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SUMMARY

ROCK-Myosin II drives fast rounded-amoeboid
migration in cancer cells during metastatic dissem-
ination. Analysis of human melanoma biopsies
revealed that amoeboid melanoma cells with
high Myosin II activity are predominant in the inva-
sive fronts of primary tumors in proximity to
CD206+CD163+ tumor-associated macrophages and
vessels. Proteomic analysis shows that ROCK-
Myosin II activity in amoeboid cancer cells controls
an immunomodulatory secretome, enabling the
recruitment of monocytes and their differentiation
into tumor-promoting macrophages. Both amoeboid
cancer cells and their associated macrophages
support an abnormal vasculature, which ultimately
facilitates tumor progression. Mechanistically,
amoeboid cancer cells perpetuate their behavior
via ROCK-Myosin II-driven IL-1a secretion and
NF-kB activation. Using an array of tumor models,
we show that high Myosin II activity in tumor
cells reprograms the innate immune microenviron-
ment to support tumor growth. We describe
an unexpected role for Myosin II dynamics in can-
cer cells controlling myeloid function via secreted
factors.
Cell 176, 757–774, Fe
This is an open access article und
INTRODUCTION

Metastasis accounts for >90% of cancer-related deaths, indi-

cating an urgent need for clinical management (Friedl and

Wolf, 2003). To leave the primary tumor, cancer cells dissemi-

nate using different migration modes (Pandya et al., 2017).

Although collective cell migration is important for tissue remod-

eling, single-cell migration (rounded-amoeboid or elongated-

mesenchymal) allows transport, both locally and to distant sites

along with invasion through basement membranes (Giampieri

et al., 2009). Actomyosin contractility driven byMyosin II controls

cytoskeletal remodeling and tumor dissemination (Rodriguez-

Hernandez et al., 2016). ROCK can directly phosphorylate

myosin light chain 2 (MLC2) or indirectly decrease Myosin phos-

phatase (MYPT) activity increasing MLC2 phosphorylation (Ito

et al., 2004). ROCK can also activate LIMK, which phosphory-

lates and inactivates cofilin resulting in F-actin stabilization

(Yang et al., 1998). High levels of actomyosin contractility driven

by Myosin II are key to sustain amoeboid bleb-based migration

(Orgaz et al., 2014; Sahai and Marshall, 2003; Sanz-Moreno

et al., 2011). Intravital imaging in melanoma and breast cancer

mouse xenografts revealed amoeboid migration is favored in

the tumor invasive fronts (IFs) (Herraiz et al., 2015; Sanz-Moreno

et al., 2008, 2011; Tozluo�glu et al., 2013).

On the other hand, cancer-associated inflammation promotes

tumorigenesis at many levels. Inflammation is enabled by the

secretion of multiple factors and the recruitment of immune

cells, like monocytes (Coussens and Werb, 2002). Monocytes
bruary 7, 2019 ª 2019 The Authors. Published by Elsevier Inc. 757
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differentiate to macrophages, which can change their pheno-

types responding to microenvironmental signals. Classically

activated macrophages are induced in response to pro-inflam-

matory stimuli, such as lipopolysaccharides (LPS) or interferon

gamma (IFN-g) and exhibit cytotoxic functions. Cytokines such

as interleukin (IL)-4, IL-13, and IL-10, transforming growth factor

beta (TGF-b), and/or glucocorticoids can support alternatively

activated macrophages (AAMs) that promote tissue repair and

tumor progression (Gordon, 2003).

Here, we investigated how Myosin II activity in cancer cells

controls the secretion of factors regulating the tumor microenvi-

ronment (TME) via the establishment of a cross-talk with pro-

inflammatory nuclear factor kB (NF-kB).

RESULTS

Invasive Fronts of Human Melanomas Are Enriched in
Amoeboid Melanoma Cells Close to Macrophages and
Blood Vessels
Using intravital imaging in xenograft melanomamodels, we have

previously reported an enrichment in amoeboid migration in the

invasive edge of tumors (Herraiz et al., 2015; Sanz-Moreno et al.,

2011). To test whether this was recapitulated in human patient

tissues, we evaluated human melanoma biopsies using a tissue

microarray (40 humanmelanoma lesions, cohort A) and a smaller

cohort (7 melanoma lesions, cohort B). For both cohorts,

matched tumor body (TB) and IF were included. IFs of human

primarymelanomaswere found enriched in rounded cancer cells

independently of the morphology in the TB (Figure 1A). Impor-

tantly, we found a regional increase in phosphorylated MLC2

(p-MLC2) levels in the IF (Figure 1B) indicative of high Myosin II

activity. Our data suggest that the combination of roundness

and increased p-MLC2 can define the amoeboid contractile can-

cer phenotype accurately in patients’ biopsies.

Interestingly, in both of our patient tissue cohorts, macro-

phages were a prominent population, in accordance with previ-

ous studies reporting that macrophages constitute up to 30% of

the immune infiltrate in melanoma (Bröcker et al., 1988; Hussein,

2006). Furthermore, high tumor-associated macrophage (TAM)

infiltration has been associated to poor prognosis (Zhang et al.,

2015). We thus sought to identify regional differences in macro-

phage composition in patient cohort A. CD68 is a pan-macro-

phage marker, while CD163 and CD206 (Kakizaki et al., 2015)

typify AAMs (Vogel et al., 2014). We found no regional difference
Figure 1. Invasive Fronts of Human Melanomas Are Enriched in Amoe

(A) Melanoma cell-shape score in tumour body (TB) or invasive front (IF) of matche

to 300 (all cells spindle).

(B) H-score of p-MLC2 staining from patients in (A). Values range from 0 (no stai

(C–F) (Left) Quantification and (right) representative images of (C) CD68+, (D) CD

(G) Melanoma cell-shape score in primary and metastatic melanomas.

(H and I) (Left) Quantification and (right) representative images of (H) CD206+ and

(J) mRNA levels of CD206 in primary (n = 68) and metastatic (n = 316) melanoma

(K) Schematic: IF and metastatic site of human melanoma.

In (A)–(I), n = 24 primary and n = 16 metastatic melanomas. Scale bars, 200 mm fo

images showing the scorewhere scale bar is 5 mm. All data are presented per patie

In (A)–(F), matched TB and IF from same patients are presented. In (A)–(I), boxp

Wilcoxon matched-pairs signed-rank test is shown. In (G)–(J), t test is shown. *p

See also Figure S1 and Tables S3 and S4.
in CD68+ cells (Figure 1C). However, both CD163+ and CD206+

TAMs were enriched in the IFs of tumors (Figures 1D and 1E).

TAMs support angiogenesis (Chen et al., 2011), while they are

located in perivascular tumor areas (Wyckoff et al., 2007). We

observed elevated vessel density in the same tumor regions

where macrophages were abundant (Figure 1F). Similar results

were observed in cohort B (Figures S1A–S1D).

The TME in aggressive tumors may favor the formation of pre-

metastatic ‘‘invasive niches’’ composed of cancer cells, endo-

thelial cells, and macrophages (Joyce and Pollard, 2009).

Indeed, metastatic melanoma lesions were enriched in both

rounded melanoma cells (Figure 1G) and CD206+ TAMs (Figures

1H, S1E, and S1F) in proximity to blood vessels (Figure 1I). Using

the Cancer Genome Atlas (TCGA) database, we found increased

CD206 mRNA levels in metastatic versus primary human mela-

nomas (n = 384) (Figure 1J). Furthermore, usingGene Expression

Omnibus (GEO) database, we found a positive correlation be-

tween CD206 and CD31 mRNA levels in melanoma patients

(n = 322) (Figure S1G). These data support the notion that these

non-cancerous cellular components are upregulated in human

melanoma.

Overall, the IFs of human melanomas are enriched in amoe-

boid melanoma cells, which are associated with a specific

TME, the amoeboid-associated TME (AATME). Importantly, the

TME found in metastatic sites mirrors the TME found in the IFs

of melanomas, that is, the AATME (Figure 1K).

Myosin II Activity in Melanoma Cells Favors Secretion of
Immunomodulatory Factors
Tumor cell-normal cell communication can be mediated by

secreted factors (Melnikova and Bar-Eli, 2009). A375M2 are

highly metastatic (Clark et al., 2000) rounded melanoma cells

(�90% rounded [Orgaz et al., 2014]) with higher Myosin II activity

(Figure 2A). A375M2 cells are derived from poorly metastatic

A375P (Clark et al., 2000) more elongated melanoma cells

(50% rounded, 50% elongated [Orgaz et al., 2014]) with lower

Myosin II activity compared to A375M2 cells (Figure 2A). Using

a protein array consisting of 274 human chemokines, cytokines,

growth factors, and matrix metalloproteinases, we found that

155 proteins were highly secreted by A375M2 cells compared

to A375P cells (Figure 2B). These factors were sub-divided into

3 groups based on their fold change (Figure 2B). A375M2 cells

were shown to secrete high levels of cytokines, such as IL-3,

IL-4, IL-5, and IL-13. The amoeboid-melanoma secretome
boid Melanoma Cells Close to Macrophages and Blood Vessels

d samples from human primary melanoma. Values range from 0 (all cells round)

ning) to 400 (very intense staining).

163+, (E) CD206+, and (F) CD31+ cells in TB and IF of primary melanomas.

(I) CD31+ cells in primary and metastatic melanomas.

s. Raw data were obtained from TCGA.

r the tumor cores, 50 mm for all the focused images except (A) for the focused

nt. Average has been taken from 4 tumor cores per TB and 4 tumor cores per IF.

lots show min to max values. In (J), dot blot shows mean ± SEM. In (A)–(F),

< 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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appears to be skewed toward a pro-inflammatory signature typi-

cally associated with tumor progression (Figure S2A). We

confirmed by ELISA that A375M2 cells secreted high levels of

pro-inflammatory IL-1a, IL-8, and immunosuppressive IL-10

and TGF-b (Figure 2C). To expand our observations to the clinical

setting, GEO (n = 421) and TCGA (n = 354) databases were used

to evaluate mRNA levels of some highly secreted factors by

A375M2 cells. IL-1a, IL-10, TGF-b, IL-8, and IL-4 mRNA were

all upregulated during melanoma progression with a significant

increase in metastatic compared to primary human melanomas

(Figure S2B) suggesting transcriptional regulation.

We confirmed that protein secretion was Myosin II dependent

since A375M2 cells depleted from MLC2 secreted significantly

less cytokines and chemokines (Figures 2D and S2C). ROCK is

a key regulator of Myosin II activity (Amano et al., 1996), and,

as such, A375M2 cells depleted from ROCK1/2 via RNAi had

decreased protein secretion (Figures 2E and S2D). These results

were confirmed using 3 ROCK inhibitors (ROCKi H1152, Y27632,

GSK269962A) (Figures 2F and S2E). Moreover, inhibition of

LIMK downstream of ROCK in A375M2 cells resulted in reduced:

p-cofilin levels (Figure S2F), cell roundness (Figure S2G),

p-MLC2 levels (Figure S2H), and IL-8 secretion (Figures S2I).

These data indicate that perturbing actin and myosin dynamics

has an impact on secretion.

Our observations were further expanded to the matched

melanoma paired cell lines WM983B (metastatic) /WM983A

(primary) derived from the same patient (Cantelli et al., 2015).

WM983B cells were more rounded with higher p-MLC2 levels

compared to WM983A cells (Figure 2G, upper panels) and

were found to be more secretory (Figure 2G, lower panels).

On the other hand, WM88 elongated melanoma cells (Cantelli

et al., 2015) did not secrete any of the cytokines measured

(Figure 2G). To further asses the role of ROCK-Myosin II,

WM983B cells were depleted from MLC2 (Figure 2H, upper

panel) or treated with a ROCKi (Figure 2I, upper panel) and

were found to secrete significantly less cytokines (Figures 2H

and 2I, lower panels). Similar results were observed when

ROCK was inhibited in an additional melanoma cell line

WM793B (Figure S2J).
Figure 2. Myosin II Activity in Melanoma Cells Favors Secretion of Imm

(A) (Top) Images and (bottom) immunoblotof p-MLC2 levels in A375M2 and A37

(B) Heatmaps of secreted factors enriched in CMA375M2with a >1.1 fold-increas

5-fold). Cyan and red indicate the lowest and highest expression levels, respect

(C) Concentration of IL-1a, IL-10, TGF-b, and IL-8 in CM A375P or CM A375M2,

(D) After MLC2 knockdown in A375M2 cells, (left) representative immunoblot for p

A375M2, by ELISA (n R 3 for IL-1a, IL-8, and TGF-b, n = 2 for IL-10).

(E) After ROCK1/2 knockdown in A375M2 cells, (left) representative immunoblots

TGF-b in CM A375M2 by ELISA (n R 3 for IL-1a and TGF-b, n = 2 for IL-10).

(F) After treatment with H1152 (5 mM) for 48 h in A375M2 cells, (left) representative

and IL-8 in CM A375M2 by ELISA (n R 3).

(G) (Top) Images and immunoblot for p-MLC2 levels in WM983B and WM983A

WM983A, and CM WM88, by ELISA (n = 3 for all, n = 2 for IL-8 in CM WM88).

(H) After MLC2 knockdown in WM983B cells, (top) representative immunoblot for

as tested by ELISA (n = 3).

(I) After treatment with H1152 (5 mM) for 48 h in WM983B cells, (top) representative

in CM WM983B (n R 3).

In (D)–(F), (H), and (I), data are presented as fold change versus the control. In (C)–

way ANOVA with Tukey post hoc test is shown. *p < 0.05, **p < 0.01, ****p < 0.0

See also Figure S3 and Table S1.
Overall, our data show that the secretion of immunomodula-

tory factors, which are important during melanoma progression,

is regulated by ROCK-Myosin II activity in melanoma cells.

Amoeboid Melanoma Cells Induce Tumor-Promoting
Macrophages
Enrichment in amoeboid melanoma cells and TAMs in the IF of

human melanomas (Figure 1) suggests a potential communica-

tion between cancer cells and macrophages. On the other

hand, the secretome of amoeboid melanoma cells is rich in

over 20 chemotactic factors (Table S1) known to trigger chemo-

taxis in monocytes, which are the precursors of macrophages.

Indeed, migration of human peripheral blood mononuclear cell

(PBMC)-derived monocytes and monocytic cell lines (THP-1

and U-937) was increased toward secreted factors (conditioned

media [CM]) derived from amoeboid A375M2 versus more

elongated A375P cells (Figure 3A). The timescales of this assay

(2–4 h) (Ancuta et al., 2003) suggest that increased chemotaxis

was responsible for increased monocytic migration.

We next addressed whether monocytes could be differenti-

ated into macrophages in response to CM A375M2, as this

media was rich in factors (macrophage colony stimulating factor

[M-CSF], IL-4, IL-10, IL-13, TGF-b) that affect monocyte-macro-

phage commitment. We developed a spectrum of in-vitro-

polarized macrophages (Gordon, 2003; Mantovani et al., 2004)

(Figure 3B). M-CSF, IL-4, or IL-10 treatment showed increased

CD163+CD206+ expression in macrophages, while HLA-

DR+CD86+ macrophages were induced after IFN-g&LPS (Fig-

ure 3B). Specifically, IL-4 induced CD206, IL-10 induced

CD163, IFN-g&LPS induced CD86 expression, while HLA-DR

expression was similar across treatments (Figure S3A). Impor-

tantly, CM A375M2 induced CD163+CD206+macrophages

more efficiently than CM A375P (Figures 3C–3E and S3B).

CD206 expression was increased in macrophages induced

by CM A375M2 (Figure 3E) and comparable to that after IL-4

stimulation (Figure S3A). Neither CM A375M2- nor CM A375P-

treated macrophages showed difference in expression levels

of classic activation markers: HLA-DR and CD86 (Figures

3F and S3C). Macrophages induced by CM A375M2, IL-4,
unomodulatory Factors

5P cells.

e compared to CM A375P, divided into 3 groups (0- to 300-, 0- to 50-, and 0- to

ively.

by ELISA (n = 3).

-MLC2 levels and (right) secreted levels of IL-1a, IL-10, TGF-b, and IL-8 in CM

for ROCK1/2 and p-MLC2 levels and (right) secreted levels of IL-1a, IL-10, and

immunoblot for p-MLC2 levels and (right) secreted levels of IL-1a, IL-10, TGF-b,

cells and (bottom) secreted levels of TGF-b and IL-8 in CM WM983B, CM

p-MLC2 levels and (bottom) secreted levels of TGF-b and IL-8 in CMWM983B

immunoblot for p-MLC2 levels and (bottom) secreted levels of TGF-b and IL-8

(I), graphs showmean ± SEM. In (C)–(F), (H), and (I), t test is shown. In (G), one-

001.
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M-CSF, or IL-10 retained a mixed morphology (Figures 3G and

S3D) indicative of differentiation (Eligini et al., 2013). Cell elonga-

tion, characteristic of AAMs (McWhorter et al., 2013), was pro-

found in CM A375M2-treated macrophages, while minimal after

IFN-g&LPS treatment or in untreated monocytes (Figure 3G).

To characterize the functional role of macrophages-induced

by amoeboid melanoma cells, a tumor cell-killing assay was per-

formed (Figure 3H). IFN-g&LPS-treatedmacrophages killed both

amoeboid A375M2 and elongated WM88 cells (Figure 3I). In

contrast, macrophages induced by CM A375M2 supported

tumor cell viability (Figure 3I). Such observations were expanded

to a wider panel of melanoma cells (WM1366, WM793B,

WM3854, and WM983A) (Figure S3E). To further validate the

tumor-promoting role of macrophages-induced by amoeboid

melanoma cells, in vivo experiments were performed using

A375M2 and WM983B xenografts in SCID mice. Macrophage

depletion after clodronate liposome delivery (van Rooijen et al.,

1996) resulted in impaired in vivo tumor growth in both

A375M2 andWM983B tumors (Figures S3F and S3G). Depletion

of F4/80+CD206+ cells was confirmed (Figure S3H). These data

suggest a key role for macrophages in mediating melanoma

tumor growth.

We next used serum derived from melanoma patients or

healthy donors to treat PBMC-derived monocytes (Figure 3J).

Melanoma-patient-derived sera induced higher levels of

CD163+CD206+ macrophages compared to healthy-donor-

derived sera, while HLA-DR and CD86 expression remained

unchanged (Figures 3J–3L). Thus, melanoma-patient-derived

secreted factors induce macrophage polarization comparable

to amoeboid melanoma cells.

Overall, our data show that amoeboid melanoma cells with

high Myosin II activity can recruit monocytes, differentiate

them into macrophages, and functionally educate them to sup-

port tumor growth.

AATME Composition Is a Conserved Feature in
Melanoma In Vivo

We next assessed whether intrinsically high Myosin II activity in

melanoma cells has an impact on macrophage recruitment
Figure 3. Amoeboid Melanoma Cells Induce Tumor-Promoting Macrop

(A) Percentage of migrated human PBMC-derived monocytes, THP-1 and U937

(B) (Left) Schematic: in-vitro-polarized macrophages or melanoma-conditioned m

after treatment with M-CSF, IL-4, IL-10, or IFN-g&LPS or media only (–) (n = 5;5

(C) Fluorescence-activated cell sorting (FACS) dot plots from one donor show

treatment with CM A375P, CM A375M2 or culture media only (–).

(D–F) %CD163+CD206+ macrophages (D), mean fluorescence intensity (MFI) for

A375P, CM A375M2, or culture media only (–) (n = 5;5 different healthy donors).

(G) Quantification of macrophage morphology (see also Figure S3D) (n = 3;3 diff

(H) Schematic shows macrophage cytotoxicity assay.

(I) Fold change of dead tumor cells (A375M2 orWM88) in co-cultures with PBMC-d

as fold change versus the control untreated monocytes. Log2 scale is presented

different healthy donors for WM88 co-cultures).

(J) (Top) Schematic shows TAMs induction in vitro with serum from melanoma p

%CD163+CD206+ and %HLA-DR+CD86+ macrophages after treatment with hea

(K and L) Number of (K) CD163+CD206+ and (L) HLA-DR+CD86+ macrophages

(n = 3;3 different healthy donors. Sera from n = 10 healthy volunteers, n = 23 me

In (A), (B), (D)–(G), (I), (K), and (L), graphs and dot blots showmean ± SEM. In (A), (B

are shown. In (I), t test is shown. In (K) and (L), t test with Welch’s correction is sh

See also Figure S3 and Tables S1 and S2.
in vivo. A375M2-EGFP cells (amoeboid and higher Myosin II ac-

tivity) or A375P-EGFP cells (more elongated and lower Myosin II

activity) (Figures 4A and S4A) were injected subcutaneously into

SCID mice. A375M2 tumors grew faster compared to A375P

ones (Figure 4B). There was an increase in melanoma cell round-

ness at the IFs of all tumors (Figure S4B). We assigned scores

from 0 (low intensity) to 4 (very high intensity) of phospho-

MLC2 (Figures 4C, 4D, and S4C). Overall, Myosin II levels

were higher in A375M2 tumors compared to A375P tumors in

all areas (Figures 4C, 4D, upper panel, and S4C). Importantly,

Myosin II activity was significantly increased in all the IFs (Figures

4C and 4D), while we detected the highest levels of Myosin II ac-

tivity at the IF of A375M2 tumors (Figures 4C, 4D, and S4C)

accompanied by the highest infiltration of F4/80+CD206+ TAMs

in conjunction with vessel density (Figures 4E–4H). Similarly,

WM983B-EGFP cells (amoeboid, higher Myosin II) and

WM983A-EGFP cells (more elongated, lower Myosin II) (Figures

4I and S4D) were injected into SCIDmice. WM983B tumors grew

faster compared to WM983A ones (Figures 4J). Melanoma cell

rounding was observed at the IF (Figure S4E), while WM983B tu-

mors had the highest levels of Myosin II (Figures 4K, S4F, and

S4G). Similarly, WM983B tumors had the highest F4/

80+CD206+ TAM infiltration at the IFs, compared to WM983A tu-

mors (Figures 4L and 4M). Notably, A375P versus A375M2 and

WM983A versus WM983B showed similar proliferation rates

in vitro (Figure S4H). Since SCID mice are deficient in B and

T cells, amoeboidmelanoma cells could inducemacrophage po-

larization in vivo. Altogether, these data suggest that invasive

amoeboid melanoma cells with high Myosin II activity educate

macrophages to jointly support tumor growth.

Next, we investigated whether amoeboid invasive melanoma

cells could retain their secretory memory. Melanoma cells were

isolated from the IFs and TBs of A375M2 tumors and cultured

ex vivo (Figure S4I). Melanoma cells isolated from the IF of

A375M2 tumors were more secretory (Figure S4J) and induced

CD163+CD206+ macrophages more efficiently ex vivo when

compared to their TB counterparts (Figure S4K).

Moreover, to ensure that AATME can be generated even in the

presence of all immune components, highly metastatic and
hages

toward media (–), CM A375P, or CM A375M2 (n = 3).

acrophages and (right) %CD163+CD206+ or %HLA-DR+CD86+ macrophages

different healthy donors).

ing (left) %CD163+CD206+ and (right) %HLA-DR+CD86+ macrophages after

CD206 (E), and %HLA-DR+CD86+ macrophages (F), after treatment with CM

erent healthy donors).

erivedmonocytes treated with CMA375M2 or IFN-g&LPS. Data are presented

in y axis (n = 6;6 different healthy donors for A375M2 co-cultures and n = 2;2

atients and (bottom) representative FACS dot plots from one donor showing

lthy volunteer’s serum or melanoma patient’s serum.

after treatment with healthy volunteer’s serum or melanoma patient’s serum

lanoma patients, each dot represents a different treatment).

), and (D)–(G), one-way ANOVA with Tukey or Bonferroni (for G) post hoc tests

own. Nonsignificant p > 0.05, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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amoeboid B16F10 cells were injected into immunocompetent

C57BL/6J mice. We observed rounded melanoma cells (Fig-

ure S4L) with high Myosin II levels (Figure 4N) and increased

F4/80+CD206+ TAMs at the IFs (Figures 4O and S4M). To closely

recapitulate the physiological development of melanoma TME,

we used an orthotopic model in which amoeboid 5555 cells—

derived from a BRAFV600E mouse model (Dhomen et al.,

2009)—were injected intradermally into C57BL/6J mice. As in

previousmodels, IFs of 5555 tumors were rich in rounded cancer

cells (Figure S4N) with increased Myosin II activity (Figure 4P)

and F4/80+CD206+ TAM infiltration (Figures 4Q and S4O). Over-

all, these results suggest that AATME is a conserved feature in

several in vivo melanoma tumor models.

Blocking Myosin II Activity in Melanoma Cells
Reprograms Macrophages
We next investigated whether ROCK-Myosin II axis in amoeboid

cancer cells is responsible for polarizing macrophages. Mono-

cytes were treated with CM from ROCK-inhibited A375M2 cells

using 3 different ROCK inhibitors (Figure 5A). ROCK-inhibited

A375M2 cells could not induce CD163+CD206+macrophages

(specifically CD206 expression) compared to control (Figures

5B, S5A, and S5B). HLA-DR and CD86 expression did not

change (Figures S5C and S5D). In all cases, ROCK-inhibited

A375M2 cells had lowered p-MLC2 levels (Figure S5E). Similarly,

A375M2 cells were less efficient in inducing CD163+CD206+ma-

crophages after MLC2 RNAi transfection (Figure 5C), while HLA-

DR+CD86+ macrophages did not change (Figure S5F).

TAMs can secrete immunosuppressive factors, such as TGF-b

and IL-10 (Pollard, 2004). Macrophages induced by CMA375M2

secreted high levels of TGF-b and IL-10 (Figures S5G and S5H).

Tumor necrosis factor (TNF)-a, a key feature of classically acti-

vated macrophages, was undetectable (data not shown).

Furthermore, monocytes treated with melanoma-patient-

derived sera differentiated into macrophages, which also

secreted higher levels of IL-10 compared to monocytes treated

with sera from healthy donors (Figure S5I), showing that this is

a feature of melanoma-associated macrophages. Moreover,

monocytes treated with CM from ROCK-inhibited A375M2 cells
Figure 4. AATME Composition Is a Conserved Feature in Melanoma In

(A) Confocal images for p-MLC2 (cyan) and F-actin (red) in EGFP-A375P and EG

(B) Tumor volume of xenografts post-injection of EGFP-A375P and EGFP-A375M

(C) Immunohistochemistry (IHC) images of p-MLC2 levels (scale bar, 50 mm; inse

(D) (Top) IHC quantification for p-MLC2 levels showing percentage of melanom

(bottom) H-score for p-MLC2 staining for A375P and A375M2 tumors (n = 8 mic

(E) Representative IHC images of CD206+ macrophages (scale bar, 30 mm and in

(F–H) Quantification of (F) CD206+, (G) F4/80+, and (H) CD31+ cells in A375P and

(C)–(H) correspond to TB and IF of A375P and A375M2 xenografts, as tested by

(I) Confocal images for p-MLC2 (cyan) and F-actin (red) in EGFP-WM983A and E

(J) Tumor volume of xenografts over time (35 days) post-injection of EGFP-WM9

(K–M) H-score for p-MLC2 staining (K), quantification of CD206+ (L), and F4/80+m

IHC (n = 8 mice/group).

(N and O) H-score for p-MLC2 (N) and quantification (O) of CD206+ macrophage

(P and Q) (Left) IHC images and (right) H-score for p-MLC2 staining (P), (left) IHC im

tumors (n = 5 tumors). Scale bar, 30 mm.

In (B), (D, top), and (J), graphs showmean ±SEM. In (D, bottom), (F)–(H), and (K)–(Q

Bonferroni post hoc test is shown. In (D, bottom), (F)–(H), and (K)–(M), one-way ANO

p > 0.05, *p < 0.05**, p < 0.01, ***p < 0.001, ****p < 0.0001.

See also Figure S4.
differentiated into macrophages that secreted significantly less

TGF-b and IL-10 (Figures S5G and S5H). Of note, macrophages

in all experimental conditions were competent for phagocytosis

and sensitive to cytochalasin D (Figure S5J). These data confirm

that ROCK-Myosin II activity in melanoma cells influences

macrophage functional polarization.

We have shown in Figure 1 that AAMs are found in proximity of

blood vessels and AAMs can promote endothelial cell survival

(Chen et al., 2011). Indeed, macrophages induced by CM

A375M2 sustained endothelial cell growth in HMVECs (human

microvascular endothelial cells) and HUVECs (human umbilical

vessel endothelial cells) more efficiently than macrophages

treated with CM from ROCK-inhibited A375M2 cells (Figures

5D). Overall, our data show that decreasing Myosin II activity in

cancer cells leads to phenotypic and functional macrophage

reprograming.

To confirm the role of ROCK-Myosin II activity in controlling

AATME in vivo, 5555 cells were pre-treated with ROCKi ex vivo

and subsequently injected in the dermis of C57BL/6J mice

without any further ROCKi treatment (Figure 5E). 8 days post-

injection, we observed that control tumors generated AATME

(Figures S5K and S5L). Importantly, ROCKi pre-treated 5555

cells were not able to increase Myosin II levels or recruit F4/

80+CD206+ TAMs in the IFs of tumors as efficiently as controls

(Figures S5K and S5L). 14 days post-injection, melanoma cells

had invaded the dermis using amoeboid invasion (Figure 5F).

At this time point, tumors in the ROCKi pre-treated group dis-

played pronounced loss of invading amoeboid melanoma cells

(Figures 5G–5I) and a reduction in F4/80+CD206+ TAMs (Fig-

ure 5J). The two groups grew similarly in vitro, but ROCKi

pre-treated group displayed a clear growth disadvantage in vivo

(Figures S5M and S5N). These data suggest that Myosin II activ-

ity triggers AATME early on in tumorigenesis, while AATME is

further supported during tumor development by amoeboid inva-

sive melanoma behavior.

To extend our observations to the clinical setting, in which

drugs are administered systemically in established tumors,

mice harboring A375M2-EGFP tumors were treated with ROCKi

(Figures 5K–5N). Similar to the pre-treatment setting, reduced
Vivo

FP-A375M2 cells.

2 cells (n = 8 mice/group).

rt, 10 mm).

a cells with the highest score (4) at different distances from IF (0–2 mm) and

e/group).

sert: 10 mm).

A375M2 tumors (n = 8 mice/group).

IHC (n = 8 mice/group).

GFP-WM983B cells.

83A and EGFP-WM983B cells (n = 8 mice/group).

acrophages (M) in TB and IF of WM983A andWM983B xenografts, as tested by

s in TB and IF of B16F10 tumors, as tested by IHC (n = 8 mice).

ages and (right) quantification of CD206+macrophages (Q) in TB and IF of 5555

), boxplots show 10–90 percentile. In (B), (D, top), and (J), two-way ANOVAwith

VAwith Tukey post hoc test is shown. In (N)–(Q), t test is shown. Nonsignificant
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tumor growth after systemic ROCKi treatment (Figure 5K) was

associated with loss of melanoma cell roundness (Figure 5L),

decreased F4/80+CD206+ TAM infiltration (Figure 5M), and

decreased vasculature (Figure 5N) in the IFs.

Overall, we suggest that AATME composition in vivo is depen-

dent on ROCK-Myosin II activity in melanoma cells located in the

IF. Inhibition of ROCK-Myosin II in melanoma cells hinders the

generation of tumor-supportive microenvironments.

Myosin II Activity in Melanoma Cells Is Self-Perpetuated
via Secreted IL-1a-Induced NF-kB Activation
Wehave identified high levels of protein secretion as a character-

istic of amoeboid melanoma cells. To assess whether protein

secretion could affect Myosin II activity itself, A375P cells were

treated with CM A375M2 and displayed increased: cell round-

ness (Figure 6A, upper panel), p-MLC2 levels (Figures 6A, lower

panel, and S6A), and migration (Figure S6B). Thus, amoeboid

melanoma cells exert paracrine effects toward other melanoma

cells inducing amoeboid features via secretion. Next, A375M2

cells were treated with brefeldin A (BFA) to block trafficking of

pre-stored soluble factors and receptors (Scales et al., 2000)

and displayed loss of cell roundness (Figure 6B, upper panel)

and p-MLC2 levels (Figures 6B, lower panel, and S6C). Thus,

protein secretion sustains amoeboid features in an autocrine

manner.

To understand which signaling pathways were linked to the

amoeboid secretory phenotype, GeneGo MetaCore analysis

was performed using the protein array data (Figure 2B). Amoe-

boid melanoma cells secrete factors that are part of a network

centered on NF-kB (Figure 6C), while the second enriched

network was centered on STAT3 (data not shown). NF-kB family

members RELA (p65), RELB, and REL (c-Rel) contain transacti-

vation domains. NFKB1 (p105) and NFKB2 (p100) encode longer

proteins processed to the shorter DNA-binding forms p50

and p52. Phosphorylation of IkBa by the IKK complex enables

dissociation from the NF-kB complex (p65/p50) with nuclear

translocation of the latter (Perkins, 2012). To test whether protein
Figure 5. Blocking Myosin II Activity in Melanoma Cells Reprograms M

(A) Schematic: in vitro treatment of PBMC-derived monocytes with CM from RO

(B) CD163+CD206+macrophages after treatment of PBMC-derivedmonocytes w

donors; each dot is a different donor).

(C) PBMC-derived monocytes treated with CM A375M2 depleted from MLC2 an

changes versus control (n = 4).

(D) Quantification of fold change of absorbance (O.D.): viability of endothelial c

natants (50%). Media were derived from monocytes ± CM A375M2+ROCKi (n

macrophage-derived supernatants for 72 h.

(E) Schematic: in vivo experiment with GSK269962A ROCKi pre-treated 5555 ce

(F) Representative H&E image (top) and IHC image for p-MLC2 showing amoeb

14 days post-intradermal injection of DMSO (vehicle) pre-treated 5555 cells. Sca

(G–I) Number of invading melanoma cells (G), roundness index (H), and H-score

(J) (Left) CD206+ and (right) F4/80+ macrophages in the IF.

(G–J) Tumors from DMSO (vehicle) pre-treated or ROCKi-pretreated Venus-5555

(K) Tumor volume of A375M2 xenografts treated with PBS or Y27632 ROCKi.

(L–N) Melanoma cell-shape score (L) and quantification (M) of (left) CD206+ and

Y27632 ROCKi (n R 4).

In (B)–(D), (G), (H), and (K), graphs and dot blots showmean ± SEM. In (I), (J), and (

Tukey post hoc test is shown. In (C) and (G)–(J), t test is shown. In (D), Kruskal-Wa

ANOVA with Bonferroni post hoc test is shown. Nonsignificant p > 0.05, *p < 0.0

See also Figure S5.
secretionmediates NF-kB activity, A375P cells were treated with

CM from A375M2 cells and displayed increased p-IkBa levels

(Figure 6D). Conversely, depletion of MLC2 in A375M2 cells led

to decreased p-IkBa levels (Figures 6E and 6F) suggesting that

Myosin II regulates NF-kB activity. Moreover, amoeboid

A375M2 melanoma cells have intrinsically high NF-kB activity

(p65 nuclear translocation) compared to more elongated

A375P cells (Figure 6G). These data show that amoeboid cells

sustain NF-kB activity in an autocrine and paracrine manner.

We have shown that IL-1a and IL-8 secretion is regulated by

ROCK-Myosin II (Figure 2), while NF-kB can be activated by

either of these factors (Grivennikov and Karin, 2010). We hypoth-

esized that ROCK-Myosin II activity could regulate NF-kB activa-

tion via either IL-1a or IL-8. CM from A375M2 cells induced p65

nuclear translocation in A375P cells (Figures 6H and S6D, upper

panel). However, blocking IL-1a, but not IL-8, in CM A375M2

abolished these effects in A375P cells (Figures 6H and S6D,

upper panel). To further understand whether secreted IL-1a itself

had a role in controlling amoeboid features, A375P cells were

treated with CM A375M2 in which IL-1a had been blocked.

Blocking secreted IL-1a led to loss of cell roundness induced

by CM A375M2, whereas blocking IL-8 had no effect (Figures

6I and S6D, lower panel). These data show that Myosin II activity

in amoeboid melanoma cells regulates NF-kB activation via

secreted IL-1a and conversely, IL-1a perpetuates the amoeboid

phenotype.

We have shown that IL-1a supports both NF-kB activity and

amoeboid phenotype. We hypothesized that NF-kB itself tran-

scriptionally controls expression of secreted factors in CM

A375M2 (Figure 6C) that induce an amoeboid phenotype (Fig-

ure 6A). A375M2 cells depleted from NFKB1 lost cell roundness

and p-MLC2 cortical levels (Figures 6J, 6K, and S6E). Blockade

of IKKb activity led to inhibition of IkBa phosphorylation in

A375M2 cells (Figure S6F) and an IKKb inhibitor (IKKbi) yielded

similar results as NFKB1 RNAi depletion (Figures S6G and

S6H). Thus, IKKb/NF-kB supports Myosin II activity in amoeboid

melanoma cells generating a positive feedback loop. To further
acrophages

CK inhibited or MLC2 depleted A375M2 cells and subsequent assays.

ith CMA375M2, CMA375M2+ROCKi, or media only (–) (n = 8;8 different healthy

d quantification of CD163+CD206+ macrophages. Data are presented as fold

ells (HMVECs and HUVECs) after treatment with macrophage-derived super-

R 3 for HMVECs and n = 6 for HUVECs). Endothelial cells were treated with

lls.

oid melanoma cells with high p-MLC2 invading the dermis in the IF of tumors

le bar, 50 mm; insert, 10 mm.

(I) for p-MLC2 for (G).

cells 14 days post-intradermal injection (n = 14 control and n = 12 ROCKi).

(right) F4/80+ and (N) CD31+ cells, in A375M2 xenografts treated with PBS or

L)–(N), boxplots show 10–90 percentile. In (B) and (L)–(N), one-way ANOVAwith

llis test followed by Dunn’s multiple comparisons test is shown. In (K), two-way

5, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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understand this signaling network, we studied the kinetics of this

process. Cell roundness and p-MLC2 levels were decreased in a

time-dependent manner using either ROCKi (Figures S6I–S6K)

or IKKbi (Figures S6L–S6N). However, ROCK inhibition resulted

in earlier changes compared to IKKb inhibition, suggesting that

NF-kB affects Myosin II activity indirectly at later time points

via transcriptional mechanisms controlling cytokine expression,

while ROCK regulates Myosin II activity directly.

In summary, ROCK-Myosin II activity and NF-kB establish a

positive feedback loop initiated by ROCK regulation of IL-1a

and perpetuated and amplified by IL-1a/IKKb/NF-kB supporting

amoeboid behavior in return (Figure 6L).

NF-kB Cross-Talk with ROCK-Myosin II in Amoeboid
Melanoma Cells Educates the Tumor Microenvironment
We have shown that melanoma cells acquire amoeboid features

that can be perpetuated by secretion via a cross-talk with NF-kB.

Over 20 chemokines (Table S1) and several cytokines secreted

by amoeboid cells were connected to NF-kB (Figure 6C) pointing

at this transcription factor as a master regulator of the effects

exerted by amoeboid cells on TME. In fact, NFKB1 depletion in

A375M2 cells resulted in CMwith decreased chemotactic poten-

tial toward monocytic cells (Figure S7A). Moreover, depletion of

NFKB1 in amoeboid melanoma cells reduced Myosin II activity

(Figure 7A, left panels), secretory potential and macrophage

polarization (Figure 7A, right panel). Theseeffectswere compara-

ble toMLC2 depletion via RNAi (Figure 7A). These data show that

ROCK-Myosin II regulates macrophage polarization mainly via

cytokines connected to NF-kB network (Figure 6C). Importantly,

MLC2 and NFKB1 depletion in melanoma cells resulted in

decreased CD206 in macrophages (Figure S7B). Among the cy-

tokines in our panel, IL-4 induced the highest levels of CD206

expression (Figure S3A). Importantly, we could rescue the de-

fects inmacrophage polarization after NFKB1 orMLC2 depletion

upon addition of IL-4 (Figure 7A, right panel). Therefore, the

cross-talk between ROCK-Myosin II andNF-kB helpsmelanoma

cells at the IF polarize macrophages via secreted factors.

Once amoeboid cells acquire high levels of Myosin II at the IF,

they invade the dermis (Figures 5F and 5G). Such cancer cells
Figure 6. Myosin II Activity in Melanoma Cells Is Self-Perpetuated via

(A and B) (Top) Images, (center) roundness index, and (bottom) relative p-MLC2 lev

A375M2 and (B) A375M2 cells upon treatment with BFA for 6 h. Data are presen

(C) MetaCore enrichment network of factors upregulated in A375M2 cells is cen

(D) (Top) Immunoblot and (bottom) quantification of p-IKBa levels in A375P cells tre

CM A375M2 treatment (n = 3).

(E and F) Immunoblot (E) and quantification (F) of p-IKBa levels in A375M2 cells af

(G) (Top) Confocal images and (bottom) quantification of nuclear p65, as percen

different cell. Scale bar, 10 mm.

(H) (Top) Confocal images for p65 in A375P cells after treatment with CMA375P or

the cytoplasm (green), nucleus (red), or in both (orange) after indicated treatments

per condition).

(I) Roundness index of A375P cells on collagen I after same treatments as in (H)

(J) Confocal images of p-MLC2 and F-actin in NFKB1 depleted A375M2 cells. S

(K) (Left) Roundness index and (right) relative p-MLC2 levels in A375M2 cells a

represents a single cell). (K bottom right) Representative immunoblot showing N

(L) Schematic: cross-talk between ROCK-Myosin II, secreted IL-1a, and NF-kB

In (A, center) and (B, center), boxplots show 10–90 percentile. In (A, bottom) and (B

(D), (F), and (G), t test is shown. In (H), (I), and (K), one-way ANOVA with Tukey p

See also Figure S6.
could successfully colonize distant metastatic sites, where they

need to extravasate (Reymond et al., 2013). At this stage, endo-

thelial cell-cancer cell communication is crucial (Joyce and

Pollard, 2009). Since the amoeboid secretome is rich in factors

controlling vascular permeability (Figure 2B), we hypothesized

that amoeboid cells could regulate the endothelium via secretion.

In fact, abnormal endothelium and vessel leakiness are charac-

terized by inter-endothelial gaps (Garcia et al., 1995; Hashizume

et al., 2000). Endothelial cell monolayers recapitulating estab-

lished blood vessels were treated with CM A375M2 or CM

A375P (Figure S7C, upper panel), and inter-endothelial gap for-

mation was favored when HMVECs were treated with CM

A375M2 compared to CM A375P (Figures S7C and S7D). This

was accompanied by decreased vascular endothelial (VE)-cad-

herin junctional index (Figures S7C and S7D, lower panel). CM

A375M2-induced effects were lost if HMVECs were treated

with CM derived from ROCK1/2-depleted or NFKB1-depleted

A375M2 cells (Figures 7B and 7C, right panel). In these condi-

tions, A375M2had loweredMyosin II levels (Figure 7C, left panel).

Cytoskeletal changes in endothelial cells affect endothelial

integrity (Giannotta et al., 2013). A phospho-antibody array

(141 cytoskeletal regulators) was used to measure changes in

endothelial cells (Figures 7D and S7E). HMVECs treated with

CM A375M2 ROCK1/2-depleted cells showed decreased levels

of phospho-proteins (Figures 7D and S7E) regulating vascular

permeability (MEK, Src, PKA, and MLC2) (Kumar et al., 2009)

were measured (Figures 7D and S7E). Furthermore, we found

reduced endothelial permeability in HMVECs treated with CM

from A375P cells compared to A375M2 cells (Figure S7F, left

panel). Similar effects were observed in HMVECs when treated

with CM from A375M2- ROCK1/2 or NFKB1-depleted (Fig-

ure 7E), or CM from A375M2 cells treated with ROCKi (Fig-

ure S7F, right panel). In all cases, Myosin II levels in melanoma

cells were decreased (Figures 7C, 7F, and S7G). Similar effects

were observed in HUVECs (Figure S7H). Therefore, cross-talk

between ROCK and NF-kB in melanoma cells facilitates endo-

thelial cell cytoskeletal remodeling.

Lung is one of the main sites where melanoma metastasizes

(Obenauf and Massague, 2015), and lung retention assays
Secreted IL-1a-Induced NF-kB Activation

els of (A) A375P cells on top of collagen I upon treatment with CMA375P or CM

ted as fold change versus the control (n = 3).

tered on NF-kB.

atedwith CMA375P or CMA375M2. Data are presented as fold change versus

ter MLC2 knockdown. Data are presented as fold change versus control (n = 2).

tage versus the total p65, in A375P and A375M2 cells. Each dot represents a

CMA375M2. Scale bar, 10 mm. (bottom) Percentage of A375P cells with p65 in

. Blocking was for 1 h at 37�C (n = 3; 3 pictures per experiment; total 9 pictures

(n = 3).

cale bar, 20 mm.

fter NFKB1 knockdown, from confocal images (30 cells/condition, each dot

FKB1 knockdown in A375M2 cells.

activation in amoeboid melanoma cells.

, bottom), (D), (F)–(I), and (K), graphs and dot blots showmean ±SEM. In (A), (B),

ost hoc test is shown. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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have been used to measure metastatic colonization abilities

(Medjkane et al., 2009; Orgaz et al., 2014). Importantly, mela-

noma cells with decreased ROCK-Myosin II (Figure 7F) could

not alter the permeability of lung capillaries (Figure 7G) and

were less efficient in colonizing the lung compared to controls

(Figure 7H).

Thus, amoeboid melanoma cells with high Myosin II activity

and high secretory potential have an advantage once they reach

the metastatic site; they remodel the cytoskeleton of endothelial

cells and increase vascular permeability to colonize the lung.

DISCUSSION

ROCK-Myosin II contributes to amoeboid tumor invasion and

metastasis in a cell-autonomous manner (Sahai and Marshall,

2003; Sanz-Moreno et al., 2008, 2011). Here, we show that

amoeboid melanoma cells educate both the myeloid and the

endothelial compartment via secretion, regionally, in the IFs of

tumors and later at distant metastatic sites. Thus, we define a

new regulatory role for Myosin II dynamics in cancer cells

beyond intrinsic control of cell motility.

AAMs compose the bulk of TAMs and are considered to be

tumor promoting (Mantovani et al., 2002). Amoeboid cancer

cells induce macrophages that are CD206highCD163highHLA-

DR+CD86low and produce IL-10 and TGF-b. Such macrophages

support both melanoma cell growth and endothelial cell growth.

The ratio of ‘‘amoeboid melanoma-induced macrophages’’ over

‘‘tumor-killing macrophages’’ will have a positive impact on

tumorigenesis.

We show that amoeboid cancer cells retain their secretory po-

tential at later metastatic stages, since they have an advantage

during metastatic colonization via disrupting endothelial junc-

tions and increasing endothelial cell permeability. Therefore,

amoeboid cancer cells hijack these efficient mechanisms—

typical of immune cells—to modify the vasculature (Artemenko

et al., 2014).

The secretome of amoeboid melanoma cells is complex and

rich in immunomodulatory cytokines, chemokines, and growth

factors. We show that amoeboid behavior is sustained via a pos-

itive feedback loop between ROCK-Myosin-II-driven secretion
Figure 7. NF-kB Cross-Talk with ROCK-Myosin II in Amoeboid Melano

(A) (Top) Schematic: macrophage phenotypes after indicated treatments. (Bottom

cells. (Bottom right) Percentage of CD163+CD206+ macrophages upon treatm

depleted A375M2 cells, ±IL-4 (n = 4).

(B) (Top) Schematic: treatment of endothelial cells with indicated conditions and d

(red), and DAPI (blue) immunostaining in HMVECs after indicated treatments. Da

(C) (Left) Relative p-MLC2 levels in indicated conditions (nR 3). (Top right) Quant

index in HMVECs after indicated treatments (n R 2).

(D) Heatmap shows fold change in expression of proteins regulating endothelial

show the highest and the lowest expression levels, respectively (6 replicates/ant

(E) Permeability (versus the control) in HMVECs treated with indicated conditions

(F) Immunoblots for p-MLC2, ROCK1, and ROCK2 of A375M2 ± siROCK1/2.

(G) (Left) Confocal images of mouse lungs after tail vein injection of 5-chlorome

dextran (purple) and (right) percentage of field area covered by dextran (20 fields

(H) (Left) Confocal images of mouse lungs from (G) and (right) percentage of field

Scale bar in (G) and (H), 100 mm. In (G) and (H), n = 5 mice/condition for each expe

showmean ± SEM. In (G) and (H), boxplots showmin to max values. In (A), (C), and

shown. *p < 0.05, **p < 0.01, ****p < 0.0001.

See also Figure S7.
and IL-1a/NF-kB signaling, generating a strong circuit of signal

amplification. Depletion or inhibition of ROCK-Myosin II activity

reduces (1) amoeboid behavior, (2) secreted IL-1a, and (3) NF-

kB activation in melanoma cells. Conversely, targeting NF-kB

in melanoma cells abolishes amoeboid behavior and their secre-

tory profile resulting in defective macrophage polarization

and vascular permeability. While targeting NF-kB in the clinic is

challenging (Croghan et al., 2010; Markovic et al., 2005),

ROCK inhibitors are used to treat cerebral vasospasm and

intraocular pressure (Feng et al., 2016; Olson, 2008). ROCK in-

hibitors decrease invasion in pancreatic cancer (Rath et al.,

2017) and improve efficacy of chemotherapy (Vennin and

Chin, 2017). Moreover, ROCKi AT13148 (Sadok et al., 2015) is

in clinical trials for solid tumors (ClinicalTrials.gov identifier:

NCT01585701). In light of our findings, ROCK-Myosin II inhibition

in melanoma cells could also be used to reprogram the innate

immune microenvironment.

On the other hand, blocking secreted IL-1a in melanoma cells

is sufficient to diminish NF-kB activation and amoeboid features.

An FDA-approved antagonist of IL-1R for rheumatoid arthritis

has been evaluated for the clinical management of cancer

metastasis (Holen et al., 2016) (ClinicalTrials.gov identifier:

NCT00072111) and a monoclonal antibody against IL-1a (Hong

et al., 2014) is in phase III of clinical trials for colorectal cancer

(ClinicalTrials.gov identifier: NCT01767857).

In conclusion, regional distribution of amoeboid melanoma

cells with high Myosin II activity can contribute to lack of therapy

responses by establishing a tumor-supportive AATME. We pro-

pose that, after surgical removal of the primary melanoma lesion,

the amoeboid phenotype should be targeted using either ROCKi

or IL-1a blocking antibodies as therapies to restrict immunosup-

pressive microenvironments and metastatic dissemination.
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Detailed methods are provided in the online version of this paper

and include the following:

d KEY RESOURCES TABLE

d CONTACT AND REAGENT RESOURCE SHARING
ma Cells Educates the Tumor Microenvironment

left) Immunoblots for p-MLC2 after MLC2 or NFKB1 knockdown in A375M2

ent of PMBC-derived monocytes with CM from NFKB1-depleted or MLC2-

ownstream assays. (Bottom) Confocal images of VE-cadherin (green), F-actin

shed white lines represent gaps. Scale bar, 40 mm.

ification of monolayer disruption area and (bottom right) VE-cadherin junctional

permeability in HMVECs treated with CM A375M2 ± siROCK1/2. Blue and red

ibody).

(n R 3).

thylfluorescein diacetate (CMFDA)-Green labeled A375M2 ± siROCK1/2 and

/mouse/condition).

area covered by cells (20 fields/mouse/condition).

riment, n = 2 independent experiments. In (A), (C), and (E), graphs and dot blots

(E), one-way ANOVA and Tukey post hoc test are shown. In (G) and (H), t test is
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STAR+METHODS
KEY RESOURCES TABLE
Reagent or Resource Source Identifier

Antibodies

CD14- PerCP-Cy5.5 (clone HCD14) Biolegend (for FC) Cat# 325621; RRID:AB_893252

CD163 (clone EDHu-1) AbD Serotec (for IHC) Cat# MCA1853; RRID:AB_2074540

CD163-APC ((clone: eBioGHI/61 (Eghi/61)) eBioscience (for FC) Cat# 17-1639-41; RRID:AB_2573167

CD206 Abcam (for IHC) Cat# ab64693; RRID:AB_1523910

CD206-PE (clone 15-2) Biolegend (for FC) Cat# 321105; RRID:AB_571910

CD31 Abcam (for IHC) Cat# ab28364; RRID:AB_726362

CD68 /pre-diluted (clone: KP-1) Abcam (for IHC) Cat# ab955; RRID:AB_307338

CD86-PeCy7 (clone IT2.2) eBioscience (for FC) Cat# 305421; RRID:AB_2275754

Cofilin (clone D59) Cell Signaling Technology (for WB) Cat# 3318; RRID:AB_2080595

CXCL8/IL8 (clone 6217) R&D Systems (Neutralization) Cat# MAB208; RRID:AB_2249110

F4/80 Abcam (for IHC) Cat# ab100790; RRID:AB_10675322

GAPDH (clone 6C5) Milipore (for WB) Cat# MAB374; RRID:AB_2107445

GFP ThermoFischer Scientific (for IHC) Cat# A11122; RRID:AB_221569

HLA-DR- FITC (clone L243) eBioscience (for FC) Cat# 11-9952-41; RRID:AB_2572541

IgG1(clone 11711) R&D Systems (Neutralization) Cat# MAB002; RRID:AB_357344

IgG2a (clone 20102) R&D Systems (Neutralization) Cat# MAB003; RRID:AB_357345

IL1a/IL1F1 (clone 4414) R&D Systems (Neutralization) Cat# MAB200; RRID:AB_2295862

IkBa BD Biosciences (for WB) Cat# 610690; RRID:AB_398013

MLC2 Cell Signaling Technology (for WB) Cat# 3672; RRID:AB_330278

NF-kB (p65) Cell Signaling Technology (for IF) Cat# 4764; RRID:AB_823578

Phospho-cofilin (Ser3) Cell Signaling Technology (for WB) Cat# 3311; RRID:AB_330238

Phospho-IkBa (Ser 32) (clone 14D4) Cell Signaling Technology (for WB) Cat# 2859; RRID:AB_561111

Phospho-MLC2 (Ser19) Cell Signaling Technology (for IF, IHC) Cat# 3671; RRID:AB_330248

Phospho–MLC2 (Thr18/Ser19) Cell Signaling Technology (for WB) Cat# 3674; RRID:AB_2147464

ROCK1 BD Biosciences (for WB) Cat# 611137; RRID:AB_398448

ROCK2 BD Biosciences (for WB) Cat# 610623; RRID:AB_397955

S100 beta Abcam (for IHC) Cat# ab52642; RRID:AB_882426

VE-cadherin BD Transduction Laboratories (for IF) Cat# 610252; RRID:AB_2276073

Biological samples

Melanoma Tissue Microarrays (cohort A) Hospital Universitari Arnau de Vilanova in

Lleida, Spain

N/A

Melanoma tissues (cohort B) King’s College London and National Institute

for Health Research Biomedical Research

Centre at Guy’s and St Thomas’ Hospitals

N/A

Sera samples from healthy donors and patients with

melanoma

King’s College London and National Institute

for Health Research Biomedical Research

Centre at Guy’s and St Thomas’ Hospitals

N/A

Chemicals, Inhibitors and recombinant proteins

IL4 Peprotech Cat#200-04

IL10 Peprotech Cat#200-10

IFNg Peprotech Cat# 300-02

LPS Sigma Cat#0111:B4

M-CSF Peprotech Cat#300-25

H1152 Calbiochem Cat#555550

(Continued on next page)
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Continued

Reagent or Resource Source Identifier

GSK269962A Axon Medchem Cat#Axon 1167

Y27632 Tocris Bioscience Cat#1254

(±) - Blebbistatin Merck Calbiochem Cat#203390

Brefeldin A Biochemica AppliChem Cat#A2138

LIMKi 3 Tocris Bioscience Cat#4745

IKKb Inhibitor III, BMS-345541 Merck Cat#401480

Fluorescein isothiocyanate (FITC)–dextran Sigma Aldrich Cat#46944

CFSE Cell Division Tracker Kit Biolegend Cat#423801

DAPI (4’,6-Diamidino-2-Phenylindole, Dilactate) Biolegend Cat#422801

Clodronate liposomes and control liposomes Liposoma B.V. Cat#CP-025-025

Experimental Models: Cell lines

A375P Prof. Richard Hynes HHMI, MIT, US ATCC CRL-1619

A375M2 Prof. Richard Hynes HHMI, MIT, US Clark et al., 2000

WM88 Wistar Collection at Coriell Cell Repository WC00123

WM3854 Wistar Collection at Coriell Cell Repository WC00125

WM983A Wistar Collection at Coriell Cell Repository WC00048

WM983B Wistar Collection at Coriell Cell Repository WC00066

WM793B Wistar Collection at Coriell Cell Repository WC00062

WM1366 Prof Richard Marais Cancer Research UK

Manchester Institute

Rockland WM1366-01-0001

HMVEC-dAd – Human Dermal Microvascular

Endothelial Cells – Adult

Lonza CC-2543

HUVEC – Human Umbilical Vein Endothelial Cells,

Pooled, in EGMTM-2

Prof A. Ridley University of Bristol, UK

(original source: Lonza)

C2519A

U-937 Dr S. Karagiannis (KCL) (original source: ATCC) ATCC� TIB-202

THP-1 Dr S. Karagiannis (KCL) (original source: ATCC) ATCC� CRL-1593.2

5555 Prof Richard Marais Cancer Research UK

Manchester Institute

Dhomen et al., 2009

B16F10 Prof Benilde Jimenez UAM-CSIC, Spain ATCC CRL-6475

Experimental Models: Organisms

SCID; CB17/Icr-Prkdcscid/IcrIcoCrl 5-6 weeks

old female (for clodronate in vivo and A375P/M2

and WM983A/B xenografts)

Charles River N/A

C57BL/6J 6-10 weeks old female (for 5555 in vivo) The Jackson Laboratory N/A

C57BL/6J 5-6 weeks old female (for B16F10 in vivo) Charles River N/A

NOD SCID gamma (NSG) NOD.Cg-Prkdcscid

Il2rgtm1Wjl/SzJ 6-12 weeks old male and female-

age- and sex-matched between groups (for dextran

in vivo vascular permeability)

Charles River N/A

Oligonucleotides

Human NFKB1 Thermo Fisher Scientific

siGENOME SMARTpool (#1) D-003520-01

GCAGGUAUUUGACAUAUUA D-003520-02

GCAAUAGCCUGCCAUGUUU D-003520-03

GAACCACGCCUCUAGAUAU D-003520-05

GGGCUACACCGAAGCAAUU J-003520-07; #2

ON-TARGET plus J-003520-08; #3

GAUGGGAUCUGCACUGUAA

NF-kB1, ON-TARGET plus

GAAAUUAGGUCUGGGGAUA

(Continued on next page)
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Continued

Reagent or Resource Source Identifier

Human ROCK1 ON-TARGET plus CCAGGAAGGU

AUAUGCUAU

Dharmacon J-003536-08-0005

Human ROCK2 ON-TARGET plus GAAACUAAUA

GGACACUAA

Dharmacon J-004610-08-0005

Human MYL12B Dharmacon

ON-TARGET plus SMARTpool L-018116-01-0005

CCACUUAGCACUUGUAUAA J-018116-09

GGGUGUAAAUUGUAUUGAA J-018116-10

CCUCAUAGAACCUGUUGCA J-018116-11

UGUAUUUAUUCCAGACCUU J-018116-12

Non-targeting siRNA Dharmacon

ON-TARGET plus D-001810-01-050

UGGUUUACAUGUCGACUAA

Software

GraphPad Prism GraphPad Software, San Diego USA Version 6

MetaCore ª Thomson Reuters

ImageJ NIH N/A

FlowJo LLC Version 7.6.5

Molecular probes

Alexa Fluor 488 Phalloidin ThermoFischer Scientific (for IF) Cat# A-12379; RRID:AB_2315147

Hoechst Invitrogen (for IF) Cat# H1399
CONTACT AND REAGENT RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Victoria

Sanz-Moreno (v.sanz-moreno@qmul.ac.uk)

HUMAN SAMPLE COLLECTION AND PATIENT INFORMATION

Patients were staged and classified according to the American Joint Committee on Cancer Melanoma Staging and Classification

criteria (Balch et al., 2009). Human samples were collected with informed written consent, in accordance with the Helsinki Declara-

tion, and the study design was approved by the Guy’s Research Ethics Committee and Ethics Committee of Guy’s and St Thomas’

NHS Foundation Trust and the Ethics Committee of the IRBLleida Biobanc, in accordance with the Human Tissue Act, 2004. This

study was approved by the Guy’s Research Ethics Committee, study number 08/H0804/139. Tables S2–S4 show clinical information

from human melanoma patients.

Cell culture
A375P, A375M2,WM88,WM1366, 5555 and B16F10 cells weremaintained in DMEM, containing pyruvate, 4.5 g/ml D-Glucose, sup-

plemented with 10% fetal calf serum (FCS), 100 units/ml penicillin, 100 mg/ml streptomycin and 2 mM L-glutamine and incubated at

37�C, 10% CO2. WM983A, WM983B, WM783B and WM8354 cells were cultured in RPMI supplemented with 10% FCS, 2mM

L-glutamine, 100 units/ml penicillin and 100 mg/ml streptomycin and incubated at 37�C, 10% CO2. HUVECs were cultured in

EBM2 media containing 2% fetal bovine serum (FBS), 0.1% hydrocortisone, 0.4% hFGF-b, 0.1% VEGF, 0.1% R3-IGF, 0.1% ascor-

bic acid, 0.1% hEGF, 0.1% GA-1000 and 0.1% heparin and cultivated on fibronectin coated flasks. HMVECs from a single neonatal

donor were cultured in EGM-2MV bullet kit media comprised of EBM-2 Basal Medium, 5% FBS and EGM-2MV growth supplements

and were cultivated on gelatin-coated flasks. Both HUVEC and HMVEC were maintained in a 37�C, 5% CO2 incubator. THP-1 and

U937were cultured in RPMI supplemented with 10%FCS, 2mML-glutamine, 100 units/ml penicillin and 100 mg/ml streptomycin and

incubated at 37�C, 5%CO2. Primarymonocyteswere cultured in RPMI supplementedwith 10%FCS, 2mML-glutamine, 100 units/ml

penicillin and 100 mg/ml streptomycin and incubated at 37�C, 5% CO2.

Cell culture on thick layers of collagen I
Fibrillar bovine dermal collagen (no. 5005-B; PureCol, Advanced BioMatrix) was prepared at 1.7 mg/ml in DMEM; 100 ml/well in

96-well plates; 700 ml/well in 12-well plates. After collagen gel polymerization (4 h), cells were seeded on top of collagen in medium
Cell 176, 757–774.e1–e9, February 7, 2019 e3
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containing 10% FCS, allowed to adhere for 24 h, treatments added (where appropriate), imaged and fixed or lysates collected. All

assays were performed with melanoma cells seeded on top of a thick layer of collagen unless otherwise mentioned.

Generation of EGFP-tagged cell lines
pLNT/SFFV EGFP lentivector (1 mg) was transfected into HEK293T along with packaging vectors (p-MD2.VSVg (0.4 mg) and pD8.91

(1 mg)) using Lipofectamine 2000 (7.5 ml/well of a 6-well dish). Media was replaced 6 h after transfection. Media with lentiviruses were

collected 48 h after transfection, spun down, filtered (0.45 mm) and added to recipient cell lines (A375P, A375M2,WM983A,WM983B

and B16F10). EGFP-positive cells were FACS-sorted and used for subsequent experiments.

Generation of VENUS-5555 cells
HEK293T cells on 10 cm2 dishes were transfected using 2M CaCl2, and 2x HBS (51558, Sigma) with lentiviral Venus vector (15 mg),

pMD2-VSVg (6 mg), pRSVrev (6 mg) and pMDL-g/p-RRE (6 mg). Supernatants were collected 48 h and 72 h after transfection. For

lentiviral transduction, 105 5555 cells/well were seeded in 6-well tissue culture dish and infected with VENUS reporter lentiviruses

added in suspension using 10 mg/ml Polybrene (107689, Sigma). After 48 h, successfully transduced cells were trypsinised and

FACS sorted according to their VENUS expression.

ROCK inhibition and IKKb inhibition
For ROCK inhibition, 1%-FCS media with inhibitors (5 mM H1152 or 10 mM Y27632) was added to cells for 4, 24 or 48 h with

re-addition at 24 h. For IKKb inhibition, IKKb inhibitor III (0.5 mM) was used for 24 h. DMSO was used a vehicle in the same concen-

trations as the inhibitors. For the time-course experiments, the inhibitors were used at the same concentration for all the indicated

time-points.

Melanoma secreted media (conditioned media, CM)
A375P, A375M2, WM983A, WM983B, WM88 and WM793B (2.5x105 cells/well) were seeded in complete DMEM or complete RPMI

(+10% FCS) in 6-well plates. Next day cells were washed with PBS (with calcium and magnesium) and were cultured in serum-free

(SF) media for 48 h. For inhibitor treatments, H1152 (5 mM), Y27632 (5 mM) or GSK269962A (5 mM)was added in serum-freemedia and

replenished after 24 h. Thenmediawas collected, spin down to eliminate debris and used fresh in subsequent experiments. Recipient

cells on collagenmatriceswere treatedwith secretedmedia for 24 h and then cell morphology and p-MLC2 levels were assessed. For

the experiments with CM derived frommelanoma cells isolated from TB or IF of A375M2 tumors (see also Diagram 1 in Methods S1),

CM was generated similarly to above. For experiments using blocking antibodies, A375M2-derived media was pre-incubated with

blocking antibodies (anti-IL1a, anti-IL8 and their respective isotype controls (IgG2A and IgG1), 0.75mg/ml) for 1 h at 37�C. Then, me-

dia was added to A375P cells seeded on coverslips (1 h treatment, for p65 immunofluorescence) or to A375P cells seeded on top of

collagen (24 h treatment, for cell morphology analysis). For macrophage polarization experiments, the secreted media was concen-

trated using Amicon Ultra-4 Centrifugal Filter Unit with Ultracel-3membrane (Millipore, Watford, UK). After centrifugation for 45min at

4000 rpm at 4�C, protein concentration was measured by BCA Protein Assay Kit (Life Technologies).

Transfection and RNAi
2x105melanoma cells/well were seeded on 6-well plates and transfected the next daywith 20-40 nMSmartPool or individual OTs (On

Target) siRNA oligonucleotides, using Optimem-I and Lipofectamine 2000 (Invitrogen). Non-targeting siRNA was used as control. In

case of transfection for siRNA toMYL12B and ROCK1/2, transfected cells were incubated for 24 h and 48 h, respectively, after which

they were harvested and re-seeded at 25x104 cells/well for conditioned media experiments and serum starved for 48 h.

Human PBMC isolation
Peripheral bloodmononuclear cells (PBMC) from healthy donors were obtained from anonymized human buffy coats supplied by the

NHS Blood and Transplant (Tooting, London, UK). Buffy coat was diluted with PBS (GIBCO) and PBMC isolation was performed by

Lymphoprep density gradient separation (Axis-Shield, Oslo, Norway). MACS technology was used to isolate CD14+ monocytes.

Human CD14+ monocytes isolation
In vitro differentiation of human CD14+ monocytes to macrophages

For melanoma conditioned macrophage differentiation, 106 CD14+ monocytes per well (6-well dish) were seeded in complete RPMI

and incubated in 5% CO2 at 37
�C. On day 3, 50% of the media was replenished with fresh media containing 35 mg/ml of CM derived

from A375P, A375M2, H1152- or GSK269962A-treated A375M2 melanoma cells or CM derived from A375M2 depleted from MLC2

(MYL12B) or NFKB1 and monocytes were incubated for 3 additional days. A panel of known stimuli was used as controls of different

types of differentiated/polarized macrophages. M-CSF (50 ng/ml), IL-4 (20 ng/ml) or IL-10 (20 ng/ml), or IFN-g (20 ng/ml) plus LPS

(100 ng/ml) were added on day 3 to monocytes after media replenishment. CD14+ cells with media only served as control. All cyto-

kines were from Peprotech (London, UK) while LPS (derived from Escherichia coli 0111:B4) was from Sigma (Dorset, UK).

For macrophage differentiation withmelanoma patient-derived serum (MPS), CD14+monocytes (106/ml) from healthy PBMCwere

plated in SF-RPMI and 10% of melanoma patient serum was added per well. Serum from either healthy volunteers (HVS) or human
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AB pooled serum (Sigma, Dorset, UK), were used as controls in the same volumes. Cells were incubated for 6 days in 5% CO2 at

37�C. HVS samples were obtained from King’s College London and National Institute for Health Research Biomedical Research

Centre at Guy’s and St Thomas’ Hospitals. All sera samples used in these experiments were allogeneic to CD14+ monocytes.

See also Table S2 for clinical information.

On day 6, cell supernatants were collected for the detection of cytokines. PBS�/�was added on cells and plates were placed on

ice for 20-30 min. Cells were then scrapped using a p1000 pipette and used for phenotypic staining.

Macrophage morphology quantification
Bright-field images from day 6 of cell culture (see also ‘In vitro differentiation of human CD14+ monocytes to macrophages’ section)

were used to analyze macrophage morphology using ImageJ software. Cells were divided into three categories according to their

shape: rounded-immature, ‘fried-egg’ and spindle (Eligini et al., 2013) and one field of view was evaluated per condition. Data

from 3 independent experiments with cells from 3 different healthy donors were used.

Zymosan phagocytosis assay in vitro

Zymosan A S. cerevisiae fluorescein-conjugated BioParticles (Life Technologies, Paisley, UK) were sonicated (3x20s; 90 ultrasonic

watts) to obtain a homogeneous population. Zymosan particles were re-suspended in PBS�/� (108 particles/ml) and opsonized with

an equal volume of human AB pooled serum (Sigma) for 1h at 37�C. Differentiated macrophages were serum-starved for 2 h before

starting the assay. Particles were thoroughly washed and added in a ratio of 10:1 (particles:macrophages) to macrophages and incu-

bated for 1 h at 4�C to allow particles to bind on the cells and synchronize the onset of phagocytosis. Then cells were washed to

remove unbound particles and incubated for 1 h at 37�C, 5%CO2, after which cells were harvested with PBS�/�, washed with

FACSbuffer and fixed in 1%para-formaldehyde to quench phagocytosis. Cells were acquired on aBDFACSCANTO II. As a negative

control of phagocytosis, macrophages were treated with 5 mM cytochalasin D (Insight Biotechnology, Wembley UK), which is an in-

hibitor of actin polymerization-dependent phagocytosis. The inhibitor was added to the relevant wells 1 h before adding the zymosan

particles and maintained throughout the assay.

Macrophage cytotoxicity/tumor cell killing assay in vitro

Briefly, melanoma target cells (A375M2, WM88, WM1366, WM793B, WM3854 andWM983A) were trypsinized, counted and labeled

with CFSE (5 mM) using the CFSE cell division tracker unit from Biolegend following manufacturer’s instructions. Both CFSE-labeled

melanoma cells and macrophages were washed twice in complete RPMI before the co-culture. Targets (104 melanoma cells) were

added on macrophages (105 macrophages) in a ratio of 1:10 (melanoma targets:macrophages) in complete RPMI and incubated for

48 h in 48-well plates in duplicates. Co-cultured cells were harvested with PBS �/� and washed with FACS buffer. Cells were re-

suspended in DAPI solution (5 mg/ml) for viability staining and immediately acquired on a BD FACS CANTO II.

Tumor cell isolation from tumor body and IF
Tumors were dissected frommice, transferred in falcon tubes with PBS�/�CaCl2/ MgCl2 and kept in ice before subjecting to tumor

cell isolation. Tumors were sliced in the middle into two parts using a scalpel; one part was kept in 4% formaldehyde solution for 48 h

for paraffinization while the second part was used for tumor cell isolation. For the latter, the tumor half was peeled with the use of

forceps, a pair scissors and scalpel to collect the peritumoral area which was more transparent, while the tumor core was a solid,

darker area. Tumor core and peritumoral area were both collected and chopped into small pieces and incubated with digestion so-

lution (1ml/sample); (Digestion solution: 90ml Liberase TM (Roche), (5 mg/ml), 90ml Liberase TH (Roche), (5 mg/ml), 30ml DNase I

(Sigma), (5 mg/ml) and 6 mL HBSS (GIBCO)) at 37�C with shaking. See also Diagram 1 in Methods S1.

Chemotaxis assay
Chemotaxis of human primary peripheral blood monocytes, THP1, U937 was assessed using 6.5-mm Costar Transwell cell culture

chamber with polycarbonatemembrane (5.0 mmpore) following themanufacturer’s protocol. Cell suspensions of 3x105 cells/0.1ml in

SF-RPMI were loaded in the upper chamber compartment. CM from A375M2 or A375P were loaded in the lower chamber. Migrated

cells were counted using a Neubauer Chamber. For chemotaxis of A375M2 or A375P cells, 8.0 mm-pore transwells were used

instead, and the cell suspension was of 2x105 cells/0.1ml in SF-DMEM.

Transendothelial permeability assay
CM from A375P, A375M2 control, or ROCK1/2 or NFKB1-depleted A375M2, or A375M2 cells treated with ROCK inhibitors H1152

(5 mM) or Y27632 (10 mM) for 48 h were collected and added to confluent monolayers of HMVECs on gelatin-coated Transwell filters

(Costar). FITC-dextran (0.1 mg/ml) was added to the top chamber. Samples from the lower chamber were removed after 1 h incu-

bation and added to a black 96-well plate. Fluorescencewasmeasured using amicroplate analyzer. Each condition was performed in

triplicates.
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Endothelial cell proliferation in vitro

HMVECs or HUVECs cells were seeded in 6 replicates (104/well) on 1%gelatin (Sigma, Dorset, UK)-coated 96-well plates in complete

EGM-2MVmedium. The following day, cells were washed with PBS (+/+) and treated with 50% supernatant derived frommonocytes

treated with melanoma-derived CM (A375M2 +H1152 or GSK269962A), from untreated monocytes or with EGM-2MV medium (as

control) for 72 h. Proliferation was measured by an MTT assay (5 mg/ml; Sigma, Dorset, UK). The absorbance of the samples at

570 nm and 695 nm was measured on a Perkin Elmer/Packard fusion Alpha-FP microplate analyzer. The results are presented as

the average values of 6 replicates after background subtraction (O.D. 570 nm - O.D. 695nm).

Human cytokine array
Secreted media from A375M2 and A375P cells seeded on a thick layer of collagen I were collected after 48 h and incubated with

Human Cytokine Antibody Array (RayBiotech, Inc., C4000) following the manufacturer’s protocol. Membranes were incubated

with biotinylated detection antibody cocktail, with HRP-conjugated streptavidin and with detection buffers. Images were obtained

with a chemoluminiscent imaging system and densitometry analysis was performed using the Protein Array Analyzer plugin for

ImageJ (http://image.bio.methods.free.fr/ImageJ/?Protein-Array-Analyzer-for-ImageJ.html). Enrichment maps and networks and

process networks were obtained using MetaCore software from Thomson Reuters (https://thomsonreuters.com/metacore/).

Human cytoskeleton phospho-array
HMVECs were incubated with CM derived from A375M2 or ROCK1/2-depleted A375M2 (48 h) and after 1 h, cells were lysed using a

protein extraction buffer and lysis beads from the Cytoskeleton Phospho Antibody Array (Full Moon Biosystems, CP141). Extracted

protein was purified through columns and quantified measuring UV absorption. Protein lysate (40 mg) was biotinylated and conju-

gated to the antibody array. This array contains antibodies against 141 proteins involved in cytoskeletal pathways.

Immunoblotting
Cells were lysed in Laemmli Buffer and lysates were resolved by 10 or 12% SDS-polyacrylamide (PAGE) gels or pre-made Nu-

PAGETM 4%–12% Bis-Tris gels (Invitrogen) and transferred to PVDF filters (0.45 mm, Immobilon). The ECL Plus or Prime ECL

detection systems (GE Healthcare) with HRP-conjugated secondary antibodies (GE Healthcare) were used for detection. Bands

were quantified using ImageJ (https://imagej.nih.gov/ij/).

ELISA experiments
CM from melanoma cells or supernatants from macrophages were used for sandwich ELISA experiments using commercially avail-

able kits (see also the table for reagents above). 96-well NUNC clear flat-bottom plates were coated with antibodies (IL-10, IL-8, IL-1a

and TNF-a) and incubated O/N at 4�C in a humified chamber. ELISAMAXTM standard sets (Biolegend) were used for the detection of

IL-10, IL-8 and TNF-a; ELISA MAX Deluxe (Biolegend) for IL1-a; and for TGF-b, LEGEND MAX Total TGF-b1 ELISA Kit with pre-

coated plates was used (Biolegend). Microwell absorbance was read at 450 nm on a Thermo Scientific Multiskan EX microplate

reader. All samples were quantified based on a standard curve using Microsoft Excel.

Immunofluorescence
HMVECs seeded onto gelatin-coated coverslips were incubated in the presence of media derived from A375M2 cells, ROCK-

depleted A375M2 cells or ROCK-inhibited A375M2 cells for 1 h. Cells were fixed with 4% p-formaldehyde, permeabilised with

0.3% Triton and stained with phalloidin for F-actin, with anti-VE-cadherin and with Hoechst 33258 for the nuclei. A375M2 or

A375P cells were seeded on top of collagen gels and treated as indicated. Cells were fixed, permeabilized, incubated with primary

antibody (pMLC Ser19, Cell Signaling) and stained with secondary Alexa Fluor-647 anti-rabbit (Life Technologies) and Alexa Fluor

546-phalloidin for F-actin detection (Life Technologies). For imaging, gels were inverted onto MatTek dishes, while coverslips

were mounted with DAKO fluorescence mounting medium (Dako, Cambridgeshire). In both cases, images were taken with a Zeiss

LSM 510 Meta confocal microscope (Carl Zeiss, Germany) with C-Apochromat 403 /1.2 NA (water) objective lens and Zen software

(Carl Zeiss).

For cell morphology, the shape descriptor ‘‘roundness’’ in ImageJ was used after manually drawing around the cell shape using

F-actin staining images (Orgaz et al., 2014). Phospho-MLC2 fluorescence signal was quantified calculating the pixel intensity in single

cells relative to the cell area (Orgaz et al., 2014).

Junctional index and gap area parameters were measured with ImageJ. Junctional index is calculated as described by Cain

et al. (2010).

For p65 staining, cells seeded on glass coverslips were fixed with 4% formaldehyde for 15 min and washed with PBS (33 5 min).

Then, cells were permeabilised for 20 min with 0.5% Triton X-100 in 4% BSA-PBS and washed 3 times with PBS. After blocking for

30min, cells were incubatedwith anti-p65 (1:100) overnight at 4�C. Cells were thenwashed 3 timeswith PBS and incubatedwith anti-

Rabbit Alexa Fluor 488 (1:350) and Alexa Fluor 546-phalloidin (1:350) for 2 h at room temperature. Finally, cells were washedwith PBS

43 5 min, incubated with 5 mg/ml Hoechst 33258 in the 4th wash, and mounted on a slide with Fluoroshield mounting media. Block-

ing and antibodies were prepared with 0.2% Triton X-100 in 4% BSA-PBS.
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Flow cytometry
Cells were washed oncewith FACSbuffer (PBS�/�, 1%BSA, 2mMEDTA, 0.1%NaN3) and after FcR blocking (Human TruStain FcX,

Biolegend) co-stained for: HLA-DR-FITC (1:50, clone: L243), CD86-PE-Cy7 (1:20, clone: IT2.2), CD163-APC (1:20, clone: GHI/61); all

from eBiosciences (Hertfordshire, UK) and CD206-PE (1:20, clone: 15-2), (Biolegend, London, UK). After 30 min incubation at 4�C in

the dark, cells were washed twice with FACS buffer (1500 rpm, 4�C, 5 min) and re-suspended in 500 ml DAPI solution (5ug/ml,

Biolegend) for viability and immediately acquired on a BD FACS CANTO II flow cytometer and analyzed using FlowJo 7.6.5 software

(Tree Star). Purity of isolated CD14+ cells was checked by staining for CD14-PerCP-Cy5.5 (1:50, clone: HCD14, Biolegend) and was

routinely > 95% across all the experiments.

Analysis of cytokine expression from human databases
Gene expression data of human melanoma samples from published microarray studies was used to analyze most of the cytokines

enriched inmedia derived fromA375M2 cells inmelanoma progression.We only took into account studies with enough sample purity

(> 95% melanocytic cells), enough patient samples to perform statistical comparisons (n > 40) and studies including normal tissue.

From public database GEO we extracted the Avery (GEO Accession number GSE29359)(Avery-Kiejda et al., 2011), Xu (GEO

Accession number GSE8401)(Xu et al., 2008), Talantov (GEO Accession number GSE3189)(Talantov et al., 2005), Kabbarah (GEO

Accession number GSE46517)(Kabbarah et al., 2010) and Riker (GEO Accession number GSE7553)(Riker et al., 2008) series.

Samples from these studies were reported to have > 95% melanocytic/melanoma cells and no mixed histology. Data were normal-

ized using Gene Pattern (https://www.broadinstitute.org/cancer/software/genepattern/) and analyzed as described in the ‘Statistical

analysis’ section below.

Gene expression data of humanmelanoma samples from The Cancer Genome Atlas (TCGA) database (https://cancergenome.nih.

gov/) was also used to analyze cytokines (enriched in media from highly contractile A375M2 cells) expression in melanoma progres-

sion. We only took account patients who had not received neo-adjuvant treatment prior to the resection of the tumor that yielded the

sample submitted for TCGA. Normalized expression data and z-scores for mRNA expression data were donwloaded from cBio-

Portal.

Animal welfare
All animals weremaintained under specific pathogen-free conditions and handled in accordancewith the Institutional Committees on

Animal Welfare of the UK Home Office (The Home Office Animals Scientific Procedures Act, 1986). All animal experiments were

approved by the Ethical Review Process Committee at King’s College London and carried out under license from the Home

Office, UK.

Melanoma tumor models
All animal procedures were approved and carried out in accordance with the UK Home Office and an Ethical Review Panel. All mice

were obtained from Charles River. Severe combined immunodeficient mice (SCID; CB17/Icr-Prkdcscid/IcrIcoCrl) were used for

studies with human melanoma cell lines (for A375P-, A375M2-, WM983A- and WM983B-EGFP cell lines) while C57BL/6J mice

were used with mouse melanoma cell lines (B16F10-EGFP and 5555-Venus). Mice were female 5-6 weeks old for all experiments

except for experiments using 5555 cells (6-10 weeks old).

Prior to injection, cells were counted and resuspended in PBS �/� CaCl2/ MgCl2. Mice were anaesthetized with isoflurane and

cells (2 3 106 for A375P, A375M2 and WM983A, WM983B; and 1.5 3 105 for B16F10) in a volume of 50 mL were subcutaneously

injected on the flank. Mice were continually monitored with tumor dimensions being determined by calliper measurements. Tumor

volume (mm3) = length x width x height x 0.52.

Visualization of tumor fluorescencewas achieved using a Fluorescent Protein Flashlight (NIGHTSEA) post injection and upon tumor

establishment. A375s and WM983s tumors were grown for 33 and 55 days, respectively, while B16F10 tumors were grown for

15 days. Prior to dissection all tumors were measured, dissected out, surrounding tissue removed, followed by fixation in 4%

formaldehyde solution for 48 h. All dissected tumors were weighed, and fluorescence images taken using a Fluorescence labeled

Organism Bioimaging Instrument (FOBI; NeoScience).

For Y27632 ROCK inhibitor studies, drug administration was by intraperitoneal injection every other day once tumors had reached

a mean volume of 160 mm3. Dosing was at 50 mg/kg (Y27632; Bio-Techne). Y27632 was prepared in PBS �/� CaCl2/ MgCl2, and

sterile filtered prior to use.

For experiments using 5555 cells, prior to injection 5555-Venus cells were pre-treated in vitrowith GSK269962A (5 mM) or DMSOas

control for 5 days, with fresh drug added every day. Then 2x105 cells were injected intradermally into C57BL/6J mice. Both in vitro

and in vivo viability wasmeasured after drug removal. Therefore, mice were never treated during the course of the in vivo experiment.

Tumor volume was measured twice a week and tumors harvested after 8 and 14 days for further analyses.

Dextran in vivo vascular permeability
A375M2 cells were transfected with either control siRNA or siROCK1/2 (60 nM total for both). Three days later, cells were labeled with

10 mM CMFDA-Green (C7025, Life Technologies) for 10 min and then they were trypsinized and counted. 1x106 labeled cells/0.1ml

PBS were injected into tail vein of NOD/SCID/ IL2Rg�/� mice (NSG, Charles River). 24 h later, TRITC-dextran (70 kDa, D1818,
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ThermoFisher) was intravenously injected and 10 min later mice were sacrificed. Lungs were extracted, washed with PBS (with

calcium/magnesium) twice and fixed with 4% formaldehyde for 16 h at 4�C. Lungs were examined under a confocal microscope

(see Immunofluorescence section). Data are presented as % field of area covered by fluorescence (green for cells, red for dextran

which represents permeability), n = 5 mice/condition for each experiment, n = 2 independent experiments.

Macrophage depletion in vivo by clodronate administration
Severe combined immunodeficient mice (SCID; CB17/Icr-Prkdcscid/IcrIcoCrl; Charles River) were injected intraperitoneally (i.p.) with

150 ml of clodronate liposomes or PBS liposomes as control (cat# CP-025-025, Liposoma B.V. the Netherlands). Next day, tumor

cells (2x106 cell/ 0.1ml PBS) were injected subcutaneously along with 20 ml of clodronate or PBS liposomes into mice. Then,

150 ml clodronate or PBS liposomes was administered i.p. twice per week. Tumor volume was monitored every 3 days by caliper

measurements as in ‘‘Melanoma tumour models’’ section. On day 27, mice were culled and tumors were harvested, fixed and

embedded in paraffin using standard protocols (see ‘‘Immunohistochemistry’’ section). Macrophage depletion was confirmed by

F4/80 and CD206 IHC staining at endpoint.

Immunohistochemistry
Case selection

Two cohorts of human melanoma samples were included in the case series. The ‘cohort A’ is a tissue microarray comprising of two

slides with consecutive sections of individual tumor cores corresponding to either TB or IF for 40 different patients (n = 24 primary and

n = 16 metastasis). Each patient is represented by 8 cores (4 replicates/tumor body and 4 replicates/IF) so 320 cores were totally

analyzed for each marker. The ‘cohort B’ was comprised by whole-section tissues corresponding to 7 different patients.

Whole sections from subcutaneous tumors (human A375P-, A375M2-,WM983A- andWM983B-EGFP; andmurine B16F10-EGFP)

and from intradermal tumors (5555-Venus) were included.

Experimental procedure

All tissue sampleswere formalin-fixed paraffin-embedded (FFPE) andwere sectioned (3 or 4 mm-thick) and dried for 1 h at 65�C. Next,
tissue samples were subjected to deparaffinization, rehydration and heat-induced epitope retrieval using a Biocare Decloaking

Chamber (DC2012) at 110�C for 6 min in Access Super Menarini Buffer (MP-606-PG1). Then endogenous peroxidase and phospha-

tase alkaline were blocked with Dual Endogenous Enzyme-Blocking Reagent (Dako, Agilent) for 10 min.

Incubation with primary antibodies was performed O/N at 4�C in a humidified slide chamber. Human samples were subjected

to IHC for pSer19-MLC2 (1:50, polyclonal, #3671), CD68 (1:2 dilution/pre-diluted; clone: KP-1, #ab74704), CD163 (1:100, clone:

EDHu-1, MCA1853), CD206 (1:2000, ab64693) and CD31 (1:100, ab28364). Murine tumor samples were stained for GFP (1/2000,

A-11122), S100b (1/400, ab52642), F4/80 (1/400, ab100790), CD206 (1/2500, ab64693), CD31 (1/100, ab28364) and pSer19-

MLC2 (1:50, polyclonal, #3671).

Relevant secondary antibodies IgG HRP (Horse-Radish Peroxidase) (1/100, anti-rabbit or anti-mouse, Dako) or AP (Alkaline

Phosphatase) (1/100, anti-rabbit or anti-mouse, Dako) were incubated for 1 h at room temperature. Subsequently, samples were

developed by incubation in DAB+ or Permanent Red chromogen solutions (Dako, Agilent). Samples were counter stained with

hematoxylin. Human melanoma tissues and the adjacent normal skin were used as positive and negative controls for the above-

mentioned antibodies.

Imaging and Scoring

Human tissue samples were imaged and scored as follows. Cohort A was scanned on a ZEISS Axio Scan.Z1, and images were

analyzed by ZEN 2012 (blue edition). Cohort B was scanned using a Hamamatsu Nanozoomer and images analyzed using NDP

view2. For the analysis, each individual tumor core was evaluated for the total number of vessels or macrophages and then averages

of the numbers per IF or TB were calculated for each patient. For the comparison between primary and metastatic melanoma pa-

tients, averages from all the replicates (including TB and IF) were calculated. For vessel and macrophage analysis, R 2 fields of

view were used per TB or IF for analysis. The latter was defined as the tumor area composed by melanoma cells only with at least

50% cell surface in contact with the matrix (Cantelli et al., 2015; Sanz-Moreno et al., 2011).

Cell shape scoring was performed as previously described (Sanz-Moreno et al., 2011). Briefly, cell shape score = ((percentage of

cells [%] shape 03 0) + (% shape 13 1) + (% shape 23 2) + (% shape 33 3)), with values ranging from 0 (all cells round) to 300 (all

cells spindle). For quantification of p-MLC2 staining, samples were scored blind and a staining H-score was provided for each sec-

tion, where H-score = S (% of cells with 4*4) + (% of cells with 3*3) +(% of cells with 2*2) +(% of cells with 1*1); where 0 = no staining,

1 = weak, 2 = moderate, 3 = intense and 4 = very intense staining.

For A375P/A375M2 and WM983A/WM983B tumors, samples were scored 0-4 using the H-score method for p-MLC2, in addition

to quantification of the percentage of cells with very intense (H-score = 4) p-MLC2 levels at distances 0-2 mm from the IF of tumors.

For murine tumors, 6 consecutive sections from each sample were used. Two sections were used to detect F4/80+CD206+

macrophages, two to detect melanoma cells using the antigen S100b and GFP and two for p-MLC2 and CD31+. One area for IF

and TBwas selected for each sample and imaged at 20Xmagnification using iScopemicroscope (IS.1159EPLi, Euromex) and Image-

Focus 4.0 (Euromex) software (Diagram 2A in Methods S1). Next, the images were run in ImageJ platform (https://imagej.nih.gov/ij/),

scaled at 3.08 px/mm2. Color deconvolution H-DAB plug-in (https://imagej.net/Colour_Deconvolution) was applied to split the image

in three main channels/colors. The area of interest was determined, and the number of positive cells was determined using ‘‘find
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maxima’’ tool. The process was iterated for all markers used in the analysis (F4/80, CD206, GFP and S100b) (Diagram 2B in Methods

S1). All the values were introduced in an Excel file and were standardized to the same area (105 mm2). To avoid false positive mac-

rophages (that is cancer cells that were CD206+) we applied a correction factor: subtraction of GFP or S100b signal from CD206 total

signal.

Statistical analysis
Statistical analysis was performed using GraphPad Prism (version 6, San Diego California USA). The following statistical tests were

used: t test unpaired, t test with Welch’s correction, Mann-Whitney test, one-way ANOVA with Tukey post hoc, Kruskal-Wallis with

Dunn’s multiple comparison test and Wilcoxon matched-pairs signed rank test and Two-way ANOVA- post with Bonferroni post

hoc test. All experiments were analyzed with a minimum of three independent repeats. Outliers were excluded using the ROUT

method. For column bar or scatter dot plots, error bars are the average ± SEM. Boxplots showmin tomax values or 10-90 percentile.

* p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001.
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Supplemental Figures

Figure S1. Invasive Fronts of Human Melanomas Are Enriched in Amoeboid Melanoma Cells with High Myosin II Activity in the Vicinity of

Macrophages and Blood Vessels, Related to Figure 1

(A) Melanoma cell shape score in tumor body (TB) or invasive front (IF) of human melanoma biopsies in Cohort B, values ranging from 0 (all cells round) to 300 (all

cells spindle) (See also STAR methods) (n = 7).

(B–D) Average number (top) and representative images (below) of (B) CD163+ macrophages, (C) CD206+ macrophages and (D) CD31+ vessels, per field of view

(FOV), in TB or IF in Cohort B. Scale bar, 50 mm (n = 4 for CD163, n = 5 for CD206, n = 6 for vessels).

(legend continued on next page)



(E) Average number of CD68+ macrophages and (F) CD163+ macrophages, in primary and metastatic melanoma lesions in Cohort A. Data are presented per

patient.

(G) Scatterplot for correlation of CD31 andCD206mRNA levels in normal skin (black), nevi (cyan), primarymelanoma (blue), metastaticmelanoma (red). Pearson’s

r. Raw data obtained from the publicly available database GEO.

(A, E, and F) Boxplots show min to max values. (B–D) Graphs show mean ± SEM. (A–D) Paired t test. (E and F) t test.

ns p > 0.05,*p < 0.05,**p < 0.01,***p < 0.001.
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Figure S2. Myosin II Activity in Melanoma Cells Favors Secretion of Immunomodulatory Factors, Related to Figure 2

(A) Chart pie shows the factors influencing the balance toward tumor-promoting inflammation versus tumor-suppressive inflammation in CM A375M2.

(B) (Top) Schematic illustrates secreted factors in melanoma progression and (bottom) heatmap shows fold change for mRNA levels of IL-4, IL-8, IL-1a, TGF-b

and IL-10 in metastatic melanoma versus melanocyte and metastatic versus primary melanoma samples. Raw data were obtained from TCGA and GEO

databases.

(C) Relative p-MLC2 and MLC2 levels in A375M2 cells after MLC2 knockdown.

(D) Relative ROCK1, ROCK2, p-MLC2 and MLC2 levels in A375M2 cells after ROCK1/2 knockdown.

(E) Secreted levels of IL-1a, IL-10, TGF-b and IL-8 in CM A375M2 cells after treatment with Y27632 (10 mM) or GSK269962A (5 mM) for 48h (n R 3). Data are

presented as fold change versus the control.

(F) (Left) Representative immunoblot for p-cofilin and (right) relative p-cofilin levels, in A375M2 cells after treatment with LIMKi 3 (1mM) for 48h (n = 3).

(G) Roundness index of A375M2 cells seeded on top of collagen I, treated with H1152 (5mM), Blebbistatin (2.5mM) or LIMKi 3 for 48h (n = 3).

(H) (Left) Representative immunoblots for p-MLC2 and (right) quantification of p-MLC2 levels, in A375M2 cells treated with H1152 or LIMKi 3 for 48h (n = 3).

(I) Secreted levels of IL-1a, IL-10 and IL-8 in CM A375M2+H1152, CM A375M2+Blebbistatin or CM A375M2+LIMKi 3. Data are presented as fold change versus

the control (n R 3 for IL-10 and IL-8 and n R 2 for IL-1a).

(J) (Left) Representative immunoblot for p-MLC2 levels in WM793B cells and (right) secreted levels for TGF-b and IL-8 by WM793B cells, after treatment with

H1152 (5 mM) for 48h (n R 3).(C-J) Graphs and dot blots show mean ± SEM.

(C, D, and F–J) t test. (E) One-way ANOVA with Tukey post hoc test.

ns p > 0.05,*p < 0.05,**p < 0.01,***p < 0.001,****p < 0.0001.
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Figure S3. Amoeboid Melanoma Cells with High Myosin II Activity Induce Tumor-Promoting Macrophages, Related to Figure 3

(A) Expression levels (geometric mean of fluorescent intensity, gMFI) of HLA-DR, CD86, CD163 and CD206 in macrophages after treatment with M-CSF

(50ng/ml), IL-4 (20ng/ml), IL-10 (20ng/ml), IFN-g & LPS (20ng/ml and 100ng/ml) or culture media only (-) (n = 5; 5 different healthy donors).

(B and C) Expression levels (gMFI) of (B) CD163, (C) HLA-DR and CD86, in macrophages treated with CM A375P or CM A375M2 or culture media only (-) (n = 5; 5

different healthy donors).

(D) Representative bright-field images of macrophages treated with M-CSF, IL-4, IL-10, IFN-g & LPS or culture media only (-). Blue and red arrows show ‘fried-

egg’ and elongated shapes, respectively. Scale bar, 50 mm.

(E) Dead tumor targets (WM1366, WM793B, WM3854 and WM983A) upon co-culture with CM A375M2- or IFN-g&LPS- stimulated macrophages. Data are

presented as fold change versus the control untreated monocytes. Log2 scale is presented in y axis.

(F and G) Tumor volume in (F) A375M2-xenografts and (G) WM983B-xenografts, upon depletion of macrophages via clodronate in SCID mice (n = 6 mice PBS

group and n = 5 mice clodronate group).

(H) Representative IHC images showing F4/80+ and CD206+ macrophage depletion upon clodronate administration in A375M2 andWM983B xenografts. Scale

bar, 100 mm.

(A–C and E–G) Graphs show mean ± SEM. (A–C) One-way ANOVA with Tukey post hoc test. (F and G) Two-way ANOVA with Bonferroni’s multiple compari-

son test.

ns p > 0.05,*p < 0.05,**p < 0.01,***p < 0.001,****p < 0.0001.



IL
-1

0

(legend on next page)



Figure S4. AATME Composition Is a Conserved Feature in Melanoma In Vivo, Related to Figure 4

(A) (Left) Roundness index and (right) p-MLC2 levels/area, in EGFP-A375P and EGFP-A375M2 cells seeded on top of collagen I. Quantification corresponds to the

area occupied by p-MLC2 staining normalized by the total area of the cell.

(B) Melanoma cell shape score in TB and IF of A375P and A375M2 tumors (n = 8 mice/group).

(C) Percentage of melanoma cells with score 0-4 for p-MLC2 at different distance from IF (0-2 mm) for A375P and A375M2 tumors, as tested by IHC (n = 8

mice/group).

(D) (Left) Roundness index and (right) p-MLC2 levels/area, in EGFP-WM983A and EGFP-WM983B cells seeded on top of collagen I.

(E) Melanoma cell shape score in TB and IF of WM983A and WM983B tumors (n = 8 mice/group).

(F) Percentage of melanoma cells with score 0-4 for p-MLC2 at different distance from IF (0-2 mm) for WM983A and WM983B tumors (n = 8 mice/group).

(G) Percentage of melanoma cells with score 4 for p-MLC2 at different distance from IF (0-2 mm) for WM983A and WM983B tumors, as tested by IHC (n = 8

mice/group).

(H) Cell proliferation rates of (left) A375P versus A375M2 and (right) WM983A versus WM983B cells. Data are presented as fold change versus day 0.

(I) Schematic shows the isolation of melanoma cells from TB or IF of A375M2 tumors.

(J) Concentration of secreted IL-10, as measured by ELISA, in melanoma cells isolated from TB or IF of A375M2 tumors (n = 3).

(K) Percentage of CD163+CD206+macrophages after treatment with CM frommelanoma cells isolated from TB or IF of A375M2 tumors (n = 2; 2 different healthy

donors; 2 matched TB/IF samples; 1 pair used twice with 2 different donors).

(L and M) (L) Melanoma cell shape and (M) F4/80+ macrophages, in TB and IF of B16F10 tumors (n = 8 mice).

(N) Melanoma cell shape score and (O) F4/80+ macrophages, in TB and IF of tumors generated 8 days post-intradermal injection of Venus- 5555 cells (n = 5

tumors).

(A left, D left, G, and H) Graphs and dot blots showmean ± SEM. (A right, B, D right, E, and L–O) Boxplots show 10-90 percentile. (A, D, H, J, L–O) t test. (K) paired

t- test. (B and E) One-way ANOVA with Tukey post hoc test. (G) Two-way ANOVA with Bonferroni post hoc test.

ns p > 0.05,*p < 0.05,**p < 0.01,***p < 0.001,****p < 0.0001
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Figure S5. Remodeling of the AATME after Manipulation of Myosin II Activity In Vivo, Related to Figure 5

(A–D) Expression levels (gMFI) of (A) CD163, (B) CD206, (C) HLA-DR and (D) CD86, in macrophages after treatment with CM A375M2, CM A375M2+H1152, CM

A375M2+Y27632, CM A375M2+GSK269962A or culture media only (-) (n R 5 different heathy donors).

(E) Relative p-MLC2 levels in A375M2 cells treated with H1152, Y27632 or GSK269962A ROCK inhibitors (n = 4).

(F) HLA-DR+CD86+ macrophages after treatment with CM A375M2 depleted from MLC2. Data are presented as fold changes versus the control (n = 4).

(G and H) (G) Macrophage secretion of TGF-b (pg/ml) and (H) IL-10 (pg/ml) after treatment with CM A375M2, CM A375M2+H1152, CM A375M2+Y27632, CM

A375M2+GSK269962A or culture media only (-) (n = 8; 8 different healthy donors).

(I) Concentration of IL-10 in macrophages induced by melanoma patient-derived sera or healthy volunteer-derived sera (n = 2; 2 different healthy donors for

macrophages; n = 5 volunteers-derived sera and n = 9 melanoma patients-derived sera).

(J) MFI for phagocytosed zymosan particles by macrophages after treatment with CM A375M2, CM A375M2+H1152 or CM A375M2+GSK269962A, with or

without cytochalasin D (5 mM) (n = 2).

(K) H-score for p-MLC2 expression of melanoma cells in TB and IF.

(L) (Left) CD206+ macrophages and (right) F4/80+ macrophages in the IF.

(K and L) Tumors 8 days post-intradermal injection of DMSO (vehicle)-pre-treated and ROCKi-pre-treated Venus- 5555 cells (n = 5 mice/group).

(M) Percentage of viable DMSO (vehicle)-pre-treated and ROCKi-pre-treated Venus- 5555 cells in vitro as measured by IncuCyte (n = 3). Viability was measured

after drug removal.

(N) Tumor volume (mm3) in C57BL/6Jmice after intradermal injection of DMSO (vehicle)-pre-treated andROCKi-pre-treated Venus- 5555 cells (days: 0-14) (n = 13

tumors for DMSO group and n = 14 tumors for ROCKi group; n = 7 mice/group).

(A–J, M, and N) Graphs showmean ± SEM. (K–L) Boxplots show 10-90 percentile. (A-E, J, and K) One-way ANOVA with Tukey post hoc test. (F–H and L) t test. (I)

t test with Welch’s correction. (N) Two-way ANOVA with Bonferroni post hoc test.

ns > 0.05,*p < 0.05,**p < 0.01,***p < 0.001,****p < 0.0001.
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Figure S6. Myosin II Activity in Cancer Cells Self-Perpetuates via Secreted IL-1a-Induced NF-kB Activation, Related to Figure 6

(A) (Top) Schematic illustrates the treatment of A375P cells with CM A375M2 and (bottom) representative immunoblot for p-MLC2 in A375P cells after treatment

with CM A375M2.

(B) Percentage of migrated A375P cells after treatment with CM A375P, CM A375M2 or media only (-). Data are presented versus CM A375M2 treatment (nR 3).

(C) Representative immunoblot for p-MLC2 in A375M2 cells after treatment with BFA for 6h.

(D) (Top) Representative confocal images and (bottom) bright-field images, showing p65 localization and cell morphology, respectively, in A375P cells treated

with CM A375P, CM A375M2, IgG2a-blocked CM A375M2, IL-1a-blocked CM A375M2, IgG1-blocked CM A375M2 or IL-8-blocked CM A375M2. Blocking was

for 1h at 37�C. Scale bar, 10mm for confocal images and 20mm for bright-field images.

(E) Relative NFKB1 levels in A375M2 cells after NFKB1 knockdown.

(F) Representative immunoblot for p-IkBa after treatment of A375M2 cells with IKKb inhibitor.

(G) Roundness index and (H) relative p-MLC2 levels, in A375M2 cells after treatment with IKKb inhibitor.

(I) Roundness index (n = 3), (J) representative bright-field images and (K) representative immunoblots for p-MLC2, in A375M2 cells seeded on bovine collagen I

upon treatment with the ROCKi H1152 (5 mM) for 1h, 2h, 4h or 24h.

(L) Roundness index (n = 3), (M) representative bright-field images and (N) representative immunoblots for p-MLC2, in A375M2 cells seeded on bovine collagen I

upon treatment with the IKKb inhibitor IKKb III (0.5 mM) for 1h, 2h, 4h or 24h.

(B, E, and H) Graphs and dot blots show mean ± SEM. (G, I, and L) Boxplots show 10-90 percentile. (B, E, I, and L) One-way ANOVA with Tukey post hoc test.

(G and H) t test.

*p < 0.05,**p < 0.01,***p < 0.001,****p < 0.0001.
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Figure S7. Metastatic Colonization via Amoeboid Melanoma Cell Secretion, Related to Figure 7

(A) Migrated THP-1 cells toward CM A375M2 or CM from NFKB1-depleted A375M2 cells (n = 4).

(B) gMFI for CD206 in macrophages after treatment with CM from MLC2-depleted or NFKB1-depleted A375M2 cells (n = 4).

(C) (Top) Schematic showing treatment of endothelial cells with CM A375P or CM A375M2. (Bottom) Representative confocal images of VE-cadherin (green),

F-actin (red) and DAPI (blue) immunostaining in HMVECs after treatment with CM A375P or CM A375M2. Dashed white lines represent gaps. Scale bar, 40 mm.

(D) Quantification ofmonolayer disruption area (top) and VE-cadherin junctional index (bottom) in HMVECs after treatment with CMA375P or CMA375M2 (nR 3).

(E) Tables show the most upregulated phospho-proteins found in the cytoskeleton phospho-antibody array. HMVECs treated with CM A375M2 (s1) were

compared to HMVEC cells treated with CM fromROCK1/2-depleted A375M2 cells (s2). Values are represented as ratio changes s1/s2. Ratio = (Signal Intensity of

Phospho Site-Specific Antibody) / (Signal Intensity of Site-Specific Antibody). Results are highlighted in different shades of red which shows the highest

expression levels. Fold-change increase is considered significant when the values are > 2.

(F) Percentage of permeability of a confluent monolayer of HMVECs (left) treated with CM A375P or CM A375M2 and (right) treated with CM A375M2+H1152 or

CM A375M2+Y27632 (n R 3).

(G) Relative p-MLC2 levels in A375P cells, A375M2 ± H1152 or ± Y27632 cells (n R 3).

(H) Percentage of permeability of a confluent monolayer of HUVECs treated with CM A375M2 (-) or CM from ROCK1/2-depleted A375M2. Data are presented as

fold-change versus the control (n = 3).

(A, B, D, and F–H) Graphs and dot blots showmean ± SEM. (A, D, F left, and H) t test. (F right) Kruskal-Wallis and Dunn’s multiple comparison. (B and G) One-way

ANOVA with Tukey post hoc test.

*p < 0.05,**p < 0.01,***p < 0.001.
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