈〈h,±|(−1)F q̃
1
2(L0+L̄0− c

12)|h′,±〉〉 = δh,h′ χ̃
NS
h (q̃) . (5.92)

In addition, the fermion parity operators act on the Ishibashi states as

(−1)F |h,±〉〉 = (−1)F̄ |h,±〉〉 = ε(h)|h,∓〉〉 and (−1)F+F̄ |h,±〉〉 = |h,±〉〉 , (5.93)

where ε(h) = ±1 is the fermion parity of the highest weight state |h〉 as specified by (5.73).

Similar to the topological defect case, we can apply the Cardy’s solution (2.233) to

obtain boundary states labelled by a ∈ {1NS, ϕNS}

‖a〉〉 =
S[NS,NS]

a1√
S[NS,NS]

11

|0,+〉〉+
S[NS,NS]
aϕ√
S[NS,NS]

1ϕ

| 1
10 ,+〉〉 , (5.94)

where S[NS,NS]

ij are the modular S matrix elements of SM (3, 5) given by (A.42). We expect

there are two more boundary states carrying the labels in the twisted sector. Since topolog-

ical defects can change boundary conditions as in (2.282), we can use (5.79) and (5.93)

to obtain

‖1R〉〉 :=
√

2(−1)F‖1NS〉〉 =
√

2(−1)F̄‖1NS〉〉 and (5.95)

‖ϕR〉〉 :=
√

2(−1)F‖ϕNS〉〉 =
√

2(−1)F̄‖ϕNS〉〉 . (5.96)

In addition, we can check

‖ϕNS〉〉 = Dϕ ‖1NS〉〉 . (5.97)
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Explicitly, these four boundary states can be written as

‖1NS〉〉 =

(
5−
√

5

10

) 1
4

|0,+〉〉+

(
5 +
√

5

10

) 1
4

| 1
10 ,+〉〉 ,

‖ϕNS〉〉 =

(√
5 + 2√

5

) 1
4

|0,+〉〉 −

(√
5− 2√

5

) 1
4

| 1
10 ,+〉〉 ,

‖1R〉〉 =

(
2(5−

√
5)

5

) 1
4

|0,−〉〉 −

(
2(5 +

√
5)

5

) 1
4

| 1
10 ,−〉〉 ,

‖ϕR〉〉 =

(
4(
√

5 + 2)√
5

) 1
4

|0,−〉〉+

(
4(
√

5− 2)√
5

) 1
4

| 1
10 ,−〉〉 . (5.98)

There is another set of consistent boundary states obtained by exchanging |h,+〉〉 and |h,−〉〉
above. The overlaps (2.231) of these boundary states are summarised in Table 5.7. They

obey the fusion rules (5.70), and we may call them “Cardy boundary states” of SM (3, 5).

In the overlaps of two boundary states with Ramond labels, NS characters appear twice in

the results in agreement with the fusion rules. This suggests we may have to weaken the

condition for elementary boundary states in the supersymmetric theories.

‖1NS〉〉 ‖ϕNS〉〉 ‖1R〉〉 ‖ϕR〉〉
〈〈1NS‖ χNS

0 (q) χNS
1
10

(q) 2χR
7
16

(q) 2χR
3
80

(q)

〈〈ϕNS‖ χNS
0 (q) + χNS

1
10

(q) 2χR
3
80

(q) 2χR
7
16

(q) + 2χR
3
80

(q)

〈〈1R‖ 2χNS
0 (q) 2χNS

1
10

(q)

〈〈ϕR‖ 2χNS
0 (q) + 2χNS

1
10

(q)

Table 5.7: Overlaps of SM (3, 5) boundary states.

5.2.5 Interfaces Between M(4, 5) and SM (3, 5)

As in the c = 1
2 case, we need to consider the common sectors of the M(4, 5) bulk state

space and that of SM (3, 5) in order to obtain the topological interfaces. In terms of the

Virasoro representations, the common sectors are given by

(H0 ⊗H0)⊕ (H 3
2
⊗H 3

2
)⊕ (H 1

10
⊗H 1

10
)⊕ (H 3

5
⊗H 3

5
) . (5.99)

Therefore, a topological interface operator I satisfying

Ln I = I Ln and L̄n I = I L̄n (5.100)

can be written in terms of the projectors onto Virasoro representations as

I(a, b, c, d) = a P0P 0 + b P 3
2
P 3

2
+ c P 1

10
P 1

10
+ d P 3

5
P 3

5
, (5.101)
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where a, b, c, and d are constants. In addition, we need a map identifying the Virasoro

highest weight states of weights (3
2 ,

3
2) and (3

5 ,
3
5), which we take to be

|32 ,
3
2〉M(4,5)

=
iξ 3

2

2c/3
G− 3

2
Ḡ− 3

2
|0〉SM (3,5) ,

|35 ,
3
5〉M(4,5)

=
iξ 3

5

2h
G− 1

2
Ḡ− 1

2
| 1
10 ,

1
10〉SM (3,5)

, (5.102)

where c = 7
10 , h = 1

10 in the second line, and ξ 3
2

= ±1 and ξ 3
5

= ±1 are free. These highest

weight states are normalised to have unit norm.

Requiring the condition (5.46) for the c = 7
10 case allows us to solve for (a, b, c, d). In

particular, from the SM (3, 5) boundary states (5.98) and the Ishibashi states (5.90), and

the identifications (5.102), we get

I(a, b, c, d)†‖1〉〉 = m1‖1NS〉〉+m2‖ϕNS〉〉+m3‖1R〉〉+m4‖ϕR〉〉 (5.103)

with

a =
√

2m1 +
1 +
√

5√
2

m2 + 2m3 + (1 +
√

5)m4 , (5.104)

−ξ 3
2
b =
√

2m1 +
1 +
√

5√
2

m2 − 2m3 − (1 +
√

5)m4 , (5.105)

c =
√

2m1 +
1−
√

5√
2

m2 − 2m3 − (1−
√

5)m4 , (5.106)

−ξ 3
5
d =
√

2m1 +
1−
√

5√
2

m2 + 2m3 + (1−
√

5)m4 . (5.107)

We choose ξ 3
2

= ξ 3
5

= −1 so that any interface can be expressed as a combination

I(a, b, c, d) = m1 I +m2 I2 +m3 I3 +m4 I4 , (5.108)

where these interface operators are given by

I = I(
√

2,
√

2,
√

2,
√

2) ,

I2 = I(1+
√

5√
2
, 1+
√

5√
2
, 1−
√

5√
2
, 1−
√

5√
2

) ,

I3 = I(2,−2,−2, 2) ,

I4 = I(1 +
√

5,−1−
√

5,−1 +
√

5, 1−
√

5) . (5.109)

They can be viewed as being created from the fundamental interface I by the action of

topological defects since they satisfy the relations

I = D1 I = Dε I = I DNS
1 = I (−1)F+F̄DNS

1 , (5.110)

I2 = D1̂ I = Dε̂ I = I Dϕ = I (−1)F+F̄Dϕ , (5.111)

I3 = Dσ I = I
√

2(−1)FDNS
1 = I

√
2(−1)F̄DNS

1 , (5.112)

I4 = Dσ̂ I = I
√

2(−1)FDϕ = I
√

2(−1)F̄Dϕ . (5.113)
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The action of the fundamental interface I on the boundary states is as follows

I‖1NS〉〉 = ‖1〉〉+ ‖ε〉〉 , I†‖1〉〉 = I†‖ε〉〉 = ‖1NS〉〉 , (5.114)

I‖ϕNS〉〉 = ‖1̂〉〉+ ‖ε̂〉〉 , I†‖1̂〉〉 = I†‖ε̂〉〉 = ‖ϕNS〉〉 , (5.115)

I‖1R〉〉 = 2‖σ〉〉 , I†‖σ〉〉 = ‖1R〉〉 , (5.116)

I‖ϕR〉〉 = 2‖σ̂〉〉 , I†‖σ̂〉〉 = ‖ϕR〉〉 . (5.117)

Comparing these with the free fermion results (5.53) and (5.54), we may view the SM (3, 5)

boundary conditions with Neveu–Schwarz labels as “free” boundary conditions and those

with Ramond labels as “fixed” ones.

As it did in the c = 1
2 case, requiring II† and I†I to be expressible as sums of topological

defects in M(4, 5) and SM (3, 5), respectively, provides a strong constraint. For example,

by taking a, b, c, d ∈ R, we can calculate

I(a, b, c, d) I(a, b, c, d)†

=
(5−

√
5)(a2 + b2) + (5 +

√
5)(c2 + d2)

40
(D1 +Dε) +

a2 + b2 − c2 − d2

4
√

5

(
D1̂ +Dε̂

)
+

(5−
√

5)(a2 − b2)− (5 +
√

5)(c2 − d2)

20
√

2
Dσ +

a2 − b2 + c2 − d2

2
√

10
Dσ̂ . (5.118)

We find the interfaces given by (5.108) indeed give integer coefficients, and the fundamen-

tal interface I given by (5.109) satisfies

I I† = D1 +Dε and I† I = DNS
1 + (−1)F+F̄DNS

1 . (5.119)

To summarise, we have found a set of four elementary boundary conditions and a set

of eight elementary topological defects in the supersymmetric theory SM (3, 5), and a set

of four fundamental interfaces between M(4, 5) and SM (3, 5). Our next task is to find

non-factorising and non-topological superconformal defects in SM (3, 5) and generate the

corresponding defects in M(4, 5) by using the interface operators.
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Chapter 6

Conformal Defects in Tri-Critical Ising Model

In this chapter we consider the superconformal boundary conditions in the folded theory

of SM (3, 5) at c = 7
5 , and identify them with superconformal defects in SM (3, 5). Then

we use the topological interfaces constructed in the previous chapter to obtain conformal

defects in the tri-critical Ising modelM(4, 5). We calculate their reflection and transmission

coefficients, and comment on differences between our results and those given in [94].

6.1 Folding SM (3, 5) and (D6, E6) Theory

If we consider “folding” the diagonal theory SM (3, 5), which has c = 7
10 , it will result

in a theory with c = 7
5 . It turns out that c = 7

5 appears in the unitary series of (2.119),

which is the super-Virasoro minimal model SM (10, 12). As we are folding a theory which

is diagonal with respect to SVir, the resulting theory should admit an interpretation as an

SW(3
2 ,

3
2) diagonal theory. In [94], the partition function of the folded theory is identified

as the (D6, E6) modular invariant of SVir. The NS sector of (D6, E6) partition function is

given[18] by

Z
(D6,E6)

NS = |χNS
0 (q) + χNS

3
2

(q) + χNS
7
2

(q) + χNS
10 (q)|2

+ |χNS
1
5

(q) + χNS
7
10

(q) + χNS
6
5

(q) + χNS
57
10

(q)|2 + 2|χNS
1
10

(q) + χNS
13
5

(q)|2

= (ZNS)2 , (6.1)

which can be identified with the square of the SM (3, 5) bulk partition function ZNS given by

(5.74) using the character identities in Appendix D.1. We take (6.1) as the bulk partition

function of the folded theory.

The Ishibashi states are constructed from the diagonal terms in the partition function

(5.74). There are 12 terms with h = h̄ in the partition function, and together with two

gluing conditions ε = ±1, there will be 24 Ishibashi states. These diagonal terms can be

identified by Kac labels (r, s) with r and s taking values in the exponents of D6 diagram

and a subset of E6 exponents respectively. From Table 2.2, these exponents are

E(D6) = {1, 3, 5, 5′, 7, 9} and E(E6) = {1, 4, 5, 7, 8, 11} . (6.2)

Since D6 exponents are all odd, we take the subset of E6 exponents that are odd numbers

in order to obtain the Kac labels in the NS sector. The result is that the Ishibashi states

are labelled by (r, s) with r ∈ {1, 3, 5, 5′, 7, 9} and s ∈ {1, 5, 7, 11} modulo (r, s) ∼
(10− r, 12− s).

It is instructive to rewrite the partition function (6.1) with the characters labelled by

(r, s). Keeping in mind the D6 and E6 partition functions of ŝl(2)k-WZW models given in
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Table 2.3, we can write

Z
(D6,E6)

NS

=
1

2

(
|χ1,1 + χ1,7 + χ9,1 + χ9,7|2 + |χ3,1 + χ3,7 + χ7,1 + χ7,7|2 + 2|χ5,1 + χ5,7|2

)
+

1

2

(
|χ1,5 + χ1,11 + χ9,5 + χ9,11|2 + |χ3,5 + χ3,11 + χ7,5 + χ7,11|2 + 2|χ5,5 + χ5,11|2

)
,

(6.3)

where the first line and the second line are identical in terms of the characters due to

the identification (r, s) ∼ (10− r, 12− s). This suggests that a natural way to restrict the

Kac labels to obtain unique representations is to take either s ∈ {1, 7} or s ∈ {5, 11}
while r still takes value in {1, 3, 5, 5′, 7, 9}. As we prefer to use (1, 1), rather than (9, 11),

to label the vacuum representation of SVir at c = 7
5 , we take s ∈ {1, 7}. Our choice of

representatives is different from that of [94], and this will make differences later on.

From the partition function (6.1) and the character identity (D.1), the chiral vacuum

character of the (D6, E6) theory can be written as

χ(10) NS
0 (q) + χ(10) NS

3
2

(q) + χ(10) NS
7
2

(q) + χ(10) NS
10 (q) = ( χ(3) NS

0 (q))2 . (6.4)

This shows that the full chiral algebra SVir⊕ SVir at c = 7
5 has three chiral superprimary

fields of conformal weights 3
2 , 7

2 , and 10. Various extensions of SVir at c = 7
5 have been

considered in [35], [39], [40], and [42]. We will return to these super W-algebras later.

Finally, we note that it is also possible to express a single copy of the SM (3, 5) partition

function in terms of characters of SVir at c = 7
5 as

ZNS = ( χ(3) NS
0 (q))2 + ( χ(3) NS

1
10

(q))2

= χ(10) NS
0 (q) + χ(10) NS

3
2

(q) + χ(10) NS
7
2

(q) + χ(10) NS
10 (q)

+ χ(10) NS
1
5

(q) + χ(10) NS
7
10

(q) + χ(10) NS
6
5

(q) + χ(10) NS
57
10

(q) , (6.5)

where q is real. The reason is that one can embed SVir at c = 7
5 into the two, holomorphic

and antiholomorphic, copies of SVir at c = 7
10 .

6.1.1 Boundary States Corresponding to Topological and Factorising Defects

As usual, we start from the diagonal theory SM (3, 5) defined on the whole complex plane

with a conformal defect running along the real axis, and fold this theory along the defect

to obtain the (D6, E6) theory defined on the upper half plane with the corresponding

boundary condition at z = z̄. For each field ϕI(z, z̄), there are two copies ϕ(a)
I (z, z̄) in

the folded theory: for (z, z̄) on the upper half plane, the a = 1 copy is the original field

ϕ(1)
I (z, z̄) = ϕI(z, z̄), and the a = 2 copy coming from the the lower half plane which is

being folded ϕ(2)
I (z, z̄) = ϕI(z

∗, z̄∗).

As we did in Section 2.4, it is more useful to map the boundary/defect along the

real axis onto the unit circle, and consider boundary states/defect operators. For that we

employ a family of Möbius maps w 7→ z(w) such that the image of the real axis changes
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smoothly from the real axis to the unit circle. In terms of the parameter R ∈ R, they are

defined by

w = 2iR

(
z + 1

iR

z + 2iR+ 1
iR

)
, (6.6)

where R =∞ gives the identity map, and R = 1 maps the real axis to the unit circle. This

map has the property that the derivative at the origin is 1,

∂z

∂w

∣∣∣∣
w=0

= 1 . (6.7)

On the upper half plane, the generator G(2)(w) is the image of Ḡ(w̄) on the lower half

plane

G(2)(w)
∣∣
w=a

= Ḡ(w̄)
∣∣
w̄=a∗

. (6.8)

We would like to relate the modes G(2)
n and Ḡn that are defined by the contour integrals

along the unit circle on the z-plane. They can also be expressed as the expansions

G(2)(z) =
∑
n

G(2)
n z−n−

3
2 and Ḡ(z̄) =

∑
n

Ḡn z̄
−n− 3

2 , (6.9)

when R = 1. Using the Möbius map (6.6), the relation (6.8) becomes

z3/2 G(2)(z)
∣∣
w=a

=

(
(2iR− a)(2aR2 + 2iR− a)

(2iR+ a∗)(2a∗R2 − 2iR− a∗)

) 3
2

z̄3/2 Ḡ(z̄)
∣∣
w̄=a∗

. (6.10)

By taking R = 1 and z = u on the unit circle, we have a = a∗ and z̄ = u−1. Therefore,

u3/2G(2)(u) = −iu−3/2Ḡ(u−1) , (6.11)

which yields

G(2)
n = −iḠ−n . (6.12)

Likewise, we find

Ḡ(2)
n = iG−n . (6.13)

In the folded theory on the z-plane, the generators G(1)(z), Ḡ(1)(z̄), G(2)(z), and Ḡ(2)(z̄)

exist only on the exterior of the unit circle; upon folding, the generators G(z) and Ḡ(z̄)

with |z| < 1 and |z̄| < 1 are mapped to Ḡ(2)(z̄′) and G(2)(z′) with appropriate coefficients.

We are going to construct a map ρ which takes a boundary state in the folded theory

and maps it to the corresponding defect operator in the unfolded theory. If it relates a

boundary state and a defect operator by

ρ(‖b〉〉) = Db , (6.14)

we define

ρ(G(1)
n ‖b〉〉) = GnDb ,

ρ(Ḡ(1)
n ‖b〉〉) = ḠnDb ,

ρ(G(2)
n ‖b〉〉) = −i(−1)F+F̄Db(−1)F+F̄ Ḡ−n ,

ρ(Ḡ(2)
n ‖b〉〉) = i(−1)F+F̄Db(−1)F+F̄G−n , (6.15)
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where the coefficients are due to the relations (6.12) and (6.13), and the bulk fermion

parity operators (−1)F+F̄ are introduced to make all the fermionic generators in the folded

theory anticommute.

In order to complete the definition of the “unfolding map” ρ, we need to consider

the image of the highest weight states in the (D6, E6) theory that are tensor products of

SM (3, 5) highest weight states. They are the lowest weight components of each “block”

appearing in the partition function (6.1). For brevity, when there is no danger of confusion,

we denote the diagonal bulk highest weight states by |h〉 as they have h = h̄. The simplest

choice is

ρ(|h1〉 ⊗ |h2〉) = |h1〉〈h2| (6.16)

for bulk highest weight states |h1〉 and |h2〉 of SM (3, 5). As we shall see later, it will be

helpful to define in addition the map

ρ′(|h1〉 ⊗ |h2〉) = |h1〉〈h2|(−1)F . (6.17)

In the bulk (D6, E6) theory, there are four such highest weight states, and their images

under ρ and ρ′ are summarised in Table 6.1.

(r, s) (1, 1) (7, 7) (5, 7) (5′, 7)

hr,s 0 1
5

1
10

1
10

ρ (|r, s〉) |0〉〈0| | 1
10〉〈

1
10 | |0〉〈 1

10 | |
1
10〉〈0|

ρ′(|r, s〉) |0〉〈0| −| 1
10〉〈

1
10 | −|0〉〈

1
10 | |

1
10〉〈0|

Table 6.1: Images of bulk highest weight states of (D6, E6) theory under ρ and ρ′.

For a topological defect in SM (3, 5), there are two signs corresponding to automor-

phisms of two copies of SVir. From (5.75), the boundary state corresponding to a topolog-

ical defect should satisfyGnDb = η DbGn

ḠnDb = η′DbḠn
→


(
G(1)
n + iη Ḡ(2)

−n
)
‖b〉〉(

G(2)
n + iη′Ḡ(1)

−n
)
‖b〉〉

(6.18)

For a factorising defect in SM (3, 5), we have two signs coming from the gluing conditions

of the two boundary states. For the corresponding boundary state, these conditions become


(
Gn + iηḠ−n

)
‖a, η〉〉〈〈b, η′‖ = 0

0 = ‖a, η〉〉〈〈b, η′‖
(
Gn − iη′Ḡ−n

) →


(
G(1)
n + iη Ḡ(1)

−n
)
‖a, b〉〉(

G(2)
n − iη′Ḡ(2)

−n
)
‖a, b〉〉

(6.19)

From these equations, we see that it is not possible to express all the gluing conditions by

only using a single set of combinations of the form G(1)
n ±G(2)

n and Ḡ(1)
n ± Ḡ(2)

n . In the next

section, we consider exactly how we can organise the boundary states corresponding to the

know defects into boundary states of the (D6, E6) theory. There are 24 known conformal

defects in the diagonal SM (3, 5) theory of which 8 are topological and 16 are factorising.
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6.1.2 Embeddings of SVir into SVir⊕ SVir

In order to view the folded theory as a boundary SCFT at c = 7
5 , we need to define an

embedding of SVir at c = 7
5 into the algebra SVir ⊕ SVir, where each of SVir has c = 7

10 .

Considering the holomorphic and antiholomorphic copies of the chiral algebra at the same

time, we write an embedding as

ιαβγδ(G
tot
n ) = αG(1)

n + βG(2)
n and ιαβγδ(Ḡ

tot
n ) = γḠ(1)

n + δḠ(2)
n , (6.20)

where α, β, γ, and δ are signs, and Gtot
n and Ḡtot

n are the generators of the two copies of

SVir at c = 7
5 . We will denote the combined mat ρ ◦ ιαβγδ by ραβγδ.

We also need to define a map from the Ishibashi states of the (D6, E6) theory to the

tensor products of the SM (3, 5) Ishibashi states. As Ishibashi states are determined by

highest weight states and gluing conditions, we need to express the bulk highest weight

states of the (D6, E6) theory in terms of vectors in the folded theory, and find relations

between gluing conditions of the (D6, E6) Ishibashi states and those of the tensor product

of the SM (3, 5) Ishibashi states.

Gluing conditions of (D6, E6) boundary states are related to the signs η and η′ in (6.18)

and (6.19) via the embedding maps ιαβγδ. Consider an Ishibashi state |h, ε〉〉 of the (D6, E6)

theory, which satisfies

(Gtot
n + iεḠtot

−n) |h, ε〉〉 = 0 . (6.21)

Using the embedding ιαβγδ, this condition becomes(
αG(1)

n + βG(2)
n + iεγḠ(1)

−n + iεδḠ(2)

−n
)
|h, ε〉〉 = 0 . (6.22)

Therefore, a topological defect with the gluing conditions η and η′ in (6.18) corresponds

to η = αδε and η′ = βγε, which gives αβγδ = ηη′. Similarly, a factorising defect with η

and η′ in (6.19) corresponds to η = αγε and η′ = −βδε, which yields αβγδ = −ηη′. From

these observations, we find that there are two equivalence classes of embeddings given by

αβγδ = ±1. If an embedding satisfies αβγδ = 1, topological defects will satisfy ηη′ = 1

and factorising defects will satisfy ηη′ = −1. An embedding with αβγδ = −1 corresponds

to topological defects with ηη′ = −1 and factorising defects with ηη′ = 1.

From the above result, we expect there are two sets of boundary states in the (D6, E6)

theory arising from the two equivalence classes of embeddings; one set should correspond

to half the defects of SM (3, 5) and the other set giving the other half. In order to obtain the

exact correspondence, we need to consider embeddings of the diagonal bulk highest weight

states of the (D6, E6) theory into bulk states of the folded theory. As we already know

some of the relations that are given in Table 6.1, we now need to determine embeddings of

the remaining 8 states corresponding to the diagonal terms in the partition function (6.1).

Namely, they are the states with Kac labels (1, 7), (9, 1), (9, 7), (3, 1), (3, 7), (7, 1), (5, 1),

and (5′, 1) that correspond to h = h̄ given by 7
2 , 10, 3

2 , 7
10 , 6

5 , 57
10 , 13

5 , and 13
5

′ respectively.

Definitions of these states depend on the embedding ιαβγδ. For example, the state with

h = h̄ = 3
2 in the (D6, E6) theory is given by

ιαβγδ(|32〉) =
iη 3

2

4c/3
(αG(1)

− 3
2
− βG(2)

− 3
2
)(γḠ(1)

− 3
2
− δḠ(2)

− 3
2
)|0〉 , (6.23)
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where c = 7
10 and η 3

2
= ±1 is arbitrary. Another example is the state with h = h̄ = 7

10 ,

which can be written as

ιαβγδ(| 7
10〉) =

iη 7
10

2h
(αG(1)

− 1
2
− βG(2)

− 1
2
)(γḠ(1)

− 1
2
− δḠ(2)

− 1
2
)|15〉 , (6.24)

where h = 1
10 and η 7

10
= ±1 is arbitrary. Here, |15〉 is a highest weight state of the (D6, E6)

theory which can be written as the tensor product | 1
10〉 ⊗ |

1
10〉 of the highest weight states

of the diagonal SM (3, 5) theory. We have a free sign ηh for each of these eight (D6, E6)

diagonal highest weight states. The image of these states under ι and ρ as well as the

corresponding results for the Ishibashi states are summarised in Appendix D.2.

Using these facts, it is possible to construct the boundary states corresponding to all

the know topological and factorising defects in the diagonal theory SM (3, 5). We find that

these boundary states can all be written in terms of ‖(a, b)NS〉〉 and ‖(a, b)ÑS〉〉 defined in

[94] in at least two ways. We illustrate this in the next two subsections with the case of

the identity defect and the factorising defect ‖1NS〉〉〈〈1NS‖ in SM (3, 5).

6.1.3 Identity Defect in SM (3, 5)

In terms of an orthonormal basis of the bulk state space HNS of SM (3, 5), the identity

defect can be expressed as

D1 =
∑
ψ

|ψ〉〈ψ| . (6.25)

Expanding this as

D1 = |0〉〈0|+ 1

2c/3

(
G− 3

2
|0〉〈0|G 3

2
+ Ḡ− 3

2
|0〉〈0|Ḡ 3

2
+ · · ·

)
+ | 1

10〉〈
1
10 |+

1

1/5

(
G− 1

2
| 1
10〉〈

1
10 |G 1

2
+ Ḡ− 1

2
| 1
10〉〈

1
10 |Ḡ 1

2
+ · · ·

)
+ · · · , (6.26)

we see that this must arise from a combination of the (D6, E6) Ishibashi states |0, ε〉〉, |32 , ε〉〉,
|72 , ε〉〉, |10, ε〉〉, |15 , ε〉〉, |

7
10 , ε〉〉, |

6
5 , ε〉〉, and |57

10 , ε〉〉. Since the identity defect satisfies (6.18)

with η = η′ = 1, the gluing condition ε and embedding ιαβγδ satisfy ε = αδ = βγ and

αβγδ = 1.

The simplest choice is α = β = γ = δ = 1. This still leaves the signs ηh free for the SVir

primary states that can be considered as super W-algebra descendants. Given the freedom

to choose these signs, the boundary state ‖D1〉〉 can be expressed as

‖D1〉〉 = |0,+〉〉+ |32 ,+〉〉+ |72 ,+〉〉+ |10,+〉〉

+ |15 ,+〉〉+ | 7
10 ,+〉〉+ |65 ,+〉〉+ |57

10 ,+〉〉 (6.27)

such that

D1 = ρ++++(‖D1〉〉) , (6.28)

where ρ acts as in Table 6.1. Using the explicit expressions of the Ishibashi states given in

Appendix D.2, we can see that this fixes the signs ηh. In particular, we have

η 3
2

= 1 , η 7
10

= 1 , and η 6
5

= −1 . (6.29)
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By choosing the signs ηh in a different fashion, we can equally express ‖D1〉〉 as

‖D1〉〉 = |0,+〉〉 − |32 ,+〉〉+ |72 ,+〉〉 − |10,+〉〉

− |15 ,+〉〉+ | 7
10 ,+〉〉+ |65 ,+〉〉 − |

57
10 ,+〉〉 (6.30)

with

D1 = ρ′++++(‖D1〉〉) . (6.31)

In this case, we have the opposite choices of ηh

η 3
2

= −1 , η 7
10

= −1 , and η 6
5

= 1 . (6.32)

Note that in the expressions like (6.28) and (6.31), information regarding the choices

of signs ηh is suppressed, and only information regarding the choice of the signs for the

highest weight states given in Table 6.1 is kept.

6.1.4 Factorising Defect ‖1NS〉〉〈〈1NS‖ in SM (3, 5)

We take the set of consistent boundary states in SM (3, 5) as given in (5.98). Then, the

factorising defect ‖1NS〉〉〈〈1NS‖ can be written as

‖1NS〉〉〈〈1NS‖ =

(
5−
√

5

10

) 1
2

|0,+〉〉〈〈0,+| +

(
1

5

) 1
4

|0,+〉〉〈〈 1
10 ,+|

+

(
1

5

) 1
4

| 1
10 ,+〉〉〈〈0,+| +

(
5 +
√

5

10

) 1
2

| 1
10 ,+〉〉〈〈

1
10 ,+| . (6.33)

Since this factorising defect satisfies (6.19) with η = η′ = 1, the gluing condition ε and

embedding ιαβγδ satisfy ε = αγ = −βδ and αβγδ = −1.

The simplest choice is α = β = γ = 1 and δ = −1, which we take for this case. As

before, we have the freedom to choose the signs ηh, and we can express this factorising

defect in many ways. For later use, we make a specific choice

‖1NS,1NS〉〉 =

(
5−
√

5

10

) 1
2 (
|0,+〉〉+ |32 ,+〉〉+ |72 ,+〉〉+ |10,+〉〉

)
+

(
1

5

) 1
4 (
| 1
10 ,+〉〉+ |13

5 ,+〉〉+ | 1
10

′
,+〉〉+ |13

5

′
,+〉〉

)
+

(
5 +
√

5

10

) 1
2 (
|15 ,+〉〉+ | 7

10 ,+〉〉+ |65 ,+〉〉+ |57
10 ,+〉〉

)
(6.34)

such that

‖1NS〉〉〈〈1NS‖ = ρ+++−(‖1NS,1NS〉〉) , (6.35)

where ρ acts as in Table 6.1. In addition, we have

η 3
2

= −1 , η 7
10

= −1 , and η 6
5

= 1 (6.36)

in this case. Similarly, the other ηh are fixed.
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6.2 Boundary Conditions in (D6, E6) Theory

A set of boundary states for the (D6, E6) theory was proposed by Gang and Yamaguchi in

[94]. They considered GSO projected boundary states by including both Neveu–Schwarz

and Ramond contributions whereas our construction only needs boundary states in the NS

sector. In addition, there are some difficulties with the boundary states in [94] as we will

explain later.

The boundary conditions of the (D6, E6) theory are labelled by pairs of nodes on the

D6 and E6 Dynkin diagrams together with a choice of gluing condition. As we have seen

for the Virasoro boundary conditions in Subsection 2.3.4, it over-counts the number of

boundary conditions if we include all the pairs of nodes. The situation is quite different

from the Virasoro case in which one of the diagrams is always of the type An. In this case,

it turns out that the nodes of the E6 diagram related by the diagram symmetry,

r : 1↔ 5 and r : 2↔ 4 , (6.37)

lead to the same Neveu–Schwarz contribution while the Ramond contributions are differ-

ent. We may think of this as replacing the E6 Dynkin diagram by the F4 diagram with the

nodes related by the Z2 symmetry corresponding the short simple roots of F4. In order

to label distinct boundary conditions, we take the E6 diagram nodes 1, 2, 3, and 6, which

gives 24 pairs of nodes. Furthermore, we can bi-colour the Dynkin diagrams as in Figure

6.1, and split the boundary conditions into two sets with 12 elements each: one in which

the pairs consist of nodes of the same colour, and the other set with pairs of nodes of

opposite colour. A pair of nodes is denoted by (a, b) where a is a node of the D6 diagram

and b belongs to the E6 diagram. The set of nodes with the same colouration is given by

Be = {(1, 1), (3, 1), (5, 1), (6, 1), (2, 2), (4, 2), (1, 3), (3, 3), (5, 3), (6, 3), (2, 6), (4, 6)} ,
(6.38)

and the set of nodes with opposite colouration is

Bo = {(2, 1), (4, 1), (1, 2), (3, 2), (5, 2), (6, 2), (2, 3), (4, 3), (1, 6), (3, 6), (5, 6), (6, 6)} .
(6.39)

1 2 3 4

5

6

D6

1 2 3 4 5

6

E6

(Showing map a 7→ r(a))

Figure 6.1: Dynkin diagrams of D6 and E6 showing bi-colouration and map r.

In [94], boundary states were constructed by applying the method of [67], which was

discussed in Subsection 2.3.4, directly to the (D6, E6) theory. Based on the coefficients
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(2.249) of the boundary states (2.251) for Virasoro minimal cases, Gang and Yamaguchi

introduce matrices

Ψ(r,s)

(a,b) =
ψ

(D6) r
a ψ

(E6) s
b√

S(8)

1r S(10)

1s

, (6.40)

where ψ(G) r
a are eigenvectors of the adjacency matrix of the Dynkin diagram of G, and S(k)

ij

are elements of the modular S matrix of ŝl(2)k-WZW model, which is given by (2.250).

Explicit expressions for ψ
(D6) r

a, ψ
(E6) s

b , and Ψ(r,s)

(a,b) can be found in Appendix D.3. These

matrices have the property that under the Kac-symmetry

Ψ(r,s)

(a,b) =

 Ψ(10−r,12−s)
(a,b) if (a, b) ∈ Be (same colouration)

−Ψ(10−r,12−s)
(a,b) if (a, b) ∈ Bo (opposite colouration)

(6.41)

Therefore, some care is needed when defining the boundary states.

Following [94], we define the boundary states ‖(a, b)NS〉〉 using the matrices (6.40), but

we take a slightly different choice

‖(a, b)NS〉〉 =
∑

r∈{1,3,5,5′,7,9}
s∈{1,7}

Ψ(r,s)

(a,b) |hr,s,+〉〉 , (6.42)

whereas in [94], the sum over s is taken s ∈ {1, 5}. The sums are over exactly the same

representations but the choice of different representatives result in expressions which differ

by a sign for s = 7 when the nodes are of opposite colour. For example, (r, s) = (1, 7) and

(9, 5) denote the same representation but Ψ(1,7)

(1,2) = −Ψ(9,5)

(1,2).

Our choice of representatives was motivated by the form of the (D6, E6) bulk partition

function (6.3) and the fact that the E6 invariant of the ŝl(2)10-WZW model has an extended

symmetry algebra consisting of the representations 1 ⊕ 7 as in Table (2.3). Our choice

seems natural when considering fusion rules of SVir at c = 7
5 , and we think it results in

more natural expression for the final boundary states.

One consequence is that, unlike the situation in [94], our choice of representatives

results in sets of boundary states that only differ by factors of
√

2,

‖(a, 6)NS〉〉 =
√

2‖(a, 1)NS〉〉 and ‖(a, 3)NS〉〉 =
√

2‖(a, 2)NS〉〉 . (6.43)

These may seem redundant but it will turn out to be helpful when we consider consistent

descriptions of all the possible boundary states for the (D6, E6) theory.

In addition, we define the boundary states ‖(a, b)ÑS〉〉 in a slightly different way to [94]

‖(a, b)ÑS〉〉 = (−1)F‖(a, b)NS〉〉 . (6.44)

These differ from the ones in [94] by an extra sign for each of the Ishibashi states corre-

sponding to a fermionic chiral highest weight states |hr,s〉 with

(r, s) ∈ {(1, 7), (3, 1), (5, 7), (5′, 7), (7, 1), (9, 7)} . (6.45)

In terms of the conformal weights, fermionic highest weights are

h =
3

2
,

7

2
,

7

10
,

57

10
,

1

10
,

1

10

′
. (6.46)

This simplifies the identification of the known boundary states. Our choice of fermion

parity assignment is explained in Appendix D.4.
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6.2.1 Identifying Known Defects

Using the relations (6.43) and the definition (6.44), we can identify the boundary states

corresponding to all the know defects in SM (3, 5). As shown in Table 6.2, these split

into two sets: those with αβγδ = 1 for which we need the highest weight state map ρ′

supplemented by suitable descendant maps ηh, and those with αβγδ = −1 for which we use

ρ. These two sets cannot be defined at the same time as they use different embeddings. For

example, we cannot describe the defects D1 and ‖1NS〉〉〈〈1NS‖ as supersymmetric boundary

conditions for the (D6, E6) theory at the same time.

αβγδ=−1, α=β=γ=1, δ=−1, map = ρ+++−

Defect Boundary states

a

‖1NS〉〉〈〈1NS‖
√

2 ‖(1, 1)NS〉〉 , ‖(1, 6)NS〉〉

‖ϕNS〉〉〈〈ϕNS‖
√

2 ‖(3, 1)NS〉〉 , ‖(3, 6)NS〉〉

‖1NS〉〉〈〈ϕNS‖
√

2 ‖(5, 1)NS〉〉 , ‖(5, 6)NS〉〉

‖ϕNS〉〉〈〈1NS‖
√

2 ‖(6, 1)NS〉〉 , ‖(6, 6)NS〉〉

ã

(−1)F‖1NS〉〉〈〈1NS‖(−1)F
√

2 ‖(1, 1)ÑS〉〉 , ‖(1, 6)ÑS〉〉

(−1)F‖ϕNS〉〉〈〈ϕNS‖(−1)F
√

2 ‖(3, 1)ÑS〉〉 , ‖(3, 6)ÑS〉〉

(−1)F‖1NS〉〉〈〈ϕNS‖(−1)F
√

2 ‖(5, 1)ÑS〉〉 , ‖(5, 6)ÑS〉〉

(−1)F‖ϕNS〉〉〈〈1NS‖(−1)F
√

2 ‖(6, 1)ÑS〉〉 , ‖(6, 6)ÑS〉〉

b

√
2(−1)FD1

√
2 ‖(2, 6)NS〉〉 , 2 ‖(2, 1)NS〉〉

√
2(−1)F̄D1

√
2 ‖(2, 6)ÑS〉〉 , 2 ‖(2, 1)ÑS〉〉

√
2(−1)FDϕ

√
2 ‖(4, 6)NS〉〉 , 2 ‖(4, 1)NS〉〉

√
2(−1)F̄Dϕ

√
2 ‖(4, 6)ÑS〉〉 , 2 ‖(4, 1)ÑS〉〉

αβγδ=1, α=β=γ=δ=1, map = ρ′++++

Defect Boundary states

‖1NS〉〉〈〈1R‖
√

2 ‖(1, 6)NS〉〉 , 2 ‖(1, 1)NS〉〉

a′
‖ϕNS〉〉〈〈ϕR‖

√
2 ‖(3, 6)NS〉〉 , 2 ‖(3, 1)NS〉〉

‖1NS〉〉〈〈ϕR‖
√

2 ‖(5, 6)NS〉〉 , 2 ‖(5, 1)NS〉〉

‖ϕNS〉〉〈〈1R‖
√

2 ‖(6, 6)NS〉〉 , 2 ‖(6, 1)NS〉〉

‖1R〉〉〈〈1NS‖
√

2 ‖(1, 6)ÑS〉〉 , 2 ‖(1, 1)ÑS〉〉

ã′
‖ϕR〉〉〈〈ϕNS‖

√
2 ‖(3, 6)ÑS〉〉 , 2 ‖(3, 1)ÑS〉〉

‖1R〉〉〈〈ϕNS‖
√

2 ‖(5, 6)ÑS〉〉 , 2 ‖(5, 1)ÑS〉〉

‖ϕR〉〉〈〈1NS‖
√

2 ‖(6, 6)ÑS〉〉 , 2 ‖(6, 1)ÑS〉〉

D1

√
2 ‖(2, 1)NS〉〉 , ‖(2, 6)NS〉〉

b′
(−1)F+F̄D1

√
2 ‖(2, 1)ÑS〉〉 , ‖(2, 6)ÑS〉〉

Dϕ

√
2 ‖(4, 1)NS〉〉 , ‖(4, 6)NS〉〉

(−1)F+F̄Dϕ

√
2 ‖(4, 1)ÑS〉〉 , ‖(4, 6)ÑS〉〉

Table 6.2: Identifications of the boundary states corresponding to the known defects.

As an example, we present the overlaps of the boundary state corresponding to the

identity defect, √
2 ‖(2, 1)NS〉〉 = ‖(2, 6)NS〉〉 , (6.47)

with the one representing the topological defect (−1)F+F̄D1,

√
2 ‖(2, 1)ÑS〉〉 = ‖(2, 6)ÑS〉〉 , (6.48)

the one representing the factorising defect ‖1NS〉〉〈〈1R‖,

2 ‖(1, 1)NS〉〉 =
√

2 ‖(1, 6)NS〉〉 , (6.49)

and the one representing another factorising defect ‖1R〉〉〈〈1NS‖,

2 ‖(1, 1)ÑS〉〉 =
√

2 ‖(1, 6)ÑS〉〉 (6.50)

all of which have αβγδ = 1. We have exactly the expected results:

〈〈(2, 6)NS‖q̃
1
2(Ltot

0 +L̄tot
0 −

7
60)‖(2, 6)NS〉〉 = χ(10) NS

0 (q)+ χ(10) NS
3
2

(q)+ χ(10) NS
7
2

(q)+ χ(10) NS
10 (q)

+ χ(10) NS
1
5

(q)+ χ(10) NS
7
10

(q)+ χ(10) NS
6
5

(q)+ χ(10) NS
57
10

(q)
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=
(

χ(3)
0(q)

)2
+
(

χ(3)
1
10

(q)
)2
, (6.51)

〈〈(2, 6)NS‖q̃
1
2(Ltot

0 +L̄tot
0 −

7
60)‖(2, 6)ÑS〉〉 = 2

(
χ(10) R

7
8
(q)+ χ(10) R

39
8

(q)+ χ(10) R
3
40

(q)+ χ(10) R
83
40

(q)
)

= 2
(

χ(3) R
3
80

(q)
)2

+ 2
(

χ(3) R
7
16

(q)
)2
, (6.52)

2 〈〈(2, 6)NS‖q̃
1
2(Ltot

0 +L̄tot
0 −

7
60)‖(1, 1)NS〉〉 = 2

(
χ(10) NS

21
80

(q) + χ(10) NS
261
80

(q)
)

= 2 χ(3) R
7
16

(
√
q) , (6.53)

2 〈〈(2, 6)NS‖q̃
1
2(Ltot

0 +L̄tot
0 −

7
60)‖(1, 1)ÑS〉〉 = 2

(
χ(10) R

21
80

(q)+ χ(10) R
61
80

(q)+ χ(10) R
181
80

(q)+ χ(10) R
621
80

(q)
)

= 2 χ(3) R
7
16

(
√
q) , (6.54)

where q = e2πiτ and q̃ = e−2πi/τ with τ = i
L , and Ltot

n and L̄tot
n are the Virasoro generators

for c = 7
5 . Note that the overlaps of ‖(2, 6)NS〉〉 with 2 ‖(1, 1)NS〉〉 and 2 ‖(1, 1)ÑS〉〉 are the

same, 2 χ(3) R
7
16

(
√
q), thanks to two different identities relating the characters of SM (10, 12)

and SM (3, 5) that are given in Appendix D.1. This is a function of
√
q since geometrically

it corresponds to a strip of width 2L, as shown in figure 6.2.

However, if we consider defects with different values of αβγδ we do not get sensible

results. The overlap of the boundary state in the (D6, E6) theory corresponding to the

identity defect with the boundary state corresponding to the factorising defect ‖1NS〉〉〈〈1NS‖
will give the partition function on the strip of width 2L and boundary conditions 1NS on

both sides, that is

TrHNS

(
q̃L0− 7

240 ˜̄qL̄0− 7
240 D1 ‖1NS〉〉〈〈1NS‖

)
= χ(3) NS

0 (
√
q) . (6.55)

But χ(3) NS
0 (
√
q) = q−

7
480 (1+q

3
4 +q+q

5
4 +q

3
2 +· · · ) cannot be expressed as a sum of characters

of the c = 7
5 algebra, and therefore, it is not possible for the two defects D1 and ‖1NS〉〉〈〈1NS‖

to be represented as boundary states for the (D6, E6) theory at the same time. If we look

at Table 6.2, we see that D1 corresponds to ‖(2, 6)NS〉〉 defined with embedding ι++++ but

‖1NS〉〉〈〈1NS‖ corresponds to ‖(1, 6)NS〉〉 with embedding ι+++−, and so their overlap being

calculated as

〈〈(2, 6)NS‖q̃
1
2(Ltot

0 +L̄tot
0 −

7
60)‖(1, 6)NS〉〉 =

√
2 χ(3) R

7
16

(
√
q) (6.56)

has nothing to do with the required quantity.

6.3 Identifying New Defects

In the preceding subsection, we have see that all the know defects in SM (3, 5) correspond

to the boundary conditions in the (D6, E6) theory that are all labelled by the E6 diagram

nodes 1 (= 5) and 6. If we instead use the nodes 2 (= 4) and 3 of the E6 diagram,

we find new conformal defects that are neither topological nor factorising. This can be

compared with the boundary conditions in the ŝl(2)10-WZW model with the E6 invariant;

it is known[67, 68] that the boundary conditions labelled by the nodes 2, 4, 6 breaks the

ŝp(4)1
∼= ŝo(5)1 symmetry. In [91], non-factorising and non-topological conformal defects

between the Lee-Yang model and the Ising model are labelled by the E6 diagram nodes 2,

4, and 6.
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L

〈〈(2, 6)NS‖ ‖(2, 6)NS〉〉

(D6, E6)

identity

defect

2L

SM (3, 5)

SM (3, 5)

identity

defect

identity

defect

L

〈〈1NS‖ 〈〈1R‖

2 〈〈(1, 1)NS‖

‖1NS〉〉 ‖1R〉〉

2 ‖(1, 1)NS〉〉

(D6, E6)

L

SM (3, 5)

SM (3, 5)

1NS 1NS

1R 1R

L

〈〈(2, 6)NS‖ ‖1NS〉〉 ‖1R〉〉

2 ‖(1, 1)NS〉〉

(D6, E6)

SM (3, 5)

SM (3, 5)

identity

defect

1NS

1R

1NS 1R

identity

defect

2L

'

'

' '

Figure 6.2: Different boundary conditions on (D6, E6) result in different geometrical set-ups for
SM (3, 5).

Furthermore, in Table 6.2, all the factorising defects defects correspond to the D6

diagram nodes 1, 3, 5, and 6 while all the topological defects are labelled by the nodes

2 and 4. This suggests that the boundary conditions labelled by the D6 diagram nodes 1,

3, 5, and 6 are in the untwisted sector of SW(3
2 ,

3
2), and those with the nodes 2 and 4 are

in the twisted sector. This observation agrees with a W(2, 3) case (the three-states Potts

model[62]) and with a W(2, 2) case (the doubled theory of Lee-Yang[91]).

As we know the explicit expressions for the (D6, E6) boundary states, we can calculate

their reflection and transmission coefficients as well as their entropies (defect g-values).

For the R and T values of the defects, we can use the formula give in (3.11). In this case,

the Virasoro highest weight state |W 〉 can be written as

|W 〉 =
1

c
(L(1)

−2 − L̄
(2)

−2)(L̄(1)

−2 − L
(2)

−2)|0〉 , (6.57)
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where c = 7
10 . Using the expansion of |32 , ε〉〉 given in (D.6), if the boundary state ‖D〉〉

corresponding to a conformal defect D can be expressed as

‖D〉〉 = A |0, ε〉〉+B |32 , ε〉〉+ · · · , (6.58)

then ωD given in (3.11) can be written as

ωD = −ε η 3
2

B

A
, (6.59)

and the reflection and transmission coefficients of D are given by

R =
1

2
(1 + ωD) and T =

1

2
(1− ωD) . (6.60)

They do not depend on the highest weight embedding maps ρ+++− nor ρ′++++ but depend-

ing on the signs of the boundary state gluing condition ε and embedding of the descendant

state η 3
2
, the values of R and T may be swapped.

The g-values of conformal defects can be obtained from corresponding boundary state

coefficients; they are the coefficients of the Ishibashi state |0, ε〉〉. From (6.40) and Appendix

D.3, the g-values of (D6, E6) boundary states are given by

g
(
‖(a, 1)NS/ÑS〉〉

)
=


S

(8)
a1√
S

(8)
1,1

=
√

1 + 1√
5

sin
(
aπ
10

)
for a = 1, 2, 3, 4

S
(8)
5,1

2
√

S
(8)
1,1

= 1
2

√
1 + 1√

5
for a = 5, 6

(6.61)

g
(
‖(a, 2)NS/ÑS〉〉

)
=

√
2 +
√

3 g
(
‖(a, 1)NS/ÑS〉〉

)
, (6.62)

g
(
‖(a, 3)NS/ÑS〉〉

)
= (1 +

√
3) g

(
‖(a, 1)NS/ÑS〉〉

)
, (6.63)

g
(
‖(a, 6)NS/ÑS〉〉

)
=
√

2 g
(
‖(a, 1)NS/ÑS〉〉

)
, (6.64)

where the last two relations follow from (6.43). These values are independent of the

embedding and choice of signs ηh.

Note that ‖D〉〉 and (−1)F‖D〉〉 have the same value of g and T as we have

(−1)F‖D〉〉 = A |0,−ε〉〉 −B |32 ,−ε〉〉+ · · · (6.65)

due to fermion parity assignment (6.46), and this results in the same value of ωD. We

find that the boundary states ‖(a, b)NS/ÑS〉〉 only take four different values for T as in Table

6.3, but a large range of g-values. We also list the g-values for the known topological and

factorising defects in the (D6, E6) theory in the same table.

If the g-value of a boundary state cannot be expressed as a sum of the g-values of

known topological and factorising defects, this boundary state must correspond to a “new”

defect.

Again, these new defects fall into two sets: those defined from the boundary state using

embedding ι++++ and map ρ′, and those defined with embedding ι+++− and map ρ. With

each set, the boundary states satisfy Cardy’s condition, that is, the overlaps of any two

boundary states corresponding to the same embedding ρ, or ρ′, are non-negative integer
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T g boundary states defined with ι+++− and map ρ

1
√

2 1.414.. 2 ‖(2, 1)NS〉〉, 2 ‖(2, 1)ÑS〉〉
1+
√

5√
2

2.288... 2 ‖(4, 1)NS〉〉, 2 ‖(4, 1)ÑS〉〉

0
(

5−
√

5
10

)1/2
0.5257... ‖(1, 6)NS〉〉, ‖(1, 6)ÑS〉〉(

5+
√

5
10

)1/2
0.8506... ‖(5, 6)NS〉〉, ‖(6, 6)NS〉〉, ‖(5, 6)ÑS〉〉, ‖(6, 6)ÑS〉〉(

5+2
√

5
5

)1/2
1.3763... ‖(3, 6)NS〉〉, ‖(3, 6)ÑS〉〉

√
3−1
2

√
2 +
√

3 1.9318... ‖(2, 3)NS〉〉, ‖(2, 3)ÑS〉〉
3.1258... ‖(4, 3)NS〉〉, ‖(4, 3)ÑS〉〉

3−
√

3
2 1.4363... 2 ‖(1, 2)NS〉〉, 2 ‖(1, 2)ÑS〉〉

3.7603... 2 ‖(3, 2)NS〉〉, 2 ‖(3, 2)ÑS〉〉
2.3240... 2 ‖(5, 2)NS〉〉, 2 ‖(6, 2)NS〉〉, 2 ‖(5, 2)ÑS〉〉, 2 ‖(6, 2)ÑS〉〉

T g boundary states defined with ι++++ and map ρ′

1 1 1 ‖(2, 6)NS〉〉, ‖(2, 6)ÑS〉〉
1+
√

5
2 1.618... ‖(4, 6)NS〉〉, ‖(4, 6)ÑS〉〉

0
(

5−
√

5
5

)1/2
0.7434... 2 ‖(1, 1)NS〉〉, 2 ‖(1, 1)ÑS〉〉(

5+
√

5
5

)1/2
1.2030... 2 ‖(5, 1)NS〉〉, 2 ‖(6, 1)NS〉〉, 2 ‖(5, 1)ÑS〉〉, 2 |(6, 1)ÑS〉〉(

10−2
√

5
5

)1/2
1.9465... 2 ‖(3, 1)NS〉〉, 2 ‖(3, 1)ÑS〉〉

√
3−1
2 1 +

√
3 2.732.. 2 ‖(2, 2)NS〉〉, 2 ‖(2, 2)ÑS〉〉

4.4205... 2 ‖(4, 2)NS〉〉, 2 ‖(4, 2)ÑS〉〉
3−
√

3
2 1.0156... ‖(1, 3)NS〉〉, ‖(1, 3)ÑS〉〉

2.6589... ‖(3, 3)NS〉〉, ‖(3, 3)ÑS〉〉
1.6433... ‖(5, 3)NS〉〉, ‖(6, 3)ÑS〉〉

Table 6.3: T and g-values for the (D6, E6) boundary states

combinations of characters of SM (10, 12). The overlaps of states corresponding to different

maps do not satisfy Cardy’s condition.

Further, the overlaps involving the known topological and factorising defects can be

expressed in terms of the characters of SM (3, 5), but those involving the new defects can

not.

As an example, we consider the overlaps of the boundary states representing the iden-

tity defect, √
2 ‖(2, 1)NS〉〉 = ‖(2, 6)NS〉〉 , (6.66)

with a new defect, √
2 ‖(1, 2)NS〉〉 = ‖(1, 3)NS〉〉 , (6.67)

and one representing ‖INS〉〉〈〈INS‖,
√

2 ‖(1, 1)NS〉〉 = ‖(1, 6)NS〉〉 , (6.68)

with another new defect √
2 ‖(2, 2)NS〉〉 = ‖(2, 3)NS〉〉 . (6.69)
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We have

〈〈(2, 6)NS‖q̃
1
2(Ltot

0 +L̄tot
0 −

7
60)‖(2, 6)NS〉〉 = χ(10) NS

0 (q)+ χ(10) NS
3
2

(q)+ χ(10) NS
7
2

(q)+ χ(10) NS
10 (q)

+ χ(10) NS
1
5

(q)+ χ(10) NS
7
10

(q)+ χ(10) NS
6
5

(q)+ χ(10) NS
57
10

(q)

=
(

χ(3) NS
0 (q)

)2
+
(

χ(3) NS
1
10

(q)
)2
, (6.70)

〈〈(2, 6)NS‖q̃
1
2(Ltot

0 +L̄tot
0 −

7
60)‖(1, 3)NS〉〉 = χ(10) NS

1
80

(q) + χ(10) NS
21
80

(q) + 2 χ(10) NS
323
240

(q)

+ χ(10) NS
261
80

(q) + χ(10) NS
481
80

(q) , (6.71)

〈〈(1, 6)NS‖q̃
1
2(Ltot

0 +L̄tot
0 −

7
60)‖(1, 6)NS〉〉 = χ(10) NS

0 (q) + χ(10) NS
3
2

(q) + χ(10) NS
7
2

(q) + χ(10) NS
10 (q)

=
(

χ(3) NS
0 (q)

)2
, (6.72)

〈〈(1, 6)NS‖q̃
1
2(Ltot

0 +L̄tot
0 −

7
60)‖(2, 3)NS〉〉 = χ(10) NS

1
80

(q) + χ(10) NS
21
80

(q) + 2 χ(10) NS
323
240

(q)

+ χ(10) NS
261
80

(q) + χ(10) NS
481
80

(q) , (6.73)

where q = e2πiτ and q̃ = e−2πi/τ with τ = i
L , and Ltot

n and L̄tot
n are the Virasoro generators

for c = 7
5 .

Since h(10)

2,2 = 1
80 6= h(3)

r,s + h(3)

r′,s′ for any pair of Kac labels (r, s) and (r′, s′) in SM (3, 5),

the overlap

〈〈(2, 6)NS‖q̃
1
2(Ltot

0 +L̄tot
0 −

7
60)‖(1, 3)NS〉〉 (6.74)

cannot be expressed as a sum of products of characters χ(3)
r,s(q) χ(3)

r′,s′(q). In addition,

since h(10)

2,2 − 7
120 = − 11

240 6=
1
2(h(3)

r,s − 7
240) for any (r, s) in SM (3, 5), it cannot be expressed

as a sum of characters χ(3)
r,s(
√
q).

Note that

〈〈(2, 6)NS‖q̃
1
2(Ltot

0 +L̄tot
0 −

7
60)‖(1, 3)NS〉〉 = 〈〈(1, 6)NS‖q̃

1
2(Ltot

0 +L̄tot
0 −

7
60)‖(2, 3)NS〉〉 , (6.75)

which suggest that these overlaps are related by the insertion of a topological defect in the

doubled model labelled by the Dynkin nodes (2, 1), which we will return to later.

For reference, we give the overlaps of the new boundary states with themselves to show

that they satisfy Cardy’s condition, but also cannot be expressed in terms of characters of

SM (3, 5):

〈〈(1, 3)NS‖q̃
1
2(Ltot

0 +L̄tot
0 −

7
60)‖(1, 3)NS〉〉

= χ(10) NS
0 (q) + 2 χ(10) NS

1
3

(q) + 3 χ(10) NS
3
2

(q) + 3 χ(10) NS
7
2

(q) + 2 χ(10) NS
19
3

(q) + χ(10) NS
10 (q) ,

(6.76)

〈〈(2, 3)NS‖q̃
1
2(Ltot

0 +L̄tot
0 −

7
60)‖(2, 3)NS〉〉

= χ(10) NS
0 (q) + 2 χ(10) NS

1
3

(q) + 3 χ(10) NS
1
5

(q) + 3 χ(10) NS
1
7

(q) + 2 χ(10) NS
19
3

(q) + χ(10) NS
10 (q)

+ χ(10) NS
7
10

(q) + 2 χ(10) NS
1
30

(q) + 3 χ(10) NS
1
5

(q) + 3 χ(10) NS
6
5

(q) + 2 χ(10) NS
91
30

(q) + χ(10) NS
57
10

(q) .

(6.77)
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6.3.1 New Factorising Defects in SM (3, 5)

While the boundary state ‖(1, 6)ÑS〉〉 can be identified as the defect

(−1)F‖1NS〉〉〈〈1NS‖(−1)F , (6.78)

this is not actually the product of two boundary states in SM (3, 5). The state (−1)F‖1NS〉〉
does not satisfy Cardy’s constraint. For example, its overlap with ‖1NS〉〉 is not an integer

combination of characters in the crossed channel:

〈〈1NS‖q̃
1
2(L0+L̄0− 7

120)(−1)F‖1NS〉〉 =
√

2 χ(3) R
7
16

(q) . (6.79)

The defect (−1)F‖1NS〉〉〈〈1NS‖(−1)F does however satisfy the constraint. For example

〈〈(1, 6)NS‖q̃
1
2(Ltot

0 +L̄tot
0 −

7
60)‖(1, 6)ÑS〉〉

= 〈〈1NS‖q̃
1
2(L0+L̄0− 7

120)(−1)F‖1NS〉〉〈〈1NS‖(−1)F q̃
1
2(L0+L̄0− 7

120)‖1NS〉〉 = 2
(

χ(3) R
7
16

(q)
)2
.

(6.80)

Conversely, the factorising defect ‖1R〉〉〈〈1R‖ does not arise in the tables 6.2. The resolution

seems to be that these factorising defects are not fundamental and instead we have

‖(1, 6)ÑS〉〉 ' (−1)F‖1NS〉〉〈〈1NS‖(−1)F (6.81)

2‖(1, 6)ÑS〉〉 ' 2(−1)F‖1NS〉〉〈〈1NS‖(−1)F = ‖1R〉〉〈〈1R‖ . (6.82)

This illustrates the possibility that each known factorising and topological defect in SM (3, 5)

gives rise to a superconformal boundary state in the (D6, E6) theory, but the converse need

not to be true.

6.3.2 Fundamental Defects

All the SM (3, 5) boundary states given in (5.98) can be considered as being generated

from the fundamental boundary state ‖1NS〉〉 by the action of topological defects. In this

regard, we can view the factorising defect ‖1NS〉〉〈〈1NS‖ and the topological defect D1 as

fundamental, and the other known defects and the corresponding boundary states in Table

6.2 can be regarded as the result of left and/or right action of topological defects on them.

We can conjecture the same structure holds for the sector corresponding to new defects.

We take

Df := ρ′++++(|(1, 3)NS〉〉) = ρ′++++(
√

2‖(1, 2)NS〉〉) (6.83)

and denote the action of SM (3, 5) topological defects on this defect as

Dϕfϕ := Dϕ Df Dϕ , Dfϕ := Df Dϕ , Dϕf := Dϕ Df . (6.84)

In addition, we define

Dt := ρ+++−(‖(2, 3)NS〉〉) = ρ+++−(
√

2‖(2, 2)NS〉〉) . (6.85)

The other non-factorising and non-topological defects can be viewed as the result of their

fusion with topological defects in SM (3, 5) as summarised in Table 6.4.
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αβγδ=1, α=β=γ=δ=1, map = ρ′++++

Defect Boundary states

Df
√

2 ‖(1, 2)NS〉〉 , ‖(1, 3)NS〉〉

Dϕfϕ
√

2 ‖(3, 2)NS〉〉 , ‖(3, 3)NS〉〉

Dfϕ
√

2 ‖(5, 2)NS〉〉 , ‖(5, 3)NS〉〉

Dϕf
√

2 ‖(6, 2)NS〉〉 , ‖(6, 3)NS〉〉

(−1)FDf (−1)F
√

2 ‖(1, 2)ÑS〉〉 , ‖(1, 3)ÑS〉〉

(−1)FDϕfϕ(−1)F
√

2 ‖(3, 2)ÑS〉〉 , ‖(3, 3)ÑS〉〉

(−1)FDfϕ(−1)F
√

2 ‖(5, 2)ÑS〉〉 , ‖(5, 3)ÑS〉〉

(−1)FDϕf (−1)F
√

2 ‖(6, 2)ÑS〉〉 , ‖(6, 3)ÑS〉〉
√

2(−1)FDt = Dt
√

2(−1)F
√

2 ‖(2, 3)NS〉〉 , 2 ‖(2, 2)NS〉〉
√

2(−1)F̄Dt = Dt
√

2(−1)F̄
√

2 ‖(2, 3)ÑS〉〉 , 2 ‖(2, 2)ÑS〉〉
√

2(−1)FDϕDt = DtDϕ

√
2(−1)F

√
2 ‖(4, 3)NS〉〉 , 2 ‖(4, 2)NS〉〉

√
2(−1)F̄DϕDt = DtDϕ

√
2(−1)F̄

√
2 ‖(4, 3)ÑS〉〉 , 2 ‖(4, 2)ÑS〉〉

αβγδ=−1, α=β=γ=1, δ=−1, map = ρ+++−

Defect Boundary states

Df
√

2(−1)F
√

2 ‖(1, 3)NS〉〉 , 2 ‖(1, 2)NS〉〉

Dϕfϕ
√

2(−1)F
√

2 ‖(3, 3)NS〉〉 , 2 ‖(3, 2)NS〉〉

Dfϕ
√

2(−1)F
√

2 ‖(5, 3)NS〉〉 , 2 ‖(5, 2)NS〉〉

Dϕf
√

2(−1)F
√

2 ‖(6, 3)NS〉〉 , 2 ‖(6, 2)NS〉〉
√

2(−1)FDf
√

2 ‖(1, 3)ÑS〉〉 , 2 ‖(1, 2)ÑS〉〉
√

2(−1)FDϕfϕ
√

2 ‖(3, 3)ÑS〉〉 , 2 ‖(3, 2)ÑS〉〉
√

2(−1)FDfϕ
√

2 ‖(5, 3)ÑS〉〉 , 2 ‖(5, 2)ÑS〉〉
√

2(−1)FDϕf
√

2 ‖(6, 3)ÑS〉〉 , 2 ‖(6, 2)ÑS〉〉

Dt
√

2 ‖(2, 2)NS〉〉 , ‖(2, 3)NS〉〉

(−1)F+F̄Dt = Dt(−1)F+F̄
√

2 ‖(2, 2)ÑS〉〉 , ‖(2, 3)ÑS〉〉

DϕDt = DtDϕ

√
2 ‖(4, 2)NS〉〉 , ‖(4, 3)NS〉〉

(−1)F+F̄DϕDt = DtDϕ(−1)F+F̄
√

2 ‖(4, 2)ÑS〉〉 , ‖(4, 3)ÑS〉〉

Table 6.4: Structure of new defects.

For one of the fundamental defect Dt, the left and right action of a topological defect

Da coincides

Da Dt = Dt Da . (6.86)

This does not, however, imply that the defect Dt is topological.

One of the simplest checks is to compare the ratios of boundary state coefficients since

the action of topological defects is multiplicative in terms of the coefficients. Indeed we

have

Ψ(r,s)

(3,6)/Ψ
(r,s)

(1,6) = Ψ(r,s)

(3,3)/Ψ
(r,s)

(1,3) , Ψ(r,s)

(4,6)/Ψ
(r,s)

(2,6) = Ψ(r,s)

(4,3)/Ψ
(r,s)

(2,3) ,

Ψ(r,s)

(5,6)/Ψ
(r,s)

(1,6) = Ψ(r,s)

(5,3)/Ψ
(r,s)

(1,3) , Ψ(r,s)

(1,1)/Ψ
(r,s)

(2,6) = Ψ(r,s)

(1,2)/Ψ
(r,s)

(2,3) ,
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Ψ(r,s)

(6,6)/Ψ
(r,s)

(1,6) = Ψ(r,s)

(6,3)/Ψ
(r,s)

(1,3) , Ψ(r,s)

(3,1)/Ψ
(r,s)

(2,6) = Ψ(r,s)

(3,2)/Ψ
(r,s)

(2,3) ,

Ψ(r,s)

(2,1)/Ψ
(r,s)

(1,6) = Ψ(r,s)

(2,2)/Ψ
(r,s)

(1,3) , Ψ(r,s)

(5,1)/Ψ
(r,s)

(2,6) = Ψ(r,s)

(5,2)/Ψ
(r,s)

(2,3) ,

Ψ(r,s)

(4,1)/Ψ
(r,s)

(1,6) = Ψ(r,s)

(4,2)/Ψ
(r,s)

(1,3) , Ψ(r,s)

(6,1)/Ψ
(r,s)

(2,6) = Ψ(r,s)

(6,2)/Ψ
(r,s)

(2,3) . (6.87)

6.4 Super W-Algebra Boundary States

From the bulk partition function (6.1), we see that the c = 7
5 SVir representations with

h = 0, 3
2 ,

7
2 , 10 form the vacuum sector of the extended superconformal algebra for which

the (D6, E6) partition function of SVir can be regarded as diagonal. At first, this extended

superconformal algebra seems to have three extra generators of weight 3
2 , 7

2 , and 10 but

we will argue this is just SW(3
2 ,

3
2).

At c = 7
5 , there are four possible modular invariant partition functions[18] for SVir.

Besides the diagonal one, (A9, A11), there are (D6, A11), (A9, E6) and (D6, E6). As the

h = 10 superprimary field is a simple current, the corresponding extension yields[40]

the (D6, A11) invariant and SW(3
2 , 10). As in Table 6.5, the exceptional invariant (A9, E6)

contains the field of conformal dimension 7
2 , and it is associated[40] with SW(3

2 ,
7
2).

Invariant Algebra Vacuum sector

(A9, A11) SVir χNS
0

(D6, A11) SW(3
2 , 10) χNS

0 + χNS
10

(A9, E6) SW(3
2 ,

7
2) χNS

0 + χNS
7
2

(D6, E6) SW(3
2 ,

3
2) χNS

0 + χNS
3
2

+ χNS
7
2

+ χNS
10

Table 6.5: Modular invariant partition functions and extended superconformal algebras at c = 7
5 .

As we have discussed in Subsection 2.2.2, SW(3
2 ,

3
2) at c = 7

5 can be expressed as the

direct sum of two copies of SVir at c = 7
10 . We define

Gtot(z) = αG(1)(z) + βG(2)(z) , W (z) = αG(1)(z)− βG(2)(z)

T tot(z) = T (1)(z) + T (2)(z) , U(z) = T (1)(z)− T (2)(z) , (6.88)

where the generators with superscripts are those of c = 7
10 . The chiral highest weight states

|32〉 and |72〉 of SM (10, 12) can be decomposed as

|32〉 =
√

1
4c/3

(
αG(1)

− 3
2
− βG(2)

− 3
2

)
|0〉 =

√
15
14 W− 3

2
|0〉 and (6.89)

|72〉

= 10
7

√
6

323

(
α(L(1)

−2G
(1)

− 3
2
− 3

4G
(1)

− 7
2
) + β(L(2)

−2G
(2)

− 3
2
− 3

4G
(2)

− 7
2
)− 17

2 (βL(1)

−2G
(2)

− 3
2

+ αL(2)

−2G
(1)

− 3
2
)
)
|0〉

= 5
7

√
57
34

(
U−2W− 3

2
− 15

19L
tot
−2G

tot

− 3
2
− 3

19G
tot

− 7
2

)
|0〉 , (6.90)

where c = 7
10 . The expansion of |10〉 is too lengthy to present, and it is not unique due to

null states. We find that the states |32〉 and |10〉 change signs if we interchange G(1) and
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G(2) while |72〉 does not. This implies the automorphism of SW(3
2 ,

3
2) given by W 7→ −W

and U 7→ −U induces |32〉 7→ −|
3
2〉 and |10〉 7→ −|10〉 on the vacuum representation. In

[39], it is shown that SW(3
2 ,

3
2) contains SW(3

2 ,
7
2) as a subalgebra at c = 7

5 . Furthermore,

the character identities between SM (10, 12) and SM (3, 5) suggest the (D6, E6) invariant

corresponds to SW(3
2 ,

3
2).

We define the untwisted Ishibashi states corresponding to SW(3
2 ,

3
2) as

|0, ε〉〉W = |0, ε〉〉+ |32 , ε〉〉+ |72 , ε〉〉+ |10, ε〉〉 , (6.91)

|15 , ε〉〉
W

= |15 , ε〉〉+ | 7
10 , ε〉〉+ |65 , ε〉〉+ |57

10 , ε〉〉 , (6.92)

| 1
10 , ε〉〉

W
= | 1

10 , ε〉〉+ |13
5 , ε〉〉 , (6.93)

| 1
10

′
, ε〉〉

W
= | 1

10

′
, ε〉〉+ |13

5

′
, ε〉〉 . (6.94)

We can also define the twisted Ishibashi states corresponding to the automorphism W 7→
−W and U 7→ −U as

|0, ε〉〉WT = |0, ε〉〉 − |32 , ε〉〉+ |72 , ε〉〉 − |10, ε〉〉 and (6.95)

|15 , ε〉〉
W

T
= −|15 , ε〉〉+ | 7

10 , ε〉〉+ |65 , ε〉〉 − |
57
10 , ε〉〉 . (6.96)

They satisfy the Ishibashi conditions

(Gtot
n + iεḠtot

−n) |h, ε〉〉WΩ = 0 and
(
Wn + iεξΩW−n

)
|h, ε〉〉WΩ = 0 , (6.97)

where ξΩ = 1 for Ω = id and ξΩ = −1 for Ω = T .

Using the extended modular S matrix of SW(3
2 ,

3
2) at c = 7

5 defined in Appendix D.6,

we define the untwisted SW(3
2 ,

3
2) boundary states as

‖a, ε〉〉 =
∑

a′∈Iext
NS

S [NS,NS]

aa′√
S [NS,NS]

1a′

|ha′ , ε〉〉W , (6.98)

where a ∈ Iext
NS and Iext

NS = {1, 3, 5, 5′}. The conformal weights of the SW(3
2 ,

3
2) representa-

tions are given by h1 = 0, h3 = 1
5 , h5 = 1

10 , and h5′ = 1
10

′. For the Neveu–Schwarz twisted

sector labels1 a = 2 and a = 4, we can write the twisted boundary states as

‖a, ε〉〉T =
∑

a′∈{1,3}

S [NS,NS]

aa′√
S [NS,NS]

1a′

|ha′ , ε〉〉WT . (6.99)

Note that S [NS,NS]

aa′ vanishes when a ∈ {2, 4} and a′ ∈ {5, 5′}.
We can also use the Ramond labels a ∈ Iext

R = {1±, 3±, 5±, 5′±} and define

‖a, ε〉〉 =
∑

a′∈Iext
NS

S [R,NS]

aa′√
S [NS,NS]

1a′

|ha′ , ε〉〉W . (6.100)

By introducing the Ramond twisted sector labels a ∈ {2±, 4±}, the twisted boundary

states are given by

‖a, ε〉〉T =
∑

a′∈{1,3}

S [R,NS]

aa′√
S [NS,NS]

1a′

|ha′ , ε〉〉WT . (6.101)

1. c.f. Virasoro D-type boundary states discussed e.g. in [62] and [67].
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If we ignore the signs in the Ramond labels, these modular S matrices are related by

1√
2
S [NS,NS]

aa′ = S [R,NS]

aa′ . (6.102)

In addition, two boundary states ‖a+, ε〉〉 and ‖a−, ε〉〉 with the Ramond labels a± are

the same. We shall see this degeneracy has nice interpretation in terms of the (D6, E6)

boundary states discussed previously.

By considering SW(3
2 ,

3
2), we have obtained 6 boundary states labelled by the extended

algebra representations in the Neveu–Schwarz sector, and 12 boundary states labelled by

SW(3
2 ,

3
2) representations in the Ramond sector of which 6 are distinct. By comparing the

coefficients of Ishibashi states, we can identify them as the (D6, E6) boundary conditions

labelled by the nodes of the Dynkin diagrams. We summarise the relation in Table 6.6. We

can compare this with the identification of the (D6, E6) boundary states given in Table 6.2.

As in the Virasoro case, all the boundary states that preserve SW(3
2 ,

3
2) correspond to the

factorising and topological defects. We also see that the identification of boundary states

‖(a, 1)NS/ÑS〉〉 = ‖(a, 5)NS/ÑS〉〉 comes from degeneracy of SW(3
2 ,

3
2) Ramond representations

a± due to the way the (D6, E6) partition function is constructed. Note that the extended S

matrix S [R,NS]

aa′ is constructed using the modified Ramond characters, and this explains why

we had to normalise the (D6, E6) boundary states as in Table 6.2.

SW(3
2 ,

3
2) states (D6, E6) states

‖1, ε〉〉 = ‖(1, 6)NS/ÑS〉〉
‖2, ε〉〉T = ‖(2, 6)NS/ÑS〉〉
‖3, ε〉〉 = ‖(3, 6)NS/ÑS〉〉
‖4, ε〉〉T = ‖(4, 6)NS/ÑS〉〉
‖5, ε〉〉 = ‖(5, 6)NS/ÑS〉〉
‖5′, ε〉〉 = ‖(6, 6)NS/ÑS〉〉

SW(3
2 ,

3
2) states (D6, E6) states

‖1±, ε〉〉 = ‖(1, 1)NS/ÑS〉〉 or ‖(1, 5)NS/ÑS〉〉
‖2±, ε〉〉T = ‖(2, 1)NS/ÑS〉〉 or ‖(2, 5)NS/ÑS〉〉
‖3±, ε〉〉 = ‖(3, 1)NS/ÑS〉〉 or ‖(3, 5)NS/ÑS〉〉
‖4±, ε〉〉T = ‖(4, 1)NS/ÑS〉〉 or ‖(4, 5)NS/ÑS〉〉
‖5±, ε〉〉 = ‖(5, 1)NS/ÑS〉〉 or ‖(5, 5)NS/ÑS〉〉
‖5′±, ε〉〉 = ‖(6, 1)NS/ÑS〉〉 or ‖(6, 5)NS/ÑS〉〉

Table 6.6: Relation between SW( 3
2 ,

3
2 ) and (D6, E6) boundary states.

6.5 (D6, E6) Fusion Rules

As in the Virasoro and ŝl(2)k-WZW model cases, it would be nice to have certain fusion

rules from which we can obtain the characters appearing in the overlaps of the (D6, E6)

boundary states. The obvious starting point is the graph fusion algebras of the D6 and E6

diagrams that are summarised in Appendix D.5.

The first obstacle is that, as we saw in Table 6.2, specifying a pair of D6 and E6 diagram

nodes together with a choice of gluing condition does not determine the corresponding

defect uniquely but we also need a normalisation of the boundary state which in turn spec-

ifies the embedding. In Table 6.2, there are 12 distinct pairs of diagram nodes with various

normalisations and gluing conditions; the same set of nodes appear in the sectors labelled

by a or b, and dashes and tildes represent different embeddings and gluing conditions.

It is possible to pick representatives such that the E6 diagram nodes 1 and 6 specify the
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gluing conditions. As discussed in Appendix D.5, the E6 diagram node 1 is associated to

the representation 1 ⊕ 7 and the node 6 carries 4 ⊕ 8 of ŝl(2)10. Looking at Figure D.1,

which is the D6 and E6 diagrams with the corresponding ŝl(2)8 and ŝl(2)10 representations

on each node, we can associate2 SM (10, 12) Kac labels to each pair of the diagram nodes.

In fact, the even nodes specified by (6.38) are associated with the NS representations, and

the odd nodes (6.39) correspond to the Ramond representations. From this observation,

we take

‖(a, b)NS〉〉 if (a, b) ∈ Be , and

‖(a, b)ÑS〉〉 if (a, b) ∈ Bo (6.104)

as representatives.

Now, we can use the graph fusion algebras of D6 and E6 to calculate overlaps. As we

have the identifications 1 ∼ 5 and 2 ∼ 4 of the E6 diagram nodes, we modified the E6

graph fusion algebra

(2)⊗ (2) = (1)⊕ (3) , (3)⊗ (3) = (1)⊕ 2(3)

(2)⊗ (3) = (2)⊕ (6) , (3)⊗ (6) = (2)

(2)⊗ (6) = (3) , (6)⊗ (6) = (1) . (6.105)

In addition, for odd nodes of the form (a, 1) and (a, 2) appearing inside a fusion rule, their

contributions have to be doubled.

For example, we can re-calculate (6.51), (6.52), (6.53), and (6.54) as

(2, 6)⊗ (2, 6) = (1, 1)⊕ (3, 1)

→ χNS
1,1(q) + χNS

1,7(q) + χNS
9,1(q) + χNS

9,7(q)

+ χNS
3,1(q) + χNS

3,7(q) + χNS
7,1(q) + χNS

7,7(q)

= χNS
0 (q) + χNS

3
2

(q) + χNS
7
2

(q) + χNS
10 (q)

+ χNS
1
5

(q) + χNS
7
10

(q) + χNS
6
5

(q) + χNS
57
10

(q) , (6.106)

(2, 6)⊗ (2, 1) = (1, 6)⊕ (3, 6)

→ χR
1,4(q) + χR

1,8(q) + χR
9,4(q) + χR

9,8(q)

+ χR
3,4(q) + χR

3,8(q) + χR
7,4(q) + χR

7,8(q)

= 2
(
χR

7
8
(q) + χR

39
8

(q) + χR
3
40

(q) + χR
83
40

(q)
)
, (6.107)

(2, 6)⊗ (1, 1) = (2, 6)

→ χNS
2,4(q) + χNS

2,8(q) + χNS
8,4(q) + χNS

8,8(q)

= 2
(
χNS

21
80

(q) + χNS
261
80

(q)
)
, (6.108)

2. It is due to the fact that the SVir representations in SM (10, 12) can be constructed from a coset

ŝl(2)8 ⊕ ŝl(2)2

ŝl(2)10

, (6.103)

where the ŝl(2)2 factor gives the sector structure[12].
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(2, 6)⊗ (1, 6) = (2, 1)

→ 2
(
χR

2,1(q) + χR
2,7(q) + χR

8,1(q) + χR
8,7(q)

)
= 2

(
χR

21
80

(q) + χR
61
80

(q) + χR
181
80

(q) + χR
621
80

(q)
)
, (6.109)

where, in the last line, we doubled the contribution of (2, 1).

In this way, we can calculate the characters appearing in (D6, E6) boundary overlaps,

but some care is needed to obtain the correct overall normalisation. For overlaps of two

boundary states corresponding to topological defects, the results obtained from the fusion

rules have to be doubled. In addition, these fusion rules yield overlaps for the boundary

states that are normalised according to the embedding ρ+++−. For the boundary states

defined with ρ′+++−, we have to double all the results from the fusion rules.

6.6 Projection of Defects

As we have found the boundary conditions in the (D6, E6) theory corresponding to non-

topological and non-factorising defects in SM (3, 5), we would now like to use the topolog-

ical interface and obtain the corresponding defects in the tri-critical Ising model M(4, 5).

For a defect DSM (3,5) in the supersymmetric theory, we can obtain the corresponding defect

DM(4,5) in M(4, 5) by

DM(4,5) = I DSM (3,5) I
† , (6.110)

where I is the fundamental topological interface operator defined in (5.109). The defect

transmission coefficient T and the g value of DM(4,5) can be obtained straightforwardly,

T (DM(4,5)) = T (DSM (3,5)) and g(DM(4,5)) = 2g(DSM (3,5)) . (6.111)

As we know from the Ising–free fermion case, it is unlikely that the image of a SM (3, 5)

defect is elementary in M(4, 5). For example, we can map topological and factorising

defects of SM (3, 5) as

I DNS
1 I† = D1 +Dε , I

√
2(−1)FDNS

1 I† = 2Dσ ,

I DNS
ϕ I† = D1̂ +Dε̂ , I

√
2(−1)FDNS

ϕ I† = 2Dσ̂ ,

I ‖1NS〉〉〈〈1NS‖ I† = (‖1〉〉+ ‖ε〉〉) (〈〈1‖+ 〈〈ε‖) . (6.112)

We can see that these images are the orbits of the action of Dε. As we know the defect Dt
commutes with topological defect operators in SM (3, 5) while Df does not, thus we can

make an ansatz

I Dt I† = DM(4,5)

t +Dε D
M(4,5)

t and (6.113)

I Df I† = (D1 +Dε)D
M(4,5)

f (D1 +Dε) , (6.114)

where DM(4,5)

t and DM(4,5)

f are defects in M(4, 5). From the definitions (6.83) and (6.85),
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and from Table 6.3, these defects have

Dt : T =

√
3− 1

2
= 0.366025... and g =

√
2 +
√

3 , (6.115)

Df : T =
3−
√

3

2
= 0.633975... and g =

1

4
(
√

3 + 1)(
√

5− 1)

√
1 +

1√
5
. (6.116)

Since Dε has the g-value of 1, DM(4,5)

t should have the same g-value as Dt, and DM(4,5)

f has

half the g-value of Df ,

g(DM(4,5)

t ) =

√
2 +
√

3 = 1.93185... and (6.117)

g(DM(4,5)

f ) =
1

8
(
√

3 + 1)(
√

5− 1)

√
1 +

1√
5

= 0.507817... . (6.118)

The conjectures (6.113) and (6.114) may be too optimistic, but it is quite likely that they

satisfy

g(Da) > g(DM(4,5)
a ) >

1

2
g(Da) , (6.119)

where a stands t or f .

In [98], Kormos, Runkel, and Watts studied defect perturbations of the topological

defect D(1,2) by the linear combination of chiral defect fields

λψ(1,3),(1,1)(z) + λ̄ψ(1,1),(1,3)(z̄) . (6.120)

For M(4, 5), these Kac labels corresponds to the representation labels given in Table 5.2

as (1, 2) = ε̂ and (1, 3) = 1̂. In [98], perturbative analysis and truncated conformal space

approach calculations show that, for λ 6= 0 and λ̄ 6= 0, the endpoint of these flows is

a new non-topological and non-factorising defect which is denoted by C. Since Dε̂ has

g = 1+
√

5
2 = 1.61803..., only DM(4,5)

f can be a candidate for an endpoint of this defect flow

as the g-theorem states that the g-value decreases along the flow. In addition, if we set

λ = 0 or λ̄ = 0 in (6.120), these purely chiral perturbations lead to the topological defect

Dσ which has g =
√

2 = 1.41421..., and there are defect flows from Dσ to the defect C as

depicted in Figure 6.3. Therefore, the g-value of C has to be smaller than
√

2. The defect

DM(4,5)

f still satisfies the requirement.

Dε̂

g = 1.61803...

Dσ

g = 1.41421...

Dσ
C

λ > 0

λ̄ > 0

Figure 6.3: Defect flows of Dε̂ with positive λ and λ̄ given in [98].
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6.6.1 Projection of Ishibashi States

The interface projector (5.101) acts on the state space of SM (3, 5) as

I =
1√
2

(
1 + (−1)F+F̄

)
, (6.121)

and we can rewrite (6.110) as

DM(4,5) =
1

2

(
1 + (−1)F+F̄

)
DSM (3,5)

(
1 + (−1)F+F̄

)
. (6.122)

If we consider the folded theory, this becomes

‖D〉〉
M(4,5)

=
1

2

(
1 + (−1)F1+F̄1 + (−1)F2+F̄2 + (−1)Ftot+F̄tot

)
‖D〉〉

SM (3,5)
(6.123)

where (−1)Ftot+F̄tot = (−1)F1+F̄1+F2+F̄2 . Note that the Neveu–Schwarz Ishibashi states are

invariant under (−1)Ftot+F̄tot . For brevity, we write

P :=
1

2

(
1 + (−1)F1+F̄1 + (−1)F2+F̄2 + (−1)Ftot+F̄tot

)
. (6.124)

In addition, for Ishibashi states of SM (10, 12) and SW(3
2 ,

3
2) at c = 7

5 , we introduce

|h, ε〉〉P := P |h, ε〉〉 and |h, ε〉〉WΩ,P := P |h, ε〉〉WΩ . (6.125)

The exact definition of these states depend on the embedding ιαβγδ which was defined in

(6.20).

Using the expansion (2.223) and the corresponding Gram matrices, it is straightforward

to write algorithms that generate SM (10, 12) and SW(3
2 ,

3
2) Ishibashi states. For SM (10, 12)

Ishibashi states, we use ιαβγδ to express SVir generators in terms of those of the folded

theory, and apply the projector P. For SW(3
2 ,

3
2) Ishibashi states, we can apply P directly

since the action of fermion parity operators are given in (2.138), (2.140), and (2.141). In

addition, we can use the automorphism (2.142) to construct twisted Ishibashi states. For

the calculations we pick ι++++.

For example, we can calculate the overlap

〈〈0, ε|W
P q̃

1
2(Ltot

0 +L̄tot
0 −

7
60)|0, ε〉〉WP = 〈〈0, ε|W

P,T q̃
1
2(Ltot

0 +L̄tot
0 −

7
60)|0, ε〉〉WT,P

= 4q̃−
7
60

(
1 + 2q̃

3
2 + 2q̃2 + 2q̃

5
2 + 3q̃3 + 6q̃

7
2 + 7q̃4 + 8q̃

9
2 + 11q̃5 + · · ·

)
= 4

(
χV

0 (q̃) + χV
3
2
(q̃)
)2

, (6.126)

where χV
h(q) denotes the character of a Virasoro representation at c = 7

10 . Similarly, we

obtain

〈〈0, ε|W
P q̃

1
2(Ltot

0 +L̄tot
0 −

7
60)|0,−ε〉〉WP = 〈〈0, ε|W

P,T q̃
1
2(Ltot

0 +L̄tot
0 −

7
60)|0,−ε〉〉WT,P

= 4
(
χV

0 (q̃)− χV
3
2
(q̃)
)2

. (6.127)

However, the overlaps of untwisted and twisted projected Ishibashi states yield

〈〈0, ε|W
P q̃

1
2(Ltot

0 +L̄tot
0 −

7
60)|0, ε〉〉WT,P = 〈〈0, ε|W

P q̃
1
2(Ltot

0 +L̄tot
0 −

7
60)|0,−ε〉〉WT,P

= 4q̃−
7
60

(
1− q̃3 + q̃4 − q̃5 + q̃6 − 2q̃7 + 2q̃8 − · · ·

)
, (6.128)
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which does not admit a straightforward interpretation in terms of the M(4, 5) Virasoro

characters.

As the SW(3
2 ,

3
2) Ishibashi state |0, ε〉〉WΩ decomposes into SM (10, 12) Ishibashi states,

we can expect the overlaps of projected SM (10, 12) Ishibashi states are more involved. For

the vacuum Ishibashi state, we get

〈〈0, ε|P q̃
1
2(Ltot

0 +L̄tot
0 −

7
60)|0, ε〉〉P = 4q̃−

7
60

(
1 + 1

2 q̃
3
2 + q̃2 + 1

2 q̃
5
2 + q̃3 + q̃

7
2 + 49123

17689 q̃
4 + 3

2 q̃
9
2

+ 49123
17689 q̃

5 + 5
2 q̃

11
2 + 102941115

16999129 q̃
6 + 7

2 q̃
13
2 + 116150060

16999129 q̃
7 + 6q̃

15
2 + 390058397535

31431389521 q̃
8

+ 8q̃
17
2 + 486102350607

31431389521 q̃
9 + 25

2 q̃
19
2 + 781645765079

31431389521 q̃
10 + · · ·

)
. (6.129)

The coefficient of q̃4 can be written as

49123

17689
=

(
116

133

)2

+

(
17

133

)2

+ 2 , (6.130)

so we may interpret this result as

|0, ε〉〉P ∼ 2

(
|0〉〉+

1

2
|32

+〉〉+
1

2
|32
−〉〉+

17

133
|4+〉〉+

116

133
|4−〉〉+ · · ·

)
, (6.131)

where |h±〉〉 are Virasoro Ishibashi states. As a bosonic projection of SVir, we have expected

W(2, 4, 6) but the normalisations of highest weight states seem to be incompatible.

For reference, some other overlaps are

〈〈15 , ε|P
q̃

1
2(Ltot

0 +L̄tot
0 −

7
60)|15 , ε〉〉P

= 4q̃−
7
60

(
1
2 q̃

1
2 + q̃ + q̃

3
2 + 3q̃2 + 2q̃

5
2 + 5q̃3 + 7

2 q̃
7
2 + 10q̃4 + · · ·

)
, (6.132)

〈〈 1
10 , ε|P

q̃
1
2(Ltot

0 +L̄tot
0 −

7
60)| 1

10 , ε〉〉P
= 4q̃−

7
60

(
q̃

1
2 + q̃ + 2q̃

3
2 + 3q2 + 107732

30625 q̃
5
2 + 5881

1250 q̃
3 + 199607

30625 q̃
7
2 + 17054233

1805000 q̃
4 + · · ·

)
.

(6.133)

6.7 Comparisons with Gang and Yamaguchi’s Results

We can now attempt to compare our results for non-topological, non-factorising defects

with those of Gang and Yamaguchi. The simplest such defects we have found are Df
defined in (6.83) with g = 2.031.. and T = (3 −

√
3)/2. Looking at the list of proposed

defects in section 3.2 of [94] the only candidates to which we can hope to relate Df are

those from the boundary state |(1, 3)〉A± which have the same value of T and half the

g-value.

From the definitions in equation (3.9) of [94], the states |(1, 3)〉A± have equal and

opposite components in the Ramond sector. Since our defects have no components in the

Ramond sector, we must consider the sum |(1, 3)〉A+
+ |(1, 3)〉A− which has the same T

and g values as each of Df .

There are no precise definitions given in [94] on how to obtain a defect from a boundary

state, but we can see that |(1, 3)〉A+
+ |(1, 3)〉A− has zero overlap with the states |(5, 3, 5)10〉
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and |(5′, 3, 5)10〉 (in the notation of [94]) which are equivalent to (in our notation) | 1
10〉

and | 1
10

′〉 of the (D6, E6) theory. This means that whatever map ρ̃ is required to obtain a

defect from a boundary state in the formalism of [94], the corresponding defect has zero

matrix elements between 〈0| and | 1
10〉

〈0|ρ̃
(
|(1, 3)〉A+

+ |(1, 3)〉A−
)
| 1
10〉 = 0 , (6.134)

and so cannot be equal to Df .

Gang and Yamaguchi do not give details on the the precise map ρ̃ required to obtain

a defect from a boundary state in their formalism. We can be sure that the method we

use cannot work, as this will result in defects which are not GSO projected, that is defects

which are not maps from SM (3, 5) to SM (3, 5). To illustrate this, we consider the states

used in [94] in the representation[
H3

1,3 ⊗H3
1,3

]⊗2
=
[
H10

3,1 ⊕H10
3,5 ⊕H10

3,7 ⊕H10
3,11

]⊗2
(6.135)

The paper [94] uses coset representations, and each highest weight representation H10
r,s ≡

H10
10−r,12−s of SM (10) splits into two coset representations,

H10
3,1 = H(3,1,1)10

⊕H(3,3,1)10
, H10

3,5 = H(3,1,5)10
⊕H(3,3,5)10

,

H10
3,7 = H(7,1,5)10

⊕H(7,3,5)10
, H10

3,11 = H(7,1,1)10
⊕H(7,3,1)10

. (6.136)

Only four of these coset representations appear in the boundary states of [94], with con-

formal weights as follows
Representation Weight

(3, 3, 5)10
1
5

(3, 1, 1)10
6
5

(7, 3, 5)10
6
5

(7, 1, 1)10
31
5

(6.137)

In our terms, these can be identified with SW(3
2 ,

3
2) descendants of the SM (10, 12) highest

weight states,

|(3, 3, 5)10〉 = |15〉 , |(7, 3, 5)10〉 = |65〉 ,

|(3, 1, 1)10〉 =
iη

7/5
Gtot

− 1
2
Ḡtot

− 1
2
| 7
10〉 , |(7, 1, 1)10〉 =

iη′

57/5
Gtot

− 1
2
Ḡtot

− 1
2
|57
10〉 , (6.138)

where η and η′ are undetermined signs. Further, given an embedding ιαβγδ, the states |65〉
and | 7

10〉 can be identified from Appendix D.2 as

| 7
10〉 =

iη 7
10

2/5
(αG(1)

− 1
2
− βG(2)

− 1
2
)(γḠ(1)

− 1
2
− δḠ(2)

− 1
2
)|15〉 , (6.139)

|65〉 =
η 6

5

7/5
(L(1)

−1 − L
(2)

−1 +
αβ

1/5
G(1)

− 1
2
G(2)

− 1
2
)(L̄(1)

−1 − L̄
(2)

−1 +
γδ

1/5
Ḡ(1)

− 1
2
Ḡ(2)

− 1
2
)|15〉 . (6.140)

This means that the state |(3, 1, 1)10〉 is

|(3, 1, 1)10〉 =
−η η 7

10

(2/5)(7/5)
(L(1)

−1 − L
(2)

−1 − 2αβG(1)

− 1
2
G(2)

− 1
2
)(L̄(1)

−1 − L̄
(2)

−1 − 2γδḠ(1)

− 1
2
Ḡ(2)

− 1
2
)|15〉 .

(6.141)
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Putting these together with the results in Appendix D.2, and the fact that the boundary

state

|(3, 3, 5)10〉〉 = |15〉+
1

2/5
L−1L̄−1|15〉+ · · · , (6.142)

we can find the expansion up to level one of defect given by a combination of boundary

states constructed from the four states (6.7):

|Ψ〉〉 = A|(3, 3, 5)10〉〉+B|(3, 1, 1)10〉〉+ C|(7, 3, 5)10〉〉+D|(7, 1, 1)10〉〉 , (6.143)

ραβγδ(|Ψ〉〉) = A| 1
10〉〈

1
10 |

+

(
A

2/5
−

Bηη 7
10

(2/5)(7/5)
+
Cη 6

5

7/5

)(
L−1L̄−1| 1

10〉〈
1
10 |+ |

1
10〉〈

1
10 |L̄1L1

)
+

(
A

2/5
+

Bηη 7
10

(2/5)(7/5)
−
Cη3,7

7/5

)(
L−1| 1

10〉〈
1
10 |L1 + L̄−1| 1

10〉〈
1
10 |L̄1

)
+ iαβ

(Bηη 7
10

+ Cη 6
5
)

7/25

(
G− 1

2
| 1
10〉〈

1
10 |Ḡ 1

2
L1 − L̄−1G− 1

2
| 1
10〉〈

1
10 |Ḡ 1

2

)
+ iγδ

(Bηη 7
10

+ Cη 6
5
)

7/25

(
L−1Ḡ− 1

2
| 1
10〉〈

1
10 |G 1

2
− Ḡ− 1

2
| 1
10〉〈

1
10 |Ḡ 1

2
L̄1

)
+ αβγδ

(
2Bηη 7

10

7/25
−

Cη 6
5

7/125

)(
G− 1

2
Ḡ− 1

2
| 1
10〉〈

1
10 |Ḡ 1

2
G 1

2

)
+ · · · (6.144)

The expression (6.144) is only GSO projected if Bηη 7
10

+ Cη 6
5

= 0, otherwise it is not. We

can fix ηη 7
10

and η 6
5

by comparing (6.144) with equation (3.20) of [94]. Equation (3.20)

says that the expression (6.144) should be purely transmitting for A = B = 1, C = −1 and

purely reflecting for B = −1, A = C = 1, from which we deduce that ηη 7
10

= η 6
5

= 1. We

can now decide if the defects arising from the boundary states of [94] are GSO projected

or not by looking at the ratio of the coefficients B and C of the states |(3, 1, 1)10〉〉 and

|(7, 3, 5)10〉〉. If this ratio is −1, the resulting defect can be GSO projected, if it is not −1

then it is not GSO projected:

B = −C, GSO projected B 6= −C, not GSO projected

|(2, 6)〉A± , |(4, 6)〉A± |(1, 3)〉A± , |(3, 3)〉A± , |(5, 3)〉A± , |(6, 3)〉A±
|(1, 1)〉B, |(3, 1)〉B, |(5, 1)〉B, |(6, 1)〉B |(2, 2)〉B, |(4, 2)〉B

(6.145)

Those which are GSO projected correspond to topological or factorising defects; none of

the “new” defects proposed in [94] lead to GSO projected defects in our formalism, and

so it is difficult for us to make a stronger comparison with the proposals of [94].
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Chapter 7

Summary and Outlook

In this thesis, we have developed a systematic method to obtain conformal defects in

the tri-critical Ising model from the N = 1 super-Virasoro symmetry of the folded theory

by constructing topological interfaces between the supersymmetric and bosonic theories.

We found that the extended conformal symmetry of the folded theory can be an useful

guide to construct conformal defects. In the folded theory, SW(3
2 ,

3
2) boundary conditions

correspond to topological and factorising defects, and those break the extended super-

conformal symmetry but preserve SVir correspond to non-topological and non-factorising

superconformal defects.

We constructed consistent supersymmetric theory with topological defects and bound-

aries at c = 7
10 . We also found that Ramond fields can be considered as disorder fields—fields

on which defects can terminate—associated with the topological defects that act as fermion

parity operators, and even if we restrict the bulk theory to the NS sector only, it is possible

to construct consistent interfaces to obtain the various quantities in the bosonic theory.

Our construction uses many elements from the paper of Gang and Yamaguchi [94] but

the defects we propose are not the same as theirs. While the expressions for topological

and factorising defects are the same, it may be possible that the new defects proposed in

[94] are not properly GSO projected.

As part of our construction, we found evidence for two non-commensurate sets of

boundary states in the doubled theory of SM (3, 5) corresponding to two inequivalent

embeddings of c = 7
5 algebra into two copies of c = 7

10 . We have identified half of

these boundary states as known objects, the remaining half are new and lead to non-

topological and non-factorising defects in the tri-critical Ising model. By considering fusions

with topological defects in SM (3, 5), we conjecture that there are two fundamental non-

topological and non-factorising defects Df and Dt.
We think it should be possible to derive the boundary states we have proposed for

the (D6, E6) theory using topological field theory methods. It would be nice to compare

our method with the construction of fermionic models of Novak and Runkel [113] using

topological field theory methods incorporating spin structure.

In order to gain more insight into the structure of conformal defects, we have also

calculated the leading term in the perturbative expansion of the reflection coefficient for

the defect of type (r, 2) in a diagonal Virasoro minimal model.

It is possible that at least one of the conformal defects, DM(4,5)

f , we discovered in Chapter

6 is related to the conformal defect C found by perturbation theory; the value of R is close

enough not to rule this out. It would be good to extend this calculation to next-to-leading

order where there are UV divergences to be regulated, but so far we have not yet managed

this.

We have also calculated defect structure constants for various fields on defects of type
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(r, 2) extending the results of [110]. These results are not complete—they do not include

all fields, and use special properties of the (r, 2) defect, but it would be good to check that

these constants in fact agree with the general results of [86] where the same constants

were constructed using topological field theory methods.

For further research, there are several possible directions. So far we have only ob-

tained defect entropies, reflection and transmission coefficients, and various partition

functions involving defects. It would be nice to obtain more quantities, for example, var-

ious correlation functions involving bulk, boundary, defect, and interface fields. Also, it

would be interesting to see if similar constructions are possible for other extended confor-

mal algebras—non-topological and non-factorising defects should correspond to symmetry

breaking boundaries in the folded theory.

There are several other situations in which it may be possible to construct topological

interfaces, for example, the N = 1 and N = 2 super-Virasoro minimal models at c = 1.
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Appendix A

Properties of Virasoro and

Super-Virasoro Representations

In this appendix, we summarise Virasoro characters, and modular S and T matrices for

Virasoro and super-Virasoro minimal representations. In addition, we quote the expression

for fusing matrix elements for Virasoro minimal models.

A.1 Virasoro Characters

Given a highest weight representation H of the chiral algebra A, its Virasoro character1 is

defined by

χH(q) := TrH q
L0− c

24 = q−
c
24

∞∑
N=0

(dimHN ) qh+N , (A.1)

where q ∈ C is a formal variable. If all the generators of A take integer modes, then

N ∈ Z in the summation; or N ∈ 1
2Z if there are generators with half-integer modes. Since

L0-eigensubspaces of H are mutually orthogonal, this is nothing but a generating function

for the dimensions of these subspaces.

A.1.1 Virasoro Representations

For a Verma module M of the Virasoro algebra, we know the dimension of the level N

subspace is given by p(N), the number of integer partitions of N , and the corresponding

Virasoro character is given by the famous generating function due to Euler

χM(q) = qh−
c
24

∞∏
n=1

1

1− qn
= qh−

c
24 (1 + q + 2q2 + 3q3 + 5q4 + 7q5 + 11q6 + · · · ) . (A.2)

Note that even when h = 0, this formula gives the dimension of the level 1 subspace to be

one; the condition L−1|0〉 = 0 is due to the fact that L−1|0〉 is a null vector.

In order to obtain the Virasoro character of an irreducible module, we need to subtract

contributions from null vectors from (A.2). One way to obtain the dimension of an irre-

ducible subspace is to explicitly calculate the maximal number of basis vectors of the form

(2.74) which makes the determinant of corresponding Gram matrix positive. However,

this method is rather impractical as p(N) increases rapidly2.

1. We use the term “Virasoro character” to distinguish (A.1) from other specialised characters, for example,
W characters defined by Tr e2πiαW0qL0− c

24 .
2. For example, p(10) = 42, p(20) = 627, and p(30) = 5604. In addition, the Hardy-Ramanujan asymptotic
approximation gives

p(N) ∼ 1

4N
√

3
exp

(
π

√
2N

3

)
. (A.3)
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Fortunately, there is a useful structure of null vectors in a Verma module with c = c(p, q)

and h = hr,s where the parametrisations are given by (2.85). From the Kac determinant

formula (2.83), we know the first null vector |χr,s〉 appears at level N = rs, which is not

degenerate in the sense that there is no other linearly independent null vectors at this level.

By acting Ln with n < 0 on |χr,s〉, we can construct a sub-Verma module whose elements

are all null vectors. The null vector with the lowest conformal weight in a sub-Verma

module is called a singular vector. Since hr,s = hp−r,q−s, there is another singular vector at

level N = (p− r)(q−s). In each of the sub-Verma modules corresponding to these singular

vectors, there will be two singular vectors obtained by the same argument. However, it

turns out that these two pairs of singular vectors are linearly dependent[3]. Taking this

embedding pattern of the sub-Verma modules into account, the Virasoro character of an

irreducible module H with c = c(p, q) and h = hr,s is given by the Rocha-Caridi formula[10]

χH(q) = q−
c
24

∑
n∈Z

(
qh2pn+r,s − qh2pn−r,s

) ∞∏
m=1

1

1− qm
. (A.4)

One of the important properties of a Verma module of the Virasoro algebra is that the

maximal submodule is generated by the singular vectors. This may not be true for Verma

modules of other W-algebras; even after taking the quotient of a Verma module by dividing

the submodule generated by the singular vectors, there may be new singular vectors called

subsingular vectors.

A.1.2 N = 1 Super-Virasoro Representations

For the Neveu–Schwarz sector of the N = 1 super-Virasoro algebra, Virasoro characters

are obtained similarly. Consider the level N subspace of a Verma module which is spanned

by vectors of the form

L−ml · · ·L−m1
G−nk · · ·G−n1

|h〉 , (A.5)

where 0 < m1 ≤ · · · ≤ ml and 0 < n1 < · · · < nk. In addition,
∑

imi +
∑

j nj = N

and ni are half-integers. Then, the dimension of this subspace is given by the number of

integer partitions of 2N into distinct odd parts while there is no restrictions on even parts.

A generating function for this quantity is known3, and the Virasoro character of a Verma

module M can be written as

χM(q) = qh−
c
24

∞∏
n=1

1 + qn−
1
2

1− qn
= qh−

c
24 (1 + q

1
2 + q + 2q

3
2 + 3q2 + 4q

5
2 + 5q3 + · · · ) . (A.6)

For the Neveu–Schwarz representations, integer levels and half-integer levels have the

opposite fermion parities. If we define the Virasoro supercharacter4

χ̃M(q) := TrM(−1)F qL0− c
24 = q−

c
24

∑
N∈ 1

2
Z

N≥0

(sdim MN ) qh+N , (A.7)

3. OEIS A006950.
4. Note that this definition is slightly different from that of the “odd supercharacters” given in [21].
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where the superdimension sdim MN of a subspace MN is defined as the dimension of its

bosonic subspace minus that of the fermionic subspace. Then,

χ̃M(q) = ε qh−
c
24

∞∏
n=1

1− qn−
1
2

1− qn
= ε qh−

c
24 (1− q

1
2 + q− 2q

3
2 + 3q2− 4q

5
2 + 5q3−· · · ) , (A.8)

where ε = ±1 is the fermion parity of |h〉.
The Kac determinant formula for the SVir highest weight representations is first given

by Kac[2] for the Neveu–Schwarz sector and by Friedan, Qiu, and Shenker[9] for the

Ramond sector, and later proven by Meurman and Rocha-Caridi[14] for both cases. With

the parametrisation given in (2.119), the Verma module with c = c(p, q) and h = hr,s has

the first null vector at level N = rs/2, which also applies to the Ramond representations.

For the Neveu–Schwarz sector, the structure of singular vectors in a Verma module is very

similar to the Virasoro case, and the Virasoro character of an irreducible module H with

c = c(p, q) and h = hr,s is given by

χH(q) = q−
c
24

∑
n∈Z

(
qh2pn+r,s − qh2pn−r,s

) ∞∏
m=1

1 + qm−
1
2

1− qm
. (A.9)

In addition, the Virasoro supercharacter of this module is given5 by

χ̃H(q) = ε q−
c
24

∑
n∈Z

(−1)np
(
qh2pn+r,s − (−1)rsqh2pn−r,s

) ∞∏
m=1

1− qm−
1
2

1− qm
. (A.10)

We do not assume a highest weight state to be always bosonic, and keep the factor ε coming

from its fermion parity explicit in our character formulae.

For the Ramond sector of the N = 1 super-Virasoro algebra, there are several kinds of

embedding diagrams for Verma modules (see, for example [72] and [80]) but the Virasoro

characters of irreducible modules with c and h parametrised by (2.119) are similar to the

previous cases.

Consider the Verma module Mλ constructed from a highest weight state |λ〉, which is a

G0-eigenvector. Since it is spanned by vectors of the form (2.124), the Virasoro character

is given by the convolution of the generating functions of p(N) and q(N), which is the

number of integer partitions of N into distinct parts. The generating function for q(n) is

given by
∞∏
n=1

(1 + xn) =
∞∑
n=0

q(n)xn . (A.11)

Therefore,

χMλ
(q) = qh−

c
24

∞∏
n=1

1 + qn

1− qn
= qh−

c
24 (1+2q+4q2 +8q3 +14q4 +24q5 +40q6 + · · · ) , (A.12)

where h is related to λ by (2.122). If we take c = c(p, q) and λ = λr,s given by (2.119)

and (2.125), the first null vector appears at level N = rs/2, which is not degenerate unlike

5. The formula for unitary cases can be found in [13]. It is not difficult to generalise this by noticing r+s ∈ 2Z
and p+ q ∈ 2Z.
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in the extended Ramond algebra module Mh. In this case, the embedding diagram is

the same as the Neveu–Schwarz case, and the Virasoro character of the corresponding

irreducible module Hλ is given by

χHλ
(q) = q−

c
24

∑
n∈Z

(
qh2pn+r,s − qh2pn−r,s

) ∞∏
m=1

1 + qm

1− qm
. (A.13)

Since Hλ and H−λ are isomorphic as Virasoro representations, we have χHλ
(q) = χH−λ

(q).

When h 6= c/24, that is (r, s) 6= (p/2, q/2), the irreducible Z2-graded modules is given by

Hh = Hλ ⊕H−λ, where h = hr,s. For h = c/24, Hh and Hλ0
are isomorphic as Virasoro

representations. Therefore, we obtain[50, 80]

χHh
(q) = (2− δr, p

2
δs, q

2
) χHλ

(q) , (A.14)

where c = c(p, q), h = hr,s, and λ = λr,s.

Virasoro supercharacters are trivial in the Ramond sector. If h 6= c/24, each subspace

of Hh has sdim(Hh)N = 0 since the even and odd subspaces of (Hh)N are isomorphic as

vector spaces from (2.126). When h = c/24, we have sdim(Hh)N = 0 for N ≥ 1, and

sdim(Hh)0 = ε since it is one-dimensional and |h〉 has the fermion parity ε. Therefore,

χ̃Hh
(q) = ε p

2
, q
2
δr, p

2
δs, q

2
, (A.15)

where c = c(p, q), h = hr,s, λ = λr,s, and εr,s = ±1 is the fermion parity of a Ramond

highest weight state |hr,s〉.

A.2 Elements of Modular S and T Matrices

In a rational conformal field theory, modular transformations of Virasoro characters can be

written as finite sums

χi(−1/τ) =
∑
j∈I

Sij χj(τ) and χi(τ + 1) =
∑
j∈I

Tij χj(τ) , (A.16)

where χi(τ) := χi(q) is the Virasoro character (A.1) of an irreducible representation Hi

with q = e2πiτ , and I is the indexing set for the irreducible representations of the chiral

algebra A at the given value of the central charge c.

A.2.1 Virasoro Minimal Models

Since detailed derivation of elements of the modular S and T matrices for Virasoro minimal

models can be found, for example, in [56], we only quote the results.

For a Virasoro minimal model M(p, q), the modular T matrix is given by

Tij = e2πi(hi− c
24)δi,j , (A.17)

where i and j denote Kac labels. The modular S matrix is given by

S(r1,s1)(r2,s2) =

√
8

pq
(−1)1+r1s2+s1r2 sin

(
πr1r2

q

p

)
sin

(
πs1s2

p

q

)
. (A.18)
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Since Virasoro representations are all self-conjugate, the charge conjugation matrix is

trivial, and we have S2 = 1. In addition, S is an orthogonal matrix as all the elements

(A.18) are real. Note that the summations (A.17) are over the indexing set I for the

Virasoro irreducible representations, thus we should not forget the identification (r, s) ∼
(p− r, q − s) and sum over distinct Kac labels.

A.2.2 N = 1 Super-Virasoro Minimal Models

For N = 1 Super-Virasoro minimal models, derivation of the modular S and T matrices is

similar to the Virasoro case while S and T transformations change the sectors of characters.

We present a derivation of the elements of S and T based on [18].

Consider a N = 1 super-Virasoro minimal model SM (p, q). For an irreducible highest

weight module Hr,s := Hh with c = c(p, q) and h = hr,s in the Neveu–Schwarz sector, we

denote

χNS
r,s(τ) := χHr,s

(q) and χ̃NS
r,s(τ) := χ̃Hr,s

(q) , (A.19)

where q = e2πiτ . Similarly, for an irreducible module H
(±)
r,s := H±λ with c = c(p, q) and

λ = λr,s in the Ramond sector6, we write

χR(±)
r,s (τ) := χ

H
(±)
r,s

(q) . (A.20)

When λ = 0, we denote the corresponding character by χR(0)
r,s (τ). Note that these signs have

nothing to do with fermion parities as H(±)
r,s are ungraded representations. If we introduce

the Dedekind eta-function and the Jacobi theta-functions

η(τ) = q
1
24

∞∏
n=1

(1− qn) ,

ϑ2(τ) := ϑ2(0, τ) = 2q
1
8

∞∏
n=1

(1− qn)(1 + qn)2 ,

ϑ3(τ) := ϑ3(0, τ) =

∞∏
n=1

(1− qn)(1 + qn−
1
2 )2 , and

ϑ4(τ) := ϑ4(0, τ) =
∞∏
n=1

(1− qn)(1− qn−
1
2 )2 ,

where q = e2πiτ as usual, then the infinite products in the Verma characters (A.6), (A.8),

and (A.12) can be written as

∞∏
n=1

1 + qn−
1
2

1− qn
= q

1
16

√
ϑ3(τ)

η3(τ)
= q

1
16

√
2

ϑ2(τ)ϑ4(τ)
,

∞∏
n=1

1− qn−
1
2

1− qn
= q

1
16

√
ϑ4(τ)

η3(τ)
= q

1
16

√
2

ϑ2(τ)ϑ3(τ)
, and

∞∏
n=1

1 + qn

1− qn
=

√
ϑ2(τ)

2η3(τ)
=

√
1

ϑ3(τ)ϑ4(τ)
,

6. Note that λr,s and −λr,s give the same character, and thus χR(+)
r,s (τ) = χR(−)

r,s (τ).
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where we have used the identity

η3(τ) =
1

2
ϑ2(τ)ϑ3(τ)ϑ4(τ) . (A.21)

We can write

hr,s −
1

24
c(p, q) =

(qr − ps)2

8pq
− 1

32

(
1 + (−1)r+s

)
, (A.22)

which motivate us to define

Kλ(τ) :=
∑
n∈Z

q
(Nn+λ)2

4N and K̃λ(τ) :=
∑
n∈Z

(−1)npq
(Nn+λ)2

4N , (A.23)

where N = 2pq. Note that Kλ = K−λ = Kλ+N , so we only need to consider λ mod N .

Since gcd(p, q) = 1 or gcd(p2 ,
q
2) = 1, there exist unique r0, s0 ∈ Z such thatqr0 − ps0 = 1 if gcd(p, q) = 1

qr0 − ps0 = 2 if gcd(p2 ,
q
2) = 1

. (A.24)

Then, we define ω0, ω̃0 ∈ Z to beω0 := qr0 + ps0 mod N if gcd(p, q) = 1

ω̃0 := q
2r0 + p

2s0 mod N if gcd(p2 ,
q
2) = 1

. (A.25)

If we let λ = qr − ps, we obtainω0λ = qr + ps mod N if gcd(p, q) = 1

ω̃0λ = qr + ps mod N if gcd(p2 ,
q
2) = 1

. (A.26)

Therefore, we can write the Virasoro characters as

χNS
r,s(τ) = (Kλ(τ)−Kλ′(τ))

√
2

ϑ2(τ)ϑ4(τ)
,

χ̃NS
r,s(τ) = εr,s

(
K̃λ(τ)− (−1)rsK̃λ′(τ)

)√ 2

ϑ2(τ)ϑ3(τ)
,

χR(±)
r,s (τ) = (Kλ(τ)−Kλ′(τ))

√
1

ϑ3(τ)ϑ4(τ)
, (A.27)

where λ = qr − ps and

λ′ =

ω0λ if gcd(p, q) = 1

ω̃0λ if gcd(p2 ,
q
2) = 1

. (A.28)

We need to determine the modular transformation properties of the functions appearing

in (A.27).

Modular transformations of the Jacobi theta-functions are well-known. They are given

by

ϑ2(τ + 1) = e
iπ
4 ϑ2(τ) , ϑ3(τ + 1) = ϑ4(τ) , ϑ4(τ + 1) = ϑ3(τ) ,

ϑ2(−1/τ) =
√
−iτϑ4(τ) , ϑ3(−1/τ) =

√
−iτϑ3(τ) , ϑ4(−1/τ) =

√
−iτϑ2(τ) . (A.29)
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For T transformation, let us write λr,s = qr − ps, and consider

(Nn+ λr,s)
2

4N
=

1

2

(
pqn2 + λr,s n+

λ2
r,s

2N

)
, (A.30)

in which

pqn2 = np mod 2 and λr,s n = np(r − s) mod 2 , (A.31)

since p and q are either both odd or both even. Also notice that

λ2
r,s

2N
−
λ2
−r,s
2N

= −rs and

λ2
r,s

4N
= hr,s −

1

24
c(p, q) +

1

32

(
1 + (−1)r+s

)
.

Thus, under T : q 7→ e2πiq, we have

q
(Nn+λr,s)2

4N − q
(Nn+λ−r,s)2

4N

T7−→


e
iπ
8 e2πi(hr,s− c

24)(−1)np
(
q

(Nn+λr,s)2

4N − (−1)rsq
(Nn+λ−r,s)2

4N

)
for r + s ∈ 2Z

e2πi(hr,s− c
24)
(
q

(Nn+λr,s)2

4N − q
(Nn+λ−r,s)2

4N

)
for r + s ∈ 2Z + 1

.

Taking T transformation of the Jacobi theta-functions (A.29) into account, we find the the

action of T on the Virasoro characters as

χNS
r,s(τ + 1) = εr,s e

2πi(hr,s− c
24) χ̃NS

r,s(τ) ,

χ̃NS
r,s(τ + 1) = εr,s e

2πi(hr,s− c
24) χNS

r,s(τ) ,

χR(±)
r,s (τ + 1) = e2πi(hr,s− c

24) χR(±)
r,s (τ) .

The matrix T is diagonal except it exchanges the Virasoro characters and supercharacters

in the Neveu–Schwarz sector.

For S transformation, using the Poisson resummation formula, we can write

Kλ(−1/τ) =

√
2τ

iN

∑
k∈Z

q
k2

N e−2πi kλ
N and

K̃λ(−1/τ) =

√
2τ

iN

∑
k

q
k2

N e−2πi kλ
N where

k ∈ Z if p ∈ 2Z

k ∈ Z + 1
2 if p ∈ 2Z + 1

.

Let us rewrite the summations by defining

k =
1

2
(Nn+ µ) where n ∈ Z and

µ ∈ [0, N − 2] ∩ 2Z for k ∈ Z

µ ∈ [1, N − 1] ∩ 2Z + 1 for k ∈ Z + 1
2

,

(A.32)

then √
2τ

iN

∑
k

q
k2

N e−2πi kλ
N =

√
2τ

iN

∑
µ

e−
iπµλ
N

∑
n∈Z

e−iπnλq
(Nn+µ)2

4N . (A.33)
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Note that

e−iπnλr,s =

1 for r + s ∈ 2Z

(−1)np for r + s ∈ 2Z + 1
. (A.34)

In addition, λ±r,s = ±qr−ps = p(r+s) mod 2, which means λr,s is a even number except

for p ∈ 2Z + 1 and r + s ∈ 2Z + 1. Finally, we obtain, for λ = λr,s, with r + s ∈ 2Z,

Kλ(−1/τ) =

√
2τ

iN

N−2∑
µ=0
µ∈2Z

e−
iπµλ
N Kµ(τ) and K̃λ(−1/τ) =

√
2τ

iN

∑
µ

e−
iπµλ
N Kµ(τ) ,

(A.35)

where the range of the second summation depends on the condition given in (A.32), and

for λ = λr,s with r + s ∈ Z + 1,

Kλ(−1/τ) =

√
2τ

iN

N−2∑
µ=0
µ∈2Z

e−
iπµλ
N K̃µ(τ) . (A.36)

We still need to combine the contributions from Kλ′(−1/τ) and K̃λ′(−1/τ). Since ω2
0 = 1

mod 2N and ω̃2
0 = 1 mod 2N , we can write

Kλ′(−1/τ) =

√
2τ

iN

∑
µ

e−
iπµλ′
N Kµ(τ) =

√
2τ

iN

∑
ν

e−
iπνλ
N Kν′(τ) , (A.37)

where ν = ω0µ or ν = ω̃0µ. If we define

Xλ(τ) := Kλ(τ)−Kλ′(τ) and X̃λ(τ) := K̃λ(τ)− (−1)rsK̃λ′(τ) , (A.38)

where λ = λr,s, they satisfy Xλ = Xλ+N = X−λ = −Xλ′ . Using the fact that

λr,s + 2 =

λr+2r0,s+2s0
for p ∈ 2Z + 1

λr+r0,s+s0 for p ∈ 2Z
,

N − λ′r,s = λ′p−r,q−s mod N ,

λ′r,s = λr,−s mod N ,

and so on, if we denote the set of distinct Kac labels in the NS and R sectors by INS and IR,

we obtain

Xλ(−1/τ) =

√
2τ

iN

∑
µ=µr2,s2

(r2,s2)∈INS

(
e−

iπµλ
N + e

iπµλ
N − e−

iπµ′λ
N − e

iπµ′λ
N

)
Xµ(τ)

=

√
2τ

iN

∑
µ

2

(
cos

(
πµλ

N

)
− cos

(
πµ′λ

N

))
Xµ(τ)

=

√
−iτ
pq

∑
(r2,s2)∈INS

4(−1)
1
2

(r1−s1)(r2+s2) sin

(
πr1r2

q

p

)
sin

(
πs1s2

p

q

)
Xµr2,s2

(τ)
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for λ = λr1,s2 with (r1, s1) ∈ INS. Note that there is a factor of (−1)
1
2

(r1−s1)(r2+s2) in the

final line, which is always one for this range of summation. Similarly, we can calculate

X̃λ(−1/τ)

=

√
−iτ
pq

∑
(r2,s2)∈IR

(−1)
1
2

(r1−s1)2(2− δr2, p2 δs2, q2 ) sin

(
πr1r2

q

p

)
sin

(
πs1s2

p

q

)
Xµr2,s2

(τ)

for λ = λr1,s2 with (r1, s1) ∈ INS. Note that the coefficient is different at the Ramond fixed

point (r2, s2) = (p2 ,
q
2) as the identification of Kac labels is trivial. The remaining case is

Xλ(−1/τ) =

√
−iτ
pq

∑
(r2,s2)∈INS

(−1)
1
2

(r2−s2)4 sin

(
πr1r2

q

p

)
sin

(
πs1s2

p

q

)
X̃µr2,s2

(τ)

(A.39)

for λ = λr1,s2 with (r1, s1) ∈ IR.

Finally, taking S transformation of the Jacobi theta-functions (A.29) into account, we

obtain the modular S transformations of the Virasoro characters as

χNS
r1,s1

(−1/τ) =
4
√
pq

∑
(r2,s2)∈INS

sin

(
πr1r2

q

p

)
sin

(
πs1s2

p

q

)
χNS
r2,s2

(τ) ,

χ̃NS
r1,s1

(−1/τ) =
2
√
pq

∑
(r2,s2)∈IR

εr1,s1(2− δr2, p2 δs2, q2 )(−1)
1
2

(r1−s1)

× sin

(
πr1r2

q

p

)
sin

(
πs1s2

p

q

)√
2χR(±)

r2,s2
(τ) ,

√
2χR(±)

r1,s1
(−1/τ) =

4
√
pq

∑
(r2,s2)∈INS

εr2,s2(−1)
1
2

(r2−s2) sin

(
πr1r2

q

p

)
sin

(
πs1s2

p

q

)
χ̃NS
r2,s2

(τ) .

Not only the presence of Ramond fixed point but also the factors of
√

2 make the S matrix

non-symmetric. In addition, if we recall the definition of χR(±)
r,s (τ) given in (A.20), they

correspond to ungraded representations, and it is more desirable to write the S matrix in

terms of the characters of graded modules given by

χR
r,s(τ) :=

χ
R(+)
r,s (τ) + χR(−)

r,s (τ) if (r, s) 6= (p2 ,
q
2)

χR(0)
p
2
, q
2
(τ)

. (A.40)

In the literature, there are two ways to define the S matrix: the first method, which

is more or less common, introduces so-called modified Ramond characters and yields a

symmetric and orthogonal S matrix[13, 18, 73, 78]; the second method defines the S matrix

of a fermionic theory, which is not necessarily symmetric or unitary, together with some

additional matrices[50]. Nevertheless, we can always write the modular S transformation

of χNS
r,s(τ) as

χNS
r1,s1

(−1/τ) =
∑

(r2,s2)∈INS

S[NS,NS]

(r1,s1)(r2,s2) χ
NS
r2,s2

(τ) (A.41)

with

S[NS,NS]

(r1,s1)(r2,s2) =
4
√
pq

sin

(
πr1r2

q

p

)
sin

(
πs1s2

p

q

)
, (A.42)

and the corresponding submatrix of S is symmetric and orthogonal.
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• Symmetric Modular S Matrix

If we introduce modified Ramond characters that are given by

χ̂R
r,s(τ) :=


1√
2
χR
r,s(τ) =

√
2χR(±)

r,s (τ) if (r, s) 6= (p2 ,
q
2)

χR
p
2
, q
2
(τ)

, (A.43)

then we can write

χ̃NS
r1,s1

(−1/τ) =
∑

(r2,s2)∈IR

Ŝ[NS,R]

(r1,s1)(r2,s2) χ̂
R
r2,s2

(τ) and

χ̂R
r1,s1

(−1/τ) =
∑

(r2,s2)∈INS

Ŝ[R,NS]

(r1,s1)(r2,s2) χ̃
NS
r2,s2

(τ)

with

Ŝ[NS,R]

(r1,s1)(r2,s2) = εr1,s1
4 gr2,s2√

pq
(−1)

1
2

(r1−s1) sin

(
πr1r2

q

p

)
sin

(
πs1s2

p

q

)
and

Ŝ[R,NS]

(r1,s1)(r2,s2) = εr2,s2
4 gr1,s1√

pq
(−1)

1
2

(r2−s2) sin

(
πr1r2

q

p

)
sin

(
πs1s2

p

q

)
, (A.44)

where gr,s is defined as

gr,s :=

1 if (r, s) 6= (p2 ,
q
2)

1√
2

if (r, s) = (p2 ,
q
2)

. (A.45)

Then, the modular S matrix

Ŝ =

S[NS,NS] 0 0

0 0 Ŝ[NS,R]

0 Ŝ[R,NS] 0

 (A.46)

is symmetric and orthogonal.

At the chiral level, it seems strange to have characters of the form
√

2qh−
c
24 (1+ · · · ) but

it turns out to be rather convenient from the bulk point of view. Since the bulk Ramond

ground state is two-dimensional rather than four-dimensional, the Ramond sector of bulk

partition function can be written in terms of χ̂R
i (τ)χ̂R

ī
(τ̄).

• Non-Symmetric Modular S Matrix

It is possible to define a modular S matrix using the Ramond characters given in (A.40)

but some care is needed as it results in a non-symmetric S matrix. In this case, we can

write

χ̃NS
r1,s1

(−1/τ) =
∑

(r2,s2)∈IR

S[NS,R]

(r1,s1)(r2,s2) χ
R
r2,s2

(τ) and

χR
r1,s1

(−1/τ) =
∑

(r2,s2)∈INS

S[R,NS]

(r1,s1)(r2,s2) χ̃
NS
r2,s2

(τ)
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with

S[NS,R]

(r1,s1)(r2,s2) = εr1,s1
2
√

2
√
pq

(−1)
1
2

(r1−s1) sin

(
πr1r2

q

p

)
sin

(
πs1s2

p

q

)
and

S[R,NS]

(r1,s1)(r2,s2) = εr2,s2
4
√

2
√
pq

g2
r1,s1

(−1)
1
2

(r2−s2) sin

(
πr1r2

q

p

)
sin

(
πs1s2

p

q

)
, (A.47)

where gr,s is the same as before. They give the modular S matrix

S =

S[NS,NS] 0 0

0 0 S[NS,R]

0 S[R,NS] 0

 , (A.48)

which is clearly not symmetric. Since (A.44) and (A.47) are related by

S[NS,R]

ij =
1√
2gj

Ŝ[NS,R]

ij and S[R,NS]

ij =
√

2gi Ŝ[R,NS]

ij , (A.49)

we introduce a |IR| × |IR| diagonal matrix g defined as

gij :=
√

2 gi δi,j . (A.50)

Then, the submatrices are related by S[NS,R] = Ŝ[NS,R]g−1 and S[R,NS] = gŜ[R,NS]. Furthermore,

if we define

G :=

1 0 0

0 1 0

0 0 g

 , (A.51)

these relations can be written as

S = G Ŝ G−1 . (A.52)

Note that G is related to the matrix D, which was give in [50], by G2 = D. As described

in [50], S obeys the equation ST D−1 S = D−1.

A.3 Fusing Matrices for Virasoro Minimal Models

We reproduce the explicit formula for fusing matrix elements given in Appendix A.4 of

Runkel’s PhD thesis[71] which is based on the results given in [7] and [34].

For a Virasoro minimal model M(p, q), define the quantities t := p/q and di := ri − si t,
where i = (ri, si) denotes a Kac label. Note that 1 < p < q, and p, q ∈ Z are coprime. In

addition, define the functions

bxy(α, β; ρ) :=

y∏
g=1

Γ(gρ)Γ(α+ gρ)Γ(β + gρ)

Γ(ρ)Γ(α+ β − 2x+ (y + g)ρ)
and

mxy(α, β)

:= t2xy
x∏
g=1

y∏
h=1

(
(ht− g)(α+ ht− g)(β + ht− g)(α+ β + (y + h)t− (x+ g))

)−1
,
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from which we let

J(x, y;α, β) := mxy(α, β) byx(−1
tα,−

1
tβ; 1

t ) bxy(α, β; t) . (A.53)

We need one more function

A(s;x, y;α, β, γ, δ; ρ)

:=

min(s,x+y−1)∑
h=max(x,y)

s−h∏
g=1

sinπ(δ + (x− 1 + g)ρ)
h−y∏
g=1

sinπ(−α+ (s− x+ g)ρ)

s−y∏
g=1

sinπ(−α+ δ + (s− y + g)ρ)

×

y−1−(h−x)∏
g=1

sinπ(β + (s− x+ g)ρ)
h−x∏
g=1

sinπ(γ + (x− 1 + g)ρ)

y−1∏
g=1

sinπ(β + γ + (y − 1 + g)ρ)

×
h−x∏
g=1

sinπ((x+ y − h− 1 + g)ρ)

sinπ(gρ)

s−h∏
g=1

sinπ((h− y + g)ρ)

sinπ(gρ)
.

In terms of the functions J and A, fusing matrix elements are given by

Fpq
[
j k
i l

]
=

J
(

1
2(rl − ri − 1 + rq),

1
2(sl − si − 1 + sq);−di, dl

)
J
(

1
2(rj − ri − 1 + rp),

1
2(sj − si − 1 + sp);−di, dj

)
×
J
(

1
2(rj + rk − 1− rq), 1

2(sj + sk − 1− sq); dj , dk
)

J
(

1
2(rk + rl − 1− rp), 1

2(sk + sl − 1− sp); dk, dl
)

×A
(

1
2(−ri+rj +rk+rl);

1
2(rk+rl+1−rp), 1

2(rj +rk+1−rq);−1
t di,−

1
t dj ,−

1
t dk,−

1
t dl;

1
t

)
×A

(
1
2(−si + sj + sk + sl);

1
2(sk + sl + 1− sp), 1

2(sj + sk + 1− sq); di, dj , dk, dl; t
)
.

(A.54)

While this equation (A.54) looks rather complicated, it is straightforward to implement it

in a computer program.
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Appendix B

Conformal Defects in Ising Model

In [54] and [59], conformal defects in the Ising model are obtained by identifying the

folded model, which has c = 1, as a special case of the Ashkin-Teller model and the

Z2-orbifold of a free boson compactified on a circle of radius r = 1. As in [59], we use

the normalisation in which the self-dual radius of the free boson theory is r = 1/
√

2. In

addition, we always take the Ising model as the unitary Virasoro minimal model M(3, 4)

with the diagonal modular invariant bulk partition function.

B.1 Conformal Defects from Orbifolded Free Boson Theory

In the orbifolded free boson theory, there are two classes of conformal boundary condi-

tions: continuous families of Dirichlet and Neumann boundary conditions. In [59], they

are constructed from the boundary states of the unorbifolded theory preserving the U(1)

symmetry. As mentioned in [91], there may be extra defects associated with the boundary

states of the unorbifolded theory braking the U(1) symmetry, however we do not consider

this possibility in this report.

The Dirichlet boundary conditions are denoted by DO(ϕ0), where ϕ0 ∈ R are the eigen-

values of the free boson at the boundaries, and the Neumann boundary conditions are

denoted by NO(ϕ̃0), where ϕ̃ is the dual field. In terms of the chiral components of the

free boson ϕ = ϕL + ϕR, the dual field is given by ϕ̃ = ϕL − ϕR. In this section, we follow

the notations of [59]; the subscripts distinguish DO(ϕ0) and NO(ϕ̃0) from the boundary

states D(ϕ0) and N(ϕ̃0) in the unorbifolded theory. The boundary conditions satisfy

DO(ϕ0) = DO(−ϕ0) = DO(ϕ0 + 2π) and NO(ϕ̃0) = NO(−ϕ̃0) = NO(ϕ̃0 + π) , (B.1)

thus we take the fundamental domains ϕ0 ∈ [0, π] and ϕ̃0 ∈ [0, π/2]. These boundary

conditions are elementary except at the endpoints of the fundamental domains, where

they split into two elementary boundary conditions due to the presence of twisted sectors.

The elementary boundary states are

‖DO(ϕ0)〉〉 with ϕ0 ∈ (0, π) , ‖DO(0)〉〉± , ‖DO(π)〉〉± ,

‖NO(ϕ̃0)〉〉 with ϕ̃0 ∈ (0, π/2) , ‖NO(0)〉〉± , and ‖NO(π/2)〉〉± .

Consider a torus of circumferences β and 2l with two defect lines along non-contractible

circles at the diametrically opposite locations separated by l. After folding, this torus be-

comes a cylinder with two boundaries separated by l. Then, from [59], the torus partition

function (2.268) for two continuous Dirichlet defects can be written in terms of the bound-

ary states of the orbifolded theory as

ZDO(ϕ0)|DO(ϕ′0) = 〈〈DO(ϕ0)‖q̃
1
2

(L
(c=1)
0 +L̄

(c=1)
0 −1/12)‖DO(ϕ′0)〉〉 = Zr(ϕ0 −ϕ′0) +Zr(ϕ0 +ϕ′0) ,

(B.2)
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where

Zr(ϕ0 ± ϕ′0) =
1

η(q)

∑
n∈Z

q2r2(n+(ϕ0±ϕ′0)/2π)2
(B.3)

with the Dedekind eta function

η(q) = q1/24
∞∏
n=1

(1− qn) , (B.4)

q̃ = e−2πi/τ , q = e2πiτ , and τ = iβ/2l. Here, L(c=1)
0 and L̄(c=1)

0 are the Virasoro generators

of the compactified free boson theory on the plane, and ϕ ∼ ϕ+ 2πr. We should keep

in mind that the boundary states carry momentum and winding modes. Since the Neu-

mann boundary conditions become the Dirichlet boundary conditions for the dual fields

ϕ̃, the torus partition functions for Neumann defects can be calculated by substituting

r → r̃ = 1/2r, ϕ0 → 2ϕ̃0, and ϕ′0 → 2ϕ̃′0 in (B.2). By computing the spectra of defect fields

ZDO(ϕ0)|DO(ϕ0) with r = 1, we can identify the factorising and topological defects in the

family of Dirichlet defects and Neumann defects. This has been done in [59] and [91].

B.1.1 Topological and Factorising Points of Dirichlet and Neumann Defects

As in [59] and [91], by comparing the torus partition functions of Dirichlet and Neumann

defects (B.2), and the partition functions of (5.30) and (5.37), we can identified the

factorising and topological defects in the family of Dirichlet and Neumann defects. In

summary, we have

DO(0) = F++ ∪ F−− , DO(π/4) = D1 , DO(π/2) = Fff ,

DO(3π/4) = Dε , and DO(π) = F−+ ∪ F+− . (B.5)

Here, DO(0) = DO(0)+ +DO(0)− and DO(π) = DO(π)+ +DO(π)−, where they are iden-

tified as DO(0)+ = F++, DO(0)− = F−−, DO(π)+ = F−+, and DO(π)− = F+−. For the

family of Neumann defects, we have

NO(0) = Ff+ ∪ Ff−, NO(π/4) = Dσ, and NO(π/2) = F+f ∪ F−F . (B.6)

We take NO(0) = NO(0)+ + NO(0)− and NO(π/2) = NO(π/2)+ + NO(π/2)−, where

NO(0)+ = Ff+, NO(0)− = Ff−, NO(π/2)+ = F+f , and NO(π/2)− = F−f .

As discussed in [59], the family of Dirichlet defects can be understood in terms of the

underlying classical system. Let us consider a square-lattice Ising model on a cylinder with

a defect line along the axial direction. The classical Hamiltonian is given by

E = −
M−1∑
i=1

N∑
j=1

σi,j

(
J1σi,j+1+J2σi+1,j+hi,j

)
−

N∑
j=1

σM,j

(
J1σM,j+1+JDσ1,j+hM,j

)
, (B.7)

where σi,j ∈ {−1, 1} are classical spin variables, J1 is the vertical coupling, J2 is the hor-

izontal coupling, JD is the defect coupling, and hi,j are the couplings to the external

magnetic field at each site, which we set to zero for the moment. The defect line is given

by the altered horizontal couplings between the sites at i = M and i = 1. Figure B.1 depicts
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lattice sites near the defect line. Let us introduce various quantities of our interest. The

defect strength is defined by b = JD/J2. We define K1 = βJ1, K2 = βJ2, and KD = βJD,

where β is the inverse temperature. In terms of the dual coupling K∗1 defined by

sinh 2K∗1 sinh 2K1 = 1, (B.8)

the critical values of the bulk couplings must satisfy K2 = K∗1 . This is a consequence of the

Kramers-Wannier duality. Defect lines in a square-lattice Ising model are discussed in [26].

In [59], the lattice parameters corresponding to the Dirichlet defects in (B.5) are give by

DO(0) = F++ ∪ F−− ↔ b→∞ with K2 → 0 (Infinitely ferromagnetic),

DO(π/4) = D1 ↔ b = 1 (No defect),

DO(π/2) = Fff ↔ b = 0 (Free boundary),

DO(3π/4) = Dε ↔ b = −1 (Antiferromagnetic defect), and

DO(π) = F−+ ∪ F+− ↔ b→ −∞ with K2 → 0

(Infinitely antiferromagnetic) .

J1

J2

JD

i=M i=1

Figure B.1: The square-lattice Ising model with a defect line.

On the other hand, the family of Neumann defects does not have obvious classical

descriptions. In the anisotropic limit K2 → 0, the square-lattice Ising model considered

before is equivalent to the one-dimensional quantum transverse field Ising model, whose

Hamiltonian is given by

H = −
∑
n∈Z

σ̂x(n)−
∑
n6=0

σ̂z(n− 1)σ̂z(n)− bσ̂z(−1)σ̂z(0) , (B.9)

where σ̂x(n) and σ̂z(n) are Pauli spin operators. In [59], the Hamiltonian of the one-

dimensional quantum system corresponding to the continuous Neumann defects is given

by

H = −
∑
n6=0

σ̂x(n)−
∑
n6=0

σ̂z(n− 1)σ̂z(n)− bσ̂z(−1)σ̂x(0) , (B.10)

which has the defective link between n = −1 and n = 0 different from (B.9). This Hamil-

tonian is the same as (B.9) with the spin operators replaced by the disorder operators for

the half of the chain n ≥ 0. The disorder operators are given by

µ̂z(n) =
∏

0≤m≤n
σ̂x(m) and µ̂x(n) = σ̂z(n)σ̂z(n+ 1) . (B.11)



B Conformal Defects in Ising Model 155

In addition, continuous Neumann defects can be realised in a certain quantum Hall state

with a single vortex in the bulk [97].

In [91], the defect fusion rules of the Ising model are given by

Dε DO(ϕ0) = DO(ϕ0)Dε = DO(π − ϕ0) , Dε NO(ϕ̃0) = NO(ϕ̃0)Dε = NO(ϕ̃0) ,

Dσ DO(ϕ0) = NO(ϕ0) , DO(ϕ0)Dσ = NO(π/2− ϕ0) ,

Dσ NO(ϕ̃0) = DO(ϕ̃0) +DO(π − ϕ̃0) , and

NO(ϕ̃0)Dσ = DO(π/2− ϕ̃0) +DO(π/2 + ϕ̃0) . (B.12)

From these fusion rules, it is clear that the topological defect Dε commutes with all the

other defects. The topological defect Dσ changes a Dirichlet defect to a Neumann defect

and vice versa. Furthermore, the Neumann defects behave like the representation (σ) in

the bulk fusion rules (5.27) due to the second line in (B.12); for example, the last two

equations of (B.12) can be written as

Dσ NO(ϕ̃0) = Dσ Dσ DO(ϕ̃0) = (D1 +Dε)DO(ϕ̃0) and

NO(ϕ̃0)Dσ = DO(π/2− ϕ̃0)Dσ Dσ = DO(π/2− ϕ̃0)(D1 +Dε) .

The general fusion rules of conformal defects in the Ising model are given in [108].

B.2 Defect Flows in Ising Model

In this section, we summarise the defect flows in the Ising model investigated in [97] and

[98].

One of the important quantities characterising a conformal defect is its g-value, which

is also called the entropy or the universal ground state degeneracy. The defect g-value

is defined as that of the corresponding conformal boundary in the folded theory. The

boundary g-value is the coefficient of |0〉〉 in (2.224). Similar to the c-theorem for bulk

perturbations, there is the g-theorem, which states that the g-value decreases along the

boundary RG flows.

For the Ising model, the g-values of conformal defects are given in [59]: the continuous

Neumann defects have g =
√

2 and the continuous Dirichlet defects have g = 1. Further-

more, the two elementary defects at the endpoints of the fundamental domains of ϕ0 and

ϕ̃0 have g = 1/
√

2 for the Neumann case and g = 1/2 for the Dirichlet case, therefore they

add up to the same g-values as the continuous cases.

Before we analyse defect flows, let us consider the spectra of defect fields in details.

For the topological and factorising defects, we know the spectra from (5.30) and (5.37).

For the other Dirichlet and Neumann defects, we can calculate (B.2).

For the Dirichlet defects, the spectra of defect fields are given by

ZDO(ϕ0)|DO(ϕ0) = Zr=1(0) + Zr=1(2ϕ0) , (B.13)

where

Zr=1(0) =
1

η(q)

∑
n∈Z

q2n2
and Zr=1(2ϕ0) =

1

η(q)

∑
n∈Z

q2(n+ϕ0/π)2
. (B.14)
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They should be considered as c = 1 Virasoro characters and the scaling dimensions of the

defect fields can be read off from these partition functions. Since c = 1 Virasoro represen-

tations are degenerate when h = (n/2)2, where n ∈ Z, it is useful to rewrite Zr=1(0) as

Zr=1(0) =
1

η(q)

∞∑
n=1

2q2n2
+

1

η(q)

∞∑
m=0

(
qm

2 − q(m+1)2
)
. (B.15)

Then, it is clear that there are single defect fields with scaling dimensions ∆ = m2, where

m ∈ Z≥0, and pairs of defect fields with ∆ = 2n2, where n ∈ Z>0. They appear in the

spectra regardless of the values of ϕ0. The scaling dimensions of the other defect fields

depend on ϕ0 and these are given by

∆n
D(ϕ0) = 2

(
n+

ϕ0

π

)2
with n ∈ Z and ϕ0 6= 0, π . (B.16)

When ϕ0 = 0, π, the partition function (B.13) reduces to 2Zr=1(0). These defect fields

with scaling dimensions less than one are plotted in Figure B.2. At ϕ0 = π/4, the curve

∆−1
D corresponds to the bulk spin field σ on the defect line, which couples to the defect

magnetic field. This field becomes dimension zero at ϕ0 = 0, which means that even an

infinitesimal defect magnetic field will split F++ ∪ F−− into either F++ or F−− [97]. The

same argument holds for the curve ∆0
D and the factorising defect F−+ ∪ F+−.

ϕ00 π/4 π/2 3π/4 π

F++ ∪ F−− D1 Fff Dε F−+ ∪ F+−

∆

0

1/8

1/2

1

(1,1)

(ε, ε)

(σ, σ) (σ, σ)

(1, ε)(ε,1)

∆0
D(ϕ0)∆−1

D (ϕ0)

ϕ 0
=

π√ 2

ϕ 0
=
π

( 1
−

1√ 2

)

Figure B.2: The spectra of defect fields with ∆ ≤ 1 for Dirichlet defects.

For the Neumann defects, the spectra of defect fields are given by

ZNO(ϕ̃0)|NO(ϕ̃0) = Zr=1/2(0) + Zr=1/2(4ϕ̃0) . (B.17)
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Similar to the Dirichlet case, we write

Zr=1/2(0) =
1

η(q)

∞∑
n=1

2qn
2/2 +

1

η(q)

∞∑
m=0

(
qm

2 − q(m+1)2
)
, (B.18)

which gives single defect fields with scaling dimensions ∆ = m2, where m ∈ Z≥0, and pairs

of defect fields with ∆ = n2/2, where n ∈ Z>0. The other term

Zr=1/2(4ϕ̃0) =
1

η(q)

∑
n∈Z

q(n+2ϕ̃0/π)2/2 (B.19)

gives defect fields with scaling dimensions

∆n
N (ϕ̃0) =

1

2

(
n+

2ϕ̃0

π

)2

with n ∈ Z and ϕ̃0 6= 0, π/2 . (B.20)

These defect fields with scaling dimensions less than one are plotted in Figure B.3. For

the Neumann case, there are always two chiral defect fields with ∆ = 1/2, therefore it is

possible to perturb the Neumann defects by these chiral defect fields.

ϕ̃00 π/4 π/2

Ff+ ∪ Ff− Dσ F+f ∪ F−f

∆

0

1/8

1/2

1

(1,1)

(ε, ε)

(σ, σ)

(1, ε)
(ε,1)

∆−2
N (ϕ̃0)∆1

N (ϕ̃0)

∆0
N (ϕ̃0)∆−1

N (ϕ̃0)

ϕ̃ 0
=
π

( −1 2
+

1√ 2

)

ϕ̃ 0
=
π

( 1
−

1√ 2

)

Figure B.3: The spectra of defect fields with ∆ ≤ 1 for Neumann defects.

B.2.1 Marginal Defect Perturbations

Perturbations of a conformal defect by a defect field with scaling dimension one are

marginal and this defect remains conformal along such RG flows. Since a defect field
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with ∆ = 1 is always present in the Dirichlet and Neumann defects, we can consider the

two continuous families of conformal defects are generated by the marginal defect pertur-

bations.

In [97], the continuous family of Dirichlet defects is obtained by considering the per-

turbations of the identity defect by

Spert = λD

∫
R

(
ψ

(11)1
ε,ε (x) + ψ

(11)2
ε,ε (x)

)
dx , (B.21)

where ψ(11)1
ε,ε (x) and ψ

(11)2
ε,ε (x) are the bulk energy fields ϕε,ε(z, z̄) brought to the defect

from the opposite sides. At the identity defect, these two defect fields are the same, thus

the perturbation term is the integral of 2λDψ
(11)
ε,ε . By parametrising the coupling λD as

tan(δ/2) =
λD
2
, (B.22)

where we have set vn = 1, it is related to ϕ0 by

ϕ0 =
δ

2
+
π

4
. (B.23)

For the continuous family of Neumann defects, [97] considers the perturbations of the

topological defect Dσ by

Spert = λN

∫
R

(
ψ

(σσ)1
ε,ε (x)− ψ(σσ)2

ε,ε (x)
)

dx . (B.24)

Since the action of Dσ on a bulk energy field is ϕε,ε → −ϕε,ε, the perturbing term is the

integral of 2λNψ
(σσ)
ε,ε . Again, the coupling λN is parametrised by

tan(δ̃/2) =
λN
2

(B.25)

and related to ϕ̃0 by

ϕ̃0 =
δ̃

2
+
π

4
. (B.26)

B.2.2 Perturbation by Chiral Defect Fields

Since the Neumann defects have the highest g-values of
√

2, there should be RG flows

to more stable defects, for example, to the Dirichlet defects, whose g-values are one. In

[97], the Dirichlet defects are obtained as the endpoints of the perturbations of a Neumann

defect by the two chiral defect fields with the scaling dimensions ∆ = 1/2. Let us denote

these two chiral defect fields by ψNO(ϕ̃0)
ε,1 and ψNO(ϕ̃0)

1,ε . Then the perturbation term in the

action is given by

Spert =

∫
R

(
λlψ

NO(ϕ̃0)
ε,1 + λrψ

NO(ϕ̃0)
1,ε

)
dx . (B.27)

As in [98], by introducing

tanα =
λr
λl

with

α ∈
(
−π

2 ,
π
2

)
for λl > 0 ,

α ∈
(
π
2 ,

3π
2

)
for λl < 0

(B.28)
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and θ = π − α, these flows give

NO(ϕ̃0)→ DO(ϕ̃0 + θ) . (B.29)

In particular, perturbations of Dσ by (B.27) give

Dσ → DO(5π/4− α) . (B.30)

These flows are verified by the truncated conformal space approach (TCSA) in [98]. For

certain values of α, the endpoints correspond to the factorising and topological defects in

the family of Dirichlet defects. These flows are depicted in Figure 13 (a) of [98].
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Appendix C

Free Fermion Conventions

Let us briefly summarise the representation theory of the c = 1/2 free fermion and its

relation to the irreducible highest weight modules of the Virasoro algebra with c = 1/2.

From the stress-energy tensors (5.2) and the anticommutation relations (5.4), if we

define the operators[109]

LNS
n =

1

2

∑
r∈Z+ 1

2

(
r +

n

2

)
(ψ−rψn+r) and

LR
n =

1

2

∑
r∈Z

(
r +

n

2

)
(ψ−rψn+r) +

1

16
δn,0 (C.1)

with n ∈ Z, then we see that they satisfy the Virasoro algebra relations (2.46) with c = 1/2.

C.1 Neveu–Schwarz Sector

For the NS sector, a highest weight representation is constructed from the vacuum state |0〉
which satisfies

ψn|0〉 = 0 for all n ∈ Z +
1

2
and n > 0 . (C.2)

Let us denote the highest weight module constructed from |0〉 by HNS. Then, HNS is

spanned by vectors of the form

ψn1
ψn2
· · ·ψnk |0〉 with n1 < n2 < · · · < nk < 0 and n1, n2, . . . , nk ∈ Z +

1

2
. (C.3)

Note that the anticommutation relations (5.4) imply the Verma module constructed from

|0〉 is unitary, and therefore irreducible. In addition, one can show that ψ− 1
2
|0〉 is a Virasoro

primary state using (C.1).

The Virasoro character of HNS is given by[56]

χNS(q) = TrHNS
qL

NS
0 −

1
48 = q−

1
48

∞∏
n=1

(
1 + qn−

1
2

)
. (C.4)

Since |0〉 is bosonic, the corresponding supercharacter is given by

χ̃NS(q) = TrHNS
(−1)F qL

NS
0 −

1
48 = q−

1
48

∞∏
n=1

(
1− qn−

1
2

)
. (C.5)

If we denote the Virasoro character of the irreducible representation with conformal weight

h in the Virasoro minimal model M(3, 4) as χh(q), we obtain the relations

χ0(q) =
1

2
(χNS(q) + χ̃NS(q)) and χ 1

2
(q) =

1

2
(χNS(q)− χ̃NS(q)) . (C.6)
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C.2 Ramond Ground States

For the Ramond sector, some care is needed due to the fermionic zero modes. Since (−1)F

and
√

2ψ0 form the two-dimensional real Clifford algebra, the Ramond ground states are

degenerate. As we have seen in the N = 1 super-Virasoro case, there are two choices for

a basis: one in which the basis vectors are (−1)F eigenstates, and the other in which they

are ψ0 eigenstates. We take the (−1)F eigenstates, and they are denoted by | 1
16〉± which

satisfy

ψn| 1
16〉± = 0 for all n ∈ Z and n > 0 (C.7)

in addition to

ψ0| 1
16〉± =

1√
2
| 1
16〉± and (−1)F | 1

16〉± = ±| 1
16〉± . (C.8)

By HR let us denote the module of the extended Ramond free fermion algebra spanned by

vectors of the form

ψn1
ψn2
· · ·ψnk |

1
16〉± with n1 < n2 < · · · < nk < 0 and n1, n2, . . . , nk ∈ Z . (C.9)

By introducing the Virasoro character of the unextended Ramond algebra module H
(±)
R

χR(q) = Tr
H

(±)
R

qL
R
0 −

1
48 = q

1
24

∞∏
n=1

(1 + qn) , (C.10)

the character of HR is given by 2χR(q).

In the Ramond sector, chiral free fermions ψ(z) are non-local fields, and their two-point

functions have square root branch cuts. As in [22], these branch cuts are described by the

chiral spin fields σ(z) and µ(z) that satisfy the OPE

ψ(z)σ(w) =
1√
z − w

µ(w) + reg. . (C.11)

These spin fields have h = 1
16 , and they are inserted at the endpoints of branch cuts. As

we usually require fields to have definite fermion parities, the above OPE gives σ(z) and

µ(z) to have the opposite fermion parities. Then, the Ramond ground states in the (−1)F

eigenbasis can be written as

lim
z→0

σ(z)|0〉 = | 1
16〉+ and lim

z→0
µ(z)|0〉 = | 1

16〉− , (C.12)

where we chose σ(z) to be bosonic.

Unlike in the NS sector, simply taking the tensor product HR ⊗ HR does not yield

the bulk irreducible representation of the Ramond free fermion. In the bulk case,
√

2ψ0

and
√

2ψ̄0 form the two-dimensional real Clifford algebra even without the chiral fermion

parity operators. Therefore, the bulk Ramond ground states are two-fold degenerate and

denoted by |±〉
R

with the conformal dimensions (h, h̄) = ( 1
16 ,

1
16). We take them to be

(−1)F+F̄ eigenstates

(−1)F+F̄ |±〉
R

= ±|±〉
R
, (C.13)
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and they correspond to a rotated basis of the Clifford algebra[22, 105], which gives

ψ0|±〉R =
1√
2
e±i

π
4 |∓〉

R
and ψ̄0|±〉R =

1√
2
e∓i

π
4 |∓〉

R
. (C.14)

They are related to the chiral Ramond ground states by[22]

|±〉± ∼
(
| 1
16〉+ ⊗ |

1
16〉±

)
+
(
| 1
16〉− ⊗ |

1
16〉∓

)
, (C.15)

and the action of (−1)F or (−1)F̄ connects them to the orthogonal space spanned by

|±〉± ∼
(
| 1
16〉+ ⊗ |

1
16〉±

)
−
(
| 1
16〉− ⊗ |

1
16〉∓

)
. (C.16)

In this case, non-local behaviour of Ramond fermions is captured by the bulk spin fields

σ(z, z̄) and µ(z, z̄) that correspond to

lim
z,z̄→0

σ(z, z̄)|0〉 = |+〉
R

and lim
z,z̄→0

µ(z, z̄)|0〉 = |−〉
R
. (C.17)

Their OPEs can be found, for example in [22] and [56].

Let HR denote the Fock space generated by the action of negative modes of ψ(z) and

ψ̄(z̄) on the states |±〉
R
. Then, the corresponding torus partition function can be written

as

TrHR

(
qL

R
0 −

1
48 q̄L̄

R
0 −

1
48

)
= 2|χR(q)|2 , (C.18)

where χR(q) is given by (C.10).

C.3 GSO Projection of Boundary States

Boundary states

The boundary states of the free fermion theory are

|NS, ε〉〉 =
∏
r∈Z>0

eiεψ−r+1/2ψ̄−r+1/2 |0〉NS ⊗ |0〉NS, (C.19)

where ε = ±. They are the unique (up to normalisation) solutions of the gluing conditions

(
ψr − iεψ̄−r

)
|NS, ε〉〉 = 0 for all r ∈ Z + 1/2. (C.20)

Therefore, there are only two boundary states in the free fermion theory, which consists of

a single Neveu–Schwarz free fermion.

If we include R-sector as well, then the boundary states become linear combinations of

(C.19) and

|R, ε〉〉 =
4
√

2
∏
r∈Z>0

eiεψ−rψ̄−r |ε〉R. (C.21)

Here, we follow normalisation of [105]—this choice will be apparent when we project these

boundary states to obtain the Ising boundary states. In R-sector, the gluing conditions are(
ψr − iεψ̄−r

)
|R, ε〉〉 = 0 for all r ∈ Z (C.22)
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and (C.21) solve these.

Let us consider the cylinder partition functions with the boundary states (C.19) and

(C.21) placed at the ends. Straightforward calculations show

〈〈NS, ε | q̃
1
2

(LNS
0 +L̄NS

0 −1/24) | NS, ε〉〉 = q̃−1/48
∞∏
n=1

(
1 + q̃n−1/2

)
= χ0(q̃) + χ1/2(q̃)

〈〈NS, ε | q̃
1
2

(LNS
0 +L̄NS

0 −1/24) | NS,−ε〉〉= q̃−1/48
∞∏
n=1

(
1− q̃n−1/2

)
= χ0(q̃)− χ1/2(q̃)

〈〈R, ε | q̃
1
2

(LR
0+L̄R

0−1/24) | R, ε〉〉 =
√

2q̃1/24
∞∏
n=1

(1 + q̃n) =
√

2χ1/16(q̃) and

〈〈R, ε | q̃
1
2

(LR
0+L̄R

0−1/24) | R,−ε〉〉 = 0,

where χ0, χ1/2, and χ1/16 are the c = 1/2 Virasoro characters. In the equations above, the

cylinder partition functions are identified with the torus partition of a chiral fermion asso-

ciated with the given spin structures by comparing the characters. This can be understood

as ‘unfolding’ the boundary theory on the cylinder and considering it as a theory of chiral

fermion on the torus.

The GSO projection of the free fermion boundary states are discussed, for example,

in [105]. The GSO projected boundary states are obtained as the boundary states in the

Z2-orbifold of the free fermion theory generated by (−1)F+F̄ . We start from the boundary

states of the free fermion theory |NS, ε〉〉. Since each of them is invariant under (−1)F+F̄ ,

they should be resolved by adding the R-sector boundary conditions, which yields

‖ε,±〉〉ferm =
1√
2

(|NS, ε〉〉 ± |R, ε〉) , (C.23)

where the factor of |Z2|−1/2 = 1/
√

2 is chosen as the normalisation. Then, we need to

consider the orbits of the boundary states (C.23) under the action of the orbifold group

G ∼= Z2. For the moment, let us take the type 0B projection. Since (−1)F+F̄ acts non-

trivially only on |R,−〉〉 in this case, the boundary states ‖+,±〉〉ferm are invariant under

G while ‖−,+〉〉ferm and ‖−,−〉〉ferm are related by (−1)F+F̄ . Thus, there are three orbits

which partition the set of boundary states (C.23). We sum the boundary states lying

in an orbit and normalise it by (|StabG|/|G|)1/2, where StabG is the stabiliser subgroup

associated with this orbit—for the two fixed points, StabG = G, and for the other orbit, it

is trivial. This gives the projected boundary states.

Let us summarise the GSO projected boundary states and their relations to the Cardy

boundary states of the Ising model (5.34) given in [105]. For the type 0A projection, we

have

‖+〉〉Ising = ‖charged,+〉〉0A
ferm =

1√
2

(|NS,−〉〉+ |R,−〉〉) ,

‖−〉〉Ising = ‖charged,−〉〉0A
ferm =

1√
2

(|NS,−〉〉 − |R,−〉〉) , and

‖f〉〉Ising = ‖neutral〉〉0A
ferm = |NS,+〉〉.
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For the type 0B projection, we have

‖+〉〉Ising = ‖charged,+〉〉0B
ferm =

1√
2

(|NS,+〉〉+ |R,+〉〉) ,

‖−〉〉Ising = ‖charged,−〉〉0B
ferm =

1√
2

(|NS,+〉〉 − |R,+〉〉) , and

‖f〉〉Ising = ‖neutral〉〉0B
ferm = |NS,−〉〉.

From these, we can write the free fermion boundary states in terms of the Ishibashi states

of the Ising model. If we take the type 0B projection, we can identify

1

2
(|NS,+〉〉+ |NS,−〉〉) = |1〉〉, 1

2
(|NS,+〉〉 − |NS,−〉〉) = |ε〉〉, and

1
4
√

2
|R,+〉〉 = |σ〉〉.

(C.24)

Similarly, for the type 0A case, we have

1

2
(|NS,−〉〉+ |NS,+〉〉) = |1〉〉, 1

2
(|NS,−〉〉 − |NS,+〉〉) = |ε〉〉, and

1
4
√

2
|R,−〉〉 = |σ〉〉.

(C.25)

Expanding (C.19) and (C.21), we can write

1

2
(|NS, ε〉〉+ |NS,−ε〉〉) =

(
1 + ψ−1/2ψ−3/2ψ̄−1/2ψ̄−3/2 + ψ−1/2ψ−5/2ψ̄−1/2ψ̄−5/2 + · · ·

+ ψ−3/2ψ−5/2ψ̄−3/2ψ̄−5/2 + · · ·
)
|0〉NS ⊗ |0〉NS,

1

2
(|NS, ε〉〉 − |NS,−ε〉〉) = iε

(
ψ−1/2ψ̄−1/2 + ψ−3/2ψ̄−3/2 + ψ−5/2ψ̄−5/2 + · · ·

+ ψ−1/2ψ−3/2ψ−5/2ψ̄−1/2ψ̄−3/2ψ̄−5/2 + · · ·
)
|0〉NS ⊗ |0〉NS, and

|R, ε〉〉 =
4
√

2
(
1 + iεψ−1ψ̄−1 + iεψ−2ψ̄−2 + iεψ−3ψ̄−3 + · · ·

+ ψ−1ψ−2ψ̄−1ψ̄−2 + ψ−1ψ−3ψ̄−1ψ̄−3 + · · ·+ ψ−2ψ−3ψ̄−2ψ̄−3 + · · ·

+ iεψ−1ψ−2ψ−3ψ̄−1ψ̄−2ψ̄−3 + · · ·
)
|ε〉R.

Therefore, we see that the type 0B projection relates the highest weight vectors as

|0〉NS ⊗ |0〉NS ↔ |0〉 ⊗ |0〉, iψ−1/2ψ̄−1/2|0〉NS ⊗ |0〉NS ↔ |1/2〉 ⊗ |1/2〉, and

|+〉R ↔ |1/16〉 ⊗ |1/16〉, (C.26)

while for the type 0A projection, we have

|0〉NS ⊗ |0〉NS ↔ |0〉 ⊗ |0〉, −iψ−1/2ψ̄−1/2|0〉NS ⊗ |0〉NS ↔ |1/2〉 ⊗ |1/2〉, and

|−〉R ↔ |1/16〉 ⊗ |1/16〉. (C.27)

Since the factor of i in front of bilinears of the form ψ−rψ̄−r is introduced to ensure that

the left and right fermion modes obey the usual anti-commutation rules, there is no i

appearing in (C.24) and (C.25).
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Appendix D

Various Quantities in (D6, E6) Theory
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9
16

17
16

91
48

45
16

65
16

3 7
10

13
40

1
30

3
40

1
5

79
120

6
5

83
40

91
30

173
40

57
10

2 21
80

1
80

23
240

21
80

61
80

323
240

181
80

261
80

1103
240

481
80

621
80

1 0 1
8

1
3

7
8

3
2

59
24

7
2

39
8

19
3

65
8 10

r / s 1 2 3 4 5 6 7 8 9 10 11

Table D.1: Kac table for SM (10, 12).

9 21
2

41
6 4 2 5

6
3
2

8 521
80

301
80

443
240

61
80

41
80

7 31
5

53
15

17
10

7
10

8
15

6
5

6 53
16

25
16

31
48

9
16

21
16

5 31
10

43
30

3
5

3
5

43
30

31
10

4 21
16

9
16

31
48

25
16

53
16

3 6
5

8
15

7
10

17
10

53
15

31
5

2 41
80

61
80

443
240

301
80

521
80

1 3
2

5
6 2 4 41

6
21
2

r / s 1 2 3 4 5 6 7 8 9 10 11

Table D.2: Conformal weights of superdescendants for SM (10, 12).

D.1 Character Identities

We label characters by either Kac labels or conformal weights. χ(3) NS
h (q) and χ(3) R

h(q) de-

note characters of SM (3, 5), and χ(10) NS
h (q) and χ(10) R

h(q) denote characters of SM (10, 12).

Ramond characters correspond to the unextended algebra representations.

Relations expressing products of NS characters of SM (3, 5) as sums of NS characters of

SM (10, 12) are[94]

χ(10) NS
1,1(q) + χ(10) NS

1,7(q) + χ(10) NS
9,1(q) + χ(10) NS

9,7(q) = ( χ(3) NS
1,1(q))2 ,

χ(10) NS
3,1(q) + χ(10) NS

3,7(q) + χ(10) NS
7,1(q) + χ(10) NS

7,7(q) = ( χ(3) NS
1,3(q))2 ,

χ(10) NS
5,1(q) + χ(10) NS

5,7(q) = χ(3) NS
1,1(q) χ(3) NS

1,3(q) . (D.1)
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The same relations with characters labelled by conformal weights are

χ(10) NS
0 (q) + χ(10) NS

3
2

(q) + χ(10) NS
7
2

(q) + χ(10) NS
10 (q) = ( χ(3) NS

0 (q))2 ,

χ(10) NS
1
5

(q) + χ(10) NS
7
10

(q) + χ(10) NS
6
5

(q) + χ(10) NS
57
10

(q) = ( χ(3) NS
1
10

(q))2 ,

χ(10) NS
1
10

(q) + χ(10) NS
13
5

(q) = χ(3) NS
0 (q) χ(3) NS

1
10

(q) .

There are similar relations for Ramond characters[94]

χ(10) R
1,4(q) + χ(10) R

1,8(q) = ( χ(3) R
1,4(q))2 , χ(10) R

7
8
(q) + χ(10) R

39
8

(q) = ( χ(3) R
7
16

(q))2 ,

χ(10) R
3,4(q) + χ(10) R

3,8(q) = ( χ(3) R
1,2(q))2 , χ(10) R

3
40

(q) + χ(10) R
83
40

(q) = ( χ(3) R
3
80

(q))2 ,

χ(10) R
5,4(q) = χ(3) R

1,2(q) χ(3) R
1,4(q) , χ(10) R

19
40

(q) = χ(3) R
3
80

(q) χ(3) R
7
16

(q) .

Moreover, we found that there are relations expressing Ramond characters of SM (3, 5)

with
√
q as sums of SM (10, 12) characters

χ(10) NS
2,4(q) + χ(10) NS

2,8(q) = χ(3) R
1,4(
√
q) , χ(10) NS

21
80

(q) + χ(10) NS
261
80

(q) = χ(3) R
7
16

(
√
q) ,

χ(10) NS
4,4(q) + χ(10) NS

4,8(q) = χ(3) R
1,2(
√
q) , χ(10) NS

1
16

(q) + χ(10) NS
17
16

(q) = χ(3) R
3
80

(
√
q) .

These
√
q characters of SM (3, 5) can be expressed as sums of Ramond characters of

SM (10, 12) as well

χ(10) R
2,1(q) + χ(10) R

2,7(q) + χ(10) R
8,1(q) + χ(10) R

8,7(q) = χ(3) R
1,4(
√
q) ,

χ(10) R
4,1(q) + χ(10) R

4,7(q) + χ(10) R
6,1(q) + χ(10) R

6,7(q) = χ(3) R
1,2(
√
q) .

The same relations with characters labelled by conformal weights are

χ(10) R
21
80

(q) + χ(10) R
61
80

(q) + χ(10) R
181
80

(q) + χ(10) R
621
80

(q) = χ(3) R
7
16

(
√
q) ,

χ(10) R
1
16

(q) + χ(10) R
9
16

(q) + χ(10) R
25
16

(q) + χ(10) R
65
16

(q) = χ(3) R
3
80

(
√
q) .

D.2 Expansions of (D6, E6) Ishibashi States

In this appendix, we expand the Ishibashi state of the (D6, E6) theory as states of the

folded theory using the map ιαβγδ defined in (6.20). In addition we further expand them

as defect operators using the map ρ given by (6.15).

In order to do this, we first need to find the image of the highest weight states corre-

sponding to the diagonal terms in the bulk partition function (6.1) under the map ιαβγδ.

Among these states

|0〉 , |15〉 , | 1
10〉 , and | 1

10

′〉 (D.2)

can be considered as the super W-algebra highest weight states, therefore the map ιαβγδ
acts trivially. The remaining 8 states

|32〉 , |72〉 , |10〉 , | 7
10〉 , |65〉 , |57

10〉 , |13
5 〉 , and |13

5

′〉 (D.3)
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are the super W-algebra descendants, and we need to consider the action of ιαβγδ explicitly.

Throughout this appendix, we shall use c′ = 2c = 7
5 .

For the vacuum sector, the Ishibashi states are given by

|0, ε〉〉 = |0〉 − iε

2c′/3
G− 3

2
Ḡ− 3

2
|0〉+

1

c′/2
L−2L̄−2|0〉 −

iε

2c′
G− 5

2
Ḡ− 5

2
|0〉

+
1

2c′
L−3L̄−3|0〉 −

3iε

c′(c′ + 12)
L−2G− 3

2
L̄−2Ḡ− 3

2
|0〉

− 81iε

c′(c′+12)(21+4c′)

(
L−2G− 3

2
− c′+12

9 G− 7
2

)(
L̄−2Ḡ− 3

2
− c′+12

9 Ḡ− 7
2

)
|0〉+ · · · ,

which can be expanded as

ιαβγδ(|0, ε〉〉) = |0〉− iε

4c/3
(αG(1)

− 3
2
+βG(2)

− 3
2
)(γḠ(1)

− 3
2
+δḠ(2)

− 3
2
)|0〉+ 1

c
(L(1)

−2+L(2)

−2)(L̄(1)

−2+L̄(2)

−2)|0〉

− iε

4c
(γḠ(1)

− 5
2

+ δḠ(2)

− 5
2
)(γḠ(1)

− 5
2

+ δḠ(2)

− 5
2
)|0〉+

1

4c
(L(1)

−3 + L(2)

−3)(L(1)

−3 + L(2)

−3)|0〉

− 3iε

4c(c+ 6)
(L(1)

−2 + L(2)

−2)(αG(1)

− 3
2

+ βG(2)

− 3
2
)(L̄(1)

−2 + L̄(2)

−2)(γḠ(1)

− 3
2

+ δḠ(2)

− 3
2
)|0〉

− 81iε

4c(c+6)(21+8c)

(
(L(1)

−2 + L(2)

−2)(αG(1)

− 3
2

+ βG(2)

− 3
2
)− 2(c+6)

9 (αG(1)

− 7
2

+ βG(2)

− 7
2
)
)

×
(

(L̄(1)

−2 + L̄(2)

−2)(γḠ(1)

− 3
2

+ δḠ(2)

− 3
2
)− 2(c+6)

9 (γḠ(1)

− 7
2

+ δḠ(2)

− 7
2
)
)
|0〉+ · · ·

and

ραβγδ(|0, ε〉〉) = |0〉〈0|

− iε

4c/3

(
αγG− 3

2
Ḡ− 3

2
|0〉〈0|+ iαδG− 3

2
|0〉〈0|G 3

2
+ iβγḠ− 3

2
|0〉〈0|Ḡ 3

2
+ βδ|0〉〈0|Ḡ 3

2
G 3

2

)
+

1

c

(
L−2L̄−2|0〉〈0|+ L−2|0〉〈0|L2 + L̄−2|0〉〈0|L̄2 + |0〉〈0|L̄2L2

)
− iε

4c

(
αγG− 5

2
Ḡ− 5

2
|0〉〈0|+ iαδG− 5

2
|0〉〈0|G 3

2
+ iβγḠ− 5

2
|0〉〈0|Ḡ 3

2
+ βδ|0〉〈0|Ḡ 3

2
G 3

2

)
+

1

4c

(
L−3L̄−3|0〉〈0|+ L−3|0〉〈0|L3 + L̄−3|0〉〈0|L̄3 + |0〉〈0|L̄3L3

)
+ · · · .

For the highest weight state with h = h̄ = 3
2 , the Ishibashi state is given by

|32 , ε〉〉 = |32〉 −
iε

3
G− 1

2
Ḡ− 1

2
|32〉+

1

3
L−1L̄−1|32〉+ · · · . (D.4)

Using the expansion of the highest weight state

ιαβγδ(|32〉) =
iη 3

2

4c/3
(αG(1)

− 3
2
− βG(2)

− 3
2
)(γḠ(1)

− 3
2
− δḠ(2)

− 3
2
)|0〉 , (D.5)

the Ishibashi state can also be expanded as

ιαβγδ(|32 , ε〉〉)

=
iη 3

2

4c/3
(αG(1)

− 3
2
− βG(2)

− 3
2
)(γḠ(1)

− 3
2
− δḠ(2)

− 3
2
)|0〉 −

εη 3
2

c
(L(1)

−2 − L
(2)

−2)(L̄(1)

−2 − L̄
(2)

−2)|0〉+ · · ·

(D.6)
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and

ραβγδ(|32 , ε〉〉) =

iη 3
2

4c/3

(
αγG− 3

2
Ḡ− 3

2
|0〉〈0|+ βδ|0〉〈0|Ḡ 3

2
G 3

2
− iαδG− 3

2
|0〉〈0|G 3

2
− iβγḠ− 3

2
|0〉〈0|Ḡ 3

2

)
−
εη 3

2

c

(
L−2L̄−2|0〉〈0| − L−2|0〉〈0|L2 − L̄−2|0〉〈0|L̄2 + |0〉〈0|L̄2L2

)
+ · · · .

We now consider the sector corresponding to HNS
1
10
⊗HNS

1
10

. We give the results in terms of

a state of weight 2h, but of course, in this particular case h = 1
10 . The states are identified

as

|2h〉 = |15〉 , |2h+1
2〉 = | 7

10〉 , and |2h+1〉 = |65〉 , (D.7)

and the constants are η := η 7
10

and η′ := η 6
5
. For the Ishibashi state corresponding to

2h = 2h̄ = 1
5

|2h, ε〉〉 = |2h〉 − iε

4h
G− 1

2
Ḡ− 1

2
|2h〉+

1

4h
L−1L̄−1|2h〉+ · · · , (D.8)

the expansions are

ιαβγδ(|2h, ε〉〉) = |2h〉 − iε

4h
(αG(1)

− 1
2

+ βG(2)

− 1
2
)(γḠ(1)

− 1
2

+ δḠ(2)

− 1
2
)|2h〉

+
1

4h
(L(1)

−1 + L(2)

−1)(L̄(1)

−1 + L̄(2)

−1)|2h〉+ · · ·

and

ραβγδ(|2h, ε〉〉) = |h〉〈h|

− iε

4h

(
αγG− 1

2
Ḡ− 1

2
|h〉〈h|+ iαδG− 1

2
|h〉〈h|G 1

2
+ iβγḠ− 1

2
|h〉〈h|Ḡ 1

2
+ βδ|h〉〈h|Ḡ 1

2
G 1

2

)
+

1

4h

(
L−1L̄−1|h〉〈h|+ L−1|h〉〈h|L1 + L̄−1|h〉〈h|L̄1 + |h〉〈h|L̄1L1

)
+ · · · .

For the Ishibashi state with 2h+ 1
2 = 2h̄+ 1

2 = 7
10

|2h+1
2 , ε〉〉 = |2h+1

2〉 −
iε

4h+1
G− 1

2
Ḡ− 1

2
|2h+1

2〉+ · · · , (D.9)

we can use the expression for the highest weight state

ιαβγδ(|2h+1
2〉) =

iη

4h
(αG(1)

− 1
2
− βG(2)

− 1
2
)(γḠ(1)

− 1
2
− δḠ(2)

− 1
2
)|2h〉 , (D.10)

and obtain the expansions

ιαβγδ(|2h+1
2 , ε〉〉) =

iη

4h
(αG(1)

− 1
2
− βG(2)

− 1
2
)(γḠ(1)

− 1
2
− δḠ(2)

− 1
2
)|2h〉

− εη

4h(4h+ 1)
(L(1)

−1 − L
(2)

−1 − 2αβG(1)

− 1
2
G(2)

− 1
2
)(L̄(1)

−1 − L̄
(2)

−1 − 2γδḠ(1)

− 1
2
Ḡ(2)

− 1
2
)|2h〉+ · · ·
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and

ραβγδ(|2h+ 1
2 , ε〉〉) =

η

4h

(
iαγG− 1

2
Ḡ− 1

2
|h〉〈h|+ iβδ|h〉〈h|Ḡ 1

2
G 1

2
+ αδG− 1

2
|h〉〈h|G 1

2
+ βγḠ− 1

2
|h〉〈h|Ḡ 1

2

)
− εη

4h(4h+1)

(
L−1L̄−1|h〉〈h|+ L−1|h〉〈h|L1 + L̄−1|h〉〈h|L̄1 + |h〉〈h|L̄1L1

)
+

2iεηαβ

4h(4h+1)

(
G− 1

2
|h〉〈h|Ḡ 1

2
L1 − L̄−1G− 1

2
|h〉〈h|Ḡ 1

2

)
+

2iεηγδ

4h(4h+1)

(
L−1Ḡ− 1

2
|h〉〈h|G 1

2
− Ḡ− 1

2
|h〉〈h|Ḡ 1

2
L̄1

)
+

4εηαβγδ

4h(4h+1)

(
G− 1

2
Ḡ− 1

2
|h〉〈h|Ḡ 1

2
G 1

2

)
+ · · · .

For the Ishibashi state with 2h+ 1 = 2h̄+ 1 = 6
5

|2h+1, ε〉〉 = |2h+1〉+ · · · , (D.11)

we can expand

ιαβγδ(|2h+1, ε〉〉)

=
η′

4h+1
(L(1)

−1 − L
(2)

−1 + αβ
2hG

(1)

− 1
2
G(2)

− 1
2
)(L̄(1)

−1 − L̄
(2)

−1 + γδ
2hḠ

(1)

− 1
2
Ḡ(2)

− 1
2
)|2h〉+ · · ·

and

ραβγδ(|2h+1, ε〉〉) =
η′

4h+1

(
L−1L̄−1|h〉〈h| − L−1|h〉〈h|L1 − L̄−1|h〉〈h|L̄1 + |h〉〈h|L̄1L1

)
+

iη′αβ

2h(4h+1)

(
G− 1

2
|h〉〈h|Ḡ 1

2
L1 − L̄−1G− 1

2
|h〉〈h|Ḡ 1

2

)
+

iη′γδ

2h(4h+1)

(
L−1Ḡ− 1

2
|h〉〈h|G 1

2
− Ḡ− 1

2
|h〉〈h|Ḡ 1

2
L̄1

)
− η′αβγδ

4h2(4h+1)

(
G− 1

2
Ḡ− 1

2
|h〉〈h|Ḡ 1

2
G 1

2

)
+ · · · .

D.3 Boundary States Coefficients of (D6, E6) Theory

The matrices Ψ
(a,b)
(r,s) are given in terms of the eigenvectors of adjacency matrices of the

Dynkin diagrams of D6 and E6 in equation (6.40):

Ψ
(a,b)
(r,s) =

ψra(D6)ψsb(E6)√
S

(8)
1r S

(10)
1s

, (D.12)

We repeat here for convenience the vectors ψra(G) given in [94]:

The eigenvectors of the D6 adjacency matrix ψra(D6) are given by

ψra(D6) =
√

2S
(8)
ar for a, r 6= 5 ψ5±

a (D6) = S
(8)
a5 for a 6= 5

ψr5±(D6) =
1√
2
S

(8)
5r for r 6= 5 ψ5ε

′

5ε (D6) =
1

2

(
S

(8)
55 − εε

′
)
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where a = 1, 2, 3, 4, 5+, 5− (a = 5± correspond to 5 and 6 nodes on the D6 Dynkin dia-

gram), r ∈ E(D6) = {1, 3, 5, 5′, 7, 9} (r = 5± above correspond to 5 and 5′), and S(8)
ij is the

ŝu(2)8 modular S matrix elements,

S
(k)
ij =

√
2

k + 2
sin

(
πij

k + 2

)
Explicitly, the entries in ψra(D6) are

a \ r 1 3 5+ (= 5) 5− (= 5′) 7 9

1 −1+
√
5

2
√
10

1
2

√
3
5 + 1√

5
1√
5

1√
5

1
2

√
3
5 + 1√

5
−1+

√
5

2
√
10

2 1
2

√
1− 1√

5
1
2

√
1 + 1√

5
0 0 − 1

2

√
1 + 1√

5
− 1

2

√
1− 1√

5

3 1
2

√
3
5 + 1√

5
−1+

√
5

2
√
10

− 1√
5

− 1√
5

−1+
√
5

2
√
10

1
2

√
3
5 + 1√

5

4 1
2

√
1 + 1√

5
− 1

2

√
1− 1√

5
0 0 1

2

√
1− 1√

5
− 1

2

√
1 + 1√

5

5+ (= 5) 1√
10

− 1√
10

1
10

(
−5 +

√
5
)

1
10

(
5 +
√

5
)

− 1√
10

1√
10

5− (= 6) 1√
10

− 1√
10

1
10

(
5 +
√

5
)

1
10

(
−5 +

√
5
)

− 1√
10

1√
10

The eigenvectors of the E6 adjacency matrix ψsb(E6) are given by

b \ s 1 4 5 7 8 11

1 a 1
2 b b 1

2 a

2 b 1
2 a −a −1

2 −b

3 c 0 −d −d 0 c

4 b −1
2 a −a 1

2 −b

5 a −1
2 b b −1

2 a

6 d 0 −c c 0 −d

where
a = 1

2

√
3−
√

3
6 b = 1

2

√
3+
√

3
6

c = 1
2

√
3+
√

3
3 d = 1

2

√
3−
√

3
3

Putting these together, we can calculate the entries of Ψ. Since it is helpful to have an

overview of the properties of Ψ when discussing the boundary states from the extended

algebra point of view, we include a table of the approximate numerical values in table D.3.
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(r, s)

(a, b) (1, 1) (1, 5) (1, 7) (1, 11) (3, 1) (3, 5) (3, 7) (3, 11) (5, 1) (5, 5) (5′, 1) (5′, 5)

(1, 1) 0.3717 0.3717 0.3717 0.3717 0.6015 0.6015 0.6015 0.6015 0.4729 0.4729 0.4729 0.4729

(1, 2) 0.7182 −0.1924 −0.1924 0.7182 1.162 −0.3114 −0.3114 1.162 0.9135 −0.2448 0.9135 −0.2448

(1, 3) 1.016 −0.2721 −0.2721 1.016 1.643 −0.4403 −0.4403 1.643 1.292 −0.3462 1.292 −0.3462

(1, 6) 0.5257 0.5257 0.5257 0.5257 0.8507 0.8507 0.8507 0.8507 0.6687 0.6687 0.6687 0.6687

(2, 1) 0.7071 −0.7071 0.7071 −0.7071 0.7071 −0.7071 0.7071 −0.7071 0 0 0 0

(2, 2) 1.366 0.3660 −0.3660 −1.366 1.366 0.3660 −0.3660 −1.366 0 0 0 0

(2, 3) 1.932 0.5176 −0.5176 −1.932 1.932 0.5176 −0.5176 −1.932 0 0 0 0

(2, 6) 1.000 −1.000 1.000 −1.000 1.000 −1.000 1.000 −1.000 0 0 0 0

(3, 1) 0.9732 0.9732 0.9732 0.9732 0.2298 0.2298 0.2298 0.2298 −0.4729 −0.4729 −0.4729 −0.4729

(3, 2) 1.880 −0.5038 −0.5038 1.880 0.4438 −0.1189 −0.1189 0.4438 −0.9135 0.2448 −0.9135 0.2448

(3, 3) 2.659 −0.7125 −0.7125 2.659 0.6277 −0.1682 −0.1682 0.6277 −1.292 0.3462 −1.292 0.3462

(3, 6) 1.376 1.376 1.376 1.376 0.3249 0.3249 0.3249 0.3249 −0.6687 −0.6687 −0.6687 −0.6687

(4, 1) 1.144 −1.144 1.144 −1.144 −0.4370 0.4370 −0.4370 0.4370 0 0 0 0

(4, 2) 2.210 0.5922 −0.5922 −2.210 −0.8443 −0.2262 0.2262 0.8443 0 0 0 0

(4, 3) 3.126 0.8376 −0.8376 −3.126 −1.194 −0.3199 0.3199 1.194 0 0 0 0

(4, 6) 1.618 −1.618 1.618 −1.618 −0.6180 0.6180 −0.6180 0.6180 0 0 0 0

(5, 1) 0.6015 0.6015 0.6015 0.6015 −0.3717 −0.3717 −0.3717 −0.3717 −0.2923 −0.2923 0.7651 0.7651

(5, 2) 1.162 −0.3114 −0.3114 1.162 −0.7182 0.1924 0.1924 −0.7182 −0.5646 0.1513 1.478 −0.3961

(5, 3) 1.643 −0.4403 −0.4403 1.643 −1.016 0.2721 0.2721 −1.016 −0.7984 0.2139 2.090 −0.5601

(5, 6) 0.8507 0.8507 0.8507 0.8507 −0.5257 −0.5257 −0.5257 −0.5257 −0.4133 −0.4133 1.082 1.082

(6, 1) 0.6015 0.6015 0.6015 0.6015 −0.3717 −0.3717 −0.3717 −0.3717 0.7651 0.7651 −0.2923 −0.2923

(6, 2) 1.162 −0.3114 −0.3114 1.162 −0.7182 0.1924 0.1924 −0.7182 1.478 −0.3961 −0.5646 0.1513

(6, 3) 1.643 −0.4403 −0.4403 1.643 −1.016 0.2721 0.2721 −1.016 2.090 −0.5601 −0.7984 0.2139

(6, 6) 0.8507 0.8507 0.8507 0.8507 −0.5257 −0.5257 −0.5257 −0.5257 1.082 1.082 −0.4133 −0.4133

(D.13)

Table D.3: Numerical values of the boundary state coefficients Ψ
(a,b)
(r,s)
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D.4 Fermion Parity Assignment of NS Highest Weight Vectors

In most cases, a choice of ε(r, s) for NS highest weight vectors is irrelevant. Usually, NS

highest weight vectors |r, s〉 are taken to be bosonic (i.e. G−1/2|r, s〉 and G−3/2|0〉 are

fermionic). However, we take the following convention:

• For m odd,

r + s ∈ 4Z + 2→ |r, s〉 bosonic i.e. ε(r, s) = 1

r + s ∈ 4Z→ |r, s〉 fermionic i.e. ε(r, s) = −1

(In particular, |1, 3〉 = |2, 2〉 with h = 1
10 is fermionic in m = 3.)

• For m = 10 with the (D6, E6) bulk partition function,

(r, s) = (1, 5), (1, 7), (3, 1), (3, 11), (5, 5), (5, 7), (7, 1), (7, 11), (9, 5), (9, 7)→ fermionic

others→ bosonic

The first choice for m odd cases makes all the fusion coefficients
(
NÑS ÑS

ÑS

)
ij

k
non-

negative. However, there is no obvious procedure to make all these coefficients non-

negative for m even cases. The second choice for m = 10 comes from two observations:

modular transformations of the bulk partition function and character identities between

m = 3 and m = 10.

• Consider the (D6, E6) bulk partition function,

Z =
1

2
(ZNS + ZÑS) + ZR

ZNS =
∣∣ χ(10)

1,1 + χ(10)
1,5 + χ(10)

1,7 + χ(10)
1,11

∣∣2
+
∣∣ χ(10)

3,1 + χ(10)
3,5 + χ(10)

3,7 + χ(10)
3,11

∣∣2
+2
∣∣ χ(10)

5,1 + χ(10)
5,5

∣∣2
ZR = 2

∣∣ χ(10)
1,4 + χ(10)

1,8

∣∣2 + 2
∣∣ χ(10)

3,4 + χ(10)
3,8

∣∣2 + 4
∣∣ χ(10)

5,4

∣∣2
If we demand ZÑS to have the same form as ZNS, we need

ε(1, 1) = ε(1, 11) = −ε(1, 5) = −ε(1, 7)

ε(3, 1) = ε(3, 11) = −ε(3, 5) = −ε(3, 7)

ε(5, 1) = −ε(5, 5)

to ensure modular S transformation 1
2ZÑS ↔ ZR.

• From the NS character identities between m = 3 and m = 10, if we want something

similar for ÑS characters, that is (again with q real)(
χ̃(3)

1,1

)2
= χ̃(10)

1,1 + χ̃(10)
1,5 + χ̃(10)

1,7 + χ̃(10)
1,11(

χ̃(3)
1,3

)2
= χ̃(10)

3,1 + χ̃(10)
3,5 + χ̃(10)

3,7 + χ̃(10)
3,11
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then they fix ε(1, 1) = 1, ε(3, 1) = −1, etc. Furthermore, if we take ε(1, 3) = −1 for

m = 3,

χ̃(3)
1,1 · χ̃(3)

1,3 = χ̃(10)
5,1 + χ̃(10)

5,5

fixes ε(5, 1) = 1 and ε(5, 5) = −1.

The above arguments fix ε(r, s) of the NS representations with (r, s) appearing in the

(D6, E6) bulk partition function. For the other NS representations, we simply pick ε(r, s) =

1.

D.5 Graph Fusion Algebras and Induced Modules for

D6 and E6

Using the graph fusion algebras that were discussed in [67], and the α induced modules

the were introduced in the context of subfactor theory[61, 63, 64] but also appears in the

TFT construction of RCFTs[76, 91], we can calculate the boundary overlaps (2.232) for

ŝl(2)k-WZW models efficiently.

We only consider the D6 invariant of ŝl(2)8 and the E6 invariant of ŝl(2)10 here. Using

the method summarised in Appendix C of [91], we can associate simple induced modules to

each node of the D6 and E6 diagrams as in Figure D.1. Using the graph fusion coefficients

defined by[67]

N̂ c
ab =

∑
i∈E(G)

ψ(G) j
a ψ(G) j

b ψ̄(G) j
c

ψ(G) j
1

, (D.14)

we can calculate the graph fusion algebra of D6 as

(2)⊗ (2) = (1)⊕ (3) , (3)⊗ (3) = (1)⊕ (3)⊕ (5)⊕ (6) ,

(2)⊗ (3) = (2)⊕ (4) , (3)⊗ (4) = (2)⊕ 2(4) ,

(2)⊗ (4) = (3)⊕ (5)⊕ (6) , (3)⊗ (5) = (3)⊕ (6) ,

(2)⊗ (5) = (4) , (3)⊗ (6) = (3)⊕ (5) ,

(2)⊗ (6) = (4) ,

(4)⊗ (4) = (1)⊕ 2(3)⊕ (5)⊕ (6) , (5)⊗ (5) = (1)⊕ (5) ,

(4)⊗ (5) = (2)⊕ (4) , (5)⊗ (6) = (3) ,

(4)⊗ (6) = (2)⊕ (4) , (6)⊗ (6) = (1)⊕ (6) ,
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and that of E6 as

(2)⊗ (2) = (1)⊕ (3) , (3)⊗ (3) = (1)⊕ 2(3)⊕ (5) ,

(2)⊗ (3) = (2)⊕ (4)⊕ (6) , (3)⊗ (4) = (2)⊕ (4)⊕ (6) ,

(2)⊗ (4) = (3)⊕ (5) , (3)⊗ (5) = (3) ,

(2)⊗ (5) = (4) , (3)⊗ (6) = (2)⊕ (4) ,

(2)⊗ (6) = (3) ,

(4)⊗ (4) = (1)⊕ (3) , (5)⊗ (5) = (1) ,

(4)⊗ (5) = (2) , (5)⊗ (6) = (6) ,

(4)⊗ (6) = (3) , (6)⊗ (6) = (1)⊕ (5) .

Note that the nodes (1), (5), and (6) of the E6 diagram satisfy the Ising fusion rules.

One can calculate boundary overlaps using these algebras. For example, the overlap

of the E6 boundary states labelled by (4) and (5) can be written as the character of the

simple induced module associated with the node (2).

(1) (2) (3) (4)
(5)

(6)
1⊕9

2⊕8
3⊕7

4⊕6

5

5

D6

(1) (2) (3) (4) (5)

(6)

1⊕7
2⊕6⊕8

3⊕5⊕7⊕9
4⊕6⊕10

5⊕11

4⊕8

E6

Figure D.1: Simple induced modules for D6 and E6.

D.6 Extended Modular S Matrix For SW(3
2 ,

3
2) at c = 7

5

We define the extended characters

chNS
1 (q) = χNS

0 (q) + χNS
3
2

(q) + χNS
7
2

(q) + χNS
10 (q) , chR

1±(q) = χ̂R
7
8
(q) + χ̂R

39
8

(q) ,

chNS
3 (q) = χNS

1
5

(q) + χNS
7
10

(q) + χNS
6
5

(q) + χNS
57
10

(q) , chR
3±(q) = χ̂R

3
40

(q) + χ̂R
83
40

(q) ,

chNS
5 (q) = χNS

1
10

(q) + χNS
13
5

(q) , chR
5±(q) = χ̂R

19
40

(q) ,

chNS
5′ (q) = χNS

1
10

(q) + χNS
13
5

(q) , chR
5′±(q) = χ̂R

19
40

(q) ,

so that the (D6, E6) bulk partition function can be written as

Z
(D6,E6)

NS =
∑
a∈Iext

NS

|chNS
a (q)|2 , Z

(D6,E6)

R =
∑
a∈Iext

R

|chR
a (q)|2 , (D.15)

where the indexing sets are

Iext
NS = {1, 3, 5, 5′} and Iext

R = {1±, 3±, 5±, 5′±} . (D.16)
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Note that the Ramond characters are modified ones.

We can calculate extended S matrix elements. For a = 1, 3

chNS
a (q̃) = χNS

a,1(q̃) + χNS
a,5(q̃) + χNS

a,7(q̃) + χNS
a,11(q̃)

=
∑

(r,s)∈INS

S̃[NS,NS]

a (r,s) χ
NS
r,s(q) ,

where

S̃[NS,NS]

a (r,s) := S[NS,NS]

(a,1)(r,s) + S[NS,NS]

(a,5)(r,s) + S[NS,NS]

(a,7)(r,s) + S[NS,NS]

(a,11)(r,s)

= 2S(8)
ar

(
S(10)

1,s + S(10)

5,s + S(10)

7,s + S(10)

11,s

)
.

For a = 5, 5′

chNS
a (q̃) = χNS

5,1(q̃) + χNS
5,5(q̃)

=
1

2

(
χNS

5,1(q̃) + χNS
5,5(q̃) + χNS

5,7(q̃) + χNS
5,11(q̃)

)
=

∑
(r,s)∈INS

1

2
S̃[NS,NS]

a (r,s) χ
NS
r,s(q) .

In order to simplify the S matrix further, consider the E6 invariant of the ŝl(2)10-WZW

model

Z = |χ1 + χ7|2 + |χ4 + χ8|2 + |χ5 + χ11|2 , (D.17)

and calculate

S(10)

1,s + S(10)

7,s =



1
2 for s = 1, 7

1√
2

for s = 4, 8

1
2 for s = 5, 11

0 for s = 2, 3, 6, 9, 10

S(10)

4,s + S(10)

8,s =



1√
2

for s = 1, 7

0 for s = 4, 8

− 1√
2

for s = 5, 11

0 for s = 2, 3, 6, 9, 10

S(10)

5,s + S(10)

11,s =



1
2 for s = 1, 7

− 1√
2

for s = 4, 8

1
2 for s = 5, 11

0 for s = 2, 3, 6, 9, 10

In fact, by mapping {1, 7} 3 i 7→ 1, {4, 8} 3 i 7→ 2, {5, 11} 3 i 7→ 3 to ŝl(2)2 labels, we see

these numbers are just S(2)

ij . Denote this map by ρ.

Therefore, S̃[NS,NS]

a (r,s) is non-vanishing for s = 1, 5, 7, 11 and

S̃[NS,NS]

a (r,s) = 2S(8)
ar

(
S(2)

1,ρ(s) + S(2)

3,ρ(s)

)
= 2S(8)

ar . (D.18)



D Various Quantities in (D6, E6) Theory 176

This shows S̃[NS,NS]

a (r,s) does not depend on s and we can write, for example, for a′ = 1, 3

S̃[NS,NS]

a (a′,1) χ
NS
a′,1(q) + S̃[NS,NS]

a (a′,5) χ
NS
a′,5(q) + S̃[NS,NS]

a (a′,7) χ
NS
a′,7(q) + S̃[NS,NS]

a (a′,11) χ
NS
a′,11(q) = S [NS,NS]

aa′ chNS
a′ (q) .

(D.19)

Similar expression holds for a′ = 5, 5′.

After resolving the fixed point a = 5, 5′ (by guess), we get the extended S matrix

elements

S [NS,NS]

aa′ =

2S(8)

aa′ = 2√
5

sin
(
aa′π
10

)
for a, a′ 6= 5, 5′

S(8)

aa′ = 1√
5

sin
(
aa′π
10

)
for (a=5,5′ and a′ 6=5,5′) or

(a6=5,5′ and a′=5,5′)

,

S [NS,NS]

5,5 = S [NS,NS]

5′,5′ =
1

2

(
S(8)

5,5 − 1
)

=
1

2

(
1√
5
− 1

)
,

S [NS,NS]

5,5′ = S [NS,NS]

5′,5 =
1

2

(
S(8)

5,5 + 1
)

=
1

2

(
1√
5

+ 1

)
.

These give the correct character transformation

chNS
a (q̃) =

∑
a′∈Iext

NS

S [NS,NS]

aa′ chNS
a′ (q) . (D.20)

For extended S [R,NS]

aa′ , some care is needed regarding the various signs. For a = 1±, 3±

chR
a (q̃) = χ̂R

a,4(q̃) + χ̂R
a,8(q̃) =

∑
(r,s)∈INS

S̃[R,NS]

a (r,s) χ̃
NS
r,s(q) , (D.21)

where

S̃[R,NS]

a (r,s) := Ŝ[R,NS]

(a,4)(r,s) + Ŝ[R,NS]

(a,8)(r,s) = ε(r, s) (−1)
r−s

2 2S(8)
ar

(
S(10)

4s + S(10)

8s

)
, (D.22)

and the symmetric S matrix Ŝ[R,NS] is given in (A.44). For a = 5±, 5′±

chR
a (q̃) = χ̂R

5,4(q̃) =
1

2

(
χ̂R

5,4(q̃) + χ̂R
5,8(q̃)

)
=

∑
(r,s)∈INS

1

2
S̃[R,NS]

a (r,s) χ̃
NS
r,s(q) . (D.23)

S̃[R,NS]

a (r,s) is non-vanishing for s = 1, 5, 7, 11 and

S̃[R,NS]

a (r,s) = ε(r, s) (−1)
r−s

2 2S(8)
ar S(2)

2ρ(s) . (D.24)

Explicitly, these coefficients are

S̃[R,NS]

a (r,1) = ε(r, 1) (−1)
r−1

2

√
2S(8)

ar , S̃[R,NS]

a (r,5) = −ε(r, 5) (−1)
r−1

2

√
2S(8)

ar ,

S̃[R,NS]

a (r,7) = −ε(r, 7) (−1)
r−1

2

√
2S(8)

ar , S̃[R,NS]

a (r,11) = ε(r, 11) (−1)
r−1

2

√
2S(8)

ar .

However, our choice of ε(r, s) exactly cancels signs in front of S(8)
ar , and we obtain

S̃[R,NS]

a (r,s) =
√

2S(8)
ar . (D.25)
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After resolving the fixed point a = 5, 5′, we get the extended S matrix elements

S [R,NS]

aa′ =


√

2S(8)

aa′ =
√

2
5 sin

(
aa′π
10

)
for a, a′ 6= 5, 5′

1√
2
S(8)

aa′ = 1√
10

sin
(
aa′π
10

)
for (a=5,5′ and a′ 6=5,5′) or

(a6=5,5′ and a′=5,5′)

,

S [R,NS]

5,5 = S [R,NS]

5′,5′ =
1

2
√

2

(
S(8)

5,5 − 1
)

=
1

2
√

2

(
1√
5
− 1

)
,

S [R,NS]

5,5′ = S [R,NS]

5′,5 =
1

2
√

2

(
S(8)

5,5 + 1
)

=
1

2
√

2

(
1√
5

+ 1

)
.

These give the correct character transformation

chR
a (q̃) =

∑
a′∈Iext

NS

S [R,NS]

aa′ chÑS
a′ (q) . (D.26)
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