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Stochastic Approach to Non-Equilibrium Quantum Spin Systems

S. De Nicola,1 B. Doyon,2 and M. J. Bhaseen1

1Department of Physics, King’s College London, Strand, London WC2R 2LS, United Kingdom
2Department of Mathematics, King’s College London, Strand, London WC2R 2LS, United Kingdom

We investigate a stochastic approach to non-equilibrium quantum spin systems based on recent
insights linking quantum and classical dynamics. Exploiting a sequence of exact transformations,
quantum expectation values can be recast as averages over classical stochastic processes. We il-
lustrate this approach for the quantum Ising model by extracting the Loschmidt amplitude and
the magnetization dynamics from the numerical solution of stochastic differential equations. We
show that dynamical quantum phase transitions following quantum quenches from the ferromag-
netic ground state are accompanied by signatures in the classical distribution functions, including
enhanced fluctuations. We demonstrate that the method is capable of handling integrable and
non-integrable problems in a unified framework, including those in higher dimensions.

Recent experimental advances in cold atomic gases
[1–7] have catalyzed widespread interest in the non-
equilibrium dynamics of isolated quantum many-body
systems [8]. Questions ranging from the nature of ther-
malization [9–12] to the growth of entanglement follow-
ing a quantum quench [13] have attracted considerable
theoretical attention. In one dimension, the availabil-
ity of analytical techniques based on integrability has
led to fundamental insights into the role of conservation
laws and the Generalized Gibbs Ensemble (GGE) [14–
17]. In spite of these advances, much less is known an-
alytically about the behavior of non-integrable systems,
where one must typically resort to approximate methods
[18, 19] or numerical techniques [20–29]. The situation is
particularly challenging in higher dimensions, where the
rapid growth of the Hilbert space also stymies numer-
ical simulations, even in equilibrium. Recent progress
includes the development of hydrodynamic approaches
to non-equilibrium steady states, based on macroscopic
conservation laws and thermodynamic equations of state
[30–34]. Significant advances have also been made us-
ing machine-learning algorithms [35, 36] by exploiting
novel representations of the quantum wavefunction. In
this manuscript, we explore a rather different approach
to non-equilibrium systems based on an exact mapping
between quantum spin dynamics and classical stochas-
tic processes [37–39]. By a sequence of exact transfor-
mations, stochastic differential equations (SDEs) can be
derived whose solutions yield quantum expectation val-
ues. Going beyond these recent developments, we show
that this approach can be turned into a hybrid numerical
and analytical tool for exploring quantum many-body dy-
namics. We do so in both integrable and non-integrable
settings, including higher dimensions. Moreover, we show
a deep connection between quantum dynamics and the
underlying stochastic process, providing stochastic for-
mulae for a range of physical observables.

Stochastic Formalism.— In order to make the
manuscript self-contained, we briefly review the key steps
outlined in Refs [37, 39]. The method is readily illus-

trated by considering the quantum Hamiltonian

Ĥ =
∑
ij

Jabij Ŝ
a
i Ŝ

b
j +

∑
i

hai Ŝ
a
i , (1)

where the spin operators Ŝaj on site j obey the commu-

tation relations [Ŝaj , Ŝ
b
j′ ] = iδjj′ε

abcŜcj and we set ~ = 1.

Here Jabij is the exchange interaction and hai is an applied
magnetic field with arbitrary orientation. The dynamics
of the model is governed by the time evolution operator

Û(tf , ti) = T exp

(
−i
∫ tf

ti

dt Ĥ(t)

)
, (2)

between initial and final times ti and tf , where Ĥ(t) can
be time-dependent and T denotes time ordering. The
operator Û is non-trivial, due to the interactions in Ĥ,
the non-commutativity of the spin operators, and the
time-ordering. However, Û can be expressed in an al-
ternative form by means of a sequence of exact transfor-
mations [37–39]. To begin with, the interactions can be
decoupled using Hubbard–Stratonovich transformations
[40, 41] over auxiliary variables φai :

Û = T
∫
Dφ exp

−S − i∫ tf

ti

dt
∑
j

(
φaj√
i
Ŝaj + haj Ŝ

a
j )

 ,

(3)
where Dφ ≡∏j Dφaj and the normalization factors have
been absorbed into the measure. Eq. (3) describes de-
coupled spins interacting with stochastic magnetic fields
φai governed by the Gaussian action

S =
1

4

∫ tf

ti

dt
∑
ij

(J−1)abij φ
a
i φ

b
j . (4)

Equivalently,

Û(tf , ti) =
〈
T e−i

∫ tf
ti

dt
∑

j Φa
j (t)Ŝa

j (t)〉
φ
, (5)

where Φaj ≡
φa
j√
i

+ haj and the average 〈. . . 〉φ is taken

with the action in Eq. (4). The argument of the average
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in Eq. (5) takes the form of a stochastic time-evolution
operator; in general this is non-unitary, as highlighted
by the factor of 1/

√
i in Eq. (3). Eq. (5) can be fur-

ther simplified by directly expressing the time-ordered
exponential as a group element [37–39] using the Wei–
Norman–Kolokolov decomposition for SU(2) [42, 43]:

Û(tf , ti) =
〈∏

j

eξ
+
j (tf )Ŝ+

j eξ
z
j (tf )Ŝz

j eξ
−
j (tf )Ŝ−j

〉
φ
, (6)

where Ŝ±j = Ŝxj ± iŜyj . The coefficients ξaj are referred to
as disentangling variables and are related to the original
Φaj via [39]

iξ̇+
j = Φ+

j + Φzjξ
+
j − Φ−i ξ

+
j

2
, (7a)

iξ̇zj = Φzj − 2Φ−j ξ
+
j , (7b)

iξ̇−j = Φ−j exp ξzj , (7c)

where ξai (ti) = 0. These equations are non-linear
Stratonovich SDEs for the complex variables ξaj , where
the variables φaj represent Gaussian white noise. Indeed,
the SDEs can be put in the canonical form [44]:

dξai
dt

= Aai ({ξi}) +
∑
jb

Babij ({ξi})φ̄bj , (8)

where Aai and Babij are the drift and diffusion coeffi-

cients respectively with {ξi} = (ξzi , ξ
±
i ), and φ̄bj are delta-

correlated white noise variables obtained by diagonaliz-
ing the action in Eq. (4)1. These exact transformations
allow one to recast quantum dynamics in terms of SDEs,
where quantum expectation values are replaced by aver-
ages over classical processes. To date, this method has
been applied to the thermodynamics of a single cluster of
quantum spins [37] and to the dynamics of a single spin
coupled to a photonic waveguide [39]. However, the real-
time SDEs have not been directly solved for a quantum
many-body system, to compute time-dependent physical
observables. Here, we show that this approach can be ap-
plied to both integrable and non-integrable lattice spin
models, including those in higher dimensions. Through-
out this manuscript, we solve the non-linear SDEs in
Eq. (7) using the Euler scheme, discretizing time in steps
of size dt. Within this approach, certain realizations of
the stochastic processes may grow without bound [45]
and are then discarded. In our simulations of quantum

1 To diagonalize Eq. (4), the matrix Jabij should be symmetric and

invertible. In contrast to diagonalizing Ĥ, this involves diago-
nalizing an N ×N matrix, for given values of a, b. When Jabij is

not invertible, we add a constant to Ĥ to eliminate zero eigenval-
ues. This modifies the evolution of the stochastic variables but
does not influence physical observables. This is the case for the
quantum Ising model (10) when N is a multiple of 4.

observables, less than 1% of the trajectories were affected
by this behavior, and we accurately reproduce the results
of exact diagonalization. In plotting the associated clas-
sical variables for much larger system sizes, we typically
discard less than 10% of the trajectories. For the phys-
ical observables presented in this manuscript, the error
bars associated with the statistical averaging, estimated
as the standard deviation over independent batches of
simulations, are of comparable or smaller size than the
plot markers; they are therefore not shown. A further
issue is that the standard deviation of the Gaussian fluc-
tuations in Eq. (4) grows as

√
tJ , for isotropic nearest

neighbor interactions J . We therefore restrict our initial
attention to timescales t . ~/J .
Loschmidt Amplitude.— A natural quantity to study

using the stochastic formalism is the Loschmidt ampli-
tude A(t), defined as the probability amplitude to return
to an initial state |ψ(0)〉 after time t:

A(t) = 〈ψ(0)|Û(t, 0)|ψ(0)〉. (9)

In order to provide explicit results, we first examine the
quantum Ising model in a transverse field Γ

ĤI = −J
N∑
j=1

Ŝzj Ŝ
z
j+1 − Γ

N∑
j=1

Ŝxj , (10)

where N is the number of lattice sites. We consider
ferromagnetic interactions J > 0 and impose periodic
boundary conditions; in the numerical simulations below
we set J = 1 and measure time in units of ~/J . We
take |ψ(0)〉 = ⊗j |↓〉j ≡ |⇓〉 with all spins down, corre-
sponding to a fully polarized ferromagnetic initial state.
This state is annihilated by the Ŝ−j operators in Eq. (6),
which leads to simplifications in the resulting equations.
Other initial conditions can be considered, with compa-
rable computational cost, provided they can be explicitly
expressed in the spin basis [46]. For the initial state |⇓〉,
the Loschmidt amplitude is given by

A(t) =
〈 N∏
j=1

exp

(
−
ξzj (t)

2

)〉
φ
, (11)

where the disentangling variables ξzj satisfy the SDEs (7)
with the appropriate model specific coefficients. Eq. (11)
is a general result for the ferromagnetic initial state,
which applies to the large class of spin-1/2 systems with
the Heisenberg Hamiltonian in Eq. (1). Analogous ex-
pressions can be obtained for any initial state that can be
written in the Ŝzj basis by acting on it with Eq. (6). The
amplitude (11) can be obtained by averaging over differ-
ent realizations of the stochastic process; the computa-
tion is readily parallelizable, as the stochastic trajectories
can be simulated independently. In Fig. 1 we plot the as-
sociated rate function λ(t) = −N−1 ln |A(t)|2, for unitary
evolution in a non-zero transverse field. For quenches
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FIG. 1. Loschmidt rate function λ(t) for the 1D quantum
Ising model following a quantum quench from Γ = 0 to Γ =
16 Γc, across the quantum critical point at Γc = J/2. The
results obtained from the SDE approach (filled circles) are
in excellent agreement with ED (solid line) for N = 7 spins.
The results show clearly resolved peaks. The SDE results
were obtained by averaging over 5 × 105 realizations of the
stochastic process with a discretization time-step dt = 10−5.
Each batch of 105 simulations took approximately 1 day on 96
cores. The inset shows the first Loschmidt peak for the same
quench parameters andN = 14. The SDE result was obtained
as the average of 3.2× 106 trajectories with dt = 10−5.

across a quantum critical point, λ(t) is known to ex-
hibit sharp peaks, corresponding in the thermodynamic
limit to dynamical quantum phase transitions (DQPTs)
[47–49]. These DQPTs have recently been observed ex-
perimentally using trapped ions [50]. Fig. 1 shows that
the SDE method is able to resolve these peaks for a
quantum quench across the critical point at Γc = J/2.
In order to benchmark the approach, we compare the
SDE results with exact diagonalization (ED) performed
via the QuSpin package [51]. Although the computa-
tional resources required for solving the SDEs are much
greater than for ED for the small system sizes we fo-
cus on, we find excellent agreement. Remarkably, the
presence of the DQPTs is reflected in the disentangling
variables themselves. In Fig. 2 we plot the time evolution
of the distribution of χa(t) ≡ N−1

∑
j ξ

a
j (t) with a = z,

as suggested by Eq. (11). It can be seen in Fig. 2(a)
that both the average value and the width of the distri-
bution of Reχz(t) have smooth maxima in the vicinity
of the DQPTs, as further illustrated in the inset. Like-
wise, Imχz(t) shows pronounced signatures close to the
DQPTs, as indicated in Fig. 2(b); these features become
less visible with increasing N , and the overall phase of
the argument of Eq. (11) becomes uniformly distributed
over [−π, π] due to its scaling with N . Further insight
into the location of the DQPTs can be obtained from the
SDEs. From Eq. (7) it can be seen that the turning points
of Re〈χz(t)〉φ are determined by the zeros of Im〈χ+(t)〉φ
due to the exact relationship 〈χ̇z(t)〉φ = −iΓ〈χ+(t)〉φ for
the Ising SDEs. These zeros occur in close proximity to
the DQPTs as shown in Figs. 2(c) and 3. The expecta-
tion values 〈χz(t)〉φ and 〈χ+(t)〉φ and the characteristic
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FIG. 2. Time-evolution of the distribution of χz(t) ≡
N−1 ∑

j ξ
z
j (t) for the quantum Ising model following a quan-

tum quench from Γ = 0 to Γ = 16Γc with N = 7. (a) The
distribution of Reχz(t) shows smooth maxima and increased
fluctuations in the vicinity of the Loschmidt peaks (dashed
lines at t = 0.39, 1.18, 1.96, 2.75 obtained by ED). Inset:
the average value and width of the distribution of Reχz(t)
increases on approaching the Loschmidt peaks as illustrated
for the first peak. (b) The distribution of Imχz(t) also shows
signatures in the vicinity of the Loschmidt peaks. (c) Time-
evolution of Im〈χ+(t)〉φ for N = 7, 25, and 50. The zeros of
Im〈χz(t)〉φ occur in proximity to the turning points of λ(t).

times obtained from the classical distribution functions
show strikingly little dependence on the system size, with
results shown up to N = 50. For comparison, we show
the exact locations of the Loschmidt maxima obtained
by averaging the complete exponential in Eq. (11), in-
cluding both the real and imaginary parts of ξzj and their
correlations; see inset of Fig. 3. The results are in very
good agreement with ED.
Local Observables.— The stochastic approach can also

be applied to other physical observables including the
magnetization. Following a quench from an initial state
|ψ(0)〉, the local magnetization evolves according to

〈Ŝzi (t)〉 = 〈ψ(0)|Û†(t)Ŝzi Û(t)|ψ(0)〉. (12)

The forwards and backwards time-evolution operators
can be decoupled by independent Hubbard–Stratonovich
variables, φai and φ̃ai , with corresponding disentangling
variables ξai (φ) and ξ̃ai (φ̃). For a quantum quench start-
ing in the ferromagnetic ground state |ψ(0)〉 = |⇓〉 with
Γ = 0, and time-evolving with Γ 6= 0, one obtains

〈Ŝzi (t)〉 =

〈
fi

(
ξ(t), ξ̃(t)

)〉
φ,φ̃

, (13)

where

fi = −1

2
e−

∑
j

ξzj +(ξ̃zj )∗

2 [1− ξ+
i (ξ̃+

i )∗]
∏
j 6=i

[1 + ξ+
j (ξ̃+

j )∗].
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SDE Loschmidt peaks

FIG. 3. Characteristic times for the stationary points of
Re〈χz(t)〉φ corresponding to the zeros of Im〈χ+(t)〉φ following
the quench considered in Fig. 2. The times are in close prox-
imity to the Loschmidt peaks and have little dependence on
N . Inset: Comparison of the Loschmidt peak times obtained
from the SDE approach by averaging the complete exponen-
tial in Eq. (11), including its real and imaginary parts and
their correlations, and ED for different system sizes.

In Fig. 4(a) we show the time-evolution of the magnetiza-

tionM(t) = N−1
N∑
i=1

〈Ŝzi (t)〉 obtained from the stochastic

average in Eq. (13). The results are in excellent agree-
ment with ED for N = 3. As is usually the case for SDEs,
fluctuations in the stochastic variables grow at late times;
the use of smaller system sizes enables us to reach longer
time-scales in the presence of two Hubbard–Stratonovich
transformations. This allows us to verify that the time-
integrated magnetization M(t) = 1/t

∫ t
0

dsM(s) (inset)
approaches zero at late times as expected for the inte-
grable Ising model in the absence of a longitudinal mag-
netic field [52]. In Fig. 4(b) we show the dynamics of
M(t) in the presence of a constant integrability-breaking
longitudinal field h, so that Ĥ = ĤI + h

∑
j Ŝ

z
j . We con-

sider a quantum quench from the ferromagnetic ground
state |⇓〉 with Γ = 0 and h = 0 to Γ = 2J and h = 3J .
Again, the results are in excellent agreement with ED.
In this case, the time-averaged magnetization M(t) ap-
proaches a non-vanishing expectation value as expected
for the non-integrable Ising model with h 6= 0 [8]. The
asymptotic result is consistent with the thermal expec-
tation value obtained via ED.

Higher Dimensions.— A remarkable feature of the
stochastic approach is that it is not restricted to one-
dimensional systems. To illustrate this we examine the
quantum Ising model in 2 + 1 dimensions:

Ĥ2D
I = −J

∑
〈ij〉

Ŝzi Ŝ
z
j − Γ

∑
i

Ŝxi , (14)

where 〈ij〉 indicates summation over nearest neighbors.
In Fig. 5(a) we show λ(t) following a quench from Γ = 0
to Γ = 8J , across the 2D quantum critical point at

0 0.5 1 1.5 2
t

0

−0.5

0.5M
(t
)

(a)

ED
SDE

0 0.5 1 1.5 2
t

0

−0.5

M
(t
)

(b)

ED
SDE

0 2t
−0.5

0
0.5

M
(t
)

0 2t−0.5

0

M
(t
)

FIG. 4. (a) Time-evolution of M(t) for the quantum Ising
model following a quantum quench from Γ = 0 to Γ = 16 Γc.
The results obtained from the SDE (full circles) are in excel-
lent agreement with ED (solid line) for N = 3. Inset: the
time-averaged magnetization M(t) approaches zero at late
times, as expected for the integrable case with h = 0. The
SDE results were obtained by averaging over 106 realizations
of the stochastic process with dt = 10−5. (b) M(t) for the
non-integrable Ising model with h = 3J , after a quench from
Γ = 0 to Γ = 2J . The results obtained from the SDEs are
in agreement with ED for N = 3. Inset: the time-averaged
magnetizationM(t) approaches the thermal value calculated
via ED (dashed line) at late times, as expected for the non-
integrable case. The SDE results were obtained by averaging
over 106 realizations of the stochastic process with dt = 10−5.

Γ2D
c ∼ 1.523J [53, 54]. We initialize the system in the

ferromagnetic ground state |⇓〉 and time evolve the 2D
generalization of Eq. (11) using the SDEs in Eq. (8). The
results are in excellent agreement with ED for a 3 × 5
system. The 2D results in Fig. 5(a) show clear peaks in
λ(t), as found for coupled continuum chains and for clas-
sically tractable quenches from Γ =∞ to Γ = 0 [55, 56].
Here, however, the SDE results apply directly to the 2D
quantum lattice model (14), without continuum approxi-
mations or assumptions of classical evolution. Moreover,
the 2D DQPTs are signalled once again by the presence
of enhanced fluctuations in the distribution of the disen-
tangling variables, and the behavior of their classical av-
erages; see Fig. 5(b). The dynamics of these variables can
be tracked to larger system sizes as shown in Fig. 5(c) for
a 10×10 system. This provides a novel handle on the dy-
namics of higher-dimensional quantum many-body sys-
tems. As found in 1D, the time evolution of the classical
average 〈χz〉φ and its turning points are strikingly inde-
pendent of N . This, together with the form of Eq. (11),
suggests the possibility of developing a classical large de-
viation approach to quantum dynamics in future work.

Conclusions.— In this manuscript we have explored
the dynamics of non-equilibrium quantum spin systems
via an exact mapping to classical stochastic processes.
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FIG. 5. (a) Loschmidt rate function λ(t) for the 2D quan-
tum Ising model following a quantum quench from Γ = 0 to
Γ = 8J . The results obtained from the SDEs (filled circles)
are in excellent agreement with ED (solid line) for a 3×5 sys-
tem. The results show sharp peaks in λ(t) for quenches across
the critical point at Γ2D

c ∼ 1.523J . The SDE results were ob-
tained by averaging over 2.5×107 stochastic realizations with
dt = 10−5. (b) The corresponding distribution of Reχz(t)
for a 3× 5 system shows smooth maxima and increased fluc-
tuations in the vicinity of the Loschmidt peaks. (c) Time-
evolution of Reχz(t) for a 10× 10 spin system showing addi-
tional turning points. Inset: comparison of exact times of the
first Loschmidt peak (circles) and zeros of Im〈χ+〉 (crosses)
for square lattices of size up to N = 100 spins.

We have shown that this approach can handle the dy-
namics of integrable and non-integrable systems, includ-
ing those in higher dimensions. This approach provides
a valuable handle on challenging problems out of equilib-
rium and provides fundamental links between quantum
and classical dynamics. There are many directions for fu-
ture research including comparison with tensor network
and machine learning approaches, and the development
of enhanced numerical sampling techniques for the SDEs.
In particular, it would be interesting to investigate the
scalability of the method with increasing N . For a given
system size, the computational cost of a single realiza-
tion of the stochastic process scales like N . However, the
number of runs required increases more rapidly, with ini-
tial indications suggesting exponential growth. A more
detailed examination of the approach, including other
quench parameters and other observables, will be pre-
sented in future work [46].
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