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Abstract 

Background: We previously identified cardiac myosin-binding protein C (cMyC) in coronary 

venous effluent and developed a high-sensitivity assay by producing an array of monoclonal 

antibodies and choosing an ideal pair based on affinity and epitope maps. Compared to high-

sensitivity cardiac Troponin (hs-cTn), we demonstrated that cMyC appears earlier and rises 

faster following myocardial necrosis and is also more abundant. Contemporarily, we 

investigated (i) analytic sensitivity, (ii) whether cMyC can aid in the diagnosis of Acute 

Myocardial Infarction (AMI) (a) amongst unselected patients presenting to the emergency 

department (ED) and (b) presenting in a pre-hospital setting, (iii) derived and validated optimal 

cut-offs for the use of cMyC in a 0/1h algorithm for the rule-out/rule-in of AMI. 

Methods: We compared abundance of cMyC to hs-cTn by spiking cardiomyocytes/cardiac 

tissue into aliquots of human serum. We evaluated the clinical utility of cMyC by calculating 

the area under the receiver-operating characteristics curve (AUC) in 1,954 patients (17% AMI), 

for presentation and 1h-change values. Cut-offs were derived using a derivation/validation 

split, determining optimal thresholds based on NPV/PPV/triage efficiency for >390,000 

combinations. Net Reclassification Improvement (NRI) determined immediate triage 

effectiveness. In 776 patients (22% AMI) sensitivity & specificity were calculated from in-

ambulance blood draws using a real and feasible Limit of Detection (LoD) on a point-of-care 

testing (POCT) device for cTnT and cMyC, respectively. 

Results: cTnT, cTnI, and cMyC increased by 3.9ng/L (3.6-4.3), 4.3ng/L (3.8-4.7), and 

41.0ng/L (38.0-44.0) per µg of human myocardium. In the ED, the diagnostic accuracy for 

AMI was comparable between the three biomarkers in baseline blood samples. cMyC 

increased the diagnostic performance of hs-cTnI but not hs-cTnT 0&1h samples. NRI was up 
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to 30% better when comparing cMyC to hs-cTnT/I, translating into a more effective triage 

into rule-out and rule-in of AMI using a single blood test at presentation. The best performing 

cMyC 0/1h rule-out/rule-in algorithm matched the ESC hs-cTnT/I algorithms in terms of 

safety, and specificity in comparison to hs-cTnI, but not hs-cTnT. cMyC increased triage-

efficiency by 3.9-10.6%. Further, cMyC significantly increases the number of patients eligible 

for direct rule-out or rule-in based on a single blood test at presentation to the ED. 

In the pre-hospital setting, the diagnostic accuracy of cMyC was significantly higher than hs-

cTnT (0.839 vs 0.813, p=0.005). The POCT threshold of cTnT (50 ng/L, 10-fold LoD of 

laboratory assay) achieved a sensitivity of 40.5% [33.6-47.6%]; cMyC (12 ng/L, 30-fold LoD) 

achieved a sensitivity of 94.8% [91.2-97.7%]. Risk prediction was superior for cMyC at the 

POCT-detection limit. 

Conclusions: hs-cTnT/I and cMyC are exquisitely sensitive biological signals – all assays are 

able to detect the equivalent of necrosis of a single cardiomyocyte in spiked human serum. 

cMyC is more abundant than cTnT/I and provides discriminatory power comparable to hs-

cTnT/I for the diagnosis of AMI in all-comers, but identifies a greater proportion of patients 

with AMI in very early presenters. A standout feature is cMyC’s ability to more effectively 

triage patients into rule-out and rule-in categories, with comparable safety endpoints (as with 

hs-cTnT/I). This distinction is likely related to the documented greater abundance and more 

rapid release profile of cMyC. If used on a POCT platform, cMyC could significantly improve 

the early triage of patients with suspected AMI. 
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Chapter 1. Background to the project and pilot data 

Chest pain is a common symptom – according to recent literature, it is responsible for at least 

6% of presentations to emergency departments1–4, as well as 1% of visits to General 

Practitioners5 in England and Wales. This amounts to approximately 700,000 emergency 

department attendances of which approximately one-third are admitted (253,765 in 20116) but 

only 10% have a final diagnosis of Myocardial Infarction (MI).7 The financial burden caused by 

this inability to make a rapid and accurate diagnosis of Acute Myocardial Infarction (AMI) is 

substantial and is compounded by National Directives such as the 4-hour wait limit in A&E 

that mandate further assessment as an in-patient. In addition to this financial price, there is 

also a medical, psychological and social burden as some patients are exposed to antiplatelet and 

anticoagulant drugs, the psychological strain of acute admission and lasting impacts on 

employment, mortgage and life assurance, despite eventually having the diagnosis of AMI 

ruled out. The main reason why this situation has arisen is that fewer patients now have the 

diagnostic ECG changes of ST-elevation or depression that allow triage at presentation8,9 – in 

fact, 68% of all patients eventually diagnosed with an acute coronary syndrome (ACS) present 

with Non-ST elevation myocardial infarction (NSTEMI)10. Consequently, triage has become 

reliant on the elevation in the blood of the biomarker cardiac Troponin (cTn). This is 

enshrined in the Universal Definition of Myocardial Infarction11 by mandating the detection of 

a cardiac biomarker rise and/or fall for the diagnosis of AMI. This carries over to the 

European guidelines, which mandate the ‘measurement of a biomarker of cardiomyocyte 

injury, preferably high-sensitivity cardiac Troponin’ in all patients with suspected NSTEMI12. 

By the ESC’s own admission, the clinical implications of using high-sensitivity (hs) cTn assays 

include a 2-fold increase of detection of type 2 AMI, ~20% relative increase in detection of 
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type 1 AMI and ‘elevations up to 3-fold the upper reference limit (URL)…may be associated 

with a broad spectrum of conditions’. The very definition of a hs-cTn assay – according to the 

International Federation of Clinical Chemistry and Laboratory Medicine Task Force on 

Clinical Applications of cardiac Bio-Markers (IFCC TF-CB) – includes 1) a CV ≤10% at the 

99th centile value and 2) the ability to measure at least 50% of healthy individuals with 

concentrations above the assay’s Limit of Detection (LoD).13,14 The clinical reality of this 

advance in assay-technology is that many more patients test ‘Troponin-positive’, but not 

necessarily ‘AMI-positive’ – all in an attempt to overcome the limitations which made cTn 

inherently unsuited for early diagnosis of acute myocardial injury. 

1.1. Historical Background to the Development of hs-cTn assays 

Two limitations laid the foundation for the development of increasingly sensitive assay 

platforms to quantify cardiac Troponin concentrations: 1) In 1999/2000, the American 

Association for Clinical Chemistry and then the ESC embedded troponin as the biomarker of 

choice for the definition of MI.15,16 From a laboratory perspective, this shift was challenging: 

the 99th centile was used as a binary decision aid to discriminate between AMI and no AMI, 

and as such the proposed (im-)precision goal was a coefficient of variation ≤10% at the 99th 

centile. Unfortunately, none of the available assays at the time achieved this performance 

criterion. 2) The cardiac-restricted troponin isoforms (cTnT and cTnI) are only released slowly 

after myocardial injury reaching their peak concentration after about 18 hours.17,18 Clinically, 

more sensitive assay support earlier decision making in chest pain triage (as significant 

myocardial injury can be ruled out earlier), and as such provided an additional incentive to 

increase the analytic performance of cTn platforms.  
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With the advent of hs-cTn it has become clear that many patients with cardiovascular risk 

factors and/or underlying cardiac disease have cTn concentrations above the 99th centile in the 

absence of an acute event. This may, in part, be because – somewhat counterintuitively – the 

99th centile shifted as the assays became more sensitive too. Worryingly, these ‘chronic’ 

elevations in cTn have a prevalence as high as 50% in those with underlying chronic heart 

disease.19 The problem is that these are also the very patients who are at increased risk of AMI. 

It would therefore seem fairly obvious that when cTn concentration cut-offs are defined by the 

99th centile of a healthy population, specificity for AMI will suffer when using a healthy-

population-derived 99th centile as the ‘upper limit of normal’.20 This is indeed the case since 

when the assays are used in this way, as recommended by the American Heart Association 

(AHA), American College of Cardiology (ACC) and European Society of Cardiology (ESC), 

specificity for AMI is below 50%.21 This conundrum has been nicely summarised by Robert 

Jesse by commenting that ‘when troponin was a lousy assay it was a great test, but now that it’s 

becoming a great assay, it’s getting to be a lousy test’.22 As we continue to learn more about the 

biomarker, it becomes evident that these cTn-elevations do not represent ‘false-positive’ tests 

in the traditional sense, but form part of a spectrum of disease, which can lead to acute as well 

as chronic ‘elevations’ above the reference limit. (Analytic) False-positive cTn results are thus 

rather rare, usually due to interference (haemolysis, bilirubin, biotin), antibodies or skeletal 

muscle disease23,24 and it is more the perceived lack of ‘clinical specificity’, leading to confusion 

when using a 99th centile decision threshold, which can impact effective patient care.  

This lack of ‘clinical specificity’ for a particular disease entity adds to the conundrum, as hs-

cTn assays are also not as sensitive as initially hoped since they remain limited by the slow 

release of troponin. Only the latest ultra-sensitive Troponin assays (and one high-sensitivity 
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assay) reaches a detection limit that can reliably quantify >97% of (healthy) individuals, but 

impact on acute care provision has yet to be seen (and, to date, there are few random-access 

analysers available that can achieve that level of sensitivity).25,26 

Consequently, the ESC advocates the use of its 0/1hr rule-out/rule-in algorithm only in 

patients presenting >3 hours after chest pain onset. Further, the algorithm relies on the 

measurement of tiny delta-change values (<3 ng/L for hs-cTnT, <2 ng/L for hs-cTnI) to 

determine whether a patient has sustained acute myocardial injury or not. Such delta changes 

are time and vendor specific, complicating the matter further. This is problematic for two 

reasons: 1) At least hs-cTnT is subject to marked diurnal variation, characterised by a mean 

difference of 4 ng/L between morning and evening samples in healthy volunteers;27 2) within-

subject coefficient of variation values (CVI) appear to range from 3.4-24% for hs-cTnI and 1.2-

48.2% for hs-cTnT even during short-term repeats.28–30 This calls into question how many 

patients can actually benefit from 0/1hr rule-out pathways, given that most hs-cTn assays yield 

a CVA of around 20% below the 99th centile – which is precisely the concentration range where 

the delta-change values are used to triage the individual with chest pain (see also Kavsak et 

al.31). 

Several publications have reported on the variable effectiveness of the ESC algorithm in 

clinical practice – many patients have to undergo a second blood draw for correct triage, and 

only 20-30% of patients benefit from immediate rule-out/-in using the cut-offs published.32–34 

This poses logistical challenges for the Emergency Department. In addition, 30-50% of 

patients remain in an indeterminate risk zone, labelled ‘observe’ zone by the ESC, after the 

second blood draw. This might be related to variable prevalence of AMI, which is fluctuating 

between 4% in US and >17% in European populations35:  Prevalence can influence the size of 
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the observe zone through its impact on sample distribution – most patients with AMI would 

be ruled-in (as the ESC used thresholds with high positive predictive value (PPV; ≥70%) as 

cut-off – i.e. patients, who then do not contribute to the observe zone). The smaller the rule-in 

cohort, the more patients have to be either assigned to rule-out or observe categories. As a 

significant proportion of patients with cardiovascular comorbidities has quantifiable levels of 

hs-cTn19, it is likely that a proportion of these contributes to a large observe zone. To date, 

very few studies exist that have tested the 0/1h-algorithm prospectively in a real-life clinical 

environment – most published evidence is derived and validated in retrospective cohorts, 

which are carefully adjudicated but frequently built on the clinical interpretation of results from 

contemporary (sensitive) cTn assays. 

From the synopsis above it is clear that new biomarkers are needed but the only way they can 

improve the triage process is if they possesses equivalent cardiac selectivity to cTn but (1) rise 

more rapidly after acute myocardial injury (advances sensitivity) and/or (2) have a lower 

‘background’ concentration in those with vascular risk factors or underlying chronic heart 

disease (advances ‘clinical specificity’, when used for chest pain triage and – in particular – the 

diagnosis of Acute Myocardial Infarction). 

1.2. Cardiac testing on point-of-care – can it be done? 

Significant research & development has been undertaken to migrate cardiac troponin assays to 

point-of-care testing (POCT) analysers – with, to date, limited success owing to inferior 

analytical sensitivity, precluding the use for rapid rule-out of AMI. Commercially available are 

e.g. the Roche Cobas h323 handheld instrument or the Abbott i-STAT device. Both have in 

common that the analytic sensitivity does not reach the laboratory equivalent: The Cobas h323 

can detect a laboratory-equivalent value of 50 ng/L (POCT LoD, correct at date of 
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submission) – about 3-fold the LoQ or 10-fold the LoD of the laboratory assay.36 The result is 

reported as ‘negative’ <50 ng/L, ‘positive’ at 50-100 ng/L, and quantitatively positive with a 

numerical value >100 ng/L.  The i-STAT is not harmonised with the latest Abbott Architect 

hs-cTnI assay, and reaches a sensitivity equivalent to the contemporary Abbott cTnI assay, but 

with discordance in 16% of results.37  

Other biomarkers have been evaluated: Copeptin, the C terminal part of pro-vasopressin, has 

been successfully migrated as a biomarker onto a POCT device and evaluated by collaborators 

in the pre-hospital setting before.38 An early increase after severe stress aids its use in the early 

rule-out of AMI, with NPVs ranging from 92.4% to 99.7%, depending on whether it was used 

in conjunction with (contemporary) troponin or not.39,40 It appears to add little to hs-cTn 

assays38,41, probably owing to a lack of specificity for myocardial injury. 

A maybe more suitable, cytoplasmic protein for the diagnosis of acute myocardial injury is 

heart fatty acid binding protein (H-FABP) – involved in fatty acid transport for mitochondrial 

oxidation, it was considered more specific to the myocardium than copeptin. Unfortunately, it 

has since been shown that it is expressed in other tissues too, albeit in smaller 

concentrations.42,43 The biomarker peaks early after injury (within 6 hours), however, in several 

previous publications the marker has been found to be inferior to high-sensitivity cardiac 

troponin alone and yields a small incremental benefit when used in addition to hs-cTn.44–47 

What might be required for successful migration and translation into clinical practice, either on 

laboratory or point-of-care testing platforms, is a protein that is as specific to myocardial injury 

as cardiac Troponin, but exhibits a similar release profile as cytosolic proteins, and is more 

abundant – both, in the cardiac muscle and the circulation following significant injury. This 

might overcome the limitations of analytical sensitivity and signal loss, naturally expected from 



Characterising a novel biomarker of early myocardial injury  7 

a miniaturisation of advanced biochemical reactions used in sandwich immunoassays – to be 

used on handheld, or near-patient testing devices.  

1.3. Cardiac Myosin-binding Protein C (cMyBP-C, cMyC) 

The ideal biomarker for early diagnosis of an acute coronary syndrome would have a release 

profile that is temporally analogous to cytosolic proteins (such as creatine kinase, fatty-acid 

binding protein and myoglobin) but possesses the cardiac-restricted expression of cardiac 

Troponins. Our group has identified cardiac myosin-binding protein C (cMyBP-C, cMyC; 

UniProtKB – Q14896) as a candidate marker48, a cardiac sarcomeric protein which is at least 

twice as abundant in the heart as cTnI or cTnT49. We have shown it is released into the serum 

after myocardial infarction in the mouse48 and in patients50, findings which have been 

confirmed by others51.  

1.4. Discovery and first description of Cardiac Myosin-binding Protein C (cMyC) 

Originally described as the C-protein by Offer et al. in 197352, its discovery relied on the 

characterisation of ‘impurities’ detected alongside myosin in sodium dodecyl sulphate (SDS) 

polyacrylamide gel electrophoresis (Figure 1). The resulting bands were labelled alphabetically, 

the third heaviest being correctly identified at the band corresponding to a molecular weight of 

140 kilo-Dalton (kDa). Offer et al. hypothesised that the protein’s main function might be that 

of a core protein, it might control or modify the movement of cross-bridges, or ‘serve a purely 

mechanical function’ – preserving integrity and stabilising the filaments.  
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Figure 1 – SDS gel electrophoresis of rabbit myofibrils; a) myofibrils; b) myofibrils + C-protein; c) C-protein; d) 

myofibrils + F-protein; e) F-protein; adapted from Offer et al.52 
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1.5. Structure of cMyC 

Three isoforms of MyBP-C exist in adult human muscle – fast and slow skeletal (encoded by 

MYBPC1 and MYBPC2 genes on chromosomes 12q23.3 and 19q33.3, respectively), and a 

cardiac isoform (cMyBP-C, gene MYBPC3 on chromosome 11p11.2).53,54 Uniquely, the cardiac 

isoform contains an additional immunoglobulin-like domain at the N-terminus (C0), 

phosphorylation sites in between domains C1 and C2 (M motif) and a 28-amino acid insertion 

in the C5 domain. The whole protein consists of 12 domains, of which there are 8 

immunoglobulin (IgC2)-like, 3 fibronectin (FN3) domains, plus the M domain mentioned 

above (Figure 2 + Figure 3). 

 

Figure 2 – Cardiac and skeletal isoforms of MyBP-C, adapted from Sadayappan et al.55 
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Figure 3 – cMyBP-C structure and regions interacting with myosin, adapted from Sadayappan et al.55 

The four phosphorylation sites, designated A-D by Gautel et al.54, are, amongst others, 

phosphorylated by protein kinase A (PKA; for sites A, B and C), protein kinase C (PKC) and 

calmodulin kinase (CAMK; for site B).56–58 It appears that folding of the protein prohibits 

access to site D.59  

In 2008 Luther et al., using electron microscopy, imaged 9 bands of cMyBP-C crossing the 

thick and thin filaments in perpendicular orientation in the C-zones of the A-band (Figure 4).60  
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Figure 4 – Cardiac sarcomere (top) and 9 cMyBP bands crossing the A-band in the C-zone, adapted from 

Sadayappan et al.55; electron microscopic image obtained from rat myocardium, immunolabelled with anti-

cMyBP-C antibodies (bottom); adapted from Luther et al.60 

To date, the exact arrangement in the sarcomere remains unclear, and two models are being 

tested: 1) a trimeric collar model, where three cMyBP-C molecules form a collar around the 

thick filament core61, 2) a rod model where cMyBP-C interacts with its C-terminal domains 

along the thick filament axis, with the N-terminal domains extending towards the thin 

filament.62 
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1.6. Function of cMyC 

The uncertainty regarding the exact structural arrangement is further reflected in an incomplete 

understanding of the interaction between cMyBP-C and thick and thin filaments. Better 

understood are the effects of cMyBP-C phosphorylation, which is necessary for normal 

myocardial function and appears to protect from ischaemic injury.63,64 These effects are 

predominantly mediated by phosphorylation at Ser-273, Ser-282 and Ser-302 sites; which 

diminish after ischaemia/reperfusion injury, or in the context of heart failure and 

hypertrophy64, atrial fibrillation65 or in cardiomyopathies66. More specifically, mouse models 

have shown that loss of phosphorylation (through phospho-ablation by residue substitution) is 

sufficient to cause hypertrophy and cardiac dysfunction.64,67 

In the context of normal function, phosphorylation itself drives actin-myosin interaction and 

subsequently increases cross-bridge cycling rate – which in turn enhances cardiac 

contractility.68–71 

1.7. Hypertrophic Cardiomyopathy 

Gene defects affecting cMyBP-C have been extensively studied since the first description of 

two mutations causing hypertrophic cardiomyopathy (HCM) in separate kindreds 1995.72,73 

Better understood are the pathological consequences of gene defects affecting cMyBP-C. 

HCM affects about 0.25-1% of the population worldwide74–76, and mutations in cMyBP-C are 

responsible for about 1/3 of symptomatic cases.77 There are more than 350 unique mutations 

affecting cMyBP-C described to date78 (for an up-to-date list, see uniprot.org79),  >60% of 

mutations are C’-truncations – and are, intriguingly, rarely detected by western blot of 

myocardium from affected HCM patients77 (in the mouse model, a homozygous C’-truncation 

results in cMyBP-C null mouse hearts – equivalent to a homozygous knockout). This 
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observation is attributed to cell surveillance mechanisms that protect affected cells from the 

adverse effects of the truncated proteins.80 Thus, the phenotype of HCM is felt to be due to 

haploinsufficiency (a subtle reduction of the amount of cMyBP-C protein expressed since the 

healthy allele cannot fully compensate for the lack of protein expressed from the diseased 

allele).55 This reduces the overall amount of cMyBP-C expressed, but means the protein that is 

expressed is normal and unaffected.81 The other pathogenic variants of cMyBP-C, are missense 

mutations, resulting in single amino acid substitutions; with a range of associated phenotypes 

(from benign to severe). While they occur throughout the cMyBP-C protein (Figure 5), the 

domain linking C0 and C1 (enriched with proline and alanine residues; PA) seems to be 

exempt. More importantly, in particular with a view to the (later described) developed 

immunoassay, most missense mutations affect the C-terminal domains beyond C3. It also 

remains unclear whether, and how, individual missense mutations cause disease. Proposed 

effects are alteration of domain folding, direct impairment of the cMyBP-C function or, again, 

haploinsufficiency.77  
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Figure 5 – Missense mutations of cMyBP-C by domain, in bold where there are multiple variants at the same 

codon. Adapted from Harris et al.77 

1.8. Development of the in-house cMyC immunoassay 

Over the past years the group has been working to improve the analytic performance of the 

assay for cMyC and initially created an in-house assay with a lower limit of quantification 

(LLoQ) of 80ng/L – in detail described by Baker et al.50 In short,  3-month old Balb/c mice 

were immunized with either 1) 20 µg of recombinant C0C2 domains of cMyC or 2) four 

overlapping peptides spanning the sequence of the C0 region or the recombinant C5 domain 

of cMyC. Mouse spleen cells and cells of a myeloma cell line (P3X63Ag8.653) were fused and 

cultured. Candidate monoclonal antibodies were ranked using surface plasmon resonance 

(SPR) according to kinetic parameters. Competition studies were carried out comparing 

individual binding signals of each antibody in the presence of a competitor antibody, with a 

reduction of the binding signal >50% taken as an indication that the antibodies recognise 

overlapping epitopes. The best-performing antibodies (Clone 3H8 – 30 µL of 1 µg/mL; clone 
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1A4 – 30 µl of 1 µg/mL) were selected for the creation of a ‘sandwich’ 

electrochemiluminescence assay (MesoScale Discovery (MSD), Sector imager 2400). The 

standard curve was used to quantify and express cMyC concentrations as ng/L. This achieved 

an LLoQ of 80 ng/L (Figure 6 & Figure 7).  

 

Figure 6 – Structure of full-length cMyBP-C; phosphorylation sites involved in the regulation of myocardial 

contractility – Ser-273, Ser-282 and Ser-302 – highlighted in the M-domain (where Calpain-dependent cleavage 

occurs)82, and commonly detected N-terminal fragments, C0C2 and C0C1f. Binding sites for antibodies 1A4 

(blue) and 3H8 (red) are highlighted.  Adapted from Lipps et al.83 
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Figure 7 – The development of a quantitative immunoassay for human cMyC in serum. Panel A: Sequence 

alignment of cMyC with skeletal myosin binding protein C isoforms. The sequence recognised by monoclonal 

anti-cMyC antibodies 1A4 and 3H8 are shown in bold. The antibodies bind to cardiac-restricted sequences with 

organ specificity further verified by immunoblots (see Panel D). Panel B: SPR kinetic sensorgrams demonstrating 

Ka: 4.68±0.17 x 106 M-1 s-1

Kd: 4.47±0.27 x 103 s-1

KD: 9.55x 10-10 M

Ka: 1.03±0.022 x 107 M-1 s-1

Kd: 4.92±0.1 x 103 s-1

KD: 4.79x 10-10 M

121 PAPAAELGESAPSPKGSSSAALNGPTPGAPDDPIGLFVMRPQDGEVTVGGSITFSARVAG  180 Q14896 MYPC3_HUMAN
40 ______________PEDQS______PT___AEEPTGVFLKKPDSVSVETGKDAVVVAKVNG   77 Q14324 MYPC2_HUMAN
43 _____________ PGEEQ______AKQNANSQLSILFIEKPQGGTVKVGEDITFIAKVKA   83 Q00872 MYPC1_HUMAN
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the kinetic parameters of clone 3H8 (left) and 1A4 (right). These antibodies were selected from over 50 

hybridomas, and both antibodies are of high affinity. Panel C: Epitope competition sensorgram of 1A4 and 3H8 

binding to the C0C2 region of cMyC conjugated to a CM5 biosensor chip. Although antibodies recognise near 

adjacent epitopes, there is no appreciable interference between them. Near adjacency is needed since cMyC is 

fragmented in the circulation raising the possibility of separation of capture and detection epitopes if they were 

widely spaced. Panel D: Immunoblot of rat and human tissue demonstrating specificity of 3H8 and 1A4 

monoclonal antibodies. GAPDH was used as a loading control. Samples 1-9 are various rat tissue (1=ventricle, 

2=atria, 3=rectus abdominus, 4=soleus, 5=spleen, 6=kidney, 7=aorta, 8=liver, 9=brain) and 10 is human 

ventricle. Panel E: Representative C0C2 standard curve from cMyC ECL assay indicating the limit of detection 

(dashed line). This, in-house assay on a MesoScale Discovery enhanced chemiluminescent detection platform, was 

used to measure cMyC appearance and disappearance in Figures 2 and 3 below. Panel F demonstrates the 

performance characteristics of the assay, with a LoD of approximately 80 ng/L. Figures adapted from Baker et 

al.50 

1.9. In vivo models of myocardial infarction 

Using the quantitative immunoassay described above, cMyC release kinetics were  investigated 

in patients with ST-elevation myocardial infarction (STEMI, n = 20), undergoing therapeutic 

ablation of septal hypertrophy (TASH, n = 20) for hypertrophic cardiomyopathy (HCM; 

Figure 8), or having coronary artery bypass surgery (CABG, n = 20; Figure 9). In both models 

of myocardial infarction (STEMI, TASH), we detected an earlier peak of cMyC when 

compared to a high-sensitivity cTnT assay (STEMI, 9.3 ± 3.1 vs 11.8 ± 3.4 h, p <0.007; 

TASH, 9.7 ± 1.4 vs 21.6 ± 1.4 h, p <0.0001), a quicker accumulation (during first 4 h after 

TASH, 25.8 ± 1.9 vs 4.0 ± 0.4 ng/L/min, p <0.0001) and faster disappearance (post-CABG, 

decay half-time 5.5 ± 0.8 vs 22 ± 5 h, p <0.0001).50 

These data suggest cMyC may fulfil the above described criteria needed to improve chest pain 

triage, which is currently heavily reliant on troponin. Figure 8 shows cMyC rises more rapidly 
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after acute myocardial injury. Figure 9 shows cMyC falls more rapidly and this may translate 

into a lower background concentration in those with vascular risk factors and/or underlying 

chronic heart disease. Unfortunately, these data also show that the in-house assay does not 

have the analytic performance needed to measure cMyC in serum from healthy patients. This is 

required to measure the population-defined 99th centile. Hence, the host department 

commissioned a contract research company to develop an assay using the same 

capture/detection monoclonal antibodies, but on a high-sensitivity platform. 

 

Figure 8 – The accumulation of cMyC v cTnT after myocardial injury caused by intracoronary ethanol. Venous 

blood was collected frequently over the first 2, and up to 24, hours after therapeutic alcohol septal ablation for 

hypertrophic cardiomyopathy (TASH) using ethanol infused selectively into a septal perforating branch coronary 

artery. Summary data of absolute quantification of cMyC (open symbols) v cTnT (closed symbols) over time 

following TASH (n =20). Inset figure is a zoom of the first 240 mins. Over this time interval cMyC accumulates 
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in the serum approximately 6-times faster than cTnT (slope 25.8±1.9 v 4.0±0.4ng/L/min, p<0.0001). Figures 

adapted from Baker et al.50 

 

Figure 9 – The accumulation of cMyC (open symbols) v cTnT (closed symbols) after myocardial injury caused by 

surgical revascularisation. Venous blood was collected over 3 days following CABG. Summary data of absolute 

quantification of cMyC v cTnT over time following CABG (n =20). Inset figure is a zoom of the last 5 time 

points expressed as a % of peak concentration achieved in each patient. This normalization was used to remove 

the visual bias caused by the greater absolute concentration of cMyC.  The decay half-time for cMyC is 

considerably shorter than for cTnT (5.5±0.8 hrs v 22±5 hrs, P<0.0001). Figures adapted from Baker et al.50 

1.10. Development of a high-sensitivity cMyC immunoassay 

We previously reported on the development of a high-sensitivity assay using the same pair of 

monoclonal antibodies as described above.84 The new assay was developed on the Erenna 

platform (originally by Singulex Inc., California, USA), using the same antibody-pair (1A4, 

3H8) used for the in-house assay. This achieved a lower limit of detection of 0.4 ng/L, LoQ of 

1.2 ng/L (20% coefficient of variation (CV), and ≤10% CV at 99th centile). This was used to 
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measure cMyC in 360 stable patients without significant obstructive coronary artery disease 

and [hs-cTnT] <14 ng/L. cMyC was quantifiable in 359 patients (compared to 85 and 307 

patients with quantifiable hs-cTnT and hs-cTnI levels, respectively) and correlated positively 

with both Troponin assays (R = 0.56 for cTnT, R= 0.77 for cTnI). Further, this facilitated the 

calculation of the 99th centile for cMyC at 87 ng/L. The study demonstrated in stepwise 

multiple logistic regression analysis that age, gender, creatinine, pulmonary hypertension, as 

well as the use of certain medication (statins, loop diuretics, beta-blockers) all statistically 

predicted cMyC concentrations (R2 = 0.198, p<0.05).  

1.11. Risk of false-negative results in HCM patients? 

As summarised above, cMyBP-C mutations causing HCM are frequent but cause either 

truncation mutations resulting in haploinsufficiency (thus limited expression of the protein 

variant) or missense mutations with a phenotypically broad range. However, most missense 

mutations affect the C-terminal domains of cMyBP-C, and the (purposeful) antibody-

alignment with the N-terminal domains C0-C1 makes it very unlikely that the newly developed 

assay is at risk of missing cMyBP-C elevations in a HCM patient. The only known variant 

affecting a domain bound by our antibodies is MET-158, substituting Valine with Methionine 

at position 158 (target of 3H8) – felt to be a non-pathogenic polymorphism.85,86 The affected 

amino acid sequence is highlighted below – Figure 10. 
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100  EPMLAPAPAP AEATGAPGEA PAPAAELGES APSPKGSSSA 

    

140  ALNGPTPGAP DDPIGLFVMR PQDGEVTVGG SITFSARVAG 

1A4 

3H8 

Figure 10 – Amino acid sequence of cMyBP-C with variant MET-158 underlined; Antibodies 1A4 (blue) 

and 3H8 (red) at binding location 
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1.12. A Case for Testing a Novel Biomarker of Myocardial Injury? 

Chest pain triage is fraught with difficulties as physicians are increasingly caught at the 

interplay of sensitivity and specificity. Arguably, tissue-specificity of cTn is close to 100%24, but 

‘clinical specificity’ for AMI is hampered by using a 99th centile as decision threshold.  The 

technological advances in developing cTn assays to high-sensitivity tests come at the expense 

of losing this diagnostic specificity as analysers are increasingly able to provide quantifiable cTn 

levels in almost every individual. The emergency physician requires ultimate sensitivity and 

thus handles complex rule-in/rule-out algorithms to optimise care for the patient with 

suspected Acute Coronary Syndrome (ACS) at the front-door of the hospital. But ever-

increasing sensitivity cannot be the sole answer in an attempt to overcome inherent biological 

disadvantages of cTn – even with high-sensitivity assays, the ESC advocates a delay of 3 hours 

after chest pain onset for the first blood draw to take place. This has to do with the biology of 

Troponin-release, and is not assay-specific, but results in many patients being caught up in an 

‘observe’ zone of indeterminate risk. Without doubt, evermore-sensitive assays will bring a new 

reality of biomarker-interpretation to acute medical services around the world – the always-

quantifiable level of a cardiac biomarker ought to be interpreted in the context of the clinical 

presentation, as opposed to an antiquated black & white approach.  

cMyC is a promising novel biomarker of myocardial injury, which has favourable release-

kinetics to act as a better adjudicator of acute versus chronic myocardial injury. The faster rise 

ought to yield a positive result (for rule-in of AMI) earlier; an overall more dynamic release 

profile aids the early discrimination of a delta-change which is both analytically and clinically 

meaningful, from a chronic elevation of a cardiac biomarker which is directly correlated with 

(increasing) age and the number of comorbidities (thus ruling-out AMI). The ultimate goal 
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being the reassurance of a larger proportion of patients with suspected, but now excluded, 

myocardial infarction. This would focus active care on the patients with confirmed acute 

myocardial injury – ideally within a timeframe that fulfils the expectations of healthcare policy 

and the worried patient. 

This thesis aims to comprehensively compare the performance of our cMyC assay against the 

best commercially available signals – hs-cTnT (Roche Elecsys) and hs-cTnI (Abbott Architect): 

in (i) the quantification of myocardial tissue injury (Chapter 2), (ii) the immediate diagnosis of 

AMI, (iii) the risk-stratification and triage of early presenters and all-comers to the emergency 

department and (iv) the derivation and validation of a rapid rule-out/rule-in algorithm for 

effective triage of patients with suspected AMI. Finally, we will investigate the use of cardiac 

biomarkers in the Emergency Department of a central London hospital, allowing for the 

estimation of clinical impact cMyC could have on chest pain triage.  
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Chapter 2. Quantifying the release of biomarkers of myocardial necrosis from cardiac 

myocytes and intact myocardium 

The findings were published previously and are reproduced with amendments for inclusion in 

the thesis.  
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2.1. Abstract 

Background: Myocardial infarction is diagnosed when biomarkers of cardiac necrosis exceed 

the 99th centile, although guidelines advocate even lower concentrations for early rule-out. We 

examined how many myocytes and how much myocardium these concentrations represent. We 

also examined if dietary troponin can confound the rule-out algorithm. 

Methods: Individual rat cardiac myocytes, rat myocardium, ovine myocardium or human 

myocardium were spiked into 400 µL aliquots of human serum. Blood was drawn from a 

volunteer after ingestion of ovine myocardium.  High-sensitivity assays were used to measure 

cardiac troponin T (cTnT, Roche, Elecsys) troponin I (cTnI, Abbott, Architect) and myosin-

binding protein C (cMyC, EMD Millipore, Erenna). 

Results: The cMyC assay could only detect the human protein. For each rat cardiac myocyte 

added to 400 µL of human serum, cTnT and cTnI increased by 19.0 ng/L [95% CI 16.8–21.2] 

and 18.9 ng/L [95% CI 14.7–23.1], respectively. Under identical conditions cTnT, cTnI and 

cMyC increased by 3.9 ng/L [95% CI 3.6-4.3], 4.3 ng/L [95% CI 3.8-4.7] and 41.0 ng/L [95% 

CI 38.0-44.0]) per µg of human myocardium. There was no detectable change in cTnI or cTnT 

concentration after ingestion of sufficient ovine myocardium to increase cTnT and cTnI to 

≈1x108 times their lower limits of quantification.  

Conclusions: Based on pragmatic assumptions regarding cTn and cMyC release efficiency, 

circulating species and volume of distribution, 99th centile concentrations may be exceeded by 

necrosis of 40 mg of myocardium. This volume is much too small to detect by non-invasive 

imaging.  
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2.2. Introduction 

Cardiac troponin (cTn), released in the setting of myocardial necrosis, is engrained in the 

universal definition of myocardial infarction.11 This definition incorporates a diagnostic 

threshold concentration at the 99th centile for the general population.  More recent guidelines 

suggest rule-in and rule-out cut-offs widely spaced around the 99th centile and utilize small 

changes in concentration between first and second blood draw (the delta values) to identify 

acute myocardial injury.12 The guideline published by the European Society of Cardiology lists 

delta values derived from observational studies87–89 and advocates changes in the concentration 

of hs-cTnT (Roche) <3ng/L and hs-cTnI (Abbott) <2 ng/L, to identify patients for early 

discharge (rule-out). The low magnitude of the absolute and delta concentrations used to rule-

out MI have stimulated debate.90–93 To our knowledge, no previous study has established how 

many myocytes, or how much myocardium, needs to undergo necrosis to exceed the 99th 

centile, rule-out cut-off or rule-out delta values. We set out to address this question by 

simulating myocardial injury using defined numbers of cardiac myocytes and quantities of 

myocardium spiked into human serum. 

2.3. Methods 

2.3.1 Rat cardiomyocytes 

Adult rat ventricular myocytes were isolated from the hearts of male Wistar rats weighing 

~200–250g (B&K Universal Ltd.) by a collagenase-based enzymatic method as described in De 

Nicola et al.94 In brief, hearts were excised from terminally anesthetized and heparinized (60 

mg/kg sodium pentobarbitone and 100U sodium heparin, intraperitoneally) rats. Excised 

hearts were immediately cannulated and initially perfused for 5 min with HEPES – Tyrode 

solution containing following (mmol/L): 130 NaCl, 4.5 MgCl2, 0.4 NaH2PO4, 0.75 CaCl2, 4.2 
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HEPES, 20 Taurine, 10 Creatine and 10 Glucose. Hearts were then consecutively perfused 

with Ca2+-free HEPES – Tyrode solution containing 100 µmol/L EGTA (10 min) and 

HEPES – Tyrode solution containing 100 µmol/L CaCl2 and 1 mg/mL Type II collagenase 

(Worthington  Biochemical Corp., 8 min). All solutions were gassed with 100% O2 and 

maintained at 37 °C. Hearts were then removed from the perfusion apparatus, the ventricles 

were cut into small pieces, and agitated for a further 7 min at 37 °C. Isolated myocytes were 

separated from the undigested ventricular tissue by filtering through 200-micron nylon gauze, 

and the cells were allowed to settle by gravity (8 min). The supernatant was removed and 

replaced with HEPES – Tyrode solution containing 1% BSA and 500 µmol/L CaCl2. 

Myocytes were again allowed to settle, the supernatant was removed, and the cells were finally 

pooled and re-suspended in 30 ml of HEPES – Tyrode solution containing 1 mmol/L CaCl2. 

The pooled isolated myocytes were pelleted by brief centrifugation at 50 × g and washed at 

room temperature with modified M199 culture medium (Invitrogen) containing 2 mmol/L 

Creatine, 2 mmol/L carnitine and 5 mmol/L taurine supplemented with 100 IU/mL 

penicillin/streptomycin. Following further centrifugation at 50 × g, myocytes were finally re-

suspended in modified M199 medium. Myocytes were then plated onto 6-well culture plates 

pre-coated with laminin and allowed to attach for 90 min in an incubator (37 °C, 5% CO2). 

Unattached cells were removed after pre-plating for 2hrs and the culture medium was replaced 

with fresh modified M199 medium, and the cells were maintained overnight. Cultured rat 

cardiomyocytes were subsequently re-suspended in Tyrode solution.  Trypan blue staining 

revealed a viability of 45%. Cells were allowed to settle in Tyrode’s solution. The solution was 

subsequently removed and replaced with 10ml Tris (20mmol, pH 7.5), then centrifuged at 1000 

rpm for 3 minutes. The wash supernatant was discarded, and the cell pellet re-suspended in 

fresh Tris solution. Cell count was calculated using an automated cell counter (Bio-Rad 
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TC20TM). The results of the automated cell counter were calibrated to manual cell counts 

attained by visual inspection with a haemocytometer. The 10mL of resuspended pellet was 

then ultrasonicated (6 x 10s bursts on ice, with 10s intervals on ice). Dilutions of this solution 

were then spiked into 400 µL of banked human serum. 

Experiments with cultured rat myocytes were repeated using four different human serum 

samples to account for donor-dependent interaction between human serum and rat protein. 

Experiments were repeated once for two of the serum donors using a different stock solution 

of cultured myocytes, so as to account for variation between culture preparations. Cells were 

spiked into serum in increments of 10 cells, ranging from 1 cell to 90 or 100 cells (limited by 

the availability of cells and serum). These repeat experiments resulted in a total of 62 samples 

for assessment of linear correlation.  

2.3.2 Human myocardium 

Human myocardium was obtained from an explanted failing heart under Ethical Approval 

from the Royal Brompton and Harefield Trust BRU Biobank which complies with the 

Helsinki declaration of 1975. The tissue was transported in cardioplegia, and frozen at -80oC. 

Frozen myocardium was weighed (the exact weight was recorded), and the tissue was crushed 

in a percussion mortar for 10 seconds. Buffer solution (50ml Tris pH7.5 with 1 tablet protease 

inhibitor [complete EDTA-free, Roche]) was added to the pulverized tissue (1 mL of 

buffer per 100 mg of tissue). The subsequent solution was ultrasonicated on ice (6 x 10s bursts 

on ice, with 10s intervals on ice). Following ultrasonication, the solution was centrifuged at 

25000 rcf for 30 mins at 4 °C. The supernatant was frozen in liquid nitrogen and then stored at 

-80 °C. Dilutions of this solution were then spiked into 400 µL of banked human serum. 
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Experiments using human myocardium were limited in number by availability of myocardial 

tissue, and were repeated using serum obtained from three different donors. Myocardium was 

spiked into serum at a concentration of 1µg, 10 µg, and increments of 10 µg up to 100 µg. 

With addition of blank controls (serum + buffer), this resulted in a total of 36 samples for 

assessment of linear correlation.  

2.3.3 Dietary troponin consumption: 

Ovine left ventricular myocardium was boiled in water for 3 hours and then mechanically 

homogenized using a glass hand-held homogenizer. Buffer solution (50 mL Tris pH7.5 with 1 

tablet protease inhibitor [complete EDTA-free, Roche]), was added to the homogenized tissue 

(1 mL of buffer per 100 mg of tissue). The subsequent solution was ultrasonicated on ice (6 x 

10s bursts on ice, with 10s intervals on ice). Following ultrasonication, the solution was 

centrifuged at 25000 rcf for 30 mins at 4 °C. The supernatant was frozen in liquid nitrogen and 

then stored at -80oC. Dilutions of this solution were then spiked into 400 µL of banked human 

serum to generate a calibration curve. A healthy human volunteer with a baseline serum 

troponin (T and I) below the limit of detection had a 200 g dietary load of ovine left 

ventricular myocardium boiled for 3 hours. Serial venepuncture was performed from an 

antecubital fossa vein at 15, 60, 120, 180, 240, 1320, 1640 minutes after ingestion.  

2.3.4 Biomarker measurement 

The concentrations of cardiac troponin I (cTnI) and cardiac troponin T (cTnT) were measured 

using contemporary high-sensitivity assays (Abbott ARCHITECT [limit of detection (LoD) 1.9 

ng/L] and Roche Elecsys [LoD 5 ng/L], respectively).13,95,96 cMyC was measured by EMD 
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Millipore on the Erenna® platform using proprietary reagents as recently described [LoD of 

0.4 ng/L].84 A triplicate standard curve was run and used to interpolate the data.  

For all samples, the biomarker concentration in the blank control was subtracted from the 

total biomarker concentration of each sample, to control for variation in troponin 

concentrations within the human serum or the background signal generated by buffer alone. 

Samples of Tris buffer added to banked human serum (serving as controls for each 

experiment) returned cTnT values between LoD and 6.98 ng/L, cTnI values between LoD 

and 5.00 ng/L, and cMyC values between 11.37-26.78 ng/L. 

Likely compatibility of the high sensitivity troponin assays with rat cardiac troponin was 

assessed by basic local alignment search tool (BLAST) comparison of the amino acid sequence 

of rat troponin and the detection/capture epitopes for the high-sensitivity assay antibodies 

(supplemental Figure 14). The amino acid sequence for these epitopes was largely conserved 

between the human and rat proteins. This molecular suggestion of compatibility was borne out 

in the strong signal detected by the assays in rat and ovine cardiac tissues. 

2.3.5 Statistical analysis 

Linear regression analysis was used to assess correlation, and standardized residuals greater 

than ±3 standard deviations were excluded as outliers (n=1). Statistical analysis was conducted 

using SPSS version 22 (IBM Corp) and R version 3.3.0 (GUI 1.68, The R Foundation for 

Statistical Computing). 

2.4. Results 

The cMyC assay did not detect rat cMyC since the capture and detection antibodies are 

directed at human-specific sequences (Figure 750). There is a strong linear correlation between 
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rat cardiomyocyte number and cTn concentration (cTnI; R2=0.58, P<0.001, n=61) (cTnT; 

R2=0.83, P<0.001, n=62; Figure 11). We were able to detect, in 400 µL of serum, a cTn 

increase resulting from a single cardiomyocyte. The slope coefficients for both cTnI and cTnT 

were similar (cTnI; slope = 18.9 ng.L-1/cell [95% Confidence Interval (CI) 14.7–23.1]) (cTnT; 

slope = 19 ng.L-1/cell [95% CI 16.8–21.2]) and the lines of regression did not deviate 

significantly from the origin (cTnI y-intercept = -44.6 ng.L-1 [95% CI -128.8-39.5] and cTnT y-

intercept = 24.4 ng.L-1 [95% CI -18.9-67.7]) . One outlier was identified during linear 

regression with a standardized residual greater than 3 standard deviations. No other outliers 

were identified, and in the context of strong linear correlations either side of this point, this 

outlier was assumed to represent a user-operated pipetting error. 
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Figure 11 – Graph showing linear regression between number of rat cardiomyocytes and resultant cardiac 

biomarker concentration as measured by high-sensitivity assays (hs-cTnI and hs-cTnT) in 400 µL of human 

serum; cTnI (n=61, excluding one outlier; y=18.9 [95% CI 14.7–23.1] *x – 44.6 [95% CI -128.8-39.5]) cTnT 

(n=62; y=19 [95% CI 16.8–21.2] *x – 24.4 [95% CI -18.9-67.7]), both with spikes into serum from 4 different 

individuals. Light grey shading depicts the boundaries of the 95% confidence intervals, with dark grey illustrating 

their overlap 

In experiments using human myocardium, both the cardiac troponins and cMyC were strongly 

linearly correlated with mass of myocardium (cTnI; R2=0.92, P<0.001, n=36, slope = 4.3 ng.L-

1/µg [95% CI 3.8-4.7],  y-intercept = 4.4 ng.L-1 [95% CI -20.1-28.8]), (cTnT; R2=0.93, P<0.001, 

n=36, slope = 3.9 ng.L-1/µg [95% CI  3.6-4.3], y-intercept = 19.0 ng.L-1 [95% CI -1.6-39.5]), 
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(cMyC; R2=0.96, P<0.001, n=36, slope = 41.0 ng.L-1/µg [95% CI 38.0-44.0], y-intercept = 91.1 

ng.L-1 [95% CI -79.3-261.4], Figure 12). 

 

Figure 12 – Graph showing linear regression between mass of human myocardium and resultant cardiac 

biomarker concentration as measured by high-sensitivity assays (hs-cTnI and hs-cTnT) in 400 microliters of 

human serum; n=36 for each biomarker, each with spikes into serum from 3 different individuals. Light grey 

shading depicts the boundaries of the 95% confidence intervals. Regression equations: cTnI: y = 4.3 [95% CI 3.8-

4.7] *x + 4.4 [95% CI -20.1-28.8], cTnT: y = 3.9 [95% CI  3.6-4.3] *x + 19 [95% CI -1.6-39.5], cMyC: y = 41 

[95% CI 38.0-44.0] *x + 91.1 [95% CI -79.3-261.4] 

Cooked ovine myocardium had a much greater troponin content than human myocardium, 

and a robust linear correlation was established between mass of myocardium and troponin 
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release (hs-cTnI; R2=0.992, P<0.0001, n=12, slope = 4928 ng.L-1/µg [95% CI 4616-5241]), 

(hs-cTnT; R2=0.998, P<0.0001, n=12, slope = 11512 ng.L-1/µg [95% CI 11225-11798]). 

Despite this extreme sensitivity, at all measured time points following an oral load of similarly 

processed ovine myocardium, the concentration of both cTnI and cTnT remained below the 

LoD for their respective assays when measured in human peripheral venous circulation (Figure 

13).  

 

Figure 13 – Graph demonstrating available serum biomarker concentration after an oral load of cooked ovine 

myocardium at the following time-points: 0 min, 15 min, 1 hr, 2 hrs, 3 hrs, 4 hrs (missing for cTnI), 22 hrs, 28 

hrs; all measured values remained below the Limit of Detection (LoD) for high-sensitivity assays (hs-cTnT and 

hs-cTnI) for the respective biomarkers (cTnT=5 ng/L, cTnI=1.9 ng/L; indicated on plot with dotted lines) 
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2.5. Discussion 

This study documents the extreme sensitivity of the high-sensitivity cTn assays, which are 

capable of detecting release from a single cardiomyocyte in a 400 µL blood sample. All 

investigated biomarkers correlate strongly with the mass of human myocardium. The 

observation that each microgram of human myocardium releases less cTn than a single 

cardiomyocyte most likely results from the heterogeneous cellular makeup of the human heart 

samples and the difficulty in efficiently liberating sarcomeric protein.  

Despite the extreme sensitivity of cTn assays, we were unable to detect exogenous cTn in the 

peripheral blood stream after an oral load. 

Based on our results, if we assume a circulating plasma volume and biomarker distribution of 

2.75 litres without clearance, the 99th centile concentrations for high-sensitivity assays for cTnT 

(Roche, 14 ng/L),  cTnI (Abbott, 26 ng/L), and cMyC (87 ng/L) can be exceeded by necrosis 

of 0.025 g, 0.042 g, and 0.015 g of myocardium; respectively (for calculation see appendix). 

The recent guideline by the European Society of Cardiology defines ‘rule-out’ and delta values 

for cTn, below which cardiac injury is unlikely.12 These values are close to the LoD 

concentrations of the high-sensitivity assays for cTnT and cTnI (5 ng/L and 1.9 ng/L, 

respectively). Our experiments suggest that 9 mg and 3 mg of human myocardial necrosis are 

required to increase cTnT and cTnI above their LoDs as measured by high-sensitivity assays, 

respectively. The corresponding value for cMyC (LoD 0.4 ng/L) is 0.07 mg. Our experiments 

simulate a scenario of complete myocardial necrosis, with subsequent rapid reperfusion and 

distribution of the coronary effluent into the systemic circulation. We have also ignored the 

circulating species of cTnI, cTnT and cMyC. Collectively these, and other unknown factors, 
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make it likely that diagnostic thresholds would in reality require myocardial necrosis more 

substantial than we have predicted. 

The models of myocardial necrosis we have adopted are reductionist and convenient but differ 

markedly from necrosis of blood-perfused myocardium in vivo. Firstly, the process of 

cardiomyocyte necrosis in vivo is more complex than tissue homogenization. The vast majority 

of cTnI, cTnT and cMyC resides in the crystalline sarcomere and release from this 

compartment is slow. The cause for this slow and incomplete release is uncertain but is likely 

related to the quality of reperfusion since the temporal profile of cTnT differs markedly 

between alcohol septal ablation (low microvascular reflow) and cardioplegia (high 

microvasculature reflow).50 In addition, myocardial cTnT can be readily released from 

myocardium by serum alone, without the need of specialist extraction buffers.97 Although, we 

didn’t measure the cTnI, cTnT or cMyC remaining in the insoluble fraction (pellet after 

centrifugation) following homogenization, it is likely extraction was inefficient since the 

concentration of cTnT we observed in human myocardium is lower than those published 

previously.18,97 Secondly, the protracted release in vivo provides ample opportunity for post-

translational modifications, that will be absent in our models of rapid myocardial 

homogenisation in calcium-free lysis buffers containing protease inhibitors. For example, cTnI, 

cMyC and cTnT appear in the circulation as peptides, as well as intact proteins.50,51,98,99 In the 

case of cMyC, calpain-mediated cleavage is regulated by phosphorylation events within the M 

domain that impede the formation of an N-terminal peptide63 that is both immunogenic83 and 

negatively inotropic.100  

Immunoassays may not have the same sensitivity for these modified forms of cTnI, cTnT and 

cMyC as they do for the parental unmodified protein.98,101 If the cleavage event occurs between 
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the epitopes recognized by the capture and detection antibodies, the immunoassay will become 

insensitive. Conversely, other post-translational modifications are known to enhance the 

sensitivity of immunoassays. For example, the sensitivity of assays for cTnI can be enhanced 

by oxidation leading to intramolecular disulphide formation and also when cTnI is in a binary 

or ternary complex with cTnC and cTnT.98 Furthermore, the abundance of circulating cTnI, 

cTnT and cMyC peptides changes over time in an individual patient as well as between 

patients.50,98,99 There can also be marked differences between individual patients in the 

proportions of cTnT and cTnI that appear in apo versus binary and ternary forms.98 These 

complexities were absent in our experiments where heart tissue was rapidly homogenized, 

protease inhibitors prevented protein cleavage, opportunities for oxidation were limited and 

there was no added calcium to maintain ternary complexes of cTnI/cTnC/cTnT.98 These 

details illustrate the simplistic assumptions made in our in vivo extrapolation of volumes of 

myocardial necrosis needed to cross diagnostic thresholds. Nonetheless, they do not invalidate 

the extreme analytic sensitivity of the cTnT, cTnT and cMyC assays and the microscopic 

nature of the myocardial necrosis events that drive clinical decision-making. 

Several publications have previously challenged the thresholds for AMI rule-out as well as the 

application of very small delta values in clinical practice.90–92,102 In their analysis Chenevier-

Gobeaux et al questioned the cut-off for rule-out at the limit of detection (5 ng/L for cTnT); 

prompting Peter Kavsak to comment that there might ‘be other analytical factors at play that 

affected the performance of hs-cTnT’.90,91 Clearly, novel ultra-sensitive cTnI assays (as available 

on Singulex Erenna and Clarity platforms25,26) would circumvent some of the issues above, but 

successful migration to a random-access laboratory analyser is still awaited. 
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Hickman et al.92 further highlighted the challenges associated with such narrow decision-limits 

and the use of deltas when the cTn release might have plateaued – as is the case with late 

presentations to the emergency department and cardiac troponin release caused by events 

other than atherosclerotic plaque instability. Turer et al. have added to the diagnostic 

conundrum by describing low-level cTnT release in the context of ischemia without frank 

infarction.102  

Although new myocardial scarring on cardiac magnetic resonance imaging (cMRI) has been 

correlated to cTn measured with a second generation assay103, this is limited by the inability of 

cMRI to detect infarct size smaller than a gram of myocardium. To our knowledge, no 

previous study has directly correlated cardiac damage at a tissue or cellular level to biomarker 

concentrations measured using contemporary high-sensitivity assays. 

While there is a significant body of evidence to suggest that di- and tri-peptides, derived from 

dietary protein can cross the gastrointestinal tract into the portal circulation, the absorption of 

larger intact polypeptides is controversial.104 Based on the closely spaced capture/detection 

epitopes utilized by the cTnI and cTnT assays, 20-mer polypeptides should generate a signal 

(see appendix). Given the exceptional sensitivity of the high-sensitivity troponin assays, we 

hypothesized that we would detect longer cTnI and cTnT polypeptides in the systemic 

circulation. This hypothesis was supported by the fact that both of the high-sensitivity assays 

for cTnT and cTnI were substantially more sensitive to cTn in cooked ovine than in human 

myocardium. Following a meal of 200 g of ovine myocardium, venous blood was sampled 

from a healthy human volunteer at hourly time intervals. Assuming that, a) the human 

digestive tract is able to liberate all the cTnT in ovine myocardium in a manner similar to 

ultrasonication; and b) the entire quantity of liberated cTnT is able to cross into the systemic 
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circulation, extrapolation of the calibration curve indicates that serum cTnT should be 

increased by 335 milligrams/L. The high sensitivity cTnT assay has sensitivity to detect 5 ng/L 

increments in serum troponin. As such, only 1.5x10-6 % of the dietary cTnT needed to be 

released from the myocardium and absorbed into systemic circulation to produce a detectable 

increase in serum cTnT. Nonetheless, measured cTnT remained consistently below the LoD at 

all time points after the dietary load. The same observation was made with cTnI. Even with the 

unrealistic assumption of complete liberation of troponin from the full mass of ingested 

myocardium, the orders of magnitude involved suggest the gastrointestinal tract is virtually 

impervious to absorption of intact polypeptides of troponin.  

In conclusion, we have, for the first time, correlated the 99th centile thresholds of cardiac 

troponin to the approximate mass of myocardium undergoing complete necrosis. Our 

experiments have revealed the exquisite sensitivity of the contemporary biomarker assays, with 

necrosis of just 40 mg of myocardium, equivalent to 0.015% of the heart, sufficient to increase 

serum concentrations above the 99th centile. 
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2.6. Appendix 

2.6.1 Calculation of mass of tissue having to be destroyed to increase cTnI above 99th centile: 

a) cTnI is increased by 4.28 ng/L per 1 microgram (µg) of destroyed tissue in 400 microlitres 

of serum (as per experiment methodology). 

b) We have assumed a circulating volume of 2,750,000 microliters (2.75 litres). 

c) Thus 6,875 micrograms of tissue need to be destroyed to increase cTn by 4.28 ng/L at 

circulating volume.  

d) The 99th centile of the high-sensitivity assay for cTnI is 26 ng/L 

e) (26/4.28)*6875 micrograms = 41,764 micrograms = 41.7 milligrams 

f) 41.7 milligrams is the mass of tissue that needs to be destroyed to increase cTnI above the 

99th centile at the level of the circulating volume.  

2.6.2 Supplemental figure – BLAST data: 

Abbott ARCHITECT (hs-cTnI) 

Capture (87-91) 

87 88 89 90 91 

G L G F A 

 

Capture (24-40) 

24 25 26 27 28 29 30 31 32 
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S N Y R A Y A T E 
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Detection 41-49  
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Roche Elecsys (hs-cTnT) 

Capture (136-147) 

 

 

 

Detection (125-131) 

125 126 127 128 129 130 131 

K E E E E L V 

Figure 14 – Sensitivity of human troponin assay antibodies for the rat protein. Numbers represent the amino acid 

position in the human protein. Letters represent standard amino acid abbreviations, and reflect the amino acid in 

136 137 138 139 140 141 142 143 144 145 146 147 

R I E R R R A E R A E Q 
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the corresponding position of the human protein. Greyed-out amino acids are conserved between the human and 

rat troponin. Amino acids in white are not conserved and are different in the rat troponin.  
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Prelude to Chapter 3 

Findings in chapter 2 highlight the extreme sensitivity of hs-cTn assays, but even more so of 

the novel cMyC assay. In parallel to the analysis of cMyC in large-scale, diagnostic chest pain 

trials, it was felt relevant to assess how transferable findings in European or American chest 

pain studies are to the UK environment. For this purpose, we undertook a single-centre 

prospective cohort study based on audit data obtained from hospital records collected 

routinely as part of clinical care at St Thomas’ Hospital, London. This would allow estimation 

of the number of patients routinely undergoing cTn testing in a large teaching hospital and 

outline the clinical course and length-of-stay. Thus, the possible impact of a novel biomarker 

on chest pain triage – as performed in a healthcare environment relevant to the host institution 

– can be estimated in due course. The following paper represents a summary of the findings 

and discusses real-life challenges when using novel diagnostic algorithms. 

The findings were published previously (DOI: 10.1177/2048872617746850) and are 

reproduced with amendments for inclusion in the thesis.  
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Chapter 3. A single centre prospective cohort study addressing the effect of a rule-in / 

rule-out troponin algorithm on routine clinical practice 
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3.1. Abstract 

Aims: In 2015 the European Society of Cardiology (ESC) introduced new guidelines for the 

diagnosis of acute coronary syndromes in patients presenting without persistent ST-segment 

elevation. These guidelines included the use of high-sensitivity troponin assays for 0 hour ‘rule-

in’ and ‘rule-out’ of acute myocardial injury. Whilst these algorithms have been extensively 

validated in prospective diagnostic studies, the outcome of their implementation in routine 

clinical practice has not been described. The present study describes the change in the patient 

journey resulting from implementation of such an algorithm in a busy inner city Emergency 

Department. 

Methods & Results: Data were prospectively collected from electronic records at a large 

Central London hospital over seven months spanning the periods before, during and after the 

introduction of a new high-sensitivity troponin rapid diagnostic algorithm modelled on the 

ESC guideline.  

Over 213 days, 4644 patients had a high-sensitivity troponin T (hs-cTnT) measured in the 

Emergency Department. 40.4% of patients could be ‘ruled-out’ based on the hs-cTnT 

concentration at presentation, whilst 7.6% could be ‘ruled-in’. Adoption of the algorithm into 

clinical practice was associated with a 37.5% increase of repeat hs-cTnT measurements within 

1.5 hours for those patients classified as ‘intermediate risk’ on presentation.  

Conclusions: Introduction of a 0hr ‘rule-in’ and ‘rule-out’ algorithm in routine clinical practice 

enables rapid triage of 48% of patients, and is associated with more rapid repeat testing in 

intermediate risk patients. 

Keywords: High-sensitivity cardiac Troponin T; acute coronary syndrome; rule-in / rule-out 

algorithm.  
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3.2. Introduction 

Chest pain and related complaints are estimated to account for 6% of all attendances to UK 

Emergency Departments (ED).1 Determining which of these presentations represent an acute 

coronary syndrome, quickly and with high sensitivity and specificity, is an everyday challenge. 

The measurement of cardiac-specific biomarkers released into the circulation is invaluable, and 

the measurement of cardiac Troponin (cTn) I and T is engrained in the universal definition of 

myocardial infarction.11 However, the slow release of cTn, in combination with the relative 

analytic insensitivity of conventional cTn assays, has necessitated serial measurements 

separated by at least 6 hours to increase both sensitivity and specificity. This period of 

diagnostic uncertainty prolongs the patient’s hospital stay, delays their treatment and has an 

associated fiscal cost. The advent of high sensitivity troponin assays has encouraged 

investigators to examine shorter intervals between repeat troponin estimations. The high 

sensitivity assays have also allowed the testing of diagnostic cut off concentrations well below 

the population defined 99th centile to rapidly rule out acute myocardial injury. These 

innovations culminated in the European Society of Cardiology (ESC) releasing new guidelines 

in September 2015 for the management of patients without persistent ST elevation.12,87,105,106 

These guidelines adopt a ‘rule-out’ troponin value significantly below the 99th centile and a 

‘rule-in’ value well above the 99th centile. Between these values of diagnostic clarity, the change 

in troponin level over the course of 1 hour can guide further rule-in or rule-out. In October 

2015 we proposed introduction of the 0 hour rule-in / rule-out component of the ESC 

algorithm at St Thomas’ Hospital (based in central London and home to a tertiary cardiac unit) 

and adopted the guideline, following an internal consultation process, during December 2015 – 

January 2016. This internal consultation process also involved extension of teaching to 

Emergency Department staff, both nursing and physician, as to the appropriate use of the 



Characterising a novel biomarker of early myocardial injury  48 

algorithm. All ‘post-intervention’ data were collected after implementation and associated staff 

training. 

Whilst the ESC guidelines help streamline the diagnostic pathway, there has been little 

information regarding their impact on front-line medical services. The present study, based in 

the ED of a large Central London hospital, aims to a) prospectively assess the risk 

classification of patients based on 0 hour hs-cTnT measurement, and b) examine the effect of 

clinical implementation of the 0 hour component of the ESC guideline on the patient pathway. 

In particular, we document changes in the pattern of repeat troponin measurements and 

overnight admission. 

3.3. Methods 

Data was prospectively collected on all high-sensitivity cardiac troponin T (hs-cTnT) assays 

performed on serum from patients presenting to the ED of St Thomas’ Hospital, between 

September 2015 and March 2016. This time-period of data collection spans the pre-

intervention (September-November), transition (December), and post-intervention (January-

March) phases of algorithm implementation. hs-cTnT assays were performed using the Roche 

Elecsys® platform (using a high-sensitivity reagent instead of a contemporary: 99th percentile 

of a healthy reference population reported at 14 ng/L, imprecision corresponding to 10% CV 

at 13 ng/L, limit of blank at 3 ng/L, limit of detection at 5 ng/L). The hs-cTnT value 

measured in the ED was matched to any subsequent hs-cTnT measurement on the same 

patient within 24 hours. Further information on admission, admitting specialty, and length of 

stay was collected from electronic discharge records. Data on presenting symptom was 

obtained from the system used for triage and clinical tracking in the Emergency Department 

(Ascribe Symphony); this captures the prime medical complaint however does not encompass 
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a physician’s interpretation. Discharge diagnoses are locally recorded according to the 10th 

revision of the International Statistical Classification of Diseases and Related Health Problems 

(ICD-10) and were subsequently categorised into diagnostic groups by two adjudicators (JM & 

TEK). 

The new algorithm for the diagnostic management of possible NSTE-ACS can be summarised 

as follows: hs-cTnT is measured on arrival to ED for patients with a history suggestive of ACS 

and an ECG without persistent ST elevation. ACS can be ‘ruled-out’ in low-risk patients with a 

hs-cTnT on presentation of <5 ng/L, and ‘ruled-in’ for those patients with an initial hs-cTnT 

of >50 ng/L (Figure 15). Although not adopted into our algorithm, the ESC advises that in 

patients with an initial hs-cTnT of 5-51 ng/L, a repeat hs-cTnT at 1 hour is performed, with 

rule-out if the initial hs-cTnT is <12ng/L and a change in hs-cTnT (ΔTnT) is <3 ng/L, and 

rule-in if ΔTnT is ≥5 ng/L. 
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Figure 15 – The high-sensitivity troponin T (hs-cTnT) rapid diagnostic algorithm introduced at St Thomas’ 

Hospital 

For the purposes of our analysis, a patient was considered to have had a repeat hs-cTnT if a 

second sample was measured within 24 hours of the first. Patients were excluded from analysis 

if the first sample haemolysed. hs-cTnT measurements returned below the limit of blank (<3 

ng/L) were all ascribed a value of 2.99 ng/L to allow for data analysis. Continuous variables 

were assessed for normality using Shapiro-Wilk Test. All data are expressed as medians [1st 

quartile, 3rd quartile] or means (standard deviation) for continuous variables (compared with 

the Mann-Whitney-U test or student's t-test), and for categorical variables as numbers and 

percentages (compared with Pearson chi-square). Hypothesis testing was two-tailed, and p 

values <0.05 were considered statistically significant. Statistical analysis was conducted using 
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SPSS version 22 (IBM Corp., Armonk, New York) and R, version 3.3.0 GUI 1.68 (The R 

Foundation for Statistical Computing), including ggplot2. 

3.4. Results 

Over a period of 213 days, spanning the introduction of the new diagnostic protocol, a total of 

4644 patients had a hs-cTnT measurement in the ED. A summary of the presenting complaint 

of all patients with hs-cTnT measurements in the study period (September 2015 – March 2016) 

is presented in Table 1. In short, of the patients with a measured hs-cTnT (n=4644), chest pain 

was the primary presenting symptom in 45.7% (n=2120), and shortness of breath in 8.2% 

(n=382) – see Figure 16. Median age was 54 years [Interquartile Range (IQR), 41-70]. 

 

Figure 16 – Bar graph summarising the presenting complaint of all patients (n=4644) with a measured hs-cTnT in 

the entire study period; frequencies quoted as percentage of the cohort 
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Presenting complaint All attendances (%) 
Abdominal pain 141 (3.0) 

Back pain 55 (1.2) 

Chest pain 2120 (45.7) 

Collapsed adult 211 (4.5) 

Falls 91 (2.0) 

Shortness of breath 382 (8.2) 

Other 437 (9.4) 

Unwell adult 1207 (26.0) 

Total n = 4644  

Table 1 – Summary of all presenting complaints. Frequencies quoted as number (%); sample selection: all patients 

presenting to the Emergency Department with a hs-cTnT measured as part of their assessment between 

September 2015 and March 2016, age ≥18 years; ‘Other’ summarises non-cardiac presentations such as ‘overdose’ 

and ‘limb problems’ 

3.4.1 0h risk stratification for whole sample period 

Of the entire cohort, 40.4% had an initial hs-cTnT concentration below the ‘rule-out’ value of 

5 ng/L at presentation, and 7.6% had a concentration above the ‘rule-in’ value of 50 ng/L 

(Figure 17). Of the patients presenting with chest pain (n=2120), 1026 (48.4%) had an initial 

hs-cTnT concentration below the ‘rule-out’ threshold, 107 (5%) had a concentration above the 

‘rule-in’ threshold. Of the patients presenting with Shortness of Breath (n=382), 89 (23.3%) 

had an initial hs-cTnT concentration below the ‘rule-out’ threshold, 74 (19.4%) had a 

concentration above the ‘rule-in’ threshold. 
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Figure 17 – Graph outlining the distribution of all hs-cTnT values measured on patients presenting to the 

Emergency Department during the monitoring period (September 2015 to March 2016; n=4644); the following 

thresholds applied: <5 ng/L ‘Rule-out’, 5-50 ng/L ‘Observe’, >50 ng/L ‘Rule-In’ 

3.4.2 Retrospective analysis of deltas for all presentations 

Although our algorithm incorporates only the rule-in/rule-out classification based on a 0 hour 

hs-cTnT measurement, retrospective analysis of the entire cohort demonstrates that 10.6% of 

those at intermediate risk (0 hour hs-cTnT 5-50ng/L) could have been ruled-in on repeat 

testing with a ΔTnT ≥5 ng/L, and 45.1% could have been ruled-out on the basis of an initial 

TnT <12ng/L and ΔTnT <3 ng/L.  
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3.4.3 Discharge diagnosis 

1,876 patients were admitted from the ED during the entire study period. Amongst these, the 

prevalence of ischaemic heart disease in the discharge diagnosis was 21.2% (n=397); 

congestive cardiac failure was the discharge diagnosis in 5.8%; pulmonary embolism in 1.5%. 

Of those patients admitted with a Troponin value above the rule-in threshold (50 ng/L), 

35.6% were diagnosed with ischaemic cardiac pathology (see Table 2; Figure 18 for details on 

all admitted patients; Figure 19 for subgroup analysis on all patients with a hs-cTnT at 

presentation >50 ng/L). 

Coding diagnosis All admitted patients hs-cTnT >50 ng/L 
Aortic dissection 8 (0.4) 0 (0) 

IHD 397 (21.2) 88 (35.6) 

Arrhythmia 159 (8.5) 17 (6.9) 

CCF 108 (5.8) 26 (10.5) 

Cardiac other 106 (5.7) 20 (8.1) 

PE 28 (1.5) 5 (2.0) 

OAD 100 (5.3) 7 (2.8) 

Resp other 24 (1.3) 3 (1.2) 

Infectious  189 (10.1) 17 (6.9) 

Renal 52 (2.8) 15 (6.1) 

GI 124 (6.6) 8 (3.2) 

MSK 100 (5.3) 9 (3.6) 

Other 481 (25.6) 32 (13.0) 

Total n = 1876 n = 247 

Table 2 – Summary of discharge diagnoses. frequencies quoted as number (%); IHD = ischaemic heart disease; 

CCF = congestive cardiac failure; ‘Cardiac other’ includes myocarditis, valvular heart and pericardial disease; PE = 

pulmonary embolism; OAD = obstructive airways disease; ‘Resp other’ includes pleural effusion; Infectious 

includes lobar pneumonia, urinary tract infection and influenza; GI = gastrointestinal disorders including gastro-

oesophageal reflux disease, gastroenteritis and symptomatic cholelithiasis; MSK = musculoskeletal disorder 
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including costochondritis, bony fractures and other injuries; ‘Other’ includes sickle-cell anaemia, malignancy and 

mental health disorder. Sample representative of the entire study period (September 2015 – March 2016) and 

comprises of all patients admitted from the Emergency Department. 

 

Figure 18 – Bar graph summarising the discharge diagnosis of all admitted patients in the monitoring period 

(September 2015 to March 2016; n=1876); frequencies quoted as percentage of the overall number of patients 

admitted following hs-cTnT testing; IHD = ischaemic heart disease; CCF = congestive cardiac failure; ‘Cardiac 

other’ includes myocarditis, valvular heart, conduction tissue and pericardial disease; PE = pulmonary embolism; 

OAD = obstructive airways disease; ‘Resp other’ includes pleural effusion; ‘Infectious’ includes lobar pneumonia, 

urinary tract infection and influenza; GI = gastrointestinal disorders including gastro-oesophageal reflux disease, 

gastroenteritis and symptomatic cholelithiasis; MSK = musculo-skeletal disorder including costochondritis, bony 

fractures and other injuries; ‘Other’ includes sickle-cell anaemia, malignancy and mental health disorder. 
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Figure 19 – Bar graphs summarising the discharge diagnosis of all admitted patients in the monitoring month with 

an initial hs-cTnT level >50 ng/L (n=247); frequencies quoted as percentage. Abbreviations and subgroups as in 

Figure 18 

3.4.4 Repeat troponin samples in the post-intervention period 

In the 3 months following introduction of the algorithm (i.e. the ‘post-intervention period’), 

946 patients (50.2%) had an initial hs-cTnT in the 5-50 ng/L zone of diagnostic uncertainty – 

of these, 443 (46.8%) had a repeat measurement within 24 hours. Of the patients undergoing 

further testing, 189 (42.7%) had a repeat measurement within 1.5 hours. Median time to repeat 

hs-cTnT measurement was 1.6hrs [1.3, 2.2] for the entire post-intervention period.   

Eight hundred and ninety two patients presented with chest pain in the post-intervention 

period. Of these, 390 patients (43.7%) were in the observational group, of which 222 (56.9%) 
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had a repeat measurement within 24 hours. Of the patients undergoing further testing, 106 

(47.7%) had a repeat measurement within 1.5 hours. The median time to repeat hs-cTnT 

measurement in the group presenting with chest pain was 1.5 hours [1.3, 2]. 

One hundred and fifty four patients presented with shortness of breath in the post-

intervention period. Of these, 87 patients (56.5%) were in the observational group, of which 

29 (33.3%) had a repeat hs-cTnT within 24 hours. Of the patients undergoing further testing, 

10 (34.5%) had a repeat measurement within 1.5 hours. Median time to repeat in the group 

presenting with shortness of breath was 1.8 hours [1.4, 2.1]. 

3.4.5 Comparison of pre- and post-intervention periods for all presentations 

Over the timeframe of implementation of the new algorithm we have demonstrated a gradual 

rise in the proportion of patients in the intermediate risk group (all presenting complaints) who 

had a repeat hs-cTnT measured within 1.5 hours. At month 1 (pre-implementation), only 3.3% 

of repeat hs-cTnT measurements in the intermediate-risk patients were within 1.5 hours, rising 

to 40.8% by month 7 (post-implementation) (p<0.001). In tandem, the median time to repeat 

troponin has fallen from 7.8 hours  [4.7, 11.1] to 1.7 hours [1.3, 2.4] (p<0.001). This has been 

accompanied by a non-significant trend towards reduced overnight admissions in the low-risk 

group. In a month prior to implementation, of all patients with a hs-cTnT measurement <5 

ng/L on presentation to ED, 12.7% were admitted for at least one night. This figure fell to 

9.5% by month 7 (p=0.26, n=525). Early outcome data demonstrates that 30-day mortality in 

all patients with suspected ACS was not different before and after implementation of the new 

algorithm (1.8% versus 1.4% respectively, p=0.38). 
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3.5. Discussion 

This study documents the rate of adoption of a rapid rule-in / rule-out algorithm for the 

routine clinical care of patients presenting with suspected NSTE-ACS, based on a single blood 

test at presentation. In this large cohort of over 4600 patients, 48% of all patients and 53% of 

patients with chest pain could be dichotomised into high- or low risk groups on the basis of a 

single hs-cTnT measured on presentation.  

Multiple studies have prospectively validated the sensitivity and specificity of diagnostic 

algorithms based on high-sensitivity Troponin assays.87,105–108 The unifying aim is to rapidly 

identify patients with ACS, facilitating prompt therapeutic intervention for those who need it, 

and prompt discharge for those who don’t. However, since the ESC guidelines have been 

established, there is a dearth of studies that have addressed the fundamental question – can 

such an algorithm be implemented into routine clinical practice? As we have incorporated our 

algorithm into clinical practice, we have seen an increased rate of repeat testing, and a trend to 

faster repeats, in patient’s classified into the intermediate risk group on presentation. 

Interestingly, despite the ESC endorsement of a 0/1h chest pain triage algorithm in their 2015 

NSTEMI guidelines109, we did not observe a significant reduction in overnight admissions in 

the low risk group when employing such a pathway in clinical practice. It appears that 

physicians are often more conservative than what guidelines advocate, despite an apparent 

sensitivity of (often) >99% for rule-out.  

Whilst there is a clear trend in uptake of the protocol following its implementation, it is evident 

that it is still not being used universally across the services. This may reflect hesitancy amongst 

clinicians to discharge patients soon after presentation, without a significant period of 

monitoring. It is of paramount importance to involve all staff in understanding the rationale 
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for change, optimising operation procedures to ensure rapid turn-around times for sequential 

blood draws and to streamline a rapid assessment process; in order to reap the benefits of an 

earlier rule-out. 

This study looks predominantly at the rule-in / rule-out power of the ESC algorithm at 0 

hours, based on a hs-cTnT measurement at presentation. Whilst we have been able to 

retrospectively quantify the risk classification of patients based on ΔTnT, the translation of 

ΔTnT values into prospective clinical practice needs further evaluation. Although the ESC 

recommends a 0hr hs-cTnT ≥ 52ng/L as a rule-in threshold, our algorithm defines rule in as 

>50 ng/L for ease of clinical implementation.  

Chest pain is clearly the typical presentation of NSTEMI. However, the ESC guideline 

appreciates that ACS can present atypically as ‘epigastric pain, indigestion-like symptoms and 

isolated dyspnoea’.12 The 0-1hr ESC algorithm suggests progression to biomarker risk 

stratification in the patient with ‘suspected NSTEMI’ and does not delineate that this suspicion 

must arise from the presence of typical chest pain. As such, presenting complaints like isolated 

shortness of breath and abdominal pain, that feature in Figure 16, can reasonably enter the 

troponin algorithm if the clinician has a high index of suspicion for ACS. Nonetheless, a 

limitation of this study is the underlying assumption that all patients who had a hs-cTnT 

measured in the Emergency Department correctly entered the diagnostic algorithm, i.e. had a 

clinical presentation compatible with a NSTE-ACS. Further, the ‘presenting complaint’ entered 

on the ED triage system is more a clerical than medically driven assessment and captures only 

the main complaint, and not a complex presentation. This may explain why a significant 

number of patients with an initial troponin in the 5-50 ng/L group did not go on to have a 

repeat (as it became evident that they should not have entered the algorithm in the first place). 
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Nonetheless, this is likely to represent the reality of a patient’s clinical pathway in ED. The 

ESC guideline acknowledges that deviation from the protocol is appropriate in circumstances 

of clinical concern, and rapid rule-out is inappropriate for patients presenting very early after 

the onset of chest pain. Our study does not account for these possible extenuating 

circumstances. Importantly, despite our clinical practice moving toward faster repeat troponin 

measurements, the current study of ΔTnT is based on the repeat troponin at any time within 

24 hours, whereas the ESC guideline is predicated on a repeat at 1 hour. In keeping with 

previously published observations110, approximately 12% of initial troponin samples taken in 

the ED were haemolysed. These samples were excluded from analysis as they inevitably lead to 

deviation from the algorithm, and this study aimed to look at the routine functioning of the 

algorithm in clinical practice. However, it is important to acknowledge that in the real-world 

setting haemolysis is likely to affect the timings of samples.  Finally, the troponin values 

available electronically to clinicians are rounded to the nearest integer, which may lead to some 

discrepancy between the true risk bracket that the patient belonged to and the risk bracket that 

they were ascribed to clinically in ED. 

3.6. Conclusions 

A 0 hour rule-in / rule-out algorithm, modelled on the 2015 ESC guideline, can be 

implemented with good uptake within the first few months of implementation. Although this 

has failed to demonstrate reduced overnight admission in the low-risk group, the algorithm 

clarifies the appropriate clinical pathway for up to 53% of chest pain patients at presentation. 

Further studies are needed to address the implications of 1 hour repeat testing in routine 

clinical practice.    
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Prelude to Chapter 4 

Findings in chapter 3 demonstrate challenges when employing novel rule-out/rule-in pathways 

for chest pain triage, but importantly clarifies the burden chest pain triage places on acute care 

environments in a large UK hospital: about 650 patients undergo cTn testing every month at 

St Thomas’ Hospital, and about 50% of these are assigned to the observe-zone when using a 

pathway inspired by the 2015 ESC guideline – thus requiring ongoing observation, repeat 

blood testing, and a longer hospital stay without diagnostic clarity. We have previously 

commented on a) the greater abundance of cMyC in the myocardium, thus potentially 

contributing to b) a more rapid rise to higher peak levels in the setting of iatrogenic myocardial 

infarction (in the context of alcohol septal ablation). To date, there is no evidence to suggest 

that cMyC is less tissue-specific. An analysis of a select group of patients with a diagnosis of 

Acute Myocardial Infarction and blood samples available very shortly after chest pain onset is 

presented in Chapter 4. This tested the hypothesis whether the previously observed, favourable 

release kinetics would translate into real-life: when measuring both, cMyC and hs-cTnI in 

samples obtained from patients at presentation to the emergency department, and at fixed 

time-points during the clinical course.  

The findings were published previously (DOI: 10.1373/clinchem.2016.257188) and are 

reproduced with amendments for inclusion in the thesis.  
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Chapter 4. Temporal relationship between cardiac myosin-binding protein C and 

cardiac troponin I in type 1 myocardial infarction 
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4.1. Letter to the Editor 

Although acute chest pain is a common presenting symptom, the proportion of patients with 

acute myocardial infarction (AMI) that have diagnostic electrocardiographic changes on 

presentation is dwindling. Consequently, early triage of chest pain patients is becoming ever 

more reliant on assessment of the release of cardiac troponin I (cTnI) or cardiac troponin T 

(cTnT) into the systemic circulation. However these biomarkers are released relatively slowly 

reaching their peak many hours after symptom onset.17 To achieve rapid triage the latest 

guidelines recommend the use of assays for cTnI and cTnT that have very high analytic 

sensitivity to rule-in and rule-out AMI based on concentrations markedly above and markedly 

below the population defined 99th centiles, respectively. The use of these widely spaced 

decision limits improves the specificity of rule-in and the sensitivity of rule-out. However, the 

majority of patients presenting with chest pain have cTn concentrations that place them 

between these decision limits; in an indeterminate zone. These patients require repeat testing 

and subsequent second or third rounds of triage based on rates of change of cTn 

concentration over time.111 This introduces systemic delays in allocation of evidence-based 

treatments and prolongs stay in the pressured and precious environment of the emergency 

department. 

We have described a new biomarker of cardiac injury – cardiac myosin-binding protein C 

(cMyC) – which rises more rapidly in the systemic circulation than cTnT after iatrogenic 

myocardial infarction in the cardiac catheterization laboratory.50 The purpose of the study we 

describe here was to determine if the temporal differences between cMyC and cTn observed in 

the catheter laboratory could extend to patients presenting with symptoms of short duration 

due to spontaneous coronary atherosclerotic plaque rupture (type 1 AMI). 



Characterising a novel biomarker of early myocardial injury  65 

We identified 174 patients from the HighSTEACS cohort107 with symptoms of less than 3 

hours duration prior to the first blood draw (0h) and with serum/plasma available at 3 hours 

(3h) and at 6-12 hours (late) after presentation. Study participants presented to the Royal 

Infirmary of Edinburgh with suspected NSTEMI, were enrolled in the HighSTEACS trial and 

successfully completed all study-related blood draws, which were subsequently stored in the 

responsible biobank at early stages of the trial. To qualify for analysis, study samples had to be 

available from all 3 timepoints. Of these 174 patients, 26 were adjudicated as having type 1 

myocardial infarction (see Shah et al.107 for further details). To determine if the concentration 

trends for cMyC over time differ from those of cTnI we calculated the ratio of cMyC to cTnI 

([MyC]/[cTnI] both expressed as ng/L) at each of the 3 blood sampling time points. cTnI was 

measured using the Abbott ARCHITECTSTAT high-sensitive troponin I assay (Abbott 

Laboratories; limit of detection of 1.2 ng/L, upper reference limit (99th centile) of 34 ng/L in 

men and 16 ng/L in women). cMyC was measured using a high-sensitivity assay performed by 

Singulex on the Erenna platform using our proprietary reagents as recently described (limit of 

detection of 0.4 ng/L, upper reference limit (99th centile) approximately 80 ng/L84). 

The demographics of our study population presenting early with Type 1 AMI are similar to 

those of the parent cohort (age 68.8 years, women 23.1%, primary symptom chest pain 84.6%, 

previous percutaneous coronary intervention 15.4%). 

At each of the 3 timepoints we found a strong linear correlation between cMyC and cTnI, as 

we previously observed in an ambulatory population84: Spearman rho 0.795 (P < 0.01) at 

presentation, 0.902 (P < 0.01) at three hours and 0.888 (P < 0.01) at the late timepoint. 

Nonetheless, the ratio of cMyC to cTnI was found highest at presentation, thereafter 

decreasing significantly with time from presentation, mean ratio at presentation, 7.98 (median 
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2.72 – IQR 3.48); at 3 hours, 2.67 (median 1.83 – IQR 1.40) and at the late time point, 1.71 

(median 0.63 – IQR 1.09) – all P < 0.01 by Friedman two-way analysis of variance by ranks. 

Furthermore, the ratio was also significantly greater than that we observed previously in a 

stable cohort without obstructive coronary artery disease and a cTnT < 14ng/L (mean 1.97 in 

Marjot et al.84).  

Although the mean ratio of cMyC:cTnI was highest at presentation, there was substantial 

individual heterogeneity amongst the 26 subjects with type 1 AMI (Figure 20). The relative 

concentration of cMyC to cTnI at presentation soon after symptom onset in those with type 1 

AMI was higher than in the same patients at later timepoints and in ambulatory patients at low 

risk. The more rapid rise of cMyC versus cTnI that we have observed in patients with type 1 

AMI should enable their more rapid/accurate triage. However, the diagnostic performance of 

cMyC, with and without cTnI, needs further evaluation.  
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Figure 20 – cTnI and cMyC concentration in early type 1 AMI. ID7, No previous cardiovascular disease history. 1 

hour atypical chest pain without electrocardiographic changes. Died suddenly before cardiac investigation. ID8, 

Known extensive cardiovascular disease. Diffuse ischemic heart disease on angiography without target. Managed 

conservatively. ID10 Renal replacement therapy with extensive cardiovascular disease history. 1 hour severe 

typical chest pain. Managed conservatively. 

Abbreviations: NA – no coronary angiography performed; M – cMyC 99th centile (80 ng/L); T – TnI 99th centile 

(gender-specific: 34 ng/L in men, 16 ng/L in women) 
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Prelude to Chapter 5 

Findings in chapter 4 point towards an earlier rise of cMyC vs hs-cTnI after an acute plaque 

rupture event. In chapter 5 we describe the first large-scale analysis of cMyC performance in 

diagnosis and (potential) triage of chest pain patients using a presentation blood sample for 

classification of patients into rule-out, rule-in or observe categories. This was facilitated by 

close collaboration with colleagues in Basel (Christian Mueller et al.), who provided access to 

the APACE study – as part of the collaboration, we quantified cMyC concentrations in close 

to 7,500 samples from patients presenting with suspected AMI. The paper presented in 

Chapter 5 represents a secondary analysis – the candidate forged the collaborations, identified 

suitable patients, interpreted all cMyC concentrations, wrote the analysis plan, performed the 

statistical analysis and wrote the manuscript.  

The findings were published previously (10.1161/CIRCULATIONAHA.117.028084) and are 

reproduced with amendments for inclusion in the thesis.  
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Chapter 5. Direct comparison of cardiac myosin-binding protein C with cardiac 

troponins for the early diagnosis of acute myocardial infarction 
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5.1. Clinical Perspective 

5.1.1 What is new? 

• Cardiac myosin-binding protein C (cMyC) is a recently described novel biomarker of 

cardiac injury and in small “proof-of concept” studies its serum concentration rises and 

falls more rapidly than that of troponin T and I. 

• This is the first study to assess the diagnostic and prognostic value of cMyC in patients 

presenting with possible acute myocardial infarction (AMI). 

• A rule-in/rule-out pathway using the novel biomarker was designed to compare 

discriminative power in a clinical setting. 

5.1.2 What are the clinical implications? 

• Diagnostic accuracy of cMyC for AMI was similar to that of hs-cTnT and hs-cTnI in 

the entire cohort but superior for those with chest pain of less than 3 hours duration 

(early presenters) when compared to hs-cTnT.  

• cMyC has correctly triaged more patients to “rule-out” or “rule-in” groups than either 

hs-cTnI or hs-cTnT leaving a much smaller proportion in the observation groups. This 

advantage may facilitate early discharge of low-risk patients. 
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5.2. Abstract 

Background: Cardiac myosin-binding protein C (cMyC) is a cardiac-restricted protein that is 

more abundant than cardiac troponins (cTn) and is released more rapidly following acute 

myocardial infarction (AMI). We evaluated cMyC as an adjunct or alternative to cTn in the 

early diagnosis of AMI. 

Methods: In 1954 unselected patients presenting to the emergency department with 

symptoms suggestive of AMI, concentrations of cMyC and high (hs) and standard (s) 

sensitivity cTn were measured at presentation. The final diagnosis of AMI was independently 

adjudicated using all available clinical and biochemical information without knowledge of 

cMyC. The prognostic endpoint was long-term mortality. 

Results: Final diagnosis was AMI in 340 patients (17%). Concentrations of cMyC at 

presentation were significantly higher in those with vs. without AMI (median 237 ng/L vs. 13 

ng/L, p<0.001). Discriminatory power for AMI, as quantified by the area under the receiver-

operating characteristic curve was comparable for cMyC (AUC; 0.924), hs-cTnT (0.927) and 

hs-cTnI (0.922) and superior to cTnI measured by a contemporary sensitivity assay (0.909). 

Combination of cMyC with hs-cTnT or s-cTnI (but not hs-cTnI) led to an increase in AUC to 

0.931 (p<0.0001) and 0.926 (p=0.003), respectively. Use of cMyC more accurately classified 

patients with a single blood test into rule-out or rule in categories: Net Reclassification 

Improvement (NRI) +0.149 vs hs-cTnT, +0.235 vs hs-cTnI  (p<0.001). In early presenters 

(chest pain <3h), the improvement in rule-in/rule-out classification with cMyC was larger 

compared with hs-cTnT (NRI +0.256) and hs-cTnI (NRI +0.308; both p<0.001). Comparing 

the C statistics, cMyC was superior to hs-cTnI and s-cTnI (p<0.05 both) and similar to hs-

cTnT at predicting death at 3 years. 
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Conclusions: cMyC at presentation provides discriminatory power comparable to hs-cTnT 

and hs-cTnI in the diagnosis of acute myocardial infarction, and may perform favorably in 

patients presenting early after symptom onset.  

Trial-Registration: www.clinicaltrials.gov. Identifier, NCT00470587 

Keywords: Cardiac myosin-binding protein C, cMyC, Troponin I, Troponin T, myocardial 

infarction, APACE 
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5.3. Introduction 

Of the 130 million attendances to Emergency Departments (ED) in the United States each 

year, approximately 7 million (6%) are due to acute chest pain.112 The assessment and triage of 

such patients has become increasingly complex as now only a small proportion of those with 

acute myocardial infarction (AMI) have the diagnostic ECG change of ST-segment elevation.10 

Consequently, the identification of patients with AMI has become almost totally dependent on 

the measurement in the systemic circulation of cardiac troponin I (cTnI) or cardiac troponin T 

(cTnT). These biomarkers are released slowly17 – to overcome this hurdle, the analytic 

performance of the cTn assays has been enhanced markedly to measure the lower 

concentrations achieved before the late peak.113 Hence, the best assays can reliably measure 

cTn concentrations below the 99th centile of the healthy population. These high-sensitivity (hs) 

assays are increasingly available and are the subject of national and international guidelines 

describing their use to achieve more rapid triage.12,114 In particular, the European guidelines 

recommend the use of assays for hs-cTnI and hs-cTnT to rapidly rule-in and rule-out AMI.  

Algorithms using widely based decision limits based on concentrations well below the 

population defined 99th centile (for rule out) and above the 99th centile (for rule in) markedly 

improves the sensitivity of rule-out and specificity of rule-in . However, many patients 

presenting with chest pain have cTn concentrations that place them between these decision 

limits; in an indeterminate observation zone. These patients require repeat testing and 

subsequent second or third rounds of triage based on rates of change of cTn concentration 

over time.12,111,115 European guidelines also do not support the use of rapid rule-out/rule-in 

pathways using hs-cTn in patients presenting ‘too early’ after chest pain onset – only after 3 

hours is the rule-out threshold at the limit of detection guideline-compliant.12 This introduces 
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systemic delays in allocation of evidence-based treatments and prolongs stay in the pressured 

and precious environment of the ED. 

Originally discovered by Offer et al in 197352, the myosin-binding protein C family consists of 

three isoforms, specific for slow skeletal, fast skeletal and cardiac muscle – the latter being 

exclusively expressed in the heart from neonatal throughout human development.116,117 

Amongst others118–121, we have identified cardiac myosin-binding protein C (cMyC, see Figure 

21) as a new candidate biomarker of cardiac injury.50  
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Figure 21 – Structure of cardiac Myosin-binding protein C and cardiac troponins in (A) healthy cardiomyocytes 

and (B) Ischaemia-induced cardiomyocyte damage. The highlighted N-terminal domain C0C1 is the binding site 

for the previously developed monoclonal antibodies used for detection of the cardiac-specific isoform of cMyC – 

see Baker et al.50 

In common with cTnT and cTnI, cMyC expression is restricted to the heart but it is more 

abundant.48 Moreover, cMyC rises more rapidly in the systemic circulation than hs-TnT after 

timed, iatrogenic AMI50, perhaps as a result of its higher myocardial concentration.122 Using a 

recently developed high-sensitivity assay for cMyC84, a pilot study in 26 patients presenting 

early with AMI suggested that cMyC may rise more rapidly than hs-cTnI.123  
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The purpose of the current study is to compare the novel biomarker cMyC (measured on a 

research platform) against the most accurate currently available biochemical signals, hs-cTnI 

and hs-cTnT, for the early detection of AMI. 

5.4. Methods 

5.4.1 Study design and population 

Advantageous Predictors of Acute Coronary Syndrome Evaluation (APACE) is an ongoing 

international multicentre diagnostic study (nine study centres in Switzerland, Spain, Poland, the 

Czech republic, and Italy) designed to advance the early diagnosis of AMI.39,113,124,125 All patients 

older than 18 years presenting to the ED with acute chest discomfort possibly indicating AMI 

were eligible for recruitment if the onset of, or peak chest pain symptoms, were within the 

preceding 12 hours. Enrolment was independent of renal function, while patients with terminal 

kidney failure on chronic dialysis were excluded. For this analysis, the following patients were 

excluded (Figure 22): patients presenting with ST-segment elevation myocardial infarction; 

patients with missing levels of cMyC at presentation; patients in whom the final diagnosis 

remained unclear after adjudication and at least one hs-cTnT level was elevated. The latter 

group comprises of patients triaged and discharged following a negative gold-standard test at 

the time of enrolment (on a conventional cTn assay), who were later found to have an elevated 

hs-cTn result (comparison see table S1).  
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Figure 22 – Flowchart outlining recruitment numbers and exclusions from test cohort 

A proportion of patients had no levels of cMyC measured at presentation due to insufficient 

sample volume. Demographics of the patients excluded due to missing cMyC values, 

compared to those of the test cohort, appear in the supplement (table S2). The protocol for 

routine clinical assessment is also described in the supplement. To obtain follow-up data, 

patients were contacted 3, 12, 24 and 36 months after discharge via telephone, email or letter. 
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Additionally, information regarding death during follow-up was obtained from the patient’s 

hospital notes, the family physician’s records and the national registry on mortality. 

The study was carried out according to the principles of the Declaration of Helsinki and 

approved by the local ethics committees. Written informed consent was obtained from all 

patients. TK, RT and CM had full access to all the data in the study and take responsibility for 

its integrity and the data analysis. The authors designed the study, gathered, and analysed the 

data according to the STARD guidelines for studies of diagnostic accuracy (see supplement to 

original publication126), vouch for the data and analysis, wrote the paper, and decided to 

publish. 

5.4.2 Adjudicated final diagnosis 

Adjudication of the final diagnosis was performed centrally according to the 1st Universal 

Definition of MI, incorporating levels of hs-cTnT as the adjudicating biomarker.127 It was 

based on extensive patient documentation derived from two sets of data: First, all clinical data 

derived from routine clinical investigations including all available medical records – patient 

history, physical examination, results of laboratory testing including serial local (h)s-cTn, 

radiologic testing, ECG, echocardiography, cardiac exercise stress test, lesion severity and 

morphology at coronary angiography – pertaining to the patient from the time of ED 

presentation to 90-day follow up. Second, study-specific assessment was collected, including 34 

chest pain characteristics and serial hs-cTnT measurements in order to take advantage of the 

higher sensitivity and higher overall diagnostic accuracy offered by the more sensitive assays, as 

previously published.113,124 In situations of disagreement about the diagnosis, cases were 

reviewed and adjudicated in conjunction with a third cardiologist. In brief, AMI was diagnosed 

when there was evidence of myocardial necrosis in association with a clinical setting consistent 
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with myocardial ischemia. Myocardial necrosis was diagnosed by at least one (h)s-cTn value 

above the 99th percentile together with a significant rise and/or fall.11,128,129 All other patients 

were classified into the categories of unstable angina (UA), cardiac but non-coronary disease 

(e.g. tachyarrhythmias, perimyocarditis), non-cardiac chest pain and symptoms of unknown 

origin. 

5.4.3 Measurement of cMyC, hs-cTnI, hs-cTnT, and s-cTnI 

Blood samples for determination of cMyC, hs-cTnI, hs-cTnT, and s-cTnI were collected into 

heparin plasma and serum tubes at presentation to the ED and serially thereafter (at time 

points 1 h, 2 h, 3 h and 6 h). Serial sampling was discontinued when a diagnosis of AMI was 

certain and treatment required patient transfer to the coronary care unit or catheter laboratory. 

After centrifugation, samples were frozen at -80 ºC until they were assayed in a blinded fashion 

in a dedicated core laboratory. cMyC was measured using the previously established high-

sensitivity assay on the Erenna platform that was performed by Millipore Sigma (Hayward, 

California).84 The assay has a Limit of Detection (LoD) of 0.4 ng/L and a lower limit of 

quantification (LoQ) of 1.2 ng/L. The 99th percentile cut-off point determined previously (in 

patients without obstructive coronary artery disease on invasive angiography) is 87 ng/L.84 

Details of the assays used for hs-cTnI, hs-cTnT, and s-cTnI are described in the supplement. 

5.4.4 Early guideline-based triage and Net Reclassification Improvement 

The European  Society of Cardiology (ESC) has published a rapid rule-in/rule-out pathway in  

the 2015 NSTEMI guidelines using hs-cTn at 0h and 1h to risk-stratify patients into ‘rule-out’, 

‘observe’ and ‘rule-in’ categories.12 Such categorization did not drive clinical decisions in this 

cohort, but it was used to compare the potential clinical utilities of cMyC and hs-cTn as triage 

tools. For this purpose, we have compared the categorical discrimination of hs-cTnT, hs-cTnI 
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and cMyC at presentation only (without subsequent delta measurements). In brief, the ESC 

pathway classifies patients – based on the presentation sample at 0h – into ‘rule-out’ with a hs-

cTnT level <5 ng/L; hs-cTnI <2 ng/L; into ‘rule-in’ (for both assays) at ≥52 ng/L.12 The ESC 

advocates the use of the pathway only in patients with ≥3 hours since chest pain onset; for 

completeness we have presented results for all patients, <3 and ≥3 hours since chest pain 

onset alone. 

For cMyC we separated the cohort into derivation and validation cohorts (a randomized 3:7 

split, for comparison see table S4); the ‘rule-out’ threshold was derived from a pre-defined 

sensitivity of ≥99.5%, ‘rule-in’ from a pre-defined specificity >95% for the gold-standard 

diagnosis of AMI. This resulted in a ‘rule-out’ threshold of ≤10 ng/L, and ‘rule-in’ threshold 

of >120 ng/L for cMyC (Figure 23). These thresholds were then used in the validation cohorts 

to compare cMyC against both hs-cTnT and hs-cTnI. Net Reclassification Improvement 

(NRI) operates as follows: each patient is first assigned a classification (‘rule-out’, ‘observe’ or 

‘rule-in’) based on cut-off values of hs-cTnI/T in the presentation blood sample (the initial 

model). The same cohort is then reclassified to the same three groups based on the cMyC cut-

off values (the new model). This reclassification may correctly or incorrectly reallocate a 

patient, e.g. a patient who went on to be diagnosed with an AMI may be correctly reclassified 

from ‘observe’ to ‘rule-in’, or incorrectly reclassified from ‘observe’ to ‘rule-out’. The ‘NRI’ 

analysis defines separate categorical NRI values for those patients who were ultimately 

diagnosed with AMI (quoted as NRIAMI) and those who were not (NRInoAMI) – range -1 to +1; 

‘Dimensionless NRI’ reflects the unweighted, net-movement of all patients regardless of final 

diagnosis (range -2 to +2). NRIAMI is positive if there is a net movement of patients with 

adjudicated AMI into higher-risk classifications using cMyC (the new model). NRInoAMI is 



Characterising a novel biomarker of early myocardial injury  84 

positive there is a net movement of patients without an adjudicated diagnosis of AMI into 

lower-risk classifications using cMyC (the new model).130 NRI calculations were performed for 

the validation cohort, early presenters (<3 hours since onset of chest pain; ESC guideline not 

applicable) and late presenters (≥3 hours since onset; ESC guideline applicable); tables are 

presented in full where appropriate. 
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Figure 23 – Distribution of participants, depending on each biomarker used, according to ESC guideline12 for hs-

cTnT and hs-cTnI, and theoretical model for the novel biomarker cMyC; AMI = Acute Myocardial Infarction, 

based on the adjudicated gold-standard diagnosis 
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5.4.5 Statistical analysis 

All data are expressed as medians [1st quartile, 3rd quartile] or means (standard deviation) for 

continuous variables (compared with the Mann-Whitney-U test or student's t-test), and for 

categorical variables as numbers and percentages (compared with Pearson chi-square). 

Hypothesis testing was two-tailed, and p values <0.05 were considered statistically significant. 

No adjustment for multiple comparisons was performed.  

Discrimination power was quantified by the area under the receiver-operating characteristics 

curve (AUC) for each biomarker with all cases available, using 1,000 stratified bootstrap 

replicates to calculate Confidence intervals (CI). Logistic regression was used to combine 

cMyC levels with hs-cTnT, hs-cTnI or s-cTnI values for the assessment of an incremental 

value using two biomarkers at presentation. Sub-group analysis was performed for patients 

presenting early, defined as chest pain onset within 3 hours of presentation to the Emergency 

Department. This is a particular limitation of the published ESC guidance on the use of hs-cTn 

for risk-stratification, as the rapid rule-out/rule-in algorithms are only applicable to patients 

with chest pain onset >3 hours. 

Predictive value of the biomarkers during follow-up was assessed two-fold: We calculated 1) 

Harrell’s C statistic for each biomarker at presentation for endpoints AMI, death or the 

composite of AMI and all-cause mortality during follow-up (excluding the index event) – a 

higher C index indicates a higher probability of an event occurring during follow-up with 

higher biomarker values131; and 2) Kaplan-Meier survival curves. Cox regression analysis was 

performed as follows: All available biomarker levels were divided into 1) quintiles and 2) 

groups according to ‘rule-out’, ‘observe’ and ‘rule-in’ classification. Unadjusted Cox 

proportional hazard regression models were fitted for 30-day and 3-year follow-up for each 
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group with the lowest quintile (or risk group, respectively) normalized to a hazard ratio of 1 

and assessed using the likelihood-ratio test. Cox coefficients and thus hazard ratios were not 

calculated if the lowest risk group did not suffer any events, which would invalidate the 

regression model. NRI statistics were calculated as categorical values.130,132 The Integrated 

Discrimination Improvement (IDI) values quoted reflect a category-free (positive or negative) 

change in model-performance. Confidence intervals for cut-off thresholds, NRI and IDI 

statistics were derived using 1,000 bootstrap replicates. All statistical analyses were performed 

using R, version 3.3.0 GUI 1.68 (The R Foundation for Statistical Computing), including 

packages ggplot2, R Markdown, RStudio, PredictAbel, survival, Hmisc, compareC and ROCR. 

5.5. Results 

5.5.1 Baseline characteristics 

A total of 1954 unselected patients eligible for this analysis were enrolled (Figure S1). Median 

age was 62 years, 31% were women, and 36% had a prior history of coronary artery disease 

(Table 3). Overall, 1469 patients (75%) had no significant electrocardiographic abnormalities at 

presentation to the ED. Median time since onset of chest pain was 5 hours [IQR 3, 12], with a 

median of 3 hours [IQR 2, 7] since peak chest pain severity. 

The adjudicated final diagnosis was AMI in 340 (17%) patients, unstable angina in 10%, 

symptoms of cardiac origin other than coronary artery disease in 14%, non-cardiac symptoms 

in 54% and symptoms of unknown origin in 5%. 

Median follow-up for the entire cohort was 772 days [IQR 731, 907]; of those not sustaining 

any events in the monitoring period (AMI or death), the median follow-up was 792 days [IQR 

738, 923]. A total of n=165 (8%) patients died during 3-year follow-up. 1903 patients (97%) 
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exceeded 90 days of follow-up; of those who did not (n=51, 3%), 27 (1%) sustained a 

cardiovascular death. 
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Demographics All patients 
(n = 1954) 

AMI 
(n = 340) 

Other diagnoses 
(n = 1614) p value* 

Age, years 62 ± 16 69 ± 13 60 ± 16 <0.001 
Male 1341 (69) 256 (75) 1085 (67) 0.004 
Risk factors     
Hypertension 1247 (64) 269 (79) 978 (61) <0.001 
Hyperlipidaemia 992 (51) 227 (67) 765 (47) <0.001 
Diabetes mellitus 369 (19) 92 (27) 256 (16) <0.001 
Current smoking 500 (25) 90 (27) 386 (24) 0.345 
History of smoking 718 (38) 141 (42) 577 (36) 0.051 
History     
Coronary artery disease 710 (36) 174 (51) 536 (33) <0.001 
Previous myocardial infarction 474 (24) 118 (35) 356 (22) <0.001 
Previous revascularisation (CABG or 
PCI) 553 (28) 127 (37) 426 (26) <0.001 

Peripheral artery disease 119 (6) 43 (13) 76 (5) <0.001 
Previous stroke 100 (5) 23 (7) 77 (5) 0.167 
Vital status     
Heart rate, beats/min 79 ± 20 81 ± 20 79 ± 20 0.092 
Systolic blood pressure, mm Hg 144 ± 24 145 ± 27 143 ± 24 0.421 
Diastolic blood pressure, mm Hg 82 ± 15 81 ± 17 82 ± 15 0.299 
Electrocardiographic findings     
ST-segment depression 193 (10) 93 (28) 100 (6) <0.001 
T-wave inversion 260 (13) 82 (24) 178 (11) <0.001 
No significant electrocardiographic 
abnormalities 1469 (75) 161 (49) 1308 (83) <0.001 

Laboratory assessment     
Estimated glomerular filtration rate, 
ml/min/1.73m2† 84 ± 26 74 ± 26 86 ± 25 <0.001 

Presentation time     
Time since chest pain onset (hrs) 5 [3, 12] 5 [3, 12] 5 [3, 12] 0.898 
Time since chest pain peak (hrs) 3 [2, 7] 3 [2, 7] 4 [2, 7] 0.408 

Table 3 – Baseline demographics; * p values for comparison AMI group versus all other diagnoses; data are 

expressed as medians [1st quartile, 3rd quartile] or means ± standard deviation, for categorical variables as numbers 

(percentages); AMI = Acute Myocardial Infarction; IQR = Interquartile Range; CABG = Coronary Artery Bypass 

Graft; PCI = Percutaneous Coronary Intervention; † glomerular filtration rate was estimated using the 

Modification of Diet in Renal Disease (MDRD) formula 
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5.5.2 Distribution of biomarker concentrations 

As shown in Figure 24, cMyC levels were significantly higher in patients with AMI (n=340) 

compared to patients with other diagnoses (AMI, median 237 ng/L [IQR 71, 876 ng/L; 

unstable angina, median 21 ng/L [IQR 13, 43 ng/L]; cardiac symptoms of origin other than 

coronary artery disease, median 33 ng/L [IQR 12, 96 ng/L]; non-cardiac symptoms, median 10 

ng/L [IQR 6, 19 ng/L]; symptoms of unknown origin, median 11 ng/L [IQR 7, 16 ng/L]; p 

<0.001 for all comparisons with AMI patients). Similarly, blood concentrations of hs-cTnT, 

hs-cTnI, and s-cTnI were significantly higher in AMI as compared to other final diagnoses 

(median biomarker concentrations displayed in tables S5+S6). Overall, blood concentrations of 

cMyC in relation to LoD were higher than those of hs-cTn in all diagnostic categories (Table 

S5). Non-cardiac sources of cMyC variation were previously investigated in an ambulatory 

cohort84; results of comparison within the groups with AMI and non-cardiac symptoms have 

been displayed in tables S7+S8. 
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Figure 24 – Baseline distribution of cMyC levels at presentation to the emergency department in all patients based 

on adjudicated final diagnosis. Boxes represent interquartile ranges, whiskers extend to 1.5 * IQR from the hinges 

(y-axis capped at 1,500 ng/L, outliers represented by light grey bullets). 87 ng/L represents the 99th centile based 

on a previous study, 120 ng/L the cut-off threshold for diagnostic rule-in of AMI at presentation. AMI, median 

237 ng/L [IQR 71, 876 ng/L]; unstable angina, median 21 ng/L [IQR 13, 43 ng/L]; cardiac symptoms of origin 

other than coronary artery disease, median 33 ng/L [IQR 12, 96 ng/L]; non-cardiac symptoms, median 10 ng/L 

[IQR 6, 19 ng/L]; symptoms of unknown origin, median 11 ng/L [IQR 7, 16 ng/L]; p<0.001 for all comparisons 

with AMI patients 

5.5.3 Discrimination power 

In blood drawn at presentation, the discrimination  of cMyC for AMI, as quantified by the 

AUC, was 0.924 (95% confidence interval [CI], 0.910-0.939), compared to the AUCs for hs-
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cTnT 0.927 (95% CI, 0.913-0.941; p=0.573 for direct comparison); hs-cTnI 0.922 (95% CI, 

0.908-0.936; p=0.993 for direct comparison) and s-cTnI 0.909 (95% CI, 0.889-0.928; p=0.024 

for direct comparison, Table 4, Figure 25). 

All patients – 
comparison 

Area Under the Curve 
(95% Confidence Interval) p value* n 

cMyC vs hs-cTnT 0.924 (0.910-0.939) vs 0.927 
(0.913-0.941) 0.573 1554 controls, 

322 AMI 

cMyC vs hs-cTnI 0.923 (0.908-0.937) vs 0.922 
(0.908-0.936) 0.993 1537 controls, 

320 AMI 

cMyC vs s-cTnI 0.924 (0.906-0.938) vs 0.909 
(0.889-0.928) 0.024 1463 controls, 

311 AMI 
Early presenters (≤ 3 hours since chest pain onset) – comparison 

cMyC vs hs-cTnT 0.915 (0.887-0.941) vs 0.892 
(0.857-0.922) 0.022 562 controls, 

104 AMI 

cMyC vs hs-cTnI 0.915 (0.889-0.939) vs 0.909 
(0.879-0.935) 0.539 554 controls, 

102 AMI 

cMyC vs s-cTnI 0.914 (0.888-0.939) vs 0.892 
(0.859-0.925) 0.060 529 controls, 

103 AMI 
All patients – Combination cMyC with… p value† n 

hs-cTnT 0.935 (0.921-0.948) 0.002 1548 controls, 
322 AMI 

hs-cTnI 0.929 (0.913-0.943) 0.093 1537 controls, 
320 AMI 

s-cTnI 0.928 (0.909-0.943) <0.001 1463 controls, 
311 AMI 

Table 4 – Area under the Receiver-Operating Characteristics Curve – Comparisons between biomarkers; *p value 

for direct comparison between biomarkers; †p value for direct comparison between AUC for combination (cMyC 

with cTn) and respective cTn on its own; AUC = Area under the Curve; AMI = Acute Myocardial Infarction 
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Figure 25 – ROC curves for individual biomarkers: Diagnostic performance of cMyC, hs-cTnT, hs-cTnI and s-

cTnI in the early diagnosis of acute myocardial infarction (AMI), based on presentation blood sample and 

adjudicated AMI diagnosis. Receiver operating characteristic (ROC) curves describing the performance of cMyC 

(orange line; Area under the Curve (AUC) 0.924), hs-cTnT (light grey line; AUC 0.927), hs-cTnI (dark grey line; 

AUC 0.922) and s-cTnI (black line; AUC 0.909*); *p<0.05 

5.5.4 Early presenters 

In patients presenting within 3 hours of symptom onset (n=694, with AMI adjudicated in 

16%) the AUC for cMyC was 0.915 (95% CI, 0.887-0.941), compared to the AUCs for hs-

cTnT 0.892 (95% CI, 0.857-0.922; p=0.022); hs-cTnI 0.909 (95% CI, 0.879-0.935; p=0.539) 

and s-cTnI 0.892 (95% CI, 0.859-0.925; p=0.060) (Table 4).  
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5.5.5 Combination of cMyC with cTn 

AUC for the combination of cMyC with hs-cTnT was 0.935 (95% CI, 0.921-0.948; p=0.002 

for comparison with hs-cTnT alone), cMyC with hs-cTnI 0.929 (95% CI, 0.913-0.943; p=0.093 

for comparison with hs-cTnI alone) and cMyC with s-cTnI 0.928 (95% CI, 0.909-0.943; 

p<0.001 for comparison with s-cTnI alone) (Table 4, Figure 26). 

 

Figure 26 – ROC curves describing the diagnostic performance of the combination of cMyC with hs-cTnT (dark 

purple line; AUC 0.935*), hs-cTnI (light purple line; AUC 0.929) and s-cTnI (green line; AUC 0.928*); *p<0.05 
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5.5.6 Classification function of cut-off values for risk groups 

Sensitivity, specificity, negative and positive predictive values were calculated for derivation 

(tables S9, S10) and validation cohorts based on cut-offs published in the 2015 ESC 

guideline12: in the validation cohort (n=1,368, 233 events), hs-cTnT has a sensitivity of 99.6% 

(95% CI, 98.5-100%) and NPV of 99.7% (95% CI, 99-100%) at the rule-out threshold of 5 

ng/L, specificity of 97.1% (95% CI, 96.1-98%) and PPV 80.1% (95% CI, 73.2-86.2%) at the 

rule-in threshold (52 ng/L); hs-cTnI has a sensitivity of 100% (95% CI, 100-100%) and NPV 

of 100% (95% CI, 100-100%) at 2 ng/L, specificity of 94.5% (95% CI, 93-95.8%) and PPV 

70.4% (95% CI, 63.6-76.5%) for rule-in – Table 5. After obtaining clinically meaningful cut-off 

thresholds in the internal derivation cohort (tables S9, S10; figure S2; based on sensitivity 

≥99.5%, specificity >95%), these were tested in the validation cohort: at a threshold of 10 

ng/L for rule-out, cMyC achieves a sensitivity of 99.6% (95% CI, 98.6-100%) and NPV of 

99.8% (95% CI, 99.3-100%). At 120 ng/L for the rule-in threshold, cMyC achieves a 

specificity of 94.7% (95% CI, 93.3-95.9%) and PPV of 71% (95% CI, 64.9-77.2%); all data in 

Table 5 & Table 6. 
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Initial model New model – cMyC (10/120) – Validation cohort 
hs-cTnT  No AMI (n=1089) AMI (n=219) 
 Rule-out Observe Rule-in Rule-out Observe Rule-in 
Rule-out 249 77 0 0 1 0 
Observe 190 509 32 1 66 24 
Rule-in 0 7 25 0 9 118 
NRI 0.081 (95% CI, 0.029-0.113) 0.068 (95% CI, 0.016-0.121) 
NRI (dimensionless) 0.149 (95% CI, 0.089-0.210); p value <0.001, IDI 0.050 (95% CI, 
0.029-0.070) 

 

Thresholds Sensitivity (95% CI) NPV (95% CI) Specificity (95% CI) PPV (95% CI) 
hs-cTnT 5 ng/L 99.6% (98.5-100%) 99.7% (99-100%) 29.9% (27.3-32.5%) 22.2% (19.6-24.8%) 
hs-cTnT 52 ng/L 58.1% (51.6-64%) 92% (90.5-93.5%) 97.1% (96.1-98%) 80.1% (73.2-86.2%) 
cMyC 10 ng/L 99.5% (98.6-100%) 99.8% (99.3-100%) 38.8% (35.8-41.7%) 24.6% (21.8-27.4%) 
cMyC 120 ng/L 64.9% (58.5-71.2%) 93.1% (91.4-94.5%) 94.8% (93.5-96%) 71.5% (64.7-78%) 

Table 5 – Net Reclassification Improvement (Validation cohort for hs-cTnT): NRI = Net Reclassification 

Improvement; IDI = Integrated Discrimination Improvement; CI = Confidence Interval; NPV = Negative 

Predictive Value; PPV = Positive Predictive Value; AMI = Acute Myocardial Infarction, based on the adjudicated 

gold-standard diagnosis 

Initial model New model – cMyC (10/120) – Validation cohort 
hs-cTnI No AMI (n=1080) AMI (n=224) 
 Rule-out Observe Rule-in Rule-out Observe Rule-in 
Rule-out 167 32 0 0 0 0 
Observe 273 526 22 1 63 19 
Rule-in 0 25 35 0 16 125 
NRI 0.226 (95% CI, 0.174-0.258) 0.009 (95% CI, -0.044-0.062) 
NRI (dimensionless) 0.235 (95% CI, 0.174-0.296); p value <0.001; IDI 0.078 (95% CI, 
0.057-0.098) 

 

Thresholds Sensitivity (95% CI) NPV (95% CI) Specificity (95% CI) PPV (95% CI) 
hs-cTnI 2 ng/L  100% (100-100%) 100% (100-100%) 18.4% (16-20.8%) 20.3% (18-22.7%) 
hs-cTnI 52 ng/L 62.9% (56.4-68.9%) 92.5% (90.9-93.9%) 94.5% (93-95.8%) 70.4% (63.6-76.5%) 
cMyC 10 ng/L 99.6% (98.6-100%) 99.8% (99.3-100%) 39.4% (36.3-42.4%) 25.5% (22.9-28.5%) 
cMyC 120 ng/L 64.3% (58.1-70.7%) 92.8% (91.2-94.3%) 94.7% (93.2-96%) 71.8% (65.3-77.9%) 

Table 6 – Net Reclassification Improvement (Validation cohort for hs-cTnI): abbreviations as in table 5 
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All data for the groups of early (<3 hours of chest pain) and late presenters (≥3 hours of chest 

pain) is presented in tables S11 and S12. In short, in early presenters cMyC demonstrates 

comparable sensitivity to hs-cTnT (cMyC 100% vs 98.8%; p=0.317) for rule-out (at cMyC 

threshold 10 ng/L). Sensitivity is equivalent between cMyC and hs-cTnI (100% both; p=1). In 

the group of late presenters, there is no statistical difference between sensitivity and specificity 

achieved for cMyC when compared to hs-cTnT/I. Specificity for adjudicated diagnosis of AMI 

was individually assessed at the 99th centile in table S13. 

5.5.7 Risk group reclassification 

The distribution of patients in risk groups ‘rule-out’, ‘observe’ and ‘rule-in’ based on the initial 

blood test (either hs-cTnT, hs-cTnI or cMyC) is displayed in Figure 27 (validation cohort, 

n=1368, AMI in 17%). cMyC classified 443 patients (32.4%) safely as rule-out, compared to 

348 (25.4%) with hs-cTnT and 206 (15.1%) with hs-cTnI – predominantly by reducing the size 

of the observation group. 

In the validation cohort (Table 5, Table 6), cMyC at presentation was superior to hs-cTnT with 

NRI +0.149 (NRInoAMI +0.081, NRIAMI +0.068; p <0.001), and to hs-cTnI with NRI +23.5 

(NRInoAMI +0.226, NRIAMI +0.009; p <0.001). In the cohort of early presenters (<3 hours of 

chest pain), cMyC was superior to hs-cTnT with NRI +0.256 (NRInoAMI +0.256, NRIAMI 

+0.128; p <0.001), and to hs-cTnI with NRI +0.308 (NRInoAMI +0.257, NRIAMI +0.051; p 

<0.001); table S11. In the cohort of late presenters (≥3 hours of chest pain), cMyC was 

superior to hs-cTnT with NRI +0.133 (NRInoAMI +0.084, NRIAMI +0.049; p <0.001), and to hs-

cTnI with NRI +0.227 (NRInoAMI +0.240, NRIAMI -0.012; p <0.001); table S12. 
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Figure 27 – Distribution of patients in different risk categories after presentation blood tests, based on ESC 

guideline 201512 for hs-cTnT and hs-cTnI, and newly developed cut-off thresholds for cMyC at ≤10 ng/L for 

rule-out and >120 ng/L for rule-in of myocardial infarction. 
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5.5.8 Prognostic performance of cMyC 

As quantified by Harrell’s C statistic calculated from the presentation sample (table S14), cMyC 

matched the performance of hs-cTnT in predicting AMI (excluding index event), death and 

the composite endpoint within a 3-year follow-up. Compared to hs-cTnI, there was a 

statistically different but numerically small improvement in predicting death and the composite 

endpoint at 3 years: cMyC C index 0.767 vs hs-cTnI 0.732 (p=0.001) and 0.746 vs 0.722 

(p=0.008), respectively; AMI was comparable. cMyC was significantly better at predicting 

AMI, death or the composite endpoint when compared to cTnI. 

For the calculation of cumulative hazard ratios (HR) for all-cause mortality using a Cox 

regression model, each biomarker was separated into quintiles. HR for hs-cTnT at three year 

follow-up was 2.3 (95% CI, 0.6-9.0) in the second quintile, 7.7 (95% CI, 2.3-25.8) in the third, 

17.7 (95% CI, 5.5-57.1) in the fourth and 33.6 (95% CI, 10.6-106.3) in the fifth quintile – p 

<0.05 for all except 2nd quintile. The HR for hs-cTnI was 6.6 (95% CI, 1.5-29.2), 11.3 (95% CI, 

2.7-48.3), 25.1 (95% CI, 6.1-103.3) and 39.7 (95% CI, 9.7-161.8), respectively – p <0.05 for all 

quintiles. The HR for cMyC was 2.6 (95% CI, 0.7-10.0), 7.8 (95% CI, 2.3-25.9), 17.2 (95% CI, 

5.4-55.0) and 29.4 (95% CI, 9.3-93.2) – p <0.05 for all except 2nd quintile. Survival curves for 

cMyC and hs-cTn assays are displayed in Figure 28 for three-year and 30-day follow-up. 
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Figure 28 – Kaplan-Meier Curves – Cumulative incidence of death in all patients based on biomarker value at 

presentation: all-comers underwent follow-up for up to 3 years. Survival curves are plotted for hs-cTnT, hs-cTnI 

and cMyC based on quintiles for a three year follow-up, and separated in risk groups ‘Rule-Out’, ‘Observe’ and 

‘Rule-In’12 at 30 day follow-up. Amongst quintiles, the HR for hs-cTnT at three year follow-up was 2.3 (95% CI, 

0.6-9.0) in the second quintile, 7.7 (95% CI, 2.3-25.8) in the third, 17.7 (95% CI, 5.5-57.1) in the fourth and 33.6 

(95% CI, 10.6-106.3) in the fifth quintile. The HR for hs-cTnI was 6.6 (95% CI, 1.5-29.2), 11.3 (95% CI, 2.7-

48.3), 25.1 (95% CI, 6.1-103.3) and 39.7 (95% CI, 9.7-161.8), respectively. The HR for cMyC was 2.6 (95% CI, 

0.7-10.0), 7.8 (95% CI, 2.3-25.9), 17.2 (95% CI, 5.4-55.0) and 29.4 (95% CI, 9.3-93.2). 

The quintiles comprise of the following tiers:  

hs-cTnT: [ 0.0, 4.1) [ 4.1, 7.1) [ 7.1, 12.1) [12.1, 27.5) [27.5, 1750.0] 

hs-cTnI: [ 0.2, 2.3) [ 2.3, 3.6) [ 3.6, 6.8) [ 6.8, 22.9) [22.9, 25351.6] 

cMyC: [ 1.27, 6.92) [ 6.92, 12.24) [12.24, 24.19) [24.19, 71.71) [71.71, 4369.03] 

5.6. Discussion 

To our knowledge, cMyC is the first cardiac-restricted protein to be analysed as a diagnostic 

test for AMI since cTn. In this diagnostic multicentre study we compared its diagnostic 

performance to cTnI and cTnT, measured using the leading high-sensitivity assays 

recommended in current practice guidelines12, in a well-characterized and large cohort of 

patients presenting with symptoms suggestive of AMI. Discrimination for MI with cMyC was 

similar to that of hs-cTnT and hs-cTnI and superior to s-cTnI. In patients presenting within 3 

hours of chest pain onset, cMyC was superior to hs-cTnT, despite the latter’s use as the 

adjudicating biomarker. Importantly, the exclusion of patients who were discharged on the 

basis of an undetectable contemporary cTn concentration, but were later found to have a 

quantifiable hs-cTn level above the 99th centile (n=92) leaves room for speculation whether an 

entirely different marker might have performed even better, if used for final adjudication. 

Using cut-offs for cMyC calibrated against those recommended in guidelines12, cMyC correctly 



Characterising a novel biomarker of early myocardial injury  102 

and safely rules-out and rules-in AMI in a greater proportion of patients than either hs-cTnT 

or hs-cTnI. These findings indicate that cMyC may be better able to triage patients presenting 

to the ED with suspected AMI. 

cTnT and cTnI have transformed the management of patients with suspected AMI and their 

importance is enshrined in the Universal Definition of Myocardial Infarction.11 Consequently, 

AMI events are identified/adjudicated based on a significant rise (and/or fall) in cTnT/I blood 

concentration. This definition has harmonized clinical care and clinical research, but also 

introduced an inherent bias in favour of cTnT/I versus novel diagnostic biomarkers in studies 

such as ours. cMyC is not part of the troponin complex and has a distinct location within the 

cardiac sarcomere (Figure 21). For these reasons, our findings regarding the performance of 

cMyC against the hs-cTnT and hs-cTnI ‘gold-standard’, are notable. Since cMyC was not 

measured through the patients’ journey, it is a matter of speculation if the outcome would have 

been different with cMyC as the adjudicating biomarker. 

After iatrogenic or spontaneous AMI cMyC appears more rapidly in the systemic circulation 

than either hs-cTnT or hs-cTnI.50,123 This is probably due to a combination of cMyC’s greater 

myocardial abundance, distinct sarcomeric location and loose association with myosin and 

actin.50 This biological distinctiveness of cMyC likely underpins the diagnostic advantage we 

observed over hs-cTnT/I in patients presenting within 3 hours of symptom onset. Moreover, 

the more rapid appearance of cMyC in the systemic circulation after cardiac injury is also likely 

to explain the net reclassification improvement over both hs-cTnT and hs-cTnI.  

There are no large prospective clinical trials comparing the effect of different biomarkers of 

cardiac necrosis on clinical outcome. Nonetheless it is interesting to speculate what effect the 

improved classification of events by cMyC could have in clinical practice. The current 
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guidelines identify three risk groups, where only hs-cTn concentrations at the limit of detection 

or significantly above the 99th centile clearly triages patients towards rule-out or rule-in of AMI, 

respectively.12 This leaves a significant proportion of patients within the ‘observe’ zone of 

clinical uncertainty requiring repeat cTn measurement and further investigation.133 In the 

current study, of the patients who ultimately did not have AMI, the proportion in the observe-

zone after the first measurement at presentation was 55.2% using hs-cTnT, 63.2% using hs-

cTnI and 46.1% using cMyC. It is expected that the greater diagnostic certainty afforded on a 

single presentation blood draw by cMyC may reduce median time to discharge and costs of 

investigations.  

As yet, near-patient, point-of-care devices have not been able to rule-out AMI since they have 

struggled to achieve the required analytic sensitivity to measure low concentrations of cTnT or 

cTnI. In addition, the development of reliable large-platform based hs-cTn assays has proved 

more challenging than expected. Until now, only two manufacturers have overcome the 

difficulties of developing and introducing hs-cTn assays into clinical practice12, of which one 

had major quality issues initially.134–136 These uncertainties and concerns have led to delays in 

the approval of these assays for clinical care in the United States.137 The Food and Drug 

Administration has only recently ratified the use of the 5th generation hs-cTnT assay.138 Since 

cMyC is more abundant and rises more rapidly, migration to a point-of-care format may be 

less challenging. Risk prediction appears grossly similar when comparing hs-cTn and cMyC 

and could therefore be performed on either. Notably, a cMyC level below 10 ng/L (the 

threshold resembling 25-times the Limit of Detection) offers both very high NPV and 30-day 

mortality rates approaching zero. 
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There are a number of limitations to our study. First, the diagnostic cut-offs for cMyC require 

external validation: Despite its size, a single cohort cannot entirely safeguard against 

calibration-issues and is inherently subject to potential, institutional bias. We have attempted to 

mitigate these risks by employing both randomization and bootstrapping, but in an ideal 

scenario the findings were validated in an independent cohort. Second, the analyses within this 

manuscript are confined to the concentration of necrosis biomarker on first blood draw. We 

have not analysed the effect on the grey zone of repeat blood draws after set intervals. This is 

an area of active research for which there is no consensus regarding resampling interval, 

magnitude of concentration change, use of absolute or relative change in concentration or 

effect of assay vendor.113,114,124,139–141 Third, as a prospective diagnostic study, we cannot exactly 

quantify the clinical benefit associated with the use of cMyC as an alternative or addition to hs-

cTn – further cluster-randomized studies will be required to address this issue. Fourth, we 

cannot comment on the accuracy of cMyC among patients with terminal kidney failure on 

renal replacement therapy or ST elevation myocardial infarction, since such patients were 

excluded from this study. Currently, biomarkers have no role in the assessment of patients 

with STEMI and hence this group was not analysed. Fifth, of 3029 patients recruited, 875 had 

no baseline cMyC measured; however, a comparison between the analysed cohort and the 

excluded patient sample has not demonstrated substantial differences in baseline characteristics 

(suppl. table 3S). Sixth, in patients with low levels of cMyC (e.g. the non-cardiac chest pain 

group), we have observed a significant difference in biomarker values dependent on certain 

underlying conditions (such as prior coronary artery disease; suppl. tables S7-8); however, this 

effect is muted in patients with AMI, and indeed did not negatively influence specificity. 

Finally, cMyC was measured using a research platform, whilst hs-cTnI and hs-cTnT were 

measured using widely available clinical laboratory analysers. The sandwich immunoassay is 
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comparable to the setup used to test for hs-cTn, but cMyC is not yet available on a random-

access laboratory analyser for routine clinical use. 

In summary, cMyC is a promising new biomarker of myocardial necrosis with overall 

discriminatory power comparable with the leading troponin assays in AMI diagnosis. A 

potential advantage of cMyC is its ability to more effectively rule-out AMI at presentation, 

particularly among those presenting early after symptom onset.  
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5.7. Supplement 

5.7.1 Supplemental Methods 

Routine clinical assessment 

All patients underwent a clinical assessment that included medical history, physical 

examination, 12-lead ECG, pulse oximetry, standard blood test, and chest radiography 

according to local protocols and in accordance with the guidelines of the European Society of 

Cardiology (ESC).12 Levels of cTn were measured at presentation and serially thereafter as long 

as clinically indicated. Treatment of patients was left to discretion of the attending physician.  

Adjudication of the final diagnosis  

AMI was defined and cTn levels interpreted as recommended in current guidelines.11,127,129,142 In 

brief, AMI was diagnosed when there was evidence of myocardial necrosis with a significant 

rise and/or fall in a clinical setting consistent with myocardial ischemia. Patients with AMI 

were further subdivided into type 1 AMI (primary coronary events) and type 2 AMI (ischemia 

due to increased demand or decreased supply, for example tachyarrhythmia or hypertensive 

crisis).11,143 

The adjudication of final diagnoses was performed centrally in the core lab (University 

Hospital Basel) for all patients incorporating levels of hs-cTnT (see test characteristics above). 

More specifically, two independent cardiologists not directly involved in patient care reviewed 

all available medical records (including patient history, physical examination, results of 

laboratory testing including hs-cTnT levels, radiologic testing, ECG, echocardiography, cardiac 

exercise test, lesion severity and morphology in coronary angiography, discharge summary) 

pertaining to the patient from the time of ED presentation to 90-day follow-up. Late samples 

were available for adjudication of final diagnosis in all patients. In general, serial sampling was 



Characterising a novel biomarker of early myocardial injury  109 

performed until at least 6h after presentation to the ED or onset of chest.143 In situations of 

diagnostic disagreement, cases were reviewed and adjudicated in conjunction with a third 

cardiologist. While discharge diagnoses often were correct and in agreement with the final 

adjudicated diagnosis, there were also cases where those diagnoses needed to be revised, most 

often because more information became available from medical testing during early follow-up, 

and more rarely, because the discharge diagnosis was not in agreement with the Universal 

Definition of AMI.  

The 99th percentile (14 ng/L) was used as cut-off for myocardial necrosis. Absolute cTn 

changes were used to determine significant changes based on the diagnostic superiority of 

absolute over relative changes.144–149 Based on studies of the biological variation of cTn30,150 as 

well as on data from previous chest pain cohort studies144,151, a significant absolute change was 

defined as a rise or fall of at least 10 ng/L within six hours, or, in an assumption of linearity, as 

an absolute change of 6 ng/L within three hours. Predefined alternative diagnoses included 

‘unstable angina’ (UA), ‘Cardiac symptoms of origin other than coronary artery disease’ and 

‘non-cardiac chest pain’.  

Clinical Care: The (hs)-cTn assays and cut-off levels used for local clinical care 

Routine clinical care comprised five different cTn assays at the different hospitals and at the 

different recruitment periods. The cTn assays used clinically in most of the participating 

institutions changed during the study from a conventional cTn assay to the hs-cTnT assay. In 

order to take advantage of the higher sensitivity and higher overall diagnostic accuracy offered 

by the hs-cTnT assay, patients were adjudicated using the hs-cTnT values in all patients. In 

patients in whom clinically a conventional cTn assay was used, the conventional cTn values 
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and the hs-cTnT values were available for the adjudication. In patients in whom clinically the 

hs-cTnT assay was used, only the hs-cTnT values were available for the adjudication. 

The following conventional cTn assays were used: For the Roche cTnT 4th generation assay, 

the 10% CV level is 0.035 µg/l. The laboratories of the participating sites reported only two 

decimals; therefore 0.04 µg/l was used as a cut-off for myocardial necrosis. In order to fulfil 

the criteria of a significant change (30% of 99th percentile or 10% CV level), a patient would 

e.g. need to have a level of <0.01 µg/l at presentation and 0.04 µg/l at 6h. A patient would 

also qualify if the first level is 0.02 µg/l and the second 0.04 µg/l. A patient would not fulfil 

the criteria if the first level is 0.03 µg/l and the second is 0.04 µg/l. If the first level is 0.04 

µg/l, the second level needs to be at least 0.06 µg/l.  

For the Abbott Axsym cTnI ADV, the 10% CV level is 0.16 µg/l. A patient having 0.16 µg/l 

at presentation would meet the criteria for significant change if the second was ≥0.21 µg/l. A 

patient having <0.12 µg/l at presentation (limit of detection) would qualify if the second is 

>0.16 µg/l.  

For the Beckmann Coulter Accu cTnI, the 10% CV level is 0.06 µg/l. A patient having 

0.06ug/l at presentation would qualify if the second is ≥0.08 µg/l. A patient having 0.05 at 

presentation would qualify if the second is 0.07 µg/l, but not 0.06 µg/l. A patient having 

undetectable cTnI (cTnI <0.01 µg/l) at presentation would qualify if the second is ≥0.06 µg/l. 

For the Siemens Dimension Vista s-cTnI, the 10% CV level is 40 ng/L. The limit of detection 

is 15 ng/L and the 99th percentile is 45 ng/L. An absolute change of 20 ng/L or more within 

3-6h was considered significant. 
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For Elecsys hs-cTnT measured clinically, the same change criteria were applied as for hs-cTnT 

measured from the study blood samples. 

Central adjudication: Definition of rise and/or fall in high-sensitivity cardiac troponin 
T (hs-cTnT)  

Absolute changes in hs-cTnT were used to determine significant changes based on the 

diagnostic superiority of absolute over relative changes.144–149 Based on studies of the biological 

variation of cTn30,150 as well as on data from previous chest pain cohort studies144,151, a 

significant absolute change was defined as a rise or fall of at least 10 ng/L within 6 hours or an 

absolute change of 6 ng/L within 3 hours. If later clinical samples (e.g., at 24, 48, or 72 hours) 

revealed a lower hs-cTnT level than that measured during the period of sampling in the ED, 

the later level was considered the true baseline level for the calculation of the change criteria. 

Measurement of high-sensitivity cardiac troponin I, high-sensitivity cardiac troponin T 
and sensitive cardiac troponin I  

After collection and subsequent centrifugation, samples were frozen at -80ºC until assayed in a 

blinded fashion in a dedicated core laboratory. The Roche hs-cTnT assay was measured on the 

Elecsys 2010 (Roche Diagnostics). The limit of blank and LoD were determined to be 3 and 5 

ng/L, respectively. The 99th centile of a healthy reference population was reported at 14 ng/L 

with an imprecision corresponding to 10% CV at 13 ng/L.95 This study does not include any 

measurements with hs-cTnT lots that required the revision of the calibration curve.134–136,152,153 

The Abbott hs-cTnI assay used was the final pre-commercial release version of the 

ARCHITECT High Sensitive STAT Troponin I assay (Abbott Laboratories, Abbott Park, IL, 

USA). Samples were thawed, mixed, and centrifuged (for 30 min at 3000 RCF and 4ºC for 

serum samples or for 10 min, twice, at 3000 RCF for plasma samples) prior to analysis and 
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according to manufacturer's instructions. The hs-cTnI assay has a 99th percentile 

concentration of 26.2 ng/L with a corresponding coefficient of variation (CV) of <5% and a 

limit of detection (LoD) of 1.9 ng/L.154 The cTnI-ultra assay was performed with the use of 

the ADVIA Centaur immunoassay system (Siemens). Limit of detection is 6 ng/L; a 10% 

coefficient of variation was reported at 30 ng/L with the 99th percentile cut-off point of 40 

ng/L.155,156 Calculation of the glomerular filtration rate was performed using the abbreviated 

Modification of Diet in Renal disease formula.157 

Measurement of cardiac myosin-binding protein C 

We have previously described the creation, biophysical selection and organ specificity of 

mouse monoclonal antibodies recognising cardiac-restricted epitopes within the N-terminus of 

cMyC.50 Two of these antibodies, 1A4 and 3H8, were used to create a sensitive sandwich 

immunoassay. In brief, Magnetic microparticles (MPs) for capture were prepared by binding 25 

µg of mouse monoclonal (1A4) per mg of MPs. The coated MPs were diluted in assay buffer 

(proprietary mix with custom 450mM NaCl and 0.5% Triton X-100) to 100 µg/mL. Due to 

sample volume constraints, serum, plasma or analyte (recombinant C0C2 domain of cMyC)50 

were diluted 2.2 fold with standard diluent and 100µL added per well of a 96-well assay plate. 

Samples or standards were then exposed to 100µL of coated MPs and agitated for 2 hours at 

25°C. MPs were retained via a magnetic bed with unbound material removed in a single wash 

step. Fluorescently-labelled mouse monoclonal (3H8) detection antibody was diluted in assay 

buffer to 100 ng/mL. To each well, 20 µL of detection antibody was added and the MPs 

agitated for 1 hour at 25°C, retained via a magnetic bed and then washed 4 times to remove 

any unbound detection reagent. The MPs were then transferred to a new plate and all buffer 

was aspirated. The MPs were then exposed to 20 µL/well of elution buffer B for 5 minutes at 
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25°C before transfer to a 384-well plate containing 10 µL/well of neutralization buffer D. 

Fluorescent label was then detected by single molecule counting using the Erenna system with 

a dwell time of 60s per well. Three signal outputs were obtained from the Erenna System: 

Detected Events (DEs; low end signal), Event Photons (EPs; low end and higher end signal), 

and Total Photons (TPs; high end signal). 
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5.7.2 Supplemental Tables 

Biomarker N Median ng/L [IQR] 

cMyC at 0h 60 36 [24-62] 

hs-cTnI at 0h 56 11 [7-21] 

hs-cTnT at 0h 60 21 [16-28] 

 

All patients 92  

cMyC at 0h 60 36 [24-62] 

hs-cTnI at 0h 78 11 [6-19] 

hs-cTnT at 0h 92 22 [17-29] 

Table S1 – Comparison of biomarkers in patients excluded because of uncertain final diagnosis (e.g. patients 

discharged based on negative result on conventional cTn assay, who then tested positive on high-sensitivity cTn 

assay); comparison is performed for all patients with a measured cMyC at baseline (N=60) and all patients 

including missing values (N=92)  
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Demographics All patients 
(n = 1954) 

Excluded 
patients 
(n=875) 

p value* 
for comparison 

derivation vs validation 
Age, years 62 ± 16 59 ± 16 <0.001 
Male 1341 (69) 587 (67) 0.441 
Risk factors    
Hypertension 1247 (64) 384 (44) <0.001 
Hyperlipidaemia 992 (51) 421 (48) 0.206 
Diabetes mellitus 348 (18) 136 (16) 0.155 
Current smoking 476 (24) 244 (28) 0.051 
History of smoking 1194 (61) 553 (63) 0.297 
History    
Coronary artery disease 710 (36) 272 (31) 0.008 
Previous myocardial infarction 474 (24) 199 (23) 0.408 
Previous revascularisation (CABG or PCI) 553 (28) 237 (27) 0.535 
Peripheral artery disease 119 (6) 52 (6) 0.947 
Previous stroke 100 (5) 53 (6) 0.352 
Vital status    
Heart rate, beats/min 79 ± 20 81 ± 21 0.234 
Systolic blood pressure, mm Hg 144 ± 24 143 ± 25 0.711 
Diastolic blood pressure, mm Hg 82 ± 15 82 ± 15 0.569 
Electrocardiographic findings    
ST-segment depression 193 (10) 75 (9) 0.313 
T-wave inversion 260 (13) 89 (10) 0.026 
No significant electrocardiographic 
abnormalities 1469 (75) 681 (79) 0.193 

Laboratory assessment    
Estimated glomerular filtration rate, 
ml/min/1.73m2† 84 ± 26 87 ± 25 0.008 

Presentation time    
Time since chest pain onset, hours 5 [3, 12] 4 [1, 9] <0.001 
Time since chest pain peak, hours 3 [2, 7] 2 [5, 5] <0.001 

Table S2 – Demographics – group qualifying for primary analysis (n=1954) vs patients excluded due to missing 

cMyC values at baseline: * p values for comparison included versus excluded patient groups; data are expressed as 

medians [1st quartile, 3rd quartile] or means ± standard deviation, for categorical variables as numbers 

(percentages); CABG = Coronary Artery Bypass Graft; PCI = Percutaneous Coronary Intervention; † glomerular 

filtration rate was estimated using the Modification of Diet in Renal Disease (MDRD) formula  

 

Table S3 – STARD checklist for studies of diagnostic accuracy – please online supplement to original 

publication126  
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Demographics All 
patients 

(n = 1954) 

Derivation 
(n = 586) 

Validation 
(n = 1368) 

p value* 
for comparison 

derivation vs 
validation 

Age, years 62 ± 16 62 ± 16 62 ± 16 0.777 
Male 1341 (69) 393 (67) 948 (69) 0.357 
Acute Myocardial Infarction 340 (17) 107 (18) 233 (17) 0.512 
Risk factors     
Hypertension 1247 (64) 362 (62) 885 (65) 0.239 
Hyperlipidaemia 992 (51) 290 (49) 702 (51) 0.489 
Diabetes mellitus 348 (18) 99 (17) 249 (18) 0.505 
Current smoking 476 (24) 148 (25) 328 (24) 0.602 
History of smoking 1194 (61) 372 (63) 864 (63) 0.906 
History     
Coronary artery disease 710 (36) 200 (34) 510 (37) 0.202 
Previous myocardial infarction 474 (24) 136 (23) 338 (25) 0.515 
Previous revascularisation (CABG 
or PCI) 553 (28) 153 (26) 400 (29) 0.176 

Peripheral artery disease 119 (6) 33 ( 6) 86 ( 6) 0.652 
Previous stroke 100 (5) 27 ( 5) 73 ( 5) 0.577 
Vital status     
Heart rate, beats/min 79 ± 20 80 (20) 79 (21) 0.895 
Systolic blood pressure, mm Hg 144 ± 24 145 ± 25 143 ± 24 0.058 
Diastolic blood pressure, mm Hg 82 ± 15 82 ± 15 82 ± 15 0.765 
Electrocardiographic findings     
ST-segment depression 193 (10) 53 (9) 140 (10) 0.475 
T-wave inversion 260 (13) 64 (11) 196 (14) 0.05 
No significant electrocardiographic 
abnormalities 1469 (75) 456 (80) 1013 (76) 0.075 

Laboratory assessment     
Estimated glomerular filtration rate, 
ml/min/1.73m2† 84 ± 26 84 ± 25 84 ± 26 0.441 

Presentation time     
Time since chest pain onset, hrs 5 [3, 12] 5 [2, 12] 5 [3, 12] 0.804 
Time since chest pain peak, hrs 3 [2, 7] 4 [2, 7] 3 [2, 7] 0.528 

Table S4 – Demographics for derivation and validation cohorts; * p values for comparison validation to 

derivation cohort; data are expressed as medians [1st quartile, 3rd quartile] or means ± standard deviation, for 

categorical variables as numbers (percentages); CABG = Coronary Artery Bypass Graft; PCI = Percutaneous 

Coronary Intervention; † glomerular filtration rate was estimated using the Modification of Diet in Renal Disease 

(MDRD) formula 
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Adjudicated diagnosis cMyC (ng/L) hs-cTnT 
(ng/L) 

hs-cTnI 
(ng/L) s-cTnI (mg/L) 

AMI 237 [71-876] 62 [28-139] 97 [21-456] 0.175 [0.039-
0.722] 

Unstable angina 21 [13-43] 11 [7-17] 6 [4-12] 0.009 [0.005-
0.020] 

cardiac symptoms of 
origin other than 
coronary artery disease 

33 [12-96] 15 [7-32] 10 [4-30] 0.017 [0.005-
0.044] 

non-cardiac symptoms 10 [6-19] 6 [4-10] 3 [2-5] 0.005 [0.004-
0.011] 

symptoms of unknown 
origin 11 [7-16] 6 [3-10] 3 [2-5] 0.005 [0.001-

0.010] 

Table S5 – Blood concentrations of cMyC, hs-cTnT, hs-cTnI and s-cTnI at presentation in the five diagnostic 

categories; AMI = acute myocardial infarction; data is quoted in median ng/L [Interquartile Range] for cMyC and 

hs-cTn assays, and mg/L [IQR] for s-cTnI 
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cMyC >87 
ng/L AMI UA non-

coronary non-cardiac unknown p N 
 

N=237 N=18 N=72 N=22 N=1   

cMyC at 0h 559 [215-1228] 135 [113-
207] 

168 [120-
329] 157 [101-222] 96 [96-96] <0.001 350 

hs-cTnI at 0h 230 [74-725] 42 [17-74] 81 [34-227] 29 [15-43] 3 [3-3] <0.001 327 

hs-cTnT at 
0h 92 [51-182] 29 [24-43] 50 [35-88] 26 [19-47] 8 [8-8] <0.001 337 

adjusted R2: cMyC and hs-cTnI 0.230, cMyC and hs-cTnT 0.504, hs-cTnT and hs-cTnI 0.608 

 

hs-cTnI >26 
ng/L AMI UA non-coronary non-cardiac unknown p N 
 

N=226 N=21 N=67 N=30 N=0   

cMyC ng/L at 0h 524 [208-
1230] 

60 [30-
134] 158 [99-344] 75 [36-167] NA <0.001 344 

hs-cTnI ng/L at 
0h 235 [84-739] 60 [53-

98] 91 [49-229] 42 [30-65] NA <0.001 344 

hs-cTnT ng/L at 
0h 93 [54-183] 22 [14-

32] 50 [35-88] 27 [15-47] NA <0.001 332 

adjusted R2: cMyC and hs-cTnI 0.230, cMyC and hs-cTnT 0.528, hs-cTnT and hs-cTnI 0.602 

 

hs-cTnT >14 
ng/L AMI UA non-coronary non-cardiac unknown p N 

 N=290 N=63 N=135 N=150 N=0   

cMyC ng/L at 
0h 328 [97-998] 48 [24-

83] 91 [46-165] 34 [19-57] NA <0.001 638 

hs-cTnI ng/L 
at 0h 134 [33-557] 14 [7-38] 28 [14-87] 10 [6-19] NA <0.001 600 

hs-cTnT ng/L 
at 0h 70 [36-147] 21 [17-

26] 31 [20-52] 20 [16-27] NA <0.001 638 

adjusted R2: cMyC and hs-cTnI 0.274, cMyC and hs-cTnT 0.567, hs-cTnT and hs-cTnI 0.617 

Table S6 – Blood concentrations of biomarkers above 99th centiles at presentation; AMI = acute myocardial 

infarction; UA = unstable angina; data is quoted in median ng/L [Interquartile Range] 

  



Characterising a novel biomarker of early myocardial injury  119 

 AMI group (N=340) p N 

Gender – male vs female 207 [62-814] vs 361 [91-1006] 0.096 256 

Age – <65 vs ≥65 237 [62-938] vs 237 [74-826] 0.925 122 

Body Mass Index (BMI) – <30 vs ≥30 264 [72-898] vs 219 [76-616] 0.414 257 

Hypertension – absent vs present  272 [64-885] vs 230 [73-874] 0.935 71 

Hyperlipidaemia – absent vs present  321 [92-840] vs 211 [57-887] 0.140 113 

Diabetes mellitus – absent vs present  282 [75-1004] vs 182 [64-535] 0.059 245 

Current smoking – absent vs present  257 [66-894] vs 213 [78-822] 0.681 249 

History of smoking – absent vs present  219 [70-837] vs 274 [72-894] 0.701 198 

Coronary artery disease – absent vs present  308 [79-973] vs 206 [60-785] 0.135 166 

Estimated glomerular filtration rate, 
ml/min/1.73m2* – <60 vs ≥60 345 [87-953] vs 208 [60-828] 0.111 101 

 

 Non-cardiac chest pain group 
(N=1052)   

Gender – male vs female 10 [6-19] vs 10 [5-18] 0.108 716 

Age – <65 vs ≥65 8 [5-13] vs 18 [11-32] <0.001 701 

Body Mass Index (BMI) – <30 vs ≥30 10 [6-19] vs 11 [6-21] 0.282 815 

Hypertension – absent vs present  7 [5-12] vs 14 [9-29] <0.001 509 

Hyperlipidaemia – absent vs present 8 [5-15] vs 14 [8-28] <0.001 634 

Diabetes mellitus – absent vs present  10 [6-17] vs 16 [10-35] <0.001 916 

Current smoking – absent vs present  11 [7-21] vs 8 [5-14] <0.001 769 

History of smoking – absent vs present  10 [6-17] vs 13 [7-23] <0.001 707 

Coronary artery disease – absent vs present  9 [6-15] vs 18 [11-32] <0.001 784 

Estimated glomerular filtration rate, 
ml/min/1.73m2* – <60 vs ≥60 30 [16-53] vs 9 [6-16] <0.001 107 

Table S7 – Non-Cardiac sources of cMyC variation; MI = myocardial infarction, based on the adjudicated gold-

standard diagnosis; CABG = Coronary Artery Bypass Graft; PCI = Percutaneous Coronary Intervention; data is 

quoted in median [Interquartile Range]; N = number of patients with the condition on the left-hand side of the 

demographic factors (e.g. ‘Hypertension – absent in 509 patients’); *glomerular filtration rate was estimated using 

the Modification of Diet in Renal Disease (MDRD) formula 
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Non-cardiac chest pain group R2 B SE B βi p 
 0.077     

Constant  -32.439 11.893  0.006 

Hypertension  2.040 3.860 0.020 0.597 

Hyperlipidaemia  1.326 4.127 0.013 0.748 

Diabetes mellitus  1.139 5.047 0.007 0.822 

Current smoking  -1.914 3.978 -0.017 0.631 

History of smoking  -3.531 3.680 -0.033 0.338 

Coronary artery disease  9.658 4.552 0.083 0.034 

Creatinine on admission  0.357 0.072 0.157 0.000 

Age  0.399 0.113 0.127 0.000 

Body Mass Index (BMI)  -0.007 0.328 -0.001 0.982 
 0.075     

Constant  -34.087 7.050  0.000 

Coronary artery disease  10.680 3.662 0.093 0.004 

Creatinine on admission  0.351 0.070 0.155 0.000 

Age  0.428 0.099 0.137 0.000 

 

AMI group R2 B SE B βi p 
 0.028     

Constant  516.589 496.148  0.299 

Hypertension  -1.724 121.878 -0.001 0.989 

Hyperlipidaemia  141.837 106.276 0.082 0.183 

Diabetes mellitus  -236.237 108.644 -0.129 0.030 

Current smoking  -30.010 136.079 -0.016 0.826 

History of smoking  15.745 107.937 0.010 0.884 

Coronary artery disease  -175.913 102.811 -0.108 0.088 

Creatinine on admission  0.727 0.933 0.045 0.436 

Age  -0.459 4.339 -0.007 0.916 

Body Mass Index (BMI)  4.402 11.964 0.023 0.713 
 0.014     

Constant  674.182 52.552  0.000 

Diabetes mellitus  -220.143 100.580 -0.119 0.029 

Table S8 – Multiple regression to determine influence of baseline variables on cMyC levels; AMI = Acute 

Myocardial Infarction; R2 = fit of the regression model; B = beta estimate; SE B = standard errors of beta 

estimate;  βi = standardized beta estimate 



Characterising a novel biomarker of early myocardial injury  121 

Initial model New model – cMyC (10/120) – Derivation cohort 
hs-cTnT  No AMI (n=465) AMI (n=103) 
 Rule-out Observe Rule-in Rule-out Observe Rule-in 
Rule-out 105 28 0 0 0 0 
Observe 95 221 8 0 41 10 
Rule-in 0 0 8 0 3 49 
NRI 0.127 (95% CI, 0.061-0.173) 0.068 (95% CI, 0.0-0.136) 
NRI 
(dimensionless) 

0.195 (95% CI, 0.113-0.277); p value <0.001 IDI 0.065 (95% CI, 0.037-0.093) 

Thresholds Sensitivity (95% CI) NPV (95% CI) Specificity (95% CI) PPV (95% CI) 
hs-cTnT 5 
ng/L 

100% (100-100%) 100% (100-100%) 28.8% (24.8-33.1%) 23.8% (19.4-27.8%) 

hs-cTnT 52 
ng/L 

50.5% (41.3-60.4%) 89.9% (87.4-92.6%) 98.3% (97-99.3%) 86.9% (77.2-94.1%) 

cMyC 10 ng/L 100% (100-100%) 100% (100-100%) 41.3% (36.8-45.9%) 27.3% (22.9-31.9%) 
cMyC 120 ng/L 57.1% (47.5-67%) 91.1% (88.5-93.6%) 96.6% (94.8-98.1%) 78.9% (68.8-87.6%) 

Table S9 – Derivation cohort – hs-cTnT 

Initial model New model – cMyC (10/120) – Derivation cohort 
hs-cTnI No AMI (n=457) AMI (n=96) 
 Rule-out Observe Rule-in Rule-out Observe Rule-in 
Rule-out 61 10 2 0 0 0 
Observe 141 224 3 0 37 5 
Rule-in 1 4 11 0 6 48 
NRI 0.287 (95% CI, 0.217-0.336) -0.010 (95% CI, -0.081-0.060) 
NRI 
(dimensionless
) 

0.276 (95% CI, 0.191-0.361); p value <0.001 IDI 0.090 (95% CI, 0.062-0.119) 

Thresholds Sensitivity (95% CI) NPV (95% CI) Specificity (95% CI) PPV (95% CI) 
hs-cTnI 2 ng/L 100% (100-100%) 100% (100-100%) 15.9% (12.7-19.3%) 20% (16.3-23.8%) 
hs-cTnI 52 
ng/L 

55.9% (46.2-66%) 91.3% (88.8-93.7%) 96.5% (94.9-98%) 77.3% (66.7-86.4%) 

cMyC 10 ng/L 100% (100-100%) 100% (100-100%) 42.7% (38.3-47.4%) 26.9% (22.2-31.1%) 
cMyC 120 ng/L 55.3% (45.8-64.8%) 91.2% (88.5-93.6%) 96.5% (94.8-98%) 77.1% (66.7-86.1%) 

Table S10 – Derivation cohort – hs-cTnI; NRI = Net Reclassification Improvement; IDI = Integrated 

Discrimination Improvement; CI = Confidence Interval; NPV = Negative Predictive Value; PPV = Positive 

Predictive Value; AMI = Acute Myocardial Infarction, based on the adjudicated gold-standard diagnosis 



Characterising a novel biomarker of early myocardial injury  122 

Initial model New model – MyC (10/120) – chest pain for <3hrs 
hs-cTnT  No AMI (n=382) AMI (n=78) 
 Rule-out Observe Rule-in Rule-out Observe Rule-in 
Rule-out 99 28 0 0 1 0 
Observe 83 161 6 0 38 10 
Rule-in 0 0 5 0 1 28 
NRI 0.128 (95% CI, 0.055-0.181) 0.128 (95% CI, 0.044-0.213) 
NRI 
(dimensionless) 

0.256 (95% CI, 0.157-0.356); p value <0.001 IDI 0.086 (95% CI, 0.052-
0.119) 

Thresholds Sensitivity (95% CI) NPV (95% CI) Specificity (95% CI) PPV (95% CI) 
hs-cTnT 5 
ng/L 

98.8% (95.8-100%) 99.2% (97.5-100%) 33.3% (28.6-38.1%) 23.3% (19-27.9%) 

hs-cTnT 52 
ng/L 

37.2% (25.9-48.2%) 88.5% (85.3-91.4%) 98.7% (97.5-99.7%) 86.1% (73.3-96.9%) 

cMyC 10 ng/L 100% (100-100%) 100% (100-100%) 46.4% (41.5-51.6%) 27.5% (22.3-32.5%) 
cMyC 120 ng/L 49% (36.8-60%) 90.4% (87.4-93.2%) 97.2% (95.3-98.7%) 77.8% (65.2-89.7%) 
  
Initial model New model – MyC (10/120) – chest pain for <3hrs 
hs-cTnI  No AMI (n=381) AMI (n=79) 
 Rule-out Observe Rule-in Rule-out Observe Rule-in 
Rule-out 76 11 1 0 0 0 
Observe 109 169 4 0 39 8 
Rule-in 0 5 6 0 4 28 
NRI 0.257 (95% CI, 0.185-0.310) 0.051 (95% CI, -0.032-0.133) 
NRI 
(dimensionless) 

0.308 (95% CI, 0.210-0.406); p value <0.001 IDI 0.101 (95% CI, 0.067-
0.135) 

Thresholds Sensitivity (95% CI) NPV (95% CI) Specificity (95% CI) PPV (95% CI) 
hs-cTnI 2 ng/L 100% (100-100%) 100% (100-100%) 23.2% (19-27.1%) 21.3% (16.8-25.7%) 
hs-cTnI 52 
ng/L 

40.3% (29.5-51.2%) 88.7% (85.5-91.7%) 97.2% (95.5-98.7%) 74.8% (60.7-87.5%) 

cMyC 10 ng/L 100% (100-100%) 100% (100-100%) 47.1% (42.4-52.2%) 28.2% (22.9-33.3%) 
cMyC 120 ng/L 45.6% (34.7-57.3%) 89.6% (86.7-92.6%) 97.1% (95.3-98.7%) 76.6% (64.1-87.8%) 

Table S11 – Net Reclassification Improvement – Onset of chest pain <3 hours prior to presentation; NRI = Net 

Reclassification Improvement; IDI = Integrated Discrimination Improvement; CI = Confidence Interval; NPV = 

Negative Predictive Value; PPV = Positive Predictive Value; AMI = Acute Myocardial Infarction, based on the 

adjudicated gold-standard diagnosis 
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Initial model New model – MyC (10/120) – chest pain for ≥3hrs 
hs-cTnT  No AMI (n=1172) AMI (n=244) 
 Rule-out Observe Rule-in Rule-out Observe Rule-in 
Rule-out 255 77 0 0 0 0 
Observe 202 569 34 1 69 24 
Rule-in 0 7 28 0 11 139 
NRI 0.084 (95% CI, 0.034-0.114) 0.049 (95% CI, 0.0-0.098) 
NRI 
(dimensionless) 

0.133 (95% CI, 0.076-0.190); p value <0.001 IDI 0.044 (95% CI, 0.025-
0.063) 

Thresholds Sensitivity (95% CI) NPV (95% CI) Specificity (95% CI) PPV (95% CI) 
hs-cTnT 5 
ng/L 

100% (100-100%) 100% (100-100%) 28.4% (25.8-31%) 22.6% (20.1-25.1%) 

hs-cTnT 52 
ng/L 

61.4% (55.6-67.3%) 92.3% (90.9-93.9%) 97% (96-97.9%) 81.1% (75.3-86.7%) 

cMyC 10 ng/L 99.6% (98.7-100%) 99.8% (99.3-100%) 37.3% (34.8-40.3%) 24.9% (22-27.8%) 
cMyC 120 ng/L 66.9% (61-72.6%) 93.2% (91.8-94.5%) 94.7% (93.4-96%) 72.5% (66.7-78.1%) 
  
Initial model New model – MyC (10/120) – chest pain for ≥3hrs 
hs-cTnI  No AMI (n=1156) AMI (n=241) 
 Rule-out Observe Rule-in Rule-out Observe Rule-in 
Rule-out 152 31 1 0 0 0 
Observe 305 581 21 1 61 16 
Rule-in 1 24 40 0 18 145 
NRI 0.240 (95% CI, 0.190-0.270) -0.012 (95% CI, -0.061-0.036) 
NRI 
(dimensionless) 

0.227 (95% CI, 0.170-0.285); p value <0.001 IDI 0.075 (95% CI, 0.056-
0.094) 

Thresholds Sensitivity (95% CI) NPV (95% CI) Specificity (95% CI) PPV (95% CI) 
hs-cTnI 2 ng/L 100% (100-100%) 100% (100-100%) 15.9% (14-18%) 19.9% (17.7-22%) 
hs-cTnI 52 
ng/L 

67.5% (61.3-73.7%) 93.3% (91.9-94.7%) 94.4% (93.1-95.6%) 71.5% (65.4-77%) 

cMyC 10 ng/L 99.6% (98.6-100%) 99.8% (99.3-100%) 38.1% (35.3-41%) 25.2% (22.4-28.1%) 
cMyC 120 ng/L 66.9% (60.7-72.4%) 93.2% (91.7-94.6%) 94.6% (93.3-95.9%) 72.1% (66.2-78.3%) 

Table S12 – Net Reclassification Improvement – Onset of chest pain ≥3 hours prior to presentation; NRI = Net 

Reclassification Improvement; IDI = Integrated Discrimination Improvement; CI = Confidence Interval; NPV = 

Negative Predictive Value; PPV = Positive Predictive Value; AMI = Acute Myocardial Infarction, based on the 

adjudicated gold-standard diagnosis 
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 cMyC at 87 ng/L hs-cTnI at 26 ng/L hs-cTnT at 14 ng/L 

Sensitivity 69.6% (95% CI, 64.9-
74.2%) 

70.6% (95% CI, 65.6-
75.5%) 

91% (95% CI, 87.8-
94.1%) 

Specificity 93% (95% CI, 91.7-94.3%) 92.3% (95% CI, 90.8-
93.5%) 

76.4% (95% CI, 74.3-
78.6%) 

NPV 93.6% (95% CI, 92.3-
94.7%) 

93.8% (95% CI, 92.5-
94.9%) 

97.6% (95% CI, 96.7-
98.4%) 

PPV 67.7% (95% CI, 62.9-
72.4%) 

65.4% (95% CI, 60.2-
70.6%) 

44.4% (95% CI, 40.7-
48.2%) 

Table S13 – Specificity of biomarkers at presentation for adjudicated diagnosis of Acute Myocardial Infarction at 

the 99th centile  
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n=1876 cMyC hs-cTnT p value* est.cov 

FU AMI     

Harrell's C Statistic 0.725 0.706 0.251 0.000 

Somers' D ± SD 0.450 ±0.045 0.411 ±0.048   

     

FU death     

Harrell's C Statistic 0.765 0.782 0.142 0.000 

Somers' D ± SD 0.530 ±0.034 0.564 ±0.031   

     

FU composite EP     

Harrell's C Statistic 0.745 0.749 0.667 0.000 

Somers' D ± SD 0.489 ±0.029 0.498 ±0.029   

 

n=1857 cMyC hs-cTnI p value est.cov 

FU AMI     

Harrell's C Statistic 0.724 0.714 0.577 0.000 

Somers' D ± SD 0.447 ±0.047 0.429 ±0.047   

     

FU death     

Harrell's C Statistic 0.767 0.732 0.001 0.000 

Somers' D ± SD 0.535 ±0.034 0.464 ±0.036   

     

FU composite EP     

Harrell's C Statistic 0.746 0.722 0.008 0.000 

Somers' D ± SD 0.492 ±0.029 0.443 ±0.030   
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n=1774 cMyC s-cTnI p value est.cov 

FU AMI     

Harrell's C Statistic 0.719 0.504 <0.001 0.000 

Somers' D ± SD 0.438 ±0.047 0.007 ±0.002   

     

FU death     

Harrell's C Statistic 0.763 0.507 <0.001 0.000 

Somers' D ± SD 0.527 ±0.035 0.014 ±0.011   

     

FU composite EP     

Harrell's C Statistic 0.741 0.503 <0.001 0.000 

Somers' D ± SD 0.483 ±0.030 0.007 ±0.008   

Table S14 – Prognosis – Harrell’s C and Somers’ D statistics; FU = Follow-up event, AMI = Acute Myocardial 

Infarction (based on the adjudicated gold-standard diagnosis), composite EP = endpoint combining death and 

AMI during FU (excluding index event), Somers’ D quoted ± SD = Standard error of Somers’ D, est.cov = 

estimated covariance between two C indices; *p value for direct comparison between biomarkers 
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Prelude to Chapter 6 

Chapter 5 represents the first study to assess the diagnostic and prognostic value of cMyC in 

patients presenting with possible AMI. Based on the AUC, cMyC was equivalent to hs-cTnT/I 

in its diagnostic accuracy, and a rule-in/rule-out pathway was designed to compare 

classification power in a clinical setting. Using this pathway, cMyC would have correctly triaged 

more patients to ‘rule-out’ or ‘rule-in’ groups than either hs-cTnI or hs-cTnT – with a smaller 

proportion of patients left in the observation group. However, the rule-in/rule-out pathway 

only addressed the use of cMyC as a triage-tool at presentation to the emergency department – 

upon first blood draw. From this analysis, it was unclear as to whether the release-profile of 

cMyC, e.g. quantified as a delta between first and second blood draw 1 hour apart, would add 

to the discrimination power or enhance ongoing triage. The goal of Chapter 6 was to design a 

complete rule-in/rule-out pathway for the use of cMyC as a complete triage tool, and 

investigate whether cMyC could be used as a 'triage-booster’ – e.g. as an additional blood test 

performed with the first hs-cTn assay, to enhance triage and expedite risk-stratification into 

rule-in and rule-out groups. Similar to Chapter 5, Chapter 6 is a secondary analysis of a pre-

existing study – APACE, a multi-centre international diagnostic trial enrolling all patients with 

suspected AMI. The work was made possible by close collaboration with colleagues in Basel 

(Christian Mueller et al.). The candidate forged the collaborations, identified suitable patients, 

interpreted all cMyC concentrations, wrote the analysis plan, performed the statistical analysis 

and wrote the manuscript. The findings are not published in manuscript-form yet, but were 

presented as part of a rapid-fire abstract presentation at the ESC Congress 2018 (Munich). 

Findings are reproduced with amendments for inclusion in the thesis.  
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Chapter 6. Derivation and Validation of a 0/1h-algorithm to diagnose Myocardial 

Infarction using Cardiac Myosin-binding Protein C 

Summary 

Introduction: Rapid triage and treatment are the cornerstones of improving management of 

patients presenting with suspected Acute Myocardial Infarction (AMI). Cardiac myosin binding 

protein C (cMyC) is a cardiac-restricted protein that is more abundant than Troponin (cTn) 

and is released rapidly following AMI. We have previously demonstrated more effective rule-

out and rule-in of AMI using a single blood sample at presentation. 

Purpose: In this study, we aimed to (i) investigate the diagnostic performance of cMyC, hs-

cTnI and hs-cTnT measured in 0- and 1-hour blood samples as a single- and dual-marker 

strategy; (ii) derive and validate a 0/1h-triage-algorithm to diagnose AMI based on cMyC and 

(iii) compare it to the well-established ESC 0/1h-algorithms using hs-cTnT and hs-cTnI. 

Methods: In a prospective international diagnostic study enrolling patients presenting with 

suspected AMI to the ED, cMyC (Erenna), hs-cTnT (Elecsys) and hs-cTnI (Architect) were 

determined at baseline and after one hour (1,390 complete datasets for hs-cTnI, 1,431 for hs-

cTnT). Patients presenting with STEMI were excluded. The final diagnosis was centrally 

adjudicated by two independent cardiologists using all available data including coronary 

angiography, echocardiography, follow-up data, and serial measurements of hs-cTnT (but not 

hs-cTnI). Discriminatory power of each biomarker was evaluated by calculating the area under 

the receiver-operating characteristic curve; markers were combined using logistic regression. 

We evaluated the performance of >390,000 different cut-off combinations for cMyC in a 

derivation set (random 50:50 split) and applied the best performing algorithm to the validation 

set. Safety of rule-out was quantified by the negative predictive value (NPV) for AMI; the 
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accuracy of rule-in by the positive predictive value (PPV); efficacy by the proportion assigned 

to rule-out or rule-in based on the 0/1h-samples. Only cut-off combinations achieving an a-

priori defined NPV ≥99% and PPV ≥70% were selected. 

Results: Prevalence of AMI was 17%; median age was 61 years [49;74], 32% were female. The 

diagnostic accuracy of cMyC at presentation (0h) for AMI was high (AUC 0.919 [95% CI, 

0.901-0.937]) and overall comparable to both hs-cTnI (0.916 [0.898-0.934], p=0.616) and hs-

cTnT (0.921 [0.903-0.939], p=0.810). A dual-marker strategy, combining baseline levels of 

cMyC and hs-cTn, increased the diagnostic accuracy with hs-cTnI (0.925 [0.909-0.941], p= 

0.008) and with hs-cTnT (0.930 [0.914-0.946], p=0.006). For the combination of baseline 

levels and absolute 1h-changes, the diagnostic performance of cMyC was comparable to hs-

cTnI (AUC 0.924 [0.908-0.940] vs 0.917 [0.899-0.935], p=0.194), and inferior to hs-cTnT 

(AUC 0.925 [0.907-0.942] vs 0.945 [0.931-0.958], p=0.003). When baseline cMyC was added to 

baseline levels and 1h-changes of hs-cTn, the diagnostic accuracy further improved with hs-

cTnI (AUC 0.926 [0.909-0.942], p=0.012), but not significantly with hs-cTnT (AUC 0.947 

[0.935-0.960], p=0.186). 

The best performing cMyC cut-off combination [0h <10 (for patients presenting >3h after 

chest pain onset) or 0h <26 AND Δ0-1h <8 for rule-out; ≥136 OR Δ0-1h ≥15 for rule-in (all 

values ng/L)] was selected in a derivation cohort and applied to the validation cohort. 

Comparing cMyC with hs-cTnT in the validation cohort, accuracy for rule-out by the best 

performing cMyC 0/1h-algorithm was high in the hs-cTnT validation cohort: NPV 99.3% 

[95% CI, 98.5-99.9%]; sensitivity 97.6% [94.7-100%]; and comparable to the ESC hs-cTnT 

0/1h-algorithm: NPV 99.7% [99.2-100%; p=0.332]; sensitivity 99.2% [97.3-100%, p=0.317). 

Accuracy for rule-in was high: PPV 70% [62.2-77.6%]; specificity 93.3% [91.1-95.1%]; but 
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inferior to the ESC hs-cTnT 0/1h-algorithm: PPV 78.9% [71.7-85.87%; p=0.007]; specificity 

95.6% [93.9-97.2%; p=0.011]. Proportion of patients assigned to either rule-out or rule-in 

based on the 0/1h-samples significantly increased from 75.28% using hs-cTnT to 79.19% 

using cMyC (p<0.001). Direct rule-out (feasible in patients presenting >3 hours after chest 

pain onset) or rule-in based on a single blood draw at ED presentation increased from 35.75% 

using hs-cTnT to 47.21% using cMyC (p<0.001) 

Comparing cMyC with hs-cTnI in the validation cohort, accuracy for rule-out by the novel 

cMyC 0/1h-algorithm was high: NPV 99.3% (95% CI, 98.5-99.9%); sensitivity 97.4% (94.1-

100%); and comparable to the ESC hs-cTnI 0/1h-algorithm: NPV 99.1% (98.2-99.9%; 

p=0.78); sensitivity 97.4% (94.1-100%; p=1). Similarly, accuracy for rule-in was high: PPV 

70.9% (63.1-78.5%); specificity 93.4% (91.2-95.3%); and comparable to the ESC hs-cTnI 

0/1h-algorithm: PPV 71.2% (63.3-78.9%; p=0.91); specificity 93.5% (91.4-95.6%; p=0.85). 

Proportion of patients assigned to either rule-out or rule-in based on the 0/1h-samples 

significantly increased from 70.1% using hs-cTnI to 80.7 % using cMyC (p<0.05). Direct rule-

out (feasible in patients presenting >3 hours after chest pain onset) or rule-in based on a single 

blood draw at ED presentation increased from 28.8% using hs-cTnI to 48.5% using cMyC 

(p<0.05). 

Conclusion: A newly developed cMyC AMI rule-in/rule-out pathway identifies a greater 

proportion of patients suitable for safe rule-out as compared with the ESC 0/1h-algorithm 

using hs-cTnT or hs-cTnI and thus reduces the number of patients in a diagnostic grey zone.  
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6.1. Introduction 

Rapid triage and treatment are the cornerstones of improving management of patients 

presenting with suspected Acute Myocardial Infarction (AMI). The European Society of 

Cardiology has first published a rapid rule-out/rule-in algorithm for diagnosis and treatment of 

patients with suspected Non-ST elevation Myocardial Infarction using a 0/1hr-approach in 

2015.12 This algorithm has pioneered a move from a ‘diagnostic’ to a risk-stratification 

approach: While prior strategies have focused on cTn values above the population-derived 

99th centile to identify patients presenting with AMI12,158,159, the ESC demoted this threshold 

in 2015 and, instead, focused on early rule-out of patients with undetectable levels of cTn and 

early rule-in of patients with a high cTn result and resulting high positive-predictive value for 

AMI. This approach was only made possible through the use of high-sensitivity cTn assays, 

with a focus on the two commercially available assays at the time (hs-cTnT, Elecsys; hs-cTnI, 

Architect). Naturally, such widely spaced decision limits leave a proportion of patients with 

quantifiable but only moderately elevated cTn levels in an indeterminate ‘observe’ zone. To 

further enhance triage, the ESC algorithm employs (absolute) delta-change values between 1st 

and 2nd blood draws to identify patients with – likely – biologically relevant cTn changes, thus 

indicating acute myocardial injury. These deltas are assay-specific, compounded by the slow 

release-profile of cTn18 and remarkably close to the analytic abilities of the respective 

laboratory platform.31,160,161 Despite these challenges, the use of deltas does indeed increase 

sensitivity and specificity – reducing the number of patients in the indeterminate ‘observe’ 
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zone. However, even the second blood draw leaves up to 40% of patients in this diagnostic 

grey zone.133,162 

We have recently demonstrated more effective rule-out and rule-in of AMI using a novel 

biomarker in a single blood sample at presentation126: Cardiac myosin-binding protein C 

(cMyC) is a cardiac-restricted protein that is more abundant than Troponin (cTn)50,122 and is 

released rapidly following AMI.123 In a retrospective analysis, cMyC reduced the size of the 

ESC observe zone at presentation by 9-17% when compared to hs-cTnT/I. Several other 

publications have demonstrated the incremental benefit to chest pain triage when using delta-

change values with hs-cTn.158,163–165 In this study, we aimed to (i) derive and validate a 0/1h-

triage-algorithm to rapidly rule-out or rule-in AMI based on cMyC and (ii) compare it to the 

well-established ESC 0/1h-algorithm using hs-cTnT or hs-cTnI. 

6.2. Methods 

In a prospective international diagnostic study enrolling patients presenting with suspected 

AMI to the ED, cMyC (Erenna), hs-cTnT (Elecsys) and hs-cTnI (Architect) were determined 

at baseline and after one hour.  

6.2.1 Study design and population 

Advantageous Predictors of Acute Coronary Syndrome Evaluation (APACE) is an ongoing 

international multicentre diagnostic study (nine study centres in Switzerland, Spain, Poland, the 

Czech Republic, and Italy) designed to advance the early diagnosis of AMI.39,45,124,125 All patients 

older than 18 years presenting to the ED with acute chest discomfort possibly indicating AMI 

were eligible for recruitment if the onset of, or peak chest pain symptoms, were within the 

preceding 12 hours. Enrolment was independent of renal function, while patients with terminal 
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kidney failure on chronic dialysis were excluded. For this analysis, the following patients were 

excluded: patients presenting with ST-segment elevation myocardial infarction; patients with 

missing levels of cMyC at presentation; patients in whom the final diagnosis remained unclear 

after adjudication and at least one hs-cTnT level was elevated. The latter group comprises of 

patients triaged and discharged following a negative gold-standard test at the time of enrolment 

(on a conventional cTn assay), who were later found to have an elevated hs-cTn result – which 

might imply a missed MI on the basis of a (comparably insensitive) contemporary cTn assay. 

These patients (n=92) were followed-up, but did not undergo gold-standard adjudication as 

per the study protocol, and their clinical course would have been determined by a (negative) 

cTn result.  

A proportion of patients had no levels of cMyC measured at presentation due to insufficient 

sample volume. The protocol for routine clinical assessment is has been described 

previously.126 For follow-up, patients were contacted 3, 12, 24 and 36 months after discharge 

via telephone, email or letter. Additionally, information regarding death during follow-up was 

obtained from the patient’s hospital notes, the family physician’s records and the national 

registry on mortality. 

The study was carried out according to the principles of the Declaration of Helsinki and 

approved by the local ethics committees. Written informed consent was obtained from all 

patients. TK, RT and CM had full access to all the data in the study and take responsibility for 

its integrity and the data analysis. The authors designed the study, gathered, and analysed the 

data according to the STARD guidelines for studies of diagnostic accuracy, vouch for the data 

and analysis, wrote the paper, and decided to publish. 
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6.2.2 Adjudicated final diagnosis 

Adjudication of the final diagnosis was performed centrally according to the 1st Universal 

Definition of MI, incorporating levels of hs-cTnT as the adjudicating biomarker.127 Two sets of 

data were used: First, all clinical data derived from routine clinical investigations including all 

available medical records – patient history, physical examination, results of laboratory testing 

including serial local (h)s-cTn, radiologic testing, ECG, echocardiography, cardiac exercise 

stress test, lesion severity and morphology at coronary angiography – pertaining to the patient 

from the time of ED presentation to 90-day follow up. Second, a study-specific assessment 

was collected, including 34 chest pain characteristics and serial hs-cTnT measurements to take 

advantage of the higher sensitivity and higher overall diagnostic accuracy offered by the more 

sensitive assays, as previously published.113,124 In situations of disagreement about the diagnosis, 

cases were reviewed and adjudicated in conjunction with a third cardiologist. In brief, AMI was 

diagnosed when there was evidence of myocardial necrosis in association with a clinical setting 

consistent with myocardial ischemia. Myocardial necrosis was diagnosed by at least one (h)s-

cTn value above the 99th percentile together with a significant rise and/or fall.128,129,142 All other 

patients were classified into the categories of unstable angina (UA), cardiac non-coronary 

disease (e.g. tachyarrhythmias, perimyocarditis), non-cardiac chest pain and symptoms of 

unknown origin. 

6.2.3 Measurement of cMyC, hs-cTnT and hs-cTnI 

Blood samples for determination of cMyC, hs-cTnI and hs-cTnT were collected into heparin 

plasma and serum tubes at presentation to the ED and serially thereafter (at time points 1h, 2h, 

3h and 6h). Serial sampling was discontinued when a diagnosis of AMI was certain and 

treatment required patient transfer to the coronary care unit or catheter laboratory. After 
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centrifugation, samples were frozen at -80 ºC until they were assayed in a blinded fashion in a 

dedicated core laboratory. cMyC was measured using the previously established high-sensitivity 

assay on the Erenna platform that was performed by EMD Merck Millipore (Hayward, 

California).84 The assay has a Limit of Detection (LoD) of 0.4 ng/L and a lower limit of 

quantification (LoQ) of 1.2 ng/L. The 99th percentile cut-off point determined previously (in 

patients without obstructive coronary artery disease on invasive angiography) is 87 ng/L.84  

The Roche hs-cTnT assay was measured on the Elecsys 2010 (Roche Diagnostics). The limit 

of blank and LoD were determined to be 3 and 5 ng/L, respectively. The 99th-percentile of a 

healthy reference population was reported at 14 ng/L with an imprecision corresponding to 

10% CV at 13 ng/L.95 This study does not include any measurements with hs-cTnT lots that 

required the revision of the calibration curve.134–136,152,153 The Abbott hs-cTnI assay used was 

the final pre-commercial release version of the ARCHITECT High Sensitive STAT Troponin 

I assay (Abbott Laboratories, Abbott Park, IL, USA). Samples were thawed, mixed, and 

centrifuged (for 30 min at 3000 RCF and 4ºC for serum samples or for 10 min, twice, at 3000 

RCF for plasma samples) prior to analysis and according to manufacturer's instructions. The 

hs-cTnI assay has a 99th percentile concentration of 26.2 ng/L with a corresponding 

coefficient of variation (CV) of <5% and a limit of detection (LoD) of 1.9 ng/L.154 Calculation 

of the glomerular filtration rate was performed using the abbreviated Modification of Diet in 

Renal disease formula.157 

6.2.4 Derivation and Validation of the cMyC rule-out/rule-in algorithm 

We evaluated the performance of >390,000 different cut-offs combinations in a derivation set 

(random 50:50 split) of the patients having 0/1hr results available for both hs-cTnT and cMyC 

and applied the best performing algorithm to the validation sets (50% of patients with hs-cTnT 
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and cMyC measurements, and 50% of patients with hs-cTnI and cMyC measurements). Based 

on previously obtained results126, we entered values in numeric proximity to the published cut-

off values (10 ng/L for rule-out, 120 ng/L for rule-in) into a 5-dimensional matrix listing all 

possible cut-off combinations for direct rule-out (see also Figure 31; ESC ‘A’), rule-out upper 

limit (ESC ‘B’) with delta for rule-out (ESC ‘C’), direct rule-in (ESC ‘D’) and delta for rule-in 

(ESC ‘E’) – see Figure 29. A specifically developed program written in R then uses this matrix 

to iterate through all possible combinations, hereby calculating NPV (defined as S true 

negatives / S (true negatives + false negatives)), PPV (defined as S true positives / S (true 

positives + false positives)),  and risk-group distributions for all cut-off combination. Safety of 

rule-out was quantified by the NPV for AMI; the accuracy of rule-in by the PPV; efficacy by 

the proportion assigned to rule-out or rule-in based on the 0/1h-samples. Only cut-off 

combinations achieving an a-priori defined NPV ≥99% and PPV ≥70% were selected and 

evaluated with respect to triage-efficacy. The most efficient combinations were selected from 

the derivation cohort and applied to the validation cohort. 

 

Figure 29 – Template for cMyC 0/1h-triage algorithm, adapted from the 2015 ESC pathway for hs-cTn109  
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For analysis of the effectiveness of a combination of hs-cTn rule-out/rule-in pathways with 

cMyC the following – step-wise – approaches were used (Table 7, Table 8, Figure 30):  

Rule-Out Observe Rule-In 
cMyC <A ng/L   
hs-cTnT <5 ng/L   
cMyC <B & cMyC delta <C   
hs-cTnT <12 ng/L & hs-cTnT delta <3 ng/L   
  hs-cTnT ≥52 ng/L 
  hs-cTnT delta ≥5 ng/L 
 Remainder  

Table 7 – Combined algorithm using hs-cTnT and cMyC 0/1h samples 

Rule-Out Observe Rule-In 
cMyC <A ng/L   
hs-cTnI <2 ng/L   
cMyC <B & cMyC delta <C   
hs-cTnI <5 ng/L & hs-cTnT delta <2 ng/L   
  hs-cTnI ≥52 ng/L 
  hs-cTnI delta ≥6 ng/L 
 Remainder  

Table 8 – Combined algorithm using hs-cTnI and cMyC 0/1h samples 
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Figure 30 – Dual-marker strategy incorporating the 0h cMyC concentration as a triage-booster into the 

established ESC 0/1h-algorithm 
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Figure 31 – ESC 2015 pathway for rapid rule-out/rule-in of AMI in patients with suspected Non ST-elevation 

MI, using hs-cTn; from Roffi et al.12 

6.2.5 Benefit of delta-change values over static thresholds 

Two different approaches to combining the hs-cTn & cMyC algorithms were tested. Version 

1) includes only 0h cMyC cut-off values for risk stratification in addition to the established 

ESC hs-cTnI algorithm. Version 2) uses the entire cMyC 0/1h algorithm in addition to the 

ESC hs-cTnI algorithm. The different approaches are displayed below in a step-wise approach 

– Table 9, Table 10. 
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Rule-Out Observe Rule-In 
cMyC <A ng/L   
hs-cTnI <2 ng/L   
hs-cTnI <5 ng/L & hs-cTnT delta <2 ng/L   
  cMyC ≥D 
  hs-cTnI ≥52 ng/L 
  hs-cTnI delta ≥6 ng/L 
 Remainder  

Table 9 – Version 1) Combined algorithm using hs-cTnI 0/1h and cMyC 0h samples 

Rule-Out Observe Rule-In 
cMyC <A ng/L   
hs-cTnI <2 ng/L   
cMyC <B & cMyC delta <C   
hs-cTnI <5 ng/L & hs-cTnT delta <2 ng/L   
  cMyC ≥D 
  hs-cTnI ≥52 ng/L 
  cMyC delta ≥E 
  hs-cTnI delta ≥6 ng/L 
 Remainder  

Table 10 – Version 2) Combined algorithm using hs-cTnI 0/1h and cMyC 0/1h samples 

6.2.6 Statistical analysis 

All data are expressed as medians [1st quartile; 3rd quartile] or means (standard deviation) for 

continuous variables (compared with the Mann-Whitney-U test or student's t-test), and for 

categorical variables as numbers and percentages (compared with Pearson chi-square). 

Sensitivity and specificity values were compared using McNemar testing166; NPV and PPV 

were compared testing for differences in (positive and negative) predictive values of two binary 

diagnostic tests in a paired study design as proposed by Moskowitz and Pepe.167 Hypothesis 
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testing was two-tailed, and p values <0.05 were considered statistically significant. No 

adjustment for multiple comparisons was performed.  

Discrimination power was quantified by the area under the receiver-operating characteristics 

curve (AUC [Confidence intervals 2.5-97.5%]) for each biomarker with all cases available. The 

AUC was calculated for hs-cTnT/I and cMyC results at presentation and the combination with 

delta-change values. Comparison of the areas under the ROC curves was performed as 

recommended by DeLong et al.168 

Logistic regression was used to combine cMyC levels with hs-cTnT, hs-cTnI or s-cTnI values 

for the assessment of an incremental value using two biomarkers or delta-change values. Sub-

group analysis was performed for patients presenting early, defined as chest pain onset within 

3 hours of presentation to the Emergency Department. This is a particular limitation of the 

published ESC guidance on the use of hs-cTn for risk-stratification, as the rapid rule-out/rule-

in algorithms are only applicable to patients with chest pain onset >3 hours. 

Predictive value of the biomarkers during follow-up was assessed two-fold: We calculated 1) 

Harrell’s C statistic for each biomarker at presentation for endpoints AMI, death or the 

composite of AMI and all-cause mortality during follow-up – a higher C index indicates a 

higher probability of an event occurring during follow-up with higher biomarker values131; and 

2) Kaplan-Meier survival curves. The formula for obtaining Harrel’s C statistic is C = 

(mean(rank(x)[y == 1]) – (n1 + 1)/2)/(n – n1), with n1 being the frequency of y=1, and y 

being a binary outcome variable (usually, 0 = survival, 1 = death during follow-up). All 

statistical analyses were performed using R, version 3.3.0 GUI 1.68 (The R Foundation for 

Statistical Computing), including packages ggplot2, the tidyverse, RMarkdown, RStudio, 

survival, Hmisc, compareC and pROC. 
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6.3. Results 

6.3.1 Baseline demographics 

Of all 2829 patients recruited, 1431 had both hs-cTnT and cMyC results available at 0/1hr 

time points available for analysis; 1390 had both hs-cTnI and cMyC results. AMI was the final 

diagnosis in 17% of all recruited patients. Across the entire cohort, median age was 61 [49; 74], 

68% of patients were male and 36% had a history of smoking. Demographics are displayed in 

Table 11 for all patients, stratified by the diagnosis of Acute Myocardial Infarction; in Table 12 

for all patients with complete data on hs-cTnT and cMyC; in Table 13 for all patients with 

complete data on hs-cTnI and cMyC. 
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 No AMI (n=2335) AMI (n=494) p* n** 

cMyC at presentation 13 [7;28] 237 [72;876] <0.001 1954 

hs-cTnI at presentation 4 [2;8] 109 [22;562] <0.001 2536 

hs-cTnT at presentation 7 [5;12] 60 [27;142] <0.001 2726 

Gender: male 1564 (67%) 364 (74%) 0.004 2829 

Age (years) 59 [47;72] 72 [59;80] <0.001 2829 

Hypertension 1352 (58%) 386 (78%) <0.001 2829 

Hyperlipidaemia 1077 (46%) 336 (68%) <0.001 2829 

Diabetes mellitus 382 (16%) 133 (27%) <0.001 2829 

Current smoking 600 (26%) 120 (24%) 0.552 2829 

History of smoking 826 (35%) 201 (41%) 0.029 2829 

Previous revascularisation 
(CABG or PCI) 

604 (26%) 186 (38%) <0.001 2829 

Coronary artery disease 737 (32%) 245 (50%) <0.001 2829 

eGFR 87 [71;102] 74 [56;94] <0.001 2810 

Heart rate, beats/min 76 [66;89] 78 [67;91] 0.119 2818 

Systolic blood pressure, mmHg 141 [126;158] 142 [126;160] 0.201 2824 

Diastolic blood pressure, 
mmHg 

82 [73;92] 80 [70;92] 0.075 2823 

Table 11 – Demographics for all patients without (left) and with (right) AMI; * p values for comparison validation 

to derivation cohort; ** n denotes the number of available data points; data are expressed as medians [1st quartile, 

3rd quartile] or means ± standard deviation, for categorical variables as numbers (percentages); AMI = Acute 

Myocardial Infarction; CABG = Coronary Artery Bypass Graft; PCI = Percutaneous Coronary Intervention; † 

glomerular filtration rate was estimated using the Modification of Diet in Renal Disease (MDRD) formula 
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 Derivation (n=715) Validation (n=716) p* n** 

AMI 122 (17%) 122 (17%) 1.000 1431 

cMyC at presentation 17 [8;49] 16 [7;49] 0.310 1431 

hs-cTnT at presentation 9 [5;19] 9 [5;21] 0.274 1431 

Gender: male 507 (71%) 476 (66%) 0.080 1431 

Age (years) 64 [51;75] 61 [49;74] 0.026 1431 

Hypertension 463 (65%) 444 (62%) 0.307 1431 

Hyperlipidaemia 403 (56%) 346 (48%) 0.003 1431 

Diabetes mellitus 145 (20%) 129 (18%) 0.307 1431 

Current smoking 175 (24%) 162 (23%) 0.446 1431 

History of smoking 274 (38%) 269 (38%) 0.811 1431 

Previous revascularisation 
(CABG or PCI) 

231 (32%) 180 (25%) 0.003 1431 

Coronary artery disease 295 (41%) 229 (32%) <0.001 1431 

eGFR† 83 [68;98] 85 [68;102] 0.047 1422 

Heart rate, beats/min 73 [65;88] 77 [67;89] 0.012 1427 

Systolic blood pressure, mmHg 142 [126;160] 142 [128;159] 0.993 1429 

Diastolic blood pressure, 
mmHg 

82 [72;92] 82 [71;91] 0.636 1428 

Table 12 – Demographics for all patients with complete data for hs-cTnT and cMyC; * p values for comparison 

validation to derivation cohort; ** n denotes the number of available data points; data are expressed as medians 

[1st quartile, 3rd quartile] or means ± standard deviation, for categorical variables as numbers (percentages); AMI 

= Acute Myocardial Infarction; CABG = Coronary Artery Bypass Graft; PCI = Percutaneous Coronary 

Intervention; † glomerular filtration rate was estimated using the Modification of Diet in Renal Disease (MDRD) 

formula 
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 Derivation (n=695) Validation (n=695) p* n** 

AMI 121 (17%) 120 (17%) 1.000 1390 

cMyC at presentation 17 [8;49] 15 [7;47] 0.209 1390 

hs-cTnI at presentation 5 [2;14] 4 [2;14] 0.367 1390 

Gender: male 476 (68%) 479 (69%) 0.908 1390 

Age (years) 63 [51;75] 62 [49;75] 0.702 1390 

Hypertension 440 (63%) 430 (62%) 0.618 1390 

Hyperlipidaemia 366 (53%) 349 (50%) 0.391 1390 

Diabetes mellitus 152 (22%) 115 (17%) 0.014 1390 

Current smoking 170 (24%) 167 (24%) 0.900 1390 

History of smoking 264 (38%) 257 (37%) 0.740 1390 

Previous revascularisation 
(CABG or PCI) 

210 (30%) 188 (27%) 0.213 1390 

Coronary artery disease 260 (37%) 246 (35%) 0.469 1390 

eGFR† 84 [68;100] 86 [68;102] 0.216 1381 

Heart rate, beats/min 75 [66;89] 76 [65;88] 0.441 1386 

Systolic blood pressure, 
mmHg 

142 [128;160] 142 [126;159] 0.523 1388 

Diastolic blood pressure, 
mmHg 

82 [73;91] 81 [70;92] 0.281 1387 

Table 13 – Demographics for all patients with complete data for hs-cTnI and cMyC; * p values for comparison 

validation to derivation cohort; ** N denotes the number of available data points; data are expressed as medians 

[1st quartile, 3rd quartile] or means ± standard deviation, for categorical variables as numbers (percentages); AMI 

= Acute Myocardial Infarction; CABG = Coronary Artery Bypass Graft; PCI = Percutaneous Coronary 

Intervention; † glomerular filtration rate was estimated using the Modification of Diet in Renal Disease (MDRD) 

formula 
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6.3.2 Diagnostic accuracy of 0/1hr sampling 

A dual-marker strategy, combining baseline levels of cMyC and hs-cTn, increased the 

diagnostic accuracy based on the Area under the Receiver-Operating Curve with hs-cTnI 

(0.925 [0.909-0.941], p=0.008) and with hs-cTnT (0.930 [0.914-0.946], p=0.006). For the 

combination of baseline levels and 1h-changes, the diagnostic performance of cMyC was 

comparable to hs-cTnI (AUC 0.924 [0.908-0.940] vs 0.917 [0.899-0.935], p=0.194), and 

inferior to hs-cTnT (AUC 0.925 [0.907-0.942] vs 0.945 [0.931-0.958], p=0.003). When baseline 

cMyC was added to baseline levels and 1h-changes of hs-cTn, the diagnostic accuracy further 

improved with hs-cTnI (AUC 0.926 [0.909-0.942], p=0.012), but not significantly with hs-

cTnT (AUC 0.947 [0.935-0.960], p=0.186) – see Table 14, Table 15, Table 16, Table 17. 

AUC values for cMyC vs hs-cTnT comparisons 
 AUC1 CI1 AUC2 CI2 cases controls p 

cMyC | 1h delta 0.919 0.901-
0.937 0.904 0.882-

0.926 244 1187 0.1959 

cMyC | cMyC + 1h 
delta 0.919 0.901-

0.937 0.925 0.907-
0.942 244 1187 1e-04 

cTnT | cMyC 0.921 0.903-
0.939 0.919 0.901-

0.937 244 1187 0.8097 

cTnI | cMyC 0.916 0.898-
0.934 0.919 0.902-

0.936 241 1149 0.6158 

Table 14 – Comparison cMyC and hs-cTnT – 0h samples and, for cMyC, 1h-delta sample; p for comparison 

AUC1 and AUC2 
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AUC values for cMyC vs hs-cTnT comparisons 
 AUC1 CI1 AUC2 CI2 cases controls p 
cMyC + 1h delta | 
cTnT + delta 0.925 0.907-

0.942 0.945 0.931-
0.958 244 1187 0.003 

cTnT + cMyC at 0h | 
cTnT at 0h 0.93 0.914-

0.946 0.921 0.903-
0.939 244 1187 0.0059 

cTnT + delta | cTnT + 
1h delta + cMyC + 1h 
delta 

0.945 0.931-
0.958 0.947 0.935-

0.96 244 1187 0.1779 

cTnT + delta | cTnT + 
1h delta + cMyC at 0h 0.945 0.931-

0.958 0.947 0.935-
0.96 244 1187 0.1863 

Table 15 – Comparison cMyC and hs-cTnT using 0h sample + 1h-delta; p for comparison AUC1 and AUC2 

AUC values for cMyC vs hs-cTnI comparisons 
 AUC1 CI1 AUC2 CI2 cases controls p 
cTnI | 1h absolute 
delta 0.916 0.898-

0.934 0.921 0.9-0.943 241 1149 0.5941 

cTnI | cTnI + delta 0.916 0.898-
0.934 0.917 0.899-

0.935 241 1149 0.0013 

Table 16 – Performance of hs-cTnI at baseline (0h) and after 1h-delta; p for comparison AUC1 and AUC2 

AUC values for cMyC vs hs-cTnI comparisons 
 AUC1 CI1 AUC2 CI2 cases controls p 
cMyC + 1h delta | 
cTnI + 1h delta 0.924 0.908-

0.94 0.917 0.899-
0.935 241 1149 0.1943 

cTnI + cMyC at 0h | 
cTnI at 0h 0.925 0.909-

0.941 0.916 0.898-
0.934 241 1149 0.008 

cTnI + 1h delta | cTnI 
+ 1h delta + cMyC at 
0h 

0.917 0.899-
0.935 0.926 0.909-

0.942 241 1149 0.0121 

cTnI + 1h delta | cTnI 
+ 1h delta + cMyC + 
1h delta 

0.917 0.899-
0.935 0.924 0.908-

0.941 241 1149 0 

Table 17 – Comparison cMyC and hs-cTnI using 0h sample + 1h-delta; p for comparison AUC1 and AUC2 
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For early presenters (patients with presentation samples ≤3 hours since chest pain onset), the 

addition of cMyC did significantly increase the AUC of hs-cTnI at baseline plus 1h-changes 

(0.926 [0.900-0.951] vs 0.920 [0.893-0.948], p=0.017); but not significantly with hs-cTnT 

((0.933 [0.911-0.954] vs 0.931 [0.908-0.953], p=0.500) – see Table 18, Table 19, Table 20, 

Table 21, Table 22. 

AUC values for cMyC vs hs-cTnT comparisons – early presenters 
 AUC1 CI1 AUC2 CI2 cases controls p 

cMyC | 1h delta 0.91 0.881-
0.938 0.885 0.852-

0.918 117 580 0.1446 

cMyC | cMyC + 1h 
delta 0.91 0.881-

0.938 0.913 0.885-
0.941 117 580 0.0549 

Table 18 – Performance of cMyC at baseline (0h) and with 1h-delta in early presenters; p for comparison AUC1 

and AUC2 

AUC values for cMyC vs hs-cTnT comparisons – early presenters 
 AUC1 CI1 AUC2 CI2 cases controls p 

cTnT | 1h delta 0.92 0.895-
0.946 0.907 0.873-

0.941 117 580 0.4939 

cTnT | cMyC 0.92 0.895-
0.946 0.91 0.881-

0.938 117 580 0.3813 

cTnT | cTnT + 1h 
delta 0.92 0.895-

0.946 0.931 0.908-
0.953 117 580 2e-04 

Table 19 – Comparison cMyC and hs-cTnT using 0h sample + 1h-delta in early presenters; p for comparison 

AUC1 and AUC2 
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AUC values for cMyC vs hs-cTnT comparisons – early presenters 
 AUC1 CI1 AUC2 CI2 cases controls p 

cTnI | 1h delta 0.911 0.882-
0.941 0.923 0.892-

0.954 109 571 0.4034 

cTnI | cMyC 0.911 0.882-
0.941 0.91 0.883-

0.936 109 571 0.8562 

cTnI | cTnI + 1h 
delta 0.911 0.882-

0.941 0.92 0.893-
0.948 109 571 0.0015 

Table 20 – Comparison cMyC and hs-cTnI using 0h sample + 1h-delta in early presenters; p for comparison 

AUC1 and AUC2 

AUC values for cMyC vs hs-cTnT comparisons – early presenters 
 AUC1 CI1 AUC2 CI2 cases controls p 
cMyC + 1h delta | cTnT 
+ 1h 1delta 0.913 0.885-

0.941 0.931 0.908-
0.953 117 580 0.1287 

cTnT + 1h delta | cTnT 
+ 1h delta + cMyC + 1h 
delta 

0.931 0.908-
0.953 0.933 0.911-

0.954 117 580 0.4999 

cTnT + 1h delta | cTnT 
+ 1h delta + cMyC at 0h 0.931 0.908-

0.953 0.933 0.912-
0.955 117 580 0.3551 

Table 21 – Comparison cMyC and hs-cTnT using 0h sample + 1h-delta in early presenters; p for comparison 

AUC1 and AUC2 

AUC values for cMyC vs hs-cTnI comparisons – early presenters 
 AUC1 CI1 AUC2 CI2 cases controls p 
cMyC + 1h delta | cTnI 
+ 1h delta 0.921 0.896-

0.946 0.92 0.893-
0.948 109 571 0.9607 

cTnI + delta | cTnI + 
1h delta + cMyC + delta 0.92 0.893-

0.948 0.926 0.9-
0.951 109 571 0.0166 

cTnI + 1h delta | cTnI 
+ 1h delta + cMyC at 0h 0.92 0.893-

0.948 0.929 0.905-
0.952 109 571 0.1009 

Table 22 – Comparison cMyC and hs-cTnI using 0h sample + 1h-delta in early presenters; p for comparison 

AUC1 and AUC2 

6.3.3 Derivation and Validation of the cMyC rule-out/rule-in algorithm 

The best performing cMyC cut-off combination [0h <10 (A) or 0h <26 (B) AND Δ0-1h <8 

(C) for rule-out; ≥136 (D) OR Δ0-1h ≥15 (E) for rule-in (all values ng/L); see Figure 32] was 
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selected in the derivation cohort and applied to the validation cohort (n=716 for hs-cTnT, 

n=695 for hs-cTnI). The results of cMyC performance in the two validation sets are presented 

separately below. 

 

Figure 32 – ESC 0/1h rule-out/rule-in pathway adjusted with proposed cMyC cut-offs; adapted from Roffi et al.12 

6.3.4 cMyC in comparison to hs-cTnT 

Accuracy for rule-out by the best performing cMyC 0/1h-algorithm was high in the hs-cTnT 

validation cohort: NPV 99.3% [95% CI, 98.5-99.9%]; sensitivity 97.6% [94.7-100%]; and 

comparable to the ESC hs-cTnT 0/1h-algorithm: NPV 99.7% [99.2-100%; p=0.332]; 

sensitivity 99.2% [97.3-100%, p=0.317). Accuracy for rule-in was high: PPV 70% [62.2-77.6%]; 

specificity 93.3% [91.1-95.1%]; but inferior to the ESC hs-cTnT 0/1h-algorithm: PPV 78.9% 
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[71.7-85.87%; p=0.007]; specificity 95.6% [93.9-97.2%; p=0.011]. Proportion of patients 

assigned to either rule-out or rule-in based on the 0/1h-samples significantly increased from 

75.28% using hs-cTnT to 79.19% using cMyC (p<0.001). Direct rule-out (feasible in patients 

presenting >3 hours after chest pain onset) or rule-in based on a single blood draw at ED 

presentation increased from 35.75% using hs-cTnT to 47.21% using cMyC (p<0.001) – see 

Figure 33, Table 23, Table 24 for exact distributions. 

 

Figure 33 – Risk group distribution following application of 0/1h rule-out/rule-in pathways for either hs-cTnT 

(left panel) or cMyC (right panel) 
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hs-cTnT cMyC 

AMI Rule-Out Observe Rule-In Rule-Out Observe Rule-In 

No 181 399 14 252 324 18 

Yes 1 61 60 0 54 68 

Sum 182 460 74 252 378 86 

Percent 25.42% 64.25% 10.34% 35.2% 52.79% 12.01% 

Table 23 – 0h triage of hs-cTnT vs cMyC 

 hs-cTnT cMyC 

AMI Rule-Out Observe Rule-In Rule-Out Observe Rule-In 

No 415 153 26 431 123 40 

Yes 1 24 97 3 26 93 

Sum 416 177 123 434 149 133 

Percent 58.1% 24.72% 17.18% 60.61% 20.81% 18.58% 

Table 24 – 0/1h triage of hs-cTnT vs cMyC 

6.3.5 cMyC in comparison to hs-cTnI 

Accuracy for rule-out by the novel cMyC 0/1h-algorithm was high in the hs-cTnI cohort: 

NPV 99.3% [95% CI, 98.5-99.9%]; sensitivity 97.5% [94.1-100%]; and comparable to the ESC 

hs-cTnI 0/1h-algorithm: NPV 99.1% [98.2-99.9%; p=0.785]; sensitivity 97.5% [94.6-100%; 

p=1]. Similarly, accuracy for rule-in was high: PPV 70.9% [63.1-78.5%]; specificity 93.4% 

[91.2-95.3%]; and comparable to the ESC hs-cTnI 0/1h-algorithm: PPV 71.2% [63.3-78.9%; 

p=0.914]; specificity 93.6% [91.5-95.4%; p=0.847].  
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Proportion of patients assigned to either rule-out or rule-in based on the 0/1h-samples 

significantly increased from 70.1% using hs-cTnI to 80.7 % using cMyC (p<0.05). Direct rule-

out (feasible in patients presenting >3 hours after chest pain onset) or rule-in based on a single 

blood draw at ED presentation increased from 28.8% using hs-cTnI to 48.5% using cMyC 

(p<0.05) – see Figure 34, Table 25, Table 26 for exact distributions.  

 

Figure 34 – Risk group distribution following application of 0/1h rule-out/rule-in pathways for either hs-cTnI 

(left panel) or cMyC (right panel) 
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 hs-cTnI cMyC 

AMI Rule-Out Observe Rule-In Rule-Out Observe Rule-In 

No 109 442 24 248 303 24 

Yes 0 53 67 0 55 65 

Sum 109 495 91 248 358 89 

Percent 15.68% 71.22% 13.09% 35.68% 51.51% 12.81% 

Table 25 – 0h triage of hs-cTnI vs cMyC 

 hs-cTnI cMyC 

AMI Rule-Out Observe Rule-In Rule-Out Observe Rule-In 

No 356 182 37 428 109 38 

Yes 3 26 91 3 25 92 

Sum 359 208 128 431 134 130 

Percent 51.65% 29.93% 18.42% 62.01% 19.28% 18.71% 

Table 26 – 0/1h triage of hs-cTnI vs cMyC 

6.3.6 cMyC in addition to hs-cTnT 

The established hs-cTnT 0/1h rule-out/rule-in algorithm was then combined with the novel 

cMyC algorithm. Accuracy for rule-out by the combined hs-cTnT + cMyC 0/1h-algorithm was 

high in the validation cohort: NPV 99.13% [95% CI, 98.3-99.83%]; sensitivity 96.7% [93.1-

99.3%]; and comparable to the ESC hs-cTnT 0/1h-algorithm: NPV 99.7% [99.2-100%; 

p=0.332]; sensitivity 99.2% [97.3-100%, p=0.317). Accuracy for rule-in was high: PPV 78.4% 

[71.0-85.5%]; specificity 95.6% [94.0-97.2%]; and comparable to the ESC hs-cTnT 0/1h-

algorithm: PPV 78.9% [71.7-85.87%; p=0.007]; specificity 95.6% [93.9-97.2%; p=0.011]. 

Proportion of patients assigned to either rule-out or rule-in based on the 0/1h-samples 
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significantly increased from 75.28% using hs-cTnT alone to 83.66 % using the combination of 

hs-cTnT and cMyC (p<0.001). Direct rule-out (feasible in patients presenting >3 hours after 

chest pain onset) or rule-in based on a single blood draw at ED presentation increased from 

35.75% using hs-cTnT alone to 51.54% using the combination of hs-cTnT and cMyC 

(p<0.001) – see Figure 35, Table 27, Table 28 for exact distributions. 

 

Figure 35 – Risk group distribution following application of 0/1h rule-out/rule-in pathways for either hs-cTnT 

alone (left panel) or the combination of hs-cTnT and cMyC (right panel) 
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AMI hs-cTnT hs-cTnT + cMyC 

 Rule-Out Observe Rule-In Rule-Out Observe Rule-In 

No 181 399 14 294 286 14 

Yes 1 61 60 1 61 60 

Sum 182 460 74 295 347 74 

Percent 25.42% 64.25% 10.34% 41.2% 48.46% 10.34% 

Table 27 – 0h triage of hs-cTnT vs combination of hs-cTnT and cMyC 

AMI hs-cTnT hs-cTnT + cMyC 

 Rule-Out Observe Rule-In Rule-Out Observe Rule-In 

No 415 153 26 475 93 26 

Yes 1 24 97 4 24 94 

Sum 416 177 123 479 117 120 

Percent 58.1% 24.72% 17.18% 66.9% 16.34% 16.76% 

Table 28 – 0/1h triage of hs-cTnT vs combination of hs-cTnT and cMyC 

6.3.7 cMyC in addition to hs-cTnI 

The established hs-cTnI 0/1h rule-out/rule-in algorithm was then combined with the novel 

cMyC algorithm. Accuracy for rule-out by the combined hs-cTnI + cMyC 0/1h-algorithm was 

high in the validation cohort: NPV 98.9% [95% CI, 97.9-99.7%]; sensitivity 95.8% [91.9-

99.1%]; and statistically non-inferior to the ESC hs-cTnI 0/1h-algorithm: NPV 99.1% [98.2-

99.9%; p=0.406]; sensitivity 97.5% [94.6-100%; p=0.157]. As can be seen from table 30, the 

patients with AMI misclassified into the rule-out group (n=5 for the combined algorithm, n=3 

for hs-cTnI alone) are different individuals depending on which biomarker is used – for a 

comparison on the missed patients, see supplemental Table 38. It would be interesting to 
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compare the performance of both in a cohort adjudicated with hs-cTnI, but the overall, 

combined accuracy for rule-out would unlikely be acceptable in daily clinical practice. 

Accuracy for rule-in was high: PPV 73.5% [65.7-81.0%]; specificity 94.3% [92.3-96.1%]; and 

statistically superior to the ESC hs-cTnI 0/1h-algorithm: PPV 71.2% [63.3-78.9%; p=0.046]; 

specificity 93.6% [95.4-95.4%; p=0.046].  

Proportion of patients assigned to either rule-out or rule-in based on the 0/1h-samples 

significantly increased from 70.07% using hs-cTnI alone to 82.88% using the combination of 

hs-cTnI and cMyC (p<0.001). Direct rule-out (feasible in patients presenting >3 hours after 

chest pain onset) or rule-in based on a single blood draw at ED presentation increased from 

28.78% using hs-cTnI alone to 51.22% using the combination of hs-cTnI and cMyC (p<0.001) 

– see Figure 36, Table 29, Table 30 for exact distributions. 
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Figure 36 – Risk group distribution following application of 0/1h rule-out/rule-in pathways 

 for either hs-cTnI alone (left panel) or the combination of hs-cTnI and cMyC (right panel) 

 hs-cTnI hs-cTnI + cMyC 

AMI Rule-Out Observe Rule-In Rule-Out Observe Rule-In 

No 109 442 24 265 286 24 

Yes 0 53 67 0 53 67 

Sum 109 495 91 265 339 91 

Percent 15.68% 71.22% 13.09% 38.13% 48.78% 13.09% 

Table 29 – 0h triage of hs-cTnI vs combination of hs-cTnI and cMyC 
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 hs-cTnI hs-cTnI + cMyC 

AMI Rule-Out Observe Rule-In Rule-Out Observe Rule-In 

No 356 182 37 447 95 33 

Yes 3 26 91 5 24 91 

Sum 359 208 128 452 119 124 

Percent 51.65% 29.93% 18.42% 65.04% 17.12% 17.84% 

Table 30 – 0/1h triage of hs-cTnI vs combination of hs-cTnI and cMyC 

6.3.8 Benefit of delta-change values over static thresholds 

In a subgroup analysis, we investigated whether delta-change values are better than static cut-

offs for rule-out/rule-in of AMI. Different approaches were tested: 1) Using only the 0h cut-

offs of the cMyC algorithm in addition, or 2) using the entire cMyC 0/1h algorithm in addition 

to the established ESC hs-cTnI 0/1h algorithm. In version 1), the addition of cMyC 

significantly increases the amount of patients qualifying for direct rule-out (38.1% vs 15.7% 

with hs-cTnI alone, p<0.001; Table 31, Table 32), however this benefit diminishes as the 

remaining patients undergo a second blood-draw – with the observe-zone marginally smaller 

with a dual-marker strategy than with hs-cTnI alone (26.6% vs 29.9%, p<0.001) – Table 33, 

Table 34. 
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 hs-cTnI Triage hs-cTnI + cMyC 0h 

AMI Rule-Out Observe Rule-In Rule-Out Observe Rule-In 

No 109 442 24 265 277 33 

Yes 0 53 67 0 45 75 

Sum 109 495 91 265 322 108 

Percent 15.68% 71.22% 13.09% 38.13% 46.33% 15.54% 

Table 31 – 0h triage of hs-cTnI vs combination of hs-cTnI and cMyC 0h; p<0.001 for comparison of group size 

 hs-cTnI hs-cTnI + cMyC p value 

NPV (%) 100.00 100.00 n/a 

Sensitivity (%) 100.00 100.00 n/a 

PPV (%) 73.63 69.44 0.061 

Specificity (%) 95.83 94.26 0.003 

Table 32 – Performance of 0h triage hs-cTnI vs hs-cTnI + cMyC 0h 

 hs-cTnI Triage hs-cTnI + cMyC 0h 

AMI Rule-Out Observe Rule-In Rule-Out Observe Rule-In 

No 356 182 37 371 162 42 

Yes 3 26 91 3 23 94 

Sum 359 208 128 374 185 136 

Percent 51.65% 29.93% 18.42% 53.81% 26.62% 19.57% 

Table 33 – 0/1h triage of hs-cTnI vs combination of hs-cTnI and cMyC 0h; p<0.001 for comparison of group 

size 



Characterising a novel biomarker of early myocardial injury  161 

 hs-cTnI hs-cTnI + cMyC p value 

NPV (%) 99.16 99.20 0.114 

Sensitivity (%) 97.50 97.50 n/a 

PPV (%) 71.09 69.12 0.172 

Specificity (%) 93.57 92.70 0.059 

Table 34 – Performance of 0/1h triage hs-cTnI vs hs-cTnI + cMyC 0h 

In version 2), the addition of cMyC would naturally only affect triage allocation after 

incorporation of cMyC and hs-cTnI deltas. Here, the addition of cMyC deltas increases the 

amount of patients qualifying for rule-out after two blood draws (65.0% vs 51.7% with hs-

cTnI alone, p<0.001; Table 35), with the observe-zone significantly smaller with the dual-

marker strategy than with hs-cTnI alone (14.2% vs 29.9%, p<0.001) – Table 33, Table 34. Of 

note, all performance metrics suffer from this approach – as cMyC deltas incorrectly rule-out 

different patients to hs-cTnI, NPV and sensitivity decrease numerically (albeit not statistically 

significant) – Table 36. 

 hs-cTnI Triage hs-cTnI + cMyC 

AMI Rule-Out Observe Rule-In Rule-Out Observe Rule-In 

No 356 182 37 447 83 45 

Yes 3 26 91 5 16 99 

Sum 359 208 128 452 99 144 

Percent 51.65% 29.93% 18.42% 65.04% 14.24% 20.72% 

Table 35 – 0/1h triage of hs-cTnI vs combination of hs-cTnI and cMyC 0h; p<0.001 for comparison of group 

size 



Characterising a novel biomarker of early myocardial injury  162 

 cTnI hs-cTnI + cMyC p value 

NPV (%) 99.16 98.89 0.406 

Sensitivity (%) 97.50 95.83 0.157 

PPV (%) 71.09 68.75 0.271 

Specificity (%) 93.57 92.17 0.046 

Table 36 – Performance of 0/1h triage hs-cTnI vs hs-cTnI + cMyC 

6.3.9 Prognostic impact: cMyC – 30d and 1y mortality 

The cMyC 0/1h-triage algorithm distinguishes significantly between patients at low, 

intermediate and high risk of overall at 30-day and 1-year follow-up - Figure 37. Hazard ratios 

are 3.35 (p<0.001) for observe, and 5.36 (p<0.001) for rule-in categories (Wald test 31.38 on 2 

df, p<0.001) – see Table 37 for full details. Further survival analysis of combined pathways can 

be found in the supplement. 
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Figure 37 – Cumulative event (mortality) plot for the cMyC 0/1h-triage algorithm, with statistical comparison of 

event curves at 30d and 365d with log-rank tests; table displays number-at-risk and absolute number of events 
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Category coef HR SE z p value 

Observe 1.2098 3.35 
(95% 
CI, 

1.77-
6.34) 

0.3249 3.724 <0.001 

Rule-In 1.6791 5.36 
(95% 
CI, 

2.97-
9.69) 

0.3021 5.558 <0.001 

      

Concorda
nce 

0.69 SE = 
0.031 

   

R2 0.025 max 
possible 
= 0.495 

   

Likelihoo
d ratio 

test 

34.72 on 2 df, 
p=3e-08 

   

Wald test 31.38 on 2 df, 
p=2e-07 

   

Score 
(logrank) 

test 

37.99 on 2 df, 
p=6e-09 

   

Table 37 – Cox regression statistics for model using a 3-risk-group distribution for modelling 1-year survival; coef 

= regression coefficient, HR = Hazard ratio, SE = standard error, z = Wald statistic value 

 

6.4. Discussion 

In this analysis of >1,300 patients presenting with suspected myocardial infarction, cMyC has 

been shown to significantly increase the diagnostic accuracy when added to the cardiac 

biomarker not used for adjudication (hs-cTnI), for all patients as well as early presenters. 

Through the use of an internal derivation/validation split, we were able to closely examine the 

performance of a newly developed cMyC 0/1h rule-out/rule-in algorithm and the effects of 

using a more dynamic biomarker50 in comparison or in addition to established cardiac 

biomarkers. As opposed to our first study investigating the use of cMyC as a candidate-

biomarker for chest pain triage169, we focussed on NPV, PPV and triage efficacy (determined 
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by the size of the observe-zone after applying the 0/1h-pathway) as the main metrics to select 

and validate the 0/1h-triage pathway. Pragmatic reasons underpin the choice of performance 

metrics: from a computational perspective, we had to carefully select clinically relevant, but as 

few outcome measures as possible; from a clinical point-of-view, the novel biomarker seemed 

a good fit as a add-on triage-tool – to optimise rapid triage, and enable discharge or admit 

decisions at an earlier time-point. For this reason, it appeared more appropriate to focus on 

risk for diagnosis (or likelihood of absence of a diagnosis of AMI) within the populations 

assigned to either triage category. As an interesting side-effect, whilst there is a numerical 

difference in the sensitivity values quoted between cMyC and hs-cTnT algorithms, the p-values 

do not reach statistical significance. Therefore, maintaining equivalent safety (based on NPV, 

and 30-day mortality), cMyC is both able to directly rule-out AMI in more patients at 

presentation and maintain an absolute reduction of 4-10% in the observe-zone (equivalent to a 

20-50% relative reduction).  

We have previously published on the use of cardiac Troponins in a busy central London 

hospital170, demonstrating that around 7,800 patients undergo hs-cTn testing annually. Based 

on pragmatic assumptions, 300-900 patients would benefit from earlier rule-out and rule-in if 

the cMyC algorithm was used for triage in a single hospital. If a dual-marker strategy 

employing hs-cTn plus cMyC was used for triage, the observe-zone would shrink further – by 

8-12% following a completed 0/1h triage protocol. If one was to choose the optimal time 

point for a dual-marker strategy, the biggest incremental benefit occurs at 0h-testing – where 

immediate rule-out with hs-cTnI is more than doubled through the addition of cMyC. 

Intriguingly, it appears almost irrelevant whether hs-cTnI or cMyC are used first-line – phrased 
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differently, the addition of hs-cTnI leads to a 3% absolute increase in rule-out achievable with 

cMyC alone, at no incremental benefit in terms of safety.  

From this analysis, it is further evident that delta-change values act as a remarkably good 

discriminator of acute versus chronic injury, and are an invaluable tool in the arsenal of chest 

pain triage. An approach using two markers (hs-cTnI and cMyC) and both delta cut-offs failed 

to reach our a-priori minimal performance threshold of an NPV <99% and PPV <70%, albeit 

not statistically significantly when compared to hs-cTnI alone. This decrement in classification 

performance is interesting from a number of perspectives: hs-cTnI and cMyC have ‘missed’ 

different patients with AMI (adjudicated by hs-cTnT), thus resulting in a total of 5 missed 

events (and a lower NPV) in the dual-marker arm. The survival curves for death during 30-day 

follow-up demonstrate that 5/9 deaths occur in the hs-cTnI observe-zone, but 5/9 in the dual-

marker rule-in zone. Does that mean in turn, that the addition of cMyC results in better risk-

stratification, shifting more patients at risk into a higher-risk category? A 3-tiered risk-

stratification is only useful as long as treatment strategies applied to each category clearly differ 

– recommendations as to the ideal work-up and treatment of patients in the observe-zone is, 

however, lacking to this date. This is partly driven by the profound heterogeneity of diagnoses 

identified amongst this group of patients.133 The benefit of more effective rule-out of low-risk 

cases is a ‘concentration’ of high-risk cases in smaller non-‘low-risk’ categories. But if one 

novel and one established cardiac biomarker used for risk-stratification (and diagnosis of 

AMI11,127) fail to identify the same patients at risk, does that not question the ‘gold-standard’? 

The gold-standard adjudication in the entire cohort was based, solely, on the use of (hs-)cTnT. 

This is further reflected in the variable rule-in performance – the biomarkers not used for 

adjudication (hs-cTnI and cMyC) share comparable performance characteristics regarding 
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specificity and PPV, which are statistically not different between the groups. One might 

consider an independent judge for comparison: a ‘hard’ endpoint such as cardiac death during 

30-day follow-up – where, according to the plotted Kaplan-Meier curves, neither hs-cTnT, hs-

cTnI nor cMyC inappropriately rule-out.  

The study has several limitations: 1) cMyC analysis was performed retrospectively on stored 

patients’ samples, and all considerations regarding performance in real-life are speculative. 2) 

cMyC analysis was performed on a research assay and requires migration onto a clinical 

laboratory platform for automated use as part of chest pain triage. 3) Derivation/validation 

was performed using an internal split in a cohort adjudicated with hs-cTnT – this is likely to 

lead to bias in favour of the adjudicating biomarker and requires external validation. Ideally, 

this external validation should be performed in a hs-cTnI adjudicated cohort. 4) The internal 

split limits the sample size – and thus the number of events. However, derivation of cut-offs 

recommended in guidelines1 stems from even smaller sample-sets.87,113  

It is now well established that many different paths lead to the same goal – the use of various 

algorithms can achieve safety of rule-out with equal performance.34 Renal dysfunction does not 

appear to impair safety171,172, and at least for hs-cTnI the evidence base is shifting such that 

patients presenting early after symptom onset are unlikely to be missed by rule-out strategies.35 

It proves challenging to increase the efficiency of algorithms, i.e. the successful triage into rule-

out and rule-in categories to leave a minimal number of patients in an indeterminate grey-zone 

(such as the ESC observe zone) at the end of the path. Strategies include raising the rule-out 

threshold (for hs-cTnI)107, employing computer models which incorporate the biomarker173, or 

using two different hs-cTn assays (of competing manufacturers)174. Maybe the answer lies in 

using cardiac-specific biomarkers, which do not originate from the same compartment within 
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the sarcomere? This also has the likely benefit of providing an additional biological signal, 

rather than amplifying the injury occurring within one compartment – with proven benefit in 

very early presenters123,126, through greater abundance50,122 and a more dynamic release profile50. 

The next step ought to prove the utility of cMyC in a parallel setup, measuring the biomarker 

on a clinical platform alongside hs-cTn to demonstrate stability in a laboratory assay. 

Subsequently, only a cluster-randomised cross-over trial design can answer the question of 

whether the difference in NPV and PPV is artefactually introduced through bias in favour of 

an adjudicating biomarker – or a true biological signal. The survival curves favour the former 

hypothesis. In summary, a newly developed cMyC AMI rule-in/rule-out pathway identifies a 

greater proportion of patients suitable for safe rule-out as compared with the ESC 0/1h-

algorithm using hs-cTnI or hs-cTnT and thus reduces the number of patients in a diagnostic 

grey zone. 
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6.5. Supplement to Chapter 6 

6.5.1 Supplemental results

 

Table 38 – Overview of patients missed by any biomarker during triage process; Chol = Hypercholesterolaemia; 

DM = Diabetes mellitus; MI = Myocardial Infarction; GFR = glomerular filtration rate was estimated using the 

Modification of Diet in Renal Disease (MDRD) formula 

Outcomes for patients assigned rule-out, observation or rule-in categories – hs-cTnT 
and cMyC 

Harrell’s C and Somers’ D statistics demonstrate comparable risk prediction for cardiac death 

during a 30-days follow-up period: hs-cTnT 0.874 (Somers D 0.749±0.075), hs-TnT + cMyC 

0.868 (Somers D 0.737±0.060, p=0.493; Error! Reference source not found., Error! 

Reference source not found.). For the composite endpoint of AMI and death at 30 days, the 

C-statistics for hs-cTnT are 0.819 (Somers D 0.639±0.053), for hs-cTnT + cMyC 0.821 

(Somers D 0.642±0.069, p=0.942; Error! Reference source not found., Error! Reference 

source not found.). For the composite endpoint of AMI and death at 1 year, the C-statistics 

for hs-cTnT are 0.725 (Somers D 0.451±0.057), for hs-cTnT + cMyC 0.704 (Somers D 

0.408±0.066, p=0.296; Error! Reference source not found., Error! Reference source not 

found.). Kaplan-Meier curves for hs-cTnT and the combination with cMyC are displayed 

below, including tables for the C-statistics. 
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Figure 38 – Kaplan-Meier curves for endpoint cardiac death during 30-day follow-up; left – risk-stratification 

using hs-cTnT alone, right – risk-stratification using hs-cTnT + cMyC; p value obtained using the log-rank test; 

Number at risk displayed below and stratified per assigned risk-category 

Variables C-statistics Somers D SD 

hs-cTnT 0.874 0.749 0.075 

hs-cTnT + cMyC 0.868 0.737 0.060 

p value 0.493 
  

Table 39 – Harrell’s C and Somers D statistics for endpoint cardiac death during 30-day follow-up, for hs-cTnT 

triage alone and for the combination of hs-cTnT with cMyC; p value obtained comparing the C-statistics; SD = 

standard deviation of Somers D 
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Figure 39 – Kaplan-Meier curves for endpoint death or AMI during 30-day follow-up; left – risk-stratification 

using hs-cTnT alone, right – risk-stratification using hs-cTnT + cMyC; p value obtained using the log-rank test; 

Number at risk displayed below and stratified per assigned risk-category 

Variables C-statistics Somers D SD 

hs-cTnT 0.819 0.639 0.053 

hs-cTnT + cMyC 0.821 0.642 0.069 

p value 0.942 
  

Table 40 – Harrell’s C and Somers D statistics for endpoint death or AMI during 30-day follow-up, for hs-cTnT 

triage alone and for the combination of hs-cTnT with cMyC; p value obtained comparing the C-statistics; SD = 

standard deviation of Somers D 
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Figure 40 – Kaplan-Meier curves for endpoint death or AMI during 1-year follow-up; left – risk-stratification 

using hs-cTnT alone, right – risk-stratification using hs-cTnT + cMyC; p value obtained using the log-rank test; 

Number at risk displayed below and stratified per assigned risk-category 

Variables C-statistics Somers D SD 

hs-cTnT 0.725 0.451 0.057 

hs-cTnT + cMyC 0.704 0.408 0.066 

p value 0.296 
  

Table 41 – Harrell’s C and Somers D statistics for endpoint death or AMI during 1-year follow-up, for hs-cTnT 

triage alone and for the combination of hs-cTnT with cMyC; p value obtained comparing the C-statistics; SD = 

standard deviation of Somers D 
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Outcomes for patients assigned rule-out, observation or rule-in categories – hs-cTnI 
and cMyC 

Harrell’s C and Somers’ D statistics demonstrate comparable risk prediction for cardiac death 

during a 30-days follow-up period: hs-cTnI 0.775 (Somers D 0.550±0.081), hs-TnI + cMyC 

0.776 (Somers D 0.553±0.120, p=0.974; Error! Reference source not found., Error! 

Reference source not found.). For the composite endpoint of AMI and death at 30 days, the 

C-statistics for hs-cTnI are 0.791 (Somers D 0.581±0.059), for hs-cTnI + cMyC 0.811 (Somers 

D 0.622±0.069, p=0.457; Error! Reference source not found., Error! Reference source 

not found.). For the composite endpoint of AMI and death at 1 year, the C-statistics for hs-

cTnI are 0.741 (Somers D 0.483±0.053), for hs-cTnI + cMyC 0.747 (Somers D 0.494±0.062, 

p=0.783; Figure 36, Error! Reference source not found.). Kaplan-Meier curves for hs-cTnI 

and the combination with cMyC are displayed below, including tables for the C-statistics. 
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Figure 41 – Kaplan-Meier curves for endpoint cardiac death during 30-day follow-up; left – risk-stratification 

using hs-cTnI alone, right – risk-stratification using hs-cTnI + cMyC; p value obtained using the log-rank test; 

Number at risk displayed below and stratified per assigned risk-category 

 

Variables C-statistics Somers D SD 

hs-cTnI 0.775 0.550 0.081 

hs-cTnI + cMyC 0.776 0.553 0.12 

p value 0.974 
  

Table 42 – Harrell’s C and Somers D statistics for endpoint cardiac death during 30-day follow-up, for hs-cTnI 

triage alone and for the combination of hs-cTnI with cMyC; p value obtained comparing the C-statistics; SD = 

standard deviation of Somers D 
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Figure 42 – Kaplan-Meier curves for endpoint death or AMI during 30-day follow-up; left – risk-stratification 

using hs-cTnI alone, right – risk-stratification using hs-cTnI + cMyC; p value obtained using the log-rank test; 

Number at risk displayed below and stratified per assigned risk-category 

Variables C-statistics Somers D SD 

hs-cTnI 0.791 0.581 0.059 

hs-cTnI + cMyC 0.811 0.622 0.069 

p value 0.457 695.000 
 

Table 43 – Harrell’s C and Somers D statistics for endpoint death or AMI during 30-day follow-up, for hs-cTnI 

triage alone and for the combination of hs-cTnI with cMyC; p value obtained comparing the C-statistics; SD = 

standard deviation of Somers D 
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Figure 43 – Kaplan-Meier curves for endpoint death or AMI during 1-year follow-up; left – risk-stratification 

using hs-cTnI alone, right – risk-stratification using hs-cTnI + cMyC; p value obtained using the log-rank test; 

Number at risk displayed below and stratified per assigned risk-category 

 

Variables C-statistics Somers D SD 

hs-cTnI 0.741 0.483 0.053 

hs-cTnI + cMyC 0.747 0.494 0.062 

p value 0.783 
  

Table 44 – Harrell’s C and Somers D statistics for endpoint death or AMI during 1-year follow-up, for hs-cTnI 

triage alone and for the combination of hs-cTnI with cMyC; p value obtained comparing the C-statistics; SD = 

standard deviation of Somers D  
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Prelude to Chapter 7 

Findings in chapters 5 & 6 investigate the potential of cMyC in the diagnosis of AMI, and for 

the use of cMyC as a triage-tool to accelerate rule-out and rule-in of AMI in patients 

presenting with chest pain. Notably, the cohort used for this analysis consists of relative late-

presenters – the median chest pain time to first blood draw is 5 hours, whereas the greater 

advantage of cMyC appears to lie with the earliest time-points after symptom onset (evident in 

the sub-group analysis of early presenters with <3 hours of symptoms). To build on the 

experience from this subgroup analysis, and the (small) cohort tested from the HighSTEACS 

early-presenters (see Chapter 4), we partnered with colleagues in Denmark (Hans Erik Bøtker 

et al.) who provided us with access to their pre-hospital cohort – a study conducted on patients 

with suspected AMI, who underwent blood draws in the ambulance for the evaluation of 

POCT copeptin and cTnT analysers. This cohort has a markedly shorter time-to-blood-test 

(median 70 mins). In parallel, we worked on migrating the cMyC assay onto a POCT-platform 

(provided by AgPlus) and tested the hypothesis that we could reach a limit of detection on 

POCT that would allow rule-out with cMyC (around 10 ng/L). Preliminary results are included 

in the data presented below, but the analysis of cMyC in the ambulance cohort has been 

conducted on the established research assay (Erenna), with cut-offs calibrated to what a POCT 

can feasibly achieve.  

The manuscript presented in Chapter 7 represents a secondary analysis of the pre-hospital 

study – the candidate forged the collaborations with colleagues at Aarhus University Hospital, 

interpreted all cMyC concentrations, wrote the analysis plan, performed the statistical analysis 

and wrote the manuscript. The findings are reproduced with amendments for inclusion in the 

thesis.   
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7.1. Abstract 

Aims: Early triage is essential to improve outcome in patients with suspected Acute 

Myocardial Infarction (AMI). This study investigated whether cardiac myosin-binding protein 

C (cMyC), a novel biomarker of myocardial necrosis, can aid early diagnosis of AMI and risk 

stratification. 

Methods: 776 patients with chest pain had blood taken by ambulance-based paramedics. 

cMyC and high-sensitivity cardiac troponin T (hs-cTnT) were analysed retrospectively: The 

area under the curve (AUC [95% confidence interval]) determined discrimination power 

against adjudicated AMI. All biomarker analysis has been conducted on laboratory analysers 

achieving high-sensitivity for the respective biomarkers, however, sensitivity & specificity were 

calculated including a real and realistic Limit of Detection (LoD) on a point-of-care testing 

(POCT) device for cTnT and cMyC, respectively. 

Results: Median time from chest pain onset to blood sampling was 70 minutes. cMyC 

concentration in patients with AMI was significantly higher than with other diagnoses: 98 

[43;855] vs 17 [9;42] ng/L. Discrimination power of cMyC was better than hs-cTnT: AUC 

0.839 (0.803-0.871) vs 0.813 (0.777-0.847; p=0.005). The POCT threshold of cTnT (50 ng/L, 

10-fold LoD of laboratory assay) achieved a sensitivity of 40.5% (33.3-47.6%); and cMyC (12 

ng/L, 30-fold LoD of laboratory assay) achieved a sensitivity of 94.8% (91.2-97.7%). Risk 

prediction was superior for cMyC at the POCT-detection limit. 

Conclusions: cMyC identifies a larger proportion of patients with AMI and at future risk of 

death than cTnT in a cohort presenting early after symptom onset. This distinction is likely 

related to the documented abundance and rapid release of cMyC. If used on a point-of-care 

platform, cMyC could significantly improve the early triage of patients with suspected AMI. 
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7.2. Translational Perspective 

Early and accurate triage is essential to improve outcome in patients with suspected acute 

myocardial infarction. As only a small proportion of patients have diagnostic ECG changes, 

diagnosis has become reliant on the use of cardiac-specific biomarkers such as high-sensitivity 

cardiac Troponin. Due to slow release kinetics and comparably insensitive point-of-care 

applications of the gold-standard test, clinicians face a sensitivity-gap at the earliest time points 

after chest pain onset. As demonstrated in this retrospective study, cardiac myosin-binding 

protein C (cMyC) is a novel biomarker of cardiac injury and has superior biological 

characteristics that could bridge this gap. 

7.2.1 Outlook 

cMyC can be reliably quantified on a research platform, however it requires migration onto a 

random-access laboratory analyser or a point-of-care platform to facilitate prospective clinical 

trials. Owing to the biomarker’s relative abundance and release kinetics, it is likely better suited 

for reliable near-patient testing and early rule-out of AMI. 
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7.3. Introduction 

Rapid triage to the appropriate treatment is the cornerstone of improving outcome for patients 

presenting with suspected Acute Myocardial Infarction (AMI).11,12,114 Physicians at Aarhus 

University Hospital evaluate over 6,000 pre-hospital electrocardiograms (ECG) per year: 

transmitted from paramedics in the field. This system allows the team in the regional tertiary-

care interventional centre to select the cases for priority transfer; bypassing the nearest 

secondary-care facility.175 To date, the diagnosis of AMI in the pre-hospital setting mostly relies 

on detecting ECG abnormalities, which identify only a minority of cases of AMI, do not allow 

risk-stratification10 and are compounded by bundle branch block (BBB) and other longstanding 

abnormalities. Only few healthcare environments support the use of pre-hospital point-of-care 

testing (POCT) of biomarkers such as copeptin or cTnT – the former limited by its lack of 

specificity, the latter by (insufficient) sensitivity when compared to the laboratory equivalent.  

A recent study investigating the precision with which emergency staff interpret ECGs 

(including ST-elevation) has demonstrated a mean accuracy of 81% across all study groups 

(such as paramedics, residents and cardiologists).176 Notably, even amongst cardiologists, the 

rate of false positive ECG diagnoses exceeded 40%. Since the majority of patients with AMIs 

lack hallmark-features such as ST-elevation; most patients are admitted for further clinical and 

biochemical evaluation.10 For patients with high-risk non ST-elevation MI (NSTEMI), the 

inherent diagnostic challenges lead to delayed appropriate treatment and may be associated 

with worse outcomes: In a recent study, the endpoint committee re-adjudicated 9-14% of 

NSTEMI patients as STEMI, challenging the perception that ECG-based triage by a hospital 

physician is sufficient to identify all high-risk patients.177 



Characterising a novel biomarker of early myocardial injury  183 

The team in Denmark have previously studied the performance of cTnT and Copeptin point-

of-care testing (POCT) devices to aid triage in the pre-hospital setting. Both approaches have 

faced challenges. Whilst cardiac-specific142, the cTnT POCT assay has a Limit of 

Quantification (LoQ) of 50 ng/L, with a 99th centile, defined by laboratory platforms, of 14 

ng/L. Copeptin, on the other hand, is released early after acute illness, but low specificity limits 

its use in guiding patients towards regional interventional cardiology centres.38 

This study investigated whether cardiac myosin-binding protein C (cMyC), a novel biomarker 

of myocardial necrosis, can aid the early diagnosis of AMI and identify patients at high risk of 

death. cMyC is a more abundant analyte than cardiac Troponins (cTn)122,126, this translates into 

an enhanced early rule-in/rule-out of myocardial infarction in the setting of the emergency 

room. In smaller studies investigating patients early after chest pain onset or timed cardiac 

injury, cMyC rises more rapidly than cTn50,123 – at equal, absolute tissue-specificity. In 

combination, these features make cMyC an attractive biomarker for POCT. The aim of this 

study was to investigate the diagnostic and prognostic properties of cMyC in comparison with 

high-sensitivity cardiac troponin T in the prehospital setting. Further, we examined the 

performance of cMyC modelled with cut-off concentration thresholds calibrated to the 

capabilities of the best cTnT point-of-care platform and likely to be feasible based on 

preliminary data. 

7.4. Methods 

7.4.1 Study design and population 

In an observational, prospective, quality-control study, paramedics routinely performed point-

of-care cTnT measurements in patients with suspected AMI.178 The point-of-care cTnT 

measurements were performed in 25 ambulances in the eastern part of the Central Denmark 
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Region with a population of approximately 600,000 inhabitants from 26 May 2010 to 16 May 

2011. Each patient in whom the standard operating procedure (SOP) instructed the recording 

of a prehospital ECG qualified for blood testing. The SOP criteria included ongoing or 

prolonged periods of chest discomfort within the past 12 hours, acute dyspnoea in the absence 

of known pulmonary disease, or clinical suspicion of AMI. The ECG was transmitted to the 

invasive cardiology centre at Aarhus University Hospital, Denmark, and interpreted by the 

cardiologist on call. Subsequently, a telephone interview was conducted with the patient. 

Thereafter, a tentative cardiac or a non-cardiac diagnosis was established and the patient 

underwent triage to either the PCI centre or a local hospital for further assessment.175  

Following point-of-care cTnT analysis, the paramedics saved the remaining blood sample 

obtained in the ambulance. A participant flow-chart in shown in Figure 47. 

 

Figure 44 – Study flow diagram demonstrating original recruitment, excluded patients, and samples with 

recalculated hs-cTnT values, as well as re-analysed hs-cTnT concentrations 

Qualified for primary analysis
n=776 for hs-cTnT/cMyC

Recalculated [hs-cTnT]
n=489

[hs-cTnT] <99th centile
n=287 available for re-test

Patients excluded:
24 blood draw not successful

85 POCT failed
214 insufficient sample-volume

Patients recruited
n=1,099
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7.4.2 Sample storage and analysis 

The sample was initially stored at 4◦C in the ambulance and later stored in refrigerators at 

Aarhus University Hospital. Laboratory personnel collected the blood samples from the 

refrigerators periodically at intervals of a maximum of 12h, centrifuged the samples, and stored 

the plasma at -80◦C. The Central Denmark Region Committees on Biomedical Research Ethics 

reviewed the protocol and approved the study as a biological registry study. Handling of 

patient data and storage of the blood samples were reported to the Danish Data Protection 

agency. Clinical data were reviewed with permission from the Danish National Board of 

Health. Both high-sensitivity assays, hs-cTnT and cMyC, were performed using laboratory 

analysers on stored plasma samples. The POCT cTn readings are not included in our analysis. 

cMyC was measured in a secondary analysis using the previously established high-sensitivity 

assay on the Erenna platform and was performed by Millipore Sigma (Hayward, California) on 

a fee-per-sample basis.84 All samples with sufficient remaining volume available at time of 

analysis (mid 2016) qualified for inclusion in this study. The assay has a lower Limit of 

Detection (LoD) of 0.4 ng/L and a lower Limit of Quantification (LoQ) of 1.2 ng/L with a 

≤20% coefficient of variation at LoQ, and ≤10% CV at 99th centile. The estimated 99th 

percentile cut-off point (URL) determined previously is 87 ng/L.84 The precision profile is 

displayed below (Figure 45, Table 45) and remains ≤10% above 4.6 ng/L. We have recently 

contracted a POCT diagnostics device manufacturer to migrate cMyC onto their platform. As 

demonstrated in Figure 46, our proposed threshold of 10 ng/L is realistic with a CV ≤10%.  
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Figure 45 – Coefficient of Variation (CV) of cMyC assay as performed on EMD Erenna platform, across the 

standard curve 
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Expected 
(pg/mL) Mean (pg/mL) SD CV (%) 

0 0 0.02 0 

0.6 1 0.06 6 

1.2 1 0.15 15 

2.3 2 0.22 11 

4.6 5 0.4 8 

9.3 9 0.76 8.44 

18.5 19 1.2 6.32 

37 35 2.04 5.83 

74.1 71 5.03 7.08 

222.2 236 12.92 5.47 

666.7 703 33.3 4.74 

2000 1998 67.87 3.4 

Table 45 – Precision profile across standard curve; SD = Standard Deviation; CV = Coefficient of Variation 
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Figure 46 – Point-of-Care Testing for cMyC – preliminary results; signal differentiation has been achieved for 10, 

50 and 100 pg/mL of recombinant cMyC (C0C2 region). A combination of our antibodies 235-3H8 and 259-1A4 

were used on para-magnetic and metal nano-particles (AgC and MgC) to achieve the signal (nanocoulomb) as 

demonstrated. Signal obtained for AgC (235-3H8) against MgC (259-1A4) for varying concentrations of C0C2 

analyte. Points represent mean concentration, error bars the standard error of the mean. Significance tests have 

been performed comparing all groups (Anova, as printed) and as unpaired T-test against concentration 0: **: 

p≤0.01; ****: p≤0.0001; CV: 10% at 10 pg/mL; 2% at 50 pg/mL, 3% at 100 pg/mL 

For hs-cTnT, the samples were thawed and analysed as one batch in a "thaw-freeze" cycle at 

the central laboratory of Aarhus University Hospital, using the high-sensitivity cardiac 

Troponin T assay (Roche Diagnostics GmbH, Mannheim, Germany). The assay has a LoD of 

5 ng/L, the lowest concentration with a coefficient of variation below 10% of 13 ng/L, and a 

99th percentile URL of 14 ng/L.95 Roche Diagnostics has previously released a technical 
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bulletin regarding a calibration issue affecting all lots used in this study and for routine hs-

cTnT measurements made during hospital admission.134 The manufacturer recommended a 

method for recalculating the reported values using combined calibration information, reagent 

lot number information and instrument details if the original signal data was not available.179 

Initially, most hs-cTnT values presented in this study were recalculated (n=489). The hs-cTnT 

recovery rate and the 99th centile comply with those found in the original studies.95,134,179 Where 

available, hs-cTnT samples below the 99th centile were subsequently re-analysed using reagent 

lots unaffected by the calibration issue to avoid ambiguities due to recalculation (n=287). 

7.4.3 Data sources 

The cardiologist on call used a web-based telemedicine database to record clinical, baseline 

demographic and timing data, as well as the tentative diagnosis, ECG changes and triage 

decision. Timings were obtained from the Central Denmark Region’s Prehospital Emergency 

Medical Services. Clinical details and demographic data were acquired using hard copies of 

patient files and from the National Patient Registry. Symptom duration was calculated using 

the difference between recorded symptom onset to prehospital blood sampling time point. 

Follow-up data to assess survival was obtained from The Danish Civil Registration System. 

electrocardiogram recorded. The study was reviewed by the Regional Ethical Committee and 

accepted as a quality control study. Oral informed consent for participation in the study was 

obtained in the ambulance. The study was approved by the Danish Data Protection Agency 

and the Danish National Board of Health. 

7.4.4 Adjudicated final diagnosis 

As previously described, all admissions were reviewed by an endpoint committee for 

adjudication of the final diagnosis.178 This was performed according to the 1st Universal 
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Definition of MI.127 For the diagnosis of myocardial damage, the hs-cTnT URL was used. hs-

cTnT values obtained from prehospital samples were not disclosed or used in clinical decision 

making, nor used in the gold-standard adjudication – only the clinically used samples (from 

first contact in hospital) were used for adjudication of events. The endpoint committee had 

access to all patient file material including the discharge file, with the diagnoses determined by 

the clinicians. AMI patients were classified as ST-elevation Myocardial Infarction (STEMI) or 

Non-ST-elevation Myocardial Infarction (NSTEMI); unstable angina (UA) was diagnosed in 

patients with a significant episode of chest pain thought to be of ischemic origin who did not 

fulfil AMI criteria. 

7.4.5 Diagnostic proportions of hs-cTnT and cMyC 

Classification power of both biomarkers was assessed by calculating sensitivity, negative 

predictive value (NPV), specificity and positive predictive value (PPV) for each cut-off 

threshold. The 99th centile of hs-cTnT is 14 ng/L, and the currently available POCT platform 

(Roche Cobas h323 handheld instrument) can detect a laboratory-equivalent value of 50 ng/L 

(POCT LoD, correct at date of submission) – about 3-fold the LoQ or 10-fold the LoD of the 

laboratory assay.36 The result is reported as ‘negative’ <50 ng/L, ‘positive’ at 50-100 ng/L, and 

quantitatively positive with a numerical value >100 ng/L. Assuming a conservative but similar 

signal-loss for cMyC if migrated from the current laboratory platform to POCT, we defined a 

LoD of cMyC POCT at 30-fold LoD (or 10-fold LoQ; in line with results from feasibility 

testing, see below). Using established hs-cTnT and realistic cMyC cut-off thresholds, we used 

1,000 bootstrap replicates to determine the classification power for each biomarker with 95% 

confidence intervals (95% CI).  
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7.4.6 Statistical analysis 

All data are expressed as medians [1st quartile; 3rd quartile] or means (standard deviation) for 

continuous variables (compared with t-test or ANOVA for continuous normal distributed 

variables, and Kruskal-Wallis test if continuous non-normal distributed); categorical variables 

are expressed as absolute and relative frequencies (compared with Pearson chi-square). 

Hypothesis testing was two-tailed and p values <0.05 were considered statistically significant. 

Where bootstrap techniques were used, the calculations were performed using 1,000 stratified 

replicates. 

Diagnostic accuracy was quantified by the area under the receiver-operating curve (AUC (95% 

confidence interval)) against adjudicated AMI. Bootstrapping was used to calculate Confidence 

Intervals (CI), compare the AUC between biomarkers and calculate the classification function. 

Logistic regression was used to combine cMyC with hs-cTnT values for the assessment of an 

incremental value using the two biomarker concentrations at presentation. Correlation was 

assessed with Spearman’s rho (rs) and adjusted R2 by fitting a linear regression model. 

Prognostic performance was assessed as follows: We calculated 1) Harrell’s C statistics131 for 

each biomarker for cumulative long-term mortality, 2) an adjusted multivariable Cox 

proportional hazards model and 3) displayed Kaplan-Meier survival curves. The Cox models 

were tested for violation of the proportional hazards assumption by calculating correlation 

coefficients between transformed survival time and the scaled Schoenfeld residuals and testing 

the former with chi-square comparisons. All available variables were tested in a univariate 

regression model; significant variables (pre-defined as Wald test p<0.1) were selected for the 

final Cox multivariate regression model. The biomarkers were entered log-transformed. 
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All statistical analyses were performed using R, version 3.3.0 GUI 1.68 (The R Foundation for 

Statistical Computing), including packages ggplot2, RMarkdown, the tidyverse, survival, 

survminer and pROC.   
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7.5. Results 

7.5.1 Baseline characteristics 

A total of 776 patients were recruited during the study period. Median age was 68 years [58; 

78], 303 patients (39%) were women, and 232 (30%) had a prior history of myocardial 

infarction (Table 46). Sixty-six patients (9%) had a final diagnosis of STEMI, 107 (14%) 

NSTEMI. Median time since onset of chest pain was 70 minutes [35; 173]. There was 

considerable discrepancy between telemedicine-triage and final diagnosis: 107 patients (14%) 

presented with BBB on ECG; only 59% of patients with a final adjudicated diagnosis of 

STEMI had clear ST-elevation identified during telemedicine assessment. Sensitivity for 

NSTEMI during telemedicine assessment was 33%. 
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 All STEMI NSTEMI UA p N 

 N=776 N=66 N=107 N=27   

Gender male 473 (61%) 54 (82%) 75 (70%) 24 (89%) <0.001 776 

Age (years) 68 [58;78] 66 [58;75] 74 [65;81] 63 [53;68] <0.001 776 

Hypertension 439 (57%) 31 (47%) 71 (66%) 17 (63%) 0.062 776 

Hyperlipidemia 622 (80%) 49 (74%) 93 (87%) 24 (89%) 0.103 776 

Diabetes mellitus 147 (19%) 4 (6%) 19 (18%) 6 (22%) 0.04 776 

Current smoking 230 (30%) 30 (45%) 35 (33%) 10 (37%) 0.003 776 

History of smoking 217 (28%) 16 (24%) 34 (32%) 8 (30%) 0.264 776 

Previous 
myocardial 
infarction 

232 (30%) 11 (17%) 47 (44%) 13 (48%) <0.001 776 

Previous 
percutaneous 
intervention 

200 (26%) 10 (15%) 39 (36%) 14 (52%) <0.001 776 

Systolic blood 
pressure (mmHg) 

146 [130; 
166] 

141 [123; 
168] 

150 [132; 
177] 

154 [142; 
169] 0.152 764 

Diastolic blood 
pressure (mmHg) 87 [75; 99] 84 [72; 

105] 
91 [75; 
104] 90 [84; 99] 0.208 764 

Heart rate 
(beats/min) 

84 [70; 
100] 81 [62; 95] 88 [74; 

102] 
84 [70; 
100] 0.084 765 

eGFR 71 [56;86] 66 [61; 84] 70 [56; 82] 77 [66; 82] 0.455 605 

Time since chest 
pain onset 
(minutes) 

70 [35; 
173] 

71 [35; 
140] 

73 [39; 
162] 

44 [27; 
125] 0.48 726 

Table 46 – Baseline characteristics; STEMI = ST elevation myocardial infarction; NSTEMI = Non-ST elevation 

myocardial infarction; UA = Unstable Angina; eGFR = Estimated glomerular filtration rate, ml/min/1.73m2 

(estimated using the Modification of Diet in Renal Disease (MDRD) formula) 

7.5.2 Distribution of biomarker concentrations 

All blood samples were obtained in the ambulance but measured in a laboratory. In ambulance 

concentrations of cMyC at 0h were significantly higher in patients with AMI (median 98 ng/L 

[43; 855]) than in patients with other diagnoses (17 ng/L [9; 42], p<0.001). Median 
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concentrations of cMyC were 88 ng/L [42; 253] for NSTEMI, 306 ng/L [49; 1706] for 

STEMI, 19 ng/L [11; 25] for UA. The corresponding concentrations for hs-cTnT, were 33 

ng/L [18; 72], 58 ng/L [15; 295] and 9 ng/L [7; 14], respectively (Figure 47, Table 47). An 

overview of the distribution of all markers measured is shown in table 2. Overall, when 

comparing blood concentrations of biomarkers to assay-specifics (LoQ, LoD), cMyC levels 

were higher than those of hs-cTnT in all diagnostic categories. 

 

Figure 47 – Distribution of cMyC and hs-cTnT concentrations in samples obtained in the ambulance, based on 

adjudicated final diagnosis. Boxes represent interquartile ranges; whiskers extend to 1.5 * IQR from the hinges; 

light grey bullets are outliers. NSTEMI = Non-ST elevation Myocardial Infarction; STEMI = ST-elevation 

Myocardial Infarction; UA = Unstable Angina 
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 Minimum 1st Q Median Mean 3rd Q Maximum 

cMyC (ambulance, ng/L) 

NSTEMI 6.6 42.4 88.0 554.1 253.1 11430 

Other 1.9 9.1 17.4 62.8 42.7 6362 

STEMI 7.9 48.6 306.3 1525.0 1706.0 19720 

UA 6.8 10.7 19.4 21.6 24.8 64.72 

hs-cTnT (ambulance, ng/L) 

NSTEMI 5.2 18.0 32.6 122.3 71.8 2493.9 

Other 3.0 6.7 9.6 20.2 19.7 1035.0 

STEMI 5.5 14.7 58.1 375.6 295.3 4023.7 

UA 3.4 7.3 9.3 11.3 13.8 26.5 

Table 47 – Distribution of biomarker concentration by final adjudicated diagnostic category; STEMI = ST-

elevation Myocardial Infarction; NSTEMI = Non ST-elevation Myocardial Infarction; UA = Unstable Angina 

7.5.3 Discrimination power 

In blood draws performed in the ambulance, the discrimination power against ultimate 

diagnosis (AMI) as quantified by the AUC was higher for cMyC than for hs-cTnT: 0.839 (95% 

CI, 0.803-0.871) vs 0.813 (0.777-0.847; p=0.005 for direct comparison; Figure 48, Table 48). 

The discrimination power of cMyC for the individual diagnoses was: AUC 0.816 (0.761-0.866) 

for STEMI, AUC 0.787 (0.741-0.829) for NSTEMI, AUC 0.599 (0.531-0.67) for UA.  

The discrimination power for hs-cTnT for the individual diagnoses was: AUC 0.766 (0.701-

0.828; p<0.001 for direct comparison to cMyC) for STEMI, AUC 0.781 (0.737-0.820; 

p=0.595) for NSTEMI, AUC 0.608 (0.529-0.692; p=0.711) for UA.  

The combination of both markers provided incremental value for STEMI (AUC 0.780; 0.719-

0.84; p<0.001) and NSTEMI (0.786; 0.745-0.824; p=0.037) compared to using hs-cTnT alone. 
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Figure 48 – Receiver-operating characteristics (ROC) curves for cMyC (ambulance) and hs-cTnT (ambulance) for 

the diagnosis of acute myocardial infarction. The AUC for cMyC was 0.839 (95% CI, 0.804-0.87), for hs-cTnT 

0.813 (0.777-0.847). 
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Outcome AUC 95% CI AUC 95% CI Cases Controls p.value 

Biomarker cMyC hs-cTnT    

AMI 0.839 0.805-0.873 0.813 0.777-0.847 173 603 0.005 

STEMI 0.816 0.759-0.865 0.766 0.695-0.831 66 710 <0.001 

NSTEMI 0.787 0.742-0.828 0.781 0.737-0.821 107 669 0.599 

UA 0.599 0.524-0.670 0.608 0.531-0.690 27 749 0.715 

Biomarker cMyC + hs-cTnT hs-cTnT    

AMI 0.822 0.791-0.856 0.813 0.775-0.847 173 603 <0.001 

STEMI 0.780 0.716-0.836 0.766 0.699-0.834 66 710 <0.001 

NSTEMI 0.786 0.744-0.830 0.781 0.738-0.823 107 669 0.041 

UA 0.613 0.535-0.695 0.608 0.530-0.693 27 749 0.377 

Table 48 – Area under the Receiver-operating Characteristics Curve for cMyC and hs-cTnT; AMI = Acute 

Myocardial Infarction; STEMI = ST-elevation Myocardial Infarction; NSTEMI = Non ST-elevation Myocardial 

Infarction; UA = Unstable Angina; AUC = Area under the Curve; CI = Confidence Interval 

7.5.4 Correlation 

The biomarkers correlated positively across all patient groups (R2=0.730, rs=0.855) and for all 

patients with AMI (R2=0.699, rs=0.836).  

Figure 49 and Table 49 show the relationships between the biomarkers for each individual final 

adjudicated diagnosis. Serum concentrations of cMyC and hs-cTnT are positively correlated 

throughout, with strongest correlations observed in the non-cardiac and NSTEMI groups. 
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Figure 49 – Scatter plots outlining correlation between cMyC and hs-cTnT concentrations (ng/L both) in samples 

obtained in the ambulance for each diagnostic group. Light grey shading depicts the boundaries of the 95% 

confidence intervals, line of best fit indicated in red. NSTEMI = Non-ST elevation Myocardial Infarction; STEMI 

= ST-elevation Myocardial Infarction; UA = Unstable Angina 
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Diagnosis R2 f Spearman’s rho n 

NSTEMI 0.897 913.56 0.947 107 

Other 0.897 5000.05 0.947 576 

STEMI 0.631 109.61 0.795 66 

UAP 0.453 20.73 0.673 27 

Table 49 – Correlations between cMyC and hs-cTnT concentrations by diagnostic group. R2 = correlation 

coefficient 

7.5.5 Diagnostic proportions of hs-cTnT and cMyC  

Initially we compared the 99th centile of hs-cTnT (14 ng/L) with the 99th centile of cMyC (87 

ng/L). hs-cTnT achieved a negative predictive value (NPV) of 92.1% (89.3-94.4%), and 

positive predictive value (PPV) of 39.6% (34.6-44.9%), vs cMyC of 87.5% (84.8-90%) and 

61.6% (54.2-69.3%), respectively. hs-cTnT at a threshold calibrated to the performance of the 

POCT platform (LoD 50 ng/L) achieved NPV 84.6% (81.7-87.1%) and PPV 63.9% (54.5-

72.3%); a POCT device modelled for cMyC (LoD 12 ng/L) achieves 96% (93.1-98.2%) and 

29.4% (25.7-33.6%) – see Table 50. 
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Number of cases 776  

AMI 173  

Biomarker hs-cTnT (LoQ 13 ng/L)  

Threshold 99th centile POCT (10x LoD) 

Value 14 ng/L 50 ng/L 

   

Sensitivity 80.5% (95% CI, 74.3-86.1%) 40.5% (95% CI, 33.3-47.6%) 

Specificity 65% (95% CI, 61.4-68.8%) 93.4% (95% CI, 91.3-95.3%) 

NPV 92.1% (95% CI, 89.3-94.4%) 84.6% (95% CI, 81.7-87.1%) 

PPV 39.6% (95% CI, 34.6-44.9%) 63.9% (95% CI, 54.5-72.3%) 

   

Biomarker cMyC (LoQ 1.2 ng/L)  

Threshold 99th centile POCT (estimated 30x LoD, 10x 
LoQ) 

Value 87 ng/L 12 ng/L 

   

Sensitivity 54.9% (95% CI, 47.2-62.2%) 94.8% (95% CI, 91.2-97.7%) 

Specificity 90.2% (95% CI, 88.1-92.6%) 35.1% (95% CI, 31.5-39.2%) 

NPV 87.5% (95% CI, 84.8-90%) 96% (95% CI, 93.1-98.2%) 

PPV 61.6% (95% CI, 54.2-69.3%) 29.4% (95% CI, 25.7-33.6%) 

Table 50 – Discriminatory power of cMyC v cTnT at 99th centile and POCT thresholds; AMI = Acute Myocardial 

Infarction; POCT = Point-of-Care Testing; LoQ = Limit of Quantification; LoD = Limit of Detection; NPV = 

Negative Predictive Value; PPV = Positive Predictive Value 

The changes between early- (<60 mins of chest pain), intermediate- (60-120 mins) and late-, 

presenting cohorts (>120 mins) are displayed in Table 51. Notably, the sensitivity for AMI is 

higher with cMyC (at 12 ng/L) than at the cTnT POCT threshold (≥50 ng/L): 92.6% vs 

26.9% in the very early presenters with chest pain onset <60 minutes prior to blood draw, 
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respectively. The sensitivity of cTnT improves in the later cohorts, however, it never reaches a 

sensitivity >60%. This would translate into a 15% higher detection of AMI if cMyC was to be 

used instead of the most accurate cTnT assay on a POCT device. 
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Early cohort (0-60 mins) 

Number of cases 321  

AMI 66  

 hs-cTnT (POC) cMyC (12 ng/L) 

Sensitivity 26.9% (95% CI, 16.7-37.5%) 93% (95% CI, 85.3-98.3%) 

Specificity 94.2% (95% CI, 90.9-96.9%) 37.5% (95% CI, 31.8-43.9%) 

NPV 83.3% (95% CI, 78.7-87.5%) 95.4% (95% CI, 90.3-98.9%) 

PPV 54.5% (95% CI, 36.7-71.1%) 27.5% (95% CI, 22.3-33.7%) 

   

Intermediate cohort (60-120 mins) 

Number of cases 156  

AMI 51  

Sensitivity 39.6% (95% CI, 25.6-53.5%) 96.2% (95% CI, 89.4-100%) 

Specificity 93.4% (95% CI, 88.3-97.4%) 28.3% (95% CI, 19.6-36.5%) 

NPV 76.2% (95% CI, 68.8-83.2%) 93.9% (95% CI, 83.9-100%) 

PPV 74.2% (95% CI, 56.5-89.7%) 39.2% (95% CI, 31.7-47.6%) 

   

Late cohort (>120 mins) 

Number of cases 249  

AMI 52  

Sensitivity 58.2% (95% CI, 45-71.2%) 98.1% (95% CI, 93.5-100%) 

Specificity 92.5% (95% CI, 88.8-95.8%) 35.1% (95% CI, 28.6-42.1%) 

NPV 89.3% (95% CI, 84.9-93.2%) 98.6% (95% CI, 95.2-100%) 

PPV 67.4% (95% CI, 53.5-80%) 28.5% (95% CI, 22.5-34.9%) 

Table 51 – Discriminatory power of cMyC v cTnT at POCT thresholds by symptom duration; AMI = Acute 

Myocardial Infarction; POCT = Point-of-Care Testing; LoQ = Limit of Quantification; LoD = Limit of 

Detection; NPV = Negative Predictive Value; PPV = Positive Predictive Value 
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7.5.6 Prognostic value of hs-cTnT and cMyC  

C Statistics: 

Harrell’s C statistics demonstrate comparable risk prediction for subsequent death during 

median follow-up of 557 days [493; 618] for both markers: cMyC 0.767, hs-cTnT 0.775 

(p=0.422; Table 52). Comparing C statistics for cut-offs achievable with POCT platforms, 

cMyC is better able to predict subsequent death than hs-cTnT: 0.762 vs 0.656 (p<0.001). 

n=769 cMyC hs-cTnT p value* est.cov 

FU death – whole spectrum     

Harrell's C Statistic 0.767 0.775 0.422 0.000 

Somers' D ± SD 0.535 ±0.047 0.550 ±0.046   

     

FU death – POCT     

Harrell's C Statistic 0.762 0.656 <0.001 0.000 

Somers' D ± SD 0.525±0.050 0.312 ±0.054   

Table 52 – Harrell’s C statistics and Somers’ D for cMyC and hs-cTnT across the entire analytic bandwidth and 

stratified according to point-of-care testing thresholds; FU = Follow-up; POCT = Point-of-Care Testing; SD = 

Standard Deviation; * p for comparison of C statistics between cMyC and hs-cTnT 

Cox regression models: 

The final Cox regression model consisted of risk factors diabetes, prior myocardial infarction 

and biomarkers cMyC or hs-cTnT (no other covariates reached a significance level p<0.1 in 

univariate analysis). Notably, the hazard ratios for cMyC and hs-cTnT are similar when the 

entire spectrum of the biomarkers (available only on high-sensitivity platforms) is used. When 

assessing possible risk prediction in the region of POCT device capabilities, cMyC identifies a 

higher-risk cohort at a cut-off of 12 ng/L – HR 7.23 vs. 4.99 with hs-cTnT at 50 ng/L (Table 
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53). This was subsequently used to create survival curves with adjustment for the stratified Cox 

model (Figure 50). Separated Kaplan-Meier curves for cMyC and hs-cTnT using a 3-tiered risk 

stratification are displayed below (Figure 51, Figure 52). 

Table 53 – Hazard ratios for cMyC and hs-cTnT values in samples obtained in the ambulance; with statistically 

significant confounders based on prior univariate regression analysis 

 Beta SE (Beta) HR (95% CI) Wald test (z) p value 
cMyC      

Diabetes mellitus 0.23 0.26 1.26 (0.76-2.1) 0.91 0.364 

Prior AMI 0.85 0.23 2.34 (1.49-3.68) 3.67 <0.001 

cMyC (log) 0.36 0.05 1.44 (1.3-1.59) 6.95 <0.001 
      

cMyC POCT      

Diabetes mellitus 0.30 0.25 1.35 (0.82-2.22) 1.19 0.234 

Prior AMI 0.82 0.23 2.25 (1.44-3.52) 3.59 <0.001 

cMyC ≥12 ng/L 1.56 0.47 7.23 (2.26-23.14) 3.34 <0.001 
      

hs-cTnT      

Diabetes mellitus 0.19 0.26 1.21 (0.73-2.00) 0.76 0.446 
Prior AMI 0.90 0.23 2.46 (1.57-3.87) 4.03 <0.001 

hs-cTnT (log) 0.47 0.06 1.60 (1.41-1.81) 7.26 <0.001 
      

hs-cTnT POCT      

Diabetes mellitus 0.30 0.25 1.35 (0.82-2.22) 1.19 0.234 

Prior AMI 0.96 0.23 2.61 (1.67-4.09) 4.21 <0.001 

hs-cTnT >50 ng/L 1.61 0.23 4.99 (3.19-7.79) 7.07 <0.001 
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Figure 50 – Survival curves for all patients over a 2-year follow-up for cMyC (left) and hs-cTnT (right) from 

samples obtained in the ambulance. These are adjusted for the Cox model (using presence of baseline diabetes 

mellitus and prior myocardial infarction as significant covariates) and stratified for the following cut-offs: cMyC 

12 ng/L; hs-cTnT 50 ng/L 
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Figure 51 – Kaplan-Meier survival curves using cMyC for risk stratification (tiers: ≤12 ng/L for POCT threshold, 

13-86 ng/L, ≥87 ng/L as 99th centile) 

 

Figure 52 – Kaplan-Meier survival curves using hs-cTnT for risk stratification (tiers: ≤13 ng/L for 99th centile 

threshold, 14-49 ng/L, ≥50 ng/L as POCT threshold). While the highest-risk group with a cMyC level ≥87 ng/L 
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(99th centile, 200-fold Limit of Detection (LoD)) performs similarly to hs-cTnT ≥50 ng/L (the POCT LoD), the 

spectrum for precise risk-stratification is significantly broader using the novel marker.  

7.6. Discussion 

Cardiac myosin-binding protein C (cMyC) is a myocardial protein that is released into the 

circulation after injury in a similar manner to the cardiac troponins (cTn). A prior publication 

has suggested that the concentration of cMyC rises more rapidly than cTn based on an analysis 

of 26 patients with AMI, who presented to hospital within 180 mins of symptom onset.123 This 

finding is in keeping with an in vitro analysis of human heart that shows cMyC is more 

abundant than cTn.122 A recent investigation has further shown superiority in early triage of 

>1,900 patients presenting with chest pain and suspected AMI – particularly in subjects 

presenting early after symptom onset.126 The current study extends these findings to unselected 

patients in the prehospital setting and shows that cMyC is better than hs-cTnT at diagnosing 

AMI; based on an analysis of receiver operator characteristics. Furthermore, using a 

conservative estimate of signal loss together with early experience of assay migration – we 

propose that a point-of-care test for cMyC would outperform those for cTn. Our direct 

observations and hypothetical models suggest that cMyC may have distinct advantages as a 

point-of-care biomarker for AMI.  

Our results underline the potential of cMyC in the assessment of patients presenting very early 

after chest pain onset. The median chest pain duration before first blood draw is typically 3-5 

hours in large cohort studies undertaken in the secondary-care setting.105,165 In contrast, we 

studied patients with a median time of just 70 mins between symptom onset and blood draw in 

the ambulance. Reliably, cMyC levels were higher in patients with AMI compared to any other 

diagnoses. Despite a strong positive correlation between cMyC and cTnT, in keeping with 
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previously presented findings126, cMyC appears to have an advantage when compared to hs-

cTnT in discriminating between patient with and without AMI: ROC analysis demonstrates a 

higher AUC value for cMyC. This translates into higher sensitivity and NPV at concentrations 

of cMyC likely to be achieved on a POCT device. The real benefit of a highly-sensitive assay 

for an abundant marker such as cMyC would be in enabling risk-stratification at the earliest 

time-points possible – the first encounter between the patient and a healthcare professional. 

Survival analysis demonstrates that cMyC and hs-cTnT are comparable in terms of risk 

prediction. This is to be expected since the greater abundance of cMyC is unlikely to offer 

further discriminative power in the low to intermediate risk patient cohorts. 

Currently, on-call physicians in Aarhus evaluate approximately 6,000 ECGs annually – this 

facilitates rapid triage of patients with clearly abnormal ECG, however in approximately 50% 

of patients with an ultimate diagnosis of STEMI, the ECG was non-diagnostic at the time of 

blood draw. ECGs yield particularly low sensitivity in the context of (more common10) 

NSTEMI presentations, not only because 1 in 7 patients displays a bundle branch block – thus 

triage would be improved if a highly-sensitive cardiac marker was available to the paramedic. 

The best commercially available POCT cTn platforms have limits of quantification that are 

well above the population 99th centile defined using a laboratory assay. While this is useful in 

selecting the cases with the greatest mortality risk, these platforms lack the sensitivity to 

achieve rapid rule-in for most patients with AMI – this is reflected in the comparably low 

sensitivity values quoted in Table 50 and Table 51. Due to the inability to measure below the 

99th centile, it is not possible to triage according to thresholds endorsed in international 

guidelines12 for rule-out, or indeed make the diagnosis of AMI.11 Furthermore, the latest ESC 

guidelines12 specifically warn against the use of high-sensitivity Troponin assays in early-
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presenters (<3 hours of chest pain). A protein which is much more abundant than cTn 

following myocardial injury would allow careful titration to individual requirements: whether 

the goalpost is maximum specificity/PPV, or maximum sensitivity/NPV, such as in rapid rule-

in and rule-out pathways – the greater the ‘detectable’ spectrum of concentrations of an equally 

cardiac-specific marker, the greater the possibility to choose cut-offs to achieve local 

objectives. 

This study has several limitations: 1) cMyC is currently only available on a high-sensitivity 

research platform and the migration onto POCT has not been completed. 2) Any cut-offs 

investigated are subject to cohort-specific calibration. These are not to be interpreted as a 

recommendation but would require validation in a separate cohort. As is evident in this study, 

the sensitivity achieved at 12 ng/L would not be acceptable for clinical use as part of a rule-out 

pathway unless used in patients presenting >2 hours following chest pain onset. This also 

requires validation, as the subgroup in which this was tested was comparably small (naturally, 

only 249 patients presented later than 2 hours following symptom onset) and might 

overestimate the sensitivity and NPV for rule-out. This is further reflected in the comparably 

wide confidence intervals. However, we argue that the ability to detect lower volumes of 

myocardial injury earlier is of particular use in a cohort such as the one studied, where the 

median time since onset of chest pain is substantially lower than in other, diagnostic chest pain 

studies, and rule-in of high-risk cases is of much greater importance to both the clinician and 

the patient. 3) As in most studies of this type there is an inherent bias against the new 

biomarker since hs-TnT was measured during the in-hospital course and used in the clinical 

adjudication of AMI. 
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In summary, we have demonstrated that 1) cMyC achieves improved diagnostic discrimination 

at earlier time points compared to hs-cTnT; 2) the addition of cMyC to hs-cTnT would 

provide additional diagnostic information; 3) cMyC achieves greater sensitivity and NPV at a 

threshold comparable to a TnT POCT device and is superior in predicting risk of subsequent 

mortality at a 2-year follow-up.  
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Chapter 8. Conclusions and future direction 

Cardiac myosin-binding protein C is a novel biomarker of myocardial injury with great 

potential – other groups118,119,121 have investigated the use of cMyC in the diagnosis of 

myocardial infarction with confirmatory findings48,50, however, were limited by poor assay-

sensitivity. Despite careful selection of monoclonal antibodies and initially promising results on 

our electrochemiluminescence platform, cMyC sensitivity was outperformed by the 

increasingly available high-sensitivity Troponin assays. Kuster et al.118 independently reached a 

comparable LoD on the same device (MesoScale Discovery), making the translation of the 

assay onto a platform with greater sensitivity the natural next step. Our work in migrating onto 

the Singulex Erenna enabled – for the first time – reliable cMyC quantification in stable 

outpatients. As demonstrated84, this assay enabled two leaps in the translational phase: (i) 

quantify the cMyC level in all but one of 360 individuals without acute cardiovascular disease, 

thus allowing (ii) the derivation of a 99th centile (87 ng/L, as published84). The assay, 

performed by a contract research organisation, achieved a LoD 200-times lower than our in-

house assay and laid the foundation for the studies described in this thesis. 

8.1. Summary of findings 

8.1.1 Quantifying the release of biomarkers of myocardial necrosis from cardiac myocytes and 

intact myocardium 

The purpose of this study was two-fold: (i) establish the amount of cTn and cMyC release 

from cardiomyocytes and human cardiac tissue undergoing simulated necrosis, (ii) examine if 

dietary troponin can confound the laboratory results. 

Serum from healthy volunteers was obtained and used as reference. Rat cardiomyocytes and 

human cardiac tissue were subjected to ultrasonication to simulate complete necrosis and 
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spiked into the healthy reference serum. For the dietary troponin consumption, a healthy 

volunteer had a 200 g dietary load of ovine left ventricular myocardium (boiled for 3 hours) 

and underwent frequent venesection. Samples were measured with hs-cTnI, hs-cTnT and 

cMyC assays (human cardiac tissue spikes only). 

It was possible to detect the cTn release from the equivalent of a single cardiomyocyte with 

both hs-cTn assays, resulting in a slope of 19 ng.L-1/cell [95% CI 16.8–21.2]) for hs-cTnT, and 

18.9 ng.L-1/cell [95% CI 14.7–23.1] for hs-cTnI. Similarly, each µg of myocardial tissue 

resulted in an increase in measured hs-cTn values: 3.9 ng.L-1/µg [95% CI  3.6-4.3] for hs-cTnT, 

4.3 ng.L-1/µg [95% CI 3.8-4.7] for hs-cTnI. cMyC generated a much greater response on the 

Erenna assay, with a slope coefficient of 41.0 ng.L-1/µg [95% CI 38.0-44.0]. This demonstrated 

the exquisite sensitivity of contemporary cardiac biomarker assays, and we concluded that 

necrosis of only 40 mg of myocardium is sufficient to breach the respective 99th centiles – too 

little to be detected by modern cardiac tissue imaging. 

Whilst cooked ovine myocardium could be detected by both hs-cTn assays (with a much 

greater troponin content than human myocardium – possibly due to a relatively ‘non-diseased’ 

heart in comparison to the donated human tissue), none of the serial samples obtained from 

the healthy volunteer demonstrated a cTn response after oral load; suggesting the human 

gastrointestinal tract is impervious to a large polypeptide such as cardiac Troponin.  

8.1.2 A single centre prospective cohort study addressing the effect of a rule-in / rule-out 

troponin algorithm on routine clinical practice 

Cardiac Troponins are well established as valuable diagnostic tools for chest pain triage in the 

Emergency Department.12,35,107,114 To quantify the number of patients undergoing cTn testing 

annually in the ED of a central London hospital, we performed a single-centre, prospective 
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cohort study investigating the use of hs-cTnT at our local centre. We collected data from all 

patients undergoing hs-cTnT testing in the months preceding and following the introduction 

of a new guideline for the management of patients with suspected ACS, modelled on the ESC 

0/1h rule-out/rule-in algorithm.12 Over the course of 7 months, 4,644 individual patients 

underwent hs-cTnT testing, and 40.4% were eligible for direct rule-out at presentation with a 

single, undetectable hs-cTnT result (< 5 ng/L); 7.6% were ruled-in. Therefore, the triage 

algorithm was successful in assigning 48% of patients to a definitive triage category, leaving 

52% of patients in the ESC observe zone after first blood draw. Whilst the introduction of the 

novel pathway at our institution led to a shorter time-to-repeat testing, it was also used in a 

significant proportion of patients without clear symptoms suggestive of ACS (as presenting 

complaints ranged from ‘chest pain’ in 45.7%, to ‘collapse’ and ‘unwell adult’). 

These findings are, however, relevant in a number of ways: triage using hs-cTnT assigns almost 

50% to a definitive triage category within the first blood draw. The other 50% of patients, 

assigned to the ESC observe zone, have to rely on the use of delta-change values for further 

risk stratification. The study further demonstrated that time intervals between first and second 

blood draw decreased during the implementation (with 40.8% instead of only 3.3% receiving a 

repeat blood draw within 1.5 hours). There was, however, no significant reduction in length-

of-stay. 

One can only speculate why length-of-stay failed to show an improvement, despite a decent 

sample size (n=946 for the period following introduction of the new clinical pathway) and a 

marked increase in repeat blood testing. A possible explanation is of a logistical nature: 

stakeholders in the ED frequently highlighted the challenge of facilitating a second blood draw 

within an hour of the first test. Many patients undergo the initial blood draw at triage, but may 



Characterising a novel biomarker of early myocardial injury  216 

not see a physician until at least 90 mins later – by which point, the ‘clock’ towards the UK-

wide 4-hour performance target requiring an admit or discharge decision has been ticking for 

about 2 hours. Chemical pathology at St Thomas’ Hospital is contracted to provide a time-to-

result (TTR) of 60 mins for cardiac Troponin in 80% of cases. Thus, the repeat result would 

often come very close to the 4-hour target, encouraging clinicians to make admit/discharge 

decisions based on the first blood test alone – to then pursue further workup during the 

inpatient stay. Once admitted, patients frequently await a Consultant-led ward round for a final 

decision, which inevitably occurs far later than the reporting of a second cTn result. 

This is only to highlight that healthcare environments are complex and pathways, while 

clinically and biologically compelling, might not yield the expected result in the institution. It 

further highlights the importance placed upon the first initial blood draw – any definitive triage 

decisions made upon this result can only benefit the clinical course and expedite care provision 

(where required). 

8.1.3 Temporal relationship between cardiac myosin-binding protein C and cardiac troponin I 

in type 1 myocardial infarction 

In this pilot study, we investigated the performance of our novel cMyC assay (Erenna) in 174 

patients presenting with suspected AMI. All patients were part of a subgroup of individuals 

recruited in the HighSTEACS107 study, presenting with symptoms of less than 3 hours 

duration prior to first blood draw – all underwent blood draws at 0h, 3h and 6-12h (late); 26 

were adjudicated with type 1 myocardial infarction. 

We calculated a cMyC/hs-cTnI ratio for each of the 3 sampling time points. This 

demonstrated a positive linear correlation between the two biomarkers. However, mean and 

median ratios in patients with AMI were much greater at presentation than in the later 
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timepoints (median 2.72 at 0h, 1.83 at 3h, 0.63 at 6-12h), suggestive of a more dynamic rise of 

cMyC in the early stages of myocardial infarction than hs-cTnI. We hypothesised that this 

could enable more rapid and/or accurate triage – but clearly, a more in-depth evaluation of the 

diagnostic performance of cMyC was required in a larger study. 

8.1.4 Direct comparison of cardiac myosin-binding protein C with cardiac troponins for the 

early diagnosis of acute myocardial infarction 

We analysed cMyC in 1,954 unselected patients presenting with symptoms suggestive of AMI 

to Emergency Departments in a prospective, diagnostic multi-centre study based in Europe. 

We focussed on studying the diagnostic properties of the presentation blood test alone and 

compared cMyC performance to that of hs-cTnT and hs-cTnI. The study was adjudicated 

using hs-cTnT and the Universal Definition of MI127, the prognostic endpoint being long-term 

mortality at 3-year follow-up. 

AMI was the final diagnosis in 340 patients (17%), and we observed a much greater dynamic 

range of cMyC in AMI vs non-AMI patients, and in comparison to both hs-cTn assays. The 

diagnostic performance was investigated by calculating the area under the receiver-operating 

characteristics curve, and cMyC matched the performance of both hs-cTn assays (cMyC AUC 

0.924 vs 0.927 hs-cTnT and 0.922 hs-cTnI). We used an internal derivation/validation split of 

the cohort to obtain optimal cut-offs for cMyC-guided rule-out and rule-in of AMI at 

presentation – 10 ng/L for rule-out, 120 ng/L for rule-in. These were used to calculate a Net 

Reclassification Improvement, based on re-classification of patients to rule-out or rule-in 

categories, where cMyC was substantially more effective than either hs-cTn assay (NRI +0.149 

vs hs-cTnT, +0.235 vs hs-cTnI). A remarkable signal was the higher AUC in early presenters 

(chest pain <3h) when compared to the adjudicating biomarker hs-cTnT (AUC 0.915 vs 0.892, 
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p=0.022), also reflected in an even higher NRI in this subgroup. Based on Harrell’s C statistics, 

cMyC was superior to hs-cTnI but not hs-cTnT at predicting death at 3-year follow-up. 

This was the first study to comprehensively study cMyC performance in comparison to the 

best available biological signals for the diagnosis of AMI. Notably, the study was adjudicated 

using hs-cTnT and yet triage classification was more efficient (based on smaller observe-zone) 

and as accurate using cMyC. Furthermore, the patients recruited overall represent a cohort of 

late presenters, with a median chest pain time of 5 hours prior to admission. Findings including 

subgroup analysis corroborate our previous observations in the HighSTEACS subgroup – a 

marked advantage in early presenters, with an at least as good diagnostic performance but 

better triage capability. 

Subsequently, we investigated two aspects further: (i) derivation of optimal cut-offs for delta-

change values, to enable a rule-out/rule-in algorithm matching (or improving upon) the 

performance of the 2015 ESC NSTEMI pathways; (ii) study performance of cMyC in very 

early presenters (pre-hospital). 

8.1.5 Derivation and Validation of a 0/1h-algorithm to diagnose Myocardial Infarction using 

Cardiac Myosin-binding Protein C 

Extrapolating from our prospective study at St Thomas’ Hospital and the European multi-

centre study, delta-change values were likely to play a significant role in the successful 

management of patients presenting with suspected AMI. Given our perception of cMyC as a 

more dynamic marker, we expected to see an at least equivalent benefit of using delta-change 

values after second blood draw, both in diagnostic accuracy quantified by AUC, and the rapid 

triage into rule-out and rule-in of AMI. In >1,300 complete datasets, we established that cMyC 

was beneficial in addition to 0h hs-cTnI and hs-cTnT results (AUC from 0.916 to 0.925 with 
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hs-cTnI, 0.921 to 0.930 with hs-cTnT). It remains unclear as to why the combined AUC for 

cMyC, incorporating both 0h and delta-change, is inferior to hs-cTnT but equivalent to hs-

cTnI – it is possible that this reflects bias from the use of hs-cTnT as the adjudicating 

biomarker. Further, we saw an improvement of AUC in early presenters with hs-cTnI 

0h+delta, but this did not apply to hs-cTnT.  

The derivation of a cMyC rule-out/rule-in algorithm was performed in a split-sample set of hs-

cTnT, aiming for NPV ≥99% and PPV ≥70%. Meeting these primary endpoints, the cMyC 

algorithm is inferior to hs-cTnT with respect to specificity, but superior with respect to 

complete triage after 0/1h blood testing (4% absolute increase of patients assigned to rule-out 

and rule-in zones). When compared to hs-cTnI, cMyC is comparable on all performance 

metrics but increases complete triage by 10%. Subgroup analyses demonstrate that the 

overwhelming advantage of cMyC lies with direct rule-out based on a presentation sample, 

with diminishing (yet still superior) efficiency after a completed 0/1h protocol. This is also 

evident when adding cMyC to either hs-cTn pathway at presentation: direct triage at 

presentation, as well as triage after a completed 0/1h protocol benefit significantly from the 

additional biomarker and leave a maximum of 17% of patients in the observe zone, with 

matching NPV and PPV. This has not been done before and calls for a real-life, real-time 

diagnostic trial. 

8.1.6 Cardiac Myosin-Binding Protein C to diagnose Acute Myocardial Infarction in the pre-

hospital setting – identifying the high-risk patient 

As established in the large, multi-centre trial investigating patients presenting to emergency 

departments126, and previously in our subgroup analysis of HighSTEACS123, cMyC has a 

biological advantage in very early presenters. However, many secondary and tertiary care trials 
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enrol patients relatively late in their clinic course, often with a median symptom onset time of 

5 hours prior to presentation.87,124,126,180 Hence we investigated the diagnostic value of cMyC in 

patients undergoing blood draws in a pre-hospital setting: Seven-hundred and seventy-six 

patients with a median time of 70 minutes from chest pain onset to blood sampling were 

enrolled by paramedics in Denmark. The study was originally used to assess the value of pre-

hospital triage using a cTnT-based POCT device in the Danish country-side, where patients 

with suspected AMI face ambulance-transfer times of up to 2 hours to reach the nearest 

hospital offering percutaneous coronary intervention. Currently, triage is reliant on ECGs 

transmitted to and interpreted by cardiology residents at Aarhus University hospital – a test 

with, even for ST-elevation MI, only moderate diagnostic accuracy. 

We demonstrated a similar discrepancy between telemedicine-triage and final diagnosis, where 

only 59% of patients with a final adjudicated diagnosis of STEMI had their ST-elevation 

clearly identified pre-hospital. Median concentrations for cMyC were, even within this short 

time frame, higher than hs-cTnT when compared to the respective LoD of the assay – 

reflecting a higher AUC (0.839 vs 0.813), as well as incremental benefit when both markers are 

used together. The changes between early, intermediate and late timepoints in this cohort are 

notable. We have shown that a POCT threshold of 10-12 ng/L for cMyC is feasible with a 

preliminary foray on an OEM platform – at this cut-off, the sensitivity for AMI in patients 

with <60 mins of chest pain is already 92.6% (vs 26.9% with hs-cTnT), and rises throughout 

the later stages – whereas the hs-cTnT POCT threshold, due its low (analytic) sensitivity (50 

ng/L), never reaches a diagnostic sensitivity ≥60%. The clear benefit transpires when 

incorporating the biomarker into a risk-model, where the C statistic for cMyC is markedly 

higher than hs-cTnT at the POCT threshold. To date, most POCT devices have failed to 
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achieve a Limit of Detection that allows such risk stratification – in particular in a pre-hospital 

setting. The investigated device testing hs-cTnT achieves 50 ng/L (comparable to values 

derived from the laboratory analyser) in semi-quantitative detection <100 ng/L. There is, 

however, great potential in the testing for cardiac biomarkers in point-of-care – it might just 

require a more abundant biomarker.122 Our results translate into a successful rule-in of almost 

all AMIs, and would – owing to the greater abundance of cMyC – enable risk-stratification in a 

pre-hospital setting: with a cMyC-level based judgement on who will likely benefit from 

medical care in a tertiary cardiac care facility and who can be safely managed in a hospital not 

providing invasive cardiac investigations and treatments. 

8.2. Future direction 

8.2.1 cMyC and renal function  

Several unanswered questions remain that warrant further studies. Based on the study 

introducing the high-sensitivity assay for cMyC84, the novel biomarker appears to be affected 

by decreased renal function similarly as cTn. We were unable to test this hypothesis in greater 

detail in the cohorts studied to date – one reason being the enrolment of relatively ‘healthy’ 

individuals with regards to underlying renal function. The European multi-centre study 

(APACE) precluded patients with end-stage renal failure from participation (thus the mean 

eGFR was 84 ±26). Underlying renal disease would likely only significantly alter cMyC values 

of patients without AMI, as the dynamic range of cMyC in response to myocardial injury 

would likely trump any interference from abnormal renal function at baseline. This would 

potentially reduce the number of patients with renal dysfunction that are eligible for direct 

rule-out. An effect on the safety of rule-out based on our current cut-off values, or indeed 

specificity for rule-in is unlikely given widely spaced decision limits. 
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8.2.2 cMyC sources other than cardiac muscle 

We have not identified any evidence to suggest that the cardiac isoform of myosin-binding 

protein C is expressed in tissue other than cardiac, from neonatal through adult tissue 

development116,117 Nevertheless, similar assumptions previously applied to cTn – absent in 

healthy adult skeletal muscle, cTnT is present in foetal skeletal muscle181. Muscle regeneration 

in adult life, due to muscle injury or neuromuscular disease, can lead to re-expression of cTnT 

(but not cTnI) according to work published by Rittoo et al.182 The authors compared sensitive 

cTnT and cTnI assays (Roche, Siemens) in patients with skeletal muscle diseases and 

demonstrated persistent cTnT elevation, but no signal using cTnI assays. Jaffe et al. had 

previously demonstrated immunoreactivity between the antibodies used for (sensitive and 

high-sensitivity) cTnT assays and a 37- to 39-kDa protein in 4 diseased (skeletal) muscle 

biopsies;183 findings which were confirmed recently in a publication by Schmid et al.24 As the 

targets of our monoclonal antibodies are located in an N-terminal region, cross-reactivity with 

fast- or slow-skeletal muscle protein is even less likely.50,83,84 Therefore, it is worth noting that 

cMyBP-C re-expression might occur and has not been specifically investigated.  

8.2.3 Biological variation in healthy individuals 

We have performed the derivation of cMyC delta-change values in a retrospective sample set, 

focussing on identifying the patients most likely to benefit from rule-out and rule-in through 

the use of biomarker changes between first and second blood draw. There is mounting 

evidence that cTnT is subject to a diurnal rhythm, with one study describing peak 

concentrations during morning hours followed by gradual decrease during daytime hours and 

rising concentrations during the night – quoting concentration changes of up to 24%.28 

Counter-intuitively, cTnI concentrations appear to vary randomly over a 24h period, with a 
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constant CVI (coefficient of variation within-subject) of 8-9% for all time intervals, irrespective 

of underlying renal function.27,184 We should study day-to-day biological variation as well as 

diurnal variation for cMyC values using the following approach:  

Study proposal for biological variation study 

The study should include healthy, adult, gender-matched volunteers.185 Participants should be 

free of diabetes, cardiovascular disease, renal disease, chronic lung disease or cancer. In one 

group of participants, samples should be obtained once a week for ten weeks. Samplings 

should be done between 08.00 and 10.00 after the participants have rested in a sitting position 

for at least 15 minutes and at the same weekday ±1 day each week. In a second group, samples 

should be collected at hourly intervals throughout a 24-hour period to investigate diurnal 

variation.  

Samples should be collected in serum-separating and EDTA tubes, centrifuged within 30 

minutes and 8 vials of 1ml serum and 8 vials of 1 ml plasma should be frozen at -80 ºC in 

cryovial tubes, within 1 hour. The laboratory will measure glucose, eGFR, hs-cTnT and NT-

proBNP on the first visit to ensure the participants are healthy.  

Simple linear regression will be used to identify trends that could indicate that a non-steady-

state situation is present. Analytical outliers will be defined according to Burnett.186 Outliers in 

mean values will be defined according to Reed’s criteria.187 If the residuals of the data do not 

conform to a Gaussian distribution, the data will be transformed into natural logarithms. As 

suggested by Fraser and Harris188, the variance homogeneity in the analytical and within-person 

variances will be tested using Cochrane’s and Bartlett’s tests. Participants exhibiting non-

homogeneity will be identified by plotting the cumulated fractions of the ranked individual 

variation results (consisting of both CVI and CVA) on a Rankin scale as a function of the 
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within-person variation of cMyC, and participants are excluded until homogeneity of variance 

is achieved.189 

8.2.4 cMyC and cardiovascular disease monitoring 

Use of the cMyC assay on a large-scale, high-throughput laboratory platform would facilitate 

testing of large cohorts, to validate our published findings in the application of cMyC as a 

marker in the diagnosis of AMI – in particular, the cut-off values require external validation to 

avoid overfitting due to the derivation in a single cohort. With regards to cardiovascular risk-

prediction, measuring cMyC in the biomarker sub-study of an outcome trial such as 

ODYSSEY190,191 would be highly attractive. ODYSSEY evaluates Alirocumab – an antibody to 

PCSK9, started 1 to 12 months after an acute coronary syndrome – in a placebo-controlled 

study involving about 18,000 patients. Patients with inadequate LDL control despite optimized 

conventional lipid treatment were eligible for recruitment. The event-driven follow-up (up to 5 

years) finished in December 2017. The primary endpoint of the study is the composite of 

CHD death, any non-fatal MI, fatal and non-fatal ischaemic stroke, and unstable angina 

requiring hospitalisation.  

The greater abundance of cMyC allowed the detection of quantifiable levels in a much larger 

proportion of stable patients than either hs-cTnT or hs-cTnI84. The correlation between cMyC 

and cTnI and cTnT enables ratio-metric comparisons between biomarkers.84 

In contrast to cTn, cMyC may not just be a bystander biomarker of cardiac injury but may lie 

on the causal pathway leading to myocardial disease. It is a key regulator of cardiac contractility 

and release may depend on adrenergic drive. At baseline, cMyC is highly phosphorylated, a 

condition required for normal cardiac function. However, the level of cMyC phosphorylation 

is significantly decreased during heart failure, indicating that the level of cMyC phosphorylation 
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is directly linked to signalling and cardiac function. cMyC is phosphorylated by a variety of 

protein kinases at critical serine residues within the M domain. When phosphorylated, these 

residues more effectively guard the calpain cleavage site within the M domain. Cleavage at this 

site releases a 40-kDa N-terminal fragment, the dominant fragment observed in serum of 

patients with acute myocardial infarction. This fragment may act as a ‘poison peptide’ causing 

cardiac dysfunction.84 Thus, the circulating cMyC concentrations in stable patients may provide 

an indirect readout of ‘myocardial health/attrition’. It would be very attractive to examine the 

use of cMyC as a biomarker of risk that may be modifiable with an intervention. This requires 

a large, well characterised population with rigorous prospective follow-up taking contemporary 

background therapies. The ODYSSEY biomarker sub-study would be ideally suited for this 

study. 

8.2.5 Point-of-Care Testing for cMyC and final  

It seems attractive to further evaluate the performance of the cMyC assay with the current 

monoclonal antibody pair on a Point-of-Care Testing, near-patient platform. Given relative 

abundance of cMyC in comparison to cTnT and cTnI84,122, the former might overcome the 

biggest hurdle for handheld devices in the cardiovascular space – analytical sensitivity. Two 

characteristics of cMyC could enable migration to POCT: (i) the protein is relatively more 

abundant – both in the sarcomere and in the circulation following myocardial injury; (ii) the 

proposed threshold for safe rule-out of AMI (10 ng/L) is about 25-fold the LoD of the 

current laboratory assay – to match, hs-cTn assays would have to achieve the same LoD on the 

POCT platform as on the laboratory analyser. As shown before, we contracted a POCT device 

manufacturer for an initial foray into migration – this achieved an LoD of 10 ng/L (see 

Diagnostic proportions of hs-cTnT and cMyC, Figure 46). The use of cMyC in a POCT-setup 
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is compelling from a number of perspectives: a device that can achieve a LoD of 10 ng/L in a 

near-patient setting would be sufficiently sensitive to enable immediate & safe rule-out of 7-

20% more patients than with (laboratory) hs-cTn assays. In healthcare modelling performed 

previously, on the basis of the study presented in Chapter 3, this could translate into ‘savings’ 

of 1,000 bed days per year if a cMyC POCT device was used at St Thomas’ Hospital, through 

admission-avoidance and shorter time-to-discharge.192 Economically, this could be attractive to 

the healthcare organisation as well – a cost-effectiveness analysis comparing hs-cTn and cMyC 

has been performed and published before.192 

8.3. Summary 

In conclusion, cMyC is a cardiac-restricted protein which enters the systemic circulation after 

myocardial injury. The work described in this thesis shows that it performs favourably in the 

diagnosis of AMI against hs-cTn. The relative abundance of cMyC, and its rapid rise after 

myocardial injury, make it particularly well-suited to a point-of-care diagnostic platform. 
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