9
This electronic thesis or dissertation has been ING S

downloaded from the King’s Research Portal at CO/ / eg €
https://kclpure.kcl.ac.uk/portal/ LONDON

Conformal Defects in Two-Dimensional Conformal Field Theories

Makabe, Isao

Awarding institution:
King's College London

The copyright of this thesis rests with the author and no quotation from it or information derived from it
may be published without proper acknowledgement.

END USER LICENCE AGREEMENT ‘@ @ @ @ \

Unless another licence is stated on the immediately following page this work is licensed

under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
licence. https://creativecommons.org/licenses/by-nc-nd/4.0/

You are free to copy, distribute and transmit the work

Under the following conditions:

o Attribution: You must attribute the work in the manner specified by the author (but not in any
way that suggests that they endorse you or your use of the work).

° Non Commercial: You may not use this work for commercial purposes.

o No Derivative Works - You may not alter, transform, or build upon this work.

Any of these conditions can be waived if you receive permission from the author. Your fair dealings and
other rights are in no way affected by the above.

Take down policy

If you believe that this document breaches copyright please contact librarypure@kcl.ac.uk providing

details, and we will remove access to the work immediately and investigate your claim.

Download date: 12. Jan. 2025



Conformal Defects in Two-Dimensional
Conformal Field Theories

Isao Makabe

A thesis submitted in partial fulfilment of the requirements
for the degree of Doctor of Philosophy
in Applied Mathematics

Supervisor:
Professor Gérard M. T. Watts

ING'S
College
LONDON

Department of Mathematics
King’s College London, UK
September 2017

(Minor amendments made after the viva)



Abstract

We study conformal defects in two-dimensional conformal field theories (CFTs). These
are one-dimensional objects across which the difference between the holomorphic and
antiholomorphic parts of the stress-energy tensor is continuous. Such defects may exist
within a CFT as well as between two different CFTs. There are two subclasses of conformal
defects that are well-known: topological defects, which preserve the holomorphic and
antiholomorphic parts of the stress-energy tensor separately, and factorising defects, which
can be considered as products of conformal boundary conditions separating the theory
along the defect. In this thesis, we call conformal defects, which do not fall into either of
the aforementioned subclasses, non-trivial conformal defects.

The primary focus of this thesis is studying the non-trivial conformal defect present in
a unitary Virasoro minimal model which was first predicted by Kormos, Runkel, and Watts
[98]. As a first step, we calculate the reflection and transmission coefficients, which were
first defined in [91], of these defects using the leading-order perturbative calculation. We
then consider conformal defects in the tri-critical Ising model as a concrete example. We
revisit the construction of super-conformal defects proposed by Gang and Yamaguchi [94]
and give a more systematic construction of such defects using super W-algebras. In addition,
we propose a topological interface separating the super-conformal and bosonic theories,
from which conformal defects in the latter theory can be obtained from the former one.
Using the topological interfaces and superconformal defects, we obtain non-topological
and non-factorising defects in the bosonic tri-critical Ising model.
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Chapter 1
Introduction

Conformal field theory (CFT) is a quantum field theory (QFT) with conformal symmetry;
roughly speaking, it is a theory in which physical observables are invariant under coordi-
nate transformations that preserve local angles. In particular, conformal transformations
contain scale transformations, and therefore, CFTs have their applications in scale invariant
theories, for example, systems undergoing second order phase transitions and world-sheet
description of string theory.

In two dimensions, CFTs have many features that are not available in higher dimen-
sions. One of the most important differences is that the symmetry algebra becomes infinite
dimensional, and many quantities of a theory can be derived by considering conformal sym-
metry alone. Not only for CFTs, but usual power counting shows that any ¢"-interaction
with n > 3 is renormalisable in two-dimensional QFTs, which allows us to have interest-
ing theories with higher spin conserved currents. From the mathematical point of view,
two-dimensional CFT is one of the most well understood QFTs. In certain 2d CFTs, con-
formal symmetry completely determines local operator algebras, and, in fact, Lagrangian
descriptions are less important in 2d CFTs.

History

Modern investigation of two-dimensional conformal fields theory was initiated by Belavin,
Polyakov, and Zamolodchikov in their seminal 1984 paper!*). One of the important discov-
eries of their paper was the so-called Virasoro minimal models where operator contents
and their correlation functions can be calculated from representation theory of the Virasoro
algebra—the symmetry algebra of local conformal transformations in two dimensions. The
Virasoro minimal models exist for a certain range of the parameter ¢, which is called the
central charge as we shall explain in the next chapter, and they cover many interesting
2d CFTs, in fact, they correspond to the scaling limits of certain two-dimensional lattice
statistical models including the Ising model.

Extensions of conformal symmetry lead to 2d CFTs with extended symmetries. It was
pioneered by Zamolodchikov in his 1985 paper!!!! in which theories with spin-3 symmetry
generators were considered. The extended conformal algebra with a spin-3 field is known
as the W; algebra, and generalisations are called W-algebras. In general, W-algebras
are not necessarily Lie algebras, and this leads to many interesting phenomena. Some
W-algebras exist for generic values of the central charge ¢ and such algebras are called
deformable, while so-called non-deformable W-algebras only exist at isolated points of c.
Similar to the Virasoro algebra case, some W-algebras admit minimal series in which CFTs
can be constructed from finite number of W-algebra representations. During the 90s, one

of the main motivations to study W-algebras was to classify 2d CFTs using W-algebras.
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Recently, there is renewed interest in W-algebras from the AdS/CFT correspondence103!,
From the physical perspective, it is interesting to study CFTs on surfaces with bound-
aries that describe surface critical behaviours. Boundary conformal field theory (BCFT)
was developed by Cardy in his 1984 paper® and subsequent publications. In string theory,
open strings that satisfy Dirichlet boundary conditions are attached to extended objects

[53]

known as the D-branes. Polchinski’s 1995 paper'>®! showed that D-branes can be studied

from BCFT, which attracted interest in BCFT from the string community.

Defects and Interfaces

In two-dimensional conformal field theory, a conformal defect is a line of inhomogeneity
in a theory, across which the values of correlators may change or become singular. As
an example, conformal defects can be realised as continuum limits of lattice models with
defect lines. The concept of conformal defects generalises to interfaces between two
different CFTs. A class of conformal defects called topological defects have gained much
interest recently not only in condensed matter physics but also in string theory. Topological
defects implement internal symmetries of a CFT as well as order-disorder type dualities
[83] [89]. For another class of conformal defects called factorising defects, two CFTs
separated by a defect line decouple completely, and classification of such defects becomes
that of conformal boundaries in each of the CFTs. As we can view the bulk fields of a CFT as
the defect fields on the identity defect, which is also called the invisible defect, conformal
defects can be regarded as a natural generalisation of bulk CFTs, conformal boundaries,
and topological defects.

The so-called AGT correspondence of [99] relates two-dimensional CFTs and four-
dimensional supersymmetric gauge theories. While the original conjecture involves Liou-
ville CFTs in two-dimensions, there is a version of this relation which involves A-series
Virasoro minimal models [112]. From the AGT correspondence it is possible to relate cer-
tain quantities in two-dimensional CFTs and those of four-dimensional gauge theories. In
[101], it is shown that loop operators and domain wall operators in four-dimensional N = 2
supersymmetric gauge theories correspond to topological defect operators in Liouville and
Toda CFTs in two-dimensions. Therefore, study of conformal defects in two-dimension is
also interesting from the perspective of four-dimensional supersymmetric gauge theories.

For topological defects in rational CFTs, there is a systematic way to study them in
many different theories. From the topological field theory (TFT) approach of [76] and
the sequels, it is possible to compute various important quantities involving topological
defects, which include correlation functions. On the other hand, there has not been found
a systematic way to approach general conformal defects.

One way to study conformal defects within a CFT is to ‘fold’ the theory along the defect
line, and consider the corresponding conformal boundary condition in the doubled theory.
As the central charge doubles after folding, studying the corresponding boundary theory
is difficult in general. Conformal defects in the Ising model are classified by identifying
the doubled theory as an orbifolded free boson theory in [59]. For the cases where the
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sums of central charges of two Virasoro minimal models are again minimal values—namely,
Lee—Yang x Lee—Yang, Lee—Yang x Ising, and Lee—Yang x M (2, 7)—conformal defects
are classified in [91] by identifying the partition functions of doubled theories. While
the paper uses methods from the TFT approach to identify the partition functions, one of
the important observations one can makes is that the folded theories have W(2,2) symme-
tries—another spin-2 current other than the stress-energy tensor. In [94], a set of conformal
defects in the tri-critical Ising model is proposed by using the fact that the doubled theory
has the central charge which is minimal with respect to the N = 1 super-Virasoro algebra.
While this idea is very interesting, the analysis of superconformal boundary conditions in
the folded model and mapping to conformal defects in the tri-critical Ising model is not so
transparent, and we believe some important details are missing. One of the motivations of
this thesis is to revisit this idea and give a more systematic treatment.

Another way of obtaining conformal defects is by defect perturbations. Just like bulk or
boundary perturbations, we can consider perturbations of a topological defect by taking a
defect field and integrating it over the defect. As in the Ising model [59] and other A-series
Virasoro minimal models [98], defect flows may generate conformal defects that are not
topological nor factorising. While [98] predicts the presence of at least one such conformal
defect in a unitary Virasoro minimal model, much of their nature—such as exact defect
g-values, or reflection and transmission coefficients—remains unknown. In this thesis, we
calculate their reflection and transmission coefficients using the leading-order perturbation
calculation.

If two CFTs are related in some way, it may be possible to construct a conformal
interface between them. It has been done for some CFTs related by renormalisation group
(RG) flows. RG interfaces are constructed by Gaiotto for A-series Virasoro minimal models
in [106], for N = 1 super-Virasoro minimal models in [114], and for N = 2 super-
Virasoro minimal models in [93]. The defect entropy as well as reflection and transmission
coefficients of Gaiotto’s RG defect are calculated in [111] and [116].

Another relation between CFTs, which may be exploited to construct conformal inter-
faces, is extended conformal symmetries. In Chapter 5, we construct topological interfaces
between the ¢ = % free fermion theory and the Ising model, which is taken as a bosonic
theory, and also between the bosonic and N = 1 super-Virasoro tri-critical Ising model at
c= %. For bosonic extended symmetries, topological interfaces can be constructed from
the TFT construction in [89]. Examples of these interfaces include those between A-series
and D-series Virasoro minimal models with the same central charges. The case for ¢ = %,
that is the interface between the tetra-critical Ising model and the three-state Potts model,
is discussed in Section 6 of [89].

Motivation and Summary

The main motivation of this thesis is to study the nature of non-topological and non-
factorising defect in the diagonal Virasoro minimal models predicted in [98]. In diagonal
Virasoro minimal models, conformal boundary conditions and topological defects are la-
belled by unique representations of the Virasoro algebra, and therefore we can use Kac
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labels (r, s) to denote them. The paper [98] considers perturbations of the topological
defect (1, 2) by a linear combination of chiral defect fields

Ap(x) + Ao(z) , (1.1)

where ¢ and ¢ are the chiral defect fields on the topological defect (1,2) with the conformal
weights (h, 3,0) and (0, h, 3), respectively. For a minimal model M (p,p + 1) with p > 3,
the endpoints of these flows are: the identity defect in the directions of A = 0 and A < 0, or
A < 0 and \ = 0; the topological defect (2,1) in the directions of A = 0 and A > 0, or A > 0
and )\ = 0; the linear combinations of factorising defects, denoted by F, in the direction of
A = )\ < 0; a new conformal defect, denoted by C, in the direction of A = A > 0.

One of the initial approaches we took to study these conformal defects was to apply
the lattice mean-field approach. In [104], the phase spaces of boundary flows for the Ising
model and the tri-critical Ising model were analysed by applying the mean-field theory to
the underlying classical square lattice models. In particular, it was shown that the number
and directions of relevant boundary flows for any given boundary condition of these models
can be obtained by this method.

Let us outline how this method works. One starts from a classical square lattice action
describing a system with a defect line, for example, the one given in (B.7). By substituting
some of the classical spin variables o, ; with mean magnetisation per site, which is defined
as

M; ; = (Uz',j> =0;

J —(SO'Z'J, (12)

one obtains the mean-field action &y, in which the local spins interact with neighbours
only through the mean-field. In mean-field theory, contributions from (6 )? are assumed to
be negligible, and this simplifies the matter greatly. Then, the mean-field partition function

ZMF = Z €_ﬁ€MF (1.3)
{o}
can be written as the product of Z; ;, from which we can obtain the free energies per site

as 1
fA = —
2y 5

Since the nearest neighbour couplings are different along the defect, we need to distinguish

log Z; ;. (1.4)

defect free energies from bulk free energies. The magnetisation per site is given by

0
M; ; = _%fi,gd (1.5)

where h is the external magnetic field, therefore, we obtain the bulk and defect mean-
field consistency equations. The equations of motion can be obtained by inverting the
consistency equations, and the bulk and defect critical parameters can be determined. By
integrating the equations of motion, we may obtain the effective potentials. Analysing the
defect potential at and around the critical parameter values, it should be possible to obtain
some information on the phase space of defect flows.
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We have attempted to apply this method to the Ising model with a defect line, however,
it turned out that it is not straightforward to construct a lattice model, which captures
the properties of the Ising defects predicted from CFT and compatible with the mean-
field analysis. For example, we have not found an appropriate way of assigning coupling
constants and external magnetic fields at defect sites. As seen in Section B.2, in the Ising
model, marginal defect fields with scaling dimension A = 1 are always present for all the
conformal defects. This may be posing some problems for the mean-field analysis.

One of the objectives of this thesis is to calculate the reflection and transmission
coefficients®1! of the new conformal defects. In the folded model, these coefficients can
be obtained from the quantity WiiD)

“° = liD) (e
where || D)) is the boundary state corresponding to the defect, and |IV) is the Virasoro
primary state with the conformal weight 4 = 2 corresponding to the generator of W(2,2).
In addition, we emphasise that the topological and factorising defects correspond to the

boundary states that preserve the W(2,2) symmetry.

Next, we calculate the reflection and transmission coefficients of the predicted con-
formal defects in minimal models using the leading-order perturbation calculation. This
provides a first insight into the nature of new conformal defects. We find the reflection
coefficient of the conformal defect C' to be
Om2yt

8
where y := 1 — hy 3. The transmission coefficient is given by 7 =1 — R.

R:

+0(y°), (1.7)

We then focus on the tri-critical Ising model M (4, 5) which has ¢ = %. We construct
topological interfaces between the N = 1 supersymmetric theory and the bosonic theory
atc = 1—70. By using the topological interfaces, we obtain conformal defects in the bosonic
tri-critical Ising model from the supersymmetric theory. As a warm-up, we also give
topological interfaces between the free fermion theory and the Ising model.

We then study topological defects and conformal boundary conditions in N = 1 super-
Virasoro theories and construct a consistent theory of superconformal defects and bound-
aries at ¢ = 1—70. Unlike in most of the literature, we do not take the GSO projected boundary
states. As we shall explain later, we take fermionic theories that are local i.e. take the
Neveu-Schwarz sectors only and relax the requirement of modular invariant partition
functions.

In order to obtain conformal defects in the supersymmetric tri-critical Ising model, we
study superconformal boundary conditions of the doubled model, which has ¢ = % Our
construction of these boundary states differ from the one given in [94]. It turns out that
it is important to analyse carefully the embeddings of the super-Virasoro algebra §Vir into
8Vir & 8Vir in order to identify the boundaries with the defects. We also analyse the
boundary conditions and corresponding defects in terms of the super W-algebra SW(%, %),
and discuss their fusion rules.
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Finally, using the topological interfaces, we obtain the entropies and transmission
coefficients of non-topological and non-factorising defects in the bosonic tri-critical Ising
model. The results suggest that there are two non-topological and non-factorising defects
that we denote D;"“* and D}'“* from which we can obtain the other defects by actions
of topological defects.

Outline

In Chapter 2, we summarise background materials in two-dimensional conformal fields
theories. These include the Virasoro and W-algebras, conformal boundary conditions,
and conformal defects. In Chapter 3, we discuss relation between conformal defects and
extended conformal symmetries in the folded theories, and explain the reflection and
transmission coefficients in terms of W-algebras. In Chapter 4, we calculate reflection and
transmission coefficients in the diagonal Virasoro minimal models using the leading-order
perturbation calculation. In Chapter 5, we construct topological interfaces for the free
fermion-Ising and bosonic—supersymmetric tri-critical Ising model cases. In Chapter 6,
we construct superconformal defects in the tri-critical Ising model and project these to the
bosonic theory.

The results presented in Chapter 4, 5, and 6 are published jointly with G. Watts as
[117] 1. Makabe and G. M. T. Watts. “Defects in the Tri-critical Ising model”. In: Journal

of High Energy Physics 09 (2017), p. 013. arXiv: 1703.09148 [hep-th]

[118] I. Makabe and G. M. T. Watts. “The reflection coefficient for minimal model
conformal defects from perturbation theory”. In: (2017). arXiv: 1712.07234
[hep-th]


http://arxiv.org/abs/1703.09148
http://arxiv.org/abs/1712.07234
http://arxiv.org/abs/1712.07234
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Chapter 2

Background from Two-Dimensional

Conformal Field Theory

In this chapter, we present an introduction to two-dimensional conformal field theory
(CFT). This is meant to be a summary of material necessary for this thesis rather than an
exhaustive survey on the topic of CFT. Most discussions given in this chapter can be found
in the literature, and references are not always given explicitly in the main body of this
chapter.

Section 2.1 discusses conformal transformations in two-dimensional Euclidean spaces
without boundaries or defects, and their implications for correlation functions and the
field content of a theory. Discussions are based on the seminal paper by Belavin, Polyakov,
and Zamolodchikov!*; review papers by Ginsparg!??! and by Alvarez-Gaumé, Sierra, and
Gomez!?”!; and books by Di Francesco, Mathieu, and Sénéchal'>®! and by Blumenhagen
and Plauschinn!®!,

In Section 2.2, analysis of representations of the Virasoro algebra is based on the
book by Kac and Rainal?%l, Presentation of W-algebras as meromorphic CFTs is based on
review papers by Bouwknegt and Schoutens!*#! and by Watts[®®! while some discussions
on chiral vertex operators are also based on the review paper by Gaberdiel®”1. We follow

Honecker’s paper!“®! for the discussion on automorphisms of W-algebras while calculations

5:3)

algebras, we refer to [38] and [40] as well as [41] and [45] for their representation

on automorphisms of SW( are original. For systematic study of W- and super W-

theories. For SW(%, %) atc = g, references are [35, 39, 42]. For various aspects of the
Ramond algebra we refer to [21, 72, 80] for representation theory, and to [47, 95] for

fusion rules.

2.1 Bulk Conformal Field Theories

As we shall see in this section, conformal symmetries fix the forms of two- and three-
point correlation functions. Together with the notion of operator product expansions
(OPEs), conformal symmetries are a very powerful tool to solve a theory for correlation
functions. Especially, in two-dimensions, the algebra of conformal symmetry becomes
infinite-dimensional, and a theory can be solved by considering the symmetries alone in
certain cases. In this section, we focus on conformal field theories without boundaries or
defects. For brevity, we call such theories bulk CFTs.
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2.1.1 Conformal Transformations

Consider a d-dimensional Euclidean space E? with the metric 9> Which is not necessarily
flat. Under a coordinate change z — 2/, the metric transforms as

a

I (@) = G () = %ggaﬁ(@ - (2.1)
A conformal transformation is a coordinate transformation which leaves the metric invari-
ant up to a scale factor O, that is g, () — g/, (') = Q*(x)g,, ().

Under an infinitesimal local coordinate transformation = — 2’ = x + £(x), the metric
transforms to g, (z') = g,,,(v) — (9,&, + 0,¢,,). If this corresponds to a conformal trans-
formation, the second term must be proportional to g,,,, and one can write d,¢, + d,¢,, =
f(x)g,,, for some function f. Multiplying this by g*/, one obtains f(z) = 2d~'(9-¢). Thus,
for conformal transformations

g(a )gp and QP(z)=1- %(a e) . (2.2)

Differentiating (2.2) by 0* and 9", one obtains [J(0 - ) = 0 unless d = 1. Furthermore, it
implies that ¢ is at most quadratic in = for d > 2. We can interpret the solutions of (2.2)

0,8, + 0,6, =

up to the quadratic order as the following:

e ¢ constant, which corresponds to
- translations e (z) = a*,
e ¢ linear in z, which corresponds to

- rotations ¢#(x) = w",z” (w antisymmetric) or

- scale transformations (dilations) #(x) = \z#,
e and ¢ quadratic in x, which corresponds to
- special conformal transformations e*(z) = b*z? — 2z#(b - x).

Among the solutions above, special conformal transformations need a little explanation.
By considering a finite special conformal transformation

2
h 4 bHx
at s gt =

= 2.3
14+2(b- )+ 222’ (23)

we can understand this as an inversion z* — —x#/2? followed by a translation z#
x* — b* and another inversion. If b* is non-zero, there is one point in E¢ which is mapped
to infinity. Therefore, if we require finite special conformal transformations to be globally
defined, we need to compactify E by including one point at infinity.

From the solutions of (2.2), one can define the infinitesimal generators of conformal
transformations as

P, =—io, (translations), (2.4)
L, = i(mual, - xl,au) (rotations), (2.5)
D = —i(xz-0) (dilations), and (2.6)

K, = z’(xz@M —2x,(z - 0)) (special conformal transformations). (2.7)



2.1 Bulk Conformal Field Theories | Conformal Transformations 16

They form a basis of the Lie algebra of SO(1,d + 1) over R. Thus, it is straightforward
to deduce that the conformal group in a d-dimensional Euclidean space is isomorphic to
SO(1,d + 1) for d > 2. In a Minkowski space R?*¢, the conformal group is isomorphic to
SO(p+1,9+1).

In two-dimensions, (2.2) still holds, however ¢ is no longer at most quadratic in z. We
can see this by introducing the complex coordinates!

z=a'4+iz? and zZ=z'—iz? with 9= %(81—1'82) and 0= %(alﬂag) . (2.8)

Then, (2.2) becomes the Cauchy—Riemann equations Je = 0 and 0 = 0, where ¢ = ¢! +ie?
and £ = ! — ic?. Therefore, £(z) is a holomorphic function of z. In fact, any holomorphic
function with nowhere-vanishing derivative f : M — C, where M is an open subset of C,
is an orientation-preserving conformal transformation with Q% = |0 f|2.

Although Z is defined to be the complex conjugate of z, if we consider Z as an indepen-
dent coordinate?, we can treat £(z) as a holomorphic function of z. Expanding ¢(z) and

£(z) in the Laurent series

Ze ”H and £&(z ZE "H (2.9)

neZ ne”L

where ¢, &, € C are constants, one obtains the sets of orthogonal solutions of Js = 0
and 0z = 0. For each ¢,, and &,,, we can define the infinitesimal generators of conformal
transformations as

l,=—2""9 and [,=-2""10. (2.10)

Their commutators satisfy

[ln? lm] = (7’L - m)anrm ’ Una l_m] = (n - m)l_ner ) and Unv l_m] =0. (2.11)

Each of the sets {I,, : n € Z} and {l,,, : m € Z} forms a basis of the infinite-dimensional
complex Lie algebra called the Witt algebra. It is isomorphic to the complexification of the
Lie algebra of real vector fields on the circle S!.

As we have seen before, we need to compactify R> ~ C in order to define finite
special conformal transformations globally. The resulting space is the Riemann sphere
CP' = C U {o0}. Even on CP!, not all the generators [,, are globally defined. Considering
regularity at = = 0 and z = oo, we see that the algebra of globally defined conformal
transformations is generated by {I_;, Iy, {;}, whose commutation relations are that of
the complex Lie algebra® sl(2). By imposing Z to be the complex conjugate of z, these

1. By 9 or 9., we mean 9/0z where it is obvious. Sometimes, by abusing notation, we also use 9 to denote
d/dz.

2. It is customary to consider (z, Z) € C? and impose Z to be the complex conjugate of z when necessary.

3. By sl(2) we denote the three-dimensional simple Lie algebra over C. In addition, sl(2) is the complexifica-
tion of the real Lie algebra su(2).
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generators can be understood as

P=1,, P=1, (translations), (2.12)
L=i(ly — ) (rotation), (2.13)
D =1y+1, (dilation), and (2.14)
K=1, K=1 (special conformal transformations). (2.15)

Using (2.8), the generators above can be written in terms of the real coordinates. This
reminds ourselves that, in two-dimension, finite conformal transformations have six real
parameters that can be considered as three complex parameters. From the sl(2) generators,
finite conformal transformations can be written as
az+b a b
22 = where ( d) € SL(2,C)/Z, = PSL(2,C) . (2.16)
c

cz+d’

Therefore, the conformal group of the Riemann sphere CP* is the Mébius group PSL(2, C),
and we refer to the globally defined conformal transformations on CP! as the Mébius trans-
formations. As we have seen before, Mobius transformations consist of the following global
transformations: translations, rotations, dilations, and special conformal transformations.

2.1.2 Transformations of Fields

In a conformal field theory, fields are classified by their local transformation properties
under a given conformal transformation. As before, we take the complex coordinates (2.8)
in two-dimension. If a field ¢(z, z) transforms as

_ ; _ w\" [ ow\" _
0(z,2) = ¢ (w,w) = (82) <8z> o(w,w) , (2.17)
under any local conformal transformations z — w(z), then it is called a primary field.
If (2.17) only holds for Mobius transformations, it is called a quasiprimary field. By
considering a scale transformation w = Mz and a rotation w = e*®z, where A € C and
a € R, we find that ¢(z, ) has scaling dimension A = h + h and spin s = h — h. The two
real numbers h and h are called the conformal dimensions of ¢(z, Z). In a conformal field
theory we consider in this thesis?, all the fields can be expressed as linear combinations of
quasiprimary fields and their derivatives. Derivatives of quasiprimary fields are no longer
quasiprimary and they are called secondary fields.

2.1.3 Forms of Correlation Functions

In a conformal field theory, correlation functions must be invariant under conformal trans-

formations. This means, for quasiprimary fields ¢, with conformal dimensions %, and h,,

4. We only consider CFTs where L, operators (see the section on the Virasoro algebra) are diagonalisable
and energies are bounded from below on a given representation space. This excludes so-called logarithmic
CFTs where L, operators can be brought to the Jordan normal forms only.
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the following has to hold

(orten )2 = 1T (5 “)" (‘Z;“)ZIw}<w1<w1,w1>...wn<wn,wn>>,

w=wy
(2.18)
where z — w(z) is a Mobius transformation. This equation determines two- and three-
point functions up to some constants, and four-point functions up to some functions.
From translation invariance, one-point functions must be constants. In addition, con-
sidering scale transformations, one-point functions have to vanish unless » = 0 and h = 0.
Therefore, only the identity field has the non-vanishing one-point function. We assume
the bulk vacuum state is unique, and denote the identity field by 1. Since it is natural to
normalise the identity field to one, we take (1) = 1. If translation invariance is broken in
some direction by introduction of a boundary or a defect, one-point functions may acquire
position dependence. We will discuss this later.
For two-point functions, translation invariance and scale invariance determine their
functional forms. Furthermore, considering a special conformal transformation w = —1/z,

we obtain
dyo

(21 — zp)latha(z) — zZ)huths

where d, = 0 if h; # hy or hy # hy, and d, is called a structure constant or the two-point

(2.19)

(p1(21, 21)p2(20, 22)) =

coupling of ¢, and 5. For the bulk fields, we can take a basis of fields such that
dyy=db; 1+, (2.20)

where the field ¢,+ is the charge conjugate® of ¢,, and we have h,+ = h, and h,+ = h,.
Clearly, the identity field is self-conjugate as it is the only bulk field with » = 0 and h = 0.
Abstractly, we can think of charge conjugation as an automorphism / — I* on the set of
labels of the bulk fields which leaves the conformal weights invariant.

Three-point functions can be analysed similarly. From translation invariance, they must
be the functions of z,, := z, — z,. Considering their scale invariance and the same special
conformal transformation as before, we obtain

_ _ _ C
(01(21,21)pa(29, Z9) 3 (23, Z3)) = % 123; N (2.21)
123 231 132 123 = 231 132
R1277 %237 2137 2127 223" %13
where
hisw =h;+h, —hg (2.22)

and the structure constant C',3 is also called the three-point couplings of ¢, ¢,, and 5.
Calculations for four-point functions are slightly involved but the principles do not
change. Using Mobius transformations, we find

. - h/3—hy—hy _h/3—h;—h
(p1(z1,21) - - alza,Za)) = fr23a(n, 7] Hz/g 1R g3 (2.23)

1<J

5. As we shall see later, a bulk field label can be regarded as I = (i,7), where i and 7 label representations
of the chiral algebra. Then, its conjugate means I* = (i",i"), where i+ and i* labels the representations
conjugate to i and i, respectively. In addition, we have (I*)™ = I, which comes from the fact that the charge

conjugation matrix squares to the identity matrix™!.
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where

p= 1253 (2.24)
213724

is called the cross ratio and h := h; + hy + h3 + hy. As we shall see later, it is useful to
define the function
N . 2h; _2h, - _
Grasa(2,2) = Hm 27727 (121, 21)p2(1, )eps(2, 2)94(0,0))
21,21 —00

and work with G434 rather than f93,.

In principle, any n-point functions can be reduced to one-point functions by operations
known as the operator product expansions (OPEs) which will be discussed in Subsection
2.1.7. In order to do this, one needs to determine the OPE constants involved in the
calculations. As we shall see later, this can be carried out by considering different ways of
expressing a four-point function in terms of OPEs.

2.1.4 Radial Quantisation

In two-dimensional conformal field theories, explicit forms of action functionals are not
as important as in other quantum field theories, and correlation functions are usually
calculated using the operator formalism rather than the path integral methods.

Consider the Riemann sphere with a coordinate z. In radial quantisation, we consider
compactified space, and equal-time surfaces are given by constant |z|. Then, time flows
along the radial direction, and z = 0 is taken to be the infinite past and z = oo corresponds
to the infinite future. The space of states # contains the vacuum state |0), and for each
field operator ¢, (z, z), there is the corresponding state given by

) = lim ¢,(z,2)[0) . (2.26)
2,Z2—0

Conversely, we can think as, for each vector |p,) € H, there isamap® V : H x C x C —
End(#) and the local field is given by

V(‘SOI>;275) = 901(275) I (227)

which satisfies (2.26). This is called the state-field correspondence. If we expand ¢, (z, 2)
in terms of the modes as

0r(2.2) = D (p)n 2 "z (2.28)

n,nEL

then regularity of the limit (2.26) demands

(¢)nal0) =0 for n>—h, or @>—h,. (2.29)

6. This map has to satisfy certain conditions, for example V' (|0); z, z) = idy, and V(|v); z, 2)|0)|, 0,520 = |v)
for any |v) € #, which is know as the vacuum axiom. The definition of a vertex algebra can be found, for
example, in [58] and [82].
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We define the hermitian conjugate of ¢,(z, z) as

cpi(z,z) = 2_2hfz_2ﬁfcp1+ (z74 27, (2.30)

where we assume the basis of bulk fields in which (2.20) holds. In terms of the modes,

this definition of hermitian conjugation means

(¥Dns = (@1+) - (2.31)
Using hermitian conjugation, we can write the dual vector (|p,))f = (¢,| € H* as

il = lim (Olpl(2,2) = Tim w12 (0l (w,) | (2:32)

w,W—00

where w = z~!. From (2.31), we find
O[(¢;+)pn =0 for n<h, or n<h,, (2.33)

in order for (2.32) to be regular. Recalling that z = 0 is the infinite past and z = oo is
the infinite future in radial quantisation, we can view state vectors as “in-states” and their
duals as “out-states”.

In radial quantisation, time ordering becomes what is called radial ordering, which is
given by

_ _ ©01(21, 21)pa(29, Z0) if  |2] > [2o] ,
R (p1(21,21)p2(22, 22)) = { B . (2.34)
€10 Po(29, Z0)p1(21,Z1) If 29| > |2] ,

where €;, = —1 if both ¢, and ¢, are fermions’, otherwise ¢;;, = 1. Operators must be
radially ordered within correlation functions to make any sense, and we can write

(p1(21,21) -+ on(zn, Zn)) = (0lp1(215 21) - - - Pn(2ns 20)|0)  for |zq| >+ > [2,[ > 0.
(2.35)
In this thesis, strings of operators like (21, 1) . .. ¢, (2, Z,) are understood to be radially
ordered, and the symbol R will not always be written explicitly.

2.1.5 Ward Identities

Consider a two-dimensional quantum field theory described by the action functional S[y]
with local fields ¢, (z;), where z € R2. One may define a symmetric stress-energy tensor
T, by

nv

1 174
68 = 2/(59“ T,/ 19|z, (2.36)

where g, is the metric and g is its determinant. If conformal transformations are sym-
metries of this theory, classically we should have 45 = 0 for such transformations. Taking
0g"¥ to be an infinitesimal conformal transformation (2.2), then §g"” = —(9 - €)g"” and
§S = 0 implies "7}, = 0, that is, the stress-energy tensor is traceless. Furthermore, we

7. In this thesis, we assume bulk fields have integer (bosons) or half-integer (fermions) spins.
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can also write g = —(0"e” + 0”¢") and using the fact that 7),, is symmetric, one can
define the classical conserved currents as j, = "7,

If the conformal symmetry is preserved at the quantum level, the Ward identities in-
volving j,, = "7}, should hold. In particular, we have

/ (O T (1) 0(y)) &2 = (Sip(y) (2.37)

Since the classical conservation equation 9*j,, = 0 holds away from the field insertion at
y, it suffices to evaluate the integral for a small disc ¥ around y. Using Stokes’s theorem

/ (" T,,) A’z = % (e"Ty, da® — €Ty, da') (2.38)
b ()Y

and introducing the complex coordinates defined by (2.8), the Ward identity becomes

(T (plw,m) de + — (5)<T(5)90(w@)>d5 = (0p(w,w)),  (2.39)

27t J,, 2mi
where T(z) = 27T, (z) and T(z) = 27T%5(%). These contours are defined to encircle the
singularities only at z = w and z = w. Since these contour integrations are around the field
insertion, the classical conservation equation 9", = 0 still holds, and this implies 7,z =
T;, = 0 and OT,, = 075 = 0. Therefore, for infinitesimal local conformal transformations,
we may treat transformations of ¢(w, w) for w and w separately, and write

% e(2){(T(2)p(w,w))dz = (§.p(w,w)) and
% (2T (2)p(w, w)) dz = (5:p(w, D)) . (2.40)

If (w,w) is a primary field, we can substitute w — w + ¢ and w +— w + € into (2.17) and
write ¢ = ¢’ — p as

5.p(w, w) = (h(9e) + €0) p(w,w) and bp(w,w) = (h(0g) +&0) p(w,w) . (2.41)

Then, we can substitute these into the right hand sides of the Ward identities and use the
residue theorem to obtain the singular terms

ho(w, ) | dp(w, )

T(z)p(w,w) = (= w)? W +reg. and
T(2)p(w, @) = ’g{wgg 4 20 T) | e (2.42)

where we have used the fact that ¢(z) and &(Z) are non-singular as z — w and z — .
These equations are understood to hold inside correlators, and they can be viewed as a
way of expressing the product of two fields at (z, z) and (w, w) as a series of local fields at
(w,w). This is an example of operator product expansions. Another way of characterising
primary fields is that their OPEs with 7" and T are of the form (2.42).
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2.1.6 Virasoro Algebra

For an infinitesimal conformal transformation z +— z + ¢(z), the corresponding chiral
conserved charge is given by
1
Q= 27m,;éa(z)T(z) dz . (2.43)
Here, equal-time surfaces are given by constant |z| as we are working in radial quantisation.
By expanding 7'(z) in terms of the modes as

1
T(z) =Y L,z "% and L, = 5 OT(z) 2"z, (2.44)
neZ

and using the mode expansion of (z) given in (2.9), we can write

Q=) -&,L,. (2.45)

nez
Thus, the modes of the stress-energy tensor L,, can be viewed as the infinitesimal generators
of conformal transformations. Similarly, we can view L,, as the infinitesimal generators of
transformations of the form z — z + £(z). Classically, these generators form two copies of
the Witt algebra (2.11), however, upon quantisation, they become the central extension
known as the Virasoro algebra, which satisfies

C
[an Lm] = (n - m)Ln+m + EH(RZ - 1)5n+m,0 )

_ - c
[Ln> Lm] = (n - m)Ln+m + E 2

(L, L] =0, (2.46)

n(n” —1)8, 1m0, and

where ¢, ¢ € C is called the central charge®. We denote the Virasoro algebra by Vir. By
convention, the form of the central terms in (2.46) is chosen to ensure the commutators
involving L_,, Ly, and L, do not yield central terms. As before, {L_;, Ly, L} generates
sl(2), which corresponds to the Mobius transformations. From the condition (2.29), these
generators annihilate the vacuum state as they should; the vacuum state is invariant under
global conformal transformations. Because of radial quantisation, scale transformations
are regarded as translations in time and rotations correspond to translations in space.
Therefore, the Hamiltonian and momentum operators on the plane are given by

H — LO —|— ‘EO and P — ’L(LO - Izo) 5 (2.47)

respectively.
From the OPEs (2.42) involving the components of the stress-energy tensor and a
primary field ¢(z, Z) with conformal weights h and h, we can calculate
(L, 0(2,2)] = (h(n+ 1)2" 4+ 2""10) ¢(z,2) and
[L,,0(2,2)] = (E(n +1)2" + 2"“5) o(z,2) . (2.48)

8. To be precise, the Virasoro algebra is the central extension of the Witt algebra by the one-dimensional
centre C¢, and it has the Cartan subalgebra spanned by L, and é. Therefore, a highest weight vector, which is
defined to be annihilated by the action of L,, for n > 0, is characterised by the L,- and ¢é-eigenvalues h and ¢
respectively. In a highest weight representation of the Virasoro algebra, ¢ can be treated as the number c.
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In terms of the modes (2.28) of ¢(z, z), these equations can be written as

[Lna @m,m] = ((h - 1)” - m) Pr+m,m and
[I’na @m,m] = ((B - 1)” - m) Pmn+m - (2.49)

Using these commutators together with the state-field correspondence (2.26) and (2.29),
we find actions of L,, and L,, on |p) as

L)Jg)=0 and L,|lp)=0 for n>0, Lolp)=hlp), Lolp)=hlyp),
L_ i) = lim dp(z,2)|0), and L_j|p)= lim dyp(z,2)|0) . (2.50)
2,Z2—0 2,2—0

These observations tell us that |p) acts as a highest weight state for L,, and L,, with the
weight (h, h). In addition, we see that the state L_,|¢) corresponds to the field d¢p. Since
L, and L, commute, we can think of |) as the highest weight vector of H;, ® H;, where
3, and F;, are the irreducible highest weight modules of Vir and Vir with the highest
weights h and h, respectively. Then, other vectors in H;,, ® H; are generated by repeated
actions of lowering operators, L,, and L,, with n < 0, on the state |p) modulo null vectors.
If |v) € 3, ® H; is one of these vectors, the corresponding field V (|v); 2, z) is called a
descendant field.

It is important to note that the components of the stress-energy tensor 7'(z) and 7'(z) are
quasiprimary fields but they are not primary fields. Under local conformal transformations

z — w, they transform as

2
T(2) = <8£> T(w) + l%{w;z}, (2.51)

where
) o P)(E0) — §(Ru?
e (0,w)?

(2.52)

is called the Schwarzian derivative. In addition, from the commutation relations (2.46),
we can calculate the TT OPE as

c/2 2T (w) N oT (w)

T(2)T(w) = 1 5

+ reg. . (2.53)

(z —w) (z —w) z—w

For the antiholomorphic component 7'(z), the same equations hold with ¢, z, and w re-
placed by ¢, z, and w.

One of the classes of CFTs we consider in this thesis is the Virasoro minimal models.
One way to characterise a Virasoro minimal model is that it has a space of states H, which
decomposes into a finite number of tensor products of Vir and Vir irreducible modules.
We may label primary bulk fields—fields that are not on boundaries or defects—as ¢, (z, z)
where I = (i, 7) with i and 7 labelling Vir and Vir irreducible modules, respectively. If there
is more than one bulk primary field carrying the same Virasoro representations, we need
to introduce multiplicity labels, say «, and write I, = (i,4; «) to distinguish these fields.
Then, the space of states for the bulk fields can be written as

H=PxH %, (2.54)
IeS
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where S is the set of labels for the bulk fields, which is also called the spectrum of the bulk
theory. A bulk spectrum is not completely arbitrary; it can be constrained by requiring
the torus partition function to be modular invariant. There is a generalisation of this idea
to arbitrary chiral algebras. Even if a theory is not minimal with respect to the Virasoro
algebra, it may be possible to write the space of states of the form (2.54) if we consider
representations of a larger chiral algebra, which contains Vir. Such theories are called
rational conformal field theories (RCFTs).

2.1.7 Operator Product Expansions

Operator product expansions can be regarded as ways of expanding two nearby fields in
terms of local fields at a point which is also close to these two fields. Since we are only
considering CFTs in which all the fields are quasiprimary fields and their derivatives, we
can assume OPEs of two primary fields involve primary fields and their descendants only.
Therefore, if we denote quasiprimary fields and their derivatives by ¢, (2, 2), ¢3(z, 2) , ...,
OPEs can be expressed as

a2, 2)pp(w, w) Z Yy —ha=hs (7 — w)ﬁw_ﬁa_ﬁﬁcpv(w,w) , (2.55)

where C’gﬂ are structure constants, and the summation runs over the set of quasiprimary
fields and their derivatives.

If we specialise to the Virasoro case, the OPE of two primary fields ¢, and ¢, can be
written as

Bg{k}ﬁP (K} {k k}(
0, (2, 2)p,(w,w) = ZZC thK(z

P {kk}

w, W)

T (2.56)

where gp;{; "} is a descendant of the primary field ¢, and the multi-index {k, k} specifies
descendant fields by

P (w, @) = V() w,@) with o)=L 4 ...L 4 L ...L_g |ps).  (2.57)

In addition, K = Y, k;, K = >, k;, and h,, is the same as in the three-point function
(2.21). The summation over descendant fields includes the primary field as well, and

denote it by go{w 0 = ¢p. Then, the couplings to descendant fields are normalised as

B A0 = 6 A0 1, so that CYf, gives the couplings between the primary fields. The
constants C7, are also called OPE structure constants. The constants (3; Ak} and ﬁfJ{k} can
be calculated from the Ward identities as given in Appendix B of [4] or Section 6.6.3 of
[56], but the OPE structure constants are yet to be determined. In general, couplings to
descendants are not completely fixed by chiral algebras alone which leads to, for example,
even and odd fusion rules of the N = 1 super-Virasoro algebrall® 241,

OPE structure constants are related to two- and three-point couplings discussed in
Subsection 2.1.3. We can express a two-point function (2.19) of primary fields using the

OPE (2.56). Since one-point functions vanish except for the identity field, we obtain

cl =d,, . (2.58)
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Moreover, from (2.20), C} , = d, is the only non-zero coupling to the identity field. In
addition, we can calculate

(rle) = lim w @ 1(0)p,+ (w, @)p,(0,0)[0) = d, . (2.59)

W, W—00

Therefore, the non-vanishing two-point couplings d, give the normalisation of fields and
corresponding state vectors. In order to relate three-point couplings and OPE structure
constants, consider the following correlator obtained from (2.21)

CIJK

(prlps(2,2)px) = lim wtr gt (o1 (w, w)p,(z,2)pr(0,0)) = ———=—— . (2.60)
W, W—500 shirrzhik:

Comparing this with the result obtained by evaluating the OPEs

lim w2 (g, (1, 1) (9, (2 2)pi(0,0))) = 3 2z o (2.61)
W, — 00 I ) J I K ’ ZhJKI ZhJKI )
where we have used h, = h, and h, = h,, we find
Croe =3 Clidpy. (2.62)
P

From (2.20), this simplifies to C,,, = CX C* If we normalise all the bulk fields as

KtK"®
d, =1, then C,,,, = CX". Furthermore, if all the bulk fields are self-conjugate, there is no
need to distinguish up-indices and down-indices; C,,, = Cf,.

In principle, we can obtain any correlation function by evaluating OPE:s if the necessary
structure constants are known. So-called completely solvable theories are the ones in

which we can obtain all the OPE structure constants.

2.1.8 Crossing Constraints

By considering different ways of expressing a four-point function using OPEs, we can
obtain relations among OPE constants. Consider the four-point function G,34(z2, Z) given
in (2.25). Assuming 0 < |z| < 1, this can be rewritten as

Gi234(2,2) = (p1+|p2(1,1)p3(2, 2)|4)

/81347{]?}51347{];} _ _
S OB (o o (L)L Lo Do L )
— shaap—Kzh3yp—K
P {k,k}
(2.63)
where we have used the OPE for ¢5 and ¢,. If we define
1 (p1+]pa(1, 1)L g, ... Ly |op)
P — K Pa{k} 1 1 n
o) = G 22" el ey
_ ) 1 — o (ertlea(L DL g - L g lop)
Treanl®) = g 2 A 1 =, (2.64)

{k} (P1+lp2(1,1)]@p)
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then, the four-point function simplifies to

Gra34(2, 2) 201213034 Tr034(2)F ra34(2) - (2.65)

These functions F7%,3,(2) and F7,,,(2) encoding coordinate dependence of G 934(z, Z) are
called four-point conformal blocks. By convention, four-point blocks are normalised to

give

Flasa(z) =

when z — 0. In the Virasoro case, three-point blocks inside a four-point block are deter-

—(1+0(2)) (2.66)

mined up to an overall constant, therefore we can normalise four-point blocks as above.
In general, this is not true in other chiral algebras, for example chiral three- and four-point
blocks of the W5 algebra are discussed in [48].

Under any Mobius transformation, the right hand side of (2.25) should be invariant.
If we consider a transformation z — 1 — z, it exchanges the order of ¢, and ¢, in the
correlation function, and we obtain

Glgga(2,2) = (—1)PArHAetBetBatdlsasstaasitessd) Gy o0 (1 - 2,1 - 7) (2.67)

where the sign comes from the Jacobian factors and reordering of operators® due to the
radial ordering (2.34) with ¢,, = (—1)*57. In terms of the four-point conformal blocks
(2.64), this means that we are changing the bases of four-point blocks from the one with
z ~ 0 to the other with 1 — z ~ 1. This linear transformation can be written as

wkl Z qu zlk](l z), (2.68)

where F is called the fusing matrix!?. As it is clear from the way four-point blocks are con-
structed in (2.64), the lower case Roman letters, i, j, k, ... label Virasoro representations,
and the fusing matrices in (2.68) are for the Virasoro algebra cases. As we shall see later,
we can similarly define four-point blocks and fusing matrices for other chiral algebras.

2.2 Chiral Algebras

Chiral fields are fields that do not depend on the antiholomorphic coordinates. Other than
the identity field, there is at least one chiral field in any CFT with ¢ # 0, which is the
component of the stress-energy tensor 7'(z). The set of chiral fields is closed under OPEs,
and the modes of chiral fields form what is called the chiral algebra, which we denote
by A. The chiral algebra A for the antiholomorphic coordinates is defined similarly. If a

9. In the most literature, this sign is missing, however this agrees with [42].

10.So far, we have used F7, . (z) and I+, (Z) to denote four-point blocks, however, since they are chiral
quantities, we may also write J7,,(z) := I, (2) and ?%H(E) = F¥, 1 (Z), where it is understood I = (i,1),
etc. We assume the same convention for other chiral quantities, for example, h; := h; and h; = h;. In
addition, by writing I = (4,1), we are assuming that the bulk fields can be uniquely labelled by the chiral
algebra representation labels ¢ and 7, and the fusion coefficients N/f; € {0, 1}, which may not be always true.
In such cases, we may write I, = (i, 4; o), where « is the multiplicity label, in order to avoid ambiguities.
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theory does not contain chiral fields other than 7'(z), then A = Vir. So-called W-algebras
are the extensions of the Virasoro algebra by chiral primary fields of integer or half-integer
conformal weights, and they describe extended symmetries of CFTs.

As we have seen in the previous section, the space of bulk states (2.54) consists of
tensor products of A and A irreducible modules. Therefore, we are interested in irreducible

highest weight modules of .A and operators acting on them.

2.2.1 Representations of Virasoro Algebra

In this subsection, we follow the book!?°! by Kac and Raina for the analysis of representa-
tions of the Virasoro algebra.

A highest weight representation of the Virasoro algebra is a complex vector space H
with a non-zero vector |h), which is called the highest weight vector, and the representation
map p : Vir — End(XH). The highest weight vector satisfies

p(Lo)lh) = hlk) and  p(c)|h) = clh) . (2.69)
Furthermore, K is the linear span of vectors of the form
p(Ly, )p(Ly,) - p(Ly, )|h)  with ny <ng <+ <ny, <0, (2.70)

which implies p(L,,)|h) = 0 for n > 0.

If all the vectors of the form (2.70) are linearly independent, the highest weight repre-
sentation is called a Verma representation. Verma modules can be constructed as universal
highest weight representations of Vir. The universal enveloping algebra U(Vir) of the Vira-
soro algebra is an associative algebra with unit, whose elements are formal power series in
the elements of Vir with the identification [z, y] = zy — yx for all z,y € Vir. Let b denote a
Borel subalgebra of Vir given by

b:= P CL,®Ce. (2.71)
HGZZO
Since U(Vir) is a bimodule of itself, it is a right U(b)-module as well. Then, we can
construct a left U(Vir)-module M as the induced module

M = Indy"(B) := U(Vir) @y B , (2.72)

where B is a one-dimensional left U(b)-module constructed form the vector |h), which
satisfies
Lolh) = hlh), and L,lh)=0 forall n>0. (2.73)

As a left U(Vir)-module, M is a representation of the Virasoro algebra, and it is spanned by

vectors of the form

L, L

nyHng

Ly, |h) with n; <ny <.+ <ny <0, (2.74)

that are linearly independent from the Poincaré - Birkhoff—-Witt theorem. Therefore, M is
a Verma representation of the Virasoro algebra.
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Using Hermitian conjugation defined in (2.31), an “inner product”! (- |-): M x M —
C on the Verma module M can be defined as

(wlw) == (hL_py L Ly - Ly B} (2.75)

1

where

v=1Ly Ly |h), w=Ly, - Lylh) €M, (2.76)

If a highest weight module X is unitary, that is, (v|v) > 0 for all non-zero v € K, then it is
irreducible; since every vector in H cannot be orthogonal to itself and repeated actions of
L,, with n < 0 on the highest weight vector |h) generate JH, there is no non-trivial invariant
subspace of K.

Verma modules can be decomposed into the L,-eigenspaces as

M = @ My , (2.77)
N€Zs,
where My is spanned by vectors of the form (2.74) with n; +---+n; = —N and it has the
Ly-eigenvalue of h+ N. These subspaces are mutually orthogonal with respect to the inner
product (2.75). From (2.74), the dimension of My is given by the number p(/V) of the
integer partitions of N. This decomposition is useful as each M, is a finite-dimensional
vector space even though M is infinite-dimensional.

One of the important properties of Verma modules is that, for a given weight (c, h),
the Verma representation is unique, and any other highest weight module with the same
highest weight can be obtained by a quotient of the Verma module. In addition, a Verma
module M is indecomposable, that is, there are no non-trivial submodules V and W such
that M = V @& W, and the Verma module has a unique maximal proper submodule J.
An irreducible highest weight module is given by the quotient 5 = M/J. Since M is
indecomposable, any v € J must be orthogonal to every vector in M including v itself.
Such a vector v is called a null vector. From this observation, we can identify the maximal
proper submodule J as

J=ker(-|-), (2.78)

where
ker (- ]-)={veM: (vjw)=0 YweM}. (2.79)
Since L,-eigenspaces are mutually orthogonal, it suffices to consider the Gram matrix of a
subspace M, whose elements are given by
(Cn)ij = (vilvj) (2.80)

where v;,v; € My are the basis vectors of the form (2.74) and i,j € {1,2,...,dim My }.

If J is not trivial, det I"y becomes zero at certain level N. For the first two levels, det "y
can be calculated as

detT'; =2h and (2.81)
detTy =2 ((4h — 1)* + (2h + 1)(c — 1)) . (2.82)

11.This “inner product” is not necessarily positive-definite. To be mathematically precise, this should be called

an Hermitian form™%.
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Recall that ~ = 0 corresponds to the vacuum module, and the above calculations show that
the basis vector L_;|h) of M; is null if ~ = 0, from which we recover sl(2) invariance of
the vacuum vector. If M has a null vector at level 2, we obtain a polynomial relation in /
and ¢, which constrains their values. In general, det I'yy is given by the Kac determinant

formula
detTy =Ky [] (h—hu )™, (2.83)

r,8€L~q
rs<N

where h, , is a function of ¢, and Ky is a positive constant given by

Ky =[] (@r)styp®-redmplizrsth) (2.84)

r,s>1
rs<N

which depends only on N. By analysing the explicit expression for A, ,, it can be shown
that Verma representations of the Virasoro algebra are unitary for ¢ > 1 and h > 0, which
means they are irreducible for this range. In addition, irreducible highest weight modules
are unitary for ¢ > 1 and h > 0. For ¢ < 1, it is useful to introduce the parameters p,q € Z
that are coprime and satisfy 1 < p < ¢, and write

6(g—p)? 4 , _lar=ps)*—(a-p)

, (2.85)
Pq 4pq

C(p7Q) =1-

where 1 <r <p-—1land1 < s < q¢g— 1. Then, for a given ¢ = ¢(p, q¢), a Verma module
with h = h, ; has the first null vector at level N = rs, and therefore it is reducible. Unless
q = p + 1, the irreducible quotients corresponding to the highest weights given in (2.85)
are not unitary. The Virasoro characters (A.1) of Verma modules and irreducible highest
weight modules encode their vector space structures, and they are discussed in Appendix
A.l.

The presence of null vectors in a Verma module gives rise to differential equations for
correlation functions. For example, consider the level 2 null vector in a Verma module with
h = hy 5. In general, an explicit expression for the level N = rs null vector |y, ;) can be
obtained by writing

|Xr,s> = ((L—l)N + oy L—2(L—1)N_2 Tt oy L—N) |hr,s> ) (286)

where k = dim My — 1, and solving L, |x, s) = 0 for 1 <n < N in order to determine the
coefficients. For this case, we get

2 2

o) = (0 = 32 4 DL ) Ima). (2.87)

Consider a three-point function (2.60) of bulk primary fields ¢,, ,, and ¢, with b, = h; 5.
Then, the existence of the level 2 null vector gives

0= (orvles(2) (L2 = S(2hna + DE-2) o)

2
— (- Semat DI - 10)) Gl Al (289
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Substituting in (2.60), we obtain a constraint on h, and h, for non-vanishing C; ;

1
h, = G (1 +6h,; +2h; o & \/(1 —4hy9)? — 24h,(1 + 2h1,2)) . (2.89)

If h, = h, as in (2.85), the above equation determines h, to be h, ;4 or h, ., ;. Since
Cr7x has to be non-vanishing in order for C’§ x to be non-zero, this result gives a fusion
rule

(r,s9)®@(1,2)=(r,s—1)@(r,s+1), (2.90)

which can be interpreted as the OPE of two primary fields with holomorphic conformal
weights h,. ; and h; , only involves the primary fields with h,,_; and h, ., and their
descendants. Similarly considering other null vectors, the fusion rules for the Virasoro

primary fields with &, . and h are given by

72,52
T3 max $3 max
(r1,51) ® (rg, 52) = o, D (r3,s3) (2.91)
rg=l4|ry—ry|  sz=1+[s;—sy]

Py 4ratrs€1427 51 tsy+s3€1427
where
Tymax = Min(ry +r4 —1, 2p—1—1r; —7ry) and
S3max = Min(s; + 89— 1, 2¢—1— 81 — $9) . (2.92)
This shows that, for a given ¢ = c(p, ¢), the set of bulk primary fields with h = h, ; and

FL - h,,J s’
theory constructed from the set of conformal weights &, ; given in (2.85) and the central

where the range of (r, s) and (+/, ¢) is given by (2.85), is closed under fusion. A

charge ¢ = ¢(p, q) is called a Virasoro minimal model M (p, q). As the number of bulk
primary fields in M (p, ¢) is finite, it has the space of bulk states given by (2.54) wherein
the irreducible highest weight modules can be labelled by the Kac labels (r,s). Since
Brs = By

For four-point functions, consider a conformal block S'fj (%), which was defined in

rs we have the identification (r,s) ~ (p — 7,q — $).

(2.64). It can be non-zero if N ;pr ,fl # 0, where the fusion coefficient Ni’; € Z>( counts how
many times the representation labelled by % appear in the fusion rule for i® j. Furthermore,
if | = (r,s), we can use the null vector |, ;) at level N = rs, and obtain an N-th order
homogeneous linear ordinary differential equation for "ff’j 41 (2). For example, if it involves
a null vector at level 2, we can solve the differential equation and express "ff’] 4 (7) in terms
of hypergeometric functions.

2.2.2 W-Algebras

Let W(2, hq, ..., hy) denote an extension of the Virasoro algebra by chiral Virasoro primary
fields W (?)(z) of integer or half-integer conformal weights h;. We are interested in various
OPEs involving T"and W, Since W9 is a Virasoro primary field, 7W ) OPEs are given
by

_ WO w) oW O(w)

T(WOw) (z —w)? z—w

+ reg. . (2.93)
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Using the mode expansion

W)= 3w and W,&i)—1¢W<i>(z)zn+hi—1dz, (2.94)
0

2w
n€Z—h;

the OPE (2.93) is equivalent to the commutation relation
L, W) = (n(hy — 1) = m)W,) (2.95)

Before working out the remaining OPEs, we need a few more ingredients.
The space of states H", on which 7'(z) and W) act, contains the vacuum vector |0),
and it is spanned by vectors of the form

MRS .1/1/41 ...... Wgn)zb ... WSLLW oLy, |0) (2.96)

with2 <n; <---<ng, hy <my <--- <my (or hy <my < --- < my if h; is half-integer),
and so on. Since null fields decouple from a theory, 3" should be the vacuum irreducible
highest weight module of W(2, hy, ..., hy), however it is sometimes useful to keep the null
vectors and consider the Verma module M}’. From the level N subspace (M}’)y of the
Verma module, the subspace (H}')y of the irreducible module can be obtained by taking
the maximal number of basis vectors (2.96) which makes the determinant of the Gram
matrix non-zero.

From the state-field correspondence, the vertex operator V : 3}V x C — End(H})
maps a state |¢) € H)' to a field V(|¢), 2) = (2). The vertex operator has to satisfy the
following conditions[44 601

(1) V([),2)[0) = ¥ [v),
(2) (¥1|V(|¥), 2)|19) is @ meromorphic function of z,
(3) M|V (J¥), 2)V(|x),w)|1y) is a holomorphic function for |z| > |w|, and

(4 (1V(I4), 2)V(Ix), w)ltha) = €y (01 |[V (Ix), w)V (|9), 2) |1ho) by analytic continuation.
(2.97)

Condition (1) tells us that L_, is the infinitesimal translation operator, and we have
V(L_1|v), z) = 0,V (1), z). Using these axioms, one can derive the duality relation

V() 2)V(l¢), w) = V(V (), 2 — w) |¢), w) (2.98)

from which we can obtain the operator product expansion. For a chiral field V (|¢), z) =
(%), its mode expansion'? is given by

Y(z) = Z Ypz " and wn:Q;L_%w(z)z“hwldz. (2.99)
0

n€Z—hy,

12.Since v, € End(3"), the vertex operator V( -, z) is a map to the formal Laurent series End (") [2%'].
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We also use the notation V,,(|¢))) = v,,. Then, using the duality relation (2.98) and the
mode expansion, the OPE of ¢)(z) and ¢(w) can be written as

> Ve w) (2 —w) e (2.100)
nethw

The normal ordered product of ¢)(z) and ¢(w) is defined as the constant term in the OPE
(2.100), that is

(¢¢)(z) = V(w7h¢|¢>v Z) ) (2101)
whose modes are given!3 by
(Wb)n = Z ¢m¢nfm + € Z anfmwm ) (2102)
mEZ—hw mGZ—hw

where n € Z — hy, — hy. The supercommutator of the modes 1, and ¢,), is related to the
OPE (2.100) since

[¢n7 d)m — ¢n¢m — €yop ¢mwn

(% 2#2% omi % 2771% i )Zn+h”_1wm+h¢_l¢(2)¢(w

|z |>|w| |w|>|2|
% 27{2% o n+hw—1wm+h¢—1w(z)¢(w) : (2.103)

where we have used the definition of modes (2.99) and deformed the contour for integra-

tion over z.
Using the form of OPEs given in (2.100), we can write the OPE of W () (z) and W) (w)
as
wOEW = 2 v, 9;3]. 10), w) (z —w)™", (2.104)

nez

in which the terms with n < 0 are regular as z — w — 0. Evaluating the contour integral
(2.103) with the OPE (2.104), the supercommutator of W,(f) and W,S{ ) is obtained as
hi+h;

z+ J (n + hZ _ 1

[W#‘), r(rz)] = Z n+h;, — k) Vner(W’gi*)hinzjm» ’ (2.105)
k=1 v

In order to determine the fields appearing in the OPE (2.104) and the supercommutator
(2.105), we need to express Wéi_)hi ijgj |0), where 1 < n < h; + h;, in terms of the basis
vectors (2.96). Since it has the conformal weight h; + h; — n, we only need the basis
vectors in the level N = h; + h; — n subspace (J{E)N)N where 0 < N < h; + h; — 1. Let
1, N) € (H}Y) v be a basis vector of the form (2.96) and 1 < I < dim(H}") v, and write

Wi, WY jo) = > ap i, Ny . (2.106)
l

13.This definition of normal ordering in terms of the modes results in normal ordered products that are not
necessary quasiprimary. There is a way to define ‘quasiprimary normal ordered products’ which can be found,
for example, in [38].



2.2 Chiral Algebras | W-Algebras 33

We need to determine the coefficients a;’j N By taking the normalisation (0[0) = 1, the
coefficient at level 0O is given by
o = (oW w") |0y , (2.107)

which vanishes for s; > h;. In addition, from symmetry or antisymmetry of the supercom-
mutator (2.105), this coefficient should vanish for h; < h;. Therefore, ail’j 0 is non-zero
only for h; = h;. Since o™ gives the normalisation of the field W(?)(z) and it is arbitrary,
we take o/fi‘o =d,, ) = - by convention. In general, other coefficients can be determined
by acting L,,, with 0 < m < N on the both sides of (2.106) and using the commutators
(2.95), by checking symmetry or antisymmetry of the supercommutator (2.105), and by
demanding the Jacobi identity to hold for the supercommutator. It turns out that these
conditions force some W-algebras to exist only for certain values of the central charges.

If a W-algebra has an outer automorphism (2, it is possible to impose boundary condi-

tions on the generators W) (z) as
WO (e2m2) = QW (2)) (2.108)

which results in so-called twisted representations of the W-algebra. For simplicity, consider
W(2,6) with the generator W(z) of conformal dimension § € 3$Z., and the vanishing
self-coupling constant C}y,,, = 0. In this case, the outer automorphism {2 is given by

(T (2)) =T(z) and QW(z)) = -W(z), (2.109)

which is an involution. Due to the condition (2.108) and the automorphism (2.109), the
mode expansion of W (z) becomes

W(z)= Y W,z "7, (2.110)
neZ—o+i

Then, the OPE of W (z) with another chiral field ¢(w) becomes

W(o(w) = Y V(Wasle)w) (z —w)™", (2.111)
neZ+3
n<d+hy
which picks up the phase factor of —1 when W (z) is rotated by 27 around w. Twisted
representations are constructed from the modes (2.110), and corresponding primary fields
are non-local with respect to W (z) as in (2.111). In general, an automorphism of the kind
(2.109) exists if and only if the self-coupling C}/,, vanishes[#®!. If W (z) is fermionic, its
self-coupling vanishes due to the fermion number conservation, and the twisted sector is
called the Ramond sector.
For bosonic W(2,4) algebras, the zero modes L, W, and ¢ form the Cartan subal-
gebra. Therefore, a highest weight vector is characterised by the L,-eigenvalue h and
W-eigenvalue w, and it should satisfy

L,|h,w)=0 and W,lh,w)=0 forall n>0. (2.112)
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For Ramond sectors of fermionic W(2, §) algebras, highest weight vectors are characterised
similarly while odd generators of a superalgebra cannot be included in its Cartan subalge-
bra in general'#.

In the following, we summarise a few examples of W-algebras that are relevant to the
discussion of this thesis.

o W(2,2)

In 'W(2, 2), there is the weight 2 chiral primary field W (z) in addition to the stress-energy
tensor 7'(z). Their modes satisfy

[Ln7 Wm] = (TL - m)Wn+m and

1
[Wn7 Wm] = icxw(n - m)Wn-i-m + (n — m)Ln+m + TC2 2

as well as the usual Virasoro relations (2.46). In (2.113), C}V,, is a free parameter, and

n(n” — 1)8,4m.0 (2.113)

W(2,2) exists for generic values of c.
It is possible to express W(2,2) as Vir @ Vir. Let

T(z)=TH () +TP(2) and W(z <\/g \/Z > (2.114)

where a = £1 is arbitrary. Straightforward calculations show that W (z) is primary with
respect to T'(z), and that they are normalised properly; d, = d,, = § where ¢ = ¢; + ¢;.
Using the definition given in (2.114), one can calculate that the modes L,, and W,, satisfy
the commutators (2.113) with

(2.115)

When ¢; = ¢y, this self-coupling constant vanishes and there is an outer automorphism
given by (2.109), which gives rise to the twisted sector of W(2,2).
e N = 1 Super-Virasoro Algebra

The N = 1 super-Virasoro algebra, which we denote by §Vir, is the extension of the
Virasoro algebra by a chiral primary field G(z) of weight 2. Together with the usual
bosonic stress-energy tensor T7(z), G(z) forms the super-stress-energy tensor!”!

T(Z) = %G(z) +OT() (2.116)

where Z = (z,6) is a superspace coordinate with # being a Grassmann variable. The
commutators and anticommutators involving the modes G,, are

(L,,G,] = (g - m) G, and

{Gn. G}t = 2Lyt + g <n2 - i) 5n+m,0 . (2.117)

14.0n a Z,-graded representation space H = H° & H', an odd operator can be regarded as an off-diagonal
matrix ( % 4), where A € Hom(H', H°) and B € Hom(H°, H'). Therefore, if an odd operator acts diagonally
on some representation space, then this space is not Z,-graded by fermion parity in general.
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The untwisted sector is also called the Neveu—Schwarz sector in which the modes G,, take
n € Z + 1. In the Ramond sector, G,, has integer n. In the Neveu-Schwarz sector, L,
L.y, and G form the Lie superalgebra osp(1|2) which is a graded extension of sl(2) and
corresponds to the global superconformal group!®! on a supermanifold CP'I*.

A representation space H of $Vir is Z,-graded, and it can be written as H = H° & H1,
where KO is the subspace formed by bosonic states and H' corresponds to fermionic states.
Note that the vacuum state |0) is defined to be bosonic. So-called the fermion parity
operator (—1)" is defined to act as 1 on H° and —1 on H?, from which we can deduce
that (—1)" commutes with bosonic fields and anticommutes with fermionic fields. Using
the fermion parity operator, actions of the outer automorphism 2,, of §Vir, under which
G(z) — —G(z), can be written as

p(Q,(2))]0) = (~1)" p(x)[0) (2.118)

where = € 8Vir and p : §Vir — End(H) is the representation map.
Similar to the Virasoro case, reducible Verma modules of the N = 1 super-Virasoro
algebra occur at values of ¢ and A that can be parametrised'® as

3 <1 _2(g p)Q) and . — 7 —ps)? = (2= p)°

(:p7q =3
.q) 2 Pq 8pq

1 r+s
+ 35 (1—(-1)*),
(2.119)
where 1 < p < ¢ should satisfy

p,q €Z, pandgqcoprime, p+q€2Z, or
p,q€2Z,§and%coprime,§+ggéQZ, (2.120)

and we have 1 <r <p—-1and1l < s < g — 1. Note that p and ¢ must be either both
odd or both even. For these ranges of r and s, we can form a table containing the values
of h, ; using (2.119) which is called the Kac table. Representations labelled by £, ; with
r + s € 27 are in the Neveu-Schwarz sector, and those with r + s € 2Z + 1 are in the
Ramond sector. An N = 1 super-Virasoro minimal model SM (p, q) is constructed from
the representations with ¢ = c(p, ¢) and h = h, ; given in (2.119). When ¢ = p + 2, the
irreducible quotients of the highest weight representations with ¢(p, ¢) and h, ; are unitary.

As in the Virasoro cases, we have h, ; = h which leads to the identification of Kac

p—r,g—s
labels (r,s) ~ (p — r,q — s). Note that, unlike the Virasoro cases, it is possible to have
p,q € 27 in which case there is a representation labelled by the Kac label (£, 2) which is
the fixed point of this identification. Moreover, this fixed point is in the Ramond sector and

has h = 57, which is the lowest in this sector.

Highest weight representations of $Vir in the Neveu—Schwarz sector are very similar
to those of the Virasoro algebra. A highest weight vector |h) is characterised by its L-
eigenvalue h and the fermion parity ¢ = +1, that is (—1)*|h) = €|h). For the values of

15.The formula for unitary cases can be found in [12]. The more general expression quoted here which
includes non-unitary cases can be found, for example, in [50].
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c and h parametrised by (2.119), Verma modules are reducible, and irreducible highest
weight modules can be obtained by taking their quotients. Their Virasoro characters are
given in Appendix A.1.

On the other hand, representations of §Vir in the Ramond sector are more involved.
Since there is the zero mode G, a highest weight vector can be taken as an eigenvector of
Gy. From the 8Vir relations (2.117), we can write

C

2 _ I,
(Go)” = Ly 51

(2.121)

Therefore, if a highest weight vector has the G-eigenvalue ), then its L,-eigenvalue h is
given by

h=X4+ <
T

and for a given value of h, there are two highest weight vectors |£)) unless h = ;. In

(2.122)

addition, these highest weight vectors do not have definite fermion parities; since G, and
(—1)" anticommute, (—1)7|\) has the G-eigenvalue —\, and we can identify this vector
as

(=D)FIN) =]=N) . (2.123)

In a Ly-eigensubspace of the Ramond Verma module generated from |\), each of the basis
vectors of the form
L Ly Gy oGy [N (2.124)

—my —my

where 0 < my < --- <myand 0 < ny < --- < my, is not necessarily an eigenvector of
Gy, and one needs to change bases to obtain G, eigenvectors. From the parametrisation
(2.119), we define

1
()‘r,s>2 = h’r,s - ﬁc(p7 Q) . (2.125)

Then, the highest weight state |\, ;) has the Lj- and G-eigenvalues h, ; and A, ; respec-
tively. For a given value of ¢, we may write M, to denote the Verma module constructed
from a highest weight state |\).

So far, we are treating the fermion parity operator (—1)” as an operator defined on a
representation space, but we may treat this operator as a part of the algebra, and consider
the so-called extended Ramond algebral?!. Then, L, and (—1)* form the Cartan subalge-
bra of the extended Ramond algebra, and a highest weight vector |h) has definite fermion
parity e = +1 and clearly cannot be an eigenvector of G,. Then, there is another vector
Gol|h), which has the opposite fermion parity —e and thus orthogonal to |h), at the level
zero subspace of the Verma module. For the Verma module M,, of the extended Ramond
algebra constructed from |h), there are pairs of vectors of the form

L LG o

—my k

G lh) and L, L G, -G, Golh), (2.126)

where 0 < m; < --- < myand 0 < n; < --- < ny, that have the same conformal
dimensions but opposite fermion parities. If h # 57, a Verma module M), can be written as
the direct sum

M, =M,&M_,, (2.127)
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where h and ) are related by (2.122). If M, and M_, are irreducible, M,, is also irreducible
as a representation of the extended Ramond algebra. When h # 3, the vectors |h), Gylh),
and |£+)\) are related by

1 1
) ) = 5, (10 + 5Goln))
h) = A -
{ )= a(X) +el=2) 2: i . (2.128)
Golh) = aX(]N) — €[ -)) X = (rh> - AGoW)
where a € C satisfies
d;, = |a|? 2d,, (2.129)

in which d;, :== (h|h) and d,, := (£A|£]\). Since the fermion parity operator acts diagonally
on a Verma module M,, it is preferable to use M,, rather than M_,, as it is a Z,-graded
representation of a superalgebra.

When h = 5, we have (G)?|h) = 0 from (2.121), and we can see that Gy|h) is a null
vector which is also an eigenvector of GG, with the zero eigenvalue. Since it is a null vector,
we can set Gylh) = 0, then |h) becomes an eigenvector of G as well. If we write |\j) as an
eigenvector of G, with the eigenvalue )\, = 0, then we cannot determine (—1)"|),) from
the action of G, alone. Therefore, the level zero subspace of the irreducible module is one
dimensional when h = 3.

The Virasoro characters of Ramond Verma modules and irreducible modules are given

in Appendix A.1.

2.2.3 Super W-Algebras

° SW(%, %)

A super W-algebra SW( %, hi,...,hy) is the extension of the V = 1 super-Virasoro algebra
by chiral primary superfields W) (Z) = W (z) + 0U"(z) of integer or half-integer con-
formal weights h;. The component fields W () (z) and U (z) are Virasoro primary fields.

In order for W) (Z) to be a primary superfield, the following supercommutators involving
its component fields have to hold[4%]

G, W) =iy U and (G, UY) = 62%(11(2111- —1)—myW{), . (2.130)
By taking the normalisation
dyo = O W) 0y = hﬁ and d, = (U0, 10) = = . (2.131)
where hl = h; + %, structure constants in (2.130) are given by
(Céiv,)? = (=1)*"*(2h; + 1) and  Cgiy, = %;—}fl(—lf’”“%@i . (2132)
Since U (z) is the superdescendant of W (?)(z), their state vectors are related by
Uf,)lg\m = 03 G_%W@”ym . (2.133)

GW;
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The remaining supercommutators can be obtained by the same methods as for the W-
algebra cases.

In 8W(3,3), there are four chiral fields 7'(z), G(z), W(z), and U(z). The Virasoro
primary field W (z) has the conformal dimension 3/2, and its superdescendant U (z), which
is also a Virasoro primary field, has the conformal dimension 2. In addition to the 8Vir
relations, the modes of the generators satisfy

n
[Ln7 Wm] = (5 - m) Wner ) [Ln) Um] = (TL - m)Un+m )
{Gn’ Wm} = 2Un+m ) [Gn7 Um] = (TL - %) Wn+m 5
1
{Wna Wm} = CX[/JVW Un+m + 2Ln+m + g (77’2 - 4> 5n+m,0 ’
W, U] = (0= ") (2€%, Wipsrn + Goir) .+ and (2.134)
n m 2 3 U n+m n—+m
1 c
[Um Um] = §CgU(n - m)Un+m + (n - m)Ln+m + En(n2 - 1)5n+m,0 )
where 3
Cyww=0Cy, and Cy, = chU , (2.135)

and CY,, is a free parameter. SW(Q, 2) exists for generic values of c.

Similar to the non-supersymmetric case, it is possible to embed SW(3 5 2) in 8Vir @ §Vir.

In (2.134), L,, and U,, form the W(2,2) subalgebra which suggests that we can take

=BGV (2) + ,G? =TW(z) + 7@ (2)

<\/gﬂ1G \/2[326‘ ) , and
Z2) =« <\/ET(1)(Z) - \/ZT(Q)(z)> ,
o o

where « = +1 and §; = +1 are arbitrary constants. The chiral fields in (2.136) are

(2.136)

normalised according to (2.131); G(z), W (z), and U(z) are Virasoro primary with respect
to T'(z); and W(z) is superprimary with respect to G(z). Modes of the chiral fields in
(2.136) satisfy the SW(Q, 2) relations (2.134), and the free parameter is given by

CU =20 2 C_CCI : (2.137)
V12

where the relations (2.135) hold regardless of the values of ;. Therefore, different values
of 3; are related by automorphisms of SW(3, 3).
Each 8Vir in §Vir @ §Vir has an outer automorphism Q,, : G (z) — —G¥(z), under

which the other fields are invariant; at generic values of c, SW( has a Z, x Z, automor-

5:3)
phism group coming from the Z, automorphisms of the two copies of §Vir whose actions

are equivalent to taking different values of ;. Considering §Vir C §W(3 the overall

5:3);
fermionic automorphism of SW(Q, 2) is given by

(Qp,, Q) 1 G(2) = =G(2), W(z)= -W(z), (2.138)
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which leaves the bosonic fields invariant. For brevity, denote Q, = (2,2, ). This
automorphism can be used for the usual GSO projection, and is related to the usual Ramond

sector of SW(2, 2). If we define
G(2) = 51GW(2) = 5,GP(2) and W (z (\ |2 5GUE) + 1o 5GP ) :
(2.139)
then, the other elements of this Z, x Z, automorphism group can be written as
(idy, Qp,) : G(2) = G(2), W(z)—~ W(z), and (2.140)
(Qp,,idy) : G(2) = =G(2), W(z) = —W(z) . (2.141)

They leave the bosonic fields invariant. We may also denote them as 2. := (£, ,id,) and
QFQ = (idy, QFQ)'

When ¢; = ¢y, the self-coupling of U(z) vanishes, and there will be another Z, outer
automorphism given by

Q, W(z)—-W(z), Uz)— -U(z), (2.142)
which leaves G(z) and 7'(z) invariant. In this case, we have
G(z)=aW(z) and W(z)=aG(z). (2.143)

We emphasis that « = +1 is a constant determined by an embedding of SW(Q, 2) in

8Vir ®8Vir. Note that changing the sign of o swaps the actions of 2. and ©2,,,. Combining
the fermionic automorphisms and §2,,, we get three more automorphisms

QpoQ, = Q00 :G(z) » —G(z), W(z)— W(z), Uz)—-U(z), (2.144)
Qp 0Qy = QyoQy, 1 G(z) »—aW(z), W(z)— aG(z), U(z)—=-U(z), (2.145)
Qp, 00, = QyoQ, 1 G(2) = aW(z), W(z)—=—-aG(z), U(z)—=-U(z). (2.146)

N

We denote them by Q, = Q, 0 Q,, QFI = Qp 0€Q,, and QF2 = Qp, 0Q,. While Q,
is an involution, that is, it is the inverse of itself, 2, and ., square to Q. From this
information, we find that the set of outer automorphisms

{id, Qp, Qp, Qp, U, U, Q) Q) (2.147)

forms a group which is isomorphic!® to the dihedral group D,. Conjugacy classes and
corresponding centralisers of this automorphism group are summarised in Table 2.1, in
which V, = Z, x Z, denotes the Klein four group.

2.2.4 Intertwiners

In Subsection 2.2.2, we have encountered the vertex operator, which is defined as a map
V 1 Hgt x C — End(Hp!) where ¢! is the vacuum irreducible module of a chiral algebra A

16.0ne way to identify with D, = (z,a | a®* = 2® = ¢, zaz™' =a ') istoleta = QFl, a®=Q., a® = QFz,

r=Qu,ar =Qp,, a’z = Qp, and a’z = Qp,.



2.2 Chiral Algebras | Intertwiners 40

Conjugacy classes Centralisers
{id} All elements in D,
{2} All elements in D,
{QU7 QF} {id, Qp, Qy, QF} =Vy
{QFla QFQ} {id, QF? QF17 QFQ} = V4
(€@, 0} | {id, @, Q) O} 22

Table 2.1: Conjugacy classes and corresponding centralisers of the D, outer automorphism group

of SW(2,3) when ¢; = c,.

27 2)
with a given value of the central charge c. We can generalise this concept to an intertwining
operator, which is defined as a map

vk

ij;o

j'fi X (C — Hom(ﬂj,j{k) y (2.148)

where J(;, 3{;, and , are irreducible .A-modules with the central charge c, and this map
is an intertwiner for A-representations. The dimension of the space of intertwiners Vzlj o

is given by N;%, and the multiplicity labels run o = 1,. .. ,sz;. An intertwining operator

z]’
exists when the fusion coefficient Ni’; is non-zero. We can understand this operator in
several ways: for a given z € C, we can view this as

vk

iji0

(-,2) 3 x H; — Hy, (2.149)

in the sense that
Z] a(|wz> )|7/)]> € j{k ) (2150)

where [+;) € H; and |¢;) € 3;; equivalently, we can think of this as
Via(h2) s (3G,)" x 3 x H; - C (2.151)

given by
<1;Z)k| 173 a(|7/)i>az)|1/)j> €C ) (2152)

where (¢ € (H)*.

In order to see how VZ’; ., intertwines A-actions, we need a comultiplication A : 4 —
A® A. For [¢;) ® |[¢;) € H; ® H; and W,, € A, where n € Z — h,,, the comultiplication
formula is given by

A o (W) (1) ® iby)) = f dw

w” hy—1 ‘
o0 T W ) Vi (1), ) ) (2.153)

where the contour C encircles z and 0, and we have assumed 3(; and 3, are untwisted
representations. By deforming the contour C' to the contours around z and 0, we can write
this as

g W@V ) + v, ™ Vi (), )W ()l

2m
dw n — —m—
= LS (w2 VL (Wil 2]+ v, Vi (2 W)
z m<hy,

(2.154)



2.2 Chiral Algebras | Intertwiners 41

where m € Z — h,,. The phase factor ¢, € C is defined by

W (w) Vo (i), 2) = €w. Vila(lthi), 2)W (w) (2.155)

where |w| > |z| on the left hand side, and the right hand side is the clockwise analytic
continuation®”! from |w| < |z|. For untwisted representations, €y, = T1 is determined
by the fermion parities of W (w) and |¢);). By shifting w — w + z, we can evaluate the
remaining integral, and obtain

AL oW (1) @ [;))

(n+h, -1 n L
- Z ( ]:V ) 2w R YR Wi [0 2) ) + ey, Vila(l1h2), 2) Wi lwy) -
k=0

(2.156)

Therefore, the comultiplication gives A, ,(W,,) € A® A as

> (n+h, —1
AL o(W,) =) < kW ) W, @1t ey, 1OW, . (2.157)
k=0

For given representation maps p; : A — End(X;) and p; : A — End(3;), the fusion
product
(pi®pj)oA: A— End(H; @ H;) (2.158)

defines an A-representation on H; ® J(;. In general, the fusion product of two irreducible
representations is not irreducible, and it can be decomposed into irreducible representa-
tions as
H, @ H; = P N H, (2.159)
k

with maps py., : A — End(J(;) that are the restrictions of (2.158). Using the fusion
product, the operator V;’;a can be understood as an intertwiner for A-representation

Vi o 1 3G @ 3 — K, (2.160)
given by
pk;a(Wn) szljf,a(’d}z) ® ‘w]» = Vvi];';a( (/07, X pj) o A(Wn)(‘wz> ® |¢j>) ) . (2161)

This means that Wn%’;;a(\wﬁ, z)|1;) is given by the right hand side of (2.156). In order
to calculate fusion products involving twisted representations, one needs to modify the
integral for Az,O(Wn) where Wn is a series in W,,,. The comultiplication formula and fusion

products of twisted representations are given by Gaberdiel®”!.

For the highest weight state |i) € X, with the conformal weight h;, the operator
vk

ij0

(i), z) acts as a chiral primary field, that is

(L, ViEL(18),2)] = (hi(n + 1)2" + 2"T10) Vib. (i), 2) - (2.162)
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Intertwiners V;’; ., are also called chiral vertex operators (CVOs), and they can be used to

construct chiral parts of correlation functions. For simplicity, consider A = Vir, in which
case NZ-’; € {0, 1} and the multiplicity labels « are suppressed. Given the highest weight
vectors |i), |4), |k), and |I), a Virasoro four-point block (2.64) can be written as

Fha(2) = (il1Vip(15), DV KD, 2)ID) - (2.163)

By comparing (2.98) and (2.68), we see that the duality relation for CVOs gives rise to the

fusing matrix as

Vip(l), Vi (k). 2 Zqu Vi), 1 = 2)lk).2) - (2.164)
If we introduce a graphical notation!”

Vi) = | (2.166)

then, the relation (2.164) can be understood as
k
J_L = Z P8l o (2.167)

For intertwiners, Condition (4) of (2.97) becomes a relation

Vi (13), ) VE(Ik), w Zqui Vi (IR, w)Vi(15), 2) , (2.168)

where B is called the braiding matrix, and ¢ = =+ specifies the direction of analytic contin-
uation. Note that B(~9) is the inverse of B(), that is

> B[] BL (5] =6 (2.169)
t
but B2 := B()B() is not necessarily the identity; B2 is the monodromy matrix for the
analytic continuation of z around w.

The matrices F and B satisfy various relations and identities—among them, the hexagon
identity for B resembles the Yang—Baxter equation, and the pentagon identity for F can be
used to prove the Verlinde formula—their details can be found, for example, in [30], [31],
[32], and [76]. For Virasoro minimal models, elements of the fusing matrices are given in
Appendix A.3.

17.Since VZ-’]“-,Q( -, z) € Hom(3; ® H;, ), one has to take care of the directions of lines. Using the notation

where the diagram is read from bottom to top.

of [76], we can write
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From the point of view of Moore and Seiberg!®® 3!, we can picture V(- ,z) as a
Riemann sphere with three punctures that are located at oo, z, and 0 in some local co-
ordinates, and the representations 3, 3(;, and J(; labelling the punctures. In order to
distinguish the puncture labelled by k from the other two, we may introduce “orientations”
to the punctures'®; they are represented by arrows around punctures in Figure 2.1. In this
picture, compositions of CVOs are understood as sewings of Riemann spheres. Conversely,
the relations (2.164) and (2.168) can be understood as the relations between the three
distinct ways of decomposing a Riemann sphere with four punctures into two Riemann
spheres with three punctures; they are called pants decompositions.

z

k J
Figure 2.1: VZ’;( -, z) as a Riemann sphere with three punctures

Writing the identity operator as a CVO, the Virasoro character (A.1) of a representation
JH; can be written as
(0) =T (V0. 1) a7 ) = 19 (2:170)
3
where 0 denotes the vacuum representation. In this sense, Virasoro characters can be
viewed as zero-point functions on a torus. Then, the modular S transformation relates the
two distinct ways of sewing to obtain the torus as depicted in Figure 2.2. For Virasoro and

N = 1 super-Virasoro minimal models, elements of the modular S matrices are given in
Appendix A.2.

Figure 2.2: The modular S transformation and the pants decompositions of a torus.

On an N = 1 super-Riemann surface, which is locally isomorphic to C!/*, there are two
kinds of punctures: Neveu—Schwarz (NS) punctures and Ramond (R) punctures. While
NS punctures can be inserted at any point on a surface, a Ramond puncture is a singularity
in the super-Riemann surface structure. As a consequence, we cannot assign fermionic
coordinates to R punctures. Moreover, it is possible to take local coordinates such that a

18.For example, in [88].
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Ramond puncture becomes a square-root branch point of fermions, that is § — — for the
fermionic coordinate when the bosonic coordinate z is rotated around the R puncture by
27. More details can be found, for example, in Witten’s notes! 1971,

On a compact super-Riemann surface, the number of Ramond punctures is always
even. Therefore, a super-Riemann sphere with three punctures can either have three NS
punctures or two R punctures and one NS puncture. This determines sectors of represen-
tations appearing in the labels of a CVO. In addition, it is only possible to glue punctures
in the same sector. We draw a line between two Ramond punctures representing a branch
cut of fermions7> 431, Then, the modular S transformation of a Ramond character into
NS supercharacters can be understood geometrically as shown in Figure 2.3. Here, the
numbered arrows correspond to: (1) sewing; (2) modular S transformation; and (3) pants
decomposition. On the resulting sphere, the branch cut encircles one of the NS punctures;
considering radial quantisation around this puncture and recalling the definition of a Vi-
rasoro supercharacter (A.7), we can associate the fermion parity operator (—1)” to the
branch cut of fermions.

NS C ) NS C ) NS NS
(&)g =S ﬂ(&)
R R NS NS NS

Figure 2.3: The modular S transformation of a Ramond character

One of the remarkable features of CFT is that there is a relation between the modular
S matrix and the fusion rules, which is given by the Verlinde formula. From the fusion
coefficients Ni’;, one can form a fusion matrix N; which is defined by

(Ni)ji = NE . (2.171)

ij
Some of their properties are apparent from those of the fusion coefficients. Since Ngi = 5{ ,
the fusion matrix N, is the identity. Using the fusion coefficient identities
NE=NE, NE=NE . NE=NE.. and Y NLNL =T NiNG, (2.172)
peEL qeT
one can show NI = N, and so on. The fusion matrices form the adjoint representation of
the fusion rule algebra, that is

N, N; =) NN, (2.173)
keT

Since elements of N, are all non-negative integers, the set of fusion matrices is also called
a non-negative integer matrix representation (NIM-rep). Since the fusion algebra is com-
mutative, fusion matrices commute as well, and consequently they can be simultaneously
diagonalised. The Verlinde formula™®! (2.176) shows the modular S matrix diagonalises

the fusion matrices, that is
N, =SD,;S !, (2.174)
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where D, is a diagonal matrix given by

S..
Y (2.175)

D) =0 =2 .
( z)]k 7k SOj

In terms of the components, the Verlinde formula can be written as

Si S Syt
k il Pjl Pk
leT 0l
Since the matrices D, are diagonal, their elements form one-dimensional representations

of the fusion algebra

keT
In particular, the quantity
S.
D; = (D)oo = g (2.178)
Soo

is called the quantum dimension of a representation H;, which is also the eigenvalue asso-
ciated with the Perron—Frobenius eigenvector of N;. Quantum dimensions must satisfy>!]

D, € {2 cos (%) ‘0 € Zug} U2, 00) (2.179)

in which 1 is the smallest possible number. Note that D, = 1, and if another representation
has D, = 1 then the fusion of i with some other representation contains only one repre-
sentation. Chiral primary fields associated to representations with quantum dimension
D, = 1 are called simple currents. Given a fusion rule, one can relate this to a polynomial
equation. For example, if we have a Lee-Yang type fusion rule p ® ¢ = 0 @ ¢, then by
writing D, = z, we get 2% = 1 4 z whose solutions are the golden ratio z = 3(1 + /5).
Only the positive solution can be interpreted as the quantum dimension.

The Verlinde formula relates the fusion coefficients, that are algebraic in its nature, to
the modular S matrix which is of geometric origin, and it has far-reaching consequences.
The proofs of this formula are given in [23], [33], and [28].

2.2.5 Modular Invariant Partition Functions

A torus T, can be regarded as the quotient C/(Z + 77Z) of the complex plane by a lattice
Z + 77 where T € C. This means that z € C with the identifications

z~z4An+mr Vn,méeZ (2.180)

describes a coordinate on 7. As Riemann surfaces, 7). with 7 € H, where H is the upper
half plane H := {7 € C : Im 7 > 0}, are conformally equivalent if they are related by the
modular group. The modular group PSL(2,Z) is the group of transformations of 7 that
leave 7 € H, and this group is generated by the two elements

1
S:7—=—— and T:7—7+1. (2.181)
T

They are called the modular S and T transformations.
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In the basis of characters, modular S and T transformations are represented by the
matrices given in (A.16). For a bosonic chiral algebra, they should satisfy

S?=C=(ST)3, (2.182)

where C is the charge conjugation matrix given by C;; = §;;+. The equation above is
nothing but the defining relation of the modular group except for C is not necessarily the
identity matrix. This is due to the fact that S transformation exchanges two fundamental
cycles of a torus by S : (a,b) — (—b,a), and consequently S? : (a,b) — (—a, —b) corre-
sponds to space and time reversal, which should result in charge conjugation. In addition,
S and T are unitary matrices and S is symmetric as well, that is

sT=g, st=g! and TI=T". (2.183)

Complex conjugate of a S matrix element gives Sij = S;+ . For fermionic theories, especially
for N = 1 super-Virasoro minimal models, there are some subtleties involved in defining
the modular S and T matrices to obey the conditions above. They are discussed in Appendix
A.2.

In a CFT, we usually start from a complex plane with coordinate z and map it to
an infinite cylinder by z = ¢~2™, On the cylinder, w ~ w + n for all n € Z. Due to
radial quantisation on the plane, Im w and Re w correspond to ‘time’ and ‘space’ directions,
respectively. By introducing w = = + iy, we can write the Hamiltonian on this cylinder as

1
Hey = /0 T dz . (2.184)

Using the transformation law (2.51), this can be written in terms of the Virasoro generators
on the plane as

Hey, = 21 (LO+L0— 132) . (2.185)

If we make the time direction periodic by choosing purely imaginary 7 > 0 and imposing
w ~ w+mT for all m € Z, then we obtain a theory defined on the torus 7’,. It is sometimes
useful to think this torus as the parallelogram with vertices at 0, 1, 7, and 7 + 1 on the
w-plane. If we let 7 = it where ¢ € R, the torus partition function is given by

Z = Try e Hot = Try, 27 (LotLo13) | (2.186)

where H is the space of states for the bulk fields. If H is given by (2.54), then the partition
function becomes

Z =Y i) xi(@) , (2.187)
IeS

where I = (i,4) labels a bulk field, x;(g) is the Virasoro character (A.1) of an irreducible
module H; with ¢ := ¢?™7  and q is the complex conjugate of ¢, that is § = e~2™" with
the complex conjugate 7 of 7. If we assume this theory has the same holomorphic and
antiholomorphic chiral algebras A = A, then we can write

Z =Y M;xi(q) x;(@) (2.188)

1,j€T
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where 7 is the indexing set for A irreducible representations, and the multiplicity matrix
M encodes the bulk spectrum S of the theory. In order for this theory to be defined on a
torus, its partition function must be invariant under modular transformations, in particular,
the modular S and T transformations. This means that the multiplicity matrix M has to

commute with the modular S and T matrices, that is
M =SMS™' and M =TMT'. (2.189)

In addition, the vacuum state has to be unique, which imposes My, = 1. The invariance
under T transformation restricts bulk fields to have integer spins, that is h — h € Z. For
fermionic theories, this condition is weakened to the invariance under 72 only. There are
always two types of modular invariant partition functions possible: a diagonal invariant
M;; = §;; and a charge conjugation invariant M;; = §;;+.

For s1(2),-WZW!9! Virasoro['9) and super-Virasoro minimal models8!, modular in-
variant partition functions obeys the so-called A- D - E classification. In a ;1(2) r-WZW
model at level k£ € Z.,, primary fields correspond to the integrable highest weight rep-
resentations of sTl(2) > and they can be labelled by integers 1 < i < k+ 1. The A-D-FE
classification associates a simply-laced Dynkin diagram G with the (dual) Coxeter num-
ber!® g = k+2 to a sl(2),-WZW model. When G is A,,, Deyen, Eg, 0 Eg, the corresponding
modular invariant partition function consists of the characters y; with the representation
labels i appearing in the exponents of GG. Properties of simply-laced Dynkin diagrams are
summarised in Table 2.2, and the modular invariant partition functions of sAl(Z) -WZW
models are given in Table 2.3. Note that D, invariants are related to the simple cur-
rent extension[®¢! by the primary field with label i = k + 1, and they have extended
conformal symmetries; the two primary fields with degenerate conformal dimensions are
distinguished by their W, eigenvalues. In addition D, invariants can be written as diag-
onal invariants for the extended chiral algebras. D44 invariants are due to the action of
a non-trivial automorphism of the fusion algebra on the chiral half of the representations.
Among the exceptional invariants, Fg and Eg invariants can be understood in terms of
the conformal embeddings 51(2)10 C sp(4); and §1(2)28 C (@2)1, respectively. Note that
sp(4); =50(5);.

Modular invariant partition functions of Virasoro minimal models are constructed sim-
ilarly. For M (p, q), one associates a pair of simply-laced Dynkin diagrams (G, G’) where
they have the Coxeter numbers p and ¢ respectively. Since p and ¢ are coprime, one of
them should be an odd number. Then, one of the diagrams in (G, G') must be A,, as they
are the only simply-laced Dynkin diagrams that can have odd Coxeter numbers. In our
notation, a pair (G, G’) is related to Kac labels (7, s) in this order. Note that (A4, _, 4, ;)
corresponds to the diagonal modular invariant. If one of the diagrams in (G, G’), say G, is
not A,,, then the corresponding modular invariant is obtained by taking the summations
over r in the same form as the corresponding sAl(2) »-WZW invariant. For example, (A4,, D,)

19.For simply-laced Dynkin diagrams, they are the same.
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Name Diagram g Exponents
Ar>o OO0~ O r+1 1,2,...,7

-1
D,y O—O—0----- < 2r—2| 1,3,...,2r—3,r—1
= 1 2 3 r-2

E i 12 1,4,5,7,8,11
B, i 18 1,5,7,9,11,13,17
Eg i 30 |1,7,11,13,17,19,23,29

Table 2.2: Properties of simply-laced Dynkin diagrams with ranks » and Coxeter numbers g.

g=k+2 G Partition function
g—1
g=>2 Agq 21 Xl
21 - 2 2
g=4p+2,p=>1|Dy,s ; IXi + Xapr2—il” + 2[X2p41]
i€2Z+1
4p—1 ) ) 2p—2 B B
g=4p,p=>2 | Doy > bal® + Ixgpl® + X0 (XiXap—i + Xap—iXa)

2’6127214-1 z'ZgZQZ
g=12 Eg X1+ x712 4 Ixa + xsl? + Ixs + xul?
g=18 E; Ix1 + xarl? + Ixs + xasl? + s + xal? + Ixol?

+ (X3 + X15)Xo + Xo(X3 + X15)

g=30 Ey X1 + X11 + X19 + X20® + Ix7 + X135 + X17 + Xo3/?

Table 2.3: Modular invariant partition functions of sAl(2) +-WZW models associated to simply-laced
Dynkin diagrams G.

invariant is given by

4

1
Za, Dy = 9 Z (I + Xr,5\2 +2[Xr,3
r=1

), (2.190)

where the factor of half is needed to compensate the overcounting due to the identification
(r,s) ~ (p —r,q — s). The non-diagonal modular invariants of Virasoro minimal models
can be analysed similarly to the §1(2) ;. case. For example, in M (5, 6), the primary field with
hy 5 = 3 is a simple current, and (A4, D,) invariant corresponds to the W5 minimal model
with ¢ = %.

The same principle applies to super-Virasoro minimal models while the possible types
of modular invariants are slightly different from the Virasoro case. Recall that p and ¢
in SM(p, q) are either both even or both odd; this results in (A4,_;, A,_;) being the only

possibility for p € 2Z + 1, and there are not only invariants of the form (A, A), (A, D),
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(D,A), (A, E), and (E, A) but also (D, E) and (E, D) are possible for p € 2Z. Note that
(D, D) is equivalent to either of (A, D) or (D, A). More details can be found in [18].

It is important to note that fully modular invariant partition functions of fermionic
theories are necessarily GSO projected. The GSO projection is a projection of both Neveu—
Schwarz and Ramond sectors to the states that are invariant under the action of the fermion
parity operator (—1)7*. In a fermionic theory, the Neveu—Schwarz sector is only invariant
under S and T2, the Ramond sector is invariant under S? and T, and TST intertwines these
two sectors. This kind of behaviour is not uncommon in theories with extended conformal
algebras: twisted sectors of bosonic W(2, §) algebras are only invariant under T? and TST
while untwisted sectors are fully modular invariant; modular invariant partition functions

are obtained by orbifolding with respect to outer automorphisms of W-algebras[#0],

2.3 Conformal Boundaries

So far, we have been considering CFTs defined on closed surfaces but it is possible to
construct CFTs on surfaces with boundaries.

For concreteness, let us consider the closure of upper half plane H = {z € C : Im z > 0}
and construct a CFT with the boundary at the real axis z = z. Away from the boundary,
we can treat infinitesimal conformal transformations for z and z independently, and thus
there are holomorphic and antiholomorphic copies of the Virasoro algebra, or its extension,
as usual. But the situation changes at the boundary; from the physical perspective, we
would like to have conformal transformations that preserve the boundary, and therefore

the transformations for z and z are no longer independent. If the condition
T(z)=T(z) at z=2z€R, (2.191)

holds, then this boundary is said to be conformal. This condition can be viewed as the
statement that there is no energy flow across the boundary. In addition, this restricts the
conformal group to PSL(2, R) which maps H to itself and, in particular, leaves the real axis
invariant. Note that the condition (2.191) implies we need ¢ = ¢ in order for conformal
boundaries to exist.

If we perform radial quantization about the origin, this results in the single set of Vir
generators

L = SR - SR, (2.192)
C C

271 211
+

where the contour C, is a semicircle on the upper half plane, which includes the real axis
and the origin. Since T'(z) and T'(%) are independent away from the boundary, we may
“unfold” the antiholomorphic part of the theory about the real axis to the lower half plane,

and define
T(z) for Imz>0
T(z) =1 _ , (2.193)
T(z) for Imz<0
which can be regarded as the stress-tensor of the chiral theory which is defined on the
entire complex plane. Then, L\,’"" corresponds to the usual Laurent modes of T(z).
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For theories with extended conformal symmetries, we may impose boundary conditions
that preserve extra symmetries as well. Consider a theory with chiral algebras A = A and
corresponding generators W () (z) and W(i)(z). If the boundary at z = Z preserves A, then
we should also have

wi(z)=oW(z) at z=z€eR, (2.194)

where (2 is a local automorphism of A which leaves T'(z) invariant. An automorphism €2
induces a permutation w of the labelling set for .4 representations given by the isomorphism
of representations

(pi o2, ;) = (pugy » Hugiy) 5 (2.195)

where p; : A — H; is a representation map. If {2 is an outer automorphism, then i and w(7)
are inequivalent199],

2.3.1 Boundary Fields

Using the definitions (2.193) and (2.192) of T(w) and L\, one can calculate its OPE
with a bulk primary field ¢;(z, z), and equivalently the commutator

(LY 0,(2,2)] = (hy(n+1)2" + 2"110) ¢,(z,2) + (h(n +1)2" + 2"710) ¢, (2, 2) .

(2.196)
We take I = (i,4) for some A = A representation labels i and i. From the “unfolded”
point of view, the bulk field ¢,(z, z) behaves as two chiral fields ¢;(z) and ¢,,; (%) in the
presence of a conformal boundary labelled by a = («,Q2) at z = Z. In this case, z explicitly
means the complex conjugate of z, and the two chiral fields are located on the opposite
halves of the plane as depicted in Figure 2.4. Then, the one-point function of ¢,(z, z)
can be considered as the two-point function of ¢;(z) and ¢,,;) which should vanish unless

i = w(i). Therefore, we can write

Af

~ (2.197)

(p1(2,2))q

where A¢ is some constant, which depends on the boundary condition a and vanishes
unless i* = w(i). Non-vanishing one-point functions depend on their distances from the
boundary; this is not surprising as translations in the imaginary direction are no longer
symmetries due to the boundary along the real axis.

We can view the gluing conditions for W generators (2.194) and the upper half plane
one-point functions (2.197) in another way. Instead of taking the usualll?! analytic
continuation W (z) = QW(i)(z) for Imz < 0, we can simply set W (2) = W(i)(z) on
the lower half plane but take the whole plane with a chiral topological defect D, at z = z
whose action implements the automorphism 2. Then, the one-point function of ¢,(z, 2)
is given by the two-point function of ¢;(z) and ¢;(z) with D, which corresponds to the
picture on the right side of Figure 2.4.

One-point functions (2.197) can become singular as they approach the boundary. Since
OPEs can be considered as a way of expressing singular behaviours of two-point functions,
we can view the singularity of (2.197) as an OPE of the two chiral fields resulting in fields
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«9,(2,2) « ¢i(2) « ¢i(2)

//////////////////////////

« G (2) . ¢3(2)

Figure 2.4: Boundary CFT on the upper half plane and its analytic continuations to the whole plane.

on the boundary. By introducing boundary fields nga) (z) that only live on the boundary, a
bulk-boundary OPE is given by

ei(2) =Y Bz =2l (6P @)+ ) (2.198)
J
where © = Re z and Bf?) are called the bulk—boundary couplings. On the right hand side
of (2.198), omitted terms are descendants of the primary field wj(“). If a bulk field is close
to the boundary labelled by a, we can view it as boundary fields 1/15“) (z). By computing the
one-point functions of the both sides of (2.198), we obtain

(@) _ A7

By = a - (2.199)

where w(()a) is the identity field on the boundary, and A% = (1), is the one-point function
of the identity field which is not usually free to normalise it to one. Using (2.196) and
(2.198), one can derive

(L3, ) (2)] = (hm +1)2" + *i;) ¥ (@) | (2.200)

which implies that we can take i as a label for an irreducible representation of one copy
of Vir or its extension. For minimal theories, the state space of boundary fields living on a
boundary labelled by a can be written as

M, =Pni 5, (2.201)
=
where n{ € Z- counts multiplicities, and 7 is the indexing set for irreducible represen-
tations. If there is more than one boundary field carrying the same representation of
the chiral algebra, that is when n¢ > 1, these boundary fields must be distinguished by
introducing the multiplicity label « € [1,n¢] and writing 1/12(‘2 . We make multiplicity labels
implicit as long as they are not important, in order to avoid unnecessary cluttering of
notations. In addition, if the vacuum state is non-degenerate, that is n§ = 1, the boundary
condition a is said to be elementary.
As we can rewrite bulk two-point functions as boundary two-point functions using the
bulk—boundary OPEs (2.198), we can expect boundary OPEs of the form

WO @)@y Z C¥ (s k—hi—h; (%ZJ;(JL) (y) + -- ) : (2.202)

where CZ(;‘ ¥ are called boundary structure constants. This equation is understood to hold
for x > y. Since boundary fields are only defined on a boundary, analytic continuations
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of (2.202) to y > x are not unique in general. Therefore, Ci(]'.l)k and Cj(f)k are not always
equal up to signs unlike bulk fields.

We may allow boundary conditions to change along boundaries. If the boundary
condition changes from a for x < 0 to b for 2 > 0, this gives rise to a boundary field ¢§ab) (z)
at the origin which is also called a boundary condition changing field. Since boundary
fields 1/12@) () can be considered as the boundary condition changing fields changing the
a-boundary to itself, we simply call both of them boundary fields. In this case, boundary
OPEs (2.202) generalise to

@y y) = > 5@ — gy () + - ) (2.203)
k

for z > y. In this case, the state space of boundary fields on a a—b boundary junction is
denoted by
Moy, = P nipi . (2.204)
i€

where n', € Z- as usual.

2.3.2 Boundary States

Consider mapping a boundary CFT on the upper half plane considered in the previous
subsection to the whole plane with the unit disk removed. If we use a contour encircling
the unit disk for radial quantisation, we can consider the boundary as a certain state in the
completion of bulk state space, which is called a boundary state.

On the upper half plane with coordinates z = x + iy, radial quantisation about the
origin gives |z| = constant as the equal-time surfaces. Then, the real axis can be regarded
as two portions of the spatial boundary with boundary conditions a for z < 0 and b for
x > 0. We can map the upper half plane to an infinite strip of width L € R by

L
w=—Inz. (2.205)
™
The spatial boundaries correspond to the parallel edges of the strip. If we make this strip
periodic in time by imposing

w~w+nR VYneZ, (2.206)

where R € R, can be regarded as the length of a finite strip. Then, we can map this strip
to an annulus by

27i

(=e RY. (2.207)

The two circles of the annulus correspond to the boundaries as depicted in Figure 2.5. If
we swap the roles of time and space, and consider radial quantization about the origin
of the (-plane with contours defined on the annulus, the inner circle can be regarded as
a boundary state ||b)) and the outer circle corresponds to a “dual”?® boundary state {(a|.

20.As we shall see later, the usual inner product {a||a)) diverges. We will elaborate on in which sense (a|| is
considered as a dual of ||a)).
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Using (2.51), the gluing condition (2.191) becomes
(Ln — E_n) |b) =0. (2.208)

Since W(i)(z) is a chiral primary field with conformal weight h,;, we can use (2.17) to
rewrite (2.194) as
(W};) (=) QWEL) 1) = 0. (2.209)

As we shall see later, boundary states can be used to determine the spectra of boundary
fields as well as a consistent set of boundary conditions.

Sl w=il, w=iL+R

//////////////////////////////////////

Figure 2.5: Mapping boundary CFT on the upper half plane to a cylinder, and then to an annulus.

From the condition (2.208) for n = 0, we see that a boundary state lives in a subspace
of the bulk state space with h = h. Moreover, (2.208) and (2.209) implies that a boundary
state ||b)) acts as an intertwiner for A irreducible representations, and from Schur’s lemma,
||b)) must be composed of zero maps and isomorphisms. For each irreducible representation
I, of the chiral algebra A, the Ishibashi statel?!- 21 is given by

i) = lisn) @ Ulisn) | (2.210)
n=0

where |i;n) is an orthonormal basis of 3{(; with |i; 0) being the highest weight state, and
the antiunitary?? operator U satisfies

UL,=L,U and UlJi;0) = |i";0) . (2.211)

21.We use |i)) to denote an Ishibashi state, and ||b)) means a generic boundary state.
22.0ne has to be careful when using the Dirac notation with antiunitary operators. For some Hilbert space H
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For other generators of A, U satisfies

UWS) — (_1)hiWS)U for h;€Z, and
— — - 1
UWY = (~)" WV U(-1)F for heZ+ 3 (2.212)

Then, the Ishibashi state |i)) is a solution of (2.208) and (2.209) with 2 = id. The antiuni-
tary operator maps U : 7(; — H;+, therefore |i)) € H; ® H;+. Since H;+ is isomorphic to
the dual space of 3(;, we can view |i)) as an intertwiner of the chiral algebra representations
3, and 3. Ishibashi states are unique up to overall normalisations.

Since a bulk one-point function (2.197) vanishes unless i* = w(i), we expect an
Ishibashi state |i))(,, which is a solution of (2.209) for non-trivial (2, to be an element of

H;® ﬁw—l(i+). If we define a unitary operator
VQ . g{i"' — j{w—l(ﬁ-) (2213)
such that
o1+ (Qx) = Vo pir (2) ViH Vo e A, (2.214)

then a twisted Ishibashi state |i)), can be written as[!0°]
o =1 Vo)|i) (2.215)

where |i)) € H; ® H;+ is given by (2.210).
We define a dual Ishibashi state as

o0

(il =Y (isn| @ Ui n)] (2.216)

n=0

where (i;n| is the dual vector of |i;n) defined by (i;n|j;m) = 6, ;0, . Since U is an

antiunitary operator, we can calculate

(U@isn)| Uljzm) = (Gymli;n) = 0505 - (2.217)

In addition, we define
ol = il e V). (2.218)

Recall that V[, is a unitary operator.

As it is clear from the definitions (2.210) and (2.216), the norm of an Ishibashi state
|i)) diverges if we use the usual inner product ((i|i)). It is not too surprising since boundary
states do not correspond to any local fields in the theory. Instead of ((i|i)), we may consider

iz (FotEo=2) ) = (|2 (ot Eo=12) ), = 6,5 x4(d) (2.219)

with an inner product (-, -), the Dirac notation is understood as (z|A|y) = (x, Ay), where z,y € H and A is an
operator acting on J{. If A is a linear operator, we can use the definition of adjoint (Az,y) = (x, Aty) and write
the “dual vector” as (Az| = (x|Af. The problem is that antiunitary operators are antilinear; an antiunitary
operator U on J{ satisfies (Uz, Uy) = (z,y)* = (y,z) and its adjoint is defined by (Uz, y) = (x, UTy)* where
* means complex conjugation. Therefore, we cannot write a dual vector (Uz| using (x| and U,
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where x;(q) is the Virasoro character of ;, as an “inner product” for Ishibashi states. The
overlaps of Ishibashi states (2.219) converge for |§| < 1. As we shall see explicitly for the
N = 1 super-Virasoro case, overlaps of untwisted Ishibashi states with twisted ones may
produce certain “twisted” characters.

So far, Ishibashi states are given in terms of orthonormal bases of irreducible repre-
sentations. While they are convenient for deriving properties of Ishibashi states, we often
prefer them to be written in terms of basis vectors of the form

Wi wh o ow L L i) (2.220)

~my “ e 1y

where |i) is the highest weight vector of 3;, and the modes are ordered similar to (2.96) but
ny; > 0, my > 0, etc. in this case. It is simpler to implement Ishibashi states in a computer
program using vectors of the form (2.220) as we can start from the corresponding Verma
module and discard some basis vectors level by level to obtain a basis of the irreducible
module?3. For an irreducible representation J{; of a given chiral algebra, let (3{;) v denote
the level N subspace with the L,-eigenvalue h; + N, and let |i; N,[) be a basis vector of
this subspace, which is given in the form (2.220) and labelled by 1 </ < dim(X;) . Since
it is an irreducible representation, the Gram matrix for this subspace is invertible. In this
basis, the Gram matrix is given by

(TN )im = (@5 N, 1|i; N,m) . (2.221)

Then, the Ishibashi state corresponding to J; can be written as

dim(%;) &
) =>" Y O3 i N ) @ Ui Nym) . (2.222)
N=0 I[m=1

Using (2.211) and (2.212), we can move U all the way to the right and act it on the
highest weight vector |i). Therefore, we can write

Uli; N,m) = uy p,|it; N,m) (2.223)
where uy ,,, € Cis a factor which depends on |i; N, m). Once we have obtained an Ishibashi
state |i)), the corresponding dual Ishibashi state ((i| can be constructed using (2.75) and
taking the complex conjugates of the coefficients.

Any boundary state can be written as a linear combination of Ishibashi states

o)y =D gilé) i b=(8.id), or

€Ty

B) = gilidg if b=(8,9), (2.224)

i€Zd
where g € C. The indexing sets i € Zg and i € Z}} are given by

Ip={ieT:(i,it)eS} and icT¢={iel: (i,w (")) eS8}, (2.225)

23.This procedure may not be unique in general but it will give a basis of the irreducible module since vectors
of the form (2.220) are linearly independent.
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where 7 is the indexing set for A4 irreducible representations, and S is the spectrum of bulk
fields. Similarly, dual boundary states can be written as
@l=>Y (lg if b=(sid), or
i€y
@l => qolilg if b=(59), (2.226)
i€Td
where g; is the complex conjugate of g}. In addition, we have[®7- 1091 gi — g% — i, 'where
b™ is understood as a “charge conjugation”, or a certain involution on the labelling set for
boundary conditions, which is defined by this relation.

2.3.3 Cardy Constraints

Let us go back to the situation depicted in Figure 2.5. As before, we take the w-plane to be
periodic in the time direction with the condition (2.206). On this strip, we can write the
Hamiltonian as

27 c

Hyp = = (L(UHP> . ﬂ) . (2.227)

Using this Hamiltonian, the partition function on this strip is given by

(UHP) _ ¢
Doy = Tryy, e B = Tryy glo 51, (2.228)
where ¢ = €*™7 with 7 = 1R Since the state space H,, can be written as (2.204), we
obtain
Zap =Y iy Xi(q) - (2.229)
i€

If we swap the roles of space and time, we can view this strip as a cylinder with the
circumference R and the length L, which is equivalent to the annulus in Figure 2.5. Using
the Hamiltonian on this cylinder

2w - c
Hep = = (Lo Ly E> , (2.230)
the amplitude between the two boundary states can be written as
(blle™ ot la) = (bllg P Eo=i3) la) = 3 gh ghxi(@) (2.231)
i€l

where § = ¢ 2™/7 and we have used (2.219), (2.224), and (2.226) assuming the both
boundary states are untwisted. Since the two quantities (2.229) and (2.231) are related
by the modular S transformation, we obtain
D G gk Suxi(a) = niyxia) | (2.232)
i€y jE€T i€l
which is called the Cardy constraint!?®!. Since nl, € Z, if we calculate the overlap of
two boundary states, its modular S transformation should be interpretable as a sum of
Virasoro characters of A irreducible representations with non-negative integer coefficients.
In addition, if the boundary state coefficients g} are know for a given boundary, then the
spectrum of boundary fields n', can be obtained from (2.232). In Boundary CFT, one of
the important tasks is to determine the maximal set of elementary boundary conditions
that satisfy the Cardy constraint from a given bulk partition function.
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2.3.4 A-D-FE for Boundaries

For theories with charge conjugate modular invariant bulk partition functions, Cardy!?®
gave solutions to the constraint (2.232). For untwisted Ishibashi states, their indexing
set (2.225) is the same as that of the A representation, that is Zg = Z. In addition, the
labelling set 5 for boundaries is the same as Z. Cardy’s solutions are

A g .
Jo = o=, (2.233)
V SOz‘

where S,; are the elements of modular S matrix. Then, the Cardy equation (2.232) gives

ab_ngga ji Zga9b+ J%*ZZ

JjET JET JET

1
S‘”S;;jsﬂ* = NI, =N.,, (2234
therefore the Cardy constraint is satisfied as the fusion coefficients are non-negative inte-
gers. In addition, these boundary states are elementary as we always have N?, = 1. Note
that we have used properties of the modular S matrix (2.183) to show the Cardy constraint.
Boundary states with coefficients of the form (2.233) are called the Cardy boundaries.

In [67], boundary states satisfying the Cardy constraint are systematically constructed
for sAl(2) »-WZW and Virasoro minimal models. As it will turn out to be convenient later, we

rewrite the boundary state coefficients as

e
g = ) (2.235)
VS0i
Then, the Cardy equation (2.232) becomes
= J . 2.236
=D Vi Ui SO (2.236)
J€I J

where ¢ is the complex conjugate of ¢, and they satisfy ¢}, = ¢i" = ¢!, . Alabelling set
for boundary conditions B is called complete[>> 671 if

> Wbl =0, (2.237)

a€eB

which implies that the number of boundary states |3| is the same as that of Ishibashi states
|Zg| or |Z§|. If boundary states are complete, we can calculate

o S _ S
D omanie =Y, > vevhg WUl g

beB beB I meTy
Szl S
= Z ¢a %
IeTy
Sim S im
= Z% wc Z l,m S 4
€Ty I mey om
Sim SjmSp
= > > z/;l S’“’ —im _mkm S”” => Nfnk.. (2.238)
1,meTy kel Orm keT
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By defining |B| x |B| matrices (n;),, = n’,, we see that they form a NIM-rep of the fusion
algebra
n;n; = Z NEny, . (2.239)
ke
From (2.236), we have a relation ni, = ni' = ni. .+, and therefore the matrices satisfy
n;+ = n;. Furthermore, if the boundary states are orthonormal, that is, they satisfy

> Ll =0, (2.240)
i€Ty
then ny = 1 is the identity matrix. As a representation of the fusion algebra, the matrices
n; commute each other, and they can be simultaneously diagonalised. Using the diagonal
matrix D; defined in (2.175) and writing the boundary state coefficients as a matrix (\),; =
Y%, the Cardy equation (2.236) can be written as[””]

n; = D; Pl (2.241)

from which we see that 1\ diagonalises n;, and therefore 1\ can be constructed as a matrix
of eigenvectors of n;.
For sAl(2)k-WZW theories, fusion rules are given by
min{i+j—1,2k—1—i—j}
() ® (j) = . ), (2.242)
I=|i—j|+1
i+j+1=1" mod 2

where i, 4,1 € [1,k + 1] label integrable highest weight representations of sTl(2) k- Since
(2) ® (2) = (1) @ (3), it is possible to obtain fusion matrices N; from the repeated actions

of N, using the recursion relation
Nippn =NogN; = N;_; . (2.243)

This applies to the matrices n; as well, which means that we can obtain a set of boundary
states if we could find n,. As shown in [67], it turns out that n, is an adjacency matrix of
A-D-F (and tadpole) diagrams by considering the eigenvalue matrix D,. In addition, the
indexing set Zp for Ishibashi states is given by the set of exponents of the corresponding
diagram. For a given bulk partition function associated with a diagram G of A- D - E type,
boundary states satisfying the Cardy constraint can be obtained from an eigenvector matrix
of the adjacency matrix of G.

For a Virasoro minimal model M (p, q), one can use the fact!®”! that the fusion matrices
can be written in terms of tensor (Kronecker) products of the sl(2),, fusion matrices at level
(k)

k = p— 2 and level k = ¢ — 2. Denoting a §1(2) r fusion matrix by N,™, fusion matrices of

M (p, q) are given by
— N®—2) (¢—2) (p—2) (¢—2)
N =NFPoNF P+ NN . (2.244)

Since one of the diagrams denoting a bulk partition function is always of A,, type, it suffices

to consider an invariant of the form (A,_;,G) for M(p,q). In this case, the matrices n,. ,

p—1>
can be written as
n, = N;p*Q) @ ng + Ng’:f) ® Ny s, (2.245)
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where n,, which is often referred to as a fused adjacency matrix, is constructed from n,,
the adjacency matrix of G. Boundary states are labelled by (7, a) where r and a are nodes
of A, ; and G Dynkin diagrams, respectively. When G is one of A,,, Doqq, Or Ep, there is
an identification of boundary states given by

(r,a) ~ (p—r,7(a)) , (2.246)
where + is the Z, automorphism of the Dynkin diagram. For other cases, we have
(r,a) ~(p—r,a). (2.247)
The set of Ishibashi states is given by
Ig={(r,s)~(p—r,q—s):1<r<p—-1 and se&(G)}, (2.248)

where £(G) denotes the set of exponents of the G Dynkin diagram which can be found in
Table 2.2. The boundary state coefficients are given by

\I](r ,8) \/585‘1/7;2) (G)@Z}Z , (2.249)

(r'.a)

where S is an element of the sTl(2)  modular S matrix

, [ 2 mi)
(k) __
Sl-j = k+2sm <k:—|—2> (2.250)

with k = p — 2, and ‘9%, is an eigenvector of the adjacency matrix of G whose explicit

expression can be found in [67]. Then, the boundary states corresponding to the (A4, 4, G)
bulk modular invariant can be written as
T
|7/, a) Z (T 2 |r, s)) (2.251)

(r,s)eZy V (1 1(rs)

where S, ,,, ., is an element of the modular S matrix of M (p, ¢) which is given in (A.18).
If we consider a unitary Virasoro minimal model, the modular S matrices of M (p,p + 1)
and sAl(2) i, are related by

3 _ 3(—1) i) et g2 g (2.252)

1 51 'r2 52 T1T9 S$189

from which we can understand the factor of v/2 in (2.249) since '” z/Ja =S,

2.4 Conformal Defects

Defects in two-dimensional CFTs are one-dimensional objects that can be considered as
inhomogeneities in a theory or interfaces between two CFTs.

As an example, let us consider a situation where the upper and lower half planes
correspond to, possibly different, CFTs separated by a defect along the real axis. We denote
the stress-energy tensors on the upper half plane by T (z) and T (z), and those on the
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lower half plane by T (z) and T®®(z). We may call these theories CFT; and CFT,. For
the moment, we consider z to be independent from z. If the condition

TO)=TY(Z)=TP(2)—TP(z) at z2=z€R (2.253)

holds, then this defects is said to be conformal. In the Cartesian coordinates z = x + iy,
this means T;,Ely) = Tfy) , that is, the total momentum is conserved across the defect. If we
use transformations

1—1z _ 1—az
and w=_-——-,
144z

then the real axis on the z-plane is mapped to the unit circle on the w-plane, and the upper

(2.254)

half plane is mapped to the exterior of the unit circle. Using (2.51), and considering radial
quantisation about the origin of the w-plane, the condition (2.253) becomes

(LY — LU)D = DL — 1) (2.255)

where the defect operator D : H, — H; is a map from the bulk state space of CFT, to that
of CFT,. By considering a map similar to (2.254), which sends the upper half plane to
the interior of the unit circle, we can obtain the operator of the orientation reversed defect
D' : H, — M, which satisfies the conformal condition (2.255) with the labels (1) and (2)
exchanged.

Going back to the z-plane, we can consider “folding”>% >°! the whole theory about the
real axis, and obtain the product theory CFT; x CFT, which is defined only on the upper
half plane. By CFT,, we mean the holomorphic sector of CFT, becomes a part of the
antiholomorphic sector of the product theory, and vice versa. For z and z on the upper half
plane, the stress-energy tensors of the product theory are defined by

T(z) = TO(2) + T®(z*) and T(2) = T (2) + TO(2"), (2:256)

where * means complex conjugation, and the quantities on the right hand sides are defined
on the whole plane as z and z* will correspond to the same point after folding. Then, the
condition (2.253) becomes

T(z)=T(2) at z=z€eR, (2.257)

and we see that conformal defects correspond to conformal boundaries in the folded
theories. In this sense, defects satisfying the condition (2.253) are called conformal. From
the condition (2.257), the central charges have to satisfy ¢; + ¢y = ¢; + ¢, in order to
have conformal boundary conditions corresponding to conformal defects between the two
theories.

There are two obvious solutions to the equation (2.255). The first one is given by

(LY ~LY)D=0 and D(LP ~L%)=0, (2.258)

and D acts as boundary states of CFT; and CFT,. Such conformal defects are called
factorising defects, and their operators can be expressed as a sum of

D = ||la){b]| , (2.259)
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where ||a)) and ((b|| are boundary states of CFT; and CFT, respectively. Since the two
theories need to have conformal boundaries, the requirement for factorising defects is
¢; = ¢; and ¢y = ¢y. The second solution is given by

LYWD=DL® and LM D=DL® , (2.260)

and conformal defects satisfying this condition are called topological defects. They act as
intertwiners for each of holomorphic and antiholomorphic representations of the Virasoro
algebra, and therefore they can be moved freely without changing the values of correlators
as long as they do not cross field insertions or other defects. Topological defects only exist
for the cases when ¢; = ¢, and ¢; = ¢,.

2.4.1 Topological Defects

From (2.260), we can view topological defects as interfaces relating two CFTs at the same
central charges. If they are described by the same modular invariant partition function,
topological defects can be considered as something internal to the theory. In the context
of two-dimensional CFT, topological defects were first studied in [74] and [75] from this
perspective. On the other hand, topological defects can relate theories with different
modular invariants. In [89], such topological defects were formulated in terms of the
topological field theory (TFT) approach to RCFTL76 84 85, 86,87] " where the topological
defects between the ¢ = % CFTs, the tetra-critical Ising model and the three-states Potts
model, were constructed as an example. Topological defects between the free boson
CFTs with different compactification radii are studied in [90]. For rational CFTs, all the
correlators involving topological defects can be obtained by the TFT approach. In particular,
it gives the classifying algebra for topological defects!192], which is similar to the sewing
constraints for conformal boundaries. In the context of TFT approach, topological defects
were studied, for example, in [83] and [89].

Topological defects can exist within a CFT. In this case, the condition (2.260) becomes

[L,,D]=0 and [L,,D]=0. (2.261)

If the chiral algebras are larger than the Virasoro algebra, it is possible to take D to
commute or anticommute with the extra generators but, for now, let us consider Virasoro
minimal models. Then, the bulk state space can be written as

H=P M;H, 25, (2.262)
i,i€T
where 7 is the indexing set for the Virasoro irreducible representations J(;, and non-
negative integers M;; are the multiplicities. For brevity, let us denote

3, @ T = M (2.263)

if M; # 0, and « € [1, M;;] distinguishes degenerate representations. Since topological
defects act as intertwiners for the irreducible representations (2.263), the operators D
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should consist of isomorphisms and zero maps for these subspaces of . Degenerate

representations are isomorphic as vector spaces, and therefore we can introduce projectors
(a”) (@)

‘Pi,f;a,o/ . Hz’z — H’Li (2.264)

that act as the identity maps of the vector spaces. We define

(P, f=p- (2.265)

z,i;a,a’) — Ligal,a

which can be regarded as a part of the orientation reversed topological defect. As projectors,
they satisfy
PiioaPigpp = 0ij 0508 Lijap - (2.266)

Then, we may write an operator satisfying (2.261) as

Mg _
Dy=, > 9" Pipa (2.267)
i,EEI a,a’=1
where ¢i%“® € C in general, and « labels distinct topological defects.

Similar to the conformal boundary case, we need to impose certain consistency condi-
tions on (2.267) in order to obtain the operators describing “sensible” topological defects.
One of the consistency conditions, which is discussed in [74], is similar to the Cardy con-
straints for conformal boundaries, and we will describe it in the next section. At least,
there is one operator which can be written down immediately: the identity operator on
the bulk state space H corresponds to the identity defect.

2.4.2 Cardy-type Constraint for Topological Defects

The Cardy-type constraint for topological defects can be obtained by considering compati-
bility with the modular S transformation of a torus.

Let us consider a torus specified by the modular parameter = with two topological
defects a and b in the opposite directions along non-contractible circles. By mapping this
torus to an annulus in such a way that the defects are mapped to two concentric circles
about the origin, the torus partition function can be expressed as the trace over the bulk
state space H

Mz B o
Try (D] Dy gho 5 gP051) = 37 3 g g5 xi(@il@) (2.268)

i,i€T a,a’=1

—27i/T

where § = ¢ and § = €2™/7, Here, we used

Terg (Prioar @075 G075 ) = b0 o0 xi@)X(0) - (2.269)

This annulus is equivalent to the complex plane with punctures at the origin and the point
at infinity, which is depicted in Figure 2.7. On the other hand, it is possible to use another
map from the torus to an annulus, on which the defects are placed in the radial directions
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as in Figure 2.6. As a consequence, the space of states in radial quantisation is different
from the bulk state space #, and this state space is given by

Hap = P NG 96, 0 96, (2.270)
i43€T

where N ;,f € Z> are multiplicities. Then, the torus partition function is equivalently

written as
Zap(a:@) = Ty, (4075 g5 ) = 37 NG xila)l@) (2.271)
i,i€T

where ¢ = €™ and § = e~ 2™, Since (2.268) and (2.271) are related by the modular S
transformation, we obtain the consistency equation for topological defects[7

M,
SF S s s g = Y AT v, @)
i,i€Z j,j€T a,a’=1 j,J€ET

Compare this with the Cardy constraint (2.232). Since J\/ 77 must be non- -negative integers,

_iisa,a) z,z,aa

the equation (2.272) constrains possible values of g, and g,

As in the boundary case, we rewrite the coefficients of topological defect operators as

giiaa’ _ YT (2.273)

v/ S0iSe; 7
then the Cardy-type constraint (2.272) becomes
- M;; s .- . S..S—
N =30 >0 gty U (2.274)
S0;50

]7.}61 CM,O/:l
If the set 7 of topological defects is complete, in the sense that

Z ¢éﬁ;a,a'¢g,jﬂ B =6, 0i 00 Ot (2.275)
a€eT

holds, using (2.274), we can obtain

STNG NG = ST NENENEE (2.276)

beT kkeT

By introducing |7 x |7| matrices (N;7)q, = !, the above equation becomes

ab’

NG = > NENEN, 1, (2.277)

kkeT
from which we see that the matrices N, ; form a NIM-rep of the “double” fusion algebra.
Their relation to Ocneanu’s double trlangle algebra is studied in [75]. In the context of the

topological field theory (TFT) approach to RCFT, these “double NIM-reps” are discussed
in [76].
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If the bulk partition function is a charge conjugate modular invariant, a solution of
(2.272) is given byl74 7°]
%" =g" (2.278)

and the indexing set 7 for topological defects is the same as that for the irreducible

representations 7. In this case, elements of the matrices N, ; are

Noy =D Noi® Nii" . (2.279)
keI
These topological defects are elementary in the sense that the vacuum representation is

unique, that is Ng;’ = 1. In general, the number of elementary topological defects is given
byl761 37, ez (M;7)?, which is |Z] in this case.

2.4.3 Defect Fields and Disorder Fields

Let us consider the space of states in (2.270). The state space H,,;, is obtained by mapping
the torus to a complex plane, and considering radial quantisation about the origin. This
map is depicted in Figure 2.6. Since the topological defects labelled by a and b join at the
origin of the plane, this can be viewed as a defect changing field 1/15%2(,27 Z) inserted at the
origin. There may be more than one defect changing fields carryi}{g the representations
(i,7), and they are distinguished by multiplicity labels o € [1, ;g] The state space H,,
corresponds to the defect changing fields wz(%b(l(z, z). Similarly, if we consider a state space
H,)q» this gives topological defect fields @bg%?a(z, z) living on the topological defect labelled
by a. For brevity, we often call them defect fields. An important class of defect fields is
obtained by considering a state space H,|y, where the label 0 corresponds to the identity
defect. The defect fields 1/11(‘%0;(2, Z) join the defect a and the identity defect. In other words,
the topological defect a can end on a defect field wﬁ%(z, zZ). Such defect fields are called
disorder fields. From this perspective, bulk fields can be considered as the defect fields
living on the identity defect. Therefore, Hyy = H.

Figure 2.6: Mapping the torus to the complex plane with defect fields.

Since the consistency equation (2.272) relates the two ways of mapping the torus to
the complex plane depicted in Figure 2.6 and Figure 2.7, topological defect fields are also
related to the bulk fields with loops of topological defects around them. Given a bulk field
¢;(z, z), the action of a topological defect loop a surrounding ¢,(z, z) clockwise is denoted
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by D,¢,(z, z), and the action of the loop surrounding ¢, (z, z) anticlockwise is denoted by
Dig,(z, 7).

Figure 2.7: Mapping the torus to the complex plane with defect loops.

Since topological defects can be moved freely without changing the values of correlators
as long as they do not cross field insertions, we can consider a situation where a bulk field
approaching a topological defect giving rise to a defect field, which is illustrated in Figure
2.8. In general, the results of two limits depicted in Figure 2.8 do not have to be the same.
In addition, not all of defect fields arise in this way as they may carry combinations of

holomorphic and antiholomorphic representation labels that are not available in the bulk

spectrum.
*p(z,2) (@) (@
a 15t a !5l
‘L a /L/)iﬁ;oz(z 2 ) a a wi,z;ﬁ('z = )
—_— > ———— —_— > ————
* ,(2,2)

Figure 2.8: A bulk field ¢, (z, z) with I = (i,4) approaching a topological defect labelled by a.

For a defect a along the real axis, it is possible to pick a basis of defect fields, and define
the bulk—defect OPE!10]
@O fyfhe s o) (@) for y >0

©,(2,2) = J33 , (2.280)

Gy L @3 ylrahaly Pt @) (1) for y <0

where z = z + iy. For topological defects, bulk—defect OPEs must be non-singular, and
therefore (1CI7* = (0G5 — () unless h, = h; and h; = h;.

2.4.4 Fusion of Topological Defects

As long as they do not cross field insertions, we can bring two topological defects arbitrarily
close, and consider them as another topological defect. This procedure is know as fusion
of topological defects. Given two topological defect operators®* D, and D,, their fusion is

24.So far we are assuming that topological defect operators characterise topological defects uniquely but this
may not be true in certain cases. See, for example, Section 4.5 and Appendix A of [90]. In general, one has to
calculate correlators involving defect fields in order to distinguish topological defects. We only consider the
cases where defect operators are unique for topological defects.
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given by the composition of operators D, D,. A priori, fusions of topological defects do not
have to be commutative.

If the bulk partition function is given by a charge conjugate modular invariant, we can
use the operators describing elementary topological defects given in (2.278), and obtain
the fusion rules for such defects

D,Dy=> N§D,, (2.281)
ceT

where N, are the usual fusion coefficients of the chiral algebra .A. In this case, topological
defects are not only labelled by the irreducible representations of .4 but they also obey the
same fusion rules. As it is clear from (2.281), fusion products of elementary topological
defects are not necessarily elementary but decompose into elementary ones. In addition,
this implies that if D, appears in the fusion rule of D, and D,, then we can form a junction
of such topological defects as depicted in Figure 2.9. Since the positions of such junctions
can be moved freely, corresponding junction fields necessarily have zero conformal weights.

Figure 2.9: Fusion of topological defects and junction fields.

Moreover, topological defects can act on conformal boundaries and change their bound-
ary conditions!”?l. As before, let us consider a theory with a charge conjugate modular
invariant bulk partition function. Since elementary boundary conditions are given by
(2.233), we can use (2.278) and obtain

Du[lb) =D Nglle) , (2.282)
ceT
where ||b)) and ||c)) are Cardy boundary states. In addition, we can consider a situation
where D, acts only on a part of the boundary. Then, this can be viewed as the topological
defect D, ending on the boundary at the point where the boundary conditions change
form b to ¢. Thus, if b appears in the fusion rule of a and b, then a topological defect D,
can end on a boundary with the boundary condition b.

By sweeping a topological defect D, across a bulk field insertion, we obtain a disorder
field with the topological defect D, D] as illustrated in Figure 2.10. The disorder field
and D,D) may decompose into the sum of elementary topological defects with certain
disorder fields. In Figure 2.10, D, denotes a linear map which assigns a disorder field
Dyoo(0;(2,2)) at the end of D, for a given bulk field ¢,(z, Z) as a result of surrounding
it clockwise by a loop of D, with a D, tether. The junction between two D, and one D,
is labelled by a suitably normalised intertwiner(838%1 o. Some of D,,,(¢,(z, Z)) in the
expansion of Figure 2.10 may vanish; such ‘diagrams’ do not contribute to the expansion.
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b
P = Z «

ba Dbaa (991)

Figure 2.10: Sweeping a topological defect across a bulk field.

If the bulk partition function is given by a charge conjugate modular invariant, the
spectrum of disorder fields associated with a topological defect D, is given by
;7 +
=) NEN) =N . (2.283)
keZ

That is, if a* appears in the fusion rule of i and 4, then D, can end on a disorder field
(a0)
Y

1,70

do not appear in the bulk spectrum.

(z,z). In particular, we always have the disorder fields wi‘ioz)(z) and wé‘fl (z), which

In certain cases, it is possible to deduce the results of Figure 2.10 by a simple method.
If the bulk partition function is a charge conjugate modular invariant, we can use (2.278)
and (2.279). Let us consider sweeping a topological defect D, across a bulk field ¢,(z, 2)
with I = (4,i) assuming that we know the fusion rule D,D} = > Dy If b= 0 is allowed
by the fusion rule and D,y,(z, Z) does not vanish, then this term appears in the expansion
of Figure 2.10. For other D, with b # 0, if the representation (i,4) appears in Hopp, then
wg%(z(z, z) with topological defect D, appears in Figure 2.10. For this calculation, we can
us’e7 (2.283). For example, we can use these rules to understand the actions of topological
defects on the bulk fields in the Ising model given in Figure 3 of [83].

There are two special classes of topological defects that are of great importance. A
topological defect D, is called group-like if and only if DiD, = D,, where D, denotes the
identity defect. If we sweep a group-like defect across bulk fields as in Figure 2.10, the
resulting disorder fields are again bulk fields. Therefore, the set of group-like defects forms
a group and it describes internal symmetries of this CFT. A topological defect D, is called
a duality defect if and only if DID, is a sum of group-like defects. Duality defects describe
order-disorder dualities of the CFT!83 81,

2.4.5 Defect Flows

Similar to bulk and boundary perturbations, it is possible to consider perturbations of
conformal defects by defect fields. In particular, we focus on perturbations of topological
defects.

Let us take a theory defined on the complex plane with a topological defect D, along
the real line € R. Then, a perturbation of D, by a defect field wg%_)a(x) is given by adding
the action a term h

Spert, = A /R ¢§g3a(x) dz (2.284)

where A € C is a coupling constant. This modifies correlation functions and the perturbed
defect is denoted by Da()\wf%?a). If the perturbing defect field has the scaling dimension
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h; + h; < 1, then it is relevant. We are interested in the defect flows whose end points
correspond to non-topological and non-factorising conformal defects.

Consider perturbations of a topological defect D, by a chiral defect field ‘/’z‘(,%) (z). In
reality, existence of such defect fields depends on a model and D,, however let us assume
that the topological defect D, has chiral defect fields. Since )\1/)1%) () commutes with all L,,,
the end point of this flow corresponds a topological defect!8!. Furthermore, if h; < 1/2,
perturbations do not require UV regularisations'°?!. Relevant perturbations by chiral defect
fields are studied in, for example, [65] and [92]. Truly marginal deformations by chiral
defect fields are studied in [90].

In certain cases, the end points of flows correspond to conformal but non-topological
defects. In particular, in a unitary Virasoro minimal model M (p,p + 1) with the diag-
onal modular invariant bulk partition function, perturbations of the topological defect
D4 ), where the subscript denotes its Kac label, by a linear combination of chiral de-
fect fields A\jib(1.3),0 + Artbo,(1,3) living on this defect give flows leading to four possible
endpoints'®®: another topological defect D(s,1), the identity defect, a factorising defect,
and a non-topological and non-factorising conformal defect.
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Chapter 3
Conformal Defects and W-Algebras

In this short chapter, we discuss the W(2,2) symmetry of the product theory and their
relations to the boundary states associated with topological and factorising defects.

3.1 Product Theory and W(2,2)

In the product theory CFT; x CFT5 defined on the upper half plane with the stress-energy

tensors (2.256), we can introduce the chiral primary fields

1/62T“) ~ AT and Wz ,/CQTM ~JATeEy . @31
Co C2

Therefore, the chiral algebras of CFT; x CFT, can be regarded as two copies of W(2,2).
In addition to (2.257), if we have

W(z)=W() at z=z€eR (3.2)
as well as ¢; = ¢; and ¢y = &,, then this gives
TW(2) =T"(z) and TP (z) =T9(z), (3.3)

which means this boundary condition corresponds to a factorising defect. If the central
charges satisfy ¢; = ¢, and ¢; = ¢,, the two copies of W(2, 2) have the Z, automorphisms
given by W (z) — —W(z) and W(z) — —W (2). Therefore, in addition to the untwisted
boundary condition (3.2), we can also impose the twisted boundary condition

W(z)=-W(z) at z=z€R, (3.4)
then this yields the conditions for a topological defect
TY(2) =T®(2) and TW(z) =T%(z). (3.5)

Therefore we see that the factorising and topological defects correspond to W(2, 2) bound-
ary conditions in the folded theory.

If there is a conformal boundary state in the product theory which corresponds to a
non-topological and non-factorising conformal defect, it has to break the W(2, 2) symmetry
of the theory.

3.2 Reflection and Transmission Coefficients

The reflection and transmission coefficient of a conformal defect D was defined in [91]
using the matrix -
oo OILLYD)
(3

Iy (3.6)
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where || D)) is the boundary state in the folded model corresponding to the defect D. The
reflection coefficient R and the transmission coefficient 7 of D are given by

(c1)? + 2¢icowp, + (€9)?

R = R Ryy) = d 3.7

C1+02( 11 + Rag) CETAE an (3.7)
2 B 2¢165(1 — wp)

T = S (Ri2 + Ro1) = et a)? (3.8)

where the quantity w,, can be expressed as

2 (W, T, D)
- 3.9
“p= e (D) (3:9)

using our definition of W(2, 2) generators given in (3.1).

In the folded theory, there is a diagonal Vir primary state defined by
2

W) = W_sW _4|0) . 3.10
W)= WV ol0) (3.10)

Since the W(2,2) generators are normalised as d,, = §, where ¢ = ¢; + ¢y, we have
(W|W) = 1. Using |W), we can simplify (3.9) as
(WD) _ 95

“0="01D) = b o

where ¢% and gV are given by the expansion of ||D)) in terms of the Virasoro Ishibashi
states
ID) = g5 [0) + g5 [W) +--- . (3.12)

This means that it is straightforward to calculate the reflection and transmission coefficients
once we obtain the explicit expression for the boundary state corresponding to a conformal
defect.

Consider the W(2, 2) Ishibashi condition

(W, —eW_,) |h,e) =0, (3.13)

where € = 1 gives the untwisted sector, and e = —1 corresponds to the twisted sector which
only appears when ¢; = ¢,. If we focus on the Vacuum sector of W(2,2), we can write the
corresponding Ishibashi state as

|0,e) =[0) +e|W) +---. (3.14)

From (3.2) and (3.4), we know the factorising and topological defects correspond to
untwisted and twisted W(2,2) boundary conditions, respectively. Therefore, using the
relation (3.11), we obtain

w, = 1 for factorising defects, and (3.15)

w, = —1 for topological defects, (3.16)

which is in agreement with [91].
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Chapter 4
Perturbative Calculation of Reflection Coefficients

In this chapter, we calculate the reflection and transmission coefficients of the conformal
defect C in diagonal Virasoro minimal models using the leading-order perturbation calcu-
lation. The defect C is the endpoint of a defect flow of the topological defect D(; 5y by the
combination of chiral defect fields, which was considered in [98]. One characteristic of a
conformal defect is its transmission coefficient 7, or equivalently its reflection coefficient
R = 1— T, which was defined in [91]. These take the values R = 0 for a topological
defect and R = 1 for a factorised defect, and 0 < R < 1 for a general conformal defect in
a unitary theory [115].

The aim of this chapter is to calculate the reflection coefficient of C' perturbatively,
and compare the value for the tri-critical Ising model with the result obtained from our
construction in Chapter 6.

4.1 D, Defect and Its Perturbations

In this chapter, we focus on diagonal Virasoro minimal models M (p, ¢), also know as the
(A,_1,A,_1) invariant. Recall that the coprime integers satisfy 1 < p < ¢, and we shall take
p > 2and g > 5. For M(p, g), there are (p—1)(¢—1)/2 primary fields corresponding to the
Virasoro highest weight representations, and we use the Kac labels (r,s) ~ (p—r,q—s) for
both of them. For the defect perturbations we consider in this chapter, we are going to be
especially interested in the representation (r, s) = (1, 3), and we denote the corresponding
conformal weight as

hmhg=2 1. (4.1)

q

As we discussed in Chapter 2, the elementary conformal boundaries and topological defects
in this model are also labelled by the Kac labels, and their properties are well-known.
In particular, we know the spectra of defects fields which can be calculated from the
multiplicity formula (2.279) and the fusion numbers Nl-’;.

From the formula (2.279), a general topological defect Dy, ) has (for s > 2 and ¢
large enough) one chiral defect field of weights (h, 0), another chiral defect field of weights
(0,h), and three defect fields of weights (h, h). A topological defect of type D, 5) is special
in that it has one chiral defect field ¢ of conformal weights (h,0), another chiral defect
field ¢ of weights (0,h), but only a two dimensional space of defect fields {¢,} of weights
(b, h).

Furthermore, the D, 5 topological defect can be constructed as the fusion of Dy,.,) and
D4 2y, and the operator product algebra of defect fields of type (h; 4, hy o) is unaffected by
this fusion, in exactly the same way that the action of topological defects on boundaries
leaves operator algebras invariant!7?!. This means that when considering the algebra of
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defect fields generated by the set {1, ¢, ¢, ¢, }, we can restrict attention to just the D 9
topological defect.

The fact that there is a two-dimensional space of fields {¢,} on the Dy, 5y topological
defects allows one to choose a canonical basis of these fields with special properties so that
the analysis of the sewing constraints is correspondingly simpler. These sewing constraints
have been solved in [110] for the D, ) topological defect in the non-unitary Lee-Yang
model, the (A;, A,) theory, in which D, 5) is the only non-trivial defect and {1, ¢, ¢, v, }
are the only non-trivial primary defect fields. In this chapter, we extend this analysis to the
fields {1, ¢, ¢, p, } on defects of type D;.9) in all the (4,, A;) models.

We are interested in the perturbations of the topological defect Dy, ) by a combination
of the fields ¢ and ¢,

S = / (Ap(z) + Ad(z)) dz . (4.2)

where the parameters A and ) are independent, and z is a coordinate on the defect. This
is a relevant perturbation if h < 1 which is the case if p < q.

One important question is that of the transformation properties of fields on a defect
under a conformal transformation. We will use the conventions of [100] which imply that
defect fields always transform with the absolute value of the derivative of the conformal
map, even if they are “chiral” defect fields. This is possible because the defect defines
a direction through the insertion point of the field (the tangent vector along the defect),
and so a defect field can pick up an extra phase under a conformal transformation: this is
chosen so that all defect fields transform with the absolute value of the derivative of the
conformal map. This has the advantage of making the perturbation well-defined on defects
that are closed loops and making the correlation function independent of the orientation of
the defect at the location of the defect field (as one would expect if the defect is genuinely
topological). The question remains whether this choice for the transformation law of
“chiral” defect fields is unique: the corresponding situation for a boundary and boundary
fields was considered by Runkel [71], and there seems no way to fix it a priori; we stick to
the conventions of [100] here for the good reasons cited above.

The expectation values in the perturbed defect Dy, »)(, \) are formally given by

<O>D(T72)(>\,5\) = (0 exp(=5) ) p,., - (4.3)

This is only formal since there may be UV divergences in the integrals when the insertion
points of two fields ¢ or two fields ¢ meet, and IR divergences from integration along
the whole real axis. This means that the general procedure of regularisation and renor-
malisation may be needed to give meaning to the expression (4.3). This is explained in
Affleck and Ludwig [37], and applied by Recknagel et al. in [70] to the case of boundary
perturbations of the unitary minimal models where ¢ = p + 1.

As explained in [98], when y := 1 — h is small and positive, the results of [70] can
immediately be applied to the case of defects with the perturbation (4.2), and we obtain
the prediction (from third order perturbation theory) of three conformal defects at the
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fixed points

() A=A A=0 (4.4)
(i) A=0, A=\* (4.5)
(iii)) A=A=\* (4.6)

The fixed points (i) and (ii) can be identified as the topological defect D, ;) (if r = 2) and
(more generally) the superposition D,_; 1) ® D(,1,1); the fixed point (iii) is a potential
new conformal defect, denoted by C' in [98], in the case of the perturbation of the defect
Dy 2)- The value of A\* is given (to first order in y) by

y Y

A= - ,
Cooo Clydag

4.7)

where C’j)’ " is the three point coupling of the fields ¢. Note that A* depends on the normali-
sation of ¢, but this will cancel in any physical quantities.

4.1.1 Perturbative Calculation of Reflection and Transmission Coefficients

Previously, the reflection and transmission coefficients, (3.7) and (3.8), of a conformal
defect along the real axis were defined in terms of the matrix (3.6) but, for perturbative
calculations, it is more convenient to use the equivalent definition which was also given in
[91]:

<TlTl + T2T?>

RZ((T1+T2)(Tl+T2)> and T=1-R, (4.8)

where T and T are inserted at the point iY" on the upper half-plane, while 72 and T? are
inserted at the point —iY". For the unperturbed topological defect,

17\ _ 272\ 12y _ yalg2y . C
(T°T")y=(T°T")=0 and (TT>_<TT>_32y4, (4.9)

andso R =0and 7 = 1.

For the defect with perturbation (4.2), the expansion of the perturbed quantities using
(4.3) gives

(TT) = / do ' dy dy'( T(Y)TGY) 6(x)6()p()d() )
— ixﬁ? / dz d2’ d2” dy dy'( T(iY)T(iY) ¢(z)p(x") (2" )d(y)d(y') )
A / do ' dy dy' dy'( TY)T(Y) $(2)o(2)6)d(1)bW") )

+0(\%), (4.10)
. C
- 3274

n % A2 / dz da'( T(iY) T(~iY) ¢(x)p(a") )

(1'7?)

5% [ dy (T TEY) i) ) + 00 (4.11)
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and in order to find the leading order term in R, we only need to calculate the first term
in (T'T') and ( T?T?). It turns out there are neither UV nor IR divergences in these
integrals; their dependence on Y is simply Y ~* and the reflection coefficient R (to leading
order) is indeed independent of Y as expected. We shall take Y = 1 from now on.

The consequence is that the only correlation function we need to evaluate is

(TOT(D)p(x)p(x)d(y)o(y) ) (4.12)
where the insertion points can be in any order. This is equal to
(T(=)T(=i)¢(—2)p(~2")p(~y)d(—y) ) , (4.13)

by rotation through 7. The analytic structure is simple,

(x/ . :E)Q_Qh (y/ _ y)2—2h

S R e Rl A

(T TG 6()s(ow)0) ) = C

but the constant C depends on the order of the insertion points {z,z’,y,y’} and is de-
termined by the operator algebra structure constants. Therefore, we now turn to the
calculation of some of the structure constants of the local fields on the topological defect

D(T,Q) .

4.2 Structure Constants

In this section we will calculate some structure constants for the (r, 2) topological defect
in the diagonal Virasoro minimal models. These structure constants can be found in
terms of topological field theory data [86, 100] which is a general method allowing one
to find all the structure constants in the defect theory, but we will not use it here and
instead only use elementary properties of the conformal field theory to find the particular
structure constants we need for the perturbative calculation of the reflection coefficient in
the minimal models.

We note here that we will use the conventions of [100] so that the structure constant
cl 5 is the coefficient of the field ¢, appearing in the OPE of the fields ¢, () with ¢3(y) on
the defect oriented opposite to the real line with = > y, which means that this coefficient
appears in the OPE of the fields ¢, with ¢4 as they appear along the defect. Rotating by ,
we obtain the picture in Figure 4.1.

Pa o ; Cas Py

— e —— = o

Figure 4.1: The OPE of defect fields

4.2.1 Bulk Theory

The (A,_;, A,_1) Virasoro minimal model has (p—1)(q—1)/2 bulk primary fields, of which
we are especially interested in the bulk field ¢ of type (1,3). If we set ¢t := p/q, then



4.2 Structure Constants | Defect Theory 75

h:=hy3=2t—1and h < 1ift <1, thatis p < q. The fusion rules for this field are

Plelpl=0lolplel, (4.15)

where Y is of type (1,5) and has conformal weights (h',h') with h' := h, 5 = 6t — 2. Hence,
the OPE of ¢ with itself is

_ gy Cop p(w,w)  CFp x(w, w)

The structure constant C, clearly depends on the choice of dy, (seeeg[7, 66] for different

conventions) but the combination

(CE,)? [(2-3t)T¢4t—1)2 TI'(t)> I'(1—2)*

— (1 _9n2
PSR v CTSE Y G NI R I VoY) C (4.17)
is independent of the normalisation. If h = 1 — y then
P \2 1
Ce)” _ 16160 o). (4.18)
dip 3

4.2.2 Defect Theory

The defects of the (A4, ,,A, ;) Virasoro models are not intrinsically oriented, but the
operator product of fields along the defect depends on the ordering of the fields, we
shall assume that we can define an orientation for the defects but that all results will be
independent of this orientation.

Since the space of defect fields {¢,} of weights (h,h) is only two-dimensional for a
defect of type (r,2), we can take as a basis the fields ¢; and ¢ which are the limits of the
bulk field ¢ as it approaches the defect from the left or the right respectively as one looks
along the defects — see Figure 4.2.

o(r +iy)

|
SDLe(I)

Figure 4.2: The fields ¢;, and ¢y defined as limits of the bulk field

Note that the operator product algebra of the defect fields {1, ¢, ¢, ¢, ¢r} does not
close on these fields, other fields can arise as well, namely fields with weights (h, h’), (h', h)
and (h',h’) which we denote by 9, 1 and {x,, xz} (which again are the limits of the bulk
field x(z, z) as it approaches the defect from the left and the right). Although we should
mention the existence of these fields and their occurrence in the operator products of some
of the fields {¢, ¢, ¢, }, we will not need any of the structure constants including these
fields as they will not contribute to any of the sewing constraints considered later on.
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®, | h, h,
110 O
|l h 0
#| 0 h

Yo | h h
Y| h h
Y| h W

Xo | B N

Table 4.1: Some of the primary fields occurring on the defect (r,2)

We use the generic labels {a, b, ...} for all of these fields and the labels {«, 3, ... } for
the set {L, R}. The conformal weights of the field ®, are (h,, h,) as in table 4.1.

We now define the structure constants between these defect fields from their operator
product expansions (we show the possibility of fields {1, 4, x,} appearing in an OPE by
placing the fields in square brackets | ]).

If both fields are chiral, there are 8 structure constants {dgg, ds;, ng ngﬁf’ g@ (Jg ¢}
appearing in the OPEs (recall here that  and y are ordered along the defect):

dgy  Coy V)

H@)oW) = PR (4.19)
_ B dd;d; ngg gg(y)

$(@)p(y) = Ciz or(,y) + Ol pr(z,y) + ... (4.21)
$()o(y) = Chy oy, 7) + O opy, @) + ... . (4.22)

With one chiral field on the left, there are 12 structure constants {Ci)a, ¢ ,Cﬁ ,C’@ }
da fotet oo
in the OPEs

Ojja Q_S(Z) Cé‘a SDL(ZVZ) Cfa QOR(ZV?)

() pa(z,2) = + ]+, (4.23)

|z — 2[*h |z — 2[h |z — 2P
c? #(2) CL ¢ (2,2) CE ¢gp(z2)
— _ da b ) da 3 _
= e 2
qb(x)cpa(z, Z) ‘m — z|2h + |I‘ — Z‘h + ‘m — z|h + W}] + (4 4)

Likewise there are 12 structure constants {Cf & Cj&, Cg & Cg ¢3} in the OPEs with one
chiral field on the right:

i ij)qﬁ Q_S(Z) C(ij) QOL(Z)E) C(ﬁj) QOR(ZaE)

Pa(z, 2)0(x) = "o o aph o R+ (4.25)
B C? ¢(z) CLE pi(z,2) CR pp(2,2)
= _ ad ag ag
QOa(Z,Z)qb(IB) - ‘2—$|2h |Z—:E‘h ‘2—$|h +[¢]+ . (426)

Finally there are 20 structure constants {d, Cﬁﬁ, Cfﬁ, 075} in the OPEs involving no

«Q
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chiral fields:
dog Co5(w) Clyd()
z—w* |z —whz—w? |z — w0tz —wh

Clypr(w,@)  Clypp(w, o) -
& |§—w|2h Y] e (427)

(Poz(za E)wﬂ(wv U_J) = ’

+ |z — w|?h

Having defined the fifty-two structure constants we need to calculate, we now set about
finding relations. The simplest come from the fact that the orientation of the defect is in
fact not physical.

4.2.3 Symmetry Relations

Since the defect is not intrinsically oriented, our labelling over-counts the structure con-
stants: sixteen constants are related by changing the orientation of the defect, as follows:

Ca%é - Cﬁb ’ qu’b = C£¢ s dpp=drr, drr=dpgr, (4.28)
ClL=Chkr, Ciy=Chr. CLr=Cgy, Chkr=Cln, (4.29)
Cin=Cly, Cir=Cry, Cf=Chy, Ci=Chy, (4.30)
Con=Crls Cir=Crs. Ci=Crs, Ci=Crs. (4.31)

Bulk Field Relations

We can use the fact that ¢ and ¢y are the limits of bulk fields to find d; ;, dr.p, dgr,, and
drr, aswellas CE,, CE, , Ckp, and CE,.
In the bulk, we have (4.16). Bringing this OPE towards a defect from the left, we

obtain i
dyp=dg,, Ch=c¢,, Cf,=cCf =0}, =0. (4.32)
We have also found that
Ct=C . Cif=CpL,=Cp,=0, (4.33)

but these four constants are not of interest to us. Likewise, bringing the bulk OPE (4.16)

towards a defect from the right, we obtain
Chp=C%y=CP=0. (4.34)

_ R _
dRR - dgogo ) CRR - C:apga ;

Finally, using the expression (2.267) for the topological defect operator in terms of

projectors, and the coefficients (2.278) for the Virasoro minimal model cases, we can write

S(T 2)(r,s)
D r2) § : : : PT/7S ) (435)
) 2 S0

where S(,.4)(,v¢) is the modular S-matrix given in (A.18). From this, we can obtain

(el Doy l©) S 1,3)/Sa,11,3) (ple)

drp = =
0 Doy [0) — Serayany/Sanyay (0/0)
= (2cos(2nt) — 1) dyy,
=vdrr, (4.36)
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where we define
v =2cos(2mt) — 1, (4.37)

which is independent of r, as expected.

4.2.4 Defect — Boundary Identification

We next use the fact that the OPE algebra of ¢ along the real axis is the same as that of
the boundary field on the (r,2) boundary — we obtain this identification by bringing the
(r,2) topological defect next to the identity boundary as considered in [79]. Likewise, the
algebra of ¢ is also the same as the boundary algebra.

This means that

g b _ 9
dys = dgz, Cgy=Cls s (4.38)
and these values are are given by Runkel’s solution to the boundary algebra [66],
(C3,)?  T(2- s3Il — 2t)° (4.39)
dypy — T(2—40)2T(=1+20)T(1 —1)% " '
If h=1 -y then
=3~ 4y + O(y*) . (4.40)
66 3
Note that the structure constant again does not depend on 7.
Three-Point Function Constraints
We can express the three point function,
(D (u) Py(v)Pe(w)) (4.41)

in two different ways—using the OPE of &, with ®, first, or instead using the OPE of &,
with &, first—leading to the constraint

> Chdee = dosCY (4.42)
e f

Taking a and c¢ chiral, this gives the simple relations
¢ g _ b b g _ o
Cordss = Crados » Cordas = Cpzdag - (4.43)
¢ _% g ¢ — 0% g
C¢-)Rd¢¢ = Crydss » quLdaﬁqb = Crpd55 » (4.44)

which, using (4.38) become

¢ _ o b _ o b _ P o _ o
Cor = Chrs C¢L—CL¢-), C&R_CRW C&L_Cde (4.45)
Taking only a chiral and the two non-chiral fields equal, this gives the slightly more com-
plicated
Clrdrr + Chpdrg = Chpdyy=10 Cldrr + Clpdip= Cprdss =0, (4.46)

CdeRL + C(;%LdLL = Cdew: 0, CdeRL + CQ%LdLL = Cﬂd@ =0, (4.47)
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which using (4.36) become

R L R L
C¢R = _rquﬁR , CJ)R = _ryC,

bno Chi=—2Cl . Ch =-nCE . (448

Taking a chiral and the other two fields different, we get

C%quxﬁ == dLLCézzb + dLRCg(b 5 C%Rdgg& == dLLCé(E + dLRC]RE(E 5 (449)
Chrdgs = drrChy + driChy ,  Chydgs = drrChy + drChs (4.50)
Using d;p = 7d,,, these become
CfR = dﬂ(C}L%qs + ’chqs) C%R = dﬂ(CL- +~yCE) (4.51)
dgg dgy 110 fio
¢ Aoy ~R L ¢ dop  ~R L
Crr = T(CL¢> +7Cry), Crp = T(CLJ; + ’YCL¢3) : (4.52)
(ol ol
Finally, taking only b chiral, we get
¢ g _ R L ¢ g _ R L

Looking at the first of these, it becomes
1

C;%qs = a3 (dRRCfQE + dRLC¢I;¢3)

d
_ Yoo AR L_
= Do (Cg +7C55)

d
_ PP R R
- (CE +CE). (4.55)

Likewise we get

3 d d d
¢ _ Top R R ¢ _ e AR R ¢ _ Yoo R R
CL¢*d (7C¢¢+C¢¢), CRd-)fd (C¢¢+’yC¢¢), C’M-)fd (’yC¢¢+C¢¢),
ol ol ol (4.56)

which also imply

ng):c&, ch_s:cj;qs. (4.57)

Bulk Field Expectation Operator Product

To find Cfi; we use the inner product matrix d, 4 of defect fields ¢; and ¢ and cyclicity
of the three point constant C, ., defined by
(a1, @)p(0,8) 0 (w, ) = Coy (Ju = vlfo —wlfo —w]) 2 . (4.58)

Using C’gﬂ =d"Cpp. and Cpp., = and the relations (4.32) and (4.34), we get

YBa
Cip=d™CpLpp +d™"Cppy,
= d"Cppy +d™Cppp
= d"™(dy,Chp + dLrCRR) + d™ (AR Clr + drrCTL)
= (d™Fdy g + d"dp)CE,

= (™ + d")dR,C2, . (4.59)
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With the inner-product matrix d, 3 = (©,|©3),

d d 1
daﬁ = b M) = dcpcp 7 ) (4.60)
drr, drpr v o1
and its inverse
dLL dLR 1 1 o
g8 — _ . L (4.61)
dRL dRR dcpcp(l — 7y ) —y 1
we obtain
S —— 62
CLr 1+ ,YCWP (4.62)

Likewise, we find all four of these structure constants are equal,

’YC@

- Ce (4.63)

R AL _ L _ AR
Crr=Crr=Cg,=CLg=

Continuity of Bulk Fields

We can relate the structure constants C°; and C,l{’a by moving the insertion point of the
field ¢, from the right of the field a to the left through the bulk. If the defect is oriented
along the x axis in the plane, then the field ¢; can be moved through the upper half plane,
as in Figure 4.3.

o(x +1)
//> . —\\
+:—.7 L 2 H—'—:i
pr(r—1) @,(x) P4 (2) Po(z)  pr(z+l)
—_—
ct, Cor

Figure 4.3: The relation between C%, and C?; from continuity in the bulk.

Likewise, we can relate C’, and CS’M by moving the field ¢ through the lower half
plane.
Since the OPEs of the bulk field ¢ and the defect field ¢; with ®, are

¢a(u7 ’EL)QO(Z, 2) = Cgcpq)b(ua ﬂ)(u - )hb ( ) < (464)
o, @)1 (2, 2) = Cop @y (u, @)|u — 2| " h\u glhe T (4.65)
01 (2, 2) g (u, 1) = C2, Py (u, @)|z — ue ™|z — a\hb_ oThy (4.66)
we get the relations
CY, = exp(im(hy — by — hy +1,))CEp (4.67)
C%, = exp(—im(hy — hy — hy + hy))ClR . (4.68)

We again list the cases according to the number of chiral fields involved:
e No chiral fields: we find identities consistent with Equation (4.63)

ch.=ck ok, =0Ck,; . (4.69)
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o If &, is chiral and &, is not; with { = exp(imh):
Cfa = CCS?L ) C%a = C_lch ) Cfm = C_lc&bR J Cﬁa = CCfR J (4.70)
and hence
CfL = C%L = C}ﬁR = C}éR =0, CI(;jR = CC}%L J C%R = 4710}% : (4.71)

where the first four structure constants were already found to be zero in Equations
(4.32) and (4.34).

e If &, is chiral and ®, is not:

CLey=C'Ch, Cly=C'Cf, Cp;=C(Cy,  Cly=(CH, (4.72)
Cho=CCin, CRy=CClr. Chz=C'Chp, Cps=¢"'Ch. (4.73)
Cn=CCh;, Crp=C"10C%, . (4.74)
e If both ®, and ¥, are chiral:
¢ _ 2, ¢ _ 200 ¢ _ 2-9 ¢ _ 2,10
Chy=C7Ch,, Cps=(CS, Chy=CChp, Chy=CCo,,  (475)

4.2.5 Unknown Constants

We summarise the results so far, distinguishing the structure constants by the number of
chiral fields they involve.

No Chiral Fields

These are all known in terms of the bulk field data:

dpr =drr =dyp, dpr =dpp =7 dyy (4.76)
Cl,=Chp=C%,, Cl1=Chr=0, (4.77)
Clp=Clp=Cf=Ch =15 Cép - (4.78)

Three Chiral Fields
These are also all known in terms of the boundary field theory data [66]:

b_c® g
CO=Chy, dgg=dyy, (4.79)

6 _ b _ b _ b _ b _ b
Clr=Ch,=Ch=Co =Co =Co =0. (4.80)
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Two Chiral Fields

The 24 structure constants involving two chiral fields can be written in terms of just two
of these, which we can take to be

ct

9 and Ci&’ (4.81)

Listing the remaining 22 structure constants:

R _ AL R _ AL
C¢q3_0¢3¢’ C<E¢_C¢<5’ (4.82)
;  d 5 d
¢ _ Zep L L ¢ _ ey L L
Cro =7 » (Cost7Cs8)  CLo=7 o (vC3s + Csa) (4.83)
oo e (CL 4+ CL ) co _ e (vCL 4 CL) (4.84)
RO~ gy 9 6¢) L6 dyy 6 Vee)
- d 7 d
¢ _ =279 ~L L ¢ _ 270p L L
C¢R =( d¢¢ (0(547 + ’YC¢(5) , C¢ =( %(70@15 + C(pq;) ) (4.85)
d d
¢ _ 2%00  ~L L ¢ _ —270p L L
Cor=¢ T(CM +7C5) . C5=¢ df(WC(M; +C34) (4.86)
ol folo}
R _ L _ R _ L _
Coo=Cop=C5=Cg3=0, (4.87)
¢ _ b _ b _ b
Crop=CLs=Cprs=Cp3=0, (4.88)
Cop=Cop = CgR = CgL =0. (4.89)

It will be convenient to introduce « and I" to parametrise quqé and C’(g 5 as
L _ L _ -1 L _ 2~L
C(M;—/d‘, C¢¢—/€ T, C’¢¢—m C¢¢. (4.90)

It will turn out that I is real and non-negative, and « is a pure phase. We note that these
two structure constants can be found from the results in [100]—they are related to C,
defined in [100]: Equation (2.19).

One Chiral Field
The twenty-four structure constants involving just one chiral field can, using the previous
identities, be written in terms of just four:

cy ., CE

L L
B, Cly, Ck. (4.91)
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We list the remaining twenty constants here for convenience:

Cpy=C'CfL O =¢Cl (4.92)
Cho = ¢ 'Cfr Crs=CCly s (4.93)
Chp = —7Cil Oy = —Cly (4.94)
L R R L
Cor =701 Cl = —Chy (4.95)
Cly=('Ch = —C" Cff Chs = (CL, = —(CE (4.96)
Chs=C'Cfr = =" Clr C}% = CCfR = —C CQ%R , (4.97)
Cpp = = dee Cfp = (1% 222 R (4.98)
LR~ T g YeR> LR~ Vg YL :
folo) folo]
1—+%d - d
Ch =~ gt Chn Chy = ¢(1-%)522CE (4.99)
00 ] ) 60
Cl =CY =Chy=Chr=0. (4.100)

4.2.6 Four-Point Function Sewing Constraints

We will use crossing relations for four point correlation functions to find sewing constraints
that will enable us to determined the remaining six structure constants {Cq% 5 C£¢3’ CfL,
R L L
C&L’ Cyps C&R}'
The four-point function (®,P,®.P,) of fields on a defect can be expressed in terms of

conformal blocks in two different ways, as illustrated in Figure 4.4.

I~

*
b
On by OR, i

Cc

R e A
=Y 00 d, he b
sesctas (L) (1,

>

*

ha h‘b Ba7 Bb
= Z Cgccsadgk hd—lﬂl— hc Bd—lﬂl— ]_10 6hk7hg 6Bk,ﬁq
kg

Figure 4.4: Two ways of calculating a four-point defect field correlation function
The conformal blocks are functions which satisfy the crossing relations [66]
J ok B
. P B Z F
7 l q

where the F-matrices are known constants, again given explicitly in [66]. Substituting

t——1

N T R
?ﬂ g (4.101)
¢ pq

(4.101) into the expressions in Figure 4.4 leads to further sewing constraints that the
structure constants must satisfy.



4.2 Structure Constants | Four-Point Function Sewing Constraints 84

The simplest relations arise when there is only a single channel in both diagrams, i.e.
the sum is over a single pair of weights (., h.) and a single pair of weights (h,, h,). Note
that since the space of fields with weights (h,h) is two-dimensional, this does not mean
that the OPE has to include only a single field. In all the cases where there is only a single

channel, the F-matrix is just the number 1 and so the sewing constraints become just

D CeCldy =" ChChdy, . (4.102)

g9,k
We now list all the non-zero cases in which the fields a,b,c and d are taken from
{¢, ¢, ¢, } and for which there is only a single intermediate channel in both diagrams, and
state the corresponding equations. We will in fact only use the first eight of these, where
there is at most one field of weights (h, h) but we list them all for completeness. The eight

We use are:

¢ o
dyg dpg = Z C55C5 dag (4.103)
¢ ¢
¢ ¢
« ﬁ ﬁ
D Z C¢¢C¢¢ Z C¢¢C¢¢ aff (4104)
¢ ¢
a ¢
é
D CO-Chsdss =D C5,Clads, (4.105)
Byy
¢ o
« ¢
D D CasCsdan = 3 ChsCladsn (4.106)
B By By
¢ ¢
e o
D > C£¢C;¢3dﬁv CosC5 oo (4.107)
¢ ¢
a o
D CoaCigtes = Z%%dﬂv (4.108)
¢ ¢
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a ¢

D Z C£¢Cg¢dﬁv Z ngscgadﬁv (4.109)
¢ ¢
a ¢

D Z CatCasten = Cgéciadéé (4.110)
¢ ¢

The remaining three which include two fields of type ¢, but still only have a single
intermediate channel are:

o B

D > L0 5 Zo“f CS ol (4.111)

"

a B

D D CLC5,dse Z 5C6atye (4.112)

¢ ¢ :

o ¢

D > 01,055 ZC” CS ol (4.113)
7

4.2.7 Analysis of Sewing Constraints
We need to use only the first eight relations. We consider these in turn:

e Equation (4.103)

Written out in full, this is

L R
dypds = CLCLdpy + CLCldy g+ CRCL dpy, + ClLCRdpp . (4.114)

: L _ AR _ R _ AL _ ,—1 _ _
Using C¢¢? = Cd'xb = kI’ and Cqﬁzz_ﬁ = Cq‘sqs = kT, together with d;,p = dp;, = 7d
and dg4 = ds3s this becomes

d?bcb 2 2 2
=T*24+yr*+v577), (4.115)
dpy

o>

or

\/ dgy
I'= . (4.116)
dpp (2 + K2 +yK72)
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e Equation (4.104)

This is
L L L R R ~L R ~R
CosCosdrr + CusCogdir + CygCusdrr + Cy5C45dRR
_ AL L L AR R AL R AR
= C¢¢C¢¢dLL + C¢¢C¢¢dLR + C¢¢C¢¢dRL + C¢¢C¢¢dRR ’ (4117)

which is satisfied identically.

e Equation (4.105)

This leads to two equations: for o = L:
Cp3Coulos = CLChrdir + C5,Cldrg + CHCH dry + CHCHLdRr . (4.118)

and for o = R:
cy qgcjj(bdw = C5 Clpdrr + CL,Clrdrg + C& Clpdpy + CEClrdpr . (4.119)

The first equation becomes:

(YCjs + Ch)Chy = CHLCI; (1= 77) (4.120)
or ,
1+ K%y
R o
Cor = 2 =2 Yoo - (4.121)

The second equation implies

2
L ke + Yy 10
e Equation (4.106)
These two equations imply
k? = ¢ = exp(imh) . (4.123)

(We will not need to fix the sign of « as only x? appears in our final answers.)

e Equation (4.107)

These equations imply (for a = L)

2
R _ ]
and (for a = R)

L Coy+Rr

= 125
R = =) Cos (4.125)

which are consistent with the results so far.
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e Equation (4.108)

These two equations lead to (« = L):

rR 7 + K &
5L 1_ny(J'd)d), (4.126)
and (with a = R) )
14k
L _ ¢
Chy H2(1_72)C¢¢ (4.127)
Together, these imply
Cf, =Clr and Cf,=Cf . (4.128)

This completes the derivation of the structure constants. They agree with the specific
case in [110] (apart from a typo in [110], where it should p = exp(i7/10)). The remaining
crossing relations (4.111) — (4.113) are not needed for the derivation of the structure
constants but we have checked that they hold.

4.3 Integrals

We want to calculate the leading term in the expansion (4.10), that is
= %AW / dz da’ dy dy'( T(iY) T(iY) ¢(2)(x")b(y)(y') ) - (4.129)

The correlation function has the same functional form whatever the order of the fields, but
a different constant depending on the order of the insertions. We can restrict to z < z’ and
y <y to get

=) <T(z‘)T<z‘) / o dedaldy dyf ¢(x>¢<x’)¢(y)¢(y’)> . (4.130)
<z, y<y D,,

This correlation function is

x/—x272h I 2-9h
(T() T) (x)o(e)6)a(y) ) = An2 — & — 2 W — )

(i—2)2(i— 2" )2(i +y)2(i + )2 (4.131)

where the constant A depends on the order of the field insertions as in table 4.2. The
values A, are

Ay =dgydgs = (dgg)? (4.132)
9 2+ K2+ k2

_ a_ B _
Agy =dgp ceC (d¢¢) SR p—

66045 = (4.133)

We only need to evaluate three of these integrations, the other three being given by
complex conjugation. Furthermore, we only need the leading order term in y in the
correlation function,

(TOT@)$(x)6 (=)o) ), = A

vz (1 —x)2(i — 2')2(i + y)2(i + i )2 +0(y) . (4.134)
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Integration region | Order of fields | Value of A
r<a <y<y PPDP A
r<y<a <y PPDP Ay
r<y<y <a PodP A
y<wz<a <y PPPb Ay
y<z<y <a PPdP Ay
y<y <z <a PoPP Ay

Table 4.2: The coefficient in the four-point function (4.131)

Integration region | Order of fields | Value of the integral
ey 37
r<a <y<y $PdP —21—641
r<y<a <y PP —IEITA,
—— 2

r<y<y < PPPp A

- - 2
y<z<a' <y PP 540

Y 2—3mi
y<z<y <a c??qﬁqﬁ —%AQ
y<y <z<a Pdod A

Table 4.3: The integrals

The results are given in table 4.3.
Adding all six together, we get
=02 [ dode! dy ay' (TOT6(2)6)500) ),
— 2 7T2
- 02 |71 - 89) +06)|

2

2 9
:%()‘5‘)2 (d¢¢)2 [1_[27—1-/4 + K

2+ Y2 + Y2

] —|—O(y)] : (4.135)

4.4 Value of Reflection Coefficient for Defect C

We now put the various terms together to find the value of R at the fixed point (A\*, \*),

_(T'T' + T?T?)
R = (T DT+ 1)) (4.136)

The leading term in the numerator is 2/ and leading term in the denominator is ¢/16.
We first give the expansion in y = 1 — h of the various constants. With h = 2¢t — 1 we
gett=1—1y/2 and so

k% = ( = exp(irh) = =1+ O(y) , (4.137)
v =2cos(2nt) — 1 =1+ 0(y?), (4.138)
C¢ 2
(Coo)” _8 +0(y) . (4.139)
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At the fixed point,

s 2y 4+ k2 + k72
=" 4 2 9 _
O 1= | o)
9y 5
= 256 +0(y’), (4.140)

and with ¢ = 1 + O(y), we find

297r2y4 +O(y5) 9772y4
R=—7/6700 — s +0W).- (4.141)

We can now calculate this for the tri-critical Ising model. In this case, h = 3/5, y = 2/5
and we are far from the small y regime, but we calculate the leading correction and get

1872

R~ 55

=0.284.... (4.142)

Note that the corresponding transmission coefficients is 7 ~ 0.715.... This can be compared
with the values'''7! we find in (6.115) and (6.116) from Chapter 6, which are

‘/52_ L 0.366... and 3 _2\/5

=0.633... . (4.143)

The latter value is close enough not to rule out that the conformal defect we found in
Chapter 6 is related to the one found by perturbation theory.
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Chapter 5
Interfaces Between Conformal Field Theories

In this chapter, we construct topological interfaces between the Ising model and the free
fermion theory at ¢ = 3, and the tri-critical Ising model considered as a bosonic theory and
as a N = 1 super-Virasoro minimal model at ¢ = %. The aim of this chapter is to use the
latter interface and the superconformal defects we construct in the next chapter to obtain
conformal defects in the bosonic tri-critical Ising model. These also provide new examples
of topological interfaces between conformal field theories.

5.1 Ising Model and Free Fermion Theory

As a warm-up, we consider topological interfaces between the Ising model and the free
fermion theory. While the free fermion theory is not supersymmetric, the construction of
interfaces between the bosonic and fermionic theories can be generalised to the tri-critical

Ising model case.

5.1.1 Bulk Fields in Free Fermion Theory

A single free massless Majorana fermion theory on the complex plane has the action
1 _ o
S = 27r/ Az (YO + oY) | (5.1)

where 1)(z) and () are the holomorphic and antiholomorphic components of the free
fermion. The equations of motion imply 1 and ¢ are independent on the full complex
plane, and the chiral components of the free fermion have conformal dimensions A, = %
and 7% = 1. This theory has the holomorphic and antiholomorphic stress-energy tensors

given by the normal ordered products

T(2) =~y (Wow)(z) and T(z) =~ (F00)() (5.2)

!
2
Mode expansions of 1(z) and 1(Z) are given by

P = 3 Y, and (R = Y P, E, (5.3)

neZ+y nez+i
and they satisfy the anticommutation relations
{wnﬂ/}m} = On4+m,0 > {J}nv 7wzm} = 5n+m,0 ) and {@%ﬂ/;m} =0. (54)

These modes define the untwisted representation, which is called the Neveu-Schwarz
sector, of the free fermion algebra. The chiral representation H is the Fock space spanned
by vectors of the form

Y Uy P, [0) With ny <ng <o <y, <0, (5.5)
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where |0) is the unique vacuum state. Since 1)(z) and 1)(Z) are real, we have wIL =_,
and ¥} = _,.

From the anticommutation relations and the form of stress-energy tensors, we can
see there is an automorphism of the algebra given by v¢(z) — —(z). Therefore, we can

impose a twisted boundary condition
P(e¥z) = —ih(2) . (5.6)
As a consequence, mode expansions of ¢(z) becomes

Y(z) =Y 9,22 (5.7)
nez
They define the twisted representation of the free fermion algebra, which is called the
Ramond sector. As we have seen in (2.111), such representations correspond to non-local
fields. The ground states of the bulk theory in the Ramond sector corresponds to the spin
fields o(z, z) and p(z, ) that are discussed in Appendix C.

Roughly speaking, spin structures on a Riemann surface are determined by the period-
icities of fermions around homotopically inequivalent uncontractible loops. For a Riemann
surface of genus g, there are 229 spin structures: the circle S! has two inequivalent spin
structures that are called Neveu-Schwarz and Ramond, and for genus 1, four spin struc-
tures are called NS—NS, NS-R, R—-NS, and R-R. For a more general definition of spin
structures on Riemannian manifolds in terms of principle fibre bundles, see, for example,
[1].

We take the bulk sector to be the theory of local fermion fields v(z) and () in the
Neveu-Schwarz sector. Therefore, the bulk state space is given by

Hig = Hys @ Hys = (Ho @ 3y @ (Ho @ 3y (5.8)

where K, on the right hand side is the irreducible Virasoro representation with ¢ = % and
the conformal weight h. The corresponding torus partition function can be written as

JS S S
Zes. = oy, (470785 7) = xsla) 2, (5.9)

where ¢ = ¢?™7 and y,s(q) is given by (C.4). This partition function is invariant under
S:7+ —1/rand T? : 7+ 7 + 2 but under T : 7 +— 7 + 1, it becomes

T : Ixns (@) = [Xns(@)? (5.10)

where the supercharacter y,s(¢) is given in (C.5).

5.1.2 Topological Defects in Free Fermion Theory

We consider topological defects D,  that preserve the free fermion algebra up to automor-

phisms. Then the defect operators must satisfy

(0 De,E = eDe,E ¥, and @Zn De,E = EDE,E &n ) (5.11)
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where ¢ = + and € = +. As we can write the Virasoro generators as (C.1), if a defect
operator satisfies (5.11), then it satisfies the topological condition (2.261) as well. There
are operators 1, (—1)", (—=1)¥, and (—1)"+¥ acting on the space H¢¢, and the condition
(5.11) determines the topological defect operators as

D,,=a,,1, D =a (-1)", D, _=a, (-1)", D _=a (-1 (5.12)

+7
up to some normalisation a, .. We determine a, . from the Cardy-type constraint (2.272)

and the topological defect fusion rules (2.281).
The torus partition functions with one defect inserted are

Ln— L ~f L ~
rI\er'f' D, qLO 38 qLO 48) = a++|XNS(Q)’2 = a++|XNs(Q)‘2 ) (5.13)

1

L o~ 1 ~ _
D_, ghomasgho 48) = a__ Kns(@xns(@) = V2a_, Xx (@) xns(@) (5.14)
oL o~ 1
D, ghomasgho 48) = a, Xns(@)¥ns(@) = V20, _Xs(0)Xx (@) , (5.15)
D__ gt G E ) —a[R@P =200, (5.16)

where § = e?™/7. From these we see a, ., a__ € Z+, and a, _ and a_, must be positive
integer multiples of /2 or 1/4/2. Compositions of topological defect operators give

D -D . — a€1,€1a€2,52D S (5.17)

€1,€177 €2,€2 a o €1€2,€1€2
€1€2,€1€2

which rules out a_, and a, being multiples of 1/1/2. Therefore, the smallest solutions
are

a

. =a =1 and a , =a, =V2. (5.18)

The space of disorder fields for these topological defects are summarised in Table 5.1.
Notations and conventions for various fields and state spaces used in this table are sum-
marised in Appendix C. Note that 4 in i) (z, Z) is introduced to make its two-point function

positive.
D Zpio(a,9) Hppo Vir primary disorder fields
bosons fermions
D,y =1 Zeg = Ixns (@) Hes 1, ipy(z, 2) ¥(z), ¥(z)

D_y =V2(=1)" | 2x(@xns(@) | Ha ® Hys | 0(2), 10 (2,2) | ul2), 09P(2, 2)
D, =V2(=1)" | 2xxs(@)xw(@) | Hys @ Hy | 3(2), Viilz,2) | i(2), Y5 (2, 2)
D__=(-p™F 2/xn(9)|? Hr o(z,%) p(z %)

N |

Table 5.1: Disorder fields of free fermion topological defects.

In this picture of local free fermions with topological defects, the spin fields o(z, z) and
u(z, z) corresponding to the non-chiral Ramond ground states arise as the disorder fields
of the topological defect D__ which gives the branch cut for all fermions +(z) and ().

5.1.3 Conformal Boundaries in Free Fermion Theory

From the condition (2.209), if a boundary state ||b)) preserves the free fermion algebra, it
must satisfy

(1, —ietb_y,) [Ib) =0, (5.19)
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where € = 1 corresponds to untwisted boundary states and boundary states with e = —1
are twisted by the automorphism of the free fermion algebra )(z) > —(Zz). Again, from
(C.1), if a boundary state satisfies (5.19), then it satisfies the conformal boundary condition
(2.208) as well.

In fermionic theories, sectors of boundary conditions are determined by whether the
gluing conditions for the fermionic generators change at z = 0 on the upper half plane or
not!1991 In this case, if a boundary along the real axis on the upper half plane satisfies

P(z) =ep(z) for z=2€R, (5.20)

then this boundary condition is in the Neveu—Schwarz sector. If the gluing condition for
z = Z is specified by
2) = ez/j(x) for <0 | (5.21)
—e(z) for z>0
where x € R, then this boundary condition is in the Ramond sector. For Ramond boundary
conditions, change in the gluing conditions imply existence of boundary fields carrying
Ramond representations inserted at the origin.

Since Ishibashi states live in the completion of the bulk state space, we only consider
boundary states in the Neveu-Schwarz sector. Nevertheless, we will see that the Ramond
boundary states arise in the modular S transformed picture of the boundary theory.

The Ishibashi states in the NS sector can be written as!0°]

NS, €e) = [[ 4" 4|0) (5.22)
n=0
that are solutions of (5.19) with corresponding e. Their overlaps can be calculated as
(N, £|gz(Fo P02 |NS, £) = xus(@) = xxs(@)  and (5.23)
(NS, £]g2 (ot 0= 30)INS, ) = Xus(@) = V2xa(0) (5.24)

We define the boundary state of the free fermion theory as
|[free)) = NS, +) and ||fixed) = V2|NS, ) . (5.25)

These “free” and “fixed” boundary states are different from the usual Ising boundary states
with the same names; we have defined the free and fixed boundary conditions for free
fermions in the sense of [52] and [49] where the boundary conditions associated to the
upper half plane gluing condition (5.20) with ¢ = 1 is called “free” and ¢ = —1 is called
“fixed”. The overlaps of these boundary states are given by

(free]|g2 (FotPo=31) |[free)) = xns(@) = Xns(q) 5
(free]|g2 (FotLo=31) |[fixed) = v2¥ys(@) = 2xn(g), and
(fixed|| g2 (Fo Lo~ 31) fixed)) = 2xxs(d) = 2xns(a) - (5.26)

Recalling the Cardy constraint (2.232) and its geometric meaning illustrated in Figure 2.5,
we can analyse the spectra of boundary fields from the overlaps (5.26).
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5.1.4 Topological Defects in Ising Model

For ¢ = 1, there are three irreducible unitary representations of the Virasoro algebra. We
denote their Kac labels as (1,1) = (2,3) =1, (1,2) = (2,2) =0, and (1,3) = (2,1) =e. In

addition, we introduce the indexing set, which is denoted by Z = {1, 0, }. The conformal

1

ig> and h, = % For the Ising model, the

weights of the representations are hy = 0, h, =
fusion rules (2.91) are given by

cRoc=1®c, c®e=0, e®e=1. (5.27)

In addition, the modular S-matrix of the Ising model is given by

1 1 1
S11 S1c S 2 2 V2

S=1Sa S S |=|3 3 ~|- (5.28)
Sol Sae SO’O’ % _% 0

For the Ising model, there are three elementary topological defects D, D,, and D..
From (2.278) and using (A.18), the corresponding defect operators are given by

DIZPOPO_'_P%F%"FP%F%G’
Dg:POFO—i_P%F%_P%P%,

D, = V2(PyPy — PyP}) . (5.29)

2

From (2.270) and (2.279), the state spaces of defect fields living on these topological
defects are

Hip = Houx = (1,1) & (0,0) & (¢,¢) ,
Holo = (1,1) ©2(0,0) @ (5,6) © (1,6) © (5,1),
Hee = (1,1) B (0,0) @ (¢,¢) , (5.30)

where (i, ) is a short-hand for H; @ K for i, € Z.

As it is clear from the fusion rules (5.27), D, is a group-like defect. From (5.29), we
see that this defect flips the sign of the bulk field with label o, which is often called the
spin field. As a consequence, the defect fields on D, are again the bulk fields, which can
be seen in (5.30). Also, recall that the partition function of defect fields on D, is the same
as the torus partition function with two D, inserted with the opposite orientations as in
Figure 2.6. In this case, two D, on the torus fuse to give the identity defect, therefore the
partition function is the same as the bulk one.

Using (2.283), we can calculated the state spaces of disorder fields

Ha\l = (O" 1) D (170) D (U’ 5) @ (570) )
Hop=(5,1) B (L,6) @ (0,0) . (5.31)

The disorder field of D, with the representation (o, o) is not the same as the bulk spin field
o. This is what we usually call the disorder field u(z, z) of the Ising model. In addition,
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the disorder fields of D, with the representations (¢,1) and (1,¢) are related to the free
fermions (z) and ¥(z).

Since D, and D, are group-like defects, the fusion rules (5.27) indicate that D, is a
duality defect. As discussed in [83], D, implements the order-disorder duality, which is
know as the Kramers-Wannier duality, of the Ising model.

In addition, the state space of defect changing fields is

Hole = (0,1) @ (1,0) @ (0,6) D (¢,0) . (5.32)

This is the same as H,; since, by folding this defect about a defect changing field, the
defect field becomes a disorder field at the end of the topological defect D, D, = D,,. Using
the same argument, we can understand H,|, = H; ©H.y asaresultof D, D, = Dy +D..

5.1.5 Factorising Defects in Ising Model

Since a factorising defect acts as conformal boundaries to the both sides of the defect, the
defect operator F,;, : Hyux — Hpuk Of @ factorising defect with the left boundary condition
a and the right boundary condition b can be written as

Fop = [la) (0ll (5.33)

where ||a)) and ||b)) are the corresponding boundary states. For the Ising model, there are
three Cardy boundary states

1 1 1
+) = —=[0) + —=|3) + —=I%)
I+) = 5100 ﬂw(ﬁ@
=) = 5100 + 3D — =1
NG /22 3167
1F) =10} =13} - (5.34)
In this notation + = 1, — = ¢, and f = o. The space of defect fields living on a factorising
defect F;, is
Hp, = Haa @ Hyp » (5.35)

where #,, is the space of boundary fields wi(aa) living on a boundary (2.201). Here, the
bar indicates the boundary has the opposite orientation.
As we shall see later, we often need to consider the space of defect fields on F,;, U F,,.

In this case, we have the following boundary configurations:

al |b a| |V
ﬂ)(aa) ’ o ¢(bb) ,(/J(a/a’) ’ o w(b/b/)
al |b a'| b
and )

in addition to
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al |b a'| |b
zﬁ(a/a) . w(bb’) zﬁ(aa’) . w(b/b)
al |V al b
and

Therefore, the space of defect fields is
Hiury = (Haa ® Hip) © (Haa @ Hiy) ©2 (Haa ® Hyy) - (5.36)

For the Ising model, we can calculate (2.204) and obtain

Hyp=H__=(1),

Hiyp=H_y=1(0),
He =),
Hep= (1)@ (e)

For the purpose of the next section, we note the following state spaces of factorising defect
fields:

Hp, ok =2(1,1)®2(e,¢) ,

Hp, =(1,1) @ (1L,e) @ (5,1) ® (e,¢)
Hp ok, =2(1,1)®2(c,¢) ,
Hre, ok, =2(1,1) @ 2(1,e) ©2(e, 1) @ 2(e, €)
Hp o, =2(1,1) ©2(1,2) 2(,1) ©2(e, ) (5.37)

5.1.6 Interfaces Between Ising Model and Free Fermion Theory

If there exists a topological interface between the Ising model and the free fermion theory
constructed in the previous sections, the corresponding operator I should be a map from
the bulk state space H; of the free fermion theory to that of the Ising model H;;. The
operator I corresponds to the orientation reversed interface, and it is a map from #;; to
H¢ . In order for this interface to be topological, the operator I has to satisfy

ILNS=L, T and ILN=1,1, (5.38)

where L}® is given by (C.1) and L,, acts on Hj,. Then, the operator I should consist of

projectors on the Virasoro representations. In terms of the c = % irreducible Virasoro

representations H; with conformal weights h = 0 the bulk state spaces can be

) 3 16’
expressed as
His, = (Ho @ Hy) @ (H

1 ® 97%6) and (5.39)
Her = (Ho © Hy) @ (Ho

®
DH) . (5.40)
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By writing the projector onto H;, ® (;, as P, P, the interface operator I should project
H¢ onto the subspace which is common with Hg

Is=aPPy+p3 PP, . (5.41)

We are going to determine the allowed coefficients o and § for the interfaces I, 3 by
evaluating their fusion rules with topological defects, boundary states, and interfaces.

By considering the fusion of an interface I, 5 with a topological defect D,, which is
parallel to I, g, in either theory, we demand the compositions of operators

DEI,5= Y NIy and I,5DE = > NI, (5.42)
(o) (o.8")

have non-negative integer coefficients IV, ﬁa‘;) and N{j ﬁf ). Conformal defects in the Ising
model have been studied before!®* 591 and they are summarised in Appendix B. In partic-
ular, topological defect operators in the Ising model can be written as

|~

Dl—POP0+P1P1 +PLP

16~ 16 ’

(=2

D€:P0PO+P%P%—P1%F
D, =/2(PyPy, — P:

2

9

Py). (5.43)

=

Similarly, topological defect operators in the free fermion theory summarised in Table 5.1
can be expressed as

D++—(P0+P%)< 0+F%)7

D_, = V2(Py— Py)(Py+ Py),

D, = 2(P0+P1)(p _F%)v

D__ (PO —P1)<P0 —F%) . (5.44)

Using these expressions, we can calculate
DiI,s=1I,5, D.I,5=1I,5, Ls=V2I, g,
Iy Diy =Iag, logD =V2 g, Iaﬁ ffa 5 lapD__=Iap.

(5.45)

Next, we consider the action of topological interfaces on the boundary states. We
demand interfaces to map boundary states of one theory to those of the other theory as

Lglladee = Y Newsyallbds and I3 gllah, = D7 N llb)s (5.46)
beBIs. bEng

with non-negative integer coefficients N, ,,, and N (n.5) o~ Using the Ising boundary states
(5.34) and
NS, £) = [0) £ 15) , (5.47)
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we obtain the action of interfaces on the free fermion boundary states as

Ia,g|free>>=0‘2j§<n+>>+||—>>>+“ ) and
Taglfixed) = S5 2040 + 1)) + 20 (5.48)

The action of orientation reversed interfaces on the Ising boundary states are

a—pf
I ll+) = fuf ce)) + S fixed)
a+f
I =) = } Jiree) + © 7 ixed)
1 1) = 25 P Ifvee) + \fuﬁxed» (5.49)

From these, we obtain the condition o« = v/2m + 2n and 8 = v/2m — 2n for m,n € Z.
Finally, we consider fusions of interfaces with orientation reversed interfaces. We
require the compositions of interface operators

Is. i _ f.f.
Iog 1, 5= Z N(a s D and If Ty g = Z NE o oo DE (5.50)

a€T, a€Tg,
to have non-negative integer coefficients Kf& s and NE o, . Using (5.43) and

(5.44), we can calculate

ao’ + B aa — BBID

Lngll, 5o = ——"2(Dy + D)+ and
o ﬁ 4 ( 1 E) 2\/5
aa/_|_ / aa/_ /
Il,ﬂ Ia/7ﬁ/ == 45/6(D+++D__)+4\/—25/6(D_++D+_) . (5.51)

These observations above suggest that there are two elementary interfaces I and I’
given by
I=1/,5=V2(PPy+PyP;) and
I''=I,_, =2(PyPy— P,Py). (5.52)
Then, the non-trivial fusions of interfaces and topological defects in (5.45) become
D,I=I', ID, =ID , =TI,
D,I'=2I, I'D, =I'D ,=2I. (5.53)

The action of interfaces on the free fermion boundary states (5.48) and on the Ising
boundary states (5.49) becomes

Ilffree) = |+) + =), I'l+) =I"]=) = |lfree) ,
I|[fixed)) = 2[|f) , I f) = |lfixed) ,
I'||free)) = 2][f) , I +)= I =) = lfixed) ,
I'|[fixed)) = 2(]|+) + =) , ' f) = 2||free) . (5.54)

Finally, the fusions of interfaces with orientation reversed ones (5.51) become
II"=D,+D,, IT"=2D,
I'r=bD,,+D_, I''I=D ,+D, . (5.55)
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5.1.7 Consistency of Interfaces

Since they are topological, we can consider sweeping an interface across bulk fields in one
theory to obtain corresponding disorder fields in the other theory as in Figure 2.10. The
action of topological interfaces does not change conformal weights of fields, and therefore
we can identify the resulting disorder fields by their conformal weights in this case.

1 1

Ising Model | Free fermion Ising Model | Free fermion

e —

Space of zero weight functions - > @ is one dimensional.

Figure 5.1: Moving the interface I across the field ¢(z) in the free fermion theory, and the junction
between I and D..

Let us consider sweeping the interface I across the bulk fields of the free fermion theory.
From (5.55), the resulting fields must be either bulk fields of the Ising model or disorder
fields of the topological defect D.. We also need to check the existence of a weight zero
field at the three-legged junction between the interface and a topological defect as depicted
in Figure 5.1. Denoting the space of fields at the junction between the interface I and a
topological defect D; as H,+p , we can calculate

TrHHTDE (qLO_TZqZO—i> = TrHIsA (]ITDE (‘Z’Lo—iéffo—§>
= TrHIS, ((Dl + Ds) qLO_iq:EO_z%l>

= 2xo0(@)I* +20x3 (@)* = [x0(a) + x5 (@ + 2[x 4, (97,
(5.56)

where x;,(q) is the character of the Virasoro representation with a highest weight h and
c= % Therefore, we see that there is a one-dimensional space of weight zero field at the
three-legged junction between I and D.. Since II'D, = IIT = ITtD,, the same is true for
the three-legged junction between I and D;. As there are no chiral bulk fields in the Ising
model, +/(z) and v(Z) become disorder fields of D, while iy)v)(z, Z) corresponds to the bulk
field e(z, z). In addition, we assume the weight zero field « at the three-legged junction
between I and D, only couples to fermions. In terms of Figure 2.10, this means that the
linear map D,y is zero for bosons in the free fermion theory.

We can also consider sweeping an interface across disorder fields attached to topological
defects. For example, we can fuse the bottom half of the interface I with the topological
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defect D__. From the fusion rules (5.45), a disorder field of D__ becomes a defect field
on /. Then, by moving the interface, these fields become disorder fields of D; or D, in the
Ising model. As in Table 5.1, the disorder fields o(z, z) and u(z, z) of D__ have the same
conformal weights but opposite fermion parities. As we have assumed the junction field «
between I and D, only couples to fermions, o(z, z) becomes a bulk field of the Ising model
and u(z, z) becomes a disorder field of D,.

I 1 I I
Y(2) / S -
1/;(2) € (%’0)/ ”Z”Z}(sz) E(Z,Z)
. (—} [0 -—=--e (O.é) . H .
I 1 I I
o(z,z) o(z,z) w(z,2) € -
7777777 . (—} . ————=-=--e H (07 777*(%’176)
D__ D__
I 1 I I
(2,2) / o(2,2) /
WO(Z) D_, o (11 (2) D_, o (11
,,,,,,, o VA ,,,,,(u‘lz)/ L - e VA ,,,,,(161*2)/
D,Jr 50 (16:0) D,Jr Bi (16-9)
I 1 I I
bi(z,2) / Y5 (2,2) /
W(’f(f) D, o (11 A(2) D, o (11
7777777 . o T 7777’(23151)/ Lo____% o T 7777'(2716])/
D+7 56 (Oﬁﬁ) D+7 Bi (Oaﬁ)

Figure 5.2: Correspondence between bulk and disorder fields of the free fermion theory and the
Ising model.

Since ID_, = I' and II'l = 2D,, if we move the interface I across a disorder field
at the end of D__ defect, it will become a disorder field of D, in two possible ways. We
can check this by calculating the number of weight zero fields at the four-legged junction
between I, D_, and D,. Denoting the space of fields at this junction by #, p_,1tp,s We
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can calculate

Lo—< —Lo—=< Lo— L ~[ €
T\rHID_+1TDU (q 0 ago 24) =Try, (ID__‘_ITDO_q 0" 230 24)

= TrHls. (2(D1 + DE) qLOiiéioii)

= 4lx0(@)1> +4lx3 (@I = 2Ix0(a) + x3 (@ + 4lx 1 (@),
(5.57)

and therefore there is a two-dimensional space of weight zero fields at the junction. We
label these two weight zero fields by ° and 3! and assume the former only couples to
bosons and the latter only couples to fermions in the free fermion theory. As in Table 5.1,
disorder fields of D_, come in pairs in which the fields have the same conformal weights
but with opposite fermion parities; by specifying 3% and ! in this way, we can have unique
maps from the space of D__ disorder fields to that of D, disorder fields. By looking at
(5.31), one can see that the half of D, disorder fields correspond to those of D_ . Using
the same argument, we find the other half of D, disorder fields come from D, _ disorder
fields.

We have obtained the linear maps from the spaces of bulk fields and disorder fields of
the free fermion theory to those of the Ising model. These results are summarised in Figure
5.2. As we can invert these linear maps, we see that the bulk and disorder fields of the two
theories have unique correspondence. Together with the fusion rules (5.53), (5.54), and
(5.55), we conclude the topological interfaces (5.52) are consistent.

5.2 N =1 Superconformal Field Theory

In N = 1 superconformal field theories (SCFTs), we often employ the superspace formalism
in which the theories are defined on super-Riemann surfaces. Coordinates on super-
Riemann surfaces are denoted by Z = (z,0) where # is a Grassmann variable which
satisfies 0,0, = —0,0; and 62 = 0. In the superspace formalism, bulk fields of an SCFT are

given by Neveu—Schwarz superfields!®!

®,(Z, Z) =¢(2,2) + 0¢,(2,2) + éi/;l(z,i) + ‘9&51(7572) : (5.58)

The component ¢, (z, z) of a superfield is called a superprimary field if the corresponding
state

lo,) = lim ¢, (2,2)|0) (5.59)
z,Zz—0

is a highest weight state for holomorphic and antiholomorphic copies of the N = 1 super-
Virasoro algebra, that is

Gn|()01> =0, Ln|()01>:07 Gn|901>:0> Ijn|901> =0 for n>0, (5.60)

and
LO‘@I> = h1’901> and [_’0‘901> = BI‘901> . (5.61)
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Then, the other components are obtained as the superdescendant states

|¢I> = G—%|‘P1> ) |’(ZI> = G—%MDI) , and |951> = G—%G—%|SOI> . (5.62)

Using the 8Vir relations (2.117), one can show that these superdescendant fields are
Virasoro primary fields.

5.2.1 Bosonic Tri-Critical Ising Model

e
10°

that are summarised in Table 5.2. Our choice of labels comes from the fusion rules of
M (4,5), which can be considered as (Lee-Yang) x (Ising). The fields labelled by 1, ¢, and

o obey the Ising fusion rules

The unitary Virasoro minimal model M (4, 5) has ¢ = -, and there are six representations

e®e=1, e®o=0, and oc®oc=1P¢, (5.63)

and 1 and 1 satisfy the Lee-Yang fusion rule

igi=1®1. (5.64)
In general, we can write
t@j=(@®y) and F@j=(2®y)d (TDY), (5.65)
where z, y € {1, ¢, 0}.
Label ¢ 1 € o 1 é G
1,1 3,1 2,1 1,3 1,2 2,2
ac abel () on | 6n | en | My | 6y | @2
=34 | =149 | =24 | =62 | =33 | =(23)
Weight h; 0 % 116 g 1710 ;70
Quantum dimension D; 1 1 V2 1+2\/5 1+2\/5 1?2/5
Boundary entropy g (75713/5) ! <525/5) ) (571(\)/5) ) (5+220\/5) ! <5+220\/5) ! (5+§\/5) !

Table 5.2: Virasoro representations of M (4, 5).

e
10°

defined by the diagonal modular invariant for the Virasoro algebra is also denoted by

Since there is only one modular invariant bulk partition function at ¢ = the theory
M(4,5). As a diagonal theory, M(4,5) has six elementary boundary conditions and six
elementary topological defects that are labelled by the Virasoro representations. Their
explicit expressions are summarised in Table 5.3 and 5.4. One of the important quantities
characterising conformal boundaries and topological defects are their entropies. They are
defined as the coefficients of the vacuum Ishibashi state or those of the vacuum projector.
The entropy of the conformal defect labelled by a representation i is the same as the
quantum dimension (2.178) of i in the diagonal theories. They are also summarised in
Table 5.2.
7

In terms of the Vir representation labels at ¢ = 5

T={1,¢0,1,2¢ 6}, (5.66)
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the modular S matrix of M (4,5) is given by

S So V255 S1 S1 V2s,

So So —/2s, S1 S1 —V/2s
ﬂsg —\/582 0 \/§sl —ﬂsl 0

51 S1 V2s, —S$9 —59  —V/2sy

S1 S1 —V2s; —sy —S9 V255
V25, —/2s 0 —V2s9 /25 0

(5.67)

Sl=

where s, = sin(Z) and s, = sin(%’r). Therefore the Cardy boundary states of M (4,5) are
given by

o =3k where h= e (5.68)

These boundary state coefficients are given in Table 5.3.

[la) \ ;) |0) 130 |16) 12) 1) &)
o) ()] () () ()t ()]
B =0 = - )] @) )
NG S HE S L I I Ct U OO L

o |0 ()} () |- |- () |- (=)
€ (5+220ﬁ)% (5+220\/5>% _<5+120\/5)i _(5_220\/5)% _(5_220‘/5)% (5_120\/5)i
LG W ) N I B 0 M B ) M

Table 5.3: Boundary state coefficients g’ for M (4,5).
The elementary topological defect operators of M (4,5) are given by
o S
Dy = ngil PP,, where g/ =-%. (5.69)
1€l SOi

These topological defect operator coefficients are summarised in Table 5.4.

Da\PhiPhi POFO P?p

3 P?_F?l P;pg Plpl Pgﬁg
2 2 16 16 5 5 10 710 80 80
D, 1 1 1 1 1 1
D, 1 1 -1 1 1 -1
D, V2 | V2 0 V2 -2 0
D- 1+v5 1+v5 1+v5 | 1=v5 156 1-v5
i 2 2 2 2 2 2
D. 1+v5 1+v5 | _1+vV5 | 1=v5 1-v5 | _1=v5
é 2 2 2 2 2 2
D- 1+v6 | _1+V5 0 15 _1-V5 0
id V2 V2 V2 V2

Table 5.4: Topological defect operator coefficients g5 for M(4,5).

5.2.2 Supersymmetric Tri-Critical Ising Model

In M (4,5), the Virasoro representation labelled by ¢ is a simple current with the conformal

weight 2. The unitary super-Virasoro minimal model SM (3,5), which also has ¢ = 1—70, can
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be regarded as the fermionic extension of M (4,5) by the simple current . In SM(3,5),
there are four representations of the super-Virasoro algebra: two of which are in the Neveu—
Schwarz sector and the other two are in the Ramond sector. They are summarised in Table
5.5. The fusion rules of SM (3, 5) are given by!®: 6 1624, 47,50, 571

1,13 =al; and ¢, @@y =a(lc®pc), (5.70)

where the subscripts and coefficients obey

A B C |a
NS | NS |Ns |1
NS| R | R |1 (5.71)
R |[NS| R |1
R | R |NS|2

In the fusion rules of two Ramond representations, NS representations appear twice due
to the fact that the even and odd fusion rules are the same for these cases!24].

Label 4 1.s Or Ons 1,
(1,1) (1,2) (1,3) (1,4)
=24 ] =23 | =22) ] =(21)
Weight h, 0 si 1—10 %

Kac label (r, s)

Table 5.5: Super-Virasoro representations of SM (4, 5).

As in the free fermion theory, we take the bulk sector to be the theory of local NS
superfields. Therefore, the bulk state space is given by

Hys = (30° © 3G%) @ (37 @ 77
= (Ho @ Hy) @ (Fo @ Hy) @ (Hy @) @ (Ho @ 3y), (5.72)

where J(}® and J{,, are the super-Virasoro and Virasoro representations with ¢ = % the
conformal weight h respectively. We take the highest weight states of H™® and 3 to be
10 10

fermionic, which means

(=1)"l45) = ~l55) and  (=1)"|55) = ~|5p) (5.73)
for the highest weight states | &) € 3{1\1‘%? and \IIO) € UTCZLS. The corresponding bulk superpri-
mary field is still bosonic as it commutes with (—1)***. The bulk partition function can be

expressed in terms of the characters x}®(¢q) of 8Vir, which is given by (A.9), and x;(¢) of
Vir as

Zys = Trygye (4075105075 ) = 3% (@) + 15 (0)?

= xo(@) + x3 (@ + [x g (@) +x3 (@) - (5.74)
This partition function is invariant under modular S and T? transformations but the T
transformation changes |x3*(q)|? to |x}*(g)|*.

The theory defined by the diagonal bulk partition function (5.74) is also denoted by
SM(3,5). As we saw in the free fermion case, the Ramond fields arise as disorder fields of
topological defects.
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5.2.3 Topological Defects in SM(3,5)

We call a topological defect superconformal if it also preserves the N = 1 super-Virasoro
algebra up to automorphisms. Therefore, the operator D of a topological defect in super-
symmetric theories satisfies

G, De,E =€ DE,E G, and én De,é = EDG,E Gn ) (5.75)

where ¢ = +1 and € = +1. Using the anticommutation relation in (2.117), one can show
that the condition above implies the Virasoro condition (2.261) as well. Recalling (5.73),
a topological defect operator satisfying (5.75) can be written as

Deygza(PO—FEP%)(FO %)+b(EP1 —|—P3)( P Pg), (5.76)

L
10

where a and b are constants, and P, P;, is the projector onto the Virasoro representations
Hy, @ FHyp.

The identity defect operator has a, b = 1 and ¢, € = 1 in (5.76). Using the same
argument as the free fermion case, the other topological defect operators with the same
a and b that are related by the automorphisms of §Vir can be obtained by composing it
with v/2(—1)F, v/2(—1)F, and (—1)"*F. Since the NS sector is closed under fusion and the
bulk partition function is diagonal, we can use (2.278) to obtain the other solution for the

coefficients a and b. Then, the topological defect operators with ¢ = 1 and € = 1 are given
by

DIZ(PO—I-P%)(PO—I—p%)—I—(P%O —I—Pg)(Pi%—i-P%) and (5.77)
[NS NS] [NS,NS]
Dw:SNSNS]P 0" Po° + [NSNSPNSPNS
11 1o
1 5 — — 1—-+v5 _ _
= +2\[(P0—|—Pg)(PO+Pg)+ Q\f(Pfo_}—Ps)(Plo —{-P%), (5.78)
where S "5N5) is an element of the 8Vir modular S matrix given by (A.42), and PSPy} is

the prOJector onto the super-Virasoro representations H)* ® H}F. In this way, we find a
complete set of eight elementary topological defects

T= {Dl? ng ﬂ(_l)FD17 ﬁ(_l)Fng \/E(_l)FDla
\/5(—1)FD¢,, (=) Dy, (—1)F+FD¢} . (5.79)
The identity defect D, in the supersymmetric theory is also denoted by D}® in order to
distinguish it from the identity defect in the non-supersymmetric theory. Compositions of

these topological defect operators satisfy an algebra with non-negative integer structure
constants. In addition to the usual compositions of fermion parity operators, we have

D,D,=D;+D,. (5.80)
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The torus partition function with one defect inserted are

o — T~ T
Ty (D1 g™ 70" 240) = (g >\2 FIE @

Try; o (ﬂ(_l)FDl gho~ 24OQL° 20 ) = 2% L4

L

Try; o <(_1)F+FD1 gho~ 240(1 Lo~ 210

") -
)=
)=
Teygy, (D, o2 gho 2 ) = |
)
) =
") =

o

__7

Tryyq (\@(—I)FDw gho~ 240q 240
Try (ﬂ(—l)FDcp gho~ 240q 240

Tr’HNs ((—1)F+FD¢ (jLO 240q ~ 3240

106
(5.81)
0°(@) +2x% (X7 (@), (5.82)
5 (D) + 27 (X (@) (5.83)
X (g F+mXﬂ)P, (5.84)
g PHX0° (X (@) +XF (0)x0°(a) , (5.85)
2% (@) (0@ (@) +2% (@ E (@)
(5.86)
2 (3@ (@) X% @+2X (X, (@)
(5.87)

X5, (@ +2x (X% (@+2x% (0)xG (D)
(5.88)

where y%(q) is the character of the unextended Ramond algebra representation! with

c= 1—0 and the conformal weight » whose explicit expression is given by (A.13).
D Hpio Vir primary disorder fields
bosons fermions
1, GG G G(z
o, N (=2), G Gl
Pp(2,2), Pp(2,2) Vo(2, 2), P3(2, 2)
NS —xg G , 01G(2, 2
VE-DD, | 00, TG 6 00y o3y) | O GG, ) a6
16 80 10 UL,O Lp(Z7Z) uap(bgp(z Z) M¢¢¢(zvz)7 O¢¢¢(Z>Z)
ﬂ(—l)ﬁDl (J_Cgs ®3TCR7 ) e (g_chs ®:—T_CR3 ) UI(Z) :ulG(Z Z) lfl(z)lo-lG(_Z7z) B
16 10 50 %1%(27 ) M(p(bap(zv Z) Mgpwap(z7 2)7 U¢¢gp(z7 Z)
(—=1)F+F Dy Hy = ’Hl% & 'H}I‘% a4(z,2), ag(z, zZ) w4 (2, 2), (2, 2)
D (%E@?{E)@(ﬂ{?@ﬁﬁ)
? B0 © )
V3(-1)*D (?fl:% ® HY®%) @ (i}fz% ® T{hli:)
’ B © TOP)
16 10
VA1) D (HY" @ J{‘Z%) ® (H{E ® ﬂ{fs%)
v B(HY @ HR )
10 16
(=)D Hy ©HY - OHE o
80’16 16’80

Table 5.6: Disorder fields of SM (3,5) topological defects.

1. Since two unextended Ramond modules with A and —\ have the same characters, we use h = \? + 5 to

label characters.
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5.2.4 Conformal Boundaries in SM(3,5)

For the N = 1 super-Virasoro algebra, the Ishibashi condition (2.209) becomes
(G,, +ieG_,)||b) =0, (5.89)

where ¢ = +1 is the gluing condition with ¢ = 1 corresponding to the identity automor-
phism of 8§Vir. As in the free fermion case, we only consider Ishibashi states in the NS

sector since the bulk state space entirely consists of the NS representations. There are two

7

NS representations at ¢ = and two possible gluing conditions give four Ishibashi states

10°
|h, €)) that are given by
i - 1 7
0,£) =10) ¥ MG%G%W + 0/72L72L72|O> +o
i ~ 1 7
‘%0, +) = |%> F me%G,%‘Tl[ﬂ + 1/75L_1L_1’T10> 4+ (5.90)

They are solutions of (5.89) with corresponding e. Their normalisation is given by

(h, £|g2 Fot Lo ) |1 ) = 6, x15(d) (5.91)
(h, £|(=1)" g2 (Pt Lo~ 5) 1! 1) = 5 0 035(G) - (5.92)

In addition, the fermion parity operators act on the Ishibashi states as
(=D"[h,£) = (=D)F|h,£) = e(W)|h,F) and (=1)"F|h,£) =|h,£),  (5.93)

where €(h) = %1 is the fermion parity of the highest weight state |h) as specified by (5.73).
Similar to the topological defect case, we can apply the Cardy’s solution (2.233) to
obtain boundary states labelled by a € {1g, ¥ns}

GINS,NS] GINS,NS]

— _Yal ap L
||a>> - \/M ‘07 +>> + S[NS,NS] ’10? +>> ’ (594)
11 1p

where S!"*"* are the modular S matrix elements of SM(3,5) given by (A.42). We expect

ij
there are two more boundary states carrying the labels in the twisted sector. Since topolog-
ical defects can change boundary conditions as in (2.282), we can use (5.79) and (5.93)

to obtain

I1e) = vV2(=1)"||1xs) = V2(~1)"||1ys) and (5.95)
lo) = V2(=1)"llpns) = V2(=1)"llns) - (5.96)

In addition, we can check
llons)) = Dgo [ 1xs)) - (5.97)
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Explicitly, these four boundary states can be written as

H1N5>>—(5‘10“5> ro,+>>+<5+10“5) %5:+)

lens)) = <ﬁ+2> 10, +) = <H> 15+

G v
1) = (M) 0.) - (2(5;“5)) e

(45 +2) i 4(v5 —2) i
lpr)) = (\/5> 0, =) + <\/5> 145, =) - (5.98)

There is another set of consistent boundary states obtained by exchanging |k, +)) and |h, —))
above. The overlaps (2.231) of these boundary states are summarised in Table 5.7. They
obey the fusion rules (5.70), and we may call them “Cardy boundary states” of SM(3,5).
In the overlaps of two boundary states with Ramond labels, NS characters appear twice in
the results in agreement with the fusion rules. This suggests we may have to weaken the
condition for elementary boundary states in the supersymmetric theories.

[1ns) llons) 115 (=)
(Lasll | x6°(0) X (a) 2x% (a) 2x% (a)
(sl Xo® (@) + X (a) | 2x% (a) | 2x% (9) + 2x7% ()
(Ll 2x0° () 2x(a)
(el 2x0°(9) +2x¥ (a)

Table 5.7: Overlaps of SM (3,5) boundary states.

5.2.5 Interfaces Between A/ (4,5) and SM (3,5)

As in the ¢ = 3 case, we need to consider the common sectors of the M (4, 5) bulk state
space and that of SM(3,5) in order to obtain the topological interfaces. In terms of the
Virasoro representations, the common sectors are given by

(}CO®J70)@(H%®?C%)@(H%O ®97%)@(9{%®97%). (5.99)
Therefore, a topological interface operator I satisfying
L,I=IL, and L,I=1I1L, (5.100)

can be written in terms of the projectors onto Virasoro representations as

I(a,b,c,d) = a PyPy+bPsP

3Py +cPy Py +dPyPy (5.101)

3 1 3
2 10 10 5
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where a, b, ¢, and d are constants. In addition, we need a map identifying the Virasoro
highest weight states of weights (3, 2) and (2, 2), which we take to be

3 3 i3 A
|§v §>M(4,5) - 26/3G—%G—%|0>SM(3,5) )
€3 _
3 3 1
5 5>M(4,5) - TgG*%G*%‘%7 T0>SM(3 5) 7 (5.102)

where ¢ = h= o in the second line, and f 3 = +1 and 5 3 = *1 are free. These highest

10’
weight states are normalised to have unit norm.

Requiring the condition (5.46) for the ¢ = % case allows us to solve for (a,b, ¢, d). In
particular, from the SM (3,5) boundary states (5.98) and the Ishibashi states (5.90), and

the identifications (5.102), we get

I(a,b,e, ) 1) = my[1ae) + mallows) + msl1a) +malleg) (5.103)
with
+
a=2my + \/i\[mQ +2ms + (14 V5)my , (5.104)
1++v5
—f% b= \/§m1 + \/%me —2mg — (1 + \/5)7714 s (5.105)
1—-+/5
c=V2my + fmz —2mz — (1 —V5)my , (5.106)
ﬁ
-5
—&3 d=V2my + 2 BV +2mg + (1 — V5)my . (5.107)
We choose ¢ g =§ =-1so that any interface can be expressed as a combination
I(a,b,c,d) =mq I +moly+mgls+myly, (5.108)

where these interface operators are given by

I=1(v2,V2,V2,V2),
:I(H\f 1+f1f1f)
VIR VC R
21(2, )
I=I(1+ \/5—1 V5, —1+V5,1—V5) . (5.109)

They can be viewed as being created from the fundamental interface I by the action of
topological defects since they satisfy the relations

I=DyI=D.I=IDY =1(-1)""Dy, (5.110)
Iy=D;I=D:I1=1D,=1(-1)"*"D,, (5.111)
I; =D, I=1v2(-1)"D}® = Iv2(-1)" D}, (5.112)

Iy =Dy I=1V2(-1)"D,=1v2(-1)"D, . (5.113)
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The action of the fundamental interface I on the boundary states is as follows

Ilins) = 1) +lle) ,  IHIL) = ITle) = IILns) (5.114)
Illpxs) = I1) +11E) . ITI1) = IT€) = llows) (5.115)
1) = 2[lo) , IMio) = [11:) , (5.116)
Hler)) = 2[l5) , IM|5) = lle) - (5.117)

Comparing these with the free fermion results (5.53) and (5.54), we may view the SM (3, 5)
boundary conditions with Neveu-Schwarz labels as “free” boundary conditions and those
with Ramond labels as “fixed” ones.

Asitdid in the ¢ = 1 case, requiring /1" and I'1 to be expressible as sums of topological
defects in M(4,5) and SM(3,5), respectively, provides a strong constraint. For example,
by taking a, b, ¢, d € R, we can calculate

I(a,b,c,d) I(a,b,c,d)f

5—/5)(a? + b2 5 5)(c? + d? a?+b?—c?—d?
_ V)@ + );B< VIS HE) L py Ve (D; + D)
(5—5)(a® — b?) — (5 4+ V5)(? — d?) a? = b +c?—d?
N o D, + =D, (5118)

We find the interfaces given by (5.108) indeed give integer coefficients, and the fundamen-
tal interface I given by (5.109) satisfies

IT"=D;+D, and I'I=DJ®+ (-1 D} . (5.119)

To summarise, we have found a set of four elementary boundary conditions and a set
of eight elementary topological defects in the supersymmetric theory SM (3,5), and a set
of four fundamental interfaces between M (4,5) and SM(3,5). Our next task is to find
non-factorising and non-topological superconformal defects in SM(3,5) and generate the
corresponding defects in M (4, 5) by using the interface operators.
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Chapter 6
Conformal Defects in Tri-Critical Ising Model

In this chapter we consider the superconformal boundary conditions in the folded theory
of SM(3,5) at ¢ = %, and identify them with superconformal defects in SM(3,5). Then
we use the topological interfaces constructed in the previous chapter to obtain conformal
defects in the tri-critical Ising model M (4,5). We calculate their reflection and transmission
coefficients, and comment on differences between our results and those given in [94].

6.1 Folding SM(3,5) and (Dy, Es) Theory

If we consider “folding” the diagonal theory SM(3,5), which has ¢ = -, it will result

10°
in a theory with ¢ = . It turns out that ¢ = I appears in the unitary series of (2.119),
which is the super-Virasoro minimal model SM (10, 12). As we are folding a theory which
is diagonal with respect to $Vir, the resulting theory should admit an interpretation as an
8W(3, 3) diagonal theory. In [94], the partition function of the folded theory is identified
as the (Dg, E) modular invariant of §Vir. The NS sector of (Dg, Eg) partition function is
given!18] by

Zn" = x6%(a) + x5 (@) + x5 (@) + X ()
+ X)) + X7 () + X3 (@) + X5 (@) + 2055 () + X33 (9)
= (ZNS)2 , (6.1)

which can be identified with the square of the SM (3, 5) bulk partition function Z,4 given by
(5.74) using the character identities in Appendix D.1. We take (6.1) as the bulk partition
function of the folded theory.

The Ishibashi states are constructed from the diagonal terms in the partition function
(5.74). There are 12 terms with A = h in the partition function, and together with two
gluing conditions ¢ = +1, there will be 24 Ishibashi states. These diagonal terms can be
identified by Kac labels (r, s) with r and s taking values in the exponents of Dy diagram
and a subset of E; exponents respectively. From Table 2.2, these exponents are

E(Dg)=1{1,3,5,5,7,9} and E(Es) ={1,4,5,7,8, 11}. (6.2)

Since Dy exponents are all odd, we take the subset of Es exponents that are odd numbers
in order to obtain the Kac labels in the NS sector. The result is that the Ishibashi states
are labelled by (r,s) with r € {1, 3, 5, 5, 7, 9} and s € {1, 5, 7, 11} modulo (r,s) ~
(10 = r, 12 — s).

It is instructive to rewrite the partition function (6.1) with the characters labelled by
(r,s). Keeping in mind the Dy and Ej partition functions of sAl(Q) »-WZW models given in
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Table 2.3, we can write

Zyse"

1

)
(’XI,S +X1,11 T X9,5 T )(9,11’2 +1Ix35 + X311 T X755 + )(7,11\2 +2lx55 + X5,11\2) )
(6.3)

(Ix11 4 X7 + Xo1 + Xo7> + [x31 + X7 + X710 + X772 +2|X51 + X5.7

2
L1
2
where the first line and the second line are identical in terms of the characters due to
the identification (r, s) ~ (10 — r, 12 — s). This suggests that a natural way to restrict the

Kac labels to obtain unique representations is to take either s € {1, 7} or s € {5, 11}

while r still takes value in {1, 3, 5, 5, 7, 9}. As we prefer to use (1, 1), rather than (9, 11),
7
5>
representatives is different from that of [94], and this will make differences later on.

to label the vacuum representation of 8Vir at ¢ = £, we take s € {1, 7}. Our choice of

From the partition function (6.1) and the character identity (D.1), the chiral vacuum
character of the (D, Eg) theory can be written as

UG (@) + MOx (@) + “Ox T () + x5 () = (Uxg® (@) (6.4)

This shows that the full chiral algebra §Vir & 8Vir at ¢ = g has three chiral superprimary

5

considered in [35], [39], [40], and [42]. We will return to these super W-algebras later.
Finally, we note that it is also possible to express a single copy of the SM (3, 5) partition

function in terms of characters of $Vir at ¢ = % as

fields of conformal weights 3, 7, and 10. Various extensions of §Vir at ¢ = % have been

Zns = (Ox0%(@)* + (Ox¥(9))?

10

= "0 (@) + "X (@) + "X (@) + "xAG (9)

+ %) + "IN (@) + NP (@) + X (@), (6.5)

where ¢ is real. The reason is that one can embed 8Vir at ¢ = % into the two, holomorphic

7

and antiholomorphic, copies of §Vir at ¢ = 5.

6.1.1 Boundary States Corresponding to Topological and Factorising Defects

As usual, we start from the diagonal theory SM (3, 5) defined on the whole complex plane
with a conformal defect running along the real axis, and fold this theory along the defect
to obtain the (Dg, Fg) theory defined on the upper half plane with the corresponding
boundary condition at z = z. For each field ¢,(z, %), there are two copies ! (z,Z) in
the folded theory: for (z, z) on the upper half plane, the a = 1 copy is the original field
©"(2,2) = ¢,(2,%), and the @ = 2 copy coming from the the lower half plane which is
being folded ¥ (z, 2) = ¢, (*, 2%).

As we did in Section 2.4, it is more useful to map the boundary/defect along the
real axis onto the unit circle, and consider boundary states/defect operators. For that we

employ a family of Mobius maps w — z(w) such that the image of the real axis changes
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smoothly from the real axis to the unit circle. In terms of the parameter R € R, they are

defined by )
w=2%R|—"TE ) (6.6)
z+2iR+ 75

where R = oo gives the identity map, and R = 1 maps the real axis to the unit circle. This
map has the property that the derivative at the origin is 1,

0z

9w L =1. (6.7)

On the upper half plane, the generator G (w) is the image of G(w) on the lower half
plane

G®(w)| = G(w

w=a ‘ w=a*

(6.8)

We would like to relate the modes G, and G,, that are defined by the contour integrals
along the unit circle on the z-plane. They can also be expressed as the expansions

G (2 Z G® >3 and G(z Z G,z "3 (6.9)
when R = 1. Using the Mobius map (6.6), the relation (6.8) becomes

3
. 2 . 5
3/2 A _ (2iR — a)(2aR* 4+ 2iR — a) _3/2 A= 1
SR O] <(2z’R + a*)(2a*R? — 2iR — a*) &G0 g - (6.10)

By taking R = 1 and z = u on the unit circle, we have a = ¢* and z = u~!. Therefore,

w2G (u) = —iu?2G(u) (6.11)
which yields
G? = —iG_, . (6.12)
Likewise, we find
G? =iG_, . (6.13)

In the folded theory on the z-plane, the generators G (z), GV (%), G®(z), and G? ()
exist only on the exterior of the unit circle; upon folding, the generators G(z) and G(%)
with |z| < 1 and |z| < 1 are mapped to G®(Z') and G®(z’) with appropriate coefficients.

We are going to construct a map p which takes a boundary state in the folded theory
and maps it to the corresponding defect operator in the unfolded theory. If it relates a
boundary state and a defect operator by

p(l[b)) = Dy , (6.14)
we define
p(GR b)) = G Dy
p(GL b)) = G Dy
p(GRb)) = —i(=1)"F Dy(-1)™" G,
p(GPb)) = i(=1) " F Dy(-1)" G, (6.15)
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where the coefficients are due to the relations (6.12) and (6.13), and the bulk fermion
parity operators (—1)¥+F are introduced to make all the fermionic generators in the folded
theory anticommute.

In order to complete the definition of the “unfolding map” p, we need to consider
the image of the highest weight states in the (D, Eg) theory that are tensor products of
SM(3,5) highest weight states. They are the lowest weight components of each “block”
appearing in the partition function (6.1). For brevity, when there is no danger of confusion,
we denote the diagonal bulk highest weight states by |h) as they have h = h. The simplest
choice is

p(lh1) @ [hg)) = |hy ) Dol (6.16)

for bulk highest weight states |h;) and |hy) of SM(3,5). As we shall see later, it will be
helpful to define in addition the map

p'(|hy) @ [he)) = [hyXhol(=1)" . (6.17)

In the bulk (Dg, E) theory, there are four such highest weight states, and their images
under p and p’ are summarised in Table 6.1.

(rys) | (1,1) (7,7) (6,7 (5,7
hos | O 5 i 0
p(r.s) | 0X0]  IiXwl  10Xg6l  I45X0l
P(r,s) | 10X0  —[i5X55]  —10Xz5] I46XOl

Table 6.1: Images of bulk highest weight states of (Dg, E) theory under p and p'.

For a topological defect in SM(3,5), there are two signs corresponding to automor-
phisms of two copies of §Vir. From (5.75), the boundary state corresponding to a topolog-
ical defect should satisfy

G,D, =n D,G, GV +in G2 ) |b
{ y=nDy %{( in G,) 1) 6.15)

For a factorising defect in SM(3,5), we have two signs coming from the gluing conditions
of the two boundary states. For the corresponding boundary state, these conditions become

(G + inG_) lla. m)b. '] = 0 @0+ in 6% .y

] o (6.19)
0 = lla, m){b, /[l (G — in'G_,) (G —in'G?,) ||a, b)

From these equations, we see that it is not possible to express all the gluing conditions by
only using a single set of combinations of the form G’ + G and G{,’ + G{. In the next
section, we consider exactly how we can organise the boundary states corresponding to the
know defects into boundary states of the (Dg, E) theory. There are 24 known conformal
defects in the diagonal SM (3,5) theory of which 8 are topological and 16 are factorising.
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6.1.2 Embeddings of $Vir into SVir & S§Vir

7
5>
embedding of SVir at ¢ = % into the algebra §Vir @ 8Vir, where each of §Vir has ¢ = %.

Considering the holomorphic and antiholomorphic copies of the chiral algebra at the same

In order to view the folded theory as a boundary SCFT at ¢ = £, we need to define an

time, we write an embedding as
Lapys(Gr') = oGy + BGYY  and Lam(g(éﬁft) =G +6GY | (6.20)

where «, 3, 7, and ¢ are signs, and G'** and G'¢* are the generators of the two copies of
8Vir at ¢ = {. We will denote the combined mat p o ¢35 by pass-

We also need to define a map from the Ishibashi states of the (Dg, Fy) theory to the
tensor products of the SM(3,5) Ishibashi states. As Ishibashi states are determined by
highest weight states and gluing conditions, we need to express the bulk highest weight
states of the (Dg, Fy) theory in terms of vectors in the folded theory, and find relations
between gluing conditions of the (Dg, E) Ishibashi states and those of the tensor product
of the SM (3, 5) Ishibashi states.

Gluing conditions of (Dg, E;) boundary states are related to the signs n and ' in (6.18)
and (6.19) via the embedding maps ¢,4.s. Consider an Ishibashi state |, €)) of the (Dg, Fg)
theory, which satisfies

(GY" +ieG™) |h,e) =0 . (6.21)

Using the embedding ¢,3,4, this condition becomes
(aGY + BGY +ieyGY), +ie6GE)) |h,e) = 0. (6.22)

Therefore, a topological defect with the gluing conditions n and 7’ in (6.18) corresponds
to n = ade and ' = Bve, which gives afyd = nn’. Similarly, a factorising defect with n
and 7’ in (6.19) corresponds to = aye and 1’ = — e, which yields o376 = —nn’. From
these observations, we find that there are two equivalence classes of embeddings given by
afyd = +1. If an embedding satisfies ay0 = 1, topological defects will satisfy nn’ = 1
and factorising defects will satisfy ' = —1. An embedding with a3y = —1 corresponds
to topological defects with 7’ = —1 and factorising defects with nn’ = 1.

From the above result, we expect there are two sets of boundary states in the (Dg, Ej)
theory arising from the two equivalence classes of embeddings; one set should correspond
to half the defects of SM (3, 5) and the other set giving the other half. In order to obtain the
exact correspondence, we need to consider embeddings of the diagonal bulk highest weight
states of the (Dg, Fg) theory into bulk states of the folded theory. As we already know
some of the relations that are given in Table 6.1, we now need to determine embeddings of
the remaining 8 states corresponding to the diagonal terms in the partition function (6.1).
Namely, they are the states with Kac labels (1,7), (9,1), (9,7), (3,1), (3,7), (7,1), (5,1),
and (5, 1) that correspond to h = h given by %, 10, %, 1—70, g, %, %, and %/ respectively.
Definitions of these states depend on the embedding ¢,3.5. For example, the state with
h = h = 3 in the (D, Eg) theory is given by

s _ _
ranal13)) = 1o 5 (0G1} —BGHAGY — 66 ) (6:23)

3
2



6.1 Folding SM (3,5) and (Dg, E) Theory | Identity Defect in SM (3, 5) 116

where ¢ = % and ng = +1 is arbitrary. Another example is the state with h = h = =

which can be written as

ZT’ 170

T\y _ 10 &) @\ (D ~(2) y| 1
taprs(l1g)) = %(QG,I% - BGT (G, - 0GT))I5) (6.24)
where h = & and 7 = +1is arbitrary. Here, |£) is a highest weight state of the (Dg, Ej)

theory which can be written as the tensor product |5) ® |{5) of the highest weight states
of the diagonal SM (3,5) theory. We have a free sign 7, for each of these eight (Dg, E)
diagonal highest weight states. The image of these states under . and p as well as the
corresponding results for the Ishibashi states are summarised in Appendix D.2.

Using these facts, it is possible to construct the boundary states corresponding to all
the know topological and factorising defects in the diagonal theory SM (3,5). We find that
these boundary states can all be written in terms of ||(a, b)ys) and ||(a,b)ss) defined in
[94] in at least two ways. We illustrate this in the next two subsections with the case of
the identity defect and the factorising defect || 1 s){(1ys|| in SM(3,5).

6.1.3 Identity Defect in SM (3,5)

In terms of an orthonormal basis of the bulk state space H,s of SM(3,5), the identity
defect can be expressed as

Dy =" |u)e|. (6.25)
"
Expanding this as
Dy = [0)0] + — (G_310)0IGy + Gy 0X0IGy +-+)
1= 3073 \G-1 X0|G3 + G_3[0)0|G5 + -
1 _ _
IS+ 75 (G-g i HabIG + Gy l)IGy +o )+, (626)

we see that this must arise from a combination of the (Dg, E) Ishibashi states |0, €)), |3, €}),
12,60, 110, €), |3, €), |15, €), |2, €), and |22 €). Since the identity defect satisfies (6.18)
with » = 1 = 1, the gluing condition ¢ and embedding ¢,4.4 satisfy ¢ = ad = v and
afvyéd = 1.

The simplest choice is « = = v = § = 1. This still leaves the signs 7, free for the SVir
primary states that can be considered as super W-algebra descendants. Given the freedom

to choose these signs, the boundary state || D)) can be expressed as
ID1) = 10,+) + 13, +) + |5, +) + 110, +)
15,0 + 55, +) + 15, +) + 155, +) (6.27)

such that
Dy =pi([D1)) (6.28)

where p acts as in Table 6.1. Using the explicit expressions of the Ishibashi states given in
Appendix D.2, we can see that this fixes the signs 7. In particular, we have

na=1, nz =1, and 77%:—1. (6.29)
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By choosing the signs 7, in a different fashion, we can equally express || D;)) as

ID1) =10, +) = 13, +) + |5, +) — [10,+)
— |5, +) + 15+ + 18, +) — 13, +) (6.30)
with
Dy = plyr i (ID1) - (6.31)

In this case, we have the opposite choices of 7,

=-1

n , 77%0:—1, and ng:l. (6.32)

3
Note that in the expressions like (6.28) and (6.31), information regarding the choices

of signs 7, is suppressed, and only information regarding the choice of the signs for the
highest weight states given in Table 6.1 is kept.

6.1.4 Factorising Defect |1, )){(1s|| in SM(3,5)

We take the set of consistent boundary states in SM (3,5) as given in (5.98). Then, the
factorising defect ||1,4)}{(1ys|| can be written as

I Las Mol = <510\@> 0,00+ + (5) 10, 4Mh.+

+(5) o + (“10“5) ot + . (639)

Since this factorising defect satisfies (6.19) with n = i = 1, the gluing condition ¢ and
embedding ¢4, satisfy e = ay = -6 and afByd = —1.

The simplest choice is « = § = v = 1 and 6 = —1, which we take for this case. As
before, we have the freedom to choose the signs 7;, and we can express this factorising
defect in many ways. For later use, we make a specific choice

[1xgs 1ns) = (5 _10\/5> (10,40 + [2,4) + |Z,+) + |10,+))

NP

; (i) (0 + 120+ 1540 + 12 4))

5++5 :
+< 1of> (154D + 1540 134D + 15 +) - (639)
such that
s sl = 1 (s Tas) (6.35)

where p acts as in Table 6.1. In addition, we have

Ui

[N

=-1, 77%:—1, and 77%:1 (6.36)

in this case. Similarly, the other 7, are fixed.
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6.2 Boundary Conditions in (Dg, E;) Theory

A set of boundary states for the (Dg, Eg) theory was proposed by Gang and Yamaguchi in
[94]. They considered GSO projected boundary states by including both Neveu-Schwarz
and Ramond contributions whereas our construction only needs boundary states in the NS
sector. In addition, there are some difficulties with the boundary states in [94] as we will
explain later.

The boundary conditions of the (D, Eg) theory are labelled by pairs of nodes on the
D¢ and Eg4 Dynkin diagrams together with a choice of gluing condition. As we have seen
for the Virasoro boundary conditions in Subsection 2.3.4, it over-counts the number of
boundary conditions if we include all the pairs of nodes. The situation is quite different
from the Virasoro case in which one of the diagrams is always of the type A,,. In this case,
it turns out that the nodes of the Ey diagram related by the diagram symmetry,

r:1«<5 and r:2<+ 4, (6.37)

lead to the same Neveu—Schwarz contribution while the Ramond contributions are differ-
ent. We may think of this as replacing the F Dynkin diagram by the F; diagram with the
nodes related by the Z, symmetry corresponding the short simple roots of F,. In order
to label distinct boundary conditions, we take the Eg diagram nodes 1, 2, 3, and 6, which
gives 24 pairs of nodes. Furthermore, we can bi-colour the Dynkin diagrams as in Figure
6.1, and split the boundary conditions into two sets with 12 elements each: one in which
the pairs consist of nodes of the same colour, and the other set with pairs of nodes of
opposite colour. A pair of nodes is denoted by (a, b) where a is a node of the Dy diagram
and b belongs to the E; diagram. The set of nodes with the same colouration is given by

Be = {(17 1)7 (3’ 1)7 (57 1)7 (67 1)7 (272)7 (47 2)7 (173)7 (373)7 (57 3)’ (673)7 (276)7 (47 6>} ?
(6.38)
and the set of nodes with opposite colouration is

B, = {(2,1), (4,1), (1,2), (3,2), (5,2), (6,2), (2,3), (4,3), (1,6), (3,6), (5,6), (6,6)} -
(6.39)

(Showing map a — 7(a))

Figure 6.1: Dynkin diagrams of Dy and E; showing bi-colouration and map r.

In [94], boundary states were constructed by applying the method of [67], which was
discussed in Subsection 2.3.4, directly to the (Dg, Eg) theory. Based on the coefficients
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(2.249) of the boundary states (2.251) for Virasoro minimal cases, Gang and Yamaguchi

introduce matrices

(Dg) T (Ea)djs
Ui =t (6.40)

8 10

S
where (94, are eigenvectors of the adjacency matrix of the Dynkin diagram of G, and S;’]“.)
are elements of the modular S matrix of sAl(2) +-WZW model, which is given by (2.250).

T,8)

Explicit expressions for "#'y;, ¢y, and ¥ can be found in Appendix D.3. These
matrices have the property that under the Kac-symmetry

WlLoori2=e)if  (a,b) € B, (same colouration)
LR S (0.0 € 5. (6.41)

—5 7 if (a,b) € B, (opposite colouration)
Therefore, some care is needed when defining the boundary states.
Following [94], we define the boundary states ||(a, b)) using the matrices (6.40), but
we take a slightly different choice

H(a7 b)NS>> - Z \IIEZ’,Z)) ‘hr,sv +>> i (642)
re{1,3,5,5',7,9}
se{1,7}

whereas in [94], the sum over s is taken s € {1, 5}. The sums are over exactly the same
representations but the choice of different representatives result in expressions which differ
by a sign for s = 7 when the nodes are of opposite colour. For example, (r,s) = (1,7) and
(9,5) denote the same representation but ¥{;";) = —¥{"}).

Our choice of representatives was motivated by the form of the (Dg, E) bulk partition
function (6.3) and the fact that the Ej invariant of the ;1(2)10-WZW model has an extended
symmetry algebra consisting of the representations 1 ¢ 7 as in Table (2.3). Our choice
seems natural when considering fusion rules of $Vir at ¢ = %, and we think it results in
more natural expression for the final boundary states.

One consequence is that, unlike the situation in [94], our choice of representatives
results in sets of boundary states that only differ by factors of /2,

I(a,6)xs) = V2[[(a, 1)xs)  and |, 3)xs) = V2]l (a,2)xs) - (6.43)

These may seem redundant but it will turn out to be helpful when we consider consistent
descriptions of all the possible boundary states for the (Dg, Fj) theory.
In addition, we define the boundary states ||(a, b)) in a slightly different way to [94]

1@, b)ssh = (=1)" (@, b)xs) - (6.44)

These differ from the ones in [94] by an extra sign for each of the Ishibashi states corre-
sponding to a fermionic chiral highest weight states |h,. ;) with

(r,s) €{(1,7), 3,1), (5:7), (5,7, (7,1), (9,7)} . (6.45)

In terms of the conformal weights, fermionic highest weights are

1 1/
pod T 751 o1n (6.46)
2°2 10" 10 10" 10
This simplifies the identification of the known boundary states. Our choice of fermion

parity assignment is explained in Appendix D.4.
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6.2.1 Identifying Known Defects

Using the relations (6.43) and the definition (6.44), we can identify the boundary states
corresponding to all the know defects in SM(3,5). As shown in Table 6.2, these split
into two sets: those with a3vyd = 1 for which we need the highest weight state map p’
supplemented by suitable descendant maps 7;,, and those with a3y = —1 for which we use
p. These two sets cannot be defined at the same time as they use different embeddings. For
example, we cannot describe the defects Dy and ||1,¢)){(1xs|| as supersymmetric boundary
conditions for the (Dg, Eg) theory at the same time.

afyé=—1, a=f=y=1, 6=—1, map = p,,_ afyé=1, a=p=y=6=1, map = o/,
Defect Boundary states Defect Boundary states
(11 M Lnsl V2L Dwsh s 11, 6)xs) || IxsMLall | V2L 6)sh, 2 1(1,1)xs)

" [lons Mepns V2B, Dnsh s 13,6)xs) | | llenshnll | V211(3,6)xs) 2 1(3, s y
[[1xsHonsll V25, xsh s 11(5,6)xs) | | I1xsMerll | V211(5,6)xs) 215, s
llons M Ls|l V2I(6,1)xs) s 11(6,6)xs) | | lonsD1rll | V211(6,6)xs) , 2116, 1)xs)

D s M ns (D7 | V2 Dssd s 10 6)ss) || [11aMLnsl | V2L 6)ss) . 2 [1(1, 1))

; (=D lonsMeonsll (=17 | V213, Dssh s 113,6)ss) | | leaonsll | V2IIE3,6)ss), 213, Dssh |
(D" s Meonsl (D)7 | V2IB, Dssh s 15,6)ss) | | [edlensll | V211(5,6)ss) , 215, )
(=D loxs Ml (=1)" | V21I(6,1)ss), 11(6,6)ss) | | loansll | V21I(6,6)ss) . 216, 1))

V2(=1)"D,y V2I(2,6)xs) , 2112, 1)ns) Dy V212, Dxsh s 112, 6)xs)

. V2(=1)"Dy V2[(2,6)ss), 212, )ss) || (1) Dy | V212, Dssh, 11(2,6)5s) ¥
V2(-1)"D, V2[4, 6)xs) 2 11(4,1)xs) D, V2[4 Dxsh s 11(4,6)xs)
V2(-1)"D, V2|(4,6)ss) . 214, Dss)) | | (1D Dy | V214 Dssh s 114, 6)ss)

Table 6.2: Identifications of the boundary states corresponding to the known defects.

As an example, we present the overlaps of the boundary state corresponding to the
identity defect,
V21I(2, Dxs) = 1(2,6)xs) » (6.47)

with the one representing the topological defect (—1)"+7 Dy,

V212, Dssh = 112, 6)xs) (6.48)
the one representing the factorising defect ||1¢)}{(1z]l,

2 (1, D) = V2I(1,6)xs) , (6.49)
and the one representing another factorising defect ||1;){(1xsll,

21, Dss) = V2 I(1,6)s5) (6.50)

all of which have a8y = 1. We have exactly the expected results:

tot tot _
((2,6)s 172 (=) (2, 6)s) = “OES (@)+ xS (@)+ 10X (@) + VX35 ()

HIE(@+ O @+ @)+ (0
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= (“%o0(@)” + (“x 4 (@)* (6.51)
(2, 6)nsllg? 5" E8 =30 (2, 6)5) = 2 (“OxF @)+ (@) + X, (@)+x s (0))
= 2(Y (@) +2(Px l;7;((1))2, (6.52)
2(2,6)slg= (5160 ]|(1, 1)56) = 2(*x NS( )+ 1O (a)
=29x% (Va) , (6.53)
2 ((2,6)s g5 (6" H" =30 (1, 1)) = 2 (0 (0)+ 1y (@) + 40Xy (@)X (0))
=2 <3>X%(\@ : (6.54)

where ¢ = €?™" and § = e~ 2"/7 with 7 = %, and Li* and L* are the Virasoro generators
for ¢ = % Note that the overlaps of ||(2,6)ys) With 2 ||(1,1)ys) and 2 ||(1,1)g)) are the
same, 2 ®x"% (,/q), thanks to two different identities relating the characters of SM (10, 12)
and SM (3, 5T)6 that are given in Appendix D.1. This is a function of /g since geometrically
it corresponds to a strip of width 2L, as shown in figure 6.2.

However, if we consider defects with different values of «3vd we do not get sensible
results. The overlap of the boundary state in the (Dg, Fg) theory corresponding to the
identity defect with the boundary state corresponding to the factorising defect ||1 s ){(1xsl|
will give the partition function on the strip of width 2. and boundary conditions 1, on
both sides, that is

LT =L — T
Ty (@507 7055070 Dy |1y 1nsll) = “X65(va) (6.55)

But ®x5%(\/q) = q_ﬁ (l—i—q% +q+q% —&—q% +- - - ) cannot be expressed as a sum of characters
of the c = % algebra, and therefore, it is not possible for the two defects D; and || 1 ){1xs]|
to be represented as boundary states for the (Dg, Fg) theory at the same time. If we look
at Table 6.2, we see that D; corresponds to ||(2,6)ys) defined with embedding ¢, ., but
| 1xs){1xs|l corresponds to ||(1,6)ys)) with embedding ¢, , and so their overlap being
calculated as

(2, )nsll g 5" 50D (1, 6) s = V2 O (V) (6.56)

has nothing to do with the required quantity.

6.3 Identifying New Defects

In the preceding subsection, we have see that all the know defects in SM (3,5) correspond
to the boundary conditions in the (D¢, Eg) theory that are all labelled by the Fy diagram
nodes 1 (= 5) and 6. If we instead use the nodes 2 (= 4) and 3 of the E diagram,
we find new conformal defects that are neither topological nor factorising. This can be
compared with the boundary conditions in the ;1(2)10-WZW model with the Ey invariant;
it is known[®7- 8] that the boundary conditions labelled by the nodes 2, 4, 6 breaks the
sp(4); = s0(5); symmetry. In [91], non-factorising and non-topological conformal defects
between the Lee-Yang model and the Ising model are labelled by the Fg diagram nodes 2,
4, and 6.
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identity
identity identity defect
defect defect
.t N

(Dg, Eg) ~

(2,6l 2, 6)x) "

2L
L
]?NS 1NS
4 SM(3,5)
f ) SM(3,5)
(D67E6) = 2
(6 G T O S ) 1, 1,
2 (1, 1)xsll 2 [1(1, 1)s
L
Lys Ly 1,
SM(3,5) [ 1z ; :
/ 5 SM(3,5) !
(D67E6) = ! ~ '
/‘W (k identity
2,6) ve 1.c 1
{(2,6)xsll Tnsh  111x) identity defect
2L

2|(1,1)ys) defect

Figure 6.2: Different boundary conditions on (Dg, Fg) result in different geometrical set-ups for
SM(3,5).

Furthermore, in Table 6.2, all the factorising defects defects correspond to the Dy
diagram nodes 1, 3, 5, and 6 while all the topological defects are labelled by the nodes
2 and 4. This suggests that the boundary conditions labelled by the Dg diagram nodes 1,
3, 5, and 6 are in the untwisted sector of SW(3, 3), and those with the nodes 2 and 4 are
in the twisted sector. This observation agrees with a W(2, 3) case (the three-states Potts
model(®?)) and with a W(2, 2) case (the doubled theory of Lee-Yang[°!).

As we know the explicit expressions for the (D, Eg) boundary states, we can calculate
their reflection and transmission coefficients as well as their entropies (defect g-values).
For the R and 7 values of the defects, we can use the formula give in (3.11). In this case,

the Virasoro highest weight state [I¥) can be written as

1 _ _
W) = (L0~ L)~ L)) (6.57)
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where ¢ = %. Using the expansion of |%, e) given in (D.6), if the boundary state || D))
corresponding to a conformal defect D can be expressed as

ID) = Al0,€) + B3, e) +- -, (6.58)

then w,, given in (3.11) can be written as

B
wp = —€ng —, (6.59)

and the reflection and transmission coefficients of D are given by
1 1
R = 5(1+WD) and 7 = 5(1—%,) . (6.60)

They do not depend on the highest weight embedding maps p, .. nor p/ . but depend-
ing on the signs of the boundary state gluing condition ¢ and embedding of the descendant
state 73, the values of R and 7 may be swapped.

The g-values of conformal defects can be obtained from corresponding boundary state
coefficients; they are the coefficients of the Ishibashi state |0, €)). From (6.40) and Appendix
D.3, the g-values of (Dg, E) boundary states are given by

S((zsl) 1 : am
ol 1+ 7z sin (§5) fora=1,2,34
g(l(a Dnsymsd) = § s, . (6.61)
; S’ﬁ:i L+ 7 fora=5,6
9@, 2)xs/xs)) = V2+ V3 g(ll(a, Dy xs)) - (6.62)
g(||(a, S)NS/I\TS») =1+ \/g) g(||(a, 1)NS/1\7’S>>) ) (6.63)
9(1(a,6)xsms)) = V2 g(ll(@; Dxs/ms)) (6.64)

where the last two relations follow from (6.43). These values are independent of the
embedding and choice of signs 7;,.
Note that [|D)) and (—1)”|| D)) have the same value of g and 7 as we have

(=1)7ID) = A0, —e) = B3, —e) + -+ (6.65)

due to fermion parity assignment (6.46), and this results in the same value of w,. We
find that the boundary states ||(a, b)ys,xs)) only take four different values for 7 as in Table
6.3, but a large range of g-values. We also list the g-values for the known topological and
factorising defects in the (Dg, F) theory in the same table.

If the g-value of a boundary state cannot be expressed as a sum of the g-values of
known topological and factorising defects, this boundary state must correspond to a “new”
defect.

Again, these new defects fall into two sets: those defined from the boundary state using
embedding ¢, ., and map o/, and those defined with embedding ¢, ., and map p. With
each set, the boundary states satisfy Cardy’s condition, that is, the overlaps of any two
boundary states corresponding to the same embedding p, or p’, are non-negative integer
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T g boundary states defined with ¢, ., _ and map p
1 V2 lau. 201(2. D) 212, Dss)
L 2288. 2[/(4, s, 214, Dss)
o | (=5)" osasr. 11, 6)ssh. 11, 6)s)
55\ /2 ~
(355)7 08506 | [1(5:6)s) 1(6:6)xs)s 11(5,6)xs)s 116,6)s)
(2:24)" 13763 13, 6)xs) 113, 6)55)
S V24 VB 10318 1(2.3)xs ) 11(2,3)s)
3.1258... (4, 3)ws ), 11(4,3)ss)
3-8 1.4363... 21(1,2)ns)s 211(1,2)s)
3.7603... 21(3,2)ns ), 2 11(3,2)xs)
2.3240... | 21(5.2)xs). 21(6,2)s). 2 (5. 2)s). 2 1(6,2)ss)
T g boundary states defined with ¢, and map o’
1 1 1 12, 6)s)- 11(2,6)s)
LS 1618.. (4, 6)s ). [1(4,6)ss)

0o | (=5)7 0w 2 (1, sl 211(1, Ds)
(258)" 12080...| 205, 1e). 206 D). 21165, D) 2106 Ds)
(222)" L96s.. 215, ss) 2 (3. D)

SAL 14V 27, 211(2.2)xs) 211(2.2)s)
4.4205... 21/(4,2)xs) 2 [1(4,2)55)

s 1.0156... 11 3)xs). [1(13)s)
2.6589... 13, 3)xs - 11(3,3)s)
1.6433. (5, 3)xs ). [1(6,3)s)

Table 6.3: T and g-values for the (Dg, Eg) boundary states
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combinations of characters of SM (10, 12). The overlaps of states corresponding to different

maps do not satisfy Cardy’s condition.

Further, the overlaps involving the known topological and factorising defects can be

expressed in terms of the characters of SM (3,5), but those involving the new defects can

not.

As an example, we consider the overlaps of the boundary states representing the iden-

tity defect,

V2 (2, Dxsh = 12, 6)xs)

with a new defect,

V2 (1, 2)xs) = (1, 3)s)

and one representing || Iy {(Zysl|,

V2 (1, Dxsh = (1, 6)s)

with another new defect

\@ ||(272)NS>> = H(273)NS>> :

(6.66)

(6.67)

(6.68)

(6.69)
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We have

(2, 6)xslla2 6"+ =) (2, 6)xs) = “OXE (0)+ x5 (@) + "% F (@) + X35 ()
+HOXT @)+ "N F @+ X (@) + "% ()
= ("x5%(@)" + (XF (@) (6.70)
((2,6)xs 32 FF =) 11, 3)0) = 0N (@) + “x (@) + 20Xy (a)
+09% 58 (¢) + x5 (g) . (6.71)
((1,6)s |72 R0 (1, 6)s) = O (@) + O3 (@) + “OxFa) + XN (@)
— (9x3%(q))? (6.72)
((1,6)s |72 (R =561 (2, 3)s) = % (@) + “OXE (0) + 207 53 (0)

80
+(10)X%§%(Q) + “O’x%%(cﬁ . (6.73)

where ¢ = €27 and § = e~ 2"/7 with 7 = %, and Li* and L* are the Virasoro generators
forc=1.

Since hyy = g5 # hios + hiy, for any pair of Kac labels (r, s) and (r/, ') in SM(3,5),
the overlap

((2.6)xsllg? (65"~ (1, 3)) (6.74)

cannot be expressed as a sum of products of characters 'y, (¢q) ®x,/ ¢(¢). In addition,
since hiyy — 155 = —3q5 # 3(hit — 555) for any (r, ) in SM( 5), it cannot be expressed
as a sum of characters ®x, ,(,/q).

Note that

((2,6) s 137 5 HE = 50) || (1, 3) o)) = (1, 6)xs ]| @2 8" HE6~50)[|(2,3)s) ,  (6.75)

which suggest that these overlaps are related by the insertion of a topological defect in the
doubled model labelled by the Dynkin nodes (2, 1), which we will return to later.

For reference, we give the overlaps of the new boundary states with themselves to show
that they satisfy Cardy’s condition, but also cannot be expressed in terms of characters of
SM(3,5):

tot tot __
(1, 8) s |72 (=50 (1, 3) )
— (IO)XgS(Q)+2(10>XES(Q)+3<10>X§S((]) +3(10)X§S( ) 2(10) NS( )+ (10)XNS(q)7

(6.76)
1 tot | 7tot__ 7
((2,3)s g2 (616" =36)] (2, 3)5)
= ""%x0%(0) +2"x 17 (@) + 3"x 7 (@) + 3"x 37 (@) + 2948 (0) + “VX16 (9)
+ 1P (a) + 2" () +3"x T (9) + 37X (@) + 27X () + "IxFE (a) -

10

(6.77)
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6.3.1 New Factorising Defects in SM (3,5)

While the boundary state ||(1,6)xg)) can be identified as the defect

(=D s M ns [ (=1)" (6.78)

this is not actually the product of two boundary states in SM (3, 5). The state (—1)"||1ys)
does not satisfy Cardy’s constraint. For example, its overlap with ||1,s)) is not an integer
combination of characters in the crossed channel:

(Lnsllgs (FotFomma) (<) | 16) = V2 O (a) (6.79)

The defect (—1)7||1xs){1xs||(—1)" does however satisfy the constraint. For example

7

((1,6) sl 72 HEHEE" =58 (1, 6)5)
= (sllgz (Pt Fomm) (—1)F 1y ) Ls | (-1)7 32 (Pt Po70) 1,5 = 2(“x™, (9))
(6.80)

Conversely, the factorising defect ||1;){(1x|| does not arise in the tables 6.2. The resolution
seems to be that these factorising defects are not fundamental and instead we have

11, 6) )
2||(1, 6)xs))

12

(=) [ 1xs) {Insl (=1)" (6.81)
2(=D)"1asH (sl (=1)" = [1x) (sl - (6.82)

12

This illustrates the possibility that each known factorising and topological defect in SM (3, 5)
gives rise to a superconformal boundary state in the (Dg, Ef) theory, but the converse need
not to be true.

6.3.2 Fundamental Defects

All the SM (3,5) boundary states given in (5.98) can be considered as being generated
from the fundamental boundary state ||1,4)) by the action of topological defects. In this
regard, we can view the factorising defect ||1,¢){(1ys|| and the topological defect D, as
fundamental, and the other known defects and the corresponding boundary states in Table
6.2 can be regarded as the result of left and/or right action of topological defects on them.

We can conjecture the same structure holds for the sector corresponding to new defects.
We take

Dy = 0l (1(L3)ns)) = Py s (VEI(L,2)56)) (6.83)

and denote the action of SM(3,5) topological defects on this defect as
Dytp=D,DyD,, Dy, =DyD,, Dyp:=D,Dy. (6.84)
In addition, we define

Dy = poe (1(2,3)xs)) = - (V21(2,2)5)) - (6.85)

The other non-factorising and non-topological defects can be viewed as the result of their
fusion with topological defects in SM(3,5) as summarised in Table 6.4.
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aByd=1, a=f=y=d=1, map = 4, .
Defect Boundary states
Dy VZI(L2)xs), 1(1,3)xs)
Doy V2113, 2)xs), 1(3,3)xs)
Dy, V2[5, 2)xs) s 1(5,3)xs)
D,y V2[[(6,2)xs) . [1(6,3)xs)
(=D)"D(=1)" V2II(L2)sw), 1(13)5s)
(1) Dy (=1)" V2I3,2)s) . 1(3,3)ss)
(=) D (=1)F V25,255 11(5,3)58)
(=1)"Dyp(=1)" V2[[(6,2)ss), 11(6,3)55)
V2(=1)"D, = Dv2(-1)" V2 1(2,3)xs) 5 2112, 2)xs)
V2(-1)"D, = Dv2(-1)" V2[1(2,3)ss) 2112, 2)5s)
V2(=1)"D,D; = DDy v2(~1)" | V2[4, 3)xs) » 2 (4, 2)xs)
V2(-1)"D,D; = DD, v2(-1)" | V2[4, 3)ss) , 2 |4, 2)5s)
afyé=—1, a=Pf=y=1, 6=—1, map = p,,,_
Defect Boundary states
DypV2(-1)" V2 [(1,3)xs) 2 [1(1,2)xs)
Do v/2(~1)F V211(3,3)xs) + 211(3,2)xs)
Dy V(1" V2115, 3)n) 2 15 2
D, V(1) V2 [1(6,3)n) 2 1(6,2)x)
Va(-1)"D; V2L, 3)s) 2 1L, 2))
VA(-1)"D,;, VZ113,3)5) 2 1(3,2)56)
V2(-1)"Dy, V21I(5,3)ss) . 215, 2)ss)
V2(=1)"D,y V21[(6,3)ss) . 2 [1(6,2)s)
D, V2112, 2)xs) s 1(2:3)xs)
(=1)"FDy = Dy(—1)"F V2II(2,2)s) . 12:3)5s)
D,D, = DD, V21[(4,2)xs) s [1(4:3)xs)
(=)™ D,D; = DDy (1) | V2([(4,2)5s),  [1(4,3)ss)

Table 6.4: Structure of new defects.

For one of the fundamental defect D,, the left and right action of a topological defect
D, coincides
Da Dt — Dt Da . (6.86)

This does not, however, imply that the defect D, is topological.

One of the simplest checks is to compare the ratios of boundary state coefficients since
the action of topological defects is multiplicative in terms of the coefficients. Indeed we
have

(r8) 1y () gy () /gy () (r8) 1y () gy (ms) /gy ()
‘I’<3 6)/‘11(1 6) — ‘I’<3 3)/‘I’<1 3) s ‘I’<4 6)/‘11(2 6) — ‘I’<4 3)/‘I’<2 3) s

(r,s) (r,s) __ (r,s) (r,s) (r,s) (r,s) __ (r,s) (r,s)
\I’(s 6)/\11(1 6) — ‘l’(s 3)/‘11(1 3) s \11(1 1)/\11(2 6) — ‘ll(l 2)/‘11(2 3)
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(r,s) (r,s) __ (r,s) (r,s) (r,s) (rys) __ (r,s) (r,s)
\P(G,G)/\Il(lﬁ) - \IJ(G,B)/\II(LS) ? \P(S,l)/\ll - \I/(S,Q)/\I/

(2,6) (2,3) »

(rys) (rys) _ \py(mo) (rys) (rys) (rss) _ \py(mo) (rys)
WU = W L W = e
(rys) (rss) _ \py(me) (rys) (rys) (rss) __ gy (mo) (rys)

6.4 Super W-Algebra Boundary States

From the bulk partition function (6.1), we see that the ¢ = g 8Vir representations with
h =0, %, %, 10 form the vacuum sector of the extended superconformal algebra for which
the (D, E) partition function of $Vir can be regarded as diagonal. At first, this extended
superconformal algebra seems to have three extra generators of weight %, %, and 10 but
we will argue this is just SW(2, 2).

At c = %, there are four possible modular invariant partition functions!8! for $Vir.
Besides the diagonal one, (Ag, Ay;), there are (D¢, A1), (Ag, Fg) and (Dg, Eg). As the
h = 10 superprimary field is a simple current, the corresponding extension yields!4°!
the (Dg, A,) invariant and 8W(3,10). As in Table 6.5, the exceptional invariant (A, E)

contains the field of conformal dimension I, and it is associated” with SW(2, 7).
Invariant | Algebra Vacuum sector
(Ag, A1) 8Vir Xo°
(Dg, A1) | SW(3,10) Xo" +X10
(A9, Ey) | SW(E.T) RS
(Do, Eg) | SW(3.3) | xd® + x5+ x5 + x5

Table 6.5: Modular invariant partition functions and extended superconformal algebras at ¢ = %

As we have discussed in Subsection 2.2.2, SW(3,3) at ¢ = £ can be expressed as the
direct sum of two copies of §Vir at ¢ = %. We define

Gtot(z) — O{G(l)(Z) + BG(Q)(Z) , W(z) — aG(l)(z) _ BG(Q)(Z)
T 2) =TW(2) + TP (z), U(z) =TV (2) =T®(z2), (6.88)

where the generators with superscripts are those of ¢ = 1—70. The chiral highest weight states
12) and |I) of SM(10,12) can be decomposed as

)= /i (aG%) = BG?)) 10) = \/E W_4[0) and (6.89)

[NSIEN I ] [J0)

~

= 201/3% (a(LUGY) = 361 + BILAG®) — 4G2)) — F(BLELG?), +aL%G)) [0)

= 3V (VW y — By — 56 ) 10). (6.90)

where ¢ = %. The expansion of |10) is too lengthy to present, and it is not unique due to

null states. We find that the states |3) and |10) change signs if we interchange G and
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G® while \ ) does not. This implies the automorphism of SW(2, 2) given by W +— —W

5:3)
and U — —U induces |3) — —|3) and [10) — —[10) on the vacuum representation. In
[39], it is shown that SW(2, 2) contains SW(2, I)

the character identities between SM (10, 12) and SM (3, 5) suggest the (D, E) invariant

as a subalgebra at ¢ = % Furthermore,

corresponds to SW(3, 2).
We define the untwisted Ishibashi states corresponding to SW(3, 3) as
0,e)™ = 10,€) + 3. ) + 13, ) + [10,¢) , (6.91)
L) =1L e) + 15 eh +1Seh +1%e) (6.92)
[13:e)" =g e) + 186D (6.93)
e =1 e) + 156 (6.94)

We can also define the twisted Ishibashi states corresponding to the automorphism W
—Wand U — —U as

0,e)y = [0,€) — |3, €) +|L,€) —[10,¢) and (6.95)
Lehm =I5 e) + 55, e) + [8,e) — 5T, ¢) . (6.96)

They satisfy the Ishibashi conditions
(Giet +ieG) [hyehy =0 and (W, +iecqW_,,) [h,ehy =0, (6.97)

where {n =1forQ2 =idand {§ = —1for Q =1T.

Using the extended modular S matrix of SW(2,2) at ¢ = 7 defined in Appendix D.6,

2 E)
we define the untwisted SW(3, ) boundary states as

[NS,NS]

laseh = D e fhar, )™, (6.98)
o/ €IZE la!

where a € Zg¢ and 725 = {1, 3, 5, 5'}. The conformal welghts of the SW(3, 3)
and hs = 10 For the Neveu-Schwarz twisted

representa-

tions are given by hy =0, hg = 5, hs = 10,

sector labels! ¢ = 2 and a = 4, we can write the twisted boundary states as

S[NSNS]
lasehr = >, —2—lha, Ny - (6.99)
arefr,3y \/ Sk

Note that 8™ vanishes when a € {2, 4} and o’ € {5, 5'}.
We can also use the Ramond labels a € Zg* = {1+, 3+, 5+, 5'+} and define
S[R,{NS] .
la,e) = Y —EL By, e) (6.100)
o/ €T ff’NS]
By introducing the Ramond twisted sector labels a € {2+, 44}, the twisted boundary
states are given by

S[R,NS]
la,€)y = > L |hy )y . (6.101)
ae(1,3y \/Shr

1. c.f. Virasoro D-type boundary states discussed e.g. in [62] and [67].
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If we ignore the signs in the Ramond labels, these modular S matrices are related by

1
ﬁsgjﬁ“fs] =Sp (6.102)
In addition, two boundary states |a+,¢)) and ||a—,¢)) with the Ramond labels a+ are
the same. We shall see this degeneracy has nice interpretation in terms of the (Dg, Eg)
boundary states discussed previously.

By considering SW(2 we have obtained 6 boundary states labelled by the extended

2 ﬁ)
algebra representations in the Neveu—Schwarz sector, and 12 boundary states labelled by
SW(3.35)
coefficients of Ishibashi states, we can identify them as the (Dg, E) boundary conditions

representations in the Ramond sector of which 6 are distinct. By comparing the

labelled by the nodes of the Dynkin diagrams. We summarise the relation in Table 6.6. We
can compare this with the identification of the (Dg, Es) boundary states given in Table 6.2.

As in the Virasoro case, all the boundary states that preserve SW(2, 3) correspond to the

2 2)
factorising and topological defects. We also see that the identification of boundary states

(@, 1)xs/xs) = |I(a,5)xs,xs)) comes from degeneracy of SW(2, 3) Ramond representations

5:5)
a+ due to the way the (D, Eg) partition function is constructed. Note that the extended S

[R Ns

matrix S, is constructed using the modified Ramond characters, and this explains why

we had to normalise the (Dg, Eg) boundary states as in Table 6.2.

SW(Q, 2) states (Dg, Eg) states SW(Z, 2) states (Dg, Eg) states
11, €) [[(1,6)xs/5s) 1+, €) = (L, Dxg/ms)) 0r [[(1,5)ns s
12, D = [I(2,6)ns/ns) 12+, €)r = ||(271)NS/NS>> or [|(2, 5)NS/NS>>
13, €) = [[G2 6)NS/NS>> 3£, €) ||(371)NS/NS>> or [|(3, )NS/ﬁé»
14, €)1 = [[(4,6)xg/53) [4+, ) = 1[4, Dxg/ns)) 0r [[(4,5)ns s
115, €) = ||(576)NS/NS> 15, €) = (5, 1)NS/ vs) or [|(5, 5)NS/NS>>
15, €) = (6,6)xs/5s) 15"+, €) = [I(6,1)xs/xs)) Or [[(6,5)xs,xs)

Table 6.6: Relation between SW(3, 3) and (Dg, Es) boundary states.

6.5 (Dg, Eg) Fusion Rules

As in the Virasoro and sAl(Q) »-WZW model cases, it would be nice to have certain fusion
rules from which we can obtain the characters appearing in the overlaps of the (Dg, E)
boundary states. The obvious starting point is the graph fusion algebras of the Dy and Fj
diagrams that are summarised in Appendix D.5.

The first obstacle is that, as we saw in Table 6.2, specifying a pair of Dy and Ey diagram
nodes together with a choice of gluing condition does not determine the corresponding
defect uniquely but we also need a normalisation of the boundary state which in turn spec-
ifies the embedding. In Table 6.2, there are 12 distinct pairs of diagram nodes with various
normalisations and gluing conditions; the same set of nodes appear in the sectors labelled
by a or b, and dashes and tildes represent different embeddings and gluing conditions.
It is possible to pick representatives such that the Ey diagram nodes 1 and 6 specify the
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gluing conditions. As discussed in Appendix D.5, the Fg diagram node 1 is associated to
the representation 1 @ 7 and the node 6 carries 4 @ 8 of §1(2)10. Looking at Figure D.1,
which is the Dg and Ej diagrams with the corresponding sAl(Q) g and 51(2)10 representations
on each node, we can associate? SM (10, 12) Kac labels to each pair of the diagram nodes.
In fact, the even nodes specified by (6.38) are associated with the NS representations, and
the odd nodes (6.39) correspond to the Ramond representations. From this observation,
we take

[(a,b)ys) if (a,b) €B,, and
a,b) € B, (6.104)

=
8
=
~—
4l
%)
=
)
-
—~

as representatives.

Now, we can use the graph fusion algebras of Dy and Ej to calculate overlaps. As we
have the identifications 1 ~ 5 and 2 ~ 4 of the FE; diagram nodes, we modified the Fj
graph fusion algebra

2)® (6) = (3) 6)® (6) = (1) (6.105)

In addition, for odd nodes of the form (a, 1) and (a, 2) appearing inside a fusion rule, their
contributions have to be doubled.
For example, we can re-calculate (6.51), (6.52), (6.53), and (6.54) as

(2,6)® (2,6) = (1,1) @ (3,1)
= x11(a) +x17(0) + x0.1(a) + x0.7(9)
+x31(9) + x37(0) + x71(0) + x77(0)
=x0°(9) + x5 () + x5 (a) + x5 (a)
+X17(0) + X7 () + x5 () + x5 (a) (6.106)
(2,6)® (2,1) = (1,6) @ (3,6)
= X14(9) + xT8(2) + x9.4(2) + Xx9.8(a)
+ x5.4(9) + x35(q) + x74(q) + x7s(q)
=2 (x‘g + x50 (0) + x5 (a) + x‘%(Q)) , (6.107)
(2,6)® (1,1) = (2,6)
— x2.4(9) + x28(0) + x81(2) + x53(q)
=2(x5 (@) + X35 @) . (6.108)

2. It is due to the fact that the 8Vir representations in SM (10, 12) can be constructed from a coset

s1(2)s @ 81(2),
s1(2)10

[12]

) (6.103)

where the sAl(2)2 factor gives the sector structure
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(2, 6) ® (17 6) = (27 1)

=2 (XE1(a) + xB7(a) + xE1(a) + xE7(a))
=2 (3 (@) + X (9) + ¥y (@) + X3 (0)) (6.109)

where, in the last line, we doubled the contribution of (2, 1).

In this way, we can calculate the characters appearing in (Dg, E) boundary overlaps,
but some care is needed to obtain the correct overall normalisation. For overlaps of two
boundary states corresponding to topological defects, the results obtained from the fusion
rules have to be doubled. In addition, these fusion rules yield overlaps for the boundary
states that are normalised according to the embedding p,,, . For the boundary states
defined with p/,, , _, we have to double all the results from the fusion rules.

6.6 Projection of Defects

As we have found the boundary conditions in the (Dg, E) theory corresponding to non-
topological and non-factorising defects in SM (3, 5), we would now like to use the topolog-
ical interface and obtain the corresponding defects in the tri-critical Ising model M (4, 5).
For a defect Dy,,, 5, in the supersymmetric theory, we can obtain the corresponding defect
D, 5 in M(4,5) by

Dy =1 Dsys s It ) (6.110)

where I is the fundamental topological interface operator defined in (5.109). The defect
transmission coefficient 7 and the g value of D,,, ;, can be obtained straightforwardly,

T(DM(4,5)) = T(DSM(S,S)) and g(DM(4,5)) = 2g(DSM(3,5)) : (6.111)

As we know from the Ising—free fermion case, it is unlikely that the image of a SM (3, 5)
defect is elementary in M(4,5). For example, we can map topological and factorising
defects of SM (3,5) as

IDSI'=D,+D., IV2(-1)"Dy*I"=2D, ,
IDPI'=Dj+D;, IV2(-1)"D}*I'=2D,,

I MLusll 17 = (1) + lleh) ({2l + (ell) - (6.112)

We can see that these images are the orbits of the action of D,. As we know the defect D,

commutes with topological defect operators in SM (3,5) while D does not, thus we can
make an ansatz

ID, I =D"* + D, D" and (6.113)
IDyI" = (Dy + D.)Dy (D1 + D,) , (6.114)

where D;"** and D}”(“"r” are defects in M (4, 5). From the definitions (6.83) and (6.85),
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and from Table 6.3, these defects have

3—1
D, T = \f2 —0.366025... and g=1\/2+3, (6.115)
_ 3-3 L /3 VB 1
Dy T = Sy = 0633075, and g = (VB N(VE- 1)1+ 2. (6116)
Since D, has the g-value of 1, D}'*” should have the same g-value as D,, and D}““’w has

half the g-value of Dy,

gDy =12+ V3 —1.93185... and (6.117)
1 1

DYEDY = Z(V3 4+ 1)(V5 — 1), /1 + — = 0.507817... . 6.118

9Dy ™) = 5( )( ) NG ( )

The conjectures (6.113) and (6.114) may be too optimistic, but it is quite likely that they
satisfy
1
9(Da) > 9(Da"™*?) > 5 g(Da) , (6.119)

where a stands ¢ or f.
In [98], Kormos, Runkel, and Watts studied defect perturbations of the topological
defect D(; 5) by the linear combination of chiral defect fields

A¢(1,3)¢(1,1)(Z) + 5\7/’(1,1),(1,3)(2) . (6.120)

For M (4,5), these Kac labels corresponds to the representation labels given in Table 5.2
as (1,2) = ¢ and (1,3) = 1. In [98], perturbative analysis and truncated conformal space
approach calculations show that, for A\ # 0 and A\ # 0, the endpoint of these flows is
a new non-topological and non-factorising defect which is denoted by C. Since D, has
g= 1*—2‘/5 = 1.61803..., only D}W“) can be a candidate for an endpoint of this defect flow
as the g-theorem states that the g-value decreases along the flow. In addition, if we set
A =0or A = 0in (6.120), these purely chiral perturbations lead to the topological defect
D, which has g = v/2 = 1.41421..., and there are defect flows from D, to the defect C as
depicted in Figure 6.3. Therefore, the g-value of C has to be smaller than v/2. The defect
Dy still satisfies the requirement.

D,

a

A>0

D. A>0 D

€ o

g=161803... g=141421...

Figure 6.3: Defect flows of D, with positive A and \ given in [98].
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6.6.1 Projection of Ishibashi States

The interface projector (5.101) acts on the state space of SM(3,5) as

I=—(1+(-1)F) | 6.121
75 L+ (0™ (6.121)
and we can rewrite (6.110) as
1 _ _
Dyas) = 3 (1+ (=1D)"") Dgyzsy (1+ (=177 . (6.122)

If we consider the folded theory, this becomes

D) L4 (=) o (1) 4 (<)o) || D) (6.123)

M@4,5) 9 ( SM(3,5)

where (—1)FottFror = (—1)F1+F1+72+ 2 Note that the Neveu-Schwarz Ishibashi states are

invariant under (—1)%ot*Frot, For brevity, we write

P = % (14 (=1 4 (—=1)2+ 2 4 (=1) i Fror) (6.124)

In addition, for Ishibashi states of SM(10,12) and 8W(3,3) at ¢ = I, we introduce
B, e)p =P lh,e) and |h,e)typ =P |h e - (6.125)

The exact definition of these states depend on the embedding ¢35 which was defined in
(6.20).
Using the expansion (2.223) and the corresponding Gram matrices, it is straightforward

to write algorithms that generate SM (10, 12) and SW(2, 3) Ishibashi states. For SM (10, 12)
Ishibashi states, we use ¢, to express 8Vir generators in terms of those of the folded
3 3
272
since the action of fermion parity operators are given in (2.138), (2.140), and (2.141). In

theory, and apply the projector P. For SW(3, 5) Ishibashi states, we can apply P directly
addition, we can use the automorphism (2.142) to construct twisted Ishibashi states. For
the calculations we pick ¢++++.

For example, we can calculate the overlap

W 1 tot | Ttot__ 7 w W 1 tot_ | Ftot__ 7 w
20, €l gz (61870 0, = (0, el g2 (w0 0, )

SO .3 -9 .5 ~3 7 ~4 -9 ~5
= 4q 60(1+2q2 4+ 2“4+ 2¢2 +3G° +6G2 + 7§ +8G2 + 11q _|_)
4 (3@ @), 6126
X0 (@) +x3(q)) , (6.126)

where X)f(q) denotes the character of a Virasoro representation at ¢ = 1—70. Similarly, we

obtain

W0, e gz (" +EE =) |0, —e) Y = 570, e gz (8" +EE" =55) |0, —e) )Yy

=4 (@ - @) - 6127)

However, the overlaps of untwisted and twisted projected Ishibashi states yield

N <3

W0, €] gz (L8 =50, )3y = 00, €| g7 (5 HEE %) |0, —e))

. w
TP = P TP

—a7H (1P +3' P+ -2 +28— ), (6.128)
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which does not admit a straightforward interpretation in terms of the M (4, 5) Virasoro
characters.

As the SW(3, 2) Ishibashi state |0, e>>g decomposes into SM (10, 12) Ishibashi states,
we can expect the overlaps of projected SM (10, 12) Ishibashi states are more involved. For
the vacuum Ishibashi state, we get

~Ll(ptotyftot_ T JU -3 . 5 . s ~ ~
p(0, el g2 I8 =35) 0, €), = 4570 (1 +302 + @+ 507 T3+ 3+ ed + 50
49123 =5 | 5~ | 102941115 -6 | 7~ | 116150060 ~7 ~13 | 390058397535 ~8
+ 16300 T 292 + 6000120 ¢ 292 + Teogorzo ¢ 6% + 31a31380501
i 8q~% | 486102350607 50 | 25 5% | 781645765079 510 ) . (6.129)

9
2

31431380521 4 + 292 T 3laziseose1 ¢ T

The coefficient of §* can be written as

49123 (116\* [ 17\?
— = = — 2 6.130
17689 <133> +<133> +2 ( )
so we may interpret this result as
1ogry  1ogoy 17 .0 116
oho~2 (100 5 545D+ gD+ fg ) 1sD

where |h*)) are Virasoro Ishibashi states. As a bosonic projection of 8Vir, we have expected
W(2,4,6) but the normalisations of highest weight states seem to be incompatible.

For reference, some other overlaps are

i3 gz 5w | e
PO 1 ~ 3 ~ .5 - 7 ~
= 4G @ (%qé + G+ 37 + 33 424 +5¢° + 17 + 105" +- ) : (6.132)
1 Ltot Etotil
?<<T1[]’6|q2( o tlo 60)|1—1076>>?

R A% U | 39 .5 - 7 3~
— 4G <q2 G423 +342+ 1300%72552 i+ %g(l) &+ 13909662057 %+ 117800554020303 it ) .

(6.133)

6.7 Comparisons with Gang and Yamaguchi’s Results

We can now attempt to compare our results for non-topological, non-factorising defects
with those of Gang and Yamaguchi. The simplest such defects we have found are Dy
defined in (6.83) with g = 2.031.. and 7 = (3 — v/3)/2. Looking at the list of proposed
defects in section 3.2 of [94] the only candidates to which we can hope to relate D, are
those from the boundary state |(1,3)) 4, which have the same value of 7 and half the
g-value.

From the definitions in equation (3.9) of [94], the states |(1,3)),, have equal and
opposite components in the Ramond sector. Since our defects have no components in the
Ramond sector, we must consider the sum [(1, 3)) a, + |(1,3)), which has the same T
and g values as each of D;.

There are no precise definitions given in [94] on how to obtain a defect from a boundary
state, but we can see that |(1, 3)>A+ +1(1,3)) 4 has zero overlap with the states |(5,3,5))
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and [(5',3,5)19) (in the notation of [94]) which are equivalent to (in our notation) |%>
and ]%0/) of the (D, E¢) theory. This means that whatever map p is required to obtain a
defect from a boundary state in the formalism of [94], the corresponding defect has zero
matrix elements between (0| and |55)

(O1A(1L.3)4, +1(1.3))4_)I55) =0, (6.134)

and so cannot be equal to D;.

Gang and Yamaguchi do not give details on the the precise map p required to obtain
a defect from a boundary state in their formalism. We can be sure that the method we
use cannot work, as this will result in defects which are not GSO projected, that is defects
which are not maps from SM (3,5) to SM(3,5). To illustrate this, we consider the states
used in [94] in the representation

3 3 ®2 ®2
[%1,3 ® %1,3} [Uf & H3G @ H3% @ 3%, (6.135)

The paper [94] uses coset representations, and each highest weight representation J—C}% =
9{%8_74’12_5 of SM(10) splits into two coset representations,

‘{Hé?l = %(37171)10 b %(37371)10 ) :Hé% = %(37115)10 ® %(37375)10 ’

j{"%?’? = %(71175)10 @ f}(:(77375)10 ? g_fi]gf)ll - f}_C(7,1,1)10 @ %(7,3,1)10 . (6'136)

Only four of these coset representations appear in the boundary states of [94], with con-
formal weights as follows

Representation | Weight
(3a 35 5)10 %
(37 17 1)10 g (6137)
(7a 35 5)10 g
(7,1,1)19 e

In our terms, these can be identified with SW(3, 3) descendants of the SM (10, 12) highest
weight states,

1(3,3,5)10) = |3) , (7.3,5)10) = |2)
ZT] tot ~tot Zn tot ~tot
(6.1 0) = GG ) 0L = GG ) (6138)

where 7 and 7’ are undetermined signs. Further, given an embedding ¢35, the states \g>
and |{5) can be identified from Appendix D.2 as
ma

15 = Q/g (aG

= BGH) (G —0GH)I5) (6.139)
2 2 2

af
1/5

_ _ )
v G G(Q))(L(_l)l L2+ i 22Gm G<2>)|%> (6.140)

L(l) L(Q)
( —1 -1 + 1/5

7/5
This means that the state |(3,1,1)) is
—nng

1(3,1,1)10) = @/5)(7/5)

(LY = L?) = 2aB8GY, G? ) (LY = L) — 296G, G))[2) .
2 2 2 2
(6.141)
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Putting these together with the results in Appendix D.2, and the fact that the boundary
state .

(3,3,5)10) = [3) + 27/5L—1E—1|%> + (6.142)
we can find the expansion up to level one of defect given by a combination of boundary
states constructed from the four states (6.7):

W) = A](3,3,5)10) + BI(3, 1, 1o} + CI(7,3,5)10) + DI(7, 1, D)y (6.143)
Paprs(1T)) = Ali5X 55|
A Bnn 7 Cne ) )
<2/5 RO R ) (LoaZoalfo Xl + 16X 1 L L)

A B g, Cns 7 )
+ <2/5Jr (2/5)(7/5)  7/5 ) (L1135 X5y 4+ Loy | 50351 Ly)

Bz +Cng) _ _ .
a2 (G U IG I — LGyl 516y )
(B g+ Cng) . _ .
+ind 2o (LG )16y — Gy X IGy L)

2B oz

+a575< JGoy 051Gy Gy ) + - (6.144)

7/25 7/ 125) -
The expression (6.144) is only GSO projected if Bnn 7 +Cng =0, otherwise it is not. We
can fix nn x and ng by comparing (6.144) with equation (3.20) of [94]. Equation (3.20)
says that the expression (6.144) should be purely transmitting for A = B =1,C = —1 and
purely reflecting for B = —1, A = C = 1, from which we deduce that nn r=ns =1 We
can now decide if the defects arising from the boundary states of [94] are GSO projected
or not by looking at the ratio of the coefficients B and C of the states [(3,1,1)q)) and
|(7,3,5)10)). If this ratio is —1, the resulting defect can be GSO projected, if it is not —1
then it is not GSO projected:

B = —C, GSO projected ‘ B # —C, not GSO projected
’(276)>Ai7 ’(476)>Ai ‘(1’3)>Aﬂ:’ |<3’3)>Aﬂ:’|<5’3)>Aﬂ:’ ’(673)>Ai
(L 1D))p, 13, 1)), [(5,1))p, 1(6,1)) 5 (2,2))p, [(4,2))5

(6.145)
Those which are GSO projected correspond to topological or factorising defects; none of
the “new” defects proposed in [94] lead to GSO projected defects in our formalism, and

so it is difficult for us to make a stronger comparison with the proposals of [94].
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Chapter 7
Summary and Outlook

In this thesis, we have developed a systematic method to obtain conformal defects in
the tri-critical Ising model from the N = 1 super-Virasoro symmetry of the folded theory
by constructing topological interfaces between the supersymmetric and bosonic theories.

We found that the extended conformal symmetry of the folded theory can be an useful
correspond to topological and factorising defects, and those break the extended super-

guide to construct conformal defects. In the folded theory, SW(3, 5) boundary conditions
conformal symmetry but preserve 8Vir correspond to non-topological and non-factorising
superconformal defects.

We constructed consistent supersymmetric theory with topological defects and bound-
ariesatc = 1—70. We also found that Ramond fields can be considered as disorder fields—fields
on which defects can terminate—associated with the topological defects that act as fermion
parity operators, and even if we restrict the bulk theory to the NS sector only, it is possible
to construct consistent interfaces to obtain the various quantities in the bosonic theory.

Our construction uses many elements from the paper of Gang and Yamaguchi [94] but
the defects we propose are not the same as theirs. While the expressions for topological
and factorising defects are the same, it may be possible that the new defects proposed in
[94] are not properly GSO projected.

As part of our construction, we found evidence for two non-commensurate sets of
boundary states in the doubled theory of SM(3,5) corresponding to two inequivalent
embeddings of ¢ = I algebra into two copies of ¢ = ;5. We have identified half of
these boundary states as known objects, the remaining half are new and lead to non-
topological and non-factorising defects in the tri-critical Ising model. By considering fusions
with topological defects in SM (3,5), we conjecture that there are two fundamental non-
topological and non-factorising defects Dy and D,.

We think it should be possible to derive the boundary states we have proposed for
the (Dg, E) theory using topological field theory methods. It would be nice to compare
our method with the construction of fermionic models of Novak and Runkel [113] using

topological field theory methods incorporating spin structure.

In order to gain more insight into the structure of conformal defects, we have also
calculated the leading term in the perturbative expansion of the reflection coefficient for
the defect of type (r,2) in a diagonal Virasoro minimal model.

Itis possible that at least one of the conformal defects, D}’ % we discovered in Chapter
6 is related to the conformal defect C' found by perturbation theory; the value of R is close
enough not to rule this out. It would be good to extend this calculation to next-to-leading
order where there are UV divergences to be regulated, but so far we have not yet managed
this.

We have also calculated defect structure constants for various fields on defects of type
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(r,2) extending the results of [110]. These results are not complete—they do not include
all fields, and use special properties of the (r,2) defect, but it would be good to check that
these constants in fact agree with the general results of [86] where the same constants
were constructed using topological field theory methods.

For further research, there are several possible directions. So far we have only ob-
tained defect entropies, reflection and transmission coefficients, and various partition
functions involving defects. It would be nice to obtain more quantities, for example, var-
ious correlation functions involving bulk, boundary, defect, and interface fields. Also, it
would be interesting to see if similar constructions are possible for other extended confor-
mal algebras—non-topological and non-factorising defects should correspond to symmetry
breaking boundaries in the folded theory.

There are several other situations in which it may be possible to construct topological
interfaces, for example, the N = 1 and N = 2 super-Virasoro minimal models at ¢ = 1.
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Appendix A

Properties of Virasoro and

Super-Virasoro Representations

In this appendix, we summarise Virasoro characters, and modular S and T matrices for
Virasoro and super-Virasoro minimal representations. In addition, we quote the expression
for fusing matrix elements for Virasoro minimal models.

A.1 Virasoro Characters

Given a highest weight representation 3 of the chiral algebra .4, its Virasoro character! is
defined by

o0

Xac(q) = Trgc P02 = g~ 2 Y (dimFHy) ¢, (A1)
N=0

where ¢ € C is a formal variable. If all the generators of A take integer modes, then
N € Z in the summation; or N € %Z if there are generators with half-integer modes. Since
Ly-eigensubspaces of H are mutually orthogonal, this is nothing but a generating function
for the dimensions of these subspaces.

A.1.1 Virasoro Representations

For a Verma module M of the Virasoro algebra, we know the dimension of the level N
subspace is given by p(/N), the number of integer partitions of N, and the corresponding
Virasoro character is given by the famous generating function due to Euler

o0

c 1 c
i@ =" 5 [[ =5 =d" 5+ a+20° 43¢ +5¢" +7¢7 +11¢° + ). (A2)

n=1

Note that even when h = 0, this formula gives the dimension of the level 1 subspace to be
one; the condition L_;|0) = 0 is due to the fact that L_|0) is a null vector.

In order to obtain the Virasoro character of an irreducible module, we need to subtract
contributions from null vectors from (A.2). One way to obtain the dimension of an irre-
ducible subspace is to explicitly calculate the maximal number of basis vectors of the form
(2.74) which makes the determinant of corresponding Gram matrix positive. However,
this method is rather impractical as p(IV) increases rapidly?.

1. We use the term “Virasoro character” to distinguish (A.1) from other specialised characters, for example,
W characters defined by Tre?™**Wogro~ 21,
2. For example, p(10) = 42, p(20) = 627, and p(30) = 5604. In addition, the Hardy-Ramanujan asymptotic

approximation gives
1 2N
N) ~ - | - A3
p(N) 4N\/§exp<7r 3> (A.3)




A Properties of Virasoro and Super-Virasoro Representations 141

Fortunately, there is a useful structure of null vectors in a Verma module with ¢ = ¢(p, q)
and h = h, ; where the parametrisations are given by (2.85). From the Kac determinant
formula (2.83), we know the first null vector |y, ;) appears at level N = rs, which is not
degenerate in the sense that there is no other linearly independent null vectors at this level.
By acting L,, with n < 0 on |x, ), we can construct a sub-Verma module whose elements
are all null vectors. The null vector with the lowest conformal weight in a sub-Verma

module is called a singular vector. Since h,. ; = h there is another singular vector at

p—r,q—s>
level N = (p—r)(q¢—s). In each of the sub-Verma modules corresponding to these singular
vectors, there will be two singular vectors obtained by the same argument. However, it
turns out that these two pairs of singular vectors are linearly dependent®!. Taking this
embedding pattern of the sub-Verma modules into account, the Virasoro character of an

irreducible module J with ¢ = ¢(p, q) and h = h,. , is given by the Rocha-Caridi formulal1%

o0
_c 1
xoel) = g8 Y (gomnene — gl ] (A4)

nez mer 4"
One of the important properties of a Verma module of the Virasoro algebra is that the
maximal submodule is generated by the singular vectors. This may not be true for Verma
modules of other W-algebras; even after taking the quotient of a Verma module by dividing
the submodule generated by the singular vectors, there may be new singular vectors called

subsingular vectors.

A.1.2 N =1 Super-Virasoro Representations

For the Neveu-Schwarz sector of the N = 1 super-Virasoro algebra, Virasoro characters
are obtained similarly. Consider the level NV subspace of a Verma module which is spanned
by vectors of the form

Loy LGy -Gy |hY, (A.5)

—my

where 0 <m; < --- <myand 0 < ny < - < ny. Inaddition, };m; + >, n; = N
and n; are half-integers. Then, the dimension of this subspace is given by the number of
integer partitions of 2V into distinct odd parts while there is no restrictions on even parts.
A generating function for this quantity is known?, and the Virasoro character of a Verma
module M can be written as

00 _1
_ e 144" 2 _e 1 3 5
xu(e) = 4q" 24H71_qqn — " (14q7 +9+2¢7 + 37 +4¢> +5¢° +---) . (A6)
n=1

For the Neveu—-Schwarz representations, integer levels and half-integer levels have the

opposite fermion parities. If we define the Virasoro supercharacter*

%i(q) = Try(—1)"g" 721 = g721 Y~ (sdimMy) "V, (A7)
Neiz
N>0

3. OEIS A006950.
4. Note that this definition is slightly different from that of the “odd supercharacters” given in [21].
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where the superdimension sdim My of a subspace My is defined as the dimension of its
bosonic subspace minus that of the fermionic subspace. Then,

00 1

- e 1—q" 2 e 1 3 5

X (q) = eq” 24Hﬁ=6qh 2%(1-¢> +¢—2¢> +3¢° —4¢> +5¢° —---) , (A.8)
n=1

where € = £1 is the fermion parity of |h).

The Kac determinant formula for the §Vir highest weight representations is first given
by Kac!?! for the Neveu—Schwarz sector and by Friedan, Qiu, and Shenker!® for the
Ramond sector, and later proven by Meurman and Rocha-Caridil'¥ for both cases. With
the parametrisation given in (2.119), the Verma module with ¢ = ¢(p, ¢) and h = h, ; has
the first null vector at level N = rs/2, which also applies to the Ramond representations.
For the Neveu-Schwarz sector, the structure of singular vectors in a Verma module is very
similar to the Virasoro case, and the Virasoro character of an irreducible module H with
c=c(p,q) and h = h, , is given by

o0

c 1+ qué
Xj_c(q) =q Z <qh2pn+r,s _ qh2pn—r,s> H -+ (A9)
m=1

— qgm
nez 1 1
In addition, the Virasoro supercharacter of this module is given® by

00 _1

c 1—¢"m 2

v — — 21 _1\"P h n+r,s — (—1)7S h n—r,s . S—

Xac(g) =eq 2y (—1) (q wnrs — (=1)"q" ) 11 e (A.10)
nez m=1

We do not assume a highest weight state to be always bosonic, and keep the factor ¢ coming

from its fermion parity explicit in our character formulae.

For the Ramond sector of the N = 1 super-Virasoro algebra, there are several kinds of
embedding diagrams for Verma modules (see, for example [72] and [80]) but the Virasoro
characters of irreducible modules with ¢ and h parametrised by (2.119) are similar to the
previous cases.

Consider the Verma module M, constructed from a highest weight state |\), which is a
G-eigenvector. Since it is spanned by vectors of the form (2.124), the Virasoro character
is given by the convolution of the generating functions of p(/N) and ¢(/N), which is the
number of integer partitions of IV into distinct parts. The generating function for ¢(n) is

given by
H(l—l—x") = Zq(n)m” . (A.11)
n=1 n=0

Therefore,

1+q¢" _c
qn = ¢ 21 (14 294+ 4¢> +8¢° +14¢* +24¢° +40¢5 +- - - ), (A.12)

oo
_ g
X, (0) = ¢ 247!-:[11—q

where h is related to A by (2.122). If we take ¢ = c(p,q) and A = A, ; given by (2.119)
and (2.125), the first null vector appears at level N = rs/2, which is not degenerate unlike

5. The formula for unitary cases can be found in [13]. It is not difficult to generalise this by noticing r +s € 27Z
and p + q € 2Z.
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in the extended Ramond algebra module M,,. In this case, the embedding diagram is
the same as the Neveu—Schwarz case, and the Virasoro character of the corresponding
irreducible module X, is given by

X > 1 + g™
Xg‘f/\ (q) g qiﬂ Z (qh2pn+7',s — qhQ;mLfv',s) H — . (A.lg)

neZ m=1

Since 3, and J{_ are isomorphic as Virasoro representations, we have xs, (¢) = x3c_, (¢)-
When h # ¢/24, that is (r,s) # (p/2,q/2), the irreducible Z,-graded modules is given by
Hy, = H, ® H_,, where h = h, ;. For h = ¢/24, };, and H,  are isomorphic as Virasoro
representations. Therefore, we obtain[>? 891

Xs¢,(q) = (2= 0,205 2) Xa¢, (9) , (A.14)

where ¢ = ¢(p,q), h = h, 5, and A = A, ..

Virasoro supercharacters are trivial in the Ramond sector. If h # ¢/24, each subspace
of H;, has sdim(H,,) 5y = 0 since the even and odd subspaces of (3;,) y are isomorphic as
vector spaces from (2.126). When h = ¢/24, we have sdim(H;)y = 0 for N > 1, and
sdim(H}, )y = € since it is one-dimensional and |h) has the fermion parity e. Therefore,

J

p
T‘,§

Xo¢, (0) = €z 4 , (A.15)

where ¢ = ¢(p,q), h = h, 5, A = A\, 5, and ¢, ; = %1 is the fermion parity of a Ramond
highest weight state |h, ).

A.2 Elements of Modular S and T Matrices

In a rational conformal field theory, modular transformations of Virasoro characters can be
written as finite sums

(=1/7) = Z Si; x;(m) and x;(1+1) Z Ty x;(T (A.16)
J€ET JET
where x;(7) = x;(q) is the Virasoro character (A.1) of an irreducible representation ;
with ¢ = ¢?™7, and 7 is the indexing set for the irreducible representations of the chiral
algebra A at the given value of the central charge c.

A.2.1 Virasoro Minimal Models

Since detailed derivation of elements of the modular S and T matrices for Virasoro minimal
models can be found, for example, in [56], we only quote the results.
For a Virasoro minimal model M (p, ¢), the modular T matrix is given by

Tij _ 27rz(hz—ﬂ)5

(A.17)

0]

where i and j denote Kac labels. The modular S matrix is given by

8 risaeiry o Y p
S(ry,51)(ras85) = @(—I)H 152758172 gip <7rr1r2p> sin (7?3132q> . (A.18)
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Since Virasoro representations are all self-conjugate, the charge conjugation matrix is
trivial, and we have S? = 1. In addition, S is an orthogonal matrix as all the elements
(A.18) are real. Note that the summations (A.17) are over the indexing set Z for the
Virasoro irreducible representations, thus we should not forget the identification (r, s) ~
(p — r,q — s) and sum over distinct Kac labels.

A.2.2 N =1 Super-Virasoro Minimal Models

For N = 1 Super-Virasoro minimal models, derivation of the modular S and T matrices is
similar to the Virasoro case while S and T transformations change the sectors of characters.
We present a derivation of the elements of S and T based on [18].

Consider a N = 1 super-Virasoro minimal model SM (p, ¢). For an irreducible highest
weight module , ; = 3, with ¢ = ¢(p,q) and h = h, , in the Neveu-Schwarz sector, we
denote

Xrs(T) = x5, (@) and  X;3(7) = Xg, (q) (A.19)

where ¢ = 27" Similarly, for an irreducible module 3% := 3., with ¢ = c(p, q) and
A = ), s in the Ramond sector®, we write

R(£)

Xrs (T) = Xy (9) - (A.20)

When ) = 0, we denote the corresponding character by x;%’ (7). Note that these signs have

nothing to do with fermion parities as J—f?(,,ﬂ;) are ungraded representations. If we introduce

the Dedekind eta-function and the Jacobi theta-functions

n(r) =gz f[l(l -q"),
0a(r) = 00(0,7) = 26} ﬁ1<1 RO
U3(7) = 13(0,7) = f[lu —¢")(1+¢"2)2, and
94(7) = 04(0,7) = f[lu —q")(1—¢"72)?,

where ¢ = €?™7 as usual, then the infinite products in the Verma characters (A.6), (A.8),
and (A.12) can be written as

LRSS 0 2
s =t n*(7) Vo (7)04(7)
00 _1
L—g"2 1 [Uy(r) _ 1 2
= q16 = q16 s and

U5 P(0) 35(7)95(7)

ﬁ L+q" [ 0s(7) _ 1

= =\ ore) =\ oo

6. Note that )\, , and —\,, give the same character, and thus x; (P (1) = x5 (7).
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where we have used the identity

P (r) = 39204 (r) (A21)
We can write . @ —ps)? 1
hrs = 51¢(p,0) = BT T (14 (=1)™*) (A.22)
which motivate us to define
Ko =Y ¢ and Ky(r) = S (-1)mg RS (A.23)
nez neZ

where N = 2pg. Note that K, = K_, = K, y, so we only need to consider A\ mod N.
Since ged(p, q) = 1 or ged(%, 4) = 1, there exist unique ry, s, € Z such that

272
qro—psp=1 if ged(p,q) =1 (A.24)
qro —psop =2 if ng(% %) =1
Then, we define w,, @, € Z to be
wy ==qrog+psyg mod N if ged(p,q)=1 (A.25)
Wy = 4rg+ 85y mod N if ged(5,4)=1
If we let A = gr — ps, we obtain
woA =qr+ps mod N if ged(p,q) =1
, (A.26)
QoA =¢qr+ps mod N if ged(§,2) =1
Therefore, we can write the Virasoro characters as
i) = (Bn(7) = B () 4| 5
’ Vo (7)d4(7)
- . 2
na(T) = K — (1) Ky,
W) = e (Bal) = GO Ry () [y
1
RGE) (1) = K (7)) — K (T _ (A.27)
XL (7) (ar) = KD gg
where A\ = gr — ps and
woA if  ged(p,q) =1
v Jwo ged(p, q) . (A.28)
oA i ged(5,2) =1

We need to determine the modular transformation properties of the functions appearing
in (A.27).

Modular transformations of the Jacobi theta-functions are well-known. They are given
by

Oo(r+ 1) = eT0y(r),  Da(r+1) = 04(r), 94(7 4+ 1) = U5(7) ,
Io(—=1/7) =V —=it04(17) , 5(—=1/7) =/ —it03(7), 94(—1/7) =/ —it04(7) . (A.29)
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For T transformation, let us write A, ; = qr — ps, and consider

(Nn+X\)2 1 ) A7
A & EA— A 2 A.30
AN g | PO T AT SN | (A-30)
in which
pgn® =np mod 2 and Arsn=mnp(r—s) mod 2, (A.31)

since p and ¢ are either both odd or both even. Also notice that

PED
D% — _rs and
2N 2N
22 1 1
4% — hm — ﬂc(p, q) + 32 (1 + (_1)7‘+s) .
Thus, under T : g — €2™q, we have
(Nn+x, 9?2 (Nnta_, )2
q 4N * — q 4N ’
in (h c (Nn+/\7,,s)2 (Nn+)\_r,s)2
. e % e2mil Tvs_ﬂ)(—l)”p (q N — (=1)"q AN for r+s€2Z
= i . (Nntx,. )2 (Nntx_,. )2 :
627”(}%67%) (q N —q N > for r+sc2Z4+1

Taking T transformation of the Jacobi theta-functions (A.29) into account, we find the the
action of T on the Virasoro characters as

c

XS+ 1) = e, 2 (na=351) 35(7) |
S (r+1) = ¢, €2 (nam51) \ NS (7) |

GO+ 1) = lnean) i ()

s

The matrix T is diagonal except it exchanges the Virasoro characters and supercharacters
in the Neveu-Schwarz sector.

For S transformation, using the Poisson resummation formula, we can write

2 2 :
K\(—1/7) = /% Y ¢Fe?F  and
]
- 2 2 , keZ if pe2Z
Ky(-1/7) = \/‘—TquWe_Q’”% where P .
iN < keZ+1i if pe2zZ+1
Let us rewrite the summations by defining

we0,N—2]N2Z for keZ

pe,N-1Nn2Z+1 for keZ+1
(A.32)

2 . i . n 2
“.2—]7\—7 g q%e_%”% = 1/‘27]7\_[ § 6_71\‘;)\ § e—wrn,\qLNAl;#) ' (A.33)
(] 1
k

M nez

1
k:§(Nn+,u) where ne€Z and

then
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Note that
. 1 for r+se2Z
e~ imArs = : (A.34)
(=)™ for r+se2Z+1
In addition, A\, ; = +qr —ps = p(r+s) mod 2, which means ), , is a even number except

for p € 2Z + 1 and r + s € 27 + 1. Finally, we obtain, for A = A, , with r + s € 27,

27 zm ~ 2T _impA
(=1/7) = ,/ Ze N K, (r) and KA(—1/T>:~/W§M:@ NOK (7)),

u€2Z
(A.35)

where the range of the second summation depends on the condition given in (A.32), and
for A=\  withr +s€Z+1,

N A
Ky(=1/7) = ,/ R (r (A.36)

We still need to combine the contributions from K (—1/7) and K, (—1/7). Since w? = 1

mod 2N and @2 =1 mod 2N, we can write

2T impu) 2T imy
Ey(=1/7) =/ == D e K K (1) =/ S e WK, (7), (A.37)
m v

where v = wyu or v = @yu. If we define
X)\(T) = KA(T)—K)\/(T) and X/\(T) = K)\(T)— (—1)TSK)\/<T) s (A38)
where \ = ), , they satisfy X, = X, y = X_, = —X,,. Using the fact that

Ar+2r0’8+250 for P c 27, + 1

)\T’,S + 2 =
Argrg,sts,  for p € 2Z
N-=XNg=X_,,s modN,
Nos=A._s mod N,

and so on, if we denote the set of distinct Kac labels in the NS and R sectors by Z, and Z;,

we obtain

—1T 1
N _1)z(ri—=s1)(ra+s2) q ; p
; E 4(—1)2 sin <ﬂrlr2p> sin <7r5152q> XNTQ’S2 (1)

(r2,52)€Ins
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for A = A, ,, with (r1,s;) € Zys. Note that there is a factor of (—1)%(’“1_51)(7"2“2) in the
final line, which is always one for this range of summation. Similarly, we can calculate

Xa(=1/7)
—ir g % "s1)9(2 — Or,, 3552 ,) sin (errzq) sin <7T5182p> X, (1)
p q) Mo

(T2,$2)€ZR
for A = A, ,, with (r,51) € Zys. Note that the coefficient is different at the Ramond fixed
point (ry, s9) = (5, 2) as the identification of Kac labels is trivial. The remaining case is

X, (~1/7) = - Z (—1)%(r2—52)4sin <7r'r1r2;> sin <7r3132];> X#TQ’SZ (1)

ba (r2,82)€INs
(A.39)

for A=A\ Wlth (7'1, 81) & IR‘
Finally, taking S transformation of the Jacobi theta-functions (A.29) into account, we

71,52

obtain the modular S transformations of the Virasoro characters as
4 q D
NS _ . . NS
Xrl,sl(_l/T) - \/p»q( 2 § S <7T7°17“2p> S <773132q> Xrq,s9 (T) ’

X lp—s
Xgls,sl( 1/7') = € 2—90 532,%)(_1>2( 1—51)

(r,82)€ZR

P
7’1751( 2,5

3l
(S

X sin <7r7“17“2q> sin <7T8182 ) \fXSﬁ)Q( ) s
p b

4 Lop _ . q\ . Py -
\/ixfl(?l(—l/T) = \/ﬁ Z €T2,82(_1)2( 27%2) gin <7r1"17‘2p> sin <7r5152q) Xras,(T) -
(r2,82)€INs
Not only the presence of Ramond fixed point but also the factors of /2 make the S matrix
non-symmetric. In addition, if we recall the definition of x;. ff)( ) given in (A.20), they
correspond to ungraded representations, and it is more desirable to write the S matrix in
terms of the characters of graded modules given by
R(+) R(-) : p
X + X lf rs 7& 929
e PO 002G A0)

»'(7)
272

[Sl0S

In the literature, there are two ways to define the S matrix: the first method, which
is more or less common, introduces so-called modified Ramond characters and yields a
symmetric and orthogonal S matrix!13 1873, 781. the second method defines the S matrix
of a fermionic theory, which is not necessarily symmetric or unitary, together with some
additional matrices!°!. Nevertheless, we can always write the modular S transformation
of x75(7) as

Xfls,sl (=1/7) = Z S[(I;Iiles)}(TQ@) ngs,sz (1) (A.41)

(r2,52)€INs

with

4 . q\ . P
[NS,NS] 1 -
S(Tlvsl)(r2782) = —pq sin <7TT1T2p> sin <7T$182q> , (A.42)

and the corresponding submatrix of S is symmetric and orthogonal.
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e Symmetric Modular S Matrix

If we introduce modified Ramond characters that are given by

1 R _ R (%) : P g
X (1) = V2xrs (1) if (rs) # (5, 3)
oR . V2T J 272
XT,S(T) = I (A'43)
xg.4(7)
then we can write
~ o &[NS, R] N
ngls’sl (=1/7) = ( z): S(T1751)(7"2:32) XTR?’SQ (r) and
r9,89)ELR
> _ &IR,NS] -
XEDSl (_1/T) R ( ; S(T17s1)(7"2752) XE;S? (T)
T2,52)€INs
with
~ 4 g 1
[NS,R] _ r2,82 ¢ 1\ L(ri—sy) o g\ p
S(Tl,sl)(TQ,sz) = €5 \/1071 ( 1)2 1771 ¢in (err2p> sin <7T8182q> and
~ 4 g 1
[R,NS] _ TS (1) 2(ro—s2) o g\ . p
S(’“1731)(T2732) - 6T27S2 \/Z?TI ( 1)2 2 7 sin (7T’l“17"2p> S <7T'9132q> ’ (A44)
where g,  is defined as
1 if (mys b1
Irs =19, (rs) #(3:2) . (A.45)
L (re)=(3.9)
Then, the modular S matrix
GINS,NS] 0 0
S = 0 0 SINS ] (A.46)

0  SENs
is symmetric and orthogonal.

At the chiral level, it seems strange to have characters of the form v/2¢" 21 (1+---) but
it turns out to be rather convenient from the bulk point of view. Since the bulk Ramond
ground state is two-dimensional rather than four-dimensional, the Ramond sector of bulk
partition function can be written in terms of x;*(7)x: (7).

e Non-Symmetric Modular S Matrix

It is possible to define a modular S matrix using the Ramond characters given in (A.40)
but some care is needed as it results in a non-symmetric S matrix. In this case, we can

write

~NS _ [NS,R] R
Xrl,sl (_1/7—) - Z 8(71751)(7»2,52) Xr2,32 (T) and
(ra,82)€ZR

R _ [R,NS] ~NS
Xry,s (_1/7—) - Z S(7”1751)(7’2752) Xra,s2 (T)

(r2,82)€Ins
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with
2v2 Lop _ . qy\ . p
[NS,R] _
S('I’17S1)(7’2782) B 61”1751%(_1)2(7"1 =) sin <7T7’1T2p> S <7r3132q> and
44/2 Lop q p
[R,NS] _ 2 . .
S("‘17S1)(T27S2) B 67"27527@ g’“1781(_1)2(r2 52) S <7T’I”17”2p> S <7T8182q 3 (A47)

where g, ; is the same as before. They give the modular S matrix

S[NS,NS] 0 0
S = 0 0 SINS:RLf (A.48)
0 smNslo

which is clearly not symmetric. Since (A.44) and (A.47) are related by

1 4 A
(NS,R] _ [NS,R] [R,NS] _ [R,NS]
S = 75 SEPMand SIS = /2g, SN (A.49)

we introduce a |Z| x |Z;| diagonal matrix g defined as

Then, the submatrices are related by S¥S® = SNS:RIg—1 apd SIRNS| — ¢SRS Fyrthermore,

if we define

1 0 0
G=]01 0], (A.51)
0 0 g
these relations can be written as
S=GSG!. (A.52)

Note that G is related to the matrix D, which was give in [50], by G2 = D. As described
in [50], S obeys the equation ST D~! S = D1,

A.3 Fusing Matrices for Virasoro Minimal Models

We reproduce the explicit formula for fusing matrix elements given in Appendix A.4 of
Runkel’s PhD thesis!”!! which is based on the results given in [7] and [34].

For a Virasoro minimal model M (p, ¢), define the quantities ¢ := p/q and d; :== r; — s, t,
where i = (1, s;) denotes a Kac label. Note that 1 < p < ¢, and p,q € Z are coprime. In
addition, define the functions

ﬁ ng (a+ gp)T'(B + gp)

[a+B8—2x+ (y+g)p)

and
g=1

Mgy (a, B)
- HH ((ht = g)(c+ ht — g)(B+ ht — g)(a+ B+ (y + h)t — (z+g))) ™,
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from which we let

J(x,y; 0, B) = myy(a, B) by, (— o, =185 1) byy (a, B ) . (A.53)

We need one more function

A(s;z,y; a0, 8,7, 0;p)
S_h . hiy .
min(s,o4y—1) 11 sinmw(d + (x —1+g)p) [] sinm(—a + (s —z +g)p)
=1

= Z 9=

y
h=max(z,y) [[sinm(—a+d+(s—y+g)p)
y—1—(h—x) h—x
[[ sinw(B+(s—2+g)p) ] sinm(y+ (z—1+g)p)

o g=1 g=1

y—1

H sinm(B+v+ (y—1+9)p)

g1

sinT((z+y—h—1+g)p) 7hsin7r((h—y+g)p)
sin7(gp) 1 sin(gp) '

H,’:]

g=1

In terms of the functions J and A, fusing matrix elements are given by

_ T30 =ri = 1+7),5(50 = 5 = 1+ 50); —di, dy)
(rj—ri—l—i—rp),%(sj—si—l—i—sp) —d;,d;)
J(3(rj+ry—1=r,),5(s; + s, —1—5,);d;,dp)
J(3(rg+m—1=r,),5(sp+5—1—5,);dy, d))
x A(g(=ritr ) g (b 1=ry), 5 (r 1 =rg); —4dy, —¢dj, — i, — 355 7)
X A(3(=si+ s+ s+ s0)s 5(sk+ 50+ 1= 5p), 5055 + s+ 1= 50)i dy, dj dy, dyst)
(A.54)

Sl

While this equation (A.54) looks rather complicated, it is straightforward to implement it
in a computer program.
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Appendix B
Conformal Defects in Ising Model

In [54] and [59], conformal defects in the Ising model are obtained by identifying the
folded model, which has ¢ = 1, as a special case of the Ashkin-Teller model and the
Z4-orbifold of a free boson compactified on a circle of radius » = 1. As in [59], we use
the normalisation in which the self-dual radius of the free boson theory is r = 1/ V2. In
addition, we always take the Ising model as the unitary Virasoro minimal model M (3,4)
with the diagonal modular invariant bulk partition function.

B.1 Conformal Defects from Orbifolded Free Boson Theory

In the orbifolded free boson theory, there are two classes of conformal boundary condi-
tions: continuous families of Dirichlet and Neumann boundary conditions. In [59], they
are constructed from the boundary states of the unorbifolded theory preserving the U(1)
symmetry. As mentioned in [91], there may be extra defects associated with the boundary
states of the unorbifolded theory braking the U(1) symmetry, however we do not consider
this possibility in this report.

The Dirichlet boundary conditions are denoted by Dy (), where ¢, € R are the eigen-
values of the free boson at the boundaries, and the Neumann boundary conditions are
denoted by Ny (@), where ¢ is the dual field. In terms of the chiral components of the
free boson ¢ = ¢ + ¢, the dual field is given by ¢ = ¢ — ¢p. In this section, we follow
the notations of [59]; the subscripts distinguish Dy(¢g) and Ny (@) from the boundary
states D(py) and N () in the unorbifolded theory. The boundary conditions satisfy

Do(pg) = Do(—¢o) = Do(wo +2m) and Np(@y) = No(—=pg) = No(po + ), (B.1)

thus we take the fundamental domains ¢, € [0, 7] and ¢, € [0,7/2]. These boundary
conditions are elementary except at the endpoints of the fundamental domains, where
they split into two elementary boundary conditions due to the presence of twisted sectors.
The elementary boundary states are

[1Do(po))  with @ € (0,m), [[Do(0))s,  [[Do(m))s
INo(#o))  with  @g € (0,7/2), [[No(0)),, and [[No(m/2)) -

Consider a torus of circumferences § and 2! with two defect lines along non-contractible
circles at the diametrically opposite locations separated by . After folding, this torus be-
comes a cylinder with two boundaries separated by /. Then, from [59], the torus partition
function (2.268) for two continuous Dirichlet defects can be written in terms of the bound-
ary states of the orbifolded theory as

1

1p(e=1) 7(e=1)_
Zpo(wo)Dotel) = (Doleo)llgzthe "+ VI Do (0h)) = Z, (0o — ©0) + Z, (0 + #0)
(B.2)
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where

Zy(po & o) = —— 3 g2 a0 (B.3)
n(a) 2=,

with the Dedekind eta function

n(g) =¢"> [ —-q", (B.4)
n=1

G=e /7T q=¢e*7 and 1 = i3/2l. Here, L((f:l) and E((f:l) are the Virasoro generators
of the compactified free boson theory on the plane, and ¢ ~ ¢ + 27r. We should keep
in mind that the boundary states carry momentum and winding modes. Since the Neu-
mann boundary conditions become the Dirichlet boundary conditions for the dual fields
@, the torus partition functions for Neumann defects can be calculated by substituting
r— 7 =1/2r, o9 = 2¢y, and ¢, — 2¢; in (B.2). By computing the spectra of defect fields
ZDoeo)|Do () With 7 =1, we can identify the factorising and topological defects in the
family of Dirichlet defects and Neumann defects. This has been done in [59] and [91].

B.1.1 Topological and Factorising Points of Dirichlet and Neumann Defects

As in [59] and [91], by comparing the torus partition functions of Dirichlet and Neumann
defects (B.2), and the partition functions of (5.30) and (5.37), we can identified the
factorising and topological defects in the family of Dirichlet and Neumann defects. In
summary, we have

Do(0)=Fy . UF__, Do(n/4) =Dy, Do(n/2)=Fy;,
Do(37/4)=D,, and Dy(r)=F ,UF,_. (B.5)

Here, D (0) = Dp(0) + Dp(0)_ and Dy(m) = Do(m), + Do(m)_, where they are iden-
tified as D (0), = F,,, Dp(0)_. =F__, Do(m), =F__, and Dp(m)_ = F,_. For the
family of Neumann defects, we have

NO(O):FerUFf*? NO(W/4):D0'? and No(’]T/Q):F+fUF7F. (B6)

We take Np(0) = Np(0)y + Np(0)_ and Np(7w/2) = No(n/2), + No(n/2)_, where
No(0)4 = Fyy, No(0)- = Fy_, No(7/2) = Fyp, and No(7/2)_ = F_;.

As discussed in [59], the family of Dirichlet defects can be understood in terms of the
underlying classical system. Let us consider a square-lattice Ising model on a cylinder with
a defect line along the axial direction. The classical Hamiltonian is given by

M—-1 N N
5 = — Z Ui,j (Jlo'i’j+1+z]20'i+1’j+hi’j)—Z UM,j (JIO-M,j—i-l—I—JDJl,j—i_hM,j) y (B7)

=1 j=1 j=1

where o, ; € {1, 1} are classical spin variables, J; is the vertical coupling, J, is the hor-
izontal coupling, J, is the defect coupling, and h, ; are the couplings to the external
magnetic field at each site, which we set to zero for the moment. The defect line is given
by the altered horizontal couplings between the sites ati = M and i = 1. Figure B.1 depicts
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lattice sites near the defect line. Let us introduce various quantities of our interest. The
defect strength is defined by b = Jp/J,. We define K, = gJ,, Ky = 8J,, and Kp = Jp,
where /5 is the inverse temperature. In terms of the dual coupling K7 defined by

sinh 2K7 sinh 2K, = 1, (B.8)

the critical values of the bulk couplings must satisfy K, = K. This is a consequence of the
Kramers-Wannier duality. Defect lines in a square-lattice Ising model are discussed in [26].
In [59], the lattice parameters corresponding to the Dirichlet defects in (B.5) are give by

Do(0)=F,,UF_ _ < b—oo with K, — 0 (Infinitely ferromagnetic),
Dy(m/4) = Dy + b=1 (No defect),
Do(n/2) = Fyy < b=0 (Free boundary),
Dy(3m/4) = D, < b= -1 (Antiferromagnetic defect), and
Do(m)=F_UF, <+ b——oo with K, —0

(Infinitely antiferromagnetic) .

Figure B.1: The square-lattice Ising model with a defect line.

On the other hand, the family of Neumann defects does not have obvious classical
descriptions. In the anisotropic limit K, — 0, the square-lattice Ising model considered
before is equivalent to the one-dimensional quantum transverse field Ising model, whose

Hamiltonian is given by

H=-) 6%(n)=>_ 6"(n—1)6%(n) — b5*(~1)6°(0), (B.9)
nez n#0
where 6%(n) and 6%(n) are Pauli spin operators. In [59], the Hamiltonian of the one-
dimensional quantum system corresponding to the continuous Neumann defects is given
by
H=-) 6"n)=)Y 6°(n—1)6%(n) — b5*(-1)6"(0) , (B.10)
n#£0 n#0
which has the defective link between n = —1 and n = 0 different from (B.9). This Hamil-
tonian is the same as (B.9) with the spin operators replaced by the disorder operators for
the half of the chain n > 0. The disorder operators are given by

p#(n) =[] 6%(m) and A%(n)=067(n)s"*(n+1). (B.11)
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In addition, continuous Neumann defects can be realised in a certain quantum Hall state
with a single vortex in the bulk [97].
In [91], the defect fusion rules of the Ising model are given by

D. Do(¢o) = Do(wo) D: = Do(m — ¢g) ,  D. No(#o) = No(¢o) De = No(¢o)
D, Do(vo) = No(po) . Dolwo) Dy = No(m/2 = ¢y) ,
D, No(#0) = Do(¢o) + Do(m — &) , and
No(¢o) Dy = Do(m/2 = @g) + Do(m/2+ &) - (B.12)

From these fusion rules, it is clear that the topological defect D. commutes with all the
other defects. The topological defect D, changes a Dirichlet defect to a Neumann defect
and vice versa. Furthermore, the Neumann defects behave like the representation (¢) in
the bulk fusion rules (5.27) due to the second line in (B.12); for example, the last two
equations of (B.12) can be written as

D, No(¢9) = Dy Dy Do(p0) = (D1 + D.)Do($y) and
No(Po) Dy = Do(7/2 = ¢g) Dy Dy = Do(7/2 — $o)(D1 + D,)

The general fusion rules of conformal defects in the Ising model are given in [108].

B.2 Defect Flows in Ising Model

In this section, we summarise the defect flows in the Ising model investigated in [97] and
[98].

One of the important quantities characterising a conformal defect is its g-value, which
is also called the entropy or the universal ground state degeneracy. The defect g-value
is defined as that of the corresponding conformal boundary in the folded theory. The
boundary g-value is the coefficient of |0)) in (2.224). Similar to the c-theorem for bulk
perturbations, there is the g-theorem, which states that the g-value decreases along the
boundary RG flows.

For the Ising model, the g-values of conformal defects are given in [59]: the continuous
Neumann defects have g = v/2 and the continuous Dirichlet defects have g = 1. Further-
more, the two elementary defects at the endpoints of the fundamental domains of ¢, and
@, have g = 1/+/2 for the Neumann case and g = 1/2 for the Dirichlet case, therefore they
add up to the same g-values as the continuous cases.

Before we analyse defect flows, let us consider the spectra of defect fields in details.
For the topological and factorising defects, we know the spectra from (5.30) and (5.37).
For the other Dirichlet and Neumann defects, we can calculate (B.2).

For the Dirichlet defects, the spectra of defect fields are given by

ZDO(¢0)|D0(<P0) - ZT:l(O) + Zr:1(2800) ) (B-13)

where

1 2 1 2
Z,—1(0) = — @ and Z,_1(2p) = — g?tee/™7 (B.14)
0 77(q),§Z (20) U(Q),%



B Conformal Defects in Ising Model 156

They should be considered as ¢ = 1 Virasoro characters and the scaling dimensions of the
defect fields can be read off from these partition functions. Since ¢ = 1 Virasoro represen-
tations are degenerate when h = (n/2)2, where n € Z, it is useful to rewrite Z,_,(0) as

:L S 2n2 L . m?2 __ (m+1)?
Zial0) = o5 D% +77<Q>mzo(q gy (B.15)

n=1
Then, it is clear that there are single defect fields with scaling dimensions A = m?, where
m € Zg, and pairs of defect fields with A = 2n?, where n € Z-,. They appear in the
spectra regardless of the values of ¢,. The scaling dimensions of the other defect fields
depend on ¢, and these are given by

n ¥0 2 :
A (pg) =2 (n + —) with ne€Z and ¢y#0,7. (B.16)
s

When ¢, = 0,7, the partition function (B.13) reduces to 27,_;(0). These defect fields
with scaling dimensions less than one are plotted in Figure B.2. At ¢, = 7/4, the curve
ABl corresponds to the bulk spin field o on the defect line, which couples to the defect
magnetic field. This field becomes dimension zero at ¢, = 0, which means that even an
infinitesimal defect magnetic field will split ¥, , U F"__ into either ', , or F__ [97]. The

same argument holds for the curve AY, and the factorising defect F_, U F, _.

)
\,/
r\«\ Ho
v Y
Q® @
A [ ] \\ //
1 + e---------- o+\ ——————— B R /{0 —————————— o(é‘?g)
1/2 1 (e, 1) s (1,2)
A5 (o) - A (o)
1/8 - «(0,0) C(0,0)
0L e-tli o . e - . o____I113(1,1)
0 /4 /2 3r/4 T %o
F,UF__ Dy Fyy D, F_,UF,_

Figure B.2: The spectra of defect fields with A < 1 for Dirichlet defects.

For the Neumann defects, the spectra of defect fields are given by

ZNo(30)INo (30) = Zr=172(0) + Zr—1 /2(4¢0) - (B.17)
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Similar to the Dirichlet case, we write

Z._ 1/2 (1 i2qn /2 e (qm2 _ q(m+1)2) 7 (B.18)

)70

m=

which gives single defect fields with scaling dimensions A = m?, where m € Z, and pairs
of defect fields with A = n?/2, where n € Z . The other term

1

Z—15(4¢0) = —— (n+2¢q/m)?/2 (B.19)
71/2( SDO) n(q) T;Zq
gives defect fields with scaling dimensions

n (- 1 2900 : ~

These defect fields with scaling dimensions less than one are plotted in Figure B.3. For
the Neumann case, there are always two chiral defect fields with A = 1/2, therefore it is
possible to perturb the Neumann defects by these chiral defect fields.

ARN
T
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A CERC
11 -1 L,# ffffffff - (g,¢)
A@) ARG
~N\¥o v WPo
/// \\\ (671)
1l e oo * - e e .o
1/2 }.\7 777777777 StTtTTTTTTT /‘/b(17€)
SR A% (%)
N 0/ > e N\¥0
1/8 + “2e{0,0)
oL el e _____lT3(1,1)
0 /4 /2 o

Figure B.3: The spectra of defect fields with A < 1 for Neumann defects.

B.2.1 Marginal Defect Perturbations

Perturbations of a conformal defect by a defect field with scaling dimension one are
marginal and this defect remains conformal along such RG flows. Since a defect field
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with A =1 is always present in the Dirichlet and Neumann defects, we can consider the
two continuous families of conformal defects are generated by the marginal defect pertur-
bations.

In [97], the continuous family of Dirichlet defects is obtained by considering the per-
turbations of the identity defect by

Spert = AD/R <¢£,1€1)1(x) + ¢£,1€1)2(x)> dz , (B.21)

where wélal)l(:c) and wélglﬂ(x) are the bulk energy fields ¢, . (2, Z) brought to the defect
from the opposite sides. At the identity defect, these two defect fields are the same, thus
the perturbation term is the integral of 2\ Dwé}sl). By parametrising the coupling A\ as

tan(§/2) = %D , (B.22)

where we have set v,, = 1, it is related to ¢ by

O T
=_—+ —. B.23
o 2+4 ( )

For the continuous family of Neumann defects, [97] considers the perturbations of the
topological defect D, by

Spert = )\N/R <¢§?€U)l($) - ¢§?€U)2($)) dz . (B.24)

Since the action of D, on a bulk energy field is ¢. . — —¢. ., the perturbing term is the
integral of 2\ Nq/zéff) . Again, the coupling )\ is parametrised by

tan(d/2) = %N (B.25)

and related to ¢, by
(B.26)

| On
N

B.2.2 Perturbation by Chiral Defect Fields

Since the Neumann defects have the highest g-values of v/2, there should be RG flows
to more stable defects, for example, to the Dirichlet defects, whose g-values are one. In
[97], the Dirichlet defects are obtained as the endpoints of the perturbations of a Neumann
defect by the two chiral defect fields with the scaling dimensions A = 1/2. Let us denote
these two chiral defect fields by ng f(%) and zpi\f g(%). Then the perturbation term in the
action is given by

Shert = /R (Aﬂpgf(%) A, {Vg@ﬂ)) da . (B.27)

As in [98], by introducing

A . «Q
tana = =~ with (B.28)
oy o

m m
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and # = 7 — «, these flows give
No(¢o) = Do(pg +6) - (B.29)
In particular, perturbations of D, by (B.27) give
D, = Do(5m/4 — a) . (B.30)

These flows are verified by the truncated conformal space approach (TCSA) in [98]. For
certain values of o, the endpoints correspond to the factorising and topological defects in
the family of Dirichlet defects. These flows are depicted in Figure 13 (a) of [98].



160
Appendix C
Free Fermion Conventions

Let us briefly summarise the representation theory of the ¢ = 1/2 free fermion and its
relation to the irreducible highest weight modules of the Virasoro algebra with ¢ = 1/2.

From the stress-energy tensors (5.2) and the anticommutation relations (5.4), if we
define the operators!1%]

Le=2 Y (r+5) Wty and

rez+i
1 n 1
L% = 5 Z (T =+ 5) <w—rwn+7‘) + T65n,0 (C.1)
reZ

with n € Z, then we see that they satisfy the Virasoro algebra relations (2.46) with ¢ = 1/2.

C.1 Neveu-Schwarz Sector

For the NS sector, a highest weight representation is constructed from the vacuum state |0)
which satisfies .
¥,|0) =0 forall neZ+ B and n>0. (C.2)

Let us denote the highest weight module constructed from |0) by Hs. Then, Hq is
spanned by vectors of the form

. 1
VY, Yy = P, |0)  With ny <ng <---<ny <0 and nl,nQ,...,nkeZ+§. (C.3)

Note that the anticommutation relations (5.4) imply the Verma module constructed from
|0) is unitary, and therefore irreducible. In addition, one can show that ¢»_ 1 |0) is a Virasoro
primary state using (C.1).

The Virasoro character of K, is given by!°!

o
S_ L _ L _1
X (6) = Trygyg g0 38 = ¢ 78 [ (1+q” 2) : (C.4)

n=1

Since |0) is bosonic, the corresponding supercharacter is given by

oo
- NS_ 1 1 1
T (0) = Trey (~1)"q"7 7% = =3 [T (1-4"7%) . (€5)
n=1
If we denote the Virasoro character of the irreducible representation with conformal weight
h in the Virasoro minimal model M (3,4) as x;(¢), we obtain the relations

1 1

Xo(9) = 5 (xas(@) + Xns(@)) - and - x1(q) = 5 (xns(@) = Xns(a)) - (C.6)
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C.2 Ramond Ground States

For the Ramond sector, some care is needed due to the fermionic zero modes. Since (—1)”
and v/21), form the two-dimensional real Clifford algebra, the Ramond ground states are
degenerate. As we have seen in the NV = 1 super-Virasoro case, there are two choices for
a basis: one in which the basis vectors are (—1)" eigenstates, and the other in which they
are 1), eigenstates. We take the (—1)" eigenstates, and they are denoted by ]%> , which
satisfy

¢n|%>i:0 forall neZ and n>0 (C.7)
in addition to .
Yolig)y = ﬁ@i and  (=1)"|55), = *l75), - (C.8)

By H, let us denote the module of the extended Ramond free fermion algebra spanned by
vectors of the form

U WUy U, | 5) . With ny <ng <.+ <np <0 and ny,ny,...,n €Z. (C.9)

By introducing the Virasoro character of the unextended Ramond algebra module i]-fl(f)
R 1 1 >
Xe(@) = Try o g™ "3 =g [T 1+ 4", (C.10)
R n=1

the character of Hj is given by 2x(q).

In the Ramond sector, chiral free fermions /(z) are non-local fields, and their two-point
functions have square root branch cuts. As in [22], these branch cuts are described by the
chiral spin fields o(z) and u(z) that satisfy the OPE

W(2)o(w) = le_iw () + reg. . (C.11)

and they are inserted at the endpoints of branch cuts. As

L
16°

we usually require fields to have definite fermion parities, the above OPE gives o(z) and

These spin fields have h =

u(z) to have the opposite fermion parities. Then, the Ramond ground states in the (—1)*
eigenbasis can be written as

limo(2)0) = |#5), and  lim u(2)|0) = |5) . (C.12)

z—0

where we chose o(z) to be bosonic.

Unlike in the NS sector, simply taking the tensor product 3, ® F(, does not yield
the bulk irreducible representation of the Ramond free fermion. In the bulk case, v/21/,
and /21, form the two-dimensional real Clifford algebra even without the chiral fermion
parity operators. Therefore, the bulk Ramond ground states are two-fold degenerate and
denoted by |+), with the conformal dimensions (h,h) = (4, &). We take them to be
(—1)F+F eigenstates

(~1)7 |, = ), (C.13)
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and they correspond to a rotated basis of the Clifford algebral?? 1951 which gives

Yold) = ﬁei TF)e and  hglE), = 7 MEIEON (C.14)
They are related to the chiral Ramond ground states by!??!
1)~ (15, @ F)L) + (I%)_© F),) (C.15)
and the action of (—1)% or (—1) connects them to the orthogonal space spanned by
)~ (I8, @ 1F5),) - (I5)_ 2 135),) - (C.16)

In this case, non-local behaviour of Ramond fermions is captured by the bulk spin fields
o(z,z) and p(z, z) that correspond to

lim o(z,2)0) =|+), and lim u(z,2)0) =|—), - (C.17)

2,Z2—0 R 2,2—0

Their OPEs can be found, for example in [22] and [56].
Let H; denote the Fock space generated by the action of negative modes of ¢/(z) and

1(Z) on the states |+) .. Then, the corresponding torus partition function can be written

as
1

L
Tryey, (CILOR_E@LOR_@) = 2xa(0))*, (C.18)

where x;(q) is given by (C.10).

C.3 GSO Projection of Boundary States

Boundary states

The boundary states of the free fermion theory are

INS, ¢) = H ei€¢7r+1/2727r+1/2|0>NS ® |0)xs) (C.19)

r€lsg

where ¢ = +. They are the unique (up to normalisation) solutions of the gluing conditions

(¢, —ie_,)INS,e) =0 forall reZ+1/2. (C.20)

Therefore, there are only two boundary states in the free fermion theory, which consists of
a single Neveu—Schwarz free fermion.

If we include R-sector as well, then the boundary states become linear combinations of
(C.19) and

R.e) = v2 I ") (C.21)
€20

Here, we follow normalisation of [105]—this choice will be apparent when we project these
boundary states to obtain the Ising boundary states. In R-sector, the gluing conditions are

(¢, —ie_,)|R,e) =0 forall reZ (C.22)
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and (C.21) solve these.
Let us consider the cylinder partition functions with the boundary states (C.19) and
(C.21) placed at the ends. Straightforward calculations show

(NS, e | g2 (M HH1/20) | NS, ) —~—1/48H (14+372) = x0(@ +x12(@)
(NS, €| g2 012 | NS, —¢)) = g 1/4811( 1= 3"72) = x0(@) — x12(@)
(R,e| gz 6 +LE-1/24 | R ¢) =ﬂq1/24H<1+q"> =V2x1/16(¢) and
(R,e] g2 EB+IE-1/20 | R —e) =0,

where X, x1/2, and x1,16 are the ¢ = 1/2 Virasoro characters. In the equations above, the
cylinder partition functions are identified with the torus partition of a chiral fermion asso-
ciated with the given spin structures by comparing the characters. This can be understood
as ‘unfolding’ the boundary theory on the cylinder and considering it as a theory of chiral
fermion on the torus.

The GSO projection of the free fermion boundary states are discussed, for example,
in [105]. The GSO projected boundary states are obtained as the boundary states in the
Zy-orbifold of the free fermion theory generated by (—1)% +F_We start from the boundary
states of the free fermion theory NS, €)). Since each of them is invariant under (—1)¥+F,
they should be resolved by adding the R-sector boundary conditions, which yields

1
ferm — ﬁ (|N57 6>> + |R7 €>) ) (C23)

where the factor of |Zy|~'/2 = 1/1/2 is chosen as the normalisation. Then, we need to
consider the orbits of the boundary states (C.23) under the action of the orbifold group

le, )

G = 7,. For the moment, let us take the type OB projection. Since (—1) +F acts non-

trivially only on |R, —)) in this case, the boundary states ||+, £)) are invariant under

ferm
G while || —, +) oy @and ||—, =)oy are related by (—1)F +F_ Thus, there are three orbits
which partition the set of boundary states (C.23). We sum the boundary states lying
in an orbit and normalise it by (|Stabs|/|G|)'/?, where Stab,; is the stabiliser subgroup
associated with this orbit—for the two fixed points, Stab, = G, and for the other orbit, it
is trivial. This gives the projected boundary states.

Let us summarise the GSO projected boundary states and their relations to the Cardy
boundary states of the Ising model (5.34) given in [105]. For the type OA projection, we
have

||+>>Ismg - HCharged +>>ferm 7 (’NS >> + ‘R’ _>>) )

H*»Ising - HCharged >>ferm \/Q (’NS7 *>> - ‘R’ *>>) ’ and

Hf>>lsmg - ||neUtral>>ferm = ’NS, +>>
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For the type OB projection, we have

| D1sing = lIcharged, +) % = — (NS, +)) + [R, +))

ferrn:\/i
|~ D1sng = lcharged, —)%, = ¢1§ (INS,+) — [R,+)). and
1£)1gng = Ineutral)®® —|NS, -,

From these, we can write the free fermion boundary states in terms of the Ishibashi states
of the Ising model. If we take the type OB projection, we can identify

(INS, +) + NS, =) = [1), %(\NS,H)—\NS,—))):I@% and \%IR&»:!U»-

N |

Similarly, for the type OA case, we have

(INS, =) = NS, +)) = [e)), and —=[R, =) = o).

(INS, =) + INS, +)) = |1)), %

1
2
Expanding (C.19) and (C.21), we can write

(INS, ) + NS, =€) = (1 + ¢—1/2¢—3/21;—1/215—3/2 + 1/1—1/21/1—5/21/;—1/21/;—5/2 +--
+ Y 300590320 572+ -+ )|0)ns @ |O)s,
(INS,€)) — INS, —€)) = i€(¢—1/2&—1/2 + ¢—3/27E—3/2 + ¢—5/277/_J—5/2 T+
+ Y10 390520 1/2%_3/9%_5/2+ -+ )|O)ns @ [O)yg, and
IR, €) = \4/5(1 i€ 10y +ieh_oth o+ i€ _3th_g+ -
TV 1Y 2 Y o+ VY g 3 g 3+ F P 2P 3P Y 3+
e 1t oth_s 1P g g+ )|€)R.

N

DO | —

Therefore, we see that the type OB projection relates the highest weight vectors as

|0)ns ® [0)s ¢ 10) @10),  ith_1/o%1/2|0)ns @ [O)ig > [1/2) @ [1/2), and
|+)r < [1/16) ® [1/16), (C.26)

while for the type OA projection, we have

0)ns ® [O)s 2 10) @10),  —itb_1/901/2|0)ns @ |O)s ¢ [1/2) ® [1/2),  and
|—)r ¢ |1/16) ® [1/16). (C.27)

Since the factor of i in front of bilinears of the form +_,+_, is introduced to ensure that
the left and right fermion modes obey the usual anti-commutation rules, there is no i
appearing in (C.24) and (C.25).
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Appendix D

Various Quantities in (D, ;) Theory

65 19 39 7 3 7 1 1
9 103 3 8 2 24 2 8 3 8 0
8 621 481 1103 261 181 323 61 21 23 121
80 80 240 80 80 240 80 8 240 80 80
7 57 173 91 83 6 79 1 3 1 37
10 40 30 40 5 120 5 4 30 40 10
6 65 45 91 17 9 T L L1 19 13 25
16 16 48 16 16 48 16 16 48 16 16
5 |13 6 14 19 1 7 1 19 14 69 13
5 4 15 4 10 120 10 40 15 40 5
4 25 13 19 1 i 7 9 17 91 45 65
16 16 48 16 16 48 16 16 48 16 16
3 e 13 L 3 1 6 83 91 173 57
10 40 30 2 5 120 5 40 30 40 10
o |2 123 21 6l 323 181 261 1103 481 621
80 8 240 80 80 240 80 80 240 80 80
1 1 7 3 59 7 3 19 65
1 0 8 3 8 2 24 3 8 3 g 10
r/s| 1 2 3 4 5 6 7 8 9 10 11
Table D.1: Kac table for SM (10, 12)
21 41 5 3
9 G 4 2 & 3
8 521 301 443 61 41
80 80 240 80 80
7 31 53 17 e 8 6
5 15 10 10 15 5
6 53 2 31 9 21
16 16 8 16 16
5 31 43 3 3 43 31
10 30 5 5 30 10
4 21 9 31 25 53
16 16 48 16 16
3 6 8 e 17 53 31
5 15 10 10 15 5
2 41 61 443 301 521
80 80 240 80 80
5 41 21
13 6 4 T 3
r/s| 1 2 3 4 5 6 7 8 9 10 11

Table D.2: Conformal weights of superdescendants for SM (10, 12).

D.1 Character Identities

We label characters by either Kac labels or conformal weights. ®x}%(¢) and ®x}(¢) de-
note characters of SM(3,5), and “x}%(¢) and "”x}(¢) denote characters of SM (10, 12).
Ramond characters correspond to the unextended algebra representations.

Relations expressing products of NS characters of SM(3,5) as sums of NS characters of
SM(10,12) arel®¥

TN () + “OxT5 () + “Ox85 () + “Ox5% () = (x5 (a))?
TONE (@) + “Ox55 (@) + “OxFi () + “OxFH(9) = (DxT3(a)?,
CO%53(0) + “x55 (@) = x5 (@) Pxi3(e) - (D.1)
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The same relations with characters labelled by conformal weights are
U6 (@) + X (@) + N (0) + “OxA6 (@) = (Ux6° (@)
COXT (@) + N () + O (@) + O (@) = (XY (@)

YO (@) + XA (@) = xo® (@) X (@) -

There are similar relations for Ramond characters!®

BT a(@) + PxTs(a) = (“xTala) B0 % (@) + “OxBa(a) = (X% (a))7
BOXEa() + "OxEs(@) = (Uxi2(@)?, UG (@) + "X (@) = (X (0))°
“Ox54(a) = Px12(0) PxTala) “x e (@) = x5 (0)x% (0)

Moreover, we found that there are relations expressing Ramond characters of SM (3,5)
with /g as sums of SM(10,12) characters

X3(9) + 1OXER() = Oxda(va) s POxE (@) + xR () = XY (Va)

T + AR (0) = O (Va) U (@) + "X () = G (V) -

16

(10)

These ,/q characters of SM(3,5) can be expressed as sums of Ramond characters of
SM (10, 12) as well

“OGa(a) + X3 (0) + “Oxga(a) + “xEr(a) = PxTa(Va)
“OE (@) + “Oxdr (@) + "Ox6a(a) + xr(a) = X2 (Va) -
The same relations with characters labelled by conformal weights are
“Ox% (@) + Ox G (@) + Mx e (@) + X (@) = DX (V)
DO () + OO (0) + " (@) + VX (0) = X (VD)

D.2 Expansions of (Dg, F;) Ishibashi States

In this appendix, we expand the Ishibashi state of the (Dg, Ff) theory as states of the
folded theory using the map ¢4 defined in (6.20). In addition we further expand them
as defect operators using the map p given by (6.15).

In order to do this, we first need to find the image of the highest weight states corre-
sponding to the diagonal terms in the bulk partition function (6.1) under the map t,3+s-
Among these states

0), 1%, |4, and |5 (D.2)
can be considered as the super W-algebra highest weight states, therefore the map ¢,+5
acts trivially. The remaining 8 states

5. 15, 1oy, U5, 19, 5D, 18, and ¥ (D.3)
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are the super W-algebra descendants, and we need to consider the action of ¢, .5 explicitly.

Throughout this appendix, we shall use ¢ = 2¢ = %

For the vacuum sector, the Ishibashi states are given by

1€ ~ 1 - €

7 _
0.6 = 10) = 5575G-5G-410) + g5 LoaLoal0) ~ 556 3G 3)
1 - 3te - =
+ TC/L_:;L_3|O> - mL_QG_%L_QG_%K))
8lie - , _
L .G _c+12G )(L G _c+12G )O
c’(c’+12)(21+4c’)< —27-3 EVACEES B S LA

which can be expanded as

_ _ 1 _ _
tagys ([0, €)) = 10) = =2 (aG s +BG) (1G, +0G)[0)+— (LU + LEY) (L4 L2)[0)

dc /3
e A @) (1) ~(2) L ooy | rov @ 1@
GG, 406G (G + 5N} + (L% + L)L + L))
e W e (1) @O\ FD T D ~(2)
(c—|—6)(L s+ L) (a G,%+5G,%)(L—2+L—2)<7G,%+5G,%)‘0>
81ze

4e(c+6)(2148c)
< (L0 + L8 GV +3G%) = 250G, +6G%) ) 10) +

(2% + L9)(aG") + 8G%)) = 252 (aG, + BG?)))

and

Papys (0, €)) = [0)0]
(a’yG 3G_310)0] + iadG_3[0)0[Gy +iBrG_4]0)0G'3 + BoJ0)0|G 303)

1 _ _ _ _
+ p (L_oL_5|0)0| + L_5]0)0| Ly + L_5|0)(0| Ly + |0)0| Ly L)

1€ . o _ _
- ((WG s G_3 0)0] + iadG_3 [0)0|G'g + iB+G_5]0)0]G +56\0><0]G%G%>

1 _ _ _ _
+ o (L_3L_3|0)0[ + L_3]0)0| L3 + L_5|0){0|L3 4 [0}{0|L3L3) +

For the highest weight state with h = h = 3, the Ishibashi state is given by
$e) =19 = 5G4 Gy 1D + 3L+ (D.4)
2% = 12 3 -3 -412/ T g -1R-10 : .
Using the expansion of the highest weight state

in3

tapns(12)) = gz (@Gl = FGTH(GEY —6GE)0) (D.5)

the Ishibashi state can also be expanded as

3
[’04,375(‘5’ 6»)
ing - . €n _ _
= 1o/3(0C%y — AGUH(GYY = 0GEI0) — —E (LY, — L)LY, ~ L)(0) +

(D.6)
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€ns _ _ _ _
- 7? (L_oL_5]0)0] — L_5|0)X0|Lg — L_5|0)Y0|Lg + [0)(0| Ly L) +

We now consider the sector corresponding to J—CNS QR HNS. We give the results in terms of
10
a state of weight 2h, but of course, in this partlcular case h = 5. The states are identified
as

2h) = 15), [2h+3) =175), and [2h+1)=3), (D.7)

and the constants are n = 7 z and ' = ng. For the Ishibashi state corresponding to
o _ 1
2h =2h =1
1€ = 1 _

the expansions are

tagys(12h, €)) = |2h) — E(QG(” +BG*) (VG +0GY)[2h)

(L0 + L)Y + L) |2 +

and

Pagys([2h; €)) = [h)h]
_%(MG LGy IR+ 100Gy [RXRIG , +iBvG_y[)RIG) + BOIRNRIG Gy )

+ 5 (Loa LRl + Loy [h)AI Ly + Loy [BXRITy + (YA Ly Ly ) + -

For the Ishibashi state with 2h + 5 =2h + 1 = L

i€

1y — [9pal
12h+5,€) = |2h+35) — Tl

G_y |2h+ IS SRR (D.9)
we can use the expression for the highest weight state
tapys(12h43)) = 4 oG}~ B (G, ~ 66 )l2h) (D.10)

and obtain the expansions

La675(|2h+%76>>) 4h

_ €n o 7@ W) A NFD T ~(1) A(2)
4h(4h—|—1)(L_1 L™ QQBG,%G,%)(LA L™ 275G7%G7%)|2h> +

oG — 5G))(GY) — G2 )|2h)
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169
and
Pays (|20 + 1, €)) =
% (.a’yG,%G,%!hXh\ +if0|h)h|G 1 Gy + adG_y[h)R|Gy + Bvé,%\h><h|é%)
- % (L_yL_y|h)h] + L_y|h)h|Ly + L_y|h)h|Ly + |h)XR|Ly Ly)
IR (G MG, Ly — LGy AIG)
M (LoaG_yInXRIGy = Gy IRXRIG Ly )
m (G_3G_y ImXRIG, G ) +
For the Ishibashi state with 2h + 1 =2h+1 =%
|2h+1,€) = [2h+1) + - -, (D.11)

we can expand

La675(|2h+1> 6>>)

/

1 I S
= g Fh -+ SHGY GEEY — L8 + FG G [2h) + -

and

/

Papys(12h+1,€)) = Tl (L_yL_q|h)Xh| = L_4]|h)h|Ly — L_q|h)h|Ly + |h)h|L Ly)
in'af

in'~d - A - 7
T (L_lG_%\h)<h|G% G_%|h)<h|G%L1>
n'afyo - -
S Terey (G- InXRIG )Gy ) +

D.3 Boundary States Coefficients of (Dg, E;) Theory

The matrices \Il(f’b)

(rs) aT€ given in terms of the eigenvectors of adjacency matrices of the
Dynkin diagrams of Dy and Ej in equation (6.40):

ped) _ Vo (Dg) V3 (Es) (D.12)
(r,s) — ) :
5510

1s
We repeat here for convenience the vectors ¢, (G) given in [94]:

The eigenvectors of the Dy adjacency matrix v} (D) are given by

V(D) = V255 fora,r#5

1
Wi (Dg) = ﬁséf) forr #5

3 (Dg) =S¥ fora+5
’ 1
5¢ _ 2 (g® _
e (Dg) = 5 <S55 ee)
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where a = 1,2,3,4,57,5~ (a = 5T correspond to 5 and 6 nodes on the D Dynkin dia-
gram), r € £(Dg) = {1,3,5,5,7,9} (r = 5% above correspond to 5 and 5), and Sg.;) is the

su(2)g modular S matrix elements,

(k) 2 . T
S = k+2sm<k+2>

Explicitly, the entries in v, (D) are

a\r 1 3 5% (= 5) 5~ (= 5) 7 9
1 —14V5 1 /3 + 1 1 1 1 /3 + 1 —1+v5
210 2V5 0 Vs V5 V5 2V5s VB 2v10
1 1 1 1 1 1 1 1
2 |4 /1-% L i+ Lk 0 0 —5\/1+% —5\/—ﬁ
3 1 /34 1 —1+V5 _ 1 _ 1 —1+V6 L/3 4 1
2Vs Vs 2V10 V5 NG 2V/10 2\s5 Vs
1 1 1 1 1 1 1 1
1 1 1
F=9| e VD) B6+VD - o
— (_ 1 1 1 1 1 1
=0 7w 75 w0V w5 (5+VE) - v
The eigenvectors of the Eg adjacency matrix v; (Eg) are given by
b\s|1l 4 5 7 8 11
1 |a % b b % a
1 _q —1 _
2 2 ¢ e —3 b 0 — L./3=v8 § _ 1 /3+V3
3 lc 0 —d—-d 0 ¢ Where 2V _6 2V_6
c =3 3+3\/§ d =13 3—3x/§
1 1
4 b -3 a —a 5 —b
1 1
5 a —3 b b D) a
6 |d 0 —c ¢ 0 —d

Putting these together, we can calculate the entries of W. Since it is helpful to have an
overview of the properties of ¥ when discussing the boundary states from the extended
algebra point of view, we include a table of the approximate numerical values in table D.3.
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(1,1) (1,5) (1,7) (1,11) (3,1) (3,5) (3,7) (3,11) (5,1) (5,5) (5,1) (5,5)

NN R P = =
N — O W N = o

DO

w

DD W N O WD OO WN R~ O W N~ O

AN N N N N N N N N N N N N N N N N N N N~~~ |~
N N N e N N D DD e N N D DD e — |

S O O Oy Ut Ot Ot Ot W xR s W W W W N

0.3717  0.3717  0.3717 0.3717  0.6015 0.6015 0.6015 0.6015 0.4729 0.4729 0.4729 0.4729
0.7182 —-0.1924 -0.1924 0.7182 1.162 —-0.3114 -0.3114 1.162 0.9135 —0.2448 0.9135 —0.2448

1.016 —-0.2721 —-0.2721 1.016 1.643 —0.4403 —0.4403 1.643 1.292 —0.3462 1.292 —0.3462
0.5257  0.5257  0.5257  0.5257  0.8507  0.8507  0.8507  0.8507  0.6687  0.6687  0.6687  0.6687

0.7071 -0.70v1  0.7071 -0.7071 0.7071 —0.7071 0.7071 —0.7071 0 0 0 0
1.366  0.3660 —0.3660 —1.366 1.366  0.3660 —0.3660 —1.366 0 0 0 0
1.932  0.5176 —0.5176  —1.932 1.932  0.5176 -0.5176 —1.932 0 0 0 0
1.000  —1.000 1.000  —1.000 1.000  —1.000 1.000  —1.000 0 0 0 0

0.9732 0.9732 0.9732 0.9732 0.2298 0.2298 0.2298 0.2298 —0.4729 —-0.4729 -0.4729 —-0.4729
1.880 —0.5038 —0.5038 1.880 0.4438 —0.1189 —0.1189 0.4438 —0.9135 0.2448 —0.9135 0.2448
2.659 —0.7125 —0.7125 2.659 0.6277 —0.1682 —0.1682 0.6277  —1.292 0.3462  —1.292 0.3462

1.376 1.376 1.376 1.376 03249  0.3249  0.3249  0.3249 -0.6687 —0.6687 —0.6687 —0.6687 (D-13)
1.144 —1.144 1.144 —-1.144 -0.4370  0.4370 —0.4370  0.4370 0 0 0 0
2.210  0.5922 -0.5922 —-2.210 —0.8443 —0.2262 0.2262 0.8443 0 0 0 0
3.126 0.8376 —0.8376 —3.126 —1.194 —-0.3199  0.3199 1.194 0 0 0 0
1.618 —1.618 1.618 —-1.618 —-0.6180  0.6180 —0.6180  0.6180 0 0 0 0

0.6015  0.6015  0.6015 0.6015 -0.3717 -0.3717 -0.3717 —-0.3717 —-0.2923 -0.2923  0.7651 0.7651
1.162 —-0.3114 -0.3114 1.162 —0.7182 0.1924  0.1924 —-0.7182 -0.5646  0.1513 1.478 —0.3961
1.643 —0.4403 —0.4403 1.643 —1.016  0.2721 0.2721 —-1.016 —-0.7984  0.2139 2.090 -0.5601

0.8507  0.8507  0.8507  0.8507 —0.5257 —0.5257 —0.5257 —0.5257 —0.4133 —0.4133 1.082 1.082

0.6015  0.6015  0.6015 0.6015 —0.3717 -0.3717 -0.3717 —-0.3717  0.7651 0.7651 —0.2923 —0.2923
1.162 —-0.3114 -0.3114 1.162 —0.7182 0.1924  0.1924 —-0.7182 1.478 —-0.3961 —-0.5646  0.1513
1.643 —0.4403 —0.4403 1.643 —1.016  0.2721 0.2721  —1.016 2.090 -0.5601 —0.7984  0.2139

0.8507  0.8507  0.8507  0.8507 —0.5257 —0.5257 —0.5257 —0.5257 1.082 1.082 —-0.4133 -0.4133

Table D.3: Numerical values of the boundary state coefficients \IIEZS))

K109y, (%7 ‘9) ur sennueng) snouep  d

141
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D.4 Fermion Parity Assignment of NS Highest Weight Vectors

In most cases, a choice of £(r, s) for NS highest weight vectors is irrelevant. Usually, NS
highest weight vectors |r, s) are taken to be bosonic (i.e. G_/,|r,s) and G_3,,|0) are
fermionic). However, we take the following convention:

e For m odd,
r+s€4Z+ 2 — |r,s) bosonici.e. g(r,s) =1
r+s € 4Z — |r, s) fermionic i.e. e(r,s) = —1
(In particular, |1,3) = |2, 2) with h = 55 is fermionic in m = 3.)
e For m = 10 with the (Dg, E) bulk partition function,

(r,s) =(1,5),(1,7),(3,1),(3,11),(5,5), (5,7), (7,1),(7,11),(9,5), (9, 7) — fermionic

others — bosonic

N\ k
The first choice for m odd cases makes all the fusion coefficients (Nﬁ’s @Ns) non-

]
negative. However, there is no obvious procedure to make all these coefficients non-

negative for m even cases. The second choice for m = 10 comes from two observations:

modular transformations of the bulk partition function and character identities between
m = 3 and m = 10.

e Consider the (Dg, Eg) bulk partition function,
1
Z = E(ZNS_‘_ZI\TS)—FZR

Zns = "% 11+ x5+ Oxi7 + (10)X1,11’2
+ ’(10)X3,1 + %55+ Oxs 7+ (10)X3,11’2
+2 }(10)X5,1 + (10)X5,5}2
Zy =2|"% 4+ (IO)XLS‘Q +2|" %34+ <10)Xs,sf +4 |(10)X5,4}2

If we demand Zg to have the same form as Z,, we need

e(1,1) =e(1,11) = —¢(1,5) = —(1,7)
e(3,1) =¢e(3,11) = —¢(3,5) = —€(3,7)
e(5,1) = —e(5,5)

to ensure modular S transformation 1 Zg > Z,.

e From the Ns character identities between m = 3 and m = 10, if we want something
similar for NS characters, that is (again with ¢ real)

3) .~ 2 _ o~ 10) ~ 10) ~ 10) ~
(( >X1,1) = X11+ ( Y15+ %17+ )X1,11

3).~ 2 10) .~ 10) .~ 10) .~ 10) .~
(< )X1,3) = 'X31+ ( X35+ ( >Xs,? + ¢ )X3,11
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then they fix ¢(1,1) = 1, £(3,1) = —1, etc. Furthermore, if we take ¢(1,3) = —1 for
m =3,

@)y

3y~
X1,1'<)

_ (10)¢ 10) .
X1,3 = ( )X5,1 + )X5,5

fixes (5,1) =1 and ¢(5,5) = —1.

The above arguments fix e(r, s) of the Ns representations with (r,s) appearing in the
(Dg, Eg) bulk partition function. For the other Ns representations, we simply pick e(r, s) =
1.

D.5 Graph Fusion Algebras and Induced Modules for
Dy and Ej

Using the graph fusion algebras that were discussed in [67], and the a induced modules
the were introduced in the context of subfactor theory!®!: 63 641 but also appears in the
TFT construction of RCFTs!7% %11 we can calculate the boundary overlaps (2.232) for
sTl(Q) -WZW models efficiently.

We only consider the Dy invariant of 5\1(2) g and the Ej invariant of 51(2)10 here. Using
the method summarised in Appendix C of [91], we can associate simple induced modules to
each node of the Dg and Fj diagrams as in Figure D.1. Using the graph fusion coefficients
defined by!®7]

o <G>wg<c>¢i GO

ab —

] : (D.14)
(@)
i€E(G) W

we can calculate the graph fusion algebra of Dy as

o) =0e03), BeB)=0oB)e6)e(©),
2eB)=2)oM), B) @ (4) = (2) ®2(4),

e =06)o06) o), B)@(()=B)®(6),

(2)®(5) =4), 3)@(6) =(3) @ (5),

(2) @ (6) = (4) ,

We@=0o28)a0G)®6), G)o6)=01)o0),
@eG)=2) (), (5) @ (6) = (3) ,
4)@(6)=(2)® (), (6) @ (6) = (1) © (6) ,
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and that of Ej as

2e2)=0e®),
2)eB)=02) o4 o),
2o =0)e0),
(2)©(5) = 4),

(2) @ (6) = (3),
@Weo@)=>0o03),
4)© () =(2),

(4) @ (6) = (3) ,
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BeB)=0o203)o (),
B)oM@) =021 e©),
3)®()=3),
B)®(6)=(2) @),

Note that the nodes (1), (5), and (6) of the Eg diagram satisfy the Ising fusion rules.

One can calculate boundary overlaps using these algebras. For example, the overlap

of the E boundary states labelled by (4) and (5) can be written as the character of the

simple induced module associated with the node (2).

5
m @ 6 @20
o O o
189, o 307, o )
5

Dy

(6)
48
L @B @ 6
O O—@
107 3050709  5ell
20638 4B6®10
Eﬁ

Figure D.1: Simple induced modules for Dy and E.

D.6 Extended Modular S Matrix For SW(2, %) at c = 1

We define the extended characters

5

chi®(q) = x0°(0) + x3°(0) +x7° (@) +x16(a) ,  chis(q) = X7 (a) + X5 (),
ch3®(q) = x3°(@) + X2 (0) + X537 (@) + x5 (0, chii(e) = X () + X5 (0)
ch5™(g) = X (9) + X35 (a) » chi(q) = X (9)
ch5™(g) = X (9) + X35 (a) » chgiL(q) = X (9)
so that the (Dg, Ey) bulk partition function can be written as
Z = N S (@), ZT = Y fehi (@) (D.15)
a€ITE a€Tg
where the indexing sets are
Tgs ={1,3,5 5} and Zg = {1+, 3+, 5+, 5'+} . (D.16)
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Note that the Ramond characters are modified ones.
We can calculate extended S matrix elements. Fora =1, 3

chg®(4) = Xa1(q) + xa3(7) + xa7(7) + xa11(Q)
= Y SioNan(@),

(r,8)EIns
where
[NS,NS] . @INS,NS] [NS,NS] [NS,NS] [NS,NS]
Sh (rs) "= Sa, 1)(r s T S(a 5)(r s T S(a 7)(7 ) T S@i)(ns)
=287 (S0 + S67 + Sp0 + 1)
Fora =5, 5

chy®(q) = x53(0) + x53(0)
1 N - N N
= - (x33(@) + x53(0) + x5%(q) + x571(9))

1~
= D S0 X0

(Tvs)eINS

DO |

In order to simplify the S matrix further, consider the Fy invariant of the §l(2)10-WZW

model
Z = |x1+x71* + Ixa + xsl* + Ixs + xul” (D.17)
and calculate
% fors=1,7
L fors=4,8
S+ 80 = {7
5 fors=5,11
0 fors=23,6,9,10
)
1 _
7 fors=1,7
Sm>+S(1°): 0 for s =4,8
1 _
7 fors =5,11
0 for s = 2,3,6,9,10
% fors=1,7
—L fors=4,8
S0+ s, =4 V2
3 for s =5,11
0 for s =2,3,6,9,10

In fact, by mapping {1,7} 3i—1, {4,8} 5i— 2, {5,11} 3¢+ 3 to sTl(Q)Q labels, we see
these numbers are just S;7. Denote this map by p.
Therefore, SE\T(S;S] is non-vanishing for s = 1, 5, 7, 11 and

&[NS,NS] (8) (2) — (8)
GINSNS] _ og() (s L TS (S)) — 98 . (D.18)

a (r,s)



D Various Quantities in (D, F) Theory 176

This shows QLN(ST’I\;? does not depend on s and we can write, for example, for o’ = 1, 3

SIS X 0) + S5 ala) + S X (a) + S X (a) = S e (a)
(D.19)

Similar expression holds for o’ = 5,5'.
After resolving the fixed point « = 5, 5’ (by guess), we get the extended S matrix

elements
® _ 2 !
SIS _ 25, = 5 sin (a(lwr> for a,a’ #5,5
aa’ ® _ 1 / (a=5,5 and o’ #5,5') or
Saa’ = 5o (a(ll()ﬂ> for (a#5,5" and a'=5,5")
1 1/ 1
SINSINS] _ gINS.NS| _ (S(s) _ 1) — o (—=——1),
5,5 5.5 9 755 2 \\5
1 1 1
SINSNS] _ gINSNS] L (S(s) 1) (1)
5,5 5.5 > + 2\ /5 +
These give the correct character transformation
chy®(@) = D SEITch)i(q) . (D.20)

a'€IgE

R NS]

For extended S , some care is needed regarding the various signs. For a = 1+, 3+

chi (@) = Xaa(@ + Xas(@ = D SEY W(a), (D.21)
(r,8)EIng
where
Satne) = Sars) + Slasyirg = () (177 250 (S +817) (D.22)

and the symmetric S matrix SIRNS] g given in (A.44). For a = 5+, 5'+

AR/~ 14 -
(X5.4(0) + X55(9) = Z §S£1R(’ii]) Xrs (@) - (D.23)
(r,s)EIns

o 1
chy (q) = X5.4(q) = 5

S[R NS]

o (rs) is non-vanishing for s = 1,5,7,11 and

Sy =elrs) (=1)7 28885 . (D.24)
Explicitly, these coefficients are
St = S DT VISR, S = —e(5) ()T VISR,
SN = —e(r,7) (-1)T V28, SIS = e(r11) (-1)T V28 .

However, our choice of £(r, s) exactly cancels signs in front of S§;/, and we obtain

Sf NS — \/28) (D.25)
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After resolving the fixed point a = 5, 5, we get the extended S matrix elements
s [ VIS = VEsin (42) for a,a #5,5
O I O 'm (a=5,5" and a’#5,5') or
\/ﬁsaa VAT S (atll(] ) for (a#5,5" and a’=5,5")
1 1 1
S[R,NS 5[1/1 1\15 _ (S(S) _ 1) < _ 1> ,
55 5.5 5 \[ 5,5 o/ 5
1 1
Sk 1/\15 S[F/{,NS] _ (S(S) + 1) < + 1>
55 5,5 5 \[ 5,5 2/ 5
These give the correct character transformation
chi(@) = Y SEchiF(qg). (D.26)

a'€IgE
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